
001
GOOGLE 1006

THE

HANDBOOK

Editor-in-Chief
GOOGLE 1006

A CRC Handbook Published in Cooperation with IEEE Press

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

THE

HANDBOOK

Editor-in-Chief

J. DAVID IRWIN

0cRCPRESS ♦• IEEE PRESS

A CRC Handbook Published in Cooperation with IEEE Press

002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Library of Congress Cataloging-in-Publication Data

The industrial electronics handbook/edited by J. Da,,id in.;n.
p. cm.- -(The electrical engineering handbook series)

Includes bibliographical references and index.
ISBN 0-8493-8343-9 (alk. paper)
l. Industrial electronics-Handbooks, manuals, etc. I. Irv.in, J. ~;d, I 939-

:-_'788 l.!52 1996
' .3-dc20

. 11. Series.

96-3070
CIP

11ti5 book contains information obtained from aulhenti and highly regarded sources. Reprinted material is quoted with permission, and sources are
~ A wide variety of references are listed. Reasonable efforts ba\-e been made to publish reliable data and info rmation, but the editor, authors, and

• r do not assume responsibility or liability for the validir,· of arry· materials or for the consequences of their use.
, this book nor any part may be reproduced or transmined in any form or by any means, electronic or mechanical, including photocopying,

.a.:o:e=~~g, and recording, or by any information storage o r retrieval system, without prior permission in writing fro m the publisher.
_ ;s reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by

~UC. provided that $.50 per page photocopied is. · di.realy to Copyright Clearance Center, 27 Congress Street, Salem, MA 01970 USA. The
- =s of the Transactional Reporting Service is ISB~ O-St93-- 3-\3-9/97 $0.00 + $.50. The fee is subject to change without notice. For organizations

.;:em granted a photocopy license by the CCC, a separa:.e .sysum o f payment has been arranged.
1 of CRC Press does not extend to copying for general distribution, for promotion, for creating new wo rks, or for resale. Specific permission
~ in writing from CRC Press fo r such copying..

Dmla. . •iries to CRC Press LLC, 2000 Corporate Brni., ~-W~ Boca Raton, Florida 33431.

C 1997 b-· CRC Press LLC

No claim 10 lI..S. Government works
International Swide..'li Boo Number 0-8493-8343-9

Library o· ~ Card Number 96-3070
Printed in the United Stares oi. Amaica I 2 3 4 5 6 7 8 9 O

Prin aa a:id--free paper

003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Boolean Operations on Bit Variable b

0 bo

OR

b + 0 = b
b +I= I

b3 b2 b1 bo
V O O I 0

b3 b2 I bo

(b) Set b1

XOR

bEBO=b
bEBl=b

b3 b2 b1 bo
$ 0 0 1 0

b3 b2 b1 bo

(c) Toggle b1

3.19 Logical operations used to alter a selected bit.

ooice register. Table 3.4 summarizes the three Boolean

applied to a one-bit Boolean variable.

- ND operator can be used to force selected bits of a word

illustrated in Figure 3.19a. The second operand is a bit

called a mask that contains a O in each bit position that

forced to 0, and a 1 in each bit position that is to be

.-..:;:;.ii:Ilanged. Similar masks can be created for the OR operator

selected bits to 1, and for the XOR operator to force

hits to be complemented. These are illustrated in Figures

and 3.19c, respectively.

- input/output devices contain a status register whose bits

:the readiness of the device to perform an operation. The

operator can be used to isolate a selected bit of a byte read
a. status register to determine if that bit is 0 or I. This is

in Figure 3.20. Here the mask is used to force all bits

en:ept for bit b1• If the zero flag of the CPU's processor

register is set, indicating a result of 0000, then it follows

= O; if the zero flag is not set, the result is nonzero which
.,,..,.,,.....,bl= l.

example, assume that a printer interface contains a status

in which the rightmost bit indicates whether the printer

· to accept another character to print. The following

program loop will be continuously executed as long as the

ready" bit is 0. The CPU will exit the loop and continue

n as the ready bit becomes l.

IN
AND
JZ

AL, PrintStatus
AL,0000 0001
Check

;read printer status register
;isolated "printer ready" bit
;go back to Check if printer not ready

and rotate instructions slide bits right or left within a

r or memory location as illustrated in Figure 3.21. These

be used for extracting or combining bit fields within an

b3 b2 b1 bo
I\ 0 0 1 0

0 0 b1 0

Figure 3.20 Using AND to isolate one bit.

59

d- I -m
~ r+- 1 -m

Logical shift Arithmetic shift Circular rotate Circular rotate
through carry

Figure 3.2 I Shift and rotate operations.

operand, to convert data between parallel and serial form, and

to perform multiplication and division by powers of 2.

In a logical shift operation, the bits are shifted right or left by

one bit position, with the vacated bit replaced by a 0. For unsigned

numbers, this is equivalent to dividing or multiplying the number

by 2. An arithmetic right shift implements a divide by 2 operation

on a two's complement number by preserving the sign bit as the

operand is shifted. Some CPUs allow an operand to be shifted

by more than one bit position with a single instruction. The

following 68000 example packs two BCD digits into a single byte

by shifting one digit four bits to the left and then combining

the two digits.

Check: SHL.B F4,D0 ;shift BCD digit to upper nibble of DO
OR.B DI,D0 ;combine two BCD digits in DI and DO

Circular rotate instructions perform a shift operation while

replacing the vacated bit with the bit shifted out of the other
end of the operand. A second rotate operation is often provided
that rotates the number through the carry flag of the processor
status register. In most CPUs, the bit shifted out of an operand

is copied to the carry flag of the processor status register where

it can be tested or used to support multi-precision shift opera

tions. A multi-precision number can be shifted by using the carry

flag as a link between parts of the number, allowing a bit shifted

out of one part to be shifted into the other using a rotate

through-carry operation. The following 8086 example multiplies

a 32-bit number by 2 by shifting one byte at a time one bit to

the left.

