

 ceamed m me mobse semmak 32.
 at the pheds of rotheaton intomaton transmated thm the base sation Bt．Then，the

 moble semben 92 ：sumed wn or wen the moble tembse 92 moves mo a servee

 moyes into servie range trom owside s sevice range，the obecrical power wnsmed whm the rembingmoces is permman on the nonkaton momaton ako maseases

 when a recevme proses is permmed m nobmcaton hamation，

Sownon to Fobem

 recevme unit

Advanagemas waces of inverton

 wheless commancewon system can resuse ewchical pown consumed when a

Brespesmbion or Dramgs
bors

 on nomaation mommakn．
 on nownation mommators．
 acourbing to a second enbummens．

ma．bis a book dapram blushatng an exambe contymaton of a monte temna accormg to the secmo embobment．
 moces perbmed wy the mase stabm acomong to the seond endobment
 perfomed hy the mobile temhas acoming to me seconc embownent

 batwen cels

＂Vake tag＂is assochaed when chae momation
 date and mak at when nothcaton momatm 6 changec is assochter wht the chamge momathom．
 moces perfmes manomaton mbmathon．
Me． 13 is a shemako biagram hashatng an exampe of aramsmissonnecenng

 pases permmed on momadibn mbmation．
 promam．
 prograns．
 masmatern by a convendonal base staton

 cosenkmà mobne tembss．

 wonembens mowis \｛armman：

mbowmeny tor ©amym Ou he hrendon

Finst mboumems

 fevishom hatoy of the notitadon mwmatom．

 hanged ano nowtakions homation that has been manged，For sampe，is

 infomaton tak has bem changec in such a case，the＂hange intomathon veaten to

 hekoy of she nothation momathon＂．

 remmed in me reevyng apparus 20
 dem when notheaton mbmation has bem mangeo or awn when the recevma

 the recevme apparave 20 uphass my he manged nothcation momanom，ha
 is permmeg on the nomfacton momaton

Second Embodment

 mu the recenmo apparats 20 is bed tor a moble temmat．

conmuncabon sysem acomomy to the semon mbodmant
 commumakion sysem acomby to the secmo embodment wh be descmed wht

 Me．2，wheless commmmation syerem 2 aborona to the shcond mbowmmm mobles a base sation too and a moble temmat 200

 contans momaton m a pana pertor and asamne hat me pagna perion has bean

 perbo of＂8m．Then，the base shaton too tranemits nothcatom hnomabon ombaning

 pagng fom the base stany too，he moble wmbal 200 cememmes whether the
 debmhes thay notheaton mbomaton has bem manged，Hem，as in ha exampe

 tranmhed tom the wase shaton tod Then，on ha basis of the chance infomatom

 s＂ 8 ＂．
mose As desombe abous，fobmatm momabon has been changer，the base

 perbmed on hae nowneaton mbomatom．

 fomed by the base stanm 100 to anohar colt and then agan moves ho the ces fomed by tha base sabton the Fhthemore，it is asumen hat wen ater the moble

 Then，fom among hw notheatm mbmatom mamed in the moble temmak 200 ，the

 Bist2 contang the zevion histoy of the notheaton mromakon．Then on the bas

 200.
 the moble temmat 200 receve an she the wnams a＂Vbe tay＂from among the

 the revion hamy of he nothacton mbomakon，Acordmgy，becaus the moble teminal 200 receves onty an sha that conams the revibun hbury wen when the
 power consumed when me recewnoprecss is perfomes on mo nomioabn
 pertomed on hne nownatwn infomatwn．

 mbitcation inmmaton Hovever，the mumber of Sts tancmbed by he base matom

 S綵的．

recoung ha sbeband tre sert．

 momaton trammasson pheess perfmed by we base stath tou．

 aso a nohkebon mmonaton bufer the．

 mbmatom when theceves a call reques from，tor exampus，wherbeve devoe．

 T̂t

 the change sequest At ths the the nothation mtomation creatmo whe tou

 saton 100
 mfemation on the baso of me chame mbmathm reareo to me nothcation momation

 when the＂Vaed say＂is mermmenter．

 source va the andema it

 M\＆． 4

 ※心．
 cesebes trom the nobicatom momatom ceamg un to4，the change mormaton

 revsiom heroy Rit

 repury detete the charge momation ombaned in the revish hatory of ma nothcawn mbmawhe，For axampe，the tevabo movoy creang wit tob may abo

Conturathon he movis hmme aconng the semodembobment

 intmmation semvino process peromed y the mobse seminal 200 ．

 208.
 antena 201 mever paying momathon and nobmcabon homation trom the basa

 mas 20 e
 nothcaton momawh raceved by the rado acenmy um 202 ．Tha deonng um 204

 infomaton proceseng wn： 206.

 cesmakn anc abo sores theren the nobtcakn momaton recened tom the base saton by the mobis cmman Zou in cem A．

 3\％多

 momakion．

 he revishon hatoy of he nombaton ntmmatom．

 haboy of the notication infomatom．
 traname，the mobhe temman 200 ，ma pagng mbaung that me noticathn

 of me wheabion mwmatw

 aceorby the se cond amboblment

 acorbing to she seconc mbodmant．

 4n？ves

 Fevisom habry weamy man toe．

 intmason bums 100 （sey eros）

 mwmaton（seos stor）
 acerding to the seond mhembmen
 permmed by he moble reminal 200 axombu the semo mbodment will be

 ses

 204.

 （ciop Semb）．

 the process．
 smmal acoming to ke sewno mbodiman moves beween cems

 moves twween cells

 204.

 mathes the＂Vabe tag＂mentaned in the bis．

Advamage of the second embubmens

Masmy．

 Ha racobed neysion many．

 nockacaton mbomation

Thacembermany
 aphicatom can be mplomented as varous who of embobinents omer than he

 will be descmbed．

Pevisom hatory of nowicaion mommaton（i）
 has bamb wen of an axame m whon he onanga momabion matad to she

 remasenter by tha＂Vabs tag＂has been changers．

 fret，the revobn hatoy weaky unt tos raceves，fom the nothemon thomation

 coanty man tos ceakes the revism hotory pat．

 mbluamo that＂the pabing perbo is chamed to＂s＂is condmes or nok．

 ofecrich power consumeowhan the spowa pocese s yermmer on the nownaton imomablom．

Pevisen hiboy of nownawn mbmaten（2）

 assockes why change mbmabon mat has been whaned at the mano date an sim：

 Tos creates the revimon hatory rest．

 Tos craas the revmon notry so3．

 mbmation bume 205 on the bess of the acoused bange mbmaton．

 nomacamen mbmatun．

 sas mamber of we smo n＂＂

 mone termat： 200 can matate the change momaton on the basis of the shember conamed in the revison matoy of the natmanton momaton．

Mevsion hatory or moneamon mommaton（3）

 m the order the Sks are hater m smasmence．
 SB2 has bem charsed，Futhemore，th ascumed then wher the moble teminat 200 moves hom the cell tomed by me base stakn too bo momer cet，the moble temmat

 the mobla tamhal 200 moves cels．

Revisom matoy of notkemon mommaton（4）

 whence tmbly．
 tansmiswnhanaving mocess penomed on notheaton mfomaton n the sxampe

 the moble temmat 200 neceves the St thom among we notmontion momation

 mbmathen conaned in the bet．

 the montamon mbmankon．

 buter 2 os．

Pograms

 T060．

 greenses them．

个．

 comeder by he bos 2000

 2b4：and the spate brogam 2042 anc executes hams

 mascakedn mic．：

 above．

Sywem wonguration，wo

 magraces．

Fphanaton of petwence
10128
今 2 ．WRE
10．TRANSMTYER
T REVGON HOTORY CREATMG GNT
72：TRANOMTMMG Un！
20 ：Н以
25：STORns UNT

23 ：UPMATMG UNT
91．BABE STATON

T0：PACh CDEATBM UMT
102．EMCODRGE UnT
TOS WODUFATMS UNE
TOA SOTH：CATON SMORMATON OREATNS UNT
TOG ：REYGION HETORY CRWATBM UNT
TO6 ：NOTEMCATON MMORSATON BUMEFR
WF ：RAMOMSOON TMAB CONTROW WM：
T08 EnCOD\}W End?
TOQ MODUSATMO UNT
T10 BADIO TRANGMTY ThG UNG：
TG：ABTENNA

201 ：AMTEMMA

203 DEmOOUMATMG UN！

207 ：PACh PROCEESMC UNT


```
T000, 2000: CO&%uTmR
1010, 2010 RAM
O20, 2020. OACME
1030.2035 H0D
040.2040. ROM
TOA: REVGIONFISTORY OQEATHG PROCRAM
1042 : TRANGMTTHNO PलOW%A@
1050, 2060: 000
OWT REVSIONGSTORY CREATMO mROCESS
```



```
060, 2060 : 84%
204: {m@EWNNS ROORAN
```



```
2052.UPWAFEmROCEOS
```


(19) World Intellectual Property Organization Intemational Sureat
(43) International Publication Date 4 June 2015 ($04.06,2015$)

(30) International Pubication Namber WO 2015/080646 A1
(53) Intermathmak Patemt Clawsification:

(23) Antermatimal Appleation Number:

1(TSD201405144
(22) Hutertaximsal Ghing Oste:

3 Owohar 20:4 (02.30.2014)
(25) Finme Lamgage:

English
(39) frionity Juma:

6k9039.752 27 Nosember 2013 (27.11.2013)
US
(71) App\&ant TESEMONAKMEBOLACET L M EREC SSOX (PD

 fokan; lackammsgatan 28, S8-112 49 Stockhom (SF)

 AO, AT, AC, $A Z, B A, B B, B C, B H, B N, B R, B N, B C$, W, OA, CH, CR, CN, OO, CK, OU, O, DF, OK, OA.
W), WZ, $\mathrm{EC}, \mathrm{EE}, \mathrm{EO}, \mathrm{ES}, \mathrm{FL}, \mathrm{GB}, \mathrm{OD}, \mathrm{OE}, \mathrm{H}, \mathrm{M}, \mathrm{OH}$,
 $K Z$, LA LG, \&K, LR, \&S, LU, LY, MA, MO, ME, MK, MK, MN, MW, MX, MX, MZ, NA, N(, NI, NO, NZ, M,
 $S D, S E, S O, S X, S L, S M, S T, S V, S X, T H, T I, T M, T N$, TR,TK, TL,UA, UG, US,UZ, VC, VN, ZA, $2 M 2 W$.

 (M, KE, LK, LS, MW, MR NA, RW, SO, SL, ST, $\%$
 T, TM), Eublean (AL, AT, BR, BC, CH, CY, CZ, D):,
 LV, MK, NK, MX, NL, NO, PL, PX, RO, KS, SE, N, SK,
 (W, KM, ME, MR, NE, SN, TD) T(3)

Declarytions umier Rule 4.17 .
 patent huse th foiby
… as to the ongicont's emithement to cinim the xriontion of the axrier appkanom (inke 4.17em)
Fublished:

 BVELY, SYNCHRONKATKO SIGNAL AND AN ASSOCATHD ENFORMATHON

NETWORK NODE, WIRELESS DEVICE METHOOS THEREIN FOR SENDING AND DETECTING, RESPECTIVELY, SYNCHRONIZATION SIGNAL AND AN ASSOCIATED INFORMATION

TECHNICAL FIELD

The present disclosure relates generally to a network node and methods therein for sending, to a wireless device, a first synchronization signas and an associated information message, for synchronization of the wireless device with the network node. The present disclosure also relates generaily to the wireless device and methods therein for detecting the first synchronization signal and the associated information message. The present disclosure further relates generally to computer programs and computer-seadable storage mediums, having stored thereon the computer programs to carry out these methods.

BACKGROUND

Communication devices such as terminals are also known as e.g. User Equipments (UE), wireless devices, mobile terminals, wireless terminais and/or mobile stations. Terminals are enabled to communicate wirelessly in a cellular communications network or wireless communication system, sometimes also referred to as a celluar radio system or cellular networks. The communication may be performed e.g. between two terminals, between a terminal and a regular telephone and/or between a terminal and a server via a Radio Access Network (RAN) and possibly one or more core networks, comprised within the ceilular communications network.

Terminals may futher be referred to as mobile telephones, celluar telephones; laptops, or surf plates with wireless capability, just to mention some further examples. The terminals in the present context may be, for example, portable, pocketwstorable, hand held, computer-comprised, or vehicle-mounted mobile devices, enabled to communicate voice and/or data, via the RAN, with another entity, such as another terminal or a server.

The celluar communications network covers a geographical area which is divided into cell areas, wherein each cell area being served by an access node such as a base station, e.g. a Radio Base Station (RBS), which sometimes may be referred to as e.g "eNB", "eNodeB", "NodeB": "B node", or BTS (Base Transceiver Station), depending on the technology and terminology used. The base stations may be of different classes such as e.g macro eNodeB, home eNodeB or pico base station, based on transmission power and thereby also cell size. A cell is the geographical area where radio coverage is
provided by the base station at a base station site. One base station, situated on the base station site, may serve one or several cells. Further, each base station may support one or several communication technologies. The base stations communicate over the air interface operating on radio frequencies with the terminals within range of the base stations. In the context of this disclosure, the expression Downlink (DL) is used for the transmission patfy from the base station to the mobile station. The expression Uplink (UL) is used for the transmission path in the opposite direction i.e. from the mobile station to the base station

In $3^{\text {rd }}$ Generation Partnership Project (3GPP) Long Term Evolution (LTE), base stations, which may be refersed to as eNedeEs or even eNEs, may be directly connected to one or more core networks.

