Case 021-cv-00579ADA Document 13 Filed Ob/LQ21 Page 1 of 2

AO $120($ Rev. 08/10)	
TO:	Mail Stop 8
	Director of the U.S. Patent and Trademark Office
P.O. Box 1450	
Alexandria, VA 22313-1450	

REPORT ON THE
 FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\$ 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Western District of Texas on the following \square Trademarks or
\square Patents.the patent action involves 35 U.S.C. § 292.):

$\begin{aligned} & \text { DOCKET NO. } \\ & \text { 6:21-cv-00579-ADA } \\ & \hline \end{aligned}$	DATE FILED $6 / 7 / 2021$	U.S. DISTRICT COURT Western District of Texas
PLAINTIFF SCRAMOGE TECHNO	GY LIMITED	DEFENDANT APPLEINC.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1 10,622,842	4/14/2020	Scramoge Technology Limited
$29,806,565$	10/31/2017	Scramoge Technology Limited
3 10,804,740	10/13/2020	Scramoge Technology Limited
4 9,843,215	12/12/2017	Scramoge Technology Limited
$510,424,941$	9/24/2019	Scramoge Technology Limited

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED 6/18/202	INCLUDED BY	
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading

In the above - entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

AO $120($ Rev. 08/10)	
TO:	Mail Stop 8
	Director of the U.S. Patent and Trademark Office
	P.O. Box 1450
	Alexandria, VA 22313-1450

REPORT ON THE
 FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\$ 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Western District of Texas on the following \square Trademarks or
\square Patents.the patent action involves 35 U.S.C. § 292.):

$\begin{array}{\|l\|} \hline \text { DOCKET NO. } \\ \text { 6:21-CV-00579 } \end{array}$	DATE FILED $6 / 7 / 2021$	U.S. DISTRICT COURT Western District of Texas
PLAINTIFF SCRAMOGE TECH	OGY LIMITED	$\begin{gathered} \text { DEFENDANT } \\ \text { APPLE INC. } \end{gathered}$
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1 10,622,842	4/14/2020	Scramoge Technology Limited
2 9,806,565	10/31/2017	Scramoge Technology Limited
3 10,804,740	10/13/2020	Scramoge Technology Limited
4 9,843,215	12/12/2017	Scramoge Technology Limited
5 10,424,941	9/24/2019	Scramoge Technology Limited

In the above-entitled case, the following patent(s)/trademark(s) have been included:

In the above - entitled case, the following decision has been rendered or judgement issued:

| CLERK |
| :--- | :--- |

(BY) DEPUTY CLERK

Copy 1—Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Mim
Mrners
ser
Page 2 of 1385

AO $120($ Rev. 08/10)	
TO:	Mail Stop 8
	Director of the U.S. Patent and Trademark Office
	P.O. Box 1450
	Alexandria, VA 22313-1450

REPORT ON THE
 FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\$ 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Western District of Texas on the following \square Trademarks or
\square Patents.the patent action involves 35 U.S.C. § 292.):

$\begin{array}{\|l\|} \hline \text { DOCKET NO. } \\ \text { 6:21-CV-00579 } \end{array}$	DATE FILED $6 / 7 / 2021$	U.S. DISTRICT COURT Western District of Texas
PLAINTIFF SCRAMOGE TECH	OGY LIMITED	$\begin{gathered} \text { DEFENDANT } \\ \text { APPLE INC. } \end{gathered}$
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1 10,622,842	4/14/2020	Scramoge Technology Limited
2 9,806,565	10/31/2017	Scramoge Technology Limited
3 10,804,740	10/13/2020	Scramoge Technology Limited
4 9,843,215	12/12/2017	Scramoge Technology Limited
5 10,424,941	9/24/2019	Scramoge Technology Limited

In the above-entitled case, the following patent(s)/trademark(s) have been included:

In the above - entitled case, the following decision has been rendered or judgement issued:

| CLERK |
| :--- | :--- |

(BY) DEPUTY CLERK

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 04/13/2021.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.
/zretta/

Date Mailed: 04/15/2021

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 04/13/2021.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.

Approved for use through 03/31/2021. OMB 0651-0035 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

CHANGE OF CORRESPONDENCE ADDRESS Patent	Patent Number	9,806,565
	Issue Date	10-31-2017
	Application Number	13/663,012
Address to: Mail Stop Post Issue Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450	Filing Date	10-29-2012
	First Named Inventor	Jeong Wook AN
	Attorney Docket Number	0106.001 POA1

Please change the Correspondence Address for the above-identified patent to:

Firm or
Individual Name

Address

This collection of information is required by 37 CFR 1.33 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Post Issue, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

STATEMENT UNDER 37 CFR 3.73(c)

ApplicantPatent Owner: SCRAMOGE TECHNOLOGY LIMITED
Application No./Patent No.: 9,806,565 Filed/Issue Date: 10-31-2017
Titled: WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
SCRAMOGE TECHNOLOGY LIMITED a Corporation
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)
states that, for the patent application/patent identified above, it is (choose one of options 1,2,3 or 4 below):

1. \checkmark The assignee of the entire right, title, and interest.
2. \square An assignee of less than the entire right, title, and interest (check applicable box):
\square The extent (by percentage) of its ownership interest is \quad \%. Additional Statement(s) by the owners holding the balance of the interest must be submitted to account for 100% of the ownership interest.
\square There are unspecified percentages of ownership. The other parties, including inventors, who together own the entire right, title and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3. \square The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4. \square The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1,2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A. \square An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
B. \square A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows: 1. From: \qquad To: LG INNOTEK CO., LTD.

The document was recorded in the United States Patent and Trademark Office at Reel 029219 , Frame 0323 , or for which a copy thereof is attached.
2. From: LG INNOTEK CO., LTD. \qquad To: SCRAMOGE TECHNOLOGY LIMITED
The document was recorded in the United States Patent and Trademark Office at
Reel 055335 , Frame 0652 , or for which a copy thereof is attached.

[Page 1 of 2]

This collection of information is required by 37 CFR 3.73 (b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

STATEMENT UNDER 37 CFR 3.73(c)

3. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad , or for which a copy thereof is attached.
4. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
5. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
6. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad or for which a copy thereof is attached.

Additional documents in the chain of title are listed on a supplemental sheet(s).As required by 37 CFR 3.73 (c)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.
/Michael Messinger/
Signature
Michael Messinger
Printed or Typed Name

April 13, 2021
Date
37,575
Title or Registration Number
[Page 2 of 2]

Page 9 of 1385

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974 , as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Electronic Acknowledgement Receipt	
EFS ID:	42436970
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Michael V. Messinger/Susanh Perez
Filer Authorized By:	Michael V. Messinger
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	13-APR-2021
Filing Date:	29-OCT-2012
Time Stamp:	12:06:27
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
			1055768		
1	Power of Attorney	01060000000_POASigned.pdf		no	1
Warnings:					

Information:					
2	Transmittal Letter	Pat_9806565_POA_Transmittal. pdf		no	
Warnings:					
Information:					
3	Change of Address	Pat_9806565_aia0123.pdf		no	
Warnings:					
Information:					
4	Assignee showing of ownership per 37 CFR 3.73	Pat_9806565_373_aia0096.pdf		no	
Warnings:					
Information:					
Total Files Size (in bytes):			1656667		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of $\mathbf{3 5}$ U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

POWER OF ATTORNEY BY APPLICANT

 the boxes bekw

Ok \square

 \}eyter ar tha hoxus zabeve tos:

Scramoge Technology Limited

SkSNATUKE of Appyciant kor patent

Stherwse	\%******	Oater (Ombionat	3***	2-3**
Namses	\%4ssisk			
The				

Trodal of torms are sthomited

TRANSMITTAL FOR POWER OF ATTORNEY TO ONE OR MORE REGISTERED PRACTITIONERS

NOTE: This form is to be submitted with the Power of Attorney by Applicant form (PTO/AIA/82B) to identify the application to which the Power of Attorney is directed, in accordance with 37 CFR 1.5, unless the application number and filing date are identified in the Power of Attorney by Applicant form. If neither form PTO/AIA/82A nor form PTO/AIA82B identifies the application to which the Power of Attorney is directed, the Power of Attorney will not be recognized in the application.

Application Number	$13 / 663,012$
Filing Date	$10-29-2012$
First Named Inventor	Jeong Wook AN
Title	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
Art Unit	2836
Examiner Name	EVANS, JAMES P
Attorney Docket Number	0106.001 POA1

SIGNATURE of Applicant or Patent Practitioner

signature	/MiChael MeSSinger/	Date (Optional)	
Name	Michael Messinger	Registration Number	37,575
Title (if Applicant is a juristic entity)			
Applicant Name (if Applicant is a juristic entity)	NOTE: This form must be signed in accordance with 37 CFR 1.33. See 37 CFR 1.4(d) for signature requirements and certifications. If more than one applicant, use multiple forms.		
\square *Total of __ forms are submitted.			

This collection of information is required by 37 CFR $1.131,1.32$, and 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 487 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Jeong Wook AN, Seoul, KOREA, REPUBLIC OF;
Jung Oh LEE, Seoul, KOREA, REPUBLIC OF;
Sung Hyun LEEM, Seoul, KOREA, REPUBLIC OF;
Yang Hyun KIM, Seoul, KOREA, REPUBLIC OF;
LG INNOTEK CO., LTD., Seoul, KOREA, REPUBLIC OF

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The USA offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to encourage and facilitate business investment. To learn more about why the USA is the best country in the world to develop technology, manufacture products, and grow your business, visit SelectUSA.gov.

APPLICATION NO.	FLLING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$13 / 663,012$	$10 / 29 / 2012$	Jeong Wook AN	SUN.LGI.420	
23557				
SALIWANCHIK, LLOYD \& EISENSCHENK		EXAMINER		
A PROFESSIONAL ASSOCIATION		EVANS, JAMES P		
PO Box 142950				
GAINESVILLE, FL 32614		ART UNIT	PAPER NUMBER	

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):
euspto@slepatents.com

| Corrected
 Notice of Al/owability | Application No.
 $13 / 663,012$ | Applicant(s)
 AN ET AL. |
| :--- | :--- | :--- | :--- |
| | Examiner | |
| | Art Unit
 2836 | AlA(First Inventor to File)
 Status
 No |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to IDS of $9 / 14 / 2017$.A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad
2.An election was made by the applicant in response to a restriction requirement set forth during the interview on \qquad ; the restriction requirement and election have been incorporated into this action.
2. \boxtimes The allowed claim(s) is/are $1,3,7,9,11-13,19,21,23,25,30$ and $32-39$. As a result of the allowed claim(s), you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pph/index.jsp or send an inquiry to PPHfeedback@uspto.gov.
3. \boxtimes Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § $119(\mathrm{a})$-(d) or (f).

Certified copies:

a) \boxtimes All
b) Some
*c)None of the:

1. \boxtimes Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad —.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5. \square CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
\square including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \square Notice of References Cited (PTO-892)
2. \boxtimes Information Disclosure Statements (PTO/SB/08), Paper No./Mail DateExaminer's Comment Regarding Requirement for Deposit of Biological Material
4.Interview Summary (PTO-413), Paper No./Mail Date \qquad .
5.Examiner's Amendment/Comment
6.Examiner's Statement of Reasons for Allowance 7.Other \qquad -
/JARED FUREMAN/
Supervisory Patent Examiner, Art Unit 2836

PTO/SB/08A (08-03)
Approved for use through 07/31/2006. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449A/PTO				Complete if Known			
		INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessany)				Application Number	13/663,012
						Filing Date	October 29, 2012
						First Named Inventor	Jeong Wook An
						Art Unit	2836
						Examiner Name	James P. Evans
Sheet	1	of	2	Attorney Docket Number	SUN.LGI. 420		

U.S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. }{ }_{1} \end{aligned}$	Document NumberNumber Kind Code known) (if	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

FOREIGN PATENT DOCUMENTS							
Examiner Initials* Cite No.			In Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	r^{*}
		Country Code ${ }^{3}$	Number ${ }^{4}$ - Kind Code 5 (ifi known)				
	F1		2014-0113205-A English Abstract)	09-24-2014	$\begin{gathered} \hline \text { LG INNOTEK CO., } \\ \text { LTD } \end{gathered}$	ALL	

NON PATENT LITERATURE DOCUMENTS				
Examiner Initials*	Cite No. ${ }^{1}$	Include name of the author (in CAPITAL LETTERS), title of the article, (when appropriate), title of the item (book, magazine, journal, serial, symposim, catalog, etc., date, page(s), volume-issue number(s), publisher, city and/or country where published.	T^{2}	
	R1	European Search Report dated August 8, 2017 in European Application No. 16206292.1.		
	R2	European Search Report dated August 29, 2017 in European Application No. 17157643.2.		

Examiner Signature	$/$ JAMES E EVANS/	Date Considered	$09 / 19 / 2017$

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English language Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
if you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
 Commissioner for Patents
 P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Eax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This cerificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

$\stackrel{7590}{23557}$ ALIWANCHIK, LLOYD \& EISENSCHENK
A PROFESSIONAL ASSOCIATION
PO Box 142950
GAINESVILLE, FL 32614
Phone: (352) 375-8100 Fax:(352) 372-5800

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile addressed to the Mail Stop 1SSUE FEE address above, or being
transmitted to the USPTO (571) 273 -2885, on the date indicated below.

APPLICATION NO.	FILING DATE	FRRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$13 / 663,012$	$10 / 29 / 2012$	Jeong Wook AN	SUN.LGI.420	3575

TITLE OF INVENTION: WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREY. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE	
nonprovisional UNDISCOUNTED		\$960	\$0	\$960	\$ \$0	09/26/2017	
		ssue Fee previously paid 8/16/2016 to be applied					
EXAMINER						ART UNIT	CLASS-SUBCLASS
EVANS, JAMES P		2836	307-104000				
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) The names of up to 3 registered patent attomeys or agents OR, alternatively,		 1 Eisenschenk		
			(2) The name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attorneys or agents. If no name is listed, no name will be printed.	is 3			

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
LG INNOTEK CO., LTD.
SEOUL, KOREA
Please check the appropriate assignee category or categories (will not be printed on the patent): \square Individual \triangle Corporation or other private group entity $\quad \square$ Government

4a. The following fee(s) are submitted:
Issue Fee
Publication Fee (No small entity discount permitted)
Advance Order - \# of Copies

4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
XI The director is hereby authorized to charge the required fee(s), any deficiency, or credits any overpayment, to Deposit Accounl Number 190065 (enclose an extra copy of this form)
5. Change in Entity Status (from status indicated above)
\square Applicant certifying micro entity status. See 37 CFR 1.29
\square Applicant asserting small entity status. See 37 CFR 1.27
\square Applicant changing to regular undiscounted fee status.

NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment
NOTE: If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status.
NOTE; Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable.

NOTE: This form must be signed in accordence with 37 CFR 1.31 and 1.33 . See 37 CFR 1.4 for signature requirements and certifications.

Date September 25, 2017
Registration No. 35,589

Page 2 of 3
PTOL-85 Part B (10-13) Approved for use through 10/31/2013.
OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Page 19 of 1385

Electronic Acknowledgement Receipt	
EFS ID:	30463317
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Jeff Lloyd/Miranda Price
Filer Authorized By:	Jeff Lloyd
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	25-SEP-2017
Filing Date:	29-OCT-2012
Time Stamp:	15:24:47
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
			147894		
1	Issue Fee Payment (PTO-85B)	IFP2-AF.pdf		no	1
Warnings:					

Information:

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

PART B - FEE (S) TRANSMITTAL

Completed send this form, together with applicable fees), to: Mail Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
or Fax (571)-273-2885
NSTRUCTIGXS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where pipapratife All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as Indieatedtunless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the papers. Each additional paper, such as an assignment or formal drawing, mus have its own certificate of mailing or transmission.

SALIWANCHIK, LLOYD \& EISENSCHENK
A PROFESSIONAL ASSOCIATION
PO Box 142950
GAINESVILLE, FL 32614
Phone: (352) 375-8100 Fax:(352) 372-5800

Certificate of Mailing or Transmission

I hereby certify that this Fees) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile addressed to the Mail STop ISSUE -FEE address above, or being
transmitted to the USPTO (571) 273-2885, on the date indicated below.

TITLE OF INVENTION: WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME

3. ASSIGNEE NAME AND RESIIENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

LG INNOTEK CO., LTD.
SEOUL, KOREA
Please check the appropriate assignee category or categories (will not be printed on the patent): \square Individual \rrbracket Corporation or other private group entity Government

Page 22 of 1385

U.S. PATENT DOCUMENTS							
Examiner Initials ${ }^{*}$	Cite No. ${ }^{1}$	Document Number Number Kind Code ${ }^{2}$ (if known)	Publication Date MM-DD-YYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear		

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document Country Code ${ }^{3}$ - Number 4 - Kind Code 5 (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns Lines Where Relevant Passages or Relevant Figures Appear	T
	F1	$\begin{aligned} & \text { KR-10-2014-0113205-A } \\ & \text { (with English Abstract) } \end{aligned}$	09-24-2014	$\begin{gathered} \text { LG INNOTEK CO., } \\ \text { LTD } \\ \hline \end{gathered}$	ALL	

NON PATENT LITERATURE DOCUMENTS			
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article, (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T^{2}
	R1	European Search Report dated August 8, 2017 in European Application No. 16206292.1.	
	R2	European Search Report dated August 29, 2017 in European Application No. 17157643.2.	

Page 25 of 1385

청구항 1
기판;
상기 기판의 상부에 형성되는 제 1 안테나 폐턴;
상기 기판과 상기 제 1 안테나 패뒨의 상부에 배치되는 자성 기판; 및
상기 기판 및 상기 체 1 안테나 패턴의 상부에 배치되고 상기 자성 기판의 하부에 배치되어 상기 기판과 상기 자성 기판을 접촥하는 접착층을 더 포함하고,

상기 접착층에 의해 상기 제 1 안헤나 패턴흔 상기 자성 기퐌과 제 1 소정 거러만큼 이격되는
안테나 어셈블리.

청구항 2

제 1 항에 있어저,
상끼 기판의 상부에 형성되고, 상기 제1 안테나 패턴의 니부에 위치하는 제2 안테나 페턴을 더 포함하모,
상기 접착층에 의해 상기 제2 안테나 패턴은 상기 자성 기퐌과 제2 소정 거킥만큼 이격되고,
상기 제 1 소정 거리와 상기 제 2 소정 거리는 등잍한
안테나 어셈블리.

청구항 3

제랑히 있어셔,
상기 제1 안테나 패턴은 무선 통신 안테나에 해당하고,
상기 제2 안테나 때턴은 무신 충전 안톄나에 해당하는
안테나 어셈블리.
청구항 4
제3항에 있어서,
상기 제 2 인테나 패텬의 두깨는 상기 제 1 안테나 패턴의 두께와 동일하고,
상기 기판의 상면으로부터 상기 제2 안탸나 패턴의 상면까지의 녻이는 상기 기판의 상면으로부터 상기 제 1 안 테나 매턴의 상먼까지의 높이와 동일한

안테나 어셈볼리.

청구항 5

제1항 내지 제4항 중 어느 한 항에 있어서,
상기 제 1 소정 거리는 10 um 보다 큰
안테나 어셈블리.

청구항 6

제5항에 있어서,
상기 제1 소정 거리는 35 um 보다 큰
안테나 어셉블리.

Page 26 of 1385

청구항 7

제6항에 있어서,
상기 제 1 안테나 패턴의 선폭은 400 um 보다 작은
안테나 어셈블리.

청구항 8

제 7 항에 있어셔,
상기 제 1 안테나 패턴의 선간 간격은 200 um 보다 작은
안테나 어셈볼리.
\#

[0001] 본 발명은 안톄나 어셈블리 및 그의 제조 방빕에 관한 것이다. 보다 상세하게는, 무선 충전 안테나를 포함하 는 안테나 어셈볼리 및 그의 제조 방법에 관한 것이다.

अ $\begin{array}{r}\text { \% }\end{array}$
[0002] 무선으르 전기 예너지를 원하는 기기르 전닽하는 무선전럭전송 기술(wireless power transmission 또는 wireless energy transfer)은 이미 1800 년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용회기 시 작했고, 그 후로는 라디오파나 레이저와 같은 전자파률 빙사해서 전기에너지를 진송하는 방법도 시도 되였다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 훙전된다. 전자기 유도근 도체의 주변에서 자기장을 변화시킸을 매 전합이 유도되어 전류가 흐르는 현상을 맢한다. 전자기 유도 방식은 소형 기기를 증심으로 상용화가 빠르계 진행뇌고 있으나, 전력희 전송 거리가 쫣은 문제가 있다.
[0003] 현져까지 무선 방식에 의한 에너지 전달 방식은 전자기 유도 이외에 퐁진 및 단파장 무선 주파수를 이용한 원 거리 송신 기술 등이 있다.
[0004] 그러나, 알반적으로 단말기에 내장되는 안테나 어셈볼리는 그 두께가 두껍고, 제조 공정이 복잡한 문제가 있 다.

W.
[0005] 본 발명이 이루고자 하는 기술직 가제는 무선 충전 안태나를 포함하되 두께가 감소되고 제조 공정이 단순화될 수 있는 안테나 어셈블리와 그 세조 방법율 체공하는 것이다.

[0006] 일 실시예에서, 안태나 어셈블리는 기판; 상기 기판의 상부에 형성되는 제1 안테나 패턴: 상기 기푼과 상기 제 1 인테나 패턴의 상부예 배치되는 자성 기판; 및 상기 기판 및 상기 제 1 안태나 폐턴의 상부에 배치되고 상 기 자성 기퐌의 하부에 배치되어 상기 기퐌과 상기 자성 기판을 접착하는 접착층을 더 포함하고, 상기 접착흥 에 의해 상기 제 1 안테나 패턴은 상기 자성 기판과 제 1 소정 거리만큼 이격된다.

[0007]
실시 예예 따르면, 자성 기판과 코일부를 접착층을 통해 이격시켜 안테나 성능을 향상시킬 수 있다.
[0008] 실시 예에 따르면, 라미네이빙 및 에청 좌정만을 통해 비자성 절연 기퐌 상면예 코일부를 짖접 배치시켜 안테 나 어셈블리의 체조 공정을 단순화 시킬 수 있다.
[0009] 실시 예에 따르면, 나선형의 안테나 패턴의 내부 단자와 그 안테나 페턴의 외부에 볘치되는 연결 단자를 전또 성 브닷지로 연결하여 안테나 어셈블리의 제조 궁정을 단순화 시킬 수 있다.

Page 27 of 1385

$[0010]$ 실시 예예 따르면, 안테나 패턴의 확장 패턴을 기판과 합께 절취하고 질취된 기판을 접여서 나신형의 안테나 패턴의 내부 단자와 그 안테나 패턴의 외부에 배치되는 연결 단자를 전기적으로 연결하여 안테나 어셉블리의 제조 공정을 단슨화 시킬 누 있다.
[0011] 실시 예이 따르면, 에칭을 통형 비표적 두꺼운 무선 충전 안태나 패턴과 두선 동신 안태나 패턴을 동시에 형 성하여 인테나 어셈블리의 제조 공정을 단순화 시킬 수 있다.
[0012] 실시 예에 따르면, 자성 기판 상면예 코일부 및 근거리 통신 안테나를 직접 배치시켜 높은 전력전송 효율율 유지시키머 동시에 외부 장치와 통신도 가능케 한다.
[0013] 실시 예에 따르면, 자정 기판의 내부에 또전 페턴을 형성하여 안테나 어셈블리의 두께를 크게 감스시킬 수 있 다.
[0014] 실시 예에 따르면, 자성 기퐌의 내부에 도전 패턴을 형성하어 높은 전력전송 호율을 갖율 수 있으머, 동시에 근거리 통신 안테나를 이용하여 외부 장치와 통신도 가능케 한다.
[0015]
실시 예에 따르년, 연결누가 자성기판의 수용공간에 베치됨에 따라 연결부의 두께만큼 안테나 어셈볼려의 전 체두께가 크게 감소될 수 있다.
[0015] 실시 예예 따르면, 연결부로 테잎 부저를 사웅하여, 안테나 어셈블리의 전체 사이즈를 줕일 수 있다.
[0017] 실시 예에 따르면, 연결부로 리드 프레임을 사용하여 발열, 외부의 습기, 충격 등으로부터, 연결부에 포함된 배선충이 보호묄 수 있고, 대랑 생산이 가능한 호가를 얻을 수 있다.
[0018] 실시 예에 따르면, 자성 기판의 내부에 형성된 도전 패턴으로 인해, 외부로 향하는 자기장의 방향을 코일부 충으로 턴경시켜, 전력 전송 효율을 높일 수 있고, 동시에 외부로 누출되는 자기장의 양을 같소시켝, 인체 유 해성을 갖는 자기장의 영항율 최소화할 수 있다.
[0019] 본 발명의 일 실시 예에 따르면, 패턴 홈을 형성하는 과성 및 크일부를 삽입하는 콰성 만을 통해 안톄나 어셈 블리를 제조할 수 있어, 제조 당정이 단순화되는 효과가 있다.
[0020] 한편 그 외의 두양한 효과는 후술될 본 발명의 실시 에에 따른 싱세한 설명에서 직접적 또는 암시젹으로 개시 될 것이다.

以
드 1은 본 발명의 실시에에 따른 안테나 어셈별리의 분해 사시도이다.
도 2 는 본 발명의 실시예에 따른 안테나 어셈블리의 평면도이다.
도 3 은 분 받명의 실시에에 따른 안테나 어셈블리의 단면도이다.
포 4는 본 발뗭의 실시예에 따른 안테나 어셈볼리의 평변토이다.
도 5은 본 발명의 실시예에 따른 안테나 어셈블리의 단면도이두.
도 6 은 본 발명의 또 다른 실시에애 따른 안테나 어셈블리의 평면도이다.
도 7은 본 발뗭의 또 다른 실시예에 따른 안테나 어셈블리의 저면또이다.
도 8은 본 발명의 또 다른 실시예에 따른 인테나 어셈블리의 단면도이다.
도 9 은 본 받명의 또 다른 실시예에 따른 안테나 어셈블리의 평면도이다.
도 10 은 본 발명의 또 다른 실시예에 따른 안테나 어셈블리의 저면도이나.
도 11 은 본 발명의 또 다른 실시예에 따픈 안톄나 어셈블리의 단면도이다.
도 12 은 본 발명의 또 다른 실시에또 다른 실시예예 따른 안테나 어셈블리의 사시도이다.
도 13 는 본 발명의 또 나른 실시예에 따른 안톄나 어셈블리의 평면도이나.
도 14 은 도 13 의 접촉부에 도시된 점선을 따라 A 이서 A^{\prime} 로 자른 셩우, 안테나 어셈블리의 단면도이다.
도 15 내지 도 19 는 본 발명의 일 실시 예에 따른 안톄나 어셉볼리의 제조 방법에 섣명하기 위한 도면이다.

Page 28 of 1385

도 20 는 도 13 의 접촉부에 도시된 점선을 따라 A 에서 A^{\prime} 보 자른 경우, 본 받명의 또 다른 실시예에 따른 안테 나 어셈블리의 단면도이다.
도 21 은 본 발뗭의 또 다른 실시예에 따른 안톄나 어셈블리의 평면도이다.
도 22 은 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리의 사시도이다.
도 23 는 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리의 평면도이다.
도 24 은 도 23 의 접촉부에 도시된 점을 따라 B 에서 B 로 자른 경우, 본 발병의 또 다른 실시예에 따른 안테나 어셈볼리의 단면또이다.

도 25 는 본 발명의 또 다른 질시예에 따른 안톄나 어셈블리의 사시도이다.
도 26 는 본 발명의 또 다른 실시에에 따른 안톄나 어 셈블리의 평면도이다.
포 27은 본 발뗭의 똘 다른 실시예에 따른 안텨나 어셈볼리를 C 에서 C '로 자른 단면또이다.
도 28 내지 도 32 은 본 발명의 또 다른 실시예에 따른 안테나 어셈블리의 제조 방법을 설명하기 위한 도면이 다.

도 33 는 본 발명의 또 따른 실시에에 따라 자성 기판 상면에 코일부를 뱌치한 경우, 사웅 주따수에 따른 내측 안테나의 인넉턴스, 저항, Q 값의 변화를 섣명하기 위한 또면이다.

도 34 은 본 발명의 또 도른 실시에에 따라 자성 기판 내부의 패턴 홀에 코일부를 패치한 경우, 사용 주픡수에 따른 내츢 안태나의 인덕틴스, 저당, Q값의 변확를 설명하기 웡한 도면이다.

도 35 는 본 발명의 또 다른 실시예에 따라 자성 기판 상면에 코일부를 뱌치한 경우, 자기장의 방사 펴턴을 보 여주기 위한 H-Field이나.
도 36 는 본 발명의 또 도른 실시에에 따라 자성 기판 내부의 패턴 홈에 코일부를 패치한 경우, 자기장의 방사 패턴을 보여주기 위한 H-Field이다.

도 37 은 본 발명의 또 다른 실시 예에 따른 안테나 어셈블리의 분해 사시도이다.
포 38은 본 발꼉의 또 다른 실시 예예 따른 안테나 어셈블리의 사시또이다.
도 39 은 본 발명의 또 다른 실시 예에 따른 안데나 어셈블리의 단면도이다.
도 40 내지 도 48 은 본 발명의 또 다른 실시 여에 따른 안테나 어셉블리의 세조 방법을 셀명하기 위한 도면이 다.

또 49는 본 발명의 실시에에 따른 안테나 여셈벌리의 제조 방법의 흐름도이다.
도 50 과 도 51 은 본 발명의 실시에에 따른 식긱에 의해 형성된는 도전 패틴의 단면을 보여준다.
도 52 은 본 발명의 일 실시에에 따른 안테나 어셈블리의 연결부 (500)의 졔조 방법의 흐ㄹㅡㅠ도이다.
또 53 은 본 발명의 실시예에 따른 전도성 페이스트의 인쉐 횟수에 따른 전또성 브릿지의 성능을 보여주는 그 래프이다.

도 54 근 본 받명의 또 다른 실시에에 따른 안톄나 어셉블리의 연결부의 졔조 방법의 흐른도이다.
도 55 는 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리의 연걸부의 제조 방법의 흘름도이나.

मु\%
명제서 진체에서, 어띤 부분이 다른 부분과 "전기적으로 연결"디어 있다고 할 때, 이는 "직접적으로 전기적으 로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"뎌어 있는 경우도 포함한다.
[0023] 또 1은 본 발명의 실시예에 따른 안테나 어셈벌리의 분해 사시도이다.
[0024]
도 2 는 본 발명의 실시예에 따른 안테나 어셈블리의 평면도이다.
[0025]
도 3 은 본 발명의 실시예에 따른 안테나 어셈블리의 단면도이다. 특히, 도 3 은 도 1 에 도시딘 안테나 어셈블

Page 29 of 1385

리를 A^{\prime} 에서 A^{\prime} 로 자른 경우의 단면도이다．
［0026］도 1 내지 도 3을 참고하면，본 발명의 실시예에 따른 안테나 어셈볼리（1000）는 자성 기퐌（100），내축 안테나 （200），접촉부 (300) ，기판 (400) ，연결부（ 500 ），외측 안태나 (600) ，접착충 (700) 을 포함한다．
［0027］안테나 어셈블려（ 1000 ）는 무선 충전의 대상인 배텨리와 무선 통신 모풀율 가지는 단말 장치와 전기젹으로 연 결될 수 있다．
［0028］안테나 어셈별리 (1000) 는 단딸 장치와 같은 전자기기예 내장뇔 수 있다．단딸 장치는 첼룰러 폰， PCS（Personal Conrunication Servie）폰，GSM 폰，COMA－2000 폰，WCDMA 폰과 같은 통상적인 이동 전화기， PMP（Portable Multimedia Player），PDA（Persunal Digital Assistants），스마트폰，MBS（Mobile Broadcast System）폰 일 수 있으나，이에 한정될 필요는 없다．틱히，안테나 어센볼뢰（ 1000 ）는 단말 장치의 백 커벅 내 에 매립될 루 있다．단말 장치의 백 커버가 단맢 장치와 결합되는 경우에，안테나 머셈블리（1000）의 접촉부 （300）를 통해 안테나 어셈블리 (1000) 는 단말 장치와 선기적으로 연결될 수 있나．

안테나 어셈블러（ 1000 ）가 단말 장치와 결합되는 경우에，자성 기판（100）은 단말 장치의 금속 부분과 안테나 어쳄블레（1000）내의 안테나 사이에 위치하며，안테나 어셈블러 (1000) 내의 안톄나예 유도되는 자기장이 단말 장치의 금속 부분에 의해 손실되근 것을 막고，자속의 경로를 만플어준다．틍히，단말 장치의 금속 부분은 단 말 장치의 배터리의 금속 케이스일 수 있다．자성 기판 (100) 은 송신기로부터 전달받는 자기장의 방향을 변경 시킬 수 있다．자성 기판（100））은 송신기로부터 전달받는 자기장의 방향을 변경시켜 외부에 누출될 수 있는 자 기장의 양을 갈소시킬 두 있다．이로 인해，챂⽟ 혀과가 생길 수 있다．자성 기퐌（100）은 송신기로부터 전달 받는 자기장의 방향을 측방으로 변경시켜 내득 안테나（200）와 외측 안테나（600）에 자기장이 디 집중적으로 전 닽될 수 있도복 한다．자성 기판（100）은 송신기로부텨 전닽받는 자기장 충 외부로 누출되는 자기장을 ㅎ⿱ㅂ수하 여 열로 방출시킬 수도 있다．외부에 누출되는 자기장의 양이 감소뎌면，인체예 유해한 영향을 미칠 수 있는 상항이 방지될 수 있다．자성 기판（100）은 자성체（110）및 지지체（120）를 포하阝할 수 있다．자성체（110）는 입 자 형태를 가질 수 있으모，그 제질은 세라믹일 수 있다．지지체（120）의 재질은 열경화셩 추지 또는 혈가소셩 수지를 포함할 수 있다．자성 기판（100）은 시트（Sheet）형테로 구성둴 수 있으며，폴렉서별（flexible）한 성질 을 가질 수 있다．

기판（400）은 인쇄 회로 기판（printed circuit board，PCB）．연성 혀로 기판（flexible printed circuit board， $\mathrm{FPCB})$ 잎 수 있다．기판（400）은 비자성 절연 기판일 수 있다．특히，기판 (400) 의 재질은 폴리이미드 （polyimide，PI）펼름일 수 있다．폴리이미드 필름은 통상 영상 400 도 야상의 고온이나 영하 269 도의 저온을 견니고，초내열성퐈 초내한성을 지니고 있으며，얇고 굴곡성이 뛰어나다．폴리이미드 필륨은 내화학성，내마 모성도 강해 열악한 환경에서 안점적인 성능을 유지할 수 있다．
［0031］내촉 안테나（200）는 기퐌（400）상에 배치될 수 있다．후술하겠지만，내측 안테나（200）는 안테나 패턴일 수 있 다．이때，안테나 패턴의 단면은 일반족인 코일의 형상인 원형이 아니라，소점의 각을 가지는 다각형일 수 있 다．특히，안테나 패텬의 단면은 사각형의 형상일 수 있으며．더욱 상세하게는 사다리꼴의 형상，더욱 좁게는 직사자ㄱㅕㅕㅇ 형상일 수 있다．안테나 패턴은 라미네이팅 공정퐈 에칭 공정에 의해 기퐌（400）상에 형성될 수 있 다．내축 안테나（200）는 평면 나선형의 형상을 가질 수 있다．내축 안티나（200）는 무선 충전을 위한 무선 춯 전 인데나일 수 있다．내측 안대나（200）는 평면 나선형의 외측에 위치하는 외측 단자（outer terminal）（210）， 평면 나션형의 내측에 위치하는 내측 단자（inner terminal）（220）및 평면 나선형의 내측 코일（230）을 포함할 수 있다．이때，코일은 코일 패턴일 수 있다．
［0032］외측 안테나（600）는 기판（400）상에 배치될 두 있다．후술하겠지만，외측 안테나（600）는 안테나 패턴일 수 있 다．이때，안테나 패턴의 단면은 일반적인 코일의 형상인 원형이 아니라，소정의 각을 가지는 다각형일 수 있 다．특히，안테나 패턴의 단면은 사각형의 형상일 수 있으며，더훅 상세하게는 사다리꼴의 형상，더훅 좁게는 직사각형 형상일 수 있다．안테나 패틴은 라미네이팅 공정과 에칭 공정에 의해 기퐌（400）상에 형성될 수 있 다．외흑 안톄나（ 600 ）는 평면 나선형의 형상을 가질 수 있다．외측 안테나 (600) 는 무선 통신 위한 무선 통신 안테나일 수 있다．특히，외혹 안테나（600）는 근거리 통신（near ficld communication，NFC）안테나일 수 있다．외측 안테나（600）는 평면 나선형의 니측에 위치하는 내측 단자（inner termina1）（610），평면 나선형의 외촉에 유치하는 외촉 난지（outer terminal）（620）및 평변 나선형의 외촉 코일（630）을 포함할 수 있다．이때， 코일은 포일 패턴일 수 있다．
［0033］ 내측 안테나（200）가 형성된 레이어는 외흑 안테나（600）가 형성된 레이어와 동일할 수 있다．내혹 안테나（20 0 ）의 코일 패텬의 선폭은 의흑 안테나（600）의 코일 패턴의 선폭보다 클 수 있다．내흑 안테나（200）의 코일 패

Page 30 of 1385

턴의 선간 간격은 외측 안테나(600)의 코일 패턴의 선잔 간격보다 클 수 있다.
[0034] 자성 기판 (100) 의 두께는 0.3 내지 0.6 mm 이고, 내촉 안테나 (200)와 외축 안테나(600)의 두께는 0.8 내지 1.4 mm 일 수 있다. 특히, 자성 기판 (100) 의 두깨는 0.43 mn 이고, 내측 안테나 (200) 와 외측 안테나 (600) 의 두께 는 0.1 mn 이고, 이롤 합한 두께는 0.53 mm 일 수 있다. 그러나, 이 수치는 예시에 불과하다.
[0035] 접착흥 (700) 은 자성 기판 (100) 의 일면과 기파 (400) 의 일면을 접착한다. 이때, 접착층 (700) 과 맞닿는 기판 (400)의 일면은 기판(400)의 두 면 중에서 네측 안테나(200)와 외측 안테나(600)가 형성된 면일 수 있다.
[0036] 접촉부 (300)는 단말 장치와 전기적으로 접촉하며, 복수의 연결 단자(310), 복수의 연결 도선(320), 기퐌 (330), 복수의 접촉 단자(340)를 포함한다. 복수의 연결 단자(310)는 제1 연결 단자(311), 제2 연결 단자 (312), 제 3 연결 단자(313), 제 4 연결 단자(314)를 포한한다. 복수의 연결 도션(320)은 제1 연결 도선(321), 제2 연결 도선(322), 제3 연결 도선(323), 세4 연결 도선(324)를 포핚한다. 복수의 접촉 단자(340)는 제1 접 촉 단자(341), 제2 접촉 단자(342), 제3 접촉 단자(343), 제 4 접촉 단자 (344)를 포함한다.

복수의 연결 단자 310)는 내측 안테나 (200)의 외측예 벼치될 수 있다. 뜨한, 복수의 연결 단자(310)는 외측 안테나(600)의 외촉에 배치될 수 있다.
[0038] 복수의 연결 도선(320)는 내촉 안테나(200)의 외측에 배치될 수 있다. 또한, 복수의 연결 도선(320)근 외측 안테나(600)의 외축에 배치될 추 있다.
[0039] 복수의 접촉 단자 (340)는 내촉 안테나(200)의 외촉예 벼치될 수 있다. 먼한, 복수의 접촉 단자(340)는 외촉 안테나(600)의 외측에 배치될 수 있다.
[0040] 복수의 연결 단자(310)는 내촉 안테나(200)의 외촉 다자(210), 내촉 안테나(200)의 내촉 단자(220), 외촉 안 테나(600)의 내측 단자(610), 외측 안테나(600)의 외측 단자(620)에 각가 대응할 수 있다. 복수의 연결 도선 (320)은 복수의 연결 단자 (310) 에 각각 대옹한다. 복수의 접촉 단자(340)는 복수의 연결 또선(320)예 각각 대 응한다. 복수의 접촉 단자 (340)는 대응하는 연결 돗선(320)을 통해 대응하는 연결 단자(310)와 전기적으로 연 결된다.
[0041] 구체적으로, 제1 집촉 단자(341)는 제1 연결 도선(321)을 통해 대응하는 제1 연결 단자(311)와 전기적으로 연 결된다. 제2 접촉 단자(342)는 제2 연결 도선(322)을 통해 배응하는 제2 연결 단자(312)와 전기적으로 연걸된 다. 제3 접촉 단자 (343)는 제3 연결 도선(323) 을 통해 대응하는 제3 연결 단자(313)와 전기적으로 연결된나. 제4 접촉 단자(344)는 제4 연결 또선(324)을 통해 대웅하는 제4 연결 단자(314)와 전기적을ㄹ 연결된다.
[0042] 복수의 연결 단자(310), 복수의 연결 도선(320), 및 복수의 접촉 단자(340)는 도선 패틴일 수 있다. 도선 패 턴은 라미뎨이탕 공정과 예칭 공정에 의해 기판(330) 상예 형정될 수 있다. 특히, 복수의 연결 단자(310), 복 수의 연결 도선(320), 및 복수의 접촉 단자(340)는 동일 레이어에 형슁될 수 있다.
[0043] 기판(330)은 인쇄 회로 기판, 연성 회르 기판일 수 있다. 뜨, 기퐌(330)은 비자성 절연 기판일 수 있다. 특히, 기판 (330)의 재질은 폴리이미드 필름일 수 있다.
[0044] 후술하겠지만, 일 실시예에서, 기판(330)은 기판(400)과는 분리된 별도의 기판일 수 있다.
[0045] 도 다른 실시에에서 기판(330)파 기판(400)은 일체로 형성될 수 있다. 이 깅우, 복수의 연졀 단자(310), 복수 의 연결 도선(320), 복수의 접촉 난자 (340), 내측 안테나(200), 의측 안테나(600)는 동일 레이어에 형성될 수 있다.
[0046] 내측 안테나(200)가 푸신 충전 안테나이고, 외측 안테나(600)가 푸선 통신 안태나인 경우에, 단말 장치의 백 커버가 단말 장지와 결합되면, 내측 안테나(200)에 전기적으로 연결된 복수의 접촉 단자(340)를 틍해 내측 안 테나(200)는 단말 장치의 배터리와 전기적으로 연렬되고, 외측 안테나(600)에 전기적으로 연결된 복수의 접촉 단자 (340)를 퉁해 외측 안테나(600)는 단말 장치의 무선 동신 모듈커 전기적으로 연결될 수 있나. 구체적으로, 내촉 안테나(200)에 전기적으리 연결된 제1 접촉 단자(341)와 제2 겁촉 단자(342)를 통해 내촉 인테나(200)는 단말 장치의 배티리와 전기적으로 연결되고, 외측 안테나(600)에 전기적으로 연결된 접촉 단자 (343)와 접촉 단자(344)를 동혀 외축 안톈나(600)는 단말 장치의 무선 통신 모듈과 전기적으로 연결될 수 있 다.

10047] 연결바 (500) 는 네측 안테나 (200) 를 접촉부 (300) 에 전기적으로 연결시킨다. 또, 연결부(500)는 외측 안테나 (600)를 접촉부 (300)에 전기적으로 연률시킨다. 구체적으로 연열부 (500)는 제1 서브 연결부(501), 제2 서브

Page 31 of 1385

연졀부(502). 제3 서브 연졀부 (503), 제4 서브 연결부(504)를 포함한다. 제1 서브 연졀부 (501)는 내측 안테나 (200)의 외측 단자(210)를 제 1 면결 단자(311)에 전기젹으로 연결시킨다. 제2 서브 연결부(502)는 내측 안테 나(200)의 내촉 단자 (220) 를 제 2 연결 단자 (312) 에 전기적으르연결시킨다. 재3 서브 연결부(503)는 외측 안 테나 (600) 의 내촉 단자(610)를 제3 연결 단자(313)에 전기적으로 연결시킨다. 제 4 서브 연결부(504)는 외측 안테나(600)의 외측 단자(620)를 제4 연결 단자(314)에 전기적으로 연결시킨다. 연결부(500)의 다양한 실시예 에 대해서는 후술한다.
[0048] 도 4는 본 발몀의 실시예에 따른 안테나 어셈블래의 평면도이다.
[0049] 도 5은 본 발명의 실시예예 따른 안대나 어셈블리의 단면도이다. 특히, 도 5 은 도 4에 도시된 안댜나 어셈블 리를 A 에시 A^{\prime} 로 자른 경우의 단면도이다.
[0050] 특히, 도 4 와 도 5 의 실시에는 도 1 내지 도 3 의 안테나 어셈블리에서 연절부 (500)를 구체화한 것이다. 도 4와 도 5 를 참고하면, 기판(330)과 기빤(400)은 일체로 형성된다.
[0052] 일 실시예에서, 제1 서브 연결부(501), 제2 서브 연결부(502), 제3 서브 연졀부(503), 및 제4 시브 연결부 (504)는 전도성 브릿지(520)이다.
[0053] 또 다른 실시예에서, 제1 서브 연절부 (501), 제2 서브 연졀부 (502), 제3 서브 연졀부(503)는 전도성 브릿지 (520)이고, 제4 서브 연별부(504)는 기봔(330) 상예 형성된 도선 폐턴일 수 있다. 이는 외측 안테나(600)의 외촉 단자(620) 및 졔4 연결 단자(314) 사이에는 도선 패턴의 형성을 가로막는 도 다른 도선 패턴이 존재하지 앓을 수 있기 때문이다. 이하에서는 제 4 서브 연결부(504)는 기판(330) 싱에 형성된 도선 패턴임을 가정한다.

연결부 (500) 는 절연홍 (531) 을 더 포항한다. 절연흥 (531) 은 전도성 브릿지 (520) 가 안테나 패턴과 전기적으로 연결되지 않도록 하는 범위 내에서 안테나 캐턴의 일부와 기판(400)의 일부를 덮고 있다. 일 실시예예수, 절 연충(531)은 또파 후 건조뒨 절연 잉코일 수 있다. 즉, 절연충(531)은 절연 잉크의 도포 후 건조에 의해 형성 될 수 있다. 또 다른 실시예에서, 절연층(531)은 절연 시트일 수 있다. 족, 절연층(531)은 절연 시트를 가지 고 라미데이팅 공정예 의해 형성될 수 있다.
[0055]
전도성 브릿지(520)는 절연흥 (531)의 상부에 형심된다.
[0056] 전도성 브릿지 (520)는 전도성 베이스트예 의헤 형성되는 제1 서브 브릿지(521)와 도금예 의해 형성되는 제2 서브 브릿지(522)를 포함할 수 있다. 제 1 서브 브릿지 (521) 의 저실은 휘발된 선도성 패이스트일 수 있다. 여 기서, 전도성 페이스트는 실배 페이스트(silver paste)일 수 있다. 하부 브릿지의 형성에는 구리 도콤이 이응 될 수 있다.
[0058] 도 6 은 본 발명의 또 다른 실시예이 따른 안톄나 어셈블리의 평면도이고, 도 7 은 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리의 지면도이며, 도 8 은 본 발명의 또 다른 실시예에 따른 인태나 어셈블리의 단면도이다. 특히, 도 8 은 도 7 에 도시된 안테나 어셈블리를 A 에서 A^{\prime} 로 자른 경우의 단면도이다.
[0059] 도 6 에서 점선은 도 6 이 보여주는 먼의 반대면의 도전 얘턴을 보여주고, 도 7 예서 점선은 도 7 이 보여주는 면 의 반대면의 일부의 포전 패턴율 브여준다.
[000] 톡히, 도 6 네지 도 8 의 실시예는 도 1 내지 도 3 의 안태나 어셈블리예시 연졀부 (500)를 구체화한 것이다.
[0061] 도 6 내지 도 8율 참고하면, 기판(330)과 기판 (400)은 일체로 형싱된다.
[0062] 일 실시예에서, 제 1 서브 연결부(501), 졔2 서브 연결부(502), 제3 서브 연결부(503), 및 제4 서보 연결부 (504)는 전도성 브릿지(520)이다.
[0063] 또 다른 실시예에서, 제1 서브 연결부 (501), 제2 서브 연결부 (502), 제3 서브 연결부 (503)는 전도성 브릿지 (520)이고, 제4 서브 연결부(504)는 기판(330)의 상부에 형성된 도선 패턴일 수 있다. 이는 외혁 안테나(60 0)의 외측 단자(620) 및 제 4 연절 단자(314) 사이에는 도선 패턴의 형성을 가로막는 또 다른 도선 패턴이 존 재하지 않을 수 있기 때문이다. 이하에서는 제4 서브 연결부(504)는 기판(330) 상에 형성된 도선 패턴임을 가 정한다.
[0064] 전도성 브릿지(520)는 기판(400)의 하부에 형성된다. 이 경우, 기판(400)이 절연성이므로, 볃도의 절연충을

Page 32 of 1385

형성할 필요가 없는 장점이 있다.
[0066] 또, 기파 (400)에서 제1 연결 단자(311)의 하부에 형성된 비아홀(533)에서 제공되는 전도성 비아를 통해 제1 연결 단자(311)는 제1 서브 연결분(501)의 전도성 브릿지(520)의 타단콰 전기적으로 연결된나.
[0067] 기판(400)에서 내촉 안테나(200)의 내측 단자(220)의 하부에 형성된 비아홀(533)에서 제항되는 전도성 비아를 내측 안테나(200)의 내측 단자(220)는 제1 서브 연결부(501)의 전도성 브릿지(520)의 일단과 진기적으로 연결 된다.

기판(400)에서 제2 연졀 단자(312)의 하부에 형성된 비아홀(533)에서 제공회는 전도성 비이를 통혜 제2 연결 난자 (312) 는 제 1 서브 연결부 (501) 의 전또성 브랏지(520)의 타단과 전기적으로 연결된다.
[0069] 기판(400)에서 외측 안테나(600)의 외측 단자(610)의 하부에 형성된 비아홀(533)에시 제공되는 진도성 비아를 통햬 외촉 안톄나(600)의 외측 단자(610) 는 제1 서브 연결부(501)의 전도성 브릿지(520)의 일단콰 전기적으 로 연결된다.
[0070]
기판(400)에서 제3 연열 단자(313)의 하부에 형성된 비아홀(533)에서 제공되는 전포성 비아를 퉁혜 제3 연결 단자 (313) 는 재 1 서브 연결부 (501) 의 전도성 브랫지 (520) 의 타단과 전기적으로 연졀된다.
[0071]
기판(400)에서 외측 안테나(600)의 내측 단자(610)의 하부에 형성된 비아홀(533)에서 제공되는 전도성 비아를 통해 외촉 안톄나 (600)의 내촉 단자(610) 는 제1 서브 연결부 (501) 의 전도성 브릿지 (520)의 일단과 전기적으 로 연결된다.

기판 (400) 이서 제4 연결 단자(314)의 하부에 형성된 비아홀(533)에서 제광되는 전도성 비아를 통혀 제4 연결 단자 (314) 는 제 1 시브 연결부 (501) 의 진도성 브릿지(520)의 타단과 진기적으로 연졀된다.
[0073] 전도성 브릿지 (520)는 실버 페이스트 (silver paste)에 의해 형싱되는 제1 브릿지(521)와 도금에 의해 형싱되 는 제2 브릿지 (522) 를 포핟할 수 있다. 특히, 하부 브릿지의 형성에는 구리 도금이 이응될 수 있다.
[0074] 제1 서브 브릿지(521)는 기깐(400)의 하부에 형성되고, 제2 서브 브릿지(522)는 제1 서븝브릿지(521)의 하부 이 헝성될 수 있다.
[0075]
[0076]
[0077]
[0078]
[0079]
[0080] 제 1 서브 연열부(501)는 졔 1 확장 패텬(54.1), 제 1 서브 기판(55.1)을 폰함한다. 제 1 확장 패턴(541)은 내축 안 테나(200)의 외측 단자(210)에서 확장되는 확장 패턴이다.
[0081] 제1 서브 기판(551)과 기판(400)은 제1 접는 선(421)에서 일체로 형성된다.
[0082] 제1 절추선(411)은 열련 도형(open figure)을 형성하고, 제1 절취선(411) 및 제1 접는 선(421)의 줄합은 닫힌 또형 (closed figure) 을 형성한다.
[0083] 제1 절취선(411) 및 제1 접는 선(421)의 결합이 형성하는 닫힌 도형의 크기 및 모양은 제1 절취부(431)의 크 기 및 모양에 대응하고, 제1 질취부(431)의 크기 및 모양은 제 1 서브 기판 (551) 의 크기 및 모향에 대응한다.

Page 33 of 1385

[0084] 제 1 접는 선(421)은 제1 절취선(411)에 의해 절취되어 형성되는 제 1 서브 기퐌(551)을 접기 위한 선이다. 제 1 서브 기판(551)은 세1 확장 패틴(541)을 수용할 수 있는 크기와 모양을 가진다.
[0086] 제1 설취부(431)는 제 1 절취선(411)에 따른 기판(400)의 젙취와 졕 접는 선(421)에 따른 제1 서브 기판(55 1)의 접음(folding)에 의해 형성된다.
[0087] 제2 서브 연결부(502)는 제2 확장 패턴(542), 제2 서브 기퐌(552)을 포함한다. 제2 확장 패턴(542)은 내측 안 테나(200)의 내축 단자(220)에서 확장되는 확장 패턴이다.
$10088]$ 제2 서브 기판(552)과 기편(400)은 제르 접는 선(422)에시 일체로 형성된다.
[0089] 제2 젇추선(412)은 열린 도형 (open figure) 을 형성하고, 세2 절취선(412) 및 세2 접는 선(422)의 결합은 닫힌] 도형 (closed figure) 을 형성한다.
[0090] 제2 절취선(412) 및 제2 접는 선(422)의 결합이 형성하는 닫힌 도형의 크기 및 모양은 제2 절취부(432)의 크 기 및 모양에 대응하고, 제2 절취부(432)의 크기 및 모양은 제2 서브 기판(552)의 크기 및 모양에 대응한다.
[0091] 제2 집는 선(422)은 제2 절추선(412)에 의해 절취되어 형싱되는 제2 서브 기판(552)을 접기 위한 선이다.
[0092] 제2 서브 기반(552)은 제2 확장 패턴(542)을 수용할 수 있는 크기와 모양을 가신다.
[0093] 제2 절취부(432)는 제2 절취선(412)에 따른 기판(400)의 젇취와 제2 접는 선(422)에 따른 제2 시브 기판(55 2)의 접음(folding)에 의해 형성된다.
[0094] 제3 서브 연결부(503)는 졔3 확장 패턴(543), 제3 섭 기퐌(553)을 포함한다. 제3 확장 패턴(543)은 외축 안 테나 (600) 의 내촉 단자(610)이서 확장되는 확장 패턴이다.
[0095] 제3 서브 기판(553)과 기판(400)은 제3 접근 신(423)에서 일체로 형싱된다.
[0096] 제3 절추선(413)은 열린 도형 (open figure)을 형성하고, 제3 절취선(413) 및 제3 접는 선(423)의 절합은 닫힌 또형 (closed figure) 을 형성한다.
[0097] 제3 절춰선(413) 및 제3 접는 선(423)의 결합이 형성하는 닫힌 도형의 크기 및 모양은 제3 절취북(433)의 크 기 및 모양에 대응하고, 제3 질취부(433)의 크기 및 모양은 제3 서브 기판(553)의 크기 및 모양에 대응한다.
[0098] 제3 접는 선(423)은 제3 절추선(413)에 의해 절취되어 형성되는 제3 서브 기판(553)을 접기 위한 선이다. 제3 서브 기판(553)은 제3 확장 패턴(543)을 수용할 수 있는 크기와 포양을 가진다.
$10100]$ 제3 절취부(433)는 제3 절취선(413)에 따른 기판(400)의 절취와 졔3 접는 선(423)에 따른 제3 시브 기판(55 3)의 접음(folding)에 의해 형싱된다.
[0101] 일 실시예에서, 제4 서브 연결부(504)는 기퐌(330)의 상부예 형성된 도선 패턴일 수 있다. 이 졍우, 제 4 서 브 연결부 (504) 예 해당하는 도선 패던의 둘레에는 절취선과 접는 선이 구비되지 않고, 대신에 져 4 서브 연결 부(504)예 해당하는 도신 패턴은 제4 집촉 단자(344)에 전기적으로 연결된다.
[0102]
또 나른 실시에에서, 기판(400)은 제4 절취선(도시하시 않음), 제4 접는 선(도시하시 않음), 제4 절추부-(도시 하지 핞음)을 파함할 수 있다.
[0103] 제4 서브 연걸부(504)는 제 4 확장 폐던 (도시하지 않음), 제4 서브 기퐌(도시하지 않음)을 포함할 수 있다. 제 1 확장 패턴은 외흑 안테나(600)의 내측 단자(610)에서 확장되는 확장 패턴이다.
[0104] 제4 서브 기판과 기판 (400) 은 제4 접는 선에서 일체로 형성된따.
[0105] 제4 절최선은 열린 도형(open figure)을 헝성하고, 제4 절취선 및 제4 접는 선의 결합은 닫힌 도형(closed figure)을 형성한다.
[0106] 제 4 접든 선은 제 4 젇취선에 의해 절취되어 형싱되는 제4 서브 기판을 접기 위한 선이다.

Page 34 of 1385

공개특허 10-2014-0113205

[0107] 제4 질취선 및 제4 접는 선의 결합이 형성하는 단힌 도형의 크기 및 모양은 제4 절취부의 크기 및 모양에 대 응하고, 제 4 젇취부의 크기 및 모양은 제4 서브 기판의 크기 및 모앙에 대응한다.
[0108]
[0109]
[0110] 외촉 단자(210)는 내흑 코일(230)의 일단에 내촉 단자(220)는 내측 코일(230)의 타단예 위치한다.
[0118] 외촉 단자(210) 및 내축 단자 (220)는 접촉부 (300) 와의 전기적 연절을 위해 필요한 단자이다.
[0119] 내촉 코일(230)은 하나의 도선이 복수 빈 권선된 코일 패턴을 형성할 수 있다. 일 실시 예에서 코일 패턴은 평면 나선 구조일 수 있으나, 이에 한정될 필요는 없고, 다양한 패턴을 형성할 수 있다.
[0120] 내륵 안테나(200)는 자성 기판 (100) 의 상면에 직접 배치퇼 주 있다. 일 실시 예에서 내측 안테나(200)와 자성 기판(100) 사이에는 접착층(미도시)이 더 배치될 수 있다.

Page 35 of 1385

[0121] 내흑 안테나(200)는 도전체를 포함할 수 있다. 도전체는 금솟 또는 합금이 이용될 수 있다. 일 실시 예에서 금속은 은 또는 구리가 사용될 수 있으나, 이에 한정될 필요는 없다.
[0122] 내축 안톄나(200)는 송신 측으로부터 무선으로 수신한 전력을 접촉부(300)에 전달할 수 있다. 내축 안테나 (200)는 송신 축으로부터 전자기 유도 뜨는 공진을 이용하여 전력을 수신할 수 있다.
[0123] 접촉부(300)의 제1 연결 단자(311)는 내측 안테나(200)의 외측 단자(210)와 진기적으로 연결될 수 있고, 접촉 부 (300)의 제 2 연결 단자(312)는 내축 안티나(200)의 래측 단자(220)와 전기적으도 연결될 수 있다.
[0124]
$[0125]$ 접촉부 (300) 는 수신회로 (미도시)와 내측 인데나(200) 사이를 연결하여 내측 안데나(200)로부더 전달받은 전력 을 수신혀로(미도시)를 통해 부하(미도시)로 전닫할 수 있다. 수신회로는 교류진력을 적류진력으로 변환하는 정류회로 및 변환된 직류전렁에서 뢰플 성분율 제거하여 부하예 전달하는 평활회로를 포핟할 수 있다.
[0126]
도 13 니시 도 14 은 내측 안태나(200)와 접촉부(300)가 연결된 상태인 경우, 본 발녕의 또 다른 실시예에 따 른 안테나 어셈볼리(1000)의 상세한 구성을 설명하기 위한 또면이다.
[0127] 도 13 는 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리 (1000) 의 평면도이다.
도 13 는 내측 안테나(200)와 접혹부 (300) 가 서로 접속되여 있는 상태를 보여준다.
$[0129]$ 일 실시 예에서 니측 안테나(200)와 접촉부 (300) 간의 전기적 연결은 솔더에 의헤 이루어실 수 있다. 구체적 으로 제1 서브 연결부 (501)는 솔더 (10)에 해당하고, 제 2 서브 연결부 (502) 는 솔더 (20) 에 해당할 수 있다. 족, 내촉 안테나 (200) 의 외측 단자 (210) 와 접촉부 (300) 의 제 1 연결 단자 (311) 는 제 1 솔비 $(10$)에 의해 전기적으로 연결될 수 있고, 내축 안테나 (200) 의 내측 단자 (220) 와 접촉부 (300) 의 제 2 연결 단자 (312) 는 제2 솔뎌 (20) 에 의행전기적으로 연결될 수 있다. 구체적으로, 내측 안태나(200)의 외혹 단자(210)는 새1 솔더(10)의 비아홀 을 통해 접촉부 (300) 의 제 1 연졀 단자(311)와 전기적으로 연절될 수 있고, 내축 안테나 (200) 의 내측 단자 (220)는 졔2 솔더(20)의 비아홀을 틍혀 접촉부(300)의 제2 연결 단자(312)와 전기적으로 연결뎔 수 있다. 도 13 에서 접측부 (300)에 도시된 점선을 따라 $\mathrm{A}^{\text {이서 }} \mathrm{A}^{\prime}$ 로 자른 단면에 대한 설명은 도 14 예서 한다. 도 14 은 도 13 의 접촉부 (300) 에 도시된 점선을 따라 A 야서 A^{\prime} 로 자른 경우, 안테나 어셈블리 (1000)의 단면도 이다.
도 14 을 참고하면, 자정 기관(100) 상면에는 내촉 안태나(200)의 구성요소인 외축 단자(210), 내촉 단자(220) 및 내측 코일(230)이 배치되어 있다.
[0133]
[0134] 앞서 설명한 바와 같이, 자성 기퐌(100)의 두꼐는 0.3 내지 0.6 mm 이고, 내촉 안테나(200)의 두꼐는 0.8 내지 1.4 mm 일 수 있다. 특히, 자성 기판(100) 의 두계는 0.43 mm 이고, 내측 안톄나(200) 의 뚜께는 0.1 mm 이고, 이를 합한 두께는 0.53 mm 일 수 있다. 그러나. 이 수치는 에시예 불과하다.
[0135] 극, 내측 안테나 (200)를 도전채, 도전 먀턴, 박막과 같은 형태로 구성함으로썽 안테나 어셈블리 (1000)의 두께 률 감소시킬 수 있다. 이는, 요즘 휴데용 단딸기와 같이 슬림화를 요구하고 있는 전자기기에 적용한다변 휴대 용 단말기의 전제 두끼를 감소시키면서 송신 축으오부더 전력을 수신하는뎨 유용한 호과를 가져을 수 있다.

내측 안테나(200)의 상 측이는 접촌부 (300)가 직접 배치되어 있다. 내촉 안테나(200)의 상 측에 접촉부(300) 가 직접 배치됨에 따라 내혹 안테나(200)와 접촉부 (300)가 눱게 접속될 수 있다.
[0137] 내측 안테나(200)의 외측 단자(210)는 솔더(10)에 의해 접촉부 (300)의 제 1 연결 단자(311)와 접속된다.
[0138] 내측 안테나 (200)의 내측 단자(220)는 솔뎌(20)에 의해 접촉부 (300)의 제2 연결 단자(312)와 접속된다.
[0139] 내흑 코일(230)의 폭(母)광 두꼐(T)는 소점의 값을 갖도록 설계될 수 있다. 내측 코일(230)퐈 내흑 코일(230) 사이의 간격 또한, 소정의 거리 값을 갖도록 설계될 수 있다.
[0140] 포 15 내지 포 19 는 본 발명의 일 실시 예에 따른 안테나 어셈볼리(1000)의 제조 방법에 설명하기 위한 도면 이다.

Page 36 of 1385

[0141] 안테나 어셈블러 (1000) 의 구성은 도 12 내지 도 14 에서 설명한 것가 본질적으로 결합될 수 있다.
[0142] 먼저, 도 15 를 참고하면, 자성 기딴 (100)이 형성돤다.
[0143] 다음으로 5드 16 를 참고하면, 자성 기판 (100) 의 상면예 직접 도전체(201)를 적충시킨다. 일 실시 예에서는 자 성 기판 (100)의 상면에 접착층이 적층된 후, 도전체(201)가 적층될 수도 있다.
[0144] 일 실시 예에서 자성 기판(100)의 상면예 도전체(201)를 적흥시키는 방법은 도전체(201)를 소정의 온도에서 가열하고, 그 후, 소정의 압력을 가하는 라미네야팅(laminating) 공정이 사용될 수 있다. 라미네이팅 (laminating) 공정이란, 열과 압력을 이옹하여 서로 다른 종류의 금속박, 종이 둥을 접착시키는 공정을 의미 한다.
[0145] 다음으로 도 17 을 참고하면, 도전체(201)의 상 면예 마스크(50)가 적충된다. 마스크(50)는 내촉 안톄나(200) 의 외측 단자(210), 내축 단자(220), 내축 코일(230)이 형싱될 위치의 상 면에만 젹층될 수 있다.
[0146] 다음으로, 도 18 을 참고하년, 도 17 의 상태에서 에칭액에 담구면 마스크(50)가 워처하시 않은 홈 부분이 식각 된다. 그러년, 도전체(201)는 일성한 또선 패턴을 형성하게 된다.
[0147] 그 후, 마스크(50)를 제거하면, 안테나 어셈블리(1000)의 내측 안테나(200)가 형성된다.
[0148] 다음으로 도 19 을 참고하면, 내측 안테나 (200)와 접촉부 (300) 가 접속되도록 솔더링 작업을 거친다.
[0149] 즉, 니측 안테나(200)의 외측 단자(210)와 접촉누 (300)의 제3 연결단자(310)률 솔더(10)예 의해 접속시키고, 내촉 안티나 (200)의 지2 연결단자 (200)와 접촉부(300)의 제4 연결단자(320)를 솔더 (20)에 의해 접속시킨다.
[0150]
상기와 같이 자성 기판(100) 장 면에 직접 니측 안톄나(200)를 배치시킴으로써, 안테나 어셈볼리(1000)의 전 체 두께를 크게 갑소시킬 수 있고, 라미네이팅과 에칭 과정만을 통해 안테나 어셈블리(1000)를 제조할 수 있 어 공정이 단순화되는 호과가 있나.
[0151] 또 20는 도 13의 접촉부(300)예 도시된 점선을 따라 A이서 A^{\prime} 로 자른 경우, 븐 발명의 또 다른 실시예에 따른 인테나 어셈블리 (1000)의 단면도이다.
[0152] 도 20 를 참고하면, 안테나 어셈불리 (1000)는 자성 기퐌(100), 내측 안테나(200), 접촉부 (300), 접착층 (700)을 포함할 수 있다.
[0153]
자성 기퐌(100), 니측 안테나(200), 접촉부(300)는 도 12 예서 설명한 섯콰 같다.
[0154] 접착층 (700)은 자성 기판(100)과 내측 안테나(200) 사이에 배치되어 자성 기퐌 (100)과 내측 안테나(200)를 접 착시킨다.
[0155] 도 21 은 본 발명의 또 나른 실시에에 따른 안벼나 어셈블리(1000)의 평먼도이다.
[0156] 도 21을 참고하면, 안테나 어셈별리(1000)는 자성 기판(100), 네축 안테나(200), 섭촉부(300), 외측 안테나 (600)를 포함할 수 있다. 접촉부 (300) 는 제 1 연졀 단자(311), 제2 연결 단자(312), 제3 연결 단자(313), 제4 연결 단자(314), 제 1 연결 도선(321), 제 2 연결 도선(322), 제3 연결 도선(323), 제 1 연결 도선(324), 제 1 접 촉 단자(341), 제2 접촉 단자(342), 제3 접촉 단자(343), 제4 접촉 단자(344)를 포함할 수 있지만, 그 도시는 생략되였다.

자성 기퐌(100), 내촉 안테나(200), 접촉부(300)이 대한 설명은 도 12 내지 도. 14에서 설명한 것과 챁다.
[0158] 외측 안테나(600)는 내측 단자(610), 외측 단자(620), 외측 코일(630)을 포합한다.
[0159] 외측 안테나(600)의 내측 단자(610) 및 외측 단자(620)는 접촉부(300)에 접속된다.
[0160] 외축 안테나(600)는 픈거리 무선통신이 가능한 리더기와 통신을 수행할 수 있다. 외촉 안테나(600)는 상기 리 더기와 정보를 송수신하는 안데나의 역할을 수헹한다.
[0161] 일 실시 예에서 외흑 안테나(600)는 내흑 안테나 (200)의 외곽예 배치될 수 있다. 일 실시 예에서 내흑 안테나 (200)가 자성 기판 (100) 의 중앙에 배치된 검우, 외흑 안태나 (600) 는 내흑 안테나(200)를 감싸도록 자성 기판 (100)의 외곽을 따라 배치될 삳 있다. 외측 안테나(600)는 하나의 도선이 복룯 번 권선된 사각형희 구조를 가 씰 수 있으나, 이에 한정될 필ㅇㅇ는 없다.
[0162]

Page 37 of 1385

[0163] 외흑 안테나(600)에서 사용됙는 근거리 통신규격은 다양한 기술이 사응될 수 있으나, NFC(Near Field Communication)을 이용함이 바람짛하다. NFC(Near Field Communication)는 13.56 MHz 의 대역을 가지매, 가까윤 거리의 무선통신을 하기 워한 기술이다.
[0164]
외축 안티나 (600) 는 자성 기판 (100) 의 상면에 직접 배치될 수 있다.
[0165] 외측 안톄나 $(600$)가 자성 기퐌(100)예 배치되는 방법은 성기 도 15 에서 설명한 제조 방법과 동일할 수 있다.
[0166] 다음으로 도 22 내지 도 24 에서 본 발명의 또 다른 실시예예 따른 안테나 어섿블리(1000)의 상셰한 구성을 섣 병한다.
[0167] 도 22은 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리(1000)의 사시도이다.
[0168] 도 22 을 참고하면, 안테나 어셈블러 (1000)는 자성 기판(100), 내휸 안테나(200), 집혹부 (300)를 포한한다. 접 촉부(300)는 제1 접촉 단자(341), 제2 접촉 단자(342), 제1 연결 도선(321), 제2 연결 도선(322), 기판(330) 을 포함할 두 있나. 도 23 과 도 24 예서는 제 1 접촉 단자(341), 제2 접촉 단자(342), 제 1 연결 도선(321), 제2 연결 도선(322), 기묜(330)의 도시는 생략됴었다
[0169] 내촉 안테나(200), 좁촉부 (300)에 대한 설명은 도 12 에서 설명한 것과 같다. 다만, 자성 기판(100)의 경우, 일부 구조가 다르므로 이를 중심으로 설명한다.
[0170] 도 22을 참고하면, 자성 기파(100)은 접촉부(300)의 구조와 동일한 구조를 갖는 두옹영역(130)을 형성하고 있 다. 즉, 도 12 의 경우, 자성 기퐌(100) 상면예 내측 안태니(200)가 배치되고, 내측 안태니(200) 위헤 접촉부 (300)가 연결뎌는 구조이나, 도 22 의 공우, 자성 기판(100) 자체에 접촉부 (300)의 구조와 동일한 구조에 해당 하는 부분민흠 수옹영역(130)이 형성되어, 내측 안테나(200)의 하측에 접촉부(300)가 배치될 수 있다.
[0171]
도 23 는 본 뱔명의 또 다른 실시예에 따른 안톄나 어셀블리 (1000) 의 평면도이다.
[0172] 포 23는 내측 안톄나(200)와 접촉부(300)가 서로 접속되어 있는 상태를 보여준다.
[0173] 접촉부(300)의 두꼐는 자성 기판(100)의 두께와 같거나 작을 수 있다. 접촉부 (300)는 플렉서블한 인쇄회로기 판(FPCB: Flexible PCB)로 구현될 수 있다.
[0174] 접촉부 (300)는 자성 기판(100)의 수융영역(130)에 배치돌 수 있다.
[0178] 접촉부 (300) 의 두쩨가 자성 기판(100)의 두쩨와 같거나 착다변, 또 14 의 실시 에와 달리, 접촉부 (300)의 두쩨 만큼 안테나 어셈블리(1000)의 전체 두께가 감소할 수 있다. 또한, 자성 기판(100)이 수훙영역 (130)만큼 자성 체(110) 및 지지체(120)가 덜 필요하계 되므로, 비용싱 이점이 있다.
[0176] 도 24 은 도 23 의 접촉부 (300)에 도시된 점을 따라 B 에서 B '로 자른 겸우, 안테나 어셈블리(1000)의 단면도이 다.
[0177] 접촉부 (300)의 두쩨는 자성 기판 (100) 의 두쩨보다 작은 경우를 가정하여 설명한다.
[0178] 도 24 을 참고하면, 접촉부 (300) 상면에는 내흑 안테나(200)의 구정요소인 외측 단자(210), 내흑 단자(220), 내촉 코일(230)이 배치되어 있다.
[0179]
내측 안테나(200)의 하 측에는 접촉부(300)가 배치되어 있다.
[0180] 내측 안데나(200)의 외측 단자(210)는 제 1 서브 연결부 (501)에 해당하는 솔더 (10)여 의해 접촉부 (300) 의 제 1 연결 단자(311)와 접속된다.
$[0181]$ 내흑 안베나(200)의 내측 단자(220)는 제1 저브 연결부(501)에 해당하는 솔더(20)예 의해 접촉부(300)의 제2 연결 단자(312)와 접속된다.
[0182] 내측 코일(230)의 폭(W)과 두꼐(T)는 소정의 값을 갖도록 설계될 수 있다. 내측 코일(230)과 내측 코일(230) 사이의 간격 또한, 소정의 거러 값을 갖도록 설게될 수 았다.
[0183] 도 24 을 참고하면, 접촉부 (300) 의 두께가 자성 기판(100)의 두께보다 작으므로, 도 14 의 실시 예와 달렬, 접 촉부 (300) 의 두깨만큼 한테나 어셈블리 (1000) 의 전체 두께가 감소할 추 있따. 또한, 자성 기딴(100)이 도 21 에서 또시한 숭ㅇㅇ영역 (130)만큼 자성체(110) 및 지지쳬(120)가 돌 필오하계 되뜨로, 비응상 이점이 있다.
[0184] 다음으로, 도 25 내지 도 31에서 본 발명의 또 다른 실시예에 따른 안테나 어셈블리(1000)에 대해 상세히 섣

Page 38 of 1385

명한다.
[0185] 도 25는 본 발명의 똔 다른 실시예에 따른 안태나 어셈불리 (1000)의 사시느이고, 도 26는 본 발명의 또 다른 실시예에 따른 안테나 어셈클리 (1000) 의 평면도이고, 도 27 은 본 발명의 또 다른 실시예예 따른 안테나 어셈 블리 (1000)를 C에서 C'로 자른 단면도이고, 도 28 패지 도 32 은 본 발명의 또 다른 실시예에 따른 안테나 어 센블리(1000)의 제조 방법을 설몀하기 위한 도면이다.
[0186] 먼저, 도 25를 참조하면, 본 발명의 또 다른 실시예에 따른 안테나 어샘블리(1000)는 자성 기퐌(100), 내촉 안테나(200), 접촉부 (300)를 포함할 수 있다.
[0187] 일 실시 예에서 안테나 여옘블리 (1000) 는 송신 측으로부터 전자기 유도에 의해 전력을 수신할 수 있다. 이 경 우, 내측 안테나(200)의 코일(210)은 송신 축의 코일가 전자기 유도에 의해 무선으로 전력율 수신할 수 있다.
[0188] 일 실시 예에서 안태나 어셈블리 (1000) 는 솧신 측으로부텨 공진에 의헤 전력을 수선할 수 있나. 이 겅우, 니 축 안테나 (200) 의 내측 코일 (230)은 솧신 축의 송신 공신 코일콰 공진 주파수예서 동작하여 선력을 수신하는 수신 궁진 코일 및 수신 핑진 코일과 거플링되어 전달받은 전력을 수신회로로 전달하는 수신 유도 코일을 포 함할 수 있다.
[0189] 자성 기판 (100) 은 송신 혹으로부터 전달받는 자기장의 방향을 변경시킬 수 있다.
[0190] 자성 기봔(100)은 송신 측으로부터 전달받는 자기장의 방항을 변경시켜 외부에 누출될 수 있는 자기장의 양을 감소시킬 수 있다. 이로 인해, 차폐 흐과를 가질 수 있다.
[0191] 자성 기판(100)은 송신 측으로부터 전달반는 자기장의 방향을 흑방으로 변경시켜 내측 안테나(200)에 자기장 이 더 집중적으로 전달될 수 있도록 한다.
[0192] 자성 기판(100)은 송신 측으로부터 전달받는 자기장 중 외부로 누출되는 자기장을 흡수하여 열로 방출시킬 수 도 있다. 외부이 누촐뎌는 자기장의 양이 감소되면, 인체에 유해한 영향을 미칠 수 있는 상황이 방지될 수 있 다.
[0193]
도 27 을 찬고하면, 자성 기퐌 (100) 은 자싱체(110) 및 지지체(120)를 포함할 수 있다.
[0194] 자성체(110)는 입자 또는 세라믹의 형태를 포함힐 수 있다. 일 실시 예에서 자성체(110)는 스피벨 타입, 헥사 타입, 센다스트 타입, 퍼덜로이 타입의 자성체 중 어느 하나일 수 있다.
[0195] 지지체(120)는 열경화성 수지 또는 열가소성 수지흘 포함할 수 있으며, 자성 기판(100)을 지지하는 역할을 수 행한다.
[0196] 자성 기딴(100)은 시트(Shect) 형태로 구성될 수 있으벼, 플렉서블(flexible)한 성질을 가질 수 있나.
[0197] 다시 도 25를 설명하면, 내촉 안테나(200)는 외촉 단자(210), 내촉 단자(220), 내측 폰일(230)을 포함할 수 있다. 내축 쿄일(230)은 도전층 또는 도전 패턴을 형성할 수 있다.
[0198] 내혹 안톄나(200)는 자성 기판 (100) 의 내부에 배치될 수 있다. 구체적으로, 내촉 안테나(200)는 자싱 기판 (100)의 내부애 함몰되어 배치될 수 있다. 더 구체적으로, 자성 기판(100)은 퍄퇸 홈을 포함할 누 있고, 상기 패턴 홈에는 상기 네흑 안톄나(200)가 뱌치될 수 있다. 상지 패턴 홈은 상기 내측 안테나(200)가 형성하는 도 전 폐턴 또는 도전층의 형태와 동일한 형태를 가질 수 있다.
[0190] 내측 안테나(200)의 두께는 자성 기판(100)의 두께보다 뎌 작고, 내측 안테나(200)의 상 측은 자성 기판(10 0)의 외부로 노훌될 수 있다.
[0200] 자성 기판(100)예 네측 안테나(200) 및 접혹부(300)가 배치되어 안테나 어셈블리(1000)가 제조회는 공정은 도 28 내지 도 32에서 후술한다.
[0201] 내촉 안테나(200)의 외촉 단자(210)는 내촉 코일(230)의 일단에 내측 단자(220)는 내촉 코일(230)의 타단에 위치한다.

내측 안태나(200)의 외측 단자(210) 및 내촉 단자(220)는 접촉부(300)와의 접속을 위혜 필요한 단자이따.
[0203] 내측 코일(230)은 하나의 도선이 복수 변 견선된 패턴을 형성할 수 있다. 일 실시 예에서 패턴은 평면 나선 구조일 수 있으나, 이에 한정될 필요는 없고, 다양한 패틴을 형성할 수 있다.
[0204] 내측 안톄나(200)는 송신 흑으로부터 무선으로 수신한 전력을 접촉부(300)에 전닻할 수 있다. 내측 안테나

Page 39 of 1385

(200)는 솧신 축으로부터 전자기 유도 또는 공진을 이용하여 수신한 전력을 접촉부(300)에 전달할 수 있다.
[0205]
[0206] 접촉부 (300) 는 제1 연결 단자(311), 제2 연결 단자(312), 기판(330)을 포함할 수 있다.

접촉부 (300)의 제1 연결 단자(311)는 내촉 안테나(200)의 외측 단자(210)와 접속될 수 있고, 접촉부 (300)의 제2 연졀 단자(312)는 내흑 안톄나(200)의 내측 단자(220)와 집속될 수 있다.
[0207]
기판(330)은 배선층을 포함할 추 있고, 배선층은 후술하는 수신회로 등을 포함할 사 있다
[0208] 접촉부 (300)는 수신회도 (미도시) 와 내측 안테나(200) 사이를 연결하여 내측 안테나(200)도부터 전달받은 전력 을 수신회로를 통해 부하(미도시)로 전달할 수 있다. 수신회로는 교류전력을 직류전력으로 변환하는 정류회로 (미도시) 및 변환된 직류전력에서 리플 싱분을 제거하여 부하에 전달하는 평활혀로(미도시)를 포함할 수 있다.
[0209] 도 26 내지 도 27은 내축 안태나(200)와 접촉부 (300)가 연결된 상태인 경우, 본 발명의 또 다른 실시예에 따 른 안테나 어셈블리(1000)의 상셰한 구성을 설명하기 위한 도면이다.
[0210] 도 26 는 내측 안톄나 (200)와 접촉부 (300)가 서로 접속회여 있는 상태를 보여준다.
[0211]
내흑 안테나(200)와 접촉부 (300) 간의 접속으․ 솔더에 의해 이루어질 수 있다.
[0212] 도 27 을 참조하면, 내촉 안테나(200)의 외측 단자(210)와 접촉부(300)의 제 1 연결 단자(311)는 제 1 솔더 (10) 에 의해 연결될 수 있고, 내촉 안테나(200)의 내측 단자(220)와 접촉부 (300)의 제2 연결 단자(312)는 제2 솔 더(20)에 의해 연결될 수 있다. 구체직으로, 내흑 안테나(200)의 외흑 단자(210)는 졔1 솔더(10)의 비아홀을 통혀 집촉부 (300)의 제1 연결 단자(311)와 연결될 수 있고, 내흑 안테나(200)의 내흑 단자(220)는 제2 솔더 (20)의 비아홀을 퐁해 접촉부 (300)의 제2 연졀 단자(312)와 연결될 수 있다.
[0213] 일 실시 예이서 상기 비아홀은 레이져를 이옹하여 형성될 수 있다. 이 떼, 레이져는 UV 례이져, C02 레이져 등이 이용될 수 있다.
[0214] 도 27 을 참조하면, 자셩 기판(100) 및 내측 안테나(200)가 접촉부 (300)와 접속회어 있는 안테나 어셈볼리 (1000) 의 단면도가 도시되어 있다.
[0215] 즉, 자성 기퐌(100)의 패턴 홈(140)에는 내측 안테나(200)의 구성여소인 외측 단자(210), 니측 단자(220), 네 촉 코일(230)이 배치될 수 있다.
[0216] 또한, 자성 기판(100) 및 내측 안테나(200)가 접촉부 (300)와 접속되어 있는 상톄가 도시되어 있다.
[0217] 내흑 코일(230)의 폭(W)과 두매(T), 자성 기판(100)의 두께(T1)은 소정의 값을 갖도록 설계될 수 있다. 일 실 시 예에서 내측 포일(230)의 두쩨는 0.1 mm , 자성 기퐌(100)의 두께는 0.43 mm 일 수 있으나, 이는 예시에 불퐈 하다. 일 실시 예에서 내축 포일(230)의 두께(T)는 자성 기판(100)의 두꼐(T1)보다 작을 수 있다.
[0218] 본 발명의 또 다른 실시예에 따른 안테나 어셈블려 (1000)는 자성 기퐌(100) 의 퍄턴 홀(140)에 내촉 안테나 (200)가 직접 배치되어 있어, 내흑 안테나 (200) 의 두께만큰 안테나 어셉블리 (1000) 가 장착된 전자기기의 전체 두께가 감소될 수 있다. 본 발명의 또 다른 실시예를 휸대용 단말기와 걑은 안테나 어셈블리(1000)를 장착하 고 있는 전자기기에 적용한다면, 슬림화가 요구되고 있는 휴대용 단말기의 전체 두꼘ㄹㄹ 감소시키는 혀뫄를 얻 을 수 있다.
[0219] 또한, 본 발명의 또 다른 실시에에 따른 안테나 어셈블리(1000)는 자성 기퐌(100)의 패던 혼(110))에 내측 안 테나(200)가 배치되어 있어, 기존의 FPCB 상애 코일 패턴을 령성한 경우와 달리, 안티나 어센블리 (1000)가 장 착된 전자기기의 전체 사이즈가 감소될 수 있다.
[0220] 포 28 내지 도 32은 본 발명의 또 다른 실시예이 따른 안태나 어셈블리(1000)의 제존 방법을 설명하기 위한 도면이다.
[0221] 이하에서는 도 25 내지 도 27 의 내웅과 졀부시켜, 본 발명의 또 다른 실시예애 따른 안테나 어셉블리(1000)의 세조 방법을 섣명한다.
[0222]
번저, 또 28을 참조하년, 자성 기반(100)이 배치뇐다. 일 실시 예에서 자성 기봔(100)은 폴리에틸렌계 고무 위에 센더스트(sendust) 합감계(A1, $\mathrm{Fe}, \mathrm{SiO2}$) 곰속 분말을 도포하고, 표면에 산화 펴막을 형성하여 제조될 수 있다.

