
7/19/2021 Bricolage: Data Compression

https://perl.plover.com/Huffman/huffman.html 1/8

Bricolage: Data Compression
© Copyright 1998 The Perl Journal. Reprinted with permission.

Bricolage: Data Compression
Morse Code
Ambiguous codes
Huffman Coding
The Code
The Rub
Another Rub
Other Methods
Other Directions
Bibliography
Notes

Bricolage: Data Compression
You are probably familiar with Unix compress, gzip, or bzip2
utilities, or the DOS
pkzip utility. These programs all make files smaller; we say that such files are
compressed. Compressed files take less disk space and less network bandwidth. The
downside of compressed files is that it they are full of unreadable
gibberish; you usually

have to run another program to uncompress them before you can use them again. In this article we'll see how file
compression works, and I'll show a simple module that includes functions
for compressing and uncompressing
files.

Morse Code
The idea behind data compression is very simple. In a typical file, say a
text file, every character takes up the
same amount of space: 8 bits. The
letter e is represented by the 8 bits 01100101; the letter Z is represented by the
8
bits 010101010. But in a text file,
e occurs much more frequently than Z---maybe about 75 times as frequently.
If you could give the common symbols
short codes and the uncommon symbols long codes, you'd have a net
gain.

This isn't a new idea. It was exploited by Samuel Morse in the Morse Code,
a very early digital data transmission
protocol. Morse Code was designed to
send text files over telegraph wires. A telegraph is very simple; it has a
switch at one end, and when you close the switch, an electric current
travels through a wire to the other end,
where there is a relay that makes
a click. By tapping the switch at one end, you make the relay at the other
end
click. Letters and digits are encoded as sequences of short and long
clicks. A short click is called a
dot, and a
long click is called a dash.

The two most common letters in English text are E and T; in Morse code these are represented by a single dot and
a single dash,
respectively. The codes for I, A, N, and M, all common letters, are **, *-, -*, and --. In contrast, the
codes for the uncommon letters Q and Z are --*- and --**.

In computer file compression, we do a similar thing. We analyze the
contents of the data, and figure out which
symbols are frequent and which
are infrequent. Then we assign short codes to the frequent symbols and long
codes to the infrequent symbols. We write out the coded version of the
file, and that usually makes it smaller.

IPR2022-00601
Apple EX1029 Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

7/19/2021 Bricolage: Data Compression

https://perl.plover.com/Huffman/huffman.html 2/8

Ambiguous codes
There's a problem with Morse Code: You need a third symbol, typically a
long pause, to separate the dots and
dashes that make up one letter from
the dats and dashes that make up the next. Otherwise, if you get
*-, you
don't know whether it's the single letter A or the two letters ET---or it might be the first bit of the letter R or L. In a
long message, all the dots and dashes run together and you get a big
mess that can't be turned back into text. In
Morse code, it can be hard to
tell `Eugenia' from `Sofia': Without the interletter pauses, they're both:

---**-*-

Those interletter spaces take up a lot of transmission time, and it would
be nice if you didn't need them. It turns
out that if you arrange the code
properly, you don't. The ambiguity problem with Morse Code occurs because
some codes are prefixes of others: There are some letters where the code for the first part of one
letter is just the
same as the code for the other letter, but with
something extra tacked on. When you see the shorter code, you
don't know if
it's complete or if it should be combined with the following symbols. It
turns out that if no code is a
prefix of any other, then the code is
unambiguous.

Suppose for simplicity that we only needed to send the letters A, C, E, and
S over the telegraph. Instead of Morse
code, we could use the following
code table:

A -

C **

E *-*

S *--

Suppose we receive the message -*****-**--*--*-**--. What
was the message? Well, the first symbol is -, so
the
first letter in the message must be A, because that's the
only letter with a code that starts with a -. Then the
next two symbols are **, so the second letter must be a
C, because all the other codes that start with
* have a -
after the * instead
of another *. Similar reasoning shows that the third
letter is also C. After that, the code is
-;
it must be an E. We continue through
the message, reading off one letter at a time, and eventually we get
the
whole thing this way.

It's so simple that a computer can decode it, if the computer is equipped
with a decision tree like this one:

Start at Start, and look at the symbols in the message one by one. At each stage, follow
the appropriate labelled
branch to the next node. If there's a letter at
that node, output the letter and go back to the start node. If there's no
letter at the node, look at the next symbol in the input and continue down
the tree towards the leaves.

IPR2022-00601
Apple EX1029 Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

7/19/2021 Bricolage: Data Compression

https://perl.plover.com/Huffman/huffman.html 3/8

Huffman Coding
Obviously, it's important to choose the right code. If Morse had made
the * code for Z and **-* the
code for E, he
wouldn't be famous.

Choosing the right code can be tricky. Consider the example of the
previous section, where we only had to code
messages that contain
A, C, E, and S.
The code I showed is good when we expect our messages to contain more
A's than E's or S's. If
S were very common, we clearly could have done better;
less clearly, if all four letters were
about equally common, then we
could still have done better, by assigning each letter a code of the
same length:

Suppose, for example, our message happened to contain 200 of each of the
four letters. Then the first code would
use 1800 symbols, and the second
code would use only 1600.

