UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE PATENT TRIAL AND APPEAL BOARD
MYLAN PHARMACEUTICALS INC., Petitioner,
v.
BAUSCH HEALTH IRELAND LIMITED Patent Owner.
Case IPR2022-00722 Patent No. 7,041,786

PETITIONER MYLAN PHARMACEUTICALS INC.'S **UPDATED EXHIBIT LIST**

LIST OF EXHIBITS

Exhibit No	Description
1001	U.S. Patent No. 7,041,786, Guanylate Cyclase Receptor Agonists for the Treatment of Tissue Inflammation and Carcinogenesis, issued May 9, 2006 to Shailubhai, K., et al.
1002 (Corrected)	Expert Declaration of Blake R. Peterson, Ph.D.
1003	Curriculum Vitae of Blake R. Peterson, Ph.D.
1004	Prosecution History of U.S. Patent No. 7,041,786
1005	U.S. Patent No. 5,489,670, <i>Human Uroguanylin</i> , issued Feb. 6, 1996 to Currie, M. G., <i>et al</i> .
1006	Li, Z., et al., Purification, cDNA Sequence, and Tissue Distribution of Rat Uroguanylin, REGUL. PEPT., 68, 1997, 45-56
1007	Narayani, R., et al., Polymer-Coated Gelatin Capsules as Oral Delivery Devices and their Gastrointestinal Tract Behaviour in Humans, J. BIOMATER. SCI. POLYM. Ed., 7(1), 1995, 39-48
1008	Campieri, M., et al., Oral Budesonide Is as Effective as Oral Prednisolone in Active Crohn's Disease, Gut, 41, 1997, 209-214
1009	U.S. Patent No. 5,359,030, Conjugation-Stabilized Polypeptide Compositions, Therapeutic Delivery and Diagnostic Formulations Comprising Same, and Method of Making and Using the Same, issued Oct. 25, 1994 to Ekwuribe, N. N.
1010	King, R. E., <i>Chapter 89: Tablets, Capsules, and Pills</i> , REMINGTON'S PHARMACEUTICAL SCIENCES, 16 th ed., (ed. A. Oslo, ed., Mack Publishing Co.) 1980
1011	Rehfeld, J. F., <i>The New Biology of Gastrointestinal Hormones</i> , Physiol. Rev., 78(4), 1998, 1087-1108

Exhibit No	Description
1012	Nelson, D. L., et al., Chapters 4-5, 7, LEHNINGER PRINCIPLES OF BIOCHEMISTRY, 3rd ed. (eds. Ryan, M., et al., Worth Publishers) 2000
1013	Segaloff, D. L., et al., Chapter 9: Internalization of Peptide Hormones and Hormone Receptors, HORMONES AND THEIR ACTIONS, PART I, (eds. Cooke, B. A., et al., Elsevier) 1988, 133-149
1014	Chipens, G., et al., Recognition of Peptide Hormones and Kinins: Molecular Aspects of the Problem, Frontiers of Bioorganic Chemistry and Molecular Biology, (ed. Ananchenko, S. N., Pergamon Press) 1980, 99-103
1015	Unson, C. G., et al., Positively Charged Residues at Positions 12, 17, and 18 of Glucagon Ensure Maximum Biological Potency, J. BIOL. CHEM., 273(17), 1998, 10308-10312
1016	Fan, X., et al., Structure and Activity of Uroguanylin and Guanylin from the Intestine and Urine of Rats, Am. J. Physiol. Endocrinol. Metab., 273(5), 1997, E957-E964
1017	Thomson, A. B. R., et al., Small Bowel Review: Part I, CAN. J. GASTROENTEROL., 14(9), 2000, 791-816
1018	Joo, N. S., et al., Regulation of Intestinal Cl ⁻ and HCO ₃ ⁻ Secretion by Uroguanylin, Am. J. Physiol., 274(4), 1998, G633-G644
1019 (Corrected)	Hamra, F. K., et al., Opossum Colonic Mucosa Contains Uroguanylin and Guanylin Peptides, Am. J. Physiol. Gastrointest. Liver Physiol., 270, 1996, G708-G716
1020	Nakazato, M., Guanylin Family: New Intestinal Peptides Regulating Electrolyte and Water Homeostasis, J. GASTROENTEROL., 36, 2001, 219-225
1021	Hamra, F. K., et al., Regulation of Intestinal Uroguanylin/Guanylin Receptor-Mediated Responses by Mucosal Acidity, Proc. Natl. Acad. Sci. USA, 94, 1997, 2705-2710

