Abstract
Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of
water and soil, requires that these nodes be very small, lightweight, untethered, and unobtrusive. The problem of localization, that is, determining
where a given node is physically located in a network, is a challenging one, and yet extremely crucial for many of these applications. Practical
considerations such as the small size, form factor, cost and power constraints of nodes preclude the reliance on GPS of all nodes in these
networks. In this article we review localization techniques and evaluate the effectiveness of a very simple connectivity metric method for
localization in outdoor environments that makes use of the inherent RF communications capabilities of these devices. A fixed number of
reference points in the network with overlapping regions of coverage transmit periodic beacon signals. Nodes use a simple connectivity metric,
which is more robust to environmental vagaries, to infer proximity to a given subset of these reference points. Nodes localize themselves to the
centroid of their proximate reference points. The accuracy of localization is then dependent on the separation distance between two adjacent
reference points and the transmission range of these reference points. Initial experimental results show that the accuracy for 90 percent of our
data points is within one-third of the separation distance. However, future work is needed to extend the technique to more
cluttered environments.
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ireless networks of sensors
greatly extend our ability to monitor and control the physical
world. The availability of microsensors and low-power wire-
less communications enables the deployment of densely dis-
tributed sensor/actuator networks for a wide range of
biological and environmental monitoring applications, from
marine to soil and atmospheric contexts. Networked sensors
can collaborate and aggregate the huge amount of sensed
data to provide continuous and spatially dense observation
of biological, environmental, and artificial systems. Applica-
tions include environmental monitoring of water and soil,
tagging small animals unobtrusively, and tagging small and
lightweight objects in a factory or hospital setting. Instru-
menting the physical world, particularly for such applica-
tions, requires that the devices we use as sensor nodes be
small, lightweight, unobtrusive, and untethered. This imposes
substantial restrictions on the amount of hardware that can
be placed on these devices.

In these large sensor network systems, we need nodes to
be able to locate themselves in various environments and on
different distance scales. This problem, to which we refer as
localization,! is a challenging one, yet extremely crucial for
many applications of very large networks of devices. For
example, localization opens up new ways of reducing power
consumed in multihop wireless networks. In context-aware
applications, localization enables the intelligent selection of
appropriate devices, and may support useful coordination
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I We borrow the term localization from robotics, where it refers to the
problem of determining the position of a mobile robot in some coordinate
system.

among devices. The desired granularity of localization is itself

application-dependent.

The Global Positioning System (GPS) [1] solves the prob-
lem of localization in outdoor environments for PC-class
nodes. However, for large networks of very small, cheap, low-
power devices, practical considerations such as size, form fac-
tor, cost, and power constraints of the nodes preclude the use
of GPS on all nodes. In this article we address the problem of
localization for such devices, with the following design goals:

* RF-based: We focus on small nodes that have some kind of
short-range radio frequency (RF) transceiver. Our primary
goal is to leverage this radio for localization, thereby eliminat-
ing the cost, power, and size requirements of a GPS receiver.

* Receiver-based: In order to scale well to large distributed
networks, the responsibility for localization must lie with
the receiver node that needs to be localized and not with
the reference points.

* Ad hoc: In order to ease deployment, we desire a solution
that does not require preplanning or extensive infra-
structure.

* Responsiveness: We need to be able to localize within a fair-
ly low response time.

* Low energy: Small untethered nodes have modest processing
capabilities and limited energy resources. If a device uses
all its energy localizing itself, it will have none left to per-
form its task. Therefore, we desire to minimize computa-
tion and message costs to reduce power consumption.

* Adaptive fidelity: In addition, we want the accuracy of our
localization algorithms to be adaptive to the granularity of
available reference points.

This article uses an idealized radio model and proposes a
simple connectivity-based localization method for such devices
in unconstrained outdoor environments. It leverages the
inherent RF communications capabilities of these devices. A
fixed number of nodes in the network with overlapping
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regions of coverage serve as reference points and transmit peri-
odic beacon signals. Nodes use a simple connectivity metric to
infer proximity to a given subset of these reference points and
then localize themselves to the centroid of the selected (proxi-
mate) reference points.
The article makes the following contributions:
* It presents a detailed exploration and classification of the
design space and work done in the area of localization.
¢ It proposes a method for coarse-grained localization based
on an idealized radio model, and demonstrates its validity
and applicability in outdoor unconstrained environments.
* It describes a simple implementation of the model and pre-
sents initial results.

