WORLD INTELLECTUAL PROPERTY International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 98/43658

A61K 38/00

(43) International Publication Date:

8 October 1998 (08.10.98)

(21) International Application Number:

PCT/US98/05945

A1

(22) International Filing Date:

25 March 1998 (25.03.98)

(30) Priority Data:

60/041,167

31 March 1997 (31.03.97)

US

(71) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): HOFFMANN, James, A. [US/US]; 4272 Woodland Streams Drive, Greenwood, IN 46143 (US).
- (74) Agents: MACIAK, Ronald, S. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: GLUCAGON-LIKE PEPTIDE-1 ANALOGS

(57) Abstract

The invention provides extended-action GLP-1 based peptides and compositions that are useful for treating diabetes and minimize the risk of hypoglycemia.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	\mathbf{UG}	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE -	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

GLUCAGON-LIKE PEPTIDE-1 ANALOGS

Field of Invention

The present invention relates to protein chemistry as applied to pharmaceutical research and development. The invention provides novel peptides and compositions that are useful for treating diabetes.

Background of the Invention

The World Health Organization estimates that there may be as many of 100 million patients with type II diabetes 10 worldwide, although only 23 million have been diagnosed and are receiving therapy. Type II diabetes (non-insulin dependent diabetes mellitus - NIDDM) is characterized by a resistance to insulin action in peripheral tissues such as muscle, adipose and liver and by a progressive failure in 15 the ability of the islet β -cell to secrete insulin. Because current therapeutics do not halt the progression of β -cell failure, virtually all NIDDM patients eventually require insulin to control blood glucose levels. The most commonly described therapeutics for such patients are the 20 sulfonylureas, so called oral agents, that stimulate insulin secretion. Each year, 10-20% of the patients on sulfonylureas fail to maintain acceptable blood glucose levels and switch to insulin therapy.

Insulin however, is a difficult drug for patients to self-administer for several reasons. First, insulin has a narrow therapeutic index. This leads to poor control of blood glucose levels since most patients and physicians prefer elevated glucose levels to the risk of hypoglycemia and coma. Second, proper insulin dosing is complicated. The insulin dose that a diabetic patient should administer is dependent on the amount of food consumed, the time between meals, the amount of physical exercise, and the prevailing blood glucose level which requires blood glucose monitoring to determine. The general diabetic population is

25

30

35

5

ill-equipped to correlate these factors to the proper insulin dose. Third, as a parenteral product, insulin is inconvenient to administer. Alternative delivery methods are made even more difficult by the narrow therapeutic index for insulin. Thus, many diabetic patients lack good control of blood glucose.

The Diabetes Control and Complication Trial definitively established for Type I diabetics that disease complications (retinopathy, neuropathy and nephropathy) are directly correlated to blood glucose control. A clinical trial is currently underway in the UK to determine if this link also holds true to Type II diabetes. A positive result is reasonable to anticipate, and with it will come a desire for agents that improve the ability for the patient with diabetes to control blood glucose levels tightly. In addition, a standard of care for diabetes is being developed by the US government in coordination with care-givers and the pharmaceutical industry. Thus, there is clearly a need for agents that truly are able to tightly control blood glucose levels in the normal range.

Glucagon-like peptide-1 (GLP-1) was first identified in 1987 as a incretin hormone, a peptide secreted by the gut upon ingestion of food. GLP-1 is secreted by the L-cells of the intestine after being proteolytically processed from the 160 amino acid precursor protein, preproglucagon. Cleavage of preproglucagon first yields GLP-1, a 37 amino acid peptide, GLP-1(1-37)OH, that is poorly active. A subsequent cleavage at the 7-position yields biologically active GLP-1(7-37)OH. Approximately 80% of the GLP-1(7-37)OH that is synthesized is amidated at the C-terminal after removal of the terminal glycine residue in the L-cells. The biological effects and metabolic turnover of the free acid GLP-1(7-37)OH, and the amide, GLP-1 (7-36)NH2, are indistinguishable.

GLP-1 is known to stimulate insulin secretion (insulinotropic action) causing glucose uptake by cells which decreases serum glucose levels (see, e g., Mojsov, S.,

5

10

15

20

25

30

35

Int. J. Peptide Protein Research, 40:333-343 (1992)).
Numerous GLP-1 analogs demonstrating insulinotropic action
are known in the art. These variants and analogs include,
for example, GLP-1(7-36), Gln9-GLP-1(7-37), D-Gln9-GLP-1(737), acetyl-Lys9-GLP-1(7-37), Thr16-Lys18-GLP-1(7-37), and
Lys18-GLP-1(7-37). Derivatives of GLP-1 include, for
example, acid addition salts, carboxylate salts, lower alkyl
esters, and amides (see, e.g., WO91/11457 (1991); EP 0
733,644 (1996); and US Patent No: 5,512,549 (1996)). It has
10 also been demonstrated that the N-terminal histidine residue
(His 7) is very important to insulinotropic activity of GLP1 (Suzuki, S., et al. Diabetes Res.; Clinical Practice 5
(Supp. 1):S30 (1988).

Multiple authors have demonstrated the nexus

between laboratory experimentation and mammalian,
particularly human, insulinotropic responses to exogenous
administration of GLP-1, particularly GLP-1 (7-36)NH2 and
GLP-1 (7-37) [see, e.g., Nauck, M.A., et al., Diabetologia,
36:741-744 (1993); Gutniak, M., et al., New England J. of

Medicine, 326(20):1316-1322 (1992); Nauck, M.A., et al., J.
Clin. Invest., 91:301-307 (1993); and Thorens, B., et al.,
Diabetes, 42:1219-1225 (1993)].

GLP-1 based peptides hold great promise as alternatives to insulin therapy for patients with diabetes who have failed on sulfonylureas. GLP-1 has been studied intensively by academic investigators, and this research has established the following for patients with type II diabetes who have failed on sulfonylureas:

during periods of hyperglycemia. The safety of GLP-1 compared to insulin is enhanced by this property of GLP-1 and by the observation that the amount of insulin secreted is proportional to the magnitude of the hyperglycemia. In addition, GLP-1 therapy will result in pancreatic release of insulin and first-pass insulin action at the liver. This results in lower circulating levels of insulin in the periphery compared to subcutaneous insulin injections. 2)

25

30

35

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

