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The proposed scheduling strategy is based on a multi-agent architecture. Each agent of this

architecture is dedicated to a work centre (i.e. a set of resources of the manufacturing system);

it selects locally and dynamically the most suitable dispatching rules. Depending on local and

global considerations, a new selection is carried out each time a prede®ned event occurs (for

example, a machine becomes available, or a machine breaks down). The selection depends on:

(1) primary and secondary performance objectives, (2) the operating conditions, and (3) an

analysis of the system state, which aims to detect particular symptoms from the values of

certain system variables. We explain how the scheduling strategy is shared out between agents,

how each agent performs a local dynamic scheduling by selecting an adequate dispatching

rule, and how agents can coordinate their actions to perform a global dynamic scheduling of

the manufacturing system. Each agent can be implemented through object-oriented formal-

isms. The selection method is improved through the optimization of the numerical thresholds

used in the detection of symptoms. This approach is compared with the use of SPT, SIX,

MOD, CEXSPT and CR/SPT on a jobshop problem, already used in other research works.

The results indicate signi®cant improvements.

Keywords: Dynamic scheduling, dispatching rules, ¯exible manufacturing systems, multi-agent

system, simulation-optimization, object-oriented models

1. Introduction

The dynamic scheduling of manufacturing systems is con-
cerned with the allocation of jobs to the resources in real
time. This allocation is made according to the state of the
shop¯oor (e.g. breakdown of a machine, availability of a
resource, or existence of bottlenecks) and the production
objectives (e.g. reduce the number of jobs in progress, or
reduce the tardiness). One of the most common approaches
to dynamic scheduling of the jobs to process is to use dis-
patching rules (DRs). Dispatching rules can be very simple
or extremely complex. Examples of simple dispatching
rules are: `select a job at random' or `select the job with the
longest waiting time'. A more complex example might be
`select the job with the shortest due date whose customer's
inventory is less than a speci®c amount'.

Numerous DRs exist, but research in recent decades has
demonstrated that there is no one DR that is globally
better than the others (Blackstone et al., 1982; Kiran and
Smith, 1982; Montazeri and van Wassenhove, 1990). Their
e�ciency depends on the performance criteria considered,
and on the operating conditions (e.g. shop load, tightening
of due dates, or existence of bottlenecks).

We propose an approach based on a multi-agent archi-
tecture. Each agent selects locally and dynamically the DR
that seems the most suited to the operating conditions, to
the production objectives, and to the current shop status.
Because the shop status changes over time, each agent
analyses the system state each time an event occurs (e.g. a
machine becomes available, or an urgent job arrives).

In this paper, we ®rst present the general principles of
multi-agent systems, and we focus on the bene®ts of this
approach in the production management area. Next, we
present the way in which the dynamic scheduling deci-
sions can be shared between agents, and the role of these*Author to whom all correspondence should be addressed.
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agents is highlighted. Finally, the bene®ts of this ap-
proach are demonstrated through the example of a job-
shop system.

2. Agents and multi-agent systems

2.1. De®nitions

The use of a multi-agent architecture allows decisions to be
taken in a decentralized way. In arti®cial intelligence, this
approach appears to be well suited to complex problems,
especially those with a great number of interactions be-
tween components, and for which classical incremental
methods cannot provide good results. The multi-agent
method allows one to solve subproblems locally with an
agent, and to propose a global solution as a result of in-
teractions between the di�erent agents.

Several researchers have proposed formal de®nitions for
agents and multi-agent systems. We retain those proposed
by Ferber (1993):

(1) An agent is a real or a virtual entity able to act on
itself and on the surrounding world, generally populated by
other agents. To perform its actions, this entity contains a
partial representation of its environment, and can com-
municate with other agents of this environment. Its be-
haviour is a result of its observations, its knowledge and its
interactions with the world and other agents. An agent has
several interesting features:

(a) it has capabilities of perception and a partial
representation of the environment;
(b) it can communicate with other agents;
(c) it can reproduce son agents;
(d) it has its own objectives and an autonomous
behaviour;

(2) A multi-agent system (MAS) is an arti®cial system
composed of a population of autonomous agents, which co-
operate with each other to reach common objectives, while
simultaneously each agent pursues individual objectives.

2.2. Agent structure

We can split an agent into three layers, as depicted in Fig. 1:

(1) The static knowledge layer: contains knowledge on
itself and on the other agents. This is an agent's speci®c
memory, used to memorize its observations and its
knowledge concerning its environment (social knowledge);

(2) The expertise layer: contains knowledge that repre-
sents treatments and actions that an agent is able to carry
out and which can be described in various forms (e.g. al-
gorithms, production rules, frames, or logical expressions).
This layer constitutes the agent know-how;

(3) The communication layer: includes the communica-
tion tools. They describe the communication protocols

between the agent on one side and some other agents and
resources of the environment on the other side. This layer
characterizes the way that the agent takes into account the
messages it receives. This layer also allows the agent to act
and to apprehend the environment changes.