Related Work

Localization approaches typically rely on some form of com-
munication between reference points with known positions
and the receiver node that needs to be localized. We classify
the various localization approaches into two broad categories
based on the granularity of information inferred during this
communication. Approaches that infer fine-grained informa-
tion such as the distance to a reference point based on signal
strength or timing measurements fall into the category of fine-
grained localization methods; those that infer coarse-grained
information such as proximity to a given reference point are
categorized as coarse-grained localization methods.

Fine-Grained Localization

Fine-grained localization methods can be classified further into
range-finding and directionality-based methods, depending on
whether ranges or angles relative to reference points are being
inferred. Additionally, signal pattern matching methods are also
included in fine-grained localization methods.

In range-finding methods, the ranges of the receiver node
to several reference points are determined by one of several
timing- or signal-strength-based techniques. The position of
the node can then be computed using multilateration (e.g.,
see [2]). We discuss timing- and signal-strength-based range-
finding methods separately.

Timing — The distance between the receiver node and a ref-
erence point can be inferred from the time of flight of the
communication signal.

The time of flight may be calculated using the timing
advance technique which measures the amount the timing of
the measuring unit has to be advanced in order for the
received signal to fit into the correct time slot. This technique
is used in GPS [1] and Pinpoint’s Local Positioning System
(LPS) [3]. GPS measures one-way flight time, whereas LPS
measures round-trip time (thereby eliminating the need for
time synchronization).

GPS [1] is a wide-area radio positioning system. In GPS
each satellite transmits a unique code, a copy of which is cre-
ated in real time in the user-set receiver by the internal elec-
tronics. The receiver then gradually time shifts its internal
clock until it corresponds to the received code, an event called
lock-on. Once locked on to a satellite, the receiver can deter-
mine the exact timing of the received signal in reference to its
own internal clock. If that clock were perfectly synchronized
with the satellite’s atomic clocks, the distance to each satellite
could be determined by subtracting a known transmission
time from the calculated receive time. In real GPS receivers,
the internal clock is not quite accurate enough. An inaccuracy
of a mere microsecond corresponds to a 300-m error.

Pinpoint’s 3D-iD system [3] is an LPS that covers an entire
three-dimensional indoor space and is capable of determining

the 3-D location of items within that space. The LPS subdi-
vides the interior of the building into cell areas that vary in
size with the desired level of coverage. The cells are each han-
dled by a cell controller which is attached by a coaxial cable to
up to 16 antennas. It provides an accuracy of 10 m for most
indoor applications, although some may require accuracy of 2
m. The main drawback of this system is that it is centralized,
and requires significant infrastructural setup.

Alternately, the time of flight can be calculated by making
explicit time-of-arrival measurements based on two distinct
modalities of communication, ultrasound and radio, as in the
Active Bat [2] and more recently in [4]. These two modalities
travel at vastly different speeds (350 ms~! and 3 x 10-8 ms~1,
respectively), enabling the radio signal to be used for synchro-
nization between the transmitter and the receiver, and the
ultrasound signal to be used for ranging. The Active Bat sys-
tem, however, relies on significant effort for deployment
indoors. Ultrasound systems may not work very well outdoors
because they all use a single transmission frequency (40 kHz),
and hence there is a high probability of interference from
other ultrasound sources.

Signal Strength — An important characteristic of radio
propagation is the increased attenuation of the radio signal as
the distance between the transmitter and receiver increases.
Radio propagation models [5] in various environments have
been well researched and have traditionally focused on pre-
dicting the average received signal strength at a given distance
from the transmitter (large-scale propagation models), as well
as the variability of the signal strength in close spatial proxim-
ity to a location (small-scale or fading models). In the
RADAR system [6], Bahl et al. suggest estimating distance
based on signal strength in indoor environments. They com-
pute distance from measured signal strength by applying a
wall attenuation factor (WAF) based signal propagation
model. The distance information is then used to locate a user
by triangulation. This approach, however, yielded lower accu-
racies than RF mapping of signal strengths corresponding to
various locations for their system. Their RF-mapping-based
approach is quite effective indoors, unlike ours, but requires
extensive infrastructural effort, making it unsuitable for rapid
or ad hoc deployment.