3GPP LTE radio access standard has been written in order to support high bitrates and low tatency both for uplink and downlink traffic. All data transmission is in k TE controlled by the radio base station.

The development of the $5^{\text {th }}$ Generation (5G) access technology and air interference is stal very premature but there have been some early publications on potential technology candidates. A candidate on a 5 G air interface is to scale the current LTE, which is limited to 20 Mega Hertz (MHz) bandwidth, N times in bandwidth with $1 / \mathrm{N}$ times shorker time duration, here abbreviated as LTE-NX. A typical value may be $N \sim 5$ so that the carrier has 100 MHz banowidth and 0.1 milisecond slot lengths. With this scaled approach. many functions in LTE can be re-used in LTE-NX, which would simplify standardization effort and allow for a reuse of technology components.

The carrier frequency for an anticipated $5 G$ system could be much higher than current $3 G$ and $4^{* i}$ Generation (4G) systems, values in the range $10-80$ Giga Hertz (GHz) have been discussed. At these high frequencies, an array antenna may be used to achieve coverage through beamforming gain, such as that depieted in Figure \{. Figure 1 depicts a 5G system example with three Transmission Points (TPs), Transmission Point 1 (TP1), Transmission Point 2 (TP2), Transmission Point 3 (TP3) and a UE. Each TP utilizes beamforming for transmission. Since the wavelength is less than 3 centimeters (cm), an array antenna with a large number of antenna elements may be fit into an antenna enclosure with a size comparable to $3 G$ and $4 G$ base station antennas of today. To achieve a reasonable link budget, a typical example of a total antenna array size is comparable to an A4 sheet of paper.

The beams are typically highly directive and give beamforming gains of 20 decibels (dB) or more since so many antenna elements participate in forming a beam. This means
that each beam is relatively narrow in horizontal andior azimuth angle, a Half Power Beam Width (HPEV) of 5 degrees is not uncommon. Hence, a sector of a cell may need to be covered with a large number of potential beams. Beamforming can be seen as when a signal is transmitted in such a narrow HPBW that it is intended for a single wireless device or a group of wireless devices in a similar geographical position. This may be seen in contrast to other beam shaping techniques, such as cell shaping, where the coverage of a cell is dynamically adjusted to follow the geographical positions of a group of users in the cell. Altheugh beamforming and cell shaping use similar techniques, ie., transmikting a signal over multiple antenna elements and applying individual complex weights to these antenna elements, the notion of beamforming and beams is the embodiments described herein relates to the narrow HPBW basically intended for a single wireless device or \}erminal position.

In some embodiments herein, a system with multiple transmission nodes is considered, where each node has an array antenna capable of generating many beams with small HPBW. These nodes may then for instance use one or multiple LTE-NX carriers, so that a total transmission bandwidth of multiples of hundreds of $\mathrm{MH} / 2$ can be achieved leading to downink peak user throughputs reaching as much as 10 Gigabyzes (Gbit/s) or more.

In LTE access procedures, a UE may first search for a cell using a cell search procedure, to detect an LTE cell and decode information required to register to the cell. There may also be a need to identify new cells, when a UE is already conmected to a cell to find neightouring cells. In this case, the UE may report the detected neighbouring cell identity and some measurements; to its serving cetf as to prepare for a handover. In order to support cell search, a unimue Primary Synchronization Signal (PSS) and Secondary Synchronization Signal (SSS) may be transmitted from each eNB. The synchronizations signals are used for frequency sysnchronization and time symchromization. That is, to align a receiver of wireless device, e.g., the UE, to the signais transmitted by a network node. e.g., the eNB. The PSS comprises information that allows the wireless device in LTE to deked the 5 ms timing of the cell, and the cell identity within the cell-identiky group. The SSS allows the wireless device in LTE to obtain frame timing and the cell-identity group. The PSS may be constructed from a Zadoff Chu sequence of length 63, mapped to the center 64 subcariers where the middle, so called DC subcarrier is unused There may be three PSS in LTE, corresponding to three physical layer identities. The SSS may be constructed from two interleaved M -sequences of length 31 respectively, and by applying different cyclic shifts of each of the wo M-sequences, different SSS may be obtained. In
total, there may be $16 B$ valid combinations of the two M-sequences, representing the cell identity groups. Combining the PSS and SSS, there may be thus in total 504 physical cell identities in LTE.

When a cell has been found, the UE may proceed with frother steps to be associated with this cell, which may then be known as the serving cell for this UE. After the cell is found, the UE may read System fiformakion (Sl) in e. . . the Physical Broadcast CHannel (P ECH), known as the Master information Block (M) B), which is found in a time frequency position relative to the PSS and SSS locations. The SI comprises all the information needed by a wireless device to access the network using a random access procedure. After the MB is detected, the System Frame Number (SFN) and the system bandwidth are known. The UE may let the network know about its presence by transmitting a message in the Physica\} Random Access CHanne\} (PRACH).

When a cell has mumple antemas, each antenna may transmit an individual encoded message to the wireless device or WE thereby multiplying the capacity by the number of \{ayers transmitted. This is well known as MIMO transmission, and the number of layers transmitted is known as the rank of the transmission. Beamfoming, traditionally. is equivakent to a rank I transmission, where only one encoded message is transmitted, but simultaneousky from all antennas with individually set complex beamforming weights per antenna. Hence, in beamforming, only a single layer of Physical Downlink Shared CHannel (PDSCH) or Evolved Physical Downink Control CHanne (EPDCCH) is transmitted in a single beam. This beamfoming transmission is also possible in LTE, so atter a UE has been associated with a cell, a set of $N=1,2,4$ or 8 Channel State information Reference Signals (CSI-RS) may be configured for measurement reference at the UE, so that the UE may report a preferred rank I NX1 precoding vector containing the complex beamforming weights based on the CSI-RS measurement. The precoding vector may be selected from a codebook of rank 1 precoding vectors. in Rel-8, there are 16 rank 1 precoding vectors defined, and in Rel-12 a new codebook was designed with 256 rank 1 precoding vectors.

A "beam" may thus be the result of a certain precoding vector applied for one layer of transmitted signal across the antenna elements, where eacm antenna element may have an ampitude weight and a phase shift in the general case; or ewuvalently, the signal transmitted from the antenna element may be muthplied with a complex number, the weight. /f the antenna elements are placed in two or three dimensions, and thus, not only on a straight line: then wo dimensional beamforming is possible, where the beam pointing direction may be steered in both morizonial and azimuth angle. Sometimes, also three

Dimensional (30) beamforming is mentioned, where also a variable transmit power has been taken into account. In addition, the antenna elements in the antenna array may consist of different polarizations, and hence it is possible by adjusting the antenna weights, to dynamically alter the polarization state of the transmitted electromagnetic wave. Hence, a two dimensional array with elements of different polarizations may give a large flexibility in beamforming, depending on the antenna weights. Sometimes, a certain set of precoding weights are denoted as a "beam state", generating a certain beam in azimuth, elevation and polarization as well as power.

The most flexible implementation may be to use a fully digital beamformer, where each weight may be applied independent of each other. However, to reduce hardware cost size and power consumption, some of the weighting functionality may be placed in hardware, e.g., using a Butler matrix, whereas other parss may be controlled in software For instance, the elevation angle may be controlled by a Butler matrix implementation, while the azimuth angle may be controlled in software. A problem with the hardware beamforming may be that it involves switches and phase shifters; which may have some switching latency, making instant switching of beam unrealizable.

The PECH is transmitted using the Common Reference Signals (CRS) as a demodulation reference. Since the PSS, SSS and the PBCH channel are intended for any UE that wishes to attach to the celk, they are typically transmitted in a cell broad coverage. typically using e.g. 120 degree sectors. Hence, such signals are not beamformed in LTE: as it is a risk that, e.g. the PSS and SSS will be in the side lobe or even in a null direction of the beamforming radiation pattern. This would lead to fallure in synchronizing to the cell, or failure in detecting MIB.

Existing methods for transmission of synchronization signals from a network node to a wireless device are designed for wide area coverage at bower carrier frequencies of tramsmission than those expected to be used in future systems. These current methods may lead to numerous synchronization failures when used in communication systems using high frequency carriers, such as those projected to be used in the future 5 G system.

SUMMARY

It is an object of embodiments herein to improve the performance in a wireless communications network by providing an improved way for a network node ko send synchronization signals, for synchronization of the wireless device with the network node and for a wireless device to detect these synchronization signals. In some embodiments.
the network may use beamforming for transmitting the synchronization signals to the wireless device.

According to a first aspect of embodiments herein, the object is achieved by a method performed by a network node for sending, to a wireless device: a first synchronization signal and an associated information message. This is done for synchronization of the wreless device with the network node. The network node and the wireless device operate in a wireless communications nework. The network node sends the first synchronization signal in N OFDM symbois within a subframe, at least once in a time and frequency position in every one of the NOFDM symbois. N is equal or larger than 2. The network node sends; for each sending of the first synchronization signal, the associated information message at a pre-defined time and frequency position in an OFDM symbol. The pre-defined time and frequency position is relakive to the time and frequency position of the firsi synchronization signal. The associated information message is associated with the first synchronization signal.

According to a second aspect of embodiments herein, the object is achieved by a method performed by the wireless device for detecting the first synchronization signal and the associated information message sent by the network node. This is done for synchronization of the wireless device with the nekwork node. The network node and the wireless device operate in the wireless communications network. The wireless device detects the first synchronization signal. The first symchronization signal has been sent by the network node in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbois. N is equal or larger than 2 . The wireless device detects the associated information message at the pre-defined time and frequency position. The pre-defined time and frequency position is relakive to the time and frequency posikion of the detected first synchronization signal. The associated information message is associated with the frst synchronization signal. The wireless device obtains subframe timing and/or frame timing by detecting an index comprised in the associated information message.

According to a third aspect of embodiments herein, the object is achieved by the network node, configured to send to the wireless device the first synchronization signal and the associated information message. This is done for synchronization of the wirebess device with the network node. The network node and the wireless device are configured to operate in the wireless communications network. The network node is configured to send the first synchronization signal in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols. Nis equal or
larger than 2. For each sending of the first synchronization signal, the network node is configured to send the associated information message at the pre-defined frequency position in a pre-defined OFDM symbol, i.e, the time position. The pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal. The associated information message is associaked with the first synchronization signal.

According to a fourth aspect of embodiments herein, the object is achieved by the wireless device, configured to detect the first synchronization signal and the associated information message configured to be sent by the network node. This is done for synchronization of the wireless device with the network node. The network node and the wireless device are configured to operate in the wireless communications network. The wireless device is configured to detect the first synchronization signal. The first synchronization signal is configured to have been sent by the network node in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols. N is equal or larger than 2 . The wireless device is further configured to detect the associated information message at a pre-defined time and frequency position. The pre-defined time and frequency position is relative to the time and frequency position of the detected first synchronization signal. The associated information message is associated with the first synchronization signal. The wireless device is further contigured to obtain subframe timing and/or frame timing by detecting the index comprised in the associated information message.

According to a fifth aspect of embodiments herein, the object is achieved by a computer program, comprising instructions which, when executed on at least one processor: cause the at least one processor to cary out the method performed by the network node.

According to a sixth aspect of embodiments herein, the object is achieved by a computer-feadable storage medium, having stored thereon the computer program, comprising instructions which: when executed on at least one processor, cause the at least one processor to carry out the method perfonmed by the network node.

According to a seventh aspect of embodiments herein, the object is achieved by a computer program, comprising instructions which, when executed on at least one processor, cause the at least one processor to carry out the method performed by the wireless device.

According to an eighth aspect of embodiments herein, the object is achieved by a computer-readable storage medium, having stored thereon the computer program,
comprising instructions which, when executed on at least one processor, cause the at least one processor to carry out the method performad by the wireless device.

By the network node repeatedly transmitting the same first synchronization signal in N OFDM symbols within a subframe, the wireless device may more likely detect the first synchronization signal and the associated information message, in ak keast one of the used symboss. Therefore a way for the wireless device to synchronize with the network node is provided that is optimized for high frequency carriers, using narrow beams. This may be implemented uilizing beamforming, for example, by the network node transmitting the same first synchronization signak in a scanned manner, such as in a new beam in each OFDM symbol, so that the wireless device may more likely dekect the first synchronization signal and the associated information message, in at least one of the beams. Im the embodiments utilizing beamforming, the network node does not need to know which beam is preferable for the wireless device, for the wireless device to be able to successfully detect the first synchronization signal and the associated information message, as the first synchronization signal and the associated information are fransmitted in multiple beams.

Further advantages of some embodiments disclosed herein are discussed below.

GRIEF DESCRIPTION OF THE ORANINGS

Examples of embodiments herein are described in more dekail with reference to the accompanying drawings, in which:

Figure 1 is a schematic diagram illustraing a $5 G$ system example with three TPS.
Figure 2 is a schematic block diagram ikustrating embodiments in a wireless communications network, according to some embodiments.

Figure 3 is a schematic diagram imustrating embodiments of a method in a network node, according to some embodiments.

Figure 4 is a schematic diagram illustrating embodiments of a method in a network nose, according to some embodiments.

Figure 5 is a schematic diagram illustrating embodiments of a method in a network node, according to some embodiments.

Figure 6 is a schematic diagram illustrating embodiments of a method in a network node, according to some embodiments.