In 1952, David Huffman discovered a method for producing the
optimal unambigous code. For a given set of
symbols, if you
know the probability with which each symbol appears in the input, you
can use Huffman's
method to construct an unambiguous code that encodes
the typical message with fewer *'s and -'s than any other
code.

The method is very simple and ingenious. For concreteness, let's suppose
that the (rather silly) message is

 THE_THIRSTIEST_SISTERS_TEETH_RESIST_THIS_STRESS

(I used _ instead of space so that it'll be easier to see.)

Start with the table of relative probabilities; you can get this by
counting the number of occurrences of every
symbol in the message. This is
called histogramming. (A histogram is a bar chart;
histos is Greek for a beam or a
mast.) Here's the histogram for the symbols in our
sample message:

S 11
T 10
E 7

IPR2022-00601
Apple EX1029 Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

7/19/2021 Bricolage: Data Compression

https://perl.plover.com/Huffman/huffman.html 4/8

_ 6
I 5
H 4
R 4

Now take the two least common entries in the table, that's
H and R. They'll get the longest codes,
because they're
least common. We'll simplify this by pretending that
H and R are the same, and lumping them
together into one
category, which we'll call HR. Then
we'll assign codes to all the other letters and to
HR. When we're done, we still
have to distinguish between
H and R. Now, HR has some
code. We don't know what it is yet, so let's symbolize it
with
<HR>. We don't really need to use
<HR> in our message, because the is no such thing
as the letter HR, so we'll
split it in two, and let the
code for H be <HR>* and the code for
R be <HR>-. As a result of this, the
codes for H and
R will be longer than the
codes for the other letters, but if that has to appen, it's better for
it to happen for H and R,
because they are
the least common letters in the message.

So we will lump H and R together and pretend temporarily that they are only
one letter. Our table then looks like
this:

 S 11 R = <HR>-

 T 10 H = <HR>*

 HR 8

 E 7

 _ 6

 I 5

Now we repeat the process. The two least common symbols are
I and _. We'll lump them together into a new
`symbol' called I_, we'll assign finish assigning the
codes to S, T, HR,
E, and I_. When we're done, I
will get the
code <I_>* and _ will get
the code <I_>-.

 S 11 R = <HR>-

 I_ 11 H = <HR>*

 T 10 _ = <I_>-

 HR 8 I = <I_>*

 E 7

Then we lump together HR and E:

 HRE 15 R = <HR>-

 S 11 H = <HR>*

 I_ 11 _ = <I_>-

 T 10 I = <I_>*

 HR = <HRE>-

 E = <HRE>*

Then we lump together T and I_:

 I_T 21 R = <HR>-

 HRE 15 H = <HR>*

 S 11 _ = <I_>-

 I = <I_>*

 HR = <HRE>-

 E = <HRE>*

 I_ = <I_T>-

 T = <I_T>*

Then we lump together S and HRE:

 SHRE 25 R = <HR>-

 I_T 21 H = <HR>*

 I = <I_>-

IPR2022-00601
Apple EX1029 Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

7/19/2021 Bricolage: Data Compression

https://perl.plover.com/Huffman/huffman.html 5/8

 _ = <I_>*

 HR = <HRE>-

 E = <HRE>*

 I_ = <I_T>-

 T = <I_T>*

 S = <SHRE>-

 HRE = <SHRE>*

Now we only have two `symbols' left. There's only one way to assign a
code to two symbols; one of them gets *
and the other
gets -. It doesn't matter which gets which, so let's say
that SHRE gets * and I_T gets
-.

Now the codes fall out of the table we've built up in the right-hand
column:

	 SHRE = *

	 	 S = *-

	 HRE = **

	 HR = **-

	 R = **--

	 H = **-*

	 E = ***

	 I_T = -

	 	 I_ = --

	 	 	 _ = ---

	 	 	 I = --*

	 	 T = -*

We throw away the codes for the fictitious compound symbols, and we're left
with the real code:

 S = *-

 T = -*

 E = ***

 _ = ---

 I = --*

 H = **-*

 R = **--

As promised, the code is unambiguous, because no code is a prefix of any
other code. Our original message
encodes like this:

 -***-****----***-*--***--*--*--*****--*---

 *---**--******--*-----*******-***-*---

 --**---**--*----***-*--**----

 *--***--****-*-

For a total of 128 *'s and -'s, an average of 2.72 symbols per character,
and a 9.3% improvement over the 141
symbols we would have had to use if we
had given every letter a three-symbol code.

The Code
For this article, I implemented a demonstration module that compresses
files. You can retrieve it from the perl
Journal web site at http://www.tpj.com/ or from my Perl
Paraphernalia web site at
http://www.plover.com/~mjd/perl/Huffman/.
The program htest.pl
compresses an input and saves it to the file
/tmp/htest.out; then it opens this file, reads in the compressed data, decompresses it,
and prints the result to
standard output.

Most of the real work is in the Huffman module that htest uses. Here are the important functions that htest
calls:

 my $hist = Huffman::histogram(\@symbols);

IPR2022-00601
Apple EX1029 Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.tpj.com/
http://www.tpj.com/
http://www.tpj.com/
http://www.tpj.com/
http://www.plover.com/~mjd/perl/Huffman/
http://www.plover.com/~mjd/perl/Huffman/
http://www.plover.com/~mjd/perl/Huffman/
http://www.plover.com/~mjd/perl/Huffman/
https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