Page 40 of 1385

다읍으로，도 29 을 참조하면，자성 기퐌（100）에 내흑 안테나（200）를 수용할 수 있는 패틴 홈을 형성하기 위해 금형（1）을 이용하여，열과 압력을 동시에 가한다．금형（1）은 내측 안테나（200）의 형상과 같도록 제작될 수 있 다．일 실시 예에서 금형（1）의 재로로는 알루삐늄 합금，구리합금，주철 등이 사용돌 ํㅜ 있따．
［0234］족，내촉 안테나（200）의 외측 단자（210）와 접촉부（300）의 제1 연결 단자（311）를 솔더（10）에 의해 접속시키고， 내측 안테나 (200) 의 제 2 연결단자 (200) 와 접촉부 (300) 의 제 2 연결 단자 (312) 를 솔뎌 (20) 에 의혀 접속시킨다． 금형（1）예는 무선으르 전력을 수신하기 위한 내측 안테나（200）가 배치될 위치에 대응한 둘출부가 형성될 수 있다．

금형（1）을 이용하여，열을 가할 시，자싱 기판（100）의 구싱요소인 센더스드 합금계 금속 분맏의 특성을 고려 하여 특정 온도를 갖는 열을 가한다．일 실시 에에셔 자성 기판（ 100 ）이 상기 폴리에틸릴계 고무 위에 센더스 트（sendust）합금계 금속 분말을 도포하여 제조뇐 경우，금형（1）을 이용하여 열괴 압력을 가할 시， 100 도 이 상 180 토 이하의 온도데서 고압으로 압력을 가한 후， 100 도 이하의 온도를 냉각시킨 다옴，자성 기퐌（100）응 로부티 혐형（1）을 분리한다．돔형（1）을 이응하여，자성 기판（100）에 압력을 가한 후，흠형（1）을 바로 분리하 게 되면，패턴 홈（140）에 남아있는 열로 인해，원하고자 하는 패턴 홈（140）이 형성되지 않을 수 있기 때문에， 100 도 이하로 냉각 시킨 후，자성 기판（100）으로부터 금형（1）을 분리시킬 필요가 있다．
만약，자성 기판（100）으로 센더스트 합금계 금속 분말을 사용하는 경우，분말의 배열，밀도 둥에 따라 가하는 온또와 압럭이 달리질 수 있다．죽，분딸의 베열이 균일하지 못한 경우에는 더 높은 온도와 압력을 가해야 하 며，분만의 버열이 간일한 겅우에는 분말의 배열이 간일하지 못한 경우에 비해 되 낮은 온도 및 압력을 가해 도 된다．또한，분말의 밀도가 낮은 경우에는 높은 경우에 비해 더 낮은 온도 및 입력을 가해도 된다．또한， 분말의 싱분 즉，분말율 구성하는 합금에 따라 가해지는 온도 및 압력이 달라질 수도 있다．

이와 같이，분말의 배열，밀도，성분에 따라 가혜지는 온도는 달라질 수 있다．
일 실시 예에서 ⿰⿰\zh9丶刀명（1）을 이용하여，열과 압력을 가하는 대신，자성 기판（100）에 내측 안테나（200）를 수옹할 수 있는 패턴 홉을 형성하기 위해 례이져를 조사할 수 았다．패틴 홉은 자외선 영역의 파장을 갖는 례이져 빔 을 발사하는 엑시머 레이져（excimer laser）를 사웅하여 형성될 수 있다．삳기 엣시머 레이져는 KrF 엑시머 레 이져（크립톤 불소，중심파장 248 nm ）또는 ArF 엑시머 레이져（아르곤 불소，중심파장 193 nm ）등이 사용될 수 있다．

다음으오， 5 도 30를 참조하면，포 30 는 금형（1）을 자성 기판（100）으보부터 분리 시 페턴 흠（140）이 형성된 자 성 기퐌（100）의 상대를 보여쭌다．

다음으로，도 31 을 참조하면，도 30 의 상태에서 자성 기퐌（ 100 ）에 형성된 패턴 홈 (140) 에 내혹 안테나（200）를 삽입한다．내흑 안테나（200）가 삽입되면，자성 기퐌 (100) 의 해턴 홈 (140) 는 일정한 도전 패턴이 형성된다．

일 실시 예에서 자성 기판（ 100 ）의 페턴 홈 (140) 에 내촉 안테나（200）가 삽입되는 과정은 도금 또는 내촉 안테 나（200）가 형성하는 도전 패턴을 갖도록 에칭과정을 거친 콤속을 삽입하는 방법이 사옹될 수 있다．
구체적으로，도금은 패턴 홈（140）을 금속 물질로 충진하는 공정을 통해 내혹 안테나（200）가 형성될 수 있다． 이때，상기 금속 물질은 $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Sn}, \mathrm{Au}, \mathrm{Ni}$ 및 Pd 중 선택되는 어느 하나의 물질일 수 있으며，상기 금속 물 질 충진운 무전해 도금，전해 도금，스크린 인쇄（Screen Printing），스퍼터링（Sputtering），증발법 （Ecaporation），잉보겟팅 및 디스펜싱 중 어느 하나 또는 이들의 조합둰 방식을 이용할 수 있다．

다음으로，도 32 을 참조하면，내측 안테나（200）와 접촉부（ 300 ）가 접속되도룍 솔더링 작업을 거친다．

이와 같이，분 발명의 또 다른 실시예예 따른 안태나 어셈블리（ 1000 ）의 제조 방법은 자성 기판 (100) 에 패턴 홈을 형성하고，형성된 패던 홈여 내측 안테나（200）를 배치시킴으로썻，안테나 어셈블리（1000）의 전체 두께를 감소시킬 수 있고，패틴 홈을 형성하는 과정 및 코일부를 삽입하는 과정 만을 통해 안테나 어셈블리（1000）를 제조할 수 있어，제조 공정이 단순화되는 효과가 있다．
또 33 는 본 발명의 또 도른 실시에에 따라 자성 기반 상뜬예 코일부를 뱌치한 경우，사용 주파수에 따른 코일 부의 인독턴스，저항，Q 값의 변화를 설명하기 위한 도면이고，도 34 은 본 발명의 똔 다른 실시예이 따라 자성 기판 내부의 패턴 홈에 코일부를 배치한 경우，사용 주파수에 따른 내측 안테나 (200) 의 인덕턴스，저항，Q 값 의 변화클 설명하기 위한 도면이다．

내촉 안태나（200）의 인뎍턴스，저항 및 Q 값의 간계식은 다을의［수학식 1］을 통해 표현될 수 있다．

Page 41 of 1385

```
    [수하시ᄀ 1]
```

$Q=w * L / R$
[수학식 1]에서 w 는 전릭 전송 시 사용되는 주파수이고, L 은 내축 안태나(200)의 인덕턴스, R 은 내축 안태나 (200)의 저항을 나타낸다.
[0241] [수핫시 1]에서 확인할 수 있듯이, 내흑 안테나(200)의 인뎍틴스는 그 값이 증가할수록 Q 값이 늪아진다. Q 값 이 증가하면, 전릭 전송 호율이 좋아진 수 있다. 내측 안톄나(200)의 저항은 내측 안테나(200) 자체예서 발생 하는 선력 손실량을 수치화한 것이머, 르 값이 작을수록 Q 값이 중가한다.
$[0242]$ 도 33 및 도 34 을 참조하면, 사응 주자수가 150 kHz 일때를 비교하면, 븐 발명의 또 다른 실시예에 따라 자성 기판 (100) 상면에 내측 안테나 (200) 를 배치한 경우에 비해, 도 34 은 븐 발명의 또 다른 실시예에 따라 자성 기판(100) 내부의 패턴 홈 (140)에 내측 안톄나(200)를 배치한 경우, 내흑 안톄나(200)의 인뎍턴스는 야 9986.92 um 에서 약 10339.34 um 로 352.42 um 만큼 증가하였고, 내측 안톄나(200)의 저항은 약 0.910 옴에서 약 0.853 음으로 0.057 옴딴큼 감소한 것을 확인할 구 있나. 결국. 인덕턴스의 증가 및 저항의 감소양반큼 Q 값이 중가한다.
[0243] 따라서, 본 발명의 또 다른 실시예에 따른 안테나 어셈블리(1000)는 자성 기판(100) 내부의 패턴 홈에 내촉 안테나(200)를 벼치하여, Q 값을 높일 수 있다.
[0244] 도 35는 본 발명의 또 따른 실시예에 따라 자성 기판 상면예 코일부를 뱌치한 경우, 자기장의 방사 펴턴을 보 여주기 위한 H-Field이고. 조 36는 본 발뗭의 또 다른 실시예에 따라 자성 기한 내부의 패턴 홈여 코일부를 배치한 경우, 자기장의 방사 패턴을 보여주기 위한 H-Field이다.
[0245] 도 35 및 도 36 를 찹조하면, 자성 기판(100) 내부의 패턴 홈에 내측 안테나(200)를 배치한 경우가 자성 기판 (100) 창면에 코일부를 배치한 경우에 비해, 내측 안테나 (200)의 외측에서 자기장이 뎌 많이 방사됨을 확인할 수 있다. 이는, 자성 기판 (100) 내부에 내측 안테나(200)가 함몰된 구조에 의해 외부로 햫하는 자기장의 방향 을 네촉 안테나(200)의 촉방으로 변경시키기 뗘문이다.

또한, 자성 기퐌(100) 내부의 패턴 홈이 내측 안데나(200)를 배치한 경후가 자성 기판(100) 상면이 내측 안테 나(200)를 배치한 경우예 비해, 내측 안테나(200)의 내촉에서 자기장이 더 많이 빙사횜을 확인할 수 있다. 이 또한, 자성 기판 (100) 내부에 내촉 안톄나(200)가 한몰된 구조에 의해 외부로 향하는 자기장의 방향을 내흑 안볘나(200)의 측방으로 변경시키기 때문이다.
[0247] 포 35 및 또 36 를 찯조하면, 안톄너 어셈불리 (1000) 는 외축 안태나(600)를 더 포함할 수 있다.
[0248] 외측 안테나(600)는 근거리 무선통신이 가능한 리더기와 통신을 수햄힐 수 있다. 외측 안테나(600)는 삼기 리 더기와 정보률 송수신하는 안테나의 역할을 수행한다.
[0249] 일 실시 예에서 외측 안테나(600)는 네축 안베나(200)의 외곡예 배처될 수 있다. 일 실시 예에서 내촉 안테나 (200)가 자성 기판(100)의 중앙에 베치눤 경우, 외축 안테나(600)는 내측 안테나(200)를 잠싸로록 자성 기판 (100)의 외푝을 따라 배치될 수 있다. 외촉 안테나(600)는 하나의 도선이 복수 번 권선된 사각형의 구조를 가 질 수 있으나, 이에 한정될 펄요는 없다.
[0250] 외흑 안테나(600)는 내혹 안테나(200)쩌럼 도전 패턴, 도전흥을 형성할 수 있다.
[0251] 외촉 안테나(600)에서 사용독는 근거리 통신규격은 다양한 기술이 사용뎔 수 있으나, NFC(Near Field Communication)을 이용함이 바람직하다.
[0252] 다음으로, 도 37 내지 도 48 을 참조하여 본 발명의 또 다른 실시 에에 따른 안테나 어셈볼리에 대혜 설명한다.
[0253] 도 37은 본 발뗭의 또 다른 실시 예에 따른 안테나 어셈블리(1000)의 분해 시시도이고, 도 38은 본 발명의 또 다른 실시 예에 따른 안테나 어셈볼리 (1000) 의 사시도이고, 도 39 은 본 발명의 또 다른 실시 예에 따른 안테 나 어셈블리(1000)의 단면도이다.
[0254] 한편, 도 38 은 도 37 에 도시된 안테나 어샘블리(1000)의 구싱요소를 결합해 놓은 사시도이고, 일부 구성요소 가 생략되어 졀합한 형태를 갖는다.
[0255] 본 발명의 또 다른 실시 예에 따른 안테나 어셈볼리(1000)는 휴대용 단말기와 같은 전자기기에 장착될 수 있

Page 42 of 1385

공개톡허 10-2014-0113205

다.
[0256] 도 37내지 도 39을 참조하면, 안테나 어셈불리(1000)는 자성기판(100), 내촉 안테나(200), 접촉부 (300), 외촉 안테나 (600), 접착층 (700), 제1 양면 접착층 (710), 제2 양면 접착층 (720), 보호 필름 (800) 및 박리지층 (730) 을 포한할 수 있다.
[0257] 먼저, 도 37 을 참조하면, 자성 기판 (100) 은 송신 축으로부터 전달반는 자기장의 방향을 변경시킬 수 있다.
[0258] 자성 기판(100) 은 솧신 축으로부터 내축 안테나(200)가 전달받는 자기장의 방향을 변경시켜 외부에 누출될 수 있는 자기장의 양을 감소시킨 수 윘다. 이로 인해, 차폐 효롸를 가질 수 있다.
[0259] 자성 기판 (100) 은 송신 흑으로부텨 전달반는 자기장의 방항을 흑방으로 변경시켜 내흑 안테나(200)에 자기장 이 더 집중적으로 전달될 두 있도록 한다.
[0260] 자성 기판(100)은 솧신 축으로부버 내축 안테나 (200) 가 전달받는 자기장 중 외부로 누출퇴는 자기장을 ㅎ⿱ㅂ수하 여 열로 방출시킬 수도 있다. 외부이 누출되는 자기장의 양이 감소되면, 인체에 유해한 영향을 미칠 수 있는 상황이 빙지될 수 있다.
[0261] 도 39 을 참고하면, 자성 기판 (100) 은 자성체 (110) 및 지지체 (120)를 포함핲 수 있다.
[0262] 자성체(110)는 입자 또는 세라믹의 형티률 포함할 수 있다. 일 실시 예에서 자성체(110)는 스퍼넬 타입, 헥사 타입, 센다스트 타입, 퍼멀로이 타입의 자성체 중 어느 하나일 수 있다.
[0263] 지지체(120)는 열경화성 수지 또는 열가소성 수지를 포한할 수 있으며, 자성 기퐌(100)을 지지하는 역할을 수 행한다.
[0264] 다시 도 37을 섣명하면, 자성 기판(100)은 시트(Sheet) 형테로 구성될 수 있으며, 플렉서블(flexible)한 성질 을 가질 수 있다.
[0265] 자성 기퐌(100)은 일정영역예 숭ㅇㅇ공간(130)을 가질 수 있다. 수용공간(130)은 접촉부 (300)의 형태와 동일한 형톄를 가질 수 있고, 접촉부 (300) 는 상기 수응공간(130)예 배치되어 내촉 안태나 (200)와 접속될 수 있다.
[0266] 내측 안테나(200)는 송신 측으로부터 전자기 유도 또는 공진을 이옹해 무선으로 전력을 수신할 수 있다. 내측 안테나(200)는 포 12 에서 설명한 바와 마찬가지보, 외측 단자(210), 니측 단자(220) 딫 네측 쿄일(230)을 꼬조 함할 수 있다. 내촉 코일(230)은 도전층 또는 도전패턴으로 형성될 수 있다.
[0267] 접촉부 (300)는 내측 안태나(200)와 수신혀로 (미도시) 사이를 연결하여 내축 안톄나(200)로부터 전달반은 전력 율 수신회로를 통해 부하(미도시)로 전달할 수 있다.
[0268] 접촉부(300)는 배선충을 포함할 수 있고, 배선충은 상기 추신회로를 포함할 수 있다. 상기 수신회로는 내축 안테나(200)로부터 전달받은 전력을 정류하는 정류회로, ㄴㄷ이즈 신호를 제거하는 펑활회로 및 무선으로 전럭 을 수신하기 위한 전반적인 동작을 수헹하는 며인 IC칩을 포함할 수 있다.
[0269] 또한, 상기 수신회로는 외촉 안테나(600)로부터 수신한 신호를 근거랴 통신 신호 처리부(미도시)에 전닫할 수 있다.
[0270] 접촉부 (300)는 자성 기판(100)의 수용공간(130)에 배치되어 내축 안탸나(200)와 섭속 가능하다. 또 38을 함꺼 참조하면, 자성 기판(100)의 수응풍간(130)이 겁촉부 (300)가 배치된 것을 확인할 수 있다.
[0271] 접촉부 (300) 는 제 1 연결 단자(311), 제2 연결 단자(312), 제3 연결 단자(313) 및 제4 연결 단자(314)를 포한 할 수 있고, 접촉부 (300) 의 제 1 연결 단자 (311) 는 내측 안볘나 (200) 의 졔 1 연결 단자 (311) 와 접속될 수 있고, 접촉부 (300)의 제2 연졀 단자(312)는 내측 안테나(200)의 니측 단자(220)와 접속될 수 있고, 접촉붕(300)의 제3 연결 단자(313)는 외촉 안테나 (600) 의 내축 단자 (610) 와 접속될 수 있고, 접촉부 (300) 의 제 4 연결 단자 (314)는 외측 안테나 (600) 의 외측 단자 (620) 와 접속될 수 있다.
[0272] 접촉부 (300) 는 수용공간(130)의 형태와 동일한 형태률 가지고, 수용공간(130)예 뱌치될 수 있다. 집촉부(30 0)가 자성기판 (100) 의 수용공간 (130) 에 배치횔예 따라 접촉부 (300) 의 두께만큼 안테나 어셈불리 (1000) 의 전체 두께가 크게 감소될 수 있다. 이로 인해, 안테나 어셈블리 (1000)아 장착된 휴대용 단말기와 같은 전사기기의 두메도 크계 감소될 수 있다.
[0273] 일 실시 예에서 접촉부(300)는 푤렉서블한 인쇄회로기편(FPCB: Flexible Printed Circuit) 또는 태잎 부재 (TS: Tape Substrate) 또는 리드 프레임(LF: Lead Frame)이 사용될 수 있다. 접혹부(300)로 탸잎 부재를 사응

Page 43 of 1385

하는 겅우, 접촉부 (300)의 두꼐가 감소되어 안테나 어셈블리 (1000)의 전체 사이즈를 줄일 수 있다.
[0274]
[0275] 첩촉부 (300)료 리드 프래임을 사응하는 경우, 발열, 외부의 솝기, 총격 등으론부터, 첩촉부(300)에 포함된 배 선충이 보호될 수 있고, 대량 생산이 가능한 장점이 있다.

다시 도 37 을 셛명하면, 외흑 안테나(600)는 근거리 무선 통신이 가능한 리뎌기와 통신율 수행할 수 있다. 의 측 안테나(600)는 상기 리더기와 정보를 송수신하는 역할을 수행할 누 있다.
[0276]
[0277]
[0278]
[0280]
[0281]
[0282]
[0283]
[0284]
[0285]
[0286]
[0287]
[0288] 일 실시 예에서 보호 필름 (800) 은 폴리이미드 필름(PI Flim: Polyimide Film)이 사용될 수 있으나, 이에 한정 될 필요는 없다.
[0289] 다음으르, 도 41과 같이, 도전체(201)와 보호 푈름 (800)은 접착흥 (700) 을 통해 부착뎔 수 있도. 상기 부착은 라미네이팅(laminating) 깅정이 이옹될 수 있다. 라미네이팅 (laninating) 핑정은 소정의 열과 압력을 가하여 서로 다른 재료의 물질을 접착시키는 공정이다.
[0290]
킨거리 통신 신호 처리부(미또시)는 접촉부(300)를 통해 외축 안테나(600)에서 수신한 신호를 전달받아 처리 할 수 있다.

외흑 안테나(600)에서 사용댜는 근거리 통신규격은 다양한 기술이 사용될 수 있으나, NFC(Near Field Communication)을 이용함이 바람직하다.

일 실시 예에서 외축 안테나 (600) 는 내측 안테나 (200) 의 외곽에 베치묄 수 있다. 또 38 을 참조하변, 내축 안 데나(200)가 자성 기판(100) 상에 배치딘 경우, 외측 안데나(600)는 내측 안데나(200)를 감싸도록 자성 기핀 (100)의 외괵을 마라 배치될 수 있다. 외측 안테나 (600) 는 하나의 도선이 복수 빈 권선된 사각형의 형태를 가 질 수 있으나, 이에 한정될 필요는 없다.
다시 도 37 을 설명하먼, 접착층(미도시)은 보호 필름 800)의 하축에 배치될 루 있고, 보호 필름 (800) 을 내축 안테나(200) 및 외측 안테나(600)에 부착시킬 수 있다. 이예 대혜서는, 후술한다.
$0280]$ 제 1 양면 접착층 (710) 은 내측 안테나(200), 외측 안테나(600)와 자성 기퐌(100) 사이에 배치되어, 내측 안테 나(200)와 자성 기판(100)을 부착시킬 수 있다. 이에 대혀서는 후술한다. 제 1 양면 접착층 (710)에는 자성 기 판 (100) 과 마찬가지로 접촉부 (300) 의 형태와 동일한 형태의 수용 공간이 마현될 수 있다.

포 39 을 참조하면, 제2 양면 접착훙 (720) 은 보호 펼름 (800) 과 박리지충 (730) 을 부착시킬 수 있다. 이에 대혜 서는 후술한다

내흑 안테나(200)는 자성기판(100) 상에 배치될 수 있고, 스파이릴 타입의 구조플 가질 수 있으나, 이에 한정 될 필요는 없다.

다음으로, 도 40 내지 도 48 을 참조하여, 본 발명의 또 다른 실시 예에 따른 안테나 어셈블리(1000) 의 제조 방법을 설명한다.

공정이 시작되면, 도 40 와 같이, 도전체(201), 접칙충 (700), 보호 필름(800))을 준비한다.
일 실시 예에서 도전체(201)는 구리를 포함하는 합금으로 형성될 수 있으며, 구리는 압연바, 전해박 형태가 사옹될 수 있다. 도전체(201)는 요구되는 제품의 사양에 따라 다양한 두꼐를 가질 수 있다. 일 실시 예에서 또전체(201)의 두쩨는 100 um 일 수 있으나. 이는 에시에 불과하다.

접촥층 (700) 은 도전체 (201)와 보호 필름 (800) 의 접착력을 강화시키기 위한 것으로, 열경화성 수지가 사용될 수 있으나, 이에 한정될 필요는 없다. 바랍직하게, 접착흥 (700) 의 두께는 17 um 일 수 있으나, 이는 예시예 불 콰하다.

보호 필름 (800)은 도전챠(201)가 일정한 도전 패턴을 형성하는 공정에서 도전체(201)를 보호하는 역할을 수행 한다. 구체적으로, 보호 킬름 (800)은 후술할 예칭 공성예서 도전체(201)를 지지하여 일성한 도전 패턴을 형성 하도록 도진체(201)를 보호할 수 있다.

다음으로, 도 42 과 같이, 도전체(201)의 상먼에 감광성 팔름 (900) 을 부착한다. 감광성 퓔름은 도전체(201)를 에힝하여 일정한 도전 패턴을 형성하기 위한 것으로, IV 노광 타입 또는 LDI 노광 타입의 필륨이 사용될 수 있다. 또 다른 실시 예예서 도전체(201)의 상면에는 감쾅성 킬름 (900) 대신 감광성 도포액이 도포될 수호 있 다.

Page 44 of 1385

[0291] 다음으로, 도 43 와 같이, 감광성 펼릅(900)을 노광하고, 현상하여 마스크 패턴(910)을 형성한다.
[0292] 마스크 패턴(910)은 상기 노광 및 현상 공정을 통해 일정한 도전 패텬이 형성될 위치의 상면예 형성될 수 있 다.
[0293] 노광은 도전 퍄턴이 형성될 부분과 형셩되ㅈㅣㅣ 않을 부분을 꾸분하여 감광성 필름 (900) 에 빛을 조사하는 것을 의미한다. 즉, 노광은 도전 패턴이 형성되지 않을 부분예 빛을 조사하는 공정이다. 현상은 노광에 의해 빛이 조사된 부분을 제거햐는 공정을 의미한다.
[0294] 상기 녺⿱ㅇ 및 현상 공정에 의해 네측 안테나(200) 및 외축 안테나(600)가 형성될 부분에 마스크 패턴(910)이 형성될 수 있다. 마스크 페턴(910)에 의해 노훌되는 도전체(201) 부분이 식각될 수 있다.
[0295] 다음으로, 도 44과 같이, 예칭(Etching) 공정을 통해 마스크 패턴(910)이 형성되지 않은 홒 부분이 식긱될 수 있다. 에칭은 마스크 패턴(910)이 형성되지 않는 부분에 위치한 도전체(201)와 화화 반응하는 물질율 이옹하 여 마스크 패텬(910)이 형성되지 않는 부분에 위치한 도전체(201)를 부식시켜 잆애는 공정을 의미한다. 일 실 시 예에서 도선체(201)는 습식 또는 건식 식가에 의혜 패터닝 둴 수 있다.
[0296]
다음으로 도 45 와 같이, 마스크 패턴(910)을 제거하면, 내측 안테나(200)의 외측 단자(210) 및 내측 단자 (220), 외측 안테나(600)의 내촉 단자(610) 및 외측 단자(620), 일정한 도전 패턴을 갖는 내측 코일(230) 및 일정한 도전 패턴을 갖는 외흑 안테나(600)가 형성될 수 있다.
[0297]
다음으로, 도 46 과 같이, 내측 안테나(200) 및 외측 안테나(600)가 접촉부(300)예 접속되도록 솔뎌링 (soldering) 공정을 거친다. 일 실시 예에서 솔더링 공정은 reflow 공정이 사용딜 수 있으나, 이에 한정될 필 요는 없다. reflow 공정은 고원의 얼원을 가하여 솔되 크림을 옹흠하여 내측 코일(230) 및 의측 안뎨나(600) 와 접촉부 (300)간의 전기적 접속을 안정되게 접합하는 공정이다.
[0298] 내측 안테나(200)의 외촉 단자(210)는 접촉부 (300)의 제1 연결 단자(311)와 솔뎌(30)에 의해 접속될 수 있고, 내측 안테나 (200) 의 내측 단자 (220) 는 접촉바 (300) 의 제 2 연절 단자 (312) 와 솔너 (30) 에 의해 접속될 수 있고, 외측 안테나 (600) 의 내촉 단자(610)는 접촉누(300)의 제3 연결 단자(313)와 솔더(30)에 의해 접속될 수 있고, 외측 안태나 (600) 의 외축 단자 (620) 는 접촉부 (300) 의 제 4 연결 단자 (314) 와 솔더 (30) 에 의해 썹속될 수 있다.
[0299] 다음으로, 도 47 과 같이, 자성기판(100)은 접촉부 (300)가 차지하는 면적 이외의 부분예 위치한 도전 패턴 즉, 내흑 크일(230) 및 외흑 안테나(600)의 상면에 저흥될 수 있다.
[0300] 이 선에, 접촉붜 (300)에 대응하는 수용공간을 갖는 자성기퐌(100)을 획득할 수 있다. 자성기판 (100) 의 수용공 간은 접촉부 (300) 의 형톄에 일치하도록 형성될 수 있다.
[0301] 접촉부 (300)는 도 37에서 섷명한 것과 같이, 접촉부 (300)가 자성기판(100)의 수용공간(130)애 배치됨이 따라 집혹부 (300) 의 두께만큼 안테나 어셈블리(1000)의 전체두께가 크게 감소될 수 있다. 이로 인해, 안톄나 어쳄 블리 (1000)가 장착둰 휴대옹 단맢기와 같은 전자기기의 두꼐도 크게 감소될 수 있다.
[0302]
이 때, 내촉 코일(230) 닟 외촉 안테나(600)와 자성기봔(100)은 제1 양변 접착충(710)에 의해 부착될 수 있다. 일 실시 예이서 자성기판 (100) 의 두째는 100 um 내지 800 um 의 먿위를 가질 수 있으나, 이에 한정될 필요 는 없다. 일 실시 예에서 제 1 양면 접착층 (710) 의 두께는 10 um 내지 50 mm 의 범위를 가질 수 있으나, 이에 한 정될 필요는 없다.
[0303] 다음으로, 도 48 과 같이, 박리지층(730)은 제 2 양면 접착층(720)을 통해 보호 필름 (800)의 일 측에 부착될 수 있다. 박리지충(730)은 제2 양면 접착충 (720) 을 보호하기 위해 부착된 중이충으르, 휴대영 단딸기와 같은 전 자기기의 케이스애 부착시 제거될 수 있다.
[0304]
도 49 는 본 발명의 실시에에 따른 안테나 어셈블러의 제조 방법의 흐름도이다.
[0305]
특히, 도 49 는 도 1 내지 도 11 에 따른 안톄나 어셈블링의 제조 방법예 간한 것이다.
[0306] 도 49를 참고하면, 기판(400)이 형성된다(S101).
[0307] 다음으로 기판(400)의 상면에 직접 도전판(81)이 적층된다(S103). 이때, 도전판(81)은 동판일 수 있다.
[0008] 일 실시 예에서는 자셩 기판(100)의 상면애 접착층이 적흥된 훈, 도전판(81)이 접차층 위예 적층될 수도 있나.
[0309] 또 다른 실시 예에서 도전판(81)를 소정의 온도에서 가열하고, 그 후 소정의 압력을 가하는 라미녜이팅

Page 45 of 1385

(laminating) 공정이 사용될 수 있다. 라미에이팅 (laminating) 공정이란, 열과 압력을 이용하여 서로 다른 종 류의 금속박, 종이 등을 접착시키는 공정을 의미한나.
[0310] 다음으로, 도전판(81)의 상면예 마스크(83)가 부착된다(S105). 마스크(83)의 모양은 내측 안테나(200)의 모양 퐈 외측 안테나(600)의 모양을 포함하는 모양일 수 있다.

다음으로, 따스크(83)가 부차될 도전판(81)이 적층된 기판(400)을 에칭 용액에 넣으면(S107), 마스크(83)가 부착되지 않은 분분이 식각되어, 도전퐌(81)는 마스크(83) 모양의 패턴을 형성한다. 다음은 식각이 의해 형성 되는 포전 패턴의 단면을 또 50 과 도 51 을 참고하여 설명한다.
도 50 과 도 51 은 본 발명의 실시에에 따른 식각에 의해 형성되는 도전 패턴의 단면을 보여준다.
특히, 도 50 의 (A)는 본 반명의 실시에에 따론 부족 식가(under-etching)에 의해 형성되는 도전 패텬의 단면 을 보여주고, 도 50 의 (A)는 본 발명의 실시예에 따른 과 식각(over-etching)에 의해 형성되는 도전 배턴의 단면을 보여주며, 또 50 의 (A)는 본 발명의 실시에에 따른 정 식삭(fine etching)에 의해 형성뇌는 또전 패턴 의 단면을 보여준다.
[0314] 도 50 과 도 51을 참고하면, 코일 패턴예 해당하는 내흑 코일(230)의 단면은 복수의 내부 각(inner angle)을 가지는 다간형으로 단순화둴 수 있다. 이때, 단순화는 단면의 편듈(sides) 내의 비교적 작은 요철이나 둥근 모서리의 평균화를 의미한다. 코일 패턴여 해당하는 내측 코일(230)의 단먼은 사자형, 구체적으로 사다리꼴일 수 있다.
[0315] 코일 패턴여 해당하는 의측 코일(630)의 단면은 복수의 내부 각(inner angle)을 가지는 다각형으로 단순화될 수 있다. 코일 패틴애 해당하는 외측 코일(630)의 단면은 사각혐, 구체직으로 사다리꼴일 수 있다.

이하에서는 특히 내측 코일(230)의 단면은 사각형이고, 외측 코일(630)의 단면은 샤각형인 경우를 설명한다.
내촉 코일(230)의 단면은 좟장축 내부 각(A1), 우상촉 내부 각(A2), 좌하측 내부 각(A3), 우하촉 내부 각(A 4)을 가진다.
[0318] 외측 코일(830)의 단면은 좌상촉 내부 각(A5), 우상흑 내부 각(A6), 좌하촉 내부 각(A7), 우하측 내부 각(A 8)을 가진다.
[0319] 실시예에서, 녀촉 코일(230)과 외측 고일(630)이 동일한 도전한(81)으로부버 형성푀브로, 내측 运일(230)은 두께와 외축 코일(630)은 두께는 동일할 수 있다. 또, 내축 코일(230)이 위치하는 레이어와 외축 코일(630)이 위치하는 레이어는 동일할 수 있다. 기판(400)의 싱면과 내측 코일(230)의 싱면은 평행하고, 기판의 상면 (400)가 외흑 코일(630)의 상면은 평형할 수 있다. 기판(400)의 상면으로부터 내측 크일(230)의 상면까지의 높이 $(\mathrm{Hp} 1)$ 는 기판 (400) 의 상면으로부터 외측 코일 (630) 의 상면까지의 높이 $(\mathrm{Hp} 2)$ 와 동일한 수 있다.
[0320] 실시예에서, 코일 패턴의 저항 성분을 줄여 Q 값을 높이기 위하여, 코일 패턴에 헤땅하는 내측 포일(230)가 외측 코일 (630) 의 두께는 일반적인 도선 패턴보다 큰 80 um 이상일 수 있다. 코일 패턴의 저항 성분을 줄여 Q 값을 더욱 높이기 위하여, 코일 패던에 햐당하는 내측 코일(230)과 외흑 코일(630)의 두께는 100 um 이상일 수 있다.
[0321] 실시예에서, 내측 코일(230)과 외측 코일(630)이 동일한 도전판(81)으로부터 동일한 예칭 공정을 통해 형성되 므로,
[0322] 내측 코일(230)의 단면의 좌상측 내부 각(A1)은 외측 코일(630)의 단면의 좌상측 내부 각(A5)과 등일할 수 있 다. 내츷 코일(230)의 단면의 우상측 내부 가(A2)은 외측 코일(630)의 단면의 우상측 내부 작(A6)가 동일할 수 있다. 내록 코일 (230) 의 단면의 좌하흑 내부 각(A3)은 외흑 코일(630)의 단면의 좌하혹 내부 각(A7)퐈 동 일할 수 있다. 내촉 코일(230)의 단면의 우하측 내부 각(A4)은 외촉 코일(630)의 단면의 우하측 내부 각(A8) 화 동일잘 수 있다.
[0323] 내측 코일(230)의 단면의 좌상측 내부 각(A1)은 내측 코일(230)의 단면의 우상측 내부 각(A2)콰 등일할 수 있 다. 내측 코일(230)의 단면의 좌하측 내부 각(A3)은 내측 코일(230)의 단면의 우하측 내부 각(A4)과 동일할 수 있다. 외측 코일(630)의 단면의 좌상혹 내부 가(A5)은 외흑 코일(630)의 단면의 우상촉 내부 각(A6)과 동 일할 수 있다. 외측 코일(630)의 단면의 좌하측 내부 각(A7)은 외흑 코일(630)의 단면의 우하측 내부 각(A8) 파 동일할 후 있다.
[0324]
정 에칭(fine etching)이 된다면, 내측 코일(230)의 단면의 좌상측 내부 각(A1), 우상측 내부 각(A2), 좍하측

Page 46 of 1385

내부 각(A3), 우하측 내부 각(A4)은 실질적으로 90도예 해당할 수 있다. 또, 정 에칭(fine etching)이 된다뗜, 외측 코일(630)의 단면의 좌상측 내부 각(A5), 우상측 내부 각(A6), 좌하측 내부 각(A7), 우하측 내 부 각(A8)은 실질적으로 90도이 해당할 수 있다.
[0325] 부족 에칭(under-etching)이 된다면, 내측 고일(230)의 단면의 좌상늑 내부 작(A1)은 내측 코일(230)의 단면 의 우상흑 내부 각(A2)보다 크다. 내측 코일(230)의 단면의 좌하혹 내부 가(A3)은 내측 코일(230)의 단면의 우하측 내부 각(A4)보다 크다. 외측 쿄일(630)의 단면의 좌상촉 내부 가(A5)은 외측 코일(630)의 단면의 우상 측 니부 각(AG) 보다 크다. 외측 코일(630)의 단면의 좌하측 네부 각(A7)은 외측 코일(630)의 단면의 우하측 내부 각(A8) 보다 크다.
[0326] 퐈 에칭(over-etching)이 된다면, 내촉 코일(230)의 단면의 좌상측 내부 각(A1)은 내촉 코일(230)의 단면의 우창흑 내부 각(A2)보다 작다. 내흑 쿄일(230)의 단면의 좌하흑 내부 각(A3)은 내휵 코일(230)의 단면의 우하 측 내부 각(A4)보다 작다. 외축 코일(630)의 단면의 좌상측 내부 각(A5)은 외축 코일(630)의 단먼의 우상축 내부 락(A6)보다 작다. 외측 코일(630)의 단변의 좌하측 내부 각(A7)은 외측 코일(630)의 단변의 우하측 내부. 각(A8)보다 작다.

정 에청(fine etching)된 안테나의 Q 값은 부족 에칭(under-etching)된 안테나나 과 에칭(over-etching)된 안 테나의 Q 값보다 크므로, 정 에칭(fine etching)된 안테나의 생능이 부족 에칭(under-etching) 된 안톄나나 좌 에칭(over-ctching)된 안톄나의 성능보다 넛다. 따라서, 부족 에칭이나 카 에칭된 안테나 패턴의 단면의 4개 의 내부 각의 각도들 중에서 최대값을 95도 이하가 되도록 하고, 4 개의 니부 각의 각도들 중에서 쵝소값을 85 도 이상이 되또록 하면, 안테나 페턴의 성능 향상을 기대할 수 있다.

다시 도 49 를 설명한다.
[0329] 그 후, 먀스큭(83)를 제거하면(S109), 안테나 어셈블리 (1000)의 내측 안텨나(200)와 의측 안테나(600)가 형성 된다.
[0330] 한편, 겁촉부 (300)가 형성된다(S111).
일 실시예에서, 기판(400)과 접촉부 (300) 의 기판(330)이 일체로 형성되는 경우에, 상슐한 단계(S103, S105, $\mathrm{S} 107, \mathrm{~S} 111$)에 의해 안테나 어셈블리(1000)의 니측 안테나(200)와 외측 안테나(600), 그러고 접촉부(300)의 패턴돌이 동시에 형성될 수 있다.
[0332] 또 다른 실시예에서, 기판(400)과 접촉부 (300)의 기퐌(330)이 분리되어 형셩되는 경우에, 접혹부(300)의 패턴 들은 안테나 어셈블리(1000)의 내측 안테나(200)와 외측 안테나(600)의 형성 공정과는 별도의 공정에 의해 형 셩될 수 있다.

이후, 연결부(500)가 형성된다(S113). 디앙한 실시예에 따른 연결부(500)의 형성 방법에 관하여는 후술한다. 접촉부 (300)와 연결부(500)가 형성된 기판(400)의 상부에 접착층(700)이 형성된다(S115).
접착층 (700) 의 상부예 자성 기퐌 (100) 이 형성된다 (S117).
[0336] 다음은 접착충(700)에 의해 이격되는 자성 기판(100)푸 안티나 패턴들 사이의 거리에 대헤 또 50 퐈 또 51 을 참고하여 설명한다.

도 50 과 도 51 을 참고하면, 내부 안테나(200)의 내부 코일(230)은 선폭(W1), 선간 간격(S1)을 가지며, 내부 코일(230)은 접차흥 (700)예 의해 자싱 기퐌(100)파 이젹 거리(Ha1)만큼 이격된다. 외부 안테나(600)의 외부
 격 거리(Ha2)딴큼 이격된다. 내부 코일(230)율 자성 기판(100)과 이격하기 위하여 사용되는 접착총과 외부 포 일(630)을 자성 기판 (100) 과 이격하기 위하여 사용되는 접착층이 동일하므로, 이격 거리(Ha1)는 이격 거리 (Ha a 2)와 동일핟 수 있다.
표 1은 외부 안톄나(600)가 NFC 안톄나이고. 외부 안테나 (600) 의 선폭 (W2) 가 400 um 이고, 외부 안테나 (600) 의 선간 간격(\$2)가 200 um 인 경우에, 접착흥 (700)에 의해 이격되는 자성 기판(100)과 외부 안톄나(600) 샹이의 거리(Ha2)에 따른 외분 한테나 (600) 의 NFC 통신 성능을 ENVCo Load modulation 테스트의 결포로서 보여준다.

Page 47 of 1385

IF

W: $400 / 5: 200$ (um)							
Gap (Thick of Ad)		30 um		40 um		50 um	
Resonant freq.		15.79 MHz		15.935 MHz		16.225 MHz	
EMVCo Load modulation	(0,0,0)	29.15 mV	PASS	32.7 mv	PASS	34.58 mV	PASS
	$8.8<X<80$						
	(1,0,0)	12.7 mV	PASS	15.6 mV	PASS	19.2 mV	PASS
	$7.2<X<80$						
	(20,0)	6.4 mV	PASS	8.6 mV	PASS	11.0 mV	PASS
	$56<x<80$						
	(3,0,0)	3.8 mV	FAIL	4.6 mV	PASS	5.4 mV	PASS
	$40<x<80$						

표 1과 표 ㄹㅔㅔㅅㅓ 알 수 있둣이, 선폭의 중가와 선간 간격의 중가는 저항 성분의 갇소로 이어지므르, Q 값의 종 가로 이어지고, 외부 안테나(600)의 성능은 항상될 수 있다.
[0346]
특히, 표 1파 표 2로부터, 외부 안테나(600)의 선포이 400um보다 작고, 외부 안테나(600)의 션간 간격 200um 보다 작으면, 외부 안테나 (600)의 셩능은 이격 거리 (Ha2)에 의한 영향을 많이 받음을 알 수 있다. 외부 안테 나(600)의 선폭이 400um보다 작고, 외부 안베나(600) 의 선간 간격 200um보다 작은 졍우에, 마진을 고려하면,

Page 48 of 1385

이격 거리(Ha2)는 35um 이상인 것이 좋음을 알 수 있다.
[0347] 이처럼, 일반적인 접착총의 두꼐인 10 um 이상의 두꼐를 가지는 접착충 (700)을 사용하므로쌨, 외부 안테나 (600)의 성능 향상을 기대할 수 있다.
[0348] 표 3 은 외부 안테나(600)가 NFC 안톄나이고, 외부 안테나(600)의 선폭(W2)가 400 um 이고, 외부 안테나(600)의 선간 간격(S2)가 200 un 이고, 톄스트 장비와 안테나 어셈불리 (1000) 사이의 상대적 위치 관계가 $(3,0,0)$ 인 경 우에, 접착층 (700)에 의해 이격되는 자성 기판(100)과 외부 안테나(600) 사이의 거리(Ha2)에 따른 외부 안테 나(600)의 NFC 통신 성능을 ENVCO Load modulation 테스트의 결과로셔 보여쭌다.
w 3

W: $400 / \mathrm{S}: 200(\mathrm{um})$									
Gap (Thick. of Ad)		10 um	20 um	30 um	40 um	50 um	60 um	70 um	
Resonant freq. (MHz)	15.0	15.22	15.79	15.935	16.225	16.32	16.51		
Load	$(3,0.0)$	0 mV	1.2 mV	3.8 mV	4.6 mV	5.4 mV	5.5 mV	3.9 mV	
modulation	$4.0<\mathrm{X}<80$	FA.LL	FAIL	FAlL	PASS	PASS	PASS	FAIL-	

[0350] 표 3으로부버,
[0351] 선쪽(W2)이 400 um 이고, 선간 간격(S2)이 200un인 경후에, 이격 거리(Ha2)가 30um보다 작으면, 외부 안테나 (600)의 EMVCO Load modulation 테스트는 통좌되지 못합을 알 수 있다. 따라서, 이격 거리(Ha2)는 30 um 보다 큰 것이 좋율 수 있다.
[0352] 선폭(W2)이 400 um 이고, 선간 간격(S2)이 200 um 인 경우여, 이격 거리(Ha2)가 70um보다 크면, 외부 안테나(60) 0)의 EMVCo Load modulation 테스트는 통과되지 못함을 알 수 있다. 따라서, 이격 거리(Ha2)는 70um보다 작은 것이 좋을 수 있다.
[0353] 선폭(W2)이 400um이고, 선간 간격(S2)이 200um인 곃우에, 이격 거리(Ha2)가 40um보다 크고, 60 um 보다 작으면, 외부 안테나(600)의 EnVCo Load modulation 테스트는 통과될을 앝 수 있다. 따라서, 이격 거리(Ha2)는 40um보 다 크고, 60 um 보다 작은 것이 좋을 수 욌따.
[0354] 픈 4는 외부 안테나(600)가 NFC 안태나이고, 외쿠 안테나(600)의 선폭(W2)가 500 um 이교, 외부 안테나(600) 의 선간 간격 $(\mathrm{S} 2)$ 가 500 um 이고, 톄스트 장비와 안테나 어셈블리 (1000) 사이의 상대적 위치 관게가 $(3,0,0)$ 인 경 우에, 접착층 (700) 에 의해 이격되는 자성 기판 (100) 가 외부 안테나 (600) 사이의 거리 $(\mathrm{Ha} 2)$ 에 따른 외부 안테 나(600)의 NFC 통신 성능율 ENVCo Load modulation 테스트의 결과로서 보여준다.
w

W: $500 /$ S: $500(\mathrm{um})$								
Gap (Thick. of Ad)		10 um	20 um	30 um	40 um	50 um	60 um	70 um
Resonant freq. (MHz)	15.95	16.117	16.37	16.515	16.805	16.91	17.15	
Load modulation	$(3,0.0)$	0 mV	2.9 mV	6.1 mV	6.0 mV	5.9 mV	5.2 mV	3.3 mV
	$4.0<\mathrm{X}<80$	FAIL	FAIL.	PASS	PASS	PASS	PASS	FAIL.

[0356] 선폭(W2)이 500 um 이고, 선간 간격(S 2)이 500 um 인 공우에, 이격 거리(Ha2)가 20um.보다 작으면, 외부 안테나 (600)의 EMVCo Load modulation 테스트는 통과되지 못함을 앝 수 있다. 따라서, 이격 거리(Ha2)는 20un보다 큰 것이 좋을 수 있다.
[0357] 선폭(W2)이 500 um 이고, 선간 간격(S 2)이 500 um 인 경우예, 이격 거리 (Ha2)가 70um보다 크면, 외부 안테나(60 0)의 EMVCo Load modulation 테스트는 통콰되지 못함을 알 수 있다. 따라서, 이격 거리(Ha2)는 70um보다 삭은 것이 좋을 수 있다.

Page 49 of 1385

[0358]
선폭(W2)이 500 um 이고, 선간 간격 (S 2) 이 500 um 인 경우에, 이격 거리 (Ha 2) 가 30 um 보다 그고, 60 um 보다 작으면, 외부 안테나(600)의 EMVCo Load modulation 테스트는 통과될을 알 수 있다. 따라서, 이격 거리(Ha2)는 30um보 다 크고, 60um보다 작은 것이 좋을 수 있다.
[0359] 먼저, 내측 안테나(200)와 외측 안테나(600)가 형싱된 기퐌(400)의 상부예 질연층(531)이 형성된다(S301).
표 3과 표 4포부더, 이격 거리(Ha2)가 35um보다 크고 65um보다 작으면, 위의 두 번의 테스트는 돈두 통과됨을 일 수 있다. 이는 이격 거리 (Ha 2) 가 35 um 보다 크고 65 um 보다 각은 경우여 긍진 주파수를 목표 주퐈수인 16.2 내지 16.3 MHz 의 벋위 내로 두는 것이 용이핲을 의미한다. 즉, 이는, 이격 거리(Ha2)가 소정의 값보다 작으면, 임피딘스 매칭이 옹이하지 않음율 의미한다.

도 53 은 본 발명의 일 실시에에 따른 한테나 어셈블리의 연결분(500)의 제조 방법븨 흐륨도이다.
특히, 도 53은 도 4 와 도 5 에 따른 안테나 어셈블리의 연결부(500)의 제조 방법에 관한 것이다.

절연층 (531) 은 내촉 안테나 (200) 의 외축 단자 (210) 의 일부를 덮지 않고, 제1 서브 연졀눈 (501) 에 해당하는 전 또성 브릿지(520)가 내축 표일(230)과 만나는 부넌을 돞고, 제1 서븐연결부(501)에 해당하는 전또성 브릿지 (520)가 외측 고일(630)과 만나는 부분을 덮을 수 있도록 하는 형상을 가질 수 있다.

또, 질연층 (531)은 내츶 안테나 (200)의 내측 단자(220)의 일부를 덮지 않고, 제2 서브 연결부(502)에 해당하 는 전도성 브릿지 (520)가 내촉 코일 (230)과 만나는 부분을 덮고, 제2 서브 연결부 (502) 에 해당하는 전도성 브 릿지 (520)가 외측 코일(630)과 만나는 부분을 덮을 숟 있도혹 하는 형상을 가질 수 있다.

절연층 (531) 은 외촉 안테나 (600) 의 내촉 단자 (610) 의 일부를 덮지 않그, 제3 서브 연결부 (503)에 해당하는 전 도성 브릿지 (520)가 내측 코일(230)과 만나는 부분을 돞고, 제3 서브 연결부(503)에 해당하는 전도성 브릿지 (520)가 외측 코일(630)과 만나는 부분을 덮율 수 있도록 하는 형상을 가질 수 있도. 쇄되어 (S305) , 제1 서브 브릿지 (521) 가 형성뇐디.
[0371]
절연층(531)은 외측 안테나(600)의 외측 단자(620)의 일부를 덮지 않고, 제4 서브 연졀부(504)에 해당하는 전 포성 브릿지 (520)가 네측 교일(230)과 딴나는 부분을 닾고, 제4 서브 연결부(504)에 해당하는 전또성 브릿지 (520)가 외측 코일(630)과 만나는 부분을 닾을 수 있도록 하는 형상을 가질 수 있다.

일 실시예에서, 절연층 (531) 은 절연 시트일 수 있다. 이 절연 시트는 접칙층 또는 라미네이팅 공정예 의해 내 축 안테나(200)와 외측 안테나(600)가 형성된 기판(400)의 상부에 부착될 수 있다.

또 다른 실시예에서, 절연층 (531)은 도포 후 건조된 젛연 잉크일 수 있다. 이 경이. 니측 안테나(200)와 외측 안테나(600)가 형성된 기판(400)의 상부에 절연충(531)의 형성을 위한 마스크가 부착된다. 여기서, 절연충 (531) 의 형성을 위한 마스크는 내측 안테나(200)의 내측 단자(220), 내측 안테나(200)의 외측 단자(210), 외 측 안테나 (600)의 내측 단자(610)의 적어도 일부를 뎦고, 제1 서브 연결부(501)에 해당하는 전도성 브릿지 (520)가 형성되는 부분을 덮지 읺고, 제2 서브 연결부 (502) 에 해당하는 전도싱 브릿지(520)가 형싱되든 부분 을 덮지 않고, 세3 서브 연결부 (503)에 햐담하는 전도성 브릿지(520)가 형칭되는 부분을 됮지 않도록 하는 모 앙을 가진다. 제 4 서브 인결부 (504) 또한 전도성 브릿지 (520) 예 헤당한다면, 절연층 (531) 의 형성을 워한 마스 즈는 외촉 안톄나(600)의 외축 단자(620)의 적어또 일부를 덮고 제4 저브년결부(504)에 해당하는 전또성 븐 닛지 (520)가 형성되는 부분을 덮지 않도록 하는 모양을 가질 수 있다. 절연층(531)의 형성을 위한 마스크가 부착된 기판 (400) 의 상부에 절연 잉크를 도포하고, 긴조한 후, 해당 마스크룔 제거하면, 절연 잉크예 의한 절 연충 (531) 이 형성될 수 있다.

이후, 절연흥 (531)이 형성된 기판(400)의 상부에 전도성 트릿지(520)의 형성을 위한 마스크가 부착된다 (S303). 선포성 브릿지(520)의 형성을 위한 마스느는 제 1 서보 연결부 (501) 에 해당하는 선또성 브릿지(520)가 형성되는 부분, 제2 서브 연결부(502)에 해당하는 전도성 브릿지(520)가 형성되는 부분, 제3 서브 연결부 (503)에 해당하는 전도성 브릿지(520)가 형성되는 부분, 제4 서브 연결부(504)에 해당하는 전도성 브릿지 (520)가 형성되는 부분율 덮지 읺고, 이들의 주변의 부분을 덮을 수 있다.

전도성 브릿지(520)의 형성을 위한 마스크가 부착된 기판(400) 상부에 전도성 ⽟ㅖ이스트가 소정희 혓수만큼 인

Page 50 of 1385

인쇄 횟수	$\mathrm{L}(\mathrm{uH})$	$\mathrm{R}($ 음 $)$	Q	DCR (온)
1	7.607	1.699	2.833	1.717
3	7.608	1.291	3.706	1.320
5	7.588	1.245	4.102	1.250
6	7.613	1.153	1.277	1.057

[0373] 도 54은 본 발명의 실시예에 따른 전도성 페이스트의 인솨 횟수에 따른 전도성 브릿지의 성능을 보여주는 그 래프이다.

도 54에서 보여지는 바와 같이, 전도성 켸이스트의 인쇄 횟수가 증가할수록, 전도성 브릿지의 저항값은 감소 하고, Q 값은 증가한다. 특히, 도 56 은 도 9 내지 도 11 에 따른 안테나 어센볼리여 연결부(500)의 제조 방법에 관한 것이다. 기판(400) 내에서 연결 단자들(311, 312, 313)의 하부에 비이혈이 형셩둰다(S701). 확장 패턴들 $(541,542,543)$ 의 단자의 상부에 비아홀이 형성던다(5703).
[0390]
특히, 도 54에서 보여지는 바와 같이, 전도성 폐이스트의 인눼 횟수가 3 회보다 적은 겅우, 전도성 폐이스트의 인채 횟수 증가에 따른 저항 값의 감소 또는 Q 값의 증가는 급격하다. 전도성 페이스트의 인홰 횟수가 3 회보 다 큰 경우, 전도싱 뼤이스프의 인쇄 횟수 증가에 따른 저항 값의 감소 또는 Q 값의 증가는 완만하다.

안테나 어셈블리 내의 안테나들의 성능 향상을 위하여, 전도성 브릿지는 3 회 이상의 전도성 페이스트의 인쇄 에 해땅하는 두께를 가질 수 있다.

톡히, 전도성 폐이스트의 인쇄 횟수의 증가는 안데나 어셈블리 (1000) 의 제조 공정의 복잡도의 증가를 이미하 르로, 전도성 브릿지는 3 회의 전도성 피이스트의 인쉐에 해당하는 두께를 가질 수 있다.

더더욱, 전도성 브릿지가 도금예 의혜 형성되는 제2 서브 브릿지(522)를 포함하는 경우에는, 이 제2 서브 브 릿지(522)에 의한 추가적인 저항 값 감소가 기대되므로, 전도성 브릿지는 1 회 이상의 전또성 페이스트의 인쇠 에 해당하는 두께를 가질 수 있다.

제 1 서브 브릿지(521)의 상부를 도금하여, 제2 서브 브릿지(522)가 형성된다(S 307). 이때, 제1 서브 브릿지 (521)의 상부는 구리로 도금될 수 있다.

도 55 는 본 발명의 또 다른 실시예에 따른 안톄나 어셈블리의 연결부 (500) 의 제조 방법의 흐롬도이다.
특히, 도 55 는 도 6 내지 도 8예 따른 안테나 어셈렬리의 연결부 (500) 의 제조 방법에 관한 것이다.
먼저, 기푠(400) 내해서 내측 안테나(200)의 외측 단자(210)의 하부, 내측 안테나(200)의 내측 단자(220)의 하부, 의측 안테나(600)의 내혹 단자(610)의 하부, 외흑 안테나(600)의 외측 단자(620)의 하부에 각각 비아 홀(533)이 형성된다(S501).

비아홀(533)이 형성된 기판(400)의 하부예 전도성 브릿지(520)의 형성을 위한 마스크가 부착된다(S503). 전도 성 브릿지 (520)의 형셩을 위한 마스크는 제 1 서브 연결부(501)에 해당하는 전도성 브릿지(520)가 형성되는 부 분, 제2 서브 연결부(502)에 해당하는 전도성 브릿지(520)가 형성되는 부분, 제3 서브 연결부(503)에 해당하 는 전도성 브릿지(520)가 형성되는 부분, 제4 서브 연결부(504)에 해당하는 전도싱 브릿지(520)가 형성되는 부분을 덮지 않고, 이들의 주변의 부분을 닾을 수 있다.

전도성 브릿지(520)의 형성을 위한 마스크가 부착된 기퐌(400) 상부에 전도성 폐이스트가 소정의 홧수만큼 인 놰되어(\$305), 제1 서브 브릿지(521)가 형성된다. 전도성 폐이스트의 인놰 횟수에 따른 전도성 브릿지의 성능 은 잎저 설명한 바와 같다.

세1 서브 브릿지(521)의 하부를 도금하여(S507), 제2 서브 브릿지(522)가 형성된다. 이때, 제1 서브 브릿지 (521)의 하부는 구리로 도금될 수 있다.

질취선들(411, 412, 413)에 따라 기판(400)이 절취되어 서브 기판들(551, 552, 553)이 각각 형성된다(S705).

Page 51 of 1385

[0391] 접는 선들(421, 422, 423)에 따라 서브 기퐌들(551, 552,553$)$ 이 접혀 기퐌(400)의 하부와 서브 기퐌들(551, $552,553)$ 의 상부가 접촉한다 (5707).
[0392] 연결 단자들 $(311,312,313)$ 의 하부의 비아홀퐈 확장 패턴들 $(541,542,543)$ 의 단지들의 상부의 비아홀에 의 해 연결 단자들 $(311,312,313)$ 과 확장 패턴들 $(541,542,543)$ 의 단자들이 착깍 전기적으로 연결된다(S709). 연결 단자늘 $(311,312,313)$ 과 확장 패던들 $(541,542,543)$ 의 단자들은 비아홀 (533) 에서 제공되는 전도성 비 아의 열압착, 그 전도성 비아 주변에 제공되는 전도성 물질에 의해 전기적으로 연졀될 수 있다.
[0393] 이상에서는 본 받명의 바람직한 실시 예에 대하여 도시하고 설멍하였지만, 본 발명은 상술한 특정의 실시 예 에 한정되지 아니하며, 청구벋위에서 청구하는 본 발명의 요시를 벗어남이 없이 당해 발명이 속하는 기술분야 에서 통장의 지식을 가진 자에 의해 다양한 번형 실시가 가능한 것은 뮬론이고, 이러한 변형 실시들은 본 발 명의 기술적 사상이나 전망으로부터 겨별적으로 이해 되여서는 안될 곳이다.
...\%
We

Page 52 of 1385

क्ष


```
고ᄋ개탸ᄀ허 10-2014-0113205
```

Fex

N 6

Page 54 of 1385

Page 55 of 1385

W\%

\%

Page 56 of 1385

```
고ᄋ개툐ᄀ허 10-2014-0113205
```


Page 57 of 1385

W\%

WとR

Page 58 of 1385

Page 59 of 1385

Fw

Fwb

WWF

were

Evis

W.

1000

1000

Sos

공개톡허 10-2014-0113205

wors

1000
(ancolen
…

Page 64 of 1385

... 『

1000

Page 65 of 1385

区ese

We

wes

wos

1000

We\%

Frealkili	Inductares Setup 1 : Sweep	Resistance Sctup 1: Smeen	Setup 1: Sueep
130.000000	10040, 448682	0.80969	10.012480
131.00000	10021,543951	0,814464	10.029948
132.000000	10019.849417	0.819200	10.043155
133.000000	10017.384376	0.324199	10.057691
134.000000	10015.888436	0.829101	10.071783
135.000000	10014.021426	0.824027	10. 085405
136.000000	10012. 163025	0.888976	10.098561
137.000000	10010.312867	0.840948	10.111262
138.800000	10008, 470002	0.848942	10.123517
139.000000	10006.838764	0.853960	10.135333
140.000000	10004.810388	0.859000	16.146721
141.00000	10002.991358	0.864062	10.157687
142.000000	10001.179585	0.369147	10. 168241
143:000000	9999.374899	0.974254	10.178391
14.4 .000000	9997.577015	0.879383	10.188142
145.00000	9995.785687	0.884534	10.197506
146.000000	9994.000944	0.889706	10.206488
147.000000	0992.2202542	0.894000	10.215097
148.000000	9990.450319	0.000116	$10.22 \% 339$
149.000000	9948, $\mathrm{f82}$ (1)3	0.005352	10.331283
150.000000	9966.923643	0.910610	10.208755
151.000000	9985.169040	0.915889	10.245944
152.000000	9983.419964	0.921189	10.252794
153.000000	9981.676290	0.906509	10.259313
154.000000	9979.937950	0.931850	10.265510
155.000000	9978.204783	0.937212	10.271388
156.00000	9976.476722	0.942594	10.276956
157.000000	9974.753596	0.947896	10.292220
153,000000	0973.035485	0.959418	10.887185
159.000000	9971.321833	0.958660	10.291859
160.000000	8969.613051	0.064321	10.296247

Page 68 of 1385

W. W

Frealktz.	Inductarice Setup 1: Sweep	Fesistance Setup 1 Sweop	Q Setup I: Sweep
130.000000	10375.480101	0.760491	11.053420
131.00000	10373.611592	0.764922	11.072242
132.000000	10371.760883	0.769376	11.090498
133.000000	10369.916781	0.778858	11.108182
134.000000	10368.078998	0.778351	11.185922
135.00000	10366.247102	0.782872	11.141920
135.000000	10364.421100	0.787415	11.157989
137.00000	10362.600844	0.791970	11.173537
135.00000	10360.785333	0.796565	11.188574
139.000000	10358.375155	0.80173	11.203109
140.000000	10357. 189752	0.805802	11.21/153
141.000000	10355.369156	0.810452	11.280713
142000000	10353. 572957	0.815124	11.243801
143.000000	10351.780892	0.819816	11.258422
144.000000	10349,993078	0.824529	11.268591
145.000000	10348.209063	0.829263	11.280309
145.000000	10346.428853	0.834018	11.291589
147.000000	10344.652133	0.838792	11.802441
148.000000	10342878918	0.843587	11.812871
149.00000	10841. 108850	0.848402	11.922886
150.00000	10339.348035	0.853237	11.832499
151.000000	10367. 578231	0.858092	11.341712
152.000000	10835.817245	0.862967	11.850536
153.000000	10394.058946	0.867867	11.354980
154.000000	10332.308299	0.872774	11.267050
155.000000	10830.550019	0.877706	11.374754
156.000000	10328.799305	0.882658	11.882099
157.000000	10327.050748	0.887629	11.888091
158.000000	10325.304351	0.892618	11.395741
159.000000	10323.560143	0.897626	11.402959
160.000000	19321.817935	0.00258	11,409035

$\cdots \operatorname{sen}$

공개탹허 10-2014-0113205
F.

Page 70 of 1385

जेक

जबक

$\cdots \%$

Page 72 of 1385

Fथ\％

w⿻上丨

5%

…

5∞

Page 73 of 1385

5

5 m

Page 74 of 1385

Wos

इॠ

(C)

Page 75 of 1385

Fes

36

$\cdots 6$

5. 『क

Page 78 of 1385

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission-Information Disclosure Stmt	1806	1	180	180
Total in USD (\$) 180				

Electronic Acknowledgement Receipt	
EFS ID:	30367650
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Jeff Lloyd/Megan Kuchenthal
Filer Authorized By:	Jeff Lloyd
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	14-SEP-2017
Filing Date:	29-OCT-2012
Time Stamp:	15:55:00
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	CARD
Payment was successfully received in RAM	$\$ 180$
RAM confirmation Number	091517 INTEFSW15554100
Deposit Account	190065
Authorized User	Megan Kuchenthal
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 37 CFR 1.16 (National application filing, search, and examination fees) 37 CFR 1.17 (Patent application and reexamination processing fees)	

37 CFR 1.19 (Document supply fees) 37 CFR 1.20 (Post Issuance fees) 37 CFR 1.21 (Miscellaneous fees and charges)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		SIDS10.pdf	205447	yes	3
			7119877 ccbdd2aa339817730667098c99e9		
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Transmittal Letter		1	2	
	Information Disclosure Statement (IDS) Form (SB08)		3	3	
Warnings:					
Information:					
2	Foreign Reference	F1.pdf	5982747	no	55
Warnings:					
Information:					
	Other Reference-Patent/App/Search documents	R1.pdf	1132574	no	8
3					
Warnings:					
Information:					
4	Other Reference-Patent/App/Search documents	R2.pdf	1174288	no	8
			$\begin{array}{\|l\|} \hline 922 \mathrm{~d} 288248 \mathrm{~d} 5 \text { ces9fod2523558077bdo16f } \\ \text { O85ea } \end{array}$		
Warnings:					
Information:					
5	Fee Worksheet (SB06)	fee-info.pdf	30726	no	2
Warnings:					
Information:					

Page 82 of 1385

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.
New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

I hereby certify that this correspondence is being electronically filed in the United States Patent and Trademark Office on September 14, 2017.

SUPPLEMENTAL INFORMATION
DISCLOSURE STATEMENT
UNDER 37 C.F.R §§ 1.97 AND 1.98
Examining Group 2836
Patent Application
Docket No. SUN.LGI. 420
Serial No. 13/663,012

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner	$:$	James P. Evans
Art Unit	$:$	2836
Applicants	$:$	Jeong Wook An, Jung Oh Lee, Sung Hyun Leem, Yang Hyun Kim
Serial No.	$:$	$13 / 663,012$
Filed	$:$	October 29, 2012
Conf. No.	$:$	3575
For	$:$	WIRELESS POWER RECEIVER AND METHOD OF
		MANUFACTURING THE SAME

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT
 UNDER 37 C.F.R. $\$ \$ 1.97$ AND 1.98

Sir:
In accordance with 37 C.F.R. § 1.56, the references listed below and on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ are being brought to the attention of the Examiner for consideration in connection with the examination of the patent application identified above. Copies of the cited references are attached.

The undersigned hereby certifies that no item of information contained in this Supplemental Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this Supplemental Information Disclosure Statement was known to any individual designated in 37
C.F.R. 1.56(c) more than three months prior to the filing of this Supplemental Information Disclosure Statement.

This Information Disclosure Statement is being submitted subsequent to the mailing of a Notice of Allowance but prior to payment of the Issue Fee. The fee of $\$ 180.00$ was paid at the time this statement was filed.

It is respectfully requested that the Examiner indicate consideration of the cited references by returning a copy of the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ with initials or other appropriate marks.

Applicants respectfully assert that the substantive provisions of 37 C.F.R. $\S \S 1.56,1.97$, and 1.98 are met by the foregoing statements.

The Commissioner is hereby authorized to charge any fees under 37 C.F.R. $\$ \$ 1.16$ or 1.17 as required by this paper to Deposit Account 19-0065.
Respectfylly submitted,
Jeffeloyd
Patent Attorney
Registration No. 35,589
Phone No.: $352-375-8100$
Fax No.:

Address:	Saliwanchik, Lloyd \& Eisenschenk
	A Professional Association
	P.O. Box 142950
	Gainesville, FL 32614-2950

$\mathrm{JL} / \mathrm{mrk}$
Attachments: Form PTO/SB/08; copies of references cited.

NOTICE OF ALLOWANCE AND FEE(S) DUE

$23557 \quad 7590$ 06/26/2017
SALIWANCHIK, LLOYD \& EISENSCHENK
A PROFESSIONAL ASSOCIATION
PO Box 142950
GAINESVILLE, FL 32614

DATE MAILED: 06/26/2017

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$13 / 663,012$	$10 / 29 / 2012$	Jeong Wook AN	SUN.LGI. 420	

TITLE OF INVENTION: WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	UNDISCOUNTED	$\$ 960$	$\$ 0$	$\$ 960$	$\$ 960$	$09 / 26 / 2017$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that entity status still applies.
If the ENTITY STATUS is the same as shown above, pay the TOTAL FEE(S) DUE shown above.
If the ENTITY STATUS is changed from that shown above, on PART B - FEE(S) TRANSMITTAL, complete section number 5 titled "Change in Entity Status (from status indicated above)".
For purposes of this notice, small entity fees are $1 / 2$ the amount of undiscounted fees, and micro entity fees are $1 / 2$ the amount of small entity fees.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$13 / 663,012$	$10 / 29 / 2012$	Jeong Wook AN	SUN.LGI. 420	

TITLE OF INVENTION: WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME

APPLN. TYPE	ENTITY STATUS	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	UNDISCOUNTED	\$960	\$0	\$960	\$960	09/26/2017
EXAMINER		ART UNIT	CLASS-SUBCLASS			
EVANS, JAMES P		2836	307-104000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \square Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) The names of up to 3 registered patent attorneys or agents OR, alternatively,		$\begin{array}{cc}\text { ys } & 1 \\ \text { a } & 2 \\ \text { to } \\ \text { is } & 3\end{array}$	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent): \quad Individual \square Corporation or other private group entity $\quad \square$ Government

4a. The following fee(s) are submitted:	4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
\square Issue Fee	\square A check is enclosed.
\square Publication Fee (No small entity discount permitted)	\square Payment by credit card. Form PTO-2038 is attached.
\square Advance Order - \# of Copies	\square The director is hereby authorized to charge the required fee(s), any deficiency, or credits any overpayment, to Deposit Account Number (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)	
\square Applicant certifying micro entity status. See 37 CFR 1.29	NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment
\square Applicant asserting small entity status. See 37 CFR 1.27	NOTE: If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status.
\square Applicant changing to regular undiscounted fee status.	NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable.
NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33. See 37 CFR 1.4 for signature requirements and certifications.	
Authorized Signature	Date
Typed or printed name	Registration No.

Page 2 of 3
PTOL-85 Part B (10-13) Approved for use through 10/31/2013.
OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Page 87 of 1385

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
13/663,012	10/29/2012	Jeong Wook AN	SUN.LGI. 420	3575
23557	06/26/2017		EXAMINER	
SALIWANCHIK, LLOYD \& EISENSCHENK			EVANS, JAMES P	
A PROFESSIONAL ASSOCIATION				
PO Box 142950			ART UNIT	PAPER NUMBER
GAINESVILLE, FL 32614			2836	

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(Applications filed on or after May 29, 2000)
The Office has discontinued providing a Patent Term Adjustment (PTA) calculation with the Notice of Allowance.
Section 1(h)(2) of the AIA Technical Corrections Act amended 35 U.S.C. 154(b)(3)(B)(i) to eliminate the requirement that the Office provide a patent term adjustment determination with the notice of allowance. See Revisions to Patent Term Adjustment, 78 Fed. Reg. 19416, 19417 (Apr. 1, 2013). Therefore, the Office is no longer providing an initial patent term adjustment determination with the notice of allowance. The Office will continue to provide a patent term adjustment determination with the Issue Notification Letter that is mailed to applicant approximately three weeks prior to the issue date of the patent, and will include the patent term adjustment on the patent. Any request for reconsideration of the patent term adjustment determination (or reinstatement of patent term adjustment) should follow the process outlined in 37 CFR 1.705.

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

OMB Clearance and PRA Burden Statement for PTOL-85 Part B

The Paperwork Reduction Act (PRA) of 1995 requires Federal agencies to obtain Office of Management and Budget approval before requesting most types of information from the public. When OMB approves an agency request to collect information from the public, OMB (i) provides a valid OMB Control Number and expiration date for the agency to display on the instrument that will be used to collect the information and (ii) requires the agency to inform the public about the OMB Control Number's legal significance in accordance with 5 CFR 1320.5(b).

The information collected by PTOL-85 Part B is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Privacy Act Statement
The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Notice of Allowability	Application No. 13/663,012	Applicant(s) AN ET AL.	
	Examiner JAMES EVANS	Art Unit 2836	AlA(First Inventor to File) Status No

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to Amendments and Arguments of $3 / 27 / 2017$.
\square A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad
2.An election was made by the applicant in response to a restriction requirement set forth during the interview on \qquad ; the restriction requirement and election have been incorporated into this action.
2. \boxtimes The allowed claim(s) is/are $1,3,7,9,11-13,19,21,23,25,30$ and $32-39$. As a result of the allowed claim(s), you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pph/index.jsp or send an inquiry to PPHfeedback@uspto.gov.
3. \boxtimes Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § $119(\mathrm{a})$-(d) or (f).

Certified copies:

a) \boxtimes All
b) Some
*c)None of the:

1. \boxtimes Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad —.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5. \square CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
\square including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6. DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \boxtimes Notice of References Cited (PTO-892)
2. \square Examiner's Amendment/Comment
3. \boxtimes Information Disclosure Statements (PTO/SB/08),
4. \mathbb{Z} Examiner's Statement of Reasons for Allowance Paper No./Mail Date
5. \square Examiner's Comment Regarding Requirement for Deposit of Biological Material
4.Interview Summary (PTO-413), Paper No./Mail Date \qquad _.
/DANIEL CAVALLARI/
Primary Examiner, Art Unit 2836
6. \square Other \qquad .
/JAMES EVANS/
Examiner, Art Unit 2836

DETAILED ACTION

Response to Amendment

1. Arguments and amendments received on $3 / 27 / 2017$ have been received and entered in the case. Cancellation of Claims 6, 22, 24, 26-29 and 31 is acknowledged, along with new claims $33-39$. Claims $2,4-5,8,10,14-18$ and 20 were previously cancelled.

REASONS FOR ALLOWANCE

2. The following is an examiner's statement of reasons for allowance: Claims 1, 3, $7,9,11-13,19,21,23,25,30$ and $32-39$ are allowed based on the amendments of 3/27/2017.

Claim 1 is allowed because there is no prior art available nor obvious motivation to combine elements of the prior art of record to disclose a wireless power receiver comprising: a substrate comprising a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; a coil unit disposed on the substrate, the coil unit comprising a first connection terminal, a second connection terminal, and a coil: and a short-range communication antenna disposed on the substrate and surrounding the coil; wherein the coil is configured to wirelessly receive power, wherein the coil is formed as a conductive pattern on or within the substrate, a conductive line wound at least two times and the conductive pattern has a spiral shape, wherein the first connection terminal is located at one end of the coil and the second connection terminal is located at the other end of the coil, wherein the coil unit overlaps the receiving space in a first direction perpendicular to an upper surface of
the substrate; wherein the connecting unit is disposed in the receiving space and connected to the coil unit, wherein the connecting unit overlaps the receiving space in a second direction parallel to the upper surface of the substrate, and wherein the connecting unit comprises: a third connection terminal connected to the first connection terminal of the coil unit; and a fourth connection terminal connected to the second connection terminal of the coil unit.

Of the earlier cited prior art, Kanno (US 2012/0187767) in view of Waffenschmidt, et al. (US 2013/0069444) discloses a wireless power receiver with the power coil and antenna with a substrate as cited in the original office action, but does not disclose the substrate comprising a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; wherein the connecting unit is disposed in the receiving space and connected to the coil unit, or wherein the connecting unit overlaps the receiving space in a second direction parallel to the upper surface of the substrate.

Of the newly cited IDS prior art, Takanobu (JPH10282232) discloses (e.g., Fig. 4) a wireless receiver with a substrate (e.g., 102.211), a coil unit disposed on the substrate, the coil unit comprising a first connection terminal, a second connection terminal, and a coil (e.g., inner circumference antenna 302, Paragraph [0043]: for transfer of power) and a short-range communication antenna (e.g., periphery antenna 301, Paragraph [0043]: for data communications) disposed on the substrate and surrounding the coil (e.g., as shown in Fig. 4); wherein the coil is configured to wirelessly receive power, wherein the coil is formed as a conductive pattern on or within

Art Unit: 2836
the substrate, a conductive line wound at least two times and the conductive pattern has a spiral shape, wherein the first connection terminal is located at one end of the coil and the second connection terminal is located at the other end of the coil.

Takanobu does not disclose the substrate comprising a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit wherein the connecting unit is disposed in the receiving space and connected to the coil unit, wherein the coil unit overlaps the receiving space in a first direction perpendicular to an upper surface of the substrate; or wherein the connecting unit overlaps the receiving space in a second direction parallel to the upper surface of the substrate.

Therefore the invention is novel and non-obvious.

Claims 3, 7, 9, 11-13, 19, 21, and 25 are allowed because of their dependence on allowable Claim 1.

Claim 23 is allowed because there is no prior art available nor obvious motivation to combine elements of the prior art of record to disclose a wireless power receiver as claimed.

Of the earlier cited prior art, Kanno in view of Waffenschmidt discloses a wireless power receiver with the coil and antenna limitations, with a substrate as cited in the original office action, but does not disclose a substrate comprising a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; wherein the connecting unit is disposed in the receiving space and connected to the coil unit, wherein the connecting unit overlaps the receiving
space in a second direction parallel to the upper surface of the substrate, nor does Kanno in view of Waffenschmidt disclose wherein the connecting unit is disposed in the receiving space and wherein the coil unit is disposed on the connecting unit.

Of the newly cited IDS prior art, Takanobu discloses the same features in Claim 23 that are the same as discussed in claim 1, supra, and do not disclose the same essential features as discussed in claim 1, nor does Takanobu disclose wherein the coil unit is disposed on the connection unit.

Therefore the invention is novel and non-obvious.

