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reflect the temporal relationships between manufacturing
activities and the capacity limitations of a set of shared
resources. The allocation also affects a schedule’s opti-
mality with respect to criteria such as cost, lateness, or
throughput.

The globalization of manufacturing makes such opti-
mization increasingly important. To survive in this com-
petitive market, manufacturing enterprises must increase
their productivity and profitability through greater shop
floor agility. Agent-based manufacturing scheduling sys-
tems are a promising way to provide this optimization.

Manufacturing scheduling’s complexity
Scheduling problems are not exclusive to manufactur-

ing systems. Similar situations happen routinely in pub-
lishing houses, universities, hospitals, airports, transporta-
tion companies, and so on. Scheduling problems are
typically NP-hard; that is, finding an optimal solution is
impossible without using an essentially enumerative algo-
rithm, and the computation time increases exponentially
with the problem size. Manufacturing scheduling is one of
the most difficult scheduling problems.

A well-known manufacturing scheduling problem is
classical job shop scheduling, which involves a set of jobs
and a set of machines. Each machine can handle at most
one job at a time. Each job consists of a chain of opera-
tions, each of which must be processed during an uninter-
rupted time period of given length on a given machine.
The purpose is to find a best schedule—that is, an alloca-
tion of the operations to time intervals on the machines
that has the minimum duration required to complete all
jobs. The total possible solutions for this problem with n
jobs and m machines is (n!)m.

The problem becomes even more complex when it
includes other variables.

Additional resources
In a real manufacturing enterprise, production mana-

gers or human schedulers must consider all kinds of man-
ufacturing resources, not just jobs and machines. For
example, a classical job shop scheduling problem with n
jobs, m machines, and k operators could have ((n!)m)k pos-
sible solutions.

Simultaneous planning and scheduling
Traditional approaches separating process planning and

scheduling can obtain suboptimal solutions at two sepa-
rate phases. Global optimization of a manufacturing sys-
tem is only possible when process planning and schedul-
ing are integrated. However, this makes the scheduling
problem much more difficult to solve.

Unforeseen dynamic situations
In a job shop manufacturing environment, things rarely

go as expected. Scheduled jobs get canceled and new jobs
are inserted. Certain resources become unavailable and
additional resources are introduced. A scheduled task
takes more or less time than anticipated, and tasks arrive
early or late. Other uncertainties include power system
failures, machine failures, operator absence, and unavail-
ability of tools and materials. An optimal schedule, gener-
ated after considerable effort, might become unacceptable
because of unforeseen dynamic situations on the shop
floor. If this happens, a new schedule must be generated to
restore performance. We call such a rescheduling problem
dynamic scheduling or real-time scheduling.

Manufacturing scheduling solutions
The scheduling problem has received considerable

attention because of its highly combinatorial aspects (NP-
hard), dynamic nature, and practical interest for industrial
applications. Consequently, researchers have proposed
many different solutions.

Traditional approaches
Because direct methods are not available for complex

scheduling problems, search is the usual strategy to solve
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them. Generate-and-test is the simplest
approach. It is often reasonable for simple
problems but is not reasonable for large,
complex problems, and there is no guaran-
tee that a solution will ever be found. Many
local search algorithms are generally appli-
cable and flexible. They require a cost func-
tion, a neighborhood function, and an effi-
cient method for searching the neighborhood.

Neighborhood search methods offer
heuristic refinements to generate-and-test.
Heuristic search lets us discover solutions
that point us in interesting directions (that
is, toward the optimum solution), although
these solutions might be “bad” in that they
might miss the true optimum. A good heu-
ristic method can reach good (although
possibly nonoptimum) solutions to hard
problems in reasonable time. Heuristic
methods try to replace the exhaustive search
with some experience, thus reducing com-
putational difficulty.

Constraint satisfaction is another popu-
lar approach; it operates in a space of con-
straint sets rather than in a solution set
space.1,2 Constraint satisfaction algorithms
fall into two groups: search algorithms for
finding a solution, and preprocessing algo-
rithms (also called consistency algorithms)
for reducing futile search space. Widely
used algorithms include systematic depth-
first tree search algorithms (backtracking)
and hill-climbing algorithms (iterative
improvement).

Several approaches exploit search strate-
gies that accept even cost-deteriorating
neighbors. These approaches need some
kind of learning mechanism. One example
is simulated annealing, a randomized
neighborhood search algorithm. It was
inspired by physical annealing, which con-
verts a solid to a pure lattice structure by
placing it in a heat bath until it melts, then
cooling it down slowly until it solidifies
into a low-energy state. Simulated anneal-
ing has been successfully applied to many
single-objective scheduling problems.

