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Abstract— Networks of small, densely distributed wireless
sensor nodes are capable of solving a variety of collaborative
problems such as monitoring and surveillance. We develop a sim-
ple algorithm that detects and tracks a moving target, and alerts
sensor nodes along the projected path of the target. The algorithm
involves only simple computation and localizes communication
only to the nodes in the vicinity of the target and its projected
course. The algorithm is evaluated on a small-scale testbed of
Berkeley motes using a light source as the moving target. The
performance results are presented emphasizing the accuracy of
the technique, along with a discussion about our experience in
using such a platform for target tracking experiments.

I. INTRODUCTION

Rapid advances in miniaturization in computing and sen-
sor technologies and advent of low-power short-range radios
recently have given rise to strong interest in smart sensor
networks [1], [2]. The idea is to be bring together sensor nodes
with on-board processing capability and radio interface into a
large network to enable them to process higher level sensing
tasks in a co-operative fashion. Several new design themes
have emerged for such networks. For example, the network
must be fully self-configuring and highly fault-tolerant as the
sensors may be deployed in an “ad hoc” fashion. The network
must minimize battery power usage; this enables untethered
and unattended operations for an extended time. A corollary
of the latter property is that the system must leverage data
processing and decision making ability inside the network as
much as possible, instead of shipping the data to a central
controller to make decisions. This is because with current
day technology, the power budget for communication is many
times more than that for computation.

An emerging application area for smart sensor networks is
intelligent surveillance or monitoring. Sensors are distributed,
likely randomly, in a geographic area to be monitored. The
goal is to track and predict the movement of an appropriate
target and alert the sensors which are close to the predicted
path of the target. The target can be a moving vehicle, for
example, or can be a phenomenon such as an approaching
fire. It is assumed that each individual sensor node is equipped
with appropriate sensory device(s) to be able to detect the
target as well as to estimate its distance based on the sensed
data. The sensors that are triggered by the target collaborate to
localize the target in the physical space to predict its course [3].
Then the sensor nodes that lie close to the predicted course

of the target are alerted. This alert is meant to serve as a
trigger for these nodes to activate additional on-board sensors.
For example, these additional sensors may be of a different
modality (e.g., alerts coming from heat sensors activating
vibration sensors) that are ordinarily turned off or not sampled
to conserve power. The alert can also serve as a trigger to
actuate certain on-board devices, depending on the capability
of the nodes and the application.

The goal of this paper is to develop techniques for the above
moving target tracking problem and report our experience
in testing them in a live low-cost sensor network testbed
using Berkeley motes [4]. Variations of these motes have
been used in several experimental testbeds recently. See, for
example, [5], [6], [7], [8]. We will demonstrate the feasibility
of our approach. We will also discuss performance results,
and several practical problems a designer/implementor must
be aware of.

The paper is organized as follows. In the next section we
describe the tracking algorithm, experimental evaluation is
reported in Section III. In Section IV, we discuss the problems
we faced in our experiments and some ways to alleviate them.
We conclude in Section V.

II. TRACKING MOVING TARGETS

Our testbed comprises of 17 Berkeley motes [4] based
on the MICA platform and manufactured by Crossbow tech-
nology [9]. We assume that the sensor nodes are scattered
randomly in a geographical region. Each node is aware of its
location. Location information can be gathered using an on-
board GPS receiver. Absolute location information is, however,
not needed. It is sufficient for the nodes to know their location
with respect to a common reference point. Many localizing
techniques, e.g. [8], [10], can be used with varying degree of
hardware complexity and accuracy. In our model, the sensor
nodes are stationary and we have directly encoded the location
information into the sensor nodes to eliminate the possibility
of any localization error. Thus, we do not emphasize any
particular localization technique.

The sensors must be capable of estimating the distance of
the target to be tracked from the sensor readings. It is assumed
that the sensor has already learned the sensor reading to
distance mapping. We conducted a separate set of experiments
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to determine this mapping and encoded the mapping directly
as a table in the application component.

Tracking a target involves three distinct steps:

• Detecting the presence of the target.
• Determining the direction of motion of the target.
• Alerting appropriate nodes in the network.

These steps are discussed in detail in the following subsec-
tions.

A. Detection

Each node periodically (every 1 sec in our experiments)
polls its sensor module to detect the presence of any target
to be tracked. Sensor reading above a particular threshold
indicates the presence of a target in the vicinity. As soon as this
threshold is crossed, a TargetDetected message is broadcast by
the node. Each TargetDetected message contains the location
of the originating node and its distance from the target, as
determined from the sensor reading. When this message is
received by a neighboring node, it stores the coordinates of
the originator and the target’s distance from the originator
in a table. Table entries expire after a timeout (4 sec in our
experiments) unless refreshed.