Claims 30 and 32-39 are allowed because of their dependence on allowable Claim 23.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JAMES P. EVANS whose telephone number is (571) 270-0639. The examiner can normally be reached on Monday-Friday 8 AM-5pm ET.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jared Fureman can be reached on 571-272-2391. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Examiner interviews are available via telephone, in-person, and video conferencing using a USPTO supplied web-based collaboration tool. To schedule an interview, applicant is encouraged to use the USPTO Automated Interview Request (AIR) at hto/hww.usplogov/nteviewpracice.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see hav/oaitdrect wepogov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-2721000.
/JAMES P EVANS/
Examiner, Art Unit 2836
/DANIEL CAVALLARI/
Primary Examiner, Art Unit 2836

Page 95 of 1385

Notice of References Cited	Application/Control No. $13 / 663,012$	Applicant(s)/Patent Under Reexamination AN ET AL.	
	Examiner JAMES EVANS	Art Unit 2836	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Name	CPC Classification	Us Classification
$*$	A	US-2014/0091758 A1	$04-2014$	Hidaka; Akio	H01F38/14	$320 / 108$
$*$	B	US-2007/0095913 A1	$05-2007$	Takahashi; Isao	G06K7/10336	$235 / 451$
	C	US-				
	D	US-				
	E	US-				
	F	US-				
	G	US-				
	H	US-				
		US-				
	J	US-				
	K	US-				
	L	US-				
	M	US-				

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country	Name	CPC Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	
	\vee	
	W	

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L4	/824	H02J50/\$.cpc. AND (H01 Q\$.cpc. OR H05K\$.cp.)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 15 \\ 13: 01 \end{array}\right\}$
L5	,311	L4 and @pd or @ptad or @prad or @ad or @rlad)<"20120323"	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	ADJ	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 13: 04 \end{aligned}$
L6		L5 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (communicat\$3 or data) NEAR9 (surround $\$ 3$ enclos $\$ 4$ icircl\$3 encircl\$3 outer outermost inner !innermost inside outside) NEAR9 (coil loop winding antenna inductor inductance inductive pattern :conductive)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 15 \\ 13: 06 \end{array}\right.$
L7	, 127	L5 AND (substrate or base or core or "ferrite magnet layer" sheet)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\int_{13: 07}^{2017 / 06 / 15}$
L8	118	L5 AND (substrate or base or core or "ferrite magnet layer" sheet) NOT L6	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 15 \\ 13: 24 \end{array}\right.$
L10	, 193	L5 NOT L8	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 15 \\ 13: 32 \end{array}\right\}$
L11	1995863	(wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4 or COMMUNI CAT\$3 or charg\$3)) OR (COMMUNI CATION ADJ TERMINAL)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2017/06/15

L13	85	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US 20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US 20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US 20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US 20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US 20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US 20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US 20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US 20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US 20070007661-\$ or US-20160118711-\$ or US-20070095913-\$ or US 20140091758-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$ or US-7712672-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326-\$ or JP-2004364199-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$).did.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 13: 43 \end{aligned}$
L15	S118	L5 AND (substrate or base or core or "ferrite magnet layer" sheet "magnetic shield") NOT L6	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\sqrt{2017 / 06 / 15}$
L16	/17285	L11 AND (((coil loop winding antenna inductor inductance inductive pattern conductive or aerial) NEAR5 (communicat $\$ 3$ or data or signal or	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \end{aligned}$	OR	${ }^{\text {ON }}$	$\left\lvert\, \begin{aligned} & 2017 / 06 / 15 \\ & 13: 53 \\ & \end{aligned}\right.$

		ilinformation) NEAR9 (surround\$3 \}enclos\$4 circl\$3 encircl\$3 outer loutermost inner innermost inside \}outside) NEAR9 (coil loop winding Ilantenna inductor inductance inductive (pattern conductive)))	IEPO; JPO; DERWENT; IBM_TDB			
L18	, 12720	L16 AND (substrate or base or core or "ferrite magnet layer" sheet "magnetic shield")	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 13: 55 \end{aligned}$
L35	2933	L16 AND ((substrate or base NOT (based or basis or base ADJ station) or core or "ferrite magnet layer" sheet "magnetic shield") WI TH (space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or cutout or "cut out" or "lay out" or lay-out or "laid out" OR concave or area OR slit))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 08 \end{aligned}$
L45	/179	L35 AND (connect\$3 NEAR7 (overlap\$5 overhang\$3 fit fitt\$3 insert\$3 slid\$3) NEAR5 (space or spacing or hole or area or void or opening or slot or slotted or slit or gap or notch or notched or recess or recessed or shape or shaped or cutout or cutout or "cut out" or concave))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM_TDB	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 40 \end{aligned}$
L48	33	L45 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3 overhang\$3) NEAR5 (space or spacing or area or void or hole or opening or slot or slotted or slit or gap or notch or notched or recess or recessed or shape or shaped or cut-out or cutout or "cut out" OR concave)))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 43 \end{aligned}$
L49	, 2	L48 AND ((307/104).ccls. OR (320/108).ccls. OR (H02J5/005).cpc. OR (H02J7/025).cpc. OR (H02J17/00).cpc. OR (H02J50/\$).cpc. OR (H04B5/0025-0093).cpc. OR (B60L11/182). cpc. OR (B60L11/18291831).cpc. OR (Y02T90/122).cpc. OR (H01F38/14).cpc. OR (H01F2038/143146).cpc. OR (A61B1/00029).cpc. OR (A61N1/3787).cpc.)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 15 \\ 15: 43 \end{array}\right.$
L59	, 4	L48 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (spiral spirally or helix or helically))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 16: 04 \end{aligned}$
L60	, 40	L13 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (spiral spirally or helix or helically))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \end{aligned}$	OR	ON	

			: EPPO ; JPO; DERWENT IBM TDB			
L61	1	JP2008027015	JPO	OR	ON	2017/06/15
L62	85	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US-20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US-20070007661-\$ or US-20160118711-\$ or US-20070095913-\$ or US-20140091758-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$ or US-7712672-\$).did. or (US-3153139\$). did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693\$). did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326-\$ or JP-2004364199-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2017/06/15
L63	202614	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	ON	2017/06/15

			IIBM TDB			
L64	2	L48 AND L63	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$16: 34$
S1	1	"20130249302"	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 10: 41 \end{aligned}$
52	8		$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	1
53	175746	(coil\$1 or winding\$1) WITH (power or lenergy or current)WITH (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 11: 23 \end{aligned}$
54	5375	(substrate or base or core or "ferrite magnet layer") WITH (space or shape or shaped) WITH (connector or "connecting unit") WITH (terminal or lead or "connecting land")	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 11: 34 \end{aligned}$
55	175746	(coil\$1 or winding\$1) WITH (power or lenergy or current)WITH (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")	USPGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 06 \end{aligned}$
S6	5375	(substrate or base or core or "ferrite magnet layer") WITH (space or shape or shaped) WITH (connector or "connecting unit") WITH (terminal or lead or "connecting land")	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 06 \end{aligned}$
S7	158	S6 AND S5	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DRRWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 06 \end{aligned}$
58	398217	coil\$1 or winding\$1) SAME (power or energy or current)SAME(terminal\$1 or electrode\$1 or lead\$1 or "connecting land")	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 23 \end{aligned}$
59	27303	(substrate or base or core or "ferrite Imagnet layer") SAME (space or shape or shaped) SAME (connector or !"connecting unit") SAME (terminal or	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 23 \end{aligned}$

		hlead or "connecting land")	EPP; JPO; DERWENT; IBM TDB			
S10	[1934	S9 SAME 88	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 24 \end{aligned}$
S11	[392	WO adj "2008053599" WO adj "2013174340" EP adj "1870984" WO adj "2012169728" WO adj "2006127829" EP adj "0037921" WO adj "2005034152" WO adj "1992014254" WO adj "2006134712" WO adj "2007007516" WO adj "2007055265" "20030006657" EP adj "2642632" EP adj "2202499" EP adj "2642632" CN adj "1110225" "3634878" "3848208" "20130249302" WO adj "2006047953" CN adj "1151100" WO adj "2013149781" CN adj "103326473" JP adj "2012235630" "5724018" CN adj "100466382" CN adj "101071909" EP adj "2367263" WO adj "2011147451" WO adj "2014183352" EP adj "1487087" WO adj "2004045050" WO adj "2009070705" JP adj "2013138404" WO adj "2004030845" EP adj "2309620" JP adj "2005065018" JP adj "2004023961" JP adj "2010110168" EP adj "2256751" WO adj "2009155030" EP adj "2642591" WO adj "2012015839" EP adj "2814047" JP adj "2004072867" "2091798" WO adj "1993013532" WO adj "2008135507" "3660791" WO adj "2006101049" WO adj "2002046653" WO adj "2007049788" JP adj "2001144642" "3146419" EP adj "1868280" EP adj "1883998" JP adj "2014023281" "3792410" CN adj "201340774" "20060278387" CN adj "1855761" JP adj "2013157917" EP adj "1717967" CN adj "101189692" CN adj "102056328" "3848205" WO adj "2013022255" JP adj "2014027102" EP adj "1821556" "3767102" EP adj "2375531" JP adj "2008017141" WO adj "2005034307" JP adj "2010093386" EP adj "2629361" WO adj "2005030528" CN adj "1941230" "3163840" "3863040"	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; ; DERWENT; IBM_TDB	OR	ON	$\left\{\begin{array}{l} 2015 / 01 / 20 \\ 13: 52 \end{array}\right\}$
S12	299	((substrate or base or core or "ferrite magnet layer")(space or shape or shaped) (connector or "connecting unit") (terminal or lead or "connecting land") or (coil or winding) or power or energy or current or terminal or relectrode) AND S11	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 13: 58 \end{aligned}$
513	3	[EP adj "2642632"	US-PGPUB;	OR	ION	2015/01/20

			UUSPAT USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			14:51
S14	22	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ \%or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ lor US-20080197957-\$ or US-[20090058358-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ bor US-5294749-\$ or US-6876287-\$ or UUS-5175525-\$).did. or (WO-2013120710-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or ! JP-2012235630-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or US-20130249302-\$). did.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 15: 01 \end{aligned}$
S15	22	((substrate or base or core or "ferrite magnet layer")(space or shape or shaped) (connector or "connecting unit") (terminal or lead or "connecting land") or (coil or winding) or power or energy or current or terminal or relectrode) AND S14	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWEN; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 15: 01 \end{aligned}$
S16		"20080164840"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 17: 13 \end{aligned}$
S17	6	"39593692".FMID.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { FPRS } \\ & \text { " } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 17: 15 \end{aligned}$
S18	2	"20120044114"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 17: 26 \end{aligned}$
S19	3	(("Jeong Wook") near2 (AN)).INV.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	$\int_{0}^{2015 / 01 / 21}$
S20	2	(("Jeong Wook") near2 (AN)).INV.	EPO; JPO;	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 54 \end{aligned}$
S21	8	(("Jung Oh") near2 (LEE)).INV.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	$\int_{0}^{2015 / 01 / 21}$
S22	1	(("Jung Oh") near2 (LEE)).INV.	$\begin{aligned} & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 57 \end{aligned}$
S23	3	(("Sung Hyun") near2 (LEEM)).INV.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 58 \end{aligned}$
S24	0	(("Sung Hyun") near2 (LEEM)).INV.	$\begin{aligned} & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	3
S25	3	(("Yang Hyun") near2 (KIM)).INV.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 09: 05 \end{aligned}$
S26	3	(("Yang Hyun") near2 (KIM)).INV.	EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 09: 19 \end{aligned}$

S27	5	"47598569".FMID.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { FPRS } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 23 \\ & 11: 34 \end{aligned}$
S28	24	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$).did. or (WO-2013120710-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$) .did. or (WO-2013065245-\$ or CN-203326731\$).did.	US-PGPUB; USPAT; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 13: 45 \end{aligned}$
S29	2993903	(wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact $\$ 3$ or remote\$2 or ((free or without or lack\$3 or no or less) near2 (contact\$3 or connect\$3)) or (RF or R F or radio\$1frequenc $\$ 3$ or radio frequency) near3 (transmission or network\$3 or LAN or control\$3) or connectionless)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	3
S30	1440492	(receiv\$3 or accept\$3 or obtain\$3 or recover $\$ 3$ or receipt or retriev $\$ 3$ or acquir\$3 or acquisition) near3 (spac\$3 or hole or opening or slot or gap or notch or port)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 07 \end{aligned}$
S31	\% 3326212	(predetermin $\$ 5$ or predefined or set or prescribed or fixed or preselect\$3 or establish\$3 or prestablish\$3 or standard or desired or reference or known or specific\$4 or select\$4 or fixed or defin $\$ 4$ or precis $\$ 3$ or certain or preset or particular) near3 (size or shape or dimension or design or pattern or cutout or configuration or layout)	US-PGPUB; USPAT; USOCR	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 10 \end{aligned}$
S32	2674608	(coil or transmit\$4 or transmission or receiv\$3 or transceiv\$3 or antenna\$2 or transponder) near3 (unit or module or circuit or assembly or device)	US-PGPUB; USPAT; USOCR	ADJ	ON	1
S33	2115289	(connect\$3 or link\$3 or coupl\$3 or join\$3) near3 (terminal or node or lead or electrode or contact)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 22 \end{aligned}$
S34	\% 80414	S29 SAME S30	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 28 \end{aligned}$
S35	,2254	S34 SAME S31	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \end{aligned}$	ADJ	ON	$12015 / 01 / 26$
S36	, 328	S35 SAME S32	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$14: 30$
S37	52	S36 SAME S33	US-PGPUB;	ADJ	ON	2015/01/26

			$\begin{aligned} & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$			14:30
538	133047	S29 SAME S31	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 31 \end{aligned}$
S39	2254	S38 SAME S30	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\sqrt{2015 / 01 / 26}$
S40	5809	S30 near3 531	$\begin{aligned} & \text { USPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 32 \end{aligned}$
S43	27	jp and "2006042519"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 12: 52 \end{aligned}$
S44	0	p and "04-51115"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DREWENT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 35 \end{aligned}$
S45	4911	jp and "rotary transtormer"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWNT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	1
S46	0	jp and "rotary transformer" and "flexible substrate (35)"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 37 \end{aligned}$
547	20	jp and "rotary transformer" and "flexible substrate"	$\begin{aligned} & \text { USTPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWEN; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 37 \end{aligned}$
551	2	4-51115"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DREWNT; TDB; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 42 \end{aligned}$
552	61	"hitachi ferrite" and "rotary transformer"	USPGPUB; USPAT; USCRR; PPRS; EPO; JPO; DERWNT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 49 \end{aligned}$

S53	17	"hitachi ferrite" and "rotary itransformer" and grooves	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2
S57	4554	"satoshi" AND "shinji"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DRMWNT; TDB; } \end{aligned}$	ADJ	ON	$\sqrt{2015 / 01 / 28}$
S58	100	murata AND S57	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM TDB	ADJ	ON	$109: 15$
S59	2	JP2010022098A	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DRWWNT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	10
S60	38	"6008622"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 01 \end{aligned}$
561	1	"6008622" and Norio	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 02 \end{aligned}$
562	1	"17402302".FMID.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { IPRS } \end{aligned}$	OR	ON	12
S63	336	H04B5/0037	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\sqrt{2015 / 01 / 28} 17: 30$
564	42	H04B5/0081	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{array}{\|c} 2015 / 01 / 28 \\ 17: 31 \\ \hline \end{array}$
565	38	H01F4/14	$\begin{aligned} & \text { UsPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 32 \end{aligned}$
S66	1111	H02J17/00	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\left[\begin{array}{l} 2015 / 01 / 28 \\ 17: 55 \end{array}\right.$
567	32971	H02J17/00	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWENT; } \end{aligned}$	OR	ON	$2015 / 01 / 28$
568	6341	H01F41/14	FPRS; EPO; JPO; DERWENT IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 19 \end{aligned}$
S69	20594	H01Q7/00	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO;	OR	ON	$2015 / 01 / 29$ 08:27

Page 106 of 1385

			$\begin{aligned} & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S70	1439	H04B5/0081	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 29 \end{aligned}$
S71	21809	S70 OR S69	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 29 \end{aligned}$
S72	394	S71 and ("rectang\$4" OR "square")	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 38 \end{aligned}$
S73	38	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ lor US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$). did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or UP-2010022098-\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 05 / 19 \\ & 08: 45 \end{aligned}$
S74	18	S73 and spiral	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB TBB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 05 / 19 \\ & 08: 48 \end{aligned}$
S92	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. /29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 16 \end{aligned}$
S93	771	S92 AND ((substrate or base or core or "ferrite magnet layer") AND (space	US-PGPUB; USPAT;	OR	ON	$\left\{\begin{array}{l} 2015 / 08 / 11 \\ 17: 16 \end{array}\right.$

		Uor shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder))	$\begin{aligned} & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$				
S94	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR		ON	$\sqrt{2015 / 08 / 11} 17: 18$
S95	771	S94 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder))	$\begin{aligned} & \hline \text { USPGPPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { IBM TDB } \\ & \hline \end{aligned}$	OR		ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 18 \end{aligned}$
S96	305	```((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S95```	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR		ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 18 \end{aligned}$
S97	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \hline \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR		ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 20 \end{aligned}$
S98	771	S97 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR		ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 20 \end{aligned}$
S99	305	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S98	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR		ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 20 \end{aligned}$
S100	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR		ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 23 \end{aligned}$
S101	771	S100 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna\$2 Or transponder))	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR		ON	\|lat:23

S102	305	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S101	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	ON	2015/08/11
S103	/72	((coil or winding or antenna or \}resonator or "receiving element") WITH conductive WITH (layer or (jpattern)) AND S102	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; } \\ \text { EPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array} . \begin{array}{l} \text { IDAB } \end{array} . \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 23 \end{aligned}$
S104	934	S100 AND ((substrate or base or core lor "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or 3antenna\$2 or transponder))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 29 \end{aligned}$
S105	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 32 \end{aligned}$
S106	, 934	S105 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or lantenna\$2 or transponder))	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 32 \end{aligned}$
S107	,337	(coil\$1 or winding\$1) SAME (power or lenergy or current) SAME (terminal\$1 lor electrode\$1 or lead\$1 or "connecting land")) AND S106	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM-TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 32 \end{aligned}$
S108	38	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ \}or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ \}or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ \}or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ \}or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. 3or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$2015 / 08 / 11$ 17:35

		flor JP-2012191134-\$). did. or (WO-2013065245-\$ or CN-203326731-\$ or JJ-2010022098-\$). did.				
S109	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\sqrt{2015 / 08 / 11}$
S110	934	S109 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna\$2 or transponder))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	3
S111	337	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S110	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 35 \end{aligned}$
S112	0	S111 AND S108	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	1
S113	165	S111 and spiral	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DRMWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 41 \end{aligned}$
S114	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad< "20120719"	US_PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 09 \end{aligned}$
S115	372	S114 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder)) AND ((coil or winding or antenna or resonator or "receiving element") WITH (layer or pattern or PCB or printed))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 09 \end{aligned}$
S116	0	S115 and S108	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 10 \end{aligned}$

			IIBM_TDB			I
S117	389	S114 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder)) AND ((coil or winding or antenna or resonator or "receiving element") WITH (layer or pattern or PCB or printed))		OR	ON	$12015 / 08 / 11$
S118	O	S117 and S108	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$2015 / 08 / 11$
S119	$1 / 136746$	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1. clls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S108) AND @ad<"20120719"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 13 \end{aligned}$
S120	27	S119 and S108	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 14 \end{aligned}$
S121	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-$20140306656-\$$).did. or (US-6008622$\$$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$). did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$). did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$). did.	$\begin{array}{l\|} \hline \text { USPGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PDRS; JPO; } \\ \text { DERWENT } \end{array}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 32 \end{aligned}$
S122	136746	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1. clls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S121) AND @ad<"20120719"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DRRWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 32 \end{aligned}$
S123	27	S122 and S121	US-PGPUB;	OR	ON	/2015/08/12

			UUSPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			[13:32
S124	11	S121 NOT S123	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 32 \end{aligned}$
S125	136730	$\begin{aligned} & \text { (H04B5/0037.cpc. H04B5/0081.cpc. } \\ & \text { H01741/14.cp. 307/104.cls. } \\ & \text { 29/6022.1.ccls. H02J7/02.ipc. } \\ & \text { G06K19/07.ipc. H02J5/00.ipc. } \\ & \text { B60L11//18.ipc. H02J17/00.ipc. } \\ & \text { H04B5/00.ipc.) AND } \\ & \text { @ad< "20120719" } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 46 \end{aligned}$
S126	934	S125 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or lantenna\$2 or transponder))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 46 \end{aligned}$
5127	, 0	S126 and S121	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 46 \end{aligned}$
S128	136730	$\begin{aligned} & \text { (H04B5/0037.cpc. H04B5/0081.cpc. } \\ & \text { H01451/14.cp. 307/104.cls. } \\ & \text { 29/602.1.ccls. H02J7/02.ipc. } \\ & \text { G06K19/07.ipc. H02J5/00.ipc. } \\ & \text { B60L11/18.ipc. H02J17/00.ipc. } \\ & \text { H04B5/00.ipc.) AND } \\ & \text { "20120719" } \end{aligned}$	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 56 \end{aligned}$
S129	389	S128 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder)) AND ((coil or winding or antenna or resonator or "receiving element") WI TH (layer or pattern or PCB or printed))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 56 \end{aligned}$
S130	337	```(coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S126```	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 11 \end{aligned}$
5131	\% 160	S130 and spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	ON	2015/08/12

			IEPO; JPO; DERWENT; IBM_TDB			
S132	165	S130 and spiral	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 13 \end{aligned}$
S133	160	S132 AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 13 \end{aligned}$
S134	5387	((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna or transponder)) AND spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit $\$ 3$ or plat $\$ 3$ or PCB or print $\$ 3$) AND (coil or winding or resonator or antenna) AND (wire\$1 less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 34 \end{aligned}$
S135	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	12
S136	385	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S135) AND S134	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 36 \end{aligned}$
S139	5387	((substrate or base or core or "ferrite ? ?	US-PGPUB; USPAT;	ADJ	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 15: 22 \end{aligned}$

		"connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv\$3 or antenna or transponder)) AND spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or \}antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	$\begin{aligned} & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S140	38	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ lor US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$). did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\sqrt{2015 / 08 / 12}$
S141	, 385	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. \}G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S140) AND S139	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 15: 22 \end{aligned}$
S142	, 253	S141 and ((space or notch or cutout or "cut-out") SAME(connector\|connect\$3))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\sqrt{2015 / 08 / 12} 15: 22$
S144	5387	((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv\$3 or antenna or transponder)) AND spiral AND (pattern $\$ 3$ or etch $\$ 3$ or depos $\$ 3$ or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	2015/08/12
S145	38	(US-20130249302-\$ or US-	US-PGPUB;	OR	ON	2015/08/12

		20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US 20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US 20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ lor US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JJP-2010022098-\$).did.	$\begin{aligned} & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$			16:04			
S146	385	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S145) AND S144	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 16: 04 \end{aligned}$			
S147	253	$\begin{aligned} & \text { S146 and ((space or notch or cutout } \\ & \text { or "cut-out") } \\ & \text { SAME(connector\|connect } \$ 3) \text {) } \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 16: 04 \end{aligned}$			
S148	198	```S147 and ((first near3 (connector\| connect$3	terminal) SAME (second near3 (connector	connect$3	terminal))))```	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	N	16
S149	28	$\begin{aligned} & \text { S147 and ((first ADJ } \\ & \left(\begin{array}{l} \text { connector\| connect } \$ 3 \mid \text { terminal) SAME } \\ \text { (second ADJ } \end{array} \text { (connector\| connect } \$ 3 \mid \text { terminal))) }\right) \end{aligned}$	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OP	ON	1			
S150	1	$\begin{aligned} & \text { S147 and ((first ADJ } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal) SAME } \\ & \text { (second ADJ } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal))) } \\ & \text { AND @ad< "20121029" } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OP	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 17: 02 \end{aligned}$			
S151	\%	$\begin{aligned} & \text { S147 and ((first ADJ } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal) SAME } \\ & \text { (second ADJ } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal))) } \\ & \text { AND @ad<"20121030" } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \end{aligned}$	OR	ON	17:02			

			DERWENT; IBM TDB			
S152	6	$\begin{aligned} & \text { S147 and ((first NEAR2 } \\ & \text { (connector\| connect\$3\| terminal) SAME } \\ & \text { (second NEAR2 } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal))) }) \\ & \text { AND @ad<"20120323" } \end{aligned}$	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 17: 11 \end{aligned}$
S153	30	((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna or transponder)) AND spiral AND (pattern $\$ 3$ or etch $\$ 3$ or depos $\$ 3$ or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	JPO	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 11: 35 \end{aligned}$
S154	11	((substrate or base or core or "ferrite magnet layer") AND (receiv\$3 or transceiv\$3 or antenna or transponder)) AND spiral AND (pattern $\$ 3$ or etch $\$ 3$ or depos $\$ 3$ or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	JPO	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 11: 35 \end{aligned}$
S155	9194	H01F38/14.cpc.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 11: 59 \end{aligned}$
S156	5888	H01F38/14.cpc. and @ad<"20120323"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 12: 04 \end{aligned}$
S157	3164	S156 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna $\$ 2$ or transponder)) AND ((coil or winding or antenna or resonator or "receiving element") WITH (layer or pattern or PCB or printed or etch\$3))	$\begin{array}{\|l\|} \hline \text { USPGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; ; } \\ \text { EPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM_IDB } \end{array}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 12: 05 \end{aligned}$
S158	40	S156 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") WITH (layer or pattern or PCB or ;printed or etch\$3))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 12: 06 \end{aligned}$

			llBM TDB			
S161	477	S156 AND (substrate "PCB" semiconductor silicon) AND (terminal port connector connection) AND (coil\$1 or winding\$1 or resonator or secondary or inductor)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 13: 10 \end{aligned}$
S162	293	S156 AND (substrate "PCB" semiconductor silicon) AND (terminal port connector connection) AND (space or notch or cutout or "cutout")	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 13: 11 \end{aligned}$
S164	30	S156 AND ((substrate "PCB" semiconductor silicon) SAME (space or notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; jPO; } \\ & \text { DERWWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 13: 18 \end{aligned}$
S165	8	["8,092,251"	USPAT	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 28 \end{aligned}$
S166	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$! or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$! or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ \}or US-20130157565-\$ or US-:20140346890-\$ or US-20130106198-\$) or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$) or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$: or US-20130200716-\$ or US-,20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US-\$5294749-\$ or US-6876287-\$ or US 5175525-\$ or US-8922321-\$ or US 88653927-\$ or US-7392013-\$ or US-88092251-\$).did. or (US-3153139- \$) did. or (WO-2013120710-\$ or WO-:2010133995-\$).did. or (JP- :2013157917-\$ or JP-2013138404-\$ or :JP-2012235630-\$ or JP-2006042519-\$! or JP-2012010533-\$ or JP-:2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098(\$).did.	US-PGPUB USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\sqrt{2015 / 08 / 13}$
S167	$\sqrt{5888}$	H01F38/14.cpc. and @ad< "20120323"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBMWENT; } \\ & \text { IBMIDB } \end{aligned}$	ADJ	ON	$\sqrt{2015 / 08 / 13}$

S168	30	S167 AND ((substrate "PCB" semiconductor silicon) SAME (space or notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 34 \end{aligned}$
S169	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US $5572180-\$$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US 8092251-\$).did. or (US-3153139- \$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP- 2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546\$). did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 35 \end{aligned}$
S170	5	S169 AND ((substrate "PCB" semiconductor silicon) SAME (space or notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 35 \end{aligned}$
S171	21496	/713/3??.ccls.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 52 \end{aligned}$
S172	10	S171 AND ((substrate "PCB" semiconductor silicon) SAME (space or notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$12015 / 08 / 13$
S173	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 08: 34 \end{aligned}$

	\}or US-20130157565-\$ or US 20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US 20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US 5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US 8092251-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098\$) .did.				
S174	21 ${ }^{\text {21 }}$: ${ }^{\text {S }} 73$ and flexible	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWEN; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$12015 / 08 / 17$
S175		$\begin{aligned} & \text { USPGPPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; ; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWENT; } \\ & \text { IBM_IDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 09: 46 \end{aligned}$

		slspeed $\$ 3$ or hasten $\$ 3$ or strenghthen $\$ 3$ Ior resilien\$3))							
S176	1	S173 and "modular power transmitting :system"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { SSOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	12			
S177	358681	(coil\| winding) SAME (groove\$1	recess\$2	indentation)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 17 \end{aligned}$	
S178	5890	H01F38/14.cpc. and @ad<"20120323"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	ADJ	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 18 \end{aligned}$			
S179	380	S178 AND (coil\| winding) SAME (groove\$1	recess\$2	indentation)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 18 \end{aligned}$	
S180	180	S178 AND (coil\| winding) SAME (groove\$1	recess\$2	indentation) SAME (core	substrate)	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 19 \end{aligned}$
S181	$\sqrt{94}$	S178 AND (coil\| winding) SAME (groove\$1	indentation) SAME (core	substrate)	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 22 \end{aligned}$	
S182	3191265	(wire\$1less\$2 or wire less or inductive or contact $\$ 1$ less $\$ 2$ or contact less or Inon contact $\$ 3$ or remote\$2 or ((free lor without or lack $\$ 3$ or no or less) Inear2 (contact\$3 or connect\$3)) or (RF or R F or radio\$ 1 frequenc $\$ 3$ or Iradio frequency) near3 (transmission for network $\$ 3$ or LAN or control\$3) or connectionless)	USPGPUB; USPAT; USOCR	ADJ	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}$			
S183	1498071	(receiv\$3 or accept\$3 or obtain\$3 or recover\$3 or receipt or retriev\$3 or acquir\$3 or acquisition) near3 (spac\$3 or hole or opening or slot or gap or notch or port)	$\begin{aligned} & \text { USPGPPB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}$			
S184	3523990	(predetermin\$5 or predefined or set or prescribed or fixed or preselect\$3 or establish $\$ 3$ or prestablish\$3 or	US-PGPUB; USPAT; USOCR	ADJ	ON	2015/10/13			

		Ilstandard or desired or reference or known or specific\$4 or select $\$ 4$ or fixed or defin $\$ 4$ or precis $\$ 3$ or certain or preset or particular) near3 (size or shape or dimension or design or pattern or cutout or configuration or layout)				
S185	2858589	(coil or transmit\$4 or transmission or receiv\$3 or transceiv\$3 or antenna\$2 or transponder) near3 (unit or module or circuit or assembly or device)	$\begin{aligned} & \text { USPGPBB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}$
S186	7009	S182 AND S183 AND S184 and S185 and spiral	$\begin{aligned} & \text { US-PGPUB;: } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRSS; } \\ & \text { EPE; JPO; ; } \\ & \text { DERWNT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}$
S187	2229	S186 AND ((substrate or base or core or "ferrite magnet layer") WITH (layer or pattern or PCB or printed or etch\$3))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 19 \end{aligned}$
S188	437	S186 AND ((substrate or base or core or "ferrite magnet layer") WITH (conduct\$3 NEAR2 (layer or pattern or PCB or printed or etch\$3)))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWNT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 21 \end{aligned}$
S189	171977	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. H01F38/ 14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRSS; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 23 \end{aligned}$
S190	15	S188 AND S189	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 23 \end{aligned}$
S191	17651	S182 AND S183 AND S184 and S185 and (radial (helically or helix) Near3 (flat planar))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 37 \end{aligned}$
S192	881	S191 AND ((substrate or base or core or "ferrite magnet layer") WITH (conduct\$3 NEAR2 (layer or pattern or PCB or printed or etch\$3)))	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 38 \end{aligned}$
S193	\%	S192 AND S189	US-PGPUB;	OR	ON	2015/10/13

			GUSPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			教09:39
S194	25	(coil WITH overlap\$4 NEAR4 connect\$3) AND S189	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	2015/10/13
S195	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US 5294749-\$ or US-6876287-\$ or US 5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US 8092251-\$).did. or (US-3153139- \$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP- 2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2015/10/13 13:43
S196	15	S195 and overlap\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM TDB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 13: 43 \end{aligned}$
S197	1	["20120248981"	US-PGPUB	OR	ON	$\sqrt{2015 / 10 / 13}$
S198	1657391	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact\$3 or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio frequency)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 10: 30 \end{aligned}$
S202	51	(US-20130249302-\$ or US- $20050046573-\$$ or US-20080122570-\$	US-PGPUB; USPAT;	OR	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 10: 52 \end{aligned}$

		\}or US-20080154178-\$ or US 20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US 20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US 20130106198-\$ or US-20140306656-\$ \}or US-20140175895-\$ or US 20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US 8947189-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$) .did. or (JP-2013157917\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ \}or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	$\begin{aligned} & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$			
S207	546319	S198 AND ((receiv\$3 or accept\$3 or receipt or retriev $\$ 3$ or acquir $\$ 3$ or acquisition or fit\$4 or accommodat\$3) near3 (spac\$3 or hole or opening or slot\$3 or gap or notch\$2 or port or area or shaped or cut-out or configured or size or shape or dimension or design or pattern or cutout or "cut out" or configuration or (ayout)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	2016/01/16
S208	1657391	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact $\$ 3$ or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio frequency)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\left\{\begin{array}{l} 2016 / 01 / 16 \\ 11: 11 \end{array}\right.$
S209	1657391	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact\$3 or (RF or RF or radio $\$ 1$ frequenc $\$ 3$ or radio (frequency)))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	2016/01/16
S210	1130997	S209 AND (space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	$\left\{\begin{array}{l} 2016 / 01 / 16 \\ 11: 17 \end{array}\right.$
S211	723742	(coil inductor inductance winding antenna) WITH (conductive	US-PGPUB; USPAT;	OR	ON	2016/01/16 $11: 28$

		conducting copper etch $\$ 3$ PCB printed layer pattern)	$\begin{aligned} & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$			
5212	, 32986	S211 SAME ((terminal electrode end terminus "connecting land" end) NEAR3 (second another other))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 11: 36 \end{aligned}$
S213	7222	S212 AND S210	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	1
S214	723868	(coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2016/01/19
S215	32995	$\begin{aligned} & \text { S214 SAME ((terminal electrode end } \\ & \text { terminus "connecting land" end) } \\ & \text { NEAR3 (second another other)) } \end{aligned}$	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 22 \end{aligned}$
S216	35	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US 8922321-\$ or US-8653927-\$ or US 7392013-\$ or US-8092251-\$ or US-8947189-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$).did. or (JP-2013157917\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	2016/01/19

		[JP-2010022098-\$). did.				
S217	6	S215 AND S216	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 22 \end{aligned}$
S218	1658038	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or Itarget) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less $\$ 2$ or loontact less or non contact $\$ 3$ or (RF lor RF or radio\$1frequenc $\$ 3$ or radio Ifrequency)))	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	ADJ	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 55 \end{aligned}$
S219	287249	S218 AND ((space or spacing or hole or opening or slot or slotted or gap or motch or notched or recess or recessed lor shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or lconfigured or configuration or layout lor "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or base))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 55 \end{aligned}$
S220	3911	S215 AND S219	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\sqrt{2016 / 01 / 19}$
S221	253	S220 AND (third ADJ2 (terminal electrode end terminus "connecting land" end contact pin)) AND (fourth ADJ2 (terminal electrode end terminus "connecting land" end contact pin))	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 10: 15 \end{aligned}$
S222	167	S221 and @ad<"20120323"	USSPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 10: 23 \end{aligned}$
S223	33	S221 AND ((coil loop inductor : inductance pattern conductive) NEAR3 ((overlap\$4))	USPGPUB USPAT: USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 13: 51 \end{aligned}$
S224	62	S221 AND ((coil loop inductor : inductance pattern conductive) NEAR3 !(cross\$3 across))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 14: 23 \end{aligned}$
S225	\%	S221 AND ((coil loop inductor	\|US-PGPUB;	OR	ON	2016/01/19

		linductance pattern conductive) NEAR3 (cross\$3 across)) NEAR3 (space gap)	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			15:13
S226	3	S221 AND ((coil loop inductor inductance pattern conductive) NEAR3 (overlap\$4)) NEAR3 (space gap)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2016 / 01 / 19 \\ 15: 18 \end{array}\right.$
5227	, 2	$\begin{aligned} & \text { S221 AND ((coil loop inductor } \\ & \text { inductance pattern conductive) NEAR3 } \\ & \text { (top)) NEAR3 (substrate) } \end{aligned}$	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2016/01/19
S228	57	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US-20130271328-\$). did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	1
5237	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 20 \\ & 09: 57 \end{aligned}$

S240	1	S238 AND Kato	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBMWENT; } \end{aligned}$	OR	ON	\|3016/01/20
S241	17		US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 15: 59 \\ & \end{aligned}$
S242	74	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US-20130271328-\$).did. or (US-20110127070-\$ or US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US-20070254432\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US 5294749-\$ or US-6876287-\$ or US 5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US 8092251-\$ or US-8947189-\$ or US 4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380- \$). did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2016/05/06 16:01
S243	1713929	(receiv\$3 or reception or pick-up or	US-PGPUB;	ADJ	ON	/ 2016/05/06

		"pickup or "pick up" or secondary or 3target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact $\$ 3$ or (RF or RF or radio $\$ 1$ frequenc $\$ 3$ or radio (frequency))	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB			-16:03
S245	1	WO ADJ "2012150293"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 16 \end{aligned}$
S246	0	"2005116874".PN.	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 21 \end{aligned}$
S247	1	"20050116874".PN.	US-PGPUB;	OR	ON	$\left\lvert\, \begin{aligned} & 2016 / 05 / 06 \\ & 16: 21 \\ & \hline \end{aligned}\right.$
S248	1	"20140091640".pn.	US-PGPUB	ADJ	ON	$\sqrt{2016 / 05 / 06} 16: 35$
S249	76	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ lor US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ lor US-20090115681-\$ or US-20130271328-\$).did. or (US-20110127070-\$ or US-20050072595-\$ lor US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ lor US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ or US-20140091640-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US 8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US 7259672-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$).did. or (JP-2013157917\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$). did.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	3

S250	47	S249 AND S243	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM_TDB		ON	$\left\{\begin{array}{l} 2016 / 05 / 06 \\ 16: 36 \end{array}\right.$
S251	31	S250 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or base))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 39 \end{aligned}$
S252	723389	((wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\sqrt{2016 / 05 / 07}$
S253	2787	S252 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern)) SAME ((terminal electrode end terminus "connecting land" end) NEAR3 (second 2nd another other))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$17: 19$
S254	901	S253 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch notched)) OR (connect\$3 coupl\$3) WITH (under beneath below))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { LBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 17: 50 \end{aligned}$
S255	\%648	S254 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or PCB or base))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	$\sqrt{A D J}$	${ }^{\circ}$	$\begin{aligned} & 2016 / 05 / 07 \\ & 17: 51 \end{aligned}$
S256	,245	S255 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch $\$ 3$ PCB printed layer pattern)) WITH ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	${ }^{\text {ON }}$	$=12016 / 05 / 07$
S257	45	S256 AND ((coil inductor inductance winding antenna) WITH (third 3rd) ADJ2 (terminal electrode end terminus "connecting land" end) WITH (fourth 4th) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBMETDT; } \end{aligned}$	OR	ON	2016/05/07

S258	349	S252 AND ((coil inductor inductance winding antenna) WITH (conductive lconducting copper etch\$3 PCB printed layer pattern) NEAR5 substrate) SAME ! ((terminal electrode end terminus "connecting land" end) NEAR3 (second [2nd another other))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	1
S259	92	S258 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch (notched)) OR (connect\$3 coupl\$3) WITH (under beneath below))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2016/05/07
S260	, 272	S252 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern) NEAR5 substrate) SAME ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 19: 00 \end{aligned}$
S261	27	S260 AND ((coil inductor inductance winding antenna) WITH (third 3rd) ADJ2 (terminal electrode end terminus "connecting land" end) WITH (fourth 4th) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2016/05/07
S262	11	S261 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch notched)) OR (connect\$3 coupl\$3) WITH (under beneath below))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	- ${ }^{2016 / 05 / 07}$
S263	3	S261 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch notched)) OR (connect $\$ 3$ coupl\$3) WITH (under beneath below)) AND ((wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4) NEAR3 (receiv\$3 reception))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 19: 04 \end{aligned}$
S288	\%1	(US-20050046573-\$ or US 20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US 20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$, or US-20150109167-\$ or US	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\sqrt{2016 / 10 / 04}$

		:20090115681-\$ or US-20130271328-\$ or US-20110127070-\$ or US : $20050072595-\$$).did. or (US-20120049986-\$ or US-20120019075-\$ i or US-20050116874-\$ or US 20140091614-\$ or US-20110285494-\$ Hor US-20080266748-\$ or US 20080200210-\$ or US-20100308187-\$ \}or US-20070020932-\$ or US , $20080129439-\$$ or US-20060166506-\$! or US-20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ \}or US-20070254432-\$ or US 20140091640-\$ or US-20030141590-\$ \}or US-20070007661-\$ or US : $20160118711-\$$ or US-20070095913\$).did. or (US-6008622-\$ or US :5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-:5175525-\$ or US-8922321-\$ or US-:8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US 4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-:2013120710-\$ or WO-2010133995-\$! or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693-\$).did. or (JP: $2013157917-\$$ or JP-2013138404-\$ or !JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or \}JP-2007159326-\$).did. or (WO-!2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293(\$). did.				
S290	1	S288 and kuk.inv.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 09: 32 \end{aligned}$
S292	81	(US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US 20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US 20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US 20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US-20110127070-\$ or US 20050072595-\$).did. or (US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US 20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US 20070279002-\$ or US-20110267248-\$	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$2016 / 10 / 04$ 13:42

		: : $o r$ US-20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US-20070007661-\$ or US-20160118711-\$ or US-20070095913\$).did. or (US-6008622-\$ or US 5572180 - $\$$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US 5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693-\$) .did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$).did.				
S293	1	\%"20130249302"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 13: 46 \end{aligned}$
S294	38	S292 and ((coil WITH conductive OR conducting) OR etch\$3 OR plating or deposed or deposition or depositing)	US-PGPUB:	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 13: 57 \end{aligned}$
S295	41	S292 and (coil WITH conductive OR conducting or conductor)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 14: 03 \end{aligned}$
S296	41	S292 and ((coil or inductor) WITH conductive OR conducting or conductor)	USPGPUB;	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 14: 04 \end{aligned}$
S297	1	"20130106198".pn.	US-PGPUB;	OR	ON	$\begin{aligned} & 2016 / 12 / 08 \\ & 12: 10 \end{aligned}$
S298	82	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US 20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US 20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US 20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US 20100289341-\$ or US-20070279002-\$	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2016/12/08 12:11

		bor US-20110267248-\$ or US 20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US-20070007661-\$ or US-20160118711-\$ or US-20070095913-\$).did. or (US-6008622-\$ or US-5572180-\$ or US 3936931-\$ or US-5294749-\$ or US 6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US 8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293-\$).did.				
S300	\%1967455	((wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4 or COMMUNI CAT\$3)) OR (COMMUNICATION ADJ TERMINAL)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPOBCD; } \\ & \text { IBMENT; TDB } \end{aligned}$	OR	ON	
S301	9420	S300 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (communicat\$3 or data) NEAR9 (surround\$3 enclos\$4 circl\$3 encircl\$3 outer outermost inner innermost inside outside) NEAR9 (coil loop winding antenna inductor inductance inductive pattern conductive)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM_TBB } \end{aligned}$	OR	ON	
S302	\}	!"7712672".pn.	US-PGPUB;	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 16: 29 \end{aligned}$
S303	84	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US 20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US 20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US 20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US 20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US-20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US 20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US	US-PGPUB; USPAT; USOCR; IFPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & \text { 2017/06/14 } \\ & 16: 31 \\ & \\ & \\ & \\ & \end{aligned}$

		20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US 20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US 20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US-20070007661-\$ or US-20160118711-\$ or US-20070095913-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US 8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US 7259672-\$ or US-7712672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693-\$) .did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP- 2012191134-\$ or JP-2011109546-\$ or JP-2007159326-\$ or JP-2004364199\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293-\$).did.				
S304	6	S303 and S301	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	O	ON	$\sqrt{2017 / 06 / 14}$
S305	0	S301 and (connect\$3) NEAR5 (overlap\$5 overhang\$3) NEAR5 (space area) WITH (parallel\$2) NEAR10 (substrate)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 16: 47 \end{aligned}$
S306	, 223	S301 and (parallel\$2) NEAR10 (substrate)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\int_{16: 49}^{2017 / 06 / 14}$
S307	3	S304 and (parallel\$2 plane planar or coplanar or co-planar OR (structure or size or shape) NEAR5 ("same" correspond $\$ 3$ or identical or identically) WITH (substrate))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	2017/06/14 17:11
S310	1994403	((wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4 or COMMUNI CAT\$3 or charg\$3)) OR (COMMUNICATION ADJ TERMINAL)	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	-18	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 18: 43 \end{aligned}$

S311	\%85	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ \}or US-20080154178-\$ or US 20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US 20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US 20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US 20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US 20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US 20150109167-\$ or US-20090115681-\$ \}or US-20130271328-\$ or US-20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ \}or US-20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US 20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US 20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US 20100289341-\$ or US-20070279002-\$ \}or US-20110267248-\$ or US-20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US 20070007661-\$ or US-20160118711-\$ or US-20070095913-\$ or US 20140091758-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ bor US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$ or UUS-7712672-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693\$) .did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326-\$ or JP-2004364199-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 14 \\ 18: 52 \end{array}\right.$
S312	494304	S310 and (parallel\$2 plane planar or coplanar or co-planar OR (structure or size or shape) NEAR5 ("same" correspond\$3 or identical\$2) WITH substrate)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	/2017/06/14
5313	${ }^{2108}$	S310 and (connect\$3) AND (overlap\$5 loverhang\$3) AND (receiv\$3 ADJ (space area))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \end{aligned}$	OR	${ }^{\mathrm{ON}}$	疗

			$\begin{aligned} & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
5314	30	S311 AND S313	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 18: 59 \end{aligned}$
5315	,	"20130249302"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2017 / 06 / 14 \\ 19: 06 \end{array}\right.$
5316	, 1	S315 AND (overlap\$5 overhang\$3 connect\$3 ADJ10 under ADJ2 coil)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 19: 09 \end{aligned}$
5317	54	S311 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out" OR concave) WITH (substrate or board or printed-circuit-board or PCB or base or (sheet))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	2017/06/14
5318	5	$\begin{aligned} & \text { S310 and (connect\$3) AND } \\ & \text { (connect\$3 ADJ10 under ADJ2 coil) } \\ & \text { AND (receiv\$3 ADJ (space area)) } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { LBM TDB } \end{aligned}$	OR	ON	$\sqrt{2017 / 06 / 14} 19: 38 ~=$
5319	S	S317 and (connect\$3 NEAR7 (overlap\$5 overhang\$3) NEAR5 (space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out" OR concave) OR connect\$3 ADJ10 under ADJ2 coil)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 19: 44 \end{aligned}$
5321	\%2	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ \}or US-20140226293-\$ or US	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 08: 00 \end{aligned}$

		:20150109167-\$ or US-20090115681-\$ \} or US-20130271328-\$ or US: $20110127070-\$$).did. or (US-20050072595-\$ or US-20120049986-\$ \} O US-20120019075-\$ or US 20050116874-\$ or US-20140091614-\$ \}or US-20110285494-\$ or US 20080266748-\$ or US-20080200210-\$ ilor US-20100308187-\$ or US , $20070020932-\$$ or US-20080129439-\$ \} \} US US-20060166506-\$ or US-20100289341-\$ or US-20070279002-\$! lor US-20110267248-\$ or US 20070254432-\$ or US-20140091640-\$ \}or US-20030141590-\$ or US 20070007661-\$ or US-20160118711-\$! 30 US-20070095913-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-:3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-:8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US 8947189-\$ or US-4947180-\$ or US 7259672-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or :GB-981380-\$ or WO-2012008693(\$).did. or (JP-2013157917-\$ or JP-\$2013138404-\$ or JP-2012235630-\$ or JJP-2006042519-\$ or JP-2012010533-\$ औ \}or JP-2012191134-\$ or JP-:2011109546-\$ or JP-2007159326\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293-\$) .did.				
S322	85	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US 20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US 20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US 20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US 20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US 20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ or US-20140091640-\$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { DERSWE; } \end{aligned}$	OR	ON	$2017 / 06 / 15$ 08:00

		Gor US-20030141590-\$ or US 20070007661-\$ or US-20160118711-\$ or US-20070095913-\$ or US 20140091758-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$ or US-7712672-\$).did. or (US-3153139\$) .did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP- 2011109546-\$ or JP-2007159326-\$ or JP-2004364199-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$).did.				
S323	3	S322 NOT S321	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\left[\begin{array}{l} 2017 / 06 / 15 \\ 08: 00 \end{array}\right.$

6/ 15/2017 4:38:25 PM C:\Users\ jevans2\ Documents\EAST\Workspaces\13663012.wsp

EAST Search History

EAST Search History (Interference)

Ref	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L50	\|023012	((wire\$1less\$2 or wire ADJ less or inductive or contact $\$ 1$ less $\$ 2$ or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4 or COMMUNI CAT\$3 or charg\$3)) OR (COMMUNICATION ADJ TERMINAL)	US"PGPUB; USPAT	OR	ON	$\sqrt{2017 / 06 / 15}$
L51	$\sqrt{2681}$	L50 AND ((coil loop winding antenna inductor inductance inductive pattern conductive or aerial) NEAR5 (communicat $\$ 3$ or data or signal or information) NEAR9 (surround $\$ 3$ enclos $\$ 4$ circl\$3 encircl\$3 outer outermost inner innermost inside outside) NEAR9 (coil loop winding antenna inductor inductance inductive pattern conductive))). clm.	USPPGPUB; USPAT	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 48 \end{aligned}$
L52		"Term Removed" or "Term Removed"	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 49 \end{aligned}$
L53		L52 and L51	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 49 \end{aligned}$
L54		L51 AND ((substrate or base NOT (based or basis or base ADJ station) or core or "ferrite magnet layer" sheet "magnetic shield") WITH (space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or cutout or "cut out" or "lay out" or lay-out or "laid out" OR Concave or area OR slit)). Clm .	USPGPUB; USPAT	OR	ON	2017/06/15
L55	3	L54 AND (connect\$3 NEAR7 (overlap\$5 overhang $\$ 3$ fit fitt\$3 insert\$3 slid\$3) NEAR5 (space or spacing or hole or area or void or opening or slot or slotted or slit or gap or notch or notched or recess or recessed or shape or shaped or cut-out or cutout or "cut out" or concave)).clm.	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2017 / 06 / 15 \\ & 15: 52 \end{aligned}$
L56		L55 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3 overhang $\$ 3$) NEAR5 (space or spacing or area or void or hole or opening or slot or slotted or slit or gap or notch or notched or recess or recessed or shape or shaped or cut-out or cutout or "cut out" OR concave))). clm.	USPGPUB; USPAT	OR	ON	2017/06/15
L58	3	L56 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (spiral spirally or helix	USPGPUB; USPAT	OR	ON	$\int_{16: 03}^{2017 / 06 / 15}$

		Hor helically)). clm .				
L65	23010	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.)	USPGPUB; USPAT	OR	ON	$\sqrt{2017 / 06 / 15}$
L66	0	L56 AND L65	USPGPUB; USPAT	OR	ON	$\sqrt{2017 / 06 / 15}$
S229	104681	(coil inductor inductance winding antenna loop) WITH (conductive conducting copper etch $\$ 3$ PCB printed layer pattern)) clm.	USPGPUB; USPAT	OR	ON	$12016 / 01 / 19$
S230	21955	S229 AND ((terminal electrode end terminus "connecting land" end) NEAR3 (second another other). .clm.	$\begin{aligned} & \text { USG- } \\ & \text { PSPAB } \\ & \hline \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 16: 11 \end{aligned}$
S231	4812	S230 AND (receiv\$3 or reception or pickup or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact $\$ 3$ or (RF or RF or radio\$1frequenc\$3 or radio Ifrequency))). cim.	USPUB	OR	ON	$\sqrt{2016 / 01 / 19}$
S232	1227	S231 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or base)).clm.	USPGPUB; USPAT	ADJ	ON	16
S233	35	S232 AND (third ADJ2 (terminal electrode end terminus "connecting land" end contact pin)) AND (fourth ADJ2 (terminal electrode end terminus "connecting land" end contact pin)). clm.	USGPBB:	OR	ON	$\left\{\begin{array}{l} 2016 / 01 / 19 \\ 16: 20 \end{array}\right.$
S234	0	S233 AND ((coil loop inductor inductance pattern conductive) NEAR3 (overlap\$4) NEAR3 (space gap notch notched)). clm.	USGPB	OR	ON	16
S235	0	S233 AND ((coil loop inductor inductance pattern conductive) NEAR3 (cross\$3 across)) NEAR3 (space gap notch). clm.	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 16: 43 \end{aligned}$
S236	0	S233 AND ((coil loop inductor inductance pattern conductive) NEAR3 (top)) NEAR3 (substrate)). Ilm .	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 16: 46 \end{aligned}$
S264	107183	(wire\$1less\$2 or wire ADJ less or inductive or contact $\$ 1$ less $\$ 2$ or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission Itransmit\$4)).clm.	USPGPUB; USPAT	OR	ON	$\left\lvert\, \begin{aligned} & 2016 / 05 / 07 \\ & 18: 56 \end{aligned}\right.$
S265	23	S264 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch $\$ 3$ PCB printed layer pattern) NEAR5 substrate) SAME ((second 2nd)ADJ2 (terminal electrode end terminus "connecting land" end)).clm.	USPGPUB; USPAT	OR	ON	$12016 / 05 / 07$
S266		S265 AND ((coil inductor inductance	US-	OR	ON	2016/05/07

		bwinding antenna) WITH (third 3rd) ADJ2 (terminal electrode end terminus "connecting land" end) WITH (fourth 4th) ADJ2 (terminal electrode end terminus "connecting land" end)).clm.	IPGPUB; USPAT			19:06
S267	[1	"20130249302"		OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 19: 07 \end{aligned}$
S268	31	S264 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern) WI TH substrate) SAME ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" (end)). clm.	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 19: 08 \end{aligned}$
S269	335	S264 AND (((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed (layer pattern) WITH substrate)).clm.		OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 19: 10 \end{aligned}$
S270	66	S269 AND ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" end)) .clm.	USPGPUB; USPAT	OR	ON	1
S271	3 9	S270 AND ((fourth 4th) ADJ2 (terminal electrode end terminus "connecting land" (end)). clm.	USPGPUB; USPAT	OR	ON	$12016 / 05 / 07$
S272	66	S270 AND ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" (end)). clm.	USPPGPUB; USPAT	OR	ON	$\left\{\begin{array}{l} 2016 / 05 / 07 \\ 19: 12 \end{array}\right.$
S273	/104	S269 AND ((space or spacing or hole or opening or slot or slotted or gap or notch $\$ 2$ or recess $\$ 2$ or shape\$2 or cut-out or design or designed or pattern\$2 or cutout or "cut out" or configured or configuration or layout or "lay out" or layout or "laid out") WITH (substrate or board or printed-circuit-board or PCB or base) WITH (connect\$3 coupl\$3)).clm.		OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 19: 23 \end{aligned}$
S274	3	S273 AND ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" end) AND (fourth 4th) ADJ2 (terminal electrode end terminus "connecting land" (end)). clm.	USPGPUB; USPAT	OR	ON	1
S291	,	"Term Removed"	USPGPUB	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 09: 21 \end{aligned}$
S299	,	"Term Removed"	USPPGPUB	OR	ON	$\sqrt{2016 / 12 / 08}$
S308	["Term Removed"	USPGPUB	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 15: 29 \end{aligned}$
S309	[1	"Term Removed"	USPGPPUB	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 16: 31 \end{aligned}$
S320	, 1	"Term Removed"	USPGPUB	OR	ON	$\begin{aligned} & 2017 / 06 / 14 \\ & 18: 52 \end{aligned}$

6/ 15/2017 4:38:42 PM
 C:\Users\ jevans2\ Documents\EAST\Workspaces\13663012.wsp

PTO/SB/08A (08-03)
Approved for use through 07/31/2006. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449A/PTO				Complete if Known	
				Application Number	13/663,012
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Filing Date	October 29, 2012
				First Named Inventor	Jeong Wook An
				Art Unit	2836
				Examiner Name	
Sheet	1	of	1	Attorney Docket Number	SUN.LGI. 420

FOREIGN PATENT DOCUMENTS							
Examiner Initials ${ }^{+}$	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$		In Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines Where Relevant Passages or Relevant Figures Appear	T^{6}
		Country Code ${ }^{3}$	Number ${ }^{4}-$ Kind $^{\text {Codes }}{ }^{5}$ (fif known)				
	F1		2001027687-A	01-30-2001	ISHIKAWAJIMA HARIMA HEAVY IND	ALL	

Examiner Signature	$/ J A M E S$ P EVANS/	Date Considered	$06 / 14 / 2017$

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kind Codes of USPTO Patent Documents at www.uspto gov or MPEP901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard T.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. Applicant is to place a check mark here if English language Translation is attached
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 . Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

CPC- SEARCHED		
Symbol	Date	Examiner
H04B5/0037	$1 / 29 / 2015$	JPE
H04B5/0081	$1 / 29 / 2015$	JPE
H01F41/14	$1 / 29 / 2015$	JPE
H01F38/14	$8 / 13 / 2015$	JPE
Re-searched all symbols above	$1 / 19 / 2016$	JPE
Re-searched all symbols above	$5 / 7 / 2016$	JPE
Reviewed against new art	$12 / 8 / 2016$	JPE
Reviewed all above against amended claims	$6 / 15 / 2017$	JPE

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner
307	104	$1 / 29 / 2015$	JPE
713	300	$8 / 13 / 2015$	JPE
Re-searched all above	Re-searched all subclasses above	$1 / 19 / 2016$	JPE
Re-searched all classes above	Re-searched all subclasses above	$5 / 7 / 2016$	JPE

SEARCH NOTES		
Search Notes	Date	Examiner
Inventor Search	$1 / 21 / 2015$	JPE
Keyword search	$1 / 20 / 2015$	JPE
IP.com search	$1 / 20 / 2015$	JPE
and all docs cited in European search report	$1 / 20 / 2015$	JPE
Search with SSE (Michael Obinna)	$1 / 26 / 2015$	JPE

SEARCH NOTES		
Search Notes	Date	Examiner
Consulted Jared Fureman (SPE)	1/29/2015	JPE
Consulted Primary Dan Cavallari	8/13/2015	JPE
Consulted Primary Alex Gilman in Connectors	8/13/2015	JPE
Consulted Primary Carlos Amaya	8/14/2015	JPE
Consulted Primary Bob Deberadinis	8/17/2015	JPE
Searched amended claims	1/19/2016	JPE
Consulted Primary Ken Wells	1/19/2016	JPE
Added IDS docs, reviewed them, and performed augmented searches	5/7/2016	JPE
Consulted Primary Ken Wells	5/7/2016	JPE
Consulted Primary John Kim and SPE Jared Fureman	10/5/2016	JPE
Search Amended Claims with and without search classes	6/13/2017	JPE
Consulted Primary Dan Cavallari re: Allowance	6/15/2017	JPE

INTERFERENCE SEARCH

US Class/ CPC Symbol	US Subclass / CPC Group	Date	Examiner
H04B	$5 / 0037$	$1 / 19 / 2016$	JPE
Re-searched above	Re-searched above	$5 / 7 / 2016$	JPE
H04B	$5 / 0037$ and many other classes See EAST history	$6 / 15 / 2017$	JPE

JAMES P EVANS/	
Examiner.Art Unit 2836	

Issue Classification	Application/Control No. 13663012	Applicant(s)/Patent Under Reexamination AN ET AL.
	Examiner JAMES P EVANS	Art Unit 2836

CPC					
Symbol				Type	Version
H02J	50	\#	10	F	2016-02-01
Y10T	29	»	4902	A	2015-01-15
B60L	11	»	182	I	2013-01-01
G06K	19	"	0723	1	2013-01-01
H02J	5	»	005	1	2013-01-01
H02J	7	".	025	1	2013-01-01
H01F	41	/	14	1	2013-01-01
H04B	5	\%	0037	1	2013-01-01
H04B	5	乞	0081	1	2013-01-01
Y02T	90	»	122	A	2013-01-01
H02J	17				
,	00	I	2013-01-01		
Y02T	10	\#.	7005	A	2013-01-01
Y02T	90	".	16	A	2013-01-01
Y02T	90	,	14	A	2013-01-01
Y02T	10	4.	7072	A	2013-01-01
H02J	50	".	12	1	2016-02-01
H01F	38	"	14	1	2013-01-01
H04W	4	/	008	A	2013-01-01

/JAMES P EVANS/ Examiner.Art Unit 2836 (Assistant Examiner)	6/15/2017 (Date)	Total Claims Allowed:20	
/DANIEL CAVALLARI/ Primary Examiner.Art Unit 2836 (Primary Examiner)	06/16/2017 (Date)	O.G. Print Claim(s) 1	O.G. Print Figure 11

Issue Classification	Application/Control No. 13663012	Applicant(s)/Patent Under Reexamination AN ET AL.
	Examiner JAMES P EVANS	Art Unit 2836

US ORIGINAL CLASSIFICATION					INTERNATIONAL CLASSIFICATION										
CLASS		SUBCLASS			CLAIMED							NON-CLAIMED			
						н	0		4	B	5/00 (2006.01.01)				
CROSS REFERENCE(S)						H	0		2	」	50/10				
						H	0		2	J	50/12				
CLASS	SUBCLASS (ONE SUBCLASS PER BLOCK)														

/JAMES P EVANS/ Examiner.Art Unit 2836 (Assistant Examiner)	$6 / 15 / 2017$	(Date)

Issue Classification	Application/Control No. 13663012	Applicant(s)/Patent Under Reexamination AN ET AL.
	Examiner JAMES P EVANS	Art Unit 2836

\square	Claims renumbered in the same order as presented by applicant							\square	CPA		\square T.D.	$\square \quad \mathrm{R}$		R.1.47	
Final	Original														
1	1	-	17	14	33										
-	2	-	18	15	34										
2	3	8	19	16	35										
-	4	-	20	17	36										
-	5	9	21	18	37										
-	6	-	22	19	38										
3	7	12	23	20	39										
-	8	-	24												
4	9	10	25												
-	10	-	26												
5	11	-	27												
6	12	-	28												
7	13	-	29												
-	14	11	30												
-	15	-	31												
-	16	13	32												

/JAMES P EVANS/ Examiner.Art Unit 2836 (Assistant Examiner)	$6 / 15 / 2017$	(Date)

PTO/SB/08A (08-03) Approved for use through 07/31/2006. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB
control number.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)			Art Unit	2836	
	Examiner Name	James P. Evans			
Sheet	1	of	1	Attorney Docket Number	SUN.LGI.420

U.S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number - Kind Code known)			
	U1	2007/0095913-A1	05-03-2007	Takahashi et al.	ALL

FOREIGN PATENT DOCUMENTS						
	$\begin{aligned} & \text { Citi } \\ & \text { No. } \end{aligned}$	Foreign Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	$\mathrm{T}^{\text {3 }}$
		Country Code ${ }^{3}$ - Number 4 - Kind Code ${ }^{5}$ (ff known)				
	F1	JP-2004364199-A	12-24-2004	Sony Corp.	ALL	
	F2	JP-H10282232-A	10-23-1998	Toshiba Corp.	ALL	

NON PATENT LITERATURE DOCUMENTS							
Examiner (nitials*	Cite No. ${ }^{1}$	Include name of the author (in CAPITAL LETTERS), title of the article, (when appropriate), , itile of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T^{2}				
	R1	Office Action dated February 14,2017 in Japanese Application No. 2015501586.					

Examiner Signature	JAMES P EVANS/	Date Considered	$06 / 14 / 2017$
*EXAMiNER: Inital if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance			

${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English language Translation is attached
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission-Information Disclosure Stmt	1806	1	180	180
Total in USD (\$) 180				

Electronic Acknowledgement Receipt	
EFS ID:	29344180
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Jeff Lloyd/Seneca Miller
Filer Authorized By:	Jeff Lloyd
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	30-MAY-2017
Filing Date:	29-OCT-2012
Time Stamp:	16:42:29
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	DA
Payment was successfully received in RAM	$\$ 180$
RAM confirmation Number	053117 INTEFSW00004132190065
Deposit Account	190065
Authorized User	Seneca Miller
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 37 CFR 1.16 (National application filing, search, and examination fees) 37 CFR 1.17 (Patent application and reexamination processing fees)	

37 CFR 1.19 (Document supply fees) 37 CFR 1.20 (Post Issuance fees) 37 CFR 1.21 (Miscellaneous fees and charges)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Fee Worksheet (SB06)	fee-info.pdf		no	2
Warnings:					
Information:					
Total Files Size (in bytes): 30621					
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

PTO/SB/08A (08-03)
Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449A/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT				Complete if Known	
				Application Number	13/663,012
				Filing Date	October 29, 2012
				First Named Inventor	Jeong Wook An
				Art Unit	2836
				Examiner Name	
Sheet	1	of	1	Attorney Docket Number	SUN.LGI. 420

FOREIGN PATENT DOCUMENTS							
Examine Initials*	$\begin{gathered} \text { Cite } \\ \text { No. } \end{gathered}$		In Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines. Where Relevant Passages or Relevant Figures Appear	T^{6}
		Country Code ${ }^{3}$	Number ${ }^{4}-$ Kind $^{\text {Code }}{ }^{5}$ (ff known)				
	F1		2001027687-A	01-30-2001	ISHIKAWAJIMA HARIMA HEAVY IND	ALL	

Examiner		Date Signature	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kind Codes of USPTO Patent Documents at www.uspto.gov or MPEP901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard T.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA $22313-1450$. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Espacenet
Biblographic data: $3 P 2001027687(A)=2001-01-30$

VENT PIPE BELLOWS-INSPECTNG APPARATUS

Inventor(s):	KOBAYASHI SHUNJI (KOBAYASHI SHUNJI)
Applicant(s):	ISHKKAWAJIMA HARIMA HEAVY IND \pm (ISHIKAWAJIMA HARIMA HEAVY IND COLTD)
Classification:	- intemational:G21C17/003; G21C9/004; (PC1-7): G21C17/003 G21C9/004 - cooperative: Y02E30/40
Application number:	JP1999020091419990714 Global Dossier

Priority number JP19990200914 19990714
(s):

Abstract of JP2001027687 (A)

PROBLEM TOBE SOLVED: TO Inspect a ven pipe bellows of a reactor from the side of an imer face in a smple operation. SOUUTON: in the vent pipe bellows-inspectiry apparatus, an inspection unl $13 a$ for inspecting a front bely part of a belows, an inspection unt 130 for inspecting a ndge pat, an inspection unit 13 c for inspecting a rear belly part and an inspection umit 130 for inspecting a valley part are arranged in accordance with an interval of the bellows for absorbing a relative movement of a vent pipe and a suppression chamber. The inspection units $13 a, 136$ and 130 enable high trestes 18 with CCD cameras 17 set to leading ends to stand up and lie down. The inspection unt 130 has a low fixed treste 21 having a COD camera 17 set to aleading end part Each of the inspection units $13 \mathrm{a}, 13 \mathrm{~b}, 13 \mathrm{c}$ and 13 d is moved in a longitudinal drection of the vent pipe by a movement operation mechanism 14.

（57）【要笱】

 でわ雨㵋から点检できるようにする。

 て，ベロース O 前期腹部を点橫する点检ユニット13a と，山部を点检享る点检スーット13bと，後惻渡部を
 ニット13dを配列子。点㛟てニット13a，13 b，13cは，先端にCCDカメタ17を取り时けた背丈 O 膏い架台 1.8 を起供可能に有产る。点愌エニット1 3dは，先端部にCCD力メラ17を取り付けた前丈の低い国定か架当21を有する。各点检ユニット13a， $13 \mathrm{~b}, 13 \mathrm{c}, 13 \mathrm{dz}$ ，移動操作機構14によりベ ント管か長手方面に沿わせて移䔣きせる。

Page 157 of 1385

【特許請求の範园】
〔請求項1】 厚子紬敕納容器の下部に一端を取り付け たベント管の他轜部をペントノズルを涌してサプレッシ

続すると共に，該外管の偶端をベント管の外周面に接合 して，ベント管の外周面とベントノズルの内周面とか間 の隙間をシールシせまようにしてあり，目る上記か口ー

 きる大きさとした複数の交持ブロックをカイドレールに治い榡動できるようにし，談各支葑ブロック毎に楽台を
发腹部点検エニットとベローズ山部点檢コニットとべロ －大容部点検又ニットとを別々に棤成して，各点检々ニ

支持ブロックに起伏可能とし，更に，上記各点榆エニッ トを同時に前進後退をせる移動操作機構定諎えて構成家有することを特微とするベント管べローズ占点検装置。
楽台を起伏させる機棈として，操存ロッドを各支持グロ
架台の基端部に暞勳自をに買通己せて，各架台学操作口

 に，上註操作ロッド上の笑栄部と係合し得品スブライン

頂1記載のバント管ベロース点検装惪。
【請求項3】腹部点渙エニットと山部点橹さニットの
 ルを各支持ブロックに費通させると共に各点檢マニット・
 イドレールを中心に回献して傾動できるようにし，目

貴通部に，上記为イド溝に傹合させるようにした突起を有する構或とした請求頂1記載めべント管べローズ点検偪置。
【請求項4】各点裣コニットの支持ブロックを一体化 させた謮求項1，2又63記載のベント管ベローズ点検㙓置。

100011
納まる原子䀦格納容器心あけるベント管ベローズ点換装置に関するものてある。

100021
形原子师（BWE）によけるMARK－J型と呼じれる

力容鄙（RPV）3を支持を世，該原干珂圧力容器3及 びRFVペデスタル2を眲り囲せ上うに原子归格納容器

容器4の下部周込部の建屋内に，環状かサブレッション チャンバ5在設置し，且つ原子悷格納容器4の下部の周
 レッションチャンバちに対応きをて取り付けたベントノ
 ベント管6とベントノメ゙ル7もをシールして上記原子际格納容器4とザソ゚レッションボャンバ5をを接続するよ ほにしている。
【0003】上記バント管6とバントノズル7とか関棌 は，图6政び図7（イ）（口）に示す如く，原子标格納容器4に一端を取り付けて内部に連通をせたベット管6

 L．日ツ謗ベント管6の基端則となるサプレッションチ
 リングのにて補強をれた蛇腹形周かベローズ10を組み込んで伸縮できるうにし目のベローズ10をカバー 1 1世覆のた構成をしてある多管8を同しかに配置して，険外管8の一端を溶接にてベント管6の多側面に图定す ふと共に，該外管8か他緛側（けクレッションデャンバ 5側）をベントノズル7の先溒部（上端部）に溶接する ことにより，バント管60外周間とベントノズル70内

 チャング5との間の相対変值をベローズ10により吸取 させるようにしてある。
100041上記ベローズ10は，たとえで，周方間に 2分割をれたもの家溶接して一体化するようにしてあ り，そのため，图7（口）に示す如く轌方向を長きとす る継手部12か形成出れることになる。
 ことから，サプレッションチャンバ5内めプールスによ
面に付着することがあり，その付着量が多くなると局部電池作届でくローズ10れ孔食現象が生じる可能性があ り，そot ゆ，上記べロース10わわ面を清掃したり，点㭥したりする必要力あり，特に，辰手䋛手部12を点换まることは重要索頂の一つとなっている。〔0006】

（3）開2001－27687（P2001－27687A）

そバントノズル7との間か袙間Sは，通常，50ma程度

 84号公報々提案きれているもの方晾る方，この清綅装置家店用したとしても，ベローズ10の山部の内面部分 を周方向にしか点検することができず，ベワース10わ谷部実腹部の内面を含めて兵手方向に点検を行うことは できない。したがって，ごれませは，ベロース10か長手維手部 12 そ内面側から点検することは行われたている かった。
100071そこで，本発明は，ベロースの長手綖手部
 の内罒側から容易に行シこと方せをるようなベント管が ローズ点険装置を提供しようとするものである。
10008）

 たベント管の他端部家ベントノズルを通してサグレッシ

続をると共に，該外管の他蝡家ベント管め外周面に接合 して，ベント管の外周面とベントノズルの内周面との間 の脜間をシールさせるようにしてるり，目った記バロー ズの長手䋛ま部を，該べローズ○全咎にかたり点椶する
 きる大きさとした複数の支持グロックをかイドレールに
立てくその先端にCCD力メラを职り时けでるご口… ズ複部点検コニットとベローズ山部点検コニットとベロ
 ットを上記バローズの蛇腹間䧣に合わせて配列し，且の と記腹部点愌ユニットと！部点検ユニットの各架台を各支持ブロックに起优可能とし，更に，上記各点检上ニッ下を同時に前進後退させる移動操作機構を構えた構成と す。
100091ベロースの点手継手部を点检する場合は，

俟せせて行くようにさる。この際，バローズの谷部を洋過させる瑒合は，背丈の高い架台は横倒しさせるよりく し，虺渦䋨，起立きせるようになる。これたより，各C CD方メラによってベローズの腹部，山部，谷部を㬴次揭像することがきるる。
 の架台を起伏きなる機搆として，操作口ットを各支持づ

びる窢条部き設け，一方，上記各架台の懆作ロット蕒通部に，も記操作ロッドトの突栄部と係合し得るスプライ
 ない部分で各架台ず制伏せをる上うにする機咸をした場合は，バローズの頉域て操作口ッドを9 0° 酉転をせる と，室多部と又ブライン溝とか係合により架省を横例し できるかな谷部を適過させることがても，ベローズかな

 しきれる。
【0011】更を，腹部点检のニッットと山部点检のニッツ
 レーリを各支持ブロックに貫通きせると共に各点㯒をニ ットの客架台の墓端部に槢䙲自在に貫通させて，各架台 をガイドレールを中心に回転しで顅䡃できるようにし，日の，該がイドリールか外表置部に，ペロースか蛇腹闆
長手方同へ一連に設け，一方，上記各架台のガイ Kレー ル貫通部に，上記ガイド溝に係合させるようにした第起 を有する構成とした場合も，支持ブロックの移動に伴い
域て自衉的に起伏させられることになる。
10012】更に又，各点檢2ニットの支持グロックを一体化きせ大構成とまることによって，構造のより単練化を园ることがでる。
【0013〕
【発明の実施の形態】以下，本要明の実䞄の形態を図通 を参照して說明をる。
 の形感を示すもので，图6政じ図7（イ）（口）に示
 けたバント管60体端部きバントノメ゙ルてを通しくサプ

管8の一端を上記ベントノズル7の先端何に接続主ると共に，該外管8の他端をベント管60外周面に接合し て，ベント管6の外周面とベントノズん7の内周面とか間の䑸間Sをシールさせるよりにして高る構成にあすける上記ぐローズ10の長手䁛手部12を，三記隙間らに挿入して内面側から点検するためのベント管ベローズ点愌素㯰しとする。
形かのぐローズ10の前楜腹部10aを点㭥するためか点檢コニット13aと，U部10bを点橹するためか点
 の点鮬コニット 13 c と，谷部 10 d 点栭するための

機措14空楊えている。
 c， 13 d 0 うち，点检エニット13a，13b，13
 13cについては，图3（イ）（口）に詳細を示ず如 く，䡃間Sに交艮きせて横向きに配した直力体状の支持 ブロッタ150—端部に，上面加ら側西に至る杨り欠き溝16を設けて，該勿り欠き溝16に，先蜋にCODh

 つ上記スリー一蟿19の長手力問一端億にねしりコイム

 と共に，まじりコイルばる20か他端部を，架舀18の前復面に億合させて，ねじりコイルばね20の作用で架台18に常時湖佒力か行与されるようにしてある。又，
四份時で位相がずれるようにした滴数本のスプライン溝 19aが設けである。
100171な抽，上記点検ワニット13a．13cの架台18柱，起立時にCCDグメラ17ガロース10 か蕧部10a，100円面に近接するような高き（長
き）として方り，且つ腹部 10 a ， 10 c を撮像す呂た めに，それぞつ反射ミラー29が袁備されている。又，
占給コニット13bo架台18は，起立時にCCD力x ラ17ガベローズ10の以部10b内面に近搒するよう な高き（長き）として晾る。一方，点愌コニット13d は，ベローズ10の容部10d内面家CCD力メワ17
 150 －端部上に固定設置して㘯り，更に，支持グロッ ク150ー端部における上記スり一再䩗 19 を同軠心缐上の值置に，単なる貫道孔又はスプライン溝かあい入り ーブ䡛力設椁て旁る。
100181上記移動操作機機14は，ベントリズル7
 したカイドレール22とスクリューロッド23亡操作ロ
 3a，13b，13c．13dの支持ブロック15に，
 せると共に，スクリューロッド23を貫涌蛙合きせ，更
 5．26に固定し，スクリューロッド23と楊作ロッド 240 雨端部は前後の文持フレーム25，26に国転自在に支持ざさ，スクリエーロッド23を後端めハンドリ 270 操作で回軣きなることにより，各点柍みニット1 3a，13b，13c，13dがカイレール22に潅 のて移動できるよたしてある。又，1記操作ロット2 4 \＆，上記スリーブ軸 19 と共に架合18を起伏きせる機構家形かするようにしてあって，ベローズ10と対度

 フ蟿190スグライン溝19aと突条部24aとか傜合

 てある。
【0019】ベローズ100長手絆手部12を点愌ず为場哈交，各点鮴みニット13a，13b，13c，13

捙入して，支持フレーム26側部分がバントノエ゙ル7か？
 230 四輅操作で各点検ユ…ット13a，13b，13
 くようにするが，この場合，点检口ニット13a，13
 こ溝19aと操有ロッド240典系部24aとが䧛合し ていたいときに，るどワコイルばる200作男て楅何き
 ット13dの架台21は背丈が低いため，ベローズ10
 ができ。
 のスリーブ軸19のスブライン溝19aと，Vバー28
位相話すんているように設定してかくと，たとえば，先頭の点愌コニット13aがローズ10の端部施置に到着したときに，スリーク輒190スプライン溝19aは
 が停止させられてしますことになる。とこで，このとき に，トバー28家横问きに制して操作ロッド24 30 －回韩させるようになると。㘝3（口）に示す如く，上記スリーブ輠190スプライン溝19aと操作ロット2
 ッド23を回輠きせると，スリーフ軘19か突条部24
 －2100容部10dと干溇することなく前准を再開字 そことができる。したがって，点険コニット13aが开要量前撨した後，レがー28を立てて操作ロッド24を 90° 回転せせると，図3（イ）红示す如く，架台18 はすしりコイルばむ20に抗し起立させられてベローズ
 で，CCDカメラ17によりベローズ10の最初の内異凹部の前捫㬴部10aを内面側から撮像广ることができ范。
100211更に，上記のように，先頭の点検マニット
先㽬効ら2番目の点模ユニット13もなべローズ100端部值荎に釗着しているが，同漛にそれ以上前准移韧で

Page 160 of 1385

（5）開2001－27687（P2001－27687A）

作ロッド24を90＂回軘させるようになる。こもによ り，2番目か点愌ュニット13bのスリーブ軸190ス プソイン溝19aと操作ロッド240笑案部24a0位
 と，スり一グ蟿19方突䈠部24aに乗り移ることによ

 ット13aの桀台18がヘローズ10の端から2番Eo

 られることになる。これにより，先端の点検エニット1 3aのCCDカメラ17によって，ベローズ10の端か
 できると同時に，2番目O点梭エニット1360COD カメラ17によッて，ベローズ10の最初か内則四部の

100221このようを噯作を順次繰り返きことによ

 13a，13b，13c， $13 \mathrm{docCD力x} 717 \mathrm{c}$
 を点模することができる。
 の長方可の2固所に組为付け的れているため，サプレ ッションチャンが 5 則のペローズ100点榆が終てした
 することになるが，この場合，点相てーツト13a，1 3b，13c侍，解谯に伴い，操作口ッド240突条部 24 a から突紈かない部かに乗り移きことになり，又
 ロイルばするのの作用で架台 18 か横倒しされることに なるので，二点鎮線で示すように，各点橹コニット13 a，13b．13c及ぜ13dは雨阴のベローズ10間
 ニット13a，13b。13c及び13 dが原子炻格納容器 4 則のヘローズ10の位置に到着した後は，上述し さ操作を同楼を操作を行らことにより，原子根格納容器
 することができる。
100241このようた。本発明でる，点検䛾置しを，

 が容膓である。又，点唉コーット13a，13b，13
横制れまるようにしてあるため，ベント管6の下側に聥

く，陭間S内を支障なく適過できるので，点検作業を短時間にて行うことができる。

 めの門の機構例を示ずきのである。
【0026］すながち，図1 f至图3（1）（口）に示 した突施の形態におけ禺觉条部24aを有する操作口ッ ド24に代えて，克持ワレー－－25，26間にロッド状 の傊動橾作用がイドレール29を固定克持させて，該方 イドレ…ル29を，各架台180スリーブ軸19に鷘動自在に貫通きせ，旦の該が1ビレール290外表面部

部の䫀載では直線状に延じるようにしただイド溝30
を，長手方向に沿い，連に設け，－－方，架台 18 測かス
 ようにした半球試の如を突起19bな䛵けて，築起19 bががイド溝30に沿わされることにより架台 18 が起伏きなられるようにした構咸としてある。との他を図1
亦る。
 はは，スクリェーロッド230回䡛繰作で各点細コニッ

 9 b が刀゙イドレール291相のガイド溝30の直線状部分 に沿わるれるので，各架台18は鹤优姜勢に維持きれた
 ローズ100頜域に到着すると，上記㥅起19bがガイ ト溝300波形部分に治わされることから，架台18
 て実線で示字如く目動的に起立させられ，ベローズ10

 に示した突施の形意の場合よりも，ベローズ10の专手綝手部12の点䋡作業をより間単に行うことができる。 100281なわ，本発明は上記実施の形態にのみ限定 されるもかではたく，たとえば，支持ブロック15に設
 ガイドレールの本数は任意に拱定し得票こと，国3
（1）（口）におけるのじりコイルばき20に代えて，
 と，又，これらばるを用いることなく架台か自䡃なん るよりにしてもよいこと，更に，各点愌マニット13 a，13b，13c． 13 d の間隔离全く調整音る必要 のないときには，各支持プロッタ15を一体化すること

Page 161 of 1385

図呂ようにしてもよいこと，その他本発呮の要旨を覎覞
产る。
［0029］
 －－ズ点检装惪によえば，原子炬格納容器の下部に一端を取り付けたヘント营の他端部をベントノズルを活しでサ
口ーズを組め达んな外管め一蝡を上記べントノズルの先端㓫に接続すると共に，該外管の他端きベント管か外周面に接合して，ベント管の外周面とベントノズりの内周面とか間の㮦間をシールさをるようにしてあり，目の上記ベローズの屋手継手部を，該べロースの全長にわたり
 を適迵できる大きさとした牚数の支持ブロックを方イド レールに沿い移動できるようにし，該各支持ブロック毎
 るベワーズ渡部点检コニットとベローズ山部点檢コニッ

 し，且つ上記腹部点絻ュニットと山部点检コニットの各架者を各支持 $7 \square ッ ク$ 起伏可能をし，更に，上記各点
 た構慮としてあるので，ベント管とベントノズりとの間

部った間に沿るせて移動きせることができ，目のベロー ズか答部を適過きせるときにな腹部点檢コニットと山部
 ら，ベローズの長手練手部をゆ面側から簡単に点愌るる ことができ，又，撙部点検コニットと山部点検コニット の架台を起伏させる機構として，橾作口ットを各支持ブ ロックに回㮦白存に貫通きせると共に各点雏コニットの
 ロッドを中心に回転して偵陲できるようにし，目の該譟

部に，上記操乍口ッド上の築条部と倸合し得るスク゚ライ こ溝をそれそれ設け，绠に，上記操作口ットの策条部の
 のとすることにより，スタリューロットと操作ロットか
 の架台を容易に倒优きせることができ，更に，腹部点祝 コニットと山部点検コニットの架台を起伏させる機猜と して，頵動操作男かガイドレールを各支持ブロックに貫
白存に貫通きせて，各架台をガイドレールを中心に回新 して䫗動できるようにし，且つ，該かイドレールの外表
波形し形成したカイド溝を長子方向へ－漸に設け，－－
 に绿合㟟せるようにした笂起を有する構成としたものと することにより，スクリューロッドの回転操作かみで楽台を到伏きせることができてより有利となり，雨に又，各点梚エニットの文持フロックを一体化させを講或とす ることによって，楎造のより単繦化を図叁ことができ ふ，等か德れた效罡を発揮する。【四面の筬単な說明！

【図2】本発旧のベント管べローズ点検装置で点検して いるときか将態を而ち㯕格側面困である。
【四3】本発明のバント管ベロース点椮装置にがかる前
台の起立将態を示吉一部切断背面区，（口）蝶架台の到

【図4】本発明の害施か他の形態を示ずもので，（イ）

示を概栘園でする。
 である。
［图7］图60B部を捬大して示すもので（イ）は牙

【符号の説明】
4 原子和格納容器
5 サプレッションチャンバ
6 ベント管
7 ベントノズル
8 外管
10 バローズ
10a 前側腹部
10 b 山部
10 c 後則腹部
10 d 各部
12 点手継手部
13a，13b，13c，13d 点検ユニット
14 移動橾作機機
15 克持ブロック
17 CCD力メラ
18 楽亯
19 a スプライン溝
19 b 突起
21 架台
22 がイドレーか
24 採作ロッド
24a 築案部
29 ガイドレー元
30 ガイド溝

Page 162 of 1385
（図1］

（図2］

［图5］

【图6】

(8) 開2001-27687 (P2001-27687A)

[国]

[177
(1)

Page 164 of 1385

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission-Information Disclosure Stmt	1806	1	180	180
Total in USD (\$) 180				

Electronic Acknowledgement Receipt	
EFS ID:	29325420
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Jeff Lloyd/MORGAN LAMPP
Filer Authorized By:	Jeff Lloyd
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	26-MAY-2017
Filing Date:	29-OCT-2012
Time Stamp:	13:41:31
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		SIDS9.pdf	184550	yes	3

I hereby certify that this correspondence is being electronically filed in the United States Patent and Trademark Office on May 26, 2017.

SUPPLEMENTAL INFORMATION
DISCLOSURE STATEMENT
UNDER 37 C.F.R §§ 1.97 AND 1.98
Examining Group 2836
Patent Application
Docket No. SUN.LGI. 420
Serial No. 13/663,012

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Art Unit	$:$	2836
Applicants	$:$	Jeong Wook An, Jung Oh Lee, Sung Hyun Leem, Yang Hyun Kim
Serial No.	$:$	$13 / 663,012$
Filed	$:$	October 29, 2012
Conf. No.	$:$	3575
For	$:$	Wireless Power Receiver and Method of Manufacturing the Same

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. $\S \$ 1.97$ AND 1.98

Sir:
In accordance with 37 C.F.R. § 1.56, the reference listed below and on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ is being brought to the attention of the Examiner for consideration in connection with the examination of the patent application identified above. A copy of the cited reference is attached.