Signal Pattern Matching — Another fine-grained localiza-
tion technique is the proprietary Location Pattern Matching
technology, used in U.S. Wireless Corporation’s RadioCamera
system [7]. Instead of exploiting signal timing or signal
strength, it relies on signal structure characteristics. It turns
the multipath phenomenon to surprisingly good use: by com-
bining the multipath pattern with other signal characteristics,
it creates a signature unique to a given location. The Radio-
Camera system includes a signal signature database for a loca-
tion grid of a specific service area. To generate this database,
a vehicle drives through the coverage area transmitting signals
to a monitoring site. The system analyzes the incoming sig-
nals, compiles a unique signature for each square in the loca-
tion grid, and stores it in the database. Neighboring grid
points are spaced about 30 m apart. To determine the posi-
tion of a mobile transmitter, the RadioCamera system match-
es the transmitter’s signal signature to an entry in the
database. The system can use data from only a single point to
determine location. Moving traffic and changes in foliage or
weather do not affect the system’s capabilities. The major
drawback of this technique, as with RADAR [6], is the sub-
stantial effort needed for generation of the signal signature
database. Consequently, it is not suited for the ad hoc deploy-
ment scenarios in which we are interested.
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walls). On the other hand, the same technique
cannot be applied using RF in indoor environ-
ments, because RF propagation in indoor envi-
ronments suffers from severe multipath effects
that make it impossible to limit the RF range to
exactly within a room. The short range of IR,
which facilitates location, is also a major draw-

[} back of these systems because the building has

to be wired with a significant number of sensors.

In the few places where such systems have been

2 * 2 Grid of reference points 3 * 3 Grid of reference points deployed, sensors have been physically wired in
Fewer and larger localization regions More and smaller localization regions every room of the building. Such a system scales

poorly, and incurs significant installation, config-
uration, and maintenance costs. IR also tends to

W Figure 1. Granularity of localization regions vs. range overlap.

Directionality — Another way of estimating location is to com-
pute the angle of each reference point with respect to the
mobile node in some reference frame. The position of the
mobile node can then be computed using triangulation methods.

An important example of directionality-based systems are
the VOR/VORTAC stations [8], which were used for long dis-
tance aviation navigation prior to GPS. The VOR station
transmits a unique omnidirectional signal that allows an air-
craft aloft to determine its bearing relative to the VOR sta-
tion. The VOR signal is electrically phased so that the
received signal is different in various parts of the 360° circle.
By determining which of the 360 different radials it is receiv-
ing, the aircraft can determine the direction of each VOR sta-
tion relative to its current position.

Small aperture direction finding is yet another directionali-
ty-based technique used in cellular networks. It requires a
complex antenna array at each cell site location. The antenna
arrays can in principle work together to determine the angle
(relative to the cell site) from which a cellular signal originat-
ed. When several cell sites can determine their respective
angles of arrival, the cell phone location can be estimated by
triangulation. There are two drawbacks of this approach
which make it inapplicable to our application domain. The
cost of the complex antenna array implies that it can be
placed only at the cell sites. Second, the cell sites are respon-
sible for determining the location of the mobile node, which
will not scale well when we have a large number of such nodes
and desire a receiver-based approach.

Directionality-based methods are not very effective in
indoor environments because of multipath effects.

Coarse-Grained Localization

The work we describe in this article is perhaps most similar to
earlier work done in coarse-grained localization for indoor
environments using infrared (IR) technology.

The Active Badge [9] system was one of the earliest indoor
localization systems. Each person or object is tagged with an
Active Badge. The badge transmits a unique IR signal every 10
s, which is received by sensors placed at fixed positions within a
building and relayed to the location manager software. The
location manager software is able to provide information about
the person’s location to the requesting services and applications.

Another system based on IR technology is described in
[10]. This system requires IR transmitters to be located at
fixed positions inside the ceiling of the building. An optical
sensor sitting on a head-mounted unit senses the IR beacons,
and system software determines the position of the person.

Both these IR-based solutions perform quite well in indoor
environments, because IR range is fairly small and can be limit-
ed to the logical boundaries of a region, such as a room (by

perform poorly in the presence of direct sunlight
and hence cannot be used outdoors.

An ldealized Radio Model and
Localization Algorithm

We considered two approaches to engineer an RF-based
localization system, based on measurements of received signal
strength and connectivity, respectively. The signal-strength-
based approach did not work very well, while the connectivity-
based approach proved quite effective outdoors.

Signal Strength Approaches

One approach to RF-based localization is to use measured
signal strength of received beacon signals to estimate dis-
tance, as in the RADAR system [6], with an outdoor radio
signal propagation model. We discarded this approach for
several reasons relating to our short-range (10 m) radios.
First, signal strength at short ranges is subject to unpre-
dictable variation due to fading, multipath, and interferences;
therefore, it does not correlate directly with distance. More-
over, short range does not allow much gain in density of ref-
erence points when considering signal strength. Finally, our
commercial off-the-shelf (COTS) radios did not provide soft-
ware-accessible signal strength readings. These reasons
caused us to focus on connectivity-based localization,
described next.