2.3. Multi-agent structure and production management

For the production management of a manufacturing sys-
tem, many decisions have to be taken to reach the pro-
duction objectives (e.g. planning decisions, scheduling
decisions, and control decisions). Indeed, these decisions
must be periodically updated in order to take into account
changes in the production system (e.g. a machine break-
down, worker absences, or the arrival of an urgent job).
The use of a multi-agent architecture allows one to share
out all these decisions between several agents in a hierar-
chical manner. Each agent is in charge of speci®c decisions
(Chandra and Talavage, 1991; I�necker et al., 1991; Bap-
tiste and Manier, 1993; Kwok and Norrie, 1993; Parunak,
1993; Barbuceanu and Fox, 1994; LefrancËois and Mon-
treuil, 1994; Tacquard et al., 1994; Trentesaux and Tahon,
1995; Ouzrout, 1996). Unfortunately this structure presents
some disadvantages, due mainly to possible contradictory
decisions of agents that can lead to a global lock of the
system (Ayel, 1994; Attoui et al., 1995).

The allocation of decisions to agents can be made ac-
cording to several criteria, listed below:

(1) Technological criterion: for example, an agent may
be dedicated to resources using the same communication
protocol;

(2) Topological criterion: for example, an agent may be
dedicated to resources close (in distance) to each other;

(3) Functional criterion: for example, an agent may be
dedicated to a particular function (e.g. quality function,

Fig. 1. Agent structure.

42 Kouiss et al.

Petitioner STMICROELECTRONICS, INC., 
Ex. 1024, IPR2022-00681, Pg. 2

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


monitoring function, or scheduling function). This paper
emphasizes the dynamic scheduling function;

(4) Organizational criterion: the manner in which the
works are allocated to each agent.

3. A dynamic scheduling approach based on a multi-agent

structure

3.1. Principles of the proposed approach

The dynamic scheduling is supported by a multi-agent ar-
chitecture. Each agent of the system is in charge of a work
centre of the manufacturing system. An agent solves the
scheduling problem by selecting dynamically the most ad-
equate DR to apply locally. Examples of DRs that can be
applied are: shortest processing time (SPT), smallest critical
ratio (SCR), earliest due date (EDD), conditional exp-
editive shortest processing time (CEXSPT), and critical
ratio shortest processing time (CR/SPT) (Mebarki, 1995).
To select a DR, the agents take into account primary and
secondary objectives (e.g. reduce the mean ¯ow time and
reduce the percentage of tardy jobs), the state of the work
centre (e.g. length of the waiting job queues, or availability
of resources), and information received from other agents.

In order to take into account the changes of the system
state, the application of new DRs is envisaged by agents
each time a triggering event occurs; that is, each time a
resource becomes available, a new job arrives, or a job
leaves the system.

It has already been shown that combinations of di�erent
DRs could perform better than applying the same DR to
all the work centres (Barrett and Barman, 1986). In a
multi-agent architecture, each agent takes its decisions in
an independent way, so in a given time di�erent DRs may
be applied to di�erent work centres.

The selection of the DR applied by each agent is carried
out through two steps using the following strategy
(Pierreval and Mebarki, 1997).

3.1.1. Step 1: Detection of an active symptom

The system status is analysed to try to detect prede®ned
symptoms. This is done using knowledge of the following
form:

If [condition about state variables] then [active symptom]

An example of such a rule is:

If [job due date ) current time )
remaining processing time < a] then [active `job tardy']

where a is called a threshold. A symptom becomes active
when an observed variable (e.g. utilization rate of re-
sources, waiting time of jobs, or length of queues), has
exceeded a prede®ned threshold. This means that the sys-
tem might be deviating from its production objectives.
Symptoms may concern the behaviour of the whole system

[global symptoms detected by the supervisory agent (see
section 3.2), e.g. `Too many tardy jobs'], or the behaviour
of a particular work centre [local symptoms detected by a
simple agent dedicated to a work centre (see section 3.2)
e.g. `Station S becomes bottleneck'].

Thresholds depend on the particular scheduling prob-
lem, and cannot be generally prede®ned. Pierreval (1992)
has shown that these thresholds can have a great impact on
the performance of this scheduling method. Thus thresh-
olds need to be tuned for each agent using an optimization
procedure (Pierreval and Mebarki, 1997).