Applicants note that Japanese Publication No. 2001027687, cited as F1 on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$, was written in a foreign language; however, an English language Abstract is provided herewith. Applicants respectfully request that the reference be made of record and considered in the examination of the subject application.

This information is being submitted subsequent to the later of three months after the filing date of the present application or the mailing of the first Office Action on the merits, but before the mailing of a final action or the Notice of Allowance. The fee of $\$ 180.00$ was paid at the time this statement was filed.
J:SUNLLGN420\DDS-Refs15-25-17SIDS9.doc/mep

It is respectfully requested that the Examiner indicate consideration of the cited reference by returning a copy of the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ with initials or other appropriate marks.

Applicants respectfully assert that the substantive provisions of 37 C.F.R. §§ 1.56, 1.97, and 1.98 are met by the foregoing statements.

The Commissioner is hereby authorized to charge any fees under 37 C.F.R. §§ 1.16 or 1.17 as required by this paper to Deposit Account 19-0065.

JL/mep
Attachments: Form PTO/SB/08; copy of reference cited.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB
Control number.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)			First Named Inventor	Jeong Wook An
Sheet	1	of	1	Art Unit
	Examiner Name	James P. Evans		

U.S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Citie } \\ & \text { No. } \end{aligned}$	Document NumberNumber - Kind Code known) (if	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	U1	2007/0095913-A1	05-03-2007	Takahashi et al.	ALL

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	CiteNo.	Foreign Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	$\mathrm{T}^{\text {s }}$
		Country Code ${ }^{3}$ - Number ${ }^{4}$ - Kind Code ${ }^{5}$ (fif known)				
	F1	JP-2004364199-A	12-24-2004	Sony Corp.	ALL	
	F2	JP-H10282232-A	10-23-1998	Toshiba Corp.	ALL	

NON PATENT LITERATURE DOCUMENTS			
Examiner Initials*	Cite No. ${ }^{1}$	Include name of the author (in CAPITAL LETTERS), title of the article, (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T^{2}
	R1	Office Action dated February 14, 2017 in Japanese Application No. 2015501586.	

Espacenet

Bibliographic data: JP2004364199 (A) - 2004-12-24

ANTENNA MODULE AND PORTABLE COMMUNICATION TERMINAL EQUIPPED THEREWITH

Inventor(s): TAKAHASHI ISAO; AKIYASU HIROSHI \pm (TAKAHASHI ISAO, ; AKIYASU HIROSHI)
Applicant(s): SONY CORP \pm (SONY CORP)
Classification: - international:B42D15/10; G06K17/00; G06K19/07; G06K19/077; G06K7/08; H01Q1/22; H01Q1/24; H01Q1/38; H01Q1/52; H01Q21/28; H01Q7/00; H04B1/59; H04B5/02; (IPC1-7): B42D15/10; G06K17/00; G06K19/07; G06K19/077; H01Q1/24; H01Q1/38; H01Q1/52; H01Q21/28; H01Q7/00; H04B1/59; H04B5/02
- cooperative: $\underline{\text { G06K7/10336; }} \boldsymbol{H 0 1 Q 1 / 2 2 ; ~} \underline{H 01 Q 1 / 2216 ; ~}$ H01Q1/2225; H01Q1/242; H01Q7/00
Application JP20030163055 20030606 Global Dossier number:
Priority JP20030163055 20030606 number(s):
Also EP1633017 (A1) US2007095913 (A1) US7712672 (B2)
published as: TW200516802 (A) TWI248699 (B) more

Abstract

JP2004364199 (A)

PROBLEM TO BE SOLVED: To provide an antenna module which combines two performances which are long communication functions as a tag and a wide transmission area as a reader writer while saving a space, and a portable communication terminal equipped with the antenna module. ;SOLUTION: A first antenna coil 11 for communication with the reader writer and a second antenna coil 12 for communication with the IC tag are arranged and formed on a base substrate 10. The first antenna coil 11 is arranged at the outermost peripheral side of the base substrate 10 , and a communication range is secured. The second antenna coil 12 is arranged at the inner peripheral side of the first antenna coil 11, and the miniaturization of the whole module is attained. ;COPYRIGHT: (C)2005,JPO\&NCIPI

（43）公開日 平成16年12月2A日（2004，12．24）

（54）［発明の名称 アンテナモジュール及びこれを備えた搆帯型通信諯末
（57）【要約】
【課題】省スペース化を実現できると同時に，タグとし ての長い通信機能とリーダーライタとしての広い通信エ リアという2つの性能を兼ね備えたアンテナモジュール及びこれを備えた携帯型通信端末を提供すること。
【解决手段】ベース基板10上に，リーダーライタとの通信用の第1アンテナコイル11と，ICタグと0通信用の第2アンテナコイル12とを配置形成する。第1ア ンテナコイル11はベース基板11の最外周側に肬置し て通信距雞を確保する。第2アンテナコイル12は第1 アンテナコイル110内周側に配室してモジュール全体 の小型化を図る。
［選択図】
図 1

【特許書求の範四】
【請求項1】
同一基板上に，
リーダーライタとの通信用の第1アンテナコイルと，
ICタダとの通信用の第2アンテナコイルとを俌えた
ことな特徴とするアンテナモジュール。
【請求項2】
前記第1アンテナコイルと前記第2アンテナコイルとが，それぞれ前記其板の面内で渦巻 き状に巻回された空芯コイルでなり，
一方のアンテナコイルが他方のアンテナコイルの内周側に配置されている
ことを特徴とする請求項1に記載のアンテナモジュール。
【請求項 3】
前記基板の一方側の主面には，磁性シートを介して金属板が貼着されている
ことを特徴とする請求項1に記載のアンテナモジュール。
【詰求項4】
前記基板には，第1アンテナコイル及びノ又は第2アンテナコイルが複数種配置されてい る

ことを特徴とする請求項1に記載のアンテナモジュール。
【請求項5】
同一基板上に，
リーダーライタとの通信用の第1アンテナコイルと，
ICタグとの通信用の第2アンテナコイルと，
前記第1，第2アンテナコイルを介して通信される情報を記憶したIC記憶媒体を含む信号処理回路とを備えた
ことを特徴とするアンテナモジュール。
【請求項6】
前記基板には，前記信号処理回路を覆うように電波吸収体が設けられている
ことを特徴とする請求項5に記載のアンテナモジュール。
【請求項7】
前記電波吸収体の表面には金属層が設けられている
ことを特徴とする請求項6に記載のアンテナモジュール。【清求項8】
前記第1アンテナコイルと前記第2アンテナコイルとは，それぞれ前記基板の面内で渦巻 き状に巻回された空芯コイルでなり，
一方のアンテナコイルは他方のアンテナコイルの内周側に配惪され，
前記信号処理回路は前記他方のアンテナコイルの内周側に配置されている
ことを特徽とする誚求項5に記載のアンテナモジュール。
【請求項9】
前記基板は，前記第1，葵2アンテナコイルが搭載される環状のアンテナ搭載基板と，前記信号処理回路が搭載される同路搭載基板との結合体でなる
ことを特徴とする請求項 8 に記載のアンテナモジュール。
【誚求項10】
前記基板には，前記信号処理回路を覆うように電波吸収体が設けられている
ことを特徴とする請求項9に記載のアンテナモジュール。
【請求項11】
前記電波吸収体の表面には金属層が設けられている
ことを特徴とする請求項10に記載のアンテナモジュール。
【請求項12】
前記基板の一方側の主向には，磁性シートが貼着されている
ことを特徵とする請求項らに記載のアンテナモジュール。

Page 175 of 1385

【解求項13】

前記基板の一方側の主面には，磁性シートを介して金属板が貼着されている
ことを特徴とする請求項 5 に記載のアンテナモジュール。
【請求項14】
前記磁性シートには，その中央部に開口が形成されており，当該開口には前部基板上の信
号処理回路部が収容されている
ことを特徴とする請求項12に記載のアンテナモジュール。
【蚛求項15】
前記基板には，前記信号処理回路を覆うように電波吸収体が設けられている
ことを特徵とする請求項14に記載のアンテナモジュール。
【請求項16】
前記電波吸収体の表面には金属層が設けられている
ことを特徴とする請求項15に記載のアンテナモジュール。
【請求項17】
前記基板には，第1アンテナコイル及び／又は第2アンテナコイルが複数㮔配置されてい る
ことを特徴とする請求項5に記載のアンテナモジュール。
【請求項18】
通信ネットワークを介しての情報通信機能を備えた携帯型通信端末であって，
同一基板上に，リーダーライタとの通信用の第1アンテナコイル及びICタグとの通信用
の第2アンテナコイルが配置されたアンテナモジュールと，
前記第1，第2アンテナコイルを介して通信される情報を記憶した I C 記憶媒体とを備え た
ことを特徵とする携帯型通信端末。
【請求項19】
前記アンテナモジュールと端末本体の取付部との間には，磁性シート及び金属板が介装さ れている
ことを特徴とする請求項18に記載の携帯型通信端末。
【請求項20】
前記第1アンテナコイルと前記第2アンテナコイルとが，それぞれ前記基板の面内で渦巻
き状に巻回された空芯コイルでなり，
一方のアンテナコイルが他方のアンテナコイルの内周側に配置されている
ことを特徴とする請求項18に記載の携带型通信端末。
【請求項211
前記基板の中央部には，前記IC記憶媒体を含む信号処理回路が形成されている
ことを特徴とする請求項18に記載の携帯型通信端末。
【請求項22】
前記基板には，第1アンテナナコイ及び／又は第2アンテナコイルが複数種配置されてい る
ことを特徴とする請求項18に記載の携帯型通信端末。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は，R F I D（無線周波数識別：R a dio Frequency I denti fication）システムに用いられるアンデナモジュール及びこれを備えた携帯型通信端末に関する。
［10002］
【従来の技術】
従来より，非接触ICカードシステムに代表されるRFID技術に打いては，ICカー・ド等の識別用 I C タグにアンテナコイルを内蔵させ，リーダーライタの送受信アンテナから

発信される䉓波との誘導結合によりデータ通信を行うようにしている。
〔0 0003 3
現在，ICタグとリーダーライタとでデータ通信を行う形態の一例として，ICカードで電車運傊の支払いを行う利用形態がある。この例において，ICカードの利用状況を確認 するためには，駅構内にある券売機や，I Cカードの情報を読み込むことができる特別な ビューアが必要になる。ICカードに課金するためにも，駅構内にある券売機か，リーダ ーライタを備えたパーソナルコンピコータ等により，ネット上からICカードに課金（サ イバー課金）する必要がある。
［00004］
さて，ICタグとリーダーライタとでデータ通信を行う形態は今後，多様化が進むことが予想されている。例えば，更に利便性を高めるため，排虫電話やPDA（Persona
1 Digitial Assistani）等の携帯型通信端末にタダ機能とリーダーラ ィタ機能とを持たせることが考えられる。
【 00005 〕
携帯電話にタグ機能を持たせることにより，例えば，擭带電話を改札にかざすことで電車運賃の支払いを行うことができるようになる。また，携带電話の通信機能を利用してサイ バー課金が可能になる。加えて，携带電話の表示機能を利用して端末内のタグの残高確認 が可能になる。
【0 006 〕】
また，携带電話にリーダーライタ機能を持たせるようにすれば，当該携带電話が駅構内の券売機の代替機能を有するようになるので，例えば，他のICタグ（ICカード）の残高 などの情報を確認することができるようになり，更にサイバー課金も可能になる。
【0007】
なお，この出願の発明に関連する先行技術文献を以下に示す。
【0 0008 】
【特許文献1】
特開平8－194785号公報
【特許文献2】
特開平11－66260号公報
【特許文献 3】
特開2002－15288号公報
【特許文献4】
特開2002－325013号公報
［llll 0
【発明が解決しようとする課題】
上述したように，携帯電話等にタグ機能とリーダーライタ機能とを持たせることになると ，端未本体に，タグ機能及びリーダーライタ機能それぞれに適合した専用のアンテナモジ ュールを個人に搭載する必要が生じる。つまり，タダとして用いる場合は外部リーダーラ イタとの通信に利用されるアンテナモジュールが必要であり，リーダーライタとして用い る場合は外部ICタグ（ICカード）との通信に利用されるアンテナモジュールが必要で ある。

すなわち，近午に打ける13．56MHzの周波数により動作するRFIDシステムに扮 いては，雃実な動作環境が求められて扣り，例えば通信特性に括いてもできるだけ長い通信距離や，リーダーライタと1Cタグとが相対する場合の平面状の広い通信エリアが求め られている。
［ $\left.\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$
一般的に，ICタグとして重要な性能は通信距離であり，リーダーライタとして重要な性能は通信距離より通信範囲とされている。タグ機能に要求されるアンテナモジュールの通信特性と，リーダーライタ機能に要求されるアンテナモジュールの通信特性は相異なるも

0であり，各々異なるアンテナ形状を必要とするので，1個のアンテナコイルで両機能を満足させることは殆ど不可能である。
【0 0 1 1 2 】
な扮，上記特許文献」には，ICカードとリーダーライタとの間の通信距離を長くするた めのリーダーライタのアンテナコイルの改良に関する技術が開京されている。また，特評文献2には情報云送効率の向上を図ったアンテナコイルをもつICカードの構成が記載さ れ，特許文献 3 には異なる複数の忍答器（ICタグ）と多重交信を行い得るリーダーライ タの橉成が記載されている。更に，特許文献 4 には取付対象物との相互干渉による通信特性の劣化を回避するためのアンテナモジュールの構成が開示されている。
【0 0 1 1 3】
一方，携需型通信端末に代表される電子機器の分野においては蛏薄短小化の要求が非常に高く，電子部品の小型化，高密度実装化，高集積化等でこれに対応している。したがって ，新規機能の追加のための新たなモジュールの付加を受け入れるだけの空間的自由度は殆 ど残って打らず，上記 2 種類のアンテナモジュール及びその信号処理用回路（RFID回路）部品茓を組み込むことは，端末本体の大型化を余儀なくすることになる。
【 $\left.\begin{array}{llll}0 & 0 & 1 & 4\end{array}\right]$
また，アンテナモジュールの小型化によって端末本体の大型化を抑制することも考えられ るが，この場合，通信特性の劣化は避けられなくなる。求められる通信特性（通信距離，
通信エリア等）を満足するためには，アンテナに一定以上の面積を確保することが必要だ からである。
［00115】
本発明は上述の問题に鑑みてなされ，省スペース化を実現できると同時に，タグとしての長い通信距離とリーダーライタとしての広い通信エリアという二つの性能を兼㸚備えたア ンテナモジュール及びとれを備えた携帯型通信端末を提供することを課題とする。
【0 016 〕】
【課題を解決するための手段】
以上の課題を解決するに当たり，本発明のアンテナモジュールは，同一基板上に，リーダ ーライタとの通信用の第1アンテナコイルと，ICタグとの通信用の第2アンテナコイル とを備えていることにより，タグ機能に要求される長い通信距離とリーダーライタ機能に要求される広い通信エリアとを兼ね備えた省スペースのアンテナモジュールを構成するこ とができる。
【0 0 1 7 】
アンテナモジュールの更なる省スペース化を図る上では，第1アンテナコイルと第2アン テナコイルとをそれぞれ基板の面内で渦巻き状に巻回された空芯コイル（ループコイル） で構成すると共に，一方のアンテナコイルを他方のアンテナコイルの内周側に配置する構成が有利である。これにより，例えば長い通信距離が必要とされるリーダーライタとの通信用の第1アンテナコイルの形成領域と同等の大きさに当該アンテナモジュールを構成す ることができる。
【0 018 8】
また，本発明の他のアンテナモジュールは，同一基板上に，リーダーシイタとの通信用の第1アンテナコイルと，ICタダとの通信用の第2アンテナコイルと，これら第1，第2 アンテナコイルを介して通信される情婻を記憶したIC記憶媒体を含む信号処理回路とを備えたことを特徴とする。この構成により，アンテナモジュールの更なる省スペース化を実現できる。
［10019］
アンテナモジュールの更なる省スペース化を図る上では，第1 アンテナコイルと第2アン テナコイルとをそれぞれ基板の面内で渦巻き状に巻回された空芯コイルで構成すると共に ，一方のアンテナコイルを他方のアンテナコイルの内周側に配置し，上記信号処理回路を前記他方のアンテナコイルの内周側に配置する構成が有利である。
【0 0120 〕
帯型通信端末であって，同一基板上に，リーダーライタとの通信用の第1アンテナコイル及びICタグとの通信用の第2アンテナコイルが配置されたアンテナモジョールと，第1 ，第2アンテナコイルを介して通信される情報を記憶したIC㑷憶媒体とを備えたことを特徴とする。
【0 021 1】
この構成により，タグ機能とリーダーライタ機能とを兼ね備えた携帯型通信端末を構成す ることが可能となるので，例えば，当該端末のタグ機能を利用して電車傕顀の支払いを行 つたり，当該端末のリーダーライタ機能を利用してICタグの残高などの情報を確認する等の利用が可能となる。
【0 0 2 2 〕
また，1 つのアンテナモジュールでリーダーライタとの通信用の第1アンテナコイルと1 Cタグとの通信用の第2アンテナコイルが構成されているので，省スペース化を実現でき ，端末本体の大型化を防止することができる。
［10012ll
【発明の実施の形態】
以下，本発明の各実施の形態について図面を参照して説明する。
［0024］
（第1の実施の形態）
図1及び図2は本発明の第1の実施の形態によるアンテナモジュール1 の構成を示してい る。ここで，図1はアンテナモジュール1の平面図，図2は図1における［2］－「2］線方向断面図である。
【0 02 5 〕
本実施の形態のアンテナモジュール1は，リーダーライタとの通信用の第1アンデコイ ル11と，ICタグとの通信用の第2アンテナコイル12とが，共通のベース基板10に配置形成されている。
な扔，図中破線で示す第2アンテナコイル12は，後述するように，ベース基板10の襄面側（紙面裏側）に配置形成されているものとする。
［ $\left.\begin{array}{llll}0 & 0 & 2\end{array}\right]$
ベース基板 10 は絶縁性の材料で構成されている。ベース基板 10 は，ガラスエポキシ基板等のリジッド性（自己支持性）のある材料で構成されていてもよいし，ポリイミドゃP ET，PEN等のフレキシブル性のある材料で構成されていてもよい。
［00271］
ベース基板10は，第1アンテナコイル11及び第2アンテナコイル12が抢成される大面積のコイル形成部10aと，第1，第2アンテナコイル11，12の各端部と電気的に接続される外部端子接続部 15 が形成される小面積の連結部 10 b とを有している。外部端子接続部15には図示しないICチップの端子や当該ICチップが実装されたプリント配線板上の端子に接続される。
［100281］
な打，図1に扔いて符号16は，ベース基板10の表襄を電気的に接続するためのスルー ホールであり，これらを介して第1，第2アンテナコイル11，12が外部端子接続部1 5の所定位買に接続されている。また，ベース基板10の表裏面には，絶縁材料でなる才 ーバーコート材14がそれぞれ設けられている。
［00129］
第1アンテナコイル11及び第2アンテナコイル12は導電材料でなり，アルミニウムや銅等の金属薄膜，導電ペーストの印刷体で構成することができる。なお，各アンテナコイ ルの形成幅や形成長，膜厚あるいは塗膜厚は，求められる通信性能に応じて遉宜設定する ことができる。
［0030］
第1，第2アンテナコイル11，12は，ベース基板10の平面内で巻回をれた空苍コイ

ル（ループコイル）で構成されている。符1アンテナコイル11と第2アンテナコイル1 2との配置関係は特に限定されないが，本実施の形態では，第2アンテナコイル12を第 1アンテナコイル11の内周側に配置している。
〔 $\left.\begin{array}{llll}0 & 0 & 3 & 1\end{array}\right]$
この構成により，符1アンテナナコイ11の形成領域を広く確保でき，一般的に通信䠊離 が求められるタグ機能の向上を図ることが可能となる。また，アンテナモジュール1の大 きさを第1アンテナコイル11の形成面樍と略同等に構成できるので，第1，第2アンテ ナコイル11，12を並置形成する場合に比べてアンテナモジュール10小型化を図るこ とができる。

な招，以上の構成例に扔いては第1アンテナコイル11を第2アンデナコイル120外風側に配置したが（図3 A 参照），求められる通信性能が異なれば，第2アンテナコイル1 2を第1アンテナコイル11の外周側に配置することも可能である（図4 B 参照）。
【0 0 3 3 】
第1アンテナコイル11及び第2アンテナコイル12のアンテナ形状は，求められる通信特性に応じて各々適宜設定でき，図示する矩形状に限らず，円形状等の他の形状でもよい。また，図の例では各アンテナコイル11，12をそれぞれ2ターンで構成しているが， ターン数も仕様に応じて各々適宜設定できる事項である。
［01034］
な括，第1アンテナコイル11と第2アンテナコイル12とは互いに磁気的な結合を生じ させない，すなわち各々の通信特性に障害を生じさせない程度の隙間を介して配置されて いるものとする。
【0035】
図9に第2アンテナコイル12の形状の変形例を示す。図において破線で示す第2アンテ ナコイル12 Aは，ベース基板10の雯面側（紙面裏側）に形成されているものとする。
【 $\left.\begin{array}{llll}0 & 0 & 3 & 6\end{array}\right]$
図示する第2アンテナコイル12Aは，その中心部を挟んで相対向する各巻線間の間隔及 び線幅を一の方向において異ならせた非対称形状とされている。すなわち，この第2アン テナコイル 12 は，一の方向（図9において横方向）に打いて，その各巻線間の間隔及び線幅が狭くなる右側部 12 aと，その各巻線間の間隔及び線幅が広くなる左側部 12 bと を有している。
〔0037】
この場合，第2アンテナコイル12Aによる磁場分布は，巻線間の間隔や線幅が対称な第 1アンテナコイル11による対称な磁場分布とは異なり，第2アンテナコイル12A0各巻線問の間隔及び線幅が広くなる左側部 12 bが強調された非対称なものとなる。

【0 0 3 8 】

したがって，第2アンテナコイル12 Aを図示するような形状に構成することにより，I Cタグ（ICカード）と C 通信エリアを広げることができると共に，通信可能な位置を一 の方向に招いてシフトさせることが可能となる。また，䈈2アンテナコイル12Aの大き さをICタグ側のアンテナコイルよりも小さくすることが可能となることから，第1アン テナコイル11の内周側に設けても通信性能の劣化を生じさせることもない。
【0039】
次に，第1アンテナコイル11は，アンテナモジュール1の通信面CS側（ベース基板1 0 の表面側）に配置され，第2アンテナコイル12はアンテナモジュール1の通信面CS とは反対側の面（ベース基板10の雯面）に配㯰されている（図2，図3A）。この構成 により，通信距離が求められるタグ機能の向上を図ることができる。
【0 0440 】
但し，求められる通信性能が異なれば（例えば，リーダーライタ機能にも一定以上の通信距離を確保する必要がある場合など），第2アンテナコイル12をアンテナモジュール1 の通信面CS側に配置してもよい（図3B，図4A，B）。この場合，第1アンテナコイ

ル11はアンテナモジュール10通信而CSとは反対側の面に配置するか（図 3 B ），第 2アンテナコイル12と共にアンテナモジュール1の通信面CS側に配置される（図 4 A ，B）。
【0 0 O 4 1】
なお，図4 A，Bに示すように，各アンテナコイル11，12の配置関係は上述したよう に任賞であり，どちらを外周㑡あるいは内問側に配置するかは，求められる通信性能に応 じて選定される。
また，ベース甚板10の各而にそれぞれ配䠝される第1アンテナコイル11及び符2アン テナコイル 12 は，磁気的結合を回避するために，互いに重なり合わないようにして配置 されるように留意する必要がある。
［0042］
一方，ベース基板10上に形成される第1アンテナコイル11及びノ又は第2アンテナコ イル12は备々1種類ずつに限られない。つまり，同じアンテナモジュール1で，通信仕様の異なる複数種のICタグ又はリーダーライタとの通信が行えるように，第1，第2ア ンテナコイル11，12を複数種配買形成することも可能である。
〔0043］
例えば図 5 A は，ベース基板 1 0 の表面側に第1アンテナコイル11を外周部と内周部と に計 2 㮔類配置し，その間に1種類の第2アンテナコイル12を配置した例を示している。図5 B は，第1アンテナコイル11をベース基板10の表面側に計2種類配置し，1種類の第2アンテナコイル12をベース基板10の裏面側に配置した例を示している。また ，図5Cは，ベース基板100表面側に第2アンテナコイル12を外周部と内周部とに計 2 種類配置し，その問に1種類の第1アンテナコイル11を配置した例を示している。【 00044 〕
以上のように構成される本実施の形驡のアンテナモジュール1に打いては，共通のベース基板10上にリーダーライタとの通信用の箨1アンテナコイル11とICタグとの通信用 の第2アンテナコイル12とを備えた構成としているので，タグ機能とリーダーライタ機能とを1つのアンテナモジュール1で構成するととができるようになる。これにより，省 スペース化にも十分に対応できると同時に，タグ機能及びリーダーライタ機能の双方に要求される通信性能を確保することができる。
［100415］
続いて，図7及び図8は，当該アンテナモジュール1を搭載した擭帯型通信端末20の断面模式図である。図では，アンテナモジュール1が携帯型通信端末20の端末本体210上部背面側に内装された例を示している。
【0 04 6 〕
端末本体21には，通信ネットワークを介しての情報通信機能を備えた当該携帯型通信端末 20 の諸機能を制御するCPUその他の電子部品を搭載した電子回路基板 2 2 やバッテ り25が内蔵され，その表面の一部は液晶ディスプレイ等の表示部23で構成されている。また，図示せずとも通信ネットワークを介しての情報の送受信に必要な送受信用アンテ十を含む通唐手段や，操作入力部，電話機能に必要なマイクロフォン及びスピーカ等が備危付けられている。
【0047】
アンテナモジュール1と端末本体21の取付部との間には，アンテナモジュール1側から磁性シート18及び金属板19が介装されている。本実施の形態では，図6に示すように ，アンテナモジュール1の通信面CSとは反対側の主面に，非導電性の磁性シート18及 び金属板19を貼着することによって，アンテナモジュール1と磁性シート18と金属板 19 とをユニット化している。
【0048】
磁性シート18は，例えば合成樹脂材料中にセンダスト（Fe－A1－Si系）粉を混合 してシート状に加エしたものが用いられるが，これ以外にも，磁性粉としてパーマロイ（ Fe－Ni系）やアモルファス（Fe－Si－A1－B系），フェライト（Ni－Znフ

エライト， $\mathrm{Mn}-\mathrm{Zn}$ n フライトなど），炸結フェライト等の軟磁性材料が適用可能であ り，目的とする通信性能や用途に応じて使い分けられる。
［00449］
磁性シート18がアンテナモジュール1と金属板19との間に介装されることによって， アンテナモジュール1と金属板19との間の電磁干渉による通信性能の劣化を回避できる と同時に，アンテナモジュール1と金属板19との間の隙間を少なく設定できるという利点がある。
【0 0505 〕
一方，金属板19は，シールド板としての機能を果たし，携带型通信端末20の通信動作 とアンテナモジュール1の通信動作を隔絶するために設けられる。これにより，例えばア ンテナモジュール1の通信動作時における携帯型通信端末20に䛊作動や機能上の不具合 の発生を防止することができる。
な扝，金属板 19の構成材料としては，導電性であれば特に制限されず，ステンレス板や銅板，アルミニウム板などが好適である。
〔00511〕
磁性シート18及び金属板19の厚さは，アンテナモジュール1に貼着された際，全体の原さが大きくなり過ぎない程度に仕上げられるのが好ましい。例えば，アンテナモジュー ル1を300 $\mu \mathrm{m}$ 厚とした場合，磁性シート18を500 $\mu \mathrm{m}$ 厚，金属板19を300 C を m 厚程度とすれば，モジュール全体として 1 mm 強の厚さに抑えられる。これにより，ア ンテナモジュール1の省スペース性を損なわずに，端末本体21の内部の限られたスペー スへ組み达むことができる。
【0052】
アンテナモジュール1は，その通信面CSを外方に向けて端末本体21に内装される。こ のとき，アンテナモジュール1の外部端子接続部15は，例えば，当該アンテナモジュー ル1のために用意されたICキップ 2 4 に接続される。
【0053］
ICチップ24には，第1アンテナコイル11を介して外部リーダーライタ5と通信する際に読み出されるIDその他の各種情報が記憶されている。また，このICチップ24に は，第2アンテナコイル12を介して外部タグ（ICカード）6と通信する際に，当該外部タブ 6 に記憶された情報を読み出したり書き込むのに必要なフクセス手順（プログラム ）や鍵情報等が必要に応じて格納されている。
【0054】
以上のように構成される本実施の形態の携帯型通信端末20においては，図7に示すよう に，外部のリーダーライタ5と通信する際にはアンテナモジュール1の第1アンテナコイ ル11を介してICチップ2 ムに格納された所定情報が送信される。これにより，この携带型通信端末20のタダ機能を利用して，例えば電車運賃の支払いを行うことが可能とな る。
［10054］
また，図8に示すように，外部のICタグ（ICカード）6と通信する際にはアンテナモ ジュール1の簐2アンテナコイル12を介してICタグ 6 内のICチップ6Aに格納され た所定情報が読み出される。これにより，この携帯型通信端末20のリーダーライタ機能 を利用して，例えばICタグ6の残高などの情報を表示部23を介して確認することがで きる。
【 00056 〕
な怙，リーダーライタ機能を利用する際の電力源としては，携帯型通信端未200バッデ リー 25 を用いることができる。この場合，第1，第2アンテナコイルの設計の最適化に より携帯型通信端末20の低消費電力化に貢献できる。
【0 0 57】
更に，本実施の形態によれば，アンテナモジュールが1つだけであるので，携㠵型通信端未20に求められる省スペース化に貢献できると共に，省スペースによって得られるスペ
 の品質向上に貢献できる。
【0058】
（第2の実施の形態）
図 1 0 及 び図11は本炛明の第 2 の実施の形態によるアンテナモジュール 2 の構成を示し ている。なお，図に打いて上述の第1の実施の形態と対応する部分については同一の符号 を付し，その詳細な説明は省略するものとする。
ここで，図10はアンテナモジュール2の平面図，図111は図10における［11］－［ 11 ］線方向断面図である。
【0 05 9】
本実施の形態のアンテナモジュール2は，ベース基板10上に，リーダーライタとの通信用の第1アンテナコイル11と，1Cタグとの通信用の第2アンテナコイル12と，これ 5第1，第2アンテナコイルを介して通信される情報を記譩したICチップ24を含むR FID回路部30とを備えている。
［ $\left.\begin{array}{llll}0 & 0 & 6 & 0\end{array}\right]$
R F I D 回路部 3 0 は，本発明に係る「信号処理回路」に対応し，ICチップ24以外に第1，第2アンテナコイルを介しての通信動作に必要な送受信信号の生成や信号処理等に供される電子部品の一式で構成されている。な打，各部品を電気的に接続する配線パター ンの図示は省略している。
【 $\left.\begin{array}{llll}0 & 0 & 6 & 1\end{array}\right]$
RFID回路部30は，図の例では第2アンテナコイル12の内周側に配置されている。 この構成により，第2アンテナコイル12の内周部（住芯部）の有効利用が図られ，アン テナモジュール2の小型化に貢献できる。
【0062】
RFID回路部30は，図の例ではアンテナモジュール2の通信面CS側（ベース基板1 0 表面側）に配置しているが，これに限らず，アンテナモジュール2の通信面CSとは反対側の主面に配置してもよい。また，第2アンテナコイル12の内周領域にRFID回路部を形成しきれない場合には，第2アンテナコイル12の形成面とは反対側の面にRFI D回路部を形成することも可能である。
［ $\left.\begin{array}{llll}0 & 0 & 6 & 3\end{array}\right]$
以上のようにして構成されるアンテナモジュール2は，リーダーライタ又は1Cタグとの通信に必要な R F I D 回路部 3 0 を筣1，第2アンテナコイル11，12と共に同一のベ一ス基板 10 上に配置した基板ユニットとして構成されているので，RFID回路が形成 された配線基板を別途用意する必要がなくなり，省スペース化に非常に優れたアンテナモ ジュールとすることができる。
【0 0 64】
本実施の形態のアンテナモジュール2は，上述の第1の実施の形態と同様に，通信ネット ワークを介しての情報通信機能を備えた携帯型通信端末に内装される。この場合，R F I D网路部 3 0 が当該アンテナモジュール 2 としてコニット化されているので，端末本体に大きな空間的スペースを要求することなくこれを実装することができる。
【 00065 〕
また，R FID回路部30がアンテナモジュール 2 としてユニット化されているので，椇带型通信端末に対するR FI D 機能の組込み，追加あるいは削除が容易となり，メンテナ ンス性やアフターサービス等の利便性を高めることができる。これにより，例えば端末本体の機種変更にも容易に対応できるようになり，利用履歴等の個人情報が記憶されている アンテナモジュール 2（I Cチップ24）を引を続き新機種端末においてもそのまま利用 できる等の利便性を高めると同時に，せキュリティの確保が図られる。
【0 066 〕】
同様な趣旨として，ベース基板10をアンテナコイル11，12の形成領域とRFID回路部30の搭載領域との結合構造として，RFID回路部30k対して異種のアンテナコ

イル11，12を接続できる椣成とすることも可能である。
［ $\left.\begin{array}{llll}0 & 0 & 6 & 7\end{array}\right]$
例えば図15に示すように，ベース基板10を第1，第2アンテナコイル11，12が搭載される環状のアンテナ搭載基板 10 A と，RFID回路部30が搭載される回路搭載基板10Bとの結合体で棈成する。アンテナ搭載基板10Aと回路搭載基板10Bとの間の電気的接続は，例えば，結合時に整列し合う複数組の接続ランド 10 AL ， 10 BL 間を はんだ等の導電性接合材で接合したり，各ランド間をワイヤボンディングする等の手法が採用できる。
この場合，回路搭載基板10Bはアンテナ形状に関わりなく常に同一のものを適用できる ようにし，更に，回路搭載基板10Bの形状等はモジュール問で統一されているのが好ま しい。
［0068］
このような構成により，RFID回路部30（ICチップ24）は引き続き利用可能とし ながらアンテナコイル11，12のみ異なる价様に変更することが可能となる。また，仕様に応じて複数種のアンテナ搭載基板10Aを用意して招けば，あとは共通化された回路搭載基板 10 を組み込むだけで所望のアンテナモジュールを構成できるので，在庫管理や生産性向上も図れることになる。
【0 069 】
さて，図10に示したアンテナモジュール2を端末本体に内装するに当たつては，上述の第1の実施の形態と同様に，アンテナモジュール2の通信面CSとは反対側の主面と端末本体の取付部との間に，非導電性の磁性シート及び金属板がそれぞれ介装されるのが好ま しい。なお，磁性シート及び金属板を介装することにより得られる効果については，上述 の第1の実施の形態と同様であるのでここでは説明を省略する。
【0 070 〕
図12A，Bはアンテナモジュール2の通信面CSとは反対側の主面に磁性シート18を貼着した構成例である。図12AはRFID回路部30をアンテナモジュール2の通信面 CS側に配置した場合の磁性シート18の貼着例である。

【0 071 1】

一方，図12BはRFID回路部30をアンテナモジュール2の通信面CSとは反対側の主面に配置した場合の磁性シート18の貼着例である。この例では磁性シート18の中央部に，RFID回路部30を収容できる大きさの開口18aを形成している。アンテナコ イルの形成されていないモジュール中央領域に開口18aを形成してむ，磁性シート18 による電磁干渉抑制効果を十分果たせるからである。この構成によれば，開口18a内に RF1D回路部30を収容できるので，図12Aの構成例に比してモジュール全厚を薄く でき，更なる省スペース化に賁献できる。
【0072】
次に，図13A，Bに金属板19の貼着例を示す。図13AはRFID回路部30をアン テナモジュール2の通信面CS側に配置した場合の金属板19の貼着例である。金属板1 9 は磁性シート18を介してアンテナモジュール2に貼着されている。

一方，図13BはRFID回路部30をアンテナモジュール2の通信面CSとは反対側の主面に配置した場合の金属板 19の貼着例である。この例では，中央部にRFID回路部 30を収容できる大きさの開口18aが形成された磁性シート18を介して，金属板19 がアンテナモジュール2に貼着されている。この構成によれば，磁性シート180）閉口1 8a内にRFID同路部30を収容できるので，図13Aの構成例に比してモジュール全厚を薄くでき，更なる省スペース化に貢献できる。
【0 074 】
な扔，図14に示すように，金属板19に対してもその中央部にRFID回路部30並臨 む開口19 a を形成することも可能である。この場合，RFID回路部30を構成する部品の実装等間の自由度が高められ，これにより，実装高さの比較的大きな部品の実装が可

能となる。
【0 0 7 5】
また，金属板19に開口部19a学形成することによって，RFID回路部30と端末本体側との間で電磁的に影響を及ぼし合う括それがある場合には，例えば図16～図18に示すように，アンテナモジュール2のベース基板10に，RFID間路部30を覆うよう に電波吸収体を設けるのが好ましい。
【0076】
図16は，RIIID回路部30全域をフレキシブル性のあるシート状の電波吸収体31で覆った例を示している。この電波吸収体 3 1 を構成する軟砒性材料は，RFID回路部3 0 から放射されるノイズ電波の周波数帯域に応じて選定される。また，必要に応じて，ベ ース基板10の上面（回路非搭载而）側にも同様な電波吸収体32を貼着し，ベース基板上面側への不要輻射を抑えるようにしてもよい。な怙，電波吸収体 3 1，32 の外表面側 に金属層を追加で設ければ，更にノイズ防止効果を高めることができる。
【0 077 7】
一方，図17はRFID回路部30をベース基板10の両面から電波吸収体33，34を介して一対の金属板 3 5，36で挟み込んだ例を示している。この場合の電波吸収体33 ， 34 はコンパウンド状のものを用いることができ，RFID回路部30を覆うようにべ ース基板10と一体成形することによって構成できる。もしくは，電波吸収体33，34 としてペースト状のものを用いることができ，R F I D 回路部 3 0 を覆うように塗布され た後，硬化処理がなされる。また，金属板 35 ， 36 はノイズ防止効果を高めると同時に ，RFID回路部30を外部ストレスから保護する補強板としても機能する。
【lllll 0
RFID回路部30からの不要輻射対策と同時に，RFID回路部30の外部ストレスか らの保護を図ることができる他の構成例として，図18に示すものがある。これは，所定強度を備えた略箱状の金属製カバー 3 7 でR F I D 回路部 3 0 を覆って打り，このカバー 37の内面にはシート状の電波吸収体38を貼着した例を示している。なおこれに代えて ，カバー 3 7 の内部空間を電波吸収体で充填してもよい。また，必要に応じて，R F I D网路部30の形成領域に対応するベース基板 1 0 の上面僛にも電波吸収体 3 9 を設けても よいし，更にこの電波吸収体 39 の上に金属層を形成してもよい。この金属層は，ノイズ対策として適用する場合は箔状で十分であるが，強度アップをも目的する場合には一定の厚さが必要になる。
【0079】
な扔，ここで請求項にいう「信号処理回路を覆うように電波吸収体が設けられている」と いう意味は，ベース基板 10 の回路搭載面側の回路形成領域と，その反対側の面の回路形成領域の双方又は何れか一方に電波吸収体が設けられていることを意味するむのとする。
【0080】
以上のRFID回路部30の不要輻射対策（及び外部ストレスからの保護対策）は，全属板19が貼着されたアンテナモジュール2にのみ適用される場合に限らず，例えば図12 Bに示したような構成例にも適用可能である。この例では，アンテナモジュール2に磁性 シート18のみを貼着した構成であるが，このような形態は，端末本体の取付部側に金属板19又はこれに準ずる部材が前もつて備え付けられている場合等に採用できる。そこで ，端末本体側にRFID回路部30との電磁干渉防止策が施されていない場合に，上記電波吸収体を設置することで対応できるようになる。
【0 00811$]$
ここで，上述のRFID回路部30を覆う電波吸収体は，アンテナモジュール2の第1，
第2アンテナコイル11，12の直下に貼着される磁性シート18とは異なる目的で構成 されるものである。つまり，上記電波吸取体はRFID回路部30から放射されるノイズ成分の吸収を目的として設けられるもので，ノイズ帯域を効率良く吸収できる磁性粉が逥択されて構成される。これに対し，磁性シート18はアンテナモジュール2に所定の通信性能な持たせることを主目的として設けられるもので，アンテナコイルのインダタタンス

や通信周波数等に対して最適な通信性能（例えば透磁率等）が胙られる磁性粉が選択され て構成される。
［00082］
な格，図16～図18の例では，ベース基板10をアンテナ搭載基板10A及び回路搭載基板 10 B の結合甚板（図15参照）として体成したが，これに限らず，図10に示した ような一体基板としてベース基板 10 を構成した場合にも同様に適用可能である。
【0 083 〕
以上，本発明の各実施の形態について説明したが，勿論，本発明はこれらに限定されるこ となく，本発明の技術的思想に基づいて種々の夌形が可能である。

例えば以上の奏施の形態では，本発明に係るアンテナモジュールを挜带電話やPDA等の携帯型通信端末に適用した例について説明したが，適用例は上記㭶常型通信端末に限らず ，例えば携帯型ゲーム機や専用の携帯型 R F I D 通信機等にも本発明は適用可能である。【0 0085 〕
また，本発明に係るアンテナモジュールの第2アンテナコアルによつて情報が読み出され るICタグとしては，上速のICカードだけに限らず，コイン状，スティック状等の他の形態のICタグも本発明は適用可能である。
【0 0 8 6】
更には，以上の各実施の形態で説明したアンテナモジュールの第1，第2アンテナコイル は，一数の共通のベース基板上に各々配置形成される例について説明したが，これに代え て，第1アンテナコイルを形成した第1フィルム基板と第2アンテナコイルを形成した第 2フィルム基板を積層して，本発明に係るベース基板を構成することも可能である。
〔0 0 8 7 】
【発明の効果】
以上述べたように，本発明のアンテナモジュールによれば，同一基板上に，リーダーライ タとの通信用の第1 アンテナコイルと，ICタグとの通信用の第2アンテナコイルとを備兄させたので，タグ機能に要求される長い通信距離とリーダーライタ機能に要求される広 い通信エリアとを兼ね備えた省スペース0アンテナモジュールを構成することができる。【0 088 〕
また，本発明の携帯型通信端末によれば，端末本体の大型化を招くことなく，タグ機能と リーダーライタ機能とを兼ね備えた携帯型通信端末を構成することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態によるアンテナモジュール10平面図である。
【図2】図1に打ける「2］－［2］線方向断面図である。
【図3】アンテナモジュール1の第1アンテナコイル11と筣2アンテナコイル12との配置態様を説明する要部拡大断面図である。
【図4】アンテナモジュール10第1アンテナコイル11と第2アンテナコイル12との配置態様を説明する要部拡大断面図である。
【図5】アンテナモジュール1の第1アンテナコイル11と第2アンテナコイル12との配置態様を説明する要部拡大断面図である。
【図6】アンテナモジュール1に磁性シート18及び金属板19を貼着してユニット化し た状態を示す側断面図である。
【図7】アンテナモジュール1定内襲した携带型通信端末20の構成及びその一作用を説明する模式図である。
【図 8】アンテナモジュール1を内装した携帯型通信端末20の構成及びその一作用を説明する模式図である。
【図9】アンテナモジュール1の第2アンテナコイル12Aの形状の変形例を示す平面図 である。
【図10】本発明の第2の実施の形態によるアンテナモジュール2の平面図である。
【図11】図10に打ける［111］－［111］線方向断面図である。

【図12】ケンテナモジュール2への磁性シート180貼着例を示す㑬断面図である。
〔図13】アンテナモジュール2への磁性シート18及び金属板19の貼着例を示す側断面図である。
【図14】図13Bの情成の変形例を説明する側断面図である。
【図15】アンテナモジュール2のベース基板10の㮩成の変形例を説明する平面図であ る。
【図16】図13Bの構成の他の変形例を説明する側断面図である。
【図17】図13Bの楠成の吏に他の変形例を説明する側断面図である。
【図18】関13Bの構成の更に他の変形例を説明する側断面図である。
【符号の説明】
1，2‥アンテナモジュール，5…リーダーライタ，6…ICタグ，10…ベース基板， $10 \mathrm{~A} \cdots$ アンテナ搭載基板， $10 \mathrm{~B} \cdots$ 回路搭載基板， $11 \cdots$ 第1アンテナコイル， 12 ， $12 \mathrm{~A} \cdots$ 第2アンテナコイル，14…オーバーコート材，1 5 …外部端子接続部，16… スルーホール，18…磁性シート，18a…開口，19…金属板，20…擭帯型通信端未 ，21…端末本体，22…電子回路基板，23…表示部，24…ICチップ，25…バッ テリー，30…RFID回路部，31～34，38，39…電波吸収体，C S …通信面。

【図1】

【図2】

【図3】

A

B

【図 1】

A

【図5】

A

B

C

【図6】

【図 8】

【図7】

【図9】

【図10】

【図 111 1】

【図14】

【図15】

［図12】

A

【図13】

A

［図16］

【図17］

【図18】


```
フロントページ0続き
```


Espacenet

Bibliographic data: JPH10282232 (A) - 1998-10-23

RADIO COMMUNICATION SYSTEM

Inventor(s): ISHIBASHI TAKANOBU \pm (ISHIBASHI TAKANOBU)
Applicant(s): TOSHIBA CORP \pm (TOSHIBA CORP)
Classification: - international:G01S13/75; G01S13/76; G01S13/79; (IPC1-
7): G01S13/75; G01S13/76; G01S13/79

- cooperative:

Application JP19970081615 1997033
Global Dossier number:

Priority number JP19970081615 19970331
(s):

Abstract of JPH10282232 (A)

PROBLEM TO BE SOLVED: To obtain a stable system capable of demodulating data with a low error rate by transmitting data at the first communication frequency and the second communication frequency different from the first one from a radio communication device to a radio communication medium. SOLUTION: A radio card reader writer 100 operates on a clock of a frequency fp , transmits electric power to a radio card 200 by electric power transmission waves (frequency fp), and transmits data by data communication waves (frequency fd). The frequencies fp and fd are set so as to satisfy the relation $\mathrm{fd}=\mathrm{fp} / \mathrm{k}$ ($1<\mathrm{k}$: integer). In addition, letting a distance of transmission be L and the velocity of light be c , fp
 satisfies the relation $\mathrm{fp} \ll(\mathrm{kc} / 16 \mathrm{~L})$. By this, it is possible to operate the radio card 200 on the clock of frequency fp of the radio card reader writer 100 . Therefore, as there is no need for specially incorporating a PLL circuit in the circuit in
the radio card 200, the simplification and formation into one chip of a circuit configuration become easy.

CLAIMS

[Claim(s)]

[Claim 1] Wireless communication media of a non-cell type which has a wireless communication function.

Radio communication equipment which performs transmission and reception of these wireless communication media and data while supplying electric power to these wireless communication media by a wireless communication between these wireless communication media.

In a wireless communication system provided with the above,
A power supply means which supplies electric power from the aforementioned radio communication equipment with first communication frequency to the aforementioned wireless communication media, A wireless communication system providing a data sending means which transmits data with said first communication frequency and different second communication frequency from the aforementioned radio communication equipment to the aforementioned wireless communication media.
[Claim 2] Wireless communication media of a non-cell type which has a wireless communication function.

Radio communication equipment which performs transmission and reception of these wireless communication media and data while supplying electric power to these wireless communication media by a wireless communication between these wireless communication media.

In a wireless communication system provided with the above,
A power supply means which supplies electric power from the aforementioned radio communication equipment with first communication frequency to the aforementioned wireless communication media, An electric power receiving means which receives electric power supplied by this power supply means, A wireless communication system possessing a data sending means which transmits data with second communication frequency which is different from said first communication frequency from the aforementioned radio communication equipment to the aforementioned wireless communication media, and a data receiving means which receives data transmitted by this data sending means.
[Claim 3] Wireless communication media of a non-cell type which has a wireless communication function.

Radio communication equipment which performs transmission and reception of these wireless communication media and data while supplying electric power to these wireless communication media by a wireless communication between these wireless communication media.

In a wireless communication system provided with the above,
The first communication frequency Fa and the second communication frequency Fb fill $\mathrm{Fa}=\mathrm{Fb} / \mathrm{K}(1<\mathrm{K}$: positive number), and receive the aforementioned wireless communication media from the aforementioned radio communication equipment, A power supply means which supplies electric power with said first communication frequency Fa , and an electric power receiving means which receives electric power supplied by this power supply means, A wireless communication system possessing a data sending means which transmits data from the aforementioned radio communication equipment with said second communication frequency Fb to the aforementioned wireless communication media, and a data receiving means which receives data transmitted by this data sending means.
[Claim 4]Wireless communication media of a non-cell type which has a wireless communication function.
Radio communication equipment which performs transmission and reception of these wireless communication media and data while supplying electric power to these wireless communication media by a wireless communication between these wireless communication media.

In a wireless communication system provided with the above,
The first communication frequency Fa and the second communication frequency Fb fill $\mathrm{Fa}=\mathrm{Fb} / \mathrm{K}(1<\mathrm{K}$: positive number), this first communication frequency Fa -- Fa -- < -- < ($\mathrm{Kc} / 16 \mathrm{~L}$) -- it filling (C : the velocity-of-light [m / s] L:maximum communication range [m]), and from the aforementioned radio communication equipment to the aforementioned wireless communication media, A power supply means which supplies electric power with said first communication frequency Fa , and an electric power receiving means which receives electric power supplied by this power supply means, A
wireless communication system possessing a data sending means which transmits data from the aforementioned radio communication equipment with said second communication frequency Fb to the aforementioned wireless communication media, and a data receiving means which receives data transmitted by this data sending means.
[Claim 5]Wireless communication media of a non-cell type which has a wireless communication function.
Radio communication equipment which performs transmission and reception of these wireless communication media and data while supplying electric power to these wireless communication media by a wireless communication between these wireless communication media.

In a wireless communication system provided with the above,
A first encoding means that assigns first data to first communication frequency transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment, A wireless communication system possessing a second encoding means which assigns second data to said first communication frequency transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment, and different second communication frequency.
[Claim 6]Wireless communication media of a non-cell type which has a wireless communication function.
Radio communication equipment which performs transmission and reception of these wireless communication media and data while supplying electric power to these wireless communication media by a wireless communication between these wireless communication media.

In a wireless communication system provided with the above,
First communication frequency Fa_{w} fills $\mathrm{Fa}_{\mathrm{m}}=\mathrm{Fa} / \mathrm{m}$ ($1<\mathrm{m}$: integer), Second communication frequency $F a_{n}$ is $F a_{n}=F a / n(1<n$ integer $)$. $n!=m$ is filled, a first encoding means that assigns first data to first communication frequency Fa_{m} transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment, A wireless communication system

Page 195 of 1385

possessing a second encoding means which assigns second data to second communication frequency Fa_{n} transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.
[Claim 7]Claim 1, Claim 2 and Claim 3 characterized by comprising the following, or the wireless communication system according to claim 4.

First communication frequency Fa_{m} fills $\mathrm{Fa}_{\mathrm{m}}=\mathrm{Fa} / \mathrm{m}$ ($1<\mathrm{m}$: integer), Second communication frequency Fa_{n} fills $\mathrm{Fa}_{\mathrm{n}}=\mathrm{Fa} / \mathrm{n}$ ($\mathrm{a} 1<\mathrm{n}$ integer, $\mathrm{n}!=\mathrm{m}$), A first encoding means that assigns first data to first communication frequency Fa_{m} transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment

A second encoding means which assigns second data to second communication frequency Fa_{s} transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.
[Claim 8]The phase modulation of said first communication frequency Fa_{m} to which said first data was assigned, and said second communication frequency $F a_{n}$ to which said second data was assigned is carried out with the communication frequency Fa, Claim 6 transmitting this phase modulation wave by which the phase modulation was carried out from the aforementioned communication media to the aforementioned radio communication equipment, or the wireless communication system according to claim 7. [Claim 9]The wireless communication system comprising according to claim 8:

A receiving means which receives the aforementioned phase modulation wave in receiving the aforementioned phase modulation wave and restoring to this received phase modulation wave.

A multiplication means which multiplies $\mathrm{Dj}=\mathrm{Bsin}$ (omega $\mathrm{ct}+\mathrm{pi}(\mathrm{j}-1) / 4)(\mathrm{j}=1,2,3,4)$ to a phase modulation wave received by this receiving means, an integrating means which integrates with an output of this multiplication means, and a selection means which chooses a value of j from which a demodulated signal outputted from this integrating means serves as the maximum.
[Claim 10]The wireless communication system comprising according to claim 8: A receiving means which receives the aforementioned phase modulation wave in
receiving the aforementioned phase modulation wave and restoring to this received phase modulation wave.
A first multiplication means that multiplies $\mathrm{Dj}=\mathrm{B} \sin$ (omega ct+pi(j-1$) / 4)(\mathrm{j}:=1,2,3$, 4) to a phase modulation wave received by this receiving means, As opposed to a phase modulation wave received by first integrating means that integrates with an output of this first multiplication means, and the aforementioned receiving means, A second multiplication means which multiplies $\mathrm{Dj}=\mathrm{B} \sin$ (omega ct+pi(j $\left.\left.\mathrm{j}_{2}-1\right) / 4\right)\left(\mathrm{j}_{2}=1,2\right.$, $\left.3,4, j_{1}!=j_{2}\right)$, A selection means which chooses a demodulated signal with a larger output among demodulated signals outputted from a second integrating means which integrates with an output of this second multiplication means, and said first integrating means and said second integrating means.
[Claim 11]The wireless communication system comprising according to claim 8: A receiving means which receives the aforementioned phase modulation wave in receiving the aforementioned phase modulation wave and restoring to this received phase modulation wave.
$\mathrm{Dj}=\mathrm{B} \sin \left(\right.$ omega $\left.\mathrm{ct}+\mathrm{pi}\left(\mathrm{j}_{1}-1\right) / 4\right)\left(\mathrm{j}_{1}=1,2,3,4\right)$, And a selection means which chooses one side of $\mathrm{Dj}=\mathrm{B} \sin \left(\right.$ omega $\left.\mathrm{Ct}+\mathrm{pi}\left(\mathrm{j}_{2}-1\right) / 4\right)\left(\mathrm{j}_{2}=1,2,3,4, \mathrm{j}_{1}!=\mathrm{j}_{2}\right)$, A multiplication means which multiplies a value with this selected selection means to a phase modulation wave received by the aforementioned receiving means, an integrating means which integrates with an output of this multiplication means, and a selectioncontrol means to control selection by the aforementioned selection means so that a demodulated signal outputted from this integrating means serves as the maximum.
[Claim 12]The wireless communication system comprising according to claim 10: A delay means which delays a demodulated signal with the aforementioned selected selection means.

A multiplication means which multiplies a demodulated signal with the aforementioned selected selection means, and a demodulated signal delayed by the aforementioned delay means, and a demodulated data creating means which integrates with and binary-izes an output of this multiplication means, and generates demodulated data.
[Claim 13]The wireless communication system comprising according to claim 11:

A delay means which delays a demodulated signal outputted from the aforementioned integrating means.
A multiplication means by which even an output multiplies $* * * * * * * * * *$ and a demodulated signal delayed by the aforementioned delay means from the aforementioned integrating means, and a demodulated data creating means which integrates with and binary-izes an output of this multiplication means, and generates demodulated data.
[Claim 14]Claim 1 adding a subcarrier of data-communications frequency to data transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment, Claim 2, Claim 3, or the wireless communication system according to claim 4.
[Claim 15]A receiving means which receives data in which the aforementioned subcarrier was added, and a phase synchronization means which takes phase simulation, A switching means which connects or cuts a clock generating means which generates a clock, and the aforementioned phase synchronization means and the aforementioned clock generating means, By a subcarrier added to a reception signal which possessed a reception signal received by the aforementioned receiving means and a multiplication means which multiplies an output of the aforementioned clock generating means, and an integrating means which integrates with an output of this multiplication means, and was received by the aforementioned receiving means, When a synchronization of the aforementioned phase synchronization means and this reception signal is taken and a synchronization is able to be taken, phase simulation timing is transmitted from this phase synchronization means to the aforementioned clock generating means, The wireless communication system according to claim 14 cutting connection between the aforementioned phase synchronization means and a clock generating means by the aforementioned switching means at this time. [Claim 16] When data communications of one frame are completed, by a subcarrier which connected the aforementioned phase synchronization means and a clock generating means by the aforementioned switching means, and was again added to a reception signal received by the aforementioned receiving means, When a synchronization of the aforementioned phase synchronization means and this reception signal is taken and a synchronization is able to be taken, phase simulation timing is
transmitted from this phase synchronization means to the aforementioned clock generating means, The wireless communication system according to claim 15 cutting connection between the aforementioned phase synchronization means and a clock generating means by the aforementioned switching means at this time.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[0001]
[Field of the Invention]The wireless communication media (wireless card) of the noncell type which has a wireless communication function which can carry this invention, for example, While supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, it is related with the wireless communication system provided with these wireless communication media and the radio communication equipment (radio card reader writer) which performs transmission and reception of data.
[0002]
[Description of the Prior Art]In recent years, the wireless communication system using a wireless card and a radio card reader writer is spreading through society. For example, it is being used for the system for which the monetary value of the system of an automatic wicket, a prepaid card or a banking card, etc. is exchanged.
[0003]In the system of the automatic wicket using a wireless communication system, Transpose a ticket medium to a wireless card and it mounts the function of a radio card reader writer on an automatic ticket gate machine, Information (information on a getting-on-and-off station etc.) required for the ticket gate stored in the wireless card as a ticket medium is read with an automatic ticket gate machine by a wireless communication, and collecting processing is performed based on this read information. [0004]Many of conventional wireless communication systems serve as frequency which differs in the data-communications frequency transmitted to a wireless card, and the data-communications frequency transmitted from a wireless card to a radio card reader writer from the radio card reader writer. It is ${ }^{* * * * * * * * ~ s o ~ t h a t ~ a ~ p o w e r ~ s u p p l y ~ m a y ~ b e ~}$ supplied from a radio card reader writer to a wireless card by the data-communications frequency transmitted from a radio card reader writer to a wireless card. That is, data-
communications frequency serves as the frequency for current supply. The clock for data demodulation is reproduced from the weak data transmitted from the wireless card when restoring to the data transmitted from the wireless card in a radio card reader writer, and the recovery of data is $* * * * * * * *$ by this reproduced clock. In addition, an NRZ code, a Manchester code, etc. are used for coding of data. [0005]
[Problem to be solved by the invention]It is necessary to read the information on a wireless card in an instant by a radio card reader writer, and to perform collecting processing promptly in the system of the automatic wicket using a wireless communication system which was described above. Therefore, in order to operate a wireless communication system in the state where it was stabilized, it becomes important to synchronize the clock of a radio card reader writer and a wireless card and to make it restore to commo data by a low error rate. It is in the power supply which operates a wireless card, and the state stabilized in the clock, and it becomes important to make supply possible easily.
[0006]However, in the above-mentioned conventional wireless communication system, there was a problem in realization of the stable radio card system plentifully triggered by the following.
[0007]In a radio card reader writer, since the clock for data demodulation is reproduced from the weak data transmitted from a wireless card when restoring to the data transmitted from the wireless card, the clock reproduced may become unstable. The more the communication range between a radio card reader writer and a wireless card becomes long especially, the more such a situation appears notably. If the clock for data demodulation becomes unstable, when the data to which it restores is coded by an NRZ code or Manchester code, there is a possibility that the data to which it restores may be reversed.
[0008]The object of this invention is to accomplish in view of a situation which was described above, and to provide the stable radio card system which can restore to data by a low error rate.
[0009]
[Means for solving problem]In order to solve an aforementioned problem and to achieve the object, the wireless communication system of this invention is constituted as follows.
[0010](1) Invention of the Claim 1 description is provided with the following. Wireless communication media of a non-cell type which has a wireless communication function.

In the wireless communication system provided with these wireless communication media and the radio communication equipment which performs transmission and reception of data while supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, A power supply means which supplies electric power from the aforementioned radio communication equipment with first communication frequency to the aforementioned wireless communication media.

A data sending means which transmits data from the aforementioned radio communication equipment with above-mentioned first communication frequency and different second communication frequency to the aforementioned wireless communication media.
[0011](2) Invention of the Claim 2 description is provided with the following. Wireless communication media of a non-cell type which has a wireless communication function.

In the wireless communication system provided with these wireless communication media and the radio communication equipment which performs transmission and reception of data while supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, A power supply means which supplies electric power from the aforementioned radio communication equipment with first communication frequency to the aforementioned wireless communication media.

An electric power receiving means which receives electric power supplied by this power supply means.
A data receiving means which receives data transmitted by a data sending means which transmits data with above-mentioned first communication frequency and different second communication frequency to the aforementioned wireless communication media, and this data sending means from the aforementioned radio communication equipment.

Page 201 of 1385

[0012](3) Invention of the Claim 3 description is provided with the following. Wireless communication media of a non-cell type which has a wireless communication function.

In the wireless communication system provided with these wireless communication media and the radio communication equipment which performs transmission and reception of data while supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, A power supply means to which the first communication frequency Fa and the second communication frequency Fb fill $\mathrm{Fa}=\mathrm{Fb} / \mathrm{K}(1<\mathrm{K}$: positive number), and supply electric power from the aforementioned radio communication equipment with the abovementioned first communication frequency Fa to the aforementioned wireless communication media.

An electric power receiving means which receives electric power supplied by this power supply means.

A data sending means which transmits data from the aforementioned radio communication equipment with the above-mentioned second communication frequency Fb to the aforementioned wireless communication media, and a data receiving means which receives data transmitted by this data sending means.
[0013](4) Invention of the Claim 4 description is provided with the following. Wireless communication media of a non-cell type which has a wireless communication function.

In the wireless communication system provided with these wireless communication media and the radio communication equipment which performs transmission and reception of data while supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, The first communication frequency Fa and the second communication frequency Fb fill $\mathrm{Fa}=\mathrm{Fb} / \mathrm{K}$ ($1<\mathrm{K}$: positive number), this first communication frequency Fa -- Fa $--<--<$ (Kc/16L) -- a power supply means which fills (C: the velocity-of-light [m/s] L:maximum communication range [m]), and supplies electric power from the aforementioned radio communication equipment with the above-mentioned first communication frequency Fa to the aforementioned wireless communication media.

An electric power receiving means which receives electric power supplied by this power
supply means.
A data sending means which transmits data from the aforementioned radio communication equipment with the above-mentioned second communication frequency Fb to the aforementioned wireless communication media, and a data receiving means which receives data transmitted by this data sending means.
[0014](5) Invention of the Claim 5 description is provided with the following. Wireless communication media of a non-cell type which has a wireless communication function.

In the wireless communication system provided with these wireless communication media and the radio communication equipment which performs transmission and reception of data while supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, A first encoding means that assigns first data to first communication frequency transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.
A second encoding means which assigns second data to above-mentioned first communication frequency transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment, and different second communication frequency.
[0015](6) Invention of the Claim 6 description is provided with the following. Wireless communication media of a non-cell type which has a wireless communication function.

In the wireless communication system provided with these wireless communication media and the radio communication equipment which performs transmission and reception of data while supplying electric power to these wireless communication media by the wireless communication between these wireless communication media, First communication frequency Fa_{m} fills $\mathrm{Fa}_{\mathrm{m}}=\mathrm{Fa} / \mathrm{m}$ ($1<\mathrm{m}$: integer), A first encoding means that assigns first data to first communication frequency Fa_{m} that second communication frequency $F a_{n}$ fills $F a_{n}=F a / n$ ($a 1<n$ integer, $n!=m$), and is transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.

A second encoding means which assigns second data to second communication frequency $F a_{n}$ transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.
[0016](7) Invention of the Claim 7 description is provided with the following. It adds to Claim 1, Claim 2, Claim 3, or the composition according to claim 4, First communication frequency Fa_{m} fills $\mathrm{Fa}_{\mathrm{m}}=\mathrm{Fa} / \mathrm{m}$ ($1<\mathrm{m}$: integer), A first encoding means that assigns first data to first communication frequency Fa m_{m} that second communication frequency $F a_{n}$ fills $F a_{n}=F a / n$ ($a 1<n$ integer, $n!=m$), and is transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.

A second encoding means which assigns second data to second communication frequency Fa_{n} transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment.
[0017](8) invention of the Claim 8 description -- Claim 6 or the composition according to claim 7 -- in addition, The phase modulation of above-mentioned first communication frequency Fa_{m} to which the above-mentioned first data was assigned, and the above-mentioned second communication frequency Fa Fa_{n} to which the abovementioned second data was assigned is carried out with the communication frequency Fa, This phase modulation wave by which the phase modulation was carried out is transmitted from the aforementioned communication media to the aforementioned radio communication equipment.
[0018](9) Invention of the Claim 9 description is provided with the following. A receiving means which receives the aforementioned phase modulation wave in in addition to the composition according to claim 8 receiving the aforementioned phase modulation wave and restoring to this received phase modulation wave.

A multiplication means which multiplies $\mathrm{Dj}=\mathrm{B} \sin$ (omega ct+pi(j-1)/4) $(j=1,2,3,4$) to a phase modulation wave received by this receiving means.

An integrating means which integrates with an output of this multiplication means.
A selection means which chooses a value of j from which a demodulated signal outputted from this integrating means serves as the maximum.
[0019](10) Invention of the Claim 10 description is provided with the following.
A receiving means which receives the aforementioned phase modulation wave in in addition to the composition according to claim 8 receiving the aforementioned phase modulation wave and restoring to this received phase modulation wave.
A first multiplication means that multiplies $D j=B \sin$ (omega ct $\left.+\mathrm{pi}\left(\mathrm{j}_{1}-1\right) / 4\right)\left(\mathrm{j}_{2}=1,2,3\right.$, 4) to a phase modulation wave received by this receiving means.

A first integrating means that integrates with an output of this first multiplication means.

The second multiplication means which multiplies $\mathrm{Dj}=\mathrm{B} \sin$ (omega $\mathrm{ct}+\mathrm{pi}\left(\mathrm{j}_{2}-1\right) / 4$) $\left(j_{2}=1,2,3,4, j_{1}!=j_{2}\right)$ to the phase modulation wave received by the aforementioned receiving means, A selection means which chooses a demodulated signal with a larger output among demodulated signals outputted from a second integrating means which integrates with an output of this second multiplication means, and above-mentioned first integrating means and above-mentioned second integrating means.
[0020](11) Invention of the Claim 11 description is provided with the following. A receiving means which receives the aforementioned phase modulation wave in in addition to the composition according to claim 8 receiving the aforementioned phase modulation wave and restoring to this received phase modulation wave.
A selection means which chooses either $\mathrm{Dj}=\mathrm{B} \sin$ (omega $\left.\mathrm{ct}+\mathrm{pi}\left(\mathrm{j}_{1}-1\right) / 4\right)\left(\mathrm{j}_{1}=1,2,3,4\right)$ or $\mathrm{Dj}=\mathrm{B} \sin$ (omega $\left.c t+\mathrm{pi}\left(\mathrm{j}_{2}-1\right) / 4\right) .\left(\mathrm{j}_{2}=1,2,3,4, \mathrm{j}_{1}!=\mathrm{j}_{2}\right)$.

A multiplication means which multiplies a value with this selected selection means to a phase modulation wave received by the aforementioned receiving means.
An integrating means which integrates with an output of this multiplication means, and a selection-control means to control selection by the aforementioned selection means so that a demodulated signal outputted from this integrating means serves as the maximum.
[0021](12) Invention of the Claim 12 description is provided with the following.
A delay means which delays a demodulated signal with the aforementioned selected selection means in addition to the composition according to claim 10.

A multiplication means which multiplies a demodulated signal with the aforementioned selected selection means, and a demodulated signal delayed by the aforementioned
delay means.
A demodulated data creating means which integrates with and binary-izes an output of this multiplication means, and generates demodulated data.
[0022](13) Invention of the Claim 13 description is provided with the following.
A delay means which delays a demodulated signal outputted from the aforementioned integrating means in addition to the composition according to claim 11.

A multiplication means by which even an output multiplies ********** and a $^{\text {and }}$ demodulated signal delayed by the aforementioned delay means from the aforementioned integrating means.
A demodulated data creating means which integrates with and binary-izes an output of this multiplication means, and generates demodulated data.
[0023](14) invention of the Claim 14 description -- Claim 1, Claim 2, Claim 3, or the composition according to claim 4 -- in addition, add the subcarrier of datacommunications frequency to the data transmitted from the aforementioned wireless communication media to the aforementioned radio communication equipment. [0024]Invention of the Claim 15 description in the composition according to claim 14 (15) In addition, the receiving means which receives the data in which the aforementioned subcarrier was added, The phase synchronization means which takes phase simulation, and the clock generating means which generates a clock, The switching means which connects or cuts the aforementioned phase synchronization means and the aforementioned clock generating means, By the subcarrier added to the reception signal which possessed the reception signal received by the aforementioned receiving means and the multiplication means which multiplies the output of the aforementioned clock generating means, and the integrating means which integrates with the output of this multiplication means, and was received by the aforementioned receiving means, When the synchronization of the aforementioned phase synchronization means and this reception signal is taken and a synchronization is able to be taken, phase simulation timing is transmitted from this phase synchronization means to the aforementioned clock generating means, and the aforementioned switching means cuts connection between the aforementioned phase synchronization means and a clock generating means at this time.
[0025](16) Invention of the Claim 16 description in the composition according to claim 15 in addition, when the data communications of one frame are completed, By the subcarrier which connected the aforementioned phase synchronization means and the clock generating means by the aforementioned switching means, and was again added to the reception signal received by the aforementioned receiving means, When the synchronization of the aforementioned phase synchronization means and this reception signal is taken and a synchronization is able to be taken, phase simulation timing is transmitted from this phase synchronization means to the aforementioned clock generating means, and the aforementioned switching means cuts connection between the aforementioned phase synchronization means and a clock generating means at this time.
[0026]
[Mode for carrying out the invention] Hereinafter, with reference to Drawings, it describes about this embodiment of the invention.
[0027]Fig. 1 is the figure showing the outline of the wireless communication system of this invention.
[0028]As shown in Fig.1, the radio card reader writer 100 and the wireless card 200 which have the antenna section 102 are provided by the wireless communication system of this invention. It shall be connected with the coaxial cable or the radio card reader writer 100 and the reader/writer antenna 102 shall be unified.
[0029]The radio card reader writer 100 shall operate around the center of the clock of the frequency fp. This radio card reader writer 100 transmits data by a datacommunications wave (frequency fd) while transmitting electric power by a transfer-ofpower wave (frequency fp) to the wireless card 200. [0030]These frequency fp and the frequency fd shall be set up to fill the relation of $\mathrm{fd}=\mathrm{fp} / \mathrm{k}(1<\mathrm{k}$: integer). furthermore -- if a communication range is set to L and the velocity of light is set to $\mathrm{c}-\mathrm{fp}-\mathrm{fp}--<--<(\mathrm{kc} / 16 \mathrm{~L})$-- a relation shall also be filled [0031]Thereby, it becomes possible to operate the wireless card 200 around the center of the clock frequency (frequency fp) of the radio card reader writer 100 . Therefore, it becomes unnecessary to make a PLL circuit build in, and since simplification of the circuit configuration of the wireless card 200 is attained and the consumed electric current becomes low, 1 chip making becomes easy especially in the circuit in the wireless card 200.
[0032]Then, with reference to Fig.2, the outline of the circuit configuration of the radio card reader writer 100 is described. Fig. 2 is the figure showing the outline of the circuit configuration of the radio card reader writer 100 .
[0033]As shown in Fig.2, to the radio card reader writer 100, As the antenna section 102, the electric power driver 103, the clock generation part 104, the modulation part 105 , the demodulation section 106 , the transceiver change-over switch 107 , the data processing part 108, and a power supply means. The data-communications antenna 110 as the antenna 109 for $* * * * * * * * * *$, a data sending means, and a receiving means, etc. are provided.
[0034]Two antennas, the antenna 109 for transfer of power for transfer of power and the antenna 110 for data communications for data communications, are provided by the antenna section 102. The transceiver change-over switch 107 switches a transmitting mode and receiving mode, the modulation part 105 and the antenna 110 for data communications are connected at the time of a transmitting mode, and the demodulation section 106 and the antenna 110 for data communications are connected at the time of receiving mode.
[0035]At the time of transfer of power, the clock of a transfer-of-power wave is generated by the clock generation part 104, it is amplified by the electric power driver 103, and the antenna 109 for transfer of power emanates in the air. At this time, the frequency of the transfer-of-power wave emitted in the air is the frequency fp. [0036]In data transmission, a clock required for modulation data is generated by the clock generation part 104, this generated clock is supplied to the data processing part 108 , and data is generated in the data processing part 108 . The generated data is sent to the modulation part 105, and is modulated by the modulation clock supplied from the clock generation part 104. Thus, the modulated modulation data passes along the transceiver change-over switch 107 set as the transmitting mode, and is emitted in the air from the antenna 110 for data communications. At this time, the frequency of the data-communications wave emitted in the air is the frequency fd .
[0037]In data receiving, the modulated wave received from the antenna 110 for data communications passes along the transceiver change-over switch 107 set as receiving mode, and is input into the demodulation section 106. In the demodulation section 106 , a recovery is performed by the demodulation clock supplied from the clock generation part 104, the demodulated data to which it restored is input into the data
processing part 108, and data processing is performed.
[0038]Then, with reference to Fig.3, the outline of the circuit configuration of the wireless card 200 is described. Fig. 3 is the figure showing the outline of the circuit configuration of the wireless card 200.
[0039]As shown in Fig.3, the rectification part 203, the electric power generation part 204, the clock generation part 205, the transceiver change-over switch 207, the 1st, the modulation part 208 as a second encoding means, the demodulation section 209, the data processing part 210 , the antenna section 211 , etc. are provided by the wireless card 200.
[0040]Two antennas, the electric power receiving antenna 202 as an electric power receiving means and the antenna 206 for data communications as a data receiving means, are provided by the antenna section 211 . The transceiver change-over switch 207 switches a transmitting mode and receiving mode, the modulation part 208 and the antenna 206 for data communications are connected at the time of a transmitting mode, and the demodulation section 209 and the antenna 206 for data communications are connected at the time of receiving mode.
[0041]The transfer-of-power wave (frequency fp) transmitted from the radio card reader writer 100 is received by the antenna 206 for data communications, and is input into the rectification part 203 via the transceiver change-over switch 207 set as receiving mode. The transfer-of-power wave rectified by the rectification part 203 is input into the electric power generation part 204, and is incorporated as electric power. The transfer-of-power wave rectified by this rectification part 203 is input also into the clock generation part 205. In the clock generation part 205, the system clock of the wireless card 200 is generated from a transfer-of-power wave. Therefore, the wireless card 200 operates with the electric power generated by the electric power generation part 204, and the clock generated by the clock generation part 205. On the other hand, in data transmission, a clock required for modulation data is generated by the clock generation part 205, this generated clock is supplied to the data processing part 310, and data is generated in the data processing part 310. The generated data is sent to the modulation part 208, and is modulated by the modulation clock supplied from the clock generation part 205. Thus, the modulated modulation data passes along the transceiver change-over switch 207 set as the transmitting mode, and is emitted in the air by the antenna 206 for data communications. At this time, the frequency of the
data-communications wave emitted in the air turns into the frequency fd. [0042]In data receiving, the modulated wave received from the antenna 206 for data communications passes along the transceiver change-over switch 207 set as receiving mode, and is input into the demodulation section 209. In the demodulation section 209, a recovery is performed by the demodulation clock supplied from the clock generation part 205, the demodulated data to which it restored is input into the data processing part 210, and data processing is performed.
[0043]Then, with reference to Fig. 4 and Fig.5, it describes about the antenna in the antenna section of the radio card reader writer 100 and the wireless card 200 . outline **** of an antenna [in / in Fig. 4 / the antenna section of the radio card reader writer 100 and the wireless card 200] -- it is the figure showing the 1 . outline ${ }^{* * * *}$ of an antenna [in / in Fig. 5 / the antenna section of the radio card reader writer 100 and the wireless card 200] -- it is the figure showing the 2. As shown in Fig.4, the periphery antenna 301 and the inner circumference antenna 302 are provided, the periphery antenna 301 is assigned to the antenna for transfer of power, or the antenna for data communications, and the inner circumference antenna 302 is assigned to the antenna for data communications, or the antenna for transfer of power at the antenna sections 102 and 211.
[0044]As shown in Fig.5, the periphery antenna 311 and the inner circumference antenna 312 are provided, the periphery antenna 311 is assigned to the antenna for transfer of power, or the antenna for data communications, and the inner circumference antenna 312 is assigned to the antenna for data communications, or the antenna for transfer of power at the antenna sections 102 and 211.
[0045]The above-mentioned composition of an antenna section is an example, and it is possible to pile up a part of antenna 109 for transfer of power or 202, and the antenna 110 for data communications or 206 , or to detach mutual distance, and to build the optimal transmitting and receiving environment.
[0046]Then, with reference to Fig.6, it describes about the coding and modulation of data in the wireless card 200. Fig. 6 is a wave form chart for describing the coding and modulation of data in the wireless card 200.
[0047]According to this embodiment, in coding of the send data transmitted from the wireless card 200, $\mathrm{fd}_{\mathrm{n}}=\mathrm{fd} / \mathrm{n}(1<\mathrm{n}$: an integer, $\mathrm{n}!=\mathrm{m})$ shall be assigned to the frequency of $\mathrm{fd}_{\mathrm{m}}=\mathrm{fd} / \mathrm{m}$ ($1<\mathrm{m}$: integer), and data " 0 " to data "1."
[0048]For example, if $m=8$ and $n=12$, the data $s 1$ shown in Fig. 6 turns into the coded data $s 2$ by coding. With the modulation clock $s 3$, the phase modulation of the coded data $s 2$ is carried out, and it serves as the modulating signal s4. The radio card reader writer 100 restores to the waveform of the modulating signal s4 transmitted from the wireless card 200, and it is necessary to obtain the data s1.
[0049]Then, with reference to Fig.7, it describes about the recovery of the data in the radio card reader writer 100 . Fig. 7 is a wave form chart for describing the recovery of the data in the radio card reader writer 100.
[0050]Temporarily, the frequency fp of a transfer-of-power wave and the frequency fd of a data-communications cycle shall fill the relation between $f d=f p / 4(k=4)$. The master clock (frequency fp) s21, the modulation clock (frequency fp/4) s22, the data code s23, and the modulating signal s24 are shown in Fig.7. This modulating signal s24 is transmitted from the wireless card 200 . That is, the radio card reader writer 100 receives this modulating signal 524 , and restores to this received modulating signal s24.
[0051] Since it is the requisite that it is satisfied with this embodiment of $\mathrm{fp} \ll \mathrm{kc} / 16 \mathrm{~L}$ as mentioned above, it is thought that the phase of the master clock on the radio card reader writer 100 side and the master clock on the wireless card 200 side is substantially equal. However, if delay and the phase of a circuit are taken into consideration, it is not the same at all. Here, the state where delay and a phase were corrected is considered. About these delay and phases, it shall describe later. Since the demodulation clock on the radio card reader writer 100 side is 4 dividing of a master clock, four kinds of phase states of a demodulation clock are considered to received data $\{D j=B \sin ($ omega $c t+p i(j-1) / 4)(j=1,2,3,4)\}$. The 1 st phase states are the modulation clock 522 on the wireless card 200 side, and a waveform completely in phase. The 2 nd phase states are the waveforms of the demodulation clock 225 shifted $\mathrm{pi} / 4$ to the modulation clock s 22 . The 3rd is a waveform of the demodulation clock s27 with which phase states deviated pi/2 to the modulation clock $\mathbf{s} 22$. The 4 th phase states are the waveforms shifted $3 \mathrm{pi} / 4$ to the modulation clock s22.
[0052]Using each demodulation clock, the case which restores to the modulating signal $s 24$ is considered. If the modulating signal s24 gets over with the modulation clock s22, naturally the data code $s 23$ will be obtained as a demodulation output. If the modulating signal s24 gets over with the demodulation clock $s 25$, the multiplication

Page 211 of 1385

output s26 of the output which multiplied the modulating signal s24 and the demodulation clock $\$ 25$ will be obtained as a demodulation output. However, this multiplication output s25 is data on the wireless card 200 side, and completely different data. If the modulating signal s24 gets over with the demodulation clock $s 27$, the output multiplication output s28 which multiplied the modulating signal s24 and the demodulation clock 527 will be obtained as a demodulation output. This multiplication output $s 28$ is the data which reversed the data code $s 23$.
[0053]In this embodiment, since data coding which was described by Fig. 6 is performed, " 0 " of data and " 1 " can be judged by a frequency component. Therefore, the multiplication output s28 is the same as that of the data code s23 in data. That is, when the demodulation clock of multiplication output 525 state is used, it is saying that demodulated data is not obtained.
[0054]Then, with reference to Fig.8, it describes about the demodulation section 106 of the radio card reader writer 100, and the demodulation section 209 of the wireless card 200. Fig. 8 is the figure showing 1 of $* * * * * * * * * *$ of the demodulation section 106 of the radio card reader writer 100, and the demodulation section 209 of the wireless card 200.
[0055]As described by Fig. 2 and Fig.3, the modulated wave received by the antenna 110 for data receiving or 206 is input into the demodulation section 106 or 209 via the transceiver change-over switch 107 set as receiving mode, or 207. The modulation input into this demodulation section 106 or 209 passes the matching network 402 , the filter 403, and the amplifier 404, and is amplified even to the level to which it can restore.
[0056]On the other hand, in the clock generation part 405, a demodulation clock which serves as phase relation of the multiplication output s 25 described by Fig. 7 and the multiplication output s27 is generated (here, the multiplication output s25 and the multiplication output $s 27$ shall be generated). The multiplication output $s 25$ generated by the clock generation part 405 is input into the 1st multiplier, and the multiplication output s27 is input into the 2 nd multiplier 407 . The modulating signal outputted from the amplifier 404 is input into these 1st multipliers 406 and the 2 nd multiplier 407. That is, the multiplication output s25 and the modulating signal outputted from the amplifier 404 are multiplied by the 1st multiplier 406. The multiplication output s27 and the modulating signal outputted from the amplifier 404 are multiplied by the $2 n d$

Page 212 of 1385

multiplier 407.
[0057]The output of the 1st multiplier 406 is input into the 1st integrator 408, and the output of the 2 nd multiplier 407 is input into the 2 nd integrator 409 . The suitable constant for each is set to these 1st integrators 408 and the 2 nd integrator 409, and a difference arises from these 1st integrators 408 and the 2nd integrator 409 to an output level. The difference of this output level is judged by the level determination part 410. Based on the level decision signal outputted from this level determination part 410, the circuit changeover switch 411 as a selection means is switched.
[0058]That is, when judged with the output of the 1st integrator 408 being larger than the output of the 2 nd integrator 409 by the level determination part 410 , The circuit changeover switch 411 is switched by the level decision signal outputted from the level determination part 410 at this time, and the 1st integrator 408 and the operation circuit 600 mentioned below are connected. On the contrary, when judged with the output of the 2 nd integrator 409 being larger than the output of the 1st integrator 408 by the level determination part 410, The circuit changeover switch 411 is switched by the level decision signal outputted from the level determination part 410 at this time, and the 2 nd integrator 409 and the operation circuit 600 mentioned below are connected.
[0059]Thus, in the radio card reader writer 100, it can restore to the modulating signal transmitted from the wireless card 200, and can acquire the signal by which data coding was carried out. Although described in this embodiment about the case which chooses and uses the demodulation clock s25 shifted pi/4 and the demodulation clock s 27 shifted $\mathrm{pi} / 4$ ($=\mathrm{pi} / 2$), it may be made to use $\mathrm{pi}, \mathrm{pi} / 4,2 \mathrm{pi} / 4$ ($=\mathrm{pi} / 2$), and the demodulation clock shifted $3 \mathrm{pi} / 4$, choosing.
[0060]Then, with reference to Fig.9, it describes about the demodulation section 106 of the radio card reader writer 100, and the demodulation section 209 of the wireless card 200. Fig. 9 is the figure showing 2 of $* * * * * * * * * *$ of the demodulation section 106 of the radio card reader writer 100, and the demodulation section 209 of the wireless card 200.
[0061]As described by Fig. 2 and Fig.3, the modulated wave received by the antenna 110 for data receiving or 206 is input into the demodulation section 106 or 209 via the transceiver change-over switch 107 set as receiving mode, or 207. The modulation input into this demodulation section 106 or 209 passes the matching network 502, the
filter 503, and the amplifier 504, and is amplified even to the level to which it can restore.
[0062]On the other hand, in the clock generation part 505, a demodulation clock which serves as phase relation of the multiplication output s25 described by Fig. 7 and the multiplication output s27 is generated (here, the multiplication output s25 and the multiplication output $s 27$ shall be generated). The multiplication output $s 25$ and the multiplication output $\$ 27$ which were generated by the clock generation part 405 are input into the multiplier 506 according to the change of the clock change-over switch 507 as a selection means. That is, the clock change-over switch 507 switches the multiplication output s25 and the multiplication output s27 which are input into the multiplier 506. The control signal which controls the change of this clock change-over switch 507 presupposes that the clock change-over switch 507 is supplied a certain cycle. The modulating signal outputted from the amplifier 504 is input into the multiplier 506. That is, the multiplication output s25 or the multiplication output s27, and the modulating signal outputted from the amplifier 404 are multiplied by the multiplier 506.
[0063]The output of the multiplier 506 is input into the integrator 508. The output level of this integrator 508 is judged by the level determination part 509 as a selectioncontrol means, and the clock change-over switch 507 is switched based on the level decision signal outputted from this level determination part 509.
[0064]That is, the output level of the integrator 508 when the multiplication output s 25 is supplied to the multiplier 506 in the level determination part 509, When judged with it being larger than the output level of the integrator 508 when the multiplication output s27 is supplied to the multiplier 506, Change fixing of the circuit changeover switch 411 is carried out by the level decision signal outputted from the level determination part 410 at this time, and the multiplication output s25 comes to be supplied to the multiplier 506. On the contrary. In the level determination part 509, the output level of the integrator 508 when the multiplication output s27 is supplied to the multiplier 506, When judged with it being larger than the output level of the integrator 508 when the multiplication output s25 is supplied to the multiplier 506, Change fixing of the circuit changeover switch 411 is carried out by the level decision signal outputted from the level determination part 410 at this time, and the multiplication output s27 comes to be supplied to the multiplier 506. The output of the integrator 508 is input

Page 214 of 1385

into the operation circuit 600 mentioned below. [0065]Thus, in the radio card reader writer 100, it can restore to the modulating signal transmitted from the wireless card 200, and can acquire the signal by which data coding was carried out. Although described in this embodiment about the case which chooses and uses the demodulation clock s25 shifted pi/4 and the demodulation clock s 27 shifted $\mathrm{pi} / 4$ ($=\mathrm{pi} / 2$), it may be made to use $\mathrm{pi}, \mathrm{pi} / 4,2 \mathrm{pi} / 4$ ($=\mathrm{pi} / 2$), and the demodulation clock shifted $3 \mathrm{pi} / 4$, choosing.
[0066]Then, with reference to Fig.10, it describes about the waveform of the signal by which data coding was carried out by the radio card reader writer 100. Fig. 10 is a wave form chart for describing the waveform of the signal by which data coding was carried out by the radio card reader writer 100.
[0067]In Fig.10, By the decoding parts 106 and 209 shown in the data s31, Fig.8, and Fig. 9 on the wireless card 200 side. The demodulated data code s32 to which it restored, the 1-bit delay output s 33 by which 1 bit of this demodulated data code s32 was delayed, the demodulated data code s32, the multiplication output 534 of a 1-bit delay output, the integrated output s35 of the multiplication output s34, and the binary-ized output s36 of the integrated output 535 are shown. Therefore, if the abovementioned process is followed, restoring to the data of the wireless card 200 is possible.
[0068]Then, with reference to Fig.11, it describes about the operation circuit 600 which performs waveform operation shown in Fig.10. Fig. 11 is the figure showing the schematic structure of the operation circuit 600.
[0069]The demodulated data code outputted to the 1 bit delay circuit 601 as a delay means shown in Fig. 11 from the integrator 508 shown in the circuit changeover switch 411 shown in Fig. 8 or Fig. 9 is input. The output of this 1 bit delay circuit 601 is input into the multiplier 602. The direct entry of the demodulated data code input into the 1 bit delay circuit 601 is carried out to this multiplier 602. That is, this multiplier 602 multiplies the demodulated data code delayed 1 bit and the demodulated data code which is not delayed.
[0070]The output of this multiplier 602 is input into the integrator 603, and the output of this integrator is input into the binarization circuit 604 as a demodulated data creating means. Decoding of data coding is attained by reversing the output of this binarization circuit 604.