Figure 7 is a schematic diagram illustrating embodiments of a method in a network node, according to some embodiments.

Figure 8 is a schematic diagram illustrating embodiments of a method in a network node, according to some embodiments.

Figure 9 is a schematic diagram illustrating embodiments of a method in a wireless device, according \}o some embodiments.

Figure 10 is a flowchart ilustrating embodiments of a method in a wireless device, according to some embodiments.

Figure 11 is a schematic diagram illustrating embodiments of a method in a wirebess communications network, according to some embodiments.

Figure 12 is a schemakic diagram ilustrating embodiments of a method in a wireless communications network, according to some embediments.

Figure 13 is a block diagram of a network node that is configured according to some embodiments.

Figure 14 is a block diagram of a wireless device that is configured according to some embodiments.

OETAILED OESCRIPTION

As pant of the solution according to embodiments herein, one or mose problems that may be associated with use of at least some of the prior art solutions, and that may addressed by embodiments herein will first be identified and discussed.

In genera\} terms, embodiments herein relate to the fact that at high, e.g. $>10 \mathrm{GHz}$, carrier frequencies, the number of antenna elements at the transmitker and/or receiver side may be significantly increased compared to common $3 G$ and $4 G$ systems, which typically operate at frequencies below 3 GHz . In such systems, the increased path loss may be compensated for by beamforming. If these beams are narrow, many beams may be needed to span a coverage area.

Also in generai terms, embodiments herein relate to the fact that since synchronization and system informakion has to be transmitzed in a narrow beam, in horizontal and azimuth angles, to maintain cell coverage and link reliability, it is then a problem how to transmit these signals and how the user terminal, e.g., the wireless device, find cells, i, e to perform cell search, and how to synchronize time and frequency of the network. It is further a problem how to attain system information from the network when this information is transmitied using beamforming and how to acquire symbol and subframe synchronization.

One of the problems addressed by embodiments herein is how to transmit synchronization signals from a network node to a wireless device in a wireless communications network using a high frequency carrier that is subject to higher path loss relative a low frequency carrier, so that detection by the wireless device is optimized and synchronization \{aikures for failure of detection of synchronization signals are decreased

For example, when using beamforming, one of the particular problems addressed by embodiments herein is how to use the narrow beams that may be needed to provide the high beamforming gain that may be required to achieve cell coverage in systems using high frequency carriers, also for synchronization and transmission of basic system information.

In many cases, such as a wireless device initial access, or when the wireless device is searching for addisional cells, it is not possible for the network, e.g., a nework node controlling one or more Transmission Points (TPs), each of the TPs transmitting Transmission Point (TP) beams, \}o direct a beam towards a wireless device with the necessary signals for these operations: since the useful beam, or precoding vector, for the particular wireless device is not known to the network, e.g., the network node.

Hence, there may be a problem in a network, e.g, the network node, for how to transmit synchronization signals as well as basic system infomation, e.g. MIB, to the wireless device in a beam-formed system.

As a consequence of this, it is a problem for a wireless device how to time and frequency synchronize to a cell and how to aqquire system information and how to perform handover operations.

It is further a detailed problem how the wireless device may attain the frame and subframe synchronization respectively as well as the Orthogonal Frequency Division Multiplexing (OFOM) symbol synchronization.

These problems are further discussed below.
A set of TPS may be considered wherein each TP can, by use of an array antenna. generate transmission of a larger number of different beams, wherein the beams may have different main lobe pointing direction and/or transmit polarization state.

A given beam may be represented by a certain precoding vector, where for each antenna element a signal is replicated and transmitted over, an amplitude and/or phase weight is applied. The choice of these weights thus may determine the beam, and, hence, the beam pointing direction, or "beam state"

The possibility to choose from a large number of beams to be kansmitted from a Tp may be typical for a 56 system deployed at higher carrier frequencies above 10 GHz :
where the antenna may consist of many antenna elements to achieve a large array gain. However, larger number of beams may be applied also in systems operating all lower frequencies: e.g, below 10 GHz , for improved coverage, with the drawback of a larger total ankenna size. since the wavelengths are longer.

At higher camier frequencies, an antenna array consisting of multiple antenna elements may be used to compensate for the reduced aperture size of each element, which is a function of the carrier frequency, compared to systems operating at traditional cellular carrier frequencies, ie., up to 5 GHz . Moreover, the large antenna gain may in tum containing the complex beamforming weights be needed to overcome the path loss at higher frequencies. The large array gain and many antenna elements may result in that each generated beam is rather narrow, when expressed in terms of HPBW, typically only $5-10$ degrees or even smaller: depending on the particular design of the array antenna. Usually, twondmensional beamforming may be desirable, where a beam may be steered in both an azimuthal and a morizontal direction simuitaneousiy. Adding also the transmit power to a variable beam, the coverage of the 20 -beam may be controlled, so that a 30 beamforming system may be achieved.

Since the large array gain may be needed also for synchronization and broadcast control channels, e.g., carrying basic system information for accessing the cell, these signals may need to be beam-formed as well.

Synchronization is a comerstone in accessing a wireless communications network. The synchronization may be performed on several levels, the initial time and frequency synchronization may be needed to tune the receiver to the used OFDM time frequency grid of resource elements, as the OFDM symbol boundary. Then, synchronization may also be needed to detect the subframe boundaries, e.g., in LTE, a subframe consists of 14 OFDM symbois in the case of normal Cyclic Prefix (CP) length. Furthermore, the frame structure may need to be detected, so the wireless device knows when a new frame begins, e.g. in $K T E$, a frame consists of 10 subframes.

Embodiments herein describe a method perfomed by a nework, e.g., a network node, to enable the use of muttiple transmit beams and at the same time provide any of: rapid cell detection, system information acquisition and symbok, subframe and frame synchronization, for a wireless device that may try to connect to a cell, e.g., served by the network node. The proposed method also may seamlessly allow for different network. implementations, e.g., a network node implementations, and wireless device implementations, which may be important, since some implementations may use analog
beamforming networks where the beam switching time using analog components may be too long for a switch to be performed within the time between two OFDM symbois, i.e., at a fraction of the CP length. Also, some wireless device implementations may have a restriction in, e.g. cell search computation power so that less frequent cell searches than other than potentialiy an increased access delay.

Embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which examples of the claimed subject matter are shown. The claimed subject matler may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the clamed subject matter to those skilled in the art. It should also be noted that these embodiments are not mutualiy exclusive. Components from one embodiment may be tacity assumed to be presentiused in another embodiment.

Figure 2 depicts a wireless communications network 200 in which embodiments herein may be implemented. The wireless communications network 200 may for example be a network such as a Long-Term Evolution (LTE), e.g. LTE Frequency Division Duplex (FDD), LTE Time Division Duplex (TDD), LTE Haff-Duplex Frequency Division Duplex (HD-FDD), LTE operating in an unkicensed band, Wideband Code Division Multiple Access (NCDMA), Universal Terrestrial Radio Access (UTRA) TDD, Global System for Mobile communications (GSM) network GSM/Enhanced Daka Rate for GSM Evolution (EDGE) Radio Access Network (GERAN) network, EDGE network, network comprising of any combination of Radio Access Technologies (RATs) such as e.g. Multi-Standard Radio (MSR) base stations, multh-RAT base stations etc., any 3rd Generation Parnnership Project (3GPP) celular network, WiFi network, Woridwide Interoperability for Microwave Access (WiMax), 5 G system or any cellular network or system.

The wireless communications network 200 comprises a transmission point or TP, 210. The transmission point 210 transmits one or more Tp beams. The transmission point 210 may be, for example, a base station such as e.g., an eNB, eNodeB, or a Home Node B, a Home eNode B, femto Base Station, BS, pico BS or any other network unit capable to serve a device or a machine type communication device in the wireless communications network 200. In some particular embodiments, the transmission point

210 may be a stationary relay node or a mobile relay node. The wireless communications network 200 covers a geographical area which is divided into cell areas, wherein each cell area is served by a TP although, one TP may serve one or several cells, and one cell may be served by more than one TP. In the non-simiting example depicted in Figure 2 , the transmission point 210 serves a cell 220 . The transmission point 210 may be of different classes, such as e.g. macro eNodeB, home eNodeB or pico base station, based on transmission power and thereby also cell size. Typically, the wireless communications network 200 may comprise more cells similar to cell 220 , served by their respective one or more TPs. This is not depicted in Figure 2 for the sake of simplicity. The transmission point 210 may be referfed to herein as a network node 210 . The network node 210 controls one or more TPs, such as any of the network node 210.

The network node 210 may support one or several communication technologies, and its name may depend on the techmology and terminology used. In 3GPP LTE, the network node 210, which may be referred to as eNodeBs or even eNBs, may be directly connected to one or more networks 230 .

The network node 210 may communicate with the one or more networks 230 over a link 240.

A number of wireless devices are located in the wireless communications network 200. In the example scenario of Figure 2, only one wireless device is shown, wireless device 250. The wireless device 250 may communicate with the network node 210 over a radio link 260.

The wireless device 250 is a wireless communication device such as a UE which is also known as e.g. mobile terminal, wireless terminal and/or mobile station. The device is wireless, i.e., it is enabled to communicate wirelessk in the wireless communication network 200, sometimes also referred to as a celular radio system or celluar network. The communication may be performed e.g.: between two devices, between a device and a regular telephone andior between a device and a server. The communication may be performed e.g., via a RAN and possibly one or more core networks, comprised within the wireless communications network 200.

The wireless device 250 may further be referred to as a mobile telephone, cellular telephone, or laptop with wireless capability, just to mention some further examples. The wireless device 250 in the present context may be, for example, portable, pocket-storable hand-held, computer-comprised, or vehicle-mounted mobile devices, enabled to communicate voice and/or data, via the RAN, with another entity, such as a server, a
laptop, a Personal Digital Assistant (PDA), or a tablet computer, sometimes referred to as a surf plate with wireless capability, Machine-\{o-Machine (M2M) devices, devices equipped with a wireless interface, such as a printer or a file storage device or any other radio network unit capable of communicating over a radio link in a cellular communications system. Further examples of different wireless devices, such as the wireless device 250, that may be served by such a system incurde, modems, or Machine Type Communication (MTC) devices such as sensors.

Embodiments of methods performed by the network node 210 and the wireless device 250 will first be described in detal, with illustrative examples, in relation to figures 2-8. An overview of the specific actions that are or may be carried out by each of the network node 210 and the wireless device 250 to perform these examples, among others: will then be provided in relation to Figures 9 and 10.

In embodiments herein, a first synchronization signal such as a PSS may be transmitted by the network node 210 to the wireless device 250 , repeatediy, N times, in N different OFDM symbols within a subframe, or across mutiple subframes. The N transmissions need not occur in adjacent OFDM symbols, they may occur in every other OFDM symbol or more generally even in different subframes or frames. For each PSS transmission instance, the TP, e.g., the network node 210 or TP 210 , may alter one or several of the parameters associated with the transmission, such as the azimuth angle, the horizontal angle, the transmit power or the polarization state. A given setting of all these possible transmission parameters is defined here as a beamforming state. Hence, the network node 210 or TP 210 may scan the 3D beamforming and polarization space in up to N different beamforming states, and in each state, the network node 210 or TP 210 may transmit the same PSS to provide synchronization for a $U E$, such as the wireless device 250 , in any of these 30 positions. After these N transmissions have been performed, the 3D scan may start over from the beginning again, and the value N may, if needed for the wireless device 250 , be sperified in the standard, or it may also be signaled to the wireless device 250 by system information, or obtained prior to accessing the 5 G carrier through signaing on a legacy system, such as LTE. The PSS may be taken by the network node 210 from a large set of sequences, similar to the PSS used in LTE, where the detection of the PSS may give the wireless device 250 information about a physical cell ID, such as a physical cell 10 of cell 220 . The PSS may also be used by the wireless device 250 to get a rough time and frequency synchronization. Note that the
embodiments described herein are not limited to use the same or similar PSS as used in LTE a completely different design or sequence length may also be considered.

The UE, such as the wireless device 250, in a favorable position for one, or several, of the N beam states may successfully detect the PSS, when this beam state is used, and may also acquire a physical cell 10 , such as the physical cell 10 of cell 220 , if an LTE type of PSS is used. The network node 210 or TP 210 may aiso transmit an associated information message such as a SSS, at a known location relative to the PSS. So, when the PSS in a certain OFDM symbol has been detected by the wireless device 250, the wreless device 250 may also find the associated SSS at a different time andior frequency position selative to the PSS. The SSS may then be transmitted by the network node 210 with the same beamforming state as the associated PSS. One way to implement this is for the network node 210 to transmit the SSS multiplexed with the PSS, in the same OFDM symbol, see Figure 3. Another attemative may be to spit the SSS in two parts, where each part is on either side of the PSS, to get a symmetric transmission of PSS and SSS with respect to the center frequency.