3.1.2. Step 2: Choice of DRs

The DRs to apply are chosen from a set of pre-selected
DRs, using rules of the following forms:

If [conditions about the objectives

and/or conditions about information received

from other agents

and/or conditions about the state of the

local work centre

and/or conditions about the active symptoms]

then [apply fselected DRg to the considered queue�
An example of such a rule is:

If [the primary objective � `reduce the mean flow time'

and no `tardy jobs'

and no `urgent jobs']

then [apply SPT]

3.2. Organization of the agents for dynamic scheduling

The manufacturing system is composed of several work
centres, each one made up of one or several resources. The
multi-agent architecture is shown in Fig. 2.

Fig. 2. Multi-agent architecture. WC: work centre.
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In this architecture we distinguish a supervisory agent
and several simple agents each dedicated to a speci®c work
centre. Those agents perform two types of communication:

(1) Communication with other agents (type a in Fig. 2).
Examples of this type of communication are: a request to
apply a speci®c DR, information about active symptoms,
and a request of the state of another agent;

(2) Communication with the environment (type b in
Fig. 2). Examples of this type of communication are: exe-
cution of a program, reading of the state of a variable,
orders from a human operator, and exchange with the
database system.

The role of the supervisory agent is to monitor the global
state of the manufacturing system. This agent has only an
external vision of the state of other work centres; dedicated
agents keep it informed using messages. It can detect global
symptoms, and can impose particular DRs to agents con-
trolling the work centres if it considers this necessary to
satisfy the global objectives. For example, if it notices the
global symptom. `The number of jobs that become tardy is
too high', and if the objective is to reduce the mean ¯ow-
time of jobs, then it imposes SPT to all agents.

The agent allocated to a work centre is in charge of the
scheduling of jobs inside the centre. This agent manages its
own waiting job queues. The selection of DRs is made
according to the two steps described above, and depends
on the system state, the orders received from the supervi-
sory agent, and the global objectives of the manufacturing
system (e.g. reduce the mean tardiness). This selection can
be very simple when the supervisory agent imposes a par-
ticular DR on the agent.

3.3. Implementation of the dynamic scheduling approach
in an agent

Each agent has the structure presented in Fig. 1, and can be
implemented using object-oriented formalisms (Kwok and
Norrie, 1993; LefrancËois and Montreuil, 1994). This stru-
cture is based on the three layers described below.

3.3.1. Static and social knowledge layer

This layer contains such pieces of knowledge as:

(1) Threshold values used in the rules to activate the
prede®ned symptoms. These values may change during the
life of the agent according to a learning procedure;

(2) Data about DRs that the agent can select;
(3) Data about capabilities of other agents (for example,

the supervisory agent has data about capabilities of all the
agents dedicated to the work centres of the manufacturing
system).

3.3.2. Expertise layer

This is the intelligent part of the agent. It is based on object
methods representing production rules (as previously de-

scribed), and uses data taken from the static and social
knowledge layer and information received by the commu-
nication layer. The expertise concerns the application of
the two steps described in Section 3.2. It checks the con-
ditions to detect the prede®ned symptoms and, if necessary,
selects a new, adequate DR. Then it applies it, using (from
the static and social knowledge layer) the relevant data
necessary for its application, and sends orders to the con-
cerned entities, using the communication layer functional-
ities. In the case of the supervisory agent, an order can be a
choice of a speci®c DR for another agent. In the case of an
agent dedicated to a work centre, an order can be the start
of a machining operation or the noti®cation of the name of
a new active symptom to the supervisory agent.

3.3.3. Communication layer

Agents need to communicate with the physical environ-
ment. We include in the term `physical environment' each
entity that is not an agent. This comprises all the resources
(e.g. programmable controllers, robots, machining cen-
tres). Communication between an agent and the environ-
ment uses the machine's communication protocols (e.g.
programmable controller protocols such as MODBUS,
UNI-TELWAY or SINEC L2, or numerical control pro-
tocols). The communication layer of an agent must contain
tools (e.g. drivers) to carry out the communication with all
the resources of the work centre. This communication al-
lows an agent, for example, to monitor machines (e.g. to
start, stop, or download a program), to extract information
in the database system, or to have information about the
state of machines (e.g. alarm messages, and the state of a
sensor that indicates the number of parts in a waiting job
queue).

Agents also need to communicate with each other. This
communication is performed by exchange of messages, and
is supported by a communication network installed be-
tween the agents' host computers. The protocol can be a
speech±act type (Trouilhet, 1993) such as KQML (Finin
et al., 1992), which is an agent communication language
(ACL). This communication allows, for example, the su-
pervisory agent to know the state of a waiting queue in a
work centre, or to request the application of a given DR in
another agent.