Page 215 of 1385

[0071]Then, with reference to Fig.12, it describes about the outline of the data configuration transmitted from the wireless card 200. Fig. 12 is the figure showing the outline of the data configuration transmitted from the wireless card 200. [0072]As shown in Fig.12, the demodulation clock synchronous data D1 and the data D2 are contained in the data transmitted from the wireless card 200. The demodulation clock synchronous data D1 is a synchronized signal required for clock selection. Generally, it is a subcarrier which has not required modulation. The data D2 is data according to a predetermined protocol.
[0073]Then, with reference to Fig.13, it describes about the demodulation clock generated by the demodulation section (it describes in Fig.14) which uses a phase synchronization circuit. Fig. 13 is a wave form chart for describing the demodulation clock generated by the demodulation section which uses a phase synchronization circuit. The received waveforms s 51 , the phase synchronization circuit clock s 52 , the lock signal s53, the end-of-data signal s54, the phase simulation circuit changeover switch s55, and the demodulation clock 556 are shown in Fig. 13.
[0074]At the head of the data of the received waveforms s51, as described by Fig.12, the subcarrier is added. The phase synchronization circuit clock 552 is a clock of the phase synchronization circuit mentioned below. When this phase synchronization circuit is able to take the received waveforms s51 and a synchronization, it generates the lock signal s53. When one frame of data is completed, the data processing part 108 or 210 uses the lock signal s53 and the end-of-data signal s54 for the waveform of the end-ofdata signal s54, and it generates the phase simulation circuit changeover switch s55 which controls operation of a phase synchronization circuit. Here, the synchronization of the demodulation clock $s 56$ is united by the signal of the lock signal s53. If the phase simulation circuit changeover switch $s 55$ is set to " 0 ", a phase synchronization circuit will be separated from a clock generation part, and the demodulation clock 556 will continue being generated with the above-mentioned synchronized signal. The phase simulation circuit changeover switch s55 is set to "1" by the signal of the end-of-data signal s54, and a phase synchronization circuit is again connected to a clock generation part.
[0075]Then, with reference to Fig.14, it describes about the demodulation section which uses a phase synchronization circuit. Fig. 14 is the figure showing the schematic structure of the demodulation sections 106 and 209 which use a phase synchronization
circuit.
[0076]As described by Fig. 2 and Fig.3, the modulated wave received by the antenna 110 for data receiving or 206 is input into the demodulation section 106 or 209 via the transceiver change-over switch 107 set as receiving mode, or 207. The modulation input into this demodulation section 106 or 209 passes the matching network 702 , the filter 703 , and the amplifier 704 , and is amplified even to the level to which it can restore.
[0077]On the other hand, the phase synchronization circuit 705 as a phase synchronization means generates the synchronized signal in sync with the modulating signal outputted from the amplifier 704. This generated synchronized signal passes the phase simulation circuit changeover switch 710 as a switching means, and is transmited to the clock generation part 706 as a clock generating means. The phase simulation circuit changeover switch 710 connects the clock generation part 706 and the phase synchronization circuit 705 at the time of waveform" 1 " of the phase simulation circuit changeover switch s55, and the clock generation part 706 and the phase synchronization circuit 705 are separated at the time of waveform"0" of the phase simulation circuit changeover switch s55. [0078] When the demodulation clock of the modulating signal outputted from the amplifier 704 and the phase synchronization circuit 705 synchronizes, a phase simulation circuit changeover switch serves as OFF, and the synchronous clock generated by the clock generation part 706 is supplied to the multiplier 707 as a demodulation clock. The output of the multiplier 707 is input into the integrator 708, and the output of this integrator 708 serves as demodulated data. After one frame of data is completed, the phase simulation circuit changeover switch 710 is set to ON , and the modulating signal again outputted from the amplifier 704 in the phase synchronization circuit 705 and the process of taking a synchronization are turned on. [0079]
[Effect of the Invention]According to this invention, the stable radio card system which can restore to data can be provided by a low error rate.
[0080]It is as follows when it describes specifically.
[0081]This invention sets up the transfer-of-power frequency fd and the datacommunications frequency fd to fill the relation of $\mathrm{fd}=\mathrm{fp} / \mathrm{k}$ ($1<\mathrm{k}$: integer), and -- to the velocity of light c and the communication range $L-\mathrm{fp}--<--<(\mathrm{kc} / 16 \mathrm{~L})$-- by setting

Page 217 of 1385

up fp to become, In the wireless communication between the radio card reader writer 100 and the wireless card 200, The phase contrast of the clock on the radio card reader writer 100 side and the clock on the wireless card 200 side becomes weak, It becomes usable as a system clock of a radio card system about the datacommunications frequency $f p$, and phase comparators, such as PLL, etc. become unnecessary and it can provide a wireless communication system easily. [0082] When performing data coding, to data "1" The frequency $[\mathrm{Hz}]$ of $\mathrm{fd}_{\mathrm{m}}=\mathrm{fd} / \mathrm{m}$ ($1<\mathrm{m}$: integer), By assigning the frequency $[\mathrm{Hz}]$ of $\mathrm{fd}_{\mathrm{n}}=\mathrm{fd} / \mathrm{n}(1<\mathrm{n}$: an integer, $\mathrm{n}!=\mathrm{m})$ to data " 0 ", it is possible to extract data as a frequency component, when performing data demodulation -- the time of a recovery -- a demodulated signal -- "1" and "0" -- it can get over, even if reversed, and a wireless communication system with a low error rate can be provided.
[0083]Prepare the $k / 2$ same demodulator circuit, and it receives received modulated wave $R=A \operatorname{sinomegat,}$ respectively $--D j=B \sin$ (omega $c t+p i(j-1) / 4)(j=1,2$, and --) Multiply $k / 2$ and it receives received modulated wave $R=A s i n o m e g a t ~ i n ~ t h e ~ m e t h o d ~ a n d ~$ the clock for a recovery of choosing the receiving circuit where the output which integrated with the output is the largest, respectively $-\mathrm{Dj}=\mathrm{B} \sin$ (omega $\mathrm{ct}+\mathrm{pi}(\mathrm{j}-1) / 4$) ($j=1,2$, and --) By preparing $k / 2$, multiplying by a certain time slot with a reception signal sequentially, choosing a demodulation clock with the largest output that integrated with the output, considering it as the demodulation clock of data demodulation, and taking the method of restoring to data, It can provide that receiving sensitivity is high without a PLL circuit, and there is a wireless communication system which can extend a communication range because a demodulation output makes the largest output the demodulation output that it can get over with the stable clock. [0084]By inputting into the filter of easy composition of having the constant which delayed 1 bit of written data coding as a method of converting to the data of an NRZ code, and was suitable for the data rate in the output, binary-izing the output and using it as demodulated data, That data changes with the delicate timing of a clock decreases.
[0085] When the synchronization of a phase synchronization circuit and a reception signal is taken by the subcarrier of a reception signal head and a synchronization is able to be taken, From a phase synchronization circuit, transmit phase simulation timing to a clock generation part, and further At this time. By connecting a phase
synchronization circuit to a clock generation part again, when a phase synchronization circuit and a clock generation part are separated, it restores henceforth to data with the clock of a clock generation part and the data communications of one frame are completed, It becomes possible to become possible to generate a demodulation clock stably also in complicated data coding which PLL does not lock, and to perform the stable data communications.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]
[Drawing 1]It is the figure showing the outline of the wireless communication system of this invention.
[Drawing 2]It is the figure showing the outline of the circuit configuration of the radio card reader writer shown in Fig. 1.
[Drawing 3]It is the figure showing the outline of the circuit configuration of the wireless card shown in Fig.1.
[Drawing 4]outline ${ }^{* * * *}$ of the antenna in the antenna section of a radio card reader writer and a wireless card -- it is the figure showing the 1.
[Drawing 5]outline ${ }^{* * * *}$ of the antenna in the antenna section of a radio card reader writer and a wireless card -- it is the figure showing the 2.
[Drawing 6]It is a wave form chart for describing the coding and modulation of data in a wireless card.
[Drawing 7]It is a wave form chart for describing the recovery of the data in a radio card reader writer.
[Drawing 8]It is the figure showing 1 of $* * * * * * * * * *$ of the demodulation section of a radio card reader writer, and the demodulation section of a wireless card.
[Drawing 9]It is the figure showing 2 of $* * * * * * * * * *$ of the demodulation section of a radio card reader writer, and the demodulation section of a wireless card.
[Drawing 10]It is a wave form chart for describing the waveform of the signal by which data coding was carried out by the radio card reader writer.
[Drawing 11]It is the figure showing the schematic structure of an operation circuit.
[Drawing 12] It is the figure showing the outline of the data configuration transmitted from a wireless card.

Page 219 of 1385

[Drawing 13] It is a wave form chart for describing the demodulation clock generated by the demodulation section which uses a phase synchronization circuit.
[Drawing 14]It is the figure showing the schematic structure of the demodulation section which uses a phase synchronization circuit.
[Explanations of letters or numerals]
100 -- Radio card reader writer
102 -- Antenna section
103 -- Electric power driver
104 -- Clock generation part
105 -- Modulation part
106 -- Demodulation section
107 -- Transceiver change-over switch
108 -- Data processing part
109 -- Antenna for transfer of power
110 -- Antenna for data communications
200 -- Wireless card
202 -- Electric power receiving antenna
203 -- Rectification part
204 -- Electric power generation part
205 -- Clock generation part
206 -- Antenna for data communications
207 -- Transceiver change-over switch
208 -- Modulation part
209 -- Demodulation section
210 -- Data processing part

（19）日本国特誰庁（J P）	（12）公 開特許公報（A）	（11）特評出原公開番号
		特開平10－282232

（54）【発明の名称】 無線通信システム
（57）【要約】
【課題】低い誤り率でデータの復調が可能な安定した無線カードシステムを提供すること。
【解決手段】無線通信機能を有する無䉓池式の無線涌信媒体と，この無線通信媒体との間の無䋦通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受信を行う無線通信装置とを備え た無線通信システムに括いて，前記無線通信装置から前記無線通信媒体に対して，第10）通信周波数により電力 を供給する電力供給手段（109）と，前記無線通信装
置から前記無線通信媒体に対して，前記第1の通信周波数と異なる第2の通信周波数によりデータを送信するデ一夕送信手段（110）とを具備している。

【特許請求の範囲】
【請求項1】無線通信機能を有する無電洮式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信煤体とデータの送受信を行う無線通信装置とを備え た無縮通信システムにおいて，
前記無線通信装置から前記無線通信媒体に対して，第1 の通信周波数により電力を供給する軗力倛給手段と，
前記無線通信装置から前記興線通信媒体に対して，前記第1の通信周波数と異なる第2の通信周波数によりデー 10夕を送信するデータ送信手段と，
を具備したことを特徴とする無線通信システム。
【請求項2】無線通信機能を有する無電池式の無線通信
媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにとの無線通信媒体とデータの送受信を行う無線通信装置とを備え た無線通信システムにおいて，
前記興線通信装置から前記無線通信媒体に対して，第1 の通信周波数により電力を供給する電力供給手段と， この電力供給手段により供給される電力を受け取る電力 20受取手段と，
前記無線通信装置から前記無線通信媒体に対して，前記第1の通信周波数と異なる第2の通信周波数によりデー タを送信するデータ送信手段と，
このデータ送信于段により送信されるデータを受け取る データ受取手段と，
を具備したくとを特徵とする無線通信システム。
【請求項3】無線通信機能を有する無電池式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受信を行う無線通信装惪とを備え た無線通信システムにするして，
第1の通信周波数 F a及で第2の通信周波数 Fb が，F $a=F b / K$（ $1<\mathrm{K}$ ：正数）を満たし，
前記無線通信装置から前記無線通信媒体に対して，前記第1 の通信夙波数Faにより電力を供給する電力供給手段と，
この電力供給手段により供給される電力を受け取る電力受取手段と，
前記無線通信装置から前記無線通信媒体に対して，剪記第2の通信周波数Fbによりデータを送信するデータ送信手段と，
このデータ送信手段により送信されるデータを受け取る データ受取手段と，
を具備したことを特徵とする無線通信システム。
【請求項4】無線通信機能を有する無電池式の無線通信
媒体と，この無線通信媒体との間の無線通信によりこの
無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受信を行う興線通信装置とを㣮え た無線通信システムに扑いて，

特開平10－282232 2
第 1 の通信周波数 Fa 及び第 2 0通信周波数 Fb が， F $a=F b / K(1<K: ~$ 正数）を㵎たし，
この第1の通信周波数Faが，Fa＜く（Kc／16
L）を満たし（C：光速 $[\mathrm{m} / \mathrm{s}]$ ， L ：最大通信距钢 ［m］），
前記無線通信装置から前記無線通信媒体に刘して，前記第10通信周波数Faにより電力を供給する電力供給手段と，
この電力供給手段により供給される電力を受け取る電力 0 受取手段と，

前記無線通信装置から前記無線通信媒体に対して，前記第2の通信周波数Fbによりデータを送信するデータ送信手段と，
このデータ送信手段により送信されるデータを受け取る データ受取手段と，
を具備したことを特徴とする無線通信システム。
【請求項5】無線通信機能を有する無電池式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に刘して電力を供給するとともにこの無線通信媒体とデータの送受信を行う無線通信装㯰とを備え た無線通信システムにすいて，
前記無總通信媒体から前記無線通信装置に対して送信さ れる第1の通信周波数に第1のデータを割当てる第1の符号化手段と，
前記無線通信媒体から前記無線通信装置に対して送信さ れる前記第 1 の通信周波数と異なる第2の通信周波数に第2のデータを割当てる第2の符号化手段と，
を具備したことを特徴とする無線通信システム。
【請求項6】無線通信機能を有する無電池式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受信を行う無線通信装置とを備え た無線通信システムにおいて，
第 1 の通信周波数 $\mathrm{Fa} \mathrm{a}_{\text {a }}$ が $\mathrm{F} \mathrm{a}_{\mathrm{E}}=\mathrm{Fa} / \mathrm{m}(1<\mathrm{m}$ ：整数）を満たし，
第2の通信周波数 Fa ．が $\mathrm{Fa} \mathrm{an}_{\mathrm{n}}=\mathrm{Fa} / \mathrm{n}(1<\mathrm{n}$ 整数， $\mathrm{n}=\mathrm{m}$ ）を満たし，前記無線通信媒体から前記無線通信装置に対して送信される第1の通信周波数Fa＊ に第1のデータを割当てる第1の符号化手段と，
40 前記無線通信媒体から前記無線通信装置に対して送信さ れる第2の通信周波数 Fa』に第2のデータを割当てる第2の符号化手段と，
を具備したことを特徴とする無線通信システム。
【請求項7】第1の通信周波数 $\mathrm{Fa}=$ が $\mathrm{Fa} \mathrm{a}_{\mathrm{n}}=\mathrm{Fa}$ a $\mathrm{m} ~(1<\mathrm{m}$ ：整数）を満たし，
第2の通信周波数 $\mathrm{F} \mathrm{a}_{\mathrm{n}}$ が $\mathrm{F} \mathrm{a}_{\mathrm{n}}=\mathrm{Fa} / \mathrm{n}(1<\mathrm{n}$ 整数， $\mathrm{n} \neq \mathrm{m}$ ）を満たし，前記無線通信媒体から前記無線通信装置に对して送信される第 10 ）通信周波数Fa： に第1のデータを割当てる第10符号化手段と，
50 前記無線通信媒体から前記無線通信装置に対して送信さ

れる第2の通信周波数Fa』に第2のデータを割当てる第2の符号化手段と，
を具備したことを特徴とする請求項1，請求項2，請求項3，又は請求項4に記載の無線通信システム。
【請求項8】前記第1のデータが割当てられた前記第1 の通信周波数Fa，及び前飣第2のデータが割当てら れた前記第20通信周波数Fan を，通信周波数下aに より位相変調して，この位相変調された位相変調波を前記通信媒体から前記無線通信装置に対して送信すること を特徵とする請求項6，又は請求項7に記載の無線通信 システム。
【請求項9】前記位相変調波を受信して，この受信され た位相変調波を復調するにあたり，前記位相変調波を受信する受信手段と，
この受信手段により受信されてた位相変調波に対して，D
$j=B \sin (\omega c t+\pi(j-1) / 4) \quad(j=1$ ，
2，3，4）を乗算する乗算手段と，
この乗算手段の出力を積分する積分手段と，
この積分手段から出力される復調信号が最大となる j の値を選択する選択手段と，
を具備したことを特徵とする請求項8に記載の舆線通信 システム。
【請求項10】前記位相変調波を受信して，この受信さ れた位相変調波を復調するにあたり，
前記位相変調波を受信する受信手段と，
この受信手段により受信された位相変調波に対して，D $j=B \sin \left(\omega c t+\pi\left(j_{1}-1\right) / 4\right)\left(j_{1}=\right.$ 1，2，3，4）を乗算する第1の乗算手段と，この第1 の乗算手段の出力を積分する第1の積分手段と，前記受信手段により受信された位相変調波に対して，D $j=B \sin (\omega \subset t+\pi(j 2-1) / 4) \quad\left(j_{2}=\right.$ 1，2，3，4，$j_{3} \neq j_{2}$ ）を乗算する第2 の乗算手段と，
この第2の乗算手段の出力を積分する第2の積分手段 と，
前記第1の積分手段及び前記第2の積分手段から出力さ れる復調信号のうち，出力が大きい方の復調信号を選択 する選択手段と，
を具備したことを特徴とする請求項8に記載の輿線道信 システム。
【請求項11】前記位相変調波を受信して，この受信さ れた位相変調波を復調するにあたり，前記位相変調波を受信する受信手段と，
$D j=B \sin (\omega c t+\pi(j ;-1) / 4)(j$
$=1, ~ 2, ~ 3, ~ 4), ~ 及 ひ ゙ D j=B \sin (0 \subset t+\pi$ $\left.\left(j_{2}-1\right) / 4\right)\left(j,=1,2,3,4, ~ j_{1} \neq j\right.$ －）のうちの一方を選択する選択手段と，
この選択于段により選択された値を，前記受信手段によ り受信された位相変調波に対して乗算する乘算手段と， この乗算手段の出力を積分する積分手段と，

特開平10－282232 4

この積分手段から出力される後調信号が最大となるよう に，前記選択手段による選択を制御する選択制御手段 と，
を貝備したことを特徵とする請求項8に記載の無線通信 システム。
【請求項12】前記製択手段により買択された復調信号 を遅延させる遅延手段と，
前記選択手段により選択された復調信号，及び前記羊延手段により遅延された復調信号を乗算する乗算手段と，
10 この乗算手段の出力を積分して 2 値化し復調データを生成する復調データ生成手段と，
を具備したことを特徴とする請求項 10 O記載の無線通信システム。
【請求項13】前記積分手段から出力される復調信号を遅延させる选延手段と，
前記積分手段から出力さえる復調信号，及び前記遅延于段により遅延された復調信号を乘算する乗算手段と，
この乗算手段の出力を積分して2值化し復調データを生成する復調データ生成手段と，
を具備したことを特徴とする請求項11に記載の無線通信システム。
【請求項14】前記興線通信媒体ふら前記無線通信装惪 に対して送信されるデータにデータ通信周波数の搬送波 を付加したことを特徴とする請求項1，請求項2，請求項3，又は請求項4に記載の興線通信システム。
【請求項15】前記搬送波が付加されたデータを受信す る受信手段と，
位相同期を取る位相同期手段と，
クロックを生成するクロック生成手段と，
30 前記位相同期手段と前記クロック生成手段とを接続また は切断するスイッチング手段と，
前記受信手段により受信された受信信号，及び前記クロ ッ夕生成手段の山力を乗算する乗算手段を，
この乘算手段の出力を積分する積分手段と，
正具備し，
前記受信手段により受信された受信信号に付加された搬达波により，前記位相同期手段とこの受信信号の同期を取り，同期が取れたときこの位相同期手段から前記クロ ック生成手段に対して位相同期タイミングを送信し，こ 40 ⿹とき前記スイッチング手段により前記位相同期手段と クロック生成手段との接続を切断することを特徴とする請求項14に記載の無線通信システム。
【請求項16】1フレーム0データ通信が終了した時点 で，前記スイッチング手段により前記位相同期手段とク ロック生成手段とを接続し，再度，前記受信手段により受信された受信信号に付加された搬送波により，前記位相同期手段とこの受信信皃の同期を取り，间期が取れた ときこの位相同期手段から前記クロック生成手段に対し て位相同期タイミングを送信し，このとき前記スイッチ 50 ング手段により前記位相同期手段とクロック生成手段と

の接続を切断することを特徴とする請求項15に記載の無線通信システム。
【発明の詳紐な説明】
【0001】
【発明の属する技術分野】この発明は，例えば，携帯ワ能な無線通信機能を有する無電池式の無線通信媒体（無線カード）と，この無線通信媒体との間の無線通信によ りこの無線通信媒体に対して事力を供給するとともにこ の無線通信媒体とデータの送受信を行う無線通信装置
（無線カードリーダライタ）とを偳えた無線通信システ ムに関する。
【0002】
【従来の技術】近年，無線カード及び無線カードリーダ
ライタを利用した無線通信システムが，社会に普及しつ つある。例えば，自動改札のシステムや，プリペイドカ ード又は銀行カード等の金銭的価値を交換するシステム に利用されつつある。
【0003】無線通信システムを利用した自動改札のシ ステムでは，乗車券媒体を無線カードに置換えて，自動改札装置に無線カードリーダライタの機能を搭載して，乗車券媒体としての無線カードに格納されている改札に必要な情報（郵降䭾などの情報）を無線通信により自動改札装置で読み取り，この読み取られた情報を基にして改札処理を行うというものである。
【0004】従来の無線通信システムの多くは，無線力 ードリーダライタから無線カードに対して送信されるデ一タ通信周波数と，無線カードから無線カードリーダラ イタに対して送信されるデータ通信周波数とが異なる周波数となっている。また，無線カードリーダライタから無線カードに対して送信されるデータ通信周波数によ り，無線カードリーダライタから無線カードに対して雷源が供給されるようになている。つまり，データ通信周波数が，電源供給用周波数を兼ねている。さらに，無線 カードリーダライタにおいて，無線カードから送信され たデータを復調する場合には，無線カードから送信され た微弱なデータからデータ復調円のタロックが再生さ れ，この再生されたクロックによりデータの復調が行わ てる。その他，データの符号化にはNRZ符号，マンチ エスター符号等が使用されている。
［0005】
［発明が解决しようとする課題】上記したような無線通信システムを利用した自動改札のシステムでは，無線力 ードリーダライタて無線カードの情報を瞬時に読み取 り，改糺処理を迅速に行ら必要がある。そのため，無線通信システムを安定した状態で動作させる為に，無線力 ードリーダライタと無線カードのクロックを同期させる こと，及び低い䛊り率で通信データ觉復調させることが重要となる。また，無線カードを動作させる電源とクロ ックを安定した状態で，かり容易に供給可能とすること が重要となる。

特開平10－282232 6
【0006】ところが，上記した従来の無線通信システ ムでは，下婄のようなことから，安定した無線カードシ ステムの実現には多々問題があった。
【0007】無線カードリーダライタにおいて，無線力 ードから送信されたデータを後調する場合には，無線力 ードから送信される微弱なデータからデータ復調用のク ロックが再生されるため，再生されるクロックが不安定 となることがある。特に，無線カードリーダライタと無線カードとの間の通信距離が長くなればなるほど，この
10 ような状況は顕著に現れる。データ復調用のクロックが不安定となれば，復調されるデータがNRZ符号，又は マンチェスター符号等により符号化されている場合，復調されるデータが反転してしまうおそれがある。
【0008】この発明の目的は，上記したような事情に鑑み成されたものであって，低い䛊り率でデータの復調 が可能な安定した無線カードシステムを提供することに ある。
【0009】
【課題を解决するための手段】上記課題を解決し目的を
20 達成するために，この発明の無線通信システムは，以下 のように構成されている。
【0010】（1）請求項1記載の発明は，無線通信機能を有する無電池式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受信を行う無線通信装置とを備えた無線通信システムにお いて，前記無線通信装置から前記無線通信媒体に対し て，第1の通信周波数により電力を供給する電力供給手段と，前記無線通信装置から前記無線通信媒体に対し
30 て，前記第 1 の通信周波数と異なる第 2 の通信周波数に よりデータを送信するデータ送信手段とを具備してい る。
【0011】（2）請求項2記載の）発明は，無線通信機能を有する無電池式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受信を行う無線通信装置とを備えた無線通信システムにお いて，前記無線通信装置から前記無線通信媒体に対し て，第1の通信周波数により電力を供給する電力供給手 40 段と，この電力供緰手段により供給される電力を受け取名雫力受取手段と，前記無線通信装置から前記無線通信媒体に対して，前記第1の通信周波数と異なる第2の通信周波数によりデータを送信するデータ送信手段と，こ のデータ送信手段により送信されるデータを受け取るデ一タ受取手段とを具備している。
【0012】（3）請求項3記載の発明は，無線通信機能を有する無電池式の無線通信媒体と，この無線通信媒体との間の無線通信によりこの無線通信媒体に対して電力を供給するとともにこの無線通信媒体とデータの送受
50 信を行う無線通信装㯰とを諵えた無線通信システムにお

8

一夕を割当てる第 2 の符号化于段とを具備している。〔0016】（7）請求項7記載の発明は，請求項1，請求項2，請求項3，又は請求項4記臓の構成に加え て，第1 の通信周波数 Fa 。がFan＝Fa／m（1＜ m ：整数）を満たし，第2の通信周波数 Fa aがFa＊ $=\mathrm{Fa} / \mathrm{n} ~(1<n$ 整数， $\mathrm{n} \neq \mathrm{m})$ を满たし，前記無線通信媒体から前記無線通信装置に対して送信される第1 の通信周波数 Fan に第1のデータを割当てる第1の符号化手段と，前記無線通信媒体から前記無線通信装置に 10 対して送信される第2の通信周波数Fanに第2のデー夕を割当てる第2の符号化手段とを具備している。【0017】（8）請求項8記載の発明は，請求項6，又は請求項 7 記載の構成に加えて，前記第 1 のデータが割当てられた前記第1の通信周波数Fa』，及び前記第 2のデータが割当てられた前記第2の通信周波数 Fa 。 を，通信周波数Faにより位相変調して，この位相変調 された位相変調波を前記通信媒体から前記無線通信装置 に対して送信する。
【0 0 1 8】（9）請求項9記載の発明は，請求項 8 記
20 載の構成に加えて，前記位相変調波を受信して，この受信された位相変調波を復調するにあたり，前記位相変調波を受信する受信手段と，この受信手段により受信され た位相変調波に対して，D j＝B sin（m ct $+\pi$ $(j-1) / 4)(j=1, ~ 2, ~ 3, ~ 4)$ を乗算する乘算手段と，この乗算手段の出力を積分する積分手段と， この積分手段から出力される復調信号が最大となる j の値を選択する選択手段とを具備している。
【0019】（10）請求項10記載の発明は，請求項 8 記載の構成に加えて，前記位相変調波を受信して，こ の受信された位相変調波を復調するにあたり，前記位相変調波を受信する受信手段と，この受信手段により受信 された位相変調波に対して，D j＝B s i n（ $\omega \mathrm{Ct}+$ $\pi(j,-1) / 4) ~\left(j_{1}=1, ~ 2, ~ 3, ~ 4\right)$ を乗算 する第1の覀算手段と，この第 1 の乗算手段の出力を積分する第1の積分手段と，前記受信手段により受信され た位相変調波に対して，D $\mathrm{j}=\mathrm{B} \sin (\omega \mathrm{C} t+\pi$
$\left.\left(\mathrm{j}_{2}-1\right) / 4\right)\left(\mathrm{j}_{2}=1,2,3,4, ~ \mathrm{j}_{1} \neq \mathrm{j}\right.$ z）を乗算する第2の乗算手段と，この第2の乗算手段 の出力を積分する第 20 積分手段と，前記第 1 の積分于段及び前記第2の積分手段から出力される復調信号のう ち，出力が大きい方の復調信号を選択する選択手段とを具佰している。
【0020】（11）請求項11記載の発明は，請求項 8 記載の構成に加えて，前記位林変調波を受信して，こ の受信された位相変調波を復調するにあたり，前記位相変調波を受信する受信手段と，D $\mathrm{j}=\mathrm{B} \sin \mathrm{n}$（ $\omega \mathrm{Cct}$ $\left.+\pi\left(j_{;}-1\right) / 4\right)\left(j_{1}=1, ~ 2, ~ 3, ~ 4\right), ~ 及$ びD $j=B \sin (\omega c t+\pi(j z-1) / 4)(j$ $\left.2=1,2,3,4, ~ j, \neq j_{2}\right) ~ の ら ち の 一$ 方を選択 50 する選択于段と，この選択手段により選択された値を，
（6）

前記受信手段により受信された位相変調波に対して乗算 する乗算手段と，この乗算手段の出力を積分する積分委段と，この積分手段から出力される復調信号が最大とな るように，前記選択手段による選択を制御する選択制御手段とを具備している。
【0 0 2 1 】（12）請求項12記戴の発驯は，瀞求項 10 記載の構成に加えて，前記選択手段により選択され た復調信号を遅延させる遅延手段と，前記選択手段によ り選択された復調信号，及び前記遅延手段により遅延さ れた復調信号を榗算する乗算手段と，この乗算手段の出力を積分して2値化し復調データを生成する復調データ生成手段とを具備している。
［0022］（13）請求項13記載の発明は，請求項 11 記載の構成に加えて，前記積分手段から出力される復調信号を遅延させる遅延手段と，前記積分手段から出力さえる復調信号，及び前記遅延手段により遅延された復調信号を乗算する乗算手段と，この乗算手段の出力を積分して 2 値化し復調データを生成する復調データ生成手段とを具備している。
［0023］（14）請求項14記載の発明は，請求項 1，請求項2，請求項3，又は請求項 4に記載の構成に加えて，前記無線通信媒体から前記無線通信装置に対し て送信されるデータにデータ通信周波数の搬送波を付加 する。
〔0024】（15）請求項15記載の発明は，請求項 14 記載の構成に加えて，前記搬送波が付加されたデー夕を受信する受信手段と，位相同期を取る位相同期手段 と，クロックを生成するクロック生成手段と，前記位相同期手段と前記クロック生成手段とを接続または切断す るスイッチング手段と，前記受信手段により受信された受信信号，及び前記クロック生成手段の山力を乗算する乗算手段と，この乗算手段の出力を積分する積分手段と を具備し，前記受信手段により受信された受信信号に付加をれた搬送波により，前記位相同期手段とこの受信信号の同期を取り，同期が取れたときこの位相同期手段か ら前記クロック生成手段に対して位相同期タイミングを送信し，このとき前記スイッチング手段により前記位相同期手段とクロック生成手段との接続を切断する。
【0025】（16）請求項16記載の発明は，請求項 15 記載の構成に加えて，1フレームのデータ通信が終了した時点で，前記スイッチング手段により前記位㑑同期手段とクロック生成手段とを接続し，再度，前記受信手段により受信された受信信号に付加された搬送波によ り，前記位相同期手段とこの受信信号の同期を取り，同期が取れたときこの位相同期手段から前記クロック生成手段に対して位相同期タイミングを送信し，このとき前記スイッチング手段により前記位相同期手段とクロッケ生成手段との接続を切断する。
【0026］
【発明の実施の形態】以下，この発明の帘施の形態につ

いて図面を参照して説明する。
［0027］図1は，この药牱の無線手信システムの枇胳を示す図である。
【0028】図1に示すように，この発明の無線通信シ ステムには，アンテナ部102を有する無線力ードリー ダライタ100及び無線力ード200が設けられてい
る。無線力ードリーダライタ100とリーダライタアン テナ102とは，同軸ケーブルで接続されているか，屯 しくは一体化されているものとする。
10 【0029】無線カードリーダライタ100は，周波数 f p のクロックを中心として動作するものとする。この無線力ードリーダライタ100は無線カード200に対 して，電力伝送波（周波数 f p ）により電力を伝送する とともに，データ通信波（周波数f d）によりデータを送信する。
【0030】これら周波数f p と周波数 $\mathrm{f} d$ は， $\mathrm{fd}=$ $\mathrm{f} p / \mathrm{k}(1<\mathrm{k}$ ：整数）の関係を満たすように設定さ扎るものとする。さらに，通信距離をL，光速をcとす ると，f pは f $\mathrm{p} \ll$（kc／16L）の関係をも満た 20 すものとする。

【0031】これにより無線力ードリーダライタ100 のクロック周波数（周波数 「 p ）を中心として，無線力 ード200を動作させることが可能となる。従って，無線カード200内の回路には，特にPLL回路を内蔵さ せる必要がなくなり，無線力ード200の回路構成の簡略化が可能となり消費電流が低くなる為，1チップ化が容易になる。
［0032］続いて，図2を参照して，無線カードリー ダライタ1000回路構成の檅略を説明する。図2は，
30 無線力ードリーダライタ100の回路構成の楖略を示す図である。
〔0033］図2に示すように，無線力ードリーダライ タ100には，アンテナ部102，電力ドライバー10 3，クロック生成部 101 ，変調部 105 ，後調部 10 6，送受信切換スイッチ107，データ処理部108，電力供給手段としての電力伝逆用アンテナ109，及び データ送信手段及び受信手段としてのデータ通信アンテ ナ110等が設けられている。
【0034】また，アンテナ部102には，電力伝送用 の電力伝送用アンテナ109，及びデータ通信間のデー タ通信用アンテナ11002つ0）アンテナが設けられて いる。送受信切換スイッチ107は，送信モード及び受信モードを切換えるものであり，送信モード時には変調部105とデータ通信用アンテナ110とが接続され，受信モード時には復調部106とデータ通信用アンテナ 110とが接続されるようになっている。
【0035】電力去送時には，クロック生成部104に より電力伝送波のクロックが生成され，電力ドライバ1 03 により増幅され，電力伝送用アンテナ109により 50 空中に放射される。このとき，空中に放出される電力伝

送波の周波数が，周波数 f p である。
〔0036】データ送信においては，クロック生成部1 04 により変調データに必要なクロックが生成され，こ の生成されたクロックがデータ処理部108に供給さ れ，データ処理部 108 においてデータが生成される。生成されたデータは変調部 105 に送られ，クロック生成部104から供給される変調クロックにより変調され る。このようにして変調された変調データは送信モード に設定された送受信切換スイッチ107を通り，データ通信用アンテナ 1 1 0 から空中に放射される。このと き，空中に放出されるデータ通信波の周波数が，周波数 f dである。
【0037】データ受信においては，データ通信用アン テナ110から受信された変調波が，受信モードに設定 された送受信切換スイッチ107を通り，復調部106 に入力される。復調部106では，クロッケ生成部10 4から供給される復調クロックにより復調が行われ，復調された復調データはデータ処理部108に入力され， データ処理が行われる。
【0038】続いて，図3を参照して，無線カード20 00 回路構成の概略を説明する。図3は，無線カード 2 00 の回路構成の機略を示す図である。
【0039】図3に示すように，無線カード200に は，整流部203，電力生成部204，クロック生成部 205 ，送受信切換スイッチ207，第1及び第2の符号化手段としての変調部208，復調部209，データ処理部210，及びアンテナ部211等が設けられてい る。
【0040】また，アンテナ部211には，電力受取手段としての電力受信用アンテナ202，及びデータ受取手段をしてのデータ通信用アンテナ 206032つロアン テナが設けられている。送受信切換スイッチ207は，送信モード及び受信モードを切換えるものであり，送信 モード時には変調部208とデータ通信用アンテナ 20 6とが接続され，受信モード時には復調部209とデー夕通信用アンテナ 206 とが按続されるようになってい る。
〔0041】無線カードリーダライタ100から送信さ れた電力伝送波（周波数 f p ）は，データ通信用アンテ ナ206で受信され，受信モードに設定された送受信切換スイッチ207を介して整流部203に入力される。整流部203により整流された電力伝送波恃，電力生成部204に入力され電力として取込まれる。さらに，こ の整流部203で整流された電力伝送波は，クロック生成部205にも入力をれる。クロック生成部205で は，電力伝送波から無線カード2000システムクロッ クが生成される。従って，無線カード200は，電力生成部204で生成された電力，及びクロック生成部20 5で生成されたクロックにより動作する。一庁，データ送信においては，クロック生成部205により変調デー

特朋平10－282232 12
夕に必要なクロックが生成され，この生成されたクロッ クガデータ処理部310に供給され，データ処理部31 0においてデータが生成される。生成されたデータは変調部208に送られ，クロック生成部205から供給さ れる変調クロックにより変調される。このようにして変調された変調データは送信モードに設定された送受信切換スイッチ207を通り，データ通信用アンテナ206 により空中に放射される。このとき，空中に放出される データ通信波の周波数は，周波数fdとなる。
$10 【 0042$ 】データ受信においては，データ通信用アン テナ206から受信された変諷波が受信モードに設定さ れた送受信切換スイッチ207を通り，復調部209に入力される。復調部209では，クロック生成部205 から供紿される復調クロックにより復調が行われ，復調 された復調データはデータ処理部210に入力され，デ ータ処理が行われる。
•0043】続いて，図4及び図5を参照して，無線力 ードリーダライタ100及び無線カード200のアンテ ナ部に敌けるアンテナについて説明する。図4 は，無線
20 カードリーダライタ100及び無線カード 200 のアン テナ部におけるアンテナの概略構造その1を示す図であ る。図5は，無線カードリーダライタ100及び無線力一ド200のアンテナ部におけるアンテナの概略構造そ の 2 を示す図である。図4に示すように，アンテナ部1 02及び211に，外周アンデ 301及び内周アンテ ナ 3 0 2 を設け，外周アンテナ 301を電力伝送用アン テナ又はデータ通信閒アンテナに割当て，内周アンテナ 302 をデータ通信用アンテナ又は電力伝送用アンテナ に割当てる。 14］また，図5に示すように，アンテナナ部10 2及び211に，外周アンテナ 311及び内周アンテナ 312 を設け，外周アンテナ311を電力伝送用アンテ ナ又はデータ通信用アンテナに割当て，内周アンテナ 3 12 をデータ通信用アンテナヌは電力伝送用アンデサに割当てる。
〔0045】な扔，上記したアンテナ部の構成は一例で あり，電力伝送月アンテナ 109又は202と，データ通信用アンテナ110又は206との一部を重ねたり，互いの距離を離したりして，最適な送受信噮境を構築す 40 ることが可能である。

【0046】続いて，図6を参照して，無線カード 20 0におけるデータの符号化及び変調について説明する。図6は，無線カード200におけるデータの符号化及び変調を説明するための波形図である。
〔0047】この実施形態では，無線カード200から送信される送信データの符号化において，データ＂1＂ に対して $\mathrm{f} \mathrm{d}_{\mathrm{n}}=\mathrm{fd} / \mathrm{m}(1<\mathrm{m}$ ：整数）の周波数， データ＂0＂に対してf $\mathrm{d}_{n}=\mathrm{f} \mathrm{d} / \mathrm{n}(1<\mathrm{n}$ ：整
数， $\mathrm{n} \neq \mathrm{m}$ ）を割り当てるものとする。
50【0048】例えば， $\mathrm{m}=8, \mathrm{n}=12$ とすると，図6
（8）
13
に示すデータ S 1 は，符号化により符号化データs 2 と なる。をらに，変調クロックs 3 により，符号化データ s 2 が位相変調され，変調信号S 4 となる。無線カード リーダライタ100は無線カード200から送信される変調信号 S 4 の波形を復調し，データs 1 を得ることが必要となる。
〔0049】続いて，図7を参照して，無線カードリー ダライタ100におけるデータの復調について説明す る。図7は，無線カードリーダライタ100におけるデ一タの復調を説明するための波形図である。
〔0050】仮に，電力伝送波の周波数fpとデータ通信周波の周波数 fd とが， $\mathrm{fd}=\mathrm{f} \mathrm{p} / 4(\mathrm{k}=4)$ の関係を満たすも0）とする。図7には，マスタークロック （周波数f p）s 2 1，変調クロック（周波数f p 4）s 2 2，データ符号 S 2 3，変調信号s 24 が示を れている。この変調信号 S 2 4 は，無線カード 200 か ら送信されるものである。つまり，無線カードリーダラ イタ100はこの変調信号 s 2 4 を受信し，この受信さ れた変調信号 s 24の復調を行う。
【0051】前述したように，この実施形態では $\mathrm{f} \mathrm{p}<$ ＜kc／16Lが満足されることが前提となっているの で，無線ヶードリーダライタ100側のマスタークロッ クと，無線カード200側のマスタクロックの位相はほ ぼ等しいと考えられる。但し，回路の遲延や位相を考慮 すると全く同一ではない。ここでは遅延や位相を補正し た状態を考える。これらの遅延や位相に関しては後で説明を行うものとする。無線カードリーダライタ100側 の復調クロックはマスタクロックの 4 分周であるため，復調クロック○位相状態は受信データに対して4通り考 えられる $\{D \mathrm{j}=\mathrm{B} \sin (\omega \mathrm{ct}+\pi(\mathrm{j}-1) /$ 4）$(j=1, ~ 2, ~ 3, ~ 4)\} 。 1$ つ目の位相状態は，無線カード 200 側の変調クロックs 22 と全く同位相 の波形である。2つ目の位相状態は，変調クロックs 2 2 に対して $\quad / 4$ ずれた復調クロックs 25 の波形であ る。3つ目は位相状熊は，変調クロックs 2 2 に対して』／2 ずれた復調クロックs 2 7 の波形である。4つ目 の位相状態は，変調クロックs 22 に対して $3 \pi / 4$ ず れた波形である。
【0052】夫々の復調クロックを使用して，変調信号 s 2 4 を復調するケースを考える。変調信号s 24が変調クロックs 2 2 により復調されると，当然，データ符号 S 2 3が復調出力として得られる。変調信号 s 24 が復調クロックs 2 5 により復調されると，変調信号 s 2 4 及び復調クロックs 25 を乗算した出力 0 乗算出力 s 26 が復調出力として得られる。ところが，この乘算出力 S 25 は，無線力ード 200 側のデータと全く異なる データである。変調信号s 24が復調クロックs 27で復調されると，変調信号s 24及び復調クロックs 27 を乗算した出力乗算出力 528 が復調出力として得られ る。この乗算出力 S 2 8 は，データ符号 S 2 3 を反転し

たデータである。
【0053】また，この実施形龍では，図6で撹明した ようなデータ符号化が行われているので，データの ＂0＂，＂1＂は周波数成分によって判定可能である。 よって，乗算出力 S 2 8 は，データ的にはデータ符号 s 23 と同一である。即方，乗算出力 S 2 5状態の復調ク ロックを使用すると復調データが得られないと言うこと である。
【0054】続いて，図8を参照して，無線カードリー
10 ダライタ100の復調部106，及び無線カード200 の復調部209について説明する。図8は，無線カード リーダライタ100の復調部106，及び無線カード2

【0055】図2及び図3で訜明したように，データ受信用アンテナ110又は206で受信された変調波は，受信モードに設定された送受信切換スイッチ 107 又は 207を介して，復調部106又は209に大力され る。この後調部106又は209に入力された変調は， マッチング回路402，フィルタ403，アンプ404 を通過し，後調可能なレべルまで増幅をれる。
【0056】一方，クロック生成部405では，図7で説明した乗算出力 S 2 5及び乗算出力 S 2 7 の位相関係 となるような復調クロックが生成される（ここでは乘算出力S 25 及び乗算出力 S 27 が生成されるものとす
る）。クロック生成部 405 で生成された乗算出力 s 2 5は第1乗算器に入力され，乗算出力s 27は第2乗算器407に入力される。また，これら第1乘算器406及び第2乗算器407には，アンプ404から出力され る変調信号が大力される。つまり，第1乗算器406で
30 は，乗算出力s 25 とアンプ 404 から出力される変調信号とが乗算される。第2乗算器407では，乗算出נ s27とアンプ404から出力される変調信号とが乗算 される。
〔0057】第1乗算器4060）出力は第1積分器40 8 に入力され，第2乘算器407の出力は第2積分器4 09 に入力される。また，これら第1積分器408及び第2積分器 409 には夫々に適切な定数が設定されてお り，これら第1積分器408及び第2積分器409から 0出力レベルには差が生じる。この出力レベルの差はレ ベル判定部410により判定される。このレベル判定部 410 から出力されるレベル判定信号に基づき選択手段 としての回路切換スイッチ411が切換えられる。
【0058】つまり，レベル判定部 4 1 0 により第 1 積分器408の出力が第2積分器409の出力より大きい と判定された場合，このときレベル判定部410から出力されるレベル判定信号により回路切換スイッチ411 が切換えられて，第1積分器408と後述する動作回路6 00 とが接続される。逆に，レベル判定部 410 により第2積分器409の出力が第1積分器4080出力より 50 大きいと判定された場合，このときしベル判定部 110

から出力をれるしベル判定信号により回路切換スイッチ 411 が切換えられ，第2積分器409と後述する動作回路600とが接続される。
〔0059］このようにして，無線カードリーダライタ 100 では，無線力ード 200 から送信される変調信号 を復調し，データ符号化された信号を得ることができ る。また，この実施形態では，$\pi / 4$ ずれた復調クロッ クs 2 5及び $\pi / 4$（ $=\pi / 2$ ）ずれた後調クロックs 27を選択して使用するケースについて説明したが， $\pi, ~ \pi / 4, ~ 2 \pi / 4(=\pi / 2)$ ，及び $3 \pi / 4$ ずれ 10 た復調クロックを選択して使用するようにしてもよい。【0060】続いて，図9を参照して，無線カードリー ダライタ1000復調部106，及び無線カード200 の復調部209について説明する。図9は，無線カード リーダライタ100の後調部106，及び無線カード2 00 の後調部209の概略構成その2を示す図である。【0061】図2及び図3で說明したように，データ受信用アンテナ110又は206で受信された変調波は，受信モードに設定された送受信切換スイッチ107又は 207を介して，復調部106又は209に入力され る。この復調部 106 又は 209 に入力された変調は， マッチング回路502，フィルタ503，アンブ504 を通過し，復調可能なレベルまで増幅される。
【0062】一方，タロック生成部505では，図7で説明した乗算出力 S 2 5及び乗算出力 S 2 7 の位相関係 となるような復調クロックが生成される（ここでは乗算出力 S 2 5及び乗算出力S 27 が生成されるものとす る）。クロック生成部 405 で生成された乗算出力 s 2 5及び乘算出力 S 27 は，選択手段としてのクロック切換スイッチ507の切換に応じて乗算器506に入力さ れる。つまり，クロック切換スイッチ507は，乗算器 506 に入力される乗算出力s 25 と乗算出力s 27 と を切換えるものである。また，このクロック切換スイッ チ507の切換えを制御する制御信号は，ある周期でク ロック切換スイッヂ507に供給されるようになってい るものとする。さらに，乗算器506には，アンプ50 4から出力される変調信号が入力される。つまり，乗算器506では，乘算出力s 25 又は乘算出力s 27 と， アンブ404から出力される変調信号とが乗算される。【0063】乗算器506の出力は積分器508に入力 される。また，この積分器508の出力レベルは選択制御手段としてのレベル判定部509により判定されるよ うになっており，このレベル判定部509から出力され るレベル判定信号に基づきクロック切換スイッチ507 が切換えられる。
【0064】つまり，レベル判定部509において，乗算出力s 25 が取算器 506 に供給されているときの積分器5080出力レベルが，乘算出力S 27 が乗算器 5 06 に供給されているときの積分器 5080 ）出力レベル より大きいと判定された場合，このときしベル判定部 4

特開平10－282232 16
10 から出力されるしベル判定信号により回路切換スイ ッチ411が切換固定され，乗筫出力 s 25 が來算器 5 06 に供給されるようになる。逆に。レがル判定部50 9にすいて，乘筧出力s 2 7 が乘筧器506に供給され ているときの積分器5080出力レベルが，乗算出力s 25 が乗算器506に供給されているときの積分器 50 8の出力レベルより大きいと判定された場合，このとき しべル判定部410から出力されるレベル判定信号によ り回路切換スイッチ411が切換固定され，乘算出力 s 27 が乗算器506に供給されるようになる。なお，積分器5080出力は，後述する動作回路600へ入力さ れる。
【0065】このようにして，無線カードリーダライタ 100 では，無線カード200から送信される変調信号 を復調し，データ符号化された信号を得ることができ
 クs 25 及び $\pi / 4$（ $=\pi / 2$ ）ずれた復調クロックs 27を選択して使用するケースについて説明したが，
$\pi, ~ \pi / 4, ~ 2 \pi / 4(=\pi / 2)$ ，及び $3 \pi / 4$ ずれ
20 た後調クロックを選択して使用するようにしてもよい。【0066】続いて，図10を参照して，無線カードリ ーダライタ100でデータ符号化された信号の波形につ いて説明する。図10は，無線カードリーダライタ10 0 でデータ符号化された信号の波形を説明するための波形図である。
【0067】図10には，無線カード200側のデータ S31，図8及び図9に示す復号部106及び209に より復調された復調データ符号 s 3 2，この復調データ符号 S 3 2が1ビット達延された1ビット遅延出力s 3
30 3，復調データ符号 s 3 2 及び1ビット遅延出力の乗算出力 s 3 1，乗算出力 S 3 4 の積分出力 S 3 5，積分出力s 3502値化出力s 36が示されている。従って，上記プロセスをたどると，無線カード 200 のデータを復調することが可能である。
【0068】続いて，図11を参照して，図10に示す波形動作を実行する動作回路600について説明する。図11は，動作回路600の概略構成を示す図である。〔0069】図11に示す㕌延乎段としての1ビット遅延回路601には，図8に示す回路切換スイッチ411
40 又は図 9 に示す積分器 508 から出力される復調データ符号が入力される。この1ビット遅延回路601の出力 は乗算器602に入力される。また，この乗算器602 には，1ビット遅延问路601に入力される復調データ符号が直接入力される。つまり，この乗算器 602 は， 1ビット遅延された復調データ符号と，遅延されない復調データ符号とを乗算する。
【0070】また，この乗算器602の出力は積分器6 03 に入力され，この積分器の出力は復調データ生成手段としての2値化回路604に入力されるようになって 50 いる。さらに，この2値化回路6010出力を反転する

17
ことにより，データ符号化が後号可能となる。【0071】続いて，図12を参照して，無線カード2 00 から送信されるデータ構成の機略について説明す る。図12は，無線カード200から送信されるデータ篝成の概略を示す図である。
【0072】図12に示すように，無線カード200か ら送信されるデータには，復調クロック同期データD 1，及びデータD2が含まれている。復調クロック同期 データD1は，クロック選択に必要な同期信号である。一般的には，変調のかかっていない搬送波である。デー タD 2 は，所定のプロトコルに従ったデータである。
【0073】続いて，図13を参照して，位相同期回路 を使用した復調部（図 14 において説明する）で生成さ れる復調クロックについて説明する。図13は，位相同期回路を使用した復調部で生成される復調クロックを説明するための波形図である。図13には，受信波形s 5 1，位相同期回路クロックs52，ロック信号 S 5 3 ， データ終了信号 s 54，位相同期回路切換スイッチs 5 5，復調クロックs 56が示されている。
【0074】受信波形s51のデータの先頭には，図1 2 で説明したように搬送波が付加されている。位相同期回路クロックs 5 2 は，後述する位相同期回路のクロッ クである。この位相同期回路は，受信波形 s 5 1 と同期 がとれた時点で，ロック信号 S 5 3 を生成する。また， データの1フレームが終了した時，データ終了信号s 5 40波形をデータ処理部108又は210がロック信号 S53とデータ終了信号 S 5 4 とを使用し，位相同期回路の動作を制御する位相同期回路切換スイッチ s 5 5 を生成する。ここで，ロック信号 S 5 30 信号で復調クロ ック s 5 6 の同期をあわせる。位相同期回路切換スイッ チ S 5 5が＂0＂になると位相同期同路はクロック生成部から切り離され，復調クロックs56は上記同期信号 で発生し続ける。データ終了信号 S 54の信号で位相同期回路切換スイッチ S 5 5 が＂ 1 ＂となり再び位相同期回路はクロック生成部に接続される。
【0075】続いて，図14を参照して，位相同期回路 を使用した復調部について説明する。図14は，位相同期回路を使用した後調部106及び209の概略構成を示す図である。
【0076】図2及び図3で説㭂したように，データ受40信用アンテナ110又は206で受信された変調波は，受信モードに設定された送受信切換スイッチ107又は 207を介して，復調部106又は209に入力され る。この復調部106又は209に入力された変調は， マッチング回路702，フィルタ703，アンプ704 を通過し，復調可能なレベルまで増幅される。
〔0077］一广，位相同期手段としての位相同期回路 705 は，アンプ704から出力される変調信号に同期 した同期信号を生成する。この生成された同期信号は， スイッチング手段としての位相同期回路切換スイッチ7

18
10 を通過してクロック生成手段としてのクロック生成部706に伝達される。位相同期回路切換スイッチ71 0は，位相同期回路切換スイッチs 5 5 の波形＂1＂の洔には，クロック生成部706と位相同期回路705と を接続し，位相同期回路切換スイッチs55の波形 ＂0＂の時には，クロック生成部706と位相同期回路 705 とが切り離される。
【0078】アンプ704から出力される変調信号と位相同期回路7050復調クロックが同期した時点で位相
 706 で生成された同期クロックが復調クロックとして乗算器707に供給される。乗算器707の出力は，積分器708に入力され，この積分器7080）出力が復調 データとなる。データの1フレームが終」すると，位相同期回路切換スイッチ710はONとなり，再び位相同期回路705でアンプ704から出力される変調信号と同期を取るプロセスに入る。
【0079】
【発明の効果】この発明によれば，低い誤り率でデータ の復調が可能な安定した無線カードシステムを提共する ことができる。【0080】具体的に説明すると，以下の通りである。【0081】この発明は，電力伝送周波数 f d とデータ通信周波数 f dをf $d=f p / k(1<k$ ：整数）の䦎係を満たすように設定し，かつ光速 c ，通信距疃 I に対 し，f $\mathrm{p} \lll$（ $\mathrm{kc} / 16 \mathrm{~L}$ ）となるように f p な設定 することによって，無線カードリーダライタ100と無線カード 200 との間の無線通信において，無線カード リーダライタ100側のクロックと無線カード200側 のクロックの位相差が微弱になり，データ通信周波数 f p を無線カードシステムのシステムクロックとして使用可能となり，PLL等の位相比較器等が必要なくなり，容易に無線通信システムを提供することができる。【0082】また，データ符号化を行う際に，データ ＂ 1 ＂に対して $\mathrm{f} \mathrm{d}_{\mathrm{n}}=\mathrm{fd} / \mathrm{m}$（ $1<\mathrm{m}$ ：整数）の）局波数 $[\mathrm{Hz} \mathrm{z}]$ ，データ＂0＂に対して $\mathrm{f} \mathrm{d}_{\mathrm{n}}=\mathrm{f} \mathrm{d} / \mathrm{n}$ $(1<n:$ 整数， $\mathrm{n} \neq \mathrm{m})$ の周波数［ Hz ］を割り当て ることによって，データ復調を行う時にデータを周波数成分として取り出すことが可能であり，復調時に復調信号が＂1＂＂0＂反転していても復調可能であり，誤り率の低い無線通信システムを提供することができる。
【0083】また，同一0復調回路をk $/ 2$ 個準備し，受信変調波R＝Asin ω tに対して，それぞれD $j=$ Bsin（ $\omega \subset \mathrm{t}+\pi(\mathrm{j}-1) / 4)(\mathrm{j}=1,2$ ， … $\mathrm{k} / 2$ ）を乗算し，その出力を積分した出力が最も大きい受信回路を選択することの方法や，復調用クロッ クを受信変調波R＝Asin ω tに対して，それぞれD $j=B \sin (\omega \subset t+\pi(j-1) / 4) \quad(j=1$ ， 2，… k／2）を準備し，あるタイムスロットで順次 50 受信信号と乗算を行い，その出力を積分した出力が最も

大きい復調クロックを選択しデータ復調の後調クロック とし，データを復調する方法を取ることにより，安定し たクロックで復調可能であり，また復調出力が最も大き い出力をその復調出力にすることで，PLI．回路無しで受信感度が高く，通信距離の延長が可能な無線通信シス テムが提供できる。
【0084】また，上記データ符号化をNR Z 符号のデ一タに変換する方法として，1ビット遅延させその出力 をデータレートに適した定数を持つ簡単な構成のフィル ターに入力し，その出力を2値化し復調データとするこ とにより，クロックの微妙なタイミングによりデータが変化することが少なくなる。
【0 0 8 5 】 おた，受信信号先頭の搬送波で位相同期回路と受信信号の同期を取り，同期がとれたとき，位相同期同路からクロック生成部に位相同期タイミングを送信 し，さらにこのとき，位相同期回路とクロック生成部を分離し，以後はクロック生成部のクロックでデータを復調し，1フレームのデータ通信が終了した時点で再び位相同期回路をクロック生成部に接続することにより，P L L がロックしないような複雑なデータ符号化に打いて も安定的に復調クロックを生成することが可能となり，安定したデータ通信を行うことが可能となる。
【図面の簡単な說明】
【図 1】この発明の無線通信システムの概略を示す図で ある。
【図2】図1に示す與線カードリーダライタの回路構成 の概略を示す図である。
【図3】図1に示す無線カードの回路構成の概略を示す図である。
【図4】無線カードリーダライタ及び無線カードのアン テナ部におけるアンテナの樏略構造その1を示す図であ る。
【図5】無線カードリーダライタ及び無線カードのアン デナ部におけるアンテナの棋略構造その 2 を示す図であ る。
【図6】興線カードにおけるデータの符号化及び変調を説明するための波形図である。

【図4】

＊【図7】無線カードリーダライタにおけるデータ0）復調 そ説明するための波形図である。
【図8】無線カードリーダライタの復調部及び無線カー ドの復調部の森略構成その1を示す図である。
【図9】無線カードリーダライタの復調部及び鵃線力ー ドの復調部の櫻略構成その2を示す図である。
【図10】無線カードリーダライタでデータ符号化され た信号の波形を說明するための波形図である。
【図11】動作回路の概略傋成を示す図である。
10 【図 12】無線カードから送信されるデータ構成の概略 を示す図である。
【図13】位相同期回路を使用した復調部で生成される復調クロックを説明するための波形図である。
【図14】位相同期回路を使用した復調部の概路構成を示す図である。
【符号の説明】
100 ‥無線カードリーダライタ
$102 \cdots$ アンテナ部
103 …電力ドライバー
2010 ィ…クロック生成部
$105 \cdots$ 変調部
$106 \cdots$ 復調部
$107 \cdots$ 送受信切換スイッチ
$108 \cdots$ データ処理部
109 …電力伝送用アンテナ
$110 \cdots$ データ通信用アンテナ
$200 \cdots$ 無線カード
$202 \cdots$ 電力受信用アンテナ
203 …整流部
$30204 \cdots$ 電力生成部
$205 \cdots$ クロック生成部
206 …データ通信用アンテナ
$207 \cdots$ 送受信切換スイッチ
$208 \cdots$ 変調部
$209 \cdots$ 復調部
$210 \cdots$ データ処理部

【図5】

［図1］

【図8】

〔図12】

【図6】

【図9】

【図10】

【図13】

【図14】

Electronic Acknowledgement Receipt	
EFS ID:	29119405
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Jeff Lloyd/Natalie Stevenson
Filer Authorized By:	Jeff Lloyd
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	04-MAY-2017
Filing Date:	29-OCT-2012
Time Stamp:	16:14:48
Application Type:	Utility under 35 USC 111(a)

Payment information:

I hereby certify that this correspondence is being electronically filed in the United States Patent and Trademark Office on May 4, 2017.

NATALIE STEVENSON/
Natalie Stevenson

SUPPLEMENTAL INFORMATION
DISCLOSURE STATEMENT
UNDER 37 C.F.R §§ 1.97 AND 1.98
Examining Group 2836
Patent Application
Docket No. SUN.LGI. 420
Serial No. 13/663,012

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner	$:$	James P. Evans
Art Unit	$:$	2836
Applicants	$:$	Jeong Wook An, Jung Oh Lee, Sung Hyun Leem, Yang Hyun Kim
Serial No.	$:$	$13 / 663,012$
Filed	$:$	October 29, 2012
Conf. No.	$:$	3575
For	$:$	Wireless Power Receiver and Method of Manufacturing the Same

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. $\S \$ 1.97$ AND 1.98

Sir:
In accordance with 37 C.F.R. § 1.56, the references listed below and on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ are being brought to the attention of the Examiner for consideration in connection with the examination of the patent application identified above. Copies of the cited references are attached. However, Applicants have not submitted a copy of the published U.S. Patent Application cited on attached Form PTO/SB/08 pursuant to 37 CFR 1.98(a)(2)(ii).

Applicants note that Japanese Publication Nos. 2004364199 and H10282232, cited as F1 and F2, respectively, on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ were written in a foreign language; however, English language Abstracts are provided herewith. Applicants have also included U.S. Publication No. 2007/0095913, cited as U1 on the attached form PTO/SB/08, which is a patent family member of F1 and is believed to be an English language equivalent thereof. Applicants J:SUNTLGI420MDS-Refs $105-04-17$ SIDS8.doc/njs
respectfully request that the references be made of record and considered in the examination of the subject application.

The undersigned hereby certifies that each item of information contained in this Supplemental Information Disclosure Statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Supplemental Information Disclosure Statement. Applicants are attaching a copy of the Japanese Office Action.

It is respectfully requested that the Examiner indicate consideration of the cited references by returning a copy of the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ with initials or other appropriate marks.

Applicants respectfully assert that the substantive provisions of 37 C.F.R. $\S \S 1.56,1.97$, and 1.98 are met by the foregoing statements.

The Commissioner is hereby authorized to charge any fees under 37 C.F.R. $\S \S 1.16$ or 1.17 as required by this paper to Deposit Account 19-0065.

Respectfully submitted,
/JEFF LLOYD/
Jeff Lloyd
Patent Attorney
Registration No. 35,589
Phone No.: $\quad 352-375-8100$
Fax No.: 352-372-5800
Address: Saliwanchik, Lloyd \& Eisenschenk
A Professional Association
P.O. Box 142950

Gainesville, FL 32614-2950
JL/njs
Attachments: Form PTO/SB/08; copies of references cited.

I hereby certify that this correspondence is being electronically transmitted via EFS to the United States Patent and Trademark Office on the date shown below:

AMENDMENT UNDER 37 C.F.R. §1.111
Examining Group 2836
Patent Application
Docket No. SUN.LGI. 420
Serial No. 13/663,012

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner	$:$	James P. Evans
Art Unit	$:$	2836
Applicants	$:$	Jeong Wook An, Jung Oh Lee, Sung Hyun Leem, Yang Hyun Kim
Serial No.	$:$	$13 / 663,012$
Filed	$:$	October 29, 2012
Confirm. No.	$:$	3575
For	$:$	Wireless Power Receiver and Method of Manufacturing the Same

Mail Stop Amendment

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

AMENDMENT UNDER 37 C.F.R. §1.111

Sir:
In response to the Office Action dated December 27, 2016, please amend the application identified above as follows:

Serial No. 13/663,012

In the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently Amended) A wireless power receiver comprising:
a substrate having comprising a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; and a coil unit disposed on the substrate, the coil unit comprising ineluding a first connection terminal, a second connection terminal, and a coil; and
a short-range communication antenna disposed on the substrate and surrounding the coil; wherein the coil is configured to wirelessly receive power, wherein the coil is formed as a conductive pattern on or within the substrate,
wherein the conductive pattern ineludescomprises a conductive line wound at least two times and the conductive pattern has a spiral shape,
wherein the first connection terminal is located at one end of the coil and the second connection terminal is provided located at the other end of the coil,
wherein the coil unit overlaps the receiving space in a verticat first direction perpendicular to an upper surface of the substrate $;$,
wherein the connecting unit is disposed in the receiving space and connected to the coil unit, and
wherein the connecting unit overlaps the receiving space in a second direction parallel to the upper surface of the substrate, and wherein the connecting unit ineludescomprises: a third connection terminal connected to the first connection terminal of the coil unit; and
a fourth connection terminal connected to the second connection terminal of the coil unit.
2. (Canceled)
3. (Previously Presented) The wireless power receiver of claim 1, wherein the shape of the receiving space corresponds to a shape of the connecting unit.

4-6. (Canceled)
7. (Currently Amended) The wireless power receiver of elaim Gclaim 1, wherein the shortrange communication antenna has a rectangular configuration formed by winding one conductive line several times.
8. (Canceled)
9. (Currently Amended) The wireless power receiver of elaim 6claim 1, wherein the connecting unit is connected to the short-range communication antenna.
10. (Canceled)
11. (Previously Presented) The wireless power receiver of claim 1, wherein the conductive pattern is a conductive layer.
12. (Previously Presented) The wireless power receiver of claim 1, wherein the substrate comprises a pattern groove for receiving a part of the coil and wherein the part of the coil is disposed in the pattern groove.
13. (Currently Amended) The wireless power receiver of ctaim 12 claim 1 , wherein the coil has a thickness smaller than a thickness of the substrate and wherein an upper portion of the coil is exposed out of the substrate.

14-18. (Canceled)
19. (Previously Presented) A wireless portable terminal, comprising the wireless power receiver of claim 1 .
20. (Canceled)
21. (Previously Presented) The wireless power receiver of claim 1, wherein the substrate comprises magnetic material.

22. (Canceled)

23. (Currently Amended) A wireless power receiver comprising:
a substrate having comprising a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; and a coil unit ineluding-comprising a first connection terminal, a second connection terminal, and a coil;; and
a short-range communication antenna disposed on the substrate and surrounding the coil; wherein the coil is configured to wirelessly receive power, wherein the coil is formed as a conductive pattern on or within the substrate, wherein the conductive pattern includes comprises a conductive line wound at least two times and the conductive pattern has a spiral shape,
wherein the first connection terminal is located at one end of the coil and the second connection terminal is previded located at the other end of the coil;,
wherein the connecting unit is disposed in the receiving space and connected to the coil unit, wherein the connecting unit overlaps the receiving space in a direction parallel to the upper surface of the substrate, and
wherein the connecting unit ineludescomprises:
a third connection terminal connected to the first connection terminal of the coil unit; and a fourth connection terminal connected to the second connection terminal of the coil unit; and wherein the coil unit is disposed on a surface of the substrate and the connecting unit.
24. (Canceled)
25. (Previously Presented) The wireless power receiver of claim 1, wherein the substrate is flexible.

26-29. (Canceled)

30. (Currently Amended) The wireless power receiver of claim 1, wherein the one end of the coil is at an onsterside portion of the conductive pattern and the other end of the coil is an eutside inside portion of the conductive pattern.
31. (Canceled)
32. (Currently Amended) The wireless power receiver of daim 1 claim 23, wherein the connecting unit is configured such that it is separable from the receiving space.
33. (New) The wireless power receiver of claim 23 , wherein the predetermined shape of the receiving space corresponds to a shape of the connecting unit.
34. (New) The wireless power receiver of claim 23, wherein the short-range communication antenna has a rectangular configuration formed by winding one conductive line several times.
35. (New) The wireless power receiver of claim 23 , wherein the connecting unit is connected to the short-range communication antenna.
36. (New) The wireless power receiver of claim 23 , wherein the substrate comprises a pattern groove for receiving a part of the coil, and wherein the part of the coil is disposed in the pattern groove.
37. (New) A wireless portable terminal, comprising the wireless power receiver of claim 23.
38. (New) The wireless power receiver of claim 23, wherein the substrate comprises magnetic material.
39. (New) The wireless power receiver of claim 23, wherein the substrate is flexible.

Remarks

Claims $1,3,6,7,9,11-13,19$, and 21-32 are pending in the subject application. By this Amendment, claims $1,7,9,13,23,30$, and 32 are amended; claims $6,22,24,26-29$, and 31 are canceled; and new claims $33-39$ are added. No new matter is introduced. Support for the amendments and new claims can be found throughout the original specification (see, for example; page 6 , lines $26-27$; page 15 , lines $4-8$; page 21, lines 22-24; page 24, lines 1-2; Figure 11 ; and original claim 6). Upon entry of these amendments, claims $1,3,7,9,11-13,19,21,23,25,30$, and 32-39 will be before the Examiner for further consideration.

The amendments set forth herein should not be interpreted to indicate that Applicants have agreed with or acquiesced to the rejections set forth in the outstanding Office Action. The amendments to the claims have been made in an effort to lend greater clarity to the claimed subject matter and to expedite prosecution. Favorable consideration of the claims now presented, in view of the remarks and amendments set forth herein, is respectfully requested.

Rejection of claims 1, 3, 11-13, 19, 21-23, and 27-32 under 35 U.S.C. $\$ 102$

Claims 1, 2, 11-13, 19, 21-23, and 27-32 have been rejected under pre-AIA 35 U.S.C. §102(e) as being anticipated by Kuk (U.S. Patent Application Publication No. 2013/0106198). Applicants respectfully request reconsideration.

Though Applicants do not necessarily agree that Kuk anticipated these claims as previously presented, this issue need not be addressed because Kuk is not available as prior art. According to pre-AIA 35 U.S.C. §102(e), "an international application filed under the treaty defined in section 351 (a) shall have the effects for the purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language" (emphasis added). In this case, the international application of which Kuk is a national stage application - PCT/KR201 1/004561 - did not publish in English, so the filing date of Kuk for $\S 102$ purposes is January 3, 2013, which is after both the March 23,2012 priority date and the October 29, 2012 filing date of the subject application. Thus, Kuk is not available as prior art under any subsection of pre-AIA 35 U.S.C. $\S 102$.

In addition, though it is not necessary to address this rejection in view of the above, Applicants note that, in an effort solely to expedite prosecution, each of independent claims 1 and 23 has been amended to recite a limitation similar to that previously presented in claim 6 , which was indicated in the Action as containing allowable subject matter, as well as additional limitations (see also, e.g., Figure 11 of the original specification). Accordingly, Applicants respectfully request withdrawal of the rejection of claims $1,3,11-13,19,21-23$, and 27-32 under 35 U.S.C. §102.

Rejection of claim 25 under 35 U.S.C. $\$ 103(a)$

Claim 25 has been rejected under 35 U.S.C. §103(a) as being unpatentable over Kuk. Applicants respectfully request reconsideration.

As discussed above, Kuk is not available as prior art. Accordingly, Applicants respectfully request withdrawal of the rejection of claim 25 under 35 U.S.C. §103(a).

Objection to claims 6, 7, 9, 24, and 26

Claims $6,7,9,24$, and 26 have been objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims. Applicants thank the Examiner for the indication of allowable subject matter. As discussed above, though it is not necessary to address the prior art rejections because Kuk is not available as prior art, in an effort solely to expedite prosecution, each of independent claims 1 and 23 has been amended to recite a limitation similar to that previously presented in claim 6. Accordingly, Applicants respectfully request reconsideration and withdrawal of the objection to claims 6, 7, 9, 24, and 26.

New claims 33-39

Applicants submit that new claims 33-39 are also allowable over the cited art. The features of these claims, which find support throughout the original specification, are not taught or suggested in the cited reference (see, e.g.; page 6, lines 26-27; page 15, lines 4-8; page 21, lines 22-24; page 24, lines 1-2).

In view of the foregoing remarks and amendments to the claims, Applicants believe that the claims as currently pending are in condition for allowance, and such action is respectfully requested. Applicants invite the Examiner to call the undersigned if clarification is needed on any of this response, or if the Examiner believes a telephonic interview would expedite the prosecution of the subject application to completion.

The Commissioner is hereby authorized to charge any fees under 37 C.F.R. $\S \S 1.16$ or 1.17 as required by this paper to Deposit Account 19-0065.

Respectfully submitted,	
Jeffuloyd	
Patent Attorney	
Registration No. 35,589	
Phone No.:	352-375-8100
Fax No.:	352-372-5800
Address:	Saliwanchik, Lloyd \& Eisenschenk
	A Professional Association
	P.O. Box 142950
	Gainesville, FL 32614-2950

[^0]| Electronic Acknowledgement Receipt | |
| :---: | :---: |
| EFS ID: | 28749495 |
| Application Number: | 13663012 |
| International Application Number: | |
| Confirmation Number: | 3575 |
| Title of Invention: | WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME |
| First Named Inventor/Applicant Name: | Jeong Wook AN |
| Customer Number: | 23557 |
| Filer: | Jeff Lloyd/MORGAN LAMPP |
| Filer Authorized By: | Jeff Lloyd |
| Attorney Docket Number: | SUN.LGI. 420 |
| Receipt Date: | 27-MAR-2017 |
| Filing Date: | 29-OCT-2012 |
| Time Stamp: | 17:06:30 |
| Application Type: | Utility under 35 USC 111(a) |

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		Response3.pdf	465392	yes	9

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):
euspto@slepatents.com

Office Action Summary	Application No. $13 / 663,012$	Applicant(s) AN ET AL.	
	Examiner JAMES EVANS	Art Unit 2836	AIA (First Inventor to File) Status No

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE $\underline{3}$ MONTHS FROM THE MAILING DATE OF

THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704 (b).

Status

1) \boxtimes Responsive to communication(s) filed on 10/27/2016.A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on \qquad
$2 a) \square$ This action is FINAL. 2b) \boxtimes This action is non-final.
2) \square An election was made by the applicant in response to a restriction requirement set forth during the interview on
\qquad ; the restriction requirement and election have been incorporated into this action.
3) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims*

5) $\boxtimes \mathrm{Claim}(\mathrm{s}) 1-32$ is/are pending in the application.

5a) Of the above claim(s) \qquad is/are withdrawn from consideration.
6) \square Claim(s) \qquad is/are allowed.
7) \boxtimes Claim(s) 1,3,11-13,19,21-23,25 and 27-32 is/are rejected.
8) \boxtimes Claim(s) 6,7,9,24 and 26 is/are objected to.
9) \square Claim(s) \qquad are subject to restriction and/or election requirement.

* If any claims have been determined allowable, you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see
htto//www.uspo.gov/patentsinit events/pob/index.isp or send an inquiry to PPHfeedbackouspto.gov.

Application Papers

10) \square The specification is objected to by the Examiner.
11) \boxtimes The drawing(s) filed on $10 / 29 / 2012$ is/are: a) \boxtimes accepted or b) \square objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

Priority under 35 U.S.C. § 119
12) \backslash Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

Certified copies:
a) \boxtimes All b) \square Some ${ }^{* *}$ c) \square None of the:

1. Certified copies of the priority documents have been received.
2. \square Certified copies of the priority documents have been received in Application No. \qquad .
3. \square Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
** See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

Notice of References Cited (PTO-892) Information Disclosure Statement(s) (PTO/SB/08a and/or PTO/SB/08b) Paper No(s)/Mail Date \qquad -.
DETAILED ACTION

Response to Amendment

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, prosecution in this application has been reopened pursuant to 37 CFR 1.114.

Applicant's submission filed 10/27/2016 along with the request has been entered.
Allowability of claims 1, 3, 11-13, 19, 21-23, 25, and 27-32 are withdrawn in light of new prior art submitted 7/7/2016. New grounds for rejection are set forth below.

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371 (c) of this title before the invention thereof by the applicant for patent.

Claims 1, 3, 11-13, 19, 21-23, and 27-32 are rejected under 35 U.S.C. 102(e) as being anticipated by Kuk (US 2013/0106198).

Regarding claim 1, Kuk teaches (e.g., Fig. 3-5) a wireless power receiver (Fig 2: power supplying device 100 , which inherently receives power from a magnetic field to which it is exposed) comprising:
a substrate (e.g., Fig. 5: circuit board 130 and/or core 120) having a receiving space (e.g., Fig. 5: 130b, circuit board 130: upwards-facing flat surface of the circuit board over which the coils 110 are positioned, and/or the bottom surface of 130, and/or the through-holes therein; core 120: upwards-facing flat surface of the core over which the coils 110 are positioned and/or the through-holes therein) of a predetermined shaped formed therein (e.g., Fig. 4, 5; Paragraph [0069], last sentence: the four connection parts 138 (which comprise the connecting unit as described next) enclose the through-holes 137 and therefore are on both sides of the circuit board, thus the receiving spaces on these surfaces have a predetermined shape for the connecting unit, in that the substrate's receiving space is determined by the size and position of the coils to be connected via the connecting unit; and/or the through-holes within 120 and 130 form a receiving space to accommodate the connecting unit described below, thus the receiving spaces on these through-holes have a predetermined shape for the connecting unit ; i.e., substrate (130 and/or core 120) has a receiving space of a predetermined shape formed therein) for a connecting unit (e.g., Fig. 4, Paragraph [0069], last sentence: the four connection parts 138 connected to the four free ends of coils 110: i.e., these four parts 138 form a connecting unit); and
a coil unit (e.g., coil 110, including coils 11 and 112) including a first connection terminal (e.g., first end of the coil 111), a second connection terminal (e.g., second end
of the coil 111), and a coil, wherein the coil is configured to wirelessly receive power (inherent operation of the coil, as discussed earlier), wherein the coil is formed as a conductive pattern (coil is inherently conductive, and forms a spiral pattern as shown in Figures 3 and 5) on or within the substrate (e.g., Fig. 5: coil unit 110 is positioned on substrate 130 and/or core 120, with portion 111 directly on the substrate 130 and with portion 112 directly on core 120),
wherein the conductive pattern includes a conductive line wound at least two times and the conductive pattern has a spiral shape (e.g., Fig. 5: coil 110 is a conductive (inherent, as discussed earlier) line wound more than two times and has a spiral shape somewhat flattened into an oval);
wherein the first connection terminal is located at one end of the coil (e.g., Fig. 5: first end of the coil 111 or 112) and the second connection terminal is provided at the other end of the coil (e.g., second end of the coil 111 or 112),
wherein the coil unit overlaps the receiving space in a vertical direction perpendicular to an upper surface of the substrate (e.g., Fig. 5: coil unit 110 overlaps the receiving space in a vertical direction perpendicular to an upper surface of the substrate because the coils are positioned directly above area 130b of the substrate, as described above);
wherein the connecting unit (e.g., Fig. 4, Paragraph [0069]: the four connection parts 138) is disposed in the receiving space (parts 138 are in the receiving space) and connected to the coil unit, wherein the connecting unit includes:
a third connection terminal connected to the first connection
terminal of the coil unit (e.g., Fig. 4: connection part connected to first end of one of the two coils 111 or 112); and
a fourth connection terminal connected to the second connection terminal of the coil unit (e.g., Fig. 4: connection part connected to other end of one of the two coils 111 or 112).