B. Tracking

The next step is estimating the location of the target. A
minimum of three nodes sensing the target are needed to
apply the commonly used triangulation method [11]. When a
node that has already detected the target hears two additional
TargetDetected messages from two different neighbors, it com-
putes a location estimate via triangulation. Note that any node
that hears three TargetDetected messages from three different
neighbors can estimate the location of the target. However,
we limit this computation only to the nodes that themselves
have detected the target, and hears from two other neighbors
that also detected the target. This limits the estimation to be
done only in nodes within a close vicinity of the target, thus
localizing the computation.

In order to estimate the trajectory of the target, its location
must be estimated at a minimum of two instants of time. A
straight line through these two points defines the trajectory
in the direction of the latest location estimate. We found that
with only two estimates, the impact of any estimation error
was significant. Three or more estimates, however, worked
significantly better. In the experimental results that follow we
used three estimates with linear regression to compute a best-
fit straight line. This line defines the estimated trajectory of
the target. Note that more estimates, along with a higher-order
curve fitting, will improve accuracy further. More estimates,
however, will require a larger network to experiment with.
For better accuracy, location estimates are used for trajectory
estimation only when they are separated by at least a minimum
distance (3 inches in our experiments).

C. Alerting

After estimating the trajectory, the network must alert nodes
that lie near the trajectory (specifically, within a perpendicular
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Fig. 1. Sensor network with a moving target. E1 − E2 − E3 defines the
trajectory of the moving target.

distance d from it, d being 5 inches in our experiments)
by sending them a Warning message so that they are aware
of the approaching target and can take appropriate actions.
Any node that is able to estimate the trajectory by using
three location estimates broadcasts a Warning message. The
message contains the location of the sender and parameters
describing the equation of the straight line trajectory. Any node
receiving the Warning message rebroadcasts it, if it is located
within a distance d from the trajectory.

Care must be taken to prevent propagation of this warning
message in the direction opposite to the direction of motion
of the target. This is done via some simple geometric con-
siderations. The node receiving a Warning message computes,
through itself, a line perpendicular to the trajectory. The line
divides the geographic area into two regions R1 and R2,
R2 being towards the direction of motion. A node forwards
the Warning message if (i) it lies within a distance d from
the trajectory, and (ii) the Warning message is received from
a node in region R1. See Figure 1. This ensures that only
the nodes within d distance from trajectory and towards
the direction of motion forward the warning. This localizes
message propagation only in the relevant part of the network.

Note that the above technique assumes that the network has
enough density such that the subset of the sensor network
nodes, that lie in the region where warning message must be
propagated, must form a connected graph among themselves.
This condition is needed as the warning message propagation
is suppressed outside this region. Without this assumption,
simply larger regions need to be flooded with warning mes-
sages.

Note that multiple nodes may originate Warning messages
for the same detected target. This is because any node de-
tecting an target independently attempts to carry out location
and trajectory estimations. To conserve bandwidth and power,
we stipulate that a node refrain from forwarding a Warning
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message for some time (20 sec in our experiments) after it
has forwarded one. This also implicitly assumes the presence
of only one source in the network at any time. Detecting
the presence of multiple sources and tracking them on an
individual basis will require sophisticated sensing and signal
processing algorithms [3] that is beyond the scope of our
current work.

III. EXPERIMENTAL EVALUATION

In our experiments the moving target is a light source (bulb
of a flashlight, taken out of the casing to minimize shadows
and operated using four AA batteries). The experimental
platform is a 60 inch × 60 inch square area with 16 motes
placed at random locations in a dark room. A small area is
chosen intentionally so that the experiments can be performed
on a table top; this keeps the experiments manageable. A
threshold of 15 inches is used for the distance of the light
source; beyond this distance the sensor reading is assumed
too low to be reliable. The target must be closer than this
distance for a sensor to be able to detect it.

A probe mote is suitably placed to capture all packets
transmitted in the network for debugging and tracing functions.
The probe does not participate in the algorithm. All packets
gathered by the probe are transmitted via a serial interface to
a laptop computer for analysis.