Figure 3 depicts an example showing a subframe of 14 OFDM symbols, where the PSS and SSS are transmitted by the network node 210 in the same symbol, but at different frequency locations, i.e. subcamer sets. in each OFDM symbol, a different beam state (B1...B14) may be used by the network node 210 to scan the beams in, for example, the horizontal angle and the azimuth angle. Furthermore, the PBCH, carrying system information, may also be transmitted, by the network node 210, in the same OFDM symbol as the associated PSS and SSS, and in this example, split on both sides of the PSS. Thus, in some embodiments, one or more PBCH may be associated with one PSS. Note that the system bandwidth may be farger than what is shown in this figure. Here, only the concept of frequency multiplexing the PSS/SSS/PBCH is illustrated. The OFDM symbel may aiso contain other control signaling, or the shared data chamel, outside, i.e., on both sides, the frequency band, that carries the PSS/SSS/PBCH. The network/TP, e.g., the nework node 210 or TP 210, may, with this arrangement, transmit each OFDM symbol using a different beamforming state. Alternatively, the network node 210 or TP 210 may transmit the PSS/SSS/PBCH part of the OFDN symbol with a first beamforming state and the remainder of the OFDM symbol, e.g., on both sides, with beamforming states that are independently selected and may thus be different from the first beamforming state. In this way, for instance, the shared data channel may be frequency multipiexed with the PSS/SSS/PBCH and yet, these, i.e, the PSS/SSS/PBCH, are using difterent beams, i.e beamforming states.

In some embodiments herein, the SSS and one or more PBCH associated i.e., transmitted, with a particular PSS, may be collectively referred to herein as a message that is associated to the PSS, i.e., an associated information message.

However, different from the PSS, each SSS may contain information about the subframe timing, such as the subframe offset and/or the frame offset relative the SSS time position. Hence, different Secondary Synchronization (SS) sequences may be transmitted by the network node 210 for each OFDM symbol, and thus, up to N different SSS may be used by the network node 210. By detecting which $S S$ sequence is transmitted in a certain OFDM symbol, i.e. a "sequence index": the wireless device 250 may acquire at least the subframe synchronization, using a re defined unique mapping between the semence index and the relative position of the OFDM symbof and the subframe boundaries. Hence, the subframe synchronization is achieved, in the sense that the wireless device 250 may know where the subframe begins and ends. The SSS may also be used by the wireless device 250 to acquire the frame synchronization; however, this may require the use of additional SSS sequences, If only the subframe synchronization is required, or if the PSS/SSS is only transmitted in one, pre-defined subframe within the frame, then the same SSS may be repeatedly used by the network node 210 in every subframe carrying SSS: witile in the case also frame synchronization may be needed from SSS by the wireless device 250 , then different subframes within the frame may need to use unique SSS sequences to be able to acquire the relative distance to the frame boundaries from the detected OFDM symbol.

The SSS used in embodiments herein may or may not be equal to the LTE SSS. Since there are only 168 different SSS in LTE these may not be enough if also used for subframe synchronization in addition to time and frequency synchronization, since a different SSS may be used by the network node 210 in each beam. However, a larger set of SSS may be defined. This may, in different embodiments, be defined as an extension of the LTE SSS, by transmitting from the network node 210, in each OFDM symbol, additional cyclic shift combinations of the two interleaved M-sequences. In another embodiment, the network node 210 may use the LTE SSS together with at least a third sequence, or a reference signal, for instance, the reference signal used when demodulating the PBCH .

Moreover, to acquire system information, the PBCH may be transmitted by the network node 210 in the same beam, and thus OFDM symbok, as the SSS, at a known location relative to the SSS and/or PSS. The PBCH may be transmitted together with a demodulation reference signal which resides in the same OFDM symbol as the PBCH,
i.e, the reference signal for PBCH demodulation and the PBCH itself are precoded with the same beamforming weight vector, i.e the same beam state. Hence, the wireless device 250 is not allowed to interpolate the channel estimates acioss OFDM symbols where different beam states have been used. Thus, in a sense, these reference signals are beam specific

In one embodiment, the same PBCH information is transmitted by the network node 210 in each transmission instance within a frame. In a wireless device 250 implementation embodiment the wireless device 250 may accumulate the PBCH from multiple transmissions from the network node 210, e.g. muktiple OFDM symbols and thus muktiple beams, and thus improve the reception performance of the PBCH , which conkains the system information. in some cases, the wireless device 250 detects a signal in multiple beams and it may, after detecting the PSS with sufficient power, use the associated PBCH in the same beam, to accumulate energy for the PBCH detection. However, the channel estimations in the wireless device 250 implementation may need to be repeated in each OFDM symbol, since beam specific RS may be used. This may enable coherent receive combining of multiple beams which, in addition to the beamforming gain, may further entance the MBB reception by the wireless device 250 . The wireless device 250 may in a further embodiment also discard PBCH reception in the OFDM symbois, i.e. beams, where the PSS has poor detection performance, as to avoid capturing noisy estimates into the PBCH energy accumulation.

It is possible that the wireless device 250 may detect the PSS in more than one OFWM symbol, since the 30 beams may have overlapping coverage, either in terms of overlapping beam pattems or via muitipath reflections in the propagation channel. In this case, the wireless device 250 implementation may estimate which of the successfully detected OFDM symbols comprised the PSS detection with the highest receive quality, and use only this when determining the subframe and/or frame timing, to ensuse good synchronization performance. It is also an implementation embodiment for the neworkTP side, e.g., the network node 210 or TP 210 , to use fewer and/or wider than N beams for the PSS: where N is a specified upper limit on the number of supported beams in a 5G network, in which case there are more than a single beam with good PSS detection possibility for the wireless device 250 . Using wider beams reduces the coverage of each beam, but in some situations coverage may be less important, such as small celis. This embodiment with wider beams may have the advantage that PSS detection is more rapid, and the nomal LTE cell search algorithm of relatively low complexity may be reused in the wireless device 250.

A further advantage of at least some embodiments described herein may be that there may be no need for the wireless device 250 to search for beams at the initial PSS detection; the wireless device 250 simply may detect successfully when a 30 beamforming state matches the wireless device 250 position in the cell 220 . Hence, the use of beams is agnostic to the wireless device 250, at least at this initial stage of PSS detection. See figure 3 for an example of how the PSS/SSS and PBCH may be transmitted by the network node 210 in the described embodiment.

In an alternative embodiment to the above described method, the same SSS se uence may be transmitted in each used OFDM symbolbeam state, while the frame and/or subframe offset may be instead explicitly indicated in the PBCH in the associated OFDM symbol. Hence, MB detection by the wireless device 250 may in this embodiment be required before frame synchronization may be achieved. A benefit of this embodiment may be that only one SSS is used, or consumed, per TP, repeatediy in all OFDM symbols, while the drawback may be that the MB changes in each OFDM symbok, so coherent combining over beams may not be used by the wireless device 250 . In addition, a beam index $n=\{\{, \ldots, N\}$ may be signaled in the PBCH, to inform the wireless device 250 on which beam state of the maximally possible N beam states was used in the particular OFDM symbol. The PBCH may also comprise explicit signaling of the subframe offset and/or the frame offset. In some embodiments, the beam state n may not be informed to the wireless device 250 , but this offset signaling still provides necessary information to the wireless device 250 to be able to acquire subframe and/or frame synchronization.

In yet an altemative embodiment: the SSS may be used by the wireless device 250 for detecting the subframe offset and the PBCH may be used by the wireless device 250 to detect the frame offset. Hence, the PBCH message may be the same for all OFDM symbols/beams within one subframe but may need to change from subframe to subframe since the frame offset changes. See the figures below for illustrative examples. In this embodiment: at most 14 different SSS may be required, and the set of SSS may then be repeated in the next subframe. This is sufficient since SSS is only used to acquire the subframe timing.

Figure 4 depicts an example showing a subframe of 14 OFDM symbols, where the PSS and SSS are transmitted by the network node 210 in different symbols, with a time offset, in this case one slot, i.e, 7 OFDM symbols. Furthermore, the PBCH, carrying system information, is also transmitted by the network node 210 in the same OFDM symbol as the associated PSS and SSS, and in this example spit on both sides of the

PSS. Note that the system bandwidth may be larger than what is shown in this figure. Here only the concept of frequency multiplexing the PSS/PBCH or SSS/PBCH is llustrated, and the OFDM symbor may also contain other control signaling or the shared data channel. The network/TP, e.g., the network node 210 or TP 210, may, with this arrangement, fransmit each OFDM symbol using a different beamforming state. But in this example, the same beamforming state is used in symbol k and $k+7$ in the subframe, where $k=0, \ldots, 6$. So a UE, such as the wireless device 250 , that detects the PSS in OFDM symbol k due to a beneficial beamforming state, may also get the same beamforming state in symbol $k+7$ when detecting SSS and PBCH. Hence, in each OFDM symbol in each siot, a different beam state, e.g., 81... 87, may be used by the network node 210 to scan the beams in, for example, the horizontal angle and the azimuth angle. An advantage of this separation in time between the PSS and SSS, e.g.: 7 OFDM symbols, compared to the embodiment in Figure 3 , is that the PSS and SSS together may be used to erhance the frequency synchronization, which is more difficult by the arrangement in Figure 3 , since the same OFDM symbof is used for PSS and SSS.

Figure 5 depicts an example showing a positive detection by the wireless device 250 of PSS in OFDM symbol $k=5$, and thus also SSS and PBCH detection in OFDM symbol $k=12$, since the network node 210 or TP 210 uses the same beamformer state in symbol $k=5$ and $k=12$ from which the wireless device 250 acquires at least the subframe offset Defta_S $=12$ to the start of the subframe from either the SSS, for the embodiment where each SSS is different, or the PBCH information. In Figure 5, subframe offiset, as used herein, is represented as "symbol offsef".

Figure 6 depicts an example showing a positive detection by the wireless device 250 of a beam in OFDM symbof $k=5$, PSS and $k=12$, SSS, in subframe n. The wireless device 250 acquires the subframe offset and the frame offset from the detection of SSS and/or the detection of PBCH. In Figure 6, subframe offset, as used herein, is represented as "symbol offset", and frame offset, as used herein, is represented as "subframe offset". An aitemative embodiment may use SSS for detecting by the wireless device 250, the subframe offset and PBCH to detect the frame offset. Hence, the PBCH message is the same for all OFDM symbols/beams within one subframe, but may need to change from subirame to subframe, since the frame offset changes.

In Figure 8 , multiple subframes are used to allow for the network node 210 or TP 210 to use more than 7 beam states, i.e. $N>7$, in the scanning procedure. In this example,
$N=7 n$ beams may be scanned if n is the number of used subtrames. If this many beams are unnecessary and it is determined that $N<8$ is sufficient, onfy a single subframe may be used by the wireless device 250 for this cell acquisition procedure i.e, time and frequency synchronization and detection of the cell 1 D . In this case the frame offset may the value may be given by seading the standard specifications, and it may be selected, e.g., as zero or nine. first or last subframe in the frame.

With the arrangement described in embodiments herein, the number of used beam states of a TP, such as the network node 210 or TP 210 , may be less than the maximal number N the current standard supports, since the offsets are signaled by SSS andior PBCH. Moreover the precoding weights that defined the beam state may be transparent to the wireless device 250, hence with this arrangement, any beam shapes, i.e. precoding weights, for PSS, SSS and PBCH may be implemented, which may be an advantage and gives flexibility to the wireless communications network 200. Hence, embodiments herein may provide a flexible way to deploy a 5G mutt antenna 30 beamforming system, so it may be adapted to the scenario of the operation, and also to the actual implementation of the nework node 210 or TP 210. An advantage of at least some of the embodiments herein may be that the PSS and SSS and/or PBCH are transmitted by the network node 210 in the same OFDM symbol, which may necessary when analog beamforming is performed at the transmitter side; since beamforming precoding weights may be only wideband in this case. For a digizal implementation of the beamformer on the other hand, different beams may be used in different frequency bands. However, since implementations may be widely different among TP vendors and even for different products within a same vendor, the solukion may not imply a cerkain Tpimplemenkation of beamforming, and this goal may be achieved with embodiments herein.

In a further network node 210 or TP 210 implementation embodiment, it may be possible to further relax the network node 210 or TP 210 implementation by not transmitting the PSS etc in every OFDM symbol. This may be useful in, e, the case switching time or precoder weight setting time is \}ong. Hence, the same approach in embodiments herein may also enable this type of relaxed operakion, where not every OFDM symbol may be used for transmitting by the network node 210 , since the subframe and frame offsets may be acquired by the wireless device 250 individually, in each used OFDM symbol respectively. Whether every or as in the example below, every other OFDM symbol is transmitting PSS etc is agnostic to the wireless device 250 , since the
wireless device 250 may simply fall to decode a PSS in OFDM symbols where no transmission by the network node 210 takes place.

Figure 7 depicts an example of a relaxed network node 210 or TP 210 implementation where only every other OFDM symbol is used by the network node 210 , so that TP beamforming hardware may have sufficient time to swith beam. In this example shown here, only 7 beams may be scanned in one subframe.

The previous embodiments have described general aspects of the embodiments herein. The further embodiments below will describe enhancements that will relax the wireless device 250 implementation, in case the wireless device 250 has limited processing power.

In Figure 4, it was shown how the PSS and SSS may be separated by one siot. However, one, e.g., the network node 210 or TP 210. may separate the PSS and SSS even more, by several subframes, as long as the time between PSS and SSS transmissions by the network node 210 are known to the wireless device 250.

The PSS may be detected by the wireless device 250 in time domain, before Fast Fourier Transform (FFT) operation, using a down sampled signal if the PSS bandwidth is much less than the system bandwidth. However: the SSS and PBCH may be detected by the wireless device 250 in frequency domain, after FFT operation on the wideband signal, which may require some more processing power in the wireless device 250, and which then may require the wireless device 250 to buffer the whole wideband signal in each OFDM symbol until the PSS detector for a given OFDM symbol has finished the detection. So, it may be usefu if the time between the PSS detection and the SSS/PBCH detection may be extended, so that buffering of many OFDM symbols is not required by the wireless device 250. The embodiment depicted in Figure 4 may allow this, since the network node 210 transmits the PSS and SSS in such way that there are 7 OFDM symbols between PSS and SSS. Hence, the wireless device 250 implementation may search for the PSS using the time domain signal, after successful PSS detection, it may prepare to perform an FFT operation of the OFDM symbof transmitted 7 OFDM symbols later, thereby relaxing the wireless device 250 implementation.