Another example is Tabu search. This
approach combines deterministic iterative
improvements with the possibility of accept-
ing cost-increasing solutions occasionally, to
direct the search away from local minimums.

In genetic algorithms, learning occurs
through a solution selection process. GAs
discover superior solutions to global opti-
mization problems adaptively—much like
biological evolution—looking for small,
local improvements rather than big jumps

in a solution space. GA methodology
seems to achieve small local climbs (adap-
tations) without gradient information about
the objective function being optimized.

All traditional methods, whether analyti-
cal, heuristic, or metaheuristic (including
GAs, Tabu search, and simulated anneal-
ing), encounter great difficulties when deal-
ing with real situations. This is because they
use simplified theoretical models and are
essentially centralized—that is, a central
computing unit performs all computations.
This suggests that traditional approaches
are inflexible, expensive, and slow to satisfy
real-world scheduling problems.

Agent-based approaches
With agent-based approaches, manufac-

turing resources (for example, machines,
operators, robots, and setup stations) can be
treated and represented as intelligent agents.
They are connected through a local network
(for example, an Ethernet). Unlike tradi-
tional manufacturing scheduling systems
using a centralized scheduler, an agent-
based manufacturing scheduling system
supports distributed scheduling such that
each agent can locally handle the schedule
of its machine, operator, robot, or station.
However, the participating agents can col-
lectively perform global scheduling through
some negotiation mechanism and protocol
(for example, a contract net protocol or an
auction protocol, which I describe later).

Agent-based approaches have several
potential advantages for manufacturing
scheduling:3,4

• The agent paradigm uses parallel com-
putation through a large number of
processors, which could provide high
efficiency and robustness.

• The agent paradigm makes integrating
process planning and manufacturing
scheduling easy, so as to realize the
simultaneous optimization of manufac-
turing process planning and scheduling.

• You can connect resource agents directly
to their represented physical devices, so as
to realize real-time dynamic rescheduling.
This could provide high fault tolerance.

• Agents can develop schedules using the
same mechanisms that businesses use
(negotiation rather than simple search) in
the manufacturing supply chain. Thus,
you can directly connect the manufactur-
ing capabilities of different manufactur-
ing enterprises. This will make optimiza-

tion possible at the supply chain level, in
addition to the shop floor level and the
enterprise level.

• Individual resources can trade off local
performance to improve global perfor-
mance, leading to cooperative scheduling.

• You can combine other techniques with
agent-based approaches at certain levels
for learning and decision-making (I dis-
cuss this in more detail later).

Majors issues of agent-based
manufacturing scheduling

Anyone developing an agent-based man-
ufacturing scheduling system must deal
with four main issues among others: agent
encapsulation, coordination and negotia-
tion protocols, system architectures, and
decision schemes for individual agents.

Encapsulation
Among the different approaches for agent

encapsulation in manufacturing scheduling
systems, two are distinct: functional decom-
position and physical decomposition. Func-
tional decomposition uses agents to encap-
sulate modules assigned to functions such as
order acquisition, planning, scheduling,
material handling, transportation manage-
ment, and product distribution. No explicit
relationship exists between agents and phys-
ical entities. Physical decomposition uses
agents to represent entities in the physical
world, such as operators, machines, tools,
products, parts, and operations. An explicit
relationship exists between an agent and a
physical entity. Both approaches have dis-
tributed (not centralized) implementations.

Functional decomposition tends to share
many state variables across different func-
tional agents. This can lead to inconsistency
and unintended interactions. Physical de-
composition naturally defines distinct sets
of state variables that individual agents
with limited interactions can manage effi-
ciently. However, it needs a large number
of resource-related agents, which can lead
to other problems (such as communication
overhead) and complex agent management.
However, functional decomposition is 
useful in integrating existing systems (for
example, CAD tools, materials requirements
planning systems, and databases), so as to
resolve legacy problems.

Corresponding to these two agent encap-
sulation approaches are two types of dis-
tributed manufacturing scheduling systems.
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In the first, scheduling is an incremental
search process that can involve backtrack-
ing.5–7 Agents, responsible for scheduling
orders, perform local incremental searches
for their orders and might consider multiple
resources. The system merges the local
schedules to produce a global schedule.
This is similar to centralized scheduling.

In the second system, an agent represents
a single real-world resource (for example, a
work cell, a machine, a tool, or an operator)
and maintains this resource’s schedule. This
agent might negotiate with other agents to
carry out overall scheduling. Most agent-
based manufacturing scheduling systems
use this approach.