SHL
RLC
RLC
RLC

NUMBER
NUMBER+l
NUMBER+2
NUMBER+3

Control Transfer

;shift memory byte 1 bit left
;shift carry and 2nd byte 1 bit left
;shift carry and 3rd byte 1 bit left
;shift carry and 4th byte 1 bit left

The normal flow of a program is to execute instructions in order

from sequential memory addresses. To control this flow, the

program counter increments automatically after each instruction.

Jump, branch, and subroutine call instructions interrupt the

normal flow by transferring control of the program to some

instruction other than the next one in sequence. This allow

looping and decision-making programs to be written, as well

as supporting procedure and function calls. The following are

examples of instructions that unconditionally transfer control of

a program to location X within the current program:

004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

60

8051/8086:
6805/68000:
SPARC:

JMPX
JMP X or BR X
BRAX

Decision making and looping require conditional branch
instructions that jump only if a given condition is true and
continue with the next sequential instruction if the condition
is false .

Conditional branch instructions typically test selected bits of
the processor status register, which reflect the result of a previous
arithmetic or logical operation. The following 8086 program
loop adds a list of four numbers in memory, decrementing the
SI register at the end of each iteration and repeating the loop as
long as SI is greater than or equal to 0.

Start:

MOV
MOV
ADD
DEC
JGE

SI,3
AL,O
AL,TABLES [SI]
SI
Start

;set counter to 3
;clear accumulator
;add next element of TABLE
;subtract 1 from SI
;repeat if SI 2: 0

The relationship between two operands can be tested by sub
tracting them and then testing the resulting condition codes
according to Table 3.5. Many CPUs provide a compare instruction
(CMP) that performs the subtraction and sets the condition
code flags without altering either operand. The following 6805
program branches to location RICK if the unsigned number in
accumulator A is less than or equal to 10, using the "branch ifless
or same" instruction to test the result of a compare instruction.

Check: CMP #10 ;subtract 10 fro m A
BLS RICK ;go to RICK if A lower than or same as 10

Modular programming requires the ability to partition soft
ware into separate subroutines, such as procedures and functions,
that can be invoked as needed. This is supported by special
subroutine call instructions instructions that jump from a main
program to the start of a subroutine after saving a pointer to
the next instruction in the main program, allowing a return to
the main program after completing the subroutine.

A subroutine call (CALL) or jump to subroutine (JSR) instruc
tion typically pushes the current program counter onto the sys
tem stack to save the address of the next instruction in the main

Table 3.5 Condition Codes for Relational Operators

Number Boolean
Condition Symbol Relation type condition

Zero z A =B Both z
Not zero NZ A,t.B Both z
Greater than G A> B Signed (Ntfl V) + Z
Greater than or GE A 2: B Signed Nffi V

equal
Less than L A< B Signed Nffi V
Less than or LE A s B Signed (Ntfl V) + Z

equal
Above A A> B Unsigned C+Z
Above or equal AE A 2: B Unsigned C
Below B A< B Unsigned C
Below or equal BE A :S B Unsigned C+Z

Supporting Technolo ·

program. A return (RET) or return from subroutine (RTS) -
executed as the last instruction of the subroutine to pop
program counter from the stack and thus return to the m ·
program. The SPARC does not support a system stack; subro
tines are called with a jump and link (JMPL) instruction, whi
saves the program counter in register r31 of the current regis
window, and then slides the window down 16 registers as,\
illustrated in Figure 3.10. the subroutine returns to the m ·
program by retrieving the return address from register r7 of ·
register window, which corresponds to r3 l of the calling progr

Input and Output

Some CPUs utilize separate address spaces for memo
and for input/output devices. In these cases, special instructio
are provided to read information into the CPU from an inp
device and to write information from the CPU to an outp
device. The Intel CPUs support an isolated I/0 address spa
that can be accessed only by the two special instructions IN
OUT as follows:

IN
OUT

AL,25
25,AL

;data from IO address 25 to AL register
;data from AL register to IO address 25

Processor Control

These instructions manipulate various hardware elements wi
the CPU and are therefore CPU-specific. The reader is refer
to The SPARC Architecture Manual, Ver. 7 (1983, 1987) , Motor
Inc. (1990), Brey (1 994), and Stewart (1993) for descriptions
processor control instructions for specific CPUs.

3.8 Interrupts and Exceptions

Events often occur that require interruption of normal instr
tion processing to perform some special action. Such exceptio
events, or simply exceptions, can be triggered by condition
naled by devices external to the CPU, or by conditions dete
within the CPU.

For example, desktop PCs often use a timer to interrupt
CPU once per second to make it update an image of a cl
displayed on the screen. PCs used in process control are typi
interrupted by sensors that detect various conditions in the pl
that require immediate attention. An example of an intern
detected condition is an attempt to divide a number by 0, whi
cannot produce a valid result. This type of exceptional conditi
should suspend normal processing to abort the operation
send a warning message to the user.

A primary advantage of external interrupt is that a CPU
work in parallel with one or more external processes, such
printing a document, and be interrupted only when the pro
requires attention. The alternative is to continuously mo ·
the process by checking a status register in the device to de
when the device requires attention. Such monitoring would p
vent the CPU from doing other work while waiting for the de ·

005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

