
c12) United States Patent
Johnson

(54) SYSTEM AND METHOD FOR LOCATION
BASED EXCHANGES OF DATA
FACILITIATING DISTRIBUTED
LOCATIONAL APPLICATIONS

(71) Applicant: William J. Johnson, Flower Mound,
TX (US)

(72) Inventor: William J. Johnson, Flower Mound,
TX (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 16/375,836

(22) Filed:

(65)

Apr. 4, 2019

Prior Publication Data

(63)

(51)

US 2019/0231097 Al Aug. 1, 2019

Related U.S. Application Data

Continuation of application No. 16/147,532, filed on
Sep. 28, 2018, now Pat. No. 10,292,011, which is a
continuation of application No. 15/218,039, filed on
Jul. 24, 2016, now Pat. No. 10,111,034, which is a
continuation of application No. 14/752,945, filed on
Jun. 28, 2015, now Pat. No. 9,456,303, which is a
continuation of application No. 13/972,125, filed on
Aug. 21, 2013, now Pat. No. 9,078,095, which is a
continuation of application No. 12/590,831, filed on
Nov. 13, 2009, now Pat. No. 8,634,796, which is a
continuation-in-part of application No. 12/287,064,

Int. Cl.
H04M 11104
A47G 1116
Fl6B 13/00
Fl6B 45/00

(Continued)

(2006.01)
(2006.01)
(2006.01)
(2006.01)

I 1111111111111111 1111111111 lllll lllll 111111111111111 11111 111111111111111111
US010477994B2

(IO) Patent No.: US 10,477,994 B2
Nov. 19, 2019 (45) Date of Patent:

(52) U.S. Cl.
CPC A47G 1116 (2013.01); Fl6B 13/00

(2013.01); Fl6B 45/00 (2013.01)
(58) Field of Classification Search

(56)

EP
EP

CPC H04W 4/02; H04W 64/00; H04W 4/023;
H04W 12/06; H04W 40/20; H04W

40/244; H04W 92/18; H04W 4/21; H04W
4/50; H04W 4/80; H04W 68/005; H04W

88/02
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

626,615 A
4,021,780 A

6/1899 Hood
5/1977 Narey et al.

(Continued)

FOREIGN PATENT DOCUMENTS

0712227
915590

5/1996
5/1999

(Continued)

OTHER PUBLICATIONS

Bill N. Schilit and Marvin M. Theimer, Disseminating Active Map
Information Mobile Hosts, IEEE Network, Sep./Oct. 1994.

(Continued)

Primary Examiner - Liton Miah
(74) Attorney, Agent, or Firm - Yudell Isidore PLLC

(57) ABSTRACT

Mobile data processing Systems (MSs) interact with systems
in their vicinity, and with each other, in communications and
interoperability. Information transmitted inbound to, trans
mitted outbound from, is in process at, or is application
modified at a mobile data processing system triggers pro
cessing of actions in accordance with user configurations,
for example to present content to a user.

19 Claims, 322 Drawing Sheets

~ LBX Character

§
Peer Interaction Processing Code

.IQ
Permissions

H. I . i6.
Statistics Service Directory

i6.
Self Management Processing Code

2Q
Self Management Processing Data

M
Other Processing Code

;ia
Other Processing Data

;!a
Other Resources

Petitioners' Ex. 1001, Page 1 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
Page 2

Related U.S. Application Data 5,625,668 A 4/1997 Loomis
5,627,549 A 5/1997 Park

filed on Oct. 3, 2008, now Pat. No. 8,639,267, which 5,636,245 A 6/1997 Ernst et al.
is a continuation-in-part of application No. 12/077, 5,646,632 A 7/1997 Khan et al.
041, filed on Mar. 14, 2008, now Pat. No. 8,600,341. 5,654,959 A 8/1997 Baker et al.

5,657,375 A 8/1997 Connolly et al.
5,661,492 A 8/1997 Shoap et al. (56) References Cited
5,663,734 A 9/1997 Krasner
5,664,948 A 9/1997 Dimitriadis et al.

U.S. PATENT DOCUMENTS 5,666,481 A 9/1997 Lewis
5,677,905 A 10/1997 Bigham

4,255,619 A 3/1981 Saito 5,687,212 A 11/1997 Kinser, Jr. et al.
4,445,118 A 4/1984 Taylor et al. 5,689,431 A 11/1997 Rudow et al.
4,536,647 A 8/1985 Atalla et al. 5,694,453 A 12/1997 Fuller et al.
4,644,351 A 2/1987 Zabarsky et al. 5,701,301 A 12/1997 Weisser, Jr.
4,757,267 A 7/1988 Riskin 5,704,049 A 12/1997 Briechle
4,841,560 A 6/1989 Chan et al. 5,712,899 A 1/1998 Pace, II
4,845,504 A 7/1989 Roberts et al. 5,713,075 A 1/1998 Threadgill et al.
4,922,516 A 5/1990 Butler et al. 5,714,948 A 2/1998 Farmakis et al.
4,973,952 A 11/1990 Malec et al. 5,717,688 A 2/1998 Belanger et al.
4,974,170 A 11/1990 Bouve et al. 5,720,033 A 2/1998 Deo
4,977,399 A 12/1990 Price et al. 5,724,521 A 3/1998 Dedrick
5,089,814 A 2/1992 DeLuca et al. 5,727,057 A 3/1998 Emery et al.
5,095,532 A 3/1992 Mardus 5,729,680 A 3/1998 Belanger et al.
5,121,126 A 6/1992 Clagett 5,771,283 A 6/1998 Chang et al.
5,122,795 A 6/1992 Cubley et al. 5,774,534 A 6/1998 Mayer
5,131,020 A 7/1992 Liebesny et al. 5,778,304 A 7/1998 Grube et al.
5,185,857 A 2/1993 Rozmanith et al. 5,790,974 A 8/1998 Tognazzini
5,196,031 A 3/1993 Ordish 5,794,210 A 8/1998 Goldhaber et al.
5,214,793 A 5/1993 Conway et al. 5,796,727 A 8/1998 Harrison et al.
5,223,844 A 6/1993 Mansell et al. 5,798,733 A 8/1998 Ethridge
5,243,652 A 9/1993 Teare et al. 5,806,018 A 9/1998 Smith et al.
5,245,608 A 9/1993 Deaton et al. 5,812,763 A 9/1998 Teng
5,264,822 A 11/1993 Vogelman et al. 5,819,155 A 10/1998 Worthey et al.
5,265,070 A 11/1993 Minowa 5,826,195 A 10/1998 Westerlage et al.
5,303,393 A 4/1994 Noreen et al. 5,758,049 A 11/1998 Johnson et al.
5,321,242 A 6/1994 Heath, Jr. 5,835,061 A 11/1998 Stewart
5,337,044 A 8/1994 Folger et al. 5,838,774 A 11/1998 Weisser, Jr.
5,347,632 A 9/1994 Filepp et al. 5,842,010 A 11/1998 Jain et al.
5,363,245 A 11/1994 Borello 5,845,211 A 12/1998 Roach
5,363,377 A 11/1994 Sharpe 5,852,775 A 12/1998 Hidary
5,365,516 A 11/1994 Jandrell 5,855,007 A 12/1998 Jovicic et al.
5,371,794 A 12/1994 Diffie et al. 5,870,555 A 2/1999 Pruett et al.
5,390,237 A 2/1995 Hoffman et al. 5,870,724 A 2/1999 Lawlor et al.
5,404,505 A 4/1995 Levinson 5,875,186 A 2/1999 Belanger et al.
5,432,841 A 7/1995 Rimer 5,875,401 A 2/1999 Rochkind
5,444,444 A 8/1995 Ross 5,878,126 A 3/1999 Velamuri et al.
5,451,757 A 9/1995 Heath, Jr. 5,880,958 A 3/1999 Helms et al.
5,455,807 A 10/1995 Nepple 5,881,131 A 3/1999 Farris et al.
5,461,627 A 10/1995 Rypinski 5,884,284 A 3/1999 Peters et al.
5,469,362 A 11/1995 Hunt et al. 5,887,259 A 3/1999 Zicker et al.
5,475,735 A 12/1995 Williams et al. 5,889,953 A 3/1999 Thebaut et al.
5,485,163 A 1/1996 Singer et al. 5,892,454 A 4/1999 Schipper et al.
5,487,103 A 1/1996 Richardson 5,896,440 A 4/1999 Reed et al.
5,493,309 A 2/1996 Bjornholt et al. 5,897,640 A 4/1999 Veghte et al.
5,497,414 A 3/1996 Bartholomew 5,903,636 A 5/1999 Malik
5,504,482 A 4/1996 Schreder 5,907,544 A 5/1999 Rypinski
5,511,111 A 4/1996 Serbetcioglu et al. 5,920,846 A 7/1999 Storch et al.
5,511,233 A 4/1996 Otten 5,922,040 A 7/1999 Prabhakaran
5,512,908 A 4/1996 Herrick 5,923,702 A 7/1999 Brenner et al.
5,513,263 A 4/1996 White et al. 5,933,420 A 8/1999 Jaszewski et al.
5,528,248 A 6/1996 Steiner et al. 5,938,721 A 8/1999 Dussell et al.
5,539,395 A 7/1996 Buss et al. 5,949,867 A 9/1999 Sonnenberg
5,544,354 A 8/1996 May et al. 5,950,130 A 9/1999 Coursey
5,559,520 A 9/1996 Barzegar et al. 5,961,593 A 10/1999 Gabber et al.
5,561,704 A 10/1996 Samilando 5,963,866 A 10/1999 Palamara et al.
5,566,235 A 10/1996 Hetz 5,963,913 A 10/1999 Henneuse et al.
5,581,479 A 12/1996 McLaughlin 5,968,176 A 10/1999 N es sett et al.
5,583,864 A 12/1996 Lightfoot et al. 5,969,678 A 10/1999 Stewart
5,586,254 A 12/1996 Kondo et al. 5,982,867 A 11/1999 Urban et al.
5,588,042 A 12/1996 Comer 5,983,091 A 11/1999 Rodriguez 5,590,196 A 12/1996 Moreau

5,987,381 A 11/1999 Oshizawa 5,590,398 A 12/1996 Matthews
5,991,287 A 11/1999 Diepstraten et al. 5,592,470 A 1/1997 Rudrapatna et al.
5,995,015 A 11/1999 DeTemple et al. 5,594,779 A 1/1997 Goodman
6,006,090 A 12/1999 Coleman et al. 5,596,625 A 1/1997 LeBlanc
6,009,398 A 12/1999 Mueller et al. 5,602,843 A 2/1997 Gray
6,011,975 A 1/2000 Emery et al. 5,608,854 A 3/1997 Labedz et al.

5,610,973 A 3/1997 Comer 6,018,293 A 1/2000 Smith et al.
5,625,364 A 4/1997 Herrick et al. 6,026,151 A 2/2000 Bauer et al.

Petitioners' Ex. 1001, Page 2 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
Page 3

(56) References Cited 6,385,591 Bl 5/2002 Mankoff
6,389,055 Bl 5/2002 August et al.

U.S. PATENT DOCUMENTS 6,389,426 Bl 5/2002 Turnbull et al.
6,393,482 Bl 5/2002 Rai et al.

6,028,921 A 2/2000 Malik et al. 6,400,722 Bl 6/2002 Chuah et al.
6,047,327 A 4/2000 Tso et al. 6,405,123 Bl 6/2002 Rennard et al.

6,055,637 A 4/2000 Hudson et al. 6,407,673 Bl 6/2002 Lane

6,058,106 A 5/2000 Cudak et al. 6,408,307 Bl 6/2002 Semple et al.
6,067,082 A 5/2000 Enmei 6,414,635 Bl 7/2002 Stewart et al.

6,067,297 A 5/2000 Beach 6,414,950 Bl 7/2002 Rai et al.

6,073,062 A 6/2000 Hoshino et al. 6,415,019 Bl 7/2002 Savaglio et al.
6,076,080 A 6/2000 Morscheck et al. 6,418,308 Bl 7/2002 Heinonen et al.

6,085,086 A 7/2000 La Porta et al. 6,421,441 Bl 7/2002 Dzuban

6,091,956 A 7/2000 Hollenberg 6,421,714 Bl 7/2002 Rai et al.

6,101,381 A 8/2000 Tajima et al. 6,427,073 Bl 7/2002 Kortelsalmi et al.
6,101,443 A 8/2000 Kato et al. 6,427,115 Bl 7/2002 Sekiyama

6,112,186 A 8/2000 Bergh et al. 6,427,119 Bl 7/2002 Stefan et al.

6,115,669 A 9/2000 Watanabe et al. 6,430,276 Bl 8/2002 Bouvier et al.
6,122,520 A 9/2000 Want et al. 6,430,562 Bl 8/2002 Kardos et al.

6,133,853 A 10/2000 Obradovich et al. 6,442,391 Bl 8/2002 Johansson et al.

6,138,003 A 10/2000 Kingdon et al. 6,442,479 Bl 8/2002 Barton
6,138,119 A 10/2000 Hall et al. 6,442,687 Bl 8/2002 Savage

6,141,609 A 10/2000 Herdeg et al. 6,449,272 Bl 9/2002 Chuah et al.

6,144,645 A 11/2000 Struhsaker et al. 6,449,497 Bl 9/2002 Kirbas et al.

6,154,152 A 11/2000 Ito 6,452,498 B2 9/2002 Stewart
6,154,637 A 11/2000 Wright et al. 6,456,234 Bl 9/2002 Johnson

6,157,829 A 12/2000 Grube et al. 6,463,533 Bl 10/2002 Calamera et al.

6,157,946 A 12/2000 Itakura et al. 6,470,378 Bl 10/2002 Tracton et al.
6,163,274 A 12/2000 Lindgren 6,470,447 Bl 10/2002 Lambert et al.

6,167,255 A 12/2000 Kennedy, III et al. 6,473,626 Bl 10/2002 Nevoux et al.

6,182,226 Bl 1/2001 Reid et al. 6,477,382 Bl 11/2002 Mansfield et al.
6,184,829 Bl 2/2001 Stilp 6,477,526 B2 11/2002 Hayashi et al.

6,185,426 Bl 2/2001 Alperovich et al. 6,484,029 B2 11/2002 Hughes et al.

6,185,484 Bl 2/2001 Rhinehart 6,484,092 B2 11/2002 Seibel

6,192,314 Bl 2/2001 Khavakh et al. 6,484,148 Bl 11/2002 Boyd
6,202,054 Bl 3/2001 Lawlor et al. 6,490,291 Bl 12/2002 Lee et al.

6,205,478 Bl 3/2001 Sugano et al. 6,496,491 B2 12/2002 Chuah et al.

6,208,854 Bl 3/2001 Roberts et al. 6,496,931 Bl 12/2002 Rajchel et al.
6,208,866 Bl 3/2001 Rouhollahzadeh et al. 6,505,046 Bl 1/2003 Baker

6,226,277 Bl 5/2001 Chuah 6,505,048 Bl 1/2003 Moles et al.

6,229,477 Bl 5/2001 Chang et al. 6,505,049 Bl 1/2003 Dorenbosch
6,229,810 Bl 5/2001 Gerszberg et al. 6,505,120 B2 1/2003 Yamashita et al.

6,233,329 Bl 5/2001 Urban et al. 6,505,163 Bl 1/2003 Zhang et al.

6,233,452 Bl 5/2001 Nishino 6,512,754 B2 1/2003 Feder et al.

6,236,360 Bl 5/2001 Rudow et al. 6,516,055 Bl 2/2003 Bedeski et al.
6,236,362 Bl 5/2001 Leblanc et al. 6,516,416 B2 2/2003 Gregg et al.

6,236,940 Bl 5/2001 Rudow et al. 6,519,252 B2 2/2003 Sallberg

6,246,361 Bl 6/2001 Weill et al. 6,519,458 B2 2/2003 Oh et al.
6,246,948 Bl 6/2001 Thakker 6,522,876 Bl 2/2003 Weiland et al.

6,252,544 Bl 6/2001 Hollberg 6,526,275 Bl 2/2003 Calvert

6,259,405 Bl 7/2001 Stewart et al. 6,526,349 B2 2/2003 Bullock et al.
6,263,209 Bl 7/2001 Reed et al. 6,532,418 B2 3/2003 Chun et al.
6,278,938 Bl 8/2001 Alumbaugh 6,545,596 Bl 4/2003 Moon

6,285,665 Bl 9/2001 Chuah et al. 6,546,257 Bl 4/2003 Stewart

6,285,931 Bl 9/2001 Hattori et al. 6,560,442 Bl 5/2003 Yost et al.
6,298,234 Bl 10/2001 Brunner 6,560,461 Bl 5/2003 Fomukong et al.

6,308,273 Bl 10/2001 Goertzel et al. 6,571,279 Bl 5/2003 Herz et al.

6,311,069 Bl 10/2001 Havinis et al. 6,577,643 Bl 6/2003 Rai et al.
6,317,718 Bl 11/2001 Fano 6,577,644 Bl 6/2003 Chuah et al.

6,321,092 Bl 11/2001 Fitch et al. 6,594,482 Bl 7/2003 Findikli et al.

6,324,396 Bl 11/2001 Vasa et al. 6,615,131 Bl 9/2003 Rennard et al.
6,326,918 Bl 12/2001 Stewart 6,618,474 Bl 9/2003 Reese
6,327,254 Bl 12/2001 Chuah 6,618,593 Bl 9/2003 Drutman et al.

6,327,357 Bl 12/2001 Meek et al. 6,622,016 Bl 9/2003 Sladek et al.

6,332,127 Bl 12/2001 Bandera et al. 6,628,627 Bl 9/2003 Zendle et al.
6,332,163 Bl 12/2001 Bowman-Amuah 6,628,928 Bl 9/2003 Crosby et al.

6,340,958 Bl 1/2002 Cantu et al. 6,628,938 Bl 9/2003 Rachabathuni et al.

6,343,290 Bl 1/2002 Cossins et al. 6,633,633 Bl 10/2003 Bedingfield
6,345,288 Bl 2/2002 Reed et al. 6,640,184 Bl 10/2003 Rabe

6,353,664 Bl 3/2002 Cannon et al. 6,647,257 B2 11/2003 Owensby
6,359,880 Bl 3/2002 Curry et al. 6,647,269 B2 11/2003 Hendrey et al.
6,360,101 Bl 3/2002 Irvin 6,650,901 Bl 11/2003 Schuster et al.
6,366,561 Bl 4/2002 Bender 6,654,610 Bl 11/2003 Chen et al.
6,370,389 Bl 4/2002 Isomursu et al. 6,662,014 Bl 12/2003 Walsh
6,377,548 Bl 4/2002 Chuah et al. 6,665,536 Bl 12/2003 Mahany
6,377,810 Bl 4/2002 Geiger et al. 6,665,718 Bl 12/2003 Chuah et al.
6,377,982 Bl 4/2002 Rai et al. 6,671,272 B2 12/2003 Vaziri et al.
6,381,311 B2 4/2002 Joyce et al. 6,675,017 Bl 1/2004 Zellner et al.
6,385,531 B2 5/2002 Bates et al. 6,675,208 Bl 1/2004 Rai et al.

Petitioners' Ex. 1001, Page 3 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
Page 4

(56) References Cited 2001/0034709 Al 10/2001 Stoifo et al.
2001/0049275 Al 12/2001 Pierry et al.

U.S. PATENT DOCUMENTS 2001/0051911 Al 12/2001 Marks et al.
2002/0035474 Al 3/2002 Alpdemir

6,677,894 B2 1/2004 Sheynblat et al. 2002/0035493 Al 3/2002 Mozayeny et al.
6,697,018 B2 2/2004 Stewart et al. 2002/0037709 Al 3/2002 Bhatia et al.

6,697,783 Bl 2/2004 Brinkman et al. 2002/0037722 Al 3/2002 Hussain et al.

6,701,160 Bl 3/2004 Pinder et al. 2002/0037731 Al 3/2002 Mao et al.
6,701,251 B2 3/2004 Stefan et al. 2002/0037744 Al 3/2002 Bhatia et al.

6,704,311 Bl 3/2004 Chuah et al. 2002/00377 50 Al 3/2002 Hussain et al.

6,716,101 Bl 4/2004 Meadows et al. 2002/0038362 Al 3/2002 Bhatia et al.
6,721,406 Bl 4/2004 Contractor 2002/0038384 Al 3/2002 Khan et al.

6,725,048 B2 4/2004 Mao et al. 2002/0038386 Al 3/2002 Bhatia et al.

6,731,238 B2 5/2004 Johnson 2002/0046069 Al 4/2002 Mozayeny et al.

6,732,080 Bl 5/2004 Blants 2002/0046077 Al 4/2002 Mozayeny et al.
6,732,101 Bl 5/2004 Cook 2002/0046090 Al 4/2002 Stewart

6,732,176 Bl 5/2004 Stewart et al. 2002/0052781 Al 5/2002 Aufricht et al.

6,738,808 Bl 5/2004 Zellner et al. 2002/0077083 Al 6/2002 Zellner et al.
6,754,504 Bl 6/2004 Reed 2002/0077084 Al 6/2002 Zellner et al.

6,754,582 Bl 6/2004 Smith et al. 2002/0077118 Al 6/2002 Zellner et al.

6,759,960 B2 7/2004 Stewart et al. 2002/0077130 Al 6/2002 Owensby
6,772,064 Bl 8/2004 Smith et al. 2002/0077897 Al 6/2002 Zellner et al.

6,799,049 Bl 9/2004 Zellner et al. 2002/0087335 Al 7/2002 Meyers et al.

6,801,509 Bl 10/2004 Chuah et al. 2002/0090932 Al 7/2002 Bhatia et al.

6,816,720 B2 11/2004 Hussain et al. 2002/0091991 Al 7/2002 Castro
6,819,929 B2 11/2004 Antonucci et al. 2002/0095312 Al 7/2002 Wheat

6,820,062 Bl 11/2004 Gupta et al. 2002/0095454 Al 7/2002 Reed et al.

6,829,475 Bl 12/2004 Lee et al. 2002/0102993 Al 8/2002 Hendrey et al.
6,850,758 Bl 2/2005 Paul et al. 2002/0107027 Al 8/2002 O'Neil

6,867,733 B2 3/2005 Sandhu et al. 2002/0120713 Al 8/2002 Gupta et al.

6,868,074 Bl 3/2005 Hanson 2002/0161637 Al 10/2002 Sugaya
6,874,011 Bl 3/2005 Spielman 2002/0174147 Al 11/2002 Wang et al.

6,876,858 Bl 4/2005 Duvall et al. 2003/0003990 Al 1/2003 Von Kohorn

6,898,569 Bl 5/2005 Bansal et al. 2003/0016233 Al 1/2003 Charpentier

6,937,869 Bl 8/2005 Rayburn 2003/0018527 Al 1/2003 Filepp et al.
6,937,998 Bl 8/2005 Swartz et al. 2003/0030731 Al 2/2003 Colby

6,954,147 Bl 10/2005 Cromer et al. 2003/0140088 Al 7/2003 Robinson et al.

6,985,747 B2 1/2006 Chitharnbararn 2003/0169151 Al 9/2003 Ebling et al.
6,999,572 Bl 2/2006 Shaffer et al. 2004/0002329 Al 1/2004 Bhatia et al.

7,005,985 Bl 2/2006 Steeves 2004/0097243 Al 5/2004 Zellner et al.

7,009,556 B2 3/2006 Stewart et al. 2004/0111269 Al 6/2004 Koch
7,023,995 B2 4/2006 Olsson 2004/0116131 Al 6/2004 Hochrainer et al.

7,043,231 B2 5/2006 Bhatia et al. 2004/0151151 Al 8/2004 Kubler et al.

7,058,594 B2 6/2006 Stewart et al. 2004/0164898 Al 8/2004 Stewart

7,069,319 B2 6/2006 Zellner et al. 2004/0186902 Al 9/2004 Stewart et al.
7,085,555 B2 8/2006 Zellner et al. 2004/0201459 Al 10/2004 Rich et al.

7,103,368 B2 9/2006 Teshima 2004/0203903 Al 10/2004 Wilson et al.

7,103,476 B2 9/2006 Smith et al. 2004/0205198 Al 10/2004 Zellner et al.
7,106,843 Bl 9/2006 Gainsboro et al. 2004/0228330 Al 11/2004 Kubler et al.

7,110,749 B2 9/2006 Zellner et al. 2004/0246940 Al 12/2004 Kubler et al.

7,116,977 Bl 10/2006 Moton et al. 2004/0252051 Al 12/2004 Johnson
7,124,101 Bl 10/2006 Mikurak 2004/0264442 Al 12/2004 Kubler et al.
7,130,631 B2 10/2006 Enzmann et al. 2004/0266453 Al 12/2004 Maanoja et al.

7,139,722 B2 11/2006 Perrella et al. 2005/0002419 Al 1/2005 Doviak et al.

7,155,199 B2 12/2006 Zalewski et al. 2005/0004838 Al 1/2005 Perkowski et al.
7,177,651 Bl 2/2007 Almassy 2005/0017068 Al 1/2005 Zalewski et al.

7,181,225 Bl 2/2007 Moton et al. 2005/0043036 Al 2/2005 Ioppe et al.

7,181,529 B2 2/2007 Bhatia et al. 2005/0050227 Al 3/2005 Michelman
7,188,027 B2 3/2007 Smith et al. 2005/0060365 Al 3/2005 Robinson et al.

7,190,960 B2 3/2007 Wilson et al. 2005/0096067 Al 5/2005 Martin

7,203,502 B2 4/2007 Wilson et al. 2005/0114777 Al 5/2005 Szeto
7,212,829 Bl 5/2007 Lau et al. 2005/0151655 Al 7/2005 Hamrick et al.
7,224,978 B2 5/2007 Zellner et al. 2005/0246097 Al 11/2005 Hamrick et al.

7,236,799 B2 6/2007 Wilson et al. 2005/0272445 Al 12/2005 Zellner

RE39,717 E 7/2007 Yates et al. 2005/0283833 Al 12/2005 Lalonde et al.
7,245,925 B2 7/2007 Zellner 2006/0009190 Al 1/2006 Laliberte

7,260,378 B2 8/2007 Holland et al. 2006/0010202 Al 1/2006 Blackstock et al.

7,272,493 Bl 9/2007 Hamrick et al. 2006/0022048 Al 2/2006 Johnson
7,292,939 B2 11/2007 Smith et al. 2006/0030335 Al 2/2006 Zellner et al.

7,295,924 B2 11/2007 Smith et al. 2006/0030339 Al 2/2006 Zhovnirovsky et al.
7,362,851 B2 4/2008 Contractor 2006/0059043 Al 3/2006 Chan et al.
7,383,052 B2 6/2008 Moton et al. 2006/0089134 Al 4/2006 Moton et al.
7,386,396 B2 6/2008 Johnson 2006/0094447 Al 5/2006 Zellner
7,787,887 B2 8/2010 Gupta et al. 2006/0099966 Al 5/2006 Moton et al.

2001/0001239 Al 5/2001 Stewart 2006/0105784 Al 5/2006 Zellner et al.
2001/0005864 Al 6/2001 Mousseau et al. 2006/0106537 Al 5/2006 Hamrick et al.
2001/0007450 Al 7/2001 Begum 2006/0136544 Al 6/2006 Atsmon et al.
2001/0021646 Al 9/2001 Antonucci et al. 2006/0164302 Al 7/2006 Stewart et al.
2001/0028301 Al 10/2001 Geiger et al. 2006/0167986 Al 7/2006 Trzyna et al.

Petitioners' Ex. 1001, Page 4 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0183467 Al 8/2006 Stewart et al.
2006/0189327 Al 8/2006 Zellner et al.
2006/0189332 Al 8/2006 Benco et al.
2006/0194589 Al 8/2006 Sankisa
2006/0195570 Al 8/2006 Zellner et al.
2006/0198359 Al 9/2006 Fok et al.
2006/0240828 Al 10/2006 Jain et al.
2006/0252465 Al 11/2006 Karstens et al.
2006/0253252 Al 11/2006 Hamrick et al.
2007/0005188 Al 1/2007 Johnson
2007/0010260 Al 1/2007 Zellner et al.
2007/0042789 Al 2/2007 Moton et al.
2007/0105565 Al 5/2007 Enzmann et al.
2007/0124721 Al 5/2007 Cowing et al.
2007/0136603 Al 6/2007 Kuecuekyan
2007/0232326 Al 10/2007 Johnson
2007/0233387 Al 10/2007 Johnson
2007 /0244633 Al 10/2007 Phillips et al.
2007 /0250920 Al 10/2007 Lindsay
2007 /027 5730 Al 11/2007 Bienas et al.
2007/0276587 Al 11/2007 Johnson
2007/0281716 Al 12/2007 Altman et al.
2007/0287473 Al 12/2007 Dupray
2008/0030308 Al 2/2008 Johnson
2008/0071761 Al 3/2008 Singh et al.
2008/0096529 Al 4/2008 Zellner
2008/0170679 Al 7/2008 Sheha et al.
2008/0301561 Al 12/2008 Bain
2009/0054077 Al 2/2009 Gauthier et al.
2009/0067593 Al 3/2009 Ahlin
2009/0167524 Al 7/2009 Chesnutt et al.
2009/0190734 Al 7/2009 White et al.
2009/0233622 Al 9/2009 Johnson
2009/0233623 Al 9/2009 Johnson et al.
2009/0233633 Al 9/2009 Johnson
2010/0069035 Al 3/2010 Johnson
2010/0146160 Al 6/2010 Piekarski
2010/0159946 Al 6/2010 Cheung et al.
2010/0227595 Al 9/2010 Johnson
2010/0235748 Al 9/2010 Johnson et al.
2011/0021145 Al 1/2011 Johnson et al.

FOREIGN PATENT DOCUMENTS

EP 917320 5/1999
EP 935364 8/1999
EP 924914 4/2003
EP 779752 6/2004
EP 1435749 7/2004
EP 1445923 8/2004
EP 838933 4/2008
GB 2396779 6/2004
JP 01-194628 8/1989
JP 03-128540 5/1991
JP 07-234789 9/1995
JP 07-288514 10/1995
JP 07-319706 12/1995
JP 08-44568 2/1996
JP 08-87296 4/1996
JP 11-168478 6/1999
WO WO 98/19484 5/1998

US 10,477,994 B2
Page 5

WO
WO
WO
WO
WO
WO
WO
WO

WO 99/16263
WO 99/27716
WO 99/51005
WO 99/55012
WO 00/02365

WO 00/076249
WO 02/11407
WO 04/80092

4/1999
6/1999

10/1999
10/1999

1/2000
12/2000
2/2002
9/2004

OTHER PUBLICATIONS

Andy Harter and Andy Hooper, A Distributed Location system for

the Active Office, IEEE Network, Jan./Feb. 1994.
Max J. Egenhofer, Spatial SQL: A Query and Presentation Lan
guage, IEEE Network, Feb. 1994.
Mike Spreitzer and Marvin Theimer, Providing Location Informa
tion in a Ubiquitous Computing Environment, Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles,
Dec. 1993.
George W. Fitzmaurice, Situated Information Spaces and Spatially
Aware Palmtop Computers, Communication of the ACM, Jul. 1993.
Ronald Azuma, Tracking Requirements for Augmented Reality,
Communications of the ACM, vol. 36 No. 1, Jan. 1992.
Roy Want, et al., The Active Badge Location System, ACM Trans
actions on Information Systems, vol. 10, No. 1, Jan. 1992.
Marvin White, Emerging Requirements for Digital Maps for In
Vehicle Pathfinding and Other Traveller Assistance, Vehicular Navi
gation and Information Systems Conference Proceedings, Part 1,
Oct. 1991.
Fred Phail, The Power of a Personal Computer for Car Information
and Communications Systems, Vehicular Navigation and Informa
tion Systems Conference Proceedings, Part 1, Oct. 1991.
Thomas A. Dingus, et al., Human Factors Engineering the TravTek
Driver Interface, Vehicular Navigation and Information Systems
Conference Proceedings, Part II, Oct. 1991.
Michael Muffat et al., European Cooperation on Dual Mode Route
Guidance Perspectives for Advanced Research Partners, Vehicular
Navigation and Information Systems Conference Proceedings, Part
II, Oct. 1991.
High-Performance Wireless Access Point for the Enterprise,
ORiNOCO™ AP-100 Access Point for the Enterprise, Lucent
Technologies, 2000.
MobileStar Network, MobileStar Network First to Provide Business
Travelers with High-Speed Data Access via the Internet
Wirelessly, New York, NY, Jun. 24, 1998.
Harry Chen, et al., "Dynamic Service Discovery for Mobile Com
puting: Intelligent Agents Meet Jini in the Aether," Cluster Com
puting, Special Issue on Internet Scalability, vol. 4, No. 4, Feb.
2001.
3rd Generation Partnership Project: Technical Specification Group
Services and System Aspects; Functional Stage 2 Description of
Location Services in UMTS (1999).
http://www.openwave.com/us/news_room/press _rel eases/2001 /
20020320, "Open Wave Announces Availability to End-to-End Set
of Location Services for Wireless Internet".
Trembly, A., "Wireless products arm road warriors," National
Underwriter, vol. 105, No. 3, pp. 23-25, Dialog 02113577 67213220
(Jan. 2001).
Antonio, Interfaces and Algorithms for a Wide-Area Event Notifi
cation Service, Oct. 1999.

Petitioners' Ex. 1001, Page 5 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 1 of 322 US 10,477,994 B2

2 MS

4 LBX Character

6
Peer Interaction Processing Code

p:~r Interaction :rolcessing ~;ta

Permissions Charters
•

14
Statistics

•
•

18.

12
Service Directory

Self Management Processing Code

20
Self Management Processing Data

22 24 26 28 30
WDR Tx Rx Service LBX

Queue Queue Queue Informant History
Code

32 Other Character

34
Other Processing Code

36
Other Processing Data

38
Other Resources

Fig. 1A

I

I

Petitioners' Ex. 1001, Page 6 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 2 of 322 US 10,477,994 B2

,-40
.·.·.·.·.·.·.·,·.·
-- ' '
.

...........

I
. .·.·.·.·.·.·.·.·.·.··

•• I --------i••••<•••••••••<<. : :~ ::<·<:<:>·:".:
•• 2

. . . .
.

Fig. 1B

.·.·.·.·.·.·.·.·.·. 2
.........
.
.
.
.
.
.
.
.

2

Petitioners' Ex. 1001, Page 7 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 3 of 322 US 10,477,994 B2

,--44

Service(s)

MS 1 MS2 ■ ■ ■ MSN

Fig. 1C

Petitioners' Ex. 1001, Page 8 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 4 of 322 US 10,477,994 B2

William J. Johnson WJJ0802

4/322 - ,..54 ,- 50

I
Processor(s)

52 .

.; --;. Main Memory 56

r60 rr58
-

Persistent Storage
. .

Removable Storage - Removable
Device - ..

Storage Unit -
67'

Bus

70
Other Data -

. Communications
Processing

Interface - .
System

72

64

- Display Device .
Interface

66
. . Input Peripheral

Interface(s)

-68
.; Output Peripheral .

lnterface(s)

Fig. 1D

Petitioners' Ex. 1001, Page 9 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

!;-1oaa 1
'-1oac

Sheet 5 of 322

Lr-108b } tlOB}
108d 108e

g.r126

r-170
.128

v1oa, t
10Bg--.rl

120

Fig. 1E

US 10,477,994 B2

156

158

118 I

Petitioners' Ex. 1001, Page 10 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent
Nov. 19, 2019 Sheet 6 of 322

US 10,477,994 B2

2r

Fig. 1F

Petitioners' Ex. 1001, Page 11 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 7 of 322 US 10,477,994 B2

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

108b ,
\

Fig. 2A

\
\

\
\

\
\

~200

Petitioners' Ex. 1001, Page 12 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 8 of 322 US 10,477,994 B2

......
...... -----200

Fig. 2B

Petitioners' Ex. 1001, Page 13 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 9 of 322

Fig. 2C

US 10,477,994 B2

' ' ' ' ' ' u200

lQill

Petitioners' Ex. 1001, Page 14 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 10 of 322

230

START - Thread for
Antenna locate MS when

detected in range

232

Authenticated MS
signal detected

234

Respond back asap to
MS with current

antenna whereabouts
info

236

MS completes a
whereabouts data

record

238

Prepare parameters

240

Invoke
Whereabouts Data

Insertion

C..._ __ sT_o_p __ r_24,,)

Fig. 2D

US 10,477,994 B2

Petitioners' Ex. 1001, Page 15 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 11 of 322

250

itself relative antenna

252

Authenticated antenna
signal detected

254

Send request and wait
for response

MS completes a
whereabouts data

record

260

Prepare parameters

262

Invoke
Whereabouts Data

Insertion

264

STOP

Fig. 2E

US 10,477,994 B2

Petitioners' Ex. 1001, Page 16 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 12 of 322 US 10,477,994 B2

270

START - Whereabouts
data insertion

272
Determine params 4

WDR, obsolete Q
entries, & supervis

update

______ .J:.2-n
I mWITS

Peek queue for most
recent highest

confidence WDR for
this MS whereabouts

288

Update DLMV if new ----role to be added

I _ _ _ _ _r.289

I Update WDR info

290
MS thread inserts
whereabouts data
record to queue

292

MS thread discards
obsolete location
queue record(s)

Update supervisory
system(s)

appropriately

298

RETURN

286

Set L WT to WDR field
~--~ ----1...i

11 00b for insertion

Fig. 2F

Petitioners' Ex. 1001, Page 17 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

\
\

\

Nov. 19, 2019 Sheet 13 of 322 US 10,477,994 B2

\ ~
\ I

\ I
\ I

\ I
\\ I

\ I
\ I

108b

\ I
\ I

\ I
\ I

\ I
\ I

\ I
\ I

\ I
\ I

\ I
\ I

\ I
\ I

&200

108(

Fig. 3A

108d

Petitioners' Ex. 1001, Page 18 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

324

Appropriately prune
location history data

for MS

326

Determine heading
based on current
versus previous

location(s)

328

Complete service side
WDR

location history data;
Notify supervisory svc

if a ble

332

Communicate WDR
info to MS

334

MS completes its
WDR

336

Prepare parameters

338

MS invokes
Whereabouts Data

Insertion

Sheet 14 of 322 US 10,477,994 B2

310

START - Service
locating MS

312
Nearest base stations

continue pulse
reporting signal

strength w/ AOA or
TDOAor

heterogeneously with
both AOA and TDOA

Controller(s)
determines strongest
signal base stations

for MS

318
10n

information accessed
for strongest base

sta · s

320
TDOA or AOA or

heterogeneously both
AOA and TDOA of

strongest signal base
stations used to

calculate location of
MS

322

Access location
history data of

previous location(s)

Fig. 3B

Petitioners' Ex. 1001, Page 19 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 15 of 322 US 10,477,994 B2

r364

Determine direction
based on current
versus previous

location(s)

r366

Complete WDR

. r368

Prepare parameters

' r370

Invoke
Whereabouts Data

Insertion

-

Fig. 3C

r350

START - MS locating)

{352

Device continues
receiving pulse

reporting signals from
nearest stations for
AOA or TDOA or

heterogeneously AOA
and TDOA

r354

MS determines
strongest signals

r356

MS parses station
location information
from pulse message

parameters

(358

AOA or TDOA or
heterogeneously both

TDOA and AOA of
strongest signals used
to calculate location of

MS

t r360
Access location
history data of

previous location

r362

Appropriately prune
location history data

for MS

Petitioners' Ex. 1001, Page 20 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 16 of 322 US 10,477,994 B2

136

Fig. 4A

Petitioners' Ex. 1001, Page 21 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 17 of 322

410

START - GPS locator
system

412

Initialize to GPS
interface

414

New location
coordinates

determined upon
strongest satellite

signals with params
received

416

Calculate location
information

418

Complete WDR

420

Prepare parameters

422
Invoke

Whereabouts Data
Insertion

424

STOP

Fig. 4B

US 10,477,994 B2

Petitioners' Ex. 1001, Page 22 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 18 of 322 US 10,477,994 B2

502

J504a J504b
0

0 0
504f

504i
0

0 0 0

Fig. SA

Petitioners' Ex. 1001, Page 23 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 19 of 322 US 10,477,994 B2

r
r524

START- Determine)
MS location

r--t--
Calculate location

information

510

r512

Cell controller emits ,r
[526

signal
Access MS location

- I history of prev
-♦ r514 locations;

Receiving system Appropriately prune
phase modulates history data;
unique MS id onto Determine heading

return signal based on previous
locations

r516
r528

Cell controller
determines antennas Complete service side

in closest range of WDR
returned signal

r51B r530

Cell controller extracts
Append entry to

the MS id from return
location history data;

signal
Notify supervisory

service if applicable

[520
r532

1' Communicate WDR to

Cell controller MS
determines distances,

AOA, or r534
heterogeneously both MS completes its

distances AND AOA of WDR
unique id from closest

r536 X antennas

+ ,522 Prepare parameters

Cell controller locates e--- r53B
MS by registration grid

MS invokes
Whereabouts data

insertion

Fig. 5B

Petitioners' Ex. 1001, Page 24 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

616
Communicate WDR to

MS

618
MS completes its

WDR

620

Prepare parameters

622

MS invokes
Whereabouts Data

Insertion

624

STOP

Sheet 20 of 322 US 10,477,994 B2

602

START - Physically or
logically connected
locating by service

604

MS is physically
plugged into network
or logically connected

606

MS accesses service

608

Service accesses
location history data

which contains
network address for

loc/dir info

610

Appropriately prune
location history data;
Determine heading/

travel to previous
locations

612

Complete service side
WDR

614

Append entry to
location history data;

Notify supervisory
service if applicable

Fig. 6A

Petitioners' Ex. 1001, Page 25 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 21 of 322

640

START - Physically or
logically connected

locating by MS

642

MS is physically
plugged into network
or logically connected

644

MS accesses service;
MS receives ack for

being connected

646

MS requests
whereabouts info via
service and waits for

WDRdata

648
MS completes its

WDR

650

Prepare parameters

652

MS invokes
Whereabouts Data

Insertion

654

STOP

Fig. 6B

US 10,477,994 B2

Petitioners' Ex. 1001, Page 26 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

I
I
I
I
I
I

Nov. 19, 2019 Sheet 22 of 322

' '

700

Locating
Service

' ' ' '
704

'

1---------/1708
1-I
I I

: ffl ~706
I llidh200 I
L ________ I

Fig. 7A

US 10,477,994 B2

701

' ' '

Petitioners' Ex. 1001, Page 27 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 23 of 322

700

Locating
Service

704

ITT

Q112
• •

lbdh.200

•
'-716

710a

Fig. 7B

US 10,477,994 B2

701

, ./, 'i ',,
,Jr(.~ y.b 714

Petitioners' Ex. 1001, Page 28 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

I
I
I
I
I
I

Nov. 19, 2019 Sheet 24 of 322

700

Locating
Service

704

.. 4a

·.·.·.·.·.· 0

724b

Fig. 7C

US 10,477,994 B2

701

714

722

Petitioners' Ex. 1001, Page 29 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 25 of 322

744

Notify supervisory svc
if applicable

752

732

ST ART - Graphical
thread locating

734
Initialize pattern/symbol(s)/

object(s) location recognition
system

---1..i

736

Get next snapshot;
wait if necessary

738

Detect pattern/
symbol(s)/ object(s)
within field of view

Calculate WDR
information for

object(s)

742

746

Communicate WDR
information to MS(s)

750

Prepare parameters a.---1
MS completes its

WDR

754

MS invokes
Whereabouts Data

insertion

Fig. 7D

US 10,477,994 B2

Petitioners' Ex. 1001, Page 30 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 26 of 322 US 10,477,994 B2

200

06

Fig. BA

Petitioners' Ex. 1001, Page 31 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

822

Determine WDR
information

824

Update supervisory
service if applicable

826
Communicate WDR
information to MS

828
MS completes its

WDR

830

Prepare parameters

832

Invoke
Whereabouts Data

Insertion

Sheet 27 of 322 US 10,477,994 B2

810
TART - Thread for

locating by physically
contacted/sensed/

touched

812

Initialize

814

Sample set as input
for recognition

816

Database is accessed
for match

Save data for
unrecognized entity

834

STOP

Fig. BB

Petitioners' Ex. 1001, Page 32 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 28 of 322

850

ST ART - User specifies
whereabouts info

User continues
interfacing to MS until
action that is handled

below

Handle user interface
action appropriately

MS locates itself

866
MS emits where am I
broadcast soliciting

response (may
timeout

ReceiveWDR
information

timeout
error to user

Fig. BC

US 10,477,994 B2

860

User interfaces for
specifying his WDR

information

874
MS completes its
WDR information

876

Prepare parameters

878

MS invokes
Whereabouts Data

Insertion

880

Terminate interface

882

STOP

Petitioners' Ex. 1001, Page 33 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 29 of 322 US 10,477,994 B2

MS (id OA12:43EF:9858:012F)

GPS C X

s
A-GPS C

s
0-GPS C

s
Graphic-Pattern(s) C

s
Graphic-Distances C

s
Graphic-Triangulate C

s
Artificial C

lntelliaence s
Cell Range C

s X

CellAOA C
s

CellTOOA C
s X

Cell MPT C
s X ----"-C Antenna Range
S, X

AntennaAOA
Cl
s X

Antenna TDOA C
SI X

Antenna MPT C
s --

X

LI DAR/optics C
s

Manual C
S1

Contact ~I-
s X

MPT C
s X

Client Logical C
Connect s

Server Logical C
Connect s

cuent Physical C
Connect s

:server Physical C -
Connect s

Sound/Acoustics C
s

Microdot/ RFI C -s
Transponder C

s
Others C

s
C ... s

Fig. 9A

Petitioners' Ex. 1001, Page 34 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 30 of 322

950

START - Heterogeneous
locating

952

Process a plurality of
params using different

location methods

954

Heterogeneously
locate the MS using

different location
params in conjunction

with each other

956

Communicate WDR
information to MS

958

MS completes its
WDR

960

Prepare parameters

962

MS invokes
Whereabouts Data

Insertion

964

STOP

Fig. 9B

US 10,477,994 B2

Petitioners' Ex. 1001, Page 35 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 31 of 322 US 10,477,994 B2

~200a

a200b I

· , , .._ : Er1000a

200d , Ir
: [] 1000b

_,.

1002

~ 1 OOOf

Er1000e

~1000g

fnlr1000d
Ll@df

~1000h

Er1000k

Fig. 10A

W51J'1000j

lgJ

Petitioners' Ex. 1001, Page 36 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

~200a

fF7l 1 1000d

LbJf

Sheet 32 of 322 US 10,477,994 B2

w1000,

ffiy- 1 OOOe

lbillJ
Br1000g

~f"1000h

~

W7lr1000k

Ll±H

m~1oooj

lbillJ

Fig. 10B

Petitioners' Ex. 1001, Page 37 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

m,r2ooa

200e ~1000c

Br1000d

Sheet 33 of 322 US 10,477,994 B2

1002

rnl.r1000f
ugJJ

[ly1000e

.-1000g

tl]y1000h

[ly1000k
ralf1000j

LJ4IJ

Fig. 10C

Petitioners' Ex. 1001, Page 38 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 34 of 322

1y-2ooa

ffil-200b

lsdJ

1_y2ood

mr1000a

I
1000b

,'
' I __ fW1000e

US 10,477,994 B2

1002

iw1000f

200e -
1000c lr1000g

ffl..r1000d
Ll±_)J

~1000h

fnlf1000i

lliM_f

mr1000k
ITffilf 1000j

lliQJ

Fig. 10D

Petitioners' Ex. 1001, Page 39 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 35 of 322 US 10,477,994 B2

.200a

fnlr200b
ls:J_f

1002

ITTJlr-200d
ls:J_f ff5lr-1000f

~

200e

rf7lr1oood
ls:J_f

.1000h

IIY1000k

ar1000j

~

Fig. 10E

Petitioners' Ex. 1001, Page 40 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 36 of 322 US 10,477,994 B2

ITT.r200b
llid_f

BY200d

mr-1000a

tl-11000b

1002

~ lt1000c 200e
.

lt1000d

lt1000k

1Rlf1000j

~

Fig. 10F

Petitioners' Ex. 1001, Page 41 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 37 of 322 US 10,477,994 B2

Fig. 10G

Petitioners' Ex. 1001, Page 42 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 38 of 322

mr200a

.200b

mr200d

Br1000a

Br1000b

mr1000e

US 10,477,994 B2

1002

~1000{

~ mr1000c 200e
.

~1000g

fFilr1000d

lbH

[5hlf1000h

lb@J

mr1000k

Fig. 10H

W7J{1000i

lliillf

ITT7l) 1 OOOj

[QI

Petitioners' Ex. 1001, Page 43 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 39 of 322 US 10,477,994 B2

.200a J WQ --
fnlr200b

Bf

fnlr200d

Bf

200c

g1oooa

-1000b

1002

mr-1 OOOf

~ lt1000c 200e
.

fr7Lr1oooe
lb@

-1000g

fnl_r1000d

Bf

ITT577f 1 OOOh

~

~1000;

IY1000k
rn57f 1000j

lg

Fig. 10/

Petitioners' Ex. 1001, Page 44 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Identity {

Core

Transport

Nov. 19, 2019 Sheet 40 of 322 US 10,477,994 B2

,-- 1100

MSID Ir

DATE/TIME STAMP r

LOCATION lr -

CONFIDENCE Ir
-

LOCATION TECHNOLOGY Ir
-

LOCATION REFERENCE INFO - v-

COMMUNICATIONS REFERENCE INFO - r

1100a

1100b

1100c

1100d

1100e

1100(

1100g

1100h

1100i

1100j

1100k

1100m

1100n

1100p

SPEED
r

HEADING -Ir

ELEVATION Ir

APPLICATION FIELDS Ir

CORRELATION
r -

SENT DATE/TIME STAMP
r

RECEIVED DATE/TIME STAMP
!r -

Fig. 11A

Petitioners' Ex. 1001, Page 45 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 41 of 322 US 10,477,994 B2

~1000e

Fig. 11B

Petitioners' Ex. 1001, Page 46 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 42 of 322 US 10,477,994 B2

1114

1112

Fig. 11C

Petitioners' Ex. 1001, Page 47 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

1106-----,

____,
1114

Sheet 43 of 322 US 10,477,994 B2

.. 1.r)
1110 1138 ___ 1._

Fig. 11D

Petitioners' Ex. 1001, Page 48 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 44 of 322

AOA

HETERO

I
.
. .

TDOA

Fig. 11E

US 10,477,994 B2

GPS

Petitioners' Ex. 1001, Page 49 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

1226
Initialize enumerated
process set [1952,
1932, 1912, 1942,

1922, 1902)

1228
Get next (or first)
enumerated set

element P

Spawn process and
save PIO (e.g. 19xx-

PID

1238

Sheet 45 of 322

START- MS
initialization

Initialize BIOS

1202

1204

1206

Complete other
character initialization

US 10,477,994 B2

Initialize NTP
appropriately

1210

1212._ __ ...,. ___ ..

Create shared
memory

1214

Initialize persistent
data

Initialize non
persistent data

1216

1218

Create queue(s)

1242

STOP

1240

Complete LBX
character initialization

Initialize enabled
role(s) appropriately

Fig. 12

Petitioners' Ex. 1001, Page 50 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 46 of 322 US 10,477,994 B2

..... -

..... - - ...

/
/

llr200a

1308 ""_·

,. .. -

.. -

·-

Fig. 13A

Data

CK 1302

1304

:'---1311

.·'--1310:·

Petitioners' Ex. 1001, Page 51 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 47 of 322 US 10,477,994 B2

.. ---··--

Data

.... -
CK 1302

...........

. 1304
/ -.. ----

/
m-r1000k

.
1308 ""'\.·' :'\...1311

............. .' '---1310.:

- -

Fig. 13B

Petitioners' Ex. 1001, Page 52 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 48 of 322

............ - ..

/
/

(_I __ s_e_rv_i_ce_(_s_) ___ L

1318 \...' .

. - -

Fig. 13C

Data

CK

US 10,477,994 B2

1312

1314

Petitioners' Ex. 1001, Page 53 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Initialize with
applicable settings

Present current
settings to user with

Wait for user action

Nov. 19, 2019 Sheet 49 of 322

Configure ILM role(s)

Configure NTP use

Maintain WDR queue
entries

Prepare parameters

Interface with user for
which 19xx-Max

error to user

Fig. 14A

US 10,477,994 B2

1448
Interface with user for
which 19xx process

Prepare parameters

1456
Invoke process

terminator (19xx,
0/PID

STOP

Petitioners' Ex. 1001, Page 54 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 50 of 322 US 10,477,994 B2

1468

1470

Invoke Configure
Value

Handle other action
appropriately

Fig. 14B

1474
Configure service

propagation

1478

Configure permissions

1482

Configure charters

1486

Configure statistics

1490
Configure service

informant

1494

Maintain LBX history

Petitioners' Ex. 1001, Page 55 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 51 of 322 US 10,477,994 B2

1502

START - Configure
OLM role(s)

1504
Access marked list of

possible MS OLM
role(s)

error to
user

Save current OLMV

Manage List
(OLMV)

STOP

1512

Fig. 15A

,- 1412

1516

Handle role changes
appropriately

Petitioners' Ex. 1001, Page 56 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 52 of 322 US 10,477,994 B2

1522

ST ART - Configure
ILM role(s)

1524
Access marked list of

possible MS I LM
role(s)

Save current ILMV

Manage List
(ILMV)

1532

,- 1416

1536

~-_.. Handle role changes
appropriately

1538

STOP

Fig. 15B

Petitioners' Ex. 1001, Page 57 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

1552

1554

Present (scrollable if
necessary) list of

marked entries with
appropriate highlight

(enabled (i.e. marked)
= highlighted, disabled

= not highlighted)

1556

Wait for user action

Sheet 53 of 322 US 10,477,994 B2

1560

Mark list entry (save)
as enabled (will be

highlighted)

1564

Mark list entry (save)
-:::..:----.......tas disabled (will not be

1568

Handle other user
action appropriately

Fig. 15C

highlighted)

1570

RETURN

Petitioners' Ex. 1001, Page 58 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 54 of 322 US 10,477,994 B2

1602

START - NTP use
configuration

Access current
NTP setting

1604

1606
Present NTP setting
(enabled or disabled)

with options

1608

Wait for user action

Handle user action
appropriately

Terminate NTP
appropriately

1612

,- 1420

Set NTP use to
disabled

1614

_____,1....;.1.;;.6.;..;:18 1620

Access known NTP Ping each server with
server(s) addresses timeout

Provide
error to

user

STOP

Fig. 16

1634 Initialize NTP
appropriately

Set NTP use to
enabled

1626

1628

Petitioners' Ex. 1001, Page 59 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

START - Maintain
WDRs

1424~

Nov. 19, 2019 Sheet 55 of 322 US 10,477,994 B2

1708

Present (scrollable if
necessary) list of

WDRs of queue 22

1710

Wait for user action

Handle other user
action appropriately

Fig. 17

.---

Provide
error to

user

1714

Discard selected WDR
from queue 22

1718

Interface with user to
modify a validated

WDR

1722
Interface with user to

add to Q 22 a
validated WDR

1726

Nicely format WDR for
easy reading; Wait for

exit user action

1732

STOP

Petitioners' Ex. 1001, Page 60 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

1802

START - Configure
Value

1804

Determine params for
current value (passed

by reference) and
validity criteria

1806

Present setting to user

1808

Wait for user action

Sheet 56 of 322 US 10,477,994 B2

1812

Interface with user for
validated value using

~----+1 validity criteria; Save

1816

Handle other user
action appropriately

Fig. 18

validated value to
reference

1818

RETURN

Petitioners' Ex. 1001, Page 61 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

1900~

1952
Whereabouts
Determination

Thread(s)

I
1948, /

'1 1956

Whereabouts
Broadcast
Thread(s)

I
I

Sheet 57 of 322

Whereabouts
Collection
Thread(s)

y
1924 1930

1922 .,,,, ,,,., ---

US 10,477,994 B2

1958

1920

1980"!v'"

/
/

/

1934

WDR
Request

Thread(s)

Whereabouts
Supervisor
Thread(s)

1928 ~ +r-
1926 ~)

Timing
Determination

Thread(s)

1942
1990 1936

--------P"--V:-24

Fig. 19

Petitioners' Ex. 1001, Page 62 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Sleep SPTP

Nov. 19, 2019 Sheet 58 of 322

2018

2002

START - MS whereabouts
broadcast (1902) thread

2004

Increment 1902-Ct

2006

Peek WDR queue for
termination entry

Peek WDR queue for
greatest confidence

and most recent WDR
with MS ID = this MS,

confidence >=
confidence floor, NTP

enabled date/time
stamp within timely

time period

Prepare WDR for
transmission

- - - - - -J:.2Q15
I oWITS

2016

Broadcast WDR

Fig. 20

US 10,477,994 B2

2020

Decrement 1902-Ct

2022

STOP

Petitioners' Ex. 1001, Page 63 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 59 of 322

2102

START - MS whereabouts
collection (1912) thread

2106
Invoke Prune

Queues (WDR)

2108
Retrieve next WDR

info record

0
- - - - _ _c21.11

I iWITS

2112
Set Field 11 00b

appropriately; Adjust
confidence
accordingly

Set TDOA_FINAL=
FALSE

2144
Peek CR queue

record for matching
correlation

Set TDOA info in
location reference field

appropriately

Set TDOA_FINAL =
TRUE

2120

Access ILMV

2134
Build TR queue entry
for thread 1952 start

Insert to TR queue

Fig. 21

US 10,477,994 B2

Build TR queue entry
for thread 1932 start

Prepare parameters

2132

Insertion

Petitioners' Ex. 1001, Page 64 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Sleep f(WTV)

Nov. 19, 2019 Sheet 60 of 322

2216

2202

START - MS whereabouts
supervisor (1922) thread

2204

Increment 1922-Ct

Invoke Prune
Queues (CR)

2206

2208

Peek WDR queue for
termination entry

Peek WDR queue for
greatest confidence
WDR with MS ID =
this MS, confidence
>= confidence floor,

date/time stamp within
f(WTV) time period

2228

Insert to TR queue

Fig. 22

0

US 10,477,994 B2

2230

Decrement 1922-Ct

STOP

2218

Build WDR request

2220

Build CR entry

2222

Insert to CR queue

2224

Broadcast request

2226
Build TR queue entry
for thread 1952 start

Petitioners' Ex. 1001, Page 65 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 61 of 322 US 10,477,994 B2

2302

START - MS timing
determination (1932) thread

2304

Increment 1932-Ct

2306
Invoke Prune
Queues (CR)

2308

Retrieve next 1932 TR
record

2314
Build WDR request for

__ ____.

broadcast

Fig. 23

2326

Decrement 1932-Ct

2328

STOP

2316

Build WDR request for
targeted MS ID

2318
Generate correlation
for CR queue entry

2320
Set stake date/time in

CR queue entry

2322

Insert to CR queue

2324
Send/broadcast WDR

request

Petitioners' Ex. 1001, Page 66 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 62 of 322 US 10,477,994 B2

~ 2400

I REQUEST TYPE r2400
•

'- _____ _:>ATA ______ {2400b

Fig. 24A

Petitioners' Ex. 1001, Page 67 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 63 of 322 US 10,477,994 B2

~2450

I
?ATE/TIME STAMP r245oa

.,__ _______ C_O_R_R-ELA_T_IO_N _______ __.r245ob ___________________ __,

Fig. 24B

Petitioners' Ex. 1001, Page 68 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 64 of 322 US 10,477,994 B2

MSID

CORRELATION

~2490

r2490a

1 2490b

RECEIVED DATE/TIME STAMP (
249

oc

~ ____ ~M~N2::_R~c.:_ ____ (49
0d

Fig. 24C

Petitioners' Ex. 1001, Page 69 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 65 of 322 US 10,477,994 B2

2502

TART - WDR request (1942
thread

2504

Increment 1942-Ct

2506

Retrieve next WDR
request

Peek WDR queue for
WDR with this MS ID,

confidence >
confidence floor, most
recent date/time within

timely time period

Complete WDR for
response

- - - - - -.J;.2!,5.15
I oWITS

Send/Broadcast
Response

Fig. 25

2518

Decrement 1942-Ct

2520

STOP

Petitioners' Ex. 1001, Page 70 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

2602

START - MS Whereabouts
determination (1952) thread

2606

Invoke Prune
Queues (WDR)

Retrieve next TR entry

Peek WDR queue for
this MS with highest

confidence > floor and
most recent date/time

in last f(WTV) time
period

Determine new
highest confidence
WDR for this MS

Sheet 66 of 322 US 10,477,994 B2

2622

Decrement 1952-Ct

2624

STOP

Prepare parameters

2620
Invoke

Whereabouts Data
Insertion

Fig. 26A

Petitioners' Ex. 1001, Page 71 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 67 of 322 US 10,477,994 B2

2600~

Make new WDR(s);
Insert loop WDR to
sorted THIS_MS list

2656
Initialize DISTANCE
list; Initialize ANGLE

list

Set poi
REMOTE M

lnsertWDR
appropriately to sorted

THIS_MS list

START- Determine
best whereabouts

2632
BESTWDR = null;

THIS_MS list= null;
REMOTE_MS list =

null Appen

Peek all WDRs from Insert appropriate
queue 22 for WDR to THIS_MS list
confidence > in sorted order

confidence floor and 2666
most recent in trailing Append to ANGLE list
f(WTV) period of time

266
.-----....._-.i...=2.;:;.6.;:;..;:36,.......c~om--pa_r_e-.D=nl.,.,.,.........,..d=...;;l;,.;;is-i-t.;;..,,

Set sort keys based and AOA list with triangulate
on f(WTV) in use measure ired

2638
Get next (or first)

WDR

Maximize reference
diversity

2680

Use WDR whereabouts
and triangulation
measurements
appropriate I

2682
Insert appropriate

WDR to THIS_MS list

Insert WDR(s)
'---'l'------L.-----1 appropriately to sorted

REMOTE_MS list

2684
BESTWDR = Head of
THIS_MS list (null or

first entry)

Fig. 26B

Complete WDR

2686
Handle tie(s) and

average if necessary

Petitioners' Ex. 1001, Page 72 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

2702

START - Prune
Queues

2704

Access parameter(s)

2714

RETURN

Sheet 68 of 322 US 10,477,994 B2

2708

Prune queue 22

2712

Prune queue 1990

Fig. 27A

Petitioners' Ex. 1001, Page 73 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 69 of 322

2720

START-Set
confidence defaults

2722

Access MS OLM and
ILM role(s)

error to
user

Access associated
default confidence

values

indicate default
system setting used

when applicable

2730

Wait for user action

2752

Terminate interface
appropriately

Handle other action
appropriately

2754

STOP

Fig. 27B

US 10,477,994 B2

2734
Interface with user for

modification

2738

Interface with user for
adding default to entry

2742

Interface with user for
removal

2746
Save all associated
default confidence

values for list

Petitioners' Ex. 1001, Page 74 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

START-MS
termination

2802

2804
Terminate enabled

DLM role(s)
appropriately

2806
Initialize enumerated
process set [1912,
1952, 1932, 1942,

1922, 1902]

2808

Get next (or first) set
element P

Prepare parameters

2814
Invoke process
terminator (P,

0/PID)

Sheet 70 of 322

2818

Destroy semaphores

2820

Destroy queues

2822

Save persistent data
appropriately

Destroy shared
memory

2824

2830

Complete LBX
character termination

2832

Complete other
character termination

processing

2834

STOP

Fig. 28

US 10,477,994 B2

2828

Terminate NTP
appropriately

Petitioners' Ex. 1001, Page 75 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 71 of 322 US 10,477,994 B2

2902

START - Process
starter

2904
Access parameter for
which process (e.g.

19xx) started

Create RAM
semaphore

2906

2908

Initialize thread count
to O (e.g. 19xx-Ct)

2910

Set J = 0

2912
Start worker thread in

this process

2914

J=J+1

2918

Wait until thread count
>= max threads (e.g.

19xx-max)

2920

Wait until thread count
<= 0

2922

Set process to
Disabled (e.g. 19xx

PID = 0)

2924

STOP

Fig. 29A

Petitioners' Ex. 1001, Page 76 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 72 of 322 US 10,477,994 B2

2952

ST ART - Process
terminator

2954
Access parameters for

which process to
terminate (e.g. 19xx)
and thread(s) type (0
=> blocked on Q; >O
=> valid PIO for timer

thread(s))

Set J = 0

2960
Insert thread terminate

entry to applicable
queue

J=J+1

Wait until thread(s)
terminated (e.g. 19xx

PID = 0)

2968
Insert WDR queue
entry enabling peek

for termination

2970

Wait until thread(s)
terminated (e.g. 19xx

PID = 0) or timeout

Kill PIO

2976

Set process to
Disabled (e.g. 19xx

PID = 0)

2978

RETURN

Fig. 29B

Petitioners' Ex. 1001, Page 77 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 73 of 322 US 10,477,994 B2

// Figs. 30A through 30E syntaxes (e.g. delimiters, etc) used should enforce
II appropriate unambiguous grammar parsability for Lex&Yacc, top down

,- 3002a

II recursive parsing, XML encoding, other syntactic embodiments, applicable semantic
II representations, and any other syntactic/semantic embodiments. Figs. 30A through 30E BNF
II grammar elaborates for a corresponding interpreter, recommended syntaxes, programming
// language structures and/or objects, DB schemas, ANSI datastream encoding (e.g. X.409),
II flowchart processing blocks and locations in parent application flowcharts, and any other
II analogous implementation embodiments or subsets thereof.

II ***** Common BNF grammar (e.g. in Data 8): *****

Variables = "null" I Variables Variable
II Variables are placed anywhere; Can be used for referencing (a=" ... " b=a c=b)

Variable = VarType(VarName) = "null" I VarType(VarName) = ... value(s) ... I
VarType(VarName) = [Variables] [Varlnstantiations] I
VarType(VarName) = [Varlnstantiations] [Variables]

II Variables scope to following & descending nesting; "value" has appropriate syntax
II per VarType; VarName can be set to other variables (e.g. indirect tree structure)

Varlnstantiations = "null" I Varlnstantiations Varlnstantiate

Varlnstantiate = *VarName(Param1="x1", Param2="x2", ... ParamN="xN") for N >= 0
II Parameters allow optionally substituting occurrences in VarName with new values
// prior to instantiation;

VarName = "text string"

Description = "null" I "text string" I Varlnstantiate

History = (Creatorlnfo] [Modifierlnfo] I Varlnstantiations

Creatorlnfo = "null" I [CreateDateTime] [CreatorlD] [CreatorlDType]
[CreatorAddr] [CreatorSyslD] [CreatorSysType]
[CreatorSysAddr] I Varlnstantiations

Modifierlnfo = "null" I [LastModifyDateTime] [LastModifylD]
[LastModifylDType] [LastModifyAddr] [LastModifySyslD]
[LastModifySysType] [LastModifySysAddr] I Varlnstantiations

CreateDateTime

CreatorlD

CreatorlDType

= "date/time stamp" I Varlnstantiate

= ID

= IDType

Fig. 30A

Petitioners' Ex. 1001, Page 78 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 74 of 322

= Address CreatorAddr

CreatorSyslD

CreatorSysType

CreatorSysAddr

= "text string" I Varlnstantiate

= "system type" I Varlnstantiate II e.g. type of MS

= Address

LastModifyDateTime= "date/time stamp" I Varlnstantiate

LastModifylD = ID

LastModifylDType = IDType

LastModifyAddr = Address

LastModifySyslD = "text string" I Varlnstantiate

LastModifySysType = "system type" I Varlnstantiate

LastModifySysAddr = Address

ID = "MS ID" [Description] [History 11

US 10,477,994 B2

,- 3002b

"MS Group ID" [Description] [History] I "User ID" [Description] [History] I
"User Group ID" [Description] [History] I "logical handle" [Description] [History] I
"physical handle" [Description] [History J I Varlnstantiations

IDType = "MS_ID" 1 "MS_Group_lD" 1 "User_lD" 1 "User_Group_lD"

Address

TimeSpec

"logical_handle" I "physical_handle" I Varlnstantiate

= "ip address" I "SNA address" I "Postal address" I
"point" I "logical address" I "physical address" I "situational location" I
"2 dimensional area" I "3 dimensional area" I Varlnstantiate

= "Xdate/time stamp" I "Xdate/time period" I Varlnstantiate

VarType = Description I History I ID I IDType I Creatorlnfo I Modifierlnfo I
CreateDateTime I CreatorlD I CreatorlDType I CreatorAddr I CreatorSyslD I
CreatorSysType I CreatorSysAddr I LastModifyDateTime I LastModifylD I
LastModifylDType I LastModifyAddr I LastModifySyslD I LastModifySysType I
LastModifySysAddr I Address I "Xdate/time stamp" I "Xdate/time period" I "text string" I
"system type" I TimeSpec I "MS ID" I "MS Group ID" I "User ID" I "User Group ID" I
"logical handle" I physical handle" I " ... Address elaborations ... " I
" ... IDType elaborations ... " I Variable JI I Varlnstantiate here as well (but elaborates)

Fig. 30B

Petitioners' Ex. 1001, Page 79 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 75 of 322 US 10,477,994 B2

,- 3034

II***** BNF grammar for Permissions 10: *****

PermissionBody = "null" I [Variables] [Permissions]
// [Variables] placed anywhere (not shown in constructs below to enhance readability)

Permissions = "null'' I Permissions Permission I Varlnstantiations

Permission = Grantor Grantee [Grants] [TimeSpec] [Description] [History] I
Varlnstantiations

// No Grants implies granting all permissions; This embodiment ensures non-null
II Grantor and Grantee, but "null" could be used (e.g. for placeholder entries).

Grantor = ID [IDType] I Varlnstantiations
// ID defaults (e.g. MS ID) when IDType not present

Grantee

Grants

Grant

Privileges

Privilege

MSRelevance

Groups

Group

IDs

VarType

= ID [IDType] I Varlnstantiations

= "null" I Grants Grant I Privileges I Varlnstantiations

= "grant name" AND (Privileges [TimeSpec] [Description] [History] I
Grants [TimeSpec] [Description] [History] I
Varlnstantiations)

= "null" I Privileges Privilege I Varlnstantiations

= "atomic privilege for assignment" [MSRelevance]
[TimeSpec] [Description) [History) I Varlnstantiations

= "MS relevance descriptor"

= "null" I Groups Group I Varlnstantiations

= "group name" AND (IDs [Description) [History] I
Groups [Description] [History] I
Varlnstantiations)

= "null'' I IDs ID [IDType] I Varlnstantiations

= *VarType I Permissions I Permission I Grantor I Grantee I Grants I
Grant I Privileges I Privilege I MSRelevance I Groups I Group I
IDs

Fig. 30C

Petitioners' Ex. 1001, Page 80 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 76 of 322 US 10,477,994 B2

II***** BNF grammar for Charters 12: *****
,--3068a

CharterBody = "null" I [Variables] [Charters]
// [Variables] placed anywhere (not shown in constructs below to enhance readability)

Charters

Charter

= "null" I Charters Charter I Varlnstantiations

= Grantee Grantor Expression Actions [TimeSpec] [Description J
[History] I Varlnstantiations

Expression = Conditions [TimeSpec] I Varlnstantiations
II This embodiment ensures at least one condition to a Charter, but "null'' could be
II used (e.g. for placeholder entries).

Conditions = Condition I Conditions CondOp Condition] I Varlnstantiations

= "and" I "or" I Varlnstantiations CondOp

Condition = Term Op Term [TimeSpec] [Description J [History] I

Term

Value [TimeSpec] [Description J [History] I
Invocation [TimeSpec] [Description] [History] I Varlnstantiations
II Another embodiment allows unary operators (e.g. "not"), for example fo~ boolean
II WDR fields (e.g. Applications field(s)). Current boolean tests for "True" or "False",
II or non-zero= "True" and zero= "False". Value & Invocation result in a boolean.

= WDRTerm [TimeSpec] [Description] [History] I
App Term [TimeSpec] [Description] [History] I
Value [TimeSpec] [Description] [History] I
Invocation (TimeSpec] [Description] [History] I
PointSet [TimeSpec] [Description] [History] I
Varlnstantiate

WDRTerm = "Any WDR 1100 field, or any subset thereof' [Description]
[History] I Varlnstantiate

AppTerm

Value

PointSet

= "Any Application data field, or any subset thereof' [Description]
[History] I Varlnstantiate

= Data I "number" I "text string" I "value" I "True" I "False" I
"atomic term" I "map term" I ID [IDType] I "null" I Varlnstantiate

= [2D I 3D] [Geo I Cartesian I Polar]
"text string" [Description] [History] I
"numeric(s)" [Description] [History] I
Data (Description] [History) I Varlnstantiate

Fig. 30D

Petitioners' Ex. 1001, Page 81 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 77 of 322 US 10,477,994 B2

,--3068b

Data = "typed memory pointer" I "typed memory value" I "typed file path" I
"typed file path and offset" I "typed DB qualifier" I Varlnstantiate

II i.e. pointer or value from stack, globals, shared memory, file data location, DB
II pointer, DB value, or any other data.

Invocation = "DLL interface(optional params ...)" I
"Linked interface(optional params ...)" I
"executable path(optional params ...)" I Varlnstantiate

I/ Invocation can return any value of any type, except will be converted to a boolean
II when used as a Term (0 = False, else= True). Best to return boolean when Term use.

Op

ProfileMatch

Actions

Action

Host

= ["atomic not operator"] "atomic operator" I ProfileMatch I
Varlnstantiate

= "atomic profile match operator" I Varlnstantiate

= "null" I Actions Action

= [Host] Command Operand [Parameters]
[TimeSpec] [Description] [History] I Varlnstantiations

= "null" I ID [IDType] I Varlnstantiations

Command = "atomic command" I Varlnstantiations
II Command may map to translation member entry of natural language map

Operand = "atomic operand" I Varlnstantiations
II Some embodiments have no need for an operand in this grammar (e.g. command file
II reference, DLL call, self contained command, invocation callout, etc).

Parameters

Parameter

VarType

= "null'' I Parameters Parameter I Varlnstantiations

= WDRTerm [Description] [History] I
AppTerm [Description] [History] I
Value [Description J [History] I
Invocation [Description] [History] I
ID [IDType] [Description] [History] I
Varlnstantiate [Description] [History]

= *VarType I Charters I Charter I Expression I Conditions I Condition I
CondOp I WDRTerm I Term I Value I PointSet I Data I Invocation I Op I
Actions I ProfileMatch I Action I Command I Operand I Parameters I
Parameter I Host

Fig. 30E

Petitioners' Ex. 1001, Page 82 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operanc
i 101 103 105 119

201 #, sender, #, sender, rt- #
msg/subj, msg/subj,
attribs, attribs,
recio(s) recip(s)

203 link, link, link, link,
sender, sender, params params
msg/subj, msg/subj,
attribs, attribs,
recio(s) recio(s)

205 body, body, body, body,
sender, sender, sender, $ender,
msg/subj, msg/subj, msg/subj, msg/subj,
attribs, attribs, attribs, attribs,
recip(s) recip(s) recip(s) recip(s)

207 msg, msg, msg, body,
sender, sender, $ender, $ender,
msg/subj, msg/subj, msg/subj, msg/subj,
attribs, attribs, attribs, attribs,
recip(s) recip(s) recip(s) recip(s)

209 body, body, body, body,
sender, sender, sender, sender,
msg/subj, msg/subj, msg/subj, msg/subj,
attribs, attribs, attribs, attribs,
recip(s) recip(s) recip(s) recio(s)

211 msg, msg, msg, msg,
$ender, sender, sender, sender,
msg/subj, msg/subj, msg/subj, msg/subj,
attribs, attribs, attribs, attribs,
recio(s) recip(s) recip(s) recip(s)

213 indicator, indicator, indicator, indicator,
$ender, sender, sender, sender,
msg/subj, msg/subj, msg/subj, msg/subj,
attribs, attribs, attribs, attribs,
recip(s) recip(s) recip(s) recip(s)

Command
107 109 111

#, #, rt-, ack,
system(s) system(s) source,

system(s)

link, link, link, ack,
params, params, source,
system(s} system(s) system(s)

email, body, email,
system(s) $ender, ack,

msg/subj, $ource,
attribs, system(s)
recip(s)

msg, body, msg, ack,
system(s) $ender, $ource,

msg/subj, $ystem(s)
attribs,
recip(s)

email, body, email,
$ystem(s) sender, ack,

msg/subj, source,
attribs, system(s)
recip(s)

msg, body, msg, ack,
$ystem(s) sender, $ource,

msg/subj,);ystem(s)
attribs,
recip(s)

indicator, indicator, indicator,
system(s) system(s} ack,

source,
system(s)

Fig. 31A

113 115
#, ack, #, ack,
system(s) $ource,

system(s)

link, ack, link, ack,
system(s) $ource,

$ystem(s)

email, ack, email,
system(s) ack,

source,
system(s)

msg, ack, msg, ack,
system(s) source,

system(s)

email, ack, email,
system(s) ack,

$ource,
system(s)

msg, ack, msg, ack,
system(s) source,

system(s)

indicator, indicator,
ack, ack,
system(s) source,

system(s)

117 ... ~.
$ystem(s)

link,
params,
system(s)

email,
system(s)

msg,
system(s)

email,
system(s)

msg,
system(s)

indicator,
system(s)

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
-....J
QO

0
~
N
N

d
r.,;_

"""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 83 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand Command
i 101 103 105 119 107 109

215 app, app, app, app, app, app,
sender, sender, params params params, params,
msg/subj, msg/subj, System(s) system(s)
attribs, attribs,
recip{s) recip(s)

217 doc, doc, doc doc doc, doc,
sender, Sender, system(s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

219 path, path, path path path, path,
sender, Sender, system{s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recio(s) recio(s)

221 content, content, content content content, content,
sender, sender, system(s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

223 DB-obj, DB-obj, DB-obj DB-obj, DB-obj, DB-obj,
sender, query, ~uery System(s) query,
msg/subj, sender, system(s)
attribs, msg/subj,
recip(s) attribs,

recip(s)
225 data, data, value, data, value data, value data, data,

sender, sender, system(s) ~alue,
msg/subj, msg/subj, system(s)
attribs, attribs,
recio(s) recio(s)

Fig. 31B

111 113
app, app,
params, params,
ack, ack,
source, system{s)
svstem(sJ
doc, ack, doc, ack,
source, system(s)
system(s)

path, ack, path, ack,
source, system{s)
system(s)

content, content,
ack, ack,
source, system{s)
System(s)

DB-obj, DB-obj, ack,
ack, system(s)
source,
System(s)

data, ack, data, ack,
source, system(s)
system(s)

115
app,
params,
ack,
source,
svstem(s'
doc, ack,
source,
system(s)

path, ack,
source,
system{s)

content,
~ck,
source,
system(s)

DB-obj,
ack,
source,
system(s)

data, ack,
source,
system(s)

117
app,
params,
system(s)

doc,
system(s)

path,
system{s)

content,
system(s)

DB-obj,
query,
system(s)

data,
value,
system(s)

...