Coordination and negotiation protocols
Systems that use functional decomposi-

tion are similar to traditional integrated
systems; they usually use a predefined
coordination mechanism. So, this section
primarily discusses systems using physical
decomposition.

Most agent-based manufacturing sched-
uling systems use negotiation protocols for
resource allocation. The contract net proto-
col8 or its modified versions are the most
common, although some systems use other
protocols such as Kenneth Fordyce and
Gerald Sullivan’s voting protocol.7

Reid Smith first proposed the CNP and
demonstrated it on a distributed sensing
system.8 To summarize, each agent (man-
ager) having work to subcontract broad-
casts an offer and waits for other agents
(contractors) to send their bids. After some
delay, the manager retains the best offers
and allocates its contracts to one or more
contractors, which then process the sub-
task. The CNP coordinates task allocation,
providing dynamic allocation and natural
load balancing.

The basic CNP is quite simple and can be
efficient. However, when the number of

nodes (agents) is large, the number of mes-
sages on the network increases. This increase
can lead to a situation where agents spend
more time processing messages than doing
the actual work or, worse, where the system
stops because messages have flooded it. To
avoid these problems, researchers have pro-
posed various improvements to the basic
CNP, such as

• sending offers to a limited number of
nodes (agents) instead of broadcasting
them;

• anticipating offers; that is, contractors
send bids in advance;

• varying the time when commitment is
decided;

• allowing decommitment (breaking com-
mitments);

• allowing several agents to answer as a
group (coalition formation); and

• introducing priorities for solving tasks.

The negotiation protocol’s bidding mech-
anism can be part-oriented,9 resource-
oriented,10,11 or bidirectional.12

The basic CNP selects a contractor by
comparing bids corresponding to a particu-
lar offer using predefined criteria. More
complex versions introduce penalties, thus
bringing the CNP nearer to a market-based
approach. Several recent agent-based sched-
uling systems have used such approaches,9,11

which are becoming increasingly popular.
Market-based protocols use a bargaining or
auction process, which is simple and easy 
to use. Some agent-based manufacturing
scheduling systems have implemented dif-
ferent auction techniques from real market-
places.

Katia Sycara and her colleagues pro-
posed a different approach using texture
measures, where all agents share a com-
mon information base, called a coordina-
tion agent.5 Each agent computes its own

texture measure and submits it to the coor-
dination agent, then reads the integrated
texture measure to make a decision. After
individual agents make their decisions,
they submit their solutions to the coordina-
tion agent, which in turn regulates the pos-
sible conflicts. While this approach could
help agents predict possible conflicts, it
would not eliminate conflicts.

Some authors have also realized the
game-like nature of independent schedul-
ing decisions and have tried to use game
theory to make their agents smarter.13

Another solution is to combine the agent-
based approach with traditional approaches.
I look at this in more detail later.

Architectures
Agent system architectures provide the

frameworks within which agents are de-
signed and constructed. Architectures for
agent-based manufacturing scheduling
systems fall into three categories: hierar-
chical, federated, and autonomous agent
(see Figure 1).

Hierarchical. A typical manufacturing
enterprise consists of a number of physi-
cally distributed, semiautonomous units,
each with some control over local re-
sources and with different information
requirements. In this situation, a number of
practical agent-based industrial applica-
tions still use the hierarchical architecture,
although critics often complain about its
centralized character. In fact, agent-based
distributed manufacturing scheduling sys-
tems using functional decomposition usu-
ally have a hierarchical architecture be-
cause each agent represents a function or a
department in a traditional manufacturing
system. Examples of such systems include
Distributed Asynchronous Scheduling,6 the
Logistics Management System,7 the Archi-
tecture for Distributed Dynamic Manufac-
turing Scheduling,10 and Holonic Manufac-
turing Systems.14 I describe these in the
section “The research literature.”

Federated. Because hierarchical archi-
tectures suffer serious problems due to 
centralization, federated multiagent archi-
tectures increasingly are considered a com-
promise solution for industrial agent-based
applications, especially for large-scale engi-
neering applications. A fully federated
agent-based system has no explicit shared
facility for storing active data. Rather, the
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(a) (c)(b)

Figure 1. System architectures for agent-based scheduling: (a) hierarchical, 
(b) federated, and (c) autonomous agent.
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system stores all data in local databases and
handles updates and changes through mes-
sage passing.