Exhibit No	Description
1022	Mergler, M., et al., Systematic Investigation of the Aspartimide Problem, Peptides: The Wave of the Future, (ed. Lebl, M., et al., American Peptide Society) 2001, 63-64
1023	Wade, J. D., et al., Base-Induced Side Reactions in Fmoc-Solid Phase Peptide Synthesis: Minimization by Use of Piperazine as N^{α} -Deprotection Reagent, Lett. Pept. Sci., 7, 2000, 107-112
1024	Lauer, J. L., et al., Sequence Dependence of Aspartimide Formation during 9-Fluorenylmethoxycarbonyl Solid-Phase Peptide Synthesis, Lett. Pept. Sci., 1, 1994, 197-205
1025	Karten, M. J., et al., Gonadotropin-Releasing Hormone Analog Design. Structure-Function Studies Toward the Development of Agonists and Antagonists: Rationale and Perspective, ENDOCR. REV., 7(1), 1986, 44-66
1026	French, S., et al., What is a Conservative Substitution?, J. Mol. Evol., 19, 1983, 171-175
1027	Tager, H. S., et al., Peptide Hormones, Ann. Rev. Biochem., 43, 1974, 509-538
1028	Noble, S. L., et al., Insulin Lispro: A Fast-Acting Insulin Analog, Am. Fam. Physician, 57(2), 1998, 279-286
1029	Galloway, J. A., New Directions in Drug Development: Mixtures, Analogs, and Modeling, Diabetes Care, 16(Supp 3), 1993, 16-23
1030	Mishra, V. K., et al., Interactions of Synthetic Peptide Analogs of the Class A Amphipathic Helix with Lipids: Evidence for the Snorkel Hypothesis, J. Biol. Chem., 269(10), 1994, 7185-7191
1031	Currie, M. G., et al., Guanylin: An Endogenous Activator of Intestinal Guanylate Cyclase, PROC. NATL. ACAD. SCI. USA, 89, 1992, 947-951
1032	Visweswariah, S. S., et al., Characterization and Partial Purification of the Human Receptor for the Heat-Stable Enterotoxin, Eur. J. Biochem., 219, 1994, 727-736

Exhibit No	Description
1033	Krause, W. J., et al., Distribution of Escherichia coli Heat-Stable Enterotoxin/Guanylin/ Uroguanylin Receptors in the Avian Intestinal Tract, ACTA ANAT., 153, 1995, 210-219
1034	Forte, L. R., et al., Escherichia coli Enterotoxin Receptors: Localization in Opossum Kidney, Intestine, and Testis, AM. J. PHYSIOL., 257(2), 1989, F874-F881
1035	Hyun, C. S., et al., Interaction of Cholera Toxin and Escherichia coli Enterotoxin with Isolated Intestinal Epithelial Cells, Am. J. Physiol., 247(6:1), 1984, G623-G631
1036	Nguyen, T. D., et al., Stimulation of Secretion by the T ₈₄ Colonic Epithelial Cell Line with Dietary Flavonols, BIOCHEM. PHARMACOL., 41(12), 1991, 1879-1886
1037	Guarino, A., et al., T ₈₄ Cell Receptor Binding and Guanyl Cyclase Activation by Escherichia coli Heat-Stable Toxin, Am. J. PHYSIOL., 253, 1987, G775-G780
1038	Bakre, M. M., et al., Dual Regulation of Heat-Stable Enterotoxin- Mediated cGMP Accumulation in T84 Cells by Receptor Desensitization and Increased Phosphodiesterase Activity, FEBS LETT., 408, 1997, 345-349
1039	Lin, M., et al., Heat-Stable Toxin from Escherichia coli Activates Chloride Current via cGMP-Dependent Protein Kinase, CELL PHYSIOL. BIOCHEM., 5, 1995, 23-32
1040	Tien, XY., et al., Neurokinin A Increases Short-Circuit Current Across Rat Colonic Mucosa: A Role for Vasoactive Intestinal Polypeptide, J. Physiol., 437, 1991, 341-350
1041	Muflih, I. W., et al., Sugars and Sugar Derivatives which Inhibit the Short-Circuit Current of the Everted Small Intestine of the Rat, J. Physiol., 263, 1976, 101-114
1042	Helbock, H. J., et al., The Mechanism of Calcium Transport by Rat Intestine, BIOCHIM. BIOPHYS. ACTA, 126, 1966, 81-93

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