An Idealized Radio Model

We have found an idealized radio model useful for predicting
bounds on the quality of connectivity-based localization. We
chose this model because it was simple and easy to reason
about mathematically. This section presents this idealized
model. To our surprise, this model compares quite well to
outdoor radio propagation in uncluttered environments,
explored in the next section.

We make two assumptions in our idealized model:
* Perfect spherical radio propagation
* Identical transmission range (power) for all radios

A Localization Algorithm

Multiple nodes in the network with overlapping regions of
coverage serve as reference points (labeled Ry to R,;). They
are situated at known positions, (X1, Y1)—(X,, Y,), that form a
regular mesh and transmit periodic beacon signals (period =
T) containing their respective positions. We assume that
neighboring reference points can be synchronized so that their
beacon signal transmissions do not overlap in time. Further-
more, in any time interval 7, each reference point would have
transmitted exactly one beacon signal.

First, we define a few terms:

d: Separation distance between adjacent reference points
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R: Transmission range of the reference point
T: Time interval between two successive beacon signals
transmitted by a reference point
t: Receiver sampling or data collection time
Niens(i, t): Number of beacons sent by R; in time ¢
Nyea(i, t): Number of beacons sent by R; received in time ¢
CM;: Connectivity metric for R;
S: Sample size for connectivity metric for reference
point R;
CMthresh; Threshold for CM
(Xest> Yesr): Estimated location of the receiver
(X,, Y,): Actual location of the receiver
Each mobile node listens for a fixed time period ¢ and col-
lects all the beacon signals it receives from various reference
points. We characterize the information per reference point R;
by a connectivity metric (CM;), defined as

M = Near®E0 10
N sent (i,1)

In order to improve the reliability of our connectivity met-
ric in the presence of various radio propagation vagaries, we
would like to base our metric on a sample of at least S pack-
ets, where § is the sample size, a tunable parameter of our
method (i.e., Ny (i, t) = §). Since we know T to be the time
period between two successive beacon signal transmissions, we
can set ¢, the receiver’s sampling time, as

t=E +1-¢)T (0<e«l).

From the beacon signals it receives, the receiver node
infers proximity to a collection of reference points for which
the respective connectivity metrics exceed a certain threshold,
CM yresn (say 90 percent). We denote the collection of refer-
ence points R;1, Rp, ..., Ri.. The receiver localizes itself to the
region which coincides with the intersection of the connectivi-
ty regions of this set of reference points, which is defined by
the centroid of these reference points:

Xjg+..+ X, Yq+...4Y;
(Xest’Yest):[ il p zk, il p tk}

We characterize the accuracy of the estimate by the local-
ization error LE, defined as

LE=(Xug~ X, + (Vi — Y, 2.

By increasing the range overlap of the reference points that
populate the grid (i.e., increasing the ratio R/d), the granularity
of the localization regions becomes finer, and hence the accura-
cy of the location estimate improves. This is illustrated in Fig. 1.

Validation

Since our localization model depends on the spherical radio
propagation assumption described in the previous section, we
checked the validity of our assumption in both outdoor and
indoor environments.

In outdoor environments, we evaluated the effectiveness of
our idealized radio model by comparing its accuracy to experi-
mental measurements. We evaluated propagation between
two Radiometrix radio packet controllers (model RPC-418)
operating at 418 MHz. A node periodically sent 27-byte bea-
con signals; we define a 90 percent packet reception rate as
connected and empirically measured an 8.94 m spherical range
for our simple model.

To evaluate how well our simple model compares to a real-
world scenario, we placed a radio in the corner of an empty

parking lot,, at the origin (0, 0), and then measured connectiv-
ity at 1 m intervals over a 100 m? quadrant.

Figure 2 compares these measurements with connectivity
as predicted by the model. Among the 78 points measured,
the simple spherical model matches correctly at 68 points (87
percent correlation) and mismatches at 10, all at the edge of
the range. Error was never more than 2 m. No dead spots
were observed.

As expected, our simple idealized radio model approxima-
tion is not appropriate for indoor environments where reflection
and occlusion are common. Our indoor measurements of propa-
gation range varied widely from 4.6 to 22.3 m, depending on
walls and exact node locations and orientations. Furthermore,
these measurements were not time-invariant. We found that
connectivity could vary from 0 to even 100 percent for the same
transmitter receiver positions at different times of the day.