In a further wireless device 250 implementation embodiment, the time between PSS and SSS transmission by the network node 210 using the same beam is longer than the slot duration. The SSS may be fransmitted by the network node 210 several subframes later, as fong as this delay time is known by specification. The wireless device 250 may
know the delay until the same OFDM symbor and beam state using the same PSS/SSS/PBCH transmission occurs again, and may thus wait until this delayed OFDM symbol, perform the FFT and detect SSS and FBCH. Alternatively, there may be a periodicity in the beam scanning, so that the wireless device 250 may know, by standard specification, that the same beam may be used again after a certain time, and this value may also depend on the maximum number of beam states N given in the standard specification. Hence, in this wireless device 250 implementation embodiment, the wireless device 250 may take advantage of the periodicity of the same signal transmission by the network node 210, and use of same beam state by the network node 210 , and it may, in the first instance, use the time domain signal te detect PSS and in a later, second instance, it may perform the FFT and detect SSS and PBCH.

In a further embodiment, the wireless device 250 may inform the network node 210 or TP 210 about which beam or beams was used in synchronizing to the network node 210 or TP 210. This may be usefuin subsequent downink transmissions from the nework node 210 or TP 210 to the wireless device 250 , for instance when transmitting additional system information blocks, configuration of the wireless device 250, or scheduling the uplink and downlink shared data channels.

According to the detailed description just provided with illustrative examples, embodiments of a method performed by the network node 210 for sending to the wireless device 250 a first synchronization signal and an associaked information message, for synchronization of the wireless device 250 with the network node 210 , will now be described with reference to the fowchart depicted depicted in Figure 8. Any of the details provided above in the fllustrative examples, may be applicable to the description provided in regards to Figure 8, although they are not repeated here to facilitate the overview of the method. The network node 210 and the wireless device 250 operate in the wireless communications network 200, as stated earlier. Figure 8 depicts a flowchart of the actions that are or may be performed by the network node 210 in embodiments herein.

The method may comprise the following actions, which actions may as well be carned out in another suitable order than that described below.

Action 801

In order to allow the wireless device 250 to synchronize with the network node 210, that is in order to allow the wireless device 250 to obtain subframe timing and/or the frame
timing in the signals sent by the network node 210, the network node 210 sends the first synchronization signal in N OFDM symbois within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols, as illustrated in Figures 3-6. N , which was described earlier, is equal or larger than 2.

The first synchronization signal may provide the time structure on the smallest time scale up to a medium time scale, e.g., OFDM symbol timing, as well as the time position of the second synchronization signal.

The frrst synchronization signal may be a PSS, as described earlier, or an equivalent synchronization signal. The detailed description provided above, has used PSS as an Bllustrating example. However, any reference to PSS in the embodiments herein is understood to equally apply to the first synchronization signal,

In some embodiments, the network node 210 may perform the sending by utilizing beamforming.

In some embodiments, such as those utilizing beamforming, a different beam state: as described earlier, is used in at least two of the N OFOM symbols.

A different beam state may be used in each of the N OFDM symbols.
In some embodiments, the N OFDM symbols are non-consecutive OFDM symboss.

Action 802

Also in order to allow the wireless device 250 to synchronize with the network node 210 , in this action, the nework node 210 , for each sending of the first synchronization signal, sends the associated information message at a pre-defined time and frequency position in an OFDM symbol, as illustrated in Figures 3-6. The pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal. The associated information message is associaked with the first synchronization signal, that is, it comprises information that is associated with the first synchronization signal, for synchronization purposes. That is the associated information message comprises information may allow the wiretess device 250 to obtain subframe andior frame timing.

In some embodiments, the associated information message comprises an associated second synchronization signal. The second synchronization signal may provide the time structure from a medium time scale up to a large time scale, e.g., subframe andor frame timing. The second synchronization signal may be a SSS, as described earlier, or an equivalent synchronization signal. The detailed description provided above, has used SSS as an illustrating example. However, any reference to

SSS in the embodiments herein is understood to equally apply to the second synchronization signal.

The associated information message may comprise an associated PBCH. In these embodiments, the associated information message, may comprise the PBCH alone, or in sddition to the second synchronizakion signak, e.g., the SSS.

In some embodiments, the associaked PBCH futher comprises associated system information.

In some embodiments, the network node 210 may perform the sending by utilizing beamforming. In these embodiments, wherein the first synchronization signal is sent in a beam state, the associated information message may be sent using the same beam state as the first synchronization signal associated with the associated information message.

In some embodiments, the associated information message is different in each OFDM symbof wherein the associated information message is sent.

The associated information message may comprise an index. An index may be a number that comprises a pre-defined unique mapping with the relative position of the OFDM symbos and the subframe and'or frame boundaries: which may allow the wireless device 250 to obtain the subframe and/or frame timing.

In some of these embodiments, the index is a sequence index, as described earlier.
In some of these embodimen $\$$, the subframe timing is obtainable by the wireless device 250 by detecting the index.

The sequence index may comprise an index representing a sequence out of a set of possible sequences. For example, in the embodiments wherein the associated information message comprises the associated second synchronization signal, the sequence index may be an index to one of the possible synchronization sequences which maps uniquely to at least a subframe offset.

In the embodiments wherein the associated information message comprises the associated PBCH, the index may be an explicit indication of the subframe offset or frame offset of both.

In some embodiments, the associated information message is the same in each OFDM symbol wherein the associated information message is sent within a subframe, and the associated information message is different in each subframe wherein the associated information message is sent within a transmitted frame. In these embodiments, wherein the associated information message comprises the index, a frame timing may be obtainable by the wireless device 250 by detecting the index.

In some embodiments wherein the associated information message comprises the associated SSS, and wherein the index is a sequence index, the subframe timing may be obtainable by the wireless device 250 by detecting the sequence index comprised in the associated SSS.

In some embodiments wherein the associated information message comprises the associated SSS, and, wherein the index is the sequence index, the frame timing may be obtainable by the wireless device 250 by detecting the sequence index comprised in the associated SSS.

In some embodiments, wherein the associated information message comprises the associated system information, the frame timing is obtainable by the wireless device 250 by detecting the momex comprised in the associated system information.

Embodiments of a method performed by the wireless device 250 for detecting the first synchronization signal and the associated information message sent by the network node 210, for synchronization of the wireless device 250 with the network node 210. will now be described with reference to the flowchart depicted depicted in Figure 9. Any of the details provided above, may be applicable to the description provided in regards to Figure 9 , although they are not repeated here to facilitate the overview of the method. The network node 210 and the wireless device 250 operate in the wireless communications network 200, as stated earlier. Figure 9 depicts a llowchart of the actions that are or may be pertormed by the wireless device 250 in embodiments herein.

The method may comprise the following actions, which actions may as well be carred out in amother suitable order than that described below. In some embodiments, alk the actions may be carried out, whereas in other embodiments only some action/s may be carried out.

Action 901

As a first step for the wireless device 250 to obtain subframe timing andior the frame timing in the signals semk by the network node 210, that is, in order to synchronize with the network node 210 , the wireless device 250 detects the first synchronization signal. As described earkier, the first synchronization signal has been sent by the network node 210 in NOFOM symbols within a subframe, at least once in a time and frequency position in every one of the N OFWM symbols. Nis equal or larger than 2.

As discussed above, in some embodiments, the network node 210 may have performed the sending utikzing beamforming.

Also as stated earlier, the first synchronization signal may be a PSS.
In some embodiments, this action may be implemented when for example, the wireless device 250 is using a procedure similar to LTE cell search and is simultaneously searching over different Tp beams.

Action 902

To ensure good synchronization performance, in some embodiments; the wireless device 250 may discard detected OFDM symbols sent by the network node 210, as described earbier. This may happen, where detection of the first synchronization signal in the discarded detecked OFDM symbols is poor according to a threshoid. For example, this threshold may be based on the estimated signal to noise rakio of the delected OFDM symbol. That is, the wireless device 250 may not take the discarded OFDM symbols into consideration to obtain subframe or frame timing.

Action 903

The wireless device 250 detects the associated information message at the predefined time and frequency position. The pre-defined time and frequency position is relative to the time and frequency position of the detecked kirst synchronization signal. The associated information message corresponds to that described above. Thus, the associated information message is associated with the first synchronization signal.

Also was mentioned above, in some embodiments, the associated information message comprises the associated second synchronization signal. The second synchronization signal may be an SSS.

Detecting the associated infomation message may comprise matching a sequence of the detected associaked information message to one of a set of possible information message sequences. As stated earlier, this set of possible information message sequences may be the SSS specified in ITE

In some embodiments, the associated information message comprises the associated PBCH, as mentioned above. In some of these embodiments, the associated PBCH further comprises the associated system infomation.

The associated information message comprises the index.
In some of these embodiments, the index is the sequence index.

In some embodiments, the sequence index comprises the index representing the sequence out of the set of possible sequences.

Action 904

The wireless device 250 obtains the subframe timing and/or the frame timing by detecting the index comprised in the associated information message. This is because the index comprises a pre-defined unique mapping with the relative position of the OFDM symbol and the subframe and/or frame boundaries

In some embodiments, the associated information message is different in each OFDM symbol wherein the associated information message is sent by the nework node 210. In these embodiments, the subframe timing may te obtained by the wireless device 250 by detecting the index.

In some embodiments, the associated information message is the same in each OFDM symbol wherein the associated information message is sent by the network node 210 within a subframe, and the associated information message is different in each subframe wherein the associated information message is sent by the network node 210 within a tramsmitted frame. In these embodiments, the frame timing may be obtained by the wireless device 250 by detecting the index.

In some embodiments, the associated information message comprises the associated SSS. In these embodiments, wherein the index is the sequence index, the subframe kiming may be obkained by the wireless device 250 by detecting the semence index comprised in the associated SSS.

In some embodiments, the associated information message comprises the associated SSS. In these embodiments, wherein the index is the sequence index, the frame timing may be obtained by the wireless device 250 by detecting the sequence index comprised in the associatedSSS.

In some embodiments, the associated information message comprises the associated system information, and the frame timing is obtained may be the wireless device 250 by detecting the index comprised in the associated system information.

Action 905

In some embodiments wherein the network node 210 has performed the sending of the first synchronization signal and the associated information message utiking beamforming, the wireless device 250 may send a message to the network node 210 .
5 The message may comprise information about which beam, of the beams beamformed by
the network node 210 to send the first synchronization signal and the associated information message, was used by the wireless device 250 for synchronization. For example, the time and frequency position of the transmitted message may be used to implicitly communicate to the network node 210 which beam was used by the wireless of the beam state that was used.

Figure 10 depicts, a flowchart of an example of the method performed by the wireless device 250 , according to some embodiments herein and as just described in reference to Figure 9 . The numbers on the right side of the Figure indicate the correspondence to the actions described in Figure 9 . In the figure, the wireless device 250 is represented as "UE". In Figure 10, subframe offset, as used herein, is represented as "symbol offset (subframe boundary)". In this particular example, the first synchronization signal is a PSS, the associated information message comprises a second synchronization signal, which is a SSS and the PBCH; and the network node 210 has performed the sending utilizing beamfoming. A beam is represented in the Figure as being identified by "Bl".

In some embodiments, the information in the message may comprise a beam state index of the beam that was used by the wireless device 250 for synchronization.

The wireless device 250 may send this message, for example, as a random access preamble comprising a sequence and/or time frequency resource determined by the index

Abstract

Embodiments herein may thus provide an approach to address the problems mentioned above, by the network node 210 repeatedly transmitting the same e.g., PSS in a scanned manner, in a new beam in each OFDM symbol. The instantaneous beam, used 15 in a given OFDM symbol, may be unknown to the wireless device 250 , who may perform a blind search after the e.g., PSS in time domain in order to acquire the OFDM symbol timing, which may be a prerequisite to transform the received signa\} into frequency domain, before further receiver processing. After detecting the PSS, the wireless evice 250 may find the SSS and e.g. PBCH in a position relative to the PSS. Different from the PSS, the SSS andior PBCH may be different in each OFDM symbol. By this arrangement, the wireless device 250 may acquire the symbol offset i.e., the subframe offset, as used herein, as well as the frame offset in the wireless communications network 200. In some embodiments, this may be a beamformed network.

Figure 11 and Figure 12 depict schematic diagrams of at least part of methods in the network node 210 and the wireless device 250 , according to some embodiments herein, and as just described in reference to some actions in Figures 8 and 9 , respectively. The numbers on the left and right side of the Figure indicate the correspondence to the actions described in Figures 8 and 8 , respectively. In both figures, the network nowe 210 or TP 210 is represented as "Network/Transmission Point", and the wireless device 250 is represented as "UE". Also in both figures, the index, which in this case is a sequence index, is represented as "index ${ }^{1}$ ". Figure 11 depicts a schematic diagram describing some actions of one of the embodiments described herein, where the SSS determines the subtrame and frame timing. Note that the PSS, SSS and PBCH not necessarily need to be transmitted in the same OFDM symbol. Note also that in this embodiment, the wireless device 250, may accumulate PBCH across several OFDM symbols since the PECH remams the same in each OFDM symbol. In the pasticular examples of Figures 11 and 12, the first symchronization signal is a PSS, the associated 15 information message comprises a second synchronization signal, which is a SSS, and the GBCH, and the nework node 210 has performed the sending utiking beamforming. The beam state index is represented in both Figures as being identified by "Bi".