Regarding claim 3, Kuk teaches (e.g., Fig. 5) the wireless power receiver of claim 1, wherein the shape of the receiving space (e.g., Fig. 5: 130b, circuit board 130: upwards-facing flat surface of the circuit board over which the coils 110 are positioned, and/or the rear side; core 120: upwards-facing flat surface of the core over which the coils 110 are positioned; and/or the through-holes within 120 and 130 form a receiving space to accommodate the connecting unit described below, thus the receiving spaces on these through-holes have a predetermined shape for the connecting unit) corresponds to a shape (e.g., the shapes correspond in that they are rectangles of the same size; and/or the through-holes within 120 and 130 form a receiving space which corresponds to the shape of the connecting unit) of the connecting unit (e.g., Fig. 4, the four connection parts 138).

Regarding claim 11, Kuk teaches (e.g., Fig. 5) the wireless power receiver of claim 1, wherein the conductive pattern is a conductive layer (e.g., Paragraph [0086]: coil 110 which is wound, has at least single conductive layer).

Regarding claim 12, Kuk teaches (e.g., Fig. 6-7) the wireless power receiver of claim 1, wherein the substrate comprises a pattern groove (e.g., grooves 120a) for
receiving a part of the coil and wherein the part of the coil is disposed in the pattern groove (e.g., Fig. 7: bottom part of coil 111 is disposed in grooves 120a).

Regarding claim 13, Kuk teaches (e.g., Fig. 7) the wireless power receiver of claim 12, wherein the coil has a thickness smaller than a thickness of the substrate (e.g., coil 111 thickness is less than thickness of 120^{\prime}) and wherein an upper portion of the coil is exposed out of the substrate (e.g., coil 111 upper portion of the coil is exposed out of the substrate 120^{\prime}).

Regarding claim 19, Kuk teaches a wireless portable terminal, comprising the wireless power receiver of claim 1 (e.g., Paragraph [0042]: the entire circuit of Figures 2-5 may comprise a portable electronic device ...may include but are not limited to cellular phones, ... or the like.. (i.e., a wireless portable terminal)).

Regarding claim 21, Kuk teaches the wireless power receiver of claim 1, wherein the substrate comprises magnetic material (e.g., Paragraph [0091], second sentence: powder may comprise a material allowing the core 120 or 120 to have magnetism.)

Regarding claim 22, Kuk teaches the wireless power receiver of claim 1, further comprising a wireless power receiving circuit connected to the connecting unit (e.g., Fig. 2).

Regarding claim 23, Kuk teaches (e.g., Fig. 3-7) a wireless power receiver comprising:
a substrate having a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; and
a coil unit including a first connection terminal, a second connection terminal, and a coil, wherein the coil is configured to wirelessly receive power, wherein the coil is formed as a conductive pattern on or within the substrate, wherein the conductive pattern includes a line wound at least two times and the conductive pattern has a spiral shape, wherein the first connection terminal is located at one end of the coil and the second connection terminal is provided at the other end of the coil; wherein the connecting unit Is disposed in the receiving space and connected to the coil unit, wherein the connecting unit includes: a third connection terminal connected to the first connection terminal of the coil unit; a fourth connection terminal connected to the second connection terminal of the coil unit (e.g., all preceding limitations disclosed in the rejection of Claim 1, supra);
wherein the coil unit is disposed on a top surface of the substrate (e.g., Fig. 7: coil 111 is disposed in grooves 120a on the top surface of the core 120) and the connecting unit (e.g., Fig. 7: coil 111 is disposed the top surface of the connecting parts 138).

Regarding claim 27, Kuk teaches a wireless portable terminal, comprising the wireless power receiver of claim 3 (e.g., Paragraph [0042]: the entire circuit of Figures 2-5 may comprise a portable electronic device ...may include but are not limited to cellular phones, ... or the like.. (i.e., a wireless portable terminal)).

Regarding claim 28, Kuk teaches the wireless portable terminal of claim 19, which is a smartphone (e.g., Paragraph [0042]: the entire circuit of Figures 2-5 may
comprise a portable electronic device ...may include but are not limited to cellular phones, ... or the like.. (i.e., a smartphone)).

Regarding claim 29, Kuk teaches the wireless portable terminal of claim 27, which is a smartphone (e.g., Paragraph [0042]: the entire circuit of Figures 2-5 may comprise a portable electronic device ...may include but are not limited to cellular phones, ... or the like.. (i.e., a smartphone)).

Regarding claim 30, Kuk teaches (e.g., Fig. 5) the wireless power receiver of claim 1, wherein the one end of the coil (e.g., 111', 112') is at an inside portion of the conductive pattern and the other end of the coil is at an outside portion of the conductive pattern (e.g., outside portion near perimeter of assembly).

Regarding claim 31, Kuk teaches (e.g., Fig. 3-7) a wireless power receiver comprising: a substrate having a receiving space of a predetermined shape formed therein for a connecting unit configured to connect to a wireless power receiving circuit; and a coil unit including a first connection terminal, a second connection terminal, and a coil, wherein the coil is configured to wirelessly receive power, wherein the coil is formed as a conductive pattern on or within the substrate, wherein the conductive pattern includes a conductive line wound at least two times and the conductive pattern has a spiral shape, wherein the first connection terminal is located at one end of the coil and the second connection terminal is provided at the other end of the coil; wherein the connecting unit is disposed in the receiving space and connected to the coil unit, wherein the connecting unit includes: a third connection terminal connected to the first connection terminal of the coil unit; and a fourth connection terminal connected to the
second connection terminal of the coil unit (e.g., all preceding limitations disclosed in the rejection of Claim 1, supra); and
wherein the conductive line of the conductive pattern crosses over the receiving space (e.g., Fig. 5: coil 110 crosses over the receiving space on substrate 130 and core 120).

Regarding Claim 32, although Kuk does not explicitly disclose wherein the connecting unit is configured such that it is separable from the receiving space, it is inherent that the terminals 138 are separable from the printed circuit board (PCB), for example, by way of desoldering the terminals and removing them. NOTE: "separable" is not mentioned in the specification.

Claim Rejections - 35 USC § 103
4. The following is a quotation of pre-AIA 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under pre-AIA 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

Claim 25 is rejected under 35 U.S.C. 103(a) as being unpatentable over Kuk (US 2013/0106198).

Regarding Claim 25, Kuk teaches the wireless portable terminal of claim 1, but does not disclose wherein the substrate is flexible. However, it would have been obvious to one of ordinary skill in the art at the time of the invention to make the core 120 and/or the substrate 130 flexible, because this would allow the assembled unit to flex, thus resisting breakage and increasing reliability, of which fact the examiner takes official notice.

Allowable Subject Matter

5. Claims $6,7,9,24$, and 26 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

The following is a statement of reasons for the indication of allowable subject matter:

Claim 6 and dependent claims 7, 9, 24 and 26 would be allowable because none of the prior art of record discloses or suggests the wireless power receiver of claim 1, further comprising a short-range communication antenna formed on the substrate and surrounding the coil.

Conclusion

6. Any inquiry concerning this communication or earlier communications from the examiner should be directed to JAMES P. EVANS whose telephone number is (571) 270-0639. The examiner can normally be reached on Monday-Friday 8 AM-5pm ET.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jared Fureman can be reached on 571-272-2391. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see htre/foardrectusotogov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-2721000.
/JAMES P EVANS/
Examiner, Art Unit 2836
/JUNG KIM/
Primary Examiner, Art Unit 2842

CPC- SEARCHED		
Symbol	Date	Examiner
H04B5/0037	$1 / 29 / 2015$	JPE
H04B5/0081	$1 / 29 / 2015$	JPE
H01F41/14	$1 / 29 / 2015$	JPE
H01F38/14	$8 / 13 / 2015$	JPE
Re-searched all symbols above	$1 / 19 / 2016$	JPE
Re-searched all symbols above	$5 / 7 / 2016$	JPE
Reviewed against new art	$12 / 8 / 2016$	JPE

CPC COMBINATION SETS - SEARCHED		
Symbol	Date	Examiner

US CLASSIFICATION SEARCHED			
Class	Subclass	Date	Examiner
307	104	$1 / 29 / 2015$	JPE
713	300	$8 / 13 / 2015$	JPE
Re-searched all above	Re-searched all subclasses above	$1 / 19 / 2016$	JPE
Re-searched all classes above	Re-searched all subclasses above	$5 / 7 / 2016$	JPE

SEARCH NOTES		
Search Notes	Date	Examiner
Inventor Search	$1 / 21 / 2015$	JPE
Keyword search	$1 / 20 / 2015$	JPE
IP.com search	$1 / 20 / 2015$	JPE
and all docs cited in European search report	$1 / 20 / 2015$	JPE
Search with SSE (Michael Obinna)	$1 / 26 / 2015$	JPE
Consulted Jared Fureman (SPE)	$1 / 29 / 2015$	JPE

SEARCH NOTES			
Search Notes	Date	Examiner	
Consulted Primary Dan Cavallari	$8 / 13 / 2015$	JPE	
Consulted Primary Alex Gilman in Connectors	$8 / 13 / 2015$	JPE	
Consulted Primary Carlos Amaya	$8 / 14 / 2015$	JPE	
Consulted Primary Bob Deberadinis	$8 / 17 / 2015$	JPE	
Searched amended claims	$1 / 19 / 2016$	JPE	
Consulted Primary Ken Wells	$1 / 19 / 2016$	JPE	
Added IDS docs, reviewed them, and performed augmented searches	$5 / 7 / 2016$	JPE	
Consulted Primary Ken Wells	$5 / 7 / 2016$	JPE	
Consulted Primary John Kim and SPE Jared Fureman	$10 / 5 / 2016$	JPE	

INTERFERENCE SEARCH

US Class/ CPC Symbol	US Subclass / CPC Group	Date	Examiner
H04B	$5 / 0037$	$1 / 19 / 2016$	JPE
Re-searched above	Re-searched above	$5 / 7 / 2016$	JPE

/JAMES P EVANS/	

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	1	"20130106198".pn.	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 12 / 08 \\ & 12: 10 \end{aligned}$
L2	82	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US 20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US 20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US 20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US 20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US-20110127070-\$).did. or (US-20050072595-\$ or US-20120049986-\$ or US-20120019075-\$ or US 20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US 20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US 20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US 20100289341-\$ or US-20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US 20070007661-\$ or US-20160118711-\$ or US-20070095913-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693\$). did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2016 / 12 / 08 \\ & 12: 11 \end{aligned}$

S1	1	"20130249302"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 10: 41 \end{aligned}$
S2	8		$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 10: 51 \end{aligned}$
S3	175746	(coil\$1 or winding\$1) WITH (power or energy or current)WITH (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")	$\begin{aligned} & \hline \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DREWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	12
S4	5375	substrate or base or core or "ferrite magnet layer") WITH (space or shape or shaped) WITH (connector or "connecting unit") WITH (terminal or lead or "connecting land")	US-PGPUB; MSPAT; LSOCR; IPPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 11: 34 \end{aligned}$
S5	$\sqrt{175746}$	(coil\$1 or winding $\$ 1$) WITH (power or energy or current)WITH (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DREWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 06 \end{aligned}$
$\sqrt{56}$	5375	(substrate or base or core or "ferrite magnet layer") WITH (space or shape or shaped) WITH (connector or "connecting unit") WITH (terminal or lead or "connecting land")	USSPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{array}{\|l\|l\|} 2015 / 01 / 20 \\ 12: 06 \end{array}$
S7	158	S6 AND S5	$\begin{array}{l\|} \hline \text { USPGPUB; } \\ \hline \text { USAT; } \\ \text { USOCR; } \\ \text { PPRS; } \\ \text { EPO; JPO; ; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 06 \end{aligned}$
58]398217	(coil\$1 or winding\$1) SAME (power or energy or current)SAME(terminal\$1 or electrode\$1 or lead\$1 or "connecting land")	US-PGPUB; USPAT; ISOCR; FPRS; EPO; JPO; ; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 23 \end{aligned}$
59	27303	(substrate or base or core or "ferrite magnet layer") SAME (space or shape or shaped) SAME (connector or "connecting unit") SAME (terminal or lead or "connecting land")	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DRWENT; IBM TDB	OR	ON	$\begin{array}{\|l\|l\|} \hline 2015 / 01 / 20 \\ 12: 23 \end{array}$
S10	1934	S9 SAME S8	USSPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 12: 24 \end{aligned}$

			IBM TDB			
511	392	WO adj "2008053599" WO adj "2013174340" EP adj "1870984" WO adj "2012169728" WO adj "2006127829" EP adj "0037921" WO adj "2005034152" WO adj "1992014254" WO adj "2006134712" WO adj "2007007516" WO adj "2007055265" "20030006657" EP adj "2642632" EP adj "2202499" EP adj "2642632" CN adj "1110225" "3634878" "3848208" "20130249302" WO adj "2006047953" CN adj "1151100" WO adj "2013149781" CN adj "103326473" JP adj "2012235630" " 5724018 " CN adj "100466382" CN adj "101071909" EP adj "2367263" WO adj "2011147451" WO adj "2014183352" EP adj "1487087" WO adj "2004045050" WO adj "2009070705" JP adj "2013138404" WO adj "2004030845" EP adj "2309620" JP adj "2005065018" JP adj "2004023961" JP adj "2010110168" EF adj "2256751" WO adj "2009155030" EP adj "2642591" WO adj "2012015839" EP adj "2814047" JP adj "2004072867" "2091798" WO adj "1993013532" WO adj "2008135507" "3660791" WO adj "2006101049" WO adj "2002046653" WO adj "2007049788" JP adj "2001144642" "3146419" EP adj "1868280" EP adj "1883998" JP adj "2014023281" "3792410" CN adj "201340774" "20060278387" CN adj "1855761" JP adj "2013157917" EP adj "1717967" CN adj "101189692" CN adj "102056328" "3848205" WO adj "2013022255" JP adj "2014027102" EP adj "1821556" "3767102" EP adj "2375531" JP adj "2008017141" WO adj "2005034307" JP adj "2010093386" EP adj "2629361" WO adj "2005030528" CN adj "1941230"	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 13: 52 \end{aligned}$
S12	299	(substrate or base or core or "ferrite magnet layer")(space or shape or shaped) (connector or "connecting unit") (terminal or lead or "connecting land") or (coil or winding) or power or energy or current or terminal or relectrode) AND S11	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 13: 58 \end{aligned}$
5	3	[EP adj "2642632"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$14: 51$
5	22	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-	USPGPUB USPAT; IFPRS; JPO;	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 15: 01 \end{aligned}$

		20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$).did. or (US-6008622$\$$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$). did. or (WO-2013120710-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$). did. or (WO-2013065245-\$ or CN-203326731-\$ or US-20130249302-\$). did.	\|dERWENT			
S15	22	(substrate or base or core or "ferrite magnet layer")(space or shape or shaped) (connector or "connecting unit") (terminal or lead or "connecting land") or (coil or winding) or power or energy or current or terminal or Irelectrode) AND S14	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DRMWNT; TDB } \end{aligned}$	OR	ON	$\frac{2015 / 01 / 20}{15: 01}$
S16	2	"20080164840"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPOP JPO; } \\ & \text { DRMWENT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 17: 13 \end{aligned}$
S17	\%	"39593692".FMID.	$\begin{aligned} & \text { USPGPBB; } \\ & \text { USPAT; } \\ & \text { PRS } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 17: 15 \end{aligned}$
S18	2	"20120044114"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 20 \\ & 17: 26 \\ & \hline \end{aligned}$
S19	3	(("Jeong Wook") near2 (AN)).INV.	$\begin{aligned} & \text { USPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 52 \end{aligned}$
S20	${ }^{2}$	(("Jeong Wook") near2 (AN)).INV.	$\begin{aligned} & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 54 \end{aligned}$
521	8	(("Jung Oh") near2 (LEE)).INV.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	
552	1	(("Jung Oh") near2 (LEE)).INV.	$\begin{aligned} & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 57 \end{aligned}$
523	3	(("Sung Hyun") near2 (LEEM)).INV.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 08: 58 \end{aligned}$
524	0	(("Sung Hyun") near2 (LEEM)).INV.	$\begin{aligned} & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & \hline 09: 04 \end{aligned}$
5	7	(("Yang Hyun") near2 (KIM) . INV.	$\begin{aligned} & \text { USPGPUB } \\ & \text { USPAT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 09: 05 \end{aligned}$
S26	3	(("Yang Hyun") near2 (KIM)).INV.	$\begin{aligned} & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 21 \\ & 09: 19 \end{aligned}$
527	5	"47598569".FMID.	$\begin{aligned} & \text { USPGPB; } \\ & \text { USPAT; } \end{aligned}$	OR	O	$\begin{aligned} & 2015 / 01 / 23 \\ & 11: 34 \end{aligned}$
S28	24	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { PRST; JPO; } \\ & \text { DRENT } \end{aligned}$	OR	ON	$\left\lvert\, \begin{aligned} & 2015 / 01 / 26 \\ & 13: 45 \end{aligned}\right.$

		\}or US-20120044114-\$ or US 20140167521-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$).did. or (WO-2013120710-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$).did. or (WO-2013065245-\$ or CN-203326731\$).did.				
S29	2993903	(wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact\$3 or remote\$2 or ((free or without or lack\$3 or no or less) near2 (contact\$3 or connect\$3)) or (RF or R F or radio\$1frequenc $\$ 3$ or radio frequency) near3 (transmission or network\$3 or LAN or control\$3) or connectionless)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$1 \begin{aligned} & 2015 / 01 / 26 \\ & 14: 02 \end{aligned}$
S30	1440492	(receiv\$3 or accept\$3 or obtain\$3 or recover\$3 or receipt or retriev\$3 or acquir\$3 or acquisition) near3 (spac\$3 or hole or opening or slot or gap or notch or port)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 07 \end{aligned}$
S31	3326212	(predetermin $\$ 5$ or predefined or set or prescribed or fixed or preselect\$3 or establish\$3 or prestablish\$3 or standard or desired or reference or known or specific\$4 or select\$4 or fixed or defin $\$ 4$ or precis $\$ 3$ or certain or preset or particular) near3 (size or shape or dimension or design or pattern or cutout or configuration or layout)	US-PGPUB; USPAT; USOCR	ADJ	ON	$\left\{\begin{array}{l} 2015 / 01 / 26 \\ 14: 10 \end{array}\right.$
S32	2674608	(coil or transmit\$4 or transmission or receiv $\$ 3$ or transceiv $\$ 3$ or antenna\$2 or transponder) near3 (unit or module or circuit or assembly or device)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 4: 19 \end{aligned}$
S33	2115289	(connect\$3 or link\$3 or coupl\$3 or join\$3) near3 (terminal or node or lead or electrode or contact)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 22 \end{aligned}$
S34	80414	S29 SAME S30	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{gathered} 2015 / 01 / 26 \\ 14: 28 \\ \hline \end{gathered}$
S35	,2254	S34 SAME S31	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 29 \end{aligned}$
S36	332	S35 SAME S32	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$14: 30$
S37	52	S36 SAME S33	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 30 \end{aligned}$
S38	133047	S29 SAME S31	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 01 / 26 \\ & 14: 31 \end{aligned}$
S39	2254	S38 SAME S30	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$1 \begin{aligned} & 2015 / 01 / 26 \\ & 14: 31 \\ & \hline \end{aligned}$
S40	3809	S30 near3 S31	UUS-PGPUB;	ADJ	ON	/2015/01/26

			$\begin{aligned} & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$			14:32
S43	27	jp and "2006042519"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { SSPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 12: 52 \end{aligned}$
544	0	jip and "04-51115"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 35 \end{aligned}$
S45	4911	jp and "rotary transformer"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USCRT; } \\ & \text { PRS; } \quad \text { EPO; ; } \\ & \text { DERWNET; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 36 \end{aligned}$
S46	0	p and "rotary transformer" and "flexible substrate (35)"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPOR JPO; } \\ & \text { DRMWNT; TDB; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 37 \end{aligned}$
S47	20	ip and "rotary transtormer" and "flexible substrate"	$\begin{aligned} & \hline \text { LSPGPUB; } \\ & \text { USPAT; } \\ & \text { LSOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IERWENT; } \\ & \text { IBM TTB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 37 \end{aligned}$
551	2	"4-51115"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 42 \end{aligned}$
S52	61	"hitachi ferrite" and "rotary transformer"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWNT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 49 \end{aligned}$
553	17	"hitachi ferrite" and "rotary transformer" and grooves	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DRMWENT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 27 \\ & 14: 52 \end{aligned}$
557	4554	"satoshi" AND "shinji"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	ADJ	ON	

			IIFPRS; EPO; JPO; DERWENT IBM TDB			
S58	100	murata AND S57	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWNT; } \end{aligned}$	AD	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 09: 15 \end{aligned}$
S59	2	JP2010022098A	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USCR; } \\ & \text { PRP; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	AD	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 10: 40 \end{aligned}$
560	38	"6008622"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 01 \end{aligned}$
561	1	"6008622" and Norio	USPGPUB; USPAT	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 02 \end{aligned}$
S62	1	"17402302".FMID.	$\begin{aligned} & \text { USPGPBB; } \\ & \text { USPAT; } \\ & \text { PPRS } \end{aligned}$	OR	ON	1
S63	336	H04B5/0037	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 30 \end{aligned}$
S64	42	H04B5/0081	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2015 / 01 / 28 \\ & 17: 31 \end{aligned}$
S65	38	H01F41/14	USPGPUB; USPAT	OR	ON	$\sqrt{2015 / 01 / 28}$
S66	1111	H02J17/00	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	O	$\begin{array}{\|} 2015 / 01 / 28 \\ 17: 55 \\ \hline \end{array}$
S67	32971	H02J17/00	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DRMENT; } \end{aligned}$	OR	O	$2015 / 01 / 28$
568	6341	H01F41/14		OR	O	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 19 \end{aligned}$
569	20594	H01 Q7/00	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; ; } \\ & \text { DREWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	\mid
570	1439	H04B5/0081	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRSP; } 1 \text { PPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 29 \end{aligned}$
S71	21809	S70 OR S69	US-PGPUB;	OR	ON	2015/01/29

Page 271 of 1385

			USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			08:29
S72	,394	/S71 and ("rectang\$4" OR "square")	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 01 / 29 \\ & 08: 38 \end{aligned}$
S73	33	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ llor US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ lor US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ lor US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ lor US-20130157565-\$ or US-[20140346890-\$ or US-20130106198-\$ lor US-20140333253-\$ or US-[20140306656-\$).did. or (US-6008622\| $\$$ or US-5572180-\$ or US-3936931-\$ lor US-5294749-\$ or US-6876287-\$ or UUS-5175525-\$ or US-8922321-\$).did. lor (US-3153139-\$).did. or (WO-L2013120710-\$ or WO-2010133995(\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ lor JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or [JP-2010022098-\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 05 / 19 \\ & 08: 45 \end{aligned}$
S74	18	[S73 and spiral	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 05 / 19 \\ & 08: 48 \end{aligned}$
S92	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 16 \end{aligned}$
593	3771	S92 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna\$2 or transponder))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 16 \end{aligned}$
S94	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc.	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \end{aligned}$	OR	ON	2015/08/11

		H04B5/00.ipc.) AND @ad< "20120719"	$\begin{aligned} & \text { IDERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
595	\%771	S94 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	17
S96	, 305	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S95	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 18 \end{aligned}$
S97	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBMWENT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 20 \end{aligned}$
598	371	S97 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna\$2 or transponder))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\sqrt{2015 / 08 / 11}$
599	,305	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S98	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	2015/08/11\|
S100	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 23 \end{aligned}$
S101	\%771	S100 AND ((substrate or base or core or "ferrite magnet layer") AND (space or shape or shaped) AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv\$3 or antenna\$2 or transponder))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	1
S102	(305	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S101	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBMWENT; TDB } \end{aligned}$	OR	ON	3
S103	72	((coil or winding or antenna or I!resonator or "receiving element") WITH conductive WITH (layer or	US-PGPUB; USPAT; USOCR;	OR	ON	2015/08/11

		('pattern)) AND S102	IFPRS; EPO; JPO; DERWENT; IBM TDB			
5104	934	S100 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2015/08/11
S105	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	1
5106	934	S105 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv $\$ 3$ or antenna\$2 or transponder))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 32 \end{aligned}$
5107	337	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S106	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 32 \end{aligned}$
S108	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or UP-2010022098-\$). did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$1 \begin{aligned} & 2015 / 08 / 11 \\ & 17: 35 \end{aligned}$
5109	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1. ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 35 \end{aligned}$

S110		!is109 AND ((substrate or base or core) : (connector or "connecting unit") AND "(terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or /3antenna\$2 or transponder))	UUS-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	:
S111	337	(coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S110	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 17: 35 \end{aligned}$
S112	30	S111 AND S108	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2015 / 08 / 11 \\ 17: 35 \end{array}\right.$
S113	165	S111 and spiral	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$12015 / 08 / 11$
S114	136730		US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 09 \end{aligned}$
S115		S114 AND ((substrate or base or core or "ferrite magnet layer") AND (space ! or shape or shaped) AND (connector lor "connecting unit") AND (terminal or lead or "connecting land") AND ! (receiv\$3 or transceiv\$3 or antenna\$2 lor transponder)) AND ((coil or winding !or antenna or resonator or "receiving ! delement") WITH (layer or pattern or 3PCB or printed))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 09 \end{aligned}$
S116	0	S115 and S108	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 10 \end{aligned}$
S117	389	S114 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder)) AND ((coil or winding or antenna or resonator or "receiving element") WI TH (layer or pattern or PCB or printed))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 11 \end{aligned}$

S118	0	S117 and S108	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	2015/08/11
S119	136746	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S108) AND @ad<"20120719"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; } \\ \text { EPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array} . \begin{array}{l} \text { IDAB } \end{array} . \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2015 / 08 / 11 \\ 18: 13 \end{array}\right.$
S120	27	S119 and S108	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 11 \\ & 18: 14 \end{aligned}$
S121	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\sqrt{2015 / 08 / 12}$
S122	136746	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S121) AND @ad<"20120719"	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 32 \end{aligned}$
S123	27	S122 and S121	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 32 \end{aligned}$
S124	" ${ }^{11}$	S121 NOT S123	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \end{aligned}$	ADJ	ON	2015/08/12

			IEPO; JPO; DERWENT; IBM TDB			
S125	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.) AND @ad<"20120719"	USSPGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 46 \end{aligned}$
S126	934	S125 AND ((substrate or base or core lor "ferrite magnet layer") AND I(connector or "connecting unit") AND !(terminal or lead or "connecting land") IAND (receiv\$3 or transceiv\$3 or]antenna\$2 or transponder))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 46 \end{aligned}$
S127	0	S126 and S121	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 46 \end{aligned}$
S128	136730	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. [29/602.1. ccls. H02J7/02.ipc. GG06K19/07.ipc. H02J5/00.ipc. \|B60L11/18.ipc. H02J17/00.ipc. \#H04B5/00.ipc.) AND @ @ad<"20120719"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 56 \end{aligned}$
$\sqrt{5129}$	389	S128 AND ((substrate or base or core lor "ferrite magnet layer") AND ((connector or "connecting unit") AND I(terminal or lead or "connecting land") AND (receiv\$3 or transceiv $\$ 3$ or lantenna\$2 or transponder)) AND ((coil lor winding or antenna or resonator or :"receiving element") WITH (layer or pattern or PCB or printed))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DRRWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 13: 56 \end{aligned}$
$\sqrt{5130}$	337	((coil\$1 or winding\$1) SAME (power or energy or current) SAME (terminal\$1 or electrode\$1 or lead\$1 or "connecting land")) AND S126	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DRRWENT; IBM TDB	OR	ON	$12015 / 08 / 12$
S131	160	S130 and spiral AND (pattern\$3 or etch $\$ 3$ or depos $\$ 3$ or deposit $\$ 3$ or plat\$3 or PCB or print\$3)	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$14: 11$
$\sqrt{5132}$	165	S130 and spiral	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; ; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 13 \end{aligned}$

S133	160	S132 AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 13 \end{aligned}$
S134	S387	((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna or transponder)) AND spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit $\$ 3$ or plat $\$ 3$ or PCB or print $\$ 3$) AND (coil or winding or resonator or antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 34 \end{aligned}$
S135	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 14: 36 \end{aligned}$
S136	385	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S135) AND S134	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	${ }^{2015 / 08 / 12}$
S139	5387	((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv $\$ 3$ or antenna or transponder)) AND spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 15: 22 \end{aligned}$

S140	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 15: 22 \end{aligned}$
S141	, 385	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. (H04B5/00.ipc. S140) AND S139	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 15: 22 \\ & \\ & \end{aligned}$
S142	, 253	S141 and ((space or notch or cutout \}or "cut-out") SAME(connector\|connect\$3))	$\begin{aligned} & \hline \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$=\begin{aligned} & 2015 / 08 / 12 \\ & 15: 22 \end{aligned}$
S144	5387	((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna or transponder)) AND spiral AND (pattern $\$ 3$ or etch $\$ 3$ or depos $\$ 3$ or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or !antenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 \}or "contact less" or "non contact" or iconnectionless)	$\begin{aligned} & \text { US-PGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; ; } \\ & \text { EPO; JPO; ; } \\ & \text { DERWENT; } \\ & \hline \text { IBM_TDB } \end{aligned}$	ADJ	ON	$=\begin{aligned} & 2015 / 08 / 12 \\ & 16: 04 \end{aligned}$
S145	38	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2015/08/12

		Jor US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995\$) .did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.							
S146	385	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc. S145) AND S144	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 16: 04 \end{aligned}$			
S147	253	S146 and ((space or notch or cutout or "cut-out") SAME(connector\| connect\$3))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 16: 04 \end{aligned}$			
S148	198	```S147 and ((first near3 (connector\| connect$3	terminal) SAME (second near3 (connector	connect$3	terminal))))```	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBRWENT; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 16: 04 \end{aligned}$
S149	28	$\begin{aligned} & \text { S147 and ((first ADJ } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal) SAME } \\ & \text { (second ADJ } \\ & \text { (connector\| connect } \$ 3 \mid \text { terminal) }) \text {) }) \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 17: 00 \end{aligned}$			
S150	1	```S147 and ((first ADJ (connector\| connect\$3	terminal) SAME (second ADJ (connector	connect\$3	terminal)))) AND @ad<"20121029"```	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	
S151	2	```S147 and ((first ADJ (connector\| connect$3	terminal) SAME (second ADJ (connector	connect$3	terminal)))) AND @ad<"20121030"```	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 17: 02 \end{aligned}$
S152	6	S147 and ((first NEAR2 (connector\|connect $\$ 3 \mid$ terminal) SAME (second NEAR2 (connector\| connect\$3	terminal)))) AND @ad<"20120323"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 12 \\ & 17: 11 \end{aligned}$		
5153	0	((substrate or base or core or "ferrite magnet layer") AND (connector or	JPO	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 11: 35 \end{aligned}$			

		: :"connecting unit") AND (terminal or lead or "connecting land") AND (receiv $\$ 3$ or transceiv\$3 or antenna or transponder)) AND spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or hantenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)				
S154	11	((substrate or base or core or "ferrite magnet layer") AND (receiv\$3 or transceiv\$3 or antenna or transponder)) AND spiral AND (pattern\$3 or etch\$3 or depos\$3 or deposit\$3 or plat\$3 or PCB or print\$3) AND (coil or winding or resonator or lantenna) AND (wire\$1less\$2 or "wire less" or inductive or contact\$1less\$2 or "contact less" or "non contact" or connectionless)	JPO	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 11: 35 \end{aligned}$
S155	9194	H01F38/14.cpc.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	$\sqrt{2015 / 08 / 13}$
S156	5888	H01F38/14.cpc. and @ad< "20120323"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 12: 04 \end{aligned}$
5157	, 164	S156 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") AND (receiv\$3 or transceiv\$3 or antenna\$2 or transponder)) AND ((coil or winding or antenna or resonator or "receiving element") WI TH (layer or pattern or PCB or printed or etch\$3))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 12: 05 \end{aligned}$
5158	40	S156 AND ((substrate or base or core or "ferrite magnet layer") AND (connector or "connecting unit") AND (terminal or lead or "connecting land") WITH (layer or pattern or PCB or printed or etch\$3))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 12: 06 \end{aligned}$
5161	477	S156 AND (substrate "PCB" semiconductor silicon) AND (terminal port connector connection) AND (coil\$1 or winding\$1 or resonator or secondary or inductor)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM TDB	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 13: 10 \end{aligned}$
S162	293	S156 AND (substrate "PCB"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	ON	/2015/08/13

		! (space or notch or cutout or "cutbout")	IFPRS; EPO; JPO; DERWENT; IBM TDB			
S164	330	S156 AND ((substrate "PCB" semiconductor silicon) SAME (space or (notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 13: 18 \end{aligned}$
S165	\%	"8,092,251"	USPAT	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 28 \end{aligned}$
S166	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US 5572180 -\$ or US-3936931-\$ or US 5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US-8092251-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098\$) .did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 33 \end{aligned}$
S167	5888	H01F38/14.cpc. and @ad< "20120323"	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 34 \end{aligned}$
S168	30	S167 AND ((substrate "PCB" semiconductor silicon) SAME (space or notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 34 \end{aligned}$
S169	49	(US-20130249302-\$ or US- 20050046573-\$ or US-20080122570-\$ hr US-20080154178-\$ or US- $20100277004-\$$ or US-20120057322-\$	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 13 \\ & 19: 35 \end{aligned}$

		Hor US-20080197957-\$ or US ใ20090058358-\$ or US-20080164840-\$ \}or US-20120044114-\$ or US 20140167521-\$ or US-20140152245-\$ bor US-20130157565-\$ or US 20140346890-\$ or US-20130106198-\$ \}or US-20140333253-\$ or US [20140306656-\$ or US-20130069445-\$ \}or US-20140175895-\$ or US , $20120187767-\$$ or US-20110101788-\$ \}or US-20130200716-\$ or US, 20130069444-\$ or US-20090284341\$\$).did. or (US-6008622-\$ or US \$5572180-\$ or US-3936931-\$ or US-:5294749-\$ or US-6876287-\$ or US-\$3175525-\$ or US-8922321-\$ or US: 8653927-\$ or US-7392013-\$ or US-88092251-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP-:2013157917-\$ or JP-2013138404-\$ or UJP-2012235630-\$ or JP-2006042519-\$ \}or JP-2012010533-\$ or JP-ใ2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-:203326731-\$ or JP-2010022098\$).did.	DERWENT			
S170	5	S169 AND ((substrate "PCB" semiconductor silicon) SAME (space or notch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$19: 35$
S171	21496	713/3??.ccls.	US-PGPUB; USPAT	OR	ON	$12015 / 08 / 13$
S172	10	S171 AND ((substrate "PCB" semiconductor silicon) SAME (space or hnotch or cutout or "cut-out")) AND (terminal port connector connection) AND (notch or cutout or "cut-out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { IERWENT; TDB } \end{aligned}$	OR	ON	$=12015 / 08 / 13$
S173	49	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US 5294749-\$ or US-6876287-\$ or US 5175525-\$ or US-8922321-\$ or US-	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 08: 34 \end{aligned}$

		8653927-\$ or US-7392013-\$ or US 8092251-\$).did. or (US-3153139- \$). did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098\$).did.					
S174	21	S173 and flexible	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 08: 34 \end{aligned}$	
S175	21	S173 and flexible and ((uniform\$2 or consistent $\$ 2$ or consistency or perfect $\$ 3$ or balanc $\$ 3$ or equaliz $\$ 3$ or overcom $\$ 3$ or eliminat $\$ 3$ or advantag\$6 or benefit\$4 or beneficially or allow $\$ 3$ or effect $\$ 3$ or less or great $\$ 3$ or better $\$ 3$ or more or most or improv $\$ 5$ or simplify $\$ 3$ or well or simplification or fewer or fewest or least or better or best or superior or increas $\$ 3$ or decreas\$3 or enhanc\$5 or lower\$3 or lessen\$3 or short\$5 or higher or highest or lighter or lightest or brighter or brightest or cheap\$3 or fast $\$ 3$ or long $\$ 3$ or lengthen $\$ 3$ or shorten $\$ 3$ or extend $\$ 3$ or wide\$2 or prolong $\$ 3$ or prevent $\$ 3$ or eliminat $\$ 5$ or mitigat $\$ 3$ or without or effective\$4 or efficien\$3 or reduc\$4 or compact\$3 or small\$3 or enhanc\$3 or boost\$3 or simple\$2 or simplify $\$ 3$ or easy or ease\$2 or easi\$3 or inhibit\$3 or \$savin\$1 or environment\$4 or \$1friendly or sav\$3 or safe\$2 or protect\$3 or possible or possibilit\$3 or mak $\$ 3$ or possible or possibilit\$3 or solv\$2 or fix\$2 or solution or maximum or maximiz\$5 or accomplish $\$ 4$ or minimiz $\$ 5$ or minimum or optimiz\$5 or low\$1cost or reliable or reliably or avoid $\$ 3$ or excellent or (very ADJ high) or (very ADJ low) or stable or stabili\$6 or portable or modular or slow\$3 or speed $\$ 3$ or hasten $\$ 3$ or strenghthen $\$ 3$ or resilien\$3))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	3	
S176	1	S173 and "modular power transmitting system"		OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 02 \end{aligned}$	
S177	\}358681	(coil\| winding) SAME (groove\$1\|recess\$2	indentation)	USPGPUB; USPAT;	OR	ON	2015/08/17

			$\begin{aligned} & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$						
S178	5890	H01F38/14.cpc. and @ad<"20120323"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 18 \end{aligned}$			
S179	380	S178 AND (coil\| winding) SAME (groove\$1	recess\$2	indentation)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { LBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 18 \end{aligned}$	
S180	180	S178 AND (coil\| winding) SAME (groove\$1	recess\$2	indentation) SAME (core	substrate)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { LBM TDB } \end{aligned}$	OR	ON	
S181	94	S178 AND (coil\| winding) SAME (groove\$1	indentation) SAME (core	substrate)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 08 / 17 \\ & 11: 22 \end{aligned}$	
S182	3191265	(wire\$1less\$2 or wire less or inductive or contact $\$ 1$ less $\$ 2$ or contact less or non contact\$3 or remote\$2 or ((free or without or lack\$3 or no or less) hnear2 (contact\$3 or connect\$3)) or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio frequency) near3 (transmission or network\$3 or LAN or control\$3) or connectionless)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}$			
S183	1498071	(receiv\$3 or accept\$3 or obtain\$3 or recover\$3 or receipt or retriev\$3 or acquir\$3 or acquisition) near3 (spac\$3 hor hole or opening or slot or gap or notch or port)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\left\lvert\, \begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}\right.$			
S184	3523990	(predetermin $\$ 5$ or predefined or set or prescribed or fixed or preselect\$3 or establish\$3 or prestablish\$3 or standard or desired or reference or known or specific\$4 or select\$4 or fixed or defin $\$ 4$ or precis $\$ 3$ or certain or preset or particular) near3 (size or shape or dimension or design or pattern or cutout or configuration or layout)	US-PGPUB; USPAT; USOCR	ADJ	ON	0			
S185	2858589	(coil or transmit\$4 or transmission or receiv\$3 or transceiv\$3 or antenna\$2 or transponder) near3 (unit or module or circuit or assembly or device)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 14 \end{aligned}$			

S186	7009	S182 AND S183 AND S184 and S185 and spiral	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM_TDB	OR	ON	2015/10/13
S187	2229	S186 AND ((substrate or base or core or "ferrite magnet layer") WITH (layer or pattern or PCB or printed or etch\$3))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 19 \end{aligned}$
S188	437	S186 AND ((substrate or base or core or "ferrite magnet layer") WITH (conduct\$3 NEAR2(layer or pattern or PCB or printed or etch\$3)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWEN; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 21 \end{aligned}$
S189	171977	(H04B5/0037.cpc. H04B5/0081.cpc. H01F41/14.cpc. H01F38/14.cpc. 307/104.ccls. 29/602.1.ccls. H02J7/02.ipc. G06K19/07.ipc. H02J5/00.ipc. B60L11/18.ipc. H02J17/00.ipc. H04B5/00.ipc.)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { LBM TDB } \end{aligned}$	OR	ON	2015/10/13
S190	15	S188 AND S189	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 23 \end{aligned}$
S191	17651	S182 AND S183 AND S184 and S185 and (radial (helically or helix) Near3 (flat planar))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2015/10/13
S192	681	S191 AND ((substrate or base or core or "ferrite magnet layer") WITH (conduct\$3 NEAR2 (layer or pattern or (PCB or printed or etch\$3)))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	${ }^{2015 / 10 / 13}$
S193	6	S192 AND S189	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 09: 39 \\ & \end{aligned}$
S194	32	(coil WITH overlap\$4 NEAR4 connect\$3) AND S189	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \end{aligned}$	OR	ON	2015/10/13

			$\begin{aligned} & \text { IDERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S195	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20130069444-\$ or US-20090284341\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US 5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US-8092251-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 13: 43 \end{aligned}$
S196	15	/S195 and overlap\$4	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 13: 43 \end{aligned}$
S197	1	"20120248981"	US-PGPUB	OR	ON	$\begin{aligned} & 2015 / 10 / 13 \\ & 13: 44 \end{aligned}$
S198	1657391	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact\$3 or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio (frequency)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 10: 30 \end{aligned}$
S202	51	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 10: 52 \end{aligned}$

		20090284341-\$ or US-20130126622-\$ or US-20120248981-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US 6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US 7392013-\$ or US-8092251-\$ or US 8947189-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$).did. or (JP-2013157917\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.				
S207	546319	S198 AND ((receiv\$3 or accept\$3 or receipt or retriev $\$ 3$ or acquir\$3 or acquisition or fit\$4 or accommodat\$3) near3 (spac\$3 or hole or opening or slot\$3 or gap or notch\$2 or port or area or shaped or cut-out or configured or size or shape or dimension or design or pattern or cutout or "cut out" or configuration or (ayout)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { BM_TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 11: 03 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$
S208	1657391	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact\$3 or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio frequency))	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	ADJ	ON	(2016/01/16
S209	1657391	(receiv\$3 or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact\$3 or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio frequency)))	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	ADJ	ON	2016/01/16 ${ }^{11: 17}$
S210	1130997	S209 AND (space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; } \\ & \text { DEROF } \\ & \text { IBMENT; } \end{aligned}$	ADJ	ON	$\sqrt{2016 / 01 / 16}$
S211	723742	$\begin{aligned} & \text { (coil inductor inductance winding } \\ & \text { antenna) WITH (conductive } \\ & \text { conducting copper etch } \$ 3 \text { PCB printed } \\ & \text { layer pattern) } \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\sqrt{2016 / 01 / 16}$
S212	32986	S211 SAME ((terminal electrode end terminus "connecting land" end) NEAR3 (second another other))	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	OR	ON	2016/01/16 ${ }^{\text {11:36 }}$

			IBM TDB			
S213	7222	S212 AND S210	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 16 \\ & 11: 38 \end{aligned}$
S214	723868	(coil inductor inductance winding lantenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 22 \end{aligned}$
S215	32995	S214 SAME ((terminal electrode end terminus "connecting land" end) NEAR3 (second another other))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 22 \end{aligned}$
S216	51	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ Ior US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ bor US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ Oor US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ lor US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ Ior US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ Bor US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ bor US-20120248981-\$).did. or (US-6008622-\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US 7392013-\$ or US-8092251-\$ or US-8947189-\$).did. or (US-3153139\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$) did. or (JP-2013157917\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or !JP-2012010533-\$ or JP-2012191134-\$ lor JP-2011109546-\$) .did. or (WO-$2013065245-\$$ or $\mathrm{CN}-203326731-\$$ or JJ-2010022098-\$).did.	US-PGPUB USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 22 \end{aligned}$
S217	6	S215 AND S216	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 09: 22 \end{aligned}$
S218	1658038	(receiv $\$ 3$ or reception or pick-up or ipickup or "pick up" or secondary or tharget) SAME ((wire\$1less\$2 or wire	US-PGPUB; USPAT; USOCR;	ADJ	ON	

		less or inductive or contact\$1less\$2 or contact less or non contact\$3 or (RF or R F or radio $\$ 1$ frequenc $\$ 3$ or radio frequency)))	PPRS; EPO; JPO; DERWENT; IBM_TDB			
S219	387249	S218 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or base))	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	$12016 / 01 / 19$
S220	3911	S215 AND S219	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 10: 08 \end{aligned}$
S221	, 253	S220 AND (third ADJ2 (terminal electrode end terminus "connecting land" end contact pin)) AND (fourth ADJ2 (terminal electrode end terminus "connecting land" end contact pin))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	1
S222	167	S221 and @ad< "20120323"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { IBM TDB; } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2016 / 01 / 19 \\ 10: 23 \end{array}\right.$
S223	33	S221 AND ((coil loop inductor inductance pattern conductive) NEAR3 (overlap\$4))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2016 / 01 / 19 \\ 13: 51 \end{array}\right.$
S224	62	S221 AND ((coil loop inductor inductance pattern conductive) NEAR3 (cross\$3 across))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\left\{\begin{array}{l} 2016 / 01 / 19 \\ 14: 23 \end{array}\right.$
S225	6	$\begin{aligned} & \text { S221 AND ((coil loop inductor } \\ & \text { inductance pattern conductive) NEAR3 } \\ & \text { (cross\$3 across)) NEAR3 (space gap) } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 15: 13 \end{aligned}$
S226	${ }^{2}$	S221 AND ((coil loop inductor inductance pattern conductive) NEAR3 (overlap\$4)) NEAR3 (space gap)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \end{aligned}$	OR	ON	$\begin{array}{\|ll\|} 2016 / 01 / 19 \\ 15: 18 & \\ & \\ & \end{array}$

			$\begin{aligned} & \text { DERWENT, } \\ & \text { IBM_TDB } \end{aligned}$			I3	
S227	2	S221 AND ((coil loop inductor inductance pattern conductive) NEAR3 (top)) NEAR3 (substrate)	$\begin{array}{\|l\|} \hline \text { US-PGPPB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRRS; } \\ \text { EPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \\ \hline \end{array}$	OR	ON	$\begin{aligned} & 2016 / 01 / 19 \\ & 15: 29 \end{aligned}$	
S228	57	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-\|20140152245-\$ or US-20130157565-\$:lor US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ Hor US-20140175895-\$ or US-	20120187767-\$ or US-20110101788-\$ Ior US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ lor US-20120248981-\$ or US-[20140226293-\$ or US-20150109167-\$ lor US-20090115681-\$ or US-20130271328-\$).did. or (US-6008622\$ $\$$ or US-5572180-\$ or US-3936931-\$ lor US-5294749-\$ or US-6876287-\$ or UUS-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or USS-8092251-\$ or US-8947189-\$ or UUS-4947180-\$ or US-7259672-\$).did. !or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380- \$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JJP-2006042519-\$ or JP-2012010533-\$ Ior JP-2012191134-\$ or JP-[2011109546-\$).did. or (WO-:2013065245-\$ or CN-203326731-\$ or ! JP-2010022098-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2016/01/19
S237	49	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-,20100277004-\$ or US-20120057322-\$? or US-20080197957-\$ or US-,20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140167521-\$ or US-20140152245-\$ \}or US-20130157565-\$ or US-:20140346890-\$ or US-20130106198-\$ \}or US-20140333253-\$ or US-20140306656-\$ or US-20130069445-\$! or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$) or US-20130200716-\$ or US-20130069444-\$ or US-20090284341\$\$).did. or (US-6008622-\$ or US $5572180-\$$ or US-3936931-\$ or US :5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	an	

		8653927-\$ or US-7392013-\$ or US 88092251-\$).did. or (US-3153139- \$).did. or (WO-2013120710-\$ or WO-2010133995-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or UJP-2012235630-\$ or JP-2006042519-\$ for JP-2012010533-\$ or JP-:2012191134-\$ or JP-2011109546- \$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098(\$).did.				
S238	57	(US-20130249302-\$ or US 20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US 20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US 20140152245-\$ or US-20130157565-\$ lor US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US 20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US 20130271328-\$).did. or (US-6008622\$ or US-5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US-8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380- \$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\begin{aligned} & 2016 / 01 / 20 \\ & 09: 57 \end{aligned}$
5239	12	S238 NOT S237	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 20 \\ & 09: 57 \end{aligned}$
S240	31	S238 AND Kato	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 01 / 20 \\ & 10: 07 \end{aligned}$
S241	17		US-PGPUB; USPAT	OR	ON	2016/05/06

S242	74	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US 20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US 20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US 20130271328-\$).did. or (US-20110127070-\$ or US-20050072595-\$ or US-20120049986-\$ or US 20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US 20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US 20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US 20060166506-\$ or US-20100289341-\$ or US-20070279002-\$ or US 20110267248-\$ or US-20070254432\$).did. or (US-6008622-\$ or US 5572180 -\$ or US-3936931-\$ or US 5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US 8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2016/05/06 16:01
S243	1713929	(receiv $\$ 3$ or reception or pick-up or pickup or "pick up" or secondary or target) SAME ((wire\$1less\$2 or wire less or inductive or contact\$1less\$2 or contact less or non contact $\$ 3$ or (RF or R F or radio\$1frequenc\$3 or radio (frequency)))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 03 \end{aligned}$
S245	1	WO ADJ "2012150293"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { DERWENT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 16 \end{aligned}$
S246	30	"2005116874".PN.	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 21 \end{aligned}$

S247	1	"20050116874".PN.	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 21 \end{aligned}$
S248	1	/"20140091640".pn.	US-PGPUB	ADJ	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 35 \end{aligned}$
S249	76	(US-20130249302-\$ or US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ lor US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ lor US-20120044114-\$ or US-20140152245-\$ or US-20130157565-\$ lor US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ lor US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$: or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ lor US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ lor US-20090115681-\$ or US-[20130271328-\$).did. or (US-20110127070-\$ or US-20050072595-\$ lor US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ lor US-20140091614-\$ or US 20110285494-\$ or US-20080266748-\$ lor US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ lor US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ lor US-20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ Ior US-20140091640-\$).did. or (US-6008622-\$ or US-5572180-\$ or US 3936931-\$ or US-5294749-\$ or US 6876287-\$ or US-5175525-\$ or US 8922321-\$ or US-8653927-\$ or US 7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139- (\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GGB-981380-\$).did. or (JP-2013157917\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ bor JP-2011109546-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or :JP-2010022098-\$ or WO-2012150293\$).did.	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	$\sqrt{2016 / 05 / 06}$
S250	47	S249 AND S243	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	ADJ	ON	$\begin{aligned} & 2016 / 05 / 06 \\ & 16: 36 \end{aligned}$
S251	31	S250 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \end{aligned}$	ADJ	ON	$\left\{\begin{array}{l} 2016 / 05 / 06 \\ 16: 39 \end{array}\right.$

		patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or base))	$\begin{aligned} & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S252	723389	((wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 17: 02 \end{aligned}$
S253	2787	S252 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern)) SAME ((terminal electrode end terminus "connecting land" end) NEAR3 (second 2nd another other))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$1 \begin{aligned} & 2016 / 05 / 07 \\ & 17: 19 \end{aligned}$
S254	901	S253 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross $\$ 3$) NEAR5 (space gap hole notch notched)) OR (connect\$3 coupl\$3) WITH (under beneath below))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$1 \begin{aligned} & 2016 / 05 / 07 \\ & 17: 50 \end{aligned}$
S255	648	S254 AND ((space or spacing or hole or opening or slot or slotted or gap or notch or notched or recess or recessed or shape or shaped or cut-out or design or designed or pattern or patterned or cutout or "cut out" or configured or configuration or layout or "lay out" or lay-out or "laid out") WITH (substrate or board or printed-circuit-board or PCB or base))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	ADJ	ON	$\left\{\begin{array}{l} 2016 / 05 / 07 \\ 17: 51 \end{array}\right.$
5256	,245	S255 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern)) WITH ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 05 / 07 \\ & 18: 06 \end{aligned}$
S257	45	S256 AND ((coil inductor inductance winding antenna) WITH (third 3rd) ADJ2 (terminal electrode end terminus "connecting land" end) WITH (fourth 4th) ADJ2 (terminal electrode end terminus "connecting land" end))	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	ON	$\left\{\begin{array}{l} 2016 / 05 / 07 \\ 18: 14 \end{array}\right\}$
5258	3349	S252 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern) NEAR5 substrate) SAME ((terminal electrode end terminus "connecting land" end) NEAR3 (second 2nd another other))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2016/05/07
5259	92	S258 AND (((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch	$\begin{aligned} & \hline \text { US-PGPUB; } \\ & \hline \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \end{aligned}$	OR	ON	

		inotched)) OR (connect\$3 coupl\$3) WITH (under beneath below))	IEPO; JPO; DERWENT; IBM TDB			
S260	, 272	S252 AND ((coil inductor inductance winding antenna) WITH (conductive conducting copper etch\$3 PCB printed layer pattern) NEAR5 substrate) SAME ((second 2nd) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	ON	2016/05/07
S261	27	S260 AND ((coil inductor inductance iwinding antenna) WITH (third 3rd) ADJ2 (terminal electrode end terminus "connecting land" end) WITH (fourth : 4th) ADJ2 (terminal electrode end terminus "connecting land" end))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	O	2016/05/07
S262	11	S261 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch notched)) OR (connect\$3 coupl\$3) WITH (under beneath below))	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	O	2016/05/07
S263	3	S261 AND ((coil loop winding antenna inductor inductance inductive pattern conductive) NEAR5 (overlap\$4 cross\$3) NEAR5 (space gap hole notch notched)) OR (connect $\$ 3$ coupl\$3) WITH (under beneath below)) AND ((wire\$1less\$2 or wire ADJ less or inductive or contact\$1less\$2 or (contact adj3 less) or (non adj3 contact\$3)) NEAR3 (power energy transmission transmit\$4) NEAR3 (receiv\$3 reception))	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	ON	[2016/05/07
S288	81	(US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US-20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US-20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US-20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US-20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US-20090115681-\$ or US-20130271328-\$ or US-20110127070-\$ or US-20050072595-\$).did. or (US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US-20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US-20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US-	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	3

		20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ or US-20140091640-\$ or US-20030141590-\$ or US-20070007661-\$ or US 20160118711-\$ or US-20070095913\$). did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US-4947180-\$ or US-7259672-\$).did. or (US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ or JP-H0732100-\$ or GB-981380-\$ or WO-2012008693-\$).did. or (JP-2013157917-\$ or JP-2013138404-\$ or JP-2012235630-\$ or JP-2006042519-\$ or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or JP-2007159326-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$. did.				
S290	S	S288 and kuk.inv.	US-PGPUB; USPAT	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 09: 32 \end{aligned}$
S292	81	(US-20050046573-\$ or US-20080122570-\$ or US-20080154178-\$ or US-20100277004-\$ or US 20120057322-\$ or US-20080197957-\$ or US-20090058358-\$ or US 20080164840-\$ or US-20120044114-\$ or US-20130157565-\$ or US 20140346890-\$ or US-20130106198-\$ or US-20140306656-\$ or US-20140175895-\$ or US-20120187767-\$ or US-20110101788-\$ or US 20130200716-\$ or US-20090284341-\$ or US-20130126622-\$ or US-20120248981-\$ or US-20140226293-\$ or US-20150109167-\$ or US 20090115681-\$ or US-20130271328-\$ or US-20110127070-\$ or US 20050072595-\$).did. or (US-20120049986-\$ or US-20120019075-\$ or US-20050116874-\$ or US 20140091614-\$ or US-20110285494-\$ or US-20080266748-\$ or US 20080200210-\$ or US-20100308187-\$ or US-20070020932-\$ or US-20080129439-\$ or US-20060166506-\$ or US-20100289341-\$ or US 20070279002-\$ or US-20110267248-\$ or US-20070254432-\$ or US 20140091640-\$ or US-20030141590-\$ or US-20070007661-\$ or US-20160118711-\$ or US-20070095913\$).did. or (US-6008622-\$ or US 5572180-\$ or US-3936931-\$ or US-5294749-\$ or US-6876287-\$ or US-5175525-\$ or US-8922321-\$ or US 8653927-\$ or US-7392013-\$ or US-8092251-\$ or US-8947189-\$ or US 4947180-\$ or US-7259672-\$).did. or	US-PGPUB; USPAT; USOCR; FPRS; JPO; DERWENT	OR	ON	2016/10/04

		?(US-3153139-\$).did. or (WO-2013120710-\$ or WO-2010133995-\$ for JP-H0732100-\$ or GB-981380-\$ or WO-2012008693-\$).did. or (JP-:2013157917-\$ or JP-2013138404-\$ or UJP-2012235630-\$ or JP-2006042519-\$ \}or JP-2012010533-\$ or JP-2012191134-\$ or JP-2011109546-\$ or !JP-2007159326-\$).did. or (WO-2013065245-\$ or CN-203326731-\$ or JP-2010022098-\$ or WO-2012150293\$).did.				
5293	3	"20130249302"	US-PGPUB;	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 13: 46 \end{aligned}$
S294	38	S292 and ((coil WITH conductive OR conducting) OR etch\$3 OR plating or deposed or deposition or depositing)	US-PGPUB;	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 13: 57 \end{aligned}$
S295	41	S292 and (coil WITH conductive OR conducting or conductor)	US-PGPUB;	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 14: 03 \end{aligned}$
S296	41	S292 and ((coil or inductor) WITH conductive OR conducting or conductor)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT } \end{aligned}$	OR	ON	$\begin{aligned} & 2016 / 10 / 04 \\ & 14: 04 \end{aligned}$

12/8/2016 6:54:48 PM
C:\Users\ jevans2\Documents\EAST\Workspaces\13663012.wsp

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB

Subsitiute for form 1449A/PTO				Complete if Known			
		INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Application Number	13/663,012
						Filing Date	October 29, 2012
						First Named Inventor	James P. Evans
						Art Unit	2836
						Examiner Name	Jeong Wook An
Sheet	1	of	1	Attorney Docket Number	SUN.LGI. 420		

U.S. PATENT DOCUMENTS					
Examiner	$\begin{aligned} & \text { Cite }_{1} \\ & \text { No. } \end{aligned}$	Document NumberNumber - Kind Code known) (if	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	U1	2009/0029185-A1	01-29-2009	Lee et al.	ALL

FOREIGN PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$		In Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages Columns, Lines Where Relevant Passages or Relevant Figures Appear	T^{6}
		Country Code ${ }^{3}$	Number ${ }^{4}-$ Kind $^{\text {coded }}{ }^{5}$ (if knowri)				
	F1		2009033106-A	02-12-2009	Taida Electronic Ind. Co. Ltd.	ALL	
	F2		2012019302-A	01-26-2012	NEC Tokin Corp.	ALL	
	F3		2004110854-A	04-08-2004	Yokowo Co., Ltd.	ALL	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English language Translation is attached.
This collection of information is required by 37 CFR 198 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O Box 1450, Alexandria. VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number	13663012	
Filing Date	$2012-10-29$	
First Named Inventor	Jeong Wook An	
Art Unit	2836	
Examiner Name	James P. Evans	
Attorney Docket Number		SUN.LGI.420

U.S.PATENTS										Remove			
Examiner Initial ${ }^{*}$	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns, Lines where Relevant Passages or Relevant Figures Appear				
	1												
If you wish to add additional U.S. Patent citation information please click the Add button.											Add		
U.S.PATENT APPLICATION PUBLICATIONS											Remove		
Examiner Initial*	Cite		Publication Number	Kind Code	Public Date		Name of Pa of cited Doc	ntee or Applicant ment	Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear				
	1		20130106198	A1	2013-05	-02	Kuk et al.		ALL				
If you wish to add additional U.S. Published Application citation information please click the Add button.											Add		
FOREIGN PATENT DOCUMENTS										Remove			
Examiner Initia\|*	Cite No	Foreign Document Number ${ }^{3}$		Country Codei		Kind Code ${ }^{4}$	Publication Date	Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear			T5
	1		24550	TW		U1	2012-03-11	TDK Taiwan Corporation		ALL			
	2		2008693	NO		A2	2012-01-19	Hanrim Postech Co., Ltd. et al.		ALL			
If you wish to add additional Foreign Patent Document citation information please click the Add button										Add			
NON-PATENT LITERATURE DOCUMENTS										Remove			

Examiner Initials*	$\begin{array}{\|l} \text { Cite } \\ \text { No } \end{array}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.				T5
	1	Office Action dated August 24, 2016 in Taiwanese Application No. 103130766.				
If you wish to add additional non-patent literature document citation information please click the Add button					Add	
EXAMINER SIGNATURE						
Examiner Signature			/JXMES 9 EVANS/	09/08/2016		

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www. USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).
\times See attached certification statement.
$X \quad$ The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.
SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the form of the signature.

Signature	/JEFF LLOYD/	Date (YYYY-MM-DD)	$2016-09-07$
Name/Print	Jeff Lloyd	Registration Number	35589

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record \mathbf{s}.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Document code: WFEE
United States Patent and Trademark Office Sales Receipt for Accounting Date: 09/09/2016

TLAWRENC SALE \#00000005 Mailroom Dt: 09/08/2016 19006513663012 01 FC : 1806 180.00 DA

Document code: WFEE
United States Patent and Trademark Office Sales Receipt for Accounting Date: 10/28/2016

DMARTINO ADJ \#00000001 Mailroom Dt: 09/08/2016 Seq No: $\quad 5$ Sales Acctg Dt: 09/09/2016 19006513663012 01 FC: 1806 180.00 CR

REQUEST FOR CONTINUED EXAMINATION(RCE)TRANSMITTAL (Submitted Only via EFS-Web)							
Application Number	13/663,012	Filing Date	2012-10-29	Docket Number (if applicable)	SUN.LGI. 420	Art Unit	2836
First Named Inventor	Jeong Wook An			Examiner Name	James P. Evans		

This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application.
Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8 , 1995, or to any design application. The Instruction Sheet for this form is located at WWW.USPTO.GOV

SUBMISSION REQUIRED UNDER 37 CFR 1.114

Note: If the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s)

Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.Consider the arguments in the Appeal Brief or Reply Brief previously filed on \qquad
Other
\boxtimes EnclosedAmendment/Reply
\boxtimes Information Disclosure Statement (IDS)Affidavit(s)/ Declaration(s)Other

MISCELLANEOUS

Suspension of action on the above-identified application is requested under 37 CFR 1.103(c) for a period of months (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required)

Other

FEES

The RCE fee under 37 CFR 1.17 (e) is required by 37 CFR 1.114 when the RCE is filed.
\boxtimes The Director is hereby authorized to charge any underpayment of fees, or credit any overpayments, to Deposit Account No

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

$\times \quad$ Patent Practitioner Signature

Applicant Signature

| Signature of Registered U.S. Patent Practitioner | | | |
| :--- | :--- | :--- | :--- | :--- |
| Signature | JEFF LLOYD $/$ | Date (YYYY-MM-DD) | 2016-09-07 |
| Name | JEFF LLOYD | Registration Number | 35589 |

This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974 , as amended, pursuant to 5 U.S.C. $552 a(\mathrm{~m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number	13663012
Filing Date	2012-10-29
First Named Inventor	Jeong Wook An
Art Unit	2836
Examiner Name	James P. Evans
Attorney Docket Number	

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		13663012
	Filing Date		2012-10-29
	First Named Inventor	Jeong Wook An	
	Art Unit		2836
	Examiner Name	James P. Evans	
	Attorney Docket Number		SUN.LGI. 420

${ }^{1}$ See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	13663012
	Filing Date	2012-10-29
	First Named Inventor	Jeong Wook An
	Art Unit	2836
	Examiner Name	James P. Evans
	Attorney Docket Number	SUN.LGI. 420

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).
\times See attached certification statement.
$X \quad$ The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.
SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33,10.18. Please see CFR 1.4(d) for the form of the signature.

Signature	IJEFF LLOYD/	Date (YYYY-MM-DD)	$2016-09-07$
Name/Print	Jeff Lloyd	Registration Number	35589

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

| Description | Fee Code | Quantity | Amount |
| :--- | ---: | ---: | ---: | \(\left.\begin{array}{c}Sub-Total in

USD(\$)\end{array}\right]\)

Decision Date: September 7,2016
In re Application of :

DECISION ON PETITION

UNDER CFR 1.313(c)(2)
Application No: 13663012
Filed: 29-Oct-2012
Attorney Docket No: SUN.LGI. 420

This is an electronic decision on the petition under 37 CFR 1.313(c)(2), filed September 7, 2016 to withdraw the above-identified application from issue after payment of the issue fee.

The petition is GRANTED.

The above-identified application is withdrawn from issue for consideration of a submission under 37 CFR 1.114 (request for continued examination). See 37 CFR 1.313(c)(2).

Petitioner is advised that the issue fee paid in this application cannot be refunded. If, however, this application is again allowed, petitioner may request that it be applied towards the issue fee required by the new Notice of Allowance.

Telephone inquiries concerning this decision should be directed to the Patent Electronic Business Center (EBC) at 866-217-9197.
This application file is being referred to Technology Center AU 2836 for processing of the request for continuing examination under 37 CFR 1.114.

Office of Petitions

Electronic Acknowledgement Receipt	
EFS ID:	26856909
Application Number:	13663012
International Application Number:	
Confirmation Number:	3575
Title of Invention:	WIRELESS POWER RECEIVER AND METHOD OF MANUFACTURING THE SAME
First Named Inventor/Applicant Name:	Jeong Wook AN
Customer Number:	23557
Filer:	Jeff Lloyd/Seneca Miller
Filer Authorized By:	Jeff Lloyd
Attorney Docket Number:	SUN.LGI. 420
Receipt Date:	07-SEP-2016
Filing Date:	29-OCT-2012
Time Stamp:	16:03:20
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	CARD
Payment was successfully received in RAM	$\$ 1840$
RAM confirmation Number	090816 INTEFSW16031300
Deposit Account	4000
Authorized User	Seneca Miller
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 37 CFR 1.16 (National application filing, search, and examination fees) 37 CFR 1.17 (Patent application and reexamination processing fees)	

37 CFR 1.19 (Document supply fees) 37 CFR 1.20 (Post Issuance fees) 37 CFR 1.21 (Miscellaneous fees and charges)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Petition automatically granted by EFS	petition-request.pdf	31582	no	2
			f3d45e06d06cc52ed7e9c6175b25021913e		
Warnings:					
Information:					
2	Transmittal Letter	SIDS.pdf	50651	no	3
			Oeb58566c0abee2fda37b7040b570886642 62d.5e		
Warnings:					
Information:					
	Quick Path Information Disclosure Statement	QPIDS-sb0009.pdf	73323	no	2
3			8390fa2a9ff93e373ad525662180c4351154 72 e 7		
Warnings:					
Information:					
4	Foreign Reference	F1.pdf	14927889	no	34
			$2 c 818616 \mathrm{~b} 8+20 \mathrm{~b} 456 \mathrm{dd} 417 \mathrm{f7e} 55 \mathrm{dea} 54085$ 7 e 505		
Warnings:					
Information:					
5	Foreign Reference	F2.pdf	18370702	no	20
Warnings:					
Information:					
6	Other Reference-Patent/App/Search documents	R1.pdf	3435682	no	13
Warnings:					
Information:					

7	Request for Continued Examination (RCE)	RCE2.pdf	697600	no	3
			$\begin{gathered} 471678 f 94 \mathrm{f68a} 73 \mathrm{~d} 6340 \text { eabacc881a8f7682 } \\ 5 \mathrm{bb} 1 \end{gathered}$		
Warnings:					
Information:					
	Information Disclosure Statement (IDS)Form (SB08)	PTO-SB-08.pdf	612180	no	4
8					
Warnings:					
Information:					
	Fee Worksheet (SB06)	fee-info.pdf	32450	no	2
9			$\underset{653}{\text { e20a8d901a4b524484287785c38815773 }}$		
Warnings:					
Information:					
Total Files Size (in bytes):			38232059		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Doc Code: PET.AUTO		PTO/SB/140 U.S. Patent and Trademark Office Department of Commerce
Electronic Petition Request	PETITION TO WITHDRAW AN APPLICATION FROM ISSUE AFTER PAYMENT OF THE ISSUE FEE UNDER 37 CFR 1.313(c)	
Application Number	13663012	
Filing Date	29-Oct-2012	
First Named Inventor	Jeong Wook AN	
Art Unit	2836	
Examiner Name	JAMES EVANS	
Attorney Docket Number	SUN.LGI. 420	
Title	WIRELESS POWER RECEIVER	ACTURING THE SAME
An application may be with withdraw an application from showing of good and suffici APPLICANT HEREBY PETITIO A grantable petition require (1) Petition fee; and (2) One of the following reas (a) Unpatentability of one or are unpatentable, an amend claims to be patentable; (b) Consideration of a reque (c) Express abandonment of CPA under 37 CFR 1.53(d).	m issue for further action upo applicant must file a petition un ns why withdrawal of the app ITHDRAW THIS APPLICATION owing items: aims, which must be accompa such claim or claims, and an exp tinued examination in compli ication. Such express abandon	To request that the Office the fee set forth in § 1.17(h) and a sary. 1.313(c). ement that one or more claims mendment causes such claim or ity or plant application only); or continuing application, but not a
Petition Fee		
\bigcirc Small Entity		
\bigcirc Micro Entity		
- Regular Undiscounted		
Reason for withdrawal from issue		

One or more claims are unpatentable
© Consideration of a request for continued examination (RCE) (List of Required Documents and Fees)
Applicant hereby expressly abandons the instant application (any attorney/agent signing for this reason must have power of attorney pursuant to 37 CFR 1.32 (b)).

RCE request,submission, and fee.
I certify, in accordance with 37 CFR 1.4 (d)(4) that :The RCE request , submission, and fee have already been filed in the above-identified application on
Are attached.

THIS PORTION MUST BE COMPLETED BY THE SIGNATORY OR SIGNATORIES
I certify, in accordance with 37 CFR 1.4(d)(4) that I am:

- An attorney or agent registered to practice before the Patent and Trademark Office who has been given power of attorney in this application.

O An attorney or agent registered to practice before the Patent and Trademark Office, acting in a representative capacity.
A sole inventor
A joint inventor; I certify that I am authorized to sign this submission on behalf of all of the inventors as evidenced by the power of attorney in the application

A joint inventor; all of whom are signing this e-petition

Signature	/JEFF LLOYD/
Name	Jeff Lloyd
Registration Number	35589

I hereby certify that this correspondence is being electronically filed in the United States Patent and Trademark Office on September 7, 2016.
/SENECA MILLER/
Seneca Miller

SUPPLEMENTAL INFORMATION
DISCLOSURE STATEMENT
UNDER 37 C.F.R §§ 1.97 AND 1.98
Examining Group 2836
Patent Application
Docket No. SUN.LGI. 420
Serial No. 13/663,012

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner	$:$	James P. Evans
Art Unit	$:$	2836
Applicants	$:$	Jeong Wook An, Jung Oh Lee, Sung Hyun Leem, Yang Hyun Kim
Serial No.	$:$	$13 / 663,012$
Filed	$:$	October 29, 2012
Conf. No.	$:$	3575
For	$:$	Wireless Power Receiver and Method of Manufacturing the Same

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT

UNDER 37 C.F.R. $\S \S 1.97$ AND 1.98
Sir:
In accordance with 37 C.F.R. § 1.56 , the references listed below and on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ are being brought to the attention of the Examiner for consideration in connection with the examination of the patent application identified above. Copies of the cited references are attached. However, Applicants have not submitted copies of the published U.S. Patent Applications cited on attached Form PTO/SB/08 pursuant to 37 CFR 1.98 (a)(2)(ii).

Applicants note that Taiwanese Publication No. M424550 and International Publication No. 2012008693, cited as F1 and F2, respectively, on the attached form PTO/SB/08 were written in foreign languages; however, English language Abstracts are provided herewith. Applicants have also included U.S. Publication No. 20130106198, cited as U1 on the attached form $\mathrm{PTO} / \mathrm{SB} / 08$, which is a patent family member of F2 and is believed to be an English language
equivalent thereof. Applicants respectfully request that the references be made of record and considered in the examination of the subject application.

The undersigned hereby certifies that no item of information contained in this Supplemental Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this Supplemental Information Disclosure Statement was known to any individual designated in 37 C.F.R. 1.56 (c) more than three months prior to the filing of this Supplemental Information Disclosure Statement.

This Supplemental Information Disclosure Statement is being submitted with a Quick Path Information Disclosure Statement Request along with a conditional Request for Continued Examination.

It is respectfully requested that the Examiner indicate consideration of the cited references by returning a copy of the attached form $\mathrm{PTO} / \mathrm{SB} / 08$ with initials or other appropriate marks.

Applicants respectfully assert that the substantive provisions of 37 C.F.R. $\S \S 1.56,1.97$, and 1.98 are met by the foregoing statements.

The Commissioner is hereby authorized to charge any fees under 37 C.F.R. $\S 1.16$ or 1.17 as required by this paper to Deposit Account 19-0065.

Respectfully submitted,
/JEFF LLOYD/
Jeff Lloyd
Patent Attorney
Registration No. 35,589
Phone No.: $\quad 352-375-8100$
Fax No.: 352-372-5800
Address: \quad Saliwanchik, Lloyd \& Eisenschenk
A Professional Association
P.O. Box 142950
Gainesville, FL 32614-2950

JL/sbm
Attachments: Form PTO/SB/08; copies of references cited.
(19) Taiwan Intellectual Property Office
(12) Utility Model Publication
(11) Document No.: TW M424550U1
(45) Publication Date: March 11, 2012
(21) Application No.: 100219133
(22) Application Date: October 13, 2011
(51) IPC Classification: G06K19/07 (01. 2006) H02317/00(01. 2006) H04B5/00
(01. 2006)
(71) Applicant: TDK TAIWAN CORPORATION (TW) floor 7, Shanzhong-lu 66, Nangang-qu, Taibei
(72) Inventor: HSU, SHENGTAI (TW); WU, DAVD (TW); TAKAHIRO, OISHI (IP); LIN, CHENHUNG (TW), LO, SHENGHAO (TW)

Total claims: 18 Total drawings: 6 Total pages: 18
(54) TITLE OF INVENTION

INDUCTION MODULE USED FOR NEAR FIELD COMMUNICATION AS WELL AS WIRELESS CHARGING

(57) ABSTRACT

The present invention relates to an induction module used for a near field communication (NFC) as well as a wireless charging (WLC), which includes: a first induction plate in a plate shape; and a first coil and a second coil wound in a planar shape to have an empty space at a center thereof, in which the first and second coils are mounted on the first induction plate, and the second coil is accommodated in the central empty space of the first coil while forming a concentric shape with the first coil, so that
induction modules having different kinds of frequency signals are integrated into one module, thus an area for an induction coil is reduced

FIG. 2
30 induction module 31 induction plate 32 first coil 321 coil end
33 second coil 331 coil end 36 lead coil connector 361 metal connection terminal

SPECIFICATION

* Application No.: 100219133
* Application Date: October 13, 2011
\% IPC Classification: G06K19/07(01. 2006) H02317/00(01.2006) H04B5/00 (01. 2006)

1. TITLE OF INVENTION

MNDUCTON MODULE USED FOR NEAR FIELD COMMUNICATION AS WELL AS WIRELESS CHARGING

2. CHINESE ABSTRACT

3. ENGLISH ABSTRACT

The present invention relates to an induction module used for a near field communication (NPC) as well as a wireless charging (WLC), which includes: a first induction plate in a plate shape; and a first coil and a second coil wound in a planar shape to have an empty space at a center thereof, in which the first and second colls are mounted on the first induction phate, and the second coil is accommodated in the central empty space of the first coil while forming a concentric shape with the first coil, so that induction modules having different kinds of frequency signals are integrated into one module, thus an area for an induction coll is reduced.

4. DESIGNATEO REPRESENTATIVE DRAWING:

(1) Representative drawing: FIG. 2
(2) Brief description of elements in the representative drawing

30 induction module 31 induction plate 32 first coil 321 coil end 33 second coil
331 coil end 36 lead coil connector 361 metal connection terminal

5．SPECKFICATION

【TECHNICAL FIELD OF THE INVENTION】

［0001］The present invention relates to an induction module used for a near field communication（NFC）as well as a wireless charging（WLC），and more particularly，to an NFC module and a WLC module combined to a portable apparatus for use in an integrated structure．

IRELATED ART】

［0002］A portable electronic apparatus such as a mobile phone，a personal digital assistant（PDA），a palmtop computer，a notebook computer，and a tablet computer is conveniently used by using power of a battery thereof when there is no commercial power．In addition，the electronic apparatuses are used by charging the battery or receiving the commercial power through wired power supply equipment．
［0003］The portable apparatus using the WLC technology according to the present invention does not need to use wired power，and the power is directy transmitted to the portable apparatus for charging the battery by using an electromagnetic induction scheme．As shown in FIG． 1 which is a schematic view illustrating a transmitting structure for the WLC， the transmitting structure for the WLC includes a power transmiting module 10 and a power receiving module 20．The power transmitting（induction）module 10 includes a transmitting terminal coll 11 and a transmiting terminal core plate 12 ．Likewise，the power receiving （induction）module 20 includes a receiving terminal coil 21 and a receiving terminal core plate 22．When the power receiving module 20 approaches the power transmitting module 10 ， a current flows so that the transmitting terminal coil 11 of the power transmitting（induction） module 10 is subject to a magnetic field，thus，the receiving terminal coil 21 of the power
receiving module 20 induced by the magnetic field generates a current.
[0004] In addition, to combine the NFC with the portable electronic apparatus is also considered quite important nowadays. Contactess-type point-to-point communication with the portable apparatus is performed through the NFC, such that very convenient connecting scheme is provided, accordingly, the communication is rapidly and simply performed.
[0005] The NFC technology has been developed by integrating a contactless-type radio frequency identification (RFID) with related technologies. For example, the NFC is being applied in an induction card used in an express transportation system. When the induction card approaches a toll gate for an express transportation, instant pass is possible and the induction time is much less than that of a general contactess-type IC card, which is very useful for a transportation terminal having a large quantity of loads.
[0006] For this reason, some persons having ordinary skill in the art have proposed an NFC chip built in the portable electronic apparatus such as a mobile phone. It shall be an inevitable trend to integrate a function of the NFC and the WLC into the portable electronic apparatus.
[0007] For now, however, two circuits for the NFC and the WLC are not identical to each other, but independent from each other, thus dedicated induction modules are to be used and different signals are to be received, respectively. A degree of difficulty is quite high to integrate the circuits in an inner space of the portable electronic apparatus which is gradually being weight-lightened and simplified.
[0008] An inventor of the present invention have discovered that both of the NFC and the WLC use a coil induction module because the both relate to a near field induction transmitting signal, and that the two kinds of induction modules does not need to be used at once. Therefore, the induction module used for the NFC as well as the WLC is designed for
receiving a signal from the NFC and the WLC so as to automatically switch the signal by a switch circuit，thereby achieving the purpose to convertibly use the induction module．

【SUMMARY OF THE INVENTION】

［0009］The object of the present invention is to provide an induction module used for a near field communication（NFC）as well as a wreless charging（WLC）．Induction modules of the NFC and the WLC，which have mutually different frequency signals，are integrated into one，thereby reducing an area occupied by an induction coll in a portable electronic apparatus，so that the object to integrate two kinds of functions into the same portable electronic apparatus is achieved．
［0010］According to the main technical feature of the present invention，the induction module used for the NFC as well as the WLC is provided，in which the induction module includes：a first induction plate in a plate shape；and a first coil and a second col wound in a planar shape to have an empty space at a center thereof，in which the second coil is accommodated in the central empty space of the first coil and has a concentric shape with the first coil．

【OETALLED DESCRIPTION OF THE INVENTION】

［0011］Hereinafter，the detaled description of present invention will be described with reference to accompanying drawings．It should be noted that the accompanying drawings may be used as reference and for description to express embodiments of the present invention and should not be construed as being limited thereto．
［0012］FIG． 2 shows a schematic view of a first embodiment of an induction module used for a near field communication（NFC）as well as a wireless charging（WLC）according to the present invention．FIG． 3 shows an exploded perspective view of FIG．2．The
convertible module 30 of the present invention includes a first induction plate 31, a first coil 32, and a second coil 33 , in which the first induction plate 31 has a plate shape, which may be configured in the form of a rectangular, circular, or oval shape and may be arranged in various directions.
[0013] In this case, the first coil 32 is mounted on the first induction plate 31 , is wound in a planar shape to have an empty space at a center thereof, and has two coil ends 321, and the second coil 33 is mounted on the first induction plate 31, is wound in a planar shape to have an empty space at a center thereof, has two coil ends 331, is accommodated in the central empty space of the first coil 32 while forming a concentric shape with the first coil 32. 7. A predetermined gap exists between the first coil 32 and the second coil 33 .
[0014] Referring to the embodiment shown in FIG. 2, the first coil 32 includes an NFC induction coil and the second coil 33 includes a WLC induction coil. In addition, as shown in FIG. 4 illustrating a schematic view of a second embodiment according to the present invention, the first coil 32 includes the WLC induction coil and the second coil 33 includes the NFC induction coil.
[0015] The first coil 32 and the second coil 33 are induction coils having mutually different frequency signals. The length of the NFC induction coil is short because the frequency thereof is relatively high, and the length of the WLC induction coll is long because the frequency thereof is relatively low. As for the two induction coils, induction receiving frequency of the induction coil is automatically determined by an automatic switch circuit to be electrically connected to one of the induction colls. Since the switch circuit is not a main concept of the present invention, detail description thereof will be omitted below.
$[0016]$ As shown FIG. 3, the convertible induction module 30 further includes an insulation bonding layer 35 mounted between the first induction plate 31 and the first and second coils 32 and 33 for bonding the first and second coils 32 and 33 on the first induction
plate 31. Preferably, the insulation bonding layer 35 may be formed of a double-sided tape or an adhesive.
[0017] The convertible induction module 30 further includes a second induction plate 34 mounted on the first induction plate 31, and accommodated in the empty space at the center of the second coil 32 . The insulation bonding layer 35 is disposed between the first induction plate 31 and the second induction plate 34 for bonding the second induction plate 34 on the first induction plate 31. Preferably, the first induction plate 31 together with the second induction plate 34 may be integrated in a shape of a Chinese character ' \square ' (not illustrated), and a protrusion thereof may be accommodated in the empty space at the center of the second coil.
[0018] Referring to FIG. 5 illustrating a schematic view of a third embodiment according to the present invention, the first coil 32 and the second coil 33 may come close to each other, so that a gap is not present therebetween.
[0019] Referring again to the first embodiment shown in FIG. 2, the two lead coil connectors 36 are disposed at an outer edge of the first induction plate 31 of the convertible induction module 30 , and the two metal connection terminals 361 may be mounted on the lead coil connecters 36 and electrically connected to the two coil ends 321 of the first coil and the two coil ends 331 of the second coil, respectively.
$10020]$ Referring again to the second embodiment shown in FIG. 4, the one lead coil connectors 36 may be disposed at the outer edge of the first induction plate 31 of the convertible induction module 30 , and a plurality of the metal comection terminals 361 may be mounted thereon to be electrically connected to the end coils the first coil 32 and/or the second coil 33 , respectively. Otherwise, the lead coil connector 36 may be a metal contact piece 37. For example, the two coil ends 331 of the second coil 33 may be electrically connected to the metal contact piece 37 .
[0021] Referring to the third embodiment shown in FIG. 5, a connector disposed at an outside of the first induction plate 31 is the lead coil connector $36 . \mathrm{Or}$, one coil end of the first coil 32 and one coil end of the second coil 33 are electrically connected to each other so as to form a convertible coil end and be electrically connected to one of the metal comnection terminals on the lead coil connector 36 .
[0022] Referring to FIG. 6 illustrating a schematic view of a fourh embodiment according to the present invention, the first coil 32 and the second coil 33 are wound to form one set of coil 38 , and include a first coil end 381 , a second coil end 382 , and a middle coil end 383 . The first coil end 381 and the second coll end 382 constitute the WLC induction coll, and the middle coil end 383 and the second coil end 382 constitute the NFC induction coil.
[0023] Therefore, the disclosed technology as described aforesaid according to the present invention is very useful by providing a novel design remarkably different from designs generally known in the arts. Further, since the present disclosure has not yet published or publicly used before the application date thereof, the disclosed technology is pursuant to the requirements for the utility model, so I submit the present application of the utility model under the regulation.