Hence, the idealized radio model may be considered valid
for outdoor unconstrained environments only.

Experimental Results
The Experimental Testbed

Our experimental testbed [11] consisted of five Radiometrix

RPC 418 (radio packet controller) modules connected to a

Toshiba Libretto running RedHat Linux 6.0. One of these

modules is used as a receiver, and the rest are used as refer-

ence points. A 3 in antenna is used for experimental purposes.
The software for the Radiometrix RPC-418 modules con-
sists of two components:

* Beacon: The reference point periodically transmits a packet
(every 2 s in our experiment) containing its unique ID and
position.

* Receiver: The receiver obtains its current measured position
based on an input from the user. For each measured posi-
tion, it samples for a time period ¢ determined by sample
size S, and logs the set of reference points from which it
hears and its current localization estimate.

For our experiment, we placed the four reference points at
the four corners of a 10 m x 10 m square in an outdoor park-

ing lot. This square was further subdivided into 100 smaller 1
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M Figure 2. 90 percent connectivity ranges for reference point (0,0).

L8 ol ol ol » VRS [e MU PRVe WP IR, Vs VaVa

DOCKET

_ ARM

-1

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

D
A

X (m)

Theory (0,0) ==
Theory (10,0) ===*
Theory (10, 10) = = =
Theory (0, 10) —

Based on our validated outdoor
model, we performed numerical sim-

EE;{’Hg:g; ;'; ulations to predict how the granulari-
Expt (10, 10) ty of localization could be expected
Expt (0, 10) @

to vary using our scheme when the
overlap of reference points is
increased.

In our simulation, we assume an
infinite two-dimensional mesh of ref-
erence points, with any two adjacent
reference points spaced a distance d
apart and transmission range R. Our
coordinate system is centered at one
such reference point, which is
assumed to be at (0, 0).

The localization estimate of any
point (X, Y) in the mesh can be
obtained in two steps:

* Step I: Determine all the refer-
ence points that are within range
R of (X, Y), by considering the ref-
erence points between (X - R, Y —
R)and (X + R, Y + R).

Step 2: Localize (X, Y) to the cen-

M Figure 3. Experimental vs. theoretical 90 percent connectivity ranges for the four reference

points.

m x 1 m grids, and we collected data at each of the 121 small
grid intersection points.

Outdoor Results

In this section we discuss the results obtained from our out-
door experiments. Our experimental parameters were 7 = 2 s,
§=20,t=419s.

Figure 3 shows the areas of connectivity of the four refer-
ence points in the grid. We see several distinct regions in the
grid, based on the areas of overlap. Each distinct region con-
stitutes an equivalence class, defined by the centroid of the
reference points in the region. These can be con-

troid of the selected reference

points and compute the corre-

sponding localization error.

For a given d, we increase the
overlap R/d from 1 to 4. We consid-
er the average and maximum localization errors of the
localization estimates for 10,201 uniformly spaced points
within one grid in the mesh for each R/d value. Figure 6
presents the simulation-based scaling result of the localiza-
tion error behavior. Although the maximum and average
error do not decrease monotonically, nontrivial increments
to R/d (for instance, an increment of 1) lead to lower maxi-
mum and average localization errors on the whole. In par-
ticular, the maximum localization error experiences a
substantial drop (from 0.5d to 0.25d) when the overlap R/d
is increased from 1 to 4.

trasted with the theoretically predicted overlap
regions, also seen in Fig. 3.

The location estimate at each grid point is the
centroid. We use the localization error metric defined
previously to characterize the performance.

In Fig. 4, the localization error obtained from the
experiment is plotted as a function of the position.
The localization error is lowest at the position corre-
sponding to the centroid of the region and increases
toward the edges of the region. The average localiza-
tion error was 1.83 m and the standard deviation
1.07 m. The minimum error was 0 m and the maxi-
mum error 4.12 m across 121 grid points.

Figure 5 shows the cumulative localization error
distribution across all the grid points, from both the

- N W
ocu—suNULWO A

o

theoretical model and the experiment. They track

each other closely, including plateaus in the error lev-
els, although the spherical model is consistently more 3.5
optimistic. In our experimental results, for over 90
percent of the data points the localization error falls 2.5
within 3.0 m (i.e., within 30 percent of the separation- 15

distance between two adjacent reference points). This

result is based on four reference points only. Since we 0.5

observed a high correlation between our model and
experiment, improved granularity can be expected

with a higher overlap of reference points.
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