For agent-based manufacturing systems,
four types of federated architectures domi-
nate: facilitators, brokers, matchmakers,
and mediators. Facilitators (see Figure 2a)
combine several related agents into a group.
Communication between agents takes
place through an interface also called a
facilitator. Each facilitator provides an
intermediary between a local collection of
agents and remote agents. It usually does
this by providing two main services: rout-
ing outgoing messages to the appropriate
destinations and translating incoming mes-
sages for consumption by its agents. Many
agent-based collaborative design systems
have used this approach.4

Brokers (see Figure 2b), also called bro-
ker agents, are similar to facilitators, with
additional functions such as monitoring
and notification. The functional difference
between a facilitator and a broker is that a
facilitator is responsible for only a desig-
nated group of agents, whereas any agent
can contact any broker in the same system
for finding service agents to complete a
special task.

The matchmaker architecture (see Figure
2c) is a superset of the broker architecture,
because it uses the brokering mechanism to
match agents. The Foundation for Intelli-
gent Physical Agents (www.fipa.org) has
proposed yellow-pages agents and direc-
tory facilitators, which are similar to
matchmakers.

Besides functioning as a facilitator and a
matchmaker, mediators assume the role of
system coordinator by promoting cooperation
among intelligent agents and learning
from the agents’ behavior.3,4 This archi-

tecture imposes a static or dynamic hier-
archy for every specific task, which pro-
vides computational simplicity and man-
ageability. It is suitable for developing
distributed manufacturing scheduling
systems that are complex and dynamic
and that comprise many resource agents.

Federated multiagent architectures can
coordinate multiagent activity through facil-
itation or mediation to reduce overhead,
ensure stability, and provide scalability. They
promise to be a good foundation on which to
develop open, scalable multiagent systems.

Autonomous agent. Different definitions of
autonomous agents exist; however, an au-
tonomous agent usually

• is not controlled or managed by any
other software agent or human being,

• can communicate and interact directly
with other agents in the system and with
other external systems,

• has knowledge about other agents and its
environment, and

• has its own goals and an associated set of
motivations.

The autonomous agent architecture is well
suited for developing distributed manufac-
turing systems consisting of a small num-
ber of agents. I describe two such systems
in the section “The research literature.”

Hybrid. MetaMorph II3 combines the ap-
proaches I’ve described to develop more
flexible, modular, scalable, and dynamic
manufacturing systems. By combining the
mediator and autonomous agent approaches,
MetaMorph II’s hybrid architecture lets an
agent in one subsystem communicate di-
rectly with other subsystems or agents 

in other subsystems, thereby mitigating
bottlenecks.

Decision schemes
Here I address what kind of decision

scheme an individual agent should have to
realize effective agent-based cooperative
scheduling. As in the section on coordina-
tion and negotiation, I focus on systems
using physical decomposition.

In most agent-based manufacturing
scheduling systems using market-based and
bidding-based protocols, individual agents
need to reply to all kinds of offers. They
also sometimes need to compete, negotiate,
or bargain with other agents. Rich knowl-
edge and powerful learning and reasoning
mechanisms are important. Each agent
should have at least knowledge about the
capability, availability, and cost of the phys-
ical resource (for example, a machine) that
it represents. A more sophisticated agent
can have knowledge about other agents in
its system, knowledge of the products to be
manufactured, a knowledge base of previ-
ously successful cases, and so on.

An agent’s decision scheme depends
primarily on two aspects: the coordination
or negotiation mechanisms that the multia-
gent system uses and the agent’s local
decision-making mechanisms with avail-
able knowledge. For example, a CNP
needs each agent to reply to an offer with
requested information such as cost, start
time, processing time, and so on. A game
theory-based multiagent system needs
agents to follow game rules.13 A multia-
gent system implemented with a conversa-
tion scheme needs each agent to follow the
conversation policies.4 Local decision
making might use different kinds of mech-
anisms, such as rule- or case-based reason-
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ing mechanisms, according to the agent’s
knowledge. Updating an agent’s knowl-
edge requires a learning mechanism,
which can range from being case-based to
neural network- or fuzzy logic-based.

The research literature
Over the past two decades, a number of

researchers have used agent technology in
attempts to resolve the manufacturing sched-
uling problem. The following paragraphs
provide a short research literature review.

Early attempts
Michael Shaw might have been the first 

to suggest using agents in manufacturing
scheduling and factory control. He proposed
that a manufacturing cell could subcontract
work to other cells through a bidding mech-
anism.15 YAMS (Yet Another Manufacturing
System), another early agent-based manu-
facturing system, represented each factory
and factory component as an agent.16 Each
agent had a collection of plans, representing
its capabilities. YAMS used the CNP for
interagent negotiation.