【BRIEF DESCRIPTION OF THE DRAWINGS】

[0024] FIG. I is a schematic view showing a wireless charging structure;
[0025] FIG. 2 shows an induction module used for a near field communication (NFC) as well as a wireless charging (WLC) according to the invention;
[0026] FIG. 3 is an exploded perspective view of FIG. 2 .
[0027] FIG. 4 is a schematic view showing a second embodiment of the present invention; and
[0028] FIG. 5 is a schematic view showing a third embodiment of the present
invention.
[0029] FIG. 6 is a schematic view showing a fourth embodiment of the present invention.

【Description of Reference numerals】

10 power transmitting module 11 transmitting terminal coil
12 transmitting terminal core plate 20 power receiving module
21 receiving terminal coil 22 receiving terminal core plate
30 induction module 31 induction plate 32 first coil 321 coil end
33 second coil 331 coil end 34 second induction plate
35 insulation bonding layer 36 lead coil connector 361 metal connection terminal 37
metal contact piece 38 coil 381 first coil end 382 second coil end
383 middle coil end

WHATIS CLAIMEDIS:

1. An induction module used for a near field communication (NFC) as well as a wireless charging (WLC), the induction module comprising.
a firs induction plate in a plate shape;
a first coil mounted on the first induction plate, wound in a planar shape to have an empty space at a center thereof, and having two coil ends; and a second coil mounted on the first induction plate, wound in a planar shape to have an empty space at a center thereof, having two coil ends, and accommodated in the central empty space of the frst coil while forming a concentric shape with the first coil.
2. The induction module according to clam 1, further comprising a second induction plate mounted on the first induction plate and accommodated in the central empty space of the second coil.
3. The induction module according to claim 1, further comprising an insulation bonding layer mounted between the first induction plate and the first and second coils for bonding the first and second coils onto the first induction plate.
4. The induction module according to claim 2, further comprising an insulation bonding layer mounted between the first induction plate and the first and second coils for bonding the first and second coils onto the first induction plate.
5. The induction module according to claim 3 or 4 , wherein the insulation bonding layer

Page 335 of 1385

includes a double-sided tape or an adhesive.
6. The induction module according to claim 1 , wherein a protrusion is accommodated in the empty space at the center of the second coil so that the first induction plate is integrated with the second coil in a shape of a Chinese character 'fl's.
7. The induction module according to claim 1, wherein a predetermined gap exists between the first and second coils.
8. The induction module according to claim 1, wherein the first and second coils come close to each other without forming a gap therebetween.
9. The induction module according to claim 1, further comprising a lead coil connector mounted thereon with a plurality of metal comection terminals and electrically connected to the coil end of the first coil and/or the second coil.
10. The induction module according to claim 9 , wherein two metal connection terminals from among the metal connection terminals of the lead coil connector serve as a convertible terminal.
11. The induction module according to claim 1 , wherein the coil end of the first coil and the coil end of the second soil are electrically connected to each other to form a convertible coil end.
12. The induction module according to claim 9 , wherein the lead coil connector is

Page 336 of 1385

coupled to an outer edge of the first induction plate.
13. The induction module according to claim 9 , wherein the lead coil connector is installed at an outside of the first induction plate.
14. The induction module according to claim 9, wherein the two lead coil comectors ate disposed at an outer edge of the first induction plate, and the two metal connection terminals are mounted on the lead coil connecters and electrically connected to the two coil ends of the first coil and the two coll ends of the second coil, respectively.
15. The induction module according to claim 1, wherein the first coil includes an NFC induction coil and the second coil includes a WLC induction coil.
16. The induction module according to claim 1 , wherein the first coil includes a WLC induction coil and the second coil includes an NFC induction coil.
17. The induction module according to claim 1, wherein third and fourth con ends of the second coll are electrically connected to metal contact pieces, respectively.
18. The induction module according to claim 1, wherein the first coil and the second coil are wound as one set and comprise the first coil end, the second coil end, and a middle coll end

Page 337 of 1385

（19）中華民國智慧財產局
（12）新型說明書公告本（11）證妻躆媎：TW M424550U1
（45）公告日：中葉民惑101（2012）年03月11日
（21）申請案號：100219133
（51）Int．Cl．：
$606 \mathrm{K19/07}$（2006．01）
H04B5／wo（2006．01）
（71）申請人：台灣東霊化股份有限公司（中㩐民國）TDK TAIWAN CORPORATION毫北市南港區三重路 66 號 7 樓
（72）創作人：茄滕泰 HSU，SHENGTAI（TW）；呉敏禎WU，DAVD（TW）；大石太洋 TAKAHIRO， OISHI（JP）；林建宏 LIN，CHIENHUNG（TW）；攞勝浩 LO，SHENGHAO（TW）

（54）名稱
近場通槑與無線充電共用的感應模組
（57）摘要
本創作提供一種近場通訰與無線充電共用的感應模組，至少包括：一呈平板妝第一感應板，一纕綼成中心鏤空平面哭的第一線圈及一第二線圈，該第一及第二線圈皆設置於該第一感應板上，且
的感應模組整合於一體，以絔小感應綵圈的面積。

新型専利說明書

公告本

※申詿案號：10049133
※申請日：100．10．13 ※IPC 分類：Gobk 19\％（2006．01）
一，新型名稱：（中文／英文）
$\begin{array}{lll}\mathrm{HOD} \mathrm{J} & 12 & 2006.012 \\ \mathrm{HO} \mathrm{B} & \$ 00 & 2006.05\end{array}$
近場通訊與無線充電共用的感應模組

二，中文新型摘要：

本創作提供一種近場通訊與無線充電共用的感㦄模組，至少包括：一呈平板狀第一感應板，一絋慗成中心鏤空平面狀的第一線圈及一第二線圈，該第一及第二線圈皆設置於該第一感應板上，且該第二永圈容置於該第一線圈的中心鏤空内，與該第一缐圈呈同心狀，如此可將二種不同頻率信號的感應模組整合於一體，以缩小感應缐圈的面積。

三•英文新型摘要：

四，指定代表圖：
（一）本案指定代表圖為：圖二
（二）本代表圖之元件符號簡單說明：
30 感應模組
31 感應板
32 第一線圈
321 出線端
33 第二線圈
331 出線端
36 引出線連接器
361 金屈連接端子

五，新型說明：

【新型所屡之技㭪领域】

本創作係為一種近場通記興無線充電共用的感應模组，特别是關於一種使用在可巏式設備上整合無综充電 （Wireless Charging，WLC）感應模组與近場通訊（Near Field Communication，NFC）感應模組為一體的結構。

【先前技術】

按，於可㩲式電子設備，如手機，PDA（個人数位助理器），掌上型電䐉，等記型電萾或平板電腽．．．等，都是使用電池供電，以方便使用者在無市電狀態時使用，且該些電子装置都會附带有缘的電力供㦄器，方便電池充電或者便用市電供電。

新型式的無線充電（WLC）技衍使得可掉式設備不需要使用電力缐，而可利用電磁感㦄的方式直接傳輸電力給該些可挏式設備缕電池充電。如圆一所示，係為一無缐充電停輸的亲構示意圆，包括有一電力傳送模組 10 及一電力接收模組 20 ，該電力傳送感應模組 10 具有一偅送端缐圈 11，一僙送端䟈心板 12 ，而該電力接收感應模組 20亦同樣具有一接收端缘圈 21 ，一接收端臷心板 22 。㗬該電力接收模组 20 靠近亥電力傅送模組 10 時，電流流經該電力傳送感㦄模組 10 的傳送端缘圈 11 座生磁場，使得該

電力接收感應模組 20 的接收端線圈 21 感應該磁場產生電流。

另外目前在可鹤式電子設借中結合近場通訊（NFC）也是相當地被受到重視，近場通訊（NFC）能狗讓可鹤式設備進行非接觸式點對點通訊，提供極為便利的逜接方式，可快速，簡便地進行通訊。

近場通訊（NFC）技術是由非接觸式射頻識別（RFID）及互連技衔的整合演變而來，在目前近場通訊（NFC）的應用领域中就有如交通捷運系統中使用的感應卡；只要將感應卡靠近捷運查票口即可快速通關，而且感應時間比一般非接觸式晶片卡更快，這對高進出量的交通站而言相當受用。

因此在業者提出將近場通訊晶片嵌入於手機等可鹤式電子設斎内，也因此可搆式電子設備整合無線充電 （WLC）與近場通訊（NFC）的功能將是未來不可避免的䞤勢。

然而目前近場通訊（NFC）及無線充電㯖翰（WLC）這二種電路完全不同，各自獨立，必需使用各自的感應模組，接收各自不同的訊號，這對可攜式電子設備越來越轅薄短小的內部空間而言，整合難度相當高。

本案創作人發現近場通訊（NFC）及無線充電傳輸 （WLC）二種技術都是近距離感應傳輸訊號，因此都需使用到線圈感應模組，且該二種感應模組並不會同時使用，因此設計了一種整合近場通訊（NFC）藇無線充電（WLC）共用

的感應模組，可接收來自近場通訊（NFC）與無線充電（WLC）的訊號，再藉由一組切換電路進行訊號的自動切換，達到能共用感應模組的目的。

【新型內容】

本創作之目的係在於提供一種近場通訊與無線充電共用的感應模組，將近場通記（NFC）與無線充電（WLC）二種不同頻率信號的感應模組整合於一體，以縮小感應線圈在可攜式電子設備中所佔據的面積，以便達成將二種功能整合於同一可鹪式電子設備的目的。

本創作之主要技術特徵係在於提供一種近場通訊與無線充電共用的感應模組，至少包括：一呈平板状第一感應板；一䌅紶成中心縷空平面状的第一線圈及一第二線圈，皆設置於該第一感應板上，該第二線圈容置於該第一線圈的中心鏤空内，且與該第一線園字同心狀。

【實施方式】

請参関以下有關本鈋作之詳細說明與附圖，然而所附圖式僅為本創作賓施例之参考與說明，並非用來對本創作加以限制者。

請参関圆二所示，係為本創作近場通訊與無線充電共用的感應模組的第一實施例示意圖，而圖三係為圖二之立體分解示意圖，本創作的共用感應模組 30 至少包括有一第一感應板 31 ，一第一線圈 32 及一第二線圈 33 ，其中該

第一感應板 31 哇平板弲；可為方向，矩形，圆形或榰圆形等。

其中該第一線圈 32 繯獍成中心鏤空的平面狀，設置於該第一感應板 31 上，具有二出線端 321 ，而該第一線圈 33 同樣亦纏统成中心鏤空的平面狀，設置於該第一感應板 31 上，且容置於該第一線圈 32 的中心鏤空内，藇該第一線圈 32 呈同心狀，具二出線端 331 ，該第一線圈 32藇第二線圈 33 之間形成有一間隙存在。

如圆二所示之實施例，其中該第一線圈 32 為一近場通訊（NFC）感應線圈，而該第二線圈 33 為一無線充電 （WLC）感應線圈，而如圖四所示係為本創作第二賓施例示意圆，其中該第一線圈 32 則為該無線充電（WLC）感應線圈，而第二線圈 33 則為該近場通訊（NFC）感億線圈。

該第一線圈 32 及第二線圈 33 是二組不同頻率信號的感應線圈，近場通訊感應線圈頻率較高，因此線圈較短，而無線充電感應線圈的頻率較低，因此線圈較長，該二組感應線圈可藉由一自動選擇電路判断感應線園的感應接收頻率，而自動選擇電連接其中一組感應線圈，由於該選擇電路非本創作主張的重點，因此不再贅逑。

請再参闗圖三所示，該共用感應模組 30 更包括有一不導電秥著層 35 ，設置於該第一感應板 31 興該第一，第二線圈 32 ， 33 之間，用以妝該第一，第二線圈 32 • 33秥著於該第一感應板 31 上，較佳地該不導電䅗著層 35

該共用感應模組 30 更包括有一第二感應板 34 ，設置於該第一感應板 31 上，且容置於第二線圈 32 的中心鏤空内，該不導電黏著層 35 ，同樣設置於該第一感應板 31 與第二感應板 34 之間，用以將該第二感應板 34 黏著於該第 —感應板 31 上。較住地該第一感應板 31 可與該第二感應板 34 —䯗成形製成凸字狀（圖中未示），而其凸起部容置於該第二線圈的中心鏤空内。

請参閲圖五所示，係為本創作第三賓施例示意圖，其中該第一線圈 32 藇第二線圈 33 之間相互緊靠，而涅育間䧣存在。

請再参閲圖二之第一實施例，該共用感應模組 $30 之$第一感應板 31 的外緣處分別設有二組引出線違接器 36 ，每個該引出線遵接器 36 上各設有二個金屬連接端子 361 ，可以分別電連接該第一線圈之二出線端 321 及該第二線圈之二出線端 331 。

再參関圖四之第二實施例，該共用感應模組 30 的第一感應板 31 的外緑處嚾設有一組的引出線逜接器 36 ，其上設有複数個金屬逜接端子 361 ，可以分別連接該第一線圈及／或第二線圈 32 ， 33 的出線端。亦或者該引出線違接器 36 可以為金屬接触片 37 ，例如可以將該第二線圈 33之二出線端 331 ，各分別電連接該金屬接觸片 37 。

請參関圆五之第三實施例，其中該引出線連接器 36係為設置在該第一感應板 31 之外的連接器，而該金屬連接端子 361 其中有二個金屬逼接端子是電氣連接的一共

用端。亦或者該第一線圈 32 的其中之一出缐端與第二淥圈 33 的其中之一出線端，相互電氣連接成一共用出線端，再電連接至該引出線連接器 36 上的其中之一金屬連接端子 361 。

請参関畺六所示，係為本創作之第四賽施例示意圖，在本實施例中該第一線圈 32 與該第二線圈 33 係由同一組線圈 38 纏繶而成，包括有一第一出線端 381 ，一第二出線端 382 及一中間抽頭出線端 383 ，真中該第一出線端 381與該第二出線端 382 形成該無線充電（WLC）感應線圈；而該第中間抽頭出線端 383 與該第二出線端 382 形成該近場通訊（NFC）感應線圈。

職是，本創作確能籍上述所揭露之技術，提供一種迥然不同於習知者的設計，堪能提高整體之使用俨值，又其申請前未見於刊物或公開使用，誠已符合新型專利之要件，爱依法提出新型専利申請。

【圖式簡單說明】

圖—係為一無線充電傳輸的架構示意圖；
圖二係為本創作近場通訊與無線充電共用的感應模組；

圖三係為圖二之立體分解示意圖；
圆四係為本創作之第二實施例示意圖；及
圖五係為本創作第三實施例示意圖。
圖六係為本創作之第四實施例示意圖。

【主要元竍符躆説明】

10 電力鲤送模組
11 傳送端線圈
12 傳送端鐵心板
20 電力接收模組
21 接收端缘圈
22 接收端驖心板
30 感應模組
31 感應板
32 第一線圈
321 出線端
33 第二線圈
331 出線端
34 第二感應板
35 不導電馠著靨
36 引出線連接器
361 金屬連接端子
37 金屬接鐲片
38 線夌
381 第一出線端
382 第二出線端
383 中間抽頭出線端

六。申請専利範園：
1．一種近場通訊與無線充電共用的感應模組，至少包括：

- 第一感應板，呈平板狀；
- 第一線圈，繵紶成中心鏤空的平面状，具有二出線端，設置於該第一感應板上；及

一第二線圈，纏続成中心縷空的平面狀，具有二出線端，設犆於該第一感應板上，且容置於該第一線圈的中心鏪空內，與該第一線圈呈同心狀。

2．如申請専利範園第1項所述之近場通訊與無線充電共用的感應模組，其中更包括一第二感應板，設置於該第一感應板上，且容置於第二線圈的中心銨空内。

3．如申請專利範園第1項所述之近場通訊與無線充電共用的感應模組，其中更包括一不藁電黏著層，設置於該第一感應板與該第一，第二線圈之間，用以將該第
——第二線圈秥著於該第一感應板上。
4．如申請尃利蓒園第 2 項所逑之近場通訊與無線充電共用的感應模組，其中更包括一不導電稆著原，設置於該第一感應板與第二感㦄板之間，用以將該第二感應板秥著於該第一感應板上。

5．如申請專利範園第 3 或 4 項所述之近場通訊與無線充電共用的感應模組，其中該不導電秙著層係為一筫面膠带或秥著劑。

6．如申請導利範图第1項所述之近場通訊與無線充電共用的感應模組，其中該第一感應板為一體成形的凸字奖，其凸起部容置於該第二線圈的中心鏤空内。
7．如申請亮利範園第1項所述之近場通訊與無線充電共用的感應模組，其中該第一與第二線圈之間形成有一間陹存在。

8．如申請専利範園第1項所述之近場通訊與無缐充電共用的感應模組，其中該第一與第二線圈之間相互緊靠而沒有間隙存在。

9．如申請専利範園第 1 項所述之近場通訊與無線充電共用的感應模組，其中更包括至少一引出線連接器，其上設有複數金屬連接端子，分別電連接該第一缐圈及／或第二線圈的出線端。

10．如申請専利範圍第 9 項所述之近場通訊與無線充電共用的感應模組，其中該引出線連接器之金屬連接端子中，其中有二個金屬連接端子是一共用端。
11．如申請專利範園第1項所退之近場通訊與無線充電共用的感應模組，其中該第一線圈的其中之一出線端與第二線圈的其中之一出線端相互電氮逜接成一共用出線端。

12．如申請專利範園第 9 項所述之近場通訊與無線充電共用的感應模組，其中該引出線連接器係連接於該第一感應板之外緣處。

13．如中請萝利範園第 9 項所炦之近場通訊與無線充電共用的感應獏組，其中該引岀線連接器係為設置在該第一感㦄板之外的連接器。

14．如申請専利漧園第 9 項所述之近場通訊與無缐充電共用的感應模組，其中該引出淥連接器共有二個，分别配設於該第一感應板的外緣豦，每個引出線連器上各設有二個金属連接端子，分别電連接該第一缐圈之二出缐端及該第二線圈之二出缘端。
15．如申請專利範園第 1 項所述之近場通訊與無線充電共用的感應模組，其中該第一線圈為近場通訊（NFC）感應線圆，而竺第二線圈為無線充電（WLC）感應線圈。
16．如申請尃利範園第 1 項所述之近場通訊與無線充電共用的感應模組，其中該第一線圈為無缐充電（WLC）感應缐圈，而該第二線圈為近場通訊（NFC）感㦄線圈。
17．如申請專利範園第 1 項所述之近場通訊與無線充電共用的感應模組，其中該第二線圈之第三及第四出缐端，各分別電連接一金属接鳃片。
18．如申請專利範圍第 1 項所述之近場通訊與無線充電共用的感㦄模組，其中第一線圈與該第二缘圈係由一組線圈繒䌼而成，包含一第一出線端，一第二出線端及一中間抽頙出緣端。

M424550
t，園式：

圖－

圖五

Espacenet

Biblographic data: WO2012008693 (A2) -2012.0119

CORE ASSEMELY FOR WIRELESS POWER COMMUNICATION AND POWER SUPPLY DEVICE FOR WRELESS PONER COMMUNIGATION INGLUDNG SAME, AND METHOD FOR MANUFACTURING A CORE ASSEMELY FOR WRE\& ESS POWER COMMUNHATBON

Inventor(s): KUK YOON SANG [KR], JUNG CHUN KLL [KR] $\pm(K U K, Y O O N$ SANG, ; JUNG, CHUN KIL)
Applicant(s): HANRIM POSTECH COLTD [KR]; KUK YOON SANG [KR]; JUNG CHUN KIL [KR] \pm (HANRIM POSTECH CO, LTD, ; KUK, YOON SANG, ; JUNG, CHUN KIL)
Classification: - intemational:H01F27/26; H01F41/02; H02J17/00
- cooperative: H01F17/0006; H01F27/2871; H01F27/365;
HO1F38/14; HO1F41/0246; HO2J17/00; H0235/005;
H04B5/0037; H04B5/0075; H0485/0087
Application WO2011KR04561 20110622
number:
Priority number KR2010006892420100716
(s):
Also published WO2012008693(A3) EP2595160(A2) US2013106198(A1)
as: \quad KR20120008200(A) KR101134625 (B1) JP2013535815(A) CN102906828 (A) CN102906828(B) less

Abstract of NO2012008ces \{22\}

(19) 세개지싯재술굴기구 푹제사뚜풀
 (43) 푹제증개랠
 2012변 19일 (89.01.2612)

 PCT
 ||

 (10) 국 게궁개번훈

 (10) 국 게궁개번훈
 WO 2012/008693 A2

(51) 국졔옥여윤륭
$H 01827 / 26(2006.01) \quad W 02517 / 00(2006,01)$ HOTF $4 l / 02$ (2006.01)
(21) 국갞훌원언호:

PCTKR2011/004561

2011 별 22 일 (22.06.2011)
(25) 훌원언여: 한국어
(20) 공개연어:

한억
(30) 우선결정볼

10-2010-00689242010년 7 월 16 일 (16.07 .2010) KR

 [KR/KRI, 경기도 수연이 황한구 파장동 626-1, $440-855$ Gyeongeiodo (KR).
(72) 할명자; 겸

 135-080 Seoul (KR).
 구 영 통동 945-4 한촐즈라자 501 호, 443-470 Gyeong-gi-do (KR).
(8) 지졍꾹 (별도의 포시가 얼는 한, 가능한 모는 종류의 쿡내 권리의 보호룰 위하역 $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}, \mathrm{AO}$, $A T, A U, A Z, B A, B B, B C, B H, B R, B W, B Y, B Z, C A$, $\mathrm{Cl}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DL}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}, \mathrm{DZ}$, $\mathrm{EC}, \mathrm{EE}, \mathrm{EG}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}, \mathrm{GE}, \mathrm{GH}, \mathrm{GM}, \mathrm{GT}, \mathrm{HN}$, HE, $\mathrm{HU}, \mathrm{ID}, \mathrm{II}, \mathrm{IN}, \mathrm{IS}, \mathrm{JP}, \mathrm{KE}, \mathrm{KG}, \mathrm{KM}, \mathrm{KN}, \mathrm{KP}, \mathrm{KZ}$, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MX, ML, NA, NG, N1, NO, NL, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, $\mathrm{SY}, \mathrm{TH}, \mathrm{T}, \mathrm{TM}, \mathrm{TN}, \mathrm{TR}, \mathrm{TK}, \mathrm{TZ}$, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) 지중쿡 렬도의 폰시가 없는 한, 가웅한 포뜬 종류의 역내 권리의 보초를 위하여) ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), 휴라 시아 (AM, AZ, BY, KG, KZ, MD, RU, TJ, $T M$, 유럽 (AS, $A T, B E, B G, C H, C Y, C Z, D E, D K, E E$, FS, RI, $\mathrm{FR}, \mathrm{GB}, \mathrm{GR}, \mathrm{HR}, \mathrm{HU}, \mathrm{IE}, \mathrm{IS}, \mathrm{IT}, \mathrm{LT}, \mathrm{LU}, \mathrm{LV}$, $\mathrm{MC}, \mathrm{MK}, \mathrm{MT}, \mathrm{NL}, \mathrm{NO}, \mathrm{PL}, \mathrm{PT}, \mathrm{RO}, \mathrm{RS}, \mathrm{SE}, \mathrm{S}, \mathrm{SK}$, $\mathrm{SM}, \mathrm{TP})$, $\mathrm{OAPI}(\mathrm{PF}, \mathrm{BJ}, \mathrm{CF}, \mathrm{CG}, \mathrm{Cl}, \mathrm{CM}, \mathrm{GA}, \mathrm{GN}, \mathrm{GQ}$, GW, ML, MR, NE, SN, TD, TG).
풍간
 별도 공갬흄 (규칙 48.2(g))
(54) TiUR: CORE ASSEMBLY FOR WERELESS POWER COMMUNICATRON AND POWER SUPPLY DEVICE FOR WIREUESS POWER COMMUNLATION INCLUDING SAME, AND METHOD FOR MANUFACTURENG A CORE ASSEMBLY FOR WIRELESS POWER COMMUNICATION
 록 동신용 클ㅇㅇ 여셈몰리 져조 방밥
[Fig. 1]

(57) Abstract: The present invention relates to a core assembly for wireless power commmication and to a power sopply device for wireless power communication including same, and to a method for manufacturing a core assembly for wireless power conmunication. The cote assembly for wireless power communication iacludes a recess at a cylndrical surface, a plate-shaped core made of a magnetic substance, a pharality of wound coils received in the recess and disposed such that one portion of each overlaps another, and a circuit substrate connected to both ends of the coil to apply power to the coil.
 성체른 훙성되는, 판상형의 므이와, 상고ㅇㅗㅗㄴㅜㅜㅇㅔ 수 용되머, 사각의 일 부분들이 서로 줌첩되 도르 벼이지 근, 복수의 뮬선형 도일건, 사이 허일 나강의 양단따 접속되여, 상기 코일이 디한 전열의 인가를 셔어하는,
 리아 글룬비하는 루선 전력 통신용 전혁 공큽 장
 법을 제공한다.

명세서

발명의 명칭: 무선 전력 통신옹 코어 어셈블리와 그를 구비하는 무선 전력 통신용 전력 공급 장치, 그리고 무선 전력 통신용 코어 어셈블리 제조 뱡법

기술분야

변 발명은 무선 전력 통신 시스템에 사용되는 무선 전력 통신용 코어 어솀블리오그를후비하는 무선 진력 통신용 진력 강흡 강치, 그리고 두선 지력 통신용 코어 어셈블리 제조 방볍에 관한 섯이다.
[2]

베경기술

[3] 일반적으로, 이동통신단빨기, PDA(Personal Digital Assistants) 등과 같은 휴대용 전자기기예는 재웅전 가능한 2차 전지(Secondary Battery)가 배틸⼰로서 강착된다. 매터리를 출지하기 윔해서는, 가정용 상용 지ㅇㅝㅝ을 이용하여 휴대용 선자기기의 배더린에 선기 예녀시를 제공하는 빌또의 충선장지가 필요하다.
동상적으로, 충전장지와 배터리에는 외부에 각간 별도의 집촉 단자가 구성되어 있어서, 두 접촉 단자를 서로 접속시키는 깃에 의해 충지장치와 배텨리를 전기적으로 열결한다. 그버나, ㅇㅇㅇㅘ 같이 접촉 단자가 외부에 돌출녀녈, 미면상 좇지 않모 칩혹 단자가 외부의 이물질에 오옘되어 칩촉 상테가 쉽게 불량해지기도 한마. 또한, 사용자의 부주의로 배터리에 단락이 발생하거나 습기에 노출여년, 충전에녀지가 엽계 소실될 수 있다.
이러한 접촉식 충전탕식의 데안으로서, 충전장치와 배티리 각각외 졉촉 만자들이 서로 접촉뎌지 않는 방식으로 배티리가 충선되는 비접촉식(무선) 충전 시스템이 제안의고 있다.
[6]

발명의 상세한 설명

기술적 퐈제

본 발명의 목적은, 전력 수신 장지와의 무선 전력 전송에 장에가 될 수 있는 다크 영역(Dark area)을 효과적으로 줄일 수 있도록 코일을 배치하고, 상기 코일의 배치를 안정적으로 유시할 두 있게 하는, 무선 전력 동신용 코어 어셈블리와 그를구비하는 무선 전력 통신용 전릭 항큽 장지, 그리卫ㅗ 무선 전력 통신웅 코어 어슘불리 제즈 방법을 제공하는 것이다.
[8]

퐈제 헤결 수단

[9] 상기한 과제를 실현하기 위한 본 발몀의 일 실시예에 따른 무선 진려 통신용 코어 어젬블니는, 주면에 오목투자 구비되고, 자셩치로 헝성되는, 판상형의

군이와，상기 ㅇ⼰목부에 수용되매，가阝가의 일 부븐들이 서르 중첩되도록 볘치되는，복수의 굴선형 그일과，상기 고일 각각의 양단과 접솏되여，상기 코일에 대하 전원의 인가를 제어하는，회호기쫄을 포함한다．
여기서，상기 오목부는，제 1 깄이토영성되는 제 1 오목부와，상기 제 1 ㅇㅗㅗㅗㄱ부에 연통되도록형셩되여，상기 젯긴이포마 작은 제 2 깊이를 가지는，제 2 오녹부를 포함할 수 있마．
 및 상기 제 2 오꼭부눈，상기 오목부의 폐곡선에 내접하는 2 개의 작은
폐곡선들의 일 부분들이 서로 중첩된 형태로 리세스되어 형성돌 수 있마．
여기서，상기 작은 몌막선들의 일 부분들이 서로 충죕된 부분은 장기 제 깊이코 리세스될 수 있무．
여기서，상기 볘곡스는 타원형일 수 있다．
여기서，상기 오목부는 비닥겨 측벽을 포함하교，상기 오목부는，상기 복수의 줌첩된 프일이 전제직으로 형싱하는 외주가 상기 훅역과 집촉되게 하는 사이즈로 작가 리세스될 수 잆따．

여기서，상기 고인은가각，타원영으로 권선둘 수 있다．
이기서，상기 복수의 코일은 서로 동일한시이즈를 가지도록 권선둘 우 잇따． 여기시，상기 코일은，샹기 코어 에시 놀출되는 적어도 하나의 시포트를 포함하포，상기 서포트는 상기 고일의종킁부에 삽입되또혹 형성돌 수 있다．
$[18]$ 여기서，상기 서포트의 단면의 적어도 일 구간은，상기 므일의 중공부의 네주면 중 일 부분퐈 접하도록，곡승ㅎㅇㅇㅡㅗㅗ 형여뢸 수있다．
191 여기서，상기 포어는，상기 호일 가ㄱㅏㅏㅇㅢ 앙단이 관동되도록 형성되는，복수의 제1 퐌동홀을 구비하고，상기 희포기판은，상기 제 1 관통홀에 대응하여 형성되는，복수의 제2 관통홀을 구비할 수 있다．
1201 여기서，상기 복수의 제1 관통흘은，상기 코여의 중실을 기준으로 뎨칭되는 적어도 한 쌍의 관통홀을 포함할 수 있다．
여기서，상기 코일 각각여 양단이 접속되도론，상기 회르기판의 상기 코어를 마주하는 년의 반대년에 상기 앙뚠의 개수에 대옹하여 힝성되는，복수의 집속부를 포함할 수 있다．

여기시，상기 오목부의 지면에 상기 코일의 겨선 방향을 따라 형성되어，상기 코일여 상기 서년화 접촉하는 부눈이 수납벼는，가루블ㄹㄹㄷ 포함할 수 잇다．
［23］본 말명의 다른 실시예에 따른 무선 전력 통신옹 전력 궁급 장치는，위에
 상기 코어 어슘블리를 감씨노론 형성되는，하우징을 포함한다．
［24］본 말명의 또나른 실시예에 따른 무선 전력 통신옹 코어 이셤불릐 세조 방볍은， 자셩체인 꾸우대예 바인뎌를 첚가하여 혼합讠ㅜㄹ을 형셩하는 단계와，상기 혼한물을 금형예 농고 프례싱하여，일 면에 오목무가 형성되는 코이로 성형하는 단계와，상기 성형된 고어를 소길하는 단계와，상기 소낄된 고어여 오독부에

권선된 봅수의 코일의 일 부분들이 시로 중쳡되도록 배치하는 븐게와, 상기 코일
각각의 양단루를 희로기퐌에 점속시키는 단계를 포함할 수 있다.
[25]

발명의 호과

[28] 상기와 간이구성되느 본 발명에 관련면 푸선 전력 통신용 코이 어셈블리와 그를 구비하는 무선 전력 통신용 전력 곻급 장치, 그ㄹㅣㅗㅗ 무선 진려 통실응 코어 어셈블리 제조 빵법에 의하면, 전력 수신 장체화의 두선 전력 전종에 강에가 빌 수 있는 다크 영역 (Dark area)을 호과적ㅇㅇㅗ 줄일 수 있도록 쿄일을 배치하고, 상기 코일의 볘치를 인정젹으도 유지할 수 있게 면마.

도면의 간단한 설명

도 1 은 본 발형과 관련횐 무선 졀력롱신 시스템의 개력셕인 사시도이며, 도 2 는 도 1 의 무선 전력 동신시스댐의 내부기능 블록도이고, 도 3 으 본 발명의 일 실시예에 따른무신 전멱 퐁신용 코어 어셈믈리를 준면에서 바라본 조휩 사시도이며,
도 4는 도 3 의 어셈블리를 볘면예서 바리본 조립 사시도이고,
도 5눈 도 3의 여슘를리의 분혜 사시토이모,
도 6 은 도 3 의 쿄어 (120)의 일 변형예에 따른 코어(120)를 보인 사시도이고,
도7은 도 6 의 코어 $(120$) 에 쿄일(111)이 안작된 상태를 보인 부분 개념도이미,
도 8 은 본 발명의 다른 실시여에 따른 무슨 전력 통신용 모어 이셈블리 제조 방법을 보인 순서도이다.
[38]

발명의 실시를 위한 최선의 형태

[39] 이하, 본 발명의 뱌람직한 실시예에 따른 부선 전뎍 통신옹 코어 어셈블리와 프를 구비하는 무신 전력 등신용 전릭 공급 장치, 그리교 무선 진력 동신용 코어 어셈블리 제조 방법에 대하이 첨부한 도면을 찹조하이 상세히 설명한다. 본 명세서에서는 서호 다른 실시 예하도 동일•유사한 구성에 대해서는 동일•유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈을한다
$[40]$ 도 1 으논 발명화 만렬면 부신 전격 통신 시스댐의 개롹적인 사시도이다.
$[41]$ 도면에 도시된 바와 같이, 상기 무선 진력 통신 시스템은, 전력 공급 장치 (100) 와, 베터리를 충전시키 위혜 전력 공급 장치 (100) 르투티 부접점 으로 전력을 공귺반른 전력 수신 장치 (200)를 포함한다.
[42] 전력 공급 장치 (100) 는 외부 전원으로부티 전기에니지를 공급반아 전변 수신 장치 (200)에공급할 충전 전력을 생성하는 장치이다. 전력 공급 강치 (100) 는 전력

수신 장치 (200) 가 귭게 안착 뵐 수 있도록 패드 형톄르 형성묄 수 있다. 전릭 공급 장지(100)에 공급되는 외부 전원으로서는 상용 교류 전원 $(60 \mathrm{~Hz}, 220 \mathrm{~V} / 100 \mathrm{~V}$), 또는 직류 전월이 쳬옹될 수 있다.
전릭 수신 장치 (200) 는, 배티리가 배장된 베티리맥이나, 배터리를 녀장하고 있는 휴대용 전자기기를 포함한다. 또한, 전멱 수신 장치(200)는 日明티리와 접속되는 휴대용 전자기기의 일 부분이거나, 흉대응 전자기기와 별도로 볘터리와 접속되는 부재일 수 있나. 휴데용 전사기른서는, 셸룰려편, PDA, MP3 플레이어 등을 들 수 있마. 배티리는 제충전 가능한 전지 셀로서 리듈 이온 전지나 리듐 풀례머 전지 등을 포함할 수 있다.
[44] 전력 공급 장지 (100) 와 전력 수신 장치 (200) 는 서로 대웅되는 1차 코일(10) 및 2자 코일(210)을 구비할 수 있다. 1, 2자 코일(110,210)은 유도 결합에 의헤 자기적으로 상호 커플령 돈다. 따라시, 2차 코일(210)이 1 차 코일(10) 위에 병렬됨(juxtaposed)에 마라, 1 차 코일(110)에 의헤 생성되는 자기장이 2 차 코일(210) 게에 유도 전류를 유기하게 된다.
[45]
전려 공갑 징치 (100) 는 1 차 코일(110)울 구동하여 지기장을 씽성하기 위한 충선선력 공급회로(150)(도 2 참조)를 내장한다. 선력 수신 장치(200)는 2 차 코일(210)에 의해 유기되는 유도기전력을 이용하여 배터리를 충전시키는 훙전 회로 (250, 도 2 찰조)를 네장한다.

이하에서, 도 2 를 참조하여, 충선선력 궁급회로(150)와 충선 회로(250)의 상세 구성을 살미보기로 한다. 도 2 는 도 1 의 무선 전력 동신시스뎀의 내부 기능 블록도이다.
본 도면을 찯조하면, 선력 강급 장치 (100) 내에 내장뎌는 출전션력 공급회로(150)는, 1차 코일(110), 졍류기(152), 구동회로(153), 제어기(155), 무선수신모듐 (156)을 포한할 수 있다.
$[48]$ 정류기(152)는 상용 묘류 선율(151)으로부버의 교류 선압을 직류로 정류한 후, 구동 회로(153)에 전달한다. 구등 회로(153)는 졍류기(152)에 의해 정류왼ㄴ 직류 진압을 이용하여 상용 주뉴숭이상의 고주역교류 진압 펼스를 생성하그, 이를 차 코혈(110)에 인기하여 자계(Magnetic Field)를 생성한다.
[49] 구동 혀르(153)는 전릭 구동부(154a)와 PWM(Pulse Width Modulation, 필스 폭 변조) 신호 발 생기(154b)를 포핚할 수 있다. 진력 구동부 (154a)는, 소정 레렐의 식류 전압을 컨비팅하여 상용 주하수 이상의 그주화 교류 젼압을 발신하는 고주하 날진혈ㄹㅇㅘ, 펼스폭 변조된 고주따 교륜전압 떨스를 1 차 코일(110)에 인가하는 것에 의해 자 코일(110)을 구농하는 드라이브 회로를 포할학 수 있다. 상기 PWM 신호 발쟁기 (154b)는 상기 고주파 교류 전압을 펼스폭 변조(PWM : pulse width modulation)시킨다. 이에 의해, 전력 구동부 (153)의 출력단을 뽕해 배출되는 출력 신호는 고주묘 교류 전압 펼스가 된다 이 그주마 교류 전압 녈스는 펼스 혈(pulse train)이 되고, 이 별스 열의 별스폭은 제이기(155)에 의헤 조절될 수있다. 이상의 구동 회로(153)로는, 애를 들어 스위징 모드 파웨

서프라이(SMPS: switching mode power supply)가 재택돌 수 있다.
제어기 $(155)^{2}$ 는 ⼗ㅜ신 송, 수신도들 $(156,256)$ 을 경유하여 피프벽되는 배더리의 충전상태정보에 근거하여 상기 펄스폭 변조되는 르주표 교류 전압 펼스여 뼐스폭을 조절한다. 예를 들여, 제어기(155)는 충전 회르(250)르부터 퍼드백되는 응답신호가 충전시작신호인 경우, 지 코일(10)의 구동모드를 대기 모드에서 충전 도드로 전환한다. 또한, 충전 회로(250)로부티 피드벡 되는 충전상테정보를 분석한 결과, 배터리가 만충전인 것으로 만단되면, 1차 코일(110)의 구등 모드를 훙전 모드에서 완충 모드로 전환한마. 제어기 (155) 웅전 혀로(250)로부버 피드백디는 응답 신호가 없는 경우, 1 차 코일(10)의 구동모드를 대기 로드로 유지한다.
푸선수신모듈(156)은 코일(110)이 웅전 회로(250)의 푸선솧신모둘(256)로부터 전총되는 피드병 훙답 신호를 수신한에 따라, 이 피드벱흉답 신흐를 봅조하여 베터리(262)의 충젼상테정보를 복월하는 복조기와 갇은 수신부(156)률 포함한다. 부선두신 모듈(156)은 코일(110)과 별도로 충전 회도 (250)의 무선송신모묵(256)로부더 전송되는 피드벗 응답 선호를 수신하는 안태나를 포함할 누포 있다.
이상의 충전전릭 공급회로(150)는 회로를 과전압으로부티 보호하기 ㅇㅟㅟ한 마지압 푈터회로나 정류기에 의혜 정류된 직류 진압을 소정 레맬의 지압으로 유시시키기 위한 정선압 회로를 뎌 포함할수 있다. 상기 과선압 필터회로는 상용 묘류 전원(151)롸 정류기(152) 사이예 볘지되고, 상기 정전압 회로는 정류기(152)와 구동 회로(153) 사이에 배치될 수 있다.
[53] 다음으로, 충션션력 공급회로(150)로부티 선력을 궁급발아 배버븨(262)를 충전하는 충전 횔ㄹ(250)에 대혜서 삳펴본다. 이 충전 회로(250)는 전력 수신 장치(200)에 내장뎐다.
154] 충선 회로(250)는, 2치 코일(210), 정류기(251), 정션압/정전류 회로(252), 폴링 검출기(253), 제어기(255), 무선종신모들(256)을 포함할 수 있다.
[55] 2 차 코일(210)은 1 차 코일(110)에 자기적으로 결합되이 유도 기진력을 발 쟁시킨다. 상술한 뱌와 같이, 1 차 고힐(110)에 연기녀는 젼력 신호기 펄스 폭 면조신호이기 때문에 2차 코일(210)에 유기뫼는 유기 기전릭 역시 교류 전압 펄스열이도. 또한, 1 차 코일(10)의 구동 모드에 따라 2차 모일(210)에 유기되는 교류 젼압 펼스 역시대기 토드, 충젼모드 밎 완충모드 중 어느하나의 형태를 따르게 된다.
[56] 징류기 (251) 与 2 차 코일(210)의 출력단에 열결되어 2 차 코일(210)에 의해 유노년 므류 전압 펼스를 일성한 레멜의 직류로 평탄화한다. 정전압/성전류 회로(252)는 소정 레벨의 직븆 전압을 이용하여 폐터리(262)에 충전할 정전압과 징전류를 졍싱한다. 구체적으로, 배티리(262)의 초기 충전시점에서 징전류 보드를 유지하다가 배터리 (262)의 충전전압이 포화상테가 뎌면, 성전압 보드로 전환한다.
[64] 본 발명의 일 실시예에 따른 전력 공급 장치(100)는, 본 도면 등을 참조하여 설명할 코어 어젬블리와, 삼기 고어 어셈불라를 값싸서 외관을 형성하는 하우싱(도 1 참조)을 포핲한다.
[65]
폴링 김츨기(253)는 2 차 코일(210)에 의해 유도된 교류 전압 펼스의 하강 시점, 따시 말혜서 폴랭 시짐(falling time)을 격출하는 장치이마. 쑬림 겸출 신호는 제어기(255)로 입력뎐다. 전압등퐈 간은 모니터령 신호를 입릭발고, 이모니티링 신호에 믄거하여 정전압/정진류 회로(252)와 무선종신모듈(256)을 제어한다. 예를 들어, 제어기(255)는, 플링 겸룰기(253)로부더 입력되는 풀링 겸출 신호에 근거하여 펄스의 하강 시점을 매각하로, 충전전력 공극회르 (150)에 전송할 피드맥 응답 신호의 전송 시점을 펼스의 하강 시점에 돔기화시킨다. 제어기(255)는 베터리(262)의 ⿳⼈ㅇ전 전류와 충전 전압을 모니터링하고, 이 모니터링 값을 녜부 메모러(미도시)에 임시 저장한다. 미도시된 상기 메모러는 모니터링된 충전 전류아 충진 전압콰 같은 볘텨리 (262) 충진상 티 정보뿐만 아니라 배터리(262) 사양징브 (제품 도드, 정격 등)드 함께 저장할 수있다.
또한, 제어기(255)는 배티리(262)의 충전 상태에따라 정전합모드와 정전류 도드를 적절히 서택, 젼환한다. 제이기(255)는, 정 존압겅전류 회로(252)의 양만에 파또한 선압이 인가되는지 조니터링하며, 과조한 선압이 인가되면 훙전전력의 조정요구 신호를 생성한다. 이 조정요구 신호는
 펴드백된다.
정전압/겅전류 회로(252)의 양단 전압에 대한 모니퇴링 동작은, 정전압정전류 회로(252)의 전단 저압과 후단 존압을 축정하여 ㅡㅡ 차이가 기준 값을 초과하는지 여부를 걸사하는 것에 의ㄱㅐㅐ 이루어진다. 무선솧신모푼(256)은, 호일(210)이 충전전력 강급회로 (150)에 전송할 피드백 응답 신호. (충전시작신호, 훙전상태신호, 조정요구 신호)를 송신하면, 훙전상테정보와 같은 배이조밴드 신호를 변조하여 피드볙 응답 신호를 생성하는 송신무 256)를 포함한다. 무선수신 토둘(256)은 코일(210)과 별도르 충전전력 공급획로 (150)에 젼송할 피드뼤 응답신호를 솧신하 안테나를 포함할수도 있다.

정전압/정전류 회로(252)와 배터릴(262) 사이에는 배터러 (262)에 퐈전압이나 과전류의 인가를 방지하기 위한 보호 회로(PCM, Protective Circuit
Module)(261)가 볘치된다. 이 보호 회로(261)와 볘터리(262) 는 하나의 베터리 유닛(260)을구성할 수 있다.
이하에서는, 전력 공급 장치(100)에 대하여 보다 상세하게 살펴본다.
도 3 은 본 밮명의 일 실시예에 따른 무서 전력 홈신용 코어 어셈를리를 전면에서 바라본 조립사시도이다.

상기 포어 어셈를리는, 복수의 고일(110)과, 판상형의 포어(120)와,

혀로기푠（130）을 포함할 수 있다．
［66］
코일（110）은 2개의 자유던을 가지는 권신형으로 형성면다．코일（110）은 또한， 복수 개로 구비뎐다．복수의 코일 중에 인접한 보일（110）은 서로 간에 일 부븐들이 충쳘되도롞 배치된다．본 실시에에서는 2 개의 코일（110）이 일부 죽쳡되게 배치된 형테를 예시하고 있다．
［67］코어（120）는 판상형으로 형성될 수 있다．본 실시에에서，코어（120）는 대체로 직육면체를 이루는 것올ㄹ 에시되이 있나．코어（120）의 닓은 면，마시빨혜서 주면（柱面）에는코일（110）을 수옹하기 위한 오목한 부분（122，123）가 형싱된다． 코어 (120) 는 자성체로 형셩뎌어，수묭된 코일（110）에 흐르는 전류에 의한 자계가 전력 수신 장치（200，도 1）를 황한 방햘예서 볏어날 가능성을 낫추어춘마．
$[681$ 화로기판（130）은 코어（120）의 하흑에 위치하게 된다．회로기판（ 130 ）의 일 부분은 코어（120）를 밑에시 지지하게 뎐다．회로기판（130）의 다흔 부분에는 코일（110）예 대한 전원의 인가를 졔이하는 혁로가 니상된다．상기 제어 회로는， 앞서 설명한 충전전멱 제여회로（150，도 2）를 포함한다．
［69］도 4는 도 3 의 이헴블리를 빼면에서 바라본 조립 사시도이다．
［71］접속부（138）는 혀로기환（130）의 일 부분（130b）에시 마른 부분（130a）을 향혜

 면다．
본 도면을 찯조하면，코인（110）각각의 앙단은 호어（120）와 혀로기퐌（130）을 관동하어 연장하게 된다．구쳬적으로，코일（110）의 양단은 회로기판（130）의 저면\｛코어（120）와 마주하는 면의 반대면\}에 형성되는 관틍휼(137)을 관동한다. 여기서，그 자유만은 관홍홀（137）에 인접하게，논 또면상으로는 관홍홀（137）을 감ㅆ⼣도록 형성되는 집속부 (138) 에 집속된다．

이때，인접한 두 개의 칸통홀（137）은 회로기 딴（130）의 중십선을 기준으로 상부 영역에 놓인다．다른 한 쌍의 인집한 퐌통홀（137）은 위 층심선을 기준으로 하부 영역에 놓이게 뎐다．그에 의해，도진 패던（139）들이 서로 다른 영역에서 구분혜어 형성될 수 있다．
도 5 는 도 3 의 여슘블리의 분해 사시도이다．
본 도면을 촥조하면，코일（110）은 한 ㅆ⼡ㅇㅇㅢ 코일늘，마시 말혜서 제 1 포일（111）과 제2 코일（112）로 구성퇼 수 있다．제1 코일（111）퐈 제2 코을（112）에는 각작 중심 부분에 중긍부 $(111,112)$ 가 형성될 수있다．줄공부 $(111,112)$ 의 면적은 코일（ 111,112 ）의 견선 징도에 의 혜 조길밀 수 있다．
게1 코일（111）하 제2 코일（12）은 대쳬로 동일한 사이쓰를 가지노록 년서ㄴㅚㅚㄹ 수 있다．세1 코일（111）퐈 제2 코일（112）은 각각 하나의 평면을 이루도록 뮨선된다． 제 1 로일（111）포 제 2 코일（12）이 이루는 평면들은 서로 평행하게 볘치멸 수 있다（로 3 찰조）。
［76］
제1코일（11）파 제2 쿄일（112）의 형테는，타월형으로 형성될 수 있다．이는 제1

코일(111)교 제2코일(112)이중첩되는 먼적을 쾻배화ㅎㅏㅏ민서도, 줌첩된 제1 코일(111)과 제2 코일(112)이 차지하는 길이 랑향사이즈 역시 최대화하기 위함이다.
코이 (120) 는, 앞서 설명한 바녀로, 네쳬로 직육먼체의 형태를 가진다.

오목부 $(122,123)$ 는 제 1 짚이로 리세스되는(recessed) 제 1 오목부(122)와, 제 2 깊이른 리세스되는 제 2 오목부 (123)를 포함할 수 있다. 본 실시에에서, 제 1 코일(111)은 제1 오폭붐(122)에 수용되고, 제 2 코일(112)은 제 2 오목부(123)에 수용된다. 이때, 제 1 코일(111)이 제2 코일(112)보다 하촉에 윛치하므로, 상기 제1 깊이는 상기 제 2 깇이보따 큰 것이 바람직하아.
$[78]$ 다시 본도면을 참조하면, 오복부 (122,123)는 폐곡선형, 구제직으로는 타원형의 윤곽을 가지도룰리세스되어 형성된ㄷ․, 오모부 $(122,123)$ 전체가 큰 타월형의 윤곽을 형성한다면, 제 1 오목부 (122)와 제 2 오목부(123)는 각각 큰 타원 네에 내접되는 작은 타윈들이 일부 겹져진 것과 같은 윤확을 형싱하게 된다. 작은 타월들은 각각, 앞서 셜명한, 제 1 길이와 제 2 깊이로 리셰스뎐다. 작은 바월들이 중쳡되는 부분은 제 1 짖이로 리세스되이, 제 1 오목부 (122)로 징의될 수 있다.
$[79]$ 오목부(122,123)의 사이즈는, 서로 일부가 긍첩묜 제 1 코일(111)과 제2 코일(112)이 진체적으로 형성된는 조립체의 외주가 다소 타이트하게(tightly) 수형될 졍또가 뎔 수 있다. 이에 의해, 제 1 고일(111)과 제 2 포일(112)은 오목부 (122,123)에 수옹되는 것만으르도, 전력 공급 장지(100) 내에서 설정된 위치에 유지될 수 있다.
오목붑 $(122,123)$ 는, 그 헝베상으로, 촉벽 (125) 과 바닥(126)을 가시게 뎐다. 측벽(125)은오목부(122,123)가 리세스된 깊이에 대응하는 높이를 가지게 된다. 측벽(125)은 코일(110)의 두에엥대옹하는 사이즈를 가져서, 코일(110)에저 발쟁뎐 자게기 측벽 125)을 항하는 방항으로 누셜뎌는 깃을 차난 또는 완화하도록 형성될 수 있다. 측벅 (125) 은, 안서 실명한 바와 같이, 타이트하게 수용되는 코일(110)의 외주와 접촉하여, 코일(110)이 일정한 위치에 안차되게 하기도 한다.
[81] 오목부 $(122,123)$ 의 바닥 (126) 에서는 서포트 $(127,128)$ 가 돌출 형성될 수 있다. 서포트(127,128)는 각각 제1 코일(111)의 증몽부(111)에 삽입되거나 제2 코일(112)의 중홍부(112)에 솝입될 수 있는 윛치에 형성된다. 그에 의해, 서포트(127,128)는 세1코일(111)이나 세2 코일(112)가 설정된 위치에서 이탈되지 앟아서, 그들 강ㅇ 배치 관게가 설징면 대로 유지멸 수 있게 한다.
[82] 서포트 $(127,128)$ 의 형상은 코일(110)의 중앙투(111,112) 의 내주면의 형상에 대응하여 형성될 수 있다. 본 실시예에서, 서포트(127,128)의 외주는 곡선형인 중공부 $(111,112)$ 의 내주면에 대응하여, 홧선인 구간을 가진디. 서포트 $(127,128)$ 의 곡선 구간의 반대 축은 코일 (110) 의 외주와의 간삽을 퍼하기 위한 공간 확ㅂㄹㄹㄹㄹ 위혜 직선 구간으로 처러될 수 있다. 이에 의혜,

서포트 $(127,128)$ 는 전체적으로 반원혈의 단민을 가진 채르 언장하는 돌기가 별争있다．
［83］
오록부 $(122,123)$ 의 바닥（126）에는 코일（111，112）의 양단이 란동하는 제1 관통홀（129）이 형성될 수 있다．횔르기판（130）에는 제 1 콴동흘（129）에 녀응하여， 제2 관동홀（137）이 형셩멀 굿이마．본 도면에서는 코일（111，112）의 양단이 관통홀 $(129,137)$ 을 관통하는 로습을 보이기 위해 의도석으로 뫄장한 길이로 표현했으나，포 3 의 조립도를 참조하면，본 도면과 같이 길계 형성될 필오가 없을은 당입자라면 충분히 이해할 것이다．
［84］관동홀（129）은 제1 코일（111）의 양민에 대응하는 한 쌍，그리고 제2 코일（112）의 양단에 대응하는 한 쌍 등 모두 4 개로 형성된다，가 쌍의 칸동홀（129）은 서로 유사한 배치를 보이고 있다．구제직으로，코어（120）의 중심을 기준으로，가 다른 쌍의 편통홀（129）흘 중 어느 하나들은 시로 대칭대그，각마른 빵의 관통홀（129） 중 다른 하나들 또한 서로 데칭멸 수있다．이렿게，관둥홀（129）들이 서로 대칭됨은，제 1 코일（111）과 제 2 코일（112）이 서로 유사한 형톄를 가지도록 형성됩에 관렬될 수 있다．그렿다면，조립 시에 제1 코일（111）마 제2 코일（112）을 일부러 구분해서 조립혜야 하는 불뼌을 없앨 수 있다．
［85］도6은도3의 코어（120）의 일 면형에에 따른 코어（120）를 보인 사시도이고，도 7은 도 6 의 코여（ 120 ）에 코일（111）이 안착된 상태들 보인 부분 개녈도이다．
1861 포 6 을 참조하면，상기 포어（120）에 있어서，포힐（ 111,112 ，포 3 참조）의 결선 방향을 따라서는，오목부 $(122,123)$ 에 그루브（Groove，120a）가 형성될수 있다．
［87］본 도면에서는 제1 오목부（122）뿐만 아니라 제2 오모부（123）에도 그루브（120a）가 형성된 것을 예시하조 있다．그러나，반드시 모든 오목부（122，123）에 工㳕브（120a）가 형성되지 않을 수도 있다．
［88］도7을 참조하면，그루브（120a）에는 로일（111，112）이 안착 될 수 있다．그에 의해，그루브（120a）는，서포트（ 127,128 ，도 5）와 더불어，고일 $(111,112)$ 의 정 위치 유지를 도울수있다．
［89］또한，코일（111，112）이 그루브（120a）에 안차 뎔에 의해，코일（111，12）의 돔손（Copper loss）를 굴일 수 있게 된다．
［90］토8은본 발명의 다른 실시에에 따른 무선 전럭 틍신용 크어 어젬블리 제조 빵법을 보인 소서도이다．
191 본 도변을 찹조하년，앞서 셜병한 무선 젼력 틍신응 코어 이쇱블리 제조 방법은， 코어 $(120,120)$ 의 제 작을 밀오로 핱 수 있다．
［92］马ㅗㅇㅓ $\left(120,120^{\circ}\right)$ 의 졔장을 위해서는，파우터와 바인뎌흘 셖어서 혼합불을 형성한다（S1）．이때，파우더는 코어 $\left(120,120^{\prime}\right)$ 가 자성을 띠노록 할 수 있는 물질을 포함한다．이를 워하여，본 실시예에서，⿹ㅏ우더는 망간－아연 성분을 포함할 수 있다．
［93］상기 혼합물은 코이 $\left(120,120^{\prime}\right)$ 의 형테를 가지도록 성형되이야 한다（S2），이를 위하여，상기 혼합물을 금형에 놓고섲⼯레싱하여 코어 $\left(120,120^{\prime}\right)$ 의 형테로

형성할 수 있나. 이리한 즈레싱에 의해, 코어 $(120,120)$ 는 오목부 $(122,123)$ 와, 서포트 $(127,128)$ 아, 관통홀 (129) 을 가지도록 성형 될 겻이나.
9941 성형된 고어 (120,120)는 소결 놔정을 기지게 된다(S3). 소결 과정에시는 망간아연 파여더에 내하여 저온, 예를 들이 $60^{\circ} \mathrm{C}$ 내지 $80^{\circ} \mathrm{C}$ 의 온도를 유지하서 들 수있나.
$[95]$ 소걸된 기어 $(120,120)$ 의 오목무 $(122,123)$ 에는 그일 (110)을 배치한다(S4).
 관동홀 (137)을 거겨서 회도기판(130)의 저면의 접솝부(138)표 접속된다(55).
[97] 상기와 같은 두서 전럭 통신용 코어 어셈블리와 그를 구비하는 무선 전력 동신용 진력 공급 장치, 느릭무선 전력 공신용 코이 이셈블뢰 제조 방뱁은, 위에서 실명된 실시예들의 구셩과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 서택저으로 조합되여 하앙한 변형이 이루이질 수있도록 구성딜 수도 있다.

청구범위

[칭구항 1]
[청구항 2]
[청구항3]
[충구항 4]
[쳥구항 5]
[청구항 6$]$
[청구항 7]
[청구항 8]
[청구항 9]

주면에 오목쿠가 구비되로, 자싱체로 형성되는, 퓬상형의 코이; 상기 오목누에 수용역벼, 각각의 일 부눈들이 서로 중첨벼도록 배치뎌는, 복수의 면선형 코일; 맞
상기 코일 각각의 양단과 접속되여, 상기 코일에 대하 전월의 인가롤 제어하는, 회로기판을 포할하는, 무선 전릭 통신용 코어 어젬블리.
제1항에 있이서,
상기 오목부는,
세 1 깊이로 형성되는 세 1 오목부; 및
상기 제 1 으목부에 연통되도록 형셩뎌며, 상기 제 1 깊이보마 작은 제 2 견이플 가지는, 제 2 오폭누를 포함하는, 무선 전릭 통신용 쿄이 어젬블리.
제2항에 있이서,
상기 오목부는 페곡선형의 윤막을 가지노록 형성되고, 상기 세 1 오목부 및 상기 세 2 오목부는, 상기 오목부의 瑮곡선에 녜접하는 2 개의 작은 패파션들의 일 부분들이 서로 중쳑된 혈태로 작작 리세스되이 형성되는, 무선 전력 통신옹 코이 이셈블리.
제3향에 있이서,
상기 작은 패곡신들의 일 부분들이 서로 중쳡된 부분은 상기 제1 지이롤리세스되는, 무선 전력 통신욤 코이 이셈블리.
제3항에 있어서,
상기 패곡신으 타원형인, 부신 전력 동신용 코이 어셤블리.
제1항에 있이서,
상기 오목부는 바닥교 축벽을 포합하고,
상기 오목부는, 상기 복수의 중춥된 모일이 전체직으로 형성하는 외추가 상기 측벅과 섭촉디게 하는 사이즈로 리세스되는, 뿌선 진력 동신옹 코어 어셈블리.
제1항에 있여서,
상기 코일은 각자, 타원형으로 견선되는, 무선 전력 통신용 포어 어젬블리.
제7항에 있어서, 창기 복수의 코일은 서로 동일한 사이즈를 가지도록 권선되는, 뿌선 전력 동신영 고어 어셈블리.
제1항에 있이서,
상기 코일은, 상기 코어에서 돌출되는 적어도 하나의 서포트를 포함하로,
[쳥구함 10]
[청구항 11]
[형구항 12]
[청구항 13]
[청구항 14]
[청구항 15 |
[청구항 16]
[청구항 17]

상기 서조트는 상기 코일의 중공부에 삽입되도록 형성되는, 므선 전력 통신용 코어 어섺블리.
제9항에 있여서,
상기 서포트의 단민의 적이도 일 구간은, 상기 코일의 쯩공부의
내수면 중 일 부분과 접하도록, 곡신형으로 형성되는, 부신 전력 통신용 코어 어셈블리.
제 10 항에 있어서,
상기 코어근, 장기 코일 각각의 앙단이 퐌통되도록 형싱되논
복수의 제 1 관동흘을 구비하고,
상기 혀로기판은, 상기 제 1 퐌둥홀에 대응하여 형성되는 복수의
제2 관통홀을 구비하는, 무선 전력 통신용 코어 어젬블리.
게 11 항에 있어시,
상기복수의 제 1 관통홀은,
상기 코어의 중심을 기준으로 대칭 되는 직어도 한 쌍의 깐통홀을 포한하는, 무선 전려 통신옹 로어 어셈블리.
제11항에 있어서,
상기 코일 각각의 양단이 집속되도록, 상기 혀로기판의 상기 코어를 마주하는 면의 반데면에 상기 양만의 개수에 대응하여 형셩되는, 복수의 접속부를 포함하는, 무선 전력 홍신용 코어 어셈불리.
제1항에 있어시,
상기 오목부의 저면에 상기 포일의 권선 빵향을 마라 헝성뎌어,
상기 코일의 상기 저면과 집㞣하는 부분이 수납되는, 그루브를 뎌
포한하든, 무선 전려 등신용 코어 어젬블리.
제1항에 미르며, 상기 회로기판에는 충신선려 공흡회로가
힝성외는, 무선 전력 통신용 코어 어셈블리; 및
상기 코어 어셈블리를 감ㅆ⼣도록 형성되는, 하우징을 포함하는, 루션 전력 통신용 전력 공급 장지.
자성쳬인 파우더에 바인뎌를 첨가하어 혼함물을 형성하는 단계;
상기 혼함물을 금형에 놓고 프레싱하여, 일 면에 오목부가
형성뎌는 코이로 성형하는 믄계;
상기 성형된 코어를 소졀하는 단계;
상기 소결뎐 코어읙 오목부에 견선면 복수의 코일의 일부분들이
서로 중천되노록 볘치하는 만계; 및
상기 코일 각각의 앙단부를 회로기판에 접속시키는 단계를
포함하는, 무신 전력 듬신용 코이 어셈를리 제조 방빅.
제 16 항에 있이서,
상기 표우더는 망간-아연을 포함하는, 무선 전릭 픙신용 표어

어셈블리 세조 방볍.
[청구항 18] 제17항에 있어서.
장기 성형된 고어를 소결하는 딘계는,
소결 온도를 $60^{\circ} \mathrm{C}$ 내지 $80^{\circ} \mathrm{C}$ 로 유지하는 단계를 포할하는, 모언 전력 둥신응 코어 어셈블리 제조 방빕.
[Fig. 1]

[Fig. 2]

[Fig. 3]

[Fig. 4]

[Fig. 5]

126
[Fig. 6]

[Fig. 7]

[Fig. 8]

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB

Subsitute for form 1449A/PTO				Complete if Known			
		INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Application Number	13/663,012
						Filing Date	October 29, 2012
						First Named Inventor	James P. Evans
						Art Unit	2836
						Examiner Name	Jeong Wook An
Sheet	1	of	1	Attorney Docket Number	SUN.LGI. 420		

U.S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite }_{1} \\ & \text { No. } \end{aligned}$	Document Number Number - Kind Code ${ }^{2}$ (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	U1	2009/0029185-A1	01-29-2009	Lee et al.	ALL

FOREIGN PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document		Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appea	T^{8}
		Country Code ${ }^{3}$	Number ${ }^{4}-$ Kind $^{\text {c }}$ Code ${ }^{5}$ (ff known)				
	F1		2009033106-A	02-12-2009	Taida Electronic Ind. Co., Ltd.	ALL	
	F2		2012019302-A	01-26-2012	NEC Tokin Corp.	ALL	
	F3		$2004110854-$ A	04-08-2004	Yokowo Co., Ltd.	ALL	

NON PATENT LITERATURE DOCUMENTS			
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article, (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T^{2}
	R1	Office Action dated August 10, 2015 in Japanese Application No. 2015-172306.	

Examiner		Date	
Signature		Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English language Translation is attached.
This collection of information is required by 37 CFR 198 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO This collection of information is required by 3 . CFR gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA $22313-1450$. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

	Espacenet
Sibiographic data: 3p2009033106 (A) - $2009-02 \sim 12$	
METHOD OF MANUFACTURNG MAGNETG DEVICE, AND MAGNETG DEVICE	
Inventor(s):	LEE CHENG-CHANG; LIN MIN-HSIEN; CHANG YU-RU; YUAN ZONG-TING; CHANG HENG-CHUNG; CHIN KOKON; SHING TAIKANG \pm (LEE CHENG-CHANG, ; LIN MIN-HSIEN, ; CHANG YU-RU, ; YUANZONG-TING, : CHANG HENG-CHUNG, ; CHIN KOKON, ; SHING TAI-KANG)
Applicant(s):	TAIDA ELECTRONIC IND CO LTD \pm (TAIDA ELECTRONIC IND CO LTD)
Classification:	```- international:H01F17/04; H01F27/255; H01F27/28; H01F41/02; H01F41/04 - cooperative: H01F1710006; H01F41/046; H01F1/26; H01F1/37; H01F17/04; H01F2017/0066; H01F5/003; Y10T428/12201```
Application number:	JP20080109537 20080418
Priority number(s):	TW20070127440 20070727

Also published US2009029185 (A1) TW200905703 (A) as:

Abstract of SP2009033106 (A)

PROBLEM TO EE SOLVED. To provide a magnetc device having a thin thickness and a high inductance, and what is more, heving no restriction on coll matenial, and to provide a method of manuacumg the magnetic device. SOLUTON: The method of manutacturng a magnetic device incudes a step of forming a magnetic substrate 41 with at least one concave groove 43 , and a step of installing at least one colt 42 in the concave groove 43. COPYRIGHT: (C)2009, JPOQINPTT

（57）【要約】
【課題】厚さが報く，高インタタタンスを有し，且つの
供する。
【解次手段】少なくとも一つO凹潽43至有する稵性基
板41を形成するステップ，及び前記煹43に少なく
子の賈貴方法。
［巽択国］国4A

4

【特部諳求の単荧】

［請求項1］

少なくとも一つの凹潈を有する磁性基板を形成するステッップ，及び

子か晋遗方法。
【請求項2】
磁性基板础，前記磁牲基板を㾣結，或いな固化することによって，形成きれ，且つ前記

【請求項3】

制造方法。
【請求顼4】

\｛請求頂5\}
前記形栍基枳を形或した後に

\｛請求項6\}

前記マスクによって，前記フォトリジスト管に，露先も現僕を行うステップ，
前証磁性基板に，エッチングを行ラステッタ゚，及び
前記クオトレジスト層に，フォトレジストカ除去を行い，前記凹溝を得るステッブを含

【請求頂7！
前記コイルを形成なるスデップます。

る請求項1に磁性素子の記載の㥿造方法。
【請求瓔8】
 ストを目刷した後に固化して形成されることを特徵とする請す頂7に記載の磁性素子の製造族。
\｛請求項9\}

【請求頃10】
前記まイ音を形成した後，

溒求頂1に記裁の磁性素子の製造方江。
【請求頊11】

Page 382 of 1385

〔請求項12】

更に含をことを特徴をする請求項10に記載の碳性素子の製造方法。

［請求项13］

【請求項14】

［請求項15］

或いはそ○内の一つ側に值置きんることを特微とする請永頂14に記載の磁性素子。
【請求頂16】

であり，前記磁性基板の相対するこの側に設置きれた前記ワイルの前記磁性素于は，フィ
性素子。
【請求项17】
置きれることを特謢をする請求項14に記戴の煖性素子。
［請求項18］

記載の権牲素干。
【請求項19】

る請求項14に記載の磁情政子。
\｛請求項20）

4 以記載の酕性素子。
【諳求項21）

20 に語載の磁性素子。
〔請求項22】
 に記載の榽性紫子。

【請求项23】

〔請求項24】

\｛請求項25
前記結合村料の枓料え，酸化物，荎化物，スビンオンガラス，高分子枋料，或いはエボ

【技街方野】

Page 383 of 1385

［0001］

〔背景技㣚】
〔0002】

 ら，小型化の腿界を有する。従来の巻き線力式と比で，マイタ口製送の力式を用いるこ
 のように，より体積の小さなインダタタ，或いはノイズフィルターを製稆できる。
［0003］

 ト基板11，12であみ，磁性素子1を形成する。し的し，前記磁性素子10表面が平坦化に達する必要かあることから，前記結合材料14，15は，不可欠なものとなり，且つ －－定の厚さ以上を達し，全体の素子の厚さを厚くする必要がある。この他に，前記コイル
 ンスを低下させる。
10004）

 jater lag）を行い，酳性素子2を形成する。前記酸性素子20前記コイル23は

 は，前記コイメ230材料とすることがてきない。
（0005）
国3に示きたるように，電気义ッキか方式で基板31にフェライ132，シ…ド層35
成する。前記樽性素子30前記コイレ33は，前記フォライト32，34により直接覆わ

［0006］

【要阴か開示る
【発明か解決しようとする課䞚】
［0007］

【諫題を解决する大めの手段】
［0008］
 の四潽を有する酸性基紘を形成するステッップ，及び前記四講に少なくとも一つのコイルを設置するステップを含も。
［0009］

Page 384 of 1385

 を設置する。
（発明の效果）
10010］

，前記世溝を有し，前記コイルを取容ま\％。従来接術と比ぐて，木発明か前記コイル玉，

愛け穼いこと施できる。

0011）
示し，四面を参照にしなから，詳細に説明方る。
【0012！

 れ，その内の一相は，少なくとも一つか四溝43を有し，前記溝43は，前記コイル

［0013）

［0014）

 A内に取容きれる。
（0015）
图4Cに示きれるように，前記磁性素子4bの前訅媾43，43Bな，前記磁性基板

［0016］
国4Dに示されるように，前記磁性素子4c恃，前記破性基板41と前記ワイル420

加し，且つインダクタか損耗を下げることができる。
（0017）

Page 385 of 1385

 とがてきる。
（0018）

記磁性基板 4 5を接着することができる。
［0019］

 を必要とする電子素子に応用することがてもる。
［0020］
例か磁性素子の霊造方法を説时する。
（0021）

金属層46の一部を取り除き，前記コイル42定形成する。これによかて，前記酮性委子

 osition），कttiCVD（Chemical vapor depositio

 ことができ。
［0022］

置をせる。続いて，もう一つつつ酸性基板45を更に設置して，前記結合材料44と接合す ることによっで，前記䌏性素子40を製作することがきる。前記結合林科44は，堆樍
 つて，前記結合村粼44と接合することぞできる。
10023）
また，前記磁性责子4a，4b，4d，4eも上速の馨造方法に浴って，成型宣ること
加ら，前記金属層を形成する時に，前記酳性基板41Aを同㭙々回献することがても，前

性素子4cの製造ブロセスき結合しで製遣することができる。
［0024］

［0025］

ング，放電加工，或いまUVLIGAのマイタロ電鎮方式によので製作まることができる －開，UVLIGA（UV－LIGA）のマイクロ電鋳方式と姝，UV光またはX線によ

 に，前記金型5を取り賖き，最㬺に，图6Cに示をれるように，前記磁性基板47を加温

溝43を形成するのは，焼結，或いな固化を行り前である。
［0026）
 ［0027］
続いて，图7Bに示きれるように，前記磁性基板47に前記四溝43它形成する。本突施

 －㛝結きれていないまたは固化されていない磁性基板47A（四7参照）に刷り込むこと
 パターンのマスクを前記クォトレジスト層に設置し，続いて，マスクによのて，フォトレ ジスト層に，露光と現像を行った後，前記磁性基板47Aにエッチンダ童行う。最復に， フォトレジスト㞗にフォトレジストの除去を行い，前記时溝43を得を。图7Cに示きれ

 ら前である。
（0029］
－ 8 8A～园8Cを参照下さい。以下は，前記溝430第三の形成方式を説明する。
100291

夕を前記フォトリジスト層PR記設置した緮，前記マスクによのて，前記フォトレジスト昒PRに，露炎と現像を行い，さらに，前記稵性基板41に，エッチングを芹）（图8B
 43を得る（図8Co加く）。注意すべきことは，この方式で前記四满43を形成豆るの

1000）

気的性質を有なることができ，且の前記コイルの材料も製造ブロセスの潭度による制監を愛けないことができる。
（0031）

篚囲を基準とを号。
（図面の簡単な㜔明！
［0032\}

 る。
 る。
万。
【符号の救明！
［0033］
1 磁性素子
11．12 フェライ1基板
13 コイル
14，15，44 結合桝料
$2,3,4,4 a, 4 b, 4 c, 4 d, 4 \mathrm{e}$ 號性素子
21．31 基检
22，24，32，347xラ1ト
23．33．42，42A，42B コイル
25 外部電敕
36 保溒贖
41，41A，41B，45 磁性基板
$43,43 \mathrm{~A}, ~ 43 \mathrm{~B}$ 凹書
46 金属層
47：47A 磁性基板
5 金型
PR フォトリジスト蘭

［国6］

s

B

［図8］

A
c

（72）或明者 林 明憲

（72）発明者 張 育儒

（72）発明者 袁 宗送

（72）発明者 張 恒中

（7）発明者 堜 煌境

（72）発明者 しん 余䯎

Fターム（渗考）56043 A408 A809 B402

56070 AAO1 AA11 BAL1 CBOI

Page 391 of 1385

$1 / 1|Y| 0 \mid \operatorname{II}$

Detail | J-PlatPat

CLAIMS

[Claim(s)]
[Claim 1]
It has an antenna which consists of a first coil of looped state, and a second coil of looped state arranged at the inside or the outside of said first coil, An antenna module switching transfer of power and communication by connecting said first coil to an incoming circuit, being connected to a communication circuit and controlling impedance of the aforementioned communication circuit while adjusting said second coil to any resonance frequency.
[Claim 2]
The antenna module according to claim 1, wherein it gives a reactance component to the aforementioned communication circuit and transfer of power differs in frequency from communication.
[Claim 3]
The antenna module according to claim 1 or 2 having arranged a magnetic body at the aforementioned antenna.
[Claim 4]
The antenna module according to any one of claims 1 to 3 having arranged a shield plate at the aforementioned antenna.
[Claim 5]
The antenna module according to any one claims 1 to 4 having replaced the aforementioned incoming circuit with a power transmission circuit, and considering it as power transmission equipment.
[Claim 6]
The antenna module according to any one claims 1 to 5 having arranged multiple aforementioned antennas.
[Claim 7]
Non-contact transfer-of-power equipment using the antenna module according to any one of claims 1 to 6 .

DETAILED DESCRIPTION

Page 393 of 1385

[Detailed Description of the Invention]
[Field of the Invention]
[0001]
The present invention relates to an antenna module and non-contact transfer-of-power equipment, especially relates to an antenna module suitable to a portable device and non-contact transfer-of-power equipment, such as a mobile phone, a headset, a digital camera, and a digital video.
[Background of the Invention]
[0002]
In the non-contact transfer of power using electromagnetic induction, non-contact transfer of power is possible by using combining a simple plane coil as an antenna, and non-contact electric power charging equipment, a noncontact IC card, a reader writer, etc. are put in practical use.
[0003]
However, since the transfer-of-power efficiency changes with the positional relationship of the power transmission side antenna and the power receiving side antenna largely when electromagnetic induction is used, In order to maintain the transfer of power in a well head, it is necessary to provide a mechanism which becomes always constant [the positional relationship of the power transmission side antenna and the power receiving side antenna]. As opposed to such problem, the means using magnetic field resonance like a Patent document 1 is disclosed.
[0004]
Fig. 4 is the figure which describes an example of the antenna module by a prior art. As shown in Fig.4, the conventional antenna 50 consists of two coils, and comprises the first coil 51 which consists of the loop coil linked to the incoming circuit 54, and the second coil 52 which has the resonance of a certain specific frequency linked to the capacitor 53. The second coil 52 is excited and the second coil 52 can transmit electric power from the second coil 52, if the electric power which had specific frequency in the first coil 51 is input. Even if the positional relationship of the power transmission side antenna and the power receiving side antenna has shifted more compared with the case where electromagnetic induction is used according to the method using this magnetic field resonance, It becomes unnecessary to provide a mechanism which it becomes it is efficient and possible to send electric power, and becomes always
constant [the positional relationship of the power transmission side antenna and the power receiving side antenna].
[0005]
In order to perform transfer of power safely, it is necessary to communicate
authentication of the portable device used as the candidate for charge, etc. but, and.
Since a mount space will increase or interference between antennas, etc. will occur if the antenna for charge and a communications aerial are made separate, it is desirable that transfer of power and communication can be performed with one antenna.
[Citation list]
[Patent literature]
[0006]
[Patent document 1] JP,2009-501510,A
[Summary of Invention]
[Problem to be solved by the invention]
[0007]
However, by the prior art of a Patent document 1 description, when trying to perform transfer of power and communication using the same frequency band, with the antenna for carrying out transfer of power using magnetic field resonance, the transfer of power in a well head cannot communicate RF-ID communication of a possible thing, etc. Since low Q value is needed when this uses it as communications antennas, such as RF-ID communication, while high Q value is needed the antenna for magnetic field resonance, in the antenna for magnetic field resonance, satisfactory Q value required for a communications antenna is not obtained.
[0008]
Therefore, also in the non-contact transfer of power using magnetic field resonance, it is desirable that transfer of power and communication can be performed using the same antenna.
[0009]
the present invention is made in order to solve the problem of the above-mentioned prior art, and it comes out.

Even if resonance is used for the object, there is in providing an antenna module and non-contact transfer of power which can perform transfer of power and communication with the same antenna.