A. Characteristics of the Photo Sensor

We first performed a set of experiments to determine the
relationship of the sensor reading with the distance of light
source. This relationship would later be used to estimate
the target distance from sensor readings. We faced several
complications here. First, different sensors generated different
readings for the same distance of the light source. The readings
was variant enough that we felt some calibration would be
necessary to reduce errors. While statistical methods using
parameter estimation techniques such as reported recently in
[8] could be used, we chose to determine the exact sensor
reading versus distance relation for each individual sensor.
This was feasible as we were dealing with a small number
of sensors. Second, we found that light falling on the photo-
sensor at an angle made the reading sensitive to the direction of
the light source relative to the sensor. To reduce this sensitivity,
we experimented with the light source at an elevated plane (at
a height of 9 inches). This also resolved shadowing problems
at small heights caused by the hardware components on the
mote. The light source was always kept at the same height
as we are interested in solving the tracking problem in two
dimensions only.

Figure 2 shows the average sensor reading vs. distance plots
for three different sensors. Notice the differences in sensor
characteristics. We tested all individual sensors and encoded
the sensor reading versus distance function in their application
components.

B. Target Tracking

In the first set of experiments, we evaluate the location
estimation error. To evaluate the error, the light source is
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Fig. 2. Relationship of the “average” sensor readings with the distance of
the light source. Three different sensors are shown to point out the difference
in sensor characteristics.

Placement Avg. estimation error Std. dev. of error
(inches) (inches)

1 2.32 1.82
2 2.06 1.23
3 2.23 1.53

TABLE I

LOCATION ESTIMATION ERROR STATISTICS FOR THREE DIFFERENT

RANDOM MOTE PLACEMENTS.

placed at approximately 5 inch intervals spanning the whole
region in a grid-like fashion, and its location is estimated
by three sensors exactly as described previously. The error
(i.e., distance) between the actual and estimated location is
computed. The average and standard deviation of the error is
presented in Table I. Note that the average error is small (less
than 2.5 inches), while the standard deviation of the error is
relatively high. This is due to the fact that the error due to
orientation of the light source relative to the photo sensor is
not completely eliminated even with the elevated light source.
A secondary reason is the inherent variability of the sensor
data.

The next set of experiments evaluates the performance of
the tracking algorithm itself. Here, for each random placement
of the motes, we perform a series of experiments where the
light source is dragged slowly along a straight line path in the
experimental region. The network responds by predicting the
trajectory and lighting the LEDs in the motes which receive
Warning messages. The nature of these experiments is such
that it is hard to present the results in a quantitative fashion
for readers to get a fair idea of the performance. So we have
chosen to present the results in a visual fashion in Figures 3
and 4. These figures are automatically generated by a script
running on the trace of the packets gathered by the probe node.

Small rectangles indicate the position of sensor nodes. The
light source representing the moving target is actually moved
from point P1 to point P2 in the experiments, indicated by
a line. Circles around some nodes indicate the distance at
which the light source is being sensed by the corresponding
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nodes. Circles are drawn only for the last time any node
“sees” the source and sends out TargetDetected message. The
line through E1 and E2 (in the direction of E2) denotes the
estimated trajectory. Thus, the difference between P1P2 and
E1E2 denotes the estimation error. The following notations
are used to designate nodes participating in warning message
propagation:

• “WO” denotes the node that originates the Warning
message.

• “WR” denotes the node that receives a Warning message
and lies within distance d of the estimated trajectory,
but does not forward the message because it lies in the
direction opposite to the direction of motion.

• “WF” denotes the node that receives a Warning message,
lies within distance d of the estimated trajectory and
also forwards the message. WF nodes are highlighted by
drawing a rectangle around them.

While many experiments were performed with different
placements of motes and different movement paths of the light
source, for brevity only two sample results are shown in Fig-
ures 3 and 4. In Figure 3, note that even though several motes
originate a warning message, they all compute the same path.
In a few experiments, we noted that the predicted direction of
motion was somewhat off from the actual direction. This was
because of a large error in one or more of the three location
samples that are used in estimating the trajectory. The accuracy
of the prediction can be improved naturally by taking many
more samples, which will, however, require “observing” the
target (light source) for longer time. This will also require
larger experimental area and a larger number of motes.

We have noted several interesting scenarios in the cases we
studied. One example is presented in Figure 4 where different
trajectories are estimated by two originating nodes, because
they “heard” different sets of nodes that detected the target.
The accuracies of the two estimates are very different. We
looked carefully into the traces of this scenario, and found that
the location estimation errors are not very high (maximum 3
inches); but biased errors for one estimation resulted in a very
different trajectory. Once again, larger number of samples with
a larger network should improve such situations significantly.
The second problem in Figure 4 is that no warning message is
ever propagated. The reason is simply that there are no sensors
within distance d of either of the predicted trajectory. This
situation will trivially improve by choosing a denser network
to experiment with or choosing larger value of d.