Methodologies and techniques
CORTES used microopportunistic tech-

niques to solve the scheduling problem
through a two-agent system, where each
agent schedules a set of jobs and monitors
a set of resources.5 It was a typical schedul-
ing system using functional decomposition.

Albert Baker proposed a market-driven
contract net for heterarchical agent-based
scheduling.11 He introduced a market-based
mechanism into the contract net-based nego-
tiation and made the manufacturing schedul-
ing system more like other business systems.

The Logistics Management System applied
integration decision technologies to sched-
ule semiconductor manufacturing.7 LMS
used functional agents, one for each pro-
duction constraint, and a judge agent to
combine the votes of four different critics.
Each agent modeled those aspects of the
environment needed to satisfy its objective.
Its uniqueness was the voting protocol I
mentioned earlier.

Jyi Shane Liu and Katia Sycara proposed
Constraint Partition and Coordinated Re-
action, a coordination mechanism for job
shop constraint satisfaction. CP&CR as-
signed each resource to a resource agent
and each job to a job agent.2 A resource
agent enforced capacity constraints on the
resource; a job agent enforced temporal

precedence and release-date constraints
within the job. CP&CR was a good exam-
ple of integrating agent-based approaches
with constraint satisfaction.

AARIA (Autonomous Agents at Rock
Island Arsenal) encapsulated the manufac-
turing capabilities (for example, people,
machines, and parts) as autonomous
agents.17 Each agent seamlessly interoper-
ated with other agents in and outside its
factory. Agents communicate using sub-
ject-based addressing; that is, messages
are labeled by content rather than by
recipient and are forwarded to all agents
subscribing to the specified content area.

It was one of the few manufacturing
scheduling systems that have used
autonomous agents.

Kazuo Miyashita proposed an integrated
architecture for distributed planning and
scheduling combining the repair-based
methodology with the constraint-based
mechanism of dynamic coalition formation
among agents.1 He implemented the CAMPS
(Case-Based Multiagent Planning/Schedul-
ing) prototype system, another example of
integrating agents with constraint satisfac-
tion. In CAMPS, a set of intelligent agents
tried to coordinate their actions for satisfy-
ing planning and scheduling results by han-
dling several intra-agent and interagent
constraints.

Approaches and architectures
Peter Burke and Patrick Prosser’s Dis-

tributed Asynchronous Scheduling archi-
tecture consisted of three types of entities:
knowledge resources, agents, and a con-
straint maintenance system.6 The knowl-
edge resources contained frame-based

knowledge for resources, aggregate re-
sources, operations, process plans, and
what they called a strategic unit. A strate-
gic unit is the root of a hierarchy (of all
entities) and is concerned with the schedul-
ing problem as a whole. Originally, the
agents formed a multiagent heterarchy to
represent only resources (O-agents). The
final architecture had agents for different
aggregations of resources (T-agents) and an
agent for overseeing scheduling (S-agent).
The S-agent assigned operations to T-
agents, who assigned them to their respec-
tive O-agents. The O-agents then scheduled
these operations on their respective re-
sources. DAS could make a correct sched-
ule but had no method for optimizing that
schedule.

ADDYMS (Architecture for Distributed
Dynamic Manufacturing Scheduling)
decomposed scheduling into two levels.10

The first assigned a manufacturing work
cell to a task. The second determined local
resources, such as operators and tools, that
a number of work cells might share. Corre-
sponding to these levels were site and
resource agents. A site agent scheduled
work at a particular work cell. A resource
agent represented each local resource at a
work cell. The system comprised several
connected site agents, each of which in turn
was connected with its subsite agents and
some local resource agents.

Grace Lin and James Solberg showed
how to use a market-like control model for
adaptive resource allocation and distrib-
uted scheduling.9 They modeled the manu-
facturing shop floor exactly like a market-
place. Each task agent entered the market
carrying certain “currency” and bargained
with each resource agent on which it could
be processed. At the same time, each re-
source agent competed with other agents
to get a more valuable job. They incorpo-
rated the market mechanism, using multi-
ple-way and multiple-step negotiation, to
coordinate these autonomous agents in the
shop floor.

Khalid Kouiss and his colleagues pro-
posed a multiagent architecture for dy-
namic job shop scheduling.18 Each agent
was dedicated to a work center and per-
formed local dynamic scheduling by
selecting an adequate dispatching rule. It
selected the most suitable dispatching
rules. Depending on local and global con-
siderations, a new selection happened
when a predefined event occurred. Opti-
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The increasing use of bidding- or

market-based negotiation

protocols necessitates research
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mechanisms and protocols.
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