Figure 12 depicts a schematic diagram describing some actions of one of the embodiments described herein, where the SSS determines the subframe timing and the PBCH contains information used to determine frame timing Note that the PSS SSS and PBCH not necessarily need to be transmitted in the same OFDM symbol. In this figure. the index is represented as "index;" for the sequence index in the SSS, and it is represented as " k " for index in the PBCH.

To perform the method actions described above in relation to Figures 8,11 and 12; the network node 210 is configured to send, to the wireless device 250 , the first synchronization signal and the associated information message, for synchronization of the wireless device 250 with the network node 210 . The network node 210 comprises the following arrangement depicked in Figure 13. As already mentioned, in some embodiments, the network node 210 may be configured to send utilizing beamforming. The network node 210 and the wireless device 250 are contigured to operate in the wireless communications nework 200.

The dekaited description of some of the following corresponds to the same references provided above, in relation to the actions described for the nework node $2 \cdot 10$, and will thus not be repeated here.

The network node 210 may be configured to send the first synchronization signal in N OFDM symbois within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols. N is equal or larger than 2.

This may be performed by a sending module 1301 in the network node 210.
In some embodiments, for each sending of the first synchronization signai, the network node 210 is further configured to send the associated information message at the pre-defined time and frequency position in an OFDM symbol. The pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal. The associated information message is associated with the firs synchronization signal.

This may be also be performed by the sending module sending 1301 ,
The first synchronization signal may be a PSS.
In some embodiments, the associated information message comprises the associated second synchronization signal. The second synchronization signal may be a sss.

In some embodiments, the associated information message comprises the associated PBCH.

In some embodiments, the network node 210 is further configured to use a different beam state in at least two of the N OFDM symbols.

This may be also be performed by the sending module sending 1301 .
In some embodiments, the network node 210 is further configured to use a different beam state is used in each of the N OFDM symbols.

This may be also be performed by the sending module sending 1301.
In some embodiments, the network node 210 is further configured to send the first synchronization signat in a beam state, and to send the associated infomation message using the same beam state as the first synchronization signal associated with the associated information message.

This may be also be performed by the sending module sending $\$ 301$.
In some embodiments, the associated PBCH further comprises the associated system information.

In some embodiments, the associated information message is different in each OFDM symbol wherein the associated information message is configured to be sent by network node 210, the associated information message comprises the index, and the subframe timing is obtainable by the wireless device 250 by detecting the index.

In some embodiments, the associated information message is the same in each OFDM symbof wherein the associated information message is configured to be sent by the network node 210 within a subframe, the associated information message is different in each subframe wherein the associated information message is configured to be sent by the network node 210 within a transmitted frame, the associated information message comprises the index, and the frame timing is obtainable by the wireless device 250 by detecting the index.

In some embodiments, the associated information message comprises the associated SSS, the index is the sequence index, and the subframe timing is oblainable by the wireless device 250 by detecting the sequence index comprised in the associated SSS.

In some embodiments, the associated information message comprises the associated SSS, the index is the sequence index, and the frame timing is obtainable by the wireless device 250 by delecting the sequence index comprised in the associated sss.

In some embodiments, the associated information message comprises the associated system information, and the frame timing is obtainable by the wireless device 250 by detecting the index comprised in the associated system information.

In some embodiments, the sequence index comprises the index representing a sequence out of the set of possible sequences.

In some embodiments, the N OFOM symbols are non- consecutive OFDM symbols.

The embodiments herein for sending, e.g.: utizizing beamforming, to the wireless device 250 the first synchronization signal and the associated information message, for synchronization of the wireless device 250 with the network node 210 may be implemented through one or more processors, such as the processing module 1302 in the network node 210 depicted in Figure 13 ; together with computer program code for performing the functions and actions of the embodiments herein. The program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the embodiments herein when being loaded into the in the network node 210 . One such
carrier may be in the form of a CD ROM disc. It may be however feasible with other data carriers such as a memony stick. The computer program code may furthermore be provided as pure program code on a server and downloaded to the network node 210.

The network node 210 may further comprise a memory module 1303 comprising one or more memory units. The memory module 1303 may be arranged to be used to store data in relation to applications to perform the methods herein when being execuked in the network node 210. Memory module 1303 may be in communication with the processing module 1302. Any of the other information processed by the processing module 1302 may also be stored in the memory module 1303 .

In some embodiments, information may be received, for example, from the wireless device 250, through a receiving port 1304. In some embodiments, the receiving port 1304 may be for example, connected to the one or more antennas in the nework node 210. In other embodiments, the network node 210 may receive information from another structure in the wireless communications network 200 through the receiving wort 1304. Since the receiving port 1304 may be in communication with the processing module 1302, the receiving port 1304 may then send the received information to the processing module 1302. The receiving port 1304 may also be configured to receive other information.

The information processed by the processing module 1302 in relation to the embodiments of method herein may be stored in the memory module $\$ 303$ which, as stated earlier, may be in communication with the processing module 1302 and the receiving port 1304.

The processing module 1302 may be further configured to transmit or send information to the wireless device 250 or an the node in the wireless communications network 200, through a sending port 1305 , which may be in communication with the processing module 1302, and the memory module 1303.

Those skilled in the art will also appreciate that the module 1301 described above may refer to a combination of analog and digital modules, and/or one or more processors configured with software and/or firmware, e.g. stored in memory, that, when executed by the one or more processors such as the processing module 1302, perform as described above. One or more of these processors, as well as the other digital hardware, may be included in a single application-specific integrated circuit (ASIC), or several processors
and various digital hardware may be distributed among several separate components, whether individually packaged or assembled into a system-on-a-chip (SOC).

Thus; the methods according to the embodiments described herein for the network node 210 are respectively implemented by means of a computer program product, comprising instructions, i.e., software code portions, which, when executed on at least one processor, cause the at least one processor to carry out the actions described herein, as performed by the network node 210 . The computer program product may be stored on a computer-readable storage medium. The computer-readable storage medium, having stored thereon the computer program, may comprise instructions which, when executed on at least one processor, cause the at least one processor to carry out the actions described herein, as performed by the network node 210. In some embodiments, the computer-readabse storage medium may be a non-fransitory computer-readable storage medium.

To perform the method actions described above in relation to Figures $9,10,11$ and 12, the wireless device 250 is configured to detect the first synchronization signal and the associated information message configured to be sent by the network node 210 , for synchronization of the wireless device 250 with the network node 210 . The wireless device 250 comprises the following arrangement depicted in Figure 14. In some embodiments, the network node 210 may have performed the sending utilizing beamforming. The network node 210 and the wireless device 250 are configured to operate in the wireless communications network 200. The detaised description of some of the following corresponds to the same references provided above, in relation to the actions described for the wireless device 250, and will thus not be repeated here.

The wireless device 250 may be configured to detect the first synchronization signal. The first synchronization signal is configured to have been sent by the network node 210 in N OFDM symbols wifmin a subframe, at least once in a time and frequency position in every one of the N OFDM symbols. N is equal or larger than 2.

This may be performed by a detecting module 1401 in the wireless device 250.
In some embodiments, the wireless device 250 is further configured to detect the associated information message at the pre-defined time and frequency position. The predefined time and frequency position is relative to the time and frequency position of the
detected first synchronization signal. The associated information message is associated with the first synctronization signal.

This may be also be performed by the detecting module 1404 .
The first synchronization signal may be a PSS.

In some embodiments, the associated information message comprises the associated second synchronization signal. The second synchronizakion signal may be a SSS.

In some embodiments, to detect the associated information message comprises to match the sequence of the detected associated information message to the one of the set of possible information message sequences.

In some embodiments, the associated information message comprises the associated FBCH .

In some embodiments, the associated PBCH further comprises associated system information.

The associated information message comprises the index.

The wireless device 250 may be configured to obtain the subframe timing and/or the frame timing by detecting the index comprised in the associated information message.

This may be performed by an obtaining module 1402 in the wireless device 250.
In some embodiments, the associated information message is different in each OFDM symbol wherein the associated information message is configured to be sent by the network node 210. the associated information message comprises the index, and the wireless device 250 is further configured to obtain the subframe timing by detecting the index.

This may be aiso be performed by the obtaining module 1402.
In some embodiments, the associaked information message is the same in each OFOM symbol wherein the associated information message is configured to be sent by the network node 210 within a subframe, the associated information message is different in each subframe wherein the associated information message is configured to be sent by the network node 210 within a transmitted frame, the associated infonmation message comprises the index, and the wireless device 250 is further configured to obtain the frame kiming by detecting the index.

This may be also be performed by the obtaining module $\$ 402$.
In some embodiments, the associated information message comprises the associated SSS, the index is the sequence index, and the wireless device 250 is further
configured to obtain the frame timing by detecting the sequence index comprised in the associated SSS.

This may be also be performed by the obtaining module 1402.
In some embodiments, the associated information message comprises the associated system information, and the wireless device 250 is further configured to obtain the frame timing by detecting the index comprised in the associated system information.

This may be also be performed by the obtaining module 1402.
In some embodiments, the sequence index comprises the index representing the sequence out of the set of possible sequences.

In some embodiments, the wireless device 250 may be configured to discard detecked OFDM symbols configured to be sent by the network node 210, wherein detection of the first synchronization signal in the discarded detected OFDM symbois is poor according to the threshold.

This may be performed by a discarding module 1403 in the wireless device 250.

In some embodiments, the wireless device 250 may be configured to send the message to the network node 210, the message comprising the information about which beam of the beams configured to be beamformed by the network node 210 to send the first synchronization signat and the associated information message was used by the wireless device 250 for synchronization.

This may be performed by a sending modute 1404 in the wireless device 250.

The embodiments herein for detecting the first synchronization signal and the associated information message sent by the network node $210 \mathrm{e} . \mathrm{g}$, uthizing beamforming, for synchronization of the wireless device 250 with the network node 210 may be implemented through one or more processors. such as the processing module 1405 in the wireless device 250 depicted in Figure 14 , together with computer program code for performing the functions and actions of the embodiments herein. The program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the embodiments herein when being loaded into the in the wireless device 250 . One such carrier may be in the form of a CD ROM disc It may be however feasible with other data carners such as a memory stick. The computer program code may furthermore be provided as pure program code on a server and downioaded to the wireless device 250.

The wireless device 250 may further comprise a memory module 1406 comprising one or more memory units. The memory module 1406 may be arranged to be used to store data in relation to applications to perform the methods herein when being executed in the wireless device 250 . Memory module 1406 may be in communication with the processing module 1405. Any of the other information processed by the processing module 1405 may also be stored in the memory module 1406.

In some embodiments, information may be received from, for example the network node 210, through a receiving port 1407. In some embodiments, the receiving port 1407 may be, for example, connected to the one or more antennas in the wireless device 250. In other embodiments, the wireless device 250 may receive information from another structure in the wireless communications network 200 through the receiving port 1407. Since the receiving port 1407 may be in communication with the processing module 1405, the receiving port 1407 may then send the received information to the processing module 1405. The receiving port 1407 may also be configured to receive other information.

The information processed by the processing module 1405 in relation to the embodiments of method herein may be stored in the memory module 1406 which, as stated earlier, may be in communication with the processing module 1405 and the receiving port 1407.

The processing module 1405 may be further configured to transmit or send information to the network node 210, through a sending port 1408, which may be in communication with the processing module 1405, and the memory module 1406.

Those skilsed in the art will also appreciate that the different modules 1401-1404 described above may refer to a combination of analog and digital modules, and/or one or more processors configured with software and/or firmware, e.g., stored in memory, that, when executed by the one or more processors such as the processing module 1405 , perform as described above: One or more of these processors: as well as the other digital hardware, may be included in a single application-specific integrated circuit (ASIC), or several processors and various digital hardware may be distributed among several separate components, whether individually packaged or assembled into a system-on-achip (SoC).

Thus, the methods according to the embodiments described herein for the wireless device 250 are respectively implemented by means of a computer program product: comprising instructions, i.e., soffware code portions, which, when executed on at least one processor: cause the at least one processor to carry out the actions described herein, as performed by the wreless device 250 . The computer program product may be stored on a computer-readable storage medium. The computer-readable storage medium, having stored thereon the computer program, may comprise instructions which, when executed on at least one processor, cause the at least one processor to carry ouf the actions described herein. as performed by the wireless device 250 . In some embodiments, the computer-readable storage medium may be a nontransitory computerreadable skorage medium

When using the word "comprise" or "comprising" it shat be interpreted as nonlimiting, i.e meaning "consist at least of".

The embodiments herein are not limited to the above described preferred embodiments. Various atematives, modifcations and equivalents may be used. Therefore, the above embodiments should not be taken as limiting the scope of the invention.