Page 395 of 1385

[Means for solving problem]
[0010]
According to the present invention, an antenna is arranged the outside or inside a first coil and a first coil, And the second coil adjusted to any resonance frequency by LC resonance is provided, A first coil is connected to an incoming circuit, the second coil is connected to the communication circuit, between a communication circuit and a second coil in a communication circuit, the impedance of the both ends of a second coil is controlled and the antenna possessing the control circuit to which Q value can be changed is obtained.
[0011]
Namely, according to the present invention, it has an antenna which consists of the first coil of looped state, and the second coil of the looped state arranged at the inside or the outside of the above-mentioned first coil, The above-mentioned first coil is connected to an incoming circuit, while adjusting the above-mentioned second coil to any resonance frequency, it is connected to a communication circuit and the antenna module switching transfer of power and communication is obtained by controlling the impedance of the aforementioned communication circuit.
[0012]
According to the present invention, a reactance component is given to the aforementioned communication circuit and the above-mentioned antenna module, wherein transfer of power differs in frequency from communication is obtained.
[0013]
According to the present invention, the above-mentioned antenna module having arranged the magnetic body at the aforementioned antenna is obtained.
[0014]
According to the present invention, the above-mentioned antenna module having arranged the shield plate at the aforementioned antenna is obtained.
[0015]
According to the present invention, the aforementioned incoming circuit is replaced with a power transmission circuit, and the above-mentioned antenna module considering it as power transmission equipment is obtained.
[0016]

According to the present invention, the above-mentioned antenna module having arranged multiple aforementioned antennas is obtained.
[0017]
According to the present invention, the non-contact transfer-of-power equipment using the above-mentioned antenna module is obtained.
[Effect of the Invention]
[0018]
As mentioned above, by the present invention, even if it uses magnetic field resonance, the antenna module and non-contact transfer of power which can perform transfer of power and communication with the same antenna can be provided.
[0019]
By keeping current from flowing into a communication circuit as much as possible from a second coil by making sufficiently large impedance of the communication circuit seen from the second coil at the time of transfer of power according to the present invention. The minimum can be taken in the resonance point of an antenna, Q value can become high, and it can make the impedance of the antenna seen from the incoming circuit drive as an antenna for magnetic field resonance for it being efficient and performing transfer of power. By what the part by which the communication circuit was loaded on the second coil by making sufficiently small impedance of the communication circuit seen from the second coil at the time of communication, and Q value are lowered for, Since a Q factor required as a communications aerial can be satisfied, an antenna can be made to drive as a communications aerial.
[Brief Description of the Drawings]
[0020]
[Drawing 1]It is the figure which describes an example of the antenna module by the present invention.
[Drawing 2]It is the figure which describes the antenna module in the working example 1 of the present invention. Fig. 2 (a) is the figure showing a plane. Fig. 2 (b) is the figure showing a bottom surface.
[Drawing 3]It is the figure which describes the antenna module in the working example 2 of the present invention.
[Drawing 4]It is the figure which describes an example of the antenna module by a prior art.
[Description of Embodiments]
[0021]
Hereinafter, it describes about an embodiment of the invention using Drawings. [0022]
Fig. 1 is the figure which describes an example of the composition of the antenna module by the present invention. As shown in Fig.1, an antenna module of the present invention comprises the following:

Antenna 10.
Incoming circuit 14.
Communication circuit 15.
The antenna 10 consists of the first coil 11 and the second coil 12 arranged at the outside of the first coil 11. As for the second coil 12, resonance frequency is adjusted to any frequency and the first coil 11 is connected to the incoming circuit 14. By the control circuit which the second coil 12 was connected to the communication circuit 15 , and was further installed in the communication circuit 15 and between the communication circuit and the second coil, By controlling the impedance of the both ends of the second coil 12, and controlling the impedance to the communication circuit 15 , it is constituted so that transfer of power and communication may be switched. At the time of transfer of power, transfer of power and communication are separated from the communication circuit 15 in [the second coil 12] equivalent circuit, and a change is performed by connecting the second coil 12 with the communication circuit 15 in them at the time of communication. The second coil 12 may be arranged inside the first coil 11.
[0023]
Like the above-mentioned communication circuit 15, the incoming circuit 14, The function which controls the impedance of the both ends of the first coil 11 is given, at the time of communication, by making sufficiently large impedance of the incoming circuit 14 seen from the first coil 11, the interference to the second coil 12 from the first coil 11 can be inhibited, and a communication characteristic can also be improved. [0024]

The antenna 10 is produced on planar substrates, such as FPC and FR-4 substrate. Or it is also producible only by winding.
[0025]

The LC resonance of the second coil 12 is adjusted by connecting the second coil 12 and the capacitor 13 in parallel, and also the capacity component which arose by the lap of the self resonance of the second coil 12 and the copper foil patterns on a substrate can also be used for it.
[0026]
A reactance component can be given to an incoming circuit or a communication circuit, and different frequency can also be used by transfer of power and communication by changing the resonance frequency of an antenna.
[0027]
An incoming circuit can be replaced to a power transmission circuit, and can also be used as power transmission equipment.
[0028]
A magnetic body may be arranged at the back face of an antenna. The material of a magnetic body whose high frequency, such as NiZn ferrite, is also low-loss is desirable. The composite which combined the magnetic material with several different amplitude permeability may be sufficient.
[0029]
A shield material may be arranged at the back face of a magnetic body.
[0030]
An antenna may be used combining plurality.
[Work example 1]
[0031]
Hereinafter, it describes about an example of the composition of the module in the working example of the present invention.
[0032]
Fig. 2 is the figure which describes the antenna module in the working example 1 of the present invention, and the figure in which Fig. 2 (a) shows a plane, and Fig. 2 (b) are the figures showing a bottom surface. Fig. 2 (a) omits and shows the receiving circuit and the communication circuit. As shown in Fig. 2 , the antenna 30 comprises the first coil 31 of looped state, and the second coil 32 of looped state. The dimension of the antenna 30 was $40 \mathrm{~mm} \times 20 \mathrm{~mm}$, and it produced it on the FR-4 substrate. From the outside of the antenna 30, the second coil 32 has been arranged and the first coil 31 has been arranged inside the second coil 32 . The first coil 31 consisted of a 1 turn-
plane coil, and it is 0.5 mm in coil pattern width, and it produced it inside the second coil 32. The second coil 32 consisted of four turn coils, and it produced it in coil pattern 0.5 mm in width, and 0.3 mm of coil pattern gaps. It connected with the capacitor 33, the second coil 32 had LC resonance, and resonance frequency adjusted it to 13.56 MHz . The ends 31a and 31b of the plane (surface) first coil 31 and the ends 32a and 32 b of the second coil 32 are connected to the ends 31c and 31d at the bottom (back surface) and the ends 32 c and 32 d via the through-hole of a substrate, respectively. Resonance frequency should just be adjusted and the capacitor 33 may have more than one if needed.
[0033]
In the antenna 30 , the first coil 31 is connected to the incoming circuit 34 via the terminal 38 of Fig. 2 (b), the incoming circuit 34 is provided with a first solid state switch, and a first solid state switch is switched in opening and a short circuit of the terminal of the first coil 31 by IC control. The second coil 32 is connected to the communication circuit 35 via the terminal 39 , the communication circuit 35 is provided with a second solid state switch, and a second solid state switch is switched in opening and a short circuit of coil 32 second terminal by IC control. Thus, the control circuit of each impedance consisted of an IC and a solid state switch.
[0034]
The operation is described about the antenna module of the present invention which has the antenna 30 constituted as mentioned above.
[0035]
When performing transfer of power, it is controlled by IC control so that a first solid state switch becomes open [a short circuit and a second solid state switch]. At this time, the first coil 31 and the second coil 32 are combined by magnetic field combination. If the antenna 30 is placed all over the magnetic field which is 13.56 MHz , the second coil 32 is excited by the magnetic field, and for LC resonance, is efficient and can receive electric power. This electric power is taken out by the first coil 31, it is transmitted to an incoming circuit and the transfer of power of it becomes possible. As mentioned above, the Reason for making a second solid state switch open, When both first solid state switches and second solid state switches are short, in order for a part of electric power which the second coil 32 received to flow into a communication circuit, When the voltage which transfer-of-power efficiency was

Page 400 of 1385

deteriorated and occurred to the both ends of the second coil 32 will be applied to a communication circuit and it transmits big electric power, it is because a communication circuit may be destroyed.
[0036]
When communicating, it is controlled by IC control so that a first solid state switch becomes short [opening and a second solid state switch]. At this time, the first coil 31 does not function as a coil and magnetic field combination does not arise between the first coil 31 and the second coil 32. If the antenna 30 is placed all over the magnetic field which is 13.56 MHz , a magnetic field will excite, the voltage which arose to the both ends of the second coil 32 will be applied to a communication circuit, and communication of the second coil 32 will be attained. As mentioned above, since the first coil 31 will be excited so that excitation of the second coil 32 may be inhibited when both the Reasons for making a first solid state switch open have short first solid state switch and second solid state switch, a communication characteristic deteriorates. However, when degradation of a communication characteristic is minor, a first solid state switch is not necessarily required.
[Work example 2]
[0037]
As the antenna described in working example 1 is made into one unit and it was shown in Fig.3, power transmission equipment or power receiving equipment can consist of arranging the antenna of two or more units. Fig. 3 is the figure which describes the antenna module in the working example 2 of the present invention. As shown in Fig.3, the antenna module of the working example 2 has the antenna 40 provided with three units of antenna units which consists of the first coil 41 and the second coil 42.

When arranging multiple antennas, it is not limited to arrangement which comes in contact with next doors, but it may pile up, or an interval may be opened and it may arrange.
[0039]
The antenna module for power transmission can be arbitrarily changed with one unit of antennas, and may have a dismountable structure for one unit of every antennas.

The maximum power transmission electric power which can carry out transfer of power

Page 401 of 1385

from the antenna module for power transmission is adjustable by the number of the antennas which constitute the antenna module for power transmission. For example, if the electric power per [IW] one unit of antennas can be transmitted, a maximum of 4 W of power transmission of the power transmission antenna equipment which comprises four units of antennas is attained.
[0041]
By adding the control system which can choose the antenna magnetized among the antennas of the antenna module for power transmission, some antennas of power transmission equipment are used and it also becomes possible to perform transfer of power
[0042]
If sum total power transmission electric power is below the maximum power transmission electric power, the transfer of power to the antenna module for a plurality of power receiving is also possible for the antenna module for power transmission. [0043]

The maximum power receiving electric power of the antenna module for power receiving is adjustable by the number of the antennas which constitute the antenna module. For example, if the electric power per [1 W] one unit of antennas can be received, a maximum of 4 W of electricity-receiving of the antenna module for power receiving which comprises four units of antennas is attained.
[0044]
As mentioned above, although the embodiment of the invention and the working example were described using Drawings, the present invention is not limited to these examples, it is a range which does not deviate from the summary of the present invention, and even if there is change of a component or composition, it is contained in the present invention. For example, various deformation implementation of it not being limited to what was shown in Fig.1, omitting a part of the component, adding other components, or changing connecting relation is possible for the composition of an antenna. A mechanical switch can also be used instead of a solid state switch. The resonance frequency of a coil can be set to any frequency. That is, if it is a person skilled in the art, the various deformation and correction which can naturally be made are also included in the present invention.
[Explanations of letters or numerals]

Page 402 of 1385

[0045]
10, 30, and 40 Antenna
$11,31,41$, and 51 The 1st coil
$12,32,42$, and 52 The 2 nd coil
13, 33, and 53 Capacitor
14,34 , and 54 Incoming circuit
15 and 35 Communication circuit
31a, 31b, 31c, 31d, 32a, 32b, 32c, and 32d End
38 and 39 Terminal
50 The conventional antenna
（11）特許出願公開番号
（43）公開日 平成24年1月26日（2012．1．26）

（54）［姜明の名称］アンテナモジュール及び柇接触电力伝逆装置
（57）【要約】
【課題】磁界共鳴を用いても，電力伝送と通信を同じ アンテナで行うことができるアンテナモジュール及び非接触制力任送を提供すること。
【解決手段】アンテナ10は，第1のコイル11を， この第1のコイル110外側に配置ざれ，かつLC共振 により任意0共振周波数に調整された第2のコイル12 を具備し，第1 Oコイル11は受電回峈14に接続され ，第20コイル 12 は，通信回路 1 5に接続されている

－樋備国路150インビーダンス家制卸することにより
，电力伝送と通信を切り替える。
【選択図】 図1

【特許請求の蝔囲】
【請求項1】
ルーブ状の第1のコイルと，的記第1のコイルの内側又は外側に記笡されたループ状の第2のコイルからなるアンデナを猟え，前記第1のコイルは受電回路に接続され，前記第 2のコイルは任意の共振周波数に調整するとともに，通信回路に接続され，前記通信回路 のインピーダンスを制術することにより，電力伝送と通信を切り替えることを特徴とする アンテナモジュール。
【請求項2】
前記通信回路にリアクタンス成分を垨たせ，電力伝送と近信とで問波数が異なることを特徵とする請求頂1に記載のアンテナモジュール。
【請求項3】
前岏アンテナに磁性体を配置したことを特微とする請求項1又は2に記載のアンテナモ ジュール。
【請求項4】
媊記アンテナにシールド板を配置したことを特徵とする請求項1～30いずれかに記載 のアンテナモジュール。
【請求項5】
前記受電回路を送電回路に代えて，送電装置としたことを特徴とする請求項1～4のい ずれかに記載のアンテチモジュール。

【請求項6】

備する必要がある。このような課題に対して，例えば，特許文献1のような磁界共鳴を用 いた手段が開示をれている。【0004］
図 4 は，従柬技術によるアンテナモジュールの一例を帨明する図である。図4に示すよ うに，従来のアンデナ 5 0 は，2つのコイルからなり，受慗网路54と接続したループコ イルからなる第1日コイル51と，コンデンサ53と接続した，ある特定の周波数の其振 を有する第2のコイル52から構成される。第2のコイル52は，第1のコイル51に，特定の周波数を持つた電力が入力されると，第2のコイル52が励磁され，第2のコイル 52 から電力を伝送することができる。この磁界共鳴を用いた方法によれば，電磁誘導を用いた場合に比べ，送電側アンテナと受電側アンチナの位置関係がよりズレていても，高

効率で電力を逹ることが可能となり，送電側アンテナと受電側アンテナの位置関係が常に一定となるような機構を具備する必要がなくなる。
【000 5 〕
また，安全に電力使送を行うためには，充電対象となる排帯機器の認証等の通信を行な う必要があるが，充雨用アンテナと通信用アンテナを別々にすると，搭載スペースが增加 したり，アンテナ間の干渉などが発生したりしてしまうため，1つのアンテナで電力伝送 と通信ができることが些ましい。
【先行技術文献】
【特䝫文献】
〔 00006 〕
【特許文献1】特表2009－501510号公報
【発明の概要】
【発明が解決しようとする課題】
【0007］
しかしながら，特許文献1記載の従来技術では，同じ周波数帯域を用いて，電力伝送と
率での需力伝送は可能であるものの，RF－ID通信等の通信を行うことができない。こ れは，磁界共鳲用アンテナは高い Q 値が必要とされるのに対し，RF－I D 通信等の通信 アンテナとして使用する場合は低い Q 値が必要となるため，磁界共鳴用アンテナでは，通信アンテナに必要な満足なQ佔が得られない。
【0008】
したがって，磁界共鷁を利用した非接触電力伝送に扔いても，同じアンテナを用いて電力伝送と道信が行なえることが望ましい。
【00009】
本発明は，上記従来技術の課題を解沈するためになされたものであり，その目的は，磁界共鳴を用いても，電力伀送と通信を同じアンテナで行うことができるアンテナモジュー ル及び非接虽霊力伝送を提供することにある。
【課題を解決するための手段】
【00110】
本発明によれぼ，アンテナふ第1のコイルと，第1のコイルの外側もしくは内側に配置 され，かつLC共振により任意の共振周波数に調整された第2のコイルを具備し，第10 コイルは受電回路に接続され，第2のコイルは通信回路に挍続されており，通信回路内又 は通信回路と第2のコイルの問には，第2のコイルの而端のインピーダンスを制御し，Q値を変化をせることができる制御回路を具備することを特徴とするアンテナが得られる。
〔00111］
即ち，本発明によれば，ループ状の筛1のコイルと，前記第1のコイルの内㑬又は外側 に配置されたループ状の第2のコイルからなるアンテナを備え，前記第1のコイルは受電回路に接続され，前記第2のコイルは任意の共振周波数に調整するとともに，通信回路に接続され，前記通信回路のインビーダンスを制御することにより，電力伝送と通信を切り替えること定特微とするアンテナモジュールが得られる。
【0012】
また，本炎明によれば，解記通修回路にリアクタンス成分を持たせ，電力伝送と逆位と で周波数が異なることを特徴とする上荆のアンテナモジュールが得られる。
［ $\left.\begin{array}{llll}0 & 0 & 1 & 3\end{array}\right]$
また，本発明によれば，前記アンテナに磁性体を配置したことを特徴とする上記のアン テナモジュールが得られる。
［00114］
また，本発明によれば，面記アンテナにシールド板を配搝したことを特徴とする上削の アンテナモジュールが得られる。
【0015】

また，本発明によれば，前記受需回路を送電回路に代えて，送電装㯰としたことを特徴 とするト記のアンテナモジュールが得られる。
［ $\left.\begin{array}{llll}0 & 0 & 1 & 6\end{array}\right]$
また，本発明によれぼ，前記アンテナを複数僓配置したことを特徴とする上記のアンデ ナさジュールが得られる。
［101017］
また，本発明によれば，上記のアンテナモジュールを用いたことを特徴とする非接触管力依送装置が得られる。
【発明の効果】
〔0018】
以上のように，本発明により，磁界共鳴を用いても，電ノ伝送と通信を同じアンテナで行うことができるアンテナモジュール及び非接触電力伝送を提供することができる。
［llll $\left.\begin{array}{lll}0 & 0 & 1\end{array}\right]$
本発明によれば，電力伝送時には，第2のコイルからみた通信回路のインピーダンスを十分大きくすることによって，第2のコイルから通信回路へ電流ができるだけ流れないよ うにすることで，受電回路からみたアンテナのインビーダンスは，アンテナの共振点にて ，最小値をとり，Q 値が高くなり，高効率で電力伝送を行うための，磁界共鳲用アンテナ として駆動させることができる。また，通信時には，第2のコイルからみた通信回路のイ ンピーダンスを十分小さくすることによって，第2のコイルに通信回路が負荷された分， Q 値を下げることで，通信用アンテナとして必要な Q 特性を満足することができるため， アンテナを通信用アンテナとして駆動させることができる。
【図面の䉍単な説明】
【 00020 〕
【図1】本発明によるアンテナモジュールの一例を説明する図である。
【図2】本発明の実施例1におけるアンテナモジュールを説明する図である。図2（a）
は，平面を示す図。図2（b）は，底面を示す図。
【図3】本発明の実施例2におはるアンテナモジュールを説明する図である。
【図4】従柬技術によるアンテナモジュールの一例を説明する図である。
【発明を㝜施するための形態】
［ $\left.\begin{array}{llll}0 & 0 & 2 & 1\end{array}\right]$
以下，本発明の実施の形態について，図面を用いて説明する。
【 00122 〕
図1は，本発明によるアンテナモジュールの構成の一例を説明する図である。図1に示 すように，本発明のケンテナモジュールは，アンテナ10と，受電回路14と，通信回路 15 とから構成をれる。アンテナ10は，第1のコイル11と，第1のコイル11の外側 に配置された第2のコイル12からなる。第2のコイル12は，任意の周波数に共振周波数が調整されており，第1 のコイル11は，受電回路14に接続されている。第2のコイ ル 1 2 は，通信回路 1 5 に接続され，さらに通信回路 1 5 内又は通信回路と第2のコイル の間に設置された制御回路により，第2のコイル12の兩端のインピーダンスを制御し，通信回路15へのインピーダンスを制衘することにより，電力伝送と通信を切り替えるよ う構成される。電力伝送と通信を切り替えは，電力伝送時には，通信回路15と第2のコ イル12が等価同路的に切り離され，逆信時には，逆信回路15と第2のコイル12が接続されることにより行われる。な訂，第2のコイル12は，第1のコイル11の内側に配置してもよい。
〔0023］
また，上記通信回路15と同様に，受電回路14は，第1のコイル11の再端のインピ ーダンスを制御する機能を持たせ，通信時には，第1のコイル11からみた受霓回路14 のインピーダンスを十分大きくすることで，第1のコイル11から筑2のコイル12への干渉を抑澵し，通佰特性を向上させることもできる。
【0024］

アンテナ10は，FPCやFR－4基板等の平面基板上に作製される。もしくは，巻き線のみで作製することもできる。
［10025］
第2のコイル120LC共振は，第2のコイル12とコンデンサ13を並列に接続する ことで調整されるほか，第2のコイル12の自己共振わよび，基板上の銅符パターンの重 なりによって生じた容量成分を用いることもできる。
［0026］
受電回路もしくは，通信回路にリアクタンス成分を持たせ，アンテナの共振開波数を変化させることで，雨力伝送と道信で，思なる周波数を利用することもできる。
〔0027］
受電回路は，送電回路に置き換え，送電装置として使用することもできる。
【 $\left.\begin{array}{llll}0 & 0 & 2 & 8\end{array}\right]$
アンテナの背面に磁性体を配置しても良い。磁性体は，Ni Znフェライト等の高周波 でも低損失である材料が望ましい。また，複数の思なる透磁率を持った磁性材料を組み合 わせた複合材でもよい。
【0029］
磁性体の背面には，シールド材を配置してもよい。
〔0030］
アンテナは複数個を組み合わせて使用してもよい。

【実施例1】

$\left[\begin{array}{llll}0 & 0 & 3 & 1\end{array}\right]$
以下，本発明の実施例におけるモジュールの樍成0一例について帨明する。
［ $\left.\begin{array}{llll}0 & 0 & 3 & 2\end{array}\right]$
図2は，本発明の実施例1におけるアンテナモジュールを説明する図であり，図2（a ）は，平面を示す図，図2（b）は，底面を示す図である。図2（a）では，受信回路，通信回路を省略して示している。図2に示すように，アンテナ 3 0 は，ループ状の第1の コイル31とループ状の第2のコイル 3 2 から構成される。アンテナ 300 寸法は， 40 $\mathrm{mm} \times 20 \mathrm{~mm} \mathrm{~m}$ と，FR－4基板上に作製した。アンテナ 300 外側から，第2のコイ ル 3 2 を配置し，第2 のコイル32の内湖に符10コイル31を配惪した。第10コイル 31 は1ターン平面コイルからなり，コイルパターン幅 0.5 mm （ m ，第2のコイル 32 の内側に作製した。第2のコイル32は，4ターンコイルからなり，コイルパターン幅 0 5 mm ，コイルパターン問隙 0.3 mm •作製した。第2のコイル 32 は，コンデンサ 33 と接続し，I C 共振を持ち，共振周波数が 13.56 MHz に調整した。平面（表百 ）の第1のコイル31の端部31a，31b，第2のコイル32の端部32a，32bは ，底而（雯而）O熣部 3 1 c ，3 1 d，及び熣部 3 2 c ，3 2 dにそれぞれ，甚板の貫通孔を介して接続されている。コンデンサ33は，共振周波数が調整されればよく，必要に応じて複数個あってもよい。
［ 00033 ］
アンテナ30において，第1のコイル31は，図2（b）の端子38を介して受電回路 34 に接続され，受電回路34は第1 の半導体スイッチを備え，筙10半導体スイッチは 1C制御によって，第10コイル31の端子0オーブンとショートを切り替えられる。第 2のコイル32は，端子39を介して通信回路35に接続され，道信回路35は第2の半導体スイッチを備え，第2の半導体スイッチは1C制御によつて，第2のコイル32端子 のオーブンとショートを切り替えられる。このように，それぞ扣のインピーダンスの制御回路は，1Cと半導体スイッチで緸战した。
［10034］
以上のように構成された，アンテナ 30 を有する本発明のアンテナモジュールについて その動作を説明する。
［10035］
電ノ伝送を行ら場合，IC制御によって，第1の半導体スイッチがショート，第2の半

導体スイッチがオープンとなるように制俩をれる。このとき，第1のコイル31と第20 コイル 32 は磁場結合によって結合している。アンテナ 30 が 13.56 MHz 2磁場中 に置かれると，第2のコイル32は磁場によって肺磁され，かつ，I．C共振のために，高効率で電力を受電することができる。この電力は第1のコイル31によって取り出をれ，受電回路に伝送されることで，電力伝送が可能となる。上述のように，第2の半導体スイ ッチをオープンにする理由は，第1の半導体スイッチと第2の半導体スイッチがともにシ ョートとなっていた場合，第2のコイル 32 が受電した電力の一部が通信回路に流れてし まうため，電力伝送効率が低下し，また，第2のコイル32の兩端に発生した電圧が通㢄回路に印加されることとなり，大電力を伝送する場合には，通倍回路が破壊される可能性 もあるためである。
【0 0 3 6 】
通信を行なラ場合，IC制御によって，第1の半導体スイッチがオープン，第2の半導体スイッチがショートとなるように制御される。このとき，第1のコイル31はコイルと して機能せず，第1のコイル31と第2のコイル32の間に磁場結合は生じない。アンテ ナ 3 0 が13． 56 MHz の磁場中に置かれると，第2のコイル 3 2 は磁場によって励磁 され，第2のコイル32の雨端に生じた電圧が通信回路に印加され，通信が可能となる。上还のように，第1の半導体スイッチをオープンにする理由は，第10半導体スイッチと符2の半導体スイッチがともにショートとなっていた場合，第2のコイル32の励磁を阻害するように第1のコイル31が励磁されてしまうため，通信特性が劣化する。しかし，通信特性の劣化が軽微な場合には，必ずしも第1の半導体スイッチが必要なわけではない

［实施例2］

実施例1で説明したアンテナを1単位として，図3に示したように，複数単位のアンデ ナを配置することで，送電装惪もしくは受電装置を構成することができる。図3は，本発明の実施例 2 におけるアンテナモジュールを説明する図である。図3に示すように，実施例2のアンテナモジュールは，第1のコイル 41 ，第2のコイル 12 からなるアンテナ単位を3単位備えたアンテナ40を有する。
【 00318 〕
アンテナを複数個配置する場合には，隣同士に接するような配置に限定されず，重ねた り，間隔を開けたりして配置してもよい。
【0 03 9 1 ］
送電用のアンテナモジュールは，アンテナ1単位で任甞に変更することが可能であり， アンテナ1単位ごとに取り外し可能な構造を持っていても良い。
［00040］
逆電㺫のアンテナモジュールから露力伝送できる最大送電電力は，送電用のアンテナモ ジュールを構成しているアンテナの数で調整可能である。例えば，アンテナ1単位あたり 1 Wの電力を送電できるとすれば，アンテナ 4 単位から構成される送電アンテナ装置は，最大 4 W まで送電可能となる。
【0 0 4 1 】
また，送雷用のアンテナモジュールのアンテナのうち，励磁させるアンテナを選択でき る制御システムを付加することで，送電装脽のアンデの一部分を使州し，慗力伝送を行 うことも可能となる。
［00042］
また，送電用のアンテナモジュールは，合計逆電電力が最大送電電力以下であれば，複数の受電用のアンテナモジュールへの雷力㐾送も可能である。
【0 043 〕
 テナの数で調瞥可能てある。例えば，アンテナ1学位あたり1 Wの電力を受電できるとす れば，アンテナ 4 単位から構成される受電用のアンテナモジュールは，最大 4 W まで愛電

可能となる。
【0044］
 に限定されるものではなく，本発明の要旨を逸脱しない範囲で，部材や構成の変更があっ ても本発明に含まれる。例えば，アンテナの構咸は図1に示したものに限定されず，その搆戎要素の一部を省略したり，他の構成要素を追加したり，接続関傒を変更するなどの種々の変形実施が可能である。また，半導体スイッチの代わりに，機械スイッチを用いるこ ともできる。また，コイルの共振周波数は，任意の周波数に設定することが可能である。 すなわち，当業者であれば当然なしえるであるう备種変形や修正もまた，本発明に含まれ るものである。
【符号の説明】
【0 0 4 5 】
10，30，40 アンテナ
11，31，41，51 第1のコイル
12，32，12，52 第20コイル
13，33，53 コンデンサ
14，34，54 受電同路
15，35 通信回路
$31 \mathrm{a}, ~ 31 \mathrm{~b}, ~ 31 \mathrm{c}, ~ 31 \mathrm{~d}, ~ 32 \mathrm{a}, ~ 32 \mathrm{~b}, ~ 32 \mathrm{c}, ~ 32 \mathrm{~d}$ 端部
38，39 端子
50 従来のアンテチ

【図1】

【図2】

（b）

［図3］

【図4】

フロントページの続を

페이지 $1 / 2$
Legal Status

$91-80-9102$
(21)Application number (22)Date of filing
(71)Applicant
(72)Inventor
(54)RADIO CARD
(57)Abstract

PROBLEM TO BE SOLVED: To provide a radio card with less possibility that an antenna for electric power waves and an antenna for data waves are covered by fingers of hand, etc. which hold the card, by which each antenna becomes approximately similar receiving status and sure
transmission/reception is made possible in the case of holding up the card to communication equipment.

SOLUTION: In the radio card which receives electric power waves of first frequency to be
transmitted from external communication equipment and data waves of second frequency different from the first frequency respectively, it is constituted by arranging a first coil forming the antenna for electric power waves which receives the electric power waves at a center part of one surface of a rectangular card-shaped substrate formed by a member transmitting radio
2004-110854
08.04.2004
G06K 19/07
B42D 15/10
2003-427541
24.12.2003
TOSHIBA CORP
YOKOWO CO LTD
KUSHIMA HIDEKIYO
YANAGISAWA KAZUSUKE
HORIE RYO
YANO TAKUMI

(11)Publication number

(51)Int.Cl.
https://www19.j-platpat.inpit.go.jp/PAI/cgi-bin/PA1TKDLINK?key_code=TKD\&number=2004110854\&order=PUBLIC

Page 414 of 1385

CLAIMS

[Claim(s)]

[Claim 1]
It is a wireless card which receives power waves of first frequency transmitted from an external communication apparatus, and data waves of said first frequency and different second frequency, respectively,
While arranging a first coil that forms an antenna for power waves which receives the aforementioned power waves in the central part of one surface of a card shape substrate of a rectangle formed by a component which transmits an electric wave, A wireless card which arranges a second coil which forms an antenna for data waves which receives the aforementioned data waves so that it may become said first coil and a double ring in the central part of one surface of the aforementioned substrate, and is characterized by things.
[Claim 2]
The wireless card according to claim 1 arranging said first coil and a second coil, respectively to a central ward when said first coil and a second coil were formed in respectively flat rectangular shape and the aforementioned substrate was classified into three by a shorter side.

[Claim 3]

The wireless card according to claim 1 arranging said second coil to the inside surrounded with said first coil on the same plane of the aforementioned substrate.
[Claim 4]
While while was classified into three of the aforementioned substrates and arranging a circuit component except said first coil and a second coil in a Type on the long side side, The wireless card according to claim 2 having laminated an insulating layer on both sides of the aforementioned substrate to which said first coil, a second coil, and a circuit component were arranged, having attended a Type on the long side side of another side classified into three of the aforementioned substrates, and arranging a magnetic recording layer on the surface of the aforementioned insulating layer of one side.

Page 415 of 1385

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[Field of the Invention]
[0001]
In the present invention, transmission and reception by radio are performed between a wireless card of a non-cell type and a radio card reader writer (communication apparatus) which have a portable wireless communication function, for example. Therefore, while performing transmission of electric power, transmission of data, and reception from a radio card reader writer to a wireless card, it is related with a wireless card of a non-cell type used for a wireless communication system which performs transmission and reception of data from a wireless card to a radio card reader writer.

[Background of the Invention]

[0002]
By the wireless card constituted by the IC card of rectangle card size these days substantially card shape being developed, and holding up this wireless card before a radio card reader writer, By transmitting and receiving between radio card reader writers according to non-contact, there is a wireless communication system which delivers and receives data etc. A control means (CPU) containing storage cells, such as semiconductor memory, is mounted on this wireless card.
By storing proper data in a storage cell, it becomes possible to use as an ID card (personal identification card), a commuter pass, etc.
[0003]
If it was in the conventional wireless card, there were some which mounted the cell used as the operation power of the circuit element mounted, but the cost for the life of a cell and a changing battery, etc. had become a problem.
[0004]
Then, without mounting a cell etc. on a wireless card, a wireless card receives the electric wave transmitted from a radio card reader writer, and the technology of rectifying this reception radio wave and obtaining the DC power for operation power is proposed. From a radio card reader writer, the one method modulates the power waves for electric power transmission with a data signal, and transmits electric power

Page 416 of 1385

and data to a wireless card with one frequency signal, respectively. Other methods transmit electric power and data from a radio card reader writer to a wireless card with two frequency signals with the data waves for data transmission, respectively on the power waves for electric power transmission, and different frequency from this. [Description of the Invention]
[Problem to be solved by the invention]
[0005]
If it is in the method of using one frequency signal which modulated power waves with the data signal, the recovery of the data signal on the wireless card side is comparatively easy. However, when a plurality of wireless communication systems which used the same frequency approach and are provided, a wireless card is used as a commuter pass, for example, If it was when a plurality of ticket gate equipment which performs the ticket gate was installed side by side, it was easy to be subject to the influence of the power waves from other ticket gate equipment which approached, and there was fault that measures, such as shielding, were needed.
[0006]
If it is in the method of transmitting power waves and data waves on different frequency, As compared with data waves, power waves are very big electric power (for example, 10 twice as many 7th power electric power as this), and the data waves of weak electric power will receive the superimposed signal carried out to the power waves of big electric power in the antenna which receives data waves by the wireless card side.
[0007]
However, it is in the actual condition which the practical art which extracts data waves from power waves has not established. In order to extract data waves, what used the coil element is considered easily, but the coil element is not suitable as an element which a shape dimension mounts on a wireless card largely. [0008]
The coil element is not suitable for 1-chip IC (integrated circuit) changing the circuit mounted on a wireless card. It is common to use conventionally the high frequency which multiplied the first frequency of power waves as a response wave from a wireless card to a radio card reader writer, and it needed the measure against the spurious radiation by a multiplying circuit.

Page 417 of 1385

[0009]
If it was in the method of transmitting power waves and data waves on different frequency from a radio card reader writer, there was fault that sufficient space to arrange the antenna which receives power waves and data waves to a wireless card, respectively was not obtained.
[0010]
And although power waves are transmitted with very big electric power from a radio card reader writer as compared with data waves, Power waves must be received efficiently, it becomes what has a big outside diameter size of the antenna for power waves which is needed with a wireless card only by it, and the arrangement is difficult for securing operation power capacity sufficient with a wireless card.
[0011]
Then, the present invention has few possibilities that the antenna for power waves and the antenna for data waves may be covered by the digiti manus holding this card, etc. when holding up this card to a communication apparatus, And it aims at providing the wireless card whose positive transmission and reception each antenna serves as substantially same receiving condition, and are attained.
[Means for solving problem]
[0012]
The wireless cards of the present invention are power waves of the first frequency transmitted from an external communication apparatus. And it is a wireless card which receives the data waves of the above-mentioned first frequency and different second frequency, respectively, while arranging the first coil that forms the antenna for power waves which receives the aforementioned power waves in the central part of one surface of the card shape substrate of the rectangle formed by the component which transmits an electric wave, The second coil which forms the antenna for data waves which receives the aforementioned data waves is arranged so that it may become the above-mentioned first coil and a double ring in the central part of one surface of the aforementioned substrate.
[Effect of the Invention]
[0013]
The first coil that forms in the central part of the card the antenna for power waves which receives power waves according to the wireless card of the present invention, By

Page 418 of 1385

arranging the second coll which forms the antenna for data waves which receives data waves so that it may become a double ring, When holding up to a communication apparatus, there are few possibilities that a first coil and second coil may be covered with the finger holding this card, etc., moreover, a first coil and second coil serve as substantially same receiving condition, and the receiving conditions of both coils do not differ substantially.
[0014]
According to the wireless card of the present invention, there is no possibility that a first coil and second coil may be covered with the finger holding this card, etc., by arranging by making a first coil and second coil into a flat rectangle to the central ward classified into three by the shorter side of this card.
[0015]
According to the wireless card of the present invention, by arranging a second coil to the inside surrounded by the first coil on the same plane of a substrate, power waves can be received more efficiently, capacity of operation power is made so much to a big thing, and it can operate reliably.
[Best Mode of Carrying Out the Invention]
[0016]
Hereinafter, with reference to Drawings, it describes about an embodiment of the invention.

Fig. 1 shows the composition of the wireless communication system with which the wireless card concerning this embodiment is applied -- it comes out. This wireless communication system comprises the radio card reader writer 10 and the wireless card 20 as a communication apparatus which communicate by non-contact. From the radio card reader writer 10, with big continuous unmodulated electric power, the power waves $f 1$ of first frequency, And the data waves $f 2$ of second frequency lower than first frequency are transmitted to the wireless card 20 via the antenna 11 for power waves, and the antenna 12 for data waves, respectively with the weak electric power by which ASK modulation was carried out with the data signal.
[0017]
The first frequency of the power waves fl is 13.56 MHz here, for example, and the second frequency of the data waves f 2 is 3.39 MHz which carried out $1 / 4$ dividing of the first frequency, for example. The power waves $f 1$ are transmitted with twice as

Page 419 of 1385

many electric power as this the 7 th power of 10 as opposed to the data waves $f 2$. [0018]

The wireless card 20, The antenna 24 for data waves which consists of the antenna 21 for power waves which consists of the parallel circuit of the first coil L1 and the first capacitor C 1 , the rectification circuit 22 for power supply generation, the frequency divider 23, and the parallel circuit of the second coil $L 2$ and the second capacitor C2, the transceiver change-over switch 25 , the demodulator circuit 26 , It is constituted by the modulation circuit 27 and CPU(central processing unit) 28 as a control means. [0019]

That is, in the wireless card 20 , it is rectified in the rectification circuit 22 , the power waves f1 received with the antenna 21 for power waves serve as direct current voltage, and this is used as operation power $+B$. Some power waves $f 1$ received with the antenna 21 for power waves are sent to the frequency divider 23 , for example, the second frequency as a dividing signal by which $1 / 4$ dividing were carried out is generated, and it is sent to the modulation circuit 27 here.
[0020]
The reply signal over the radio card reader writer 10 is input into the modulation circuit 27 from CPU28, and it is sent to it as the response wave f3 at the transceiver changeover switch 25 at the time which the second frequency by which ASK modulation was carried out with this reply signal shows to Fig. 6 . While the input signal containing the data waves received with the antenna 24 for data waves is sent to the demodulator circuit 26 via the transceiver change-over switch 25 and data waves are extracted suitably, waveform shaping is carried out, and it gets over as a data signal, and is sent to CPU28.
[0021]
Although the antenna 24 for data waves is an LC resonance circuit, it is setting the resonance frequency as the second frequency of the data waves $f 2$ and reception of the power waves $f 1$ is oppressed compared with reception of the data waves $f 2$, Since the Q factor of an antenna is not steep, it is hard to say that it is sufficient to extract only the data waves f 2 .
[0022]
And transmit the input from the antenna 24 for data waves to the demodulator circuit 26 by inputting a transceiver switching signal into the transceiver change-over switch

25 from CPU28, or. Or change control is carried out suitably that it should transmit so that the response wave f 3 modulated from the modulation circuit 27 may be turned to the radio card reader writer 10 from the antenna 24 for data waves and it may transmit.
[0023]
The demodulator circuit 26 is constituted by the extracting circuit 26 a which extracts the received data waves, for example, and the shaping circuit 26b which shapes the extracted data-waves signal in waveform and carries out the demodulation output of the data signal.
[0024]
The circuit component of the wireless card 20 is formed into 1-chip IC29 except for the first coil L1 that forms the antenna 21 for power waves, and the second coil L2 which forms the antenna 24 for data waves.
[0025]
Fig. 2 shows the composition of the extracting circuit 26a in the demodulator circuit 26 in detail. That is, the data-waves signal from the antenna 24 for data waves is input into the input terminal 31. The input terminal 31 is connected to the base of NPN transistor T1 of the first amplifying circuit 32 via the capacitor C3 for DC blocking. The collector of the transistor T1 is connected to operation power +B via the parallel circuit of the collector resistance R1 and the collector capacitor C4. The emitter of the transistor T1 is grounded via the parallel circuit of the emitter resistance R2 and the emitter capacitor C5. While the collector and base of the transistor T1 are connected via the bias resistance $R 3$, the collector of the transistor $T 1$ is connected to the base of NPN transistor T2 of the second amplifying circuit 33 via the capacitor C6 for DC blocking.
[0026]
While the collector of the transistor $T 2$ is connected to operation power $+B$ via the parallel circuit of the collector resistance R4 and the collector capacitor C7, the emitter of the transistor T2 is grounded. While the collector and base of the transistor T2 are connected via the bias resistance R5, the base of the transistor T2 is grounded via the bias resistance R6. The collector of the transistor T2 is connected to the base of NPN transistor T3 of the 3rd amplifying circuit 34 via the capacitor C8 for DC blocking. [0027]

Page 421 of 1385

While the collector of transistor T 3 is connected to operation power +B via the parallel circuit of the collector resistance R7 and the collector capacitor C9, the emitter of transistor $T 3$ is grounded. The base of transistor $T 3$ is grounded via the bias resistance $R 9$ while being connected to operation power $+B$ via the bias resistance $R 8$. The collector of transistor T3 is connected to the base of NPN transistor T4 of the 4th amplifying circuit 35 via the capacitor C10 for DC blocking.
[0028]
While the collector of the transistor T4 is connected to operation power $+B$ via the parallel circuit of the collector resistance R10 and the collector capacitor C11, the emitter of the transistor T4 is grounded. While the collector and base of the transistor T4 are connected via the bias resistance R11, the collector of the transistor T4 is connected to the outgoing end 36 via the resistance R12.

[0029]

In the extracting circuit 29 of such composition, the bias set is made so that the 1 st the 4 th amplifying circuit $32,33,34$, and 35 may operate as B class or a C class. Then, although the data waves $f 2$ of the weak electric power d1 seem to show the input signal given to the input terminal 31 in the superimposed Fig. 3 (a) carried out at the power waves f1 of the big electric power b1, The data waves $f 2$ are amplified on a high gain by the amplifying operation of B class of the first amplifying circuit 32 , or C class, and the power waves f 1 are amplified on a gain smaller than this.

As a result, as an amplified output of the first amplifying circuit 32, as shown in Fig. 3 (b), the electric power of the data waves f 2 is amplified to D1, and the rate of a relative ratio of electric power with the power waves ff is improved. Then, by amplifying similarly in the 2 nd, 3 rd, and 4th amplifying circuit 33,34 , and 35 , the electric power of the data waves f 2 is amplified more, and the rate of a relative ratio with the power waves $f 1$ may be improved substantially.
[0031]
In the 1 st and 4th amplifying circuit 32 and 35 , each base of the transistors T1 and T4 may be grounded via bias resistance. In the $2 \mathrm{nd}, 3 \mathrm{rd}$, and 4 th amplifying circuit 33 , 34 , and 35 , each emitter of the transistor T2, T3, and T4 may be grounded via emitter resistance, and bias voltage may be set up to become C class operation more. [0032]

Page 422 of 1385

One of circuits may be excluded and one of circuits may be in the 1st which constitutes the extracting circuit 26 a the 4th amplifying circuit $32,33,34$, and 35 duplicately. In short, according to the rate of a relative ratio of the electric power of the superimposed data waves $\mathfrak{f} 2$ carried out, the number of stages of an amplifying circuit may be suitably set to the power waves $f 1$ input at it. Therefore, the extracting circuit $26 a \operatorname{may}$ comprise one step of amplifying circuit.
[0033]
To each transistor T1 and T2 of the 1st - the 4th amplifying circuit $32,33,34$, and 35, T3, and the collector of T4, The collector capacitors C4, C7, C9, and C11 are provided, and as these amplifying-circuit characteristics are shown in Fig.4, in higher frequency, a gain is deteriorated to the frequency signal more than predetermined frequency. Then, the gain of the power waves f1 of high frequency is made to be deteriorated by setting the second frequency of the data waves $f 2$ as the neighborhood a gain is deteriorated to frequency, amplification is oppressed, and the data waves $f 2$ of low frequency can be amplified on a high gain. The power waves $f 1$ to the data waves $f 2$ can be extracted also from such the amplifying-circuit characteristic.

By the way, if it is in the first amplifying circuit 32, and the emitter resistance R2 is provided and the transistor T 1 conducts, emitter potential will rise and voltage negative feedback will act. Since the bias resistance R3 has connected between collectors with the base of the transistor T1, if the transistor T1 conducts, collector potential will descend and base potential will also descend in connection with this. Therefore, current negative feedback acts. Therefore, in both the first amplifying circuits 32 , voltage and current negative feedback act and the saturation of the transistor $T 1$ is avoided. If it is in the 2 nd and 4 th amplifying circuit 33 and 35 , current negative feedback acts by the bias resistance R5 and R11, and the saturation of the transistors T2 and T4 is avoided. It does not become the data waves $f 2$ are distorted or impossible saturation's detecting this.
[0035]
A signal as shows the extracting circuit 26 a to Fig. 5 (b) to an input signal as shown in Fig. 5 (a) by each amplifying operation of the 1st - the 4 th amplifying circuit $32,33,34$, and 35 like $* * * *$ is outputted to the outgoing end 36 . That is, the input which was the electric power d1 of the data waves $f 2$ turns into the electric power D4 of the data
waves f 2 to electric power B4 of the power waves f 1 to the electric power b1 of the power waves $\mathrm{f1}$, and it becomes what has a big rate of a relative ratio of the electric power of the data waves $f 2$. Then, it can restore to a data signal as easily shown in Fig. 5 (c) by shaping in waveform suitably the output of the extracting circuit 26 a as shown in Fig. 5 (b) in the shaping circuit 26b.
[0036]
In the above-mentioned description, although NPN transistors T1 and T2, T3, and T4 are used as each amplifier of the 1 st - the 4 th amplifying circuit $32,33,34$, and 35 , a field effect transistor may be used as an amplifier. While being able to inhibit the power consumption by the amplifying circuit itself and being able to give sufficient margin to the capacity of operation power by using a field effect transistor, it is suitable also although a 1 -chip IC form is carried out.
[0037]
Next, with reference to Fig.7, it describes in detail about the structure of the wireless card 20. The wireless card 20 assembles and shines on the substrate 41 of the rectangle of the business-card size formed, the component, for example, the dielectric, which transmit an electric wave, as shown in Fig.7. That is, the first coil L1 and the second coil L2 are arranged at the central section P2 from which the surface of the substrate 41 was classified into three by strip shape by the shorter side side. It is formed in rectangular shape with both the 1st and the second flat coils L1 and L2, and it is substantially arranged on concentric so that it may become the inside surrounded with the first coil L1 with a ring with the second coil L2 double on the same plane. [0038]

On the surface of the substrate 41 , the ground foil 42 is provided by Type P3 on one long side side, and 1 -chip IC29 is installed on this ground foil 42 . It is suitably connected by the through hole (not shown) for carrying out the electrical link of the path cords 43 and $43,--$, the surface and the back surface of the substrate 41 that 1chipIC29, the 1st, and the second coils L1 and L2 provided at the surface and the back surface of the substrate 41 .
[0039]
The 1st and 2nd coil L1 and L2 and the ground foil 42, the path cords 43 and 43, and -- are formed by etching of conducting foil, vacuum evaporation of electric conduction metal, etc., for example.
[0040]
As shown in Fig. 8 (a) and (b), the insulating layers 44 and 45 are laminated by the surface and the back surface of the substrate 41 , respectively, and all the circuit components containing the 1st and the second coils L1 and L2 are sealed. Type P1 on the long side side of different another side from the long side side where the ground foil 42 was provided is attended, and the magnetic recording layer 46 is arranged by the surface of one insulating layer 44 or 45 . Thus, as for the wireless card 20 , an outside is formed in the card shape of the rectangle of business-card size as a whole. [0041]

In such composition, the substrate 41 and the insulating layers 44 and 45 , By having the wireless card 20 in the hand 30 , turning the surface or the back surface of the wireless card 20 to the radio card reader writer 10, and holding it up, as shown in Fig. 9 in order to make electromagnetic waves transmit, The antenna 21 for power waves containing the first coil $L 1$ of a central part receives the power waves f1 from the radio card reader writer 10 , the antenna 24 for data waves containing the second coil L2 receives the data waves $f 2$, and it functions as the wireless card 20. [0042]

Here, from the form of the rectangle of the business-card size of the wireless card 20 , when holding up the wireless card 20 to the radio card reader writer 10, as shown in Fig.9, it is held with the long side side in many cases by the hand 30 . As a result, there are few possibilities that the 1 st arranged by the central section P 2 classified into three by the shorter side side and the second coils L1 and L2 may be covered with the finger of the hand 30 , etc., and they can receive reliably the power waves $f 1$ and the data waves f 2 so much.
[0043]
Since the first coil L1 was made into big form, the power waves f1 can be received so much efficiently, capacity of the operation power of the wireless card 20 can be made into a big thing, and operation of the wireless card 20 is made reliably.
[0044]
By and the thing for which the coil of another side is arranged to the inside surrounded with one coil so that it may become a double ring on the same plane about the first coil L1 and the second coil L2, One coil at the time of arranging and arranging next is covered with a finger etc., only the coil of another side cannot receive the power waves
f1 or the data waves f2, and each receiving condition of the 1st and the second coils L1 and $L 21$ becomes substantially the same.
[0045]
Since the insulating layers 44 and 45 are laminated so that the circuit component of the wireless card 20 may be sealed, it is hard to produce electric accidents, such as disconnection of a coil and a circuit short circuit, and rich in durability. And if the 1st, the second coils L1 and L2, etc. are constituted from etching or vacuum evaporation, it is suitable although manufactured in large quantities inexpensive.
[0046]
And if the wireless card 20 is used as a commuter pass etc., on the surface of one insulating layer 44 or 45 , The term of validity, the popular use section, etc. are printed suitably, and the data of the above-mentioned term of validity, the popular use section, etc. is suitably recorded on the magnetic recording layer 46, and the data of the abovementioned term of validity, the popular use section, etc. is suitably memorized by the storage cell of CPU28 still in a similar manner.
[0047]
Then, if the radio card reader writer 10 is installed in the automatic ticket gate machine of a station, etc., If the magnetic reader etc. are installed without performing an examination-of-tickets act in non-contact, and installing the radio card reader writer 10, If an examination-of-tickets act is performed using the data recorded on the magnetic recording layer 46 and this automatic ticket gate machine is not installed, either, the alphabetic data printed on the surface can perform an examination-oftickets act.
[0048]
Although arranged to central section in the above-mentioned description by making the first coil L1 and the second coil L2 into flat rectangular shape, If the magnetic recording layer 46 is not provided, the 1st and the second coils L1 and L2 may be arranged so that a central part may be surrounded on the whole surface of the substrates 41 other than the place where 1-chip IC29 is mounted.
[0049]
It is not necessary to necessarily provide the first coil L1 and the second coil L2 to the central section uniformly classified into three by the shorter side side of the substrate 41 , and they should just be arranged by the central part. The first coil L1 and the

Page 426 of 1385

second coil L2 may be provided by the surface and the back surface of the substrate 41 , respectively.
[0050]
According to the wireless communication system of the above-mentioned embodiment, as described above, since the low second frequency which carried out dividing of the first frequency of power waves is used, compared with the thing using the conventional multiplying circuit etc., the response wave from a wireless card has little spurious radiation, and it does not need the component for spurious radiation prevention for it. And since the second frequency which carried out dividing of the first frequency of power waves is used for both data waves and a response wave, data waves and a response wave can be transmitted [response wave] and received with one antenna. Therefore, it is suitable to the wireless card from which especially a miniaturization is requested.

Since according to the wireless communication system of the above-mentioned embodiment the superimposed data waves carried out are extracted using the amplifying circuit where a gain is deteriorated to power waves so that frequency is high, The power waves of high frequency are oppressed, the data waves of low frequency are amplified on a high gain, the rate of a relative ratio to the power waves of data waves can be improved even in a proper size by providing the number of stages of an amplifying circuit suitably, and the recovery of the data waves by a shaping circuit to a data signal is easy.
[0052]
Since the superimposed data waves carried out are extracted using the amplifying circuit which operates by B class or C class to power waves according to the wireless communication system of the above-mentioned embodiment, The large power waves of electric power are oppressed, the superimposed weak data waves carried out are amplified by the envelope curve of power waves on a high gain, the rate of a relative ratio to the power waves of data waves can be improved even in a proper size by providing the number of stages of an amplifying circuit suitably, and the recovery of the data waves by a shaping circuit to a data signal is easy.
[0053]
According to the wireless communication system of the above-mentioned embodiment,

Page 427 of 1385

by the data waves and the response wave which are transmitted and received between a radio card reader writer and a wireless card, since both ASK modulation is used, the circuit for restoring to a signal will become very easy. Since the amplifying circuit as an extracting circuit is formed without including a coil element, a circuit can be miniaturized as a coil element with a big dimension is not needed. And an IC form is easy.
[0054]
The first coil that forms in the central part of the card the antenna for power waves which receives power waves according to the wireless card of the above-mentioned embodiment, And since the second coil which forms the antenna for data waves which receives data waves was arranged so that it might become a double ring, When holding up to a radio card reader writer, there are few possibilities that a first coil and second coil may be covered with the finger holding this card, etc., moreover, a first coil and second coil serve as substantially same receiving condition, and the receiving conditions of both coils do not differ substantially. Since a first coil and second coil are provided on the substrate which makes electromagnetic waves transmit, it can communicate, even if it holds up which surface to wireless card reader rye. [0055]
Since it has arranged to the central ward classified into three by the shorter side side of the substrate of the rectangle of business-card size by making a first coil and second coil into flat rectangular shape according to the wireless card of the above-mentioned embodiment, there is no possibility that a first coil and second coil may be covered with the finger holding this card, etc.
[0056]
Since the second coil has been arranged to the inside surrounded by the first coil on the same plane of a substrate according to the wireless card of the above-mentioned embodiment, power waves can be received more efficiently, capacity of operation power is made so much to a big thing, and it can operate reliably.
[0057]
Since the circuit component containing a first coil and second coil is sealed by the insulating layer according to the wireless card of the above-mentioned embodiment, it is hard to produce electric accidents, such as disconnection of a coil and a short circuit of a circuit, and rich in durability. And it can use only as a wireless card of a wireless

Page 428 of 1385

communication system also as a magnetic card in which reading of data etc. are made between magnetic readers by recording the same contents as the data memorized by the storage cell of CPU, etc. on the magnetic recording layer provided on the surface of the insulating layer.
[0058]
Since the amplifying circuit operates as B class or a C class according to the extracting circuit of the demodulator circuit in the wireless card of the above-mentioned embodiment, the superimposed data waves carried out are amplified by power waves on a gain higher than power waves, the rate of a relative ratio of the electric power of the data waves to power waves is improved, and it becomes easy to extract data waves. And while being able to constitute a circuit small so much, excluding a coil element as a circuit configuration element, it is suitable to the IC form of a circuit. Therefore, like the circuit mounted on a wireless card, while there are dimensional restrictions, it is the optimal as an extracting circuit which constitutes the circuit where a 1-chip IC form is desired. [0059]
Since it has the characteristic that a gain is deteriorated as frequency with a high amplifying circuit according to the extracting circuit of the above-mentioned embodiment, the power waves of high frequency serve as a low gain, and the data waves of frequency lower than it serve as a high gain. As a result, the rate of a relative ratio of the electric power of the data waves to power waves is improved, and an amplified output becomes easy to extract data waves.

Since two or more steps of amplifying circuits where the rate of a relative ratio of the electric power of data waves is enlarged to power waves are connected according to the extracting circuit of the above-mentioned embodiment, the rate of a relative ratio which can extract data waves easily can be made by setting up a number of stages suitably according to the rate of a relative ratio of the electric power of the power waves of a first input, and data waves.
[Brief Description of the Drawings]
[0061]
[Drawing 1]The block diagram showing the composition of the wireless communication system concerning an embodiment of the invention.
[Drawing 2]The circuit diagram showing the specific configuration example of the extracting circuit in a demodulator circuit.
[Drawing 3]The wave form chart showing an example of the amplifying operation by an extracting circuit.
[Drawing 4]The characteristic figure of the frequency which the amplifying circuit of an extracting circuit has versus a gain.
[Drawing 5]The wave form chart for describing operation of an extracting circuit. [Drawing 6]The wave form chart showing an example of the response wave transmitted from a wireless card.
[Drawing 7]It is the figure for describing the structure of a wireless card, and as for (a), it is a surface view and (b) is a back view.
[Drawing 8] With the figure which describes laminating an insulating layer on both sides of the substrate which constitutes a wireless card, (a) is a vertical section side view after lamination, and (b) is an exploded perspective view.
[Drawing 9]The perspective view showing an example of the busy condition of a wireless card.
[Explanations of letters or numerals]
[0062]
10 -- radio card reader writer (communication apparatus), 11 -- antenna for power waves, 12 -- antenna for data waves, 20 -- wireless card, 21 -- antenna for power waves, 22 -- rectification circuit, 23 -- frequency divider, 24 -- antenna for data waves, 25 -- transceiver change-over switch, 26 -- demodulator circuit, 26 a -- extracting circuit, 26 b -- shaping circuit, 27 -- modulation circuit, 28 -- CPU (control means), 29 -- 1-chip IC, 32-35-- amplifying circuit, and L1 [.... A path cord, 44, 45 / An insulating layer, 46 / A magnetic recording layer and f1 / Power waves and f2 / Data waves and f3 / Response wave.] -- A first coil, L2 A second coil, 41 A substrate, 43

Page 430 of 1385

（54）【発明の名称】無綠カード

（57）［要約】

【䛞題】本カードを通信装置に対してかざす際に，本力

一ドを保持する手の指などで䉓力波用アンテナ括よびデ一夕波用アンテナが覆われるおそれが少なく，しかむ，各アンテナはほぼ伺様の受信状沉となり，確実な送受信 か河能となる無線カードを提供する。
【解決手段】外部の通信装置から送信される第10周波数の電力波，および，前記篗 1 の周波数と異なる第2の
（a）
 1周波数のデータ波をそれぞれ受信する無線力ードにおい て，前記露力波を受信する電力波肘アテナを形成する第1 のコイルを電波を透遣する新材で形成された1方形 のカード状基板の一方の侕の中央部に記設するとともに ，的衭データ波を受信するデータ波目アンテナを形成す
 10ココイルと 2 重の輸となるよらに配設してなる。 ［選択図］図7

【請求項1】
外部の通信装置から送信される第1の周波数の電力波，打よび，前記第10周波数と異 なる第えの周波数のデータ波をそれぞれ受億する無線カードであって，
 で肜成された屒方形のカード状基板の一方の面の中央部に配設するとともに，前記データ波を受信するデータ波用アンテナを形成する第2のコイルを前記基板の一方の面の中央部 で前記䈌10コイルと2而の榆となるように㠼設してなることを特徵とする無線力ード。

【請求項2】

前記第1のコイルおよび第20コイルをそれぞれて偏平な畏方形状に形成し，かつ，前記基板を短辺で3つに区分したとき0中央区部に前記第1のコイルおよび第2のコイルをそ れぞれ配設したことを特徴とする請求項1記載の無線カード。
【請求項3】
前記基板の同一平面上で前記符10コイルで囲まれる内側に前記第20コイルを配設し たことを特徵とする請求項1記載の無線カード。

【請求項4】

前記第1のコイルおよび第2のコイルを除く回路部材を前記基板の3つに区分された一方0長辺側の区分に狍設するとともに，前記第1のコイルおよび第2のコイルおよび回路部材が配設された前記基板の両面に絶縁層を積層し，前記基板の3つに区分された他方の長辺側の区分に复んで片側の前記絶縁層の表面に磁気記録層を配設したことを特徴とする請求項2記載の無線カード。
【発时の詳細な説明】
【技術分野】
【0 $\left.\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$
本発明は，たとえば，携魚可能な無線通信機能を有する無電池式の無線カードと無線力 ードリーダ・ライタ（通信装惪）との間で無線による送受信を行なうことにより，無線力 ードリーダ・ライタから無線カードに対して電力の送信やデータの送信わよび受信を行な うととむに，無線力ードから無線カードリーダ・ライタに対してデータの送信䂆よび受信 を行なう無線通信システムに用いられる無電池式の無線力ードに関する。
【背景技術】
〔0002】
最近，ほぼ名刺サイズの長方形なカード状のICカードによっで構成された無線カード が開発され，この無線カードを無線カードリーダ・ライタの前にかざすことで，非接触に より無線カードリーダ・ライタとの間で送受信を行なうことにより，データなどを授受す る無線通信システムがある。この無線みードには，米渞体メモリなどの胱憶素了を合む制御手段（CPU）が搭載されており，記憶素子に適宜なデータを記憶させておくことによ り，I D カード（個人㵶別カード）や定期券などとして用いることが可能となる。
［00003］
 うにしたものがあるが，電洮の寿命括よび電池交換のためのコストなどが問題となつてい た。
［0 00011$]$
そこで，無線カードに電池などを搭載することなく，無線カードリーダ・ライタから送信される電波を無線カードで受信し，この受信筪波を整流して動作鼠源用の直流電力を得 る技術が提案されている。その1つの方法は，無線カードリーダ・ライタから，䉓力送信用の電力波をデータ信号で変調して，1つ0問波数信号で雷力括よびデータをそれぞれ無線カードに送信するものである。他の方法は，無線力ードリーダ・ライタから，電力送信用の電力波と，これとは買なる周波数でデータ送信用のデータ波と02つの周波数信号に より，無線カードに対して電力およびデータをそれぞれ送信するものである。
【発明の開示】

【艺叫が解決しようとする酗題】
［0005］
電力波をデータ信号で変調した1つの周波数信号を用いる方法にあっては，無線力ード側でのデータ信号の復調が比較的に簡単である。しかるに，同一周波数を用いた複数の興線通信システムが近接して設けられた場合，たとえば，無線力ードを定甽券として，その改札を行なう複数の改札装置が並設された場合などにあっては，近接した他の改札装惪か らの電力波の影響を受け易く，遮蔽などの対応策が必要となるという不具合があった。【00006］

また，電力波とデータ波を異なる周波数で送信する方法にあっては，データ波に比較し て電力波が極めて大きな電力（たとえば1007乗倍の電力）であり，舆線カード㲘でデ一夕波を受信するアンテナでは，大きな電力の電力波に微弱な電力のデータ波が重畳され た信号を受信することとなる。
［0007］
ところが，電力波からデータ波を抽出する実用的技術が確立していない現状にある。デ —タ波を抽出するために，コイル素子を网いたものが容易に考えられるが，コイル素子は形状寸法が大をく，無線カードに搭載する素子として適していない。
【 000081$]$
また，無線カードに搭載する回路を1チップIC（集積回路）化するにも，コイル素子 は適していない。さらに，従来は，無線カードから無線カードリーダ・ライタへの応答波 としては，電力波の第1の周波数を透倍した高周波を用いるのが一般的であり，逓倍回路 による不要輻射への対策を必要としていた。
［00009］
また，無線カードリーダ・ライタから，電力波とデータ波を異なる周波数で送信する方法にあっては，無線カードに，電力波とデータ波をそれぞれ受信するアンテナを配設する のに充分なスペースが得られないという不具合があった。
【0 0110 〕
そして，無線カードリーダ・ライタからは，データ波に比較して電力波が亟めて大きな電力で送信されるが，無線カードで充分な動作雷源谷隶を確保するには電力波を効率よく受信しなければならず，それだけで無線カードで必要となる電力波用アンテナの外往寸法 が大きなものとなり，その配置が困難である。
［ $\left.\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$
そこで，本発明は，本カードを通信装置に対してかざす際に，本カードを保持する于の指などで電力波用アンテナおよびデータ波用アンテナが覆われる扔それが少なく，しかも ，各アンテナはほぼ同様の受信状沉となり，確実な送受信が可能となる無線力ードを提供 することを目的とする。
【課題を解決するための手段】
〔0 012 〕
本発明の無線カードは，外部の通信装置から送信される第 1 の周波数の電力波，および ，前玭第 1 の間波数と異なる第 2 の周波数のデータ波をそれぞれ受唐する無線力ードであ って，前記電力波を受信する電力波用アンテナを形成する第1のコイルを電波を透過する部材で形成された長方形の力ード状基板の一方の面の中央部に配設するとともに，前記デ一タ波を受信するデータ波用アンデナを㚭成する第2のコイルを前記其板の一方の間の中央部で前記第1のコイルと2重の輸となるように配設してなることを特微とする。
【発明の効果】
〔0013】
本発明の無線力ードによれば，カードの中央部に，電力波を受信する電力波用アンテナ を形成する第1のコイルと，データ波を受信するデータ波用アンテナを形成する第2のコ アルとを2重の輪となるように配設することにより，通信裴置にかざす際に，本カードを
 1のコイルおよび第2のコイルはほぼ同様の受信状況となり，双方のコイルの受信状沉が

大幅に思なるようなことはない。
［100174］
また，本発明の無線カードによれば，第1のコイルおよび第2のコイルを偏平な長方形 として，本カードの短辺で3つに区分した中央区部に配設することにより，本カードを保持する指などで第1のコイル打よび第2のコイルが獘われる黄れがない。
〔 $\left.\begin{array}{llll}0 & 0 & 1 & 5\end{array}\right]$
また，本発明の無線カードによれば，基板の同一平面トで第10コイルに世まれる内側 に符2のコイルを胒設することにより，兆力波をより効率よく受佰することができ，それ だけ動作電源の容量を大きなものにでき，動作を㖡実になし得る。
【発明を実施するための最良の肜態】
【0 0116 〕
以下，本発明の実施の形態について図面を参照して説明する。
図1 は，本実施の形態に係る無線カードが適用される無線通信システムの構成を示すで ある。この無線通信システムは，非接触で通信を行なう通信装置としてゆ無線カードリー ダ・ライタ10と無線シード20とから緋成をれる。無線カードリーダ・ライタ10から は，連続した無変調の大きな電力で第1の周波数の電力波f1，おぶよび，データ信号によ りASK変調された微弱な電力で第1の周波数よりも低い第2の周波数のデータ波f2が ，それぞれ電力波用アンテナ11，データ波用アンテナ 1 2 を介して無線カード20に対 して送信される。

【0 0117 〕

ここに，電力波f1の第1の周波数は，たとえば，13．56MHzであり，データ波 12の第20周波数は，たとえば，第1の周波数を1／4分周した3．39MHzである。また，電力波f1は，データ波f2に対して，たとえば，10の7乗倍の電力で送信さ れる。
【 $\left.\begin{array}{llll}0 & 0 & 1 & 8\end{array}\right]$
無線カード 20 は，第 1 のコイルL1と第1のコンデンサC1との並列回路からなる電力波用アンテナ 2 1 ，電源生成用の整流回路 2 2 ，分周回路 2 3 ，第 2 0コイル C 2 と第 20コンデンサC2との並列网路からなるデータ波朋アンテナ 2 4，送受信切摃スイッチ 25 ，復調回路 26 ，変調回路 2 7，扔よび，制御手段としてのCPU（セントラル・プ ロセッシング・ユニット） 28 によって䪤成されている。
〔 00019 〕
すなわち，無線カード 20 に打いて，電力波用アンテナ 2 1 で受信をれた電力波 「 1 は ，整流回路 22 で整流されて直流電圧となり，これが動作電源＋Bとして用いられる。ま た，電力波用アンテナ 2 1 で受信された電力波 1 1 の一部は，分周回路 2 3 に送られ，こ
 27 に送られる。
［1002lll
変調回路27には，CPU28から與線カードリーダ・ライタ10に対する応答信号が入力され，この応答作字でASK変調された第2の間波数が図6に示すごとき応答波 f 3 として送受信切換スイッチ25に送られる。また，データ波用アンテナ 2 4 で受信された データ波を含む入力信号が送受信切換スイッチ25を介して復調回路26に送られ，デー夕波が適直に抽出されるとともに，波形监形されてデータ信号として微闌をれ，CPU2 8に送られる。
［100121］
な招，データ波間アンテナ24は，1．C共振川嚾であり，その共振周波数をデータ波f 2の符2の周波数に設定することで，電力波f1の受信がデータ波「2の受信に比べて抑圧をれるが，アンテナの Q 特性が急峻でないために，データ波f2のみを抽出するには充分とは言い難い。
【0022】
そして，送受信切換スイッチ2 5 Kは，CPU28から送受信切換信号が入力されるこ

とにより，データ波川アンテナ24から0入力存後井国路26に伝道したり，あるいは，変調回路 27 からの変調された応答波f 3 をデータ波用アンテナ 24 から無線カードリー ダ・ライタ10に向けて送信するよう伝澾すべく，適宜に切換え制御される。
［00023］
復調回路 26 は，たとえば，受僄したデータ波を抽出する抽出回路 26 a ，および，捕 Hされたデータ波信号を波形整形してデータ信号を復調出力する整㟁回路26bによって畨成さ礼ている。
〔0024］
な扔，港線カード 2 0 の回路部村は，電力波用アンテナ21を形成する第1のコイルL 1，および，データ波用アンテナ 2 4 を形成する第 2 のコイルL 2 を除いて，1チップI C 29 化されている。
〔0025］
図2は，復調回路26における抽出回路26aの構成を詳細に示している。すなわち， データ波用アンテナ 24 からのデータ波信号は，人丹端 3 1 に入力される。入力端31は ，直流䧋止用コンデンサC3を介して第1の嚐幅回路32のNPN形トランジスタT1の ベースに接続される。トランジスタT10ココンタは，コレクタ抵抗R1とコレクタコン デンサC4との並列回路を介して動作電源＋Bに接続される。トランジスタT1のエミッ タは，エミッタ抵抗R2とエミッタコンデンサC5の並列回路を介して接地される。トラ ンジスタT1のコレクタとベースとがバイアス抵抗 R 3 な介して接続されるとともに，ト ランジスタT1のコレクタは，直流阻让用コンデンサC6を介して第2の増幅回路33の NPN形トランジスタT20ベースに接続される。
【0026】
トランジスタT2のコレクタは，コレクタ抵抗R4とコレタタコンデンサC7との並列回路を介して動作電源＋Bに接続されるとともに，トランジスタT2のエミッタは接地さ れる。トランジスタT2のコレクタとベースとがバイアス抵抗Rらを介して接続されると ともに，トランジスタT2のベースはバイアス抵抗R6を介して接地される。トランジス タT2のコレクタは，直流阻非用コンデンサC8を介して，第30増湢回路34のNPN形トランジスタT30ベースに接統される。
【0 0 27］
トランジスタT30コレクタは，コレクタ抵抗R7とコレクタコンデンサC9との並列回路を介して動作電源＋Bに接続されるとともに，トランジスタT30エミッタは接地を れる。トランジスタT3のベースは，バイアス抵抗 R 8 を介して動作䨞源＋Bに接続され るとともに，バイアス抵抗R9を介して接地される。トランジスタT3のコレクタは，直流阻止用コンデンサC10在介して第4の増幅回路35のNPN形トランジスタT4のベ一スに接続される。
［0028］
トランジスタT4のコレクタは，コレクタ抵抗R10とコレクタコンデンサC11との並列回路を介して動作電源＋Bに接続されるとともに，トランジスタT4のエミッタは接地される。トランジスタT4のコレクタとベースとがバイアス抵抗 R 11 を介して接統を れるとともに，トランジスタT40コレクタは，抵抗R12を介して出力端36に接続さ れる。
［ 00029 1］
このような構成の抽出回路29に扔いて，第1～第4の増幅回路32，33，31，3 5は，B級おたはC級として動作するようにバイアス設定がなされている。そこで，人力
波f2が重畳された図3（a）に示すようなものであるが，第1の増幅回路32のB級ま たはC紴の増幅動作により，データ波 f 2 が高い利得で増幅され，電ノ波f1はこれより も小さい利得で增幅される。
【0 0030 〕
この結果，第 1 の増幅同路 3 2 の増幅出力としては，図3（b）に示すように，データ 50
第2，第3，第40增幅回路33，34，35で同様に増幅することで，よりデータ波 f2の電力が增湢されて，電力波 f1との相対比深が大幅に改善され得る。
【0 0.31 1
な打，第1，第4の堛幅田路32，35に打いて，トランジスタT1，T4の各ベース をバイアス抵抗を介して接地してもよい。また，第2，第3，第4の增幅回路33，34 ，35に打いて，トランジスタT2，T3，T4の各エミッタをエミッタ抵抗を介して接地し，バイアス雨圧をよりC級動作となるように設过してもよい。
［10032］
さらに，抽出回路26aを構成する第1～第4の増幅回路32，33，34，35は， いずれかの网路が省かれていてもよく，また，いずれかの回路が重複していてもよい。要 は，入力される電力波「1と，それに重畳されるデータ波 f 2 の電力の相対比率に応じて適宜に增幅回路の段数を設定すればよい。したがって，1段の增幅回路で抽出回路26a が構成されていてもよい。
【0033］
また，第 1 ～第 4 の增幅回路 32 ， 3 3， 34 ， 35 の各トランジスタT1，T2，T 3，T4のコレクタには，コレクタコンデンサC4，C7，C9，C11が設けられてお り，これらの增幅回路特性は，図 4 に示すように，所定周波数以上の周波数色号に対して ，高い周波数ほど利得が低下する。そこで，データ波f2の第2の周波数を，周波数に対 して利得が低下する付近に設定することで，高い周波数の電力波 f1 の利得を低下させて増幅を抑圧し，低い周波数のデータ波f2 を高い利得で増湢し得る。このような増幅回路特性からも，電力波 I 1 からデータ波f 2 を抽出し得る。
〔00341］
ところで，第 1 の増幅回路 3 2 にあっては，エミッタ抵抗 R 2 が設けられており，トラ ンジスタT1 が導通するとエミッタ電位が上刑し，電圧負帰䢙が作用する。また，バイア ス抵抗 R 3 がトランジスタT1のベースとコレクタ間を接続しているので，トランジスタ T1が導通するとコレクタ電位が下降し，これに伴いバース電位も下降する。よって，電
用し，トランジスタT1の䭂和が回避される。また，第2，第1の増幅回路33，35に あっては，バイアス抵抗R5，R11により電流負帰還が作用し，トランジスタT2，T 4 の飽和が回避される。これにより，データ波f2が歪んだり，蚫和により検川不能とな るようなことがない。
【0035】
上述のごをき，第1～第40増幅回路32，33，34，35の各増幅動作により，抽出同路26aは，図5（a）に示すような人力信呂に対して，図5（b）に示すような信号が出力端 36 に出力される。すなわち，電力波f1 の電力blに対してデータ波f2 O電力d1であった人力が，雷力波f1の電力BAに対してデータ波f2の電力D4となり ，データ波f2の電ノの相対比率が大きなものとなる。そこで，図5（b）に示すような抽出叫路26aの出力を，適直に整形问路26bで波形獘形することで，容易に図5（c ）に示すようなデータ信号を復調できる。
【0036】
 てNPN形トランジスタT1，T2，T3，T4を用いているが，增幅素子として鸦界効果トランジスタを用いてもよい。電界効果トランジスタを用いることで，増幅同路自体に
 とともに，1チップI C化するのにも好摘である。
［0037］
次に，雏線カード20の構造について，関7を参照して詳細に説明する。無線カード2 0は，図7に示すごとく，䉓波を透過与る部村たとえば誘電体で形成された名刺大の原方形の基板411に組み立てられている。すなすち，基板41の表面が短辺側で3つに短册
。符1，第2のコイルL1，L2はともに，偏平な長方形状に形成され，第1のコイルL 1 で囲まれる内側に第2のコイルL2が同一平面上で2重の喻となるようにほぼ同心トに配置される。
［100318］
また，基板 4 1 0 表面で，一庁の長辺側の区分P3には，グランド箈 42 が設けられ，
このグランド箔42上に1チップIC29が設置されている。1チップ1 C 2 9 および第 1，第2のコイルL1，1．2は，基板419表面と震而に没けた接続線13，43，…扔 よび基板41の表面と裏面とな雪気的接続するためのスルーホール（図ホせず）により適宜に接続される。
【0039】
な括，第1，第2コイルL1，L2扔よびグランド箔 42 打よび接続線 4 3，43，… は，たとえば，導電管のエッチングや導電金属の蒸着などにより形成される。
【0 0440 〕
 －45がそれぞれ積層形成されて，第1，第2のコイルL1，I．2 を含む回路部村が全て密封されている。また，グランド箔 42 が設けられた長辺側とは異なる他方の長辺側の区分P1に臨んで，磁気記録層 4 6 が一方の絶縁層 4 4 または 4 5 o 表面に配設される。こ のようにして，無線カード 20 は，全体として外形が名刺大の長方形のカード状に形成さ れる。
【0 0111 】
このような構成において，基板 4 1 お打よび絶縁層 4 4，45は，電磁波を透道させるた め，図9に示すように，無線カード 20 を手 30 に持って，無線カード 2000 表面または裏面を無線カードリーダ・ライタ10に向けてかざすことで，無線カードリーダ・ライタ 10からの雨力波f1を中央部の第1のコイルL1を含西電力波用アンテナ21で受信し ，データ波f2を第2のコイルl2を含むデータ波用アンテナ 24 で受信し，無線カード 20として機能する。
【0042】
ここで，無線カード20を無線カードリーダ・ライタ10にかざす際には，無線カード 20 の名刺大の長方形の形状から，図9に示すように，手30で長辺側を持って保持され る場合が多い。この結果，短辺側で 3 つに区分した中央区分 P 2 に配設された第1，第2 のコイルL1，L2が，手30の指などで覆われる盧れが少なく，それだけ電力波「1 お よびデータ波f2を榷実に受信し得る。
［10043］
また，第1 のコイル11を大きな形状としたので，それだけ電力波f1定効率よく受信 でき，無線カード20の動作電源の容量を大きなものとすることができ，無線カード20 の動作が確実になされる。
【0044】
そして，第1のコイルL1 おおで第2のコイルL2を用一平蘭上で2直の輸となるよう に，一方のコイルで囲まれる内側に他方のコイルを配設することで，隣に兹べて配設した場合の一方のコイルが指などで㠅まれ，他方のコイルロみが電力波f1またはデータ波f 2を受監できるようなことがなく，第1および符2のコイル11，L21の各受信状況は ほぼ同様となる。
【0045】
さらに，無線カード20の田路部材が密封されるように，絶縁層44．45が積厝形成 されるので，コイルの断線や回路短絡などの電気的事故が生じにくく，击た，㣁久性に富 む。しかも，第1，第2のコイルL1，L2などをエッチングや蒸着で構成すれぼ，安価 に人量に製造するのに好適である。
［00046］
そして，器線カード20を例えば定期券などとして用いるならば，一方の絶縁層 4 4
 6 によ記通用期間打よひ通用区間などのデータが適宜に記録され，さらに，同様にCPC 28 の記憶素子に上記通用期間および通用区間などのデータが適宜に記憶をれる。
【0 047 〕
韭接触にて検札行為が実行され，また，無線力ードリーダ・ライタ10が設展されずに磁気読取装置などが設置されているならば，酳気記録首46に記録されたデータを用いて検
 データにより娭札行為を行ならことができる。
［00148】
な抒，上記説明では，符10コエルL1 打よび第2のコイル1，2を偏平な長方形状とし て中央区分に配設したが，磁気記録層46が設けられないならば，1チップ1 C 2 9 が搭載される場所以外の基板 41の表面全体で巾央部を囲むように第1，第2のコアルL1， L2を配設してもよい。
［00419］
また，第1のコイルL1 打よび第2のコイルL2は，基版41の短辺側で3つに均等に区分されたみ央区分に必ずしも設けなくてもよく，中央部に配設されればよい。さらに，
 いてもよい。
【0 00501$]$
以上説明したように，上記実施の形態の無線通信システムによれば，無線カードからの応签波に，電力波の第1の周波数を分周した低い第2の周波数を用いているので，従来の逓倍回路などを用いるものに比べて不要輻射が少なく，不要輻射防止のための部材を必恶 としない。しかも，データ波と応答波は，ともに電力波の第1の周波数を分周した第2の周波数を用いるので，データ波と応答波を1つのアンテナで送受信できる。したがつて，特に小形化を要望される興線カードに好適である。
$\left[\begin{array}{llll}0 & 0 & 5 & 1\end{array}\right]$
また，上記実施の形態の無線用信システムによれば，電力波に市畳されたデータ波を，
周波数が高いほど利得が低下する増幅回路を用いて抽出するので，高い周波数の電力波が抑圧され，低い周波数のデータ波が高い利得で増幅され，增幅回路の段数を嗢宜に設ける ことで，データ波の電力波に対する相対比率を適官な大きさにまで改普でき，整形回路に よるデータ波からデータ庴号の復調が容易である。
［0052］
また，上記害施の形態の無線通信システムによれば，電力波に重畳されたデータ波を， B級またはC級で動作する郸幅回路を用いて抽出するので，電力の大きい電力波が抑圧さ れ，電力波の包絡線に画置される微弱なデータ波が高い利得で増幅され，増幅回路の段数 を適宣に設けることで，データ波の電力波に対する相対比率を適宜な大きさにむで改善で き，整形回路によるデータ波からデータ信号の復潟が容易である。
【005 0 3】
さらに，上記実施の形態の無線通信システムによれば，無線カードリーダ・ライタと與線力ードとの問で送受信されるデータ波と応答波で，ともにASK変調を用いているので
回路を，コイル素なを令まずに形成するので，寸法の大きなコイル素子密必要としないだ け回路を小形化できる。しかも，IC化が容易である。
【0 0 5 4】
また，ト記実施の形態の無線力ードによれば，力ードか中央部に，電力波を受信する狦力波用アンテナを形成する第1のコイル，打よび，データ波を受信するデータ波用アンテ十を形成する簐2のコイルを2重の脸となるように配設したので，重線力ードリーダ・ラ イタにかざす際に，本カードを保持する指などで符1のコイルおよび符2のコイルが推す

り，双方のコイルの受值状沉が大幅に䍜なるようなことはない。さらに，電磁波を透過さ さる基帊上に第1のコイルおよび第2のコイルが設けられているので，いず袜の面を無線 カードリーダ・ライにかざしても通信を行なうことができる。【0055】
 な長方形状として，名刺大の長方形の基板の短辺側で3つに区分した中央区部に配置した
 い。
［10056］
また，上記実施の形態の無線カードによれば，基板の同一平面上で第1のコイルに囲ま れる内側に筑2 ○コイルを配買したので，電力波をより効率よく受信することができ，そ れだけ動作電源の容量を大きなものにでき，動作を確実になし得る。
【0 057 】】
さらに，上記実施の形態の無線カードによれば，第1のコイル打よび第2のコイルを含 む回路部材が絶縁層により密封されるので，コイルの断線や回路の短絡などの電気的事故 が生じにくく，また，耐久性に富む。そして，CPUの記憶素子に記憶されているデータ と同じ内容などを，絶縁層の表面に設けた磁気記録屬に記録することで，無線通信システ ムの無線カードとしてのみならず，磁気読取装置との間でデータの読取りなどがなされる磁気カードとしても用いることができる。
【 000581$]$
また，上記実施の形態の無線カードに打ける復調回路の抽出回路によれば，増幅回路が B級またはC紴として動作するので，電力波に重畳されるデータ波が栺力波よりも高い利得で増幅され，電力波に対するデータ波の電力の相対比率が改善され，データ波を抽出し易くなる。しかも，コイル索子を回路構成要素として含んですらず，それだけ回路を小形 に構成することができるとともに，回路の1C化に好適である。したがって，無線カード に搭載される回路のように，寸法的制約があるとともに1チッブ1 C 化が望まれる回路を構成する抽出回路として最適である。
【0 $0 \quad 5 \quad 9$ 】
また，上記害施の形態の抽出回路によれば，増幅回路が高い周波数ほど利得が低トする特性を有するので，高い周波数の電力波は低い利得となり，それよりも低い周波数のデー夕波は高い利得となる。この結果，增幅出力は，電力波に対するデータ波の電力の相対比率が改高され，データ波を抽出し易くなる。
【0 0660 〕
さらに，上記実施の形態の抽朋回路によれば，電力波に対してデータ波の雷力の相対比率を大きくする增幅国路を複数段接続するので，花初の入力の雨力波とデータ波の此力の相対比率に応じて段数を適宜に設定することで，容易にデータ波を抽出し得る相対比率と なし得る。
【図面の簡単な説明】
$\left[\begin{array}{llll}0 & 0 & 6 & 1\end{array}\right]$
〔図1】本発明の実施の形態に係る無線通信システムの構成を示すブロック図。
【㒺2】復調回路に括ける抽出回路の具体的な構成例を示す回路図。
【図3】抽出回路による增幅動作の一例を示す波形図。
【図4】抽出回路の增幅回路が有する周波数対利得の特性図。
【図5】抽出回路の動作を談明するための波形図。
【図6】無線カードから送信をれる応答波の一例を示す波形肉。
【図7】無線力ードの構造を説明するための図で，（a）は表面図，（b）は襄面図。
〔図8】無線カードを構成する基板の両面に絶縁層を積層することを説明する図で，（a
）は積展後の縦断側面図，（b）は分解剑視図。
【网9】無線カードの使用状態の一例を示す斜视図。
【符号の説明】
［006 062 ］
$10 \cdots$ 無線カードリーダ・ライタ（通信装置），11…電力波用アン゙テナ，12…デー夕波用アンテナ，20…無線カード，21…電カ波用アンテナ，22…整流回路，23…分周回路，24‥データ波用アンテナ，25 …送受信切換スイッチ，26…復調回路，2
 …1チップ I C ，32～35…增幅回路，L1…第1のコイル，L2……第2のコイル， $41 \cdots \cdots$ 基板， $43 \cdots \cdots$ 接続線， 44 ， $45 \cdots \cdots$ 絶縁層， $46 \cdots \cdots$ 磁気記録層， $11 \cdots \cdots$

【図1】

（図2〕

Page 440 of 1385

【図3】

【図5】

【図6】

【同4】

【図7】
（a）

（b）

Page 441 of 1385

[図8]

[図9]


```
フロントページ0続を
(74)代理人 100092196
    弁理士 橋本 良郎
(72)発明者 九嵲英渒
    神奈川県川䓫市幸区柳町70番地 株式会社東芝柳町豆業所内
(72)発明者 柳沢 和介
    東京都北区滝野川7丁目5番11号 株式会社ヨコオ内
(72)発明者 堀江 涼
    東京都北区滝野川7丁目5番11号 株式会社ココオ内
(72)登明者 欠野 工
```



```
Fターム(参考)2C005 MA24 MA35 MB01 MB07 NA09 NA36 NB03 NB09 PA03 PA14
    ra03 Ta22
        5B035 AA00 PA05 BBO9 CN01 CA23
```


Page 443 of 1385

[^0]: JL/con/lcf