4. Simulation of the distributed dynamic scheduling

At present, this approach has not been implemented on a
real FMS. In order to evaluate its performance, speci®c
object-oriented simulation software was designed. Al-
though this software is implemented in a simple program, it
is based on the distributed dynamic scheduling that we
have presented. To make the comparison as relevant as
possible, we have chosen a jobshop model that has been
already used by several researchers to compare DRs. Eilon
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and Cotteril (1968) have used this model to test the e�ects
of the SIX rule, Baker and Kanet (1983) to demonstrate the
bene®ts of the MOD rule, Baker (1984) to examine the
interaction between dispatching rules and due-dates as-
signment methods, Russel et al. (1987) to analyse the e�ects
of the CoverT rule comparatively with several other DRs,
and Schultz (1989) to demonstrate the bene®ts of the
CEXSPT rule.

The system is a four-machines jobshop. Each machine
can perform only one operation at a time. The number of
operations of the jobs processed in the system is uniformly
distributed between two and six. The routeing of each job is
random. More precisely, when a job leaves a machine and
needs another operation, each machine has the same
probability of being the next, except the one just released,
which cannot be chosen. The processing times on machines
are exponentially distributed, with a mean of 1. The arrival
of jobs in the system is modelled as a Poisson process. The
mean arrival rate of this process is equal to the shop uti-
lization, which is de®ned as follows:

Shop utilization � 1

m

Xm

k � 1

@k �1�

where @k is the steady-state utilization rate of the kth re-
source, and m is the number of workstations in the shop.
Due dates of jobs are determined using the TWK method
(Baker, 1984).

The dispatching rules compared are: SPT, CEXSPT,
CR/SPT, plus MOD and SIX. These DRs seem to be ac-
cepted as being among the most e�cient (see for example
Baker, 1984; Russel et al., 1987; Engell and Moser, 1992).

A simulation model of the system previously described
was build using our simulation±optimization software. It
was ®rst run to tune the thresholds, and then to compare
the dynamic change of DRs, managed by the multi-agent
system (called SFSR), with regard to the two following
pairs of objectives:

(1) Reduce the mean tardiness as a primary objective and
reduce the mean ¯ow time as a secondary objective (noted
as SFSR1);

(2) Reduce the conditional mean tardiness as a primary
objective and reduce the mean tardiness as a secondary
objective (noted as SFSR2).

The experiments were conducted with a mean arrival
rate of jobs of 0.9, which corresponds to a utilization rate
of the resources of 90% (i.e. a high level of utilization). For
this case, an average ¯ow allowance of 30 time units rep-
resents tight due dates (i.e. an allowance factor k of 7.5),
whereas an average ¯ow allowance of 60 time units rep-
resents loose due dates (i.e. an allowance factor k of 15).

The simulation experiments have been designed in the
same way as those of Schultz (1989): that is, the transient
phase is estimated at 500 jobs, ten replications are carried
out, and each run yields estimates of the performance

measures collected on 5000 jobs. The performance measures
collected are the mean ¯ow time (MFT), the mean tardiness
(MT), the conditional mean tardiness (CMT), and the
proportion of tardy jobs (PT). These measures are averaged
over the ten replications. The results are given in Tables 1
and 2.

In order to ®nd out the signi®cant di�erences between
the strategies, we used a statistical test, based on 0.95
con®dence intervals of the means of the di�erences between
the results of each couple of strategies. This test is known
as the paired-t con®dence interval method (Law and Kel-
ton, 1982).

Table 3 lists the best three strategies for each criterion,
with loose or tight due dates (i.e. mean ¯ow allowances of
60 and 30 time units), and the average of the percentage of
the di�erence between the best and second-best strategies
and the second and the third-best strategies. Note that all
mean percentage di�erences are signi®cant at a = 0.05 ex-
cept those indicated with an asterisk.

From these tables we can see that SFSR can overcome
the dispatching rules on primary objectives. In the jobshop
example, the SFSR2 strategy was found to perform the
best on the conditional mean tardiness as the primary ob-
jective. The results of SFSR1 were the best on the mean
tardiness, except in the case of tight due dates, where
CR/SPT gives slightly better results.

Table 1. Comparison of the dynamic selection with various

dispatching rules, with tight due dates

Rule MFT MT CMT PT

SPT 17.4 3.38 45.45 0.07

SIx 22.6 1.97 9.16 0.2

MOD 23.0 1.87 12.11 0.14

CEXSPT 21.9 1.78 5.37 0.31

CR/SPT 22.2 1.42 8.73 0.15

SFSR1 21.1 1.5 9.18 0.15

SFSR2 23.4 1.86 4.5 0.39

Table 2. Comparison of the dynamic selection with various

dispatching rules, with loose due dates

Rule MFT MT CMT PT

SPT 17.4 1.75 85.17 0.02

SIx 19.9 0.04 4.55 0.007

MOD 25.9 0.13 6.48 0.01

CEXSPT 20.3 0.1 1.89 0.04

CR/SPT 23.8 0.03 2.81 0.007

SFSR1 21.1 0.03 3.33 0.007

SFSR2 26.3 0.21 1.29 0.16
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