CLAAMS:

1. A method performed by a network node (210) for sending to a wireless device (250) a first synchronization signal and an associated information message, for synchronization of the wireless device (250) with the network node (210), the network node (210) and the wireless device (250) operating in a wireless communications network (200), the method comprising:
sending (801) the first synchronization signal in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols, wherein N is equal or larger than 2 , and,
for each sending of the first synchromization signal, sending (802) an associated information message at a pre-defined time and frequency position in an OFDM symmot, which pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal, and which associated information message is associated with the first synchronization signal.
2. The method of claim 1, wherein the first synchronization signal is a Primary Symchronization Signal, PSS, and wherein the associated information message comprises an associated second synchronization signal, wherein the second synchronization signal is a Secondary Synchronization Signal, SSS.
3. The method of any of claims 1-2, wherein the associated information message comprises an associated Physical Broadcast CMannel, FBCH, wherein the associated PBCH further comprises associated system informakion.
4. The method of any of claims 1-3; wherein the first synchronization signal is sent in a beam state, and wherein the associated information message is sent using the same beam state as the first synchronization signal associated with the associated information message.
5. The method of any of clains $1-4$, wherein the associated information message is different in each OFDM symbol wherein the associated information message is sent, wherein the associated information message comprises an index, and
wherein a subframe timing is obtainable by the wireless device (250) by detecting the index.
6. The method of any of clams $1-4$, wherein the associated information message is the same in each OFDM symbol wherein the associated information message is sent within a subframe, and wherein the associated information message is different in each subframe wherein the associated information message is sent within a transmitted frame, wherein the associated information message comprises an index, and wherein a frame timing is obtainable by the wireless device (250) by detecting the index.
7. The method of claims 2 and 5 , wherein the associated information message comprises the associated SSS, wherein the index is a sequence index, and wherein the subframe timing is obtainable by the wireless device (250) by detecting the sequence index comprised in the associated SSS.
8. The method of any of claims 2 and 6 , wherein the associated information message comprises the associated SSS, wherein the index is a sequence index. and wherein the frame timing is obtainable by the wireless device (250) by detecting the sequence index comprised in the associated SSS.
9. A method perfomed by a wireless device (250) for detecting a first synchronization signal and an associated information message sent by a network node (210) for synchronization of the wireless device (250) with the network node (210), the network node (210) and the wireless device (250) operating in a wireless communications network (200), the method comprising:
detecting $\{901\}$ the first synchronization signal, wherein the first synchronization signal has been sent by the network node (210) in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbois, wherein N is equal or larger than 2 , and,
detecting (903) the associated information message at a pre-defined time and frequency position, which pre-defined time and frequency position is relative to the time and frequency position of the detected first synchronization signal, which associated information message is associated with the first synchronization signal; and
obtaining (004) subframe timing andior frame timing by detecting an index comprised in the associated information message.
10. The method of claim 9 , wherein the first synchronization signal is a Frimary Synchronization Signal, PSS, and wherein the associated information message comprises an associated second synchronization signal, wherein the second synchronization signal is a Secondary Synchronization Signak, SSS.
11. The method of claim 10, wherein detecting the associated information message comprises matching a sequence of the detected associated information message to one of a set of possible information message sequences.
12. The method of any of any of claims 9-11, wherein the associated information message comprises an associated Fhysical Broadcast CHannel, PBCH, wherein the associated PBCH further comprises associated system information.
13. The method of any of claims $9-12$, wherein the associated information message is different in each OFDM symbol wherein the associated information message is sent by the network node (210), wherein the associated information message comprises an index. and wherein a subframe timing is obtained by the wireless device (250) by detecting the index.
14. The method of any of clainss $9-12$, wherein the associated information message is the same in each OFDM symbol wherein the associated information message is sent by the network node (210) within a subframe, and wherein the associated information message is different in each subframe wherein the associated information message is sent by the network node (210) within a transmitted frame, wherein the associated information message comprises an index, and wherein a frame timing is obtained by the wireless device (250) by detecting the index.
15. The method of claims 11 and 13 , wherein the associated information message comprises the associated SSS, wherein the index is a sequence index, and wherein the subframe timing is obtained by the wireless device (250) by detecting the sequence index comprised in the associated SSS.
16. The method of any of claims 11 and 14, wherein the associated information message comprises the associated SSS, wherein the index is a sequence index
and wherein the frame timing is obtained by the wireless device (250) by detecting the sequence index comprised in the associated SSS.
17. The method of claims 12 and 13 and 15, wherein the associated information message comprises the associated system information, and wherein the frame timing is obtained by the wireless device (250) by detecting the index comprised in the associated system information.
18. A network node (210) configured to send to a wireless device (250) a first synchronization signal and an associated information message, for synchronization of the wireless device (250) with the network node (210), the network node (210) and the wireless device (250) being configured to operate in a wireless communications network (200), the network node (210) being configured to:
send the first synchronization signal in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols; wherein N is equal or larger than 2 , and,
for each sending of the first synchronization signal, send an associated information message at a pre-detined time and frequency position in an OFDM symbol, which pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal, and which associated information message is associated with the first synchronization signai.
19. The network node (210) of claim 18 , wherein the first synchronization signal is a Primary Synchronization Signal, PSS, and wherein the associated information message comprises an associaked second synchronization signal, wheren the second synchronization signal is a Secondary Synchronization Signas: SSS.
20. The network node (210) of any of claims 18-19, wherein the associated infomation message comprises an associated Physical Broadcast CHanne\}, PBCH, wherein the associated PECH further comprises associated system information.
21. The network node (210) of any of claims 1820 , wherein the network node (210) is further configured to send the first synchronization signal in a beam state, and to send the associated information message using the same beam state as the first synchronization signal associated with the associated information message.
22. The network node (210) of any of claims 18-2\%, wherein the associated information message is different in each OFDM symbol wherein the associated information message is configured to be sent by the nework node (210), wherein the associated information message comprises an index, and wherein a subframe timing is obtainable by the wireless device (250) by dekecting the index.
23. The nework node (210) of any of claims 18-21, wherein the associated infomation message is the same in each OFDM symbol wherein the associated information message is configured to be sent by the network node (210) within a subframe. and wherein the associated information message is ditterent in each subframe wherein the associated information message is configured to be sent by the network node (210) within a transmitted frame, wherein the associated information message comprises an index, and wherein a frame timing is obtainable by the wireless device (250) by detecting the index.
24. The network node (210) of claims 19 and 22 , wherein the associated information message comprises the associated SSS. wherein the index is a sequence index: and wherein the subframe timing is obtainable by the wireless device (250) by detecting the sequence index comprised in the associated $S S S$.
25. The nework node (210) of any of claims 19 and 23 , wherein the associated information message comprises the associated SSS, wherein the index is a sequence index, and wherein the frame timing is obtainable by the wireless device (250) by detecting the sequence index comprised in the associated SSS.
26. A wreless device (250) configured to detect a first synchronization signal and an associated information message configured to be sent by a network node (210), fos synchronization of the wireless device (250) with the network node (210), the network node (210) and the wireless device (250) being configured to operate in a wireless communications network (200), the wireless device (250) being configured to:
detect the first synchronization signal, wherein the first synchronization signal is configured to have been sent by the network node (210) in N OFDM symbois within a subframe, at least once in a time and frequency position in every one of the N OFDM symboss, wherein N is equal or larger than 2 , and,
detect the associated information message at a pre-defined time and frequency position, which pre-defined thme and frequency position is relative to the time and frequency position of the detected first synchronization signal, and which associated information message is associated with the first synchronization signal: and
obtain subframe fiming andior frame timing by defecting an index comprised in the associated information message.
27. The wireless device (250) of claim 26, wherein the first synchronization signal is a Primary Synchronizakion Sienal, PSS, and wherein the associaked information message comprises an associated second synchronization signal, wherein the second synchronization signal is a Secondary Synchronization Signal, SSS.
28. The wireless device (250) of claim 27, wherein to detect the associated information message comprises to match a sequence of the detected associated information message to one of a set of possible information message sequences.
29. The wireless device (250) of any of claims $26-28$, wherein the associated information message comprises an associated Physical Groadcast CHannel, PBCH, wherein the associated PBCH further comprises associated system information.
30. The wireless device (250) of any of claims $26-29$, wherein the associated information message is different in each OFDM symbol wherein the associated information message is configured to be sent by the network node (210), wherein the associated informakion message comprises an index, and wherein the wireless device (250) is further configured to obtain a subframe timing by detecting the index.
31. The wireless device (250) of any of claims 26-29, wherein the associated information message is the same in each OFDM symbol wherein the associated information message is configured to be sent by the network node (210) within a subframe, and wherein the associated information message is different in each subframe wherein the associated information message is configured to be sent by the network node (210) within a transnitted frame, wherein the associated
information message comprises an index, and wherein the wireless device (250) is further configured to obtain a frame timing by detecting the index.
32. The wireless device (250) of claims 27 and 30 , wherein the associated information message comprises the associated SSS, wherein the index is a sequence index: and wherem the wireless device (250) is further configured to obtain the subframe timing by detecting the sequence index comprised in the associated SSS.
33. The wireless device (250) of any of chaims 27 and 31 , wherein the associated information message comprises the associated SSS: wherein the index is a sequence index, and wherein the wireless device (250) is further configured to obtain the frame timing by detecting the sequence index comprised in the associated SSS
34. The wiseless device (250) of clams 29 and 31 and 33 , wherein the associated information message comprises the associated system infomation, and wherein the wireless device (250) is further configured to obtain the frame timing by detecting the index comprised in the associated system information.
35. Computer program, comprising instructions withich, when executed on at least one processor, cause the at least one processor to carry out the method according to any one of claims 1 to 8.
36. A computer-seadable storage medium, having stored thereon a computer program, comprising instructions which, when executed on at least one processor, cause the at least one processor to carry out the method according to any one of claims 1 to 8.
37. Computer program, comprising instruckions which, when executed on at least one processor, cause the at least one processor to carry out the method according to any one of claims 9 to 17 .
38. A computerneadable storage medium, having stored thereon a computer program, comprising instructions which, when executed on at least one processor, cause the at leask one processor to carry out the method according to any one of claims 9 to 17.

1/12

Figure 1

IPR2022-00468
Apple EX1016 Page 1191

Figure 3

Figure 4

Figure 5

$\stackrel{\perp}{\stackrel{\rightharpoonup}{\sim}}$

Figure 7

5/12

Figure 8

$$
\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}
$$

PCTSE2014/051144

Figure 10

Figure 13

Figure 14

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
A. CLAMAFICATON OF SUBJECT MATTER \\
INV. HOA \(313 / 00\) \\
ADO. \\

\end{tabular}} \\
\hline \multicolumn{4}{|l|}{E. FiELIS SEAPCMES} \\
\hline \multicolumn{4}{|l|}{ H04J HOASV} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{ EPO-Internal, wil Data, INSPEC} \\
\hline \multicolumn{4}{|l|}{C. DOCUKENTS CONSMERED TO BE REYEVANS} \\
\hline Csoegoy \& Otation ef document, with indiontion, where aporownite, of the \& evant passuges \& neievani to oksin No. \\
\hline \(X\)

A \& US 2012/307726 A1 (PI ZHOUYUE 6 December 2012 (2012~12~05) \& 5] ET AL)

$$
\begin{aligned}
& 32] \\
& 527 \\
& 86]
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1-6,9, \\
& 10,12, \\
& 13, \\
& 17-23, \\
& 25,27, \\
& 29,30, \\
& 34 \sim 30 \\
& 3,6,11, \\
& 14-16, \\
& 24,25, \\
& 28,31-33
\end{aligned}
$$
\]

\hline \multicolumn{4}{|l|}{}

\hline \multicolumn{4}{|l|}{}

\hline \multicolumn{2}{|l|}{| Onis ci the sextrat completion of the irtemstionsl saarch |
| :--- |
| 14 January 2815 |} \& \multicolumn{2}{|l|}{Duse of maing of the intermationa semoh raport

$$
22 / 81 / 2015
$$}

\hline Fiame and \& | difing adereses of the ssar |
| :--- |
| |
| NL - 2290 Hy figems |
| Tef ($\mathrm{F} 3:=10$) $3433 \cdot 234 \mathrm{O}$. |
| Fax. $\{+31.70\}$ 亿 $20-3016$ | \& \multicolumn{2}{|l|}{| Authorized officer: |
| :--- |
| Earcinese, Anmamaria |}

\hline
\end{tabular}

INTERNATIONAL SEARCH REPORT nufomatfon on patent temlly ssembers					Gusernational applfcation Ne PCT/5E2014/051144	
Pasent:document ated in searmheremi		Pubscation date		Pasens fanmy mernber (s)		Publication dale
US 2012307726	A1	06-12-2012	$C H$ EP $J P$ $K R$ $U S$ $W 0$	$\begin{array}{r} 103703709 \\ 2715959 \\ 2014520433 \\ 20140835930 \\ 2012307728 \\ 2012165908 \end{array}$	$\begin{aligned} & 19 \mathrm{~A} \\ & 9 \mathrm{~A} 2 \\ & 3 \mathrm{~A} \\ & 6 \mathrm{~A} \\ & 6 \mathrm{~A} 1 \\ & 14 \mathrm{~A} 2 \end{aligned}$	$\begin{aligned} & 02-04-2014 \\ & 09-04-2014 \\ & 21-08-2014 \\ & 24-03-2014 \\ & 06-12-2012 \\ & 06-12-2012 \end{aligned}$

(19) World Intellectan Poperty Oryanization
Inemantional suread

(43) International Publication Date 18 August 2016 (IS.08.2016)

(30) International Pubication Number WO 2016/130354 A1
(53) Intermatimba\} 3ratenat Classificatam: 570.4) 4S/I (2000.01)
(23) Xuternatiman\{ Application Number:

अCETS2016015942
(22) Internaticmad Mong Onte:

1 Fehrsary 20:0101.02.2019)
(25) Filing I amguage:
(26) Pubsication L. Bugurge:

Fonlish
(3if) friority 13ata:
 34804.095 $2013 \mathrm{y} 2085(20.972015) \quad$ OS

(72) Anventors: KLHEPA, Keinemi 5775 Mordouse Mrwe

 92123-1714 (6S).