IV. DISCUSSIONS

It is worthwhile to outline here briefly the problems we
faced in our experimental work using low-cost sensor nodes,
not capable of sophisticated signal processing.

The photo sensor used in MICA motes is sensitive to the
angle at which light rays are incident on the sensor. Thus,
very small changes in the distance influenced sensor readings
significantly when the light source is near the sensor because
relative changes in the angle is more significant at closer
distance. An elevated source of light reduces this problem,

Fig. 3. Tracking moving target: experimental scenario.

Fig. 4. Tracking moving target: an interesting experimental scenario.

but does not completely eliminate it – one reason for large
variations in the errors in location estimates reported in Table
I. We also observed variations in sensor readings in different
directions even when elevation (and hence angle) and the
distance of the light source were kept constant. We conjectured
that either the light source or the sensor (or both) have some
directional properties, which we ignored and relied on average
properties to predict distance from sensor readings. We believe
some of these problems will also confront designers when
other signals and sensors (e.g., acoustic or magnetic) are used.

To ensure that the light source always emits light with
the same power, we used freshly recharged batteries for all
experiments. This will be impossible in real scenarios. So we
conjecture that estimating distance of the target from a set of
sensor readings will be difficult to impossible in general set-
tings, as the source signal cannot be always expected to be of a
consistent strength. Unless the sensors are very sophisticated,
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they will at best be programmed to simply detect presence
or absence of a signal (and not to estimate any distance),
and then collaborate with neighboring sensors to increase the
confidence that an event or phenomenon has occurred in the
vicinity. The strength of the signal can be gathered indirectly
by determining how many sensors can detect the signal and
how spread out they are geographically. We feel that this
would be a reasonable approach to pursue, which will not be
dependent on omnidirectional signals of consistent strength.
However, this simple technique, for all practical usage, will
require a large number of densely disposed sensors. This will
be a direction we plan to pursue in our future work.

To decrease the variability in sensor readings, we had to
calibrate each sensor individually. This will be difficult to
do for a very large number of sensors. Thus, sophisticated
statistical methods, such as reported in [8], will need to be
adopted. Also, we have preprogrammed the sensor with its
location. But in real applications, they need to be localized.
While many methods have been reported in recent literature
[10], [12], [8], they will all introduce their own sources
of error. A statistical analysis of errors has been done in
[8]. It will be interesting to analyze the combined effect of
localization errors of the sensor themselves and errors in
location estimates and trajectory computation of the moving
target.

As discussed previously, a large number of location samples
has a strong potential to reduce errors in estimating the
trajectory. However, this will require a larger testbed. Also, the
times at which different sensor nodes are sampling the signal
are not synchronized. Thus, errors could be introduced when
signals sampled at different times are combined for locating
the moving target, as the actual location of the target could
change. This error can be minimized by sampling sensors at a
much higher rate relative to the maximum speed of the target.
Of course, time synchronization can also be introduced at the
cost of higher design complexity or possible power usage.

V. CONCLUSIONS

We have developed a simple algorithm for tracking moving
targets in a smart sensor network. The sensor nodes detect and
track the moving target in a collaborative fashion and alert the
nodes near the predicted path of the target. The algorithm lo-
calizes the communication in the vicinity of the location of the
target and its estimated trajectory. This is critical as the sensor
nodes usually run on a low power budget. The strength of our
work is that we implemented and evaluated the algorithm in
a real sensor network testbed using Berkeley motes. We used
a moving light source as target. We described several factors
that influence the accuracy of target tracking using low-cost
sensor nodes such as the motes, and the potential problems
a designer can face. The accuracy in our experiments has
been fairly good, but not excellent. The accuracy is greatly
influenced by the number of location estimation samples the
designer can work with. With a small number of motes and
a small experimental area, we could use only a small number
of such samples. Thus, our experiments have a higher error

margin than is possible to achieve. However, our experience
demonstrates strong potential for this approach for large and
dense sensor networks. We are in the process of acquiring
a larger testbed that will make such large-scale experiments
feasible.

Experimental research using distributed networks of smart
sensors is in its infancy. While research groups are working
on algorithmic and performance aspects of collaborative signal
processing in the target tracking arena [13], [3], experimental
work focusing on localized communication has not yet ap-
peared in mainstream literature in our knowledge. We expect
that our experience will be useful to researchers pursuing
research in this direction.
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