AO, AT, AC, AZ, BA, BB, BC, BH, BN, $12, B W, B Y$, $\mathrm{BL}, \mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{OO}, \mathrm{CX}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{OM}$,

 $K Z, L A, L C, L K, L R, L \in, L K, N \&, M D, M E, ~ R G$, MK, MA, MW, MX, MY, MZ, NA, NO, N, NO, NZ, OM, PA, $3 \mathrm{E}, \mathrm{PC}, \mathrm{M}, \mathrm{ML}, \mathrm{P}, \mathrm{OA}, 20 \mathrm{O}, \mathrm{RS}, \mathrm{RU}, \mathrm{RW}, \mathrm{SA}, \mathrm{SC}$, $S \mathrm{O}, \mathrm{SE}, \circlearrowleft \mathrm{S}, \mathrm{SE}, \mathrm{SL}, \mathrm{SN}, \mathrm{ST}, \mathrm{SV}, \mathrm{SY}, \mathrm{TH}, \mathrm{T}, \mathrm{TM}, \mathrm{TN}$, TR,TT,TL,UA, UG, US,UZ, VC,VN, ZA, ZM, ZW.
(84) Dewinnted States onkes othernas indicoted, for enty
 GM, KB, KR, LS, MW, WZ, NA, RW, SD, SL, ST, S\%,

 $1 \mathrm{~V}, \mathrm{MO}, \mathrm{MK}, \mathrm{MT}, \mathrm{N}, \mathrm{OO}, \mathrm{M}, \mathrm{PT}, \mathrm{RO}, \mathrm{RS}, \mathrm{SE}, \mathrm{SK}, \mathrm{SK}$,
 (W, KN, MK, ME, NP, SN, TY, T(3).

Declaratioms umder Rele 4.17;
 pacm thus 3 / /rob)
as to the dipheconts ontidemen to crom the ratury of the

(37) Abstract: Mothers, syanms, and devices ame detctibed bor whekss

 texi indoncation based as leas ing pat on the request.

พO 2016/130354 A1 |n |l|l|
Pubhished:

INCREMTATAL TRANSMISSION OF SYSTEMINFORMATION

CROSSREEERENCES

[0001] The present Application for Paten chams prionty to US Patent Application No 14804,095 by Kubota et al, entitled "Incremental Transmission of System Yoformation," filed July 20, 2015, and U. S. Provisional Patent Application No, 62/114, 158 by Kubota et al., entited "Incremental Transmission of System Information," filed Febraary 10, 2015; each of which is assigned to the assignee hereof.

BACKGROUND

FIELD OE THE DISCLOSURE

[0002] The presen disclosure, for example, relates to wireless commumication systems, and more paticularly to the transmbsion of on-demand system information in a wreless communcation system, such as a wireless communcation system having a user equipnent (UE)-centric network.

DESCRIPTION OF RELATED ART

10003] Wircless commonicaion systems are widely deployed to provide vanous ypes of commonication content such as voice, video, packet data, messaging, broadcast, and so on These systems may be multiple-access systems capable of supporting communication with mutiple users by shang the avalable system resources (e.g., time, frequency, and power). Examples of such multiple-aceess systems include codedivision multiple access (CDMA) systems time-dvision mutiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems.

10004] By way of example, a wireless moltiplenacess commanication system may indude a number of base stations, each simultaneously supporting commanication for multiple commonication devices, otherwise known as user equipments (UEs). A base station may communicate with UES on downlink channels (e. g., for transmissions from a base station to a UE) and uplink channels (e. . . for transmissions from a UE to a base station).

IPR2022-00468

10005] In a wireless multiple-access commumication system, each cell of a network may broadcast synchronization signals and system information for UEs to discover. Upon discoverng the synchonization signals and system infomation broadeast by a particular cell, a UE may perform an minal access procedure to access the netwod via the cell. The cell via which the UE accesses the network may become the UE's serving cell. As the UE moves whin the network, the UE may discover other cells (e.g., neighbong cells) and determine whether a handover of the UE to a neighbring cell or a cell reselection is warranted.

SUMMARY

[0006] The present disclosure generally relates to wireless communioation systems, and more particularly to the transmission of on-demand system information in a wireless communication system, such as a wireless communication system having a user equipment (UE)-centric medium access contro (MAC) layer. Wireless communication systems such as Long Term Evolution (TTE) commonication systems or LTE-Advanced (LTE-A) communication systems have a network-centric MAC layer. In a wireless communication system having a network-centric MAC layer, the network perpetually broadcasts synchronization signals and system infomation for UEs to discover. Upon discovering the synchronization signals an system information broadcast by a particular cell, a UE may perform an initial access procedure to access the network via the cell. Once connected to the network, the UE may discover other cells as it moves whith the network. The other cells may broadcast different synchronization signals or system information. A wireless communication system having a network-centrio MAC layer therefore enals various signak broadcasts, which broadcasts consume power and may or may not be received or used by some or all of a cell's UES.
[0007] A wieless commonication system having a network-conic MAC layer also places relatively more of the netwok processing on UEs (e,g. a UE identifies a first serving cell upon initially accessing the network, and then identifies and monitors handover targets (other serving cells) as part of its mobility management). The present disclosure therefore describes a wireless communication system in which system infomation may be tranmitted aster being requested by one or more UES. In some cases, the system information may be transmitted to a UE in a micast or narrowbeam operation. In somecases, the wireless
commumication system in which the system information is transmited may have a UE-centric MAClayer.
[0008] In a first set of illustrative examples, a method for wireless conmunication is described thone configuration, the method may inchude receiving, at a UE, a frst set of system information; detemining, based at least in part on the first set of system information, that additional system infomation is available; transmitting a request for the additional system information and receiving the additional sysem information at the UE
[0009] In some embodiments of the method, receiving the frat set of system information may include receiving an indication of one or more sets of additional system information that are available. In some embodiments of the method, transmitting the request may include identifying in the request, one or more sets of additional system infomation. In some embodiments of the method receiving the hirst set of system information may include receiving master system information, where the master system information includes system information that allows the UE to perform an initial access of a network using one or more of an identincation of the network, an identification of a base station in the network, cell selection configuration and access restrictions, or network access configuration information. In some embodiments of the method, receiving the additional system information may include receiving system infomation indicating which radio access techologies (RATs) are avalable in a region and how the UE is to select an available RAT. In some embodiments of the method, receiving the additional system information may include receiving system infomation indicating which services are available in a segion and bow the UE is to obtain an avalable service. In some embodiments of the method, receiving the additional system infomation may include receiving system information relating to a maltimedia broadcast multicast service (MBMS) or a public waming system (FWS) service for some embodiments of the method, receiving the additional system information may inchde receiving system infomation relating to location, positioning, or navigation services.
[0010] In some embodiments of the method, receiving the first set of system information may include receiving the first set of system information in response to a master systens infomation request. Hin some of these examples, the method may inchade sending the master system information request in accordance with information decoded from a downlink chamel
indicating that the master system information is received via request. The downink channe may include a syochronzation signal.
[001] In some embodiments of the method, tansmiting the request may include including one or more capabilities of the UE in the request ln some of these examples, receiving the additional system information may include receiving the additional system infomation based at least in part on the one or more capabilities of the UE included in the request
[0012] In some embodimens of the method, transmittins the request may include including a location of the UE in the request hame of these examples, receiving the additional system information may include recerving the additional system information based a least in part on the location of the UE inchuded in the request.
[0013] In some embodiments of the method, receiving the additional system information may ancude receiving the additional system information based at least in part on a determined location of the UE. In some embodiments, the method may include receiving a location signal identitying a detemined location of the UF, and tansmiting the request for the additional system infommation based at least in part on the determined location of the UE In some embodiments of the method, determinng that addional system information is avalable may inchude identifyng a distance between a current location of the UE and a location where the UE obtained the first set of system information, and determining that the identifsed distance exceeds a predetermined threshold.
[0014] In some embodiments of the method, fransmitting the request may inchade including an identification of the UR in the request. In some of these examples, receiving the addional system fotomation may include receiving the additional system information based ateast in par on the sdentifation of the UE included in the request. ha some embodiments of the method, transmiting the request may inchude transmiting a plurality of requests for the additional system infomation.
[0015] In a second set of mustrabye examples, an apparatus for witeless communicamon is described. In one consiguration, the apparatus may include means for receiving, at a UE, a first set of system information means for detemining, based at least in part on the first set of system information, that additional system infomaion is avalable, means for manmitting a
request for the additional system information; and means for receiving the additional system information at the UE In some examples, the apparatus may further include means for implementing one or more aspects of the method for wireless communication described above with respect to the first set of illustrative examples.
[0016] In a third set of illustrative examples, another apparatus for wireless communication is described. In one configuration, the apparatus may include a processor, memory in electronic communication with the processor, and instractions stored in the memory. The instructions may be executable by the processor to receve, at a UE, a first set of system infomation; to determine, based at least in par on the first set of system information, that additional system information is available; to transmit a request for the additional system information; and to receive the additional system infomation at the UE. In some examples, the instructions may also be executable by the processor to implement one or more aspects of the method for wireless commmication described above with respect to the first set of illusirative examples.
[0017] In a fourth set of ilhustrative examples, a non-transitory compterneadable medum storing computer-executable code for wireless communication is described. In one configuation, the code may be executable by a processor to receive, at a user equipment UE, a first set of system information; to determine, based at least in part on the furst set of system information, that additional system information is avallable; to transmit a request for the additional system information; and toreceive the additional system information at the UE In some examples, the code may also be ased to implement one or more aspects of the method for wireless communication described above with respect to the frest set of ilustrative examples.
[0018] In a fifth set of illustrative examples, another method for wireless communication is described. In one configuration, the method may inchude transmitting, fron a base station, a first set of system information; receiving a request for additional system information; and transmitting the additional system information based at least in part on the request
[0019] In some embodiments of the method, fransmitting the first set of system infomation may include transmitting an indication of one or more sets of additional system information that are avaibable. In some embodiments of the method, receiving the request may include receiving multiple requests for additional system information corresponding to
multiple sets of additional system information to be tansnitted. In some embodiments of the method, fansmitting the first set of system infomation may inchude transmitting master system information, where the master system infomation includes system information that allows a UE an initial access of a network using one or more of an identification of the network, an identification of the base station, cell selection configuration and access restrictions, or network access configuration. In some embodiments of the method, transmitting the addtional system information may include transmiting system information indicating which RATs ate available in a region and how a UE is to select an available RAT. In some embodiments of the method, transmitting the additional systen information may include traxmitting system infomation indicating which services are avalable in a segion and how a UE is to obtain an available service. In some embodiments of the method, transmitting the additional system information may include transmitting system information relating to location, positioning, or navigation services. In some embodiments of the method, transmitting the first set of system information may include fransmitting the first set of system information in response to recesing a master system information request.

10020 In some embodiments of the method, receiving the request may include receiving, in the request, one or mose capabilities of a UE tranmiting the request. In some of these examples, the method may include identifying the additional system information to transmit based at least in part on the one or more capabilities of the UE included in the request.
[0021] In sone embodiments of the method, receiving the request may include receiving, in the request, a location of a UE transmiting the request. In some of these examples, the method may inolude identify nge the additional system imonnation to tamsmit based at least in part on the location of the UE included in the request. In some embodiments, the method may include determining a location of a UE transmitting the request, and identifying the additional system information to transmit based at least in part on the location of the GE In some embodiments, the method may include receiving a location of a UE transmitung the request, and identifying the additional system information to transmit based at least in part on the location of the UE
[0022] In some embodiments of the method, receiving the request may include receiving, in the request, an identification of a UE transmitting the request. In some of these examples, the method may include identifying the additional system information to transmit based at
least in part on the identification of the UF included in the request. In some examples of the method, identifyng the additional system information to transmit may include accessing a database that includes the identification of the UE tranmiting the request and one or more capabilities of the UE
[0023] In a sixth set of illustrative examples, another apparatas for wireless communcation is described. In one configuration, the apparatus may include means for transmiting, from a base station, a first set of system infomation, means for receiving a sequest for additionad system information; and means for tamsmitting the additional system information based at least in part on the request. In some examples, the aparatus may further include means for implementing one or more aspects of the method for wireless communication described above with respect to the fifth set of illustrative examples.
[0024] In a seventh set of illustrative examples, another apparatus for wireless communication is described. In one configuration, the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be execuable by the processor to transmbt, from a base station, a first set of system information; to receive a request for additional system information, and to transmit the additional system information based at least in part on the request. In some examples, the instructions may also be executable by the processor to implement one or more aspects of the method for wireless communication described above with respect to the fitth set of illustrative examples.
[0025] In an eighth set of illustrative examples, another non-transitory computer-readable medium storing computerexecutable cole for wireless commanication is described. In one coniguration, the code may be execuable by a processor to transmit, from a base station, a first set of system infomation to receive a request for additional system information; and to transmit the additional system information based at least in part on the request. In some examples, the code may also be used to implement one or more aspects of the method for wreless communication described above with respect to the fifth set of illustrative examples,
[0026] The foregoing has outlined rather broady the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying