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
-....J
\,Ci

0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 84 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operanc Command
! 101 103 105 119 107 109

227 sem, sem, cmd, sem, cmd sem, cmd sem, sem, cmd,
sender, sender, system(s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

229 path, path, path path path, path,
sender, sender, system(s} system(s}
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

231 app, macro, ~pp, macro, ;app, macro app, macro app, app,
sender, sender, macro, macro,
msg/subj, msg/subj, system(s) system(s}
attribs, attribs,
recip(s) recip(s)

233 '<alt> "<alt> '<alt> "<alt> objtxt, cmds,
<prtscr>", <prtscr>", <prtscr>" <prtscr>" system(s} system(s}
sender, sender,
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

235 macro, macro, macro macro macro, macro,
sender, sender, system(s) system(s}
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

237 iodev, iodev, iodev, iodev, input iodev, iodev,
input, input, input input, input,
sender, sender, system(s) system(s}
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

Fig. 31C

111 113 115
sem, ack, sem, ack, sem, ack,
source, system(s) source,
system(s) ISystem(s)

path, ack, path, ack, path, ack,
source, system(s) source,
system(s) system(s}

app, app, app,
params, params, params,
ack, ack, ack,
source, system(s} source,
svstem(s' svstem(s
"<alt> objtxt, ack, "<alt>
<prtscr>", system(s) <prtscr>",
ack, ack,
source, source,
system(s} system(s}

macro, app, macro,
ack, params, ack,
system(s} ack, system(s}

system(s}

iodev, iodev, ack, iodev,
input, ISystem(s) input,
ack, ack,
system(s} system(s)

117 ...
sem, cmd,
system(s)

path,
system(s}

app,
macro,
system(s)

"<alt>
<prtscr>'',
system(s)

macro,
system(s)

iodev,
input,
system(s}

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
QO
0

0
~
N
N

d
r.,;_

"""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 85 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operanc Command
i 101 103 105 119 107 109

239 iodev, iodev, iodev, iodev, iodev, iodev,
putput, output, output output output, output,
sender, sender, system(s) system(s)
subj, subj,
attribs, attribs,
recip(s) recip(s)

241 alert, alert, alert alert alert, alert,
sender, sender, system(s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

243 pid, signal, pid, signal, pid, signal pid, signal prname, pid, signal,
sender, sender, system{s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recip(s) recip(s)

245 container, container, container container container, container,
sender, sender, system{s) system(s)
msg/subj, msg/subj,
attribs, attribs,
recio(s) recip(s)

247 progobj, progobj, progobj, progobj, progobj, orogobj,
klata, data, ldata klata, ldata, data,
sender, sender, sender, system(s) system(s)
msg/subj, msg/subj, msg/subj,
attribs, attribs, attribs,
recip(s) recio(s) recio(s)

249 cursor, cursor, cursor cursor, cursor, cursor,
sender, sender, sender, system(s) attribs,
msg/subj, msg/subj, msg/subj, system(s)
attribs, attribs, attribs,
recip(s) recio(s) recio(s)

Fig. 31D

111 113 115
iodev, iodev, ack, iodev,
output, pystem(s) output,
ack, ack,
system(s) system{s)

alert, ack, alert, ack, alert, ack,
source, system{s) source,
system{s) system(s)

prname, prname, prname,
ack, ack, ack,
source, system(s) source,
system(s) system{s)

container, container, container,
ack, ack, ack,
pource, system{s) source,
system(s) system{s)

progobj, progobj, progobj,
ack, ack, ack,
source, system(s) source,
system(s) system{s)

ack, ack, ack,
source, system(s) source,
system{s) system(s)

117 ...
iodev,
output,
system(s)

alert,
system(s)

prname,
signal
system(s)

container,
system{s)

progobj,
data,
system(s)

cursor,
attribs,
system(s)

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
QO
0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 86 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operanc Command
i 101 103 105 119 107 109

251 calobj, calobj, calobj, calobj, calobj, calobj,
sender, sender, sender, sender, system(s) attribs,
msg/subj, msg/subj, msg/subj, msg/subj, system(s)
attribs, attribs, attribs, attribs,
recip(s} recip(s} recip(s} recip(s}

253 ~Bobj, ABobj, ~Bobj, ABobj, ABobj, ~Bobj,
sender, sender, sender, sender, system(s) attribs,
msg/subj, msg/subj, msg/subj, msg/subj, system(s)
attribs, attribs, attribs, attribs,
recip(s) recip(s) recip(s} recip(s}

...

Fig. 31E

111 113 115
calobj, calobj, ack, calobj,
ack, system(s) ack,
source, source,
system(s) system(s)

~Bobj, ABobj, ack, ~Bobj,
ack, system(s) ack,
source, source,
system(s) system(s)

117 ...
calobj,
attribs,
system(s)

~Bobj,
attribs,
system(s)

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
QO
N

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 87 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 83 of 322 US 10,477,994 B2

~ 3202

DIRECTIVE COMMAND

.
. .

•

•
3204-L

•

DIRECTIVE COMMAND
"Enviar" 101
.... ,_ .. :&:---" 1n'l

DIRECTIVE COMMAND
"Send" 101
"Notify" 103
"Alert" 103
"Compose" 105
"Make" 105
"Find" 107
"Invoke" 109
"Start" 109
"Spawn" 109
"Do" 109
"Start that Puppy" 109
"Copy" 111
"Discard" 113
"Delete" 113
"ThowAway" 113
"Move" 115 v-3204-2
"Store" 117

. ir3204-1
-.

Fig. 32A

Petitioners' Ex. 1001, Page 88 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 84 of 322 US 10,477,994 B2

,-- 3252

DIRECTIVE OPERAND
. .
. .
. .

•

•
3254-L

•

DIRECTIVE OPERAND
"Numero de disco automatico" 201
" 1A 1-L..linl,," '1n'l

DIRECTIVE OPERAND
"Auto-dial#" 201
"link" 203
"hyperlink" 203
"http link" 203
"Email" 205
"Electronic mail" 205
"Outlook mail" 205
"SMS message" 207
"Texting" 207
"Phone message" 207
"Indicator" 213
"Dingy" 213
"Application" 215
"App" 215
"Phone program" 215
"Widget" 215 v-3254-2
"Data" 225
. .
. 13254-1 -.

Fig. 32B

Petitioners' Ex. 1001, Page 89 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 85 of 322 US 10,477,994 B2

Token
Variables1

Variable

Length
l
l

Varlnstantiations1 L
Varlnstantiate L

VarName L
Description L
History L
Creatorlnfo L

Modifierlnfo L

CreateDate Time L
CreatorlD L
CreatorlDType 1
CreatorAddr L
CreatorSyslD L
CreatorSysType L
CreatorSysAddr L
LastModifyDate Time L
LastModifylD L
LastModifylDType L
LastModifyAddr L
LastModifySyslD L
LastModifySysType L
LastModifySysAddr L
ID L

IDType 1
Address L
TimeSpec L

Value
complex ([Variable] ... [Variable]).
complex (First 2 bytes = VarType;
VarName; value(s)); this can be present in any complex
datastream for scope within current complex datastream
thereafter and all descending constructs to it.
complex ([Varlnstatiate] ... [Varlnstantiate]).
instantiation variable name and optional parameters; this
can be subordinate to any other construct
(e.g. {Description,8,{Varlnstantiate,2,x}} where x is variable
of string type (e.g. x = "Very long description text here").
Note the savings in TL V datastrearn size by
using variables defined in 1 place for multiple
subsequent instantiations thereafter).
text string for variable name.
text string for description.
complex ([Creatorlnfo] [Modifierlnfo])
complex ([CreateDateTime] [CreatorlD] [CreatorlDType]
[CreatorAddr] [CreatorSyslD] [CreatorSysType]
[CreatorSysAddr]).
complex ([LastModifyDateTime] [LastModifylD]
[LastModifylDType] [LastModifyAddr] [LastModifySyslD]
[LastModifySysType] [LastModifySysAddr]).
date/time stamp (i.e. YYYYMMDDHHMMSS.12 .. J).
complex (ID).
Atomic element of IDType.
complex (Address).
Text string for system ID.
Text string for system type.
complex (Address).
date/time stamp.
complex (ID).
Atomic element of IDType.
complex (Address).
Text string for system ID.
Text string for system type.
complex (Address).
complex (first 2 bytes = length of the identifier; followed by
identifier;[Description] [History]).
Atomic element of IDType.
First 2 bytes = address type; next L-2 bytes = address info.
First byte = spec type (stamp, period); Next bytes = the
time spec(s) (e.g. preferably in syntax described).

Fig. 33A

Petitioners' Ex. 1001, Page 90 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Token
Permission Body
Permissions1

Permission

Granter
Grantee
Grants1

Grant

Privileges 1

Privilege

MSRelevance

Groups1

Group

1Ds1 L

Nov. 19, 2019 Sheet 86 of 322 US 10,477,994 B2

Length
L
L
L

L
L
L
L

L
L

8

L
L

Value
complex ([Variables] [Permissions]).
complex ([Permission] .. [Permission]).
complex (Granter Grantee [Grants]
[TimeSpec] [Description] [History]).
complex (ID [IDType]).
complex (ID [IDType]).
complex ([Grant] ... [Grant] I [Privileges]).
First 2 bytes = length of Grant name; following bytes =
grant name string; then complex:
(Privileges [TimeSpec] [Description] [History] I
Grants [TimeSpec] [Description] [History]).
complex ([Privilege] ... [Privilege]).
first 4 bytes = unsigned integer for atomic privilege
assigned; following bytes (L-4) are complex:
([MSRelevance] [TimeSpec) [Description] [History]).
64 bits for up to 64 different MS types
of different capabilities.
complex ([Group] ... [Group]).
First 2 bytes = length of Group name; following bytes =
group name string; then complex:
(IDs [Description] [History] I
Groups [Description] [History]).
complex (ID [IDType] ... ID [IDType]).

Fig. 33B

Petitioners' Ex. 1001, Page 91 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 87 of 322 US 10,477,994 B2

Token Length Value
CharterBody L complex ([Variables] [Charters]).
Charters1 L complex ([Charter] ... [Charter]).
Charter L complex (Grantee Grantor Expression Actions

[TimeSpec] [Description] [History]).
Expression L complex (Conditions [TimeSpec]).
Conditions L complex (Condition I Conditions CondOp Condition]).
CondOp 1 "&" or"I"-
Condition L complex (Term Op Term [TimeSpec)

[Description] [History] I
Value [TimeSpec] [Description] [History) I
Invocation [TimeSpec) [Description] [History]).

Term L complex (WDRTerm [TimeSpec) [Description] [History] I
AppTerm [TimeSpec] [Description] [History) I
Value [TimeSpec] [Description] [History] I
Invocation [TimeSpec] [Description] [History)).

WDRTerm L first 2 bytes for WDR 1100 field/subfield length; following
bytes are _name syntactical reference; then, if any, is
complex= [Description) [History]).

AppTerm L first 2 bytes for Application field length; following
bytes are Prefix_name syntactical reference; then, if any, is
complex= [Description] [History]).

Value L first byte indicates Value type; following bytes (L-1), if any,
is the "number", "text string", "value", "Boolean", "null",
"atomic term", "map term" or complex= (Data I
ID [IDType]).

PointSet L first byte indicates dimension; second byte indicates
type; third byte indicates format; next 2 bytes is the point
set information length (LEN); following bytes is the
PointSet information (may be complex for Data), following
bytes (L-5-LEN), if any, is complex=
[Description] [History]).

Data L first byte = atomic element data type;
L-1 following bytes are the data syntactical reference.

Invocation L first byte = atomic element data type; L-1 following bytes =
atomic element invocation with optional parameters.

Op 2 the operator reference (not clarifier simply provides unique
operator (e.g.= and!= are two operators; ProfileMatch
here too). Numeric values used instead of characters here.

Fig. 33C-1

Petitioners' Ex. 1001, Page 92 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Token
Actions1

Action

Host
Command
Operand
Parameters 1

Parameter

Nov. 19, 2019 Sheet 88 of 322 US 10,477,994 B2

Length
L
L

L
2
2
L
L

Value
complex ([Action] ... [Action]).
complex ([Host] Command Operand
[Parameters] [TimeSpec] [Description] [History]).
complex (ID [IDType)).
the command reference.
the operand reference.
complex ([Parameter] ... [Parameter]).
complex (WDRTerm [Description) [History] I
App Term [Description] [History] I
Value [Description] [History] I
Invocation [Description] [History)
ID [IDType] [Description] [History)).

Fig. 33C-2

Petitioners' Ex. 1001, Page 93 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 89 of 322

//**"****** Grammar Common Definitions: *********
II
#define TOKEN_LENGTH 2
#define LENGTH_LENGTH 4

II #define VARTYPE_x Use Token Definitions for VarType

#define
#define
#define
#define
#define

IDTYPE MSID 11
IDTYPE_MSGRPID 12
IDTYPE_USERID 13
IDTYPE_USERGRPID 14
IDTYPE LOGICAL 15

US 10,477,994 B2

II e.g. ip address and socket; e.g. inetd.cfg invocation (e.g. 23.56.232.2:34002)
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define

IDTYPE PHYSICAL 16 // MS serial #

ADDRTYPE_LOGICAL
ADDRTYPE_PHYSICAL
ADDRTYPE_POSTAL
ADDRTYPE_POINT
ADDRTYPE_SL
ADDRTYPE_2D
ADDRTYPE_3D

TIMESPECTYPE STAMP
TIMESPECTYPE_PERIOD

Fig. 34A

21 // e.g. ip address
22 // e.g. MS serial #
23
24
25
26
27

31
32

Petitioners' Ex. 1001, Page 94 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 90 of 322 US 10,477,994 B2

II********* Grammar Common Construct Token Definitions:*********
II
II #define
#define
II #define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

VARIABLES
VARIABLE
VARINSTANTIATIONS
VARINSTANTIATE
VARNAME
DESCRIPTION
HISTORY
CREATORINFO
MODIFIERINFO
CREATEDATETIME
CREATORID
CREATORIDTYPE
CREATORADDR
CREATORSYSID
CREATORSYSTYPE
CREATORSYSADDR
LASTMODIFYDATETI ME
LASTMODIFYID
LASTMODIFYIDTYPE
LASTMODIFYADDR
LASTMODIFYSYSID
LASTMODIFYSYSTYPE
LASTMODIFYSYSADDR
ID
IDTYPE
ADDRESS
TIMESPEC

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027

II********* Grammar Permission Construct Token Definitions: *********
II
#define
II #define
#define
#define
#define
#define
#define
II #define
#define
#define

PERMISSION BODY
PERMISSIONS
PERMISSION
GRANTOR
GRANTEE
GRANTS
GRANT
PRIVILEGES
PRIVILEGE
MSRELEVANCE

Fig. 34B

12001
12002
12003
12004
12005
12006
12007
12008
12009
12010

Petitioners' Ex. 1001, Page 95 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

#define
#define
#define

Nov. 19, 2019

GROUPS
GROUP
IDS

Sheet 91 of 322

12011
12012
12013

tr******** Grammar Charter Construct Token Definitions:*********
II
#define
II #define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
II #define
#define
#define
#define
#define
// #define
#define
#define

CHARTERBODY
CHARTERS
CHARTER
EXPRESSION
CONDITIONS
CONDOP
CONDITION
TERM
WDRTERM
APPTERM
VALUE
DATA
INVOCATION
OP
ACTIONS
ACTION
HOST
COMMAND
OPERAND
PARAMETERS
PARAMETER
POINTSET

//********* Grammar Charter Definitions: *********
II

14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022

// atomic terms (e.g. \loc_my), WDR field terms (e.g. _location),

US 10,477,994 B2

II Application terms (e.g. M_source), Invocation (e.g. fcn(p1 ,p2)), CondOp (e.g. "&") and
II Data atomic elements (e.g. c:\dir1\fname:58/LONGINT) are recognized syntaxes.
#define VALUE_NUMBER 41
#define VALUE TEXT 42
#define VALUE_ENUM 43 // "value"
#define VALUE_BOOLEAN 44 // 1 = True, 0 = False
#define VALUE_ID 45

#define
#define
#define
#define
#define

DIMENSION2
DIMENSION3
FORMAT_GEO
FORMAT_ CARTESIAN

FORMAT_POLAR Fig. 34C

71
72
73
74
75

Petitioners' Ex. 1001, Page 96 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 92 of 322 US 10,477,994 B2

//********* Atomic Commands : *********
II
#define CMD_SEND 101
#define CMD_NOTIFY 103
#define CMD_COMPOSE 105
#define CMD_FIND 107
#define CMD_INVOKE 109
#define CMD_COPY 111
#define CMD_DISCARD 113
#define CMD_MOVE 115
#define CMD_STORE 117
#define CMD_CONNECT 119
#define CMD_ADMINISTRATE 121
#define CMD_CHANGE 123

//********* Atomic Operands : *********
II
#define OPERAND _AUTODIALNUMBER 201
#define OPERAND_WEBLINK 203
#define OPERAND _EMAIL 205
#define OPERAND_ SMSMSG 207
#define OPERAND_BRDEMAIL 209
#define OPERAND_BRDSMSMSG 211
#define OPERAND _INDICATOR 213
#define OPERAND _APP 215
#define OPERAND_DOCUMENT 217
#define OPERAND _FILE 219
#define OPERAND_CONTENT 221
#define OPERAND _DBOBJ 223
#define OPERAND_DATA 225
#define OPERAND_SEMAPHORE 227
#define OPERAND _DIRECTORY 229
#define OPERAND_APPCONTEXT 231
#define OPERAND_ UIFOBJ 233
#define OPERAND_UIFCTL 235
#define OPERAND _INPUT 237
#define OPERAND_OUTPUT 239
#define OPERAND _ALERT 241
#define OPERAND_PROC 243
#define OPERAND_ CONTAINER 245
#define OPERAND PROGOBJ 247
#define OPERAND_CURSOR 249
#define OPERAND CALENDAR 251
#define OPERAND_ADDRESSBOOK 253

Fig. 34D

Petitioners' Ex. 1001, Page 97 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 93 of 322 US 10,477,994 B2

// TIMESPEC date/time stamps for open ended periods are set with no start/end spec:
II >=YYYMMDDHHMMSS.1 .. J ==> set x.endDT to DT _NOENDSPEC;
II <=YYYMMDDHHMMSS.1 .. J ==> set x.startDT to OT _NOSTARTSPEC;
// <YYYMMDDHHMMSS.1 .. J and >YYYMMDDHHMMSS.1 .. J subtracts/adds min precision
II from specified date/time stamp (i.e. TIMESPEC periods are preferably inclusive).
#define DT _NOENDSPEC -1.0
#define DT_NOSTARTSPEC -2.0

typedef struct timespec {//specifications converted to a Julian period form
double startDT; II converted to Julian format (1 ms precision)
double endDT; II converted to Julian format (1 ms precision)
struct timespec *nextTS; // linked list of sibling timespecs
} TIMESPEC;

typedef struct {
double
unsigned char
unsigned short
// unsigned short
unsigned char
char
char
// unsigned short
unsigned char
} BOOKKEEP;

typedef struct {

*dt; II Julian date/time
id[MAX _ID LENGTH];
idtype; // for IDTYPE_x values
cadr_type; II Assume 1 format here
*c_address;
*sysid;
*systype;
sysadr_type; // Assume 1 format here
*sys_address;

BOOKKEEP *creation;
BOOKKEEP *modify;
} HISTRY;

typedef struct {
unsigned short
char
unsigned char
}VAR;

vartype;
name[MAX_ VARNAME];
*value; II may be complex or series of complex

Fig. 34E

Petitioners' Ex. 1001, Page 98 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 94 of 322 US 10,477,994 B2

typedef struct privilege {
unsigned long
unsigned char
TIMESPEC
char
HISTRY
struct privilege
} PRIVILEGE;

typedef struct grant {
char
char
union {

struct grant
PRIVILEGE
} assigned;

TIMESPEC
char
HISTRY
struct grant
}GRANT;

typedef struct permission {
unsigned char
unsigned short
unsigned char
unsigned short
char
union {

GRANT
PRIVILEGE
} assigned;

TIMESPEC
char
HISTRY
struct permission
} PERMISSION;

priv; // constant value of known privilege
relevance[MAX _RELEVANCEMASK];
*tspec;
*desc;
*hist;
*nextPriv; // linked list of sibling privileges

name[MAX_ GRNAMLENGTHJ;
permtype; // 'P' = Privilege(s), 'G' = Grant(s)

*grants;
*privileges;

*tspec;
*desc;
*hist;
*nextGrant;

// linked list subordinate/descending grant(s)
// linked list of privilege(s)

// linked list of sibling grants

grantor[MAX_IDLENGTH];
gortype; II for IDTYPE_x values
grantee[MAX_IDLENGTH];
geetype; II for IDTYPE_x values
permtype; 1/ 'P' = Privilege(s), 'G' = Grant(s)

*grants;
*privileges;

*tspec;
*desc;
*hist;
*nextPerm;

Fig. 34F

// linked list of grant(s)
// linked list of privilege(s)

// linked list of permissions

Petitioners' Ex. 1001, Page 99 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 95 of 322 US 10,477,994 B2

typedef struct identity {
unsigned char
unsigned short
struct identity
} IDENTITY;

typedef struct group {
char
char
union {

struct group
IDENTITY
} assigned;

char
HISTRY
struct grant
}GROUP;

typedef struct action {
IDENTITY
unsigned short
unsigned short
unsigned char

TIMESPEC
char
HISTRY
struct action
}ACTION;

typedef struct charter {
unsigned char
unsigned short
unsigned char
unsigned short
TIMESPEC
unsigned char

ACTION
char
HISTRY
struct charter
}CHARTER;

id[MAX_IDLENGTH];
idtype; II for IDTYPE_x values
*nextlD; // linked list of sibling IDs

name[MAX _ GRPNAMELENGTH];
grptype; // 'B' = Branch, 'L' = Leaf

*groups;
*ids;

*desc;
*hist;

// linked list subordinate/descending group(s)
// linked list of IDs in this group

*nextGroup; // linked list of sibling groups

host; II .idtype = 0 = no host spec)
cmd;
operand;
*params; II maintained in syntax for flexibility

II and for stack processing
*tspec;
*desc;
*hist;
*nextActn; // linked list of sibling actions

grantee[MAX_IDLENGTH];
geetype; II for IDTYPE_x values
grantor[MAX_IDLENGTH];
gortype; II for IDTYPE_x values
*exprTS;
*cond; II at least 1 condition maintained in

// syntax for proper stack processing
*actn;
*desc;
*hist;
*nextCharter;

Fig. 34G

// linked list of charters

Petitioners' Ex. 1001, Page 100 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 96 of 322 US 10,477,994 B2

,-- 3500

GRANTING ID

GRANTING TYPE

OWNER INFO

GRANTOR ID

GRANTOR TYPE

GRANTEE ID

GRANTEE TYPE

Fig. 35A

-

-

-

-

-

r· 3500a

3500t

3500b

3500c

3500d

3500e

Ir

ir

lr

ir

r·

V-3 500{

Petitioners' Ex. 1001, Page 101 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 97 of 322 US 10,477,994 B2

GRANT ID

OWNER INFO

GRANT NAME

Fig. 35B

~3510

-

r

r

r

35108

3510b

3510c

Petitioners' Ex. 1001, Page 102 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 98 of 322 US 10,477,994 B2

~ 3520

ASCENDANT TYPE

ASCENDANT ID

DESCENDANT TYPE

DESCENDANT ID

Fig. 35C

r

l,
-

r

Ir

3520a

3520b

3520c

3520d

Petitioners' Ex. 1001, Page 103 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 99 of 322 US 10,477,994 B2

~3530

I
PRIVILEGE ID r 353oa

__________ M_S_R_E_L_E_V_A_N_C_E ______ ____.f
353

0b ___________________ __,

Fig. 35D

Petitioners' Ex. 1001, Page 104 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 100 of 322 US 10,477,994 B2

,- 3540

GROUP ID

OWNER INFO

GROUP NAME

Fig. 35E

Ir

1r -

:r -

3540a

3540b

3540c

Petitioners' Ex. 1001, Page 105 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 101 of 322 US 10,477,994 B2

,.--3600

ID

ID TYPE

DESCRIPTION

Fig. 36A

-

-

-

Ir

Ir

Ir

3600a

3600b

3600c

Petitioners' Ex. 1001, Page 106 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 102 of 322 US 10,477,994 B2

,-- 3620

ID

ID TYPE

HISTORY

Fig. 36B

-

-

-

!r

!r

!r

3620a

3620b

3620c

Petitioners' Ex. 1001, Page 107 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 103 of 322 US 10,477,994 B2

~ 3640

ID

ID TYPE

TIME SPEC

Fig. 36C

-

-

Ir

Ir

Ir

3640a

3640b

3640c

Petitioners' Ex. 1001, Page 108 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 104 of 322 US 10,477,994 B2

OWNER INFO

VAR NAME

VAR TYPE

VAR VALUE

Fig. 36D

,- 3660

-

Ir

lr

r

r

3660a

3660b

3660c

3660d

Petitioners' Ex. 1001, Page 109 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 105 of 322 US 10,477,994 B2

CHARTER ID

OWNER INFO

EXPRESSION

ACTIONS

ENABLED

,--- 3700

Ir

Ir

r

Ir

Ir

3700a

3700b

3700c

3700d

3700{

'- _____ _2v~ ______ {37oot

Fig. 37A

Petitioners' Ex. 1001, Page 110 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 106 of 322 US 10,477,994 B2

ACTION ID

OWNER INFO

HOST

HOST TYPE

COMMAND

OPERAND

PARAMETER ID(S)

Fig. 37B

~3750

-

-

-

-

-

-

Ir

Ir

Ir

Ir

v-

r

Ir

3750a

3750b

3750c

3750d

3750e

3750(

3750g

Petitioners' Ex. 1001, Page 111 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 107 of 322 US 10,477,994 B2

,-- 3775

PARAMETER ID

OWNER INFO

PARAMETER(S)

Fig. 37C

-

-

-

ir

ir

:r

3775a

3775b

3775c

Petitioners' Ex. 1001, Page 112 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 108 of 322 US 10,477,994 B2

~3790

CHARTER STARTER ID

APPLICATION(S)

CATEGORY(S)

SNIPPET(S)

~3795

-

-

-

-

Ir

Ir

Ir

Ir

3790a

3790b

3790c

3790d

I
CHARTER ID r 37958

t--------C-H_A_R_T_E_R_S_T_A_R_T-ER-ID ______ _,f3795b ___________________ __,

Fig. 37D

Petitioners' Ex. 1001, Page 113 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 109 of 322

3802
START - Permissions

configuration

3804
Present permissions
configuration options

to user

Wait for user action

Invoke send data
(PERMISSION_INFO)

Invoke configure
acceptance

(PERMISSION_INFO)

3810
User configures
permission(s)

User configures
grant(s)

User configures
group(s)

3822
Invoke view
other(s)' info

GROUP INFO

3826
Invoke view other(s)'

info
(PERMISSION_INFO)

Invoke view
other(s)' info

GRANT INFO

Fig. 38

3830

US 10,477,994 B2

3844
Handle other user

action appropriately

3842

STOP

'-1478

Petitioners' Ex. 1001, Page 114 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 110 of 322 US 10,477,994 B2

3902
START- User

configures permissions

Initialize (e.g. to DB)

3906
Get groups applicable

to user

3908
et perm1ss1ons ata

applicable to user and
groups user is

member of

3910
Associate data with

corresponding unique
IDs for easy DB i/f;
Initialize list cursor

3912
Set indication for user

where cursor set;
Scroll list if appropriate

3914

of permissions
information

3916

Wait for user action

Set list cursor
appropriately

3920

Fig. 39A

3930
User enters validated

permission

3932
Insert to DB; Modify
scrollable list; Set

cursor appropriately

3936

Delete from DB per
cursor; Modify list; Set
cursor appropriately

'-3810

Petitioners' Ex. 1001, Page 115 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 111 of 322 US 10,477,994 B2

Handle other user
action appropriately

3954
User interfaces to
cursored entry for

modify; Wait for save/
exit

3962

Get details of
permission data per

cursor

.___.

3968

Internalize

Update data in DB;
Modify scrollable list

3964

Present additional
detail to user; Wait for

browse complete
action

3970

configurations for LBX--Save internalized form
operation

3974
3976

Clean up (e.g. to DB) 11----~ STOP

Fig. 39B

Petitioners' Ex. 1001, Page 116 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 112 of 322

4002
START- User

configures grants

Get groups applicable
to user

applicable to user and
groups user is

member of
4010

Associate data with
corresponding unique

IDs for easy DB i/f;
Initialize list cursor

4012
Set indication for user

where cursor set;
Scroll list if appropriate

4014

Present scrollable list
of grants information

4016

Wait for user action

Set list cursor
appropriately

4020

Fig. 40A

US 10,477,994 B2

4030
User enters validated

grant info

4032
Insert to DB; Modify
scrollable list; Set

cursor appropriately

4036
User interfaces to
cursored entry for

modify; Wait for save/
exit

Update data in DB;
Modify scrollable list

'-3814

Petitioners' Ex. 1001, Page 117 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Handle other user
action appropriately

Nov. 19, 2019 Sheet 113 of 322 US 10,477,994 B2

4054

Get details of grant
data per cursor

Determine references

Delete from DB per

--
4056

Present additional
detail to user; Wait for

browse complete
action

Provide
error

cursor; Modify list; Set 1---------------1
cursor appropriately

4070
4072

Clean up (e.g. to DB) -~ STOP

Fig. 40B

Petitioners' Ex. 1001, Page 118 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 114 of 322

4102
START- User

4106
Get groups user is

member of

4108

Get groups data
applicable to user

4110
Associate data with

corresponding unique
IDs for easy DB i/f;
Initialize list cursor

4112
Set indication for user

where cursor set;
Scroll list if appropriate

4114

Present scrollable list
of group information

4116

Wait for user action

Set list cursor
appropriately

Fig. 41A

US 10,477,994 B2

4130
User enters validated

group info

4132
Insert to DB; Modify
scrollable list; Set

cursor appropriately

4136
User interfaces to
cursored entry for

modify; Wait for save/
exit

Update data in DB;
Modify scrollable list

'--3818

Petitioners' Ex. 1001, Page 119 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 115 of 322 US 10,477,994 B2

Handle other user
action appropriately

4154 4156

Get details of group
data per cursor

Present additional
detail to user; Wait for .__.,..

browse complete

4160

Determine references

Delete from DB per

action

Provide
error

cursor; Modify list; Set..,_ __________ _,

cursor appropriately

4170
4172

Clean up (e.g. to DB) -- STOP

Fig. 41B

Petitioners' Ex. 1001, Page 120 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 116 of 322 US 10,477,994 B2

4202
START - View other(s)'

info

4204
Get params (object

type)

Usersp

Get object type info for
specified owner info

Present scrollable list
for browse

Provide
error

4230

Present detail to user;
Wait for browse

complete/clone action

Permissions are
accessed

Clone it

4244
Handle other user

action appropriately

4228

Get details of object
type information

Clean up (e.g. to DB) -- RETURN

Fig. 42

4218

Petitioners' Ex. 1001, Page 121 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 117 of 322

4302

START - Configure
acceptance

Get parameter
OBJ TYPE

4304

4306

Display acceptable
delivery acceptance

methods to user

4308

User specifies
acceptable delivery

method(s)

4310

Acceptable delivery
method(s) saved per

OBJ TYPE

4312

RETURN

Fig. 43

US 10,477,994 B2

Petitioners' Ex. 1001, Page 122 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Get parameter
OBJ_TYPE

4406
User specifies

validated target(s) per
OBJ TYPE

Access history for
changes versus sends

Provide error; User
selects ignore or re

specify

User specifies delivery
method(s)

4444

RETURN

Sheet 118 of 322 US 10,477,994 B2

4420
Log attempt; Get next .,.. ___ __

(or first) target

Determine applicable
OBJ_ TYPE data for

4426
Get applicable

OBJ_ TYPE data for

4428
Format OBJ_ TYPE

data for sending

Send data
appropriately

Wait for ack if
applicable

4430

4432

Log attempt info; Get
next method

4442
Maintain results to

history

4440

Log overall status;
Provide error

Fig. 44A

Petitioners' Ex. 1001, Page 123 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

4452
START - MS Receive

Configuration Data (RxCD)
thread

Increment RxCD-Ct

Retrieve next
incoming data

4456

Validate incoming data
for this target

Sheet 119 of 322 US 10,477,994 B2

4476

Decrement RxCD-Ct

STOP

Access source
information

4478

4464

4466
Access acceptable
delivery method(s);

Access source
ermissions

Update local
permissions and/or
charters with data

4472
Complete an ack

response

4474
Send/Broadcast

response

Fig. 44B

Petitioners' Ex. 1001, Page 124 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 120 of 322

4502
START - Charters

4504
Present charters

configuration options
to user

Invoke send data
(CHARTER_INFO)

Invoke configure
acceptance

(CHARTER_INFO)

User configures
charter(s)

User configur
actions

User configur
parameter info

4522
Invoke view
other(s)' info

CHARTER INFO

4526
Invoke view
other(s)' info

(ACTION_INFO)

4530
Invoke view other(s)'

info
PARAMETER INFO

Fig. 45A

US 10,477,994 B2

4544
Handle other user

action appropriately

4542

STOP

'-1482

Petitioners' Ex. 1001, Page 125 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 121 of 322 US 10,477,994 B2

4550
START - Charters set

enable/disable

4552
Interface with user for

validated selection
and sort criteria

4554
Access data;

Present scrollable list

charters

maintaining
specified charter and

validating if applicable

4574

Interface with user for
snippet processing
until user complete

Terminate interface
appropriately

Fig. 45B

4586
Interface with user
for validated CSR;

Terminate i/f

4590
Interface with user

for validated
changes; Terminate

i/f

4598
Interface with user

for add/delete;
Terminate i/f

4599
Handle other user

L-.J1"-----'
action appropriately

4562
Refresh and re

present list

STOP

4582

Petitioners' Ex. 1001, Page 126 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 122 of 322 US 10,477,994 B2

4602
START-User

configures charters

4606
Get groups applicable

to user

4608
a

applicable to user and
groups user is

me

4610
Associate data with

corresponding unique
IDs for easy DB i/f;
Initialize list cursor

4612
Set indication for user

where cursor set;
Scroll list if appropriate

4614

Present scrollable list
of charters information

4616

Wait for user action

Set list cursor
appropriately

Fig. 46A

4630

User enters validated
charter

4632
Insert to DB; Modify
scrollable list; Set

cursor appropriately

4636

Delete from DB per
cursor; Modify list; Set
cursor appropriately

'-4510

Petitioners' Ex. 1001, Page 127 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 123 of 322 US 10,477,994 B2

Handle other user
action appropriately

4654
User interfaces to
cursored entry for

modify; Wait for save/
exit

4662

Update data in DB;
Modify scrollable list

4664

Present additional
Get details of charter detail to user; Wait for ---~ data per cursor browse complete

action

4668
4670

Internalize
configurations for LBX---1.iSave internalized form

operation

4674
4676

Clean up (e.g. to DB) 1---i STOP

Fig. 46B

Petitioners' Ex. 1001, Page 128 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 124 of 322

4702
START- User

Initialize (e.g. to DB)

4706
Get groups applicable

to user

applicable to user and
groups user is

mem er of
4710

Associate data with
corresponding unique

IDs for easy DB i/f;
Initialize list cursor

4712
Set indication for user

where cursor set;
Scroll list if appropriate

4714

Present scrollable list
of actions information

4716

Wait for user action

Set list cursor
appropriately

Fig. 47A

US 10,477,994 B2

4730
User enters validated

action info

4732
Insert to DB; Modify
scrollable list; Set

cursor appropriately

4736
User interfaces to
cursored entry for

modify; Wait for save/
exit

Update data in DB;
Modify scrollable list

'--4514

Petitioners' Ex. 1001, Page 129 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 125 of 322 US 10,477,994 B2

Handle other user
action appropriately

4754

Get details of action
data per cursor --

4760

Determine references

Delete from DB per

4756

Present additional
detail to user; Wait for

browse complete
action

Provide
error

cursor; Modify list; Set ___________ __,

cursor appropriately

4770
4772

Clean up (e.g. to DB) -- STOP

Fig. 47B

Petitioners' Ex. 1001, Page 130 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 126 of 322 US 10,477,994 B2

4802
ST ART - User configures

parameter info

4806
Get groups applicable

to user

et parameter in o
applicable to user and

groups user is
member of

4810
Associate data with

corresponding unique
IDs for easy DB i/f;
Initialize list cursor

4812
Set indication for user

where cursor set;
Scroll list if appropriate

4814

Present scrollable list
of parameters info

4816

Wait for user action

Set list cursor
appropriately

Fig. 48A

4830
User enters validated

parameter info

4832
Insert to DB; Modify
scrollable list; Set

cursor appropriately

4836
User interfaces to
cursored entry for

modify; Wait for save/
exit

Update data in DB;
Modify scrollable list

'-4518

Petitioners' Ex. 1001, Page 131 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

Handle other user
action appropriately

Nov. 19, 2019 Sheet 127 of 322 US 10,477,994 B2

4854

Get details of
parameter entry per

cursor ----

4860

Determine references

Delete from DB per

4856

Present additional
detail to user; Wait for

browse complete
action

Provide
error

cursor; Modify list; Set ___________ _,

cursor appropriately

4870
4872

Clean up (e.g. to DB) ---~ STOP

Fig. 48B

Petitioners' Ex. 1001, Page 132 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 128 of 322 US 10,477,994 B2

4920~
~ Privilege Data at 101 MS

Grantor

1D1 1D2

* Enforce & inform purpose

4922 -- * Used on incoming ID2 WDRs ~ -- Not Applicable (Grantor has all

1D1
privileges assigned to self by

@ ID1 MS for feature to 1D1

G default, therefore no explicit
* Used on incoming 1D1 WDRs

r privilege assignments needed)
@ ID2 MS for feature to ID1
* Used on ID2 WDRs @ ID2 MS

a for feature to ID1 n
* Maintain & inform purpose Ir

t
e * Used on incoming ID1 WDRs Not Applicable (Other IDs are

e @ 102 MS for feature to ID2
understood to have all

1D2 * Used on incoming 102 WORs privileges assigned to self by
@ 1D1 MS for feature to 102

default, therefore no explicit
* Used on 101 WORs@ 101 MS privilege assignments needed)

4926

4928

- for feature to 102
4924

4940~
~ Privilege Data at 102 MS

Grantor

1D1 ID2

* Maintain & inform purpose
Not Applicable (Other IDs are * Used on incoming 1D2 WORs

4942
1.---- .___ understood to have all @ 101 MS for feature to 101 ~ - 1D1 G

privileges assigned to self by * Used on incoming 1D1 WDRs -

r default, therefore no explicit @ ID2 MS for feature to 101

a privilege assignments needed) * Used on 1D2 WDRs @ ID2 MS

n
forfeature to ID1

4946

4944

t * Enforce & inform purpose

e * Used on incoming 101 WORs Not Applicable (Grantor· has all
r

e @ ID2 MS for feature to 102 privileges assigned to self by 1D2 * Used on incoming ID2 WDRs default, therefore no explicit
@ 101 MS for feature to ID2 privilege assignments needed} -~ Used on ID1 WORs @ ID1 MS - for feature to ID.,

4948

Fig. 49A

Petitioners' Ex. 1001, Page 133 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 129 of 322 US 10,477,994 B2

4960~ ,-- Charter Data at ID1 MS

Grantee

4962 Maintain local to 101 MS
G * Enforce at 101 MS for 101

4964

r 1D1 WORs and/or incoming 102

a
n
t
0

r

WORs for feature(s) with
privileges granted by 102 to 101

amtam m orm purpose
* Used on 102 WORs @ 1D2 MS
for privileged feature(s) to 1D1 102 and/or 102
* Used on incoming 1D1 WORs
@ 1D2 MS for privileged
feature(s) to ID and/or ID

n orce rn orm purpose
* Used on incoming 102 WORs
@ 101 MS for privileged
feature(s) to 101 and/or 102
* Used on 101 WDRs@ 101 MS
for privileged feature(s) to 1D1
and/or ID

* Inform 101 of 102 charters if 101
privileged to know/browse
* Clone 102 data to 1D1 for
sharing administration if 101
privileged to clone

4966

4968

4980~
,-- Charter Data at 102 MS

Grantee

amtam m orm purpose
* Inform 102 of 1D1 charters if 1D2

4982 G privileged to know/browse
* Used on incoming 1D2 WDRs
@ 1D1 MS for privileged
feature(s) to 1D1 and/or 1D2

4984

r 1D1 * Clone 1D1 data to 1D2 for
a sharing administration if 1D2

n
t
0

r

privileged to clone

n orce m orm purpose
* Used on 1D2 WORs @ 1D2 MS
for privileged feature(s) to 1D1 1D2 and/or 1D

2
* Used on incoming 1D1 WDRs
@ 1D2 MS for privileged
feature(s) to ID and/or ID

* Used on 1D1 WDRs @ 1D1 MS
for privileged feature(s) to 1D1
and/or ID

* Maintain local to 1D2 MS
* Enforce at 1D2 MS for 1D2
WDRs and/or incoming 1D1
WORs for feature(s) with
privileges granted by 1D1 to 1D2

Fig. 49B

4986

4988

Petitioners' Ex. 1001, Page 134 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 130 of 322 US 10,477,994 B2

.... - - ...

.. ... - .. -

,

5004 ,·'--5006
' ~5094 '

.. •·····j ___ s_o_go __ __

/ ..
>

.. - -

13081..,,: ... :"--1311:

.... - :~---~~310 .

--- ,

, · '--1306

Fig. 50A

Petitioners' Ex. 1001, Page 135 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

. .
' . . .

• I

Nov. 19, 2019 Sheet 131 of 322 US 10,477,994 B2

.. "' - . -

.. .. --

.. .. "'

.
5004 --~5006

' ~5094

.. •······-1 ____ so_g_o __ _
/ ...

}

. '
13081-.,.: ... :'"\..1311:

~:.--~~310

.... -......

Fig. 50B

Petitioners' Ex. 1001, Page 136 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 132 of 322 US 10,477,994 B2

.......... - ..

.. - ..

..

5004 . · '--5006

' ~5094
'

............

········-·~I ___ s_o_go __ __
/ ..

>

Data /

.............

.
13181...,: : :"---1322 ;

~:---~~320
........

.
.·'--1316

Fig. 50C

Petitioners' Ex. 1001, Page 137 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 133 of 322 US 10,477,994 B2

Permissions {

}

Text(str) = "Test Case #106729 (context)";
Generic(assignPrivs) = "G=F amily, Work, \vuloc [T => 20080402000130 .24, <20080428;

D=*str- H·J"· . ' .
Groups {

}

LBXPHONE_USERS = Austin, Davood, Jane, Kris, Mark, Ravi, Sam, Tim;
"SW Components"= "SM 1.0", "PIP 1.0", "PIPGUI 1.0", "SMGUI 1.0",

"COMM 1.0", "KERNEL 1.1";

Grants/* Can define Grant structure(s) prior to assignment*/ {
Family= \lbxall[R=0xFFFFFFFF;] [D=*str(context="F amily")];

}

Work= [T=YYYYMMDD08:YYYYMMDD17;D=*str(context="Work");H;] {
"Department 232"=\geoar,\geode,\nearar,\nearde;
"Department 458" = [D="Davood lyadi's mgt scope";] {

"Server Development Team"=,
"lbxPhone Development Team"= {

};
};

"Comm Layer Guys" = \mssys;\msbios;
"GUI girls"= \msguiload;
"Mark and Tim" = \msapps;

"Accounting Department" [H;] = \track;
};
Parents = { Mom=\lbxall; Dad=\lbxall; };
Michael-F riends=\geoarr;\geode;
Jason-Friends=\nearar;\nearde;

// Permissions are granted here:
Bill: LBXPHONE_USERS [G=\caller;\callee;\trkall;];
LBXPHONE_USERS: Bill [G=\callee;\caller;];
Bill:Sophia;
Bill:Brian [*assignPrivs];
Bill:George [G=\geoall,\nearall;];
Michael Bill [G=Parents,Michael-Friends;];
Jason: Bill [G=Parents,Jason-Friends;];

Fig. 51A

Petitioners' Ex. 1001, Page 138 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 134 of 322 US 10,477,994 B2

Charters {

}

Condition(cond1) = "Llocation @@\loc_my) [D="Test Case #104223 (v}";]";
"ms group" = { "Jane", "George", "Sally"};

((Lmsid = "Michael") & *cond1(v="Michael")) I
(Lmsid = "Jason") & *cond1(v="Jason"))):

Invoke App myscript.cmd (''S"), Notify Autodial 214-405-6733;

((_l_msid = "Brian") & (_l_location@ \loc_my) [D="multi-cond text";H;]):
Invoke App (myscript.cmd (!'8")) [T=20080302;],
Notify Autodial (214-405-5422);

(M_sender = ~emailAddrVar [T=<YYYYMMDD18]):
Notify Indicator (M_sender, \thisMS) [D="Test Case #104223"; H;];

(B_srchSubj /\ M_subject) & !LfcnTest(B_srchSubj)) :
"ms group"[G].Store DBobject(JOESDB.LBXTABS.TEST,

"INSERT INTO TABLESAV (" && \thisMS && "," && \timestamp &&
", 9);", \thisMS);

(_l_msid = "Sophia" & \loc_my (30M)$$(25M) _!_location) :
"ms group".lnvoke App (alert.cmd);

(o/oc:\myprofs\interests.chk > 90):
Send Email ("Howdy" && _l_msid && " !!\n\nOur profiles matched > 90%.\n\n"

&& "Call me at" && \appfld.phone.id && ".Weare" &&
(_!_location - \loc_my)F && "feet apart\n", \appfld.source.id, "Call Me!",
, _l_appfld.email.source);

Fig. 518

Petitioners' Ex. 1001, Page 139 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 135 of 322 US 10,477,994 B2

typedef struct privilege {
unsigned long
unsigned char
TIMESPEC

struct privilege
} PRIVILEGE;

typedef struct permission {
unsigned char
unsigned short
unsigned char
unsigned short
PRIVILEGE
struct permission
} PERMISSION;

typedef struct action {
IDENTITY
unsigned short
unsigned short
unsigned char
TIMESPEC

struct action
}ACTION;

typedef struct charter {
unsigned char
unsigned short
unsigned char
unsigned short
unsigned char
ACTION
struct charter
}CHARTER;

priv;
relevance[MAX_RELEVANCEMASK];
*tspec; II merged with permission level (if permission

// level was present)
*nextPriv;

grantor(MAX _IDLENGTH];
grantor _idtype;
grantee[MAX_IDLENGTH];
grantee _idtype;
*privileges;
*nextPerm;

host;
cmd;
operand;
*params;
*tspec;

*nextActn;

II merged with charter level (if charter
// level was present)

grantee(MAX_IDLENGTH];
grantee_idtype;
grantor[MAX _IDLENGTH];
grantor _idtype;
*expression;
*actn;
*nextCharter;

Fig. 52

Petitioners' Ex. 1001, Page 140 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 136 of 322

~ 5300

PREFIX

DESCRIPTION

SERVICE REF(S)

APPLICATION REF(S)

PROCESS REF(S)

PATH(S)

DOCUMENTARY

US 10,477,994 B2

Ir

Ir

Ir

Ir

Ir

_Ir

_Ir

5300a

5300b

5300c

5300d

5300e

5300(

5300g

[5300h

1-~--------p-~~S-~_E_K_:__Y_S_~~R-O-~-E-8__E_Q_~-E-N-~-E(_S_-) _______ _____.r::::~
APR JOIN ID { IJ

I PRIVILEGE PROCESSING INTERFACE(S) {
53

ook

t SEMAPHORE INTERFACE(S) [53
oot

t APPTERM TRIGGER(S) { 53
oom

I CHANNEL IN iJOO-CH/N

t CHANNEL OUT -rJOO-CHOUT

I PROBE DATA { 53oo-P

t QUEUE {5300-Q

~ ____ ~D~Rl~~S2__ ____ r300-CALL

Fig. 53

Petitioners' Ex. 1001, Page 141 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 137 of 322 US 10,477,994 B2

x = "this is a textual description"

z="timespec=""200802030000:200812312359"" description=""test98341 ;Permission"'"'

<permission grantor="Jimbob" grantee="Henry" <%=z%> >
<grant name="grant1" >

<privilege id="\lbxcpy" relevance="FFFFFFFF"
timespec="YYYMMDD09:YYMMDD17" description="<%=x%>" />

<privilege id="\lbxflt" />

</grant>

</permission>

<group name="group123" >
<member="Jim" />
<member="Sue" />

</group>

<charter grantee="Henry" grantor="Jimbob" timespec="200802030000:200812312359"
description="test98341 ;Charter" >
<expression>

<condition trigger="true"
specification="Lmsid = "''Michael"") & _location $(300M) \loc_my" />

<condition trigger="true"
specification="Lmsid = ""Jason"") & _location $(300M) \loc_my" />

</expression>
<action host="George" cmd="lnvoke" operand="App" param="alert.cmd" />
<action host="George" cmd="Notify" operand="lndicator" param="test98341 Fired!"/>

</charter>

Fig. 54

Petitioners' Ex. 1001, Page 142 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 138 of 322

5506
Present (scrollable if

necessary) list of
PRRs with options

5502
START - Configure

PRRs

5536

User specifies
validated template;
Template replaces

PRRs

User configures
validated PRR

PRR is deleted

User adds
validated PRR

5524

Display PRR details
until browse complete

5528

App is enabled/
disabled per state

Present (scrollable if
necessary) list of

Apps; Wait for browse
complete

Fig. 55A

US 10,477,994 B2

5540
Handle other user

action appropriately

5542
Clean up (e.g. stop

using DB)

5544

STOP

Petitioners' Ex. 1001, Page 143 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 139 of 322

5552

START - App Term
data update thread

5554

Getsem lock

5556
Access applicable

PRR

Update applicable
data item(s)
appropriately

.,, ' ✓5566
/ ' "1\pp Term trigger, -----<

No applicable?

r--Yes _J5568

1
Process applicable
App Term charter

I section(s) and/or
I callbacks

5562

Release sem lock

5564

STOP

Fig. 55B

US 10,477,994 B2

Petitioners' Ex. 1001, Page 144 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 140 of 322 US 10,477,994 B2

5602

5632

Get next token

Complete handling

STOP

Fig. 56

5638
Set stringVar for all
characters between
Permissions block

delimiters

Set params
appropriately

5640

5648
Set stringVar for all
characters between

Charters block
delimiters

Set params
appropriately

5650

5642

Invoke LBX data
internalization

5644

Set source code
parsing pointer per

processed block
length

Petitioners' Ex. 1001, Page 145 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 141 of 322 US 10,477,994 B2

57

PRIVS = 1st of
privile es 5810

Eliminate: up ,ca es
MSRelevance reject
invalid Tl

PRIVS2WDR = list of
rivileges 5820

5714
Eliminate: duplicates,
MSRelevance rejects,
invalid TIMESPECs

5716
CHARTERS2M = list

of charters 5860;
Instantiate Variables

5718
Eliminate charters that

are not privileged
5720

MYCHARTERS = list
of charters 5870;

Instantiate Variables
r- _ _ _r5722
PRIVS2OTHERS = list
I of privileges 5830

.£2724
t""'Eliminate: auplfoates,
I MSRelevance rejects,

invalid TIMESPECs

I
- _ _ _ _r:.5726

EnableFnF
I PRIVS2OTHERS

~---=---~~-a ccess WRC; A
tion inf

r- Ena e nF - -

I (modified PRIVS2ME)

-----~7.J
DoAction

I - -Enable Fn - -

I (PRI

CHAR =
merging of

MYCHARTERS and
CHARTERS2ME

5742
Immae

inappropriate charters
by WITS type

conditions AND invalid
TIM ESPE Cs

5744
Perform actions in
accordance with

conditions of
CHARTERS2DO

PRIVS2OTHE
of privil

Eliminate: duplicates,
MSRelevance rejects,
invalid TIMESPECs

5752
MYCHARTERS = list

of charters 5870;
Instantiate Variables

5754
CHARTERS2ME = list

of charters 5890;
Instantiate Variables

5756
Eliminate charters that

are not privileged

r _ _ _ _ _r5757
EnableFnF

I (PRIVS2OTHERS)

r PRIVS2ME = list of
I privileges 5840

_____ _ .£2762
I Eliminate: duplicates,
I MSRelevance rejects,

invalid TIMESPECs

I
- _ _ _ _r:.5764

EnableFnF
I (PRIVS2ME)

r _ _ _ _r5766

I DoAction (PRIVS2ME)

5746
STOP

'-._ 273 '- 2111

'-._ 2015 '-2515

Fig. 57

Petitioners' Ex. 1001, Page 146 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 142 of 322 US 10,477,994 B2

5802

Permissions
Grantor Grantee

5810~ WDR MS ID --=========~►t this MS ID
► groups containing this MS ID

Groups containing WDR MS ID -= ► this MS ID
---.,. groups containing this MS ID

5820'\/ this MS ID

\ Groups containing this MS ID

5830'\/ this MS ID

\ Groups containing this MS ID "<.!t.

WDRMSID
groups containing WDR MS ID

WDRMSID
groups containing WDR MS ID

other MS IDs (<> WDR MS ID)
groups containing other MS IDs

other MS IDs(<> WDR MS ID)
groups containing other MS IDs

5840~ other MS IDs{<> WDR MS ID) ~ this MS ID
groups containing this MS ID

groups containing other MS IDs cc:::!t... this MS ID
groups containing this MS ID

5852

Charters
Grantee Grantor

5860~ WDR MS ID --====::=::::j►t this MS ID
► groups containing this MS ID

Groups containing WDR MS ID cc:::!t... this MS ID
groups containing this MS ID

5870'\J this MS ID --========►~ WDR MS ID ► groups containing WDR MS ID

\ Groups containing this MS ID

5880'\/ this MS ID

\ Groups containing this MS ID

4<.!t. WDR MS ID
groups containing WDR MS ID

: other MS IDs{<> WDR MS ID)
groups containing other MS IDs

~ other MS IDs(<> WDR MS ID)
groups containing other MS IDs

5890~ other MS IDs {<> WDR MS ID)~ this MS ID
groups containing this MS ID

groups containing other MS IDs ~ this MS ID
groups containing this MS ID

Fig. 58

Petitioners' Ex. 1001, Page 147 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 143 of 322 US 10,477,994 B2

5906

5900 Remove privilege(s)
from permission type

----~ list and Permissions if
applicable

START - Enable privileged
features and functionality

5948
RETURN

5914 5916

Remove charter(s) Remove charter(s)
from CHARTERS2ME a--.....-ifrom MYCHARTERS if

and Charters if
applicable applicable

5920
Enable/disable per

permission type appropriately

5924
Enable/disable per

permission type appropriately

5928
Enable/disable per

permission type appropriately

5932
Enable/disable per

permission type appropriately

5936
Enable/disable per

permission type appropriately

5940
Enable/disable per

permission type appropriately

5944
Enable/disable per

permission type appropriately

Fig. 59

5946

Handle other
privilege

appropriately

Petitioners' Ex. 1001, Page 148 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 144 of 322

6004

Get parameter(s)

6006
Get next (or first)

privilege from
permission type list

TART - Perform privilege
actions

6012
Perform permission

type action(s) if
applicable

6016
Perform permission

type action(s) if
applicable

6020
Perform permission

type action(s) if
applicable

6024
Perform permission

type action(s) if
applicable

6028
Perform permission

type action(s) if
applicable

6032
Perform permission

type action(s) if
applicable

US 10,477,994 B2

6040
RETURN

6038 Perform permission
type action(s) if

applicable Handle other privilege
-----------------+-1 appropriately

Fig. 60

Petitioners' Ex. 1001, Page 149 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

6102
ST ART - Perform

Get next charter from
CHARTERS2DO

Replace
with current value

Evaluate expression to
boolean result using
stack based parser

Sheet 145 of 322

6164
STOP

Set RE
Host target

6140
Access privileges for

command and
o erand

Fig. 61

US 10,477,994 B2

;:--- 5744

6144
Get next parameter

special term

6152
Replace special term

with current value

6154
Evaluate any

parameter
expressions with stack

based

ExecuteAction
(cmd, operand,

params

6158

Petitioners' Ex. 1001, Page 150 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 146 of 322

START
ExecuteAction

6202

6204
Get parameters if

necessary

Send
(operand,
param(s))

Notify
(operand,
param(s))

Compose
(operand,
param(s))

6220

Connect
(operand,
param(s))

Find
(operand,
param(s))

Invoke
(operand,
param(s))

6228

Copy
(operand,
param(s))

Discard
(operand,
param(s))

Move
(operand,
param(s))

Store
(operand,
param(s))

Administrate
(operand,
param(s))

Change
(operand,
param(s))

Fig. 62

US 10,477,994 B2

6254
Perform processing for

other Command
appropriately

6256

RETURN

Petitioners' Ex. 1001, Page 151 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

6302
START-Send

Access params for
Operand and
Parameters

Validate Parameters

Update email object in
context for Operand

6332

Default it

Default it

Default it

Sheet 147 of 322

Validate Parameters

6358

Update data to send in
context for Operand

6360

Get next recipient

US 10,477,994 B2

Default it

Default it

Send data

Prepare
params

6368

6366
Perform

L.----►1 send locally

6334
RETURN

Send email using
interface

Fig. 63A

Petitioners' Ex. 1001, Page 152 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Send erocessing
l

201 0 Sending an auto-dial # updates appropriate recipient MS storage so that a recipient user can
subsequently auto-dial the auto-dial # with a minimal user interface action. Preferably, the recipient
MS user is appropriately and immediately notified of the receipt. Preferably, the send command data
is maintained to LBX History, a historical call log (e.g. incoming), or other useful storage for
subsequent user browse of the accompanying message and a date/time stamp of when sent, and for
automated speed dialing of the # in response to a user action to auto-dial. Various embodiments will
save to LBX History how many times, and when, the auto-dial # was used to perform automated
speed dialing.

203 0 Sending a web link updates appropriate recipient MS storage so a recipient user can subsequently
invoke (transpose to) the link, for example in a browser, with a minimal user interface action.
Preferably, the recipient MS user is appropriately and immediately notified of the receipt. Preferably,
the send command data is maintained to LBX History, a historical call log (e.g. incoming), browser
history data, browser favorites, or other useful storage for subsequent user browse of the
accompanying message and a date/time stamp of when sent, and for invocation of the link within a
MS browser in response to a user action to use the link. Various embodiments will save to LBX
History how many times, and when, the weblink was invoked.

205 E Sending an email causes interface to the email delivery system (e.g. SMTP API) for sending the
email body parameter. In one embodiment, the body is assumed to be the body of the email. In
another embodiment, the body is attached with or without attachment(s). Attachments are preferably
referenced with an appropriate syntax in the body specified. In another embodiment, the body is
parsed for determining and using the best delivery options. The email will arrive to a recipient like
other emails. Attributes can be set as is customary for email attributes (e.g. confirmation of delivery
status, special handlinQ, NLS considerations, etc).

207 E Sending an SMS message causes interface to the sms message delivery system (e.g. SMTP API)
for sending the sms message. The email interface can be used provided the sms message length
maximum is observed. In one embodiment, the message parameter is identical to the msg/subj
parameter. In another embodiment, the two parameters are concatenated, or formed in a
complimentary manner, to highlight the subj/msg parameter from the sms message. In another
embodiment, only a null subj/msg is supported. The message will arrive to a recipient like other sms
messages. Various attributes can be set (e.g. confirmation of delivery status, special handling, NLS
considerations, etc).

Fig. 63B-1

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
.i;...
QO

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 153 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Send f;!rocessing
I

209 E Sending a broadcast email causes interface to the email delivery system (e.g. SMTP API) for
sending the email body parameter. In one embodiment, the body is assumed to be the body of the
email. In another embodiment, the body is attached with or without attachment(s). Attachments are
preferably referenced with an appropriate syntax in the body specified. In another embodiment, the
body is parsed for determining and using the best delivery options. The email will arrive to a recipient
like other emails. Various attributes can be set (e.g. special handling, NLS considerations, etc), but
preferably, no confirmation of delivery is set since this is a broadcast.

211 E Sending an SMS broadcast message causes interface to the sms message delivery system (e.g.
SMTP API) for sending the sms message parameter. The email interface can be used provided the
sms message length maximum is observed. In one embodiment, the message parameter is identical
to the msg/subj parameter. In another embodiment, the two parameters are concatenated, or formed
in a complimentary manner, to highlight the subj/msg parameter from the sms message. In another
embodiment, only a null subj/msg is supported. The message will arrive to a recipient like other
messages. Various attributes can be set (e.g. special handling, NLS considerations, etc}, but
preferably, no confirmation of delivery status is set since this is a broadcast.

213 0 Sending an indicator updates appropriate recipient MS storage so that the currently focused user
interface object (e.g. window titlebar) of the MS user interface is modified with the indicator. If there
are no active user interface objects in the current MS user interface, then an appropriate alert area of
the currently focused interface is to display the indicator. The user can clear {remove) the indicator
when desired. Preferably, the indicator is used for modifying other focused objects {e.g. titlebars) or
other focused areas in the user interface so as to not get overlooked. For example, as the user
navigates and surfaces/focuses new user interface objects, the indicator remains visible on the newly
focused object. Preferably, the indicator is selectable by the user of the MS for showing all other
send command parameters associated, as well as a date/time stamp of when sent. In other
embodiments, the most recently displayed indicator is displayed in the appropriate focused area, but
the user can conveniently select any indicators which were sent in history at some point in time for
sought indicator information by selecting the currently displayed indicator and then requesting to
browse/scroll history of previously delivered indicators {with options to see details). Preferably, the
send command data is maintained to LBX History, a historical log {web page load history), or other
useful storage for subsequent use. Some title bar management methods include various IBM
Technical Disclosure Bulletins from 1991 through 1995 (e.g. DAS-92-0910 "Originator Identified
Direct Access Mail Basket Title Bar Mechanism", DAS-93-0061 "Roving Title Bar", DAS-93-0223
"Roving Title Bar Status", etc).

Fig. 63B-2

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
.i;...
\,Ci

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 154 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Send 1;2rocessing
l

215 0 Sending an application causes invocation of the application at the recipient MS. The app parameter
is preferably a fully qualified path name to the executable to start. In another embodiment, the app
parameter is indirect: a path name to a "shortcut" (like a MS Windows shortcut). In another
embodiment, the app parameter is an identifier string for the underlying operating system to know
which application to start. The attributes parameter can be used for how to start the application, for
example to flag whether to start an additional instance if the application is already running at the MS
(provided multiple instances are supported). The msg/subject parameter may be useful for
maintaining to LBX history useful information, along with a date/time stamp when sent, with record of
the application invocation reference. An error is logged if the app parameter is not found for launch.
Preferably, the invoke command data is maintained to LBX History, a historical log (web
page load history), or other useful storage for subsequent use.

217 E Sending a document causes interface to the email delivery system (e.g. SMTP API} for appropriately
sending the document. The doc parameter is preferably a fully qualified path name, or suitable
reference, to the document which may have a document type (e.g. by file extension, document
parse, or document location). The document type is used for setting proper email attachment settings
and perhaps the attributes parameter. Depending on the document type, the document may form the
email body or be an attachment. The email will arrive to a recipient like other emails. Various
attributes can be set (e.g. confirmation of delivery status, special handling, NLS considerations, etc).

219 E Sending a file causes interface to the email delivery system (e.g. SMTP API) for appropriately
sending the file. The path parameter is preferably a fully qualified path name, or suitable reference,
to the file which should have a file type (e.g. by file extension, file parse, or file location). The file type
is used for setting proper email attachment settings and perhaps the attributes parameter.
Depending on the file type, the file may form the email body or be an attachment. The email will
arrive to a recipient like other emails. Various attributes can be set (e.g. confirmation of delivery
status, special handling, NLS considerations, etc).

221 0 Sending content causes the content to be sent to the recipient MS in a manner which is appropriate
for where the content is stored and how it is to be subsequently presented. The content parameter is
one that cannot be classified in the other operands, but is content for presentation nevertheless.
Examples include special data records (e.g. extern variable name}, content data memory locations
(e.g. programmatic variable), or files containing a customizably processed format. Methods of
displaying the content include audio and/or visual using applicable MS capabilities. Preferably, the
send command data is maintained to LBX History, a historical content log, or other useful storage for
subsequent user browse of the accompanying content and a date/time stamp of when sent, and for
presentation of the content in response to an applicable user action. Attributes may be set for special
content handling.

Fig. 63B-3

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
Ul
0

0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 155 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Send erocessing

223 0 Sending a Database (DB) object causes the DB object to be sent to the recipient MS in a manner
which is appropriate for subsequent import DB or table(s). The DB-obj parameter takes on many
syntaxes for sending any subset of a database object, such as an entire database, table(s), certain
rows, certain columns, etc. In one embodiment, a qualified database form is used such as:
Owner:DatabaseName:TableName for sending the entire table (can use table name wildcard for
multiple tables). In another embodiment, Owner:DatabaseName:" ... SQL query ... shall return the data
that is to be sent, preferably in a comma delimited or tab delimited form (as specified in the attributes
parameter). Preferably, the send command data is maintained to LBX History, a database log, or
other useful storage (subj/msg to document the transaction) for subsequent user browse of the
accompanying data and a date/time stamp of when sent, and for DB query manager browse of the
data in response to a user action for browse. One preferred embodiment enables the data for easy
import to a variety of database destinations, preferably via the same DB query mgr interface(s) used
for browsing.

225 0 Sending data causes reading the current value of the data at the MS where the send command
action is being executed and then sending the current value to the recipient MS for informative
purposes. In the preferred embodiment, the data is a global system variable visible to all processes
of a MS operating system. In other embodiments, the data may have limited scope which is made
accessible to present disclosure processing (e.g. with extern). An AppTerm uses record 5300 for
access. Depending on the embodiment, data may be that which is contained in a program data
segment, stack segment, and/or extra segment. There can be unique syntaxes for specifying which
type of data is being sought (e.g. "S:dataname"). In the preferred embodiment, all occurrences found
on the MS and information including its value about the occurrence is presented to the user. In one
embodiment, a well known location of link symbol information files are consulted, and in another
embodiment a new parameter specifies where to look, or which symbol file of information to use.
Preferably, the data value is maintained to LBX History, a historical log, or other useful storage for
subsequent user browse, or programmatic access, of the data variable name, its value and date/time
stamp of when sent, and for presentation of the data value in response to a user action to show it.

227 0 Sending a semaphore causes reading the current value of the semaphore at the MS where the send
command action is being executed and then sending the current value to the recipient MS for
informative purposes. In the preferred embodiment, the semaphore is a global system semaphore
visible to all processes of a MS operating system. In other embodiments, the semaphore may have
limited scope which is made accessible to present disclosure processing (e.g. RAM semaphore).
Preferably, the semaphore value (cleared or set) is maintained to LBX History, a historical log, or
other useful storage for subsequent user browse, or programmatic access, of the semaphore name,
its value and date/time stamp of when sent, and for presentation of the semaphore value in response
to a user action to show it.

Fig. 63B-4

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
Ul
0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 156 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
j

PM Preferred embodiment Send Rrocessing

229 E Sending a directory causes interface to the email delivery system {e.g. SMTP API) for sending the
directory. In one embodiment, the directory is assumed to be the body of the email (e.g. when
attributes parameter indicates it is to be a description only of the directory) for sending information
about the directory such as # files, nesting of folders, sizes, and any useful file system
characteristic(s) or statistics of the directory. In another embodiment, or as specified with an
additional parameter (or in attributes), the directory is compressed and encoded as an attachment. In
another embodiment, the directory is sent as individually attached files (as indicated to send that way
by new or attributes parameter). The email will arrive to a recipient like other emails. The attribute
parameter can be used for conventional email attributes as well as new attributes which affect
directorv data orocessina.

231 0 Sending an application context causes invocation of the application at the recipient MS and then
executing a macro within the application context. The app parameter is preferably a fully qualified
path name to the executable to start. In another embodiment, the app parameter is indirect: a path
name to a "shortcut" (like a MS Windows shortcut). In another embodiment, the app parameter is an
identifier string for the underlying operating system to know which application to start. The macro
parameter is preferably a file, path, or accessible variable name containing a set of keystrokes that
can be directed to standard/user-interface input. In another embodiment, the macro parameter is a
prerecorded user input scenario (for play after application launched -- pulldown selections, mouse
droppings, clicks, etc) captured to a file or stored in an accessible variable name. The attributes
parameter can be used for how to start the application, for example to flag whether to start an
additional instance if the application is already running at the MS (provided multiple instances are
supported), and to specify the type of macro parameter being specified, or to specify a speed for
processing individuals of the macro. The msg/subject parameter may be useful for maintaining to
LBX history useful information with record of the application context invocation reference. An error is
loi::med if the aoo parameter is not found for launch.

233 E Sending the focused user interface object causes interface to the email delivery system (e.g. SMTP
API) for sending an image (preferably .JPG) of the currently focused user interface object as an
attachment. The "<alt><prtscrn>" constant string parameter is a syntactical string representation for
the keystroke sequence for performing the MS focused user interface capture action. A similar syntax
can be used to specify a different keystroke sequence (1 st parameter) for the same functionality. The
email will arrive to a recipient like other emails. The attributes parameter can be set for which format
to send, in which case a conversion may take place prior to sending (depends on embodiment).
Various attributes can be set (e.g. confirmation of delivery status, special handling, NLS
considerations, etc).

Fig. 63B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
Ul
N
0
(,H
N
N

d
r.,;_

"""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 157 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Send ~rocessing
l

235 0 Sending user interface control causes redirecting the keystroke macro to input of the recipient MS as
if it were entered by the MS user. The macro parameter is preferably a file, path, or accessible
variable name containing a set of keystrokes that can be directed to standard user-interface/input. In
another embodiment, the macro is a prerecorded user input scenario {for play after application
launched -- pulldown selections, mouse droppings, clicks, etc) captured to a file or stored in an
accessible variable name. The attributes parameter can be used for whether or not to first display the
subj/msg to the recipient MS user for user acknowledgement, or cancellation, prior to executing the
macro at the MS. This allows the user time to get the MS user interface in a desirable state if
necessary for running the macro, and to see information of the origination {i.e. Parameters). The
msg/subject parameter may be useful for maintaining to LBX history information with a record of user
interface control sent.

237 0 Sending input causes redirecting the input to the iodev parameter input device stream of the recipient
MS as if it were entered by the MS user, or programmatically specified to the iodev 1/0 device
parameter by a data processing system process. The input parameter is preferably a file, path, or
accessible variable name containing a datastream {e.g. macro) recognizable by the iodev connected
device. The attributes parameter can be used for whether or not to first display the subj/msg to the
recipient MS user for user acknowledgement, or cancellation, prior to redirecting the input parameter
datastream at the MS, or to specify a speed for processing individuals of the input. This allows the
user time to get the MS user interface, and any iodev devices, in a desirable state if necessary for
running the input, and to see information of the origination (i.e. Parameters). The msg/subject
parameter may be useful for maintaining to LBX history information with a record of the user interface
control having been sent.

239 0 Sending output causes redirecting the output to the iodev parameter output device stream of the
recipient MS as if it were entered by the MS user, or programmatically specified to the iodev 1/0
device parameter by a data processing system process. The output parameter is preferably a file,
path, or accessible variable name containing a datastream (e.g. macro) recognizable by the iodev
connected device. The attributes parameter can be used for whether or not to first display the
subj/msg to the recipient MS user for user acknowledgement prior to redirecting the output parameter
datastream at the MS, or to specify a speed for processing individuals of the output. This allows the
user time to get the MS user interface, and any iodev devices, in a desirable state if necessary for
running the output, and to see information of the origination {i.e. Parameters). The msg/subject
parameter may be useful for maintaining to LBX history information with a record of the user interface
control having been sent.

Fig. 638-6

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
Ul
(,H

0
(,H
N
N

d
r.,;_

'"'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 158 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Send erocessing
l

241 0 Sending an alert updates appropriate recipient MS storage so that a recipient MS alerter process can
pick up the alert and then alert the user. There are a variety of alert processes, the most basic of
which monitors incoming messages and posts them to the user in an alerting manner. In one
embodiment, the alert parameter is identical to the msg/subj parameter. In another embodiment, the
two parameters are concatenated, or formed in a complimentary manner, to highlight the subj/msg
parameter from the alert message. In another embodiment, only a null subj/msg is supported. The
attributes oarameter can be for soecial treatment of the alert bv an alerter process.

243 0 See Notify Command for identical processing.

245 0 See Notify Command for identical processing.
247 0 See Notify Command for identical processing.

249 0 See Notify Command for identical processing.

251 0 Sending a calendar object causes interface to the recipient MS calendar/scheduling system for
sending/scheduling the calendar object parameter. The calobj parameter contains the date/time
stamp of when to schedule the object, or a special syntax constant for "now", "first available per
recipient and sender availability", "by end of the week pending availability", or other reasonable
constants for wheri to schedule the calendar object. In one embodiment, the calendar object is
assumed to be a newly scheduled calendar item for placement to the calendar of recipients. In
another embodiment, the calendar object (e.g. data or file containing parsable syntax) contains
directives for what actions exactly to perform to the calendar application interface. In another
embodiment, the email system is the transport to deliver the calendar object or calendar actions to
recipients. Attributes can be set as is customary for calendar entries (attendance required,
emergency meeting, recurring/weekly/monthly meeting, etc). The attributes parameter may be used
for oerformina other actions/functions in the calendarina interface.

253 0 Sending an address book (AB) object causes interface to the AB system for sending/entering the AB
object parameter at the recipient MS. In one embodiment, the AB object is assumed to be a newly
entered AB entry (e.g. contact reference name) for creation in the AB of recipients. In another
embodiment, the AB object parameter contains directives (e.g. data or file containing parsable
syntax) for what actions exactly to perform to the AB application interface. Attributes can be set as
may be customary for AB entries (customer, peer, manager, friend, family, etc). The attributes
parameter may be used for oerformina other actions/functions in the AB interface .

. . .
Fig. 63B-7

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
Ul
.i;...

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 159 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 155 of 322 US 10,477,994 B2

Send sem

Send weblink

Send email

Send uifobj

Send sms

Send uifctl

email

Send input

sms

Send output
Send

indicator

Send app

Send proc

Send doc

Send

Send file

Send content

Send data

Fig. 63C

Petitioners' Ex. 1001, Page 160 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 156 of 322

6402
START - Notify

command processin

Access params for
Operand and
Parameters

Validate Parameters

Update email object in
context for Operand

6432

Send email using
interface

Default it

Default it

Validate Parameters

Update data to send in
context for Operand

6460

Get next recipient

Fig. 64A

US 10,477,994 B2

Default it

Default it

6470

Send data

Prepare
params

6468

6466
Perform

send locally

6434
RETURN

Petitioners' Ex. 1001, Page 161 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM
I

201 0

203 0

205 E
207 E
209 E
211 E
213 0
215 0

Preferred embodiment Notifv ~rocessing

Notifying with an auto-dial # automatically performs call processing to auto-dial the auto-dial #.
Preferably, the recipient MS user is called by the MS as a normal phone call would be made. In one
embodiment, multiple recipients are called "back to back" after the previous recipient call terminates.
In another embodiment, a multiple line party call is made with an automated manner with all
recipients. The attributes parameter can indicate which embodiment to use, and can be used for
specialized call processing (collect, prepaid account check, hide caller id, etc). Preferably, the notify
command data and call data is maintained to LBX History, a historical call log (e.g. incoming), with
the accompanying subj/msg and a date/time stamp of when sent, and for future repeated automated
speed dialing of the # in response to a user action to auto-dial. Various embodiments will save to
LBX History how many times, and when, the auto-dial # was used to perform automated speed
dialing, along with call details such as direction of call, parties to the call, features of the call, or other
call characteristics. In one embodiment, the recipient ID is one to one with the called#. In another
embodiment, the recipient ID is used to find the associated called number. Preferably, an existing
API is used to accomplish processing. Automatic dialing through a variety of interfaces is well known
in the art, and depends on the software development environment. Conventional processing side
affects of automated callinq should occur like the action was manual (e.a. loa uodate).
Notifying with a web link automatically invokes (transposes to) at the recipient MS the link, for
example in a browser, with a minimal (if any) user interface action. In one embodiment, the link
includes URL parameter(s) (e.g. ?p1=xyz). In another embodiment, all recipients are passed to the
link with appended URL parameter(s) (e.g. ?ids=Recip1;Recip2; ... RecipN). An alternate embodiment
fires form variables to the loaded page with the same URL variables. The attributes parameter can
indicate which embodiment to use, and how to invoke the link (e.g. use currently focused window,
use an active browser window, spawn new browser window, etc). Preferably, the notify command
data is maintained to LBX History, a historical call log (e.g. incoming), browser history data, browser
favorites, or other useful storage for subsequent user browse of the accompanying subj/msg and a
date/time stamp of when sent, and for invocation of the link within a MS browser in response to a
user action to use the link again in the future. Various embodiments will save to LBX History how
many times, and when, the weblink was invoked.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.

Fig. 64B-1

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
Ul
-....J
0
(,H
N
N

d
r.,;_

"'""' =
~
--..l
--..l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 162 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
I

PM Preferred embodiment Notif~ Rrocessing

217 E See Send Command for identical processing.

219 E See Send Command for identical processing.
221 0 Notifying with content causes the content to be presented at the recipient MS upon delivery in a

manner which is appropriate for the content type. The content parameter is one that cannot be
classified in the other operands, but is content for presentation nevertheless. Examples include
special data records (e.g. extern variable name), content data memory locations (e.g. programmatic
variable), or files containing a customizably processed format. Methods of displaying the content
include audio and/or visual using applicable MS capabilities. Preferably, the notify command data is
maintained to LBX History, a historical content log (e.g. incoming), browser history data, or other
useful storage for subsequent user browse of the accompanying content and a date/time stamp of
when sent, and for presentation of the content. Various embodiments will save to LBX History how
many times, and when, the content was presented.

223 0 Notifying with a Database (DB) object causes the DB object (i.e. qualified database with access
query string) to be modified with the query parameter. The query parameter is used to perform any
query against the specified DB-database (DB-obj), preferably a query that only returns a return code
(e.g. causes alteration). Preferably, the notify command data is maintained to LBX History, a
database log (e.g. incoming), or other useful storage for subsequent query use and a date/time
stamp of when sent, and for DB query manager browse/use of the query in response to an applicable
user action. Other params are for documentary purposes when information is saved. In some
embodiments, an appropriate SQL client interface (e.g. SQLNET API) is used to carry out
orocessina, or a suitable DB API is used.

225 0 Notifying data causes modifying the value of the data at the recipient MS (set data to value). An error
can result if the data is not resolvable for the attempt. In the preferred embodiment, the data is a
global system variable visible to all processes of a MS operating system. In other embodiments, the
data may have limited scope which is made accessible to present disclosure processing (e.g. with
extern). An App Term uses record 5300 for access. Preferably, the data affected is maintained to LBX
History, a historical log (e.g. incoming), or other useful storage for subsequent user browse, or
programmatic access, of the data variable name, its before and after values and date/time stamp of
when sent, and for presentation of the data value in response to a user action to show it.

227 0 Notifying a semaphore causes modifying the value of the semaphore at the recipient MS. In the
preferred embodiment, the semaphore is a global system semaphore visible to all processes of a MS
operating system. In other embodiments, the semaphore may have limited scope which is made
accessible to present disclosure processing (e.g. RAM semaphore). Preferably, the semaphore value
before and after setting is maintained to LBX History, a historical log (e.g. incoming), or other useful
storage for subsequent user browse, or programmatic access, and for presentation of the semaphore
information in resoonse to a user action to show it.

Fig. 64B-2

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
Ul
QO

0
~
N
N

d
r,r;_

""'"' =
~
--..l
--..l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 163 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM
l

229 E
231 0
233 E
235 0
237 0
239 0
241 0

243 0

245 0

Preferred embodiment Notif~ Rrocessing
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
Notifying with an alert presents the alert to each recipient MS. Depending on attributes parameter
settings, the alert may be asynchronously presented to an alert area, synchronously alerted and
requiring a user action to acknowledge, logged to special file, or other reasonable alert method(s).
Fig. 758 processing will cause the alert to be presented to the MS user. In one embodiment, the alert
parameter is identical to the msg/subj parameter. In another embodiment, the two parameters are
concatenated, or formed in a complimentary manner, to highlight the subj/msg parameter from the
alert message. In another embodiment, only a null subj/msg is supported. Various embodiments will
support different alert content types and applicable processing as indicated by the attributes
parameter. Preferably, an appropriate API is made available for processing.
Notifying a process causes sending an operating system signal (see UNIX signaling) to the process
with Process ID (PIO) of the pid parameter. A numeric value parameter (e.g. 0 or 1) may be
communicated with the signal. Depending on attributes parameter settings, another embodiment
accesses the pid parameter as a process identifier parameter which is used to lookup the operating
system PIO prior to signaling. The msg/subject parameter may be useful for maintaining to LBX
history useful information, along with a date/time stamp when sent, with record of the application
invocation reference. An error can be loaaed if the process is not found for signaling.
Notifying a container causes launch of a MS file manager to examine the contents of a MS system
container having the path in the container parameter (e.g. c:\dir1\subdir3). The attributes parameter
can be used for how to start the file manager, for example to flag whether to start an additional
instance if the file manager is already running at the MS (provided multiple instances are supported),
otherwise an existing instance is updated for the container, or a new instance is started for the
container. The msg/subject parameter may be useful for maintaining to LBX history useful
information, along with a sent date/time stamp, with record of the application invocation reference.
An error can be loaaed if the file manager is not found for launch, or if the container is invalid.

Fig. 64B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
Ul
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 164 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Notifi 12rocessing
l

247 0 Notifying a program object causes acting on a specified program object (per attribute parameter) with
the specified data at the recipient MS. The progobj parameter is the linked run time symbolic name
accessible to charter processing of the present disclosure for third party plug-in processing. The
progobj parameter can be a variable name, function name, object name, queue name, procedure
name, or semaphore name accessed at run time by the symbolic name evaluation during charter
processing. The binary data parameter is used to modify the program object (variable name set
Least Significant Bit (LSB) to Most significant Bit (MSB) right to left intuitive Motorola processing
byte/bit order until bits set or unmatched, function name invoked with respective data bytes pushed
to the stack prior to invocation, object name data public data area initialized with the data parameter
on a byte to byte basis, queue name entry inserted using the data parameter as a typecast data
record of bits, procedure name invoked with respective data bytes pushed to the stack prior to
invocation, or semaphore name set with clear for a null data parameter, else a set action).
Alternately, an Intel reverse byte order can be used to apply the data Parameter. The attributes
parameter indicates which variety of progobj is specified, and can be used to indicate a byte order
data mapping method to use. The msg/subject parameter may be useful for maintaining to LBX
history useful information, along with a date/time stamp when sent, with record of the program object
invocation. An error can be logged if the progobj parameter is not resolvable. Appropriate MS O/S
interfaces are used.

249 0 Notifying a cursor causes modifying a recipient MS user interface cursor in accordance with direction
by the attributes parameter. The cursor parameter can be a suitable cursor bitmap file reference,
suitable animated cursor file, predefined appearance type, or predefined behaving cursor. The
attributes parameter further distinguishes which cursor modification is being requested. The
msg/subject parameter may be useful for maintaining to LBX history useful information, along with a
date/time stamp when sent. An error is logged if there is no active cursor in the user interface. An
aooropriate MS API is used, depending on the development environment.

251 0 See Send Command for identical processing.

253 0 See Send Command for identical processing.

...

Fig. 64B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
O'I
0
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 165 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Notify
weblink

NOS

Notify email

Notify sms

Notify brd
email

sms

Notify
indicator

Notify app

Notify doc

Notify file

Notify
content

Notify data

Sheet 161 of 322

N31

Notify sem

Notify dir

Notify
appctxt

Notify
container

Notify
progobj

Fig. 64C

US 10,477,994 B2

Petitioners' Ex. 1001, Page 166 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 162 of 322 US 10,477,994 B2

6502
START - Compose

command processin

Access params for
Operand and
Parameters

6536

Validate parameter(s)

6542
Perform Compose

locally

Validate
parameter(s)

Validate
parameter(s)

Handle error

6520

Fig. 65A

6512

Handle error

6516

Invoke operating
system application by

object type

Prepare launch
command string

6530
Launch application

with command string

PrepareAPI
parameter(s)

6532

6534
Call API to launch

application

Petitioners' Ex. 1001, Page 167 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Com(!ose (!rocessing
1

201 C Composing an auto-dial # launches the MS phone number calling interface with the auto-dial #
parameter defaulted for making the call. Once launched, the user can make a very simple
confirmation action for placing the call to the auto-dial #. Call processing takes place as though the
user manually launched the dialing application, entered the auto-dial # and then is ready to decide if
the call should be placed. Appropriate MS storage is updated and subsequently processed as though
the user had entered the# for calling manually. Preferably, the compose command data is
maintained to LBX History, a historical call log (e.g. outgoing when call placed), or other useful
storage for subsequent use.

203 s Composing a web link launches a MS browser and defaults the link as though the user had entered it
manually. The user can subsequently invoke (transpose to) the link if desired with a minimal action
(e.g. click ok). The link may include appended URL parameters (e.g. "?v=yes&T=go" for customized
web page processing). An alternate embodiment can fire form variables for active web page
processing using URL parameters specified or using the params parameter. Processing takes place
as though the user manually launched the browser application, entered the weblink and then is ready
to decide if the link should be invoked. Appropriate MS storage is updated and subsequently
processed as though the user had entered the weblink in the browser manually. Preferably, the
compose command data is maintained to LBX History, a historical log (web page load history when
invoked), or other useful storage for subseQuent use.

205 C Composing an email causes interface to the email delivery system for invoking the create email
interface and defaulting the appropriate email fields with the passed parameters. The user can
subsequently send the email with little effort, or after optional modification, with a minimal action (e.g.
click ok). Processing takes place as though the user manually launched the create email application,
entered the fields of the email form with passed parameters, and then is ready to decide if the email
should be sent, or further edited, or possibly cancelled. Appropriate MS storage is updated and
subsequently processed as though the user manually started the create email interface and entered
the email information manually. Preferably, the compose command data is maintained to LBX
History, a historical call log (e.g. incoming), or other useful storage for subsequent use. A standard
email POP or mailbox interface is preferably used. The email will arrive to a recipient like other
emails. Various attributes can be set (e.g. confirmation of delivery status, special handling, NLS
considerations, etc).

Fig. 65B-1

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
O'I
(,H

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 168 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Com(!ose (!rocessing
!

207 C Composing an sms message causes interface to an appropriate messaging delivery system for
invoking the create message interface and defaulting the appropriate message fields with the passed
parameters. The user can subsequently send the message with little effort, or after optional
modification, with a minimal action (e.g. click ok). Processing takes place as though the user
manually launched the create message application, entered the fields of the messaging form with
passed parameters, and then is ready to decide if the message should be sent, or further edited, or
possibly cancelled. Appropriate MS storage is updated and subsequently processed as though the
user manually started the create message interface and entered message information manually.
Preferably, the compose command data is maintained to LBX History, a historical call log (e.g.
incoming), or other useful storage for subsequent use. A standard email POP or mailbox interface,
or a similar messaging interface, can be used. The message will arrive to a recipient like other sms
messages. Various sms message attributes may be set (e.g. confirmation of delivery status, special
handling, NLS considerations, etc).

209 C Composing a broadcast email causes interface to the email delivery system for invoking the create
email interface and defaulting the appropriate email fields with the passed parameters. The user can
subsequently send the email with little effort, or after optional modification, with a minimal action (e.g.
click ok). Processing takes place as though the user manually launched the create email application,
entered the fields of the email form with passed parameters, and then is ready to decide if the email
should be sent, or further edited, or possibly cancelled. Appropriate MS storage is updated and
subsequently processed as though the user manually started the create email interface and entered
the email information manually. Preferably, the compose command data is maintained to LBX
History, a historical call log (e.g. incoming), or other useful storage for subsequent use. A standard
email POP or mailbox interface is preferably used. The email will arrive to a recipient like other
emails. Various attributes can be set (e.g. special handling, NLS considerations, etc), but preferably,
no confirmation of delivery status is requested in attributes since this is a broadcast.

Fig. 65B-2

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
O'I
.i;...

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 169 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM
1

211 C

213 0
215 C

217 s

219 s

Preferred embodiment Com12ose 12rocessing

Composing a broadcast sms message causes interface to an appropriate messaging delivery system
for invoking the create message interface and defaulting the appropriate message fields with the
passed parameters. The user can subsequently send the message with little effort, or after optional
modification, with a minimal action (e.g. click ok). Processing takes place as though the user
manually launched the create message application, entered the fields of the messaging form with
passed parameters, and then is ready to decide if the message should be sent, or further edited, or
possibly cancelled. Appropriate MS storage is updated and subsequently processed as though the
user manually started the create message interface and entered message information manually.
Preferably, the compose command data is maintained to LBX History, a historical call log (e.g.
incoming), or other useful storage for subsequent use. A standard email POP or mailbox interface,
or a similar messaging interface, can be used. The message will arrive to a recipient like other
messages. Various attributes can be set (e.g. special handling, NLS considerations, etc), but
preferably, no confirmation of delivery status is reQuested in attributes since this is a broadcast.
See Send Command for identical processing.
Composing an application causes invocation of the application at the MS. The app parameter is
preferably a fully qualified path name to the executable to start. In another embodiment, the app
parameter is indirect: a path name to a "shortcut" (like a MS Windows shortcut). In another
embodiment, the app parameter is an identifier string for the underlying operating system to know
which application to start. The params parameter can be used for command line, or string to append,
or pass, to the app/path parameter, for how to start the application (e.g. with parameters). Processing
takes place as though the user manually launched the application (and with any optional params).
Preferably, the compose command data is maintained to LBX History, a log, or other useful storage
for subseQuent use.
Composing a document causes invocation of the appropriate application at the MS in accordance
with the object type as though the user selected the document for automatically being associated to
the correct application when opening the document for composing (e.g. edit/manage) it. The doc
parameter may be preferably a fully qualified path name to the document. Preferably, the compose
command data is maintained to LBX History, a log, or other useful storage for subseQuent use.
Composing a file causes invocation of the appropriate application at the MS in accordance with the
file type of the fully qualified path name of the file as though the user selected the file for
automatically being associated to the correct application when opening the document. Processing
takes place as though the user manually launched the application for the specified file to compose it.
The path parameter is preferably a fully qualified path name to the file. Preferably, the compose
command data is maintained to LBX History, a log, or other useful storage for subsequent use.

Fig. 65B-3

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
O'I
Ul
0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 170 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Comeose erocessing
I

221 0 Composing content causes invocation of the appropriate application at the MS in accordance with
the content as though the user selected the content for automatically being associated to the correct
application when opening the content. Processing takes place as though the user manually launched
the applicable application for the content for composing (e.g. manage/edit of) it. The path parameter
is preferably a fully qualified specification to the content. Preferably, the compose command data is
maintained to LBX History, a log, or other useful storage for subseQuent use.

223 C Composing a DB object causes invocation of the appropriate database query manager DB object
creation interface to a context complementary to the type of DB object as though the user started the
query manager and manually entered the DB object for creation. Processing takes place as though
the user manually launched the query manager, entered the fields of the database object form, and
then is ready to further work with the starting template of DB object information. In one embodiment,
the DB-obj parameter contains directives for automatically populating specified data to a particular
Query Manager create object interface. In another embodiment, the DB-obj parameter is specified for
an existing DB object for then being opened by the query manager for further review or work.
Appropriate MS storage is updated and subsequently processed as though the user had entered
information manually. Preferably, the compose command data is maintained to LBX History, a
historical call loa (e.g. incomina), or other useful storage for subsequent use.

225 0 Composing data causes modifying the value of the data at the MS (analogous to a Notify data action
-- set data to value). An error can result if the data is not resolvable for the attempt. In the preferred
embodiment, the data is a global system variable visible to all processes of a MS operating system.
In other embodiments, the data may have limited scope which is made accessible to present
disclosure processing (e.g. with extern). A recognized App Term causes access to record 5300 for
proper semaphore synchronized access. Preferably, the data affected is maintained to LBX History,
a historical log (e.g. incoming), or other useful storage for subsequent user browse, or programmatic
access, of the data variable name, its before and after values and date/time stamp of when sent, and
for oresentation of the data value in resoonse to a user action to show it.

227 0 Composing a semaphore causes modifying the value of the semaphore at the MS (analogous to a
Notify sem action -- set sem to value). An error can result if the semaphore is not resolvable for the
attempt. In the preferred embodiment, the semaphore is a global system semaphore visible to all
processes of a MS operating system. In other embodiments, the semaphore may have limited scope
which is made accessible to present disclosure processing (i.e. RAM semaphore). Preferably, the
semaphore value before and after setting is maintained to LBX History, a historical log (e.g.
incoming), or other useful storage for subsequent user browse, or programmatic access, and for
presentation of the semaohore information in resoonse to a user action to show it.

Fig. 65B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
O'I
O'I

0
(,H
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 171 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Coma;!ose &;!rocessing
l

229 s Composing a directory causes invocation of the appropriate application (e.g. file system manager) at
the MS as though the user selected the directory for automatically being associated to the correct file
management application when opening the directory. Processing takes place as though the user
manually launched the application for working with the directory. The path parameter is preferably a
fully qualified path name to the directory. Preferably, the compose command data is maintained to
LBX History, a log, or other useful storaae for subseauent use.

231 C Composing an application context causes invocation of the application at the MS and then executing
a macro within the application context (analogous to a Send app context action). The app parameter
is preferably a fully qualified path name to the executable to start. In another embodiment, the app
parameter is indirect: a path name to a "shortcut" (like a MS Windows shortcut). In another
embodiment, the app parameter is an identifier string for the underlying operating system to know
which application to start. The macro parameter is preferably a file, path, or accessible variable name
containing a set of keystrokes that can be directed to standard/user-interface input. In another
embodiment, the macro parameter is a prerecorded user input scenario (for play after application
launched -- pulldown selections, mouse droppings, clicks, etc) captured to a file or stored in an
accessible variable name. Preferably, the compose command data is maintained to LBX History, a
loa, or other useful storaae for subseauent use.

233 s Composing a focused user interface object causes invocation of the appropriate application (e.g.
graphic application by file type embodiment .jpg, .gif, etc) at the MS as though the user manually
captured the focused user interface object (e.g. Alt-Prtscrn) using the first command string syntax
parameter, invoked the correct graphical application to open for the captured image, and is ready for
save of the file, or for further editing. Processing takes place as though the user manually launched
the application for the specified file. The embodiment's file type preference may influence which
application is to be launched. The first parameter can be used to change the keystroke sequence for
capture. Preferably, the compose command data is maintained to LBX History, a log, or other useful
storage for subseauent use.

235 0 Composing user interface control causes redirecting the keystroke macro to user interface input of
the MS as if it were entered by the MS user (analogous to a Send user interface control action). The
macro parameter is preferably a file, path, or accessible variable name containing a set of keystrokes
that can be directed to standard input. In another embodiment, the macro is a prerecorded user input
scenario (for play after application launched -- pulldown selections, mouse droppings, clicks, etc)
captured to a file or stored in an accessible variable name. Preferably, the compose command data
is maintained to LBX History, a log, or other useful storage for subsequent use.

Fig. 658-5

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
O'I
-....J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 172 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Com(!ose (!rocessing
l

237 0 Composing input causes redirecting the input to the iodev parameter input device stream of the MS
as if it were entered by the MS user, or programmatically specified to the iodev 1/0 device parameter
by a data processing system process (analogous to a Send input action). The input parameter is
preferably a file or accessible variable name containing a datastream recognizable by the iodev
connected device. Preferably, the compose command data is maintained to LBX History, a log, or
other useful storage for subsequent use.

239 0 Composing output causes redirecting the output to the iodev parameter output device stream of the
MS as if it were entered by the MS user, or programmatically specified to the iodev 1/0 device
parameter by a data processing system process (analogous to a Send output action). The output
parameter is preferably a file or accessible variable name containing a datastream recognizable by
the iodev connected device. Preferably, the compose command data is maintained to LBX History, a
log, or other useful storage for subsequent use.

241 s Composing an alert causes invocation of the appropriate alerter application at the MS as though the
user selected the alert application, manually entered the alert parameter, and is ready to decide what
to do with the alert, for example send it with a minimal action (e.g. ok}, edit it, or cancel it. Processing
takes place as though the user manually launched the application for creating the specified alert.
Preferably, the compose command data is maintained to LBX History, a log, or other useful storage
for subseauent use.

243 0 Composing a process causes sending an operating system signal (see UNIX signaling) to the
process with Process ID (PIO) of the pid parameter (analogous to a Notify process action}. A
numeric value parameter (e.g. 0 or 1) may be communicated with the signal. An error can be logged
if the process is not found for signaling. Preferably, the compose command data is maintained to
LBX History, a log, or other useful storage for subsequent use.

245 s Composing a container causes launch of a MS container manager (e.g. file manager} to examine the
contents of the container having the path in the container parameter (e.g. c:\dir1\subdir3) (analogous
to a Notify container action). An error is logged if the file manager is not found for launch, or if the
container is invalid. Preferably, the compose command data is maintained to LBX History, a log, or
other useful storaae for subseauent use.

247 0 Composing a program object causes launch of a MS development environment application (e.g.
Microsoft Visual Studio or IBM C-Set development consoles, etc), performing a search for the
progobj parameter symbol, and producing search results of all occurrences for the current
development working directory, mount point, or last used development repository. Preferably, the
compose command data is maintained to LBX History, a log, or other useful storage for subsequent
use.

Fig. 65B-6

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
O'I
QO

0
(,H
N
N

d
r.,;_

"""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 173 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment ComROSe Rrocessing
I

249 0 Composing a cursor causes invocation of the appropriate application (e.g. graphic application by file
type embodiment .bmp, .ico, etc) at the MS as though the user manually launched the application for
the cursor parameter, and is ready for save of the file, or for further editing, or for cancellation.
Depending on the cursor parameter referenced, an appropriate application will be launched for
graphics, animation, etc. The cursor parameter is preferably a fully qualified path to determine the
cursor (e.g. file). Processing takes place as though the user manually launched the application for
the specified file. The embodiment's file type preference will influence which application is to be
launched. Preferably, the compose command data is maintained to LBX History, a log, or other
useful storage for subsequent use.

251 s Composing a calendar object causes interface to the calendar system for invoking the create
calendar object interface and defaulting the appropriate calendar interface fields with the passed
parameters. The calendar object parameter may be as described for Send calendar object, except
for defaulting calendar interface create object interface(s). The user can subsequently create the
scheduled event with little effort, or after optional modification, with a minimal action (e.g. click ok).
Processing takes place as though the user manually launched the calendar application, entered the
fields of the calendar form with passed parameters, and then is ready to decide what to do with it.
Appropriate MS storage is updated and subsequently processed as though the user had manually
started the calendar application and entered the calendar information manually. Preferably, the
compose command data is maintained to LBX History, a historical call log (e.g. incoming), or other
useful storage for subsequent use. A standard calendaring interface is preferably used. Attributes
can be set as is customary for a calendar object.

253 s Composing an address book (AB) object causes interface to the AB system for invoking the create
AB object interface and defaulting the appropriate AB interface fields with the passed parameters.
The AB object parameter may be as described for Send AB object, except for defaulting AB interface
create object interface(s). The user can subsequently create the AB entry with little effort, or after
optional modification, with a minimal action (e.g. click ok). Processing takes place as though the user
manually launched the AB application, entered the fields of the AB form with passed parameters, and
then is ready to decide what to do with it. Appropriate MS storage is updated and subsequently
processed as though the user manually started the AB application and entered the AB information
manually. Preferably, the compose command data is maintained to LBX History, a historical call log
(e.g. incoming), or other useful storage for subsequent use. A standard AB interface is preferably
used. Attributes can be set as may be customary for an AB entry .

. . .
Fig. 65B-7

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
O'I
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 174 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Compose
adial#

Compose
weblink

Compose
email

Compose
sms

Compose brd
email

sms

Compose
indicator

Compose
app

Compose
doc

Compose file

Compose
content

Compose
DBobj

Compose
data

Sheet 170 of 322

Compose
sem

P31

Compose
appctxt

Compose
uifobj

Compose
uifctl

Compose
input

Compose
output

Compose
alert

Compose
proc

Compose
container

Compose
progobj

Compose
cursor

Han
0

Fig. 65C

US 10,477,994 B2

Petitioners' Ex. 1001, Page 175 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 171 of 322 US 10,477,994 B2

6602
START - Connect

Access params for
Operand and
Parameters

6648

Perform Connect
locally

6614
RETURN

6612

Handle error

Validate
parameter(s)

Validate
parameter(s)

Handle error

6620

Fig. 66A

6616

Invoke operating
system application by

object type

Prepare launch
command string

6630
Launch application

with command string

Prepare API
parameter(s)

6632

6634
Call API to launch

application

Petitioners' Ex. 1001, Page 176 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
I

PM

201 C

203 s

205 C
207 C
209 C
211 C

213 0
215 C
217 s
219 s
221 0
223 C
225 0
227 0
229 0
231 C
233 s
235 0

Preferred embodiment Connect 12rocessing

Connecting with an auto-dial # launches the MS phone number calling interface with the auto-dial #
parameter defaulted for placing a call (like Notify autodial #). The call is actually made as though the
user manually launched the dialing application, entered the auto-dial # and then chose to make the
call with it. Appropriate MS storage is updated and subsequently processed as though the user had
entered the # for calling manually and then made the call. Conventional call processing takes place
thereafter. Preferably, the connect command data is maintained to LBX History, a historical call log
(e.a. outaoina), or other useful storaae for subseQuent use.
Connecting with a web link launches a MS browser and invokes (transposes to) the link as though
the user had entered it manually and went to the weblink page (like Notify weblink). In one
embodiment, the weblink parameter includes URL parameter(s). In another embodiment, the params
parameter supports a URL command string for appending to the weblink (e.g. "?v=yes&T=go") for
customized web page processing. An alternate embodiment can fire form variables for active web
page processing using the params parameter. Processing takes place as though the user manually
launched the browser application, entered the weblink and then loaded the weblink webpage.
Appropriate MS storage is updated and subsequently processed as though the user had entered the
weblink in the browser manually. Preferably, the connect command data is maintained to LBX
Historv, a historical loa (web oaae load historv), or other useful storage for subseauent use.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.
See Send Command for identical processing.

See Send Command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.
See Notify command for identical processing, except some applicable parameters not used.
See Compose command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.
See Compose command for identical processing.

Fig. 668-1

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
-....J
N
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 177 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Connect ~rocessing

237 0 See Compose command for identical processing.
239 0 See Compose command for identical processing.

241 C Connecting with an alert causes interfacing to the alert subsystem for instantly producing the alert at
the MS. Preferably, the connect command data is maintained to LBX History, a log, or other useful
storage for subsequent use. The alert parameter of Notify processing is identical.

243 0 See Compose command for identical processing.
245 s See Compose command for identical processing.
247 0 See Notify command for identical processing.
249 0 See Notify command for identical processing.

251 C See Send Command for identical processing.

253 C See Send Command for identical processing.
...

Fig. 66B-2

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
-....J
~

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 178 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Connect
adial#

Connect
weblink

Connect
email

sms

Connect
indicator

Connect
content

Connect
DBobj

T05

Connect data

Sheet 174 of 322

Connect
appctxt

Connect
uifobj

Connect
uifctl

Connect
input

Connect
output

Connect
alert

Connect
proc

Connect
container

Connect
progobj

Connect
cursor

T31

Fig. 66C

US 10,477,994 B2

Ha

Petitioners' Ex. 1001, Page 179 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 175 of 322 US 10,477,994 B2

6700
START- Find

Access params for
Operand and
Parameters

_____r 6751

.-------------- Launch application

Handle error

6718

6728

6732

Handle error

Fig. 67A

I for gathered results

Invoke operating
system application by

object type

Prepare launch
command string

6738
Launch application

with command string

Prepare API
parameter(s)

6740

6742
Call API to launch

application

6752

Petitioners' Ex. 1001, Page 180 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find ~rocessing
1

201 C Finding an auto-dial# launches a system (e.g. MS) phone number log interface with the auto-dial#
parameter for searching. Preferably, both the outgoing and incoming logs are searched. The auto-
dial# parameter can be a wildcard (pattern) for matching. In one embodiment, all matching
occurrences found in history are presented with their date/time stamps, and perhaps other
information, of the call and when it took place. In another embodiment, the most recent occurrence
from a particular log is presented, and perhaps in an interface which enables calling the # with a
minimal user action. The search takes place as though the user manually launched the search,
entered the auto-dial# for the search, and then was presented with the result(s). Appropriate MS
storage is updated and subsequently processed as though the user manually performed the search.
Preferably, the find cmd data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. A new parameter can be specified for which log to search.

203 s Finding a weblink launches a search to system (e.g. MS) browser history with the weblink parameter
(and with the params parameter if specified) for searching. The weblink parameter can be a wildcard
(pattern), and may include URL parameters, for matching. In one embodiment, all matching
occurrences found in history are presented with their date/time stamps, and perhaps other
information, of the link and when it was invoked. In another embodiment, the most recent occurrence
from a particular invocation is presented, and perhaps in an interface which enables invoking
(transposing to) the weblink with a minimal user action. In a preferred embodiment, the params
parameter tells find processing how and where to search. The search takes place as though the user
manually launched the search, entered the weblink for the search, and then was presented with the
result(s). Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search. Preferably, the find command data is maintained to LBX History, a
historical log, or other useful storage for subsequent use. A new parameter can be specified for
which folder to search.

Fig. 67B-1

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
-....J
O'I

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 181 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Find ~recessing

205 C Finding an email causes searching a system (e.g. MS) email system with search criteria of the email
parameter string. The email parameter string can specify searching any email fields for any values
including wildcarding (patterns for matching). Each field is referenced with a predefined name and
then associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by seaching for substrings. All occurrences
found in history are presented with at least their date/time stamps, subject line, sender and recipient,
and perhaps other information, of the email and when it took place. In another embodiment, the most
recent occurrence from searched folders is presented, and perhaps in an interface which enables
appropriate MS email system processing from that point forward (e.g. when processed at local MS).
Alternatively, an additional parameter indicates how to search. The search takes place as though the
user manually launched the search, entered the criteria for the search, and then was presented with
the result(s). Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search. Preferably, the find command data is maintained to LBX History,
a historical log, or other useful storage for subsequent use.

Fig. 67B-2

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
-....J
-....J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 182 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find ~rocessing
l

207 C Finding an sms message causes searching a system (e.g. MS) sms messaging system with search
criteria of the sms message parameter string. The message parameter string can specify searching
any message fields for any values including wildcarding. Each field is referenced with a predefined
name and then associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In the preferred embodiment, all occurrences found in history are
presented with at least their date/time stamps, message, sender and recipient, and perhaps other
information, of the message and when it took place. In another embodiment, the most recent
occurrence from searched folders is presented, and perhaps in an interface which enables
appropriate MS messaging system processing from that point forward (e.g. when processed at local
MS). Alternatively, an additional parameter indicates how to search. The search takes place as
though the user manually launched the search, entered the criteria for the search, and then was
presented with the result(s). Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search. Preferably, the find command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use.

Fig. 67B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
-....J
QO

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 183 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find ~rocessing
l

209 C Finding a broadcast email causes searching a system (e.g. MS) email system with .search criteria of
the email param string. The email param string can specify searching any email fields for any values
including wildcarding. Each field is referenced with a predefined name and associated with a search
criteria. For example, the param of "subj:'personnel';recip:'george@alltell.com';body:'reduction in
force"' searches emails with a subject containing "personnel" and sent to "george@alltell.com" and
has an email body containing "reduction in force". To search for certain email containers/folders, a
sub-search criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search
the email folders of sent, inbox, and company (no specification preferably indicates to search all
folders)). Those skilled in the art recognize useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. In the preferred
embodiment, all occurrences found in history are presented with at least their date/time stamps,
subject line, sender and recipient, and perhaps other info, of the email and when it took place. In
another embodiment, the most recent occurrence from searched folders is presented, and perhaps in
an interface which enables appropriate MS email system processing from that point forward (e.g.
when processed at local MS). Alternatively, an additional parameter indicates how to search. The
search takes place as though the user manually launched the search, entered criteria for the search,
and then was presented with the result(s). Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search. Preferably, the find command
data is maintained to LBX History, a historical log, or other useful storage for subsequent use.

Fig. 67B-4

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
-....J
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 184 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
I

PM Preferred embodiment Find Rrocessing

211 C Finding a broadcast sms message causes searching a system (e.g. MS) sms messaging system with
search criteria of the sms message param string. The message param string can specify searching
any message fields for any values including wildcarding. Each field is referenced with a predefined
name and associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize useful syntaxes for
searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent by
searching for substrings. In the preferred embodiment, all occurrences found in history are presented
with at least their date/time stamps, message, sender and recipient, and perhaps other information,
of the message and when it took place. In another embodiment, the most recent occurrence from
searched folders is presented, and perhaps in an interface which enables appropriate MS messaging
system processing from that point forward (e.g. when processed at local MS). Alternatively, an
additional parameter indicates how to search. The search takes place as though the user manually
launched the search, entered search criteria, and then was presented with result(s). Appropriate MS
storage is updated and processed as though the user manually performed the search. Preferably,
find cmd data is maintained to LBX Historv, a historical loa, or other useful storaae for later use.

213 0 Finding an indicator searches appropriate system (e.g. MS) storage for the indicator (e.g.
storage/memory used for indicators by other commands). The indicator parameter string specifies
the indicator (e.g. string) being sought and wildcarding is supported. Any active user interface object
containing the indicator is surfaced. If more than one user interface object contains the indicator,
then all objects are appropriately tiled with the most recent in the priority position(s). In another
embodiment, appropriate MS storage/memory which contains the history of indicators sent is
searched and all occurrences found in history are presented with at least their date/time stamps, the
indicator, and perhaps other information. In yet another embodiment, a new parameter tells
processing whether to surface/prioritize active objects, or to search history for when indicators were
sent. The search takes place as though the user manually launched the search, entered the criteria
for the search, and then was presented with the result(s). Appropriate MS storage is updated and
subsequently processed as though the user had manually performed the search. Preferably, the find
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use.

Fig. 67B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
QO
0
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 185 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find erocessing
I

215 C Finding an application causes searching the system (e.g. MS) for the application (and with the
params parameter if specified). The app parameter is preferably an executable name, optionally with
parameters that were passed. Providing a partial or full path to the application parameter will
validate that it is found there. The app parameter string preferably supports wildcarding.
Embodiments (or as specified with params and/or new parameters) include file system searching,
invocation history (e.g. Microsoft Windows up/down arrow command line recall) searching for what
had been invoked (perhaps within a trailing time period), what is currently running, what has been
terminated (perhaps within a trailing time period), or any of these for a particular invoked identity,
credentials, or owner, In the preferred embodiment, all occurrences found on the MS and their paths
are presented to the user with at least their date/time stamps, size, and perhaps attributes
information. In another embodiment, all parts which are linked to the executable are identified with
their paths, date/time stamps, size, and perhaps attributes when a symbol file is specified with a new
parameter. The symbol file is output from a link process and can be used to identify all executable
parts such as dynamic link libraries, linked binaries, and any other executable binary file involved
with the application. The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was presented with the result(s). Appropriate MS storage
is updated and processed as though the user had manually performed the search. Preferably, find
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use.

217 s Finding a document causes searching the system (e.g. MS) for the document. The doc parameter is
a document name. The document parameter can be a wildcard (pattern) for matching. Providing a
partial or full path to the document name will validate that it is found there. In the preferred
embodiment, all occurrences found on the MS and their paths are presented to the user with at least
their date/time stamps, size, and perhaps attributes information. The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was presented
with the result(s). Appropriate MS storage is updated and subsequently processed as though the
user had manually performed the search. Preferably, the find command data is maintained to LBX
Historv, a historical lo!'.:i, or other useful storage for subsequent use.

219 s Finding a file causes searching the system (e.g. MS) for the file. The path parameter is a file name.
Providing a partial or full path to the file will validate that it is found there. The path parameter can be
a wildcard (pattern) for matching. In the preferred embodiment, all occurrences found on the MS and
their paths are presented to the user with at least their date/time stamps, size, and perhaps attributes
information. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was presented with the result(s). Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search. Preferably, the
find command data is maintained to LBX Historv, a historical loo, or other useful storaoe for

Fig. 67B-6

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
QO
0
~
N
N

d
r.,;_

'"'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 186 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Find ~rocessing

subsequent use.

221 0 Finding content causes searching the system (e.g. MS) for the content. The content parameter can
be a wildcard (pattern) for matching. The content parameter can be a handle to the content, or a
search criteria for the content. In the preferred embodiment, all occurrences found on the MS and
where the content is located is presented to the user, perhaps with other content description
information. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was presented with the result(s). There are various embodiments for
how and where content is maintained. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search. Preferably, the find command
data is maintained to LBX History, a historical log, or other useful storage for subsequent use.

223 C Finding a DB object causes searching the system (e.g. MS) database(s) for the database object. The
database object parameter is provided with a variety of syntaxes depending on the type of database
object sought. For example, the DB-obj parameters is "T:tablename" to seek a table,
"S:schemaname" to seek a particular schema, "C:columnname" to seek a particular column name,
"D:DBname" to seek a particular DB name, "R:rolename" to seek a particular role set, "P:procname"
to search for particular stored procedure, etc. There are unique syntaxes for every type of DB object
being sought. Those skilled in t~e art know how to query system tables for particular DB object(s)
sought. An appropriate SQL client API should be used. If necessary, an additional parameter is
specified for authentication credentials (may be specified with DB-obj string syntax). The search
criteria can be a wildcard (pattern) for matching. In the preferred embodiment, all occurrences found
on the MS and information about the occurrence is presented to the user. The search takes place as
though the user manually launched the search, entered the criteria or query for the search, and then
was presented with the result(s). Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search. Preferably, the find command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use.

Fig. 67B-7

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
QO
N
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 187 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find ~rocessing
1

225 0 Finding data causes searching the system (e.g. MS) for the data. In the preferred embodiment, the
data is a global system variable visible to processes of a MS O/S. In other embodiments, the data
may have limited scope which is made accessible to present disclosure processing (e.g. with extern).
Depending on the embodiment, data may be that which is contained in a program data segment,
stack segment, and/or extra segment. There can be unique syntaxes for specifying which type of
data is being sought (e.g. "S:dataname"). The search criteria can be a wildcard (pattern) for
matching. In the preferred embodiment, all occurrences found on the MS and information about the
occurrence including its current value is presented to the user. In one embodiment, a well known
location of link symbol information files are consulted, and in another embodiment a new parameter
specifies where to look, or which symbol file of information to use. An AppTerm uses record 5300 for
access. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was presented with the result(s). Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search. Preferably, find
command data is maintained to LBX History, a historical log, or other useful storage for later use.

227 0 Finding a semaphore causes reading the current value of the semaphore at the system (e.g. MS)
where the find command action is being executed and then presenting the current value along with
any other useful information for the semaphore. The semaphore param can be a wildcard (pattern)
for matching. In the preferred embodiment, the semaphore is a global system semaphore visible to
all processes of a MS operating system. In other embodiments, the semaphore may have limited
scope which is made accessible to present disclosure processing. The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was presented
with the result(s). Appropriate MS storage is updated and subsequently processed as though the
user had manually performed the search. Preferably, the find command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use.

229 s Finding a directory causes searching the system (e.g. MS) for the directory (path). The path
parameter is a directory name. Providing a more defined partial or full path to the path parameter will
narrow down the results if the directory exists in more than one place. The path parameter can be a
wildcard (pattern) for matching. In the preferred embodiment, all occurrences found on the MS and
their paths are presented to the user with at least their date/time stamps, size, and perhaps attributes
information. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was presented with the result(s). Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search. Preferably, the
find command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use.

Fig. 67B-B

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
QO
~

0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 188 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Find Rrocessing

231 C Finding an application context causes invocation of the application at the system (e.g. MS) and then
executing a macro within the application context (similar to Compose app object processing). The
app parameter is preferably a fully qualified path name to the executable to start. In another
embodiment, the app parameter is indirect: a path name to a "shortcut" (like a MS Windows
shortcut). In another embodiment, the app parameter is an identifier string for the underlying
operating system to know which application to start. The search criteria can be a wildcard (pattern)
for matching. The macro parameter is preferably a file, or path, or accessible variable name
containing a set of keystrokes that can be directed to standard/user-interface input. In another
embodiment, the macro parameter is a prerecorded user input scenario (for play after application
launched -- pulldown selections, mouse droppings, clicks, etc) captured to a file or stored in an
accessible variable name. Preferably, the compose command data is maintained to LBX History, a
log, or other useful storage for subseQuent use.

233 s Finding a user interface object causes finding and focusing the user interface object at the system
(e.g. MS) which contains the object text (objtxt) parameter. In a preferred embodiment, there is a
unique syntax for which places of user interface objects that are currently active are to be search
(e.g. title bar, entry fields, radio button options, window text, combinations thereof, etc). The search
criteria can be a wildcard (pattern) for matching. The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was presented with the result{s).
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search. Preferably, the find command data is maintained to LBX History, a historical
loo, or other useful storage for subseQuent use.

235 0 Finding user interface control causes searching the system {e.g. MS) storage and/or memory which
was used for processing another command (e.g. Compose) to redirect the keystroke macro to
standard input of the MS as if it were entered by the MS user. The search criteria can be a wildcard
{pattern) for matching. The macro parameter is the same as was used by the command and is to be
matched. In the preferred embodiment, presented in the search results are all occurrences of
previous command actions, which used the macro at the MS, including the command, date/time
stamp, and other information recorded (e.g. to LBX History, a historical log, or other useful storage
for subsequent use). The search takes place as though the user manually launched a search,
entered the criteria for the search, and then was presented with the result(s). Appropriate MS storage
is updated and subsequently processed as though the user had manually performed the search.
Preferably, the find command data is maintained to LBX History, historical log, or other useful
storage for subsequent use.

Fig. 67B-9

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
QO
.i;...

0
(,H
N
N

d
r.,;_

"'""' =
~
--..l
--..l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 189 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find ~rocessing
I

237 0 Finding input causes searching the system (e.g. MS) storage and/or memory which was used for
processing another command (e.g. Compose) to redirect the input to the iodev device of the MS. The
iodev and input parameters are the same as was used by a previous command and is to be
matched. The search criteria can be a wildcard (pattern) for matching. In the preferred embodiment,
presented in the search results are all occurrences of previous command actions, which used the
iodev and input at the MS, including the command, date/time stamp, and other information recorded
(e.g. to LBX History, a historical log, or other useful storage for subsequent use}. The search takes
place as though the user manually launched a search, entered the criteria for the search, and then
was presented with the result(s). Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search. Preferably, the find command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use.

239 0 Finding output causes searching the system {e.g. MS) storage and/or memory which was used for
processing another command (e.g. Compose) to redirect the output to the iodev device of the MS.
The search criteria can be a wildcard {pattern) for matching. The iodev and output parameters are
the same as was used by a previous command and is to be matched. In the preferred embodiment,
presented in the search results are all occurrences of previous command actions, which used the
iodev and output at the MS, including the command, date/time stamp, and other information recorded
{e.g. to LBX History, a historical log, or other useful storage for subsequent use). The search takes
place as though the user manually launched a search, entered the criteria for the search, and then
was presented with the result{s). Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search. Preferably, the find command data is
maintained to LBX Historv, a historical log, or other useful storage for subsequent use.

241 s Finding an alert causes searching the system {e.g. MS) for the alert. The alert parameter is the same
parameter used to generate an alert (e.g. using another command). In the preferred embodiment, all
occurrences found on the MS which is associated to the alerter application in use at the MS, and
which is used for other commands disclosed, are presented to the user with at least their date/time
stamps, and perhaps other information. The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was presented with the result(s).
The search criteria can be a wildcard (pattern) for matching. Appropriate MS storage is updated and
subsequently processed as though the user had manually performed the search. Preferably, the find
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use.

Fig. 67B-10

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
QO
Ul
0
(,H
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 190 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find erocessing
1

243 0 Finding a process causes finding all process names running at the system (e.g. MS) which contain
the prname string parameter (e.g. in UNIX: "ps -ef I grep prname"). In the preferred embodiment, all
occurrences found running at the MS are presented with interesting programmatic information such
as when started, its size, etc (see UNIX ps command for other information that can be presented
here in various embodiments; an additional parameter (like ps parameters) can specify what info to
provide to the user). The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was presented with the result(s). Appropriate MS storage
is updated and subsequently processed as though the user had manually performed the search.
Preferably, the find command data is maintained to LBX History, historical log, or other useful
storage for subsequent use.

245 s Finding a container causes searching the system (e.g. MS) for the container. The container
parameter is a container name (e.g. file system directory) depending on the MS or environment.
Unique syntaxes can be used for which type of container is being searched. In the preferred
embodiment, all occurrences found on the MS and their paths are presented to the user with
information of interest. The search criteria can be a wildcard (pattern) for matching. The search takes
place as though the user manually launched the search, entered the criteria for the search, and then
was presented with the result(s). Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search. Preferably, the find command data is
maintained to LBX History, historical log, or other useful storage for subsequent use.

247 0 Finding a program object causes searching the system (e.g. MS) for the program object. In the
preferred embodiment, a unique syntax is used for which type of program object is being sought (e.g.
Q:queuename has a queue qualifier prefix). There can be unique syntaxes for specifying which type
of program object is being sought (e.g. "S:dataname"). In the preferred embodiment, all occurrences
found on the MS and information about the occurrence including its current value is presented to the
user. A null data parameter returns all occurrences found. A non-null data parameter returns these
objects having the data value. Objects must be programmatically accessible. In one embodiment, a
well known location of link symbol information files are consulted, and in another embodiment a new
parameter specifies where to look, or which symbol file of information to use. In another embodiment,
MS storage and/or memory is searched which recorded a previous atomic command action, and the
search takes place for a previous command(s) (e.g. Notify) for when performed and what was
performed. The search criteria can be a wildcard (pattern) for matching. The search takes place as
though the user manually launched the search, entered the criteria for the search, and then was
presented with the result(s). Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search. Preferably, the find command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use.

Fig. 67B-11

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
QO
O'I

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 191 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Find grocessing

249 0 Finding a cursor causes searching the system (e.g. MS) storage and/or memory which was used for
processing another command (e.g. Compose) to view or alter a cursor. In the preferred embodiment,
presented in the search results are all occurrences of previous command actions, which viewed or
altered the cursor at the MS, including the command, date/time stamp, and other information
recorded (e.g. to LBX History, a historical log, or other useful storage for subsequent use). The
search criteria can be a wildcard (pattern) for matching. The search takes place as though the user
manually launched a search, entered the criteria for the search, and then was presented with the
result(s). Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search. Preferably, the find command data is maintained to LBX History, a
historical log, or other useful storage for subseQuent use.

251 C Finding a calendar object causes searching a system (e.g. MS) calendar system with search criteria
of the calendar object parameter string. The calendar object parameter string can specify searching
any calendar entry fields.for any values including wildcarding. Each field is referenced with a
predefined name and then associated with a search criteria (similar to email above). Those skilled in
the art recognize useful syntaxes for searching any characteristics of calendar objects with an
appropriate syntax. The calendar object parameter is at least a string with a syntax for querying any
combination of calendar object fields. In the preferred embodiment, all occurrences found in history
are presented with at least their date/time stamps, attendees, and perhaps other information, of the
calendar object and when it was scheduled. In another embodiment, the most recent occurrence
from the calendaring system is presented, and perhaps in an interface which enables appropriate MS
calendar system processing from that point forward (e.g. when processed at local MS), or
alternatively an additional parameter can specify how to search. Wildcarding (pattern matching) is
preferably inherent by searching for substrings. The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was presented with the result(s).
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search. Preferably, the find command data is maintained to LBX History, a historical
log, or other useful storage for subsequent use.

Fig. 67B-12

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
QO
-...J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 192 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Find Rrocessing
1

253 C Finding an address book (AB) object causes searching a system (e.g. MS) AB system with search
criteria of the AB object parameter string. The AB object parameter string can specify searching any
AB entry fields for any values including wildcarding. Each field is referenced with a predefined name
and then associated with a search criteria (similar to email above). Those skilled in the art recognize
many useful syntaxes for searching any characteristics of AB objects/entries with an appropriate
syntax. The AB object parameter is at least a string with a syntax for querying any combination of AB
object fields. In the preferred embodiment, all occurrences found are presented with appropriate AB
information. In another embodiment, the most recent occurrence from the AB system is presented,
and perhaps in an interface which enables appropriate MS AB system processing from that point
forward (e.g. when processed at local MS), or alternatively an additional parameter can specify how
to search. Wildcarding (pattern matching) is preferably inherent by searching for substrings. The
search takes place as though the user manually launched the search, entered the criteria for the
search, and then was presented with the result(s). Appropriate MS storage is updated and
subsequently processed as though the user had manually performed the search. Preferably, the find
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use .

. . .

Fig. 67B-13

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
QO
QO

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 193 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

FOS

Find adial#

Find weblink

Find email

Find sms

email

Find brd sms

Find app

Find doc

Find file

Find content

Find DBobj

Find data

Sheet 189 of 322

F31

Find sem

Find dir

Find appctxt

Find uifobj

Find uifctl

Find input

Find output

Find alert

Find proc

Find
container

Find progobj

Find cursor

Fig. 67C

US 10,477,994 B2

Petitioners' Ex. 1001, Page 194 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 190 of 322 US 10,477,994 B2

6802
START- Invoke

command processin

6804
Access params for

Operand and
Parameters

Perform Invoke
locally

6894

Send
(operand,
param(s))

RETURN

6822

Handle error

Invoke operating
.::...----,~ system application by

Validate
parameter(s)

Validate
parameter(s)

Handle error

6828

Fig. 68A

object type

Prepare launch
command string

6838
Launch application

with command string

Prepare API
parameter(s)

6840

6842
Call API to launch

application

6852

Petitioners' Ex. 1001, Page 195 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Invoke l!rocessing
1

201 C Invoking with an auto-dial # launches the MS phone number calling interface at the MS (local or
remote) with the auto-dial# parameter for placing a call (like/see Notify/ Connect autodial#
processing). The call is actually made as though a user manually launched the dialing application at
the particular MS, entered the auto-dial# and then chose to make the call with it. Appropriate MS
storage is updated and subsequently processed as though the user had entered the # for calling
manually, and then make the call. Conventional call processing takes place thereafter. Preferably,
the invoke command data is maintained to LBX History, a historical call log (e.g. outgoing), or other
useful storage for subsequent use. A system parameter provides means for placing the call from
another svstem (e.a. another MS) - like a Host specification.

203 s Invoking with a web link launches the MS browser at the particular MS and invokes (transposes to)
the link as though the user had entered it manually and went to the weblink page (like/see Notify/
Connect weblink processing). In one embodiment, the weblink parameter includes URL
parameter(s). In another embodiment, the params parameter supports a URL command string for
appending to the weblink (e.g. "?v=yes&T=go") for customized web page processing. An alternate
embodiment can fire form variables for active web page processing using the params parameter, or
URL parameter(s). Processing takes place as though the user manually launched the browser
application at the particular MS, entered the weblink and then loaded the weblink webpage.
Appropriate MS storage is updated and subsequently processed as though the user had entered and
invoked the weblink in the_browser manually. Preferably, the compose command data is maintained
to LBX History, a historical loa (web page load historv}, or other useful storaae for subsequent use.

205 E See Send Command for identical processing.

207 E See Send Command for identical processing.

209 E See Send Command for identical processing.

211 E See Send Command for identical processing.

Fig. 68B-1

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
1,0
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 196 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Invoke erocessing
j

213 0 Invoking an indicator updates the appropriate MS storage so that the currently focused user interface
object (e.g. window titlebar} of the particular MS user interface is modified with the indicator (like/see
Send indicator processing). If there are no active user interface objects in the MS user interface, then
an appropriate alert area of the currently focused interface is to display the indicator. The user can
clear (remove) the indicator when desired. Preferably, the indicator is used for modifying other
focused objects (e.g. titlebars) or other focused areas in the user interface so as to not get
overlooked. For example, as the user navigates and surfaces/focuses new user interface objects, the
indicator remains visible on the newly focused object. Preferably, the indicator is selectable by the
user of the MS for showing all other send command parameters associated, as well as a date/time
stamp of when sent. In other embodiments, the most recently displayed indicator is displayed in the
appropriate focused area, but the user can conveniently select any indicators which were sent in
history at some point in time for sought indicator information by selecting the currently displayed
indicator and then requesting to browse/scroll history of previously delivered indicators (with options
to see details}. Preferably, the invoke command data is maintained to LBX History, a historical log
(web page load history}, or other useful storage for subsequent use.

215 C Invoking an application causes invocation of the application at the particular MS (like/see Send app
processing). The app parameter is preferably a fully qualified path name to the executable to start,
and may already include parameters. In another embodiment, the app parameter is indirect: a path
name to a "shortcut" (like a MS Windows shortcut). In another embodiment, the app parameter is an
identifier string for the underlying operating system to know which application to start. The params
parameter may specify the executable parameters, or may be used for how to start the application
(like attributes of Send app processing). An error is logged if the app parameter is not found for
launch. Preferably, the invoke command data is maintained to LBX History, a historical log (web
page load history), or other useful storage for subsequent use.

217 s Invoking a document causes invocation of an appropriate application at the particular MS in
accordance with the object type as though the user selected the document for automatically being
associated to the correct application when opening the document. The user can then decide what to
do with the document once it is opened in the appropriate application. In an alternate embodiment,
an additional parameter is provided for exactly what to do with the document, in which case an
appropriate API is invoked with the document (i.e. PM= C). The doc parameter is preferably a fully
qualified path name to the document. Preferably, the invoke command data is maintained to LBX
History, a log, or other useful storage for subsequent use.

Fig. 68B-2

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
1,0
N
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 197 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Invoke 12rocessing

219 s Invoking a file causes invocation of an appropriate application at the particular MS in accordance
with the file type as though the user selected the file for automatically being associated to the correct
application when opening the document. Processing takes place as though the user manually
launched the application for the specified file. The user can then decide what to do with the file once
it is opened in the appropriate application. In an alternate embodiment, an additional parameter is
provided for exactly what to do with the file, in which case an appropriate API is invoked with the file
(i.e. PM = C). The path parameter is preferably a fully qualified path name to the file. Preferably, the
invoke command data is maintained to LBX History, a log, or other useful storage for subsequent
use.

2~1 0 Invoking content causes the content to be presented at the particular MS in a manner which is
appropriate for the content type (like/see Notify content processing). The content parameter is one
that cannot be classified in the other operands, but is content for presentation nevertheless.
Examples include special data records (e.g. extern variable name), content data memory locations
(e.g. programmatic variable), or files containing a customizably processed format. Methods of
displaying the content include audio and/or visual using applicable MS capabilities. Preferably, the
invoke command data is maintained to LBX History, a historical content log (e.g. incoming), browser
history data, or other useful storage for subsequent user browse of the accompanying content and a
date/time stamp of when sent, and for presentation of the content. Various embodiments will save to
LBX History how many times, and when, the content was presented.

223 0 Invoking a Database (DB) object causes the DB object (i.e. qualified database with access query
string) to be modified with the query parameter at the particular MS (like/see Notify DB-obj
processing without certain parameters). The query parameter is used to perform any query against
the specified DB-database (DB-obj), preferably a query that only returns a return code. Fig. 758
processing may return SELECT results in some embodiments (like find results returned). Preferably,
the invoke command data is maintained to LBX History, a database log (e.g. incoming), or other
useful storage for subsequent query use and a date/time stamp of when sent, and for DB query
manaoer browse/use of the query in response to an aoolicable user action.

225 0 Invoking data causes modifying the value of the data at the particular MS (i.e. set data to value -
like/see Notify data processing without certain parameters). An error can result if the data is not
resolvable for the attempt. In the preferred embodiment, the data is a global system variable visible
to all processes of a MS operating system. In other embodiments, the data may have limited scope
which is made accessible to present disclosure processing (e.g. with extern). A recognized App Term
causes access to record 5300 for proper semaphore synchronized access. Preferably, the data
affected is maintained to LBX History, a historical log (e.g. incoming), or other useful storage for
subsequent user browse, or programmatic access, of the data variable name, its before and after
values & date/time stamp of sent, and for oresentation of the data value for a user action to show it.

Fig. 68B-3

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
1,0
~

0
~
N
N

d
r.,;_

'"'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 198 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM

227 0

229 s

231 C

233 s

235 0

237 0

239 0

241 C

243 0

245 s

247 0

Preferred embodiment Invoke ~rocessing
Invoking a semaphore causes modifying the value of the semaphore at the particular MS where the
action is being executed (like/see Notify semaphore processing). In the preferred embodiment, the
semaphore is a global system semaphore visible to all processes of a MS operating system. In other
embodiments, the semaphore may have limited scope which is made accessible to present
disclosure processing (e.g. RAM semaphore). Preferably, the semaphore value before and after
setting is maintained to LBX History, a historical log (e.g. incoming), or other useful storage for
subsequent user browse, or programmatic access, and for presentation of the semaphore
information in response to a user action to show it.
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).

See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the cmds parameter replaces the
"capture focused object" command string with one or more semicolon delimited "capture focused
object" command strings for each target system in the system(s) parameters. This enables a plurality
of different types of MSs to participate even though they have different commands (e.g. keystroke
capture actions) to accomplish capturing the focused user interface object. Based on the file type at
the particular MS, the aooropriate aoolication opens the file.
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Connect Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Notify Command for identical processing, except sender is forced to requesting MS, no
documentary subj/msg parameter, and system(s) used instead of recipient(s). Processing may take
place locally and/or at privilege-providing remote MS(s) (system(s) parameter).

Fig. 68B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
\,Ci
.i;...

0
~
N
N

d
r.,;_

'"'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 199 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Invoke l;!rocessing
l

249 0 See Notify Command for identical processing, except sender is forced to requesting MS, no
documentary subj/msg parameter, and system(s) used instead of recipient(s). Processing may take
place locally and/or at privilege-providing remote MS(s) (system(s) parameter).

251 0 See Send Command for identical processing, except sender is forced to requesting MS, and
system(s) used instead of recipient(s) for calendar alteration without regard for the owner (API
embodiment). Processing may take place locally and/or at privilege-providing remote MS(s)
(system(s) parameter).

253 0 See Send Command for identical processing, except sender is forced to requesting MS, and
system(s) used instead of recipient(s) for AB alteration without regard for the owner (API
embodiment). Processing may take place locally and/or at privilege-providing remote MS(s)
(system(s) parameter) .

. . .

Fig. 68B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ

=('D
('D
\,Ci
Ul

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 200 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

START - Invoke processing

Invoke
weblink

email

J05

Invoke brd
sms

Invoke
indicator

Invoke app

Invoke doc

Invoke file

Invoke
content

Invoke data

Sheet 196 of 322

J31

Invoke dir

Invoke
appctxt

Invoke uifobj

Invoke input

Invoke
output

Invoke alert

Invoke proc

Invoke
container

Invoke
progobj

J
Invoke
cursor

Fig. 6BC

US 10,477,994 B2

H

Petitioners' Ex. 1001, Page 201 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 197 of 322 US 10,477,994 B2

6900
START-Copy

comma

Get operand
locally

6936

Provide copy prompt;
Wait for user decision

6912

Handle error

6914

Invoke operating
--J"--___, system application by

Validate
parameter(s)

Validate
parameter(s)

6918

Get next system

Fig. 69A

object type

Prepare launch
command string

6926
Launch application

with command string

Prepare API
parameter(s)

6928

6930
Call API to launch

application

____ ..,1,-:6~960
RETURN

Perform copy

Log it

Petitioners' Ex. 1001, Page 202 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Coe~ erocessing
l

201 C Copying an auto-dial # launches a phone number log interface with the auto-dial # parameter (can be
wildcarded) for searching the source system. Preferably, both the outgoing and incoming logs are
searched. In an alternate embodiment, the log is specified with a parameter. In the preferred
embodiment, the most recent occurrence from a particular log is provided. In another embodiment, all
occurrences found in history are presented with their date/time stamps, and perhaps other information, of
the call and when it took place (e.g. when the ack parameter is set) and the user browses the results
prior to accepting the copy of multiple items. The search takes place as though the user manually
launched the search, entered the auto-dial # for the search, and then was provided with result(s} for the
copy. Preferably, the copy shall take place if there are no ambiguities (e.g. more than one phone number
returned per search criteria). An additional parameter may be specified for the target (different log) of the
copy, otherwise the object is copied to an assumed location (e.g. same folder to more recent position).
Appropriate MS storage is updated and subsequently processed as though the user manually performed
the search and copy of the result. Preferably, the copy cmd data is maintained to LBX History, a historical
log, or other useful storage for subsequent use. The copy is made to system(s) logs, preferably with
identifvin!l information of the source and who did the copy_

203 C Copying a weblink launches a search to MS browser history with the weblink parameter (can be
wildcarded} for searching the source system. In one embodiment, all occurrences found in history are
presented with their date/time stamps, and perhaps other information, of the link and when it was invoked
(e.g. when the ack parameter is specified to true) for presentation to the user prior to doing the copy. In
the preferred embodiment, the most recent occurrence from a particular invocation is provided for the
copy. An additional parameter may be specified for the target (specified favorites folder), otherwise the
object is copied to an assumed location (e.g. highest level favorites folder or special named folder).The
search takes place as though the user manually launched the search, entered the weblink for the search,
and then was provided with the result for copying it. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and copy of the result. Preferably, the
copy command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. The copy is made to a special browser favorites folder, or another designated folder configured
ahead of time, preferably with identifying information of the source and who did the copy.

Fig. 69B-1

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
1,0
QO

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 203 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Coe~ erocessing

205 C Copying an email causes searching the source email system with search criteria of the email parameter
string. The email parameter string can specify searching any email fields for any values including
wildcarding (patterns for matching). Each field is referenced with a predefined name and then associated
with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with a
subject containing "personnel" and was sent to "george@alltell.com" and has a message body containing
the string "reduction in force". To search for certain email containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email folders of sent,
inbox, and company (no specification preferably indicates to search all folders)). Those skilled in the art
recognize many useful syntaxes for searching any characteristics of email. Wildcarding (pattern
matching) is preferably inherent by searching for substrings. In one embodiment, all occurrences found in
history are presented with at least their date/time stamps, subject line, sender and recipient, and perhaps
other information, of the email and when it took place, when the ack parameter is set to true for user
reconciliation. In a preferred embodiment, the most recent occurrence from searched folders is provided
for the copy. An additional parameter may be specified for the target (specified folder), otherwise the
object is copied to an assumed location (e.g. drafts, inbox, or special named folder). The search takes
place as though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for doing the copy. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and copy. Preferably, the copy
command data is maintained to LBX History, a historical log, or other useful storage for subsequent use.
The copy is made to a special email folder of the target system, or another designated folder configured
ahead of time, or as specified with a new parameter for copy processing, preferably with identifying
information of the source and who did the copy (if supported in email application).

Fig. 69B-2

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
1,0
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 204 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Coe~ erocessing
l

207 C Copying an sms message causes searching the source messaging system with search criteria of the sms
message parameter string. The message parameter string can specify searching any message fields for
any values including wildcarding. Each field is referenced with a predefined name and then associated
with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of "folders" is
used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification preferably
indicates to search all folders)). Those skilled in the art recognize many useful syntaxes for searching any
characteristics of messages. Wildcarding (pattern matching) is preferably inherent by searching for
substrings. In one embodiment, all occurrences found in history are presented with at least their
date/time stamps, message, sender and recipient, and perhaps other information, of the message and
when it took place, when the ack parameter is set to true for user reconciliation. In a
preferred embodiment, the most recent occurrence from searched folders is provided for copying. An
additional parameter may be specified for the target (specified folder), otherwise the object is copied to
an assumed location (e.g. inbox, drafts, special named folder). The search takes place as though the
user manually launched the search, entered the criteria for the search, and then was provided with the
result for copying it. Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search and copy. Preferably, the copy command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. The copy is made to a special
messaging folder of the target system, or another designated folder configured ahead of time, or as
specified with a new parameter to copy processing, preferably with identifying information of the source
and who did the copy.

Fig. 69B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
N
0
0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 205 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Co~ll ~rocessing

209 C Copying a broadcast email causes searching the source email system with search criteria of the email
parameter string. The email parameter string can specify searching any email fields for any values
including wildcarding (patterns for matching). Each field is referenced with a predefined name and then
associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with a
subject containing "personnel" and was sent to "george@alltell.com" and has a message body containing
the string "reduction in force". To search for certain email containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email folders of sent,
inbox, and company (no specification preferably indicates to search all folders)). Those skilled in the art
recognize many useful syntaxes for searching any characteristics of email. Wildcarding (pattern
matching) is preferably inherent by searching for substrings. In one embodiment, all occurrences found in
history are presented with at least their date/time stamps, subject line, sender and recipient, and perhaps
other information, of the email and when it took place, when the ack parameter is set to true for user
reconciliation. In a preferred embodiment, the most recent occurrence from searched folders is provided
for the copy. An additional parameter may be specified for the target (specified folder}, otherwise the
object is copied to an assumed location (e.g. inbox, drafts, special named folder). The search takes place
as though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for doing the copy. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and copy. Preferably, the copy
command data is maintained to LBX History, a historical log, or other useful storage for subsequent use.
The copy is made to a special email folder of the target system, or another designated folder configured
ahead of time, or as specified with a new parameter to copy processing, preferably with identifying
information of the source and who did the copy_

Fig. 69B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
0
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 206 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment CO(!lf (!rocessing
l

211 C Copying a broadcast sms msg causes searching the source messaging system with search criteria of the
sms message parameter string. The message parameter string can specify searching any message
fields for any values including wildcarding. Each field is referenced with a predefined name and then
associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of "folders" is
used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification preferably
indicates to search all folders)). Those skilled in the art recognize many useful syntaxes for searching any
characteristics of messages. Wildcarding (pattern matching) is preferably inherent by searching for
substrings. In one embodiment, all occurrences found in history are presented with at least their
date/time stamps, message, sender and recipient, and perhaps other information, of the message and
when it took place, when the ack parameter is set to true for user reconciliation. In a
preferred embodiment, the most recent occurrence from searched folders is provided for copying. An
additional parameter may be specified for the target (specified folder), otherwise the object is copied to
an assumed location (e.g. inbox, drafts, special named folder). The search takes place as though the
· user manually launched the search, entered the criteria for the search, and then was provided with the
result for copying it. Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search and copy. Preferably, the copy command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. The copy is made to a special
messaging folder of the target system, or another designated folder configured ahead of time, or as
specified with a new parameter to copy processing, preferably with identifying information of the source
and who did the COPY.

213 C Copying an indicator searches appropriate source storage for the indicator (e.g. storage/memory used for
indicators by other commands). The indicator parameter string specifies the indicator string being sought
and wildcarding is supported. In one embodiment, appropriate MS storage/memory which contains the
history of indicators sent to the source system is searched and all occurrences found in history are
presented with at least their date/time stamps, the indicator, and perhaps other information, for user
reconciliation at block 6942. In a preferred embodiment, the most recently delivered indicator is identified
and used for the copy. The search takes place as though the user manually launched the search, entered
the criteria for the search, and then was provided with the result for the copy. Appropriate MS storage is
updated and subsequently processed as though the user had manually performed the search and copy.
Preferably, the copy command data is maintained to LBX History, a historical log, or other useful storage
for subsequent use. The copy is made so that the target system(s) are delivered the indicator(s) like
delivering a new indicator for presentation.

Fig. 69B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
N
0
N
0
(,H
N
N

d
rJl.

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 207 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Coe~ erocessing

215 C Copying an application causes searching the source system for the application (and with the params
parameter(s) if specified to get the params specified invocation of the application). The app parameter is
preferably an executable name and may contain parameters that were passed. Providing a more defined
partial or full path to the application parameter will limit the search result. The app parameter string
preferably supports wildcarding. In one embodiment, all occurrences found at the source and their paths
are presented to the user with at least their date/time stamps, size, and perhaps attributes information,
for user reconciliation at block 6942. In a preferred embodiment, the most recently executed instance of
the matching application is determined for the copy. In one embodiment, the application itself is copied to
the target systems, perhaps as directed by an additional parameter (e.g. directory location). In another
embodiment, the executable path to run the application is placed into execution history at the system(s)
so that a user can run it, albeit from a remote system (assumption that application available for running
there already). The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for copy. Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search and copy.
Preferably, the copy command data is maintained to LBX History, a historical log, or other useful storage
for subseouent use.

217 C Copying a document causes searching the source for the document. The doc parameter is a document
name. The document parameter can be a wildcard (pattern) for matching. Providing a more defined
partial or full path to the document name will narrow the search. In one embodiment, all occurrences
found on the MS and their paths are presented to the user with at least their date/time stamps, size, and
perhaps attributes information, for reconciliation at block 6942. In a preferred embodiment, the most
recently accessed search result is provided for the copy. The search takes place as though the user
manually launched the search, entered the criteria for the search, and then was provided with the result
for copying it. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search and copy. Preferably, the copy command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. Copying the document places a copy
to each target system at a special shared folder, or configured folder for sharing, or as specified with a
new destination parameter to copy processino.

Fig. 69B-6

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
N
0
~

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 208 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Co~)l ~rocessing

219 C Copying a file causes searching the source path for the file. The path parameter is a file name. Providing
a more defined partial or full path to the file will narrow the search result. The path parameter can be a
wildcard (pattern) for matching. In one embodiment, all occurrences found on the MS and their paths are
provided with at least their date/time stamps, size, and perhaps attributes information, for reconciliation at
block 6942. In a preferred embodiment, the most recently accessed file meeting the search criteria is
copied to the target systems. The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was provided with the result for copying it. Appropriate MS
storage is updated and subsequently processed as though the user had manually performed the search
and copy. Preferably, the copy command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. In one embodiment, the copy results in overwriting an existing file with
the same handle (e.g. name). In another embodiment, the copy results in writing a newly altered name of
the file when there is an existing file with the same handle (e.g. name). An additional parameter may be
specified for the target (specified folder), otherwise the object is copied to an assumed location.

221 0 Copying content causes searching the source for the content. The content parameter is a reference to
the content. The content parameter can be a wildcard (pattern) for matching. In a preferred embodiment,
the most recently accessed search result is provided for the copy. The search takes place as though the
user manually launched the search, entered the criteria for the search, and then was provided with the
result for copying it. Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search and copy. Preferably, the copy command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. Copying the content places a copy to
each target system at a special shared destination, or configured destination for sharing, or as specified
with a new parameter to copy processing.

Fig. 69B-7

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
0
.i;...

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 209 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment COE;!l£ a;;!rocessing
l

223 0 Copying a DB object causes searching the source for the database object value. The database object
parameter is provided with a variety of syntaxes depending on the type of database object sought. For
example, the DB-obj parameters is "T:tablename" to seek a table, "S:schemaname" to seek a particular
schema, "C:columnname" to seek a particular column name, "D:DBname" to seek a particular DB name,
"R:rolename" to seek a particular role set, "P:procname" to search for particular stored procedure, etc.
There are unique syntaxes for every type of DB object being sought which maps to an appropriate SOL
system tables query. The search criteria can be a wildcard (pattern) for matching. In one embodiment, all
occurrences found on the source system and information about the occurrence is presented to the user
for reconciliation at block 6942. In other embodiments, the best (e.g. most recently accessed) fit
database object is identified for use in the copy, or a new parameter indicating how to search. The search
takes place as though the user manually launched the search, entered the criteria or query for the
search, and then was provided with the result for copying it. Appropriate MS storage is updated and
subsequently processed as though the user had manually performed the search and copy. Preferably,
the copy command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. The value of the DB object is copied to the value of the DB object with the same name
and type at the destination system(s). If not found at a target system, then no action is performed at that
system. Copying a database object copies the value to the same database object(s) at other system(s),
or creates new copies of the DB objects there when names do not match. Copying a DB object is
intended to keep DBs in synch in some uses. Value(s) are overwritten. An additional parameter may be
specified for the target of the copy (e.g. schema path which may include credentials for authentication}.

Fig. 69B-8

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
N
0
Ul

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 210 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment COJ:!)l Rrocessing
1

225 0 Copying data causes searching the source system for the data. In the preferred embodiment, the data is
a global system variable visible to all processes of a MS operating system. In other embodiments, the
data may have limited scope which is made accessible to present disclosure processing (e.g. with
extern). Depending on the embodiment, data may be that which is contained in a program data segment,
stack segment, and/or extra segment. There can be unique syntaxes for specifying which type of data is
being sought (e.g. "S:dataname" for data parameter). The search criteria can be a wildcard (pattern) for
matching. In the preferred embodiment, a well known location of link symbol information files are
consulted, and in another embodiment a new parameter specifies where to look, or which symbol file of
information to use. A recognized App Term causes access to record 5300 for proper semaphore
synchronized access. In one embodiment, all occurrences found at the source system and information
about the occurrence including its current value is presented to the user for reconciliation at block 6942.
In a preferred embodiment, the best data value (e.g. most recently accessed if more than one matches)
is provided for the copy. The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was provided with result for copying it. Appropriate MS
storage is updated and subsequently processed as though the user had manually performed the search
and copy. Preferably, the copy command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. The value of the copied data is copied to the data with the same
name and type at the destination system(s). If not found at a target system, then no action is performed
at that system, or an error is provided. Copying a data object copies the value to the same data object(s)
at other system(s). Copying is intended to keep data in synch between systems in some uses. Value(s)
are overwritten. An additional parameter may be specified for the target data name of the copy.

227 0 Copying a semaphore causes reading the current value of the semaphore at the source where the copy
command action is being executed and then copying the current value to the same semaphore names at
the target system(s). The semaphore param can be a wildcard (pattern) for matching. In the preferred
embodiment, the semaphore is a global system semaphore visible to all processes of a MS operating
system. In other embodiments, the semaphore may have limited scope which is made accessible to
present disclosure processing. The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was provided with the result for copying it. Appropriate MS
storage is updated and subsequently processed as though the user had manually performed the search
and copy. Preferably, the copy command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. The value (set or cleared) of the copied semaphore is copied to the
semaphore with the same name and type at the destination system(s). If not found at a target system,
then no action is performed at that system, or an error is provided. Copying a semaphore copies the
value to the same semaphore at other system(s). Copying a semaphore is intended to keep systems in
synch in some uses. Value(s) are overwritten. An additional parameter may be specified for the target
sem name of the coov.

Fig. 69B-9

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
N
0
O'I

0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 211 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Coe:t erocessing

229 C Copying a directory causes searching the source system for the directory. The path parameter is a
directory name. Providing a more defined partial or full path to the directory parameter will narrow the
search result. The path parameter can be a wildcard (pattern) for matching. In one embodiment, all
occurrences found on the MS and their paths are provided with at least their date/time stamps, size, and
perhaps attributes information, for reconciliation at block 6942. In a preferred embodiment, the most
recently accessed directory meeting the search criteria is copied to the target systems. The search takes
place as though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for copying it. Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search and copy. Preferably, the copy command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. In one
embodiment, the copy results in overwriting an existing directory and files therein. In another
embodiment, the copy results in writing a newly altered name of directory contents when there is a
conflict (e.g. existing entity with same name). In another embodiment, an additional target path parameter
is provided for where to place the directorv.

231 C Operand 215 (application object) is treated identically to this Operand 231 (application context) this LBX
release (same params currently).

233 C Copying a focused user interface object causes capturing the currently focused user interface object
using the first parameter (e.g. Alt-Prtscrn; can be changed with the param) string syntax for keystroke(s)
to capture the image, and then copying the graphics file (file type in various embodiments) to a shared
destination, or a configured destination at the target system(s) or as specified with a new parameter. The
capture takes place as though the user manually performed the capture action, and then was provided
with the result for copying it. Appropriate MS storage is updated and subsequently processed as though
the user had manually performed the capture and copy. Preferably, the copy command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. In one
embodiment, the copy results in overwriting an existing file with the same handle (e.g. name), which will
be seldom since the graphics file name preferably contains a date/time stamp portion. In another
embodiment, the copy results in writing a newly altered name of the file when there is an existing file with
the same handle (e.g. name). An additional parameter may be specified for the target of the copy. An
additional parameter may be specified for the target format of the copy whereby a conversion is caused
(e.Q. JPG to TIFF).

235 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the ack parameter provides a
reconciliation option.

237 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the ack parameter provides a
reconciliation option.

Fig. 69B-10

e
•
r:J).
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
0
-....J
0
(,H
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 212 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Coel erocessing

239 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the ack parameter provides a
reconciliation option.

241 C Copying an alert causes searching the source for the alert. The alert parameter is the same parameter
used to generate an alert (e.g. using another command), and can be wildcarded. In one embodiment, all
occurrences found on the MS which is associated to the alerter application in use at the MS, and which is
used for other commands disclosed, are provided to the user for reconciliation at block 6942 with at least
their date/time stamps, and perhaps other information. In other embodiments, the most recently
generated alert matching the alert search criteria is used for copying, or the search occurs as specified
with an additional parameter. The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was provided with the result for copying it. Appropriate MS
storage is updated and subsequently processed as though the user had manually performed the search
and copy. Preferably, the copy command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. The copy is made so that the target system(s) are delivered the
alert(s) like delivering a new alert to the systems.

243 C Copying a process causes first finding all process names running at the source (e.g. MS) which contain
the prname string parameter (e.g. in UNIX: "ps -ef I grep prname"). In one embodiment, all occurrences
found running at the MS are presented with interesting programmatic information such as when started,
its size, etc for reconciliation at block 6942. In the preferred embodiment, one process running in the
source system is to be found (i.e. >1 = ambiguous). The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was provided with the result for
copying. Results are useful statistics about the process which is running at the source. Appropriate MS
storage is updated and subsequently processed as though the user had manually performed the search
and copy. Preferably, the copy command data is maintained to LBX History, historical log, or other useful
storage for subsequent use. Useful statistic(s) about the process (perhaps which statistics specified with
an additional parameter) are copied to an appropriate destination of the target system(s) for informative
purposes (e.g. a special log file). In another embodiment, the alerter process and/or indicator
methodology can be used as the destination for the copy for alerting a user at the target system. In
another embodiment, there is a new parameter for which end result the copy will have (informative
destination, handled like alert, handled like indicator).

Fig. 69B-11

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
0
QO

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 213 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
!

PM Preferred embodiment Coa~ arocessing

245 C Copying a container causes searching the source system for the container. The container parameter can
be well defined to narrow the search result, and may be wildcarded {pattern) for matching. In one
embodiment, all occurrences found on the MS and their references/handles are provided with at least
their date/time stamps, size, and perhaps attributes information, for reconciliation at block 6942. In a
preferred embodiment, the most recently accessed container meeting the search criteria is copied to the
target systems. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the resultfor copying it. Appropriate MS storage is
updated and subsequently processed as though the user had manually performed the search and copy.
Preferably, the copy command data is maintained to LBX History, a historical log, or other useful storage
for subsequent use. In one embodiment, the copy results in overwriting an existing container. In another
embodiment, the copy results in writing a newly altered reference/handle of the container when there is a
conflict (e.g. existing entity with same name). An additional parameter may be specified for the target,
otherwise the object is copied to an assumed location.

247 C Copying a program object first causes searching the source for the program object. In the preferred
embodiment, a unique syntax is used for which type of program object is being sought (similar to above).
There can be unique syntaxes for specifying which type of program object is being sought (e.g.
"S:dataname"). In one embodiment, all occurrences found on the MS and information about the
occurrence including its current value is presented to the user for reconciliation at block 6942. In a
preferred embodiment, one program object is to be found (e.g. >1 = ambiguous). In one embodiment, a
well known location of link symbol information files are consulted, and in another embodiment a new
parameter specifies where to look, or which symbol file of information to use. The search criteria can be a
wildcard (pattern) for matching. The search takes place as though the user manually launched the
search, entered the criteria for the search, and then was provided with the result for copying. Appropriate
MS storage is updated and subsequently processed as though the user had manually performed the
search and copy. Preferably, the copy command data is maintained to LBX History, a historical log, or
other useful storage for subsequent use. Useful statistic(s) about the program object (perhaps which
statistics specified with an additional parameter) are copied to an appropriate destination of the target
system(s) for informative purposes (e.g. a special log file). In another embodiment, the alerter process
and/or indicator methodology can be used as the destination for the copy for alerting a user at the target
system. In another embodiment, there is new parameter for which end result the copy will have
(informative destination, handled like alert, handled like indicator). An alternate embodiment works like
Operand 223 wherein copying is intended to keep program object(s) between systems in synch. Such
embodiments require source and target system processing to have access to the object(s) (this may limit
participating obiect(s)).

Fig. 69B-12

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
0
1,0

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 214 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
I

PM Preferred embodiment Com£ grocessing

249 C Copying a cursor causes searching the source system for the current cursor setting(s). In the preferred
embodiment, provided in the search results is the current cursor information (e.g. image, animation, etc).
The current cursor information of the source is then used to alter the cursor at the target system(s).
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the copy operation. Preferably, the copy command data is maintained to LBX History, a
historical loo, or other useful storaae for subseauent use.

251 C Copying a calendar (CAL) object causes searching the source CAL system with search criteria of the
calendar object parameter string. The calendar object parameter string can specify searching any
calendar entry fields for any values including wildcarding. Each field is referenced with a predefined
name and then associated with a search criteria (similar to email above). Those skilled in the art
recognize many useful syntaxes for searching any characteristics of CAL objects. In one embodiment, all
occurrences found in history are presented to the user for reconciliation at block 6942 with at least their
date/time stamps, attendees, and perhaps other information, of the CAL object and when it was
scheduled. In a preferred embodiment, the most recent occurrence from the calendaring system is
provided for the copy. Wildcarding (pattern matching} is preferably inherent by searching for substrings.
The search takes place as though the user manually launched the search, entered the criteria for the
search, and then was provided with the result for copying it. Appropriate MS storage is updated and
subsequently processed as though the user had manually performed the search and copy. Preferably,
the copy command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. The calendar entry is copied in its entirety to the target system calendaring system. In
another embodiment, a new parameter is specified to copy the calendar item to a new schedule or time.
A duplicate calendar entry may be created if one already exists.

Fig. 69B-13

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 215 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Co~~ ~rocessing
1

253 C Copying an address book (AB) object causes searching the source AB system with search criteria of the
AB object parameter string. The AB object parameter string can specify searching any AB entry fields for
any values including wildcarding. Each field is referenced with a predefined name and then associated
with a search criteria (similar to email above). Those skilled in the art recognize many useful syntaxes for
searching any characteristics of AB objects/entries. In one embodiment, all occurrences found are
presented to the user for reconciliation at block 6942 with appropriate AB information. In a preferred
embodiment, the most recent occurrence from the AB system is provided for the copy. Wildcarding
(pattern matching) is preferably inherent by searching for substrings. The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was provided with
the result for copying it. Appropriate MS storage is updated and subsequently processed as though the
user had manually performed the search and copy. Preferably, the copy command data is maintained to
LBX History, a historical log, or other useful storage for subsequent use. The AB entry is copied in its
entirety to the target system AB system. In another embodiment, a new parameter is specified to copy
the AB item to special destination. A duplicate AB entry may be created if one already exists .

. . .

Fig. 69B-14

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
N
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 216 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

cos
Copy adial#

Copy email

Copy sms

Copy brd
email

sms

Copy
indicator

Copy app

Copy doc

Copy file

Copy content

Copy DBobj

Copy data

Sheet 212 of 322

C31

Copy sem

Copy dir

Copy alert

Copy proc

Copy
container

Fig. 69C

US 10,477,994 B2

Petitioners' Ex. 1001, Page 217 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 213 of 322 US 10,477,994 B2

7002
ST ART - Discard

Access params for
Operand and
Parameters

Provide Discard prompt;
Wait for user decision

Validate
parameter(s)

7022

7030

Fig. 70A

RETURN

Invoke operating
system application by

object type

Prepare launch
command string

7038
Launch application

with command string

7040

Call API to launch
application

Perform Discard

Log it

7062

Petitioners' Ex. 1001, Page 218 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Discard l;!rocessing

201 C Discarding an auto-dial# launches a phone number log interface with the auto-dial# parameter (can
be wildcarded) for searching the specified system (e.g. MS). Preferably, both the outgoing and
incoming logs are searched. In an alternate embodiment, the log is specified with a parameter. In the
preferred embodiment, the most recent occurrence from a particular log is to be discarded. In
another embodiment, all occurrences found in history are presented with their date/time stamps, and
perhaps other information, of the call and when it took place when the ack parameter is set and the
user browses the results prior to accepting the discard of multiple items. The search takes place as
though the user manually launched the search, entered the auto-dial # for the search, and then was
provided with result(s) for the discard. Preferably, the discard shall take place if there are no
ambiguities (e.g. more than one phone number returned per search criteria). Appropriate MS storage
is updated and subsequently processed as though the user manually performed the search and
discard of the result. Preferably, the discard cmd data is maintained to LBX History, a historical log,
or other useful storage for subsequent use. The discard is made to system(s) Jogs.

203 s Discarding a weblink launches a search to browser history with the weblink parameter (can be
wildcarded) for searching the specified system. In one embodiment, all occurrences found in history
are presented with their date/time stamps, and perhaps other information, of the link and when it was
invoked, when the ack parameter is specified to true for presentation to the user prior to doing the
discard. In the preferred embodiment, the most recent occurrence from a particular invocation is
provided for the discard. The search takes place as though the user manually launched the search,
entered the weblink for the search, and then was provided with the result for discarding it.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search and discard of the result. Preferably, the discard command data is maintained
to LBX History, a historical log, or other useful storage for subsequent use. The discard is made to a
special browser favorites folder, another designated folder configured ahead of time, or as specified
with an additional parameter.

Fig. 70B-1

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
.i;...

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 219 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Discard E!rocessing
1

205 C Discarding an email causes searching the specified email system with search criteria of the email
parameter string. The email parameter string can specify searching any email fields for any values
including wildcarding (patterns for matching). Each field is referenced with a predefined name and
then associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. In one
embodiment, all occurrences found in history are presented with at least their date/time stamps,
subject line, sender and recipient, and perhaps other information, of the email and when it took
place, when the ack parameter is set to true for user reconciliation. In another embodiment, the most
recent occurrence from searched folders is provided for the discard. The search takes place as
though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for doing the discard. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and discard. Preferably, the
discard command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. The email is discarded from an email folder as specified with a syntax in the email
parameter string.

Fig. 70B-2

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
Ul
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 220 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Discard ~recessing

207 C Discarding an sms message causes searching the specified messaging system with search criteria
of the sms message parameter string. The message parameter string can specify searching any
message fields for any values including wildcarding. Each field is referenced with a predefined name
and then associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In one embodiment, all occurrences found in history are presented with
at least their date/time stamps, message, sender and recipient, and perhaps other information, of the
message and when it took place, when the ack parameter is set t6 true for user reconciliation. In
another embodiment, the most recent occurrence from searched folders is provided for discarding.
The search takes place as though the user manually launched the search, entered the criteria for the
search, and then was provided with the result for discarding it. Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search and discard.
Preferably, the discard command data is maintained to LBX History, a historical log, or other useful
storage for subsequent use. The message is discarded from a folder as specified with a syntax in the
sms message parameter string.

Fig. 70B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
O'I

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 221 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Discard ~rocessing
1

209 C Discarding a broadcast email causes searching the specified email system with search criteria of the
email parameter string. The email parameter string can specify searching any email fields for any
values including wildcarding (patterns for matching). Each field is referenced with a predefined name
and then associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company, (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. In one
embodiment, all occurrences found in history are presented with at least their date/time stamps,
subject line, sender and recipient, and perhaps other information, of the email and when it took
place, when the ack parameter is set to true for user reconciliation. In a preferred embodiment, the
most recent occurrence from searched folders is provided for the discard. The search takes place as
though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for doing the discard. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and discard. Preferably, the
discard command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. The email is discarded from a folder as specified with a syntax in the email
parameter string.

Fig. 70B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ

=('D
('D
N
-....J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 222 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Discard Rrocessing
l

211 C Discarding a broadcast sms msg causes searching the specified messaging system with search
criteria of the sms message parameter string. The message parameter string can specify searching
any message fields for any values including wildcarding. Each field is referenced with a predefined
name and then associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In one embodiment, all occurrences found in history are presented with
at least their date/time stamps, message, sender and recipient, and perhaps other information, of the
message and when it took place, when the ack parameter is set to true for user reconciliation. In a
preferred embodiment, the most recent occurrence from searched folders is provided for discarding.
The search takes place as though the user manually launched the search, entered the criteria for the
search, and then was provided with the result for discarding it. Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search and discard.
Preferably, the discard command data is maintained to LBX History, a historical log, or other useful
storage for subsequent use. The message is discarded from a folder as specified with a syntax in the
sms message parameter string.

213 0 Discarding an indicator searches appropriate specified system storage for the indicator (e.g.
storage/memory used for indicators by other commands). The indicator parameter string specifies
the indicator string being sought and wildcarding is supported. In one embodiment, appropriate MS
storage/memory which contains the history of indicators sent to the source system is searched and
all occurrences found in history are presented with at least their date/time stamps, the indicator, and
perhaps other information, for user reconciliation. In one embodiment, the most recently delivered
indicator is identified and used for the discard. The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was provided with the result for the
discard. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search and discard. Preferably, the discard command data is maintained to
LBX History, a historical log, or other useful storage for subsequent use. The discard is performed so
that the target system(s) have the indicator(s) removed from the interface if currently presented and
removed from history maintained for the user interface object presentation (preferably not from LBX
history). An additional parameter may specify how to delete the indicator.

Fig. 70B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
N
QO

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 223 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Discard l;!rocessing
J.

215 C Discarding an application causes searching the specified system for the application (and with the
params parameter(s) if specified to get the right invocation of the application). The app parameter is
preferably an executable name. Providing a partial or full path to the application parameter will limit
the search result. The app parameter string preferably supports wildcarding. In one embodiment, all
occurrences found at the source and their paths are presented to the user with at least their
date/time stamps, size, and perhaps attributes information, for user reconciliation. In a preferred
embodiment, the most recently executed instance of the matching application is determined for the
discard. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provide with the result for discard. Appropriate MS storage is
updated and subsequently processed as though the user had manually performed the search and
discard. Preferably, the discard command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. The discard does not remove the application from the target
system. It terminates the application by terminating/killing it at the operating system level. A Discard
File ooerand command can be used to remove it from the svstem.

217 s Discarding a document causes searching the specified system for the document. The doc parameter
is a document name. The document parameter can be a wildcard (pattern) for matching. Providing a
more defined partial or full path to the document name will narrow the search. In one embodiment, all
occurrences found and their paths are presented to the user with at least their date/time stamps,
size, and perhaps attributes information, for user reconciliation. In a preferred embodiment, the most
recently accessed search result is provided for the discard. The search takes place as though the
user manually launched the search, entered the criteria for the search, and then was provided with
the result for discarding it. Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search and discard. Preferably, the discard command
data is maintained to LBX History, a historical log, or other useful storage for subsequent use.
Discard of the document removes it from each target system at a special shared folder, or configured
folder for sharing, or as specified with a new parameter to discard processing.

219 s Discarding a file causes searching the source path for the file. The path parameter is a file name.
Providing a more defined partial or full path to the file will narrow the search result. The path
parameter can be a wildcard (pattern) for matching. In one embodiment, all occurrences found on the
MS and their paths are provided with at least their date/time stamps, size, and perhaps attributes
information, for user reconciliation. In another embodiment, the most recently accessed file meeting
the search criteria is discarded. The search takes place as though the user manually launched the
search, entered the criteria for the search, and then was provide with the result for discarding it.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search and discard. Preferably, the discard cmd data is maintained to LBX History, a
historical log, or other useful storage for subsequent use. File(s) are discarded at each target system.

Fig. 70B-6

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 224 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Discard (!rocessing
l

221 0 Discarding content causes searching the specified system for the content. The content parameter is
a reference to the content. The content parameter can be a wildcard (pattern) for matching. In a
preferred embodiment, the most recently accessed search result is provided for the discard. The
search takes place as though the user manually launched the search, entered the criteria for the
search, and then was provided with the result for discarding it. Appropriate MS storage is updated
and subsequently processed as though the user had manually performed the search and discard.
Preferably, the discard command data is maintained to LBX History, a historical log, or other useful
storage for subsequent use. Discarding the content removes it from e?ch target system at a special
shared destination, or configured destination for sharing, or as specified with a new parameter to
discard processing.

223 C Discarding a DB object causes searching the specified system for the database object value. The
database object parameter is provided with a variety of syntaxes depending on the type of database
object sought. For example, the DB-obj parameters is "T:tablename" to seek a table,
"S:schemaname" to seek a particular schema, "C:columnname" to seek a particular column name,
"D:DBname" to seek a particular DB name, "R:rolename" to seek a particular role set, "P:procname"
to search for particular stored procedure, etc. There are unique syntaxes for every type of DB object
being sought. The search criteria can be a wildcard (pattern) for matching. In one embodiment, all
occurrences found on the source system and information about the occurrence is presented to the
user for reconciliation. In a preferred embodiment, the best (e.g. most recently accessed) fit database
object is identified for discard. The search takes place as though the user manually launched the
search, entered the criteria or query for the search, and then was provided with the result for
discarding it. Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search and discard. Preferably, the discard command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. The DB
object is discarded (removed, deleted, droooed).

225 0 Same as Compose processing except modifies the value to an initial value (e.g. 0) at each system.

227 0 Same as Compose processing except modifies the value to an initial value (e.g. clear) at each
system.

Fig. 70B-7

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
N
0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 225 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM
l

229 s

231 C

233 s

235 C

237 0

Preferred embodiment Discard ~rocessing
Discarding a directory causes searching the specified system for the directory. The path parameter is
a directory name. Providing a more defined partial or full path to the directory parameter will narrow
the search result. The path parameter can be a wildcard (pattern) for matching. In one embodiment,
all occurrences found on the MS and their paths are provided with at least their date/time stamps,
size, and perhaps attributes information, for user reconciliation. In one embodiment, the most
recently accessed directory meeting the search criteria is discarded. The search takes place as
though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for discarding it. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and discard. Preferably, the
discard command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. The directorv is discarded at each target system.
Operand 215 and 235 (application object) is treated identically to Operand 231 (application context)
this LBX release (same params currently). The specified application is terminated, not removed.
Discarding a user interface object causes closing/terminating the focused object(s) at each specified
system that contains the objtxt parameter criteria in the titlebar. In a preferred embodiment, there is a
unique syntax for which places of user interface objects that are currently active are to be search
(e.g. title bar, entry fields, radio button options, window text, combinations thereof, etc). The search
criteria can be a wildcard (pattern) for matching. The search takes place as though the user manually
launched the search, entered the criteria for the search, and the object(s) are closed/terminated.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search and discard. Preferably, the discard command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use.

Operand 215 and 231 (application object) is treated identically to Operand 235 (application context)
this LBX release (same params currently). The specified application is terminated, not removed.
Discarding input causes reinitializing the iodev parameter input device stream of the specified
system, so that any pending state is discarded. In one embodiment, a special input datastream is
issued to reinitialize the 1/0 path. In another embodiment, the 1/0 path is terminated and restarted to
reinitialize for the attached device(s). In another embodiment, the 1/0 path is flushed and then
reinitialized. In another embodiment, an additional parameter indicates how to discard the iodev
device stream (e.g. method and/or initialization data to initialize with). The iodev parameter specifies
which Input/Output device to reinitialize. Preferably, the discard command data is maintained to LBX
History, a log, or other useful storage for subsequent use.

Fig. 70B-B

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
N
0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 226 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Discard (;!rocessing
l

239 0 Discarding output causes reinitializing the iodev parameter output device stream of the specified
system, so that any pending state is discarded. In one embodiment, a special output datastream is
issued to reinitialize the 1/0 path. In another embodiment, the 1/0 path is terminated and restarted to
reinitialize for the attached device(s}. In another embodiment, the 1/0 path is flushed and then
reinitialized. In another embodiment, an additional parameter indicates how to discard the iodev
device stream (e.g. method and/or initialization data to initialize with). The iodev parameter specifies
which Input/Output device to reinitialize. Preferably, the discard command data is maintained to LBX
Historv, a log, or other useful storaae for subseauent use.

241 C Discarding an alert causes searching the specified system for the alert and discarding it. The alert
parameter is the same parameter used to generate an alert (e.g. using another command), and can
be wildcarded. In one embodiment, all occurrences found which is associated to the alerter
application in use at the MS, and which is used for other commands disclosed, are provided to the
user for reconciliation with at least their date/time stamps, and perhaps other information. In one
embodiment, the most recently generated alert matching the alert search criteria is used for
discarding. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for discarding it. Appropriate MS storage
is updated and subsequently processed as though the user had manually performed the search and
discard. Preferably, the discard command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use.

243 0 Discarding a process causes searching for and terminating/killing all process names running at the
specified system (e.g. MS) which contain the prname string parameter (e.g. in UNIX: "ps -ef I grep
prname"). In one embodiment, all occurrences found running at the MS are presented with
interesting programmatic information such as when started, its size, etc for user reconciliation. In the
preferred embodiment, one process running in the specified system is to be found (i.e. >1 =
ambiguous). The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for discarding. Appropriate MS storage
is updated and subsequently processed as though the user had manually performed the search and
discard. Preferably, the discard command data is maintained to LBX History, historical log, or other
useful storage for subsequent use. The process is terminated/killed. It is not removed from the
system.

Fig. 70B-9

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
N
N
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 227 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Discard ~rocessing

245 s Discarding a container causes searching the specified system for the container. The container
parameter can be well defined to narrow the search result, and may be wildcarded (pattern) for
matching. In one embodiment, all occurrences found on the MS and their references/handles are
provided with at least their date/time stamps, size, and perhaps attributes information, for user
reconciliation. In one embodiment, the most recently accessed container meeting the search criteria
is discarded at the target systems. The search takes place as though the user manually launched the
search, entered the criteria for the search, and then was provided with the result for discarding it.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search and discard. Preferably, the discard command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. The container is discarded from
each specified system.

247 0 Discarding a program object causes searching the specified system for the program object and
initializing to a initial value (i.e. discarding any current value). In the preferred embodiment, a unique
syntax is used for which type of program object is being sought (similar to above). There can be
unique syntaxes for specifying which type of program object is being sought (e.g. "S:dataname"). In
one embodiment, all occurrences found on the MS and information about the occurrence including its
current value is presented to the user for reconciliation. In a preferred embodiment, one program
object is to be found (e.g. >1 = ambiguous). In one embodiment, a well known location of link symbol
information files are consulted, and in another embodiment a new parameter specifies where to look,
or which symbol file of information to use. The search criteria can be a wildcard (pattern) for
matching. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for discarding. Appropriate MS storage
is updated and subsequently processed as though the user had manually performed the search and
discard. Preferably, the discard command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. A reasonable reset value (e.g. 0 for data, clear for semaphore) is
set to the program object. Program objects which cannot hold a value (procedure) are preferably not
affected by the discard command. Local and remote processing must have programmatic visibility to
affected program object(s).

249 0 Discarding a cursor causes resetting the cursor at the specified system. In the preferred
embodiment, provided in the search results is the current cursor information (e.g. image, animation ,
etc) when user reconciliation is involved. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the discard operation. Preferably, the discard
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. In one embodiment, a system defaulted cursor is set. In another embodiment, the previous
cursor setting is returned to, and multiple discard cursor actions can change the cursor continuously
to historical settings. An additional parameter may provide how to discard the cursor.

Fig. 708-10

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
N
~

0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 228 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
I

PM Preferred embodiment Discard erocessing

251 C Discarding a calendar object causes searching the specified calendar system with search criteria of
the calendar object parameter string. The calendar object parameter string can specify searching any
calendar entry fields for any values including wildcarding. Each field is referenced with a predefined
name and then associated with a search criteria (similar to email above). Those skilled in the art
recognize many useful syntaxes for searching any characteristics of calendar objects. In one
embodiment, all occurrences found in history are presented to the user for reconciliation with at least
their date/time stamps, sender and recipient, and perhaps other information, of the calendar object
and when it was scheduled. In a preferred embodiment, the most recent occurrence from the
calendaring system is discarded. Wildcarding (pattern matching) is preferably inherent by searching
for substrings. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for discarding it. Appropriate MS storage
is updated and subsequently processed as though the user had manually performed the search and
discard. Preferably, the discard command data is maintained to LBX History, a historical log,
or other useful storage for subsequent use. The calendar entry(s) are discarded from the target
system calendaring system.

253 C Discarding an address book (AB) object causes searching the specified AB system with search
criteria of the AB object parameter string. The AB object parameter string can specify searching any
AB entry fields for any values including wildcarding. Each field is referenced with a predefined name
and then associated with a search criteria (similar to email above). Those skilled in the art recognize
many useful syntaxes for searching any characteristics of AB objects/entries. In one embodiment, all
occurrences found are presented to the user for reconciliation with appropriate AB information. In a
preferred embodiment, the most recent occurrence from the AB system is discarded. Wildcarding
(pattern matching) is preferably inherent by searching for substrings. The search takes place as
though the user manually launched the search, entered the criteria for the search, and then was
provided with the result for discarding it. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and discard. Preferably, the
discard command data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. The AB entry(s) are discarded from the target system AB system .

. . .

Fig. 70B-11

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJ'1
=('D
('D
N
N
.i;...

0
(,H
N
N

d
r,r;_

"""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 229 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Discard
adial#

Discard
weblink

005

Discard email

Discard sms

email

Discard brd
sms

Discard
indicator

Discard app

Discard doc

Discard file

Discard
content

Discard
DBobj

Sheet 225 of 322

031

Discard dir

Discard
appctxt

Discard
uifobj

Discard input

Discard
output

Discard alert

Discard
container

Discard
progobj

Discard
cursor

0

Fig. 70C

US 10,477,994 B2

H

Petitioners' Ex. 1001, Page 230 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 226 of 322 US 10,477,994 B2

7100
START-Move

comma

Get operand
locally

7136

Provide move prompt;
Wait for user decision

7112

Handle error

7114

Invoke operating
~1'--.....i system application by

Validate
parameter(s)

Validate
parameter(s)

7118

Get next system

Fig. 71A

object type

Prepare launch
command string

7126
Launch application

with command string

PrepareAPI
parameter(s)

7128

7130
Call API to launch

application

____ ..._:.7...:..160

RETURN

Perform move

Log it

Petitioners' Ex. 1001, Page 231 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Move Rrocessing

201 C Moving an auto-dial# launches a phone number log interface with the auto-dial# parameter (can be
wildcarded) for searching the source system. Preferably, both the outgoing and incoming logs are
searched. In an alternate embodiment, the log is specified with a parameter. In the preferred
embodiment, the most recent occurrence from a particular log is provided. In another embodiment,
all occurrences found in history are presented with their date/time stamps, and perhaps other
information, of the call and when it took place (e.g. when the ack parameter is set) and the user
browses the results prior to accepting the move. The search takes place as though the user manually
launched the search, entered the auto-dial# for the search, and then was provided with result(s) for
the move. Preferably, the move shall take place if there are no ambiguities (e.g. more than one
phone number returned per search criteria). An additional parameter may be specified for the target
(different log) of the move, otherwise the object is moved to an assumed location (e.g. same folder to
more recent position). Appropriate MS storage is updated and subsequently processed as though
the user manually performed the search and move of the result. Preferably, the move cmd data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. The move is
made to system(s) logs, preferably with identifying information of the source and who did the move.

203 C Moving a weblink launches a search to MS browser history with the weblink parameter (can be
wildcarded) for searching the source system. In one embodiment, all occurrences found in history are
presented with their date/time stamps, and perhaps other information, of the link and when it was
invoked (e.g. when the ack parameter is specified to true) for presentation to the user prior to doing
the move. In the preferred embodiment, the most recent occurrence from a particular invocation is
provided for the move. An additional parameter may be specified for the target (specified favorites
folder), otherwise the object is moved to an assumed location (e.g. highest level favorites folder). The
search takes place as though the user manually launched the search, entered the weblink for the
search, and then was provided with the result for moving it. Appropriate MS storage is updated and
subsequently processed as though the user had manually performed the search and move of the
result. Preferably, the move command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. The move is made to a special browser favorites folder, or
another designated folder configured ahead of time, or as specified with an additional parameter,
preferably with identifying information of the source and who did the move.

Fig. 71B-1

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
N
-....J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 232 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Move l;!rocessing

205 C Moving an email causes searching the source email system with search criteria of the email
parameter string. The email parameter string can specify searching any email fields for any values
including wildcarding (patterns for matching). Each field is referenced with a predefined name and
then associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. In one
embodiment, all occurrences found in history are presented with at least their date/time stamps,
subject line, sender and recipient, and perhaps other information, of the email and when it took
place, when the ack parameter is set to true for user reconciliation. In a preferred embodiment, the
most recent occurrence from searched folders is provided for the move. An additional parameter may
be specified for the target (specified folder), otherwise the object is moved to an assumed location
(e.g. inbox, drafts, special named folder).The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was provided with the result for
doing the move. Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search and move. Preferably, the move command data is maintained to
LBX History, a historical log, or other useful storage for subsequent use. The move is made to a
special email folder of the target system, or another designated folder configured ahead of time, or
as specified with a new parameter for move processing, preferably with identifying information of the
source and who did the move (if supported in email application).

Fig. 71B-2

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
N
QO

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 233 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move E!rocessing
1

207 C Moving an sms message causes searching the source messaging system with search criteria of the
sms message parameter string. The message parameter string can specify searching any message
fields for any values including wildcarding. Each field is referenced with a predefined name and then
associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In one embodiment, all occurrences found in history are presented with
at least their date/time stamps, message, sender and recipient, and perhaps other information, of the
message and when it took place, when the ack parameter is set to true for user reconciliation. In a
preferred embodiment, the most recent occurrence from searched folders is provided for moving. An
additional parameter may be specified for the target (specified folder), otherwise the object is moved
to an assumed location (e.g. inbox, drafts, special named folder). The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was provided
with the result for moving it. Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search and move. Preferably, the move command data
is maintained to LBX History, a historical log, or other useful storage for subsequent use. The move
is made to a special messaging folder of the target system, or another designated folder configured
ahead of time, or as specified with a new parameter to move processing, preferably with identifying
information of the source and who did the move.

Fig. 71B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
N
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 234 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Move erocessing

209 C Moving a broadcast email causes searching the source email system with search criteria of the email
parameter string. The email parameter string can specify searching any email fields for any values
including wildcarding (patterns for matching). Each field is referenced with a predefined name and
then associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. In one
embodiment, all occurrences found in history are presented with at least their date/time stamps,
subject line, sender and recipient, and perhaps other information, of the email and when it took
place, when the ack parameter is set to true for user reconciliation. In a preferred embodiment, the
most recent occurrence from searched folders is provided for the move. An additional parameter may
be specified for the target (specified folder), otherwise the object is moved to an assumed location
(e.g. inbox, drafts, special named folder). The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was provided with the result for
doing the move. Appropriate MS storage is updated and subsequently processed as though the user
had manually performed the search and move. Preferably, the move command data is maintained to
LBX History, a historical log, or other useful storage for subsequent use. The move is made to a
special email folder of the target system, or another designated folder configured ahead of time, or
as specified with a new parameter to move processing, preferably with identifying information of the
source and who did the move.

Fig. 71B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
~
0
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 235 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Move s;!rocessing

211 C Moving a broadcast sms msg causes searching the source messaging system with search criteria of
the sms message parameter string. The m'essage parameter string can specify searching any
message fields for any values including wildcarding. Each field is referenced with a predefined name
and then associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In one embodiment, all occurrences found in history are presented with
at least their date/time stamps, message, sender and recipient, and perhaps other information, of the
message and when it took place, when the ack parameter is set to true for user reconciliation. In a
preferred embodiment, the most recent occurrence from searched folders is provided for moving. An
additional parameter may be specified for the target (specified folder), otherwise the object is moved
to an assumed location (e.g. inbox, drafts, special named folder). The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was provided
with the result for moving it. Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search and move. Preferably, the move command data
is maintained to LBX History, a historical log, or other useful storage for subsequent use. The move
is made to a special messaging folder of the target system, or another designated folder configured
ahead of time, or as specified with a new parameter to move processing, preferably with identifying
information of the source and who did the move.

213 C Moving an indicator searches appropriate source storage for the indicator (e.g. storage/memory used
for indicators by other commands). The indicator parameter string specifies the indicator string being
sought and wildcarding is supported. In one embodiment, appropriate MS storage/memory which
contains the history of indicators sent to the source system is searched and all occurrences found in
history are presented with at least their date/time stamps, the indicator, and perhaps other
information, for user reconciliation. In a preferred embodiment, the most recently delivered indicator
is identified and used for the move. The search takes place as though the user manually launched
the search, entered the criteria for the search, and then was provided with the result for the move.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search and move. Preferably, the move command data is maintained to LBX History,
a historical log, or other useful storage for subsequent use. The move is made so that the target
system(s) are delivered the indicators like delivering new indicator(s) for presentation.

Fig. 71B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
(,H
0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 236 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move ~rocessing
l

215 C Moving an application causes searching the source system for the application (and with the params
parameter(s) if specified to get the param specified invocation of the application). The app parameter
is preferably an executable name, and may contain parameters that were passed. Providing a more
defined partial or full path to the application parameter will limit the search result. The app parameter
string preferably supports wildcarding. In one embodiment, all occurrences found at the source and
their paths are presented to the user with at least their date/time stamps, size, and perhaps attributes
information, for user reconciliation. In a preferred embodiment, the most recently executed instance
of the matching application is determined for the move. In one embodiment, the application itself is
moved to the target systems, perhaps as directed by an additional parameter (e.g. directory location).
In another embodiment, the executable path to run the application is moved to execution history at
the system(s) so that a user can run it, albeit from a remote system (assumption that application
available for running there already). In another embodiment, the executable(s) are roved to the target
system using methodologies of U.S. Patent 5,938,722 ("Method of executing programs in a network",
Johnson). The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for move. Appropriate MS storage is
updated and subsequently processed as though the user had manually performed the search and
move. Preferably, the move command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use.

217 C Moving a document causes searching the source system for the document. The doc parameter is a
document name. The document parameter can be a wildcard (pattern) for matching. Providing a
more defined partial or full path to the document name will narrow the search. In one embodiment, all
occurrences found on the MS and their paths are presented to the user with at least their date/time
stamps, size, and perhaps attributes information, for user reconciliation. In a preferred embodiment,
the most recently accessed search result is provided for the move. The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was provided
with the result for moving it. Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the search and move. Preferably, the move command data
is maintained to LBX History, a historical log, or other useful storage for subsequent use. Moving the
document places the document to each target system at a special shared folder, or configured folder
for sharing, or as specified with a new destination parameter to move processing.

Fig. 71B-6

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
(,H
N
0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 237 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move ~rocessing
l

219 C Moving a file causes searching the source path for the file. The path parameter is a file name.
Providing a more defined partial or full path to the file will narrow the search result. The path
parameter can be a wildcard (pattern) for matching. In one embodiment, all occurrences found on the
MS and their paths are provided with at least their date/time stamps, size, and perhaps attributes
information, for user reconciliation. In a preferred embodiment, the most recently accessed file
meeting the search criteria is moved to the target systems. The search takes place as though the
user manually launched the search, entered the criteria for the search, and then was provided with
the result for moving it. Appropriate MS storage is updated and subsequently processed as though
the user had manually performed the search and move. Preferably, the move command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. In one
embodiment, the move results in overwriting an existing file with the same handle (e.g. name). In
another embodiment, the move may result in writing a newly altered name of the file when there is an
existing file with the same handle (e.g. name). An additional parameter may be specified for the
target (specified folder), otherwise the object is moved to an assumed location.

221 0 Moving content causes searching the source for the content. The content parameter is a reference to
the content. The content parameter can be a wildcard (pattern) for matching. In a preferred
embodiment, the most recently accessed search result is provided for the move. The search takes
place as though the user manually launched the search, entered the criteria for the search, and then
was provided with the result for moving it. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and move. Preferably, the move
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. Moving the content places the content to each target system at a special shared destination, or
configured destination for sharing, or as specified with a new parameter to move processing.

Fig. 71B-7

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
N
~
~

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 238 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Move ~rocessing

223 0 Moving a DB object causes searching the source for the database object value. The database object
parameter is provided with a variety of syntaxes depending on the type of database object sought.
For example, the DB-obj parameters is "T:tablename" to seek a table, "S:schemaname" to seek a
particular schema, "C:columnname" to seek a particular column name, "D:DBname" to seek a
particular DB name, "R:rolename" to seek a particular role set, "P:procname" to search for particular
stored procedure, etc. There are unique syntaxes for every type of DB object being sought which
maps to an appropriate SQL system tables query. The search criteria can be a wildcard (pattern) for
matching. In one embodiment, all occurrences found on the source system and information about the
occurrence is presented to the user for reconciliation. In other embodiments, the best (e.g. most
recently accessed) fit database object is identified for use in the move, or a new parameter indicates
how to search. The search takes place as though the user manually launched the search, entered
the criteria or query for the search, and then was provided with the result for moving it. Appropriate
MS storage is updated and subsequently processed as though the user had manually performed the
search and move. Preferably, the move command data is maintained to LBX History, a historical log,
or other useful storage for subsequent use. The value of the DB object is moved to the value of the
DB object with the same name and type at the destination system(s). If not found at a target system,
then no action is performed at that system. Moving a database object moves the value to the same
database object(s) at other system(s), or creates new ones when there is not match. Value(s) are
overwritten. An additional parameter may be specified for the target of the move.

Fig. 71B-8

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1

=('D

a
N
~
.i;...

0
~
N
N

d
r,r;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 239 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move ~rocessing
l

225 0 Moving data causes searching the source system for the data. In the preferred embodiment, the data
is a global system variable visible to all processes of a MS operating system. In other embodiments,
the data may have limited scope which is made accessible to present disclosure processing (e.g.
with extern). Depending on the embodiment, data may be that which is contained in a program data
segment, stack segment, and/or extra segment. There can be unique syntaxes for specifying which
type of data is being sought (e.g. "S:dataname" for data parameter). The search criteria can be a
wildcard (pattern) for matching. In the preferred embodiment, a well known location of link symbol
information files are consulted, and in another embodiment a new parameter specifies where to look,
or which symbol file of information to use. A recognized App Term causes access to record 5300 for
proper semaphore synchronized access. In one embodiment, all occurrences found at the source
system and information about the occurrence including its current value is presented to the user for
reconciliation. In a preferred embodiment, the best data value (e.g. most recently accessed if more
than one matches) is provided for the move. The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was provided with result for
moving it. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search and move. Preferably, the move command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. The value of the data to be
moved is copied to the data with the same name and type at the destination system(s). In another
embodiment, the source data is reinitialized (e.g. 0), or reinitialized according to a new parameter, as
part of the move operation. If not found at a target system, then no action is performed at that
system, or an error is provided. Moving a data object at least copies the value to the same data
object(s) at other system(s). Value(s) are overwritten. An additional parameter may be specified for
the tarQet of the move.

Fig. 71B-9

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
~
Ul
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 240 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move i;!rocessing
J

227 0 Moving a semaphore causes reading the current value of the semaphore at the source where the
move command action is being executed and then moving the current value to the same semaphore
names at the target system(s). The semaphore param can be a wildcard (pattern) for matching. In
the preferred embodiment, the semaphore is a global system semaphore visible to all processes of a
MS operating system. In other embodiments, the semaphore may have limited scope which is made
accessible to present disclosure processing. The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was provided with the result for
moving it. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search and move. Preferably, the move command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. The value (set or cleared) of the
moved semaphore is copied to the semaphore with the same name and type at the destination
system(s). In another embodiment, the source semaphore is reinitialized (e.g. clear), or reinitialized
according to a new parameter, as part of the move operation. If not found at a target system, then no
action is performed at that system, or an error is provided. Moving a semaphore at least copies the
value to the same semaphore at other system(s). Value(s) are changed (clear or set). An additional
parameter may be specified for the taroet of the move.

229 C Moving a directory causes searching the source system for the directory. The path parameter is a
directory name. Providing a more defined partial or full path to the directory parameter will narrow the
search result. The path parameter can be a wildcard (pattern) for matching. In one embodiment, all
occurrences found on the MS and their paths are provided with at least their date/time stamps, size,
and ,perhaps attributes information, for user reconciliation. In a preferred embodiment, the most
recently accessed directory meeting the search criteria is copied to the target systems. The search
takes place as though the user manually launched the search, entered the criteria for the search, and
then was provided with the result for moving it. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and move. Preferably, the move
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. In one embodiment, the move results in overwriting an existing directory and files therein. In
another embodiment, the move results in writing a newly altered name of directory contents when
there is a conflict (e.g. existing entity with same name). In another embodiment, an additional target
path parameter is provided for where to place the directory.

231 C Operand 215 (application object) is treated identically to this Operand 231 (application context) this
LBX release (same params currently).

Fig. 71B-10

e
•
r:J).
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
~
O'I

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 241 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move Rrocessing
l

233 C Moving a focused user interface object causes capturing the currently focused user interface object
using the first parameter (e.g. Alt-Prtscrn; can be changed with the param) string syntax for
keystroke(s) to capture the image, and then moving the graphics file (file type in various
embodiments) to a shared destination, or a configured destination at the target system(s), or as
specified with a new parameter. The capture takes place as though the user manually performed the
capture action, and then was provided with the result for moving it. Appropriate MS storage is
updated and subsequently processed as though the user had manually performed the capture and
move. Preferably, the move command data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. In one embodiment, the move results in overwriting an existing
file with the same handle (e.g. name), which will be seldom since the graphics file name preferably
contains a date/time stamp portion. In another embodiment, the move results in writing a newly
altered name of the file when there is an existing file with the same handle (e.g. name). An additional
parameter may be specified for the target of the move. An additional parameter may be specified for
the target format of the move whereby a conversion is caused (e.g. JPG to TIFF).

235 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the ack parameter provides a
reconciliation option.

237 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the ack parameter provides a
reconciliation option.

239 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter). Also, the ack parameter provides a
reconciliation option.

241 C Moving an alert causes searching the source system for the alert. The alert parameter is the same
parameter used to generate an alert (e.g. using another command), and can be wildcarded. In one
embodiment, all occurrences found on the MS which is associated to the alerter application in use at
the MS, and which is used for other commands disclosed, are provided to the user for reconciliation
with at least their date/time stamps, and perhaps other information. In other embodiments, the most
recently generated alert matching the alert search criteria is used for moving, or the search occurs as
specified with an additional parameter. The search takes place as though the user manually ·
launched the search, entered the criteria for the search, and then was provided with the result for
moving it. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search and move. Preferably, the move command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. The move is made so that the
target system(s) are delivered the alert(s) like delivering a new alert to the systems.

Fig. 71B-11

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
~
-....J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 242 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Move l!rocessing
l

243 C Moving a process causes first finding all process names running at the source (e.g. MS) which
contain the prname string parameter (e.g. in UNIX: "ps -ef I grep prname"). In one embodiment, all
occurrences found running at the MS are presented with interesting programmatic information such
as when started, its size, etc for user reconciliation. In the preferred embodiment, one process
running in the source system is to be found {i.e. >1 = ambiguous). The search takes place as though
the user manually launched the search, entered the criteria for the search, and then was provided
with the result for moving. Results are useful statistics about the process which is running at the
source. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search and move. Preferably, the move command data is maintained to LBX
History, historical log, or other useful storage for subsequent use. Useful statistic(s) about the
process (perhaps which statistics specified with an additional parameter) are moved/copied to an
appropriate destination of the target system(s) for informative purposes {e.g. a special log file). In
another embodiment, the alerter process and/or indicator methodology can be used as the
destination for the move for alerting a user at the target system. In another embodiment, there is a
new parameter for which end result the move will have (informative destination, handled like alert,
handled like indicator). In some embodiments, the process is roved to the target system using
methodologies of U.S. Patent 5,938,722 ("Method of executing programs in a network", Johnson), as
requested in a new parameter.

245 C Moving a container causes searching the source system for the container. The container parameter
can be well defined to narrow the search result, and may be wildcarded (pattern} for matching. In one
embodiment, all occurrences found on the MS and their references/handles are provided with at
least their date/time stamps, size, and perhaps attributes information, for user reconciliation. In a
preferred embodiment, the most recently accessed container meeting the search criteria is copied to
the target systems. The search takes place as though the user manually launched the search,
entered the criteria for the search, and then was provided with the result for moving it. Appropriate
MS storage is updated and subsequently processed as though the user had manually performed the
search and move. Preferably, the move command data is maintained to LBX History, a historical log,
or other useful storage for subsequent use. In one embodiment, the move results in overwriting an
existing container. In another embodiment, the move results in writing a newly altered
reference/handle of the container when there is a conflict (e.g. existing entity with same name}. An
additional parameter may be specified for the target, otherwise the object is moved to an assumed
location.

Fig. 71B-12

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
(,H
QO

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 243 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Move erocessing

247 C Moving a program object causes first searching the source for the program object. In the preferred
embodiment, a unique syntax is used for which type of program object is being sought (similar to
above). There can be unique syntaxes for specifying which type of program object is being sought
(e.g. "S:dataname"). In one embodiment, all occurrences found on the MS and information about the
occurrence including its current value is presented to the user for reconciliation. In a preferred
embodiment, one program object is to be found (e.g. >1 = ambiguous). In one embodiment, a well
known location of link symbol information files are consulted, and in another embodiment a new
parameter specifies where to look, or which symbol file of information to use. The search criteria can
be a wildcard (pattern) for matching. The search takes place as though the user manually launched
the search, entered the criteria for the search, and then was provided with the result for moving.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search and move. Preferably, the move command data is maintained to LBX History,
a historical log, or other useful storage for subsequent use. Useful statistic(s) about the program
object (perhaps which statistics specified with an additional parameter) are moved/copied to an
appropriate destination of the target system(s) for informative purposes (e.g. a special log file). In
another embodiment, the alerter process and/or indicator methodology can be used as the
destination for the move for alerting a user at the target system. In another embodiment, there is new
parameter for which end result the move will have (informative destination, handled like alert,
handled like indicator). An alternate embodiment works like Operand 223 wherein moving is intended
to keep program object(s) between systems in synch, albeit with a discard from the source system.
Such embodiments require source and target system processing to have access to the object(s} (this
mav limit participatina obiect(s)}.

249 C Moving a cursor causes searching the source system for the current cursor setting(s). In the
preferred embodiment, provided in the search results is the current cursor information (e.g. image,
animation , etc). The current cursor information of the source is then used to alter the cursor at the
target system(s). Appropriate MS storage is updated and subsequently processed as though the
user had manually performed the move operation. Preferably, the move command data is maintained
to LBX History, a historical log, or other useful storage for subsequent use. In some embodiments,
the source cursor is reset to a different (e.g. initialized) setting as resulting from the move.

Fig. 71B-13

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
~
1,0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 244 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Move erocessing

251 C Moving a calendar object causes searching the source calendar system with search criteria of the
calendar object parameter string. The calendar object parameter string can specify searching any
calendar entry fields for any values including wildcarding. Each field is referenced with a predefined
name and then associated with a search criteria (similar to email above). Those skilled in the art
recognize many useful syntaxes for searching any characteristics of calendar objects. In one
embodiment, all occurrences found in history are presented to the user for reconciliation with at least
their date/time stamps, attendees, and perhaps other information, of the calendar object and when it
was scheduled. In a preferred embodiment, the most recent occurrence from the calendaring system
is provided for the move. Wildcarding {pattern matching) is preferably inherent by searching for
substrings. The search takes place as though the user manually launched the search, entered the
criteria for the search, and then was provided with the result for moving it. Appropriate MS storage is
updated and subsequently processed as though the user had manually performed the search and
move. Preferably, the move command data is maintained to LBX History, a historical log,
or other useful storage for subsequent use. The calendar entry is moved in its entirety to the target
system calendaring system. In another embodiment, a new parameter is specified to move the
calendar item{s) to a new schedule or time. A duplicate calendar entry may be created if one already
exists.

253 C Moving an address book (AB) object causes searching the source AB system with search criteria of
the AB object parameter string. The AB object parameter string can specify searching any AB entry
fields for any values including wildcarding. Each field is referenced with a predefined name and then
associated with a search criteria (similar to email above). Those skilled in the art recognize many
useful syntaxes for searching any characteristics of AB objects/entries. In one embodiment, all
occurrences found are presented to the user for reconciliation with appropriate AB information. In a
preferred embodiment, the most recent occurrence from the AB system is provided for the move.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. The search takes
place as though the user manually launched the search, entered the criteria for the search, and then
was provided with the result for moving it. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search and move. Preferably, the move
command data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. The AB entry is moved in its entirety to the target system AB system. In another embodiment, a
new parameter is specified to move the AB item(s) to a special destination. A duplicate AB entry may
be created if one already exists .

. . .

Fig. 71B-14

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
.i;...
0

0
(,H
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 245 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

MOS

---..,;_....--, Move adial#

Move email

Move sms

Move brd
email

Move brd
sms

Move
indicator

Move app

Move doc

Move file

Move DBobj

Move data

Sheet 241 of 322

M31

Move sem

Move dir

ove appc

Move uifobj

Move uifctl

Move input

Move output

Move alert

Move proc

Move
container

Move
progobj

Move cursor

Fig. 71C

US 10,477,994 B2

Petitioners' Ex. 1001, Page 246 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 242 of 322 US 10,477,994 B2

7202
START - Store

Access params for
Operand and
Parameters

7248
Perform Store

locally

Fig. 72A

RETURN

Send data

-----J.-'----£6
Handle error

7226

Invoke operating

7250

system application by -
object type

Prepare launch
command string

7238
Launch application

with command string

Prepare API
parameter(s)

7240

7242
Call API to launch

application

Petitioners' Ex. 1001, Page 247 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Store erocessing

201 C Storing an auto-dial# stores the auto-dial# parameter to the system(s). Preferably, a certain log is
used to store the auto-dial #, or an additional parameter can be provided for where to store the auto-
dial # to. Store processing takes place as though the user manually launched it. Appropriate MS
storage is updated and subsequently processed as though the user manually performed the store
command. Preferably, the store cmd data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. In a preferred embodiment, information about who, when, why is
additionally maintained with the stored auto-dial #. An additional parameter may be specified for
how/where exactly to store it (e.g. which log).

203 s Storing a weblink stores the weblink parameter to the system(s). Preferably, a certain link folder is
used to store it, or an additional parameter can be provided for where to store it. Store processing
takes place as though the user manually launched it. Appropriate MS storage is updated and
subsequently processed as though the user manually performed the store command. Preferably, the
store cmd data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. In a preferred embodiment, information about who, when, why is additionally maintained with
the stored weblink. An additional parameter may be specified for how/where exactly to store it (e.g.
which folder).

205 C Storing an email causes storing the email object to the system(s)' email system. In one embodiment,
the email parameter string is a string containing a syntax for defining an email item and used to
create the email to a certain folder, configured folder, or as specified with an additional parameter.
Each email field can be defined with values, and the store command may result in defaulting fields
which are not specified in the email parameter. In another embodiment, the email parameter points
to a file containing a syntax for creating the email object. Those skilled in the art recognize many
useful syntaxes for setting data in a new email object. Store processing takes place as though the
user manually launched it. Appropriate MS storage is updated and subsequently processed as
though the user manually performed the store command. Preferably, the store cmd data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. In a preferred
embodiment, information about who, when, why is additionally maintained with the stored email.

Fig. 72B-1

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
.i;...
~

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 248 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
!

PM Preferred embodiment Store ~recessing

207 C Storing an sms message causes storing the sms message object to the system(s)' messaging
system. In one embodiment, the sms message parameter string is a string containing a syntax for
defining an sms message item and used to create the sms message to a certain folder, configured
folder, or as specified with an additional parameter. Each sms message field can be defined with
values, and the store command may result in defaulting fields which are not specified in the sms
message parameter. In another embodiment, the sms message parameter points (e.g. path) to a file
containing a syntax for creating the sms message object. Those skilled in the art recognize many
useful syntaxes for setting data in a new sms message object. Store processing takes place as
though the user manually launched it. Appropriate MS storage is updated and subsequently
processed as though the user manually performed the store command. Preferably, the store cmd
data is maintained to LBX History, a historical log, or other useful storage for subsequent use. In a
preferred embodiment, information about who, when, why is additionally maintained with the stored
sms messaQe.

209 C Storing a broadcast email causes storing the email object to the system(s)' email system. In one
embodiment, the email parameter string is a string containing a syntax for defining an email item and
used to create the email to a certain folder, configured folder, or as specified with an additional
parameter. Each email field can be defined with values, and the store command may result in
defaulting fields which are not specified in the email parameter. In another embodiment, the email
parameter points (e.g. path) to a file containing a syntax for creating the email object. Those skilled in
the art recognize many useful syntaxes for setting data in a new email object. Store processing takes
place as though the user manually launched it. Appropriate MS storage is updated and subsequently
processed as though the user manually performed the store command. Preferably, the store cmd
data is maintained to LBX History, a historical log, or other useful storage for subsequent use. In a
preferred embodiment, information about who, when, why is additionally maintained with the stored
email.

Fig. 72B-2

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
.i;...
.i;...

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 249 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Store ~rocessing

211 C Storing a broadcast sms message causes storing the sms message object to the system(s)'
messaging system. In one embodiment, the sms message parameter string is a string containing a
syntax for defining an sms message item and used to create the sms message to a certain folder,
configured folder, or as specified with an additional parameter. Each sms message field can be
defined with values, and the store command may result in defaulting fields which are not specified in
the sms message parameter. In another embodiment, the sms message parameter points to a file
(e.g. path) containing a syntax for creating the sms message object. Those skilled in the art
recognize many useful syntaxes for setting data in a new sms message object. Store processing
takes place as though the user manually launched it. Appropriate MS storage is updated and
subsequently processed as though the user manually performed the store command. Preferably, the
store cmd data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. In a preferred embodiment, information about who, when, why is additionally maintained with
the stored sms message.

213 0 See Invoke Command for identical processing.
215 C See Invoke Command for identical processing.
217 s Storing a document stores the document parameter to the system(s). The document may be a self

contained object parameter, or pointer (e.g. path) to a file defining the document. Preferably, a
certain folder is used to store it, or an additional parameter can be provided for where to store it.
Store processing takes place as though the user manually launched it. Appropriate MS storage is
updated and subsequently processed as though the user manually performed the store command.
Preferably, the store cmd data is maintained to LBX History, a historical log, or other useful storage
for subsequent use. In a preferred embodiment, information about who, when, why is additionally
maintained with the stored document.

219 s Storing a file stores the file from the path parameter to the system(s). Preferably, a certain folder is
used to store it, or an additional parameter can be provided for where to store it. Store processing
takes place as though the user manually launched it. Appropriate MS storage is updated and
subsequently processed as though the user manually performed the store command. Preferably, the
store cmd data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. In a preferred embodiment, information about who, when, why is additionally maintained with
the stored file.

Fig. 72B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
.i;...
Ul
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 250 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM
l

221 0

223 C
225 0
227 0
229 s

231 C
233 s

235 0
237 0
239 0

Preferred embodiment Store ~recessing

Storing content stores the content parameter to the system(s). The content may be a self contained
object parameter, or pointer (e.g. path) to a file defining the content. Preferably, a certain destination
is used to store it, or an additional parameter can be provided for where to store it. Store processing
takes place as though the user manually launched it. Appropriate MS storage is updated and
subsequently processed as though the user manually performed the store command. Preferably, the
store cmd data is maintained to LBX History, a historical log, or other useful storage for subsequent
use. In a preferred embodiment, information about who, when, why is additionally maintained with
the stored content.
See Invoke Command for identical processing.

See Invoke Command for identical processing.
See Invoke Command for identical processing.
Storing a directory stores the directory from the path parameter to the system(s). Preferably, a
certain folder is used to store it, or an additional parameter can be provided for where to store it.
Store processing takes place as though the user manually launched it. Appropriate MS storage is
updated and subsequently processed as though the user manually performed the store command.
Preferably, the store cmd data is maintained to LBX History, a historical log, or other useful storage
for subsequent use. In a preferred embodiment, information about who, when, why is additionally
maintained with the stored directorv.
See Invoke Command for identical processing.

Storing a focused user interface object causes a snapshot to be taken of the currently focused user
interface object (to .jpg, .gif, alternate embodiments, etc) at the MS and then the snapshot file is
stored as though the user manually captured the focused user interface object (e.g. Alt-Prtscrn) and
saved it. Preferably, a certain folder is used to store it, or an additional parameter can be provided for
where to store it. The first parameter command syntax can be defaulted or changed. Appropriate MS
storage is updated and subsequently processed as though the user manually performed the store
command. Preferably, the store cmd data is maintained to LBX History, a historical log, or other
useful storage for subsequent use. In a preferred embodiment, information about who, when, why is
additionally maintained with the stored snapshot. An additional parameter may be specified for the
target format of the store whereby a conversion is caused (e.g. JPG to TIFF).
See Invoke Command for identical processing.
See Invoke Command for identical processing.

See Invoke Command for identical processing.

Fig. 72B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
.i;...
O'I

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 251 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
J

PM

241 s

243 0

245 s

247 0
249 0
251 C
253 C
...

Preferred embodiment Store ~rocessing

Storing an alert causes storing the alert to the specified system(s). The alert parameter is the same
parameter used to generate an alert (e.g. using another command). Storing takes place as though
the user manually launched it. Appropriate MS storage is updated and subsequently processed as
though the user had manually performed the store. Preferably, the store command data is
maintained to LBX History, a historical log, or other useful storage for subsequent use. The store is
performed so that the target system(s) are delivered the alert(s) like delivering a new alert to the
systems.
Storing a process causes sending an operating system signal (see UNIX signaling) to the process
name (after determining the Process ID (PID) of the prname parameter). A numeric value parameter
(e.g. 0 or 1) may be communicated with the signal. An error is logged if the process is not found for
signaling. Preferably, the store command data is maintained to LBX History, a log, or other useful
storaQe for subsequent use.
Storing a container stores the container parameter to the system(s). The container may be a self
contained object parameter, or pointer (e.g. path) to a file defining the container. Preferably, a certain
destination is used to store it, or an additional parameter can be provided for where to store it. Store
processing takes place as though the user manually launched it. Appropriate MS storage is updated
and subsequently processed as though the user manually performed the store command. Preferably,
the store cmd data is maintained to LBX History, a historical log, or other useful storage for
subsequent use. In a preferred embodiment, information about who, when, why is additionally

. maintained with the stored container.
See Invoke Command for identical processing.
See Invoke Command for identical processing.
See Invoke Command for identical processing.
See Invoke Command for identical processing.

Fig. 72B-5

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
.i;...
--.J
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 252 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 248 of 322 US 10,477,994 B2

R31
R05 Store sem

Store dir

Store uifobj

Store sms

Store uifctl

email

Store input

sms

Store output
Store

indicator

Store alert

Store app

Store proc

Store doc

Store
container

Store file

Store
progobj

R

Store cursor

Fig. 72C

Petitioners' Ex. 1001, Page 253 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 249 of 322 US 10,477,994 B2

7302
START - Admin

Access params for
Operand and
Parameters

7348
Perform admin

locally

_____ _£7349

.------------- Launch application

Validate
parameter(s)

7322

7330

Fig. 73A

I for gathered results

RETURN

...---------.6
Handle error

Invoke operating
system application by

object type

Prepare launch
command string

7338
Launch application

with command string

Prepare API
parameter(s)

7340

7342
Call API to launch

application

7350

Petitioners' Ex. 1001, Page 254 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Administrate Rrocessing
l

201 C Administrating an auto-dial # launches a MS phone number log interface with the auto-dial #
parameter for searching. Preferably, both the outgoing and incoming logs are searched. The auto-
dial# parameter can be a wildcard (pattern) for matching. In one embodiment, all occurrences found
in history are presented with their date/time stamps, log found in, and perhaps other information, of
the call and when it took place. In another embodiment, the most recent occurrence from a particular
log is presented, and perhaps in an interface which enables calling the# with a minimal user action.
The search takes place as though the user manually launched the search, entered the auto-dial # for
the search, and then was presented with the result(s) in an appropriate administration interface.
Appropriate MS storage is updated and subsequently processed as though the user manually
performed the search. Preferably, the administration cmd data is maintained to LBX History, a
historical log, or other useful storage for subsequent use. Subsequent administration includes
modifying the log entry(s) as desired (e.g. add a 1 prefix since caller id may not have maintained one
when it is needed for auto-dial). A new parameter can be specified for which loa(s) to search.

203 s Administrating a weblink launches a search to MS browser history with the weblink parameter (and
with the params parameter if specified) for searching. The weblink parameter can be a wildcard
(pattern) for matching. In one embodiment, all occurrences found in history are presented with their
date/time stamps, folder found in, and perhaps other information, of the link and when it was invoked.
In another embodiment, the most recent occurrence from a particular invocation is presented, and
perhaps in an interface which enables invoking (transposing to) the weblink with a minimal user
action. The search takes place as though the user manually launched the search, entered the
weblink for the search, and then was presented with the result(s) in an appropriate administration
interface. Appropriate MS storage is updated and subsequently processed as though the user had
manually performed the search. Preferably, the administration command data is maintained to LBX
History, a historical log, or other useful storage for subsequent use. Subsequent administration
includes modifying the weblink(s) as desired (e.g. chanQe description).

Fig. 73B-1

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ

=('D

a
N
Ul
0

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 255 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
i

PM Preferred embodiment Administrate ~recessing

205 C Administrating an email causes searching a MS email system with search criteria of the email
parameter string. The email parameter string can specify searching any email fields for any values
including wildcarding (patterns for matching). Each field is referenced with a predefined name and
then associated with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. All occurrences
found in history are presented with at least their date/time stamps, subject line, sender and recipient,
and perhaps other information, of the email and when it took place. In another embodiment, the most
recent occurrence from searched folders is presented, and perhaps in an interface which enables
appropriate MS email system processing from that point forward (e.g. when processed at local MS).
The search takes place as though the user manually launched the search, entered the criteria for the
search, and then was presented with the result(s) in an appropriate administration interface.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search. Preferably, the administration command data is maintained to LBX History, a
historical log, or other useful storage for subsequent use. Subsequent administration includes
modifying the email(s) as desired, and perhaps having an option to send/resend.

Fig. 73B-2

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
Ul
0
~
N
N

d
r,r;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 256 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
l

PM Preferred embodiment Administrate (!rocessing

207 C Administrating an sms message causes searching a MS sms messaging system with search criteria
of the sms message parameter string. The message parameter string can specify searching any
message fields for any values including wildcarding. Each field is referenced with a predefined name
and then associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In the preferred embodiment, all occurrences found in history are
presented with at least their date/time stamps, message, sender and recipient, and perhaps other
information, of the message and when it took place. In another embodiment, the most recent
occurrence from searched folders is presented, and perhaps in an interface which enables
appropriate MS messaging system processing from that point forward (e.g. when processed at local
MS). The search takes place as though the user manually launched the search, entered the criteria
for the search, and then was presented with the result(s) in an appropriate administration interface.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search. Preferably, the administration command data is maintained to LBX History, a
historical log, or other useful storage for subsequent use. Subsequent administration includes
modifyino the sms message(s) as desired, and perhaps havino an option to send/resend.

Fig. 73B-3

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
Ul
N
0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 257 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Administrate ~rocessing
1

209 C Administrating a broadcast email causes searching a MS email system with search criteria of the
email parameter string. The email parameter string can specify searching any email fields for any
values including wildcarding. Each field is referenced with a predefined name and then associated
with a search criteria. For example, the email string of
"subj:'personnel';recip:'george@alltell.com';body:'reduction in force"' causes searching all emails with
a subject containing "personnel" and was sent to "george@alltell.com" and has a message body
containing the string "reduction in force". To search for certain email containers/folders, a sub-search
criteria of "folders" is used (e.g. "folders:sent,inbox,company;" indicates to only search the email
folders of sent, inbox, and company (no specification preferably indicates to search all folders)).
Those skilled in the art recognize many useful syntaxes for searching any characteristics of email.
Wildcarding (pattern matching) is preferably inherent by searching for substrings. In the preferred
embodiment, all occurrences found in history are presented with at least their date/time stamps,
subject line, sender and recipient, and perhaps other information, of the email and when it took
place. In another embodiment, the most recent occurrence from searched folders is presented, and
perhaps in an interface which enables appropriate MS email system processing from that point
forward (e.g. when processed at local MS). The search takes place as though the user manually
launched the search, entered the criteria for the search, and then was presented with the result(s) in
an appropriate administration interface. Appropriate MS storage is updated and subsequently
processed as though the user had manually performed the search. Preferably, the administration
command data is maintained to LBX History, a historical log, or other useful storage for s_ubsequent
use. Subsequent administration includes modifying the email(s) as desired, and perhaps having an
option to send/resend.

Fig. 73B-4

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ

=('D
('D
N
Ul
~

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 258 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM Preferred embodiment Administrate erocessing

211 C Administrating a broadcast sms message causes searching a MS sms messaging system with
search criteria of the sms message parameter string. The message parameter string can specify
searching any message fields for any values including wildcarding. Each field is referenced with a
predefined name and then associated with a search criteria. For example, the sms message string of
"recip:'2144034071@nextel.com,9725397137@lbxsrv.com';" causes searching all messages to the
sought recipients. To search for certain messaging containers/folders, a sub-search criteria of
"folders" is used (e.g. "folders:outgoing" indicates to only search the outgoing folder (no specification
preferably indicates to search all folders)). Those skilled in the art recognize many useful syntaxes
for searching any characteristics of messages. Wildcarding (pattern matching) is preferably inherent
by searching for substrings. In the preferred embodiment, all occurrences found in history are
presented with at least their date/time stamps, message, sender and recipient, and perhaps other
information, of the message and when it took place. In another embodiment, the most recent
occurrence from searched folders is presented, and perhaps in an interface which enables
appropriate MS messaging system processing from that point forward (e.g. when processed at local
MS). The search takes place as though the user manually launched the search, entered the criteria
for the search, and then was presented with the result(s) in an appropriate administration interface.
Appropriate MS storage is updated and subsequently processed as though the user had manually
performed the search. Preferably, the administration command data is maintained to LBX History, a
historical log, or other useful storage for subsequent use. Subsequent administration includes
modifying the message(s} as desired, and perhaps having an option to send/resend.

213 0 See Find Command for identical processing this LBX release.

Fig. 73B-5

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJ'1
=('D

a
N
Ul
.i;...

0
(,H
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 259 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand
1

PM

215 C

217 s

219 s
221 0

223 C

225 0
227 0
229 s
231 C
233 s
235 0
237 0
239 0

Preferred embodiment Administrate erocessing

Administrating an application causes searching the MS for application (and with the params
parameter if specified). The app parameter is preferably an executable name. Providing a more
defined partial or full path to the application parameter will validate that it is found there. The app
parameter string preferably supports wildcarding. In the preferred embodiment, all occurrences
found on the MS and their paths are presented to the user with at least their date/time stamps, size,
and perhaps attributes information. In another embodiment, all parts which are linked to the
executable are identified with their paths, date/time stamps, size, and perhaps attributes when a
symbol file is specified with a new parameter. The symbol file is output from a link process and can
be used to identify all executable parts such as dynamic link libraries, linked binaries, and any other
executable binary file involved with the application. The search takes place as though the user
manually launched the search, entered the criteria for the search, and then was presented with the
result{s) in an appropriate administration interface {e.g. a properties edit user interface). Appropriate
MS storage is updated and subsequently processed as though the user had manually performed the
search. Preferably, the administration command data is maintained to LBX History, a historical log, or
other useful storage for subsequent use. Subsequent administration includes modifying the
configuration, startup parameters, or anv other environmental variables of the aoolication.
See Compose Command for identical processing, except processing may take place locally and/or at
privileae-providing remote MS(s) (svstem(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (svstem(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (svstem(s) parameter).
See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).
See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

See Invoke Command for identical processing this LBX release.

Fig. 738-6

e
•
00
•
~
~
~
~ = ~

z
0
~

~\,Ci

N
0
\,Ci

rJJ
=('D
('D
N
Ul
Ul
0
~
N
N

d
r.,;_

""'"' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 260 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

Operand PM Preferred embodiment Administrate erocessing
l

241 s See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).

243 0 See Invoke Command for identical processing this LBX release.
245 s See Compose Command for identical processing, except processing may take place locally and/or at

privilege-providing remote MS(s) (system(s) parameter).

247 0 See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).

249 0 See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).

251 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter).

253 C See Compose Command for identical processing, except processing may take place locally and/or at
privilege-providing remote MS(s) (system(s) parameter) .

. . .

Fig. 73B-7

e
•
00
•
~
~
~
~ = ~

z
0
~
1,0
~

N
0
1,0

rJJ
=('D

a
N
Ul
O'I

0
~
N
N

d
r.,;_

"'""' =
~
-....l
-....l
\0
\0
~

= N

Petitioners' Ex. 1001, Page 261 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Admin
weblink

Admin email

Admin sms

email

sms

Admin
indicator

Admin doc

Admin file

Admin
content

Admin data

Sheet 257 of 322

A31

Admin sem

Admin dir

Admin
appctxt

A

Admin uifobj

Admin uifctl

Admin input

Admin alert

Admin
container

Admin
progobj

Fig. 73C

US 10,477,994 B2

Handle min other
0 .

Petitioners' Ex. 1001, Page 262 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 258 of 322 US 10,477,994 B2

7402

START- Change
command processin

Access params for
Operand and
Parameters

7448
Perform change

locally

Fig. 74A

RETURN

Handle error

Invoke operating
system application by

object type

Prepare launch
command string

7438
Launch application

with command string

Prepare API
parameter(s)

7440

7442

Call API to launch
application

7450

Petitioners' Ex. 1001, Page 263 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Change
adial#

X05

Change sms

Change brd
email

sms

Change
indicator

Change file

Change
content

Change
DBobj

Sheet 259 of 322

Change
uifobj

Change
input

Change
output

X31

Change
container

Change
progobj

Change
cursor

Fig. 74C

US 10,477,994 B2

Petitioners' Ex. 1001, Page 264 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

7502

ST ART - Send data

Send packet(s)
appropriately

7504

7506

Wait for ack/response
if applicable

7514

Log attempt info

7516

RETURN

Sheet 260 of 322 US 10,477,994 B2

7510

Complete processing
if applicable

7512

Log success

Fig. 75A
Petitioners' Ex. 1001, Page 265 of 553

Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC
IPR2022-00420

U.S. Patent Nov. 19, 2019

7552

START - MS Receive
Execution Data (RxED) thread

7554

Increment RxED-Ct

7556
Retrieve next incoming

data packet(s)

Validate incoming data
for this target

7578
Access particular

command, operand
and arams

r _ _ _ _ -J'. 7579
I Elaborate/Evaluate

special terms

Access privileges

Sheet 261 of 322 US 10,477,994 B2

7586

Decrement RxED-Ct

7588

STOP

7566

Access source info,
command, operand

and params

r _ _ _ _ ...r 7567
I Elaborate/Evaluate

special terms

7568

Access privileges

ExecuteAction
(cmd, operand,

params)

7574

Complete an ack/
response

7576
Send/Broadcast ack/

response

Perform particular
command locally

a---..-i

Fig. 75B

Petitioners' Ex. 1001, Page 266 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

7602

START - User interface special
paste detected

7604

Access most recent
Term info for this MS

Sheet 262 of 322

7608
Default info for paste

~__, based on user action

Update moveable
cursor with data for

paste

7626B
Interface with user for
placement over image

until complete

0

Access WTV

US 10,477,994 B2

7615

Provide warning and
wait for user action

7626G
Modify image for

priority of paste data

Paste applicable field
information to focused ___

at placement

7626D

Prompt user for save

Save frame
appropriately

entry field

Provide error

Fig. 76A

7620

7622

STOP

Petitioners' Ex. 1001, Page 267 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 263 of 322 US 10,477,994 B2

7650

AppTerm
Configuration

Thread

Named Shared Memory

7650 7650

Paste
Processing

Thread

7634

WITS
Processing

Thread

Fig. 76B-1

.---,
7638

I
I

Application
Processing1

Application
Processing2

■

■

■

Application
Processing A

L ___ J

Petitioners' Ex. 1001, Page 268 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

7634-if

7636

Paste
Processing

Thread

Nov. 19, 2019

7632

AppTerm
Configuration

Thread

7632-if

7644

AppTerm
Mapper

7634-if

7634

WITS
Processing

Thread

Sheet 264 of 322 US 10,477,994 B2

----,
I ~

I 7640

7640,...-d_s_if_...__.;.I _..,. 7640_05

,----1 __.. 7640-CS

7640-csif

I
I
I
I
I

17640-SS I

7642

7644-DS

•

•

•
_J

Fig. 76B-2

Petitioners' Ex. 1001, Page 269 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 265 of 322 US 10,477,994 B2

Invocation
Mapper

7646-if

WITS
Processing

Thread

----, I 7638

I 7640

I 17640-DS

I
7640-CS

I
17640-SS I

I
I

. . .
7640-csif

I
I 7642

..... _76_4_2-_cs_if-------1-......aw 7642_CS

7648-osif I
I
I

•

•

I . ____ J

Fig. 76B-3

Petitioners' Ex. 1001, Page 270 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

7650a

7650b

7650c

7652a

7652b

7652c

7652d

7652e

\

\

\

\

\

\

\

\

Nov. 19, 2019 Sheet 266 of 322 US 10,477,994 B2

,- 7650

PREFIX

REFERENCE(S) POINTER

APPLICATION TERM(S) MEMORY POINTER

,-7652

NAME

OFFSET

LENGTH

TYPE

NEXT POINTER

Fig. 76C

Petitioners' Ex. 1001, Page 271 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 267 of 322 US 10,477,994 B2

7660

ST ART - Contextual
charter create

7662
Determine user
interface context

7664
Present list of relevant

special terms and
interface with user

7666

Wait for user action

Interface with user
after presenting

relevant operators,
values, special terms
and anticipated pre
formatted charters

Update charter(s)
appropriately

Interface with user for
permission update(s)

____ 7:....::-680
STOP

Fig. 76D

7678

Terminate interface

Petitioners' Ex. 1001, Page 272 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 268 of 322 US 10,477,994 B2

7702
------'-~

START - Specify
application field(s)

7704
Present user with

options

7706

Wait for user action

Handle other user
action appropriately

7710
Set specified app

indicator for enabled

7714
Set specified app

indicator for disabled

7718

Set profile participation
to NULL ~---------....i

7722

Prompt user for profile
path

7724
User interfaces for

validated path spec or 1----.-c
until cancel

________,7~732

STOP

Fig. 77

7728
Set profile

participation to file
specified

Petitioners' Ex. 1001, Page 273 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 269 of 322

<home>

<city>Moorestown</city>
<state>New Jersey</state>

</home>

<interests>
basketball;programming; running; football
</interests>

<hangouts>

US 10,477,994 B2

<morning>Starbucks</morning>
<lunch>Jammin's;Mongolian Barbeque</lunch>
<evening>Confettis;Jimbos</evening>

</hangouts>

Fig. 78

Petitioners' Ex. 1001, Page 274 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 270 of 322 US 10,477,994 B2

LEVEL x

LEVEL x+2 . . .

LEVEL x+3

LEVEL x+y

Fig. 79A

Petitioners' Ex. 1001, Page 275 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

Data
11

Sheet 271 of 322

Data
12

Data
122k

Data
12j

Fig. 79B

US 10,477,994 B2

Data
1 i

Petitioners' Ex. 1001, Page 276 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 272 of 322 US 10,477,994 B2

typedef struct xml_node {
struct xml_node
struct xml_node
struct xml_node
struct xml_node
char
unsigned char
}XML_NODE;

*descend 1st; II Points to first descendant tag in XML doc
*peer_down; II Points to same level tag down XML doc
*ascendant; II Points to ascending tag in XML doc
*peer_up; II Points to same level tag up XML doc
data_type; II Type of data@ data pointer

*data; II Typecast-able pointer to data

XML_NODE *Lprofile; II Root node to XML doc tag tree for Local profile

XML_NODE *Rprofile; II Root node to XML doc tag tree for Remote/Received profile

Fig. 79C

Petitioners' Ex. 1001, Page 277 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

7952

ST ART - Profile match
operator evaluation

7954

Access attempt
profile;

Access charter
expression portion;
Access reference

profile;

TAG CHECK LIST = - -
all leaf node tags with

data of reference
profile

7960

TAG_DATA_MATCH_
ATTEMPTS = O;

TAG_DATA_MATCHES = O;

7962
TAG_CHECK_LIST =
specified tag(s) with

data of reference
profile

7990 ______

Sheet 273 of 322

7964
Get next tag from

TAG_CHECK_LIST

Access data for
matching tag from

attempt profile

Get next data element

US 10,477,994 B2

Increment
TAG DATA

7972

- -
MATCH_

ATTEMPTS by
data elements

of reference profile tag ..,. _______ r-,

data

Increment
TAG_DATA_MATCH_

ATTEMPTS by 1

7982

Increment
TAG_DATA_

MATCHES by 1

L--~ Return FALSE
Fig. 79D

Petitioners' Ex. 1001, Page 278 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent

8002a

8002b

8002c

8002d

8002e

8002f

8002g

8002h

8002i

8002j

8002k

80021

8004a

8004b

8004c

8004d

8004e

8004f

8004g

8004h

8004i

8006a

8006b

8008a

\

\

\

\

\

\

\

\

\

\

\

\

'-
\

\

\

\

\

\

\

\

\

\

\

aeename

source

profile

email

calendar

ab

phone

emergency

loc

rfid

hotspot

services

statistics

traffic

appliance

acctmgt

transport

carpool

advertise

news

media

parking

employ

real

personal

Nov. 19, 2019 Sheet 274 of 322 US 10,477,994 B2

,-aooo
Agglication Descrietion Status

Configurable MS ID Registered

% and # operator object Registered

Electronic mail Registered

Electronic calendar Registered

Electronic address book Registered

Electronic phone Registered

Emergency use Registered

LBX locational data sharing Registered

Radio Frequency Identification Registered

Wifi/Wimax/Xan Registered

Published services for service propagation Registered

MS statistics (may be shared between MSs) Registered

Traffic Reports RFP

Appliance Control RFP

Account Management (ATM, Banking) RFP

Public Transportation (Bus, Taxi, Air, Train) RFP

Automotive "car-pooling" RFP

Advertising RFP

News RFP

Video, Pictures RFP

Parking lot awareness RFP

Employment, Job Awareness Presented

Real Estate Presented

Personal Use Tabled

Fig. BOA

Petitioners' Ex. 1001, Page 279 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 275 of 322 US 10,477,994 B2

,r-B002a
Field 11 0Ok reference Descri12tion

MS ID context sensitive default value (X in [email, phone, calendar,
ab, rfid, ip (uses first), one for each candidate id for contextual

appfld.source.id.X elaboration of an Expression ...])
appfld.source.tvoe MS type
appfld.source .mfr MS manufacturer
aoofld.source.serno MS serial number

Current delimited (e.g. semicolon) IP address(es) of MS (may have
aoofld.source.io > 1)
... ...

,r-8002b
Field 1100k reference Descriotion
aoofld.orofile.contents MS profile info (e.g.for % or# operator)
... ...

,r-8002c
Field 1100k reference Descri,2tion
appfld.email.source Primary MS email app sender ID

Email compose defaults wherein X in [attribute.Y such that Yin
[cod, urgent, charcode, one for each settable attribute for email ...],
salutation, doctype, recips, encrypt, compress, one for each email

appfld.email.default.X default variable ...]
appfld.email.type Email app type/name

Pending email in progress of being composed: X in [see .default.X
appfld.email.pending.X fields above, cdt, content, one for each email variable ...]

Last email sent (i.e. X = sent) or last email received (i.e. X = rcvd)
to/from Y (Yin [ANY, {id} such that id specific source/destination

appfld.email.last.X.Y.Z (e.g.joe@yahoo.com)]; Zin [see .pending.X fields above]
... ...

Fig. 808-1

Petitioners' Ex. 1001, Page 280 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 276 of 322 US 10,477,994 B2

,.-B002e

Field 1100k reference Descri~tion
appfld.ab.id Override for AB identifer.

AB entry compose defaults wherein X in [attribute.Y such that Yin
[marker, color, font, size, one for each settable attribute for AB

appfld .ab .default.X entry ...], background, one for each AB entry default variable ...]
appfld.ab.type AB app type/name

Pending AB entry in progress of being composed: X in [see
.default.X fields above, cdt, content, group, one for each AB entry

appfld.ab.pending.X variable ...]
Last AB entry created locally (i.e. X = local) or last AB entry
received (i.e. X = other) to/from Y (Yin [ANY, {id} such that id
specific source/destination (e.g. MSID4F3EB2398)]; Zin [see

appfld .ab. last.X.Y.Z .pending.X fields above]
... . ..

y-8002d

Field 1100k reference Descri~tion
appfld.calendar.id Calendar id override.

appfld.calendar.next.X MS calendar next entry data X
appfld.calendar.nextavail.X MS calendar app next available free slots

Calendar entry compose defaults wherein X in [attribute.Y such that
Yin [cod, urgent, color, one for each settable attribute for calendar
entry ...], recips, camp, one for each calendar entry default

appfld .calendar.default.X variable ...]
MS calendar schedule for period X (X in [curweek, currnonth,

appfld.calendar.sched.X curyear, etc])
appfld.calendar.type MS calendar app type/name

Pending calendar entry in progress of being composed: X in [see
.default.X fields above, cdt, content, date/time(s), recurring, one for

appfld.calendar.pending.X each calendar entry variable ...]
Last calendar entry created locally (i.e. X = local) or last calendar
entry received (i.e. X = other) to/from Y (Yin [ANY, {id} such that id
specific source/destination (e.g.joe@yahoo.com)]; Zin [see

appfld.calendar.last.X.Y.Z .pending.X fields above]
...

Fig. 808-2

Petitioners' Ex. 1001, Page 281 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 277 of 322 US 10,477,994 B2

,,,---aoo2t
Field 1100k reference Descri~tion
appfld.phone.id MS phone app primary caller id

Phone call defaults wherein X in [volume, encrypt, compress,
appfld.phone.default.X camp, one for each phone application default variable ...]
appfld .phone .caller MS phone app caller id override

appfld.phone.log.X MS phone app log file X (X in [out, in, missed, one for each log ...])
MS phone app record boolean for calls made, calls received, or

appfld.phone.record.X specific numbers (e.g. MS IDs)
appfld.phone.ogm MS phone app OGM

Date/time stamp for X (X in [tx (last call made), rx (last call
appfld.phone.dt.X received), missed (last call missed)])
appfld .phone.type MS phone app type/name

MS phone app forwarding setting for prioritized list. A prioritized
list automatically tries the next entry if there is no answer or a failed

appfld .phone.fwd outbound connection.
Ring setting = ring tone selection reference OR audio file

appfld.phone.ring reference.
appfld.phone.vibe Vibration setting= None OR reference for vibration type.
appfld.phone.droplocs MS phone dropped locations
appfld.phone.macro.X Automated macros for ARU interfaces

MS phone passwords for allowing calls to complete and for
appfld.phone.pwd.X variable processing by caller.
appfld.phone.msg.X Phone messages (new, saved, etc)

MS phone blackout conditions (expressions including application
in use, date/time(s), current location(s), any MS detectable

appfld .phone.blackout condition)
Pending phone call: X in [see .default.X fields above, cdt, data, one
for each phone call app variable ...]; data is only present for peer to

appfld.phone.pending.X peer MS phone calls (it carries the voice call).

Last phone call made (i.e. X = out) or last call received (i.e. X = in)
to/from Y (Yin [ANY, {id} such that id specific source/destination

appfld.phone.last.X.YZ (e.g. MSID4F3EB2398)]; Zin [see .pending.X fields above, edt]
...

Fig. 80B-3

Petitioners' Ex. 1001, Page 282 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 278 of 322 US 10,477,994 B2

~8002g
Field 11 00k reference Descrietion
appfld.emergency.type Emergency type (Police, Fire, Amber, Help, Caution, etc)
appfld .emergency.cdt Emergency create date/time stamp
appfld.emergency.duration Emergency anticipated duration

Emergency content.X (X in [type, alert, prefmeth, one field for each
appfld.emergency.content.X alert content section ...])
appfld.emergency.method.X MS emergency notify method X (X in [attribute.Y, how, where])
appfld.emergency.last.X Last emergency VVDR data: X in [self, other].
... ...

~8002h
Field 1100k reference Descrif:!tion
appfld.loc.blackout Blackout criteria
appfld.loc.mode Current MS mode
appfld.loc.geofence.X MS configured geofence data
appfld.loc.halo.X MS configured interest perimeter
appfld.loc.mark.X X = # of saved location marks Y
appfld .loc.dcdb.X Location activated delivery content for MS ID X

Beacon a peer MS at the peer MS; Sending MS controls what is
appfld.loc.beacon.X seen by receiving MS
... . ..

~8002i
Field 1100k reference Descrietion
appfld.rfid.id Deaults appfld.source.id.rfid.
appfld. rfid. passive .X MS Passive RFI capability
apptld.rfid.active.X MS Active RFI capability
appfld.rfid.listen.X Active RFID listening channel directions
appfld.rfid.seek.X Passive RFID polling channel directions
... ...

~8002j
Field 1100k reference Descrif:!tion
appfld. hotspot.listen Listening boolean

X number of Hotspot(s) (the information) automatically detected
appfld. hotspot.X overtime
... ...

~8002k
Field 1100k reference Descrietion
appfld.services.X LN-expanse dynamc services information
... ...

Fig. 80B-4

Petitioners' Ex. 1001, Page 283 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 279 of 322

8010

START - application
fields section initialize

8012

Interface with user for
validated application

fields subset(s)
permissible for user

alteration

8018
Interface with user for

permissible
initialization criteria or

value(s) for
assignment

Initialize section(s)

8016

RETURN

Fig. BOC

US 10,477,994 B2

Petitioners' Ex. 1001, Page 284 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 280 of 322

START- RFID
device probe

8030

8032

Determine CHANNEL
OUT

8034

Get PROBE DATA for
CHANNEL OUT

8036

Build transmission
packet with PROBE

DATA

8038

Send transmission
packet

8040

STOP

Fig. BOD

US 10,477,994 B2

Petitioners' Ex. 1001, Page 285 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

8050

START - MS RFID Receive
Data (RFID _Rx) thread

Initialize

Increment
RFID Rx-Ct

Retrieve next
incoming data

Get privileges

8052

8054

8056

8062

Get trigger processing
interface(s); Determine

any expression outcome

Sheet 281 of 322 US 10,477,994 B2

Decrement
RFID Rx-Ct

STOP

8068

8070

8066

Invoke processing

Fig. BOE

Petitioners' Ex. 1001, Page 286 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

8172

START - Configure
MS graphical

recognition criteria

Initialize;
Access current
configurations

8174

8176
Present current

configurations with
options

Wait for user action

Sheet 282 of 322 US 10,477,994 B2

8182
......._ ___ , User configures OCR

Handle other user
action appropriately

functionality

8186
User configures
landmark data

8190
User configures

conditional location
data

8194

Save configurations

8199

STOP

Fig. 81A

Petitioners' Ex. 1001, Page 287 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 283 of 322 US 10,477,994 B2

8100

START- Frame

Perform validation

STOP

Perform
validation

Perform

Invoke
Whereabouts
Data Insertion

8148

8144

Complete WDR

Get next
conditional

location

Data Insertion

Invoke
Whereabouts
Data Insertion

----~8~156
_ _......_, Compare

to frame

Petitioners' Ex. 1001, Page 288 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 284 of 322 US 10,477,994 B2

8200

Wait for user input

Handle other user
interface action
appropriately

8212
,-1494

8214

User interfaces with
history in context of editor

until editor terminated

.-----.,J..;;
8;_;;-218 Interface with

Save
current

destination

8228

Prompt user if
want to move

old there

user for
validated

destination

Prompt
user if sure
to change

8
;;.,-
232

~M-o-d-ify_d_e_s_ti_na~t-io-n

Move it for forthcoming
history

criteria

8242
8240 .---u_s_e_r-in_t_e_rf-ac~e-s---,.

Present criteria for saving desired
for browse/edit criteria

8248

Perform pruning

8254

Access current
formatting

8264
______ ,___

Modify
format

STOP

Fig. 82A

8256
Present

formatting for
browse/edit

8244
Prompt user if
want to prune

8258
User interfaces

for saving
desired format

8260
Prompt user if

want to change
format of current

histo

8268
Truncate history to 0

1------'
length

Petitioners' Ex. 1001, Page 289 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

8280
START - History

logger

8282

Get parameters

8284

Access criteria for
maintaining history;
Access formatting

specifications;
Determine history

destination

Get system
information

8286

8288

Prepare history output
according to

parameters, criteria for
maintaining history

and format
specifications

8290
Save history data

appropriately

8292
Prune history

according to criteria
for maintaining history

Sheet 285 of 322 US 10,477,994 B2

8298

Prepare parameters

8299
Invoke statistics

logger

8296
RETURN

Fig. 82B

Petitioners' Ex. 1001, Page 290 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 286 of 322 US 10,477,994 B2

Initialize

interface action
appropriately

.----8;;;.,:310
Access ------Statistics

,-1486
8312

User interfaces with statistics
for browse, saving view(s),
printing, and and/or sending

-----''-8-316
Interface with

Save
current

destination

8326

Prompt user if
want to move

old there

user for
validated

destination

Prompt
user if sure
to change

8
-
330

~M-o-d-ify_d_e-st-in...1a-tio_n_:..

criteria

Modify schema
appropriately

Move it

Present criteria
for browse/edit

for forthcoming
statistics

8340
User interfaces

for saving desired
criteria

8342
Check for

schema change

.__ ____ Interface with user for automated
11-------....i

polled statistical reporting

8354

Interface with user for
configuration of

statistical triggers

8358

Interface with
'---------.!

user for how Fig. 83A

8360

Perform reset
accordingly

Petitioners' Ex. 1001, Page 291 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

8370
ST ART - Statistics

logger

Get parameters

8374
Access criteria for

maintaining statistics;
Determine statistics

destination

Get system
information

8376

8378

Prepare statistics
output according to

parameters and
criteria for maintaining

statistics

8380
Update statistics data

appropriately

Check trigger
conditions and fire
applicable reports

8384

Prune statistics
according to criteria

for maintaining
statistics

Sheet 287 of 322 US 10,477,994 B2

8390

Prepare parameters

Invoke history
logger

RETURN

8392

8388

Fig. 83B

Petitioners' Ex. 1001, Page 292 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 288 of 322 US 10,477,994 B2

8400

ST ART - Configure
service propagation

8402
Present user with

options

8404

Wait for user action

Handle other user
action appropriately

y-1474

--------------- 8408 8410

Wait for user action
Access service

directory; Present user
with list and o tions

8414
:::.----+i Reset entry ._ __,.

8444

8420

User adds validated
entry

Entry is removed

8434

User views and/or
modifies modifiable
fields until satisfied

(validated)

8438
Handle other user

action appropriately

8442
Interface with user to

enable/disable specific
application section(s)

Access service
directory for

publishable services

STOP

Fig. 84A

8452
User

configures
charter(s)

8448
User

configures
permission(s)

Petitioners' Ex. 1001, Page 293 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 289 of 322 US 10,477,994 B2

8460
ST ART - Process
application fields

8462

Get parameter(s)

8474
Loop through enabled
application fields and

eliminate subset
sections

Get next enabled
application fields

section

8484
Access applicable

privileges

8488
Access data for

section

8490
Build application fields
section into work area

8464
Access WRC; Access

known WDR
destination info

8468
Set parameter ~_.,.

for ignore WDR

Set parameter for
consider WDR

8480 8482 .----------,_
Strip off WDR Append application
applications fields (work area) to
fields 11 00k WDR appropriately

8470

RETURN

Fig. 84B

Petitioners' Ex. 1001, Page 294 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 290 of 322

,- 8500

SERVICE HANDLE

SERVICE DESCRIPTION

ROUTE

ADDRESS

COMMUNICATIONS REFERENCE INFO

DATE/TIME LAST USED

TEST METHOD

IN USE FLAG

...

Fig. 85A

US 10,477,994 B2

_Ir 8500a

8500b

8500c

8500d

8500e

8500f

8500g

8500h

8500i

_tr

_Ir

_tr

v-

_Ir

_v-
_tr

_Ir

Petitioners' Ex. 1001, Page 295 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 291 of 322

8502
START - Service

8504

Get parameters

Access service
directory

8506

8508
Prioritize service

directory entries if > 1
found

8510

Get next entry

Set in use flag

8516
Build targeted send

request

8518
Send and wait for

Place null in ret
parameter

Provide status
to user

return code

Place response in
return parameter

Set return code f
1----e,.I

response

Fig. 85B

US 10,477,994 B2

8542
Set return code for

error

Log results

8536
Prune service

directory

8528
.___. Update last used

date/time

Petitioners' Ex. 1001, Page 296 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

8546

TART - Application
using propagatable

service

8548

User continues using
MS application

Sheet 292 of 322 US 10,477,994 B2

8552

Prepare parameters

8554

Request Service

Fig. 85C

Petitioners' Ex. 1001, Page 297 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 293 of 322

8558

START - Receive
request thread

8560

Prepare parameters

8562

Request service

Build response

Send targeted
response

STOP

8564

8566

8568

Fig. 85D

US 10,477,994 B2

Petitioners' Ex. 1001, Page 298 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 294 of 322

8570

Access parameters

8574
Get next service

section

Get data to update
service directory

8580
Access applicable

privileges

Access service
directory entry for

same MS

Insert new entry

Fig. 85E

US 10,477,994 B2

8592
STOP

8588

Petitioners' Ex. 1001, Page 299 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

8602
START - Configure
service informant

Initialize

8606
Access informant

map and build working
copy

8608
Present list with

options

Wait for user input

Handle other user
interface action
appropriately

Sheet 295 of 322 US 10,477,994 B2

,--1490

8620

Present configuration
details

8622

User browses details
until complete

8614
User specifies service

informant code parameters

Call service
informant code

8616

8626

Present details in
modifiable form

8628
User modifies

validated entry until
complete

8632

Save working
copy to

informant map

STOP

8638

Fig. 86A

Petitioners' Ex. 1001, Page 300 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 296 of 322

8650

Get handle parameter

8654
Access informant map

for specified handle

Handle unknown
method appropriately

8658

Prepare parameters

8664

Prepare parameters

8670

Prepare parameters

8676

Prepare information

8682

Prepare parameters

Fig. 86B

US 10,477,994 B2

8660

Send data

8666

Request service

8672

Invoke interface

Alert user with
information

ExecuteAction
(cmd, operand,

params)

8678

8684

8688

RETURN

Petitioners' Ex. 1001, Page 301 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 297 of 322

,- 8600

HANDLE

METHOD

REFERENCE

Fig. 86C

US 10,477,994 B2

_v-
_v-
_r

8600a

8600b

8600c

Petitioners' Ex. 1001, Page 302 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 298 of 322 US 10,477,994 B2

8700
START-SPUI

8702
Access most recent
SPUI state variables

- -..(8704
-- -Yes Already started?

_ - MS - ..[_8736
- ,Yes

moved out of '

Prepare appli
re

running

Report
error

Update SPUI relevant
data if applicable

Update SPUI if
applicable

Save variables

Terminate
appropriately

8740

8744

Fig. 87A

8722

8732
· Parse and
analyze data

received

STOP

8746

Petitioners' Ex. 1001, Page 303 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 299 of 322 US 10,477,994 B2

r: - - - - - - - - -,--87B-1

I
I
I
I
I
I

Application 878-12

Application
Interface
878-14

l

-
Transponder

878-16

I
I
I
I
I
I

.__ ________ _J

87B-18

, ________ --, ,--87B-2

I Application 878-22 I
I Transponder I
I

Application I
Interface

I s10-24 I ___________ _.
._ ________ _J

I - _ _ _ _ _ _ _ _ ,--87B-3

Application 878-32 I
I I
1 ~-------' I

I
I
I

Transponder
Application

Interface
878-34 L ________ _J

Fig. 87B

878-38

Petitioners' Ex. 1001, Page 304 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 300 of 322 US 10,477,994 B2

------8750
START - Application

environment processing

8752
Transponder waits for

eligible MS data in

~87B-1 ~87B-2 ~87B-3
.__ --------,

8756
Perform

authentication;
Finalize if successful

Handle error
appropriately

8760

8770
Perform application

interface control/
command processing

8774
Perform initialization

processing

8778
Perform application

interface data access ...,_ ____ __.""
processing

8782
Perform application

interface data update -__,~

8764
Prepare transmission for MS;

-=---.i Send transmission to MS 11-----------'

Handle other MS data
appropriately

__,
Fig. 87C

Petitioners' Ex. 1001, Page 305 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 301 of 322

8800

START - User requested
transmission

8802
Prompt user for

transmission type and 1-11~

wait for response

8806
Prompt user for setting WDR data

for outbound (e.g. application
fields 11 00k) AND/OR for search

8810
User modifies data

until satisfied and valid

Provide not
found error

to user

8812

Peek WDR queue for
greatest confidence

and most recent WDR
with MS ID = this MS,

confidence >=
confidence floor, NTP

enabled date/time
stamp within timely

time period

Prepare WDR for
transmission

8818
Modify WDR if block

8806 applicable

8820

Broadcast WDR

STOP

Fig. BBA

US 10,477,994 B2

8834

Broadcast request

8836
User prepares

valid!='ted formatted

Send request

Petitioners' Ex. 1001, Page 306 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 302 of 322 US 10,477,994 B2

8850
START-Task

monitor

8852
Prompt user for
search criteria

8854
User specifies

validated criteria

8886
Terminate interface

appropriately

8888
STOP

Search LBX History
and/or statistics for

requested information

Search statistics for
requested information

Create proposed
charters for alert(s)

Create enabled
charters

Fig. BBB

Provide none
found error

Present information in
scrollable list

8866
User interfaces to list
until monitored action

Handle other action
appropriately

Petitioners' Ex. 1001, Page 307 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 303 of 322

8902
START - input

peripheral invoked by
user

8904

Get system date/time
stamp

8906

Request semaphore
lock for

SYS _lastActionDT

8908

Update
SYS_lastActionDT

with date/time stamp

8910

Release semaphore
lock for

SYS _lastActionDT

8912

Process peripheral
input appropriately

8914

STOP

Fig. 89A

US 10,477,994 B2

Petitioners' Ex. 1001, Page 308 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 304 of 322 US 10,477,994 B2

9002

ST ART - User sele
to speci

Prompt u
s

Handle other action
appropriately

9072
Scale point(s)

9062
Initialize invisible laU

Ion landmarks for
selected map and

associate x by y pixels

9064

Present map to user

9066
User navigates and
interfaces with map
interface until action

performed

9010
Get current location

and make point

Prompt user for radius

9022

User interfaces for
specifying radius (or

no radius) until
complete

9028
Access current

Map Term information

9030
Produce scrollable list

of MapTerm(s)

according to point(s) ---< 9032
pixel locations

Generate unique Map
Term name

9026

Save user specs in
terms of point, point
and radius, or points
(i.e. PointSet) as was

specified

User navigate
interfaces ·

until com

Handle other
appropriately

Interface with user
------'for validated name M-----,--<::

and save

Display Map Term on
appropriate map

Wait for user
action

Petitioners' Ex. 1001, Page 309 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 305 of 322 US 10,477,994 B2

,- 9080

NAME

TYPE

ENCODING

Fig. 90B

!r

!r

!r -

9080a

9080b

9080c

Petitioners' Ex. 1001, Page 310 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 306 of 322 US 10,477,994 B2

ENTRY ID

TAGID

SHORT DESCRIPTION

LONG DESCRIPTION

STOCK SPECIFICATION

STOCK COUNT

INSTANCE ID LIST

...

ID

ID TYPE

ORDER SERVICE ID

ORDER PENDING

DELIVERY HANDLE

TRACKING REFERENCE

PAYMENT INFO

...

,-- 9100

-

-

-

-

-

,-- 9102

-

-

-

-

-

-

r

r

r

r

9100a

9100b

9100c

9100d

9100e

9100f

9100g

9100z

r

Ir

v-
r

r

r

r

r

r

r

v-
Ir

9102a

9102b

9102c

9102d

9102e

9102f

9102g

9102z

~9104 ~9106

ID -r

ID TYPE _r

9104a

9104b

9104c
PAYMENT METHOD ID- r

ID -

ID TYPE -

ORDER SERVICE ID -

Fig. 91A

.r

r

r

9106a

9106b

9106c

Petitioners' Ex. 1001, Page 311 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 307 of 322 US 10,477,994 B2

ORDER SERVICE ID

TYPE

HANDLE

DIRECTIONS

...

PAYMENT METHOD ID

PROVIDER

TYPE

ACCOUNT

SECURITY CODE

NAME

EXPIRATION

AUTHORIZATION

ADDRESS

...

;:- 9112

GROUP ID -

GROUP NAME -

GROUP DESCRIPTION -

. ...

Ir

Ir

v-

r

9112a

9112b

9112c

9112z

Fig. 91B

;:-9108

-

.

.

Y--9110

-

.

.

.

-

-

;:-9114

GROUP ID

ID

ID TYPE

Ir

Ir

Ir

Ir

Ir

9108a

9108b

9108c

9108d

9108z

Ir

Ir

Ir

Ir

Ir

Ir

Ir

Ir

Ir

Ir

9110a

9110b

9110c

9110d

9110e

9110(

9110g

9110h

9110i

9110z

r 9114a

9114b r

r 9114c

Petitioners' Ex. 1001, Page 312 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 308 of 322 US 10,477,994 B2

9118
Present current

configurations as list
with options

9116
Access inventory

data

Update list i
applicable

9115

START - Inventory
management

9124
User interfaces with
inventory detail until

validated data to add saved

9130
Delete selected entry

·___,__, and cascaded joins .---------....i

9134
~-......i User interfaces with inventory detail until 11-----1...i

validated changes made and saved

9138 9140
User browses
inventory entry

Join associated
data to entry

details until com lete
9146

------9"""1=-4·4 Interface with user
Access groups _____, for validly adding

Interface with user for
delete entry from

group

9154

ent to rou

Access entry payment/ .___.,, _..
order information ,,.

Delete payme
rder info for e

Perform order
(ITEM, entry id)

9172
Terminate interface

appropriately

Fig. 91C

user for assigning
payment/order

info

9174
STOP

9176
Handle other user

action appropriately

Petitioners' Ex. 1001, Page 313 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

9180
START- Data

received by MS

9182
Access records 9100

for tag id match

Sheet 309 of 322 US 10,477,994 B2

9188

Update instance date/
.k'-""'"PI --time stamp

9190

Update stock count
and instance id

information

9192

STOP

Fig. 91D

Petitioners' Ex. 1001, Page 314 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 310 of 322 US 10,477,994 B2

9218
Present current

configurations as list
with options

9216

Access group data

Update list if
applicable

9226

9215
START - Inventory
group management

9224
User interfaces with group

.:::._- ,,----.i detail until validated data to 1-------+1

add saved

9230
~...i Delete selected entry 1-------------1...,

and cascaded joins

9234
User interfaces with group detail until
validated changes made and saved

9238

Join associated
data to entry

9240
User browses group

entry details until
com lete

Interface with user
Access groups 11------.i for validly adding

9250
Interface with user for

delete entry from
group

9264
Delete payment/

order info for entry

ent to rou

9268
user for assigning

payment/order
info Perform order

(GROUP, group id)

9272
Terminate interface

appropriately

Fig. 92A

9274
STOP

9276
Handle other user

action appropriately
11---....I

Petitioners' Ex. 1001, Page 315 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

9280

START - calendar
auto-order thread

9282

Access LAST_CHK
date/time stamp

9284

Access calendar
information for entries

since LAST_ CHK

9286

Get next calendar
entry

Sheet 311 of 322

9298

Save LAST_ CHK
appropriately using
current date/time

9292

Determine order
object and prepare

parameters

Fig. 92B

US 10,477,994 B2

9299

STOP

Perform order
(params)

9294

Petitioners' Ex. 1001, Page 316 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 312 of 322 US 10,477,994 B2

9300

START - Manage
payment methods

Access payment
method information

9304
Present current

configurations as list M---,

with options

Update list if
applicable

9312

9310
User interfaces with payment

:::::a..---~....i detail until validated data to a------►
add saved

9316
___ __, Delete selected entry ------------1~

and cascaded joins

9320
User interfaces with payment

~,---i~ detail until validated changes a---------.
made and saved

9324
User browses
payment entry

details until com lete
9328

Access LBX
History for

payment orders
9334

Access potential
orders using payment

method

9340
-:::::::ir-t..,.. Terminate interface

appropriately

9330
Show findings to
user for browse

until user com lete
9336

Show findings to
user for browse

until user com lete

_____ 9,342

STOP

Handle other user
action appropriately Fig. 93A

Petitioners' Ex. 1001, Page 317 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

9360

START - Manage
orders

Access order
information

9364
Present current

configurations as list w---.
with options

Sheet 313 of 322

Update list if
applicable

9372

9370

Obtain delivery information
for selected entry

9376

9380

User browses order entry
until complete

9384

US 10,477,994 B2

..,_ ____ ---.i

9386

Access inventory
items for order entry

Show findings to
user for browse

until user com lete

Handle other user
action appropriately

Fig. 93B

9390 ____ ...,_,.9'-::'.392
STOP

Petitioners' Ex. 1001, Page 318 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 314 of 322 US 10,477,994 B2

Get pa
Access data

9400

Get payment and
order info for group

Loop through all items
of group and get

inventory item info;
Prepare for group
order transaction

Open cursor for entry
id fields of items in
group; Get 1st item
ent id+ IDR info

Handle error
appropriately

Get item inventory,
payment and ordering

info

9440
Get all ascending
groups item is a

member of

Perform
transaction

9420

9408

RETURN

Fig. 94A

9444
Loop through all

groups for assigned
payment info

9448
Set payment info for

that group

9452
Loop through
all groups for

assigned order
info

9456
Set order info for

that group

9422
Create IOR if xaction
success; Log success

or error info to LBX
history

Petitioners' Ex. 1001, Page 319 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 315 of 322 US 10,477,994 B2

9460

START - Manage
ordering services

9462
Access services

information

9464
Present current

configurations as list .._. _ _,
with options

Update list if
applicable

9472

9470
User interfaces with service

..-.---1..i detail until validated data to 11------~
add saved

9476 9478
User browses Join associated

data to entry service entry details a-----1...i

until com lete

9482

9486

User interfaces with service
--:::a.~~ detail until validated changes.-------'

Handle other user
action appropriately

made and saved

9490

Fig. 94B

___ --.)...,.9:..!492
STOP

Petitioners' Ex. 1001, Page 320 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 316 of 322 US 10,477,994 B2

~9500

RESOURCE

BASE ID

BASE ID TYPE

APPLIED ID

APPLIED ID TYPE

APPLIED MASK

Fig. 95A

-

.

.

.

.

r

Ir

Ir

r

r
r

9500a

9500b

9500c

9500d

9500e

9500{

Petitioners' Ex. 1001, Page 321 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 317 of 322 US 10,477,994 B2

9502

START-

9504

Get parameters and
validate

Handle other operator
appropriately

9510

RETURN

Handle error
appropriately

9508

9514

Access resource
mapper data for match

9522

Delete specified
resource mapper data

Fig. 95B

Add specified
resource mapper data

Petitioners' Ex. 1001, Page 322 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 318 of 322

9602
START - Location
sed application

i

RETURN

Handle error
appropriately

9608

9614

Prepare location
information for search

9626

Get MS location

Access WDRs '
appfld.source.id.X

according to specified
distance within this
location, order by

nearness, then by id.X

Fig. 96A

US 10,477,994 B2

9616

Access WDRs '
appfld .source .id .X
according to index

parameter for WDRs
within specified

distance to location,
order by date/time

inserted to Q, then by
id.X

9618

Get next WDR

Sort entry for ASC/
DESC by source.id.X

Petitioners' Ex. 1001, Page 323 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 319 of 322 US 10,477,994 B2

(" 9654

9652 sent date/time1 sender1 subject1

S1 R1
sent date/time2 sender2 subject2

S2 R2

S3 R3 sent date/time3 sender3 subject3

S4 R4 sent date/time4 sender4 subject4

S5 R5
sent date/times senders subjects

S6 R6

sent date/time6 sender6 subject6

r 9658

r 9656 sent date/times senders subjects

S5 R5

S3 R3
sent date/time3 sender3 subject3

S2 R2 sent date/time2 sender2 subject2

S1 R1 sent date/time1 sender1 subject1

S6 R6
sent date/time6 sender6 subject6

S4 R4

sent date/time4 sender4
subject4

Fig. 96B

Petitioners' Ex. 1001, Page 324 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 320 of 322 US 10,477,994 B2

9702
START - Vicinity

monitor managemen

9704
Interface with user for
vicinity monitor name

9706
Access monitor data

by name

Ha
action appropriate!

9718 9716

STOP

9710

Prompt user for if

Terminate interface
14---,

appropriately

creating new monitor; 1--__.....s::;::_

Wait for Yes/No

Terminate monitor if
active

9732
Interface with user for

Default monitor data

......,,~-----._........;::8
Delete moni

data

data modification until ----~
save/exit

9740
Terminate monitor if

Save vicinity monitor
data

Terminate monitor if active

Fig. 97A

Petitioners' Ex. 1001, Page 325 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019 Sheet 321 of 322

William J. Johnson WJJ0802

321/322

r-9700

ID

NAME

IDENTIFIER(S)

HALO

EXPRESSION

ACTIVE

REFRESH PERIOD

VISUAL TYPE

AUDIBLE TYPE

STATE INFO

Fig. 97B

US 10,477,994 B2

Ir

Ir

Ir

Ir

Ir

Ir

Ir

9700a

9700b

9700c

9700d

9700e

9700(

9700g

9700h

9700i

9700j

Ir

Ir

Ir

Petitioners' Ex. 1001, Page 326 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

U.S. Patent Nov. 19, 2019

9760
ST ART - MS vicinity

monitor

9762

Get name parameter

9764

Save as active

9766

Get named vicinity
monitor data; Resolve
identifiers and units if

applicable

Sheet 322 of 322 US 10,477,994 B2

9774

Get next WDR

Compare conditions
with WDR data

lndi
monitor graphic

9786 9784
Sleep according
to refresh period

Update field
9700j

9768

Get this MS location

9770
Present vicinity
monitor graphic

9772

Access WDR queue for most
recent distinctly originated
WDRs with an identifier

matching identifier
information, and location in
the vicinity (i.e. within the
halo) of this MS location

9788
Peek WDR queue for

named monitor
termination entry

Remove queue entry

9794
Terminate monitor

interface

9796

Save as deactivated

9798

STOP

Fig. 97C
Petitioners' Ex. 1001, Page 327 of 553

Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC
IPR2022-00420

US 10,477,994 B2
1

SYSTEM AND METHOD FOR LOCATION
BASED EXCHANGES OF DATA
FACILITIATING DISTRIBUTED
LOCATIONAL APPLICATIONS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
16/147,532 filed Sep. 28, 2018 and entitled "System and
Method for Location Based Exchange Network" which is a
continuation of application Ser. No. 15/218,039 (now U.S.
Pat. No. 10,111,034 issued on Oct. 23, 2018) filed Jul. 24,
2016 and entitled "System and Method for Sound Wave
Triggered Content Delivery" which is a continuation of
application Ser. No. 14/752,945 (now U.S. Pat. No. 9,456,
303 issued on Sep. 27, 2016) filed Jun. 28, 2015 and entitled
"System and Method for Service Access Via Hopped Wire
less Mobile Device(s)" which is a continuation of applica
tion Ser. No. 13/972,125 (now U.S. Pat. No. 9,078,095
issued on Jul. 7, 2015) filed Aug. 21, 2013 and entitled
"System and Method for Location Based Inventory Man
agement" which is a continuation of application Ser. No.
12/590,831 (now U.S. Pat. No. 8,634,796 issued on Jan. 21,
2014) filed Nov. 13, 2009 and entitled "System and Method
for Location Based Exchanges of Data Facilitating Distrib
uted Locational Applications" which is a continuation in part
of application Ser. No. 12/287,064 (now U.S. Pat. No.
8,639,267 issued on Jan. 28, 2014) filed Oct. 3, 2008 and
entitled "System and Method for Location Based Exchanges

2
istrator with access to data maintained by users of the web
service, and other advantages associated with centralized
control. The advantages are analogous to those provided by
the traditional mainframe computer to its clients wherein the

5 mainframe owns all resources, data, processing, and cen
tralized control for all users and systems (clients) that access
its services. However, as computers declined in price and
adequate processing power was brought to more distributed
systems, such as Open Systems (i.e. Windows, UNIX,

10 Linux, and Mac environments), the mainframe was no
longer necessary for many of the daily computing tasks. In
fact, adequate processing power is incorporated in highly
mobile devices, various handheld mobile data processing

15
systems, and other mobile data processing systems. Tech
nology continues to drive improved processing power and
data storage capabilities in less physical space of a device.
Just as Open Systems took much of the load of computing
off of mainframe computers, so to can mobile data process-

20 ing systems offload tasks usually performed by connected
web services. As mobile data processing systems are more
capable, there is no need for a service to middleman inter
actions possible between them.

While a centralized service has its advantages, there are
25 also disadvantages. A service becomes a clearinghouse for

all web service transactions. Regardless of the number of
threads of processing spread out over hardware and proces
sor platforms, the web service itself can become a bottleneck
causing poor performance for timely response, and can

30 cause a large amount of data that must be kept for all
connected users and/or systems. Even large web services
mentioned above suffer from performance and maintenance
overhead. A web service response will likely never be fast

of Data Facilitating Distributed Locational Applications"
which is a continuation in part of application Ser. No.
12/077,041 (now U.S. Pat. No. 8,600,341 issued on Dec. 3,
2013) filed Mar. 14, 2008 and entitled "System and Method
for Location Based Exchanges of Data Facilitating Distrib- 35

uted Locational Applications". This application claims ben
efit of the earliest applicable application and contains an
identical specification to Ser. No. 16/147,532 except for the
title, abstract, and claims.

enough.
Additionally, archives must be kept to ensure recovery in

the event of a disaster because the service houses all data for
its operations. Archives also require storage, processing
power, planning, and maintenance. A significantly large and
costly data center is necessary to accommodate millions of

FIELD OF THE INVENTION

The present disclosure relates generally to location based
services for mobile data processing systems, and more
particularly to location based exchanges of data between
distributed mobile data processing systems for locational
applications. A common connected service is not required
for location based functionality and features. Location based
exchanges of data between distributed mobile data process
ing systems enable location based features and functionality
in a peer to peer manner.

BACKGROUND OF THE INVENTION

The internet has exploded with new service offerings.
Websites yahoo.com, google.com, ebay.com, amazon.com,
and iTunes.com have demonstrated well the ability to pro
vide valuable services to a large dispersed geographic audi
ence through the internet (ebay, yahoo, google, amazon and
iTunes (Apple) are trademarks of the respective companies).
Thousands of different types of web services are available
for many kinds of functionality. Advantages of having a
service as the intermediary point between clients, users, and
systems, and their associated services, includes centralized
processing, centralized maintaining of data, for example to
have an all knowing database for scope of services provided,
having a supervisory point of control, providing an admin-

40 users and/or systems to connect to the service. There is a
tremendous amount of overhead in providing such a service.
Data center processing power, data capacity, data transmis
sion bandwidth and speed, infrastructure entities, and vari
ous performance considerations are quite costly. Costs

45 include real estate required, utility bills for electricity and
cooling, system maintenance, personnel to operate a suc
cessful business with service(s), etc. A method is needed to
prevent large data center costs while eliminating perfor
mance issues for features sought. It is inevitable that as users

50 are hungry for more features and functionality on their
mobile data processing systems, processing will be moved
closer to the device for optimal performance and infrastruc
ture cost savings.

Service delivered location dependent content was dis-
55 closed in U.S. Pat. Nos. 6,456,234; 6,731,238; 7,187,997

(Johnson). Anonymous location based services was dis
closed in U.S. PTO Publication 2006/0022048 (Johnson).
The Johnson patents and published application operate as
most web services do in that the clients connecting to the

60 service benefit from the service by having some connectivity
to the service. U.S. Publication 2006/0022048 (Johnson)
could cause large numbers of users to inundate the service
with device heartbeats and data to maintain, depending on
the configurations made. While this may be of little concern

65 to a company that has successfully deployed substantially
large web service resources, it may be of great concern to
other more frugal companies. A method is needed for

Petitioners' Ex. 1001, Page 328 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
3

enabling location dependent features and functionality with
out the burden of requiring a service.

Users are skeptical about their privacy as internet services
proliferate. A service by its very nature typically holds
information for a user maintained in a centralized service 5

database. The user's preferences, credential information,
permissions, customizations, billing information, surfing
habits, and other conceivable user configurations and activ-

4
using prior art technologies such as GPS (Global Positioning
System), radio wave triangulation, coming within range to a
known located sensor, or the like. Complex system infra-
structure, or added hardware costs to the MSs themselves,
make such ventures costly and time constrained by sched
ules and costs involved in engineering, construction, and
deployment.

A method is needed for enabling users to get location
dependent features and functionality through having their

10 mobile locations known, regardless of whether or not their
MS is equipped for being located. Also, new and modern
location dependent features and functionality can be pro
vided to a MS unencumbered by a connected service.

ity monitoring, can be housed by the service at the service.
Company insiders, as well as outside attackers, may get
access. Most people are concerned with preventing personal
information of any type being kept in a centralized database
which may potentially become compromised from a security
standpoint. Location based services are of even more con
cern, in particular when the locations of the user are to be 15

known to a centralized service. A method and system is
needed for making users comfortable with knowing that
their personal information is at less risk of being compro
mised.

A reasonable requirement is to push intelligence out to the 20

mobile data processing systems themselves, for example, in
knowing their own locations and perhaps the locations of
other nearby mobile data processing systems. Mobile data
processing systems can intelligently handle many of their
own application requirements without depending on some 25

remote service. Just as two people in a business organization
should not need a manager to speak to each other, no two
mobile data processing systems should require a service
middleman for useful location dependent features and func
tionality. The knowing of its own location should not be the 30

end of social interaction implementation local to the mobile
data processing systems, but rather the starting place for a
large number of useful distributed local applications that do
not require a service.

BRIEF SUMMARY OF THE INVENTION

LBS (Location Based Services) is a term which has
gained in popularity over the years as MSs incorporate
various location capability. The word "Services" in that
terminology plays a major role in location based features
and functionality involving interaction between two or more
users. This disclosure introduces a new terminology, system,
and method referred to as Location Based eXchanges
(LBX). LBX is an acronym used interchangeably/contextu
ally throughout this disclosure for the singular term "Loca
tion Based Exchange" and for the plural term "Location
Based Exchanges", much the same way LBS is used inter
changeably/contextually for the single term "Location
Based Service" and for the plural term "Location Based
Services". LBX describes leveraging the distributed nature
of connectivity between MSs in lieu of leveraging a com
mon centralized service nature of connectivity between
MSs. The line can become blurred between LBS and LBX
since the same or similar features and functionality are

Different users use different types of Mobile data pro
cessing Systems (MSs) which are also called mobile
devices: laptops, tablet computers, Personal Computers
(PCs), Personal Digital Assistants (PDAs), cell phones,
automobile dashboard mounted data processing systems,
shopping cart mounted data processing systems, mobile
vehicle or apparatus mounted data processing systems,
Personal Navigational Devices (PNDs), iPhones (iPhone is

35 provided, and in some cases strengths from both may be
used. The underlying architectural shift differentiates LBX
from LBS for depending less on centralized services, and
more on distributed interactions between MSs. LBX provide
server-free and server-less location dependent features and

40 functionality.

a trademark of Apple, Inc.), various handheld mobile data
processing systems, etc. MSs move freely in the environ
ment, and are unpredictably moveable (i.e. can be moved 45

anywhere, anytime). Many of these Mobile data processing
Systems (MSs) do not have capability of being automati
cally located, or are not using a service for being automati
cally located. Conventional methods use directly relative
stationary references such as satellites, antennas, etc. to 50

locate MSs. Stationary references are expensive to deploy,
and risk obsolescence as new technologies are introduced to
the marketplace.

Disclosed are many different aspects to LBX, starting
with the foundation requirement for each participating MS
to know, at some point in time, their own whereabouts. LBX
is enabled when an MS knows its own whereabouts. It is
therefore a goal to first make as many MSs know their own
whereabouts as possible. When two or more MSs know their
own whereabouts, LBX enables distributed locational appli
cations whereby a server is not required to middleman social
interactions between the MSs. The MSs interact as peers.
LBX disclosed include purely peer to peer interactions, peer
to peer interactions for routing services, peer to peer inter-
actions for delivering distributed services, and peer to peer
interactions for location dependent features and functional
ity (e.g. a first mobile data processing system sends directly Stationary references have finite scope of support for

locating MSs. 55 (e.g. wirelessly) to a second mobile data processing system
without using an intervening data processing system). One
embodiment of an LBX enabled MS is referred to as an
IbxPhone™.

While the United States E911 mandate for cellular devices
documents requirements for automatic location of a Mobile
data processing System (MS) such as a cell phone, the
mandate does not necessarily promote real time location and
tracking of the MSs, nor does it define architecture for 60

exploiting Location Based Services (LBS). We are in an era
where Location Based Services (LBS), and location depen
dent features and functionality, are among the most prom
ising technologies in the world. Automatic locating of every
Mobile data processing System (MS) is an evolutionary 65

trend. A method is needed to shorten the length of time for
automatically locating every MS. Such a goal can be costly

It is an advantage herein to have no centralized service
governing location based features and functionality among
MSs. Avoiding a centralized service prevents performance
issues, infrastructure costs, and solves many of the issues
described above. No centralized service also prevents a
user's information from being kept in one accessible place.
LBS contain centralized data that is personal in nature to its
users. This is a security concern. Having information for all
users in one place increases the likelihood that a disaster to

Petitioners' Ex. 1001, Page 329 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
5

the data will affect more than a single user. LBX spreads data
out across participating systems so that a disaster affecting
one user does not affect any other user.

It is an advantage herein for enabling useful distributed
applications without the necessity of having a service, and 5

without the necessity of users and/or systems registering
with a service. MSs interact as peers in preferred embodi
ments, rather than as clients to a common service (e.g.
internet connected web service).

It is an advantage herein for locating as many MSs as 10

possible in a wireless network, and without additional
deployment costs on the MSs or the network. Conventional
locating capability includes GPS (Global Positioning Sys
tem) using stationary orbiting satellites, improved forms of
GPS, for example AGPS (Adjusted GPS) and DGPS (Dif- 15

ferential GPS) using stationary located ground stations,
wireless communications to stationary located cell tower
base stations, TDOA (Time Difference of Arrival) or AOA
(Angle of Arrival) triangulation using stationary located
antennas, presence detection in vicinity of a stationary 20

located antenna, presence detection at a wired connectivity
stationary network location, or other conventional locating
systems and methods. Mobile data processing systems,
referred to as Indirectly Located Mobile data processing
systems (ILMs), are automatically located using automati- 25

cally detected locations of Directly Located Mobile data
processing systems (DLMs) and/or automatically detected
locations of other ILMs. ILMs are provided with the ability
to participate in the same LBS, or LBX, as a DLM (Directly
Located Mobile data processing system). DLMs are located 30

using conventional locating capability mentioned above.
DLMs provide reference locations for automatically locat
ing ILMs, regardless of where any one is currently located.
DLMs and ILMs can be highly mobile, for example when in
use by a user. There are a variety of novel methods for 35

automatically locating ILMs, for example triangulating an
ILM (Indirectly Located Mobile data processing system)
location using a plurality ofDLMs, detecting the ILM being
within the vicinity of at least one DLM, triangulating an
ILM location using a plurality of other ILMs, detecting the 40

ILM being within the vicinity of at least one other ILM,
triangulating an ILM location using a mixed set ofDLM(s)
and ILM(s), determining the ILM location from heteroge
neously located DLMs and/or ILMs, and other novel meth
ods. 45

6
processing system (ILM). For a plural acronym, MSs which
are indirectly located are hereinafter referred to as Indirectly
Located Mobile data processing systems (ILMs). A DLM
can be located in the following ways:

A) New triangulated wave forms;
B) Missing Part Triangulation (MPT) as disclosed below;
C) Heterogeneous direct locating methods;
D) Assisted Direct Location Technology (ADLT) using a

combination of direct and indirect methods;
E) Manually specified; and/or
F) Any combinations of A) through E);

DLMs provide reference locations for automatically locat
ing ILMs, regardless of where the DLMs are currently
located. It is preferable to assure an accurate location of
every DLM, or at least provide a confidence value of the
accuracy. A confidence value of the accuracy is used by
relative ILMs to determine which are the best set (e.g. which
are of highest priority for use to determine ILM where
abouts) of relative DLMs (and/or ILMs) to use for auto
matically determining the location of the ILM.

In one example, the mobile locations of several MSs are
automatically detected using their local GPS chips. Each is
referred to as a DLM. The mobile location of a non-locatable
MS is triangulated using radio waves between it and three
(3) of the GPS equipped DLMs. The MS becomes an ILM
upon having its location determined relative the DLMs.
ILMs are automatically located using DLMs, or other
already located ILMs. An ILM can be located in the fol
lowing ways:

G) Triangulating an ILM location using a plurality of
DLMs with wave forms of any variety (e.g. AOA,
TDOA, MPT (a heterogeneous location method));

H) Detecting the ILM being within the reasonably close
vicinity of at least one DLM;

I) Triangulating an ILM location using a plurality of other
ILMs with wave forms of any variety;

J) Detecting the ILM being within the reasonable close
vicinity of at least one other ILM;

K) Triangulating an ILM location using a mixed set of
DLM(s) and ILM(s) with wave forms of any variety
(referred to as ADLT);

L) Determining the ILM location from heterogeneously
located DLMs and/or ILMs (i.e. heterogeneously
located, as used here, implies having been located
relative different location methodologies);

M) A) through F) Above; and/or
N) Any combinations of A) through M).
Locating functionality may leverage GPS functionality,

including but not limited to GPS, AGPS (Adjusted GPS),

MSs are automatically located without using direct con
ventional means for being automatically located. The con
ventional locating capability (i.e. conventional locating
methods) described above is also referred to as direct
methods. Conventional methods are direct methods, but not
all direct methods are conventional. There are new direct
techniques disclosed below. Provided herein is an architec
ture, as well as systems and methods, for immediately
bringing automatic location detection to every MS in the
world, regardless of whether that MS is equipped for being
directly located. MSs without capability of being directly
located are located by leveraging the automatically detected
locations of MSs that are directly located. This is referred to

50 DGPS, (Differential GPS), or any improved GPS embodi
ment to achieve higher accuracy using known locations, for
example ground based reference locations. The NexTel GPS
enabled iSeries cell phones provide excellent examples for
use as DLMs (Nextel is a trademark of Sprint/Nextel).

as being indirectly located. An MS which is directly located
is hereinafter referred to as a Directly Located Mobile data
processing system (DLM). For a plural acronym, MSs which
are directly located are hereinafter referred to as Directly
Located Mobile data processing systems (DLMs). MSs
without capability of being directly located are located using
the automatically detected locations of MSs that have
already been located. An MS which is indirectly located is
hereinafter referred to as an Indirectly Located Mobile data

55 Locating functionality may incorporate triangulated locating
of the MS, for example using a class of Radio Frequency
(RF) wave spectrum (cellular, WiFi (some WiFi embodi
ments referred to as WiMax), bluetooth, etc), and may use
measurements from different wave spectrums for a single

60 location determination (depends on communications inter
face(s) 70 available). A MS may have its whereabouts
determined using a plurality of wave spectrum classes
available to it (cellular, WiFi, bluetooth, etc). The term
"WiFi" used throughout this disclosure also refers to the

65 industry term "WiMax". Locating functionality may include
in-range proximity detection for detecting the presence of
the MS. Wave forms for triangulated locating also include

Petitioners' Ex. 1001, Page 330 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
7 8

any protocol(s) may be involved in embodiments of the
disclosures (e.g. TDMA, CDMA, H.323, SIP, 2G, 3G, ip
phone, digital, analog, spectrum frequency, etc).

Still another advantage is for support of heterogeneous

microwaves, infrared wave spectrum relative infrared sen
sors, visible light wave spectrum relative light visible light
wave sensors, ultraviolet wave spectrum relative ultraviolet
wave sensors, X-ray wave spectrum relative X-ray wave
sensors, garmna ray wave spectrum relative gamma ray
wave sensors, and longwave spectrum (below AM) relative
longwave sensors. While there are certainly more common
methods for automatically locating a MS (e.g. radio wave
triangulation, GPS, in range proximity detection), those
skilled in the art recognize there are methods for different
wave spectrums being detected, measured, and used for
carrying information between data processing systems.

5 locatable devices. Different people like different types of
devices as described above. Complete automation of locat
ing functionality can be provided to a device through local
automatic location detection means, or by automatic loca
tion detection means remote to the device. Also, an ILM can

10 be located relative a laptop, a cell phone, and a PDA (i.e.
different device types).

Yet another advantage is to prevent the unnecessary
storing of large amounts of positioning data for a network of
MSs. Keeping positioning data for knowing the whereabouts

Kubler et al (U.S. PTO publications 2004/0264442, 2004/
0246940, 2004/0228330, 2004/0151151) disclosed methods
for detecting presence of mobile entities as they come within
range of a sensor. In Kubler et al, accuracy of the location
of the detected MS is not well known, so an estimated area
of the whereabouts of the MS is enough to accomplish
intended functionality, for example in warehouse installa
tions. A confidence value of this disclosure associated with
Kubler et al tends to be low (i.e. not confident), with lower
values for long range sensors and higher values for short
range sensors.

15 of all devices can be expensive in terms of storage, infra
structure, performance, backup, and disaster recovery. A
preferred embodiment simply uses a distributed approach to
determining locations of MSs without the overhead of an
all-knowing database maintained somewhere. Positions of

20 MSs can be determined "on the fly" without storing infor
mation in a master database. However, there are embodi
ments for storing a master database, or a subset thereof, to
configurable storage destinations, when it makes sense. A
subset can be stored at a MS. GPS and the abundance of methods for improving GPS

accuracy has led to many successful systems for located 25

MSs with high accuracy. Triangulation provides high accu
racies for locating MSs. A confidence value of this disclo
sure associated with GPS and triangulating location methods
tends to be high (i.e. confident). It is preferred that DLMs
use the highest possible accuracy method available so that 30

relative ILMs are well located. Not all DLMs need to use the
same location methods. An ILM can be located relative
DLMs, or other ILMs, that each has different locating
methodologies utilized.

Another advantage includes making use of existing loca-
tion equipped MSs to expand the network of locatable
devices by locating non-equipped MSs relative the location
of equipped MSs. MSs themselves help increase dimensions
of the locatable network of MSs. The locatable network of
MSs is referred to as an LN-Expanse (i.e. Location-Network
Expanse). An LN-Expanse dynamically grows and shrinks
based on where MSs are located at a particular time. For
example, as users travel with their personal MSs, the per
sonal MSs themselves define the LN-Expanse since the

35 personal MSs are used to locate other MSs. An ILM simply
needs location awareness relative located MSs (DLMs and/
or ILMs).

Another advantage herein is to generically locate MSs
using varieties and combinations of different technologies.
MSs can be automatically located using direct conventional
methods for accuracy to base on the locating of other MSs.
MSs can be automatically located using indirect methods.
Further, it is an advantage to indirectly locate a MS relative 40

heterogeneously located MSs. For example, one DLM may
be automatically located using GPS. Another DLM may be
automatically located using cell tower triangulation. A third
DLM may be automatically located using within range
proximity. An ILM can be automatically located at a single 45

location, or different locations over time, relative these three
differently located DLMs. The automatically detected loca
tion of the ILM may be determined using a form of trian
gulation relative the three DLMs just discussed, even though
each DLM had a different direct location method used. In a 50

preferred embodiment, industry standard IEEE 802.11 WiFi
is used to locate (triangulate) an ILM relative a plurality of
DLMs (e.g. TDOA in one embodiment). This standard is
prolific among more compute trended MSs. Any of the
family of 802.11 wave forms such as 802.lla, 802.llb, 55

802.llg, or any other similar class of wave spectrum can be
used, and the same spectrum need not be used between a
single ILM and multiple DLMs. 802.x used herein generally
refers to the many 802.whatever variations.

Another advantage herein is to make use of existing 60

marketplace communications hardware, communications
software interfaces, and communications methods and loca
tion methods where possible to accomplish locating an MS
relative one or more other MSs. While 802.x is widespread
for WiFi communications, other RF wave forms can be used 65

(e.g. cell phone to cell tower communications). In fact, any
wave spectrum for carrying data applies herein. Of course,

Yet another advantage is a MS interchangeably taking on
the role of a DLM or ILM as it travels. MSs are chameleons
in this regard, in response to location technologies that
happen to be available. A MS may be equipped for DLM
capability, but may be in a location at some time where the
capability is inoperable. In these situations the DLM takes
on the role of an ILM. When the MS again enters a location
where it can be a DLM, it automatically takes on the role of
the DLM. This is very important, in particular for emergency
situations. A hiker has a serious accident in the mountains
which prevents GPS equipped DLM capability from work
ing. Fortunately, the MS automatically takes on the role of
an ILM and is located within the vicinity of neighboring
(nearby) MSs. This allows the hiker to communicate his
location, operate useful locational application functions and
features at his MS, and enable emergency help that can find
him.

It is a further advantage that MS locations be triangulated
using any wave forms (e.g. RF, microwaves, infrared, visible
light, ultraviolet, X-ray, gamma ray). X-ray and gamma ray
applications are special in that such waves are harmful to
humans in short periods of times, and such applications
should be well warranted to use such wave forms. In some
medical embodiments, micro-machines may be deployed
within a human body. Such micro-machines can be equipped
as MSs. Wave spectrums available at the time of deployment
can be used by the MSs for determining exact positions
when traveling through a body.

It is another advantage to use TDOA (Time Difference Of
Arrival), AOA (Angle Of Arrival), and Missing Part Trian-

Petitioners' Ex. 1001, Page 331 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
9 10

gulation (MPT) when locating a MS. TDOA uses time
information to determine locations, for example for dis
tances of sides of a triangle. AOA uses angles of arrival to
antennas to geometrically assess where a MS is located by
intersecting lines drawn from the antennas with detected 5

angles. MPT is disclosed herein as using combinations of
AOA and TDOA to determine a location. Exclusively using
all AOA or exclusively using all TDOA is not necessary.
MPT can be a direct method for locating MSs.

A further advantage is to leverage a data processing
system with capability of being located for co-locating
another data processing system without any capability of
being located. For example, a driver owns an older model
automobile, has a useful second data processing system in
the automobile without means for being automatically
located. The driver also own a cell phone, called a first data
processing system, which does have means for being auto
matically located. The location of the first data processing
system can be shared with the second data processing
system for locating the second data processing system.

Yet another advantage is to locate MSs using Assisted 10

Direct Location Technology (ADLT). ADLT is disclosed
herein as using direct (conventional) location capability
together with indirect location capability to confidently
determine the location of a MS.

Further still, the second data processing system without
means for being automatically located is located relative a
first set (plurality) of data processing systems which are not

Still another advantage is to permit manual specification
for identifying the location of a MS (a DLM). The manual
location can then in turn be used to facilitate locating other
MSs. A user interface may be used for specification of a
DLM location. The user interface can be local, or remote, to
the DLM. Various manual specification methods are dis
closed. Manual specification is preferably used with less
mobile MSs, or existing MSs such as those that use dodge
ball.com (trademark of Google). The confidence value
depends on how the location is specified, whether or not it
was validated, and how it changes when the MS moves after
being manually set. Manual specification should have lim
ited scope in an LN-expanse unless inaccuracies can be
avoided.

Another advantage herein is locating a MS using any of
the methodologies above, any combinations of the method
ologies above, and any combinations of direct and/or indi
rect location methods described.

Another advantage is providing synergy between different
locating technologies for smooth operations as an MS trav
els. There are large numbers of methods and combinations
of those methods for keeping an MS informed of its where
abouts. Keeping an MS informed of its whereabouts in a
timely manner is critical in ensuring LBX operate optimally,
and for ensuring nearby MSs without certain locating tech
nologies can in turn be located.

It is another advantage for locating an MS with multiple
location technologies during its travels, and in using the best
of breed data from multiple location technologies to infer a
MS location confidently. Confidence values are associated
with reference location information to ensure an MS using
the location information can assess accuracy. A DLM is
usually an "affirmifier". An affirmifier is an MS with its
whereabouts information having high confidence of accu
racy and can serve as a reference for other MSs. An ILM can
also be an affirmifier provided there is high confidence that
the ILM location is known. An MS (e.g. ILM) may be a
"pacifier". A pacifier is an MS having location information
for its whereabouts with a low confidence for accuracy.
While it can serve as a reference to other ILMs, it can only
do so by contributing a low confidence of accuracy.

It is another advantage for providing user customization
of confidence values based on the user's experience. A MS
user may completely rely on the MS system settings for
setting confidence values, or may "tweak" location technol
ogy confidence values to accommodate experiences with
particular location technologies that have been encountered
during travels.

It is an advantage to synergistically make use of the large
number of locating technologies available to prevent one
particular type of technology to dominate others while using
the best features of each to assess accurate mobile locations
ofMSs.

15 at the same location as the second data processing system.
So, data processing systems are automatically located rela
tive at least one other data processing which can be auto
matically located.

Another advantage is a LBX enabled MS includes a
20 service informant component for keeping a supervisory

service informed. This prevents an MS from operating in
total isolation, and prevents an MS from operating in iso
lation with those MSs that are within its vicinity (e.g. within
maximum range 1306) at some point in time, but to also

25 participate when the same MSs are great distances from each
other. There are LBX which would fit well into an LBS
model, but a preferred embodiment chooses to use the LBX
model. For example, multiple MS users are seeking to
carpool to and from a common destination. The service

30 informant component can perform timely updates to a
supervisory service for route comparisons between MSs,
even though periods of information are maintained only at
the MSs. For example, users find out that they go to the same
church with similar schedules, or coworkers find out they

35 live nearby and have identical work schedules. The service
informant component can keep a service informed of MS
whereabouts to facilitate novel LBX applications. The ser
vice informant can also be configured for: communicating
directly to another MS, communicating to a data processing

40 system through a propagate-able service, invoking a "plug
in" home grown interface, alerting the MS user with a
specified alert, or invoking an atomic command used by
charter processing.

It is a further advantage in leveraging the vast amount of
45 MS WiFi/WiMax deployment underway in the United

States. More widespread WiFi/WiMax availability enhances
the ability for well performing peer to peer types of features
and functionality disclosed.

It is a further advantage to prevent unnecessary estab-
50 lished connections from interfering with successfully trian

gulating a MS position. As the MS roams and encounters
various wave spectruni signals, that is all that is required for
determining the MS location. Broadcast signaling contains
the necessary location information for automatically locat-

55 ing the MS.
Yet another advantage is to leverage Network Time Pro

tocol (NTP) for eliminating bidirectional communications in
determining Time of Arrival (TOA) and TDOA (Time
Difference Of Arrival) measurements (TDOA as used in the

60 disclosure generally refers to both TOA and TDOA). NTP
enables a single unidirectional transmission of data to carry
all that is necessary in determining TDOA, provided the
sending data processing system and the receiving data
processing system are NTP synchronized to an adequate

65 granulation of time.
A further advantage is for making available to remote peer

MSs certain MS operating system resources such as

Petitioners' Ex. 1001, Page 332 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
11 12

tion 2006/0022048 (Johnson) was costly in terms of data
base size and performance. There was overhead in main
taining who owned the permission configuration for every
permission granted. Maintaining permissions locally, as

memory, storage, semaphores, application data, or the like,
according to permissions. A single MS can access and use
operating system resources of another MS, for example in
charter processing. Also, semaphore controlled synchroni
zation of processing can be achieved over a network, or
plurality, of peer MSs without a common server to synchro
nize the processing.

It is an advantage of this disclosure to provide a compet
ing superior alternative to server based mobile technologies
such as that of U.S. Pat. Nos. 6,456,234; 6,731,238; 7,187,
997; and U.S. PTO Publication 2006/0022048 (Johnson). It
is also an advantage to leverage both LBX technology and
LBS technology in the same MS in order to improve the user
experience. The different technologies can be used to
complement each other in certain embodiments.

5 described below, reduces the amount of data to represent the
permission because the owner is understood to be the
personal user of the MS. Additionally, permission searching
is very fast because the MS only has to search its local data
for permissions that apply to only its MS.

10 Yet another advantage is to provide a nearby, or nearness,
status using a peer to peer system and method, rather than
intelligence maintained in a centralized database for all
participating MSs. There is lots of overhead in maintaining

A further advantage herein is to leverage existing "usual
communications" data transmissions for carrying new data
that is ignored by existing MS processing, but observed by
new MS processing, for carrying out processing maximizing
location functions and features across a large geography.
Alternatively, new data can be transmitted between systems
for the same functionality.

15
a large database containing locations of all known MSs. This
disclosure removes such overhead through using nearby
detection means of one MS when in the vicinity of another
MS. There are varieties of controls for governing how to
generate the nearby status. In one aspect, a MS automati-

It is an advantage herein in providing peer to peer service
propagation. ILMs are provided with the ability to partici
pate in the same Location Based Services (LBS) or other
services as DLM(s) in the vicinity. An MS may have access

20 cally calls the nearby MS thereby automatically connecting
the parties to a conversation without user interaction to
initiate the call. In another aspect, locally maintained con
figurations govern functionality when MSs are newly
nearby, or are newly departing being nearby. Nearby status,

25 alerts, and queries are achieved in a LBX manner.

to services which are unavailable to other MSs. Any MS can
share its accessible services for being accessible to any other
MS, preferably in accordance with permissions. For
example, an MS without internet access can get internet 30

access via an MS in the vicinity with internet access. In a
preferred embodiment, permissions are maintained in a peer
to peer manner prior to lookup for proper service sharing. In
another embodiment, permissions are specified and used at
the time of granting access to the shared services. Once 35

granted for sharing, services can be used in a mode as if the
sharing user is using the services, or in a mode as if the user
accepting the share is a new user to the service. Routing
paths are dynamically reconfigured and transparently used
as MSs travel. Hop counts dynamically change to strive for 40

a minimal number of hops for an MS getting access to a
desirable service. Route communications depend on where
the MS needing the service is located relative a minimal
number of hops through other MSs to get to the service.
Services can be propagated from DLMs to DLMs, DLMs to 45

ILMs, ILMs to DLMs, or ILMs to ILMs.
Services otherwise unavailable to a first MS (or MS user)

in the LN-Expanse become available through another MS
which does have access to the service. A plurality of MSs
may facilitate the connection (e.g. hops) from the first MS to 50

the last MS which publishes the service and has access to the
service. MSs can access needed services through MSs in the
vicinity when necessary. A service directory is shared and
propagated between MSs so that the superset of services in

It is yet another advantage for automatic call forwarding,
call handling, and call processing based on the whereabouts
of a MS, or whereabouts of a MS relative other MSs. The
nearness condition of one MS to another MS can also affect
the automatic call forwarding functionality.

Yet another advantage herein is for peer to peer content
delivery and local MS configuration of that content. Users
need no connectivity to a service. Users make local con
figurations to enjoy location based content delivery to other
MSs. Content is delivered under a variety of circumstances
for a variety of configurable reasons. Content maintained
local to an MS is delivered asynchronously to other MSs for
nearby alerts, arrival or departure to and from geofenced
areas, and other predicated conditions of nearby MSs. While
it may appear there are LBS made available to users of MSs,
there are in fact LBX being made available to those users.

Another advantage herein is a LBX enabled MS can
operate in a peer to peer manner to data processing systems
which control environmental conditions. For example, auto
mobile equipped (or driver kept) MSs encounter an inter
section having a traffic light. Interactions between the MSs
at the intersection and a data processing system in the
vicinity for controlling the traffic light can automatically
override light color changing for optimal traffic flow. In
another embodiment, a parking lot search by a user with an
MS is facilitated as he enters the parking lot, and in
accordance with parking spaces currently occupied. In gen
eral, other nearby data processing systems can have their
control logic processed for a user's preferences (as defined
in the MS), a group of nearby user's preferences, and/or
situational locations (see U.S. Pat. Nos. 6,456,234; 6,731,
238; 7,187,997 (Johnson) for "situational location" termi
nology) of nearby MSs.

Another advantage herein is an MS maintains history of

a LN-Expanse are made available to any one MS in the 55

LN-Expanse regardless of current MS conditions, where
abouts, capability, or an inability to connect to a desired
service. A service route is minimized for best performance
even with highly mobile MSs by minimizing a number of
hops between MSs to reach a service. 60 hotspot locations detected for providing graphical indication

of hotspot whereabouts. This information can be used by the
MS user in guiding where a user should travel in the future
for access to services at the hotspot. Hotspot growth pre-

It is another advantage herein for providing peer to peer
permissions, authentication, and access control. A service is
not necessary for maintaining credentials and permissions
between MSs. Permissions are maintained locally to a MS.
In a centralized services model, a database can become 65

massive in size when searching for needed permissions.
Permission searching and validation of U.S. PTO Publica-

vents a database in being timely configured with new
locations. The MS can learn where hotspots are located, as
relevant to the particular MS. The hotspot information is
instantly available to the MS.

Petitioners' Ex. 1001, Page 333 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
13

A further advantage is for peer to peer proximity detection
for identifying a peer service target within the MS vicinity.

14
themselves can be self modifying for changing permissions
or charters "on the fly" (i.e. during charter processing).

It is a further advantage for providing multithreaded
communications of permission and charter information and

A peer service target can be acted upon by an MS within
range, using an application at the MS. The complementary
whereabouts of the peer service target and MS automatically
notify the user of service availability. The user can then use
the MS application for making a payment, or for performing
an account transfer, account deposit, account deduction, or
any other transaction associated with the peer service target.

5 transactions between MSs for well performing peer to peer
interactions. Any signal spectrum for carrying out transmis
sion and reception is candidate, depending on the variety of
MS. In fact, different signaling wave spectrums, types, and
protocols may be used in interoperating communications, or

Yet another advantage is for a MS to provide new self
management capability such as automatically marking pho
tographs taken with location information, a date/time stamp,
and who was with the person taking the picture.

10 even for a single transaction, between MSs.
It is yet another advantage for increasing the range of the

LN-expanse from a wireless vicinity to potentially infinite
vicinity through other data processing (e.g. routing) equip
ment. While wireless proximity is used for governing auto-Yet another advantage is being alerted to nearby people

needing assistance and nearby fire engines or police cars that
need access to roads.

A further advantage is providing a MS platform for which
new LBX features and functionality can be brought quickly

15 matic location determination, whereabouts information may
be communicated between MSs great distances from each
other provided there are privileges and/or charters in place
making such whereabouts information relevant for the MS.
Whereabouts information of others will not be maintained to the marketplace. The platform caters to a full spectrum of

users including highly technical software developers, novice 20

users, and users between those ranges. A rich programming
environment is provided wherein whereabouts (WDR) infor
mation interchanged with other MSs in the vicinity causes
triggering of privileged actions configured by users. The
programming environment can be embedded in, or "plugged 25

into", an existing software development environment, or
provided on its own. A syntax may be specified with source
code statements, XML, SQL database definitions, a
datastream, or any other derivative of a well defined BNF
grammar. A user friendly configuration environment is pro- 30

vided wherein whereabouts information interchanged with
other MSs in the vicinity causes triggering of privileged
actions configured by users. The platform is an event based
environment wherein WDRs containing certain configured
sought information are recognized at strategic processing 35

paths for causing novel processing of actions. Events can be
defined with complex expressions, and actions can be
defined using homegrown executables, APis, scripts, appli
cations, a set of commands provided with the LBX platform,

unless there are privileges in place to maintain it. Where
abouts information may not be shared with others if there
have been no privileges granted to a potential receiving MS.
Privileges can provide relevance to what whereabouts
(WDR) information is of use, or should be processed,
maintained, or acted upon.

Another advantage is to provide a MS which can be user
configured for any desired behavior based on location,
whereabouts, and "in the vicinity" conditions for the MS
and/or its peer MSs during travels. A user has infinite control
over providing a processing "character" for the MS. Also,
various MS applications are generically supported with
integrated locational based features and functionality. Char
ters may be used to automatically perform: MS configura
tion and system variable setting, clip-board and paste opera
tions, MS input and output control, automatic
communications with other MSs or data processing systems,
enabling/disabling a feature or service, and many other
features.

Another advantage is for using a convenient user interface
such as map navigation for generating a map term such as a
point, point and radius, or set of points defining area(s) on
a map which is conveniently referenced in a charter con
figuration and later processed for replacement. For example,
a user makes selection(s) on a map, and location information

or any other executable processing. The LBX platform 40

includes a variety of embodiments for charter and permis
sion definitions including an internalized programmatic
form, a SQL database form, a data record form, a datastream
form, and a well defined BNF grammar for deriving other
useful implementations (e.g. lex and yacc).

It is an advantage for permissions and/or charters to be
configured in anticipation of every possible future travel,
situation, environment, application, or condition of a MS (or
MS user), or a plurality of related (by permissions and
charters) MSs (or MS users). It is powerful in how permis- 50

sions and charters configured in advance of anticipated
events reveal novel unpredictably timed automated actions
and application behavior for novel uses.

45 is automatically generated for the selection(s). The user can
assign a convenient name to the location information with
out knowing details of the location information itself. The
user can then reference the name for completely specifying

It is another advantage to support a countless number of
privileges that can be configured, managed, and processed in 55

a peer to peer manner between MSs. Any peer to peer feature

the associated location information details. Also, the user
may use WDR search criteria for determining a map term,
the WDR found being one originated from the MS of map
term creation or that of a peer MS. Recent whereabouts of
a WDR found (e.g. from queue 22), or past whereabouts of
a WDR found (e.g. history 30) may be used. Queue 22 may
be viewed as maintaining a short term history, while history
30 may be viewed as maintaining a longer term history.
Specifying locations in charter configurations can be
tedious. Map terms provide the user with a simple user
interface method to specify locations, and for hiding com-

or set of functionality can have a privilege associated to it for
being granted from one user to another. It is also an
advantage for providing a variety of embodiments for how
to manage and maintain privileges in a network of MSs. 60 plexities of how the location was determined and generated

for charter use. In some embodiments, map terms are used
in broader scope by permitting any substitution where
referenced. In some embodiments, map terms are used in

It is another advantage to support a complete set of
options for charters that can be configured, managed, and
processed in a peer to peer manner between MSs. Charters
can become effective under a comprehensive set of condi
tions, expressions, terms, and operators. It is also an advan- 65

tage for providing a variety of embodiments for how to
manage and maintain charters in a network ofMSs. Charters

broader scope by permitting "special terms" to be automati
cally created by a user by simply selecting a MS on a map.

It is an advantage for a convenient "charters starters" user
interface for browsing, enabling, disabling, and maintaining

Petitioners' Ex. 1001, Page 334 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
15 16

integrated into the PPL syntax for a rich WPL. There are a
variety of systems and methods described for a comprehen
sive LBX platform.

It is an advantage for facilitating the creation of charters

charters depending on application, categories, or useable/
clone-able snippets of the charters. For example, a MS may
come prepackaged with many charters which have been
organized and marked for particular applications and cat
egories. The user can search, find, manage and enable/
disable a set of charters based on their application or
category, and can clone charter subsets for creating new
charters. A MS user may manage his own charters, or
charters of privilege granting others, using the charters
starters interfaces. The user is also able to search, find,
manage and enable/disable a set of charters based on any
criteria found in the charter definitions themselves. A knowl
edgeable or authorized user may organize charters as he sees

5 that make sense in context of a particular MS application by
automating suggestions. Special terms and atomic operands
are determined for an application context, and candidate
charters and/or portions thereof are presented for use to the
user based on being derived from the special terms and

fit, for example to assign charters to categories and appli
cations. The charter starters user interface organizes charters
in easily identifiable groups (e.g. folders, categories, appli
cations, etc) and provides simplicity for enabling, disabling
and organizing any desired sets of complex charter configu
rations.

10 atomic operands determined for the application context. A
user's effort in creating charters for a particular application
context is minimized with ready-made charters or charter
portions that are automatically determined to be relevant for
the particular application context. Upon being presented

15 with suggestions, the user can select, or select and "tweak"
to a desired charter configuration. The user can also con
figure privileges that are in context of the application or the
charters selected.

It is an advantage for automatically comparing MS data
It is an advantage in providing application term triggered

processing to the LBX platform described, and for all users
and skill sets thereof. A rich programming environment and
user friendly configuration environment is provided wherein
application data which becomes modified causes triggering

20 profile information for matches for triggering conditional
actions of charters. Users can configure data which is
beaconed to other MSs and then compared for matches for
automated charter processing. MSs are automated with
social interaction to other MSs so that MS users are alerted

of privileged actions configured by users. The programming 25

environment can be embedded in, or "plugged into", an
existing software development environment, or provided on
its own. A syntax may be specified with source code
statements, XML, SQL database definitions, a datastream, or
any other derivative of the disclosed BNF grammar. The 30

platform is an event based environment wherein events of
modifying application data containing configured sought
values/information are recognized for triggering processing
of actions. Events can be defined with complex expressions,
and actions can be defined using homegrown executables, 35

APis, scripts, applications, a set of commands provided with
the LBX platform, or any other executable processing. The
LBX platform includes a variety of embodiments as
described.

of MS users of interest in the vicinity for a variety of
applications.

It is an advantage for transmitting application data fields
to peer MSs in the vicinity, receiving application data fields
from peer MSs in the vicinity, transmitting application data
fields to data processing systems in the vicinity in a peer to
peer manner, and receiving application data fields from data
processing systems in the vicinity in a peer to peer manner
for interoperability of a diverse set of applications and
automated triggered processing thereof, while not using an
application server to middle-man the data (e.g. MSs com
municate with each other directly and wirelessly as peers).
Application data fields shared between peer data processing
systems (e.g. MSs) are preferably additionally available at a
MS as AppTerm data (see below). A user has control for

Another advantage is providing a comprehensive palette 40 disabling or enabling which application data fields are
shared. Privileges configured between MSs enforce desired
effects for processing the data on MSs which send or receive
the data.

of paste commands for pasting LBX data into data entry
fields, snapshot images, or one or more video stream frames.
Data can be accessed and used for pasting from: queue 22;
history 30; statistics 14; service directory 16; atomic terms;
map terms; WDRTerm data; AppTerm data; any term or 45

construct of the LBX BNF grammar; data describing cur
rent, past or future LBX data; averages of MS or LBX data;
data derived from MSs in the vicinity (e.g. nearby); and data
sensed, received, sent, processed, analyzed, or predicted at
the MS. Data being pasted may be converted prior to the 50

paste as a user requests. The user may adjust the paste data
appearance (font, size, color, or any other appearance char
acteristic) prior to finalizing the paste action.

Yet another advantage is providing "plug-in" application
support so that an application can be integrated conveniently 55

into the LBX architecture and framework through Prefix
Registry Records 5300. Application data and executable
interfaces are "plugged in". Application data is made acces
sible to charter processing for conditional and configurable
event based charter processing. Various "plug-in" systems 60

and methods are described. The LBX platform is designed to
integrate well with MS applications of all varieties for a
cohesive architecture.

Another advantage is for tightly coupling/integrating
LBX processing configuration and processing into a pro- 65

gramming environment for a WPL in context of a rich PPL.
LBX processing can be a "plug-in" to PPLs, or may be

A further advantage is to provide MSs with a wealth of
location based enhanced applications without requiring a
service. It is also an advantage to not require a service for
geo-fence alerts, proactive content delivery, and nearby
alerts, for example as described by server based U.S. Patent
pending Ser. No. 11/207,080 ("System and Method for
Anonymous Location Based Services", Johnson). Herein,
alert processing, geo-fences and content is maintained at a
MS for a) being processed at the MS when interacting
directly with peer MSs; and b) being shared with peer MSs
for being processed at peer MSs. Better performance of
processing content delivery and providing alerts is achieved
because it occurs at the MSs without any interoperability to
some "middleman" service.

Another advantage is in leveraging the multi-threaded and
wireless multi-wave, multi-frequency and multi-channel
capability of the disclosed MS for RFID and RDS integra
tion. RFID and RDS interfaces fit nicely in the LBX
framework as described below.

A further advantage is for the MS to automatically, or
upon user request, analyze a picture, or video stream frame,
for the purpose of more confidently determining a MS
location. User configurations are used to drive desired
processing.

Petitioners' Ex. 1001, Page 335 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
17

Another advantage is for thoroughly maintaining and
managing statistics and history information at a MS. Many
options are supported for how, where, and when to save such
information.

A further advantage is to provide Sudden Proximal User 5

Interfaces (SPUis) at a MS when detecting other data
processing systems in the vicinity (e.g. another MS, a RFID
device, a data processing system emulating a MS, or any
other data processing system). A SPUI is a GUI for notifying
a MS user that a remote data processing system of interest 10

is in the vicinity, based on configured "in the vicinity"
conditions. Presenting the SPUI at the MS can be triggered
by charter configurations, application term (AppTerm) trig
ger configurations, or RFID trigger configurations. There are
many applications for SPUI processing for saving MS users 15

time from MS user interface interactions for common tasks,
for example appliance and device interfaces. Authentication
can be automated. Also, SPUis save data from previous
executions for defaulting data in a subsequent execution
thereby preventing the burdening of a MS user from re- 20

entering data to the MS that was already entered once
previously. There are many applications that fit within the
SPUI framework, some of which are described below.

Another advantage is for providing a user with the ability
to manually request to send/transmit outbound data with 25

options for customizing, such as: a WDR, a derivative of a
WDR, a subset of a WDR, a user configured set of data, or
any customized set of data. If a WDR or derivative/subset
thereof is to be sent, the WDR may first be searched for at
the MS with user specified search criteria and/or transmitted 30

outbound according to user specified transmission criteria.
It is an advantage to provide a task monitor/trace interface

for examining MS task status for current and past system
states. The task monitor interface permits convenient con
textual charter creation as desired by the user based on task 35

status findings.
It is an advantage for providing generic application record

sorting based on: MS whereabouts, whereabouts of a par
ticular MS, whereabouts of others in the vicinity, or other
WDR search criteria for sorting WDRs maintained at the MS 40

where the sort is requested.
Another advantage is for providing one or more vicinity

monitors for indicating MSs of interest that are nearby. The
multi-threaded MS supports a plurality of vicinity monitors.
A MS user configures criteria/conditions (i.e. expression) for 45

a vicinity monitor for being compared to WDR information
as it is received at the MS. The expression result (True/
False) determines whether or not the MS that originated the
WDR is to be monitored within the particular vicinity
monitor. A polling or asynchronous event (e.g. as WDRs 50

received) design may be used.
Another advantage is for automatic inventory manage

ment processing for inventory items that are in the vicinity
of a MS at some point in time. A MS user can move to the
whereabouts of particular items he desires to keep an 55

inventory of for automatically managing the inventory by
counting the current stock, performing orders for stocking,
and tracking an order. The MS user can configure payment
information for automatic order processing. Inventory items
are enabled for inventory management in having an associ- 60

ated data processing system (e.g. (RFID tag, affixed/inte
grated MS, etc). A MS user can manually perform an order
using the automatically determined inventory count infor
mation, or the order can be scheduled for automatic ordering
(e.g. using a calendar entry). Inventory items can be ordered 65

individually or as a group, perhaps as part of a group
hierarchy. Typical uses are for managing the life of a typical

18
MS user: products stocked in kitchen pantry, refrigerator,
freezer, closet, office, bathrooms, laundry room, office sup
ply closet, or other areas of a MS user's home, office or place
of work.

Another advantage is for providing a MS user with a
convenient resource mapping of privileges and charters
between identities. For example, it could be tedious figuring
out all the privileges, grants and charters which are granted
to one MS user, and then granting those same rights to
another MS user. Such a task is error prone and time
consuming. Resource mapper functionality is provided
wherein all rights (e.g. privileges) of one identifier can be
assigned to another identifier in a single operation. The same
rights can subsequently be removed as a single operation. A
MS user has the ability to model granting privileges and
charters to an identity (e.g. group), and then assign all of
those, or remove all of those, in a single operation to other
identifiers.

A further advantage is for different applications to be
correlated through cross application addressing so that fea
tures or contexts of one application can be used to auto
matically affect features or contexts of another application.
Identifiers used in context of one application are correlated
to another application form. For example, an email appli
cation recipient address is correlated to the phone applica
tion caller id for the same MS in order to instantly (upon user
request) show all emails associated to a person on an active
phone call. The correlation occurs transparently without
needing to know addressing details. There can be many
identifier forms for correlation for a single MS depending on
an application in use.

Further features and advantages of the disclosure, as well
as the structure and operation of various embodiments of the
disclosure, are described in detail below with reference to
the accompanying drawings. In the drawings, like reference
numbers generally indicate identical, functionally similar,
and/or structurally similar elements. The drawing in which
an element first appears is indicated by the leftmost digit(s)
in the corresponding reference number, except that reference
numbers 1 through 99 may be found on the first 4 drawings
of FIGS. lA through lD, and FIG. lF. Dashed outlines (e.g.
process blocks, data record fields) may be used in the
drawings to highlight, or indicate optional embodiments, for
example depending on MS performance considerations.
None of the drawings, discussions, or materials herein is to
be interpreted as limiting to a particular embodiment. The
broadest interpretation is intended. Other embodiments
accomplishing same functionality are within the spirit and
scope of this disclosure. It should be understood that infor
mation is presented by example and many embodiments
exist without departing from the spirit and scope of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

There is no guarantee that there are descriptions in this
specification for explaining every novel feature found in the
drawings. The present disclosure will be described with
reference to the accompanying drawings, wherein:

FIG. lA depicts a preferred embodiment high level
example componentization of a MS in accordance with the
present disclosure;

FIG. lB depicts a Location Based eXchanges (LBX)
architectural illustration for discussing the present disclo
sure;

Petitioners' Ex. 1001, Page 336 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
19

FIG. lC depicts a Location Based Services (LBS) archi
tectural illustration for discussing prior art of the present
disclosure;

FIG. lD depicts a block diagram of a data processing
system useful for implementing a MS, ILM, DLM, central- 5

ized server, or any other data processing system disclosed
herein;

20
FIG. SB depicts a flowchart for describing a preferred

embodiment of locating a MS through physically contacting
the MS;

FIG. SC depicts a flowchart for describing a preferred
embodiment of locating a MS through a manually entered
whereabouts of the MS;

FIG. 9A depicts a table for illustrating heterogeneously
locating a MS; FIG. lE depicts a network illustration for discussing

various deployments of whereabouts processing aspects of
the present disclosure;

FIG. lF depicts a network illustration for discussing LBX
character provided to a MS through user LBX configurations
made;

FIG. 9B depicts a flowchart for describing a preferred
10 embodiment of heterogeneously locating a MS;

FIG. 2A depicts an illustration for describing automatic
location of a MS through the MS coming into range of a 15

stationary cellular tower;
FIG. 2B depicts an illustration for describing automatic

location of a MS through the MS coming into range of some
stationary antenna;

FIG. 2C depicts an illustration for discussing an example 20

of automatically locating a MS through the MS coming into
range of some stationary antenna;

FIG. 2D depicts a flowchart for describing a preferred
embodiment of a service whereabouts update event of an
antenna in-range detected MS when MS location awareness 25

is monitored by a stationary antenna or cell tower;

FIGS. lOA and l0B depict an illustration of a Locatable
Network expanse (LN-Expanse) for describing locating of
an ILM with all DLMs;

FIG. l0C depicts an illustration of a Locatable Network
expanse (LN-Expanse) for describing locating of an ILM
with an ILM and DLM;

FIGS. lOD, l0E, and l0F depict an illustration of a
Locatable Network expanse (LN-Expanse) for describing
locating of an ILM with all ILMs;

FIGS. l0G and l0H depict an illustration for describing
the infinite reach of a Locatable Network expanse (LN
Expanse) according to MSs;

FIG. lOI depicts an illustration of a Locatable Network
expanse (LN-Expanse) for describing a supervisory service;

FIG. llA depicts a preferred embodiment of a Where
abouts Data Record (WDR) 1100 for discussing operations
of the present disclosure;

FIG. 2E depicts a flowchart for describing a preferred
embodiment of an MS whereabouts update event of an
antenna in-range detected MS when MS location awareness
is monitored by the MS;

FIG. 2F depicts a flowchart for describing a preferred
embodiment of a procedure for inserting a Whereabouts
Data Record (WDR) to an MS whereabouts data queue;

FIGS. llB, llC and llD depict an illustration for describ-
30 ing various embodiments for determining the whereabouts

of an MS;

FIG. 3Adepicts a locating by triangulation illustration for
discussing automatic location of a MS;

FIG. 3B depicts a flowchart for describing a preferred
embodiment of the whereabouts update event of a triangu
lated MS when MS location awareness is monitored by
some remote service;

35

FIG. 3C depicts a flowchart for describing a preferred 40

embodiment of the whereabouts update event of a triangu
lated MS when MS location awareness is monitored by the
MS;

FIG. 4A depicts a locating by GPS triangulation illustra-
tion for discussing automatic location of a MS; 45

FIG. 4B depicts a flowchart for describing a preferred
embodiment of the whereabouts update event of a GPS
triangulated MS;

FIG. SA depicts a locating by stationary antenna triangu
lation illustration for discussing automatic location of a MS; 50

FIG. SB depicts a flowchart for describing a preferred
embodiment of the whereabouts update event of a stationary
antenna triangulated MS;

FIG. 6A depicts a flowchart for describing a preferred
embodiment of a service whereabouts update event of a 55

physically or logically connected MS;
FIG. 6B depicts a flowchart for describing a preferred

embodiment of a MS whereabouts update event of a physi
cally or logically connected MS;

FIGS. 7A, 7B and 7C depict a locating by image sensory 60

illustration for discussing automatic location of a MS;
FIG. 7D depicts a flowchart for describing a preferred

embodiment of graphically locating a MS, for example as
illustrated by FIGS. 7A through 7C;

FIG. SA heterogeneously depicts a locating by arbitrary 65

wave spectrum illustration for discussing automatic location
of a MS;

FIG. llE depicts an illustration for describing various
embodiments for automatically determining the where
abouts of an MS;

FIG. 12 depicts a flowchart for describing an embodiment
of MS initialization processing;

FIGS. 13A through 13C depict an illustration of data
processing system wireless data transmissions over some
wave spectrum;

FIG. 14A depicts a flowchart for describing a preferred
embodiment of MS LBX configuration processing;

FIG. 14B depicts a continued portion flowchart of FIG.
14A for describing a preferred embodiment of MS LBX
configuration processing;

FIG. 15A depicts a flowchart for describing a preferred
embodiment of DLM role configuration processing;

FIG. 15B depicts a flowchart for describing a preferred
embodiment of ILM role configuration processing;

FIG. 15C depicts a flowchart for describing a preferred
embodiment of a procedure for Manage List processing;

FIG. 16 depicts a flowchart for describing a preferred
embodiment of NTP use configuration processing;

FIG. 17 depicts a flowchart for describing a preferred
embodiment of WDR maintenance processing;

FIG. 18 depicts a flowchart for describing a preferred
embodiment of a procedure for variable configuration pro
cessing;

FIG. 19 depicts an illustration for describing a preferred
embodiment multithreaded architecture of peer interaction
processing of a MS in accordance with the present disclo
sure;

FIG. 20 depicts a flowchart for describing a preferred
embodiment of MS whereabouts broadcast processing;

FIG. 21 depicts a flowchart for describing a preferred
embodiment of MS whereabouts collection processing;

FIG. 22 depicts a flowchart for describing a preferred
embodiment of MS whereabouts supervisor processing;

Petitioners' Ex. 1001, Page 337 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
21

FIG. 23 depicts a flowchart for describing a preferred
embodiment of MS timing determination processing;

FIG. 24A depicts an illustration for describing a preferred
embodiment of a thread request queue record;

FIG. 24B depicts an illustration for describing a preferred 5

embodiment of a correlation response queue record;
FIG. 24C depicts an illustration for describing a preferred

embodiment of a WDR request record;
FIG. 25 depicts a flowchart for describing a preferred

embodiment of MS WDR request processing; 10

FIG. 26A depicts a flowchart for describing a preferred
embodiment of MS whereabouts determination processing;

FIG. 26B depicts a flowchart for describing a preferred
embodiment of processing for determining a highest pos-

15
sible confidence whereabouts;

FIG. 27A depicts a flowchart for describing a preferred
embodiment of queue prune processing;

FIG. 27B depicts a flowchart for describing a preferred
embodiment of setting confidence default values based on 20

user experience;
FIG. 28 depicts a flowchart for describing a preferred

embodiment of MS termination processing;
FIG. 29A depicts a flowchart for describing a preferred

embodiment of a process for starting a specified number of 25

threads in a specified thread pool;

22
FIG. 35B depicts a preferred embodiment of a Grant Data

Record (GRTDR) for discussing operations of the present
disclosure, derived from the grammar of FIGS. 30A through
30E;

FIG. 35C depicts a preferred embodiment of a Generic
Assignment Data Record (GADR) for discussing operations
of the present disclosure, derived from the granmiar of
FIGS. 30A through 30E;

FIG. 35D depicts a preferred embodiment of a Privilege
Data Record (PDR) for discussing operations of the present
disclosure, derived from the grammar of FIGS. 30A through
30E;

FIG. 35E depicts a preferred embodiment of a Group Data
Record (GRPDR) for discussing operations of the present
disclosure, derived from the grammar of FIGS. 30A through
30E;

FIG. 36A depicts a preferred embodiment of a Descrip
tion Data Record (DDR) for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E;

FIG. 36B depicts a preferred embodiment of a History
Data Record (HDR) for discussing operations of the present
disclosure, derived from the grammar of FIGS. 30A through
30E;

FIG. 36C depicts a preferred embodiment of a Time
specification Data Record (TDR) for discussing operations
of the present disclosure, derived from the granmiar of
FIGS. 30A through 30E;

FIG. 29B depicts a flowchart for describing a preferred
embodiment of a procedure for terminating the process
started by FIG. 29A;

FIGS. 30A through 30B depict a preferred embodiment
BNF grammar for variables, variable instantiations and
common granmiar for BNF granmiars of permissions,
groups and charters;

FIG. 36D depicts a preferred embodiment of a Variable
30 Data Record (VDR) for discussing operations of the present

disclosure, derived from the grammar of FIGS. 30A through
30E;

FIG. 30C depicts a preferred embodiment BNF grammar
for permissions and groups;

FIGS. 30D through 30E depict a preferred embodiment
BNF grammar for charters;

FIGS. 31A through 31E depict a preferred embodiment
set of command and operand candidates for Action Data
Records (ADRs) facilitating discussing associated param
eters of the AD Rs of the present disclosure;

FIG. 32A depicts a preferred embodiment of a National
Language Support (NLS) directive command cross refer
ence;

FIG. 32B depicts a preferred embodiment of a NLS
directive operand cross reference;

FIG. 37A depicts a preferred embodiment of a Charter
Data Record (CDR) for discussing operations of the present

35 disclosure, derived from the grammar of FIGS. 30A through
30E;

FIG. 37B depicts a preferred embodiment of an Action
Data Record (ADR) for discussing operations of the present
disclosure, derived from the grammar of FIGS. 30A through

40 30E;

45

FIG. 37C depicts a preferred embodiment of a Parameter
Data Record (PARMDR) for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E;

FIG. 37D depicts a preferred embodiment of Charters
Starters schema for discussing operations of the present
disclosure;

FIG. 38 depicts a flowchart for describing a preferred
embodiment of MS permissions configuration processing;

FIGS. 39A through 39B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
permissions configuration;

FIG. 33A depicts a preferred embodiment American
National Standards Institute (ANSI) X.409 encoding of the
BNF grammar of FIGS. 30A through 30B for variables, 50

variable instantiations and common grammar for BNF gram
mars of permissions and charters;

FIGS. 40A through 40B depict flowcharts for describing
a preferred embodiment of MS user interface processing for

55 grants configuration;

FIG. 33B depicts a preferred embodiment ANSI X.409
encoding of the BNF grammar of FIG. 30C for permissions
and groups; FIGS. 41A through 418 depict flowcharts for describing

a preferred embodiment of MS user interface processing for
groups configuration;

FIGS. 33C-l and 33C-2 (both hereinafter referred to as
FIG. 33C) depict a preferred embodiment ANSI X.409
encoding of the BNF granmiar of FIGS. 30D through 30E
for charters;

FIGS. 34A through 34G depict preferred embodiment C
programming source code header file contents, derived from
the grammar of FIGS. 30A through 30E;

FIG. 42 depicts a flowchart for describing a preferred
60 embodiment of a procedure for viewing MS configuration

information of others;

FIG. 35A depicts a preferred embodiment of a Granting
Data Record (GDR) for discussing operations of the present 65

disclosure, derived from the granmiar of FIGS. 30A through
30E;

FIG. 43 depicts a flowchart for describing a preferred
embodiment of a procedure for configuring MS acceptance
of data from other MSs;

FIG. 44A depicts a flowchart for describing a preferred
embodiment of a procedure for sending MS data to another
MS;

Petitioners' Ex. 1001, Page 338 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
23

FIG. 44B depicts a flowchart for describing a preferred
embodiment of receiving MS configuration data from
another MS;

24
FIG. 62 depicts a flowchart for describing a preferred

embodiment of a procedure for performing an action corre
sponding to a configured command;

FIG. 45A depicts a flowchart for describing a preferred
embodiment of MS charters configuration processing;

FIG. 45B depicts a flowchart for describing a preferred
embodiment of MS charter enablement and disablement
processing;

FIG. 63A depicts a flowchart for describing a preferred
5 embodiment of a procedure for Send command action

processing;
FIGS. 63B-1 through 63B-7 depicts a matrix describing

how to process some varieties of the Send command;

FIGS. 46A through 46B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
charters configuration;

FIG. 63C depicts a flowchart for describing one embodi-
10 ment of a procedure for Send command action processing,

as derived from the processing of FIG. 63A;

FIGS. 47A through 47B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
actions configuration;

FIGS. 48A through 48B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
parameter information configuration;

15

FIG. 49A depicts an illustration for preferred permission
data characteristics in the present disclosure LBX architec- 20

ture;
FIG. 49B depicts an illustration for preferred charter data

characteristics in the present disclosure LBX architecture;
FIGS. SOA through SOC depict an illustration of data

processing system wireless data transmissions over some 25

wave spectrum;
FIG. 51A depicts an example of a source code syntactical

encoding embodiment of permissions, derived from the
grammar of FIGS. 30A through 30E;

FIG. 51B depicts an example of a source code syntactical 30

encoding embodiment of charters, derived from the gram
mar of FIGS. 30A through 30E;

FIG. 52 depicts another preferred embodiment C pro
gramming source code header file contents, derived from the

35
grammar of FIGS. 30A through 30E;

FIG. 53 depicts a preferred embodiment of a Prefix
Registry Record (PRR) for discussing operations of the
present disclosure;

FIG. 54 depicts an example of an XML syntactical 40

encoding embodiment of permissions and charters, derived
from the BNF grammar of FIGS. 30A through 30E;

FIG. 64A depicts a flowchart for describing a preferred
embodiment of a procedure for Notify command action
processing;

FIGS. 64B-1 through 64B-4 depicts a matrix describing
how to process some varieties of the Notify command;

FIG. 64C depicts a flowchart for describing one embodi
ment of a procedure for Notify command action processing,
as derived from the processing of FIG. 64A;

FIG. 65A depicts a flowchart for describing a preferred
embodiment of a procedure for Compose command action
processing;

FIGS. 65B-1 through 65B-7 depicts a matrix describing
how to process some varieties of the Compose command;

FIG. 65C depicts a flowchart for describing one embodi
ment of a procedure for Compose command action process
ing, as derived from the processing of FIG. 65A;

FIG. 66A depicts a flowchart for describing a preferred
embodiment of a procedure for Connect command action
processing;

FIGS. 66B-1 through 66B-2 depicts a matrix describing
how to process some varieties of the Connect command;

FIG. 66C depicts a flowchart for describing one embodi
ment of a procedure for Connect command action process
ing, as derived from the processing of FIG. 66A;

FIG. 67A depicts a flowchart for describing a preferred
embodiment of a procedure for Find command action pro
cessing;

FIGS. 67B-1 through 67B-13 depicts a matrix describing
how to process some varieties of the Find command;

FIG. 67C depicts a flowchart for describing one embodi
ment of a procedure for Find command action processing, as
derived from the processing of FIG. 67A; FIG. SSA depicts a flowchart for describing a preferred

embodiment of MS user interface processing for Prefix
Registry Record (PRR) configuration;

FIG. 68A depicts a flowchart for describing a preferred
45 embodiment of a procedure for Invoke command action

processing; FIG. 55B depicts a flowchart for describing a preferred
embodiment of Application Term (AppTerm) data modifi
cation;

FIG. 56 depicts a flowchart for appropriately processing
an encoding embodiment of the BNF grannnar of FIGS. 30A
through 30E, in context for a variety of parser processing
embodiments;

FIGS. 68B-1 through 68B-5 depicts a matrix describing
how to process some varieties of the Invoke command;

FIG. 68C depicts a flowchart for describing one embodi-
50 ment of a procedure for Invoke command action processing,

as derived from the processing of FIG. 68A;

FIG. 57 depicts a flowchart for describing a preferred
embodiment ofWDR In-process Triggering Smarts (WITS)
processing;

FIG. 58 depicts an illustration for granted data character
istics in the present disclosure LBX architecture;

55

FIG. 59 depicts a flowchart for describing a preferred
embodiment of a procedure for enabling LBX features and
functionality in accordance with a certain type of permis- 60

sions;
FIG. 60 depicts a flowchart for describing a preferred

embodiment of a procedure for performing LBX actions in
accordance with a certain type of permissions;

FIG. 61 depicts a flowchart for describing a preferred 65

embodiment of performing processing in accordance with
configured charters;

FIG. 69A depicts a flowchart for describing a preferred
embodiment of a procedure for Copy command action
processing;

FIGS. 69B-1 through 69B-14 depicts a matrix describing
how to process some varieties of the Copy command;

FIG. 69C depicts a flowchart for describing one embodi
ment of a procedure for Copy command action processing,
as derived from the processing of FIG. 69A;

FIG. 70A depicts a flowchart for describing a preferred
embodiment of a procedure for Discard command action
processing;

FIGS. 70B-1 through 70B-11 depicts a matrix describing
how to process some varieties of the Discard command;

FIG. 70C depicts a flowchart for describing one embodi
ment of a procedure for Discard command action process
ing, as derived from the processing of FIG. 70A;

Petitioners' Ex. 1001, Page 339 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
25 26

FIG. 80A depicts a LBX application fields implementa
tion status table;

FIG. 71A depicts a flowchart for describing a preferred
embodiment of a procedure for Move command action
processing;

FIGS. 71B-1 through 71B-14 depicts a matrix describing
how to process some varieties of the Move command;

FIG. 71C depicts a flowchart for describing one embodi
ment of a procedure for Move command action processing,
as derived from the processing of FIG. 71A;

FIGS. 80B-1 through 80B-4 (referred generally as FIG.
80B) depict some section descriptions of registered LBX

5 application fields;
FIG. SOC depicts a flowchart for describing a preferred

embodiment of a procedure for application fields section
initialization processing;

FIG. 72A depicts a flowchart for describing a preferred
embodiment of a procedure for Store command action
processing;

FIG. SOD depicts a flowchart for describing a preferred
10 embodiment of MS Radio Frequency Identification (RFID)

probe processing;
FIGS. 72B-1 through 72B-S depicts a matrix describing

how to process some varieties of the Store command;
FIG. 72C depicts a flowchart for describing one embodi

ment of a procedure for Store command action processing,
as derived from the processing of FIG. 72A;

FIG. SOE depicts a flowchart for describing a preferred
embodiment of processing for receiving data from an RFID

15
device;

FIG. 81A depicts a flowchart for describing a preferred
embodiment of processing for configuring criteria used by a
MS to graphically locate itself; FIG. 73A depicts a flowchart for describing a preferred

embodiment of a procedure for Administration command
action processing;

FIGS. 73B-1 through 73B-7 depicts a matrix describing
how to process some varieties of the Administration com
mand;

FIG. 81B depicts a flowchart for describing a preferred
20 embodiment of processing for a MS to graphically locate

itself;

FIG. 73C depicts a flowchart for describing one embodi
ment of a procedure for Administration command action
processing, as derived from the processing of FIG. 73A;

FIG. 74A depicts a flowchart for describing a preferred
embodiment of a procedure for Change command action

FIG. 82A depicts a flowchart for describing a preferred
embodiment of processing for maintaining LBX history;

FIG. 82B depicts a flowchart for describing a procedure
25 to maintain information to LBX history;

processing;
FIG. 74C depicts a flowchart for describing one embodi- 30

ment of a procedure for Change command action process
ing, as derived from the processing of FIG. 74A;

FIG. 7SA depicts a flowchart for describing a preferred
embodiment of a procedure for sending data to a remote MS;

FIG. 7SB depicts a flowchart for describing a preferred 35

embodiment of processing for receiving execution data from
another MS;

FIG. 76A depicts a flowchart for describing a preferred
embodiment of processing a special term information paste
action at a MS;

FIG. 76B-1 illustrates a preferred embodiment of Appli
cation term interface processing;

40

FIG. 83A depicts a flowchart for describing a preferred
embodiment of processing for configuring LBX statistics;

FIG. 83B depicts a flowchart for describing a procedure
to maintain information to LBX statistics;

FIG. 84A depicts a flowchart for describing a preferred
embodiment of processing for configuring service propaga
tion;

FIG. 84B depicts a flowchart for describing a procedure
to process application fields according to how they are
enabled or disabled;

FIG. SSA depicts a preferred embodiment of a Service
Directory Record (SDR) for discussing operations of the
present disclosure;

FIG. SSB depicts a flowchart for describing a preferred
embodiment of a procedure for processing a request for a
propagated service;

FIG. 76B-2 illustrates an embodiment of Application term
interface processing for applications not using a standard
ized LBX coding practice;

FIG. SSC depicts a flowchart for describing an example
embodiment of MS application processing relevant for inter-

45 facing to a propagated service;
FIG. 76B-3 illustrates a preferred embodiment of charter

invocation interface processing;
FIG. 76C illustrates a preferred embodiment of Applica

tion term shared memory records;
FIG. 76D depicts a flowchart for describing a preferred 50

embodiment of processing for contextual charter creation;
FIG. 77 depicts a flowchart for describing a preferred

embodiment of configuring data to be maintained to WDR
Application Fields;

FIG. 78 depicts a simplified example of an XML syntac- 55

ti cal encoding embodiment of a profile for the profile section
of WDR Application Fields;

FIG. 79A illustrates a branch subset of a tree structure;
FIG. 79B illustrates a binary tree equivalent to the tree

structure of FIG. 79A which is used to support XML tag tree 60

traversal processing;
FIG. 79C depicts a preferred embodiment C programming

source code structure for encoding a node in an internalized
XML tree;

FIG. 79D depicts a flowchart for describing a preferred 65

embodiment of a procedure for profile match operator
evaluation;

FIG. SSD depicts a flowchart for describing a preferred
embodiment of processing at a MS when receiving a request
for a propagated service from a remote MS;

FIG. SSE depicts a flowchart for describing a preferred
embodiment of processing for an executable that updates
service directory information;

FIG. 86A depicts a flowchart for describing a preferred
embodiment of processing for configuring the service infor
mant;

FIG. 86B depicts a flowchart for describing a preferred
embodiment procedure to provide service informant pro
cessing;

FIG. 86C depicts a preferred embodiment of a Service
Informant Record (SIR) for discussing operations of the
present disclosure;

FIG. 87A depicts a flowchart for describing a preferred
embodiment of Sudden Proximal User Interface (SPUI)
processing;

FIG. 87B illustrates different embodiments for discussing
various application data processing systems which can be
automatically controlled by a MS according to the present
disclosure;

Petitioners' Ex. 1001, Page 340 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
27

FIG. S7C depicts a flowchart for describing a remote data
processing system application environment covering an infi
nite number of MS controllable applications;

FIG. SSA depicts a flowchart for describing a preferred
embodiment of manually transmitting WDR information;

FIG. SSB depicts a flowchart for describing a preferred
embodiment of MS task monitor processing;

FIG. S9A depicts a flowchart for describing a preferred
embodiment of updating a MS global variable for the last
time a MS input peripheral was acted upon by a MS user;

FIG. 90A depicts a flowchart for a preferred embodiment
for processing the request to specify a map term;

FIG. 90B depicts a preferred embodiment of a Map Term
Data Record (MTDR) for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E;

FIGS. 91A through 91B depict preferred data schema
embodiments of automated inventory management for dis
cussing operations of the present disclosure;

FIG. 91C depicts a flowchart for a preferred embodiment
for inventory management processing;

FIG. 91D depicts a flowchart for a preferred embodiment
of automatically processing whereabouts of inventory items
in the vicinity of a MS;

FIG. 92A depicts a flowchart for a preferred embodiment
for inventory group management processing;

FIG. 92B depicts a flowchart for a preferred embodiment
for automatic order processing of inventory items according
to a schedule;

FIG. 93A depicts a flowchart for a preferred embodiment
for payment method management processing;

FIG. 93B depicts a flowchart for a preferred embodiment
for pending inventory order management processing;

FIG. 94A depicts a flowchart for a preferred embodiment
of a procedure for automatically ordering inventory;

FIG. 94B depicts a flowchart for a preferred embodiment
for order services management processing;

FIG. 95A depicts a preferred embodiment of a resource
mapper record for resource mapper processing of the present
disclosure;

FIG. 95B depicts a flowchart for a preferred embodiment
for automatic resource mapper processing;

FIG. 96A depicts a flowchart for a preferred embodiment
for automatic application sort index processing;

FIG. 96B illustrates an example application use of sort
index processing;

FIG. 97 A depicts a flowchart for a preferred embodiment
for vicinity monitor configuration processing;

FIG. 97B depicts a preferred embodiment of a Vicinity
Monitor Data Record (VMDR) for discussing operations of
vicinity monitor processing; and

FIG. 97C depicts a flowchart for a preferred embodiment
for vicinity monitor processing.

DETAILED DESCRIPTION OF THE
INVENTION

With reference now to detail of the drawings, the present
disclosure is described. Obvious error handling is omitted
from the flowcharts in order to focus on the key aspects of
the present disclosure. Obvious error handling includes
database I/O errors, field validation errors, errors as the
result of database table/data constraints or unique keys, data
access errors, communications interface errors or packet
collision, hardware failures, checksum validations, bit error
detections/corrections, and any other error handling as well
known to those skilled in the relevant art in context of this

28
disclosure. A semicolon may be used in flowchart blocks to
represent, and separate, multiple blocks of processing within
a single physical block. This allows simpler flowcharts with
less blocks in the drawings by placing multiple blocks of

5 processing description in a single physical block of the
flowchart. Flowchart processing is intended to be interpreted
in the broadest sense by example, and not for limiting
methods of accomplishing the same functionality. Prefer
ably, field validation in the flowcharts checks for SQL

10 injection attacks, communications protocol sniff and hack
attacks, preventing of spoofing MS addresses, syntactical
appropriateness, and semantics errors where appropriate.
Disclosed user interface processing and/or screenshots are

15
also preferred embodiment examples that can be imple
mented in other ways without departing from the spirit and
scope of this disclosure. Alternative user interfaces (since
this disclosure is not to be limiting) will use similar mecha
nisms, but may use different mechanisms without departing

20 from the spirit and scope of this disclosure.
Locational terms such as whereabouts, location, position,

area, destination, perimeter, radius, geofence, situational
location, or any other related two or three dimensional
locational term used herein to described position(s) and/or

25 locations and/or whereabouts is to be interpreted in the
broadest sense. Location field 1100c may include an area
(e.g. on earth), a point (e.g. on earth), or a three dimensional
bounds in space. In another example, a radius may define a
sphere in space, rather than a circle in a plane. In some

30 embodiments, a planet field forms part of the location (e.g.
Earth, Mars, etc as part of field 1100c) for which other
location information (e.g. latitude and longitude on Mars
also part of field 1100c) is relative. In some embodiments,
elevations (or altitudes) from known locatable point(s),

35 distances from origin(s) in the universe, etc. can denote
where exactly is a point of three dimensional space, or three
dimensional sphere, area, or solid, is located. That same
point can provide a mathematical reference to other points of
the solid area/region in space. Descriptions for angles,

40 pitches, rotations, etc from some reference point(s) may be
further provided. Three dimensional areas/regions include a
conical shape, cubical shape, spherical shape, pyramidal
shape, irregular shapes, or any other shape either manipu
lated with a three dimensional graphic interface, or with

45 mathematical model descriptions. Areas/regions in space
can be occupied by a MS, passed through (e.g. by a traveler)
by a MS, or referenced through configuration by a MS. In a
three dimensional embodiment, nearby/nearness is deter
mined in terms of three dimensional information, for

50 example, a spherical radius around one MS intersecting a
spherical radius around another MS. In a two dimensional
embodiment, nearby/nearness is determined in terms of two
dimensional information, for example, a circular radius
around one MS intersecting a circular radius around another

55 MS. Points can be specified as a point in a x-y-z plane, a
point in polar coordinates, or the like, perhaps the center of
a planet (e.g. Earth) or the Sun, some origin in the Universe,
or any other origin for distinctly locating three dimensional
location(s), positions, or whereabouts in space. Elevation

60 (e.g. for earth, or some other planet, etc) may be useful to the
three dimensional point of origin, and/or for the three
dimensional region in space. A region in space may also be
specified with connecting x-y-z coordinates together to
bound the three dimensional region in space. There are many

65 methods for representing a location (field 1100c) without
departing from the spirit and scope of this disclosure. MSs,
for example as carried by users, can travel by airplane

Petitioners' Ex. 1001, Page 341 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
29

through three dimensional areas/regions in space, or travel
under the sea through three dimensional regions in space.

Various embodiments of communications between MSs,

30
Whereabouts Data Records (WDRs) 1100, and is a First
In-First-Out (FIFO) queue when considering housekeeping
for pruning the queue to a reasonable trailing history of
inserted entries (i.e. remove stale entries). WDR queue 22 is
preferably designed with the ability of queue entry retrieval
processing similar to Standard Query Language (SQL) que-
rying, wherein one or more entries can be retrieved by
querying with a conditional match on any data field(s) of
WDR 1100 and returning lists of entries in order by an
ascending or descending key on one or any ascending/
descending ordered list of key fields.

All disclosed queues (e.g. 22, 24, 26, 1980, 1990 (See
FIG. 19), or any other queue) are implemented with an
appropriate thread-safe means of queue entry peeking
(makes copy of sought queue entry without removing),
discarding, retrieval, insertion, and queue entry field sorted
search processing. Queues are understood to have an asso
ciated implicit semaphore to ensure appropriate synchro
nous access to queue data in a multi-threaded environment

or an MS and service(s), will share channels (e.g. frequen
cies) to communicate, depending on when in effect. Sharing 5

a channel will involve carrying recognizable and process
able signature to distinguish transmissions for carrying data.
Other embodiments of communications between MSs, or an
MS and service(s), will use distinct channels to communi
cate, depending on when in effect. The number of channels 10

that can be concurrently listened on and/or concurrently
transmitted on by a data processing system will affect which
embodiments are preferred. The number of usable channels
will also affect which embodiments are preferred. This
disclosure avoids unnecessary detail in different communi- 15

cation channel embodiments so as to not obfuscate novel
material. Independent of various channel embodiments
within the scope and spirit of the present disclosure, MSs
communicate with other MSs in a peer to peer manner, in
some aspects like automated walkie-talkies. 20 to prevent data corruption and misuse. Such queue interfaces

are well known in popular operating systems. In MS oper
ating system environments which do not have an implicit
semaphore protected queue scheme, queue accesses in the
present disclosure flowcharts are to be understood to have a

Novel features disclosed herein need not be provided as
all or none. Certain features may be isolated in some MS
embodiments, or may appear as any subset of features and
functionality in other embodiments.

Location Based eXchanges (LBX) Architecture

FIG. lA depicts a preferred embodiment high level
example componentization of a MS in accordance with the
present disclosure. A MS 2 includes processing behavior
referred to as LBX Character 4 and Other Character 32.
LBX character 4 provides processing behavior causing MS
2 to take on the character of a Location Based Exchange
(LBX) MS according to the present disclosure. Other Char
acter 32 provides processing behavior causing MS to take on
character of prior art MSs in context of the type of MS.
Other character 32 includes at least other processing code
34, other processing data 36, and other resources 38, all of
which are well known to those skilled in the art for prior art
MSs. Other character 32 provides a MS user with a limited
set of configurability and functionality. In some embodi
ments, LBX character 4 components may, or may not, make
use of other character 32 components 34, 36, and 38. Other
character 32 components may, or may not, make use ofLBX
character 4 components 6 through 30.

LBX character 4 preferably includes at least Peer Inter
action Processing (PIP) code 6, Peer Interaction Processing
(PIP) data 8, self management processing code 18, self
management processing data 20, WDR queue 22, send
queue 24, receive queue 26, service informant code 28, and
LBX history 30. Peer interaction processing (PIP) code 6
comprises executable code in software, firmware, or hard
ware form for carrying out LBX processing logic of the
present disclosure when interacting with another MS. Peer
interaction processing (PIP) data 8 comprises data main
tained in any sort of memory of MS 2, for example hardware
memory, flash memory, hard disk memory, a removable
memory device, or any other memory means accessible to
MS 2. PIP data 8 contains intelligence data for driving LBX
processing logic of the present disclosure when interacting
with other MSs. Self management processing code 18 com
prises executable code in software, firmware, or hardware
form for carrying out the local user interface LBX process
ing logic of the present disclosure. Self management pro
cessing data 20 contains intelligence data for driving pro
cessing logic of the present disclosure as disclosed for
locally maintained LBX features. WDR queue 22 contains

25 previous request to a queue-assigned semaphore lock prior
to queue access, and a following release of the semaphore
lock after queue access. Operating systems without sema
phore control may use methods to achieve similar thread
safe synchronization functionality. Queue functionality may

30 be accomplished with lists, arrays, databases (e.g. SQL) and
other methodologies without departing from the spirit and
scope of queue descriptions herein.

Queue 22 alternate embodiments may maintain a plurality
of WDR queues which segregate WDRs 1100 by field(s)

35 values to facilitate timely processing. WDR queue 22 may
be at least two (2) separate queues: one for maintaining the
MS 2 whereabouts, and one for maintaining whereabouts of
other MSs. WDR queue 22 may be a single instance WDR
1100 in some embodiments which always contains the most

40 current MS 2 whereabouts for use by MS 2 applications
(may use a sister queue 22 for maintaining WDRs from
remote MSs). At least one entry is to be maintained to WDR
queue 22 at all times for MS 2 whereabouts.

Send queue 24 (Transmit (Tx) queue) is used to send
45 communications data, for example as intended for a peer MS

within the vicinity (e.g. nearby as indicated by maximum
range 1306) of the MS 2. Receive queue 26 (Receive (Rx)
queue) is used to receive communications data, for example
from peer MSs within the vicinity (e.g. nearby as indicated

50 by maximum range 1306) of the MS 2. Queues 24 and 26
may also each comprise a plurality of queues for segregating
data thereon to facilitate performance in interfacing to the
queues, in particular when different queue entry types and/or
sizes are placed on the queue. A queue interface for sending/

55 receiving data to/from the MS is optimal in a multi-threaded
implementation to isolate communications transport layers
to processing behind the send/receive queue interfaces, but
alternate embodiments may send/receive data directly from
a processing thread disclosed herein. Queues 22, 24, and/or

60 26 may be embodied as a purely data form, or SQL database,
maintained at MS 2 in persistent storage, memory, or any
other storage means. In some embodiments, queues 24 and
26 are not necessary since other character 32 will already
have accessible resources for carrying out some LBX char-

65 acter 4 processing.
Queue embodiments may contain fixed length records,

varying length records, pointers to fixed length records, or

Petitioners' Ex. 1001, Page 342 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
31

pointers to varying length records. If pointers are used, it is
assumed that pointers may be dynamically allocated for
record storage on insertions and freed upon record use after
discards or retrievals.

32
Service informant code 28 can communicate as requested
any data 8, 20, 22, 24, 26, 30, 36, 38, or any other data
processed at MS 2.

As well known to those skilled in the art, when a thread 5

LBX history 30 contains historical data useful in main
taining at MS 2, and possibly useful for informing a super
visory service through service informant code 28. LBX
History 30 preferably has an associated thread of processing
for keeping it pruned to the satisfaction of a user of MS 2
(e.g. prefers to keep last 15 days of specified history data,

sends on a queue 24 in anticipation of a corresponding
response, there is correlation data in the data sent which is
sought in a response received by a thread at queue 26 so the
sent data is correlated with the received data. In a preferred
embodiment, correlation is built using a round-robin gener
ated sequence number placed in data for sending along with
a unique MS identifier (MS ID). If data is not already
encrypted in communications, the correlation can be
encrypted. While the unique MS identifier (MS ID) may
help the MS identify which (e.g. wireless) data is destined
for it, correlation helps identify which data at the MS caused
the response. Upon receipt of data from a responder at queue
26, correlation processing uses the returned correlation (e.g.
field 1100m) to correlate the sent and received data. In
preferred embodiments, the sequence number is incre
mented each time prior to use to ensure a unique number,
otherwise it may be difficult to know which data received is
a response to which data was sent, in particular when many
data packets are sent within seconds. When the sequence
number reaches a maximum value (e.g. 2**32-1), then it is
round-robinned to O and is incremented from there all over
again. This assures proper correlation of data between the
MS and responders over time. There are other correlation
schemes (e.g. signatures, random number generation, check
sum counting, bit patterns, date/time stamp derivatives) to
accomplish correlation functionality. If send and receive
queues of Other Character 32 are used, then correlation can
be used in a similar manner to correlate a response with a
request (i.e. a send with a receipt).

There may be good reason to conceal the MS ID when
transmitting it wirelessly. In this embodiment, the MS ID is
a dependable and recognizable derivative (e.g. a pseudo MS
ID) that can be detected in communications traffic by the MS
having the pseudo MS ID, while concealing the true MS ID.
This would conceal the true MS ID from would-be hackers
sniffing wireless protocol. The derivative can always be
reliably the same for simplicity of being recognized by the
MS while being difficult to associate to a particular MS.
Further still, a more protected MS ID (from would-be
hackers that take time to deduce how an MS ID is
scrambled) can itself be a dynamically changing correlation
anticipated in forthcoming communications traffic, thereby
concealing the real MS ID (e.g. phone number or serial
number), in particular when anticipating traffic in a
response, yet still useful for directing responses back to the
originating MS (with the pseudo MS ID (e.g. correlation)).
A MS would know which correlation is anticipated in a
response by saving it to local storage for use until it becomes
used (i.e. correlated in a matching response), or becomes
stale. In another embodiment, a correlation response queue
(like CR queue 1990) can be deployed to correlate responses
with requests that contain different correlations for pseudo
MS IDs. In all embodiments, the MS ID (or pseudo MS ID)
of the present disclosure should enable targeting communi
cations traffic to the MS.

Service informant code 28 comprises executable code in
software, firmware, or hardware form for carrying out of
informing a supervisory service. The present disclosure does
not require a connected web service, but there are features
for keeping a service informed with activities of MS LBX.

10 and 30 days of another specified history data, etc). With a
suitable user interface to MS 2, a user may browse, manage,
alter, delete, or add to LBX History 30 as is relevant to
processing described herein. Service informant code 28 may
be used to cause sending of an outbound email, SMS

15 message, outbound data packet, or any other outbound
communication in accordance with LBX of the MS.

PIP data 8 preferably includes at least permissions 10,
charters 12, statistics 14, and a service directory 16. Per
missions 10 are configured to grant permissions to other MS

20 users for interacting the way the user of MS 2 desires for
them to interact. Therefore, permissions 10 contain permis
sions granted from the MS 2 user to other MS users. In
another embodiment, permissions 10 additionally, or alter
natively, contain permissions granted from other MS users to

25 the MS 2 user. Permissions are maintained completely local
to the MS 2. Charters 12 provide LBX behavior conditional
expressions for how MSs should interact with MS 2. Char
ters 12 are configured by the MS 2 user for other MS users.
In another embodiment, charters 12 additionally, or altema-

30 tively, are configured by other MS users for the MS 2 user.
Some charters expressions depend on permissions 10. Sta
tistics 14 are maintained at MS 2 for reflecting peer (MS) to
peer (MS) interactions of interest that occurred at MS 2. In
another embodiment, statistics 14 additionally, or altema-

35 tively, reflect peer (MS) to peer (MS) interactions that
occurred at other MSs, preferably depending on permissions
10. Service informant code 28 may, or may not, inform a
service of statistics 14 maintained. Service directory 16
includes routing entries for how MS 2 will find a sought

40 service, or how another MS can find a sought service
through MS 2.

In some embodiments, any code (e.g. 6, 18, 28, 34, 38)
can access, manage, use, alter, or discard any data (e.g. 8, 20,
22, 24, 26, 30, 36, 38) of any other component in MS 2.

45 Other embodiments may choose to keep processing of LBX
character 4 and other character 32 disjoint from each other.
Rectangular component boundaries are logical component
representations and do not have to delineate who has access
to what. MS (also MSs) references discussed herein in

50 context for the new and useful features and functionality
disclosed is understood to be an MS 2 (MSs 2).

FIG. 1B depicts a Location Based eXchanges (LBX)
architectural illustration for discussing the present disclo
sure. LBX MSs are peers to each other for locational

55 features and functionality. An MS 2 communicates with
other MSs without requiring a service for interaction. For
example, FIG. 1B depicts a wireless network 40 of five (5)
MSs. Each is able to directly communicate with others that
are in the vicinity (e.g. nearby as indicated by maximum

60 range 1306). In a preferred embodiment, communications
are limited reliability wireless broadcast datagrams having
recognizable data packet identifiers. In another embodiment,
wireless communications are reliable transport protocols
carried out by the MSs, such as TCP/IP. In other embodi-

65 ments, usual communications data associated with other
character 32 include new data (e.g. Communications Key
1304) in transmissions for being recognized by MSs within

Petitioners' Ex. 1001, Page 343 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
33

the vicinity. For example, as an MS conventionally com
municates, LBX data is added to the protocol so that other
MSs in the vicinity can detect, access, and use the data. The
advantage to this is that as MSs use wireless communica
tions to carry out conventional behavior, new LBX behavior
is provided by simply incorporating additional information
(e.g. Communications Key 1304) to existing communica
tions.

Regardless of the embodiment, an MS 2 can communicate
with any of its peers in the vicinity using methods described
below. Regardless of the embodiment, a communication
path 42 between any two MSs is understood to be potentially
bidirectional, but certainly at least unidirectional. The bidi
rectional path 42 may use one communications method for
one direction and a completely different communications
method for the other, but ultimately each can communicate
to each other. When considering that a path 42 comprises
two unidirectional communications paths, there are N*(N-
1) unidirectional paths for N MSs in a network 40. For
example, 10 MSs results in 90 (i.e. 10*9) one way paths of
communications between all 10 MSs for enabling them to
talk to each other. Sharing of the same signaling channels is
preferred to minimize the number of MS threads listening on
distinct channels. Flowcharts are understood to process at
incredibly high processing speeds, in particular for timely
communications processing. While the MSs are communi
cating wirelessly to each other, path 42 embodiments may
involve any number of intermediary systems or communi
cations methods, for example as discussed below with FIG.
lE.

FIG. lC depicts a Location Based Services (LBS) archi
tectural illustration for discussing prior art of the present
disclosure. In order for a MS to interact for LBS with
another MS, there is service architecture 44 for accomplish
ing the interaction. For example, to detect that MS 1 is
nearby MS N, the service is indispensably involved in
maintaining data and carrying out processing. For example,

34
cards, types, interfaces, and/or technologies. The data pro
cessing system 50 may include secondary storage devices 58
such as persistent storage 60, and/or removable storage
device 62, for example as a compact disk, floppy diskette,

5 USB flash, or the like, also connected to bus (or switch) 54.
In some embodiments, persistent storage devices could be
remote to the data processing system 50 and coupled
through an appropriate communications interface. Persistent
storage 60 may include flash memory, disk drive memory,

10 magnetic, charged, or bubble storage, and/or multiple inter
faces and/or technologies, perhaps in software interface
form of variables, a database, shared memory, etc.

The data processing system 50 may also include a display
device interface 64 for driving a connected display device

15 (not shown). The data processing system 50 may further
include one or more input peripheral interface(s) 66 to input
devices such as a keyboard, keypad, Personal Digital Assis
tant (PDA) writing implements, touch interfaces, mouse,
voice interface, or the like. User input ("user input", "user

20 events" and "user actions" used interchangeably) to the data
processing system are inputs accepted by the input periph
eral interface(s) 66. The data processing system 50 may still
further include one or more output peripheral interface(s) 68
to output devices such as a printer, facsimile device, or the

25 like. Output peripherals may also be available via an appro
priate interface.

Data processing system 50 will include communications
interface(s) 70 for communicating to another data process
ing system 72 via analog signal waves, digital signal waves,

30 infrared proximity, copper wire, optical fiber, or other wave
spectrums described herein. A MS may have multiple com
munications interfaces 70 (e.g. cellular connectivity, 802.x,
etc). Other data processing system 72 may be an MS. Other
data processing system 72 may be a service. Other data

35 processing system 72 is a service data processing system
when MS 50 communicates to other data processing system
72 by way of service informant code 28. In any case, the MS
and other data processing system are said to be interoper-to detect that MS 1 is arriving to, or departing from, a

geofenced perimeter area configured by MS N, the service
was indispensably involved in maintaining data and carrying 40

out processing. For example, for MS N to locate MS 1 on a
live map, the service was indispensably involved in main
taining data and carrying out processing. In another
example, to grant and revoke permissions from MS 1 to MS

ating when communicating.
Data processing system programs (also called control

logic) may be completely inherent in the processor(s) 52
being a customized semiconductor, or may be stored in main
memory 56 for execution by processor(s) 52 as the result of
a read-only memory (ROM) load (not shown), or may be

N, the service was indispensably involved in maintaining
data and carrying out processing. While it is advantageous to
require a single bidirectional path 46 for each MS (i.e. two
unidirectional communications paths; (2*N) unidirectional
paths for N MSs), there are severe requirements for
service(s) when there are lots ofMSs (i.e. when N is large).
Wireless MSs have advanced beyond cell phones, and are
capable of housing significant parallel processing, process
ing speed, increased wireless transmission speeds and dis
tances, increased memory, and richer features.

FIG. lD depicts a block diagram of a data processing
system useful for implementing a MS, ILM, DLM, central
ized server, or any other data processing system described
herein. An MS 2 is a data processing system 50. Data
processing system 50 includes at least one processor 52 (e.g.
Central Processing Unit (CPU)) coupled to a bus 54. Bus 54
may include a switch, or may in fact be a switch 54 to
provide dedicated connectivity between components of data
processing system 50. Bus (and/or switch) 54 is a preferred
embodiment coupling interface between data processing
system 50 components. The data processing system 50 also
includes main memory 56, for example, random access
memory (RAM). Memory 56 may include multiple memory

45 loaded from a secondary storage device into main memory
56 for execution by processor(s) 52. Such programs, when
executed, enable the data processing system 50 to perform
features of the present disclosure as discussed herein.
Accordingly, such data processing system programs repre-

50 sent controllers of the data processing system.
In some embodiments, the disclosure is directed to a

control logic program product comprising at least one pro
cessor 52 having control logic (software, firmware, hard
ware microcode) stored therein. The control logic, when

55 executed by processor(s) 52, causes the processor(s) 52 to
provide functions of the disclosure as described herein. In
another embodiment, this disclosure is implemented primar
ily in hardware, for example, using a prefabricated compo
nent state machine (or multiple state machines) in a semi-

60 conductor element such as a processor 52.
Those skilled in the art will appreciate various modifica

tions to the data processing system 50 without departing
from the spirit and scope of this disclosure. A data process
ing system, and more particularly a MS, preferably has

65 capability for many threads of simultaneous processing
which provide control logic and/or processing. These
threads can be embodied as time sliced threads of processing

Petitioners' Ex. 1001, Page 344 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
35

on a single hardware processor, multiple processors, multi
core processors, Digital Signal Processors (DSPs), or the
like, or combinations thereof. Such multi-threaded process
ing can concurrently serve large numbers of concurrent MS
tasks. Concurrent processing may be provided with distinct
hardware processing and/or as appropriate software driven
time-sliced thread processing. Those skilled in the art rec
ognize that having multiple threads of execution on an MS

36
microcode, and software, obvious improvements are being
made to NTP. In NTP use embodiments of this disclosure, an
appropriate synchronization of time is used for functional
interoperability between MSs and other data processing

5 systems using NTP. NTP is not required in this disclosure,
but it is an advantage when in use.

is accomplished in many different ways without departing
from the spirit and scope of this disclosure. This disclosure 10

strives to deploy software to existing MS hardware configu
rations, but the disclosed software can be deployed as
burned-in microcode to new hardware of MSs.

LBX Directly Located Mobile Data Processing
Systems (DLMs)

FIG. lE depicts a network illustration for discussing
various deployments of whereabouts processing aspects of
the present disclosure. In some embodiments, a cellular
network cluster 102 and cellular network cluster 104 are

Data processing aspects of drawings/flowcharts are pref
erably multi-threaded so that many MSs and applicable data
processing systems are interfaced with in a timely and
optimal manner. Data processing system 50 may also
include its own clock mechanism (not shown), if not an
interface to an atomic clock or other clock mechanism, to
ensure an appropriately accurate measurement of time in
order to appropriately carry out processing described below.
In some embodiments, Network Time Protocol (NTP) is
used to keep a consistent universal time for MSs and other
data processing systems in communications with MSs. This
is most advantageous to prevent unnecessary round-tripping
of data between data processing systems to determine timing

15
parts of a larger cellular network. Cellular network cluster
102 contains a controller 106 and a plurality of base stations,
shown generally as base stations 108. Each base station
covers a single cell of the cellular network cluster, and each

20 base station 108 communicates through a wireless connec
tion with the controller 106 for call processing, as is well
known in the art. Wireless devices communicate via the
nearest base station (i.e. the cell the device currently resides
in), for example base station 108b. Roaming functionality is

25 provided when a wireless device roams from one cell to
another so that a session is properly maintained with proper
signal strength. Controller 106 acts like a telephony switch
when a wireless device roams across cells, and it commu
nicates with controller 110 via a wireless connection so that

(e.g. Time Difference of Arrival (TDOA)) measurements. A
NTP synchronized date/time stamp maintained in commu
nications is compared by a receiving data processing system
for comparing with its own NTP date/time stamp to measure 30

TOA (time of arrival (i.e. time taken to arrive)). Of course,
a wireless device can also roam to other clusters over a larger
geographical area. Controller 110 may be connected to a
controller 112 in a cellular cluster through a physical con
nection, for example, copper wire, optical fiber, or the like.

in the absence ofNTP used by the sender and receiver, TOA
is also calculated in a bidirectional transmission using
correlation. In this disclosure, TOA measurements from one
location technology are used for triangulating with TOA 35

measurements from another location technology, not just for
determining "how close". Therefore, TDOA terminology is
generally used herein to refer to the most basic TOA
measurement of a wave spectrum signal being the difference
between when it was sent and when it was received. TDOA 40

This enables cellular clusters to be great distances from each
other. Controller 112 may in fact be connected with a
physical connection to its base stations, shown generally as
base stations 114. Base stations may communicate directly
with the controller 112, for example, base station 114e. Base
stations may communicate indirectly to the controller 112,
for example base station 114a by way of base station 114d.
It is well known in the art that many options exist for is also used to describe using the difference of such mea

surements to locate (triangulate). NTP use among partici
pating systems has the advantage of a single unidirectional
broadcast data packet containing all a receiving system
requires to measure TDOA, by knowing when the data was
sent (date/time stamp in packet) and when the data was
received (signal detected and processed by receiving sys
tem). A NTP clock source (e.g. atomic clock) used in a
network is to be reasonably granular to carry out measure
ments, and ensures participating MSs are updated timely
according to anticipated time drifts of their own clocks. MS
clocks should maintain time as accurately as possible to
minimize drift and minimize how often resynchronization
with a NTP clock source is required. There are many well
known methods for accomplishing NTP, some which require
dedicated thread(s) for NTP processing, and some which use
certain data transmitted to and from a source to keep time in
synch.

Those skilled in the art recognize that NTP accuracy
depends on participating MS clocks and processing timing,
as well as time server source(s). Radio wave connected NTP
time server(s) is typically accurate to as granular as 1
millisecond. Global Positioning System (GPS) time servers
provide accuracy as granular as 50 microseconds. GPS
timing receivers provide accuracy to around 100 nanosec
onds, but this may be reduced by timing latencies in time
server operating systems. With advancements in hardware,

enabling interoperating communications between control
lers and base stations for the purpose of managing a cellular
network. A cellular network cluster 116 may be located in a

45 different country. Base controller 118 may communicate
with controller 110 through a Public Service Telephone
Network (PSTN) by way of a telephony switch 120, PSTN
122, and telephony switch 124, respectively. Telephony
switch 120 and telephony switch 124 may be private or

50 public. In one cellular network embodiment of the present
disclosure, the services execute at controllers, for example
controller 110. In some embodiments, the MS includes
processing that executes at a wireless device, for example
mobile laptop computer 126, wireless telephone 128, a

55 personal digital assistant (PDA) 130, an iPhone 170, or the
like. As the MS moves about, positional attributes are
monitored for determining location. The MS may be hand
held, or installed in a moving vehicle. Locating a wireless
device using wireless techniques such as Time Difference of

60 Arrival (TDOA) and Angle Of Arrival (AOA) are well
known in the art. The service may also execute on a server
computer accessible to controllers, for example server com
puter 132, provided an appropriate timely connection exists
between cellular network controller(s) and the server com-

65 puter 132. Wireless devices (i.e. MSs) are preferably known
by a unique identifier, for example a phone number, caller id,
device identifier, or like appropriate unique handle.

Petitioners' Ex. 1001, Page 345 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
37

In another embodiment of the present disclosure, GPS
satellites such as satellite 134, satellite 136, and satellite 138
provide information, as is well known in the art, to GPS
devices on earth for triangulation locating of the GPS
device. In this embodiment, a MS has integrated GPS 5

functionality so that the MS monitors its positions. The MS
is preferably known by a unique identifier, for example a
phone number, caller id, device identifier, or like appropriate
unique handle (e.g. network address).

In yet another embodiment of the present disclosure, a 10

physically connected device, for example, telephone 140,
computer 142, PDA 144, telephone 146, and fax machine
148, may be newly physically connected to a network. Each
is a MS, although the mobility is limited. Physical connec
tions include copper wire, optical fiber, USB, or any other 15

physical connection, by any communications protocol
thereon. Devices are preferably known by a unique identi
fier, for example a phone number, caller id, device identifier,
physical or logical network address, or like appropriate
unique handle. The MS is detected for being newly located 20

when physically connected. A service can be communicated
to upon detecting connectivity. The service may execute at
an Automatic Response Unit (ARU) 150, a telephony
switch, for example telephony switch 120, a web server 152
(for example, connected through a gateway 154), or a like 25

data processing system that communicates with the MS in
any of a variety of ways as well known to those skilled the
art. MS detection may be a result of the MS initiating a
communication with the service directly or indirectly. Thus,
a user may connect his laptop to a hotel network, initiate a 30

communication with the service, and the service determines
that the user is in a different location than the previous
communication. A local area network (LAN) 156 may
contain a variety of connected devices, each an MS that later
becomes connected to a local area network 158 at a different 35

location, such as a PDA 160, a server computer 162, a printer
164, an internet protocol telephone 166, a computer 168, or
the like. Hard copy presentation could be made to printer
164 and fax 148.

38
LBX character contains user configurations for selfishly
leveraging the LN-expanse for being located while never
providing information for others to be located. Hog MS 2p
contains configurations that are rich and deep in function
ality for the user of MS 2p, but provide little functionality for
other MS users. A MS 2q with "Monkey" LBX character
contains configurations for "fun and games" which are
suitable for interacting with other MSs for primarily enter-
tainment and playful purposes. Monkey MS 2q contains
configurations that provide enjoyment to the MS user and
his peers. A MS 2r with "Dog" LBX character contains
configurations for "being everyone's best friend" whereby
MS 2r maintains configurations for helping others in accor-
dance with any requests made on behalf of peer MSs. For
example, the user of MS 2r is willing to unquestionably
create configurations to keep LBX peers happy and to
facilitate locational applications at other MSs. A MS 2s with
"Cow" LBX character contains configurations for "existing
to contribute" to the LN-Expanse by maintaining configu
rations for facilitating the locating of other MSs, and to
interact with other MSs for the purpose of supporting
locational applications at other MSs without being solicited
for support. A MS 2t with "Tiger" LBX character contains
user configurations which are "strictly business" and suit
able for interacting with other MSs for primarily locational
business purposes. Tiger MS 2 contains configurations for
allowing business associates to interact, for example for
letting a boss and team member know whereabouts, or
alerting business associates of being nearby, or for auto
matically performing charter actions for the purpose of
improving business activities. The richness of locational
features and functionality provided by the LBX architecture
enables a MS user to configure an infinite set of LBX
character 4 for characterizing a MS and how it interacts with
other MSs. Users exploit their own creativity for how their
MSs should behave and what personalities their MS should
have. The user's MS becomes a broader reaching, and more
impacting, personification of a user's moving presence.

In some embodiments, an administrator or authorized user
(e.g. parent) configures the MS for intended LBX character
and use by the main MS user (e.g. child). Credentials such
as a password, access code, user identifier and password, etc,
or other authorization scheme may be used when accessing

Current technology enables devices to communicate with 40

each other, and other systems, through a variety of hetero
geneous system and communication methods. Current tech
nology allows executable processing to run on diverse
devices and systems. Current technology allows communi
cations between the devices and/or systems over a plethora 45 a disclosed configuration interface to limit configurability to

certain users, types of users, or users with certain privileges. of methodologies at close or long distance. Many technolo
gies also exist for automatic locating of devices. It is well
known how to have an interoperating communications sys
tem that comprises a plurality of individual systems com
municating with each other with one or more protocols. As
is further known in the art of developing software, execut
able processing of the present disclosure may be developed
to run on a particular target data processing system in a
particular manner, or customized at install time to execute on
a particular data processing system in a particular manner.

FIG. 2A depicts an illustration for describing automatic
location of a MS, for example a DLM 200, through the MS
coming into range of a stationary cellular tower. A DLM

50 200, or any of a variety of MSs, travels within range of a cell
tower, for example cell tower 108b. The known cell tower
location is used to automatically detect the location of the
DLM 200. In fact, any DLM that travels within the cell
served by cell tower 108b is identified as the location of cell

55 tower 108b. The confidence of a location of a DLM 200 is
FIG. lF depicts a network illustration for discussing LBX

character 4 provided to a MS through LBX configurations
made, for example with permissions 10 and/or charters 12.
FIG. lF exemplifies FIG. 1B in how user configurations
provide wits and a unique personality to a MS. LBX 60

character 4 wits (see WITS below) enable a vast and diverse

low when the cell coverage of cell tower 108b is large. In
contrast, the confidence of a location of a DLM 200 is higher
when the cell coverage of cell tower 108b is smaller.
However, depending on the applications locating DLMs
using this method, the locating can be quite acceptable.
Location confidence is improved with a TDOA measure
ment for the elapsed time of communication between DLM
200 and cell tower to determine how close the MS is to the

set of processing behavior for location based processing,
even for identically manufactured MSs having identically
available applications for use. Every MS 2 can be very
different and distinguished from other MSs 2 depending on
permissions 10 and charters 12 which are configured for
driving WITS processing. For example, a MS 2p with "Hog"

cell tower. Cell tower 108b can process all locating by itself,
65 or with interoperability to other services as connected to cell

tower 108b in FIG. lE. Cell tower 108b can communicate
the location of DLM 200 to a service, to the DLM 200, to

Petitioners' Ex. 1001, Page 346 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
39

other MSs within its coverage area, any combination
thereof, or to any connected data processing system, or MS,
of FIG. lE.

FIG. 2B depicts an illustration for describing automatic
location of a MS, for example a DLM 200, through the MS
coming into range of some stationary antenna. DLM 200, or
any of a variety of MSs, travels within range of a stationary
antenna 202 that may be mounted to a stationary object 204.
The known antenna location is used to automatically detect
the location of the DLM 200. In fact, any DLM that travels
within the coverage area served by antenna 202 is identified
as the location of antenna 202. The confidence of a location
of a DLM 200 is low when the antenna coverage area of
antenna 202 is large. In contrast, the confidence of a location
of a DLM 200 is higher when the antenna coverage area of
antenna 202 is smaller. However, depending on the appli
cations locating DLMs using this method, the locating can
be quite acceptable. Location confidence is improved with a
TDOA measurement for the elapsed time of communication
between DLM 200 and a particular antenna to determine
how close the MS is to the antenna. Antenna 202 can process
all locating by itself (with connected data processing system
(not shown) as well known to those skilled in the art), or
with interoperability to other services as connected to
antenna 202, for example with connectivity described in
FIG. lE. Antenna 202 can be used to communicate the
location ofDLM 200 to a service, to the DLM 200, to other
MSs within its coverage area, any combination thereof, or to
any connected data processing system, or MS, of FIG. lE.

FIG. 2C depicts an illustration for discussing an example
of automatically locating a MS, for example a DLM 200,
through the MS coming into range of some stationary
antenna. DLM 200, or any of a variety ofMSs, travels within
range of a stationary antenna 212 that may be mounted to a
stationary object, such as building 210. The known antenna
location is used to automatically detect the location of the
DLM 200. In fact, any DLM that travels within the coverage
area served by antenna 212 is identified as the location of
antenna 212. The confidence of a location of a DLM 200 is
low when the antenna coverage area of antenna 212 is large.
In contrast, the confidence of a location of a DLM 200 is
higher when the antenna coverage area of antenna 212 is
smaller. However, depending on the applications locating
DLMs using this method, the locating can be quite accept
able. Location confidence is improved with a TDOA mea
surement as described above. Antenna 212 can process all
locating by itself (with connected data processing system
(not shown) as well known to those skilled in the art), or
with interoperability to other services as connected to
antenna 212, for example with connectivity described in
FIG. lE. Antenna 212 can be used to communicate the
location ofDLM 200 to a service, to the DLM 200, to other
MSs within its coverage area, any combination thereof, or to
any connected data processing system, or MS, of FIG. lE.

Once DLM 200 is within the building 210, a strategically
placed antenna 216 with a desired detection range within the
building is used to detect the DLM 200 coming into its
proximity. Wall breakout 214 is used to see the antenna 216
through the building 210. The known antenna 216 location
is used to automatically detect the location of the DLM 200.
In fact, any DLM that travels within the coverage area
served by antenna 216 is identified as the location of antenna
216. The confidence ofa location of a DLM 200 is low when
the antenna coverage area of antenna 216 is large. In
contrast, the confidence of a location of a DLM 200 is higher
when the antenna coverage area of antenna 216 is smaller.
Travels ofDLM 200 can be limited by objects, pathways, or

40
other limiting circumstances of traffic, to provide a higher
confidence oflocation ofDLM 200 when located by antenna
216, or when located by any locating antenna described
herein which detects MSs coming within range of its loca-

5 tion. Location confidence is improved with a TDOA mea
surement as described above. Antenna 216 can process all
locating by itself (with connected data processing system
(not shown) as well known to those skilled in the art), or
with interoperability to other services as connected to

10 antenna 216, for example with connectivity described in
FIG. lE. Antenna 216 can be used to communicate the
location ofDLM 200 to a service, to the DLM 200, to other
MSs within its coverage area, any combination thereof, or to
any connected data processing system, or MS, of FIG. lE.

15 Other in-range detection antennas of a FIG. 2C embodiment
may be strategically placed to facilitate warehouse opera
tions such as in Kubler et al.

FIG. 2D depicts a flowchart for describing a preferred
embodiment of a service whereabouts update event of an

20 antenna in-range detected MS, for example a DLM 200,
when MS location awareness is monitored by a stationary
antenna, or cell tower (i.e. the service thereof). FIGS. 2A
through 2C location detection processing are well known in
the art. FIG. 2D describes relevant processing for informing

25 MSs of their own whereabouts. Processing begins at block
230 when a MS signal deserving a response has been
received and continues to block 232 where the antenna or
cell tower service has authenticated the MS signal. A MS
signal can be received for processing by blocks 230 through

30 242 as the result of a continuous, or pulsed, broadcast or
beaconing by the MS (FIG. 13A), perhaps as part of usual
communication protocol in progress for the MS (FIG. 13A
usual data 1302 with embedded Communications Key (CK)
1304), or an MS response to continuous, or pulsed, broad-

35 cast or beaconing via the service connected antenna (FIG.
13C). MS and/or service transmission can be appropriately
correlated for a response (as described above) which addi
tionally facilitates embodiments using TDOAmeasurements
(time of communications between the MS and antenna, or

40 cell tower) to determine at least how close is the MS in range
(or use in conjunction with other data to triangulate the MS
location). The MS is preferably authenticated by a unique
MS identifier such as a phone number, address, name, serial
number, or any other unique handle to the MS. In this, and

45 any other embodiments disclosed, an MS may be authenti
cated using a group identifier handle indicating membership
to a supported/known group deserving further processing.
Authentication will preferably consult a database for authen
ticating that the MS is known. Block 232 continues to block

50 234 where the signal received is immediately responded
back to the MS, via the antenna, containing at least corre
lation along with whereabouts information for a Where
abouts Data Record (WDR) 1100 associated with the
antenna (or cell tower). Thereafter, the MS receives the

55 correlated response containing new data at block 236 and
completes a local whereabouts data record 1100 (i.e. WDR
1100) using data received along with other data determined
by the MS.

In another embodiment, blocks 232 through 234 are not
60 required. A service connected antenna (or cell tower) peri

odically broadcasts its whereabouts (WDR info (e.g. FIG.
13C)) and MSs in the vicinity use that directly at block 236.
The MS can choose to use only the confidence and location
provided, or may determine a TDOA measurement for

65 determining how close it is. If the date/time stamp field
1100b indicates NTP is in use by the service, and the MS is
also using NTP, then a TDOA measurement can be deter-

Petitioners' Ex. 1001, Page 347 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
41 42

mined using the one unidirectional broadcast via the antenna
by using the date/time stamp field 1100b received with when
the WDR information was received by the MS (subtract time
difference and use known wave spectrum for distance). If
either the service or MS is not NTP enabled, then a bidi- 5

rectional correlated data flow between the service and MS is

confidence value. For example, 20 meters is used as the unit
of measurement. For each unit of 20 meters distance deter
mined by the TDOA measurement, assign a value of 1, up
to a worst case of 100 (i.e. 2000 meters). Round the 20 meter
unit of distance such that O meters to <25 meters is 20 meters
(i.e. 1 unit of measurement), 26 meters to <45 meters to is

used to assess a TDOAmeasurement in terms of time of the
MS. One embodiment provides the TDOA measurement
from the service to the MS. Another embodiment calculates
the TDOA measurement at the MS.

Network Time protocol (NTP) can ensure MSs have the
same atomic clock time as the data processing systems
driving antennas (or cell towers) they will encounter. Then,
date/time stamps can be used in a single direction (unidi
rectional) broadcast packet to determine how long it took to
arrive to/from the MS. In an NTP embodiment, the MS (FIG.
13A) and/or the antenna (FIG. 13C) sends a date/time stamp
in the pulse, beacon, or protocol. Upon receipt, the antenna
(or cell tower) service data processing system communicates
how long the packet took from an MS to the antenna (or cell
tower) by comparing the date/time stamp in the packet and
a date/time stamp of when it was received. The service may
also set the confidence value, before sending WDR infor
mation to the MS. Similarly, an MS can compare a date/time
stamp in the unidirectional broadcast packet sent from a
locating service (FIG. 13C) with when received by the MS.
So, NTP facilitates TDOA measurements in a single broad
cast communication between systems through incorporation
to usual communications data 1302 with a date/time stamp
in Communications Key (CK) 1304, or alternatively in new
data 1302. Similarly, NTP facilitates TDOA measurement in
a single broadcast communication between systems through
incorporation to usual communications data 1312 with a
date/time stamp in Communications Key (CK) 1314, or
alternatively in new data 1312.

The following template is used in this disclosure to
highlight field settings. See FIG. llA descriptions. Fields are
set to the following upon exit from block 236:
MS ID field 1100a is preferably set with: Unique MS
identifier of the MS invoking block 240. This field is used to
uniquely distinguish this MS WDRs on queue 22 from other
originated WDRs.
DATE/TIME STAMP field 1100b is preferably set with:
Date/time stamp for WDR completion at block 236 to the
finest granulation of time achievable by the MS. The NTP
use indicator is set appropriately.
LOCATION field 1100c is preferably set with: Location of
stationary antenna (or cell tower) as communicated by the
service to the MS.
CONFIDENCE field 1100d is preferably set with: The same
value (e.g. 76) for any range within the antenna (or cell
tower), or may be adjusted using the TDOA measurement
(e.g. amount of time detected by the MS for the response at
block 234). The longer time it takes between the MS sending
a signal detected at block 232 and the response with data
back received by the MS (block 234), the less confidence
there is for being located because the MS must be a larger
distance from the antenna or cell tower. The less time it takes
between the MS sending a signal detected at block 232 and
the response with data back, the more confidence there is for
being located because the MS must be a closer distance to
the antenna or cell tower. Confidence values are standard
ized for all location technologies. In some embodiments of
FIG. 2D processing, a confidence value can be set for 1
through 100 (1 being lowest confidence and 100 being
highest confidence) wherein a unit of measurement between
the MS and antenna (or cell tower) is used directly for the

40 meters (i.e. 2 units of measurement), and so on. Once the
number of units is determined, subtract that number from
101 for the confidence value (i.e. 1 unit=confidence value

10 100, 20 units=confidence value 81; 100 units or
greater=confidence value of 1). Yet another embodiment
will use a standard confidence value for this "coming in
range" technology such as 76 and then further increase or
decrease the confidence using the TDOA measurement.

15 Many embodiments exist for quantifying a higher versus
lower confidence. In any case, a confidence value (e.g. 76)
is determined by the MS, service, or both (e.g. MS uses
TDOAmeasurement to modify confidence sent by service).
LOCATION TECHNOLOGY field ll00e is preferably set

20 with: "Server Antenna Range" for an antenna detecting the
MS, and is set to "Server Cell Range" for a cell tower
detecting the MS. The originator indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: The period of time for communications between the

25 antenna and the MS (a TDOA measurement), if known; a
communications signal strength, if available; wave spectrum
used (e.g. from MS receive processing), if available; par
ticular communications interface 70, if available. The
TDOA measurement may be converted to a distance using

30 wave spectrum information. The values populated here
should have already been factored into the confidence value
at block 236.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Parameters uniquely identifying a/the

35 service (e.g. antenna (or cell tower)) and how to best
communicate with it again, if available. May not be set,
regardless if received from the service.
SPEED field 1100h is preferably set with: Data received by
MS at block 234, if available.

40 HEADING field ll00i is preferably set with: Data received
by MS at block 234, if available.
ELEVATION field 1100} is preferably set with: data
received by MS at block 234, if available. Elevation field
1100} is preferably associated with the antenna (or cell

45 tower) by the elevation/altitude of the antenna (or cell
tower).
APPLICATION FIELDS field 1100k is preferably set with:
Data received at block 234 by the MS, or set by data
available to the MS, or set by both the locating service for

50 the antenna (or cell tower) and the MS itself. Application
fields include, and are not limited to, MS navigation APis in
use, social web site identifying information, application
information for applications used, accessed, or in use by the
MS, or any other information complementing whereabouts

55 of the MS.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).

60 RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

A service connected to the antenna (or cell tower) pref
erably uses historical information and artificial intelligence
interrogation of MS travels to determine fields 1100h and

65 ll00i. Block 236 continues to block 238 where parameters
are prepared for passing to FIG. 2F processing invoked at
block 240. Parameters are set for: WDRREF=a reference or

Petitioners' Ex. 1001, Page 348 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
43 44

pointer to the WDR; DELETEQ=FIG. 2D location queue
discard processing; and SUPER=FIG. 2D supervisory noti
fication processing. Thereafter, block 240 invokes FIG. 2F
processing and FIG. 2D processing terminates at block 242.
FIG. 2F processing will insert to queue 22 so this MS knows 5

at least its own whereabouts whenever possible. A single
data instance embodiment ofWDR queue 22 will cause FIG.

mines one was found, then processing continues to block
284, otherwise processing continues to block 286 where a
Last Whereabouts date/Time stamp (LWT) variable is set to
field 1100b of the WDR for insert (e.g. first MS whereabouts
WDR), and processing continues to block 288.

If block 284 determines the WDR for insertion has
significantly moved (i.e. using a movement tolerance con
figuration (e.g. 3 meters) with fields 1100c of the WDR for
insert and the WDR peeked at block 280), then block 286

2F to update the single record ofWDR information for being
current upon exit from block 240 (this is true for all
flowchart blocks invoking FIG. 2F processing). 10 sets the LWT (Last Whereabouts date/Time stamp) variable

(with appropriate semaphore) to field 1100b of the WDR for
insert, and processing continues to block 288, otherwise
processing continues directly to block 288 (thereby keeping

With reference now to FIG. 2F, depicted is a flowchart for
describing a preferred embodiment of a procedure for insert
ing a Whereabouts Data Record (WDR) 1100 to MS WDR
queue 22. Appropriate semaphores are used for variables
which can be accessed simultaneously by another thread 15

other than the caller. With reference now to FIG. 2F,
procedure processing starts at block 270 and continues to
block 272 where parameters passed from the invoking block

the LWT as its last setting). The LWT is to hold the most
recent date/time stamp of when the MS significantly moved
as defined by a movement tolerance. The movement toler-
ance can be system defined or configured, or user configured
in FIG. 14 by an option for configuration detected at block
1408, and then using the Configure Value procedure of FIG.
18 (like confidence floor value configuration).

of processing, for example block 240, are determined. The
variable WDRREF is set by the caller to a reference or 20

pointer to the WDR so subsequent blocks of FIG. 2F can
access the WDR. The variable DELETEQ is set by the caller

Block 288 accesses the DLMV and updates it with a new
DLM role if there is not one present for it. This ensures a
correct list ofDLMV roles are available for configuration by
FIG. 14. Preferably, by default an unanticipated DLMV role

so that block 292 knows how to discard obsolete location
queue entries. The DELETEQ variable can be a multi-field
record (or reference thereof) for how to prune. The variable
SUPER is set by the caller so that block 294 knows under
what condition(s), and which data, to contact a supervisory
service. The SUPER variable can be a multi-field record (or
reference thereof) for instruction.

Block 272 continues to block 274 where the DLMV (see
FIG. 12 and later discussions for DLMV (DLM role(s) List
Variable)), or ILMV (see FIG. 12 and later discussions for
ILMV (ILM role(s) List Variable)), is checked for an
enabled role matching the WDR for insertion (e.g. DLM:
location technology field llOOe (technology and originator
indicator) when MS ID=this MS; ILM: DLM or ILM
indicator when MS ID not this MS). If no corresponding
DLMV/ILMV role is enabled for the WDR to insert, then
processing continues to block 294 (the WDR is not inserted
to queue 22). If the ILMV/DLMV role for the WDR is
enabled, then processing continues to block 276 where the
confidence of the WDR 1100 is validated prior to insertion.
An alternate embodiment to FIG. 2F will not have block 274
(i.e. block 272 continues directly to block 276) since appro
priate DLM and/or ILM processing may be terminated
anyway when DLM/ILM role(s) are disabled (see FIG.
14A/B).

If block 276 determines the data to be inserted is not of

25 is enabled (helps inform the user of its availability). Like
wise in another embodiment, ILMV roles can be similarly
updated, in particular if a more granulated list embodiment
is maintained to the ILMV, or if unanticipated results help to
identify another configurable role. By default, block 274

30 should allow unanticipated roles to continue with WDR
insertion processing, and then block 288 can add the role,
enable it, and a user can decide what to do with it in
configuration (FIG. 14A/B).

Thereafter, the WDR 1100 is inserted to the WDR queue
35 22 at block 290, block 292 discards any obsolete records

from the queue as directed by the caller (invoker), and
processing continues to block 294. The WDR queue 22
preferably contains a list of historically MS maintained
Whereabouts Data Records (WDRs) as the MS travels.

40 When the MS needs its own location, for example from an
application access, or to help locate an ILM, the queue is
accessed for returning the WDR with the highest confidence
value (field 1100d) in the most recent time (field 1100b) for
the MS (field 1100a). Block 292 preferably discards by

45 using fields 1100b and 1100d relative to other WDRs. The
queue should not be allowed to get too large. This will affect
memory (or storage) utilization at the MS as well as time
liness in accessing a sought queue entry. Block 292 also

acceptable confidence (e.g. field ll00d<confidence floor
value (see FIG. 14A/B)), then processing continues to block 50

294 described below. If block 276 determines the data to be

preferably discards WDRs from queue 22 by moving
selected WDRs to LBX History 30.

As described above, queue interfaces assume an implicit
semaphore for properly accessing queue 22. There may be
ILMs requesting to be located, or local applications of the
MS may request to access the MS whereabouts. Executable

inserted is of acceptable confidence (e.g. field 1100d>70),
then processing continues to block 278 for checking the
intent of the WDR insertion.

If block 278 determines the WDR for insert is a WDR
describing whereabouts for this MS (i.e. MS ID matching
MS of FIG. 2F processing (DLM: FIGS. 2A through 9B, or
ILM: FIG. 26A/B)), then processing continues to block 280.
If block 278 determines the WDR for insert is from a remote
ILM or DLM (i.e. MS ID does not match MS of FIG. 2F
processing), then processing continues to block 290. Block
280 peeks the WDR queue 22 for the most recent highest
confidence entry for this MS whereabouts by searching
queue 22 for: the MS ID field 1100a matching the MS ID of
FIG. 2F processing, and a confidence field 1100d greater
than or equal to the confidence floor value, and a most recent
date/time stamp field 1100b. Thereafter, if block 282 deter-

55 thread(s) at the MS can accesses the queue in a thread-safe
manner for responding to those requests. The MS may also
have multiple threads of processing for managing where
abouts information from DLMs, ILMs, or stationary location
services. The more concurrently executable threads avail-

60 able to the MS, the better the MS is able to locate itself and
respond to others (e.g. MSs). There can be many location
systems and methods used to keeping a MS informed of its
own whereabouts during travel. While the preferred embodi
ment is to maximize thread availability, the obvious mini-

65 mum requirement is to have at least 1 executable thread
available to the MS. As described above, in operating system
environments without proper queue interfaces, queue access

Petitioners' Ex. 1001, Page 349 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
45

blocks are first preceded by an explicit request for a sema
phore lock to access queue 22 (waits until obtained), and
then followed by a block for releasing the semaphore lock to
another thread for use. Also, in the present disclosure it is
assumed in blocks which access data accessible to more than 5

1 concurrent thread (e.g. shared memory access to D LMV or
ILMV at block 274) that an appropriate semaphore (created
at block 1220) protect synchronous access.

If block 294 determines information (e.g. whereabouts)
should be communicated by service informant code 28 to a 10

supervisory service, for example a service 1050, then block
296 communicates specified data to the service and process
ing terminates at block 298 by returning to the invoker
(caller). If block 294 determines a supervisory service is not
to be informed, then processing terminates with an appro- 15

priate return to the caller at block 298. Service informant
code 28, at block 296, can send information as data that is
reliably acknowledged on receipt, or as a datagram which
most likely (but unreliably) is received.

Depending on the SUPER variable, block 294 may opt to 20

communicate every time a WDR is placed to the queue, or
when a reasonable amount of time has passed since last
communicating to the supervisory service, or when a WDR
confidence reaches a certain sought value, or when any
WDR field or fields contain certain sought information, or 25

when a reasonably large number of entries exist in WDR
queue 22, or for any processing condition encountered by
blocks 270 through 298, or for any processing condition
encountered by caller processing up to the invocation of
FIG. 2F processing. Different embodiments will send a 30

single WDR 1100 at block 296, a plurality of WDRs 1100,
or any other data. Various SUPER parameter(s) embodi
ments for FIG. 2F caller parameters can indicate what,
when, where and how to send certain data. Block 296 may
send an email, an SMS message, or use other means for 35

conveying data. Service informant code 28 may send LBX
history 30, statistics 14 and/or any other data 8, data 20,
queue data, data 36 or resources 38. Service informant code
28 may update data in history 30, statistics 14 or any other
data 8, data 20, queue data, data 36 and/or resources 38, 40

possibly using conditions of this data to determine what is
updated. Blocks 294 and 296 may be omitted in some
embodiments.

If a single WDR is sent at block 296 as passed to FIG. 2F
processing, then the WDR parameter determined at block 45

272 is accessed. If a plurality ofWDRs is sent at block 296,
then block 296 appropriately interfaces in a thread-safe
manner to queue 22, and sends the WDRs.

Some preferred embodiments do not incorporate blocks
278 through 286. (i.e. block 276 continues to block 288 if 50

confidence ok). Blocks 278 through 286 are for the purpose
of implementing maintaining a date/time stamp of last MS
significant movement (using a movement tolerance). Archi
tecture 1900 uses FIG. 2F, as does DLM processing. FIG. 2F
must perform well for the preferred multithreaded architec- 55

ture 1900. Block 280 performs a peek, and block 284 can be
quite timely depending on embodiments used for location
field 1100c. A movement tolerance incorporated at the MS

46
single WDR 1100 (just prior to block 290 such that incoming
blocks to block 290 go to new block 289, and new block 289
continues to block 290).

With reference now to FIG. 2E, depicted is a flowchart for
describing a preferred embodiment of an MS whereabouts
update event of an antenna in-range detected MS, for
example a DLM 200, when MS location awareness is
monitored by the MS. FIG. 2E describes relevant processing
for MSs to maintain their own whereabouts. Processing
begins at block 250 when the MS receives a signal from an
antenna (or cell tower) deserving a response and continues
to block 252 where the antenna or cell tower signal is
authenticated by the MS as being a legitimate signal for
processing. The signal can be received for processing by
blocks 250 through 264 as the result of a continuous, or
pulsed, broadcast or beaconing by the antenna, or cell tower
(FIG. 13C), or as part of usual communication protocol in
progress with at least one MS (FIG. 13C usual data 1312
with embedded Communications Key 1314), or as a
response via antenna to a previous MS signal (FIG. 13A).
The signal is preferably authenticated by a data parsed
signature deserving further processing. Block 252 continues
to block 254 where the MS sends an outbound request for
soliciting an immediate response from the antenna (or cell
tower) service. The request by the MS is appropriately
correlated (e.g. as described above) for a response, which
additionally facilitates embodiments using TDOA measure
ments (time of communications between the MS and
antenna, or cell tower) to determine how close is the MS in
range. Block 254 waits for a response, or waits until a
reasonable timeout, whichever occurs first. There are also
multithreaded embodiments to breaking up FIG. 2E where
block 254 does not wait, but rather terminates FIG. 2E
processing and depends on another thread to correlate the
response and then continue processing blocks 256 through
260 (like architecture 1900).

Thereafter, if block 256 determines the request timed out,
then processing terminates at block 264. If block 256
determines the response was received, then processing con
tinues to block 258. Block 258 completes a WDR 1100 with
appropriate response data received along with data set by the
MS. See FIG. llA descriptions. Fields are set to the fol
lowing upon exit from block 258:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: Same as was
described for FIG. 2D (block 236) above.
CONFIDENCE field 1100d is preferably set with: Same as
was described for FIG. 2D (block 236) above.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "Client Antenna Range" for an antenna detecting the
MS, and is set to "Client Cell Range" for a cell tower
detecting the MS. The originator indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: Same as was described for FIG. 2D (block 236)
above.
COMMUNICATIONS REFERENCE INFO field 1100g is is not necessary, but may be nice to have. Therefore, blocks

278 through 286 are optional blocks of processing. 60 preferably set with: Same as was described for FIG. 2D
(block 236) above. FIG. 2F may also maintain (with appropriate semaphore)

the most recent WDR describing whereabouts of the MS of
FIG. 2F processing to a single data record every time a new
one is to be inserted. This allows applications needing
current whereabouts to simply access a current WDR, rather 65

than interface to a plurality of WDRs at queue 22. For
example, there could be a new block 289 for updating the

SPEED field 1100h is preferably set with: Same as was
described for FIG. 2D (block 236) above.
HEADING field ll00i is preferably set with: Same as was
described for FIG. 2D (block 236) above.
ELEVATION field 1100} is preferably set with: Same as was
described for FIG. 2D (block 236) above.

Petitioners' Ex. 1001, Page 350 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
47

APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).

48

SENT DATE/TIME STAMP field 1100n is preferably set 5

with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

known in the art. At least three base towers, for example,
base tower 108b, base tower 108d, and base tower 108/, are
used for locating the MS. A fourth base tower may be used
if elevation (or altitude) was configured for use in locating
DLM 200. There are cases where only two base towers are
necessary given routes of travel are limited and known, for
example, in spread out roadways or limited configured
locations. Base towers may also be antennas 108b, 108d, and
108/ in similar triangulation embodiments.

FIG. 3B depicts a flowchart for describing a preferred
embodiment of the whereabouts update event of a triangu
lated MS, for example DLM 200, when MS location aware
ness is monitored by some remote service. While FIG. 3A
location determination with TDOA and AOA is well known

15 in the art, FIGS. 3B and 3C include relevant processing for
MSs to maintain their own whereabouts. Processing begins
at block 310 and continues to block 312 where base stations
able to communicate to any degree with a MS continue

The longer time it takes between sending a request and
getting a response at block 254, the less confidence there is 10

for being located because the MS must be a larger distance
from the antenna or cell tower. The less time it takes, the
more confidence there is for being located because the MS
must be a closer distance to the antenna or cell tower.
Confidence values are analogously determined as described
for FIG. 2D. FIG. 2D NTP embodiments also apply here.
NTP can be used so no bidirectional communications is
required for TDOA measurement. In this embodiment, the
antenna (or cell tower) sets a NTP date/time stamp in the
pulse, beacon, or protocol. Upon receipt, the MS instantly 20

knows how long the packet took to be received by compar
ing the NTP date/time stamp in the packet and a MS NTP
date/time stamp of when it was received (i.e. no request/
response pair required). If location information is also
present with the NTP date/time stamp in data received at 25

block 252, then block 252 can continue directly to block
258.

reporting to their controller the MS signal strength with an
MS identifier (i.e. a unique handle) and Time Difference of
Arrival (TDOA) information, Angle of Arrival (AOA) infor-
mation, or heterogeneously both TDOA and AOA (i.e.
MPT), depending on the embodiment. The MS can pick
signals from base stations. In some embodiments, the MS
monitors a paging channel, called a forward charmel. There
can be multiple forward charmels. A forward channel is the
transmission frequency from the base tower to the MS.
Either the MS provides broadcast heartbeats (FIG. 13A) for
base stations, or the base stations provide heartbeats (FIG.

An alternate MS embodiment determines its own (direc
tion) heading and/or speed for WDR completion based on
historical records maintained to the WDR queue 22 and/or
LBX history 30.

Block 258 continues to block 260 for preparing param
eters for: WDRREF=a reference or pointer to the WDR;
DELETEQ=FIG. 2E location queue discard processing; and
SUPER=FIG. 2E supervisory notification processing.
Thereafter, block 262 invokes the procedure (FIG. 2F pro
cessing) to insert the WDR to queue 22. After FIG. 2F
processing of block 262, FIG. 2E processing terminates at
block 264.

In alternative "coming within range" (same as "in range",
"in-range", "within range") embodiments, a unique MS
identifier, or MS group identifier, for authenticating an MS
for locating the MS is not necessary. An antenna emitting
signals (FIG. 13C) will broadcast (in CK 1314 of data 1312)
not only its own location information (e.g. location field
1100c), but also an NTP indicated date/time stamp field
1100b, which the receiving MS (also having NTP for time
synchronization) uses to perform a TDOA measurement
upon receipt. This will enable a MS to determine at least
how close (e.g. radius 1318 range, radius 1320 range, radius
1322 range, or radius 1316 range) it is located to the location
of the antenna by listening for and receiving the broadcast
(e.g. of FIG. 13C). Similarly, in another embodiment, an
NTP synchronized MS emits signals (FIG. 13A) and an NTP
synchronized data processing system associated with a
receiving antenna can make a TDOA measurement upon
signal receipt. In other embodiments, more than a single
unidirectional signal may be used while still preventing the
requirement to recognize the MS to locate it. For example,
an antenna emitting signals (e.g. FIG. 13C hotspot WiFi
802.x) will contain enough information for a MS to respond
with correlation for being located, and visa-versa. In any
case, there can be multi-directional exchanged signals for
determining a TDOA measurement.

30 13C) for a response from the MS, or usual MS use protocol
signals are detected and used (incorporating CK 1304 in
usual data 1302 by MS, or CK 1314 in "usual data" 1312 by
service). Usual data is the usual communications traffic data
in carrying out other character 32 processing. Communica-

35 tion from the MS to the base tower is on what is called the
reverse channel. Forward channels and reverse charmel are
used to perform call setup for a created session channel.

TDOA is calculated from the time it takes for a commu
nication to occur from the MS back to the MS via the base

40 tower, or alternatively, from a base tower back to that base
tower via the MS. NTP may also be used for time calcula
tions in a unidirectional broadcast from a base tower (FIG.
13C) to the MS, or from the MS (FIG. 13A) to a base tower
(as described above). AOA is performed through calcula-

45 tions of the angle by which a signal from the MS encounters
the antenna. Triangle geometry is then used to calculate a
location. The AOA antenna is typically of a phased array
type.

See "Missing Part Triangulation (MPT)" section below
50 with discussions for FIGS. llA through llE for details on

heterogeneously locating the MS using both TDOA and
AOA (i.e. Missing Part Triangulation (MPT)). Just as high
school taught geometry for solving missing parts of a
triangle, so to does MPT triangulate an MS location. Think

55 of the length of a side of a triangle as a TDOA measure
ment-i.e. length of time, translatable to a distance. Think of
the AOA of a signal to an antenna as one of the angles of a
triangle vertice. Solving with MPT analogously uses geo
metric and trigonometric formulas to solve the triangulation,

60 albeit at fast processing speeds.

FIG. 3Adepicts a locating by triangulation illustration for 65

discussing automatic location of a MS, for example DLM
200. DLM 200 is located through triangulation, as is well

Thereafter, if the MS is determined to be legitimate and
deserving of processing (similar to above), then block 314
continues to block 316. If block 314 determines the MS is
not participating with the service, in which case block 312
did little to process it, then processing continues back to
block 312 to continue working on behalf of legitimate
participating MSs. The controller at block 316 may com-

Petitioners' Ex. 1001, Page 351 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
49 50

information as guidelines where 1 is the lowest confidence
and 100 is the highest confidence.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "Server Cell TDOA'', "Server Cell AOA'', "Server
Cell MPT", "Server Antenna TDOA'', "Server Antenna
AOA'', or "Server Antenna MPT", depending on how the
MS was located and what flavor of service was used. The
originator indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably

municate with other controllers when base stations in other
cellular clusters are picking up a signal, for example, when
the MS roams. In any case, at block 316, the controller(s)
determines the strongest signal base stations needed for
locating the MS, at block 316. The strongest signals that can 5

accomplish whereabouts information of the MS are used.
Thereafter, block 318 accesses base station location infor
mation for base stations determined at block 316. The base
station provides stationary references used to (relatively)
determine the location of the MS. Then, block 320 uses the
TDOA, or AOA, or MPT (i.e. heterogeneously both AOA
and TDOA) information together with known base station
locations to calculate the MS location.

10 set with: null (not set) for indicating that all triangulation
data was factored into determining confidence, and none is
relevant for a single TDOA or AOA measurement in sub
sequent processing (i.e. service did all the work).
COMMUNICATIONS REFERENCE INFO field 1100g is Thereafter, block 322 accesses historical MS location

information, and block 324 performs housekeeping by prun
ing location history data for the MS by time, number of
entries, or other criteria. Block 326 then determines a
heading (direction) of the MS based on previous location
information. Block 326 may perform Artificial Intelligence
(AI) to determine where the MS may be going by consulting
many or all of the location history data. Thereafter, block
328 completes a service side WDR 1100, block 330 appends
the WDR information to location history data and notifies a
supervisory service if there is one outside of the service
processing of FIG. 3B. Processing continues to block 332
where the service communicates the WDR to the located
MS.

15 preferably set with: Same as was described for FIG. 2D
(block 236) above.
SPEED field 1100h is preferably set with: Service WDR
information at block 332, wherein the service used historical
information and artificial intelligence interrogation of MS

20 travels to determine, if available.
HEADING field ll00i is preferably set with: Service WDR
information at block 332, wherein the service used historical
information and artificial intelligence interrogation of MS
travels to determine, if available.

25 ELEVATION field 1100} is preferably set with: Elevation/
altitude, if available.
APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not

30 Applicable (i.e. not maintained to queue 22).

Thereafter, the MS completes its own WDR at block 334
for adding to WDR queue 22 to know its own whereabouts
whenever possible, and block 336 prepares parameters for
invoking WDR insertion processing at block 338. Param
eters are set for: WDRREF=a reference or pointer to the MS
WDR; DELETEQ=FIG. 3B location queue discard process
ing; and SUPER=FIG. 3B supervisory notification process
ing (e.g. no supervisory notification processing because it 35

was already handled at block 330, or by being in context of
the FIG. 3B service processing). At block 338, the MS
invokes FIG. 2F processing already described. After block
338, processing continues back to block 312. Of course,
block 332 continues directly to block 312 at the service(s)
since there is no need to wait for MS(s) processing in blocks
334 through 338. FIG. 3B processing is continuous for every
MS in the wireless network 7 days a week, 24 hours a day.

See FIG. llA descriptions. Fields are set to the following
upon exit from block 334:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The triangu
lated location of the MS as communicated by the service.
CONFIDENCE field 1100d is preferably set with: Confi
dence of triangulation determined by the service which is
passed to the MS at block 332. The confidence value may be

SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

FIG. 3C depicts a flowchart for describing a preferred
embodiment of the whereabouts update event of a triangu
lated MS, for example a DLM 200, when MS location
awareness is monitored by the MS. Communications
between the base stations and MS is similar to FIG. 3B

40 processing except the MS receives information (FIG. 13C)
for performing calculations and related processing. Process
ing begins at block 350 and continues to block 352 where the
MS continues receiving (FIG. 13C) pulse reporting from
base stations (or antennas). AOA, TDOA, and MPT (See

45 "Missing Part Triangulation (MPT)" section below with
discussions for FIGS. llA through llE for details on het
erogeneously locating the MS using both TDOA and AOA)
can be used to locate the MS, so there are many possible
signal types received at block 352. Then, block 354 deter-

50 mines the strongest signals which can accomplish a com
pleted WDR, or at least a location, of the MS. Thereafter,
block 356 parses base station location information from the
pulse messages that are received by the MS. Block 358
communicates with base stations to perform TDOA and/or

55 AOA measurements and calculations. The time it takes for set with the same value (e.g. 85) regardless of how the MS
was triangulated. In other embodiments, field 1100d will be
determined (completely, or adjusting the value of 85) by the
service for TDOA measurements used, AOA measurements,
signal strengths, wave spectrum involved, and/or the abun
dance of particular MS signals available for processing by 60

blocks 312 through 320. Higher confidences are assigned for
smaller TDOA measurements (shorter distances), strong
signal strengths, and numerous additional data points
beyond what is necessary to locate the MS. Lower confi
dences are assigned for larger TDOA measurements, weak
signal strengths, and minimal data points necessary to locate
the MS. A reasonable confidence can be assigned using this

a communication to occur from the MS back to the MS for
TDOA, or alternatively, from a base tower back to that base
tower can be used. NTP may also be used, as described
above, so that base towers (or antennas) broadcast signals
(FIG. 13C) picked up by the MS which already contain the
base tower locations and NTP date/time stamps for TDOA
calculations. Block 358 uses the TDOA and/or AOA infor
mation with the known base station information to deter
mine the MS location. While AOA information from the

65 base stations (or antennas) is used by the MS, various MS
embodiments can use AOA information detected at an MS
antenna provided the heading, yaw, pitch, and roll is known

Petitioners' Ex. 1001, Page 352 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
51

at the MS during the same time as signal reception by the
MS. A 3-axis accelerometer (e.g. in iPhone) may also
provide yaw, pitch and roll means for proper AOA calcula-
tion.

Thereafter, block 360 accesses historical MS location 5

information (e.g. WDR queue 22 and/or LBX history 30) to
prevent redundant information kept at the MS, and block
362 performs housekeeping by pruning the LBX history 30
for the MS by time, number of entries, or other criteria.
Block 364 then determines a heading (direction) of the MS 10

based on previous location information (unless already
known from block 358 for AOA determination). Block 364
may perform Artificial Intelligence (AI) to determine where
the MS may be going by consulting queue 22 and/or history
30. Thereafter, block 366 completes a WDR 1100, and block 15

368 prepares parameters for FIG. 2F processing:
WDRREF=a reference or pointer to the MS WDR;
DELETEQ=FIG. 3C location queue discard processing; and
SUPER=FIG. 3B supervisory notification processing. Block
368 continues to block 370 for invoking FIG. 2F processing 20

already described above. After block 370, processing con
tinues back to block 352. FIG. 3C processing is continuous
for the MS as long as the MS is enabled. In various
multithreaded embodiments, many threads at the MS work
together for high speed processing at blocks 352 through 25

358 for to concurrently communicating to many stationary
references.

See FIG. llA descriptions. Fields are set to the following
upon exit from block 366:
MS ID field 1100a is preferably set with: Same as was 30

described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:

52
TDOAmeasurement): the selection location, AOAmeasure
ment to it, and heading, yaw, pitch, and roll values (or
accelerometer readings), if reasonable. Values that may be
populated here should have already been factored into the
confidence value. There may be one or more stationary
reference whereabouts with useful measurements main-
tained here for FIG. 26B processing of block 2652.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Parameters referencing MS internals, if
desired.
SPEED field 1100h is preferably set with: Speed determined
by the MS using historical information (queue 22 and/or
history 30) and artificial intelligence interrogation of MS
travels to determine, if reasonable.
HEADING field ll00i is preferably set with: Heading
determined by the MS using historical information (queue
22 and/or history 30) and artificial intelligence interrogation
of MS travels to determine, if reasonable.
ELEVATION field 1100} is preferably set with: Elevation/
altitude, if available.
APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

In alternative triangulation embodiments, a unique MS
identifier, or MS group identifier, for authenticating an MS
for locating the MS is not necessary. An antenna emitting
signals (FIG. 13C) will broadcast (CK 1314 of data 1312)
not only its own location information, but also an NTP
date/time stamp, which the receiving MS (also having NTP

35 for time synchronization) uses to perform TDOA measure
ments upon receipt. This will enable a MS to determine how
close (e.g. radius 1318 range, radius 1320 range, radius 1322
range, or radius 1316 range) it is located to the location of

Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The triangu
lated location of the MS as determined by the MS.
CONFIDENCE field 1100d is preferably set with: The
confidence of triangulation as determined by the MS. Con
fidence may be set with the same value (e.g. 80 since MS
may be moving during triangulation) regardless of how the
MS was triangulated. In other embodiments, field 11 OOd will 40

be determined (completely, or adjusting the value of 80) by
the MS for TDOA measurements used, AOA measurements,
signal strengths, wave spectrum involved, and/or the abun
dance of particular service signals available for processing.
Higher confidences are assigned for smaller TDOA mea- 45

surements (shorter distances), strong signal strengths, and
numerous additional data points beyond what is necessary to
locate the MS. Lower confidences are assigned for larger
TDOA measurements, weak signal strengths, and minimal
data points necessary to locate the MS. A reasonable con- 50

fidence can be assigned using this information as guidelines
where 1 is the lowest confidence and 100 is the highest
confidence.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "Client Cell TDOA'', "Client Cell AOA'', "Client Cell 55

MPT", "Client Antenna TDOA'', "ClientAntennaAOA'', or
"Client Antenna MPT", depending on how the MS located
itself. The originator indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: Data associated with selected best stationary ref- 60

erence(s) used by the MS: the selection location/where
abouts, TDOAmeasurement to it, and wave spectrum (and/

the antenna by listening for and receiving the broadcast (e.g.
of FIG. 13C). Similarly, in another embodiment, an NTP
synchronized MS emits signals (FIG. 13A) and an NTP
synchronized data processing system associated with a
receiving antenna can determine a TDOA measurement
upon signal receipt. In other embodiments, more than a
single unidirectional signal may be used while still prevent
ing the requirement to recognize the MS to locate it. For
example, an antenna emitting signals will contain enough
information for a MS to respond with correlation for being
located. Alternatively, an MS emitting signals will contain
enough information for a service to respond with correlation
for being located. In any case, there can be multi-directional
exchanged signals for determining TDOA. Similarly, a
service side data processing system can interact with a MS
for AOA information without requiring a known identifier of
the MS (use request/response correlation).

FIG. 4A depicts a locating by GPS triangulation illustra
tion for discussing automatic location of a MS, for example
a DLM 200. A MS, for example DLM 200, is located
through GPS triangulation as is well known in the art. At
least three satellites, for example, satellite 134, satellite 136,
and satellite 138, are necessary for locating the MS. A fourth
satellite would be used if elevation, or altitude, was config
ured for use by the present disclosure. Ground based sta
tionary references can further enhance whereabouts deter-

or particular communications interface 70) used, if
reasonable. The TDOA measurement may be converted to a
distance using wave spectrum information. Also, preferably
set herein is data associated with a selected best stationary
reference used by the MS (may be same or different than for

65 mination.
FIG. 4B depicts a flowchart for describing a preferred

embodiment of the whereabouts update event of a GPS

Petitioners' Ex. 1001, Page 353 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
53

triangulated MS, for example a DLM 200. Repeated con
tinuous GPS location processing begins at block 410 and
continues to block 412 where the MS initializes to the GPS
interface, then to block 414 for performing the conventional
locating of the GPS enabled MS, and then to block 416 for 5

calculating location information. In some embodiments,
block 412 may only be necessary a first time prior to
repeated invocations of FIG. 4B processing. Block 414 may
be an implicit wait for pulses from satellites, or an event
driven mechanism when GPS satellite pulses are received 10

for synchronized collection, or a multithreaded implemen
tation concurrently listening for, and processing collabora
tively, the signals. Block 414 and block 416 processing is
well known in the art. Thereafter, the MS completes a WDR

15
1100 at block 418, block 420 prepares parameters for FIG.
2F invocation, and block 422 invokes, with the WDR, the
FIG. 2F processing (described above). Processing then ter
minates at block 424. Parameters prepared at block 420 are:
WDRREF=a reference or pointer to the WDR; 20

DELETEQ=FIG. 4B location queue discard processing; and
SUPER=FIG. 4B supervisory notification processing. GPS
location processing is preferably continuous for the MS as
long as the MS is enabled.

See FIG. llA descriptions. Fields are set to the following 25

upon exit from block 418:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:

54
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

FIG. SA depicts a locating by stationary antenna triangu-
lation illustration for discussing automatic location of a MS,
for example DLM 200. There may be communication/
transmission issues when an MS is taken indoors. Shown is
a top view of an indoor floor plan 502. Antenna stations 504
(shown generally as 504) are strategically placed over the
area so that an MS can be located. Triangulation techniques
again apply. At least three antenna stations, for example,
station 504{, station 504h, and station 504i are used to locate
the MS, for example DLM 200. In floor plan embodiments
where aisles delimit travel, only two antenna stations may be
necessary, for example at either end of the particular aisle.
While most stations 504 may receive signals from the MS,
only the strongest stations are used. FIG. SA and associated
discussions can also be used for an outside triangulation
embodiment using a similar strategic antenna placement
scheme. Processing described for FIGS. 3A to 3C can also
be used for an indoor embodiment as described by FIG. SA.

FIG. 5B depicts a flowchart for describing a preferred
embodiment of the whereabouts update event of a stationary
antenna triangulated MS, for example a DLM 200. In one
embodiment, indoor location technology of Pinpoint corpo
ration (Pinpoint is a trademark of Pinpoint Corporation) is

Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The GPS
location of the MS.

30 utilized to locate any MS that moves about the indoor
location. The Pinpoint corporation methodology begins at
block 510 and continues to block 512. A cell controller
drives antenna stations to emit a broadcast signal from every CONFIDENCE field 1100d is preferably set with: Confi

dence of GPS variety (usually high) which may be set with
the same value (e.g. 95 for DGPS, 93 for AGPS, and 90 for 35

GPS). In other embodiments, field 1100d will be determined

station. Any MS within range (i.e. indoors) will phase
modulate its unique identifier onto a return signal it trans
mits, at block 514. Stations at block 516 receive the trans-
mission and strength of signal. The cell controller that drives
stations sorts out and selects the strongest (e.g. 3) signals.
The cell controller, at block 518, also extracts the unique MS
identifier from the return signal, and TDOA is used to
calculate distances from the stations receiving the strongest
signals from the MS at block 520. Alternative embodiments
can use AOA or MPT to determine locations. The locations
of the controller selected stations are registered in an overlay

(completely, or amending the defaulted value) by the MS for
timing measurements, signal strengths, and/or the abun
dance of particular signals available for processing, simi
larly to as described above. An MS may not be aware of the 40

variety of GPS, in which case straight GPS is assumed.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "GPS", "A-GPS", or "D-GPS", depending on (if
known) flavor of GPS. The originator indicator is set to
DLM. 45 map in an appropriate coordinate system, landmark system,

or grid of cells. Block 522 locates the MS using the overlay
map, locations of the (e.g. 3) selected stations, and the
calculated distances triangulated from the selected stations,
using TDOA, AOA, or MPT in various embodiments.

LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set) for indicating that data was factored
into determining confidence, and none is relevant for a
single TDOA or AOA measurement in subsequent process
ing.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Parameters referencing MS internals, if
desired.
SPEED field 1100h is preferably set with: Speed determined
by the MS using a suitable GPS interface, or historical
information (queue 22 and/or history 30) and artificial
intelligence interrogation of MS travels to determine, if
reasonable.
HEADING field ll00i is preferably set with: Heading
determined by the MS using a suitable GPS interface, or
historical information (queue 22 and/or history 30) and
artificial intelligence interrogation of MS travels to deter
mine, if reasonable.
ELEVATION field 1100} is preferably set with: Elevation/
altitude, if available.
APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.

50 Thereafter, block 524 calculates location information of the
MS. Processing continues with repeated broadcast at block
512 and subsequent processing for every MS within range.

Thereafter, block 526 accesses historical MS location
information, performs housekeeping by pruning location

55 history data for the MS by time, number of entries, or other
criteria, and determines a heading (direction) of the MS
based on previous location information. Block 526 may
perform Artificial Intelligence (AI) to determine where the
MS may be going by consulting many or all of the location

60 history data. Thereafter, block 528 completes a service side
WDR 1100, block 530 appends the WDR information to
location history data and notifies a supervisory service if
there is one outside of the service processing of FIG. 5B.
Processing continues to block 532 where the service com-

65 municates the WDR to the located MS.
Thereafter, the MS completes the WDR at block 534 for

adding to WDR queue 22. Thereafter, block 536 prepares

Petitioners' Ex. 1001, Page 354 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
55

parameters passed to FIG. 2F processing for: WDRREF=a
reference or pointer to the MS WDR; DELETEQ=FIG. 5B
location queue discard processing; and SUPER=FIG. 5B
supervisory notification processing (e.g. no supervisory
notification processing because it was already handled at 5

block 530, or by being in context of the FIG. 5B service
processing). Block 536 continues to block 538 where the MS
invokes FIG. 2F processing already described above. After
block 538, processing continues back to block 514. Of
course, block 532 continues directly to block 514 at the 10

service(s) since there is no need to wait for MS(s) processing

56
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

FIG. 6A depicts a flowchart for describing a preferred
embodiment of a service whereabouts update event of a
physically, or logically, connected MS, for example a DLM
200. A MS may be newly located and physically, or logi
cally, connected, whereby communications between the MS
and service is over a physical/logical connection. Physical
connections may occur by connecting a conduit for com-

in blocks 534 through 538. FIG. 5B processing is continuous
for every MS in the wireless network 7 days a week, 24
hours a day.

See FIG. llA descriptions. Fields are set to the following
upon exit from block 534:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.

15 munications to the MS, or from the MS to a connection
point. Conduits include ethernet cables, optical fiber,
firewire, USB, or any other means for conduit for commu
nications through a physical medium. Conduits also include

DATE/TIME STAMP field 1100b is preferably set with: 20

Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The triangu
lated location of the MS as communicated by the service.
CONFIDENCE field 1100d is preferably set with: Confi
dence of triangulation determined by the service which is 25

passed to the MS at block 532. The confidence value may be
set with the same value (e.g. 95 (normally high for triangu
lation using densely positioned antennas)) regardless of how
the MS was triangulated. In other embodiments, field 1100d
will be determined (completely, or adjusting the value of95) 30

by the service for TDOA measurements used, AOA mea
surements, signal strengths, wave spectrum involved, and/or
the abundance of particular MS signals available for pro
cessing. Higher confidences are assigned for smaller TDOA
measurements (shorter distances), strong signal strengths, 35

and numerous additional data points beyond what is neces
sary to locate the MS. Lower confidences are assigned for
larger TDOA measurements, weak signal strengths, and
minimal data points necessary to locate the MS. A reason
able confidence can be assigned using this information as 40

guidelines where 1 is the lowest confidence and 100 is the
highest confidence.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "Server Antenna TDOA", "Server Antenna AOA", or
"Server Antenna MPT", depending on how the MS was 45

located and what flavor of service was used. The originator
indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably

wireless mediums (air) for transporting communications,
such as when an MS comes into physical wireless range
eligible for sending and receiving communications. Logical
connections may occur, after a physical connection already
exists, for example through a successful communication, or
authenticated, bind between a MS and other MS, or MS and
service. Logical connections also include the result of:
successfully logging into an application, successfully
authenticated for access to some resource, successfully
identified by an application, or any other logical status upon
a MS being certified, registered, signed in, authenticated,
bound, recognized, affirmed, or the like.

Relevant processing begins at block 602 and continues to
block 604 where an MS device is physically/logically con
nected to a network. Thereafter, the MS accesses a service
at block 606. Then, at block 608, the service accesses
historical MS location history, and block 610 performs
housekeeping by pruning the location history data main-
tained for the MS by time, number of entries, or other
criteria. Block 610 may perform Artificial Intelligence (AI)
to determine where the MS may be going (e.g. using heading
based on previous locations) by consulting much or all of the
location history data. Thereafter, service processing at block
612 completes a service side WDR 1100, then the service
appends WDR information to location history data at block
614, and may notify a supervisory service if there is one
outside of the service processing of FIG. 6A. Processing
continues to block 616 where the service communicates
WDR information to the newly physically/logically con
nected MS. There are many embodiments for determining a
newly connected MS location using a physical or logical
address, for example consulting a database which maps
locations to network addresses (e.g. location to logical ip
address; location to physical wall jack/port; etc). Then, at
block 618 the MS completes its own WDR using some
information from block 616, FIG. 2F parameters are pre-

set with: null (not set) for indicating that all triangulation
data was factored into determining confidence, and none is 50

relevant for a single TDOA or AOA measurement in sub
sequent processing (i.e. service did all the work).
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Same as was described for FIG. 2D
(block 236) above. 55 pared at block 620, block 622 invokes FIG. 2F processing

already described above, and processing terminates at block
624. Parameters are set at block 620 for: WDRREF=a
reference or pointer to the MS WDR; DELETEQ=FIG. 6A

SPEED field 1100h is preferably set with: Service WDR
information at block 532, wherein the service used historical
information and artificial intelligence interrogation of MS
travels to determine, if available.
HEADING field ll00i is preferably set with: Service WDR 60

information at block 532, wherein the service used historical
information and artificial intelligence interrogation of MS
travels to determine, if available.

location queue discard processing; and SUPER=FIG. 6A
supervisory notification processing (e.g. no supervisory
notification processing because it was already handled at
block 614, or by being in context of the FIG. 6A service
processing). Of course, block 616 continues directly to block
624 at the service(s) since there is no need to wait for MS ELEVATION field 1100} is preferably set with: Elevation/

altitude, if available.
APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.

65 processing in blocks 618 through 622. FIG. 6A processing is
available at any appropriate time in accordance with the
underlying service.

Petitioners' Ex. 1001, Page 355 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
57

See FIG. llA descriptions. Fields are set to the following
upon exit from block 618:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The location
of the MS as communicated by the service.
CONFIDENCE field 1100d is preferably set with: Confi
dence (determined by the service) according to how the MS
was connected, or may be set with the same value (e.g. 100
for physical connect, 77 for logical connect (e.g. short range
wireless)) regardless of how the MS was located. In other
embodiments, field 11 OOd will be determined by the service
for anticipated physical conduit range, wireless logical con
nect range, etc. The resulting confidence value can be
adjusted based on other parameters analogously to as
described above.
LOCATION TECHNOLOGY field ll00e is preferably set
with "Service Physical Connect" or "Service Logical Con
nect", depending on how the MS connected. The originator
indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set), but if a TDOA measurement can be
made (e.g. short range logical connect, and using method
ologies described above), then a TDOA measurement, a
communications signal strength, if available; and wave
spectrum (and/or particular communications interface 70)
used, if available. The TDOA measurement may be con
verted to a distance using wave spectrum information.
Possible values populated here should have already been
factored into the confidence value.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Same as was described for FIG. 2D
(block 236) above.
SPEED field 1100h is preferably set with: null (not set), but
can be set with speed required to arrive to the current
location from a previously known location, assuming same
time scale is used.
HEADING field ll00i is preferably set with: null (not set),
but can be set to heading determined when arriving to the
current location from a previously known location.
ELEVATION field 1100} is preferably set with: Elevation/
altitude (e.g. of physical connection, or place of logical
connection detection), if available.
APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

FIG. 6B depicts a flowchart for describing a preferred
embodiment of a MS whereabouts update event of a physi
cally, or logically, connected MS, for example a DLM 200.
A MS may be newly located and physically/logically con
nected, whereby communications between the MS and ser
vice is over a physical/logical connection as described in
FIG. 6A above. Relevant processing begins at block 640 and
continues to block 642 where an MS device is physically/
logically connected. Thereafter, at block 644 the MS
accesses the connectivity service and waits for an acknowl
edgement indicating a successful connection. Upon
acknowledgement receipt, processing continues to block
646 where the MS requests WDR information via the
connectivity service and waits for the data (i.e. connectivity

58
service may be different than the location service, or may be
one in the same). As part of connectivity, location service
pointer(s) (e.g. ip address for http:l/112.34.323.18 referenc
ing or a Domain Name Service (DNS) name like http://

5 www.servicename.com) are provided with the connectivity
acknowledgement from the connectivity service at block
644, so the MS knows how to proceed at block 646 for
retrieving location information. There are various embodi
ments for the location service determining a MS location as

10 described above for FIG. 6A. In an alternative embodiment,
the MS already knows how to locate itself wherein block
644 continues directly to block 648 (no block 646) because
the MS maintains information for determining its own
whereabouts using the physical or logical address received

15 in the acknowledgement at block 644. Similar mapping of a
network address to the MS location can be in MS data, for
example data 36, data 8, or data 20. At block 648, the MS
completes its WDR 1100. Thereafter, block 650 prepares
FIG. 2F parameters, block 652 invokes FIG. 2F processing

20 already described above, and processing terminates at block
654. Parameters set at block 650 are: WDRREF=a reference
or pointer to the MS WDR; DELETEQ=FIG. 6B location
queue discard processing; and SUPER=FIG. 6B supervisory
notification processing. FIG. 6B processing is available at

25 any appropriate time to the MS.
See FIG. llA descriptions. Fields are set to the following

upon exit from block 648:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.

30 DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The location
determined for the MS.
CONFIDENCE field 1100d is preferably set with: Confi-

35 dence (determined by the service) according to how the MS
was connected, or may be set with the same value (e.g. 100
for physical connect, 77 for logical connect (e.g. short range
wireless)) regardless of how the MS was located. In other
embodiments, field 1100d will be determined by the service

40 for anticipated physical conduit range, wireless logical con
nect range, etc. The resulting confidence value can be
adjusted based on other parameters analogously to as
described above.
LOCATION TECHNOLOGY field ll00e is preferably set

45 with "Client Physical Connect" or "Client Logical Con
nect", depending on how the MS connected. The originator
indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set), but if a TDOA measurement can be

50 made (e.g. short range logical connect, and using method
ologies described above), then a TDOA measurement, a
communications signal strength, if available; and wave
spectrum (and/or particular communications interface 70)
used, if available. The TDOA measurement may be con-

55 verted to a distance using wave spectrum information.
Possible values populated here should have already been
factored into the confidence value.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Same as was described for FIG. 2D

60 (block 236) above.
SPEED field 1100h is preferably set with: null (not set), but
can be set with speed required to arrive to the current
location from a previously known location using, assuming
same time scale is used.

65 HEADING field ll00i is preferably set with: null (not set),
but can be set to heading determined when arriving to the
current location from a previously known location.

Petitioners' Ex. 1001, Page 356 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
59

ELEVATION field 1100} is preferably set with: Elevation/
altitude (e.g. of physical connection, or place of logical
connection detection), if available.
APPLICATION FIELDS field 1100k is preferably set with:

60
ing how large, and where located, are objects that come into
the field of view 704. For example, a well placed and
recognizable vertical line 710a and horizontal line 710b,
which are preferably perpendicular to each other, have

Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field llOOp is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

5 known lengths and positions. The objects which come into
the field of view are measured based on the known lengths
and positions of the lines 710a and 710b which may be
landscape markings (e.g. parking lot lines) for additional
purpose. Field of view 704 may contain many lines and/or

10 objects of known dimensions strategically placed or recog
nized within the field of view 704 to facilitate image
processing by service 700. Building 714 may serve as a
reference point having known dimension and position in
measuring objects such as a person 716 or DLM 200. A

FIGS. 7A, 7B and 7C depict a locating by image sensory
illustration for discussing automatic location of a MS, for
example a DLM 200. With reference now to FIG. 7A, an
image capture device 702 is positioned for monitoring MSs
that come into the field of view 704 of device 702. Device
702 may be a camcorder, video camera, image camera that
takes at least one snapshot, timely snapshots, or motion/
presence detection snapshots, or any other device capable of
producing at least a snapshot image at some point in time
containing objects in the field of view 704. In one preferred
embodiment, DLM 200 is sensed within the vicinity of
device 702, perhaps by antenna (or cell tower) 701, prior to
being photographed by device 702. In another embodiment,
DLM 200 is sensed by movement within the vicinity of
device 702 with well know motion detection means. In yet
another embodiment, device 702 periodically or continually
records. Device 702 is connected to a locating service 700
for processing as described by FIG. 7D. Locating service
700 has means for communicating wirelessly to DLM 200, 30

for example through a connected antenna (or cell tower)
701. FIG. 7A illustrates that device 702 participates in
pattern recognition for identifying the location of a MS. The
MS can have on its exterior a string of characters, serial
number, barcode, license plate, graphic symbol(s), textual 35

symbols, combinations thereof, or any other visually per
ceptible, or graphical, identification 708 that can be recog
nized optically, or in a photograph. Device 702 is to have
graphical/pixel resolution capability matching the require
ments for identifying a MS with the sought graphical 40

identification. Graphical identification 708 can be formed on
the perceptible exterior of DLM 200, or can be formed as
part of a housing/apparatus 706 which hosts DLM 200.
Graphical identification 708 can be automatically read from

15 moving object such as a shopping cart 712 can have known
dimensions, but not a specific position, to facilitate service
700 in locating an MS coming into the field of view 704.
Those skilled in the art recognize that known dimensions
and/or locations of anticipated objects in field of view 704

20 have measurements facilitating discovering positions and
measurements of new objects that may travel into the field
of view 704. Using FIG. 7B techniques with FIG. 7A
techniques provides additional locating accuracy. A distance
may be estimated based on the anticipated sizes of refer-

25 ences in the field of view, relative size of the recognized MS.

an image using well known barcode reader technology, an 45

Optical Character Recognition (OCR) process, a license tag
scanner, general pattern recognition software, or the like.
Housing 706 is generally shown for representing an auto
mobile (license plate recognition, for example used in prior
art toll tag lanes), a shopping cart, a package, or any other 50

hosting article of manufacture which has a DLM 200 as part
of it. Upon recognition, DLM 200 is associated with the
location of device 702. Error in locating an MS will depend
on the distance within the field of view 704 from device 702.
A distance may be estimated based on the anticipated size of 55

identification 708, relative its size determined within the
field of view 704.

With reference now to FIG. 7B, image capture device 702
is positioned for monitoring MSs that come into the field of
view 704 of device 702. MSs are preferably distinguishable 60

by appearance (e.g. color, shape, markings, labels, tags, etc),
or as attached (e.g. recognized mount to host) or carried (e.g.
recognized by its recognized user). Such techniques are well
known to those skilled in the art. Device 702 is as described
above with connectivity to locating service 700 and antenna 65

(or cell tower) 701. FIG. 7B illustrates that device 702 uses
known measurements within its field of view for determin-

With reference now to FIG. 7C, image capture device 702
is positioned for monitoring MSs that come into the field of
view 704 of device 702. Device 702 is as described above
with connectivity to locating service 700 and antenna (or
cell tower) 701. MSs are preferably distinguishable by
appearance (e.g. color, shape, markings, labels, tags, etc), or
as attached (e.g. recognized mount to host) or carried (e.g.
recognized by its user), or as identified by FIG. 7A and/or
FIG. 7B methodologies. FIG. 7C illustrates that device 702
uses known locations within its field of view for determining
how large, and where located, are objects that come into the
field of view 704. For example, building 714, tree 720, and
traffic sign 722 have its locations known in field of view 704
by service 700. Solving locations of objects that move into
the field of view is accomplished with graphical triangula
tion measurements between known object reference loca-
tions (e.g. building 714, tree 720, and sign 722) and the
object to be located. Timely snapshots by device 702 provide
an ongoing locating of an MS, for example DLM 200. Line
segment distances 724 (a, b, c) can be measured using
references such as those of FIG. 7B. Whereabouts are
determined by providing known coordinates to anticipated
objects such as building 714, tree 720, and sign 722.
Similarly, graphical AOA measurements (i.e. graphical
angle measurements) and graphical MPT measurements can
be used in relation to anticipated locations of objects within
the field of view 704. There may be many anticipated
(known) object locations within field of view 704 to further
facilitate locating an MS. Being nearby an object may also
be enough to locate the MS by using the object's location for
the location of the MS. Using FIG. 7C techniques with FIG.
7A and/or FIG. 7B techniques provides additional locating
accuracy.

The system and methodologies illustrated by FIGS. 7A
through 7C are preferably used in optimal combination by
locating service 700 to provide a best location of an MS. In
some embodiments, MS whereabouts is determined as the
location of a device 702 by simply being recognized by the
device 702. In other embodiments, multiple devices 702 can
be strategically placed within a geographic area for being
used in combination to a common locating service 700 for
providing a most accurate whereabouts of an MS. Multiple

Petitioners' Ex. 1001, Page 357 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
61

field of views 704 from difference angles of different devices
702 enable more precise locating within three dimensional
space, including precise elevations.

FIG. 7D depicts a flowchart for describing a preferred
embodiment of graphically locating a MS in accordance 5

with locating service 700 described above, for example as
illustrated by FIGS. 7A through 7C. Locating service 700
may be a single capable data processing system, or many
connected data processing systems for enhanced parallel
processing. Locating service 700 may be connected to 10

services involved with any other locating technology
described in this application for synergistic services as an
MS is mobile. Locating service 700 begins at block 732 and
continues to block 734 where the service 700 is initialized in
preparation of MS whereabouts analysis. Block 734 initial- 15

izes its table(s) of sought identifying criteria which can be
pattern recognized. In one preferred embodiment, color/
shade, shape, appearance and applicable sought information
is initialized for each sought identifying criteria. Pattern
recognition is well known in the art and initialization is 20

specific for each technology discussed above for FIGS. 7A
through 7C. For FIGS. 7B and 7C discussions, positions,
measurements, and reference points of known landmarks are
additionally accounted. Thereafter, block 736 gets the next
snapshot from device(s) 702. If there is none waiting to get, 25

block 736 waits for one. If there is one queued up for
processing, then block 736 continues to block 738. FIG. 7D
is processing of a service, and is preferably multi-threaded.
For example, blocks 736 through 754 can occur concur
rently in many threads for processing a common queue of 30

snapshots received from a device 702, or many devices 702.
Each thread may process all sought criteria, or may special-
ize in a subset of sought criteria wherein if nothing is found,
the thread can place the snapshot back on a queue for thread
processing for another sought criteria after marking the 35

queue entry as having been processed for one particular
subset. So, threads may be specialized and work together in
seeking all criteria, or may each work in parallel seeking the
same criteria. In preferred embodiments, there is at least one
queue of snapshots received by block(s) 736. Block 736 40

continues to block 738 which attempts to detect an MS
having sought criteria using pattern recognition techniques

62
above (at block 754), and processing continues for service
700 back to block 736. Of course, block 746 continues
directly to block 736 at the service(s) since there is no need
to wait for MS(s) processing in blocks 748 through 754.
Parameters set at block 752 are: WDRREF=a reference or
pointer to the MS WDR; DELETEQ=FIG. 7D location
queue discard processing; and SUPER=FIG. 7D supervisory
notification (e.g. no supervisory notification processing
because it was already handled at block 744, or by being in
context of the FIG. 7D service processing). No snapshots
from device 702 are to be missed at block 736.

See FIG. llA descriptions. Fields are set to the following
upon exit from block 750:
MS ID field 1100a is preferably set with: Unique MS
identifier of the MS, after validating at the MS that the
service 700 has correctly identified it. This field is used to
uniquely distinguish this MS WDRs on queue 22 from other
originated WDRs. The service 700 may determine a MS ID
from a database lookup using above appearance criteria.
Field 1100a may also be determined using the transmission
methods as described for FIGS. 2A through 2E, for example
by way of antenna 701. For example, when the MS comes
within range of antenna 701, FIG. 7D processing com
mences. Another embodiment prevents recognizing more
than one MS within the field of view 704 at any time (e.g.
a single file entryway), in which case the service can solicit
a "who are you" transmission to identify the MS and then
send back its whereabouts (in which case the MS sets its
own MS ID here).
DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The location
determined for the MS by the service.
CONFIDENCE field 1100d is preferably set with: same
value (e.g. 76) regardless of how the MS location was
determined. In other embodiments, field 1100d will be
determined by the number of distance measurements and/or
the abundance of particular objects used in the field of view
704. The resulting confidence value can be adjusted based
on other graphical parameters involved, analogously to as
described above.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "Server Graphic-Patterns" "Server Graphic-Dis
tances", "Server Graphic Triangulate", or a combination
field value depending on how the MS was located and what
flavor of service was used. The originator indicator is set to
DLM.
LOCATION REFERENCE INFO field 1100/ is preferably

of FIGS. 7A through 7C, in particular, or in combination. In
one example embodiment, as device 702 provides service
700 with at least one timely snapshot to block 736, the 45

snapshot graphic is scanned at block 738 for identifying
characters/symbols/appearance of sought criteria. Block 738
continues with its search result to block 740. If block 740
determines no MS was detected, then processing continues
back to block 736. If block 738 detected at least one MS (as
determined at block 740), then block 742 calculates WDR
information for the MS(s) detected, block 744 notifies a
supervisory service of MS whereabouts if applicable, block
746 communicates the WDR information to MS(s) detected
(for example via antenna 701), and processing continues to
block 748.

50 set with: null (not set) for indicating that all whereabouts
determination data was factored into the confidence, and
none is relevant for a single TDOA or AOA measurement in
subsequent processing (i.e. service did all the work).
COMMUNICATIONS REFERENCE INFO field 1100g is

There may be a plurality of MSs in the field of view, so
communications at block 746 targets each MS recognized. A
MS should not rely on the service to have done its job
correctly. At a MS, block 748 checks the MS ID commu
nicated for validation. If block 748 determines the MS ID is
incorrect, then processing continues back to block 736 (for
the particular MS). If block 748 determines the MS ID is
correct, then processing continues to block 750 where the
particular MS completes its WDR 1100 received from
service 700. Thereafter, MS(s) prepare parameters at block
752, invoke local FIG. 2F processing already described

55 preferably set with: Same as was described for FIG. 2D
(block 236) above.
SPEED field 1100h is preferably set with: null (not set), but
can be set with speed required to arrive to the current
location from a previously known time at a location (e.g.

60 using previous snapshots processed), assuming the same
time scale is used.
HEADING field ll00i is preferably set with: null (not set),
but can be set to heading determined when arriving to the
current location from a previously known location (e.g.

65 using previous snapshots processed).
ELEVATION field 1100} is preferably set with: Elevation/
altitude, if available, if available.

Petitioners' Ex. 1001, Page 358 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
63

APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set 5

with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

64
Each frame as it is captured at the MS;
Each frame as a configurable plurality of frames are

captured at the MS;
The frame upon completion of capturing a snapshot

image;
Each frame upon completion of capturing an image

stream;
Each frame upon storing the image or image stream,

perhaps to a particular location for frame analysis
processing;

Each frame as it is received from a remote data processing
system; or

Each frame as it is stored (e.g. locally, or upon being
received from a remote data processing system).

Preferably, a user can manually perform frame analysis at
any time on a stored image or stream. In preferred embodi
ments, MS performance considerations will affect under
what circumstances frame analysis can be configured and/or
performed. In some embodiments, a MS is prepackaged with
graphical recognition criteria for FIG. 81B artificial process
ing intelligence. In some embodiments, a MS performs
location determination processing of FIG. 81B upon normal
MS usage (e.g. camcorder, camera, etc) and determining a
location is a side affect of having used the MS for image
capture purpose. In some embodiments, the MS performs

In an alternative embodiment, MS 2 may be equipped
(e.g. as part of resources 38) with its own device 702 and 10

field of view 704 for graphically identifying recognizable
environmental objects or places to determine its own where
abouts. In this embodiment, the MS would have access to
anticipated objects, locations and dimensions much the same

15
way described for FIGS. 7A through 7D, either locally
maintained or verifiable with a connected service. Upon a
successful recognition of an object, place, or other graphi
cally perceptible image which can be mapped to a location,
the MS would complete a WDR similarly to above. The MS 20

may recognize addresses, buildings, landmarks, of other
pictorial data. Thus, the MS may graphically determine its
own location. The MS would then complete a WDR 1100 for
FIG. 2F processing exactly as described for FIG. 7D with the
exceptions of fields that follow: 25 image captures automatically for processing, perhaps

unknown to the user of the MS, although preferably accord
ing to a user configuration.

MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: The location
determined for the MS by the MS.

Independent of how a frame is selected for processing,
frame analysis processing begins at block 8100, continues to
block 8102 for applicable initialization in preparation for
subsequent processing, and then to block 8104 for accessing
graphical recognition criteria. In a preferred embodiment,
graphical recognition criteria is preconfigured for a MS and
governs how and what to examine in images for determining

LOCATION TECHNOLOGY field ll00e is preferably set 30

with: "Client Graphic-Patterns" "Client Graphic-Distances",
"Client Graphic Triangulate", or a combination field value
depending on how the MS located itself. The originator
indicator is set to DLM.

35 a location. Thereafter, if block 8106 determines Optical
Character Recognition (OCR) criteria is configured, then
block 8108 performs optical character recognition on the
frame and produces an output text stream if one or more

COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set).

With reference now to FIG. 81B, depicted is a flowchart
for describing a preferred embodiment of processing for a
MS to graphically locate itself. FIG. 81B processing is used 40

on each image (generally referred to as a frame) which is
captured (or stored) at a MS. There are many embodiments
for how, when, where and why an image (frame) is captured

characters is identified. Block 8108 preferably employs all
reasonable methods and systems for improving optical char
acter recognizing functionality (e.g. employ relevant tech-
niques of U.S. Pat. No. 5,875,261 (Method of and apparatus
for optical character recognition based on geometric and
color attribute hypothesis testing, Fitzpatrick et al); U.S. Pat. at the MS which subsequently gets analyzed by FIG. 81B

processing, including:
MS local video, or camcorder, capability is used for

capturing an image stream (i.e. a plurality of frames);
MS local camera capability is used for capturing a single

snapshot image (i.e. a single frame);

45 No. 5,645,309 (Method of and apparatus for character
recognition through related spelling heuristics, Johnson);
U.S. Pat. No. 5,406,640 (Method of and apparatus for
producing predominate and non-predominate color coded

MS receives location tagged image(s) (i.e. a snapshot or 50

stream (i.e. a single frame or plurality of frames)) for a
MS location;

characters for optical character recognition, Fitzpatrick et
al); U.S. Pat. No. 5,396,564 (Method of and apparatus for
recognizing predominate and non-predominate color code
characters for optical character recognition, Fitzpatrick et
al); U.S. Pat. No. 5,262,860 (Method and system commu
nication establishment utilizing captured and processed

MS receives image(s), or image stream, from source
which claims the image(s) are representative of the
current MS location;

MS contains image(s), or image stream, which is under
stood to be representative of the current location, and
MS user selects the image(s) or image stream for
analysis (i.e. each frame to be analyzed); or

55 visually perceptible data within a broadcast video signal,
Fitzpatrick et al)).

MS maintains images(s) or image stream(s) to a MS 60

memory and/or storage for subsequent analysis for MS
recognizing its own location.

In some embodiments, a MS user enables or disables the MS
automatically performing frame analysis for recognizing its
own location. Enablement may include an additional con- 65

figuration for which events, or moments, to perform analy
sis, including:

Processing continues to block 8110 where the next (or
first) text fragment from block 8108 is accessed, and block
8112 checks if a new text fragment is available for process
ing. If block 8112 determines that a new text fragment is
available for processing, then block 8114 checks if the
fragment, along with any other data so far processed,
contains high confidence address information. If block 8114
determines high confidence address information was
detected in the frame, then block 8116 performs further
validation using whereabouts information available to the
MS at the time of block 8116 processing, and block 8118

Petitioners' Ex. 1001, Page 359 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
65

checks if a location can be determined for the address
information containing the text fragment being processed. If
block 8118 determines a location was determined, then
block 8120 completes a WDR 1100, block 8122 prepares
parameters for FIG. 2D processing, block 8124 invokes 5

local FIG. 2F processing already described above, and
processing continues back to block 8110 for a next text
fragment to process. Parameters set at block 8122 are:

66
scaled, two dimensionally translated, and color matched as
a raster over the frame image for matching to a landmark in
the frame. If block 8138 determines a match was found, then
block 8140 performs validation similarly to block 8116.
Landmarks are configured with known location information
(e.g. latitude and longitude, address, etc) for facilitating
comparisons to useful MS resources for validation (i.e.
queue 22, LBX history 30, statistics 14, and any other data
which can complement or confirm determining whereabouts
of the MS).

Thereafter, if block 8142 determines a confident location
was validated at block 8140, then block 8144 completes a
WDR 1100, block 8146 prepares parameters for FIG. 2D
processing, block 8148 invokes local FIG. 2F processing

WDRREF=a reference or pointer to the MS WDR;
DELETEQ=FIG. 81B location queue discard processing; 10

and SUPER=FIG. 81B supervisory notification. The loca
tion determined at block 8118 should be of a reasonable
confidence when completing the WDR at block 8120. See
FIG. llA descriptions, and WDR completion descriptions
above. 15 already described above, and processing continues back to

block 8132 for the next landmark criteria to process. Param
eters set at block 8146 are: WDRREF=a reference or pointer
to the MS WDR; DELETEQ=FIG. 81B location queue
discard processing; and SUPER=FIG. 81B supervisory noti-

A fragment at block 8110 may be any subset text string of
the text stream from block 8108 so that text fragments, for
example, may include re-processing previously processed or
subsequently processed text portions of a loop iteration of
block 8110 through 8124. Intelligence is maintained at block
8110 for selecting an optimal next best text fragment. For
example, if the user of the MS snaps a picture of an address

20 fication.

on the outside of an office building, block 8110 should have
enough intelligence to select the entire address text string
rather than just a portion (e.g. zip code) for processing, and 25

then prevent reprocessing redundant information for another
loop iteration. Block 8110 may incorporate intelligence
based on anticipated address lookup capability accessible to
block 8116. Block 8114 determines an indisputable address
as a zip code, number and street address, state, street sign 30

block, combinations thereof, or any other textual address
information which corresponds to some location. Block
8116 preferably has access to address mapping or geo
coding conversion information which is accessed local and/
or remote to the MS of FIG. 81B processing for partial 35

address search (e.g. find all states with street address), as
well as queue 22, LBX history 30, statistics 14 and any other
data which can complement or confirm determining where
abouts of the MS (e.g. narrow down state for street address
based on what is found on queue 22). A most recent WDR 40

at queue 22 with a confident location can confirm whether or
not the OCR findings are reasonable or possible.

With reference back to block 8118, if it is determined that
a confident location cannot be determined, processing con
tinues back to block 8110. With reference back to block 45

8114, if it is determined that an indisputable address was not
found, processing continues to block 8126. If block 8126
determines a partial address was determined in the text
fragment, block 8128 performs resolution accessing other
text information from the text stream as well as using 50

validation resources used by block 8116, and processing
continues to block 8118 already described above. With
reference back to block 8126, if it is determined that a partial
address was not found, processing continues back to block
8110. With reference back to block 8112, if it is determined 55

that that all reasonable text fragments have been processed
from the text stream output of block 8108, processing
continues to block 8130. With reference back to block 8106,

If block 8142 determines that a confident location could
not be determined, then processing continues directly back
to block 8132. If block 8138 determines a match was not
found, processing continues back to block 8132. Referring
back to block 8134, if all landmarks have been processed,
then processing continues to block 8150. Referring back to
block 8130, if no landmark information is configured, pro
cessing continues to block 8150.

If it is determined at block 8150 that one or more
conditional locations have been configured for graphical
recognition criteria, block 8152 gets the next (or first)
configured conditional location, and block 8154 checks if all
have been processed. If there is a conditional location to
process, then block 8156 compares the conditional location
criteria to the frame and block 8158 checks if a match was
determined. Conditional location is somewhat of a catch all
for analyzing graphical objects in a frame, for example bar
codes, special predefined location symbols, skiing direction
signs, and other perceptible visuals other than OCR text and
graphical landmarks. Conditional locations further support
MS conditions which must be satisfied in order for frame
analysis to take place. For example, if the frame is from a
snapshot image (not an image stream) and a certain appli
cation is active, only then will frame analysis be performed
for the criteria configured. In some embodiments, block
8156 can support all expressions of charter BNF Grammar
3068a and 3068b. A True result of that expression then
causes a compare using the location criteria of the condi
tional location criteria. If block 8158 determines a match
was found (and/or expression to process=True), then block
8160 performs validation similarly to block 8116 (e.g.
consulting queue 22, LBX history 30, statistics 14, and any
other data which can complement or confirm determining
whereabouts of the MS).

Thereafter, if block 8162 determines a confident location
was validated at block 8160, then block 8164 completes a
WDR 1100, block 8166 prepares parameters for FIG. 2D
processing, block 8168 invokes local FIG. 2F processing
already described above, and processing continues back to if it is determined that no OCR criteria is configured for

processing, then processing continues to block 8130. 60 block 8152 for the next conditional location criteria to
process. Parameters set at block 8166 are: WDRREF=a
reference or pointer to the MS WDR; DELETEQ=FIG. 81B
location queue discard processing; and SUPER=FIG. 81B

If it is determined at block 8130 that one or more
landmarks have been configured for graphical recognition
criteria, block 8132 gets the next (or first) configured land
mark, and block 8134 checks if all have been processed. If
there is a landmark to process, then block 8136 compares the 65

landmark criteria to the frame and block 8138 checks if a
match was determined. Landmark criteria is preferably

supervisory notification.
If block 8162 determines that a confident location could

not be determined, then processing continues directly back
to block 8152. If block 8158 determines a match was not

Petitioners' Ex. 1001, Page 360 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
67

found (and/or expression to process=False), processing con
tinues back to block 8152. Referring back to block 8154, if
all conditional locations have been processed, then FIG. 81B
processing terminates at block 8170.

With reference to FIG. 81A, depicted is a flowchart for
describing a preferred embodiment of processing for con
figuring criteria used by a MS to graphically locate itself.
The user of FIG. 81A may be a MS user, an authenticated
administrator of the MS of FIG. 81A processing, or an
appropriate administrator for manufactured MSs which have
not yet been sold retail.

User interface processing begins at block 8172 and con
tinues to block 8174 for initialization and for accessing any
graphical recognition criteria already configured. Thereafter,
block 8176 present any current configurations with altera
tion options, and block 8178 waits for a user action. When
a user action is detected to the user interface, processing
continues to block 8180.

If block 8180 determines the user selected to configure
OCR capability, then block 8182 interfaces with the user for
enabling, or disabling, appropriate OCR functionality to be
used by FIG. 81B, otherwise processing continues to block
8184. When block 8182 is complete, processing continues
back to block 8176.

If block 8184 determines the user selected to configure
landmark criteria for graphical recognition, then block 8186
interfaces with the user for enabling, or disabling, landmark
recognition functionality to be used by FIG. 81B, otherwise
processing continues to block 8188. When block 8186 is
complete interfacing with the user to specify graphical
landmark criteria as well as associated location data, pro
cessing continues back to block 8176. Graphical landmark
criteria may include scalable geometric or raster description
including edge dimensions, angles, and recognizable appear
ance features; color and shading information for verifiable
time(s) of the day; unique color combinations or contrasts
from known vantage points; actual graphical representation;
or combinations thereof.

If block 8188 determines the user selected to configure
conditional location criteria for graphical recognition, then
block 8190 interfaces with the user for enabling, or dis
abling, conditional location recognition functionality to be
used by FIG. 81B, otherwise processing continues to block
8192. When block 8190 is complete interfacing with the user
to specify criteria as well as associated location data, pro
cessing continues back to block 8176. Conditional location
criteria may include any valid BNF grannnar charter expres
sion, as well as any other criteria which can be compared for
a match to a graphical image. Block 8190 should support a
user syntax for expression specification.

If block 8192 determines the user selected to save con
figuration made thus far, then block 8194 saves the configu
rations for FIG. 81B and processing continues back to block
8176, otherwise processing continues to block 8196. Block
8194 may internalize conditional expressions of block 8190
for optimal FIG. 81B processing.

68
time delay between a few strategically spaced microphones,
one can infer the location of the sound. In a preferred
embodiment, an MS, for example DLM 200, emits a pulsed
or constant sound (preferably beyond the human hearing

5 range) which can be sensed by microphones 802 though 806.
Data is superimposed on the sound wave spectrum with
variations in pitch or tone, or data occurs in patterned breaks
in sound transmission. Data may contain a unique identifier
of the MS so service(s) attached to microphones 802 through

10 806 can communicate uniquely to an MS. In some embodi
ments, sound used by the MS is known to repel certain pests
such as unwanted animals, rodents, or bugs in order to
prevent the person carrying the MS from encountering such
pests during travel, for example during outdoor hiking or

15 mountain climbing. In submarine acoustics, AOA is a
method to locate certain objects. The FIGS. 3B and 3C
flowcharts occur analogously for sound signals received by
microphones 802 through 806 which are connected to ser
vice processing of FIGS. 3B and 3C. The only difference is

20 wave spectrum used.
It has been shown that light can be used to triangulate

position or location information (e.g. U.S. Pat. No. 6,549,
288 (Migdal et al) and U.S. Pat. No. 6,549,289 (Ellis)).
Optical sensors 802 through 806 detect a light source of, or

25 illumination of, an MS, for example DLM 200. Data is
superimposed on the light wave spectrum with specified
frequency/wavelength and/or periodicity, or data occurs in
patterned breaks in light transmission. Data may contain a
unique identifier of the MS so service(s) attached to sensors

30 802 through 806 can communicate uniquely to an MS.
Mirrors positioned at optical sensors 802 through 806 may
be used to determine an AOA of light at the sensor, or
alternatively TDOA of recognizable light spectrum is used
to position an MS. The FIGS. 3B and 3C flowcharts occur

35 analogously for light signals received by sensors 802
through 806 which are connected to service processing of
FIGS. 3B and 3C. The only difference is wave spectrum
used.

Heterogeneously speaking, FIG. SA illustrates having
40 strategically placed sensors 802 through 806 for detecting a

wave spectrum and using TDOA, AOA, or MPT. Those
skilled in the art appreciate that a wave is analogously dealt
with by FIGS. 3B and 3C regardless of the wave type, albeit
with different sensor types 802 through 806 and different

45 sensor interface to service(s) of FIGS. 3B and 3C. Wave
signal spectrums for triangulation by analogous processing
to FIGS. 3B and 3C include microwaves, infrared, visible
light, ultraviolet light, X-rays, gannna rays, longwaves,
magnetic spectrum, or any other invisible, visible, audible,

50 or inaudible wave spectrum. Sensors 802 through 806 are
appropriately matched according to the requirements. Alter
natively, a MS may be sensing wave spectrums emitted by
transmitters 802 through 806.

Those skilled in the relevant arts appreciate that the point
55 in all this discussion is all the wave forms provide methods

for triangulating whereabouts information of an MS. Dif
ferent types of wave forms that are available for an MS can
be used solely, or in conjunction with each other, to deter-

If block 8196 determines the user selected to exit FIG.
81A processing, then block 8199 appropriately terminates
the FIG. 81Ainterface and processing, otherwise block 8198
handles other user interface actions detected at block 8178 60

mine MS whereabouts. MSs may be informed of their
location using the identical wave spectrum used for where
abouts determination, or may use any other spectrum avail-before continuing back to block 8176.

FIG. SA heterogeneously depicts a locating by arbitrary
wave spectrum illustration for discussing automatic location
of a MS. In the case of acoustics or sound, prior art has
shown that a noise emitting animal or object can be located
by triangulating the sound received using TDOA by strate
gically placed microphones. It is known that by figuring out

able for communicating WDR information back to the MS.
Alternatively, the MS itself can determine WDR information
relative applicable sensors/transmitters. In any case, a WDR

65 1100 is completed analogously to FIGS. 3B and 3C.
FIG. 8B depicts a flowchart for describing a preferred

embodiment of locating a MS through physically sensing a

Petitioners' Ex. 1001, Page 361 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
69

MS, for example a DLM 200. Processing begins at block
810 upon contact with a candidate MS and continues to
block 812 where initialization takes place. Initialization
includes determining when, where, and how the contact was
made. Then, block 814 takes the contact sample and sets it 5

as input containing a unique identifier or handle of the MS
which was sensed. There are various known embodiments of
how the MS is sensed:

70
priate time for the MS. In an alternate embodiment, the MS
senses its environment to determine whereabouts.

See FIG. llA descriptions. Fields are set to the following
upon exit from block 828:
MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: Location of a) Touching sensors contact the MS (or host/housing

having MS) to interpret physical characteristics of the
MS in order to uniquely identify it (e.g. Braille,
embossed/raised/depressed symbols or markings,
shape, temperature, depressions, size, combinations
thereof, etc);

10 the sensor sensing the MS.

b) Purchase is made with MS while in vicinity of device
accepting purchase, and as part of that transaction, the
MS is sensed as being at the same location as the device
accepting purchase, for example using a cell phone to
purchase a soft drink from a soft drink dispensing
machine;

c) Barcode reader is used by person to scan the MS (or
host/housing having MS), for example as part of ship
ping, receiving, or transporting;

d) The MS, or housing with MS, is sensed by its odor (or
host/housing having MS), perhaps an odor indicating
where it had been, where it should not be, or where it
should be. Various odor detection techniques may be
used;

e) Optical sensing wherein the MS is scanned with optical
sensory means, for example to read a serial number;
and/or

f) Any sensing means which can identify the MS through
physical contact, or by nearby/close physical contact
with some wave spectrum.

Block 814 continues to block 816 where a database is
accessed for recognizing the MS identifier (handle) by
mapping sensed information with an associated MS handle.
If a match is found at block 818, then block 822 determines
WDR 1100 information using the location of where sensing
took place. If block 818 determines no match was found,
then data is saved at block 820 for an unrecognized entity
such as is useful when an MS should have been recognized,
but was not. In another embodiment, the MS handle is
directly sensed so block 814 continues directly to block 818
(no block 816). Block 820 continues to block 834 where
processing terminates. Block 816 may not use the entire MS
identifier for search, but some portion of it to make sure it
is a supported MS for being located by sensing. The MS
identifier is useful when communicating wirelessly the
WDR information to the MS (at block 826).

CONFIDENCE field 1100d is preferably set with: Should be
high confidence (e.g. 98) for indisputable contact sensing
and is typically set with the same value.
LOCATION TECHNOLOGY field ll00e is preferably set

15 with: "Contact", or a specific type of Contact. The originator
indicator is set to DLM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set).
COMMUNICATIONS REFERENCE INFO field 1100g is

20 preferably set with: Same as was described for FIG. 2D
(block 236) above.
SPEED field 1100h is preferably set with: null (not set), but
can be set with speed required to arrive to the current
location from a previously known time at a location, assum-

25 ing the same time scale is used.
HEADING field ll00i is preferably set with: null (not set),
but can be set to heading determined when arriving to the
current location from a previously known location.
ELEVATION field 1100} is preferably set with: Elevation/

30 altitude, if available.
APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above.
CORRELATION FIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).

35 SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

FIG. SC depicts a flowchart for describing a preferred
40 embodiment of locating a MS, for example a DLM 200,

through a manually entered location of the MS. MS user
interface processing begins at block 850 when a user starts
the user interface from code 18 and continues to block 852.
Any of a variety of user interfaces, dependent on the type of

45 MS, is used for manually entering the location of the MS. A
user interfaces with the MS at block 852 until one of the
monitored actions relevant to this disclosure are detected.
Thereafter, if block 854 determines the user has selected to
set his location manually, then processing continues to block

50 860. If block 854 determines the user did not select to

Referring now back to block 822, processing continues to
block 824 where a supervisory service may be updated with
the MS whereabouts (if applicable), and block 826 commu
nicates the WDR information to the MS. Any available 55

communication method can be used for communicating the
WDR information to the MS, as described above. Thereafter,
the MS completes the WDR at block 828, block 830
prepares FIG. 2F parameters, and block 832 invokes FIG. 2F
processing already described above. Processing terminates 60

thereafter at block 834. Parameters set at block 830 are:

manually set his location, then block 856 determines if the
user selected to force the MS to determine its location. If the
user did select to force the MS to get its own location, then
block 856 continues to block 862. If the user did not select
to force the MS to get its own location as determined by
block 856, then processing continues to block 858. If block
858 determines the user wanted to exit the user interface,
then block 880 terminates the interface and processing
terminates at block 882. If block 858 determines the user did
not want to exit the user interface, then block 884 handles
any user interface actions which caused exit from block 852
yet were not handled by any action processing relevant to
this disclosure.

WDRREF=a reference or pointer to the MS WDR;
DELETEQ=FIG. 8B location queue discard processing; and
SUPER=FIG. 8B supervisory notification (e.g. no supervi
sory notification processing because it was already handled 65

at block 824, or by being in context of the FIG. 8B service
processing). FIG. 8B processing is available at any appro-

With reference back to block 860, the user interfaces with
the MS user interface to manually specify WDR informa
tion. The user can specify:

1) An address or any address subset such as a zip code;

Petitioners' Ex. 1001, Page 362 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
71

2) Latitude, longitude, and elevation;
3) MAPSCO identifier;
4) FEMA map identifier;
5) USDA map identifier;
6) Direct data entry to a WDR 1100; or
7) Any other method for user specified whereabouts of the

MS.
The user can specify a relevant confidence value for the

manually entered location, however, processing at block 860
preferably automatically defaults a confidence value for the
data entered. For example, a complete address, validated at
block 860, will have a high confidence. A partial address
such as city and state, or a zip code will have a low
confidence value. The confidence value will reflect how
large an area is candidate for where the MS is actually
located. To prevent completely relying on the user at block
860 for accurate WDR information, validation embodiments
may be deployed. Some examples:

72
If block 868 determines there was no timeout (i.e. where

abouts successfully determined), then block 870 interfaces
to the locating interface to get WDR information, block 874
completes a WDR, and blocks 876 and 878 do as described

5 above. If block 862 determines the MS cannot locate itself
and needs help, then block 866 emits at least one broadcast
request to any listening service which can provide the MS its
location. Appropriate correlation is used for an anticipated
response. Example services listening are service driven

10 capability described by FIGS. 2D, 3B, 5B, 6A, 7D, SA, and
8B, or service side alternative embodiments of FIGS. 2E,
3C, 4B, 6B, and SA, or any other service capability for
determining MS whereabouts with or without help from the
MS or other data processing systems or services. Block 866

15 then continues to block 868.

Upon specification (e.g. FEMA), the MS will access 20

connected service(s) to determine accuracy (FEMA
conversion tables);

If block 868 determines a timeout was encountered from
the service broadcast request, then block 872 provides the
user with an error to the user interface, and processing
continues back to block 852. If block 868 determines there
was no timeout (i.e. whereabouts successfully determined),
then block 870 receives WDR information from the locating
interface of the responding service, block 874 completes a
WDR, and blocks 876 and 878 do as already described
above.

Upon specification (e.g. MAPSCO), the MS will access
local resources to help validate the specification (e.g.
MAPSCO conversion tables); and/or

Upon specification (e.g. address), the MS can access
queue 22 and/or history 30 for evidence proving like
lihood of accuracy. The MS may also access services,
or local resources, for converting location information
for proper comparisons.

In any case, a confidence field 1100d value can be
automatically set based on the validation results, and the
confidence may, or may not, be enabled for override by the
user.

After WDR information is specified at block 860, the MS
completes the WDR at block 874, block 876 prepares
parameters for FIG. 2F processing, and (at block 878) the
MS invokes FIG. 2F processing already described above
before returning back to block 852. Parameters set at block
876 are: WDRREF=a reference or pointer to the MS WDR;
DELETEQ=FIG. SC location queue discard processing; and
SUPER=FIG. SC supervisory notification processing. Vari
ous embodiments permit override of the confidence floor
value by the user, or by FIG. SC processing. Block 874 may
convert the user specified information into a standardized
more usable form in an LN-expanse (e.g. convert to latitude
and longitude if possible, truncated precision for more area
coverage). WDR 1100 fields (see FIG. llA) are set analo
gously in light of the many variations already described
above.

With reference back to block 862, if it is determined that
the MS is equipped with capability (e.g. in range, or in
readiness) to locate itself, then processing continues to block
864 where the MS locates itself using MS driven capability
described by FIGS. 2E, 3C, 4B, 6B, and SA or MS driven
alternative embodiments to FIGS. 2D, 3B, 5B, 6A, 7D, SA,
and 8B, or any other MS capability for determining its own
whereabouts with or without help from other data processing
systems or services. Interfacing to locating capability pref
erably involves a timeout in case there is no, or slow,
response, therefore block 864 continues to block 868 where
it determined whether or not block 864 timed out prior to
determining a location. If block 868 determines a timeout
was encountered, then block 872 provides the user with an
error to the user interface, and processing continues back to
block 852. Block 872 preferably requires use acknowledge
ment prior to continuing to block 852.

25 See FIG. llA descriptions. Depending how the MS was
located via processing started at block 856 to block 862, a
WDR is completed analogous to as described in Figs. above.
If the user manually specified whereabouts at block 860,
fields are set to the following upon exit from block 874:

30 MS ID field 1100a is preferably set with: Same as was
described for FIG. 2D (block 236) above.
DATE/TIME STAMP field 1100b is preferably set with:
Same as was described for FIG. 2D (block 236) above.
LOCATION field 1100c is preferably set with: Location

35 entered by the user, or converted from entry by the user;
preferably validated.
CONFIDENCE field 1100d is preferably set with: User
specified confidence value, or a system assigned value per a
validated manual specification. Confidence should reflect

40 confidence of location precision (e.g. validated full address
high; city and zip code low, etc). Manually specified con
fidences are preferably lower than other location technolo
gies since users may abuse or set incorrectly, unless vali
dated. Specifying lower confidence values than technologies

45 above, for completely manual WDR specifications (i.e. no
validation), ensures that manual specifications are only used
by the MS in absence of other technologies. There are many
validation embodiments that can be deployed (as described
above) for a manually entered address wherein the resulting

50 confidence may be based on validation(s) performed (e.g.
compare recent history for plausible current address, use
current latitude and longitude for database lookup to com
pare with address information entered, etc). The system
and/or user may or may not be able to override the confi-

55 dence value determined.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "Manual", or "Manual Validated". Types of valida
tions may further be elaborated. The originator indicator is
set to DLM.

60 LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set).
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set).
SPEED field 1100h is preferably set with: null (not set).

65 HEADING field ll00i is preferably set with: null (not set).
ELEVATION field 1100} is preferably set with: null (not
set).

Petitioners' Ex. 1001, Page 363 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
73

APPLICATION FIELDS field 1100k is preferably set with:
Same as was described for FIG. 2D (block 236) above; or as
decided by the user.

74
FIG. 9B depicts a flowchart for describing a preferred

embodiment of heterogeneously locating a MS, for example
DLM 200. While heterogeneously locating an MS can occur
by locating the MS at different times using different location CORRELATION FIELD 1100m is preferably set with: Not

Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

5 technologies, flowchart 9B is shown to discuss a general
ization of using different location technologies with each
other at the same time to locate an MS. Processing begins at
block 950 and continues to block 952 where a plurality of
parameters from more than one location technology are

FIG. 9A depicts a table for illustrating heterogeneously
locating a MS, for example a DLM 200. While many
location methods and systems have been exhausted above,
there may be other system and methods for locating an MS
which apply to the present disclosure. The requirement for
LBX is that the MS be located, regardless of how that
occurs. MSs disclosed herein can be located by one or many
location technologies discussed. As MS prices move lower,
and capabilities increase, an affordable MS will contain
multiple abilities for being located. GPS, triangulation,
in-range detection, and contact sensory may all be used in
locating a particular MS as it travels. Equipping the MS with
all techniques is straightforward and is compelling when
there are competing, or complementary, technologies that
the MS should participate in.

10 examined for locating an MS. Processing begins at block
950 by a service (or the MS) when a location technology by
itself cannot be used to confidently locate the MS. Data
deemed useful at block 952, when used in conjunction with
data from a different location technology to confidently

15 locate the MS, is passed for processing to block 954. Block
954 heterogeneously locates the MS using data from at least
two location technologies to complement each other and to
be used in conjunction with each other in order to confi
dently locate the MS. Once the MS whereabouts are deter-

20 mined at block 954, WDR information is communicated to
the MS for further processing at block 956. In some embodi
ments where a service is heterogeneously locating the MS,
block 956 communicates WDR information wirelessly to the
MS before processing begins at block 958. In another

The FIG. 9A table has DLM location methods for rows
and a single colunm for the MS (e.g. DLM 200). Each
location technology can be driven by the client (i.e. the MS),

25 embodiment where the MS is heterogeneously locating
itself, block 956 communicates WDR information internally
to WDR completion processing at block 958. In preferred
embodiments, the MS completes its WDR information at
block 958, FIG. 2F parameters are prepared at block 960,

or a service (i.e. the location server(s)) as denoted by a row
qualifier "C" for client or "S" for service. An MS may be
located by many technologies. The table illustrated shows
that the MS with unique identifier 0A12:43EF:985B:012F is
able to be heterogeneously located, specifically with local
MS GPS capability, service side cell tower in-range detec
tion, service side cell tower TDOA, service side cell tower
MPT (combination of TDOA and AOA), service side
antenna in-range detection, service side antenna AOA, ser
vice side antenna TDOA, service side antenna MPT, service
side contact/sensory, and general service side MPT. The
unique identifier in this example is a universal product
identifier (like Host Bus Adapter (HBA) World Wide Name 40

(WWN) identifiers are generated), but could be in other form

30 and the MS invokes FIG. 2F processing already described
above (at block 962), before processing terminates at block
964. Parameters set at block 960 are: WDRREF=a reference
or pointer to the MS WDR; DELETEQ=FIG. 9B location
queue discard processing; and SUPER=FIG. 9B supervisory

35 notification processing. WDR 1100 fields (see FIG. llA) are
set analogously in light of many variations to already
described above.

as described above (e.g. phone #214-403-4071). An MS can
have any subset of technologies used to locate it, or all of the
technologies used to locate it at some time during its travels.
An MS is heterogeneously located when two or more 45

location technologies are used to locate the MS during MS
travels and/or when two or more location technologies with
incomplete results are used in conjunction with each other to
locate the MS during MS travels, such as MPT. MPT is a
heterogeneous location technology because it uses at least 50

two different methods to accomplish a single location deter
mination. Using combinations of different location technolo
gies can be used, for example a TDOAmeasurement from an
in-range antenna with a TDOA measurement relative a cell
tower (e.g. as accomplished in MS processing of FIG. 26B), 55

using completely different services that have no knowledge
of each other. Another combination is to use a synergy of
whereabouts data from one technology with whereabouts
data from another technology. For example, in-range detec
tion is used in combination with graphical identification to 60

provide better whereabouts of a MS. In another example, a
GPS equipped MS travels to an area where GPS does not
work well (e.g. downtown amidst large and tall buildings).
The DLM becomes an ILM, and is triangulated relative
other MSs. So, an MS is heterogeneously located using two 65

or more technologies to determine a single whereabouts, or
different whereabouts of the MS during travel.

In some embodiments of FIG. 9B processing, Missing
Part Triangulation (MPT) is used to heterogeneously locate
an MS. For a service side embodiment example, block 950
begins service processing when TDOA information itself
cannot be used to confidently locate the MS, or AOA
information itself cannot be used to confidently locate the
MS, however using angles and distances from each in
conjunction with each other enables solving whereabouts
confidently. See "Missing Part Triangulation (MPT)" section
below with discussions for FIGS. llA through llE for MPT
processing of blocks 952 and 954. Data discovered at block
952 and processed by block 954 depends on the embodi
ment, what stationary reference point locations are known at
the time of blocks 952 and 954 processing, and which parts
are missing for triangulating the MS. Having three (3) sides
(all TDOA) with known stationary vertices location(s)
solves the triangle for locating the MS. Three (3) angles (all
AOA) with known stationary vertices location(s) solves the
triangle for locating the MS. Those skilled in the art appre-
ciate that solving triangulation can make complementary use
of different distances (time used to determine length in
TDOA) and angles (fromAOA) for deducing a MS location
confidently (e.g. MPT). Those skilled in the art recognize
that having stationary reference locations facilitates requir-
ing less triangular information for deducing a MS location
confidently.

While MPT has been discussed by example, flowchart 9B
is not to be interpreted in a limiting sense. Any location
technologies, for example as shown in FIG. 9A, can be used
in conjunction with each other when not all information

Petitioners' Ex. 1001, Page 364 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
75

required is available in a single location technology to
confidently deduce an MS location. Data available from the
different location technologies available will be examined

76
tions be timely known when references are needed for
locating ILMs. Timely ILM interactions with other MSs, and
protocol considerations are discussed in architecture 1900

on its own merits, and optionally used in conjunction to
deduce a confident location. For example, a TDOA (differ- 5

ence between when signal sent and when received) mea
surement from "coming within range" technology can be
used to distinguish how close, or how far, is an MS in the
vicinity. That measurement may be used to more confidently
locate the MS using other TDOA measurements from other 10

unrelated "coming within range" whereabouts information.

below. DLMs 200b, 200c, and 200e are preferably selected
for locating ILM 1000b by their WDR high confidence
values, however any other WDR data may be used whereby
wave spectrum, channel signal strength, time information,
nearness, surrounded-ness, etc is considered for generating
a confidence field 1100d of the WDR 1100 for the located
ILM. Preferably, those considerations are factored into a
confidence value, so that confidence values can be com
pletely relied upon. In another example, graphical locating information

described with FIGS. 7A through 7D can be used in con
junction with AOA and/or TDOA, or other useful locating
information of other locating technologies. In another 15

example, light triangulation information is used in conjunc
tion with sound triangulation, or light and/or sound infor
mation is used with any other wave form location informa
tion to perform accurate locating of a MS. Thus, there are
many examples where heterogeneously locating involves 20

using the best available data from a plurality of different
locating technologies.

With reference now to FIG. 10B, ILM 1000c has been
located relative a plurality of DLMs, namely DLM 200b,
DLM 200d, and DLM 200e. ILM 1000c is located analo
gously to ILM 1000b as described for FIG. l0A, except
there are different DLMs involved with doing the locating of
ILM 1000c because of a different location of ILM 1000c.
FIGS. l0A and 10B illustrate that MSs can be located using
other MSs, rather than fixed stationary references described
for FIGS. 2A through 9B. ILM 1000b and ILM 1000c are
indirectly located using DLMs 200.

With the many DLM examples above, it should be clear
now to the reader how to set the WDR 1100 for DLM
invoked FIG. 2F processing. There can be other location
technologies that will set WDR 1100 fields analogously.
Locating methodologies of FIGS. 2A through 9B can be
used in any combination, for example for more timely or
accurate locating. Furthermore, a MS automatically takes on
a role of a DLM or ILM depending on what capability is
available at the time, regardless of whether or not the MS is
equipped for being directly located. As a DLM roams to
unsupported areas, it can remain a DLM using different
DLM technologies, and it can become an ILM to depend on
other MSs (ILMs or DLMs) in the vicinity to locate it.

LBX Indirectly Located Mobile Data Processing
Systems (ILMs)

FIGS. l0A and 10B depict an illustration of a Locatable
Network expanse (LN-Expanse) 1002 for describing locat
ing of an ILM with all DLMs. With reference now to FIG.
l0A, DLM 200a, DLM 200b, DLM 200c, DLM 200d, and
DLM 200e (referred to generally in FIGS. l0A and 10B
discussions as DLMs 200) are each automatically and
directly located, for example using any of the automatic
location technologies heretofore described. ILM 1000b is
automatically located using the reference locations ofDLM
200b, DLM 200c, and DLM 200e. DLMs 200 can be mobile
while providing reference locations for automatically deter
mining the location ofILM 1000b. Timely communications
between MSs is all that is required for indirectly locating
MSs. In some embodiments, DLMs 200 are used to trian
gulate the position of ILM 1000b using aforementioned
wave spectruni(s) reasonable for the MSs. Different trian
gulation embodiments can triangulate the location of ILM
1000b using TDOA, AOA, or MPT, preferably by the ILM
1000b seeking to be located. In other embodiments, TDOA
information is used to determine how close ILM 1000b is to
a DLM for associating the ILM at the same location of a
DLM, but with how close nearby. In other embodiments, an
ILM is located by simply being in communications range to
another MS. DLMs 200 can be referenced for determining
elevation of an ILM. The same automatic location technolo-

FIG. l0C depicts an illustration of a Locatable Network
expanse (LN-Expanse) 1002 for describing locating of an

25 ILM with an ILM and DLM. ILM 1000a is automatically
located using the reference locations of DLM 200c, DLM
200b, and ILM 1000b. DLM 200b, DLM 200c and ILM
1000b can be mobile while providing reference locations for
automatically determining the location of ILM 1000a. In

30 some embodiments, MSs are used to triangulate the position
of ILM 1000a using any of the aforementioned wave
spectrum(s) (e.g. WiFi, cellular radio, etc) reasonable for the
MSs. Different triangulation embodiments can triangulate
the location of ILM 1000a using TDOA, AOA, or MPT,

35 preferably by the ILM 1000a seeking to be located. In other
embodiments, TDOA information is used to determine how
close ILM 1000a is to a MS (DLM or ILM) for associating
the ILM at the same location of a MS, but with how close
nearby. In other embodiments, an ILM is located by simply

40 being in communications range to another MS. DLMs or
ILMs can be referenced for determining elevation of ILM
1000a. The same automatic location technologies used to
locate a MS (DLM or ILM) are used to automatically locate
an ILM, to except the MSs are mobile and serve as the

45 reference points. It is therefore important that MS (ILM
and/or DLM) locations be timely known when references
are needed for locating ILMs. Timely ILM interactions with
other MSs, and protocol considerations are discussed in
architecture 1900 below. DLM 200b, DLM 200c, and ILM

50 1000b are preferably selected for locating ILM 1000a by
their WDR high confidence values, however any other WDR
data may be used whereby wave spectrum, channel signal
strength, time information, nearness, surrounded-ness, etc is
considered for generating a confidence field 1100d of the

55 WDR 1100 for the located ILM. Preferably, those consid
erations were already factored into a confidence value so
that confidence values can be completely relied upon. ILM
1000a is indirectly located using DLM(s) and ILM(s).

FIGS. lOD, l0E, and l0F depict an illustration of a
60 Locatable Network expanse (LN-Expanse) 1002 describing

locating of an ILM with all ILMs. With reference now to
FIG. l0D, ILM l000e is automatically located using the
reference locations of ILM 1000a, ILM 1000b, and ILM

gies used to locate a DLM can be used to automatically 65

locate an ILM, except the DLMs are mobile and serve as the
reference points. It is therefore important that DLM loca-

1000c. ILM 1000a, ILM 1000b and ILM 1000c can be
mobile while providing reference locations for automati
cally determining the location of ILM lO00e. Timely com-
munications between MSs is all that is required. In some

Petitioners' Ex. 1001, Page 365 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
77

embodiments, MSs are used to triangulate the position of
ILM l000e using any of the aforementioned wave spectrum
(s) reasonable for the MSs. Different triangulation embodi
ments can triangulate the location of ILM l000e using
TDOA, AOA, or MPT processing (relative ILMs 1000a 5

through 1000c), preferably by the ILM l000e seeking to be
located. ILMs can be referenced for determining elevation of
ILM l000e. The same automatic location technologies used
to locate a MS (DLM or ILM) are used to automatically
locate an ILM, except the MSs are mobile and serve as the 10

reference points. It is therefore important that ILM locations
be timely known when references are needed for locating
ILMs. Timely ILM interactions with other MSs, and proto
col considerations are discussed in architecture 1900 below.
ILM 1000a, ILM 1000b, and ILM 1000c are preferably 15

selected for locating ILM l000e by their WDR high confi
dence values, however any other WDR data may be used
whereby wave spectrum, channel signal strength, time infor
mation, nearness, surrounded-ness, etc is considered for
generating a confidence field 1100d of the WDR 1100 for the 20

located ILM. Preferably, those considerations were already
factored into a confidence value so that confidence values
can be completely relied upon. ILM lO00e is indirectly
located using ILM 1000a, ILM 1000b, and ILM 1000c.

With reference now to FIG. l0E, ILM 1000g is automati- 25

cally located using the reference locations of ILM 1000a,
ILM 1000c, and ILM l000e. ILM 1000a, ILM 1000c and
ILM lO00e can be mobile while providing reference loca
tions for automatically determining the location of ILM
1000g. ILM 1000g is located analogously to ILM lO00e as 30

described for FIG. l0D, except there are different ILMs
involved with doing the locating of ILM 1000g because of

78
processing described in flowcharts herein assumes multiple
threads of processing with adequate speed to accomplish an
optimal range in expanding the LN-Expanse 1002.

With reference now to FIG. l0G, an analysis of an
LN-Expanse 1002 will contain at least one DLM region
1022 containing a plurality ofDLMs, and at least one DLM
indirectly located region 1024 containing at least one ILM
that has been located with all DLMs. Depending on the
range, or scope, of an LN-Expanse 1002, there may be a
mixed region 1026 containing at least one ILM that has been
indirectly located by both an ILM and DLM, and there may
be an exclusive ILM region 1028 containing at least one
ILM that has been indirectly located by all ILMs. The further
in distance the LN-Expanse has expanded from DLM region
1022 with a substantial number of MSs, the more likely
there will an exclusive ILM region 1028. NTP may be
available for use in some regions, or some subset of a region,
yet not available for use in others. NTP is preferably used
where available to minimize communications between MSs,
and an MS and service(s). An MS has the ability to make use
of NTP when available.

With reference now to FIG. l0H, all MSs depicted know
their own locations. The upper left-hand portion of the
illustration consists of region 1022. As the reader glances
more toward the rightmost bottom portion of the illustration,
there can be regions 1024 and regions 1026 in the middle of
the illustration. At the very rightmost bottom portion of the
illustration, remaining ILMs fall in region 1028. An ILM is
indirectly located relative all DLMs, DLMs and ILMs, or all
ILMs. An "Aflirmifier" in a LN-expanse confidently knows
its own location and can serve as a reference MS for other
MSs. An aflirmifier is said to "aflirmify" when in the act of
serving as a reference point to other MSs. A "Pacifier" can
contribute to locating other systems, but with a low confi-

a different location of ILM 1000g. Note that as ILMs are
located in the LN-expanse 1002, the LN-expanse expands
with additionally located MSs. 35 dence of its own whereabouts. The LN-Expanse is a network

of located/locatable MSs, and is preferably expanded by a
substantial number of aflirmifiers.

With reference now to FIG. l0F, ILM l000i is automati
cally located using the reference locations of ILM 1000/,
ILM 1000g, and ILM 1000h. ILM 1000/, ILM 1000g and
ILM 1000h can be mobile while providing reference loca
tions for automatically determining the location of ILM 40

l000i. ILM l000i is located analogously to ILM lO00e as
described for FIG. l0D, except there are different ILMs
involved with doing the locating of ILM 1 000i because of a
different location of ILM l000i. FIGS. l0D through l0F
illustrate that an MS can be located using all ILMs, rather 45

than all DLMs (FIGS. l0A and 10B), a mixed set ofDLMs
and ILMs (FIG. l0C), or fixed stationary references (FIGS.
2A through 9B). ILMs lO00e, 1000g, and lO00i are indi
rectly located using ILMs. Note that in the FIG. 10 illus
trations the LN-expanse 1002 has expanded down and to the 50

right from DLMs directly located up and to the left. It should
also be noted that locating any MS can be done with at least
one other MS. Three are not required as illustrated. It is
preferable that triangulation references used surround an
MS.

FIGS. l0G and lOH depict an illustration for describing
the reach of a Locatable Network expanse (LN-Expanse)
according to MSs. Location confidence will be dependent on
the closest DLMs, how stale an MS location becomes for
serving as a reference point, and how timely an MS refreshes
itself with a determined location. An MS preferably has
highest available processing speed with multithreaded capa
bility in a plurality of hardware processors and/or processor
cores. A substantially large number of high speed concurrent
threads of processing that can occur within an MS provides
for an optimal capability for being located quickly among its
peer MSs, and for serving as a reference to its peer MSs. MS

FIG. lOI depicts an illustration of a Locatable Network
expanse (LN-Expanse) for describing a supervisory service,
for example supervisory service 1050. References in flow
charts for communicating information to a supervisory ser-
vice can refer to communicating information to supervisory
service 1050 (e.g. blocks 294 and 296 from parameters
passed to block 272 for many processing flows). The only
requirement is that supervisory service 1050 be contactable
from an MS (DLM or ILM) that reports to it. An MS
reporting to service 1050 can communicate directly to it,
through another MS (i.e. a single hop), or through a plurality
of MSs (i.e. a plurality of hops). Networks of MSs can be
preconfigured, or dynamically reconfigured as MSs travel to
minimize the number of hops between a reporting MS and
service 1050. A purely peer to peer preferred embodiment
includes a peer to peer network of located/locatable MSs
that interact with each other as described herein. The purely

55 peer to peer preferred embodiment may have no need to
include a service 1050. Nevertheless, a supervisory service
may be warranted to provide certain processing centraliza
tion, or for keeping information associated with MSs. In
some embodiments, supervisory service 1050 includes at

60 least one database to house data (e.g. data 8; data 20; data 36;
data 38, queue data 22, 24, 26; and/or history 30) for any
subset of MSs which communicate with it, for example to
house MS whereabouts information.

FIG. llA depicts a preferred embodiment of a Where-
65 abouts Data Record (WDR) 1100 for discussing operations

of the present disclosure. A Whereabouts Data Record
(WDR) 1100 may also be referred to as a Wireless Data

Petitioners' Ex. 1001, Page 366 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
79

Record (WDR) 1100. A WDR takes on a variety of formats
depending on the context of use. There are several parts to

80

a WDR depending on use. There is an identity section which
contains a MS ID field 1100a for identifying the WDR. Field
1100a can contain a null value if the WDR is for where- 5

3) Provide DLM whereabouts information to nearby MSs
for determining their own locations (e.g. provide
whereabouts information to at least a second MS for
determining its own location);

4) Maintain timely ILM whereabouts information of the
first MS independent of any location technology
applied; and

5) Provide ILM whereabouts information to nearby MSs
so they can determine their own locations (e.g. first MS
providing whereabouts information to at least a second
MS for the second MS determining its own where-
abouts).

A MS may go in and out of DLM or ILM roles as it is
mobile. Direct location methods are not always available to

abouts information received from a remote source which has
not identified itself. MSs do not require identities of remote
data processing systems in order to be located. There is a
core section which is required in WDR uses. The core
section includes date/time stamp field 1100b, location field 10

1100c, and confidence field 1100d. There is a transport
section of fields wherein any one of the fields may be used
when communicating WDR information between data pro
cessing systems. Transport fields include correlation field
1100m, sent date/time stamp field 1100n, and received
date/time stamp field ll00p. Transport fields may also be
communicated to send processing (e.g. queue 24), or
received from receive processing (e.g. queue 26). Other
fields are of use depending on the MS or applications
thereof, however location technology field ll00e and loca
tion reference info field 1100/ are of particular interest in
carrying out additional novel functionality of the present
disclosure. Communications reference information field
1100g may be valuable, depending on communications
embodiments in the LN-expanse.

15 the MS as it roams, therefore the MS preferably does all of
1 through 5 above. When the WDR 1100 contains a MS ID
field 1100a matching the MS which owns queue 22, that
WDR contains the location (_location field 1100c) with a
specified confidence (field 1100d) at a particular time (date/

20 time stamp field 1100b) for that MS. Preferably the MS ID
field 1100a, date/time stamp field 1100b and confidence field
1100d is all that is required for searching from the queue 22
the best possible, and most timely, MS whereabouts at the
time of searching queue 22. Other embodiments may consult

25 any other fields to facilitate the best possible MS location at
the time of searching and/or processing queue 22. The WDR
queue 22 also maintains affirmifier WDRs, and acceptable
confidence pacifier WDRs (block 276), which are used to
calculate a WDR having matching MS field 1100a so the MS

Some fields are multi-part fields (i.e. have sub-fields).
Whereabouts Data Records (WDRs) 1100 may be fixed
length records, varying length records, or a combination
with field(s) in one form or the other. Some WDR embodi
ments will use anticipated fixed length record positions for
subfields that can contain useful data, or a null value (e.g.
-1). Other WD R embodiments may use varying length fields
depending on the number of sub-fields to be populated.
Other WDR embodiments will use varying length fields
and/or sub-fields which have tags indicating their presence.
Other WDR embodiments will define additional fields to
prevent putting more than one accessible data item in one
field. In any case, processing will have means for knowing
whether a value is present or not, and for which field (or
sub-field) it is present. Absence in data may be indicated
with a null indicator (-1), or indicated with its lack of being
there (e.g. varying length record embodiments).

When a WDR is referenced in this disclosure, it is
referenced in a general sense so that the contextually rea
sonable subset of the WDR of FIG. llA is used. For
example, when communicating WDRs (sending/receiving
data 1302 or 1312) between data processing systems, a
reasonable subset of WDR 1100 is communicated in pre
ferred embodiments as described with flowcharts. When a
WDR is maintained to queue 22, preferably most (if not all)
fields are set for a complete record, regardless if useful data
is found in a particular field (e.g. some fields may be null
(e.g. -1)). Most importantly, Whereabouts Data Records
(WDRs) are maintained to queue 22 for maintaining where
abouts of the MS which owns queue 22. LBX is most
effective the more timely (and continuous) a MS has valid
whereabouts locally maintained. WDRs are designed for
maintaining whereabouts information independent of any
location technology applied. Over time, a MS may encoun
ter a plurality of location technologies used to locate it.
WDRs maintained to a first MS queue 22 have the following
purpose:

1) Maintain timely DLM whereabouts information of the
first MS independent of any location technology
applied;

2) Maintain whereabouts information of nearby MSs
independent of any location technology applied;

30 knows its whereabouts via indirect location methods.
Affirmifier and pacifier WDRs have MS ID field 1100a
values which do not match the MS owning queue 22. This
distinguishes WDRs of queue 22 for A) accessing the current
MS location; from B) the WDRs from other MSs. All WDR

35 fields of affirmifier and pacifier originated WDRs are of
importance for determining a best location of the MS which
owns queue 22, and in providing LBX functionality.

MS ID field 1100a is a unique handle to an MS as
previously described. Depending on the installation, MS ID

40 field 1100a may be a phone #, physical or logical address,
name, machine identifier, serial number, encrypted identi
fier, concealable derivative of a MS identifier, correlation,
pseudo MS ID, or some other unique handle to the MS. An
MS must be able to distinguish its own unique handle from

45 other MS handles in field 1100a. For indirect location
functionality disclosed herein, affirmifier and pacifier WDRs
do not need to have a correct originating MS ID field 1100a.
The MS ID may be null, or anything to distinguish WDRs
for MS locations. However, to accomplish other LBX fea-

50 tures and functionality, MS Identifiers (MS IDs) of nearby
MSs (or unique correlations thereof) maintained in queue 22
are to be known for processing by an MS. MS ID field 1100a
may contain a group identifier ofMSs in some embodiments
for distinguishing between types of MSs (e.g. to be treated

55 the same, or targeted with communications, as a group), as
long as the MS containing queue 22 can distinguish its own
originated WDRs 1100. A defaulted value may also be set for
a "do not care" setting (e.g. null).

Date/Time stamp field 1100b contains a date/time stamp
60 of when the WDR record 1100 was completed by an MS for

its own whereabouts prior to WDR queue insertion. It is in
terms of the date/time scale of the MS inserting the local
WDR (NTP derived or not). Date/Time stamp field 1100b
may also contain a date/time stamp of when the WDR record

65 1100 was determined for the whereabouts of an affirmifier or
pacifier originating record 1100 to help an MS determine its
own whereabouts, but it should still be in terms of the

Petitioners' Ex. 1001, Page 367 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
81

date/time scale of the MS inserting the local WDR (NTP
derived or not) to prevent time conversions when needed,
and to promote consistent queue 22 searches/sorts/etc. The
date/time stamp field 1100b should use the best possible
granulation of time, and may be in synch with other MSs and 5

data processing systems according to NTP. A time zone,
day/light savings time, and NTP indicator is preferably
maintained as part of field 1100b. The NTP indicator (e.g.
bit) is for whether or not the date/time stamp is NTP derived
(e.g. the NTP use setting is checked for setting this bit when 10

completing the WDR for queue 22 insertion). In some
embodiments, date/time stamp field 1100b is measured in
the same granulation of time units to an atomic clock
available to MSs of an LN-Expanse 1002. When NTP is
used in a LN-Expanse, identical time server sources are not 15

a requirement provided NTP derived date/time stamps have
similar accuracy and dependability.

Location field 1100c depends on the installation of the
present disclosure, but can include a latitude and longitude,
cellular network cell identifier, geocentric coordinates, geo- 20

detic coordinates, three dimensional space coordinates, area
described by GPS coordinates, overlay grid region identifier
or coordinates, GPS descriptors, altitude/elevation (e.g. in
lieu of using field 1100}), MAPSCO reference, physical or
logical network address (including a wildcard (e.g. ip 25

addresses 145 .32. *. *)), particular address, polar coordinates,
or any other two/three dimensional location methods/means
used in identifying the MS location. Data of field 1100c is
preferably a consistent measure (e.g. all latitude and longi
tude) for all location technologies that populate WDR queue 30

22. Some embodiments will permit using different measures

82
LN-expanse 1002 is expanded further from region 1022.
Confidence values are typically lower when ILMs are used
to locate a first set of ILMs (i.e. first tier), and are then lower
when the first set of ILMs are used to locate a second set of
ILMs (second tier), and then lower again when the second
set ofILMs are used to locate a third set ofILMs (third tier),
and so on. Often, examination of a confidence value in a
WDR 1100 can indicate whether the MS is a DLM, or an
ILM far away from DLMs, or an MS which has been located
using accurate (high confidence) or inaccurate (low confi
dence) locating techniques.

Location Technology field ll00e contains the location
technology used to determine the location of location field
1100c. An MS can be located by many technologies. Loca
tion Technology field ll00e can contain a value from a row
of FIG. 9A or any other location technology used to locate
a MS. WDRs inserted to queue 22 for MS whereabouts set
field ll00e to the technology used to locate the MS. WDRs
inserted to queue 22 for facilitating a MS in determining
whereabouts set field ll00e to the technology used to locate
the affirmifier or pacifier. Field ll00e also contains an
originator indicator (e.g. bit) for whether the originator of
the WDR 1100 was a DLM or ILM. When received from a
service that has not provided confidence, this field may be
used by a DLM to determine confidence field 1100d.

Location Reference Info field 1100/ preferably contains
one or more fields useful to locate a MS in processing
subsequent of having been inserted to queue 22. In other
embodiments, it contains data that contributed to confidence
determination. Location Reference Info field 1100/ may
contain information (TDOAmeasurement and/or AOAmea
surement-see inserted field 1100/ for FIGS. 2D, 2E and
3C) useful to locate a MS in the future when the WDR

to location field 1100c (e.g. latitude and longitude for one,
address for another; polar coordinates for another, etc)
which will be translated to a consistent measure at appro
priate processing times.

Confidence field 1100d contains a value for the confi
dence that location field 1100c accurately describes the
location of the MS when the WDR is originated by the MS
for its own whereabouts. Confidence field 1100d contains a
value for the confidence that location field 1100c accurately
describes the location of an affirmifier or pacifier that
originated the WDR. A confidence value can be set accord
ing to known timeliness of processing, communications and
known mobile variables (e.g. MS speed, heading, yaw, pitch,
roll, etc) at the time of transmission. Confidence values
should be standardized for all location technologies used to
determine which location information is of a higher/lower
confidence when using multiple location technologies (as
determined by fields ll00e and 1100.1) for enabling deter
mination of which data is of a higher priority to use in
determining whereabouts. Confidence value ranges depend
on the implementation. In a preferred embodiment, confi
dence values range from 1 to 100 (as discussed previously)
for denoting a percentage of confidence. 100% confidence
indicates the location field 1100c is guaranteed to describe
the MS location. 0% confidence indicates the location field
1100c is guaranteed to not describe the MS location. There
fore, the lowest conceivable value of a queue 22 for field
1100d should be 1. Preferably, there is a lowest acceptable
confidence floor value configured (by system, administrator,
or user) as used at points of queue entry insertion-see block
276 to prevent frivolous data to queue 22. In most cases,
WDRs 1100 contain a confidence field 1100d up to 100. In
confidence value preferred embodiments, pacifiers know
their location with a confidence ofless than 75, and affirmi
fiers know their location with a confidence value 7 5 or

35 originated from the MS for its own whereabouts. Field 1100/
will contain selected triangulation measurements, wave
spectrum used and/or particular communications interfaces
70, signal strength(s), TDOA information, AOA informa
tion, or any other data useful for location determination.

40 Field 1100/ can also contain reference whereabouts infor
mation (FIG. 3C) to use relative a TDOA or AOA (otherwise
WDR location field assumed as reference). In one embodi
ment, field 1100/ contains the number of DLMs and ILMs
which contributed to calculating the MS location to break a

45 tie between using WDRs with the same confidence values.
In another embodiment, a tier of ILMs used to locate the MS
is maintained so there is an accounting for the number of
ILMs in the LN-expanse between the currently located MS
and a DLM. In other embodiments, MS heading, yaw, pitch

50 and roll, or accelerometer values are maintained therein, for
example for antenna AOA positioning. When wave spec
trum frequencies or other wave characteristics have changed
in a transmission used for calculating a TDOAmeasurement,
appropriate information may be carried along, for example

55 to properly convert a time into a distance. Field 1100/ should
be used to facilitate correct measurements and uses, if
needed conversions have not already taken place.

Communications reference information field 1100g is a
multipart record describing the communications session,

60 channel, and bind criteria between the MS and MSs, or
service(s), that helped determine its location. In some
embodiments, field 1100g contains unique MS identifiers,
protocol used, logon/access parameters, and useful statistics
of the MSs which contributed to data of the location field

65 1100c. An MS may use field 1100g for WDRs originated
from affirmifiers and pacifiers for subsequent LBX process-

greater. The confidence field is skewed to lower values as the ing.

Petitioners' Ex. 1001, Page 368 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
83 84

broadcast. Correlation field 1100m contains a unique handle.
In a LN-expanse which globally uses NTP, there is no need
for correlation in data 1302 or 1312. Correlation field 11 OOm

Speed field 11 OOh contains a value for the MS speed when
the WDR is originated by the MS for its own whereabouts.
Speed field 1100d may contain a value for speed of an
affirmifier or pacifier when the WDR was originated else
where. Speed is maintained in any suitable units.

may be present in WDRs of queues 24 or 26. Alternatively,
5 a MS ID is used for correlation.

Heading field ll00i contains a value for the MS heading
when the WDR is originated by the MS for its own where
abouts. Heading field ll00i may contain a value for heading
of an affirmifier or pacifier when the WDR was originated
elsewhere. Heading values are preferably maintained in 10

degrees up to 360 from due North, but is maintained in any
suitable directional form.

Elevation field 1100} contains a value for the MS eleva
tion (or altitude) when the WDR is originated by the MS for
its own whereabouts. Elevation field 1100} may contain a 15

value for elevation (altitude) of an affirmifier or pacifier
when the WDR was originated elsewhere. Elevation (or
altitude) is maintained in any suitable units.

Application fields 1100k contains one or more fields for
describing application(s) at the time of completing, or origi- 20

nating, the WDR 1100. Application fields ll00kmay include
field(s) for:

a) MS Application(s) in use at time;
b) MS Application(s) context(s) in use at time;
c) MS Application(s) data for state information of MS 25

Application(s) in use at time;
d) MS Application which caused WDR 1100;
e) MS Application context which caused WDR 1100;

Sent date/time stamp field 1100n is optionally present in
a WDR when the WDR is in transmission between systems
(e.g. wireless communications) such as in data 1302 or 1312.
Field 1100n contains when the WDR was transmitted. A
time zone, day/light savings time, and NTP indicator is
preferably maintained as part of field 1100n. Field 1100n is
preferably not present in WDRs of queue 22 (but can be if
TDOA measurement calculation is delayed to a later time).
In some embodiments, there is no need for field 1100n.
Whereabouts determined for MSs of an LN-Expanse may be
reasonably timely, facilitating simplicity of setting outbound
field 1100b to the transmission date/time stamp at the
sending data processing system, rather than when the WDR
was originally completed for whereabouts (e.g. when sub
stantially the same time anyway). Sent date/time field 1100n
may be present in WDRs of queues 24 or 26.

Received date/time stamp field ll00p is preferably pres-
ent in a WDR when inserted to queue 26 by receiving
thread(s) upon received data 1302 or 1312. Field ll00p
contains when the WDR was received by the MS. A time
zone, day/light savings time, and NTP indicator is preferably
maintained as part of field ll00p. Field ll00p is preferably
not present in WDRs of queue 22 (but can be if TDOA
measurement calculation is delayed to a later time). In some f) MS Application data for state information of MS

Application which caused WDR 1100;
g) Application(s) in use at time ofremote MS(s) involved

with WDR;
h) Application(s) context(s) in use at time of remote

MS(s) involved with WDR;

30 embodiments, there is no need for field ll00p. For example,
thread(s) 1912 may be listening directly on applicable
channel(s) and can determine when the data is received. In
another embodiment, thread(s) 1912 process fast enough to

i) MS Application(s) data for state information ofremote 35

MS(s) involved with WDR;
j) Remote MS(s) criteria which caused WDR 1100;
k) Remote MS(s) context criteria which caused WDR

1100;
1) Remote MS(s) data criteria which caused WDR 1100; 40

m) Application(s) in use at time of service(s) involved
with WDR;

n) Application(s) context(s) in use at time of service(s)
involved with WDR;

o) MS Application(s) data for state information of service 45

(s) involved with WDR;
p) Service(s) criteria which caused WDR 1100;
q) Service(s) context criteria which caused WDR 1100;
r) Service(s) data criteria which caused WDR 1100;

determine the date/time stamp of when data 1302 or 1312 is
received since minimal time has elapsed between receiving
the signal and determining when received. In fact, known
processing duration between when received and when deter
mined to be received can be used to correctly alter a received
date/time stamp. Received date/time stamp field ll00p is
preferably added to records placed to queue 26 by receiving
thread(s) feeding queue 26.

Any fields ofWDR 1100 which contain an unpredictable
number of subordinate fields of data preferably use a tagged
data scheme, for example an X.409 encoding for a Token,
Length, and Value (called a TLV encoding). Therefore, a
WDR 1100, or field therein, can be a variable sized record.
For example, Location Reference info field 1100/ may
contain TTA, 8, 0.1456 where the Token="TTA" for Time
Till Arrival (TDOA measurement between when sent and

s) MS navigation APis in use;
t) Web site identifying information;
u) Physical or logical address identifying information;
v) Situational location information as described in U.S.

Pat. Nos. 6,456,234; 6,731,238; 7,187,997 (Johnson);

50 when received), Length=S for 8 bytes to follow, and
Value=0.1456 in time units contained within the 8 bytes;
also SS, 4, 50 where Token="Signal Strength", 4=4 for 4
bytes to follow, and Value=50 dBu for the signal strength
measurement. This allows on-the-fly parsing of unpredict-

w) Transactions completed at a MS;
x) User configurations made at a MS;
y) Environmental conditions of a MS;
z) Application(s) conditions of a MS;
aa) Service(s) conditions of a MS;

55 able, but interpretable, multipart fields. The TLV encoding
also enables-on-the-fly configuration for parsing new sub
ordinate fields to any WDR 1100 field in a generic imple
mentation, for example in providing parse rules to a Lex and

bb) Date/time stamps (like field 1100b) with, or for, any 60

item of a) through aa); and/or cc) Any combinations of
a) through bb).

Correlation field 1100m is optionally present in a WDR
when the WDR is in a transmission between systems (e.g.
wireless communications) such as in data 1302 or 1312. 65

Field 1100m provides means for correlating a response to an
earlier request, or to correlate a response to an earlier

Yacc implementation, or providing parse rules to a generic
top down recursive TLV encoding parser and processor.

Any field of WDR 1100 may be converted: a) prior to
insertion to queue 22; or b) after access to queue 22; or c)
by queue 22 interface processing; for standardized process
ing. Any field of WDR 1100 may be converted when
sending/receiving/broadcasting, or related processing, to
ensure a standard format. Other embodiments will store and
access values of WDR 1100 field(s) which are already in a

Petitioners' Ex. 1001, Page 369 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
85

standardized format. WDR 1100 fields can be in any order,
and a different order when comparing what is in data
transmitted versus data maintained to queue 22.

An alternate embodiment to WDRs maintained to queue
22 preserves transport fields 1100m, 1100n and/or ll00p, for 5

example for use on queue 22. This would enable 1952
thread(s) to perform TDOAmeasurements that are otherwise
calculated in advance and kept in field 1100/ However,
queue 22 size should be minimized and the preferred
embodiment uses transport fields when appropriate to avoid 10

carrying them along to other processing.
FIGS. 11B, llC and llD depict an illustration for describ

ing various embodiments for determining the whereabouts
of an MS, for example an ILM l000e. With reference now

86
heading 1138 with MS yaw, pitch, and roll (or accelerometer
readings). AOA triangulation is well known in the art. Line
segment 1132 represents the direction of signal arrival to the
antenna at whereabouts 1102 from MS4 at whereabouts
1106. Line segment 1134 represents the direction of signal
arrival to the antenna at whereabouts 1102 from MS5 at
whereabouts 1110. Line segment 1136 represents the direc
tion of signal arrival to the antenna at whereabouts 1102
from MS 6 at whereabouts 1114. In this example, the known
locations ofMS1 which are used to determine the location of
MS l000e allow triangulating the MS lO00e whereabouts
using the AOA measurements. In fact, less triangular data in
the illustration can be necessary for determining a highly
confident whereabouts of MS l000e. Alternative embodi-

15 ments will useAOAmeasurements of outbound signals from
the MS at whereabouts 1102 detected at antennas of where
abouts 1106 and/or 1110 and/or 1114.

to FIG. 11B, a MS l000e location is located by using
locations of three (3) other MSs: MS4 , MS5 , and MSs
(referred to generally as MS). MS1 are preferably located
with a reasonably high level of confidence. In some embodi
ments, MS1 are all DLMs. In some embodiments, MS1 are all
ILMs. In some embodiments, MS1 are mixed DLMs and 20

ILMs. Any of the MSs may be mobile during locating of MS
1 000e. Wave spectrums in use, rates of data communications
and MS processing speed, along with timeliness of process
ing described below, provide timely calculations for provid
ing whereabouts of ILM l000e with a high level of confi- 25

dence. The most confident MSs (MS) were used to
determine the MS l000e whereabouts. For example, MS1
were all located using a form ofGPS, which in turn was used
to triangulate the whereabouts of MS l000e. In another
example, MS4 was located by a form of triangulation tech- 30

no logy, MS5 was located by a form of "coming into range"
technology, and MSs was located by either of the previous
two, or some other location technology. It is not important
how an MS is located. It is important that each MS know its
own whereabouts and maintain a reasonable confidence to it, 35

so that other MSs seeking to be located can be located
relative highest confidence locations available. The WDR
queue 22 should always contain at least one entry indicating
the location of the MS 2 which owns WDR queue 22. If
there are no entries contained on WDR queue 22, the MS 2 40

does not know its own location.

Missing Part Triangulation (MPT)

FIGS. llC and llD illustrations can be used in a comple
mentary manner when only one or two TDOA measure
ments are available and/or not all stationary locations, or MS
reference locations, are known at the time of calculation.
Another example is when only one or two AOA angles is
available and/or not all stationary locations, or MS reference
locations, are known at the time of calculation. However,
using what is available from each technology in conjunction
with each other allows solving the MS whereabouts (e.g.
blocks 952/954 processing above). MPT is one example of
solving for missing parts using more than one location
technology. Condition of data known for locating a MS (e.g.
whereabouts 1106, 1110 and 1114) may be the following:

1) AAS=two angles and a side;
2) ASA=two angles and a common side;
3) SAS=two sides and the included angle; or
4) SSA=two sides and a non-included angle.

TDOA measurements are distances (e.g. time difference
between when sent and when received), and AOA measure
ments are angles. Each of the four conditions are recognized
(e.g. block 952 above), and data is passed for each of the
four conditions for processing (e.g. block 954 above). For
AAS (#1) and ASA (#2), processing (e.g. block 954) finds
the third angle by subtracting the sum of the two known
angles from 180 degrees (i.e. using mathematical law that
triangles' interior angles add up to 180 degrees), and uses
the mathematical law of Sines (i.e. a/sinA=b/sin B=c/sin C)
twice to find the second and third sides after plugging in the
knowns and solving for the unknowns. For SAS (#3),
processing (e.g. block 954) uses the mathematical law of
Cosines (i.e. a2 =b2 c2 -2bc cos A) to find the third side, and
uses the mathematical law of Sines (sin A/a=sin B/b=sin Cle
(derived from law of Sines above)) to find the second angle.
For SSA (#4), processing (e.g. block 954) uses the math-

With reference now to FIG. llC, a triangulation of MS
l000e at location 1102 is explained using location (where
abouts) 1106 ofMS4 , location (whereabouts) 1110 ofMS5 ,

and location (whereabouts) 1114 of MSs. Signal transmis- 45

sion distance from MS1 locations are represented by the
radiuses, with r1 the TDOA measurement (time difference
between when sent and when received) between MS4 and
MS lO00e, with r2 the TDOA measurement (time difference
between when sent and when received) between MS5 and 50

MS lO00e, with r3 the TDOA measurement (time difference
between when sent and when received) between MSs and
MS l000e. In this example, the known locations of MS1
which are used to determine the location of MS l000e allow
triangulating the MS lO00e whereabouts using the TDOA
measurements. In fact, less triangular data in the illustration
can be necessary for determining a highly confident where
abouts of MS l000e.

55 ematical law of Sines (i.e. (sin A/a=sin B/b=sin C/c) twice
to get the second angle, and mathematical law of Sines (a/sin
A=b/sin B=c/sin C) to get the third side. Those skilled in the
art recognize other useful trigonometric functions and for
mulas, and similar uses of the same trigonometric functions, With reference now to FIG. llD, a triangulation of MS

l000e at location 1102 is explained using location (where
abouts) 1106 of MS4 , location (whereabouts) 1110 of MS5 ,

and location (whereabouts) 1114 of MSs. In some embodi
ments, AOA measurements taken at a positioned antenna of
MS 1 000e at location 1102 are used relative the whereabouts
1106, whereabouts 1110, whereabouts 1114 (AOA 1140,
AOA1144 andAOA1142), whereinAOAmeasurements are
detected for incoming signals during known values for MS

60 for MPT depending on what data is known. The data
discovered and processed depends on an embodiment, what
reference locations are available, and which parts are miss
ing for MPT. MPT uses different distances (time used to
determine length in TDOA) and/or angles to (from AOA or

65 TDOA technologies) for deducing a MS location confidently
(e.g. MPT). Even a single AOA measurement from a known
reference location (stationary or MS) with a single TDOA

Petitioners' Ex. 1001, Page 370 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
87

measurement relative that reference location can be used to
confidently locate a MS, and triangulation measurements
used to deduce a MS location need not be from the same

88
tations (also see block 1626). Block 1210 may cause the
starting ofthread(s) associated with NTP. In some embodi
ments, NTP use is assumed in the MS. In other embodi-

location technologies or wave spectrums. Those skilled in
the art recognize that having known reference locations 5

facilitates requiring less triangular information for deducing

ments, appropriate NTP use is not available to the MS.
Depending on the NTP embodiment, thread(s) may pull time
synchronization information, or may listen for and receive

a MS location confidently. MPT examples include using
information from any aforementioned wave spectrums, or
any heterogeneous combinations thereof, for example to
leverage useful, or available, data from different wave 10

spectrums and/or location technologies (see heterogeneous
locating discussions).

pushed time information. Resources 38 (or other MS local
resource) provides interface to an MS clock for referencing,
maintaining, and generating date/time stamps at the MS.
After block 1210 processing, the MS clock is synchronized
to NTP. Because of initialization of the MS in FIG. 12, block
1210 may rely on a connected service to initially get the
startup synchronized NTP date/time. MS NTP processing
will ensure the NTP enabled/disabled variable is dynami
cally set as is appropriate (using semaphore access) because
an MS may not have continuous clock source access during

FIG. llE depicts an illustration for describing various
embodiments for automatically determining the location of
an MS. An MS can be located relative other MSs which were 15

located using any of a variety of location technologies, for
example any of those of FIG. 9A. An MS is heterogeneously
located when one of the following conditions are met:

More than one location technology is used during travel
of the MS;

More than one location technology is used to determine a
single whereabouts of the MS;

MPT is used to locate the MS; and/or
ADLT is used to locate the MS.

The WDR queue 22 and interactions between MSs as
described below cause the MS to be heterogeneously located
without special consideration to any particular location
technology. While WDR 1100 contains field ll00e, field
1100d provides a standard and generic measurement for
evaluating WDRs from different location technologies,
without concern for the location technology used. The
highest confidence entries to a WDR queue 22 are used
regardless of which location technology contributed to the
WDR queue 22.

LBX Configuration

FIG. 12 depicts a flowchart for describing an embodiment
of MS initialization processing. Depending on the MS, there
are many embodiments of processing when the MS is
powered on, started, restarted, rebooted, activated, enabled,
or the like. FIG. 12 describes the blocks of processing
relevant to the present disclosure as part of that initialization
processing. It is recommended to first understand discus
sions of FIG. 19 for knowing threads involved, and variables
thereof. Initialization processing starts at block 1202 and
continues to block 1204 where the MS Basic Input Output
System (BIOS) is initialized appropriately, then to block
1206 where other character 32 processing is initialized, and
then to block 1208 to check if NTP is enabled for this MS.
Block 1206 may start the preferred number of listen/receive
threads for feeding queue 26 and the preferred number of
send threads for sending data inserted to queue 24, in
particular when transmitting CK 1304 embedded in usual
data 1302 and receiving CK 1304 or 1314 embedded in
usual data 1302 or 1312, respectively. The number of threads
started should be optimal for parallel processing across
applicable channel(s). In this case, other character 32 threads
are appropriately altered for embedded CK processing
(sending at first opportune outbound transmission; receiving
in usual inbound transmission).

If block 1208 determines NTP is enabled (as defaulted or
last set by a user (i.e. persistent variable)), then block 1210
initializes NTP appropriately and processing continues to
block 1212. If block 1208 determines NTP was not enabled,
then processing continues to block 1212. Block 1210
embodiments are well known in the art of NTP implemen-

travel when needed for resynchronization. If the MS does
not have access to a clock source when needed, the NTP use
variable is disabled. When the MS has (or again gets) access

20 to a needed clock source, then the NTP use variable is
enabled.

Thereafter, block 1212 creates shared memory to maintain
data shared between processes/threads, block 1214 initial
izes persistent data to shared memory, block 1216 initializes

25 any non-persistent data to shared memory (e.g. some statis
tics 14), block 1218 creates system queues, and block 1220
creates semaphore(s) used to ensure synchronous access by
concurrent threads to data in shared memory, before con
tinuing to block 1222. Shared memory data accesses appro-

30 priately utilize semaphore lock windows (semaphore(s) cre
ated at block 1220) for proper access. In one embodiment,
block 1220 creates a single semaphore for all shared
memory accesses, but this can deteriorate performance of
threads accessing unrelated data. In the preferred embodi-

35 ment, there is a semaphore for each reasonable set of data of
shared memory so all threads are fully executing whenever
possible. Persistent data is that data which maintains values
during no power, for example as stored to persistent storage
60. This may include data 8 (including permissions 10,

40 charters 12, statistics 14, service directory 16), data 20, LBX
history 30, data 36, resources 38, and/or other data. Persis
tent data preferably includes at least the DLMV (see DLM
role(s) list Variable below), ILMV (see ILM role(s) list
Variable below), process variables 19xx-Max values

45 (19xx=1902, 1912, 1922, 1932, 1942 and 1952 (see FIG. 19
discussions below)) for the last configured maximum num
ber of threads to run in the respective process, process
variables 19xx-PID values (19xx=1902, 1912, 1922, 1932,
1942 and 1952 (see FIG. 19 discussions below)) for multi-

50 purpose of: a) holding an Operating System Process Iden
tifier (i.e. O/S PID) for a process started; and b) whether or
not the respective process was last enabled (i.e. PID>0) or
disabled (i.e. PID<=0), the confidence floor value (see FIG.
14A), the WTV (see Whereabouts Timeliness Variable (see

55 FIG. 14A)), the NTP use variable (see FIG. 14A) for
whether or not NTP was last set to disabled or enabled (used
at block 1208), and the Source Periodicity Time Period
(SPTP) value (see FIG. 14B). There are reasonable defaults
for each of the persistent data prior to the first use of MS 2

60 (e.g. NTP use is disabled, and only becomes enabled upon
a successful enabling of NTP at least one time). Non
persistent data may include data involved in some regard to
data 8 (and subsets of permissions 10, charters 12, statistics
14, service directory 16), data 20, LBX history 30, data 36,

65 resources 38, queues, semaphores, etc. Block 1218 creates
queues 22, 24, and 26. Queues 1980 and 1990 are also
created there if required. Queues 1980 and 1990 are not

Petitioners' Ex. 1001, Page 371 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
89

required when NTP is in use globally by participating data
processing systems. Alternate embodiments may use less
queues by threads sharing a queue and having a queue entry
type field for directing the queue entry to the correct thread.
Alternate embodiments may have additional queues for 5

segregating entries of a queue disclosed for best possible
performance. Other embodiments incorporate queues figu
ratively to facilitate explanation of interfaces between pro
cessing.

90
reasonable subset of those processes with at least process
1912 started. Block 1224 continues to block 1226. If block
1222 determines there are no ILMV role(s) enabled, then
block processing continues to block 1226.

Block 1226 initializes an enumerated process name array
for convenient processing reference of associated process
specific variables described in FIG. 19, and continues to
block 1228 where the first member of the set is accessed for
subsequent processing. The enumerated set of process

All queues disclosed herein are understood to have their
own internally maintained semaphore for queue accesses so
that queue insertion, peeking, accessing, etc uses the inter
nally maintained semaphore to ensure two or more concur
rently executing threads do not corrupt or misuse data to any
queue. This is consistent with most operating system queue
interfaces wherein a thread stays blocked (preempted) after
requesting a queue entry until a queue entry appears in the
queue. Also, no threads will collide with another thread
when inserting, peeking, or otherwise accessing the same
queue. Therefore, queues are implicitly semaphore pro
tected. Other embodiments may use an explicit semaphore
protected window around queue data accessing, in which
case those semaphore(s) are created at block 1220.

10 names has a prescribed start order for MS architecture 1900.
Thereafter, if block 1230 determines the process identifier
(i.e. 19xx-PID such that 19xx is 1902, 1912, 1922, 1932,
1942, 1952 in a loop iteration of blocks 1228 through 1234)
is greater than O (e.g. this first iteration of 1952-PID>O

15 implies it is to be started here; also implies process 1952 is
enabled as used in FIGS. 14A, 28, 29A and 29B), then block
1232 spawns (starts) the process (e.g. 1952) of FIG. 29A to
start execution of subordinate worker thread(s) (e.g. process
1952 thread(s)) and saves the real PID (Process Identifier) to

Thereafter, block 1222 checks for any ILM roles currently
enabled for the MS (for example as determined from per
sistent storage of an ILM role(s) list Variable (ILMV)
preferably preconfigured for the MS at first use, or config
ured as last configured by a user of the MS). ILM roles are
maintained to the ILM role(s) list Variable (ILMV). The
ILMV contains one or more entries for an ILM capability
(role), each entry with a flag indicating whether it is enabled
or disabled (marked=enabled, unmarked=disabled). If block
1222 determines there is at least one ILM role enabled (i.e.

20 the PID variable (e.g. 1952-PID) returned by the operating
system process spawn interface. Block 1232 passes as a
parameter to the process of FIG. 29A which process name to
start (e.g. 1952), and continues to block 1234. If block 1230
determines the current process PID variable (e.g. 1952-PID)

25 is not greater than O (i.e. not to be started; also implies is
disabled as used in FIGS. 14A, 28, 29A and 29B), then
processing continues to block 1234. Block 1234 checks if all
process names of the enumerated set (pattern of 19xx) have
been processed (iterated) by blocks 1228 through 1234. If

as marked by associated flag), then block 1224 artificially
sets the corresponding 19xx-PID variables to a value greater
than O for indicating the process(es) are enabled, and are to
be started by subsequent FIG. 12 initialization processing.
The 19xx-PID will be replaced with the correct Process
Identifier (PID) upon exit from block 1232 after the process

30 block 1234 determines that not all process names in the set
have been processed (iterated), then processing continues
back to block 1228 for handling the next process name in the
set. If block 1234 determines that all process names of the
enumerated set were processed, then block 1236 checks the

35 DLMV (DLM role(s) list Variable). Blocks 1228 through
1234 iterate every process name of FIG. 19 to make sure that
each is started in accordance with non-zero 19xx-PID vari
able values at FIG. 12 initialization.

is started. Preferably, every MS can have ILM capability. 40

However, a user may want to (configure) ensure a DLM has
no ILM capability enabled (e.g. or having no list present). In
some embodiments, by default, every MS has an urnnarked
list of ILM capability maintained to the ILMV for 1) USE
DLM REFERENCES and 2) USE ILM REFERENCES. 45

USE DLM REFERENCES, when enabled (marked) in the
ILMV, indicates to allow the MS of FIG. 12 processing to
determine its whereabouts relative remote DLMs. USE ILM
REFERENCES, when enabled (marked) in the ILMV, indi
cates to allow the MS of FIG. 12 processing to determine its 50

whereabouts relative remote ILMs. Having both list items
marked indicates to allow determining MS whereabouts
relative mixed DLMs and ILMs. An alternative embodiment
may include a USE MIXED REFERENCES option for
controlling the MS of FIG. 12 processing to determine its 55

whereabouts relative mixed DLMs and/or ILMs. Alternative
embodiments will enforce any subset of these options with
out exposing user configurations, for example on a MS
without any means for being directly located.

For any of the ILMV roles of USE DLM REFERENCES, 60

USE ILM REFERENCES, or both, all processes 1902,
1912, 1922, 1932, 1942 and 1952 are preferably started (i.e.
1902-PID, 1912-PID, 1922-PID, 1932-PID, 1942-PID and
1952-PID are artificially set at block 1224 to cause subse
quent process startup at block 1232). Characteristics of an 65

anticipated LN-expanse (e.g. anticipated location technolo
gies of participating MSs, MS capabilities, etc) will start a

Block 1236 checks for any DLM roles currently enabled
for the MS (for example as determined from persistent
storage of a DLM role(s) list Variable (DLMV) preferably
preconfigured for the MS at first use if the MS contains
DLM capability). DLM capability (roles), whether on-board
at the MS, or determined during MS travels (see block 288),
is maintained to the DLM role(s) list Variable (DLMV). The
DLMV contains one or more entries for a DLM capability
(role), each (role) entry with a flag indicating whether it is
enabled or disabled (marked=enabled, unmarked=disabled).
If block 1236 determines there is at least one DLM role
enabled (i.e. as marked by associated flag), then block 1238
initializes enabled role(s) appropriately and processing con
tinues to block 1240. Block 1238 may cause the starting of
thread(s) associated with enabled DLM role(s), for DLM
processing above (e.g. FIGS. 2A through 9B). Block 1238
may invoke API(s), enable flag(s), or initialize as is appro
priate for DLM processing described above. Such initial-
izations are well known in the art of prior art DLM capa
bilities described above. If block 1236 determines there are
no DLM roles to initialize at the MS, then processing
continues to block 1240. Any of the FIG. 9A technologies
are eligible in the DLMV as determined to be present at the
MS and/or as determined by historical contents of the WDR
queue 22 (e.g. location technology field ll00e with MS ID
field 1100a for this MS) and/or determined by LBX history
30. Application Progrannning Interfaces (APis) may also be
used to determine MS DLM capability (role(s)) for entry(s)
to the DLMV.

Petitioners' Ex. 1001, Page 372 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
91

Block 1240 completes LBX character initialization, and
FIG. 12 initialization processing terminates thereafter at
block 1242. Depending on what threads were started as part
of block 1206, Block 1240 may startup the preferred number
of listen/receive threads for feeding queue 26 and the 5

preferred number of send threads for sending data inserted
to queue 24, in particular when transmitting new data 1302
and receiving new data 1302 or 1312. The number of threads
started should be optimal for parallel processing across
applicable channel(s). Upon encounter of block 1242, the 10

MS is appropriately operational, and a user at the MS of
FIG. 12 processing will have the ability to use the MS and
applicable user interfaces thereof.

With reference now to FIG. 29A, depicted is a flowchart
for describing a preferred embodiment of a process for 15

starting a specified number of threads in a specified thread
pool. FIG. 29A is in itself an O/S process, has a process
identifier (PID) after being started, will contain at least two
threads of processing after being started, and is generic in
being able to take on the identity of any process name passed 20

to it (e.g. 19xx) with a parameter (e.g. from block 1232).
FIG. 29Arepresents the parent thread of a 19xx process. The
FIG. 29A process is generic for executing any of processes
19xx (i.e. 1902, 1912, 1922, 1932, 1942 and 1952) with the
prescribed number of worker threads using the 19xx-Max 25

configuration (i.e. 1902-Max, 1912-Max, 1922-Max, 1932-
Max, 1942-Max and 1952-Max). FIG. 29A will stay running
until it (first all of its worker thread(s)) is terminated. FIG.
29A consists of an O/S Process 19xx with at least a parent
thread (main thread) and one worker thread (or number of 30

worker threads for FIG. 19 processing as determined by
19xx-Max). The parent thread has purpose to stay running
while all worker threads are running, and to own intelligence
for starting worker threads and terminating the process when
all worker threads are terminated. The worker threads are 35

started subordinate to the FIG. 29A process at block 2912
using an O/S start thread interface.

A 19xx (i.e. 1902, 1912, 1922, 1932, 1942 and 1952)
process starts at block 2902 and continues to block 2904
where the parameter passed for which process name to start 40

(i.e. take on identity of) is determined (e.g. 1952). There
after, block 2906 creates a RAM semaphore (i.e. operating
system term for a well performing Random Access Memory
(RAM) semaphore with scope only within the process (i.e.
to all threads of the process)). The local semaphore name 45

preferably uses the process name prefix (e.g. 1952-Sem),
and is used to synchronize threads within the process. RAM
semaphores perform significantly better than global system
semaphores. Alternate embodiments will have process
semaphore(s) created at block 1220 in advance. Thereafter, 50

block 2908 initializes a thread counter (e.g. 1952-Ct) to 0 for
counting the number of worker threads actually started
within the 19xx process (e.g. 1952), block 2910 initializes a
loop variable J to 0, and block 2912 starts a worker thread
(the first one upon first encounter of block 2912 for a 55

process) in this process (e.g. process 1902 starts worker
thread FIG. 20, ... , process 1952 starts worker thread FIG.
26A-see architecture 1900 description below).

Thereafter, block 2914 increments the loop variable by 1
and block 2916 checks if all prescribed worker threads have 60

been started. Block 2916 accesses the 19xx-Max (e.g. 1952-
Max) variable from shared memory using a semaphore for
determining the maximum number of threads to start in the
process worker thread pool. If block 2916 determines all
worker threads have been started, then processing continues 65

to block 2918. If block 2916 determines that not all worker
threads have been started for the process of FIG. 29A, then

92
processing continues back to block 2912 for starting the next
worker thread. Blocks 2912 through 2916 ensure the 19xx
Max (e.g. 1952-Max) number of worker threads are started
within the process of FIG. 29A.

Block 2918 waits until all worker threads of blocks 2912
through 2916 have been started, as indicated by the worker
threads themselves. Block 2918 waits until the process
19xx-Ct variable has been updated to the prescribed 19xx
Max value by the started worker threads, thereby indicating
they are all up and running. When all worker threads are
started (e.g. 1952-Ct=1952-Max), thereafter block 2920
waits (perhaps a very long time) until the worker thread
count (e.g. 1952-Ct) has been reduced back down to 0 for
indicating that all worker threads have been terminated, for
example when the user gracefully powers off the MS. Block
2920 continues to block 2922 when all worker threads have
been terminated. Block 2922 sets the shared memory vari
able for the 19xx process (e.g. 1952-PID) to O using a
semaphore for indicating that the 19xx (e.g. 1952) process is
disabled and no longer running. Thereafter, the 19xx process
terminates at block 2924. Waiting at blocks 2918 and 2920
are accomplished in a variety of well known methods:

Detect signal sent to process by last started (or termi
nated) worker thread that thread count is now MAX (or
O); or

Loop on checking the thread count with sleep time
between checks, wherein within the loop there is a
check of the current count (use RAM semaphore to
access), and processing exits the loop (and block) when
the count has reached the sought value; or

Use of a semaphore for a count variable which causes the
parent thread of FIG. 29A to stay blocked prior to the
count reaching its value, and causes the parent thread to
become cleared (will leave wait block) when the count
reaches its sought value.

Starting threads of processing in FIG. 29A has been
presented from a software perspective, but there are hard
ware/firmware thread embodiments which may be started
appropriately to accomplish the same functionality. If the
MS operating system does not have an interface for return
ing the PID at block 1232, then FIG. 29A can have a block
(e.g. 2905) used to determine its own PID for setting the
19xx-PID variable.

FIGS. 13A through 13C depict an illustration of data
processing system wireless data transmissions over some
wave spectrum. Embodiments may exist for any of the
aforementioned wave spectrums, and data carried thereon
may or may not be encrypted (e.g. encrypted WDR infor
mation). With reference now to FIG. 13A, a MS, for
example a DLM 200a, sends/broadcasts data such as a data
1302 in a manner well known to those skilled in the art, for
example other character 32 processing data. When a Com
munications Key (CK) 1304 is embedded within data 1302,
data 1302 is considered usual communications data (e.g.
protocol, voice, or any other data over conventional forward
channel, reverse channel, voice data channel, data transmis
sion channel, or any other prior art use channel) which has
been altered to contain CK 1304. Data 1302 contains a CK
1304 which can be detected, parsed, and processed when
received by another MS or other data processing system in
the vicinity of the MS (e.g. DLM 200a) as determined by the
maximum range of transmission 1306. CK 1304 permits
"piggy-backing" on current transmissions to accomplish
new functionality as disclosed herein. Transmission from the
MS radiate out from it in all directions in a manner consis
tent with the wave spectrum used. The radius 1308 repre
sents a first range of signal reception from the MS 200a,

Petitioners' Ex. 1001, Page 373 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
93

perhaps by another MS (not shown). The radius 1310
represents a second range of signal reception from the MS
200a, perhaps by another MS (not shown). The radius 1311
represents a third range of signal reception from the MS
200a, perhaps by another MS (not shown). The radius 1306 5

represents a last and maximum range of signal reception
from the MS 200a, perhaps by another MS (not shown). MS
design for maximum radius 1306 may take into account the
desired maximum range versus acceptable wave spectrum
exposure health risks for the user of the MS. The time of 10

transmission from MS 200a to radius 1308 is less than times
of transmission from MS 200a to radiuses 1310, 1311, or
1306. The time of transmission from MS 200a to radius
1310 is less than times of transmission from MS 200a to
radiuses 1311 or 1306. The time of transmission from MS 15

200a to radius 1311 is less than time of transmission from
MS 200a to radius 1306.

94
than times of transmission from service to radiuses 1322 or
1316. The time of transmission from service to radius 1322
is less than time of transmission from service to radius 1316.
In another embodiment, data 1312 contains a Communica
tions Key (CK) 1314 because data 1312 is new transmitted
data in accordance with the present disclosure. Data 1312
purpose is for carrying CK 1314 information for being
detected, parsed, and processed when received by another
MS or data processing system in the vicinity of the service(s)
as determined by the maximum range of transmission.

In some embodiments, data 1302 and 1312 are prior art
wireless data transmission packets with the exception of
embedding a detectable CK 1304 and/or CK 1314, respec
tively. Usual data communications of MSs are altered to
additionally contain the CK so data processing systems in
the vicinity can detect, parse, and process the CK. Appro-
priate send and/or broadcast channel processing is used. In
other embodiments, data 1302 and 1312 are new broadcast
wireless data transmission packets for containing CK 1304

In another embodiment, data 1302 contains a Communi
cations Key (CK) 1304 because data 1302 is new transmit
ted data in accordance with the present disclosure. Data
1302 purpose is for carrying CK 1304 information for being
detected, parsed, and processed when received by another
MS or other data processing system in the vicinity of the MS
(e.g. DLM 200a) as determined by the maximum range of
transmission 1306.

20 and CK 1314, respectively. AMS may use send queue 24 for
sending/broadcasting packets to data processing systems in
the vicinity, and may use the receive queue 26 for receiving
packets from other data processing systems in the vicinity.
Contents ofCKs (Communications Keys) depend on which

25 LBX features are in use and the functionality intended.
In the case of "piggybacking" on usual communications,

receive queue 26 insertion processing simply listens for the
usual data and when detecting CK presence, inserts CK
information appropriately to queue 26 for subsequent pro-

With reference now to FIG. 13B, a MS, for example an
ILM 1000k, sends/broadcasts data such as a data 1302 in a
manner well known to those skilled in the art. Data 1302 and
CK 1304 are as described above for FIG. 13A. Data 1302 or
CK 1304 can be detected, parsed, and processed when
received by another MS or other data processing system in
the vicinity of the MS (e.g. ILM 1000k) as determined by the
maximum range of transmission 1306. Transmission from
the MS radiate out from it in all directions in a manner

30 cessing. Also in the case of "piggybacking" on usual com
munications, send queue 24 retrieval processing simply
retrieves CK information from the queue and embeds it in an
outgoing data 1302 at first opportunity. In the case of new

consistent with the wave spectrum used, and as described 35

above for FIG. 13A.
With reference now to FIG. 13C, a service or set of

services sends/broadcasts data such as a data packet 1312 in
a manner well known to those skilled in the art, for example

data communications, receive queue 26 insertion processing
simply listens for the new data containing CK information,
and inserts CK information appropriately to queue 26 for
subsequent processing. Also in the case of new data com
munications, send queue 24 retrieval processing simply
retrieves CK information from the queue and transmits CK

40 information as new data. to service other character 32 processing. When a Commu
nications Key (CK) 1314 is embedded within data 1312,
data 1312 is considered usual communications data (e.g.
protocol, voice, or any other data over conventional forward
channel, reverse channel, voice data channel, data transmis
sion channel, or any other prior art use channel) which has 45

been altered to contain CK 1314. Data 1312 contains a CK
1314 which can be detected, parsed, and processed when
received by an MS or other data processing system in the
vicinity of the service(s) as determined by the maximum
range of transmission 1316. CK 1314 permits "piggy-back- 50

ing" on current transmissions to accomplish new function
ality as disclosed herein. Transmissions radiate out in all
directions in a manner consistent with the wave spectrum
used, and data carried thereon may or may not be encrypted
(e.g. encrypted WDR information). The radius 1318 repre- 55

sents a first range of signal reception from the service (e.g.
antenna thereof), perhaps by a MS (not shown). The radius
1320 represents a second range of signal reception from the
service (e.g. antenna thereof), perhaps by a MS (not shown).
The radius 1322 represents a third range of signal reception 60

from the service (e.g. antenna thereof), perhaps by a MS (not
shown). The radius 1316 represents a last and maximum
range of signal reception from the service (e.g. antenna
thereof), perhaps by a MS (not shown). The time of trans
mission from service to radius 1318 is less than times of 65

transmission from service to radiuses 1320, 1322, or 1316.
The time of transmission from service to radius 1320 is less

LBX: LN-EXPANSE Configuration

FIG. 14A depicts a flowchart for describing a preferred
embodiment of MS LBX configuration processing. FIG. 14
is of Self Management Processing code 18. MS LBX
configuration begins at block 1402 upon user action to start
the user interface and continues to block 1404 where user
interface objects are initialized for configurations described
below with current settings that are reasonable for display to
available user interface real estate. Thereafter, applicable
settings are presented to the user at block 1406 with options.
Block 1406 preferably presents to the user at least whether
or not DLM capability is enabled (i.e. MS to behave as a
DLM=at least one role of DLMV enabled), whether or not
ILM capability is enabled (i.e. MS to behave as an ILM=at
least one role of ILMV enabled), and/or whether or not this
MS should participate in the LN-expanse as a source loca
tion for other MSs (e.g. process 1902 and/or 1942 enabled).
Alternative embodiments will further present more or less
information for each of the settings, or present information
associated with other FIG. 14 blocks of processing. Other
embodiments will not configure DLM settings for an MS
lacking DLM capability (or when all DLMV roles disabled).
Other embodiments will not configure ILM settings when
DLM capability is present. Block 1406 continues to block
1408 where processing waits for user action in response to

Petitioners' Ex. 1001, Page 374 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
95

options. Block 1408 continues to block 1410 when a user
action is detected. If block 1410 determines the user selected

96
various present disclosure embodiments may maintain all
confidences to queue 22, or a particular set of acceptable
confidences.

If block 1426 determines the user did not select to
5 configure the confidence floor value, then processing con

tinues to block 1432. If block 1432 determines the user

to configure DLM capability (i.e. DLMV role(s)), then the
user configures DLM role(s) at block 1412 and processing
continues back to block 1406. Block 1412 processing is
described by FIG. 15A. If block 1410 determines the user
did not select to configure DLM capability (i.e. DLMV
role(s)), then processing continues to block 1414. If block
1414 determines the user selected to configure ILM capa
bility (i.e. ILMV role(s)), then the user configures ILM 10

role(s) at block 1416 and processing continues back to block
1406. Block 1416 processing is described by FIG. 15B. If
block 1414 determines the user did not select to configure
ILM capability (i.e. ILMV role(s)), then processing contin
ues to block 1418. If block 1418 determines the user selected 15

to configure NTP use, then the user configures NTP use at
block 1420 and processing continues back to block 1406.
Block 1420 processing is described by FIG. 16. If block
1418 determines the user did not select to configure NTP
use, then processing continues to block 1422.

If block 1422 determines the user selected to maintain the
WDR queue, then the user maintains WDRs at block 1424
and processing continues back to block 1406. Block 1424
processing is described by FIG. 17. Blocks 1412, 1416, 1420
and 1424 are understood to be delimited by appropriate
semaphore control to avoid multi-threaded access problems.
If block 1422 determines the user did not select to maintain
the WDR queue, then processing continues to block 1426. If
block 1426 determines the user selected to configure the
confidence floor value, then block 1428 prepares parameters
for invoking a Configure Value procedure (parameters for
reference (address) of value to configure; and validity cri
teria of value to configure), and the Configure Value proce
dure of FIG. 18 is invoked at block 1430 with the two (2)
parameters. Thereafter, processing continues back to block
1406. Blocks 1428 and 1430 are understood to be delimited
by appropriate semaphore control when modifying the con
fidence floor value since other threads can access the floor
value.

The confidence floor value is the minimum acceptable
confidence value of any field 1100d (for example as checked
by block 276). No WDR with a field 1100d less than the
confidence floor value should be used to describe MS
whereabouts. In an alternative embodiment, the confidence
floor value is enforced as the same value across an LN
expanse with no user control to modify it. One embodiment

selected to configure the Whereabouts Timeliness Variable
(WTV), then block 1434 prepares parameters for invoking
the Configure Value procedure (parameters for reference
(address) of value to configure; and validity criteria of value
to configure), and the Configure Value procedure of FIG. 18
is invoked at block 1430 with the two (2) parameters.
Thereafter, processing continues back to block 1406. Blocks
1434 and 1430 are understood to be delimited by appropriate
semaphore control when modifying the WTV since other
threads can access the WTV.

A critical configuration for MS whereabouts processing is
whereabouts timeliness. Whereabouts timeliness is how
often (how timely) an MS should have accurate where-

20 abouts. Whereabouts timeliness is dependent on how often
the MS is updated with whereabouts information, what
technologies are available or are in the vicinity, how capable
the MS is of maintaining whereabouts, processing speed(s),
transmission speed(s), known MS or LN-expanse design

25 constraints, and perhaps other factors. In some embodi
ments, whereabouts timeliness is as soon as possible. That
is, MS whereabouts is updated whenever possible as often as
possible. In fact, the present disclosure provides an excellent
system and methodology to accomplish that by leveraging

30 location technologies whenever and wherever possible.
However, there should be balance when considering less
capable processing of a MS to prevent hogging CPU cycles
from other applications at the MS. In other embodiments, a
hard-coded or preconfigured time interval is used for keep-

35 ing an MS informed of its whereabouts in a timely manner.
For example, the MS should know its own whereabouts at
least every second, or at least every 5 seconds, or at least
every minute, etc. Whereabouts timeliness is critical
depending on the applications in use at the MS. For example,

40 if MS whereabouts is updated once at the MS every 5
minutes during high speeds of travel when using navigation,
the user has a high risk of missing a tum during travel in
downtown cities where timely decisions for turns are
required. On the other hand, if MS whereabouts is updated

45 every 5 seconds, and an to application only requires an
update accuracy to once per minute, then the MS may be
excessively processing. of FIG. 14 does not permit user control over a minimum

acceptable confidence floor value. Various embodiments
will default the floor value. Block 1812 enforces an appro
priate value in accordance with the confidence value range
implemented (e.g. value from 1 to 100). Since the confi
dence of whereabouts is likely dependent on applications in
use at the MS, the preferred embodiment is to permit user
configuration of the acceptable whereabouts confidence for
the MS. A new confidence floor value can be put to use at 55

next thread(s) startup, or can be used instantly with the
modification made, depending on the embodiment. The
confidence floor value can be used to filter out WDRs prior

In some embodiments, there is a Whereabouts Timeliness
Variable (WTV) configured at the MS (blocks 1432, 1434,

50 1430). Whether it is user configured, system configured, or
preset in a system, the WTV is used to:

Define the maximum period of time for MS whereabouts
to become stale at any particular time;

Cause the MS to seek its whereabouts if whereabouts
information is not up to date in accordance with the
WTV; and

Prevent keeping the MS too busy with keeping abreast of
its own whereabouts.

to inserting to queue 22, filter out WDRs when retrieving
from queue 22, filter out WDR information when listening 60

on channel(s) prior to inserting to queue 26, and/or used in
accessing queue 22 for any reason (depending on embodi
ments). While confidence is validated on both inserts and
queries (retrievals/peeks), one or the other validation is fine
(preferably on inserts). It is preferred that executable code 65

incorporate checks where applicable since the confidence
floor value can be changed after queue 22 is in use. Also,

In another embodiment, the WTV is automatically
adjusted based on successes or failures of automatically
locating the MS. As the MS successfully maintains timely
whereabouts, the WTV is maintained consistent with the
user configured, system configured, or preset value, or in
accordance with active applications in use at the time.
However, as the MS fails in maintaining timely where
abouts, the WTV is automatically adjusted (e.g. to longer
periods of time to prevent unnecessary wasting of power

Petitioners' Ex. 1001, Page 375 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
97

and/or CPU resources). Later, as whereabouts become read
ily available, the WTV can be automatically adjusted back
to the optimal value. In an emergency situation, the user
always has the ability to force the MS to determine its own
whereabouts anyway (Blocks 856 and 862 through 878, in 5

light of a WDR request and WDR response described for
architecture 1900). In embodiments where the WTV is
adjusted in accordance with applications in use at the time,
the most demanding requirement of any application started
is maintained to the WTV. Preferably, each application of the 10

MS initializes to an API of the MS with a parameter of its
WTV requirements. If the requirement is more timely than
the current value, then the more timely value is used. The
WTV can be put to use at next thread(s) startup, or can be
used instantly with the modification made, depending on the 15

embodiment.

98
Preferred embodiments of blocks 1446 and 1448 use

convenient names of processes being started or terminated,
rather than convenient brief process names such as 1902,
1912, 1922, 1932, 1942, or 1952 used in flowcharts. In some
embodiments, the long readable name is used, such as
whereabouts broadcast process (1902), whereabouts collec-
tion process (1912), whereabouts supervisor process (1922),
timing determination process (1932), WDR request process
(1942), and whereabouts determination process (1952). For
example, the user may know that the whereabouts supervi
sor process enabled/disabled indicates whether or not to
have whereabouts timeliness monitored in real time.
Enabling the whereabouts supervisor process enables moni
toring for the WTV in real time, and disabling the where
abouts supervisor process disables monitoring the WTV in
real time.

In another embodiment of blocks 1446 and 1448, a
completely new name or description may be provided to any
of the processes to facilitate user interface usability. For

If block 1432 determines the user did not select to
configure the WTV, then processing continues to block
1436. If block 1436 determines the user selected to configure
the maximum number of threads in a 19xx process (see
19xx-Max variable in FIG. 19 discussions), then block 1438
interfaces with the user until a valid 19xx-max variable is
selected, and processing continues to block 1440. If block
1440 determines the 19xx process is already rumiing (i.e.
19xx-PID>0 implies it is enabled), then an error is provided
to the user at block 1442, and processing continues back to
block 1406. Preferably, block 1442 does not continue back

20 example, a new name Peer Location Source Variable
(PLSV) can be associated to the whereabouts broadcast
process 1902 and/or 1942. PLSV may be easier to remem
ber. If the PLSV was toggled to disabled, the whereabouts
broadcast process 1902 and/or 1942 terminates. If the PLSV

25 was toggled to enabled, the whereabouts broadcast process
1902 and/or 1942 is started. It may be easier to remember
that the PLSV enables/disables whether or not to allow this
MS to be a location source for other MSs in an LN-expanse. to block 1406 until the user acknowledges the error (e.g.

with a user action). If block 1440 determines the user
selected 19xx process (process 1902, process 1912, process 30

1922, process 1932, process 1942, or process 1952) is not
already running (i.e. 19xx-PID=0 implies it is disabled),
then block 1444 prepares parameters for invoking the Con
figure Value procedure (parameters for reference (address)
of 19xx-Max value to configure; and validity criteria of 35

value to configure), and the Configure Value procedure of
FIG. 18 is invoked at block 1430 with the two (2) param
eters. Thereafter, processing continues back to block 1406.
Blocks 1438, 1440, 1444 and 1430 are understood to be
delimited by appropriate semaphore control when modify- 40

ing the 19xx-Max value since other threads can access it.
The 19xx-Max value should not be modified while the 19xx
process is running because the number of threads to termi
nate may be changed prior to terminating. An alternate
embodiment of modifying a process number of threads will 45

dynamically modify the number of threads in anticipation of
required processing.

In other embodiments, a useful name (e.g. PLSV) repre
sents starting and terminating any subset of 19xx processes
(a plurality (e.g. 1902 and 1942)) for simplicity. In yet other
embodiments, FIG. 14A/14B can be used to start or termi
nate worker thread(s) in any process, for example to throttle
up more worker threads in a process, or to throttle down for
less worker threads in a process, perhaps modifying thread
instances to accommodate the number of charmels for com-
munications, or for the desired performance. There are many
embodiments for fine tuning the architecture 1900 for opti
mal peer to peer interaction. In yet other embodiments,
toggling may not be used. There may be individual options
available at block 1408 for setting any data of this disclo-
sure. Similarly, the 19xx-Max variables may be modified via
individual user friendly names and/or as a group of 19xx
Max variables.

Referring back to block 1446, if it is determined the user
did not select to toggle for enabling/disabling process(es),
then processing continues to block 1458. If block 1458
determines the user selected to exit FIG. 14A/14B configu
ration processing, then block 1460 terminates the user

If block 1436 determines the user did not select to
configure a process thread maximum (19xx-Max), then
block 1446 checks if the user selected to (toggle) disable or
enable a particular process (i.e. a 19xx process of FIG. 19).
If block 1446 determines the user did select to toggle
enabling/disabling a particular FIG. 19 process, then block
1448 interfaces with the user until a valid 19xx process name

50 interface appropriately and processing terminates at block
1462. If block 1458 determines the user did not select to exit

is selected, and processing continues to block 1450. If block 55

1450 determines the 19xx process is already rumiing (i.e.
19xx-PID>0 implies it is enabled), then block 1454 prepares
parameters Gust as does block 2812). Thereafter, block 1456
invokes FIG. 29B processing Gust as does block 2814).
Processing then continues back to block 1406. If block 1450 60

determines the 19xx process is not running (i.e. 19xx-PID=0
implies it is disabled), then block 1452 invokes FIG. 29A
processing Gust as does block 1232). Processing then con
tinues back to block 1406. Block 1456 does not continue
back to block 1406 until the process is completely termi- 65

nated. Blocks 1448, 1450, 1452, 1454 and 1456 are under
stood to be delimited by appropriate semaphore control.

the user interface, then processing continues to block 1466
of FIG. 14B by way of off page connector 1464.

With reference now to FIG. 14B, depicted is a continued
portion flowchart of FIG. 14A for describing a preferred
embodiment of MS LBX configuration processing. If block
1466 determines the user selected to configure the Source
Periodicity Time Period (SPTP) value, then block 1468
prepares parameters for invoking the Configure Value pro
cedure (parameters for reference (address) of value to con
figure; and validity criteria of value to configure), and the
Configure Value procedure of FIG. 18 is invoked at block
1470 with the two (2) parameters. Thereafter, processing
continues back to block 1406 by way of off page connector
1498. Blocks 1468 and 1470 are understood to be delimited
by appropriate semaphore control when modifying the SPTP
value since other threads can access it. The SPTP configures

Petitioners' Ex. 1001, Page 376 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
99

the time period between broadcasts by thread(s) 1902, for
example 5 seconds. Some embodiments do not permit
configuration of the SPTP.

100
1508 requires the user to acknowledge the error (e.g. with a
user action) before block 1508 continues to block 1518. If
block 1506 determines at least one entry (role) is present in
the DLMV, then the current DLMV setting(s) are saved at
block 1510, the manage list processing procedure of FIG.
15C is invoked at block 1512 with the DLMV as a reference
(address) parameter, and processing continues to block
1514.

If block 1466 determines the user did not select to
configure the SPTP value, then processing continues to 5

block 1472. If block 1472 determines the user selected to
configure service propagation, then the user configures ser
vice propagation at block 1474 and processing continues
back to block 1406 by way of off page connector 1498. If
block 1472 determines the user did not select to configure
service propagation, then processing continues to block
1476.

Block 1514 determines if there were any changes to the
10 DLMV from FIG. 15C processing by comparing the DLMV

after block 1512 with the DLMV saved at block 1510. If
there were changes via FIG. 15C processing, such as a role
which was enabled prior to block 1512 which is now
disabled, or such as a role which was disabled prior to block

If block 1476 determines the user selected to configure
permissions 10, then the user configures permissions at
block 1478 and processing continues back to block 1406 by
way of off page connector 1498. If block 1476 determines
the user did not select to configure permissions 10, then
processing continues to block 1480. If block 1480 deter
mines the user selected to configure charters 12, then the
user configures charters 12 at block 1482 and processing
continues back to block 1406 by way of off page connector
1498. If block 1480 determines the user did not select to
configure charters 12, then processing continues to block
1484. If block 1484 determines the user selected to configure
statistics 14, then the user configures statistics 14 at block
1486 and processing continues back to block 1406 by way
of off page connector 1498. If block 1484 determines the
user did not select to configure statistics 14, then processing
continues to block 1488. If block 1488 determines the user
selected to configure service informant code 28, then the
user configures code 28 at block 1490 and processing
continues back to block 1406 by way of off page connector
1498. If block 1488 determines the user did not select to

15 1512 which is now enabled, then block 1514 continues to
block 1516 which handles the DLMV changes appropriately.
Block 1516 continues to block 1518 which terminates FIG.
15A processing. If block 1514 determines there were no
changes via block 1512, then processing terminates at block

20 1518.
Block 1516 enables newly enabled role(s) as does block

1238 described for FIG. 12. Block 1516 disables newly
disabled role(s) as does block 2804 described for FIG. 28.

FIG. 15B depicts a flowchart for describing a preferred
25 embodiment of ILM role configuration processing of block

1416. Processing begins at block 1522 and continues to
block 1524 which accesses current ILMV settings before
continuing to block 1526. If there were no ILMV entries (list
empty) as determined by block 1526, then block 1528

configure code 28, then processing continues to block 1492.

30 provides an error to the user and processing terminates at
block 1538. The ILMV may be empty when the MS is not
meant to have ILM capability. Preferably, the error pre
sented at block 1528 requires the user to acknowledge the
error before block 1528 continues to block 1538. If block

If block 1492 determines the user selected to maintain LBX 35

history 30, then the user maintains LBX history at block
1494 and processing continues back to block 1406 by way
of off page connector 1498. If block 1492 determines the
user did not select to maintain LBX history 30, then pro
cessing continues to block 1496.

Block 1496 handles other user interface actions leaving
block 1408, and processing continues back to block 1406 by
way of off page connector 1498.

40

Details of blocks 1474, 1478, 1482, 1486, 1490, 1494,
and perhaps more detail to block 1496, are described with 45

other flowcharts. Appropriate semaphores are requested at
the beginning of block processing, and released at the end of
block processing, for thread safe access to applicable data at
risk of being accessed by another thread of processing at the
same time of configuration. In some embodiments, a user/ 50

administrator with secure privileges to the MS has ability to
perform any subset of configurations of FIGS. 14A and 14B
processing, while a general user may not. Any subset of FIG.
14 configuration may appear in alternative embodiments,
with or without authenticated administrator access to per- 55

form configuration.
FIG. 15A depicts a flowchart for describing a preferred

embodiment of DLM role configuration processing of block
1412. Processing begins at block 1502 and continues to
block 1504 which accesses current DLMV settings before 60

continuing to block 1506. If there were no DLMV entries
(list empty) as determined by block 1506, then block 1508
provides an error to the user and processing terminates at
block 1518. The DLMV may be empty when the MS has no
local DLM capability and there hasn't yet been any detected 65

DLM capability, for example as evidenced by WDRs
inserted to queue 22. Preferably, the error presented at block

1526 determines at least one entry (role) is present in the
ILMV, then the current ILMV setting(s) are saved at block
1530, the manage list processing procedure of FIG. 15C is
invoked with a reference (address) parameter of the ILMV
at block 1532, and processing continues to block 1534.

Block 1534 determines if there were any changes to the
ILMV from FIG. 15C processing by comparing the ILMV
after block 1532 with the ILMV saved at block 1530. If there
were changes via FIG. 15C processing, such as a role which
was enabled prior to block 1532 which is now disabled, or
such as a role which was disabled prior to block 1532 which
is now enabled, then block 1534 continues to block 1536
which handles the ILMV changes appropriately. Block 1536
continues to block 1538 which terminates FIG. 15B pro
cessing. If block 1534 determines there were no changes via
block 1532, then processing terminates at block 1538.

Block 1536 enables newly enabled role(s) as does blocks
1224 through 1234 described for FIG. 12. Block 1536
disables newly disabled role(s) as does blocks 2806 through
2816 described for FIG. 28.

FIG. 15C depicts a flowchart for describing a preferred
embodiment of a procedure for Manage List processing.
Processing starts at block 1552 and continues to block 1554.
Block 1554 presents the list (DLM capability if arrived to by
way of FIG. 15A; ILM capability if arrived to by way of
FIG. 15B) to the user, as passed to FIG. 15C processing with
the reference parameter by the invoker, with which list items
are marked (enabled) and which are unmarked (disabled)
along with options, before continuing to block 1556 for
awaiting user action. Block 1554 highlights currently
enabled roles, and ensures disabled roles are not highlighted
in the presented list. When a user action is detected at block
1556, thereafter, block 1558 checks if a list entry was

Petitioners' Ex. 1001, Page 377 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
101

enabled (marked) by the user, in which case block 1560
marks the list item as enabled, saves it to the list (e.g. DLMV
or ILMV), and processing continues back to block 1554 to
refresh the list interface. If block 1558 determines the user
did not respond with an enable action, then block 1562 5

checks for a disable action. If block 1562 determines the
user wanted to disable a list entry, then block 1564 marks
(actually unmarks it) the list item as disabled, saves it to the
list (e.g. DLMV or ILMV), and processing continues back to
block 1554. If block 1562 determines the user did not want 10

to disable a list item, then block 1566 checks if the user
wanted to exit FIG. 15C processing. If block 1566 deter
mines the user did not select to exit list processing, then
processing continues to block 1568 where other user inter-

15
face actions are appropriately handled and then processing
continues back to block 1554. If block 1566 determines the
user did select to exit manage list processing, then FIG. 15C
processing appropriately returns to the caller at block 1570.

102
determines the user did select to exit processing, then FIG.
16 processing terminates at block 1634.

FIG. 17 depicts a flowchart for describing a preferred
embodiment of WDR maintenance processing of block
1424. Processing starts at block 1702 and continues to block
1704 where it is determined ifthere are any WDRs of queue
22. If block 1704 determines there are no WDRs for
processing, then block 1706 presents an error to the user and
processing continues to block 1732 where FIG. 17 process
ing is terminated appropriately. Preferably, the error pre
sented at block 1706 requires the user to acknowledge the
error before block 1706 continues to block 1732. If block
1704 determines there is at least one WDR, then processing
continues to block 1708 where the current contents ofWDR
queue 22 is appropriately presented to the user (in a scrol
lable list if necessary). The user can interface to the list at
block 1708. In one example, block 1708 allows the user to
see who is nearby. Block 1708 may provide a convenient
search criteria specification interface for the user to find

FIG. 15C interfaces with the user for desired DLMV (via
FIG. 15A) or ILMV (via FIG. 15B) configurations. In some
embodiments, it makes sense to have user control over
enabling or disabling DLM and/or ILM capability (roles) to
the MS, for example for software or hardware testing.

20 sought data. Of course, a separate user interface can be used
to access WDR data for desired information. Thereafter,
block 1710 awaits user action. When a user action is
detected at block 1710, block 1712 checks if the user
selected to delete a WDR from queue 22, in which case

25 block 1714 discards the selected WDR, and processing
continues back to block 1708 for a refreshed presentation of
queue 22. If block 1712 determines the user did not select to
delete a WDR, then block 1716 checks if the user selected
to modify a WDR. If block 1716 determines the user wanted

FIG. 16 depicts a flowchart for describing a preferred
embodiment of NTP use configuration processing of block
1420. Processing starts at block 1602 and continues to block
1604 where the current NTP use setting is accessed. There
after, block 1606 presents the current NTP use setting to its
value of enabled or disabled along with options, before
continuing to block 1608 for awaiting user action. When a
user action is detected at block 1608, block 1610 checks if
the NTP use setting was disabled at block 1608, in which
case block 1612 terminates NTP use appropriately, block
1614 sets (and saves) the NTP use setting to disabled, and 35

processing continues back to block 1606 to refresh the
interface. Block 1612 disables NTP as does block 2828.

30 to modify a WDR of queue 22, then block 1718 interfaces
with the user for validated WDR changes before continuing
back to block 1708. If block 1716 determines the user did
not select to modify a WDR, then block 1720 checks if the
user selected to add a WDR to queue 22. If block 1720
determines the user selected to add a WDR (for example, to
manually configure MS whereabouts), then block 1722

If block 1610 determines the user did not respond for
disabling NTP, then block 1616 checks for a toggle to being
enabled. If block 1616 determines the user wanted to enable 40

NTP use, then block 1618 accesses known NTP server
address(es) (e.g. ip addresses preconfigured to the MS, or set
with another user interface at the MS), and pings each one,

interfaces with the user for a validated WDR to add to queue
22 before continuing back to block 1708. If block 1720
determines the user did not select to add a WDR, then block
1724 checks if the user selected to view detailed contents of
a WDR, perhaps because WDRs are presented in an abbre-
viated form at block 1708. If it is determined at block 1724
the user did select to view details of a WDR, then block 1726
formats the WDR in detail form, presents it to the user, and
waits for the user to exit the view of the WDR before
continuing back to block 1708. If block 1724 determines the

if necessary, at block 1620 with a timeout. As soon as one
NTP server is determined to be reachable, block 1620 45

continues to block 1622. If no NTP server was reachable,
then the timeout will have expired for each one tried at block
1620 for continuing to block 1622. Block 1622 determines

user did not select to view a WDR in detail, then block 1728
checks if the user wanted to exit FIG. 17 processing. If block
1728 determines the user did not select to exit FIG. 17 if at least one NTP server was reachable at block 1620. If

block 1622 determines no NTP server was reachable, then an
error is presented to the user at block 1624 and processing
continues back to block 1606. Preferably, the error presented
at block 1624 requires the user to acknowledge the error
before block 1624 continues to block 1606. If block 1622
determines that at least one NTP server was reachable, then
block 1626 initializes NTP use appropriately, block 1628
sets the NTP use setting to enabled (and saves), and pro
cessing continues back to block 1606. Block 1626 enables
NTP as does block 1210.

50 processing, then processing continues to block 1730 where
other user interface actions leaving block 1710 are appro
priately handled, and then processing continues back to
block 1708. If block 1728 determines the user did select to
exit processing, then FIG. 17 processing terminates at block

55 1732.

Referring back to block 1616, if it is determined the user 60

did not want to enable NTP use, then processing continues

There are many embodiments for maintaining WDRs of
queue 22. In some embodiments, FIG. 17 (i.e. block 1424)
processing is only provided for debug of an MS. In a single
instance WDR embodiment, block 1708 presents the one
and only WDR which is used to keep current MS where
abouts whenever possible. Other embodiments incorporate

to block 1630 where it is checked if the user wanted to exit
FIG. 16 processing. If block 1630 determines the user did
not select to exit FIG. 16 processing, then processing
continues to block 1632 where other user interface actions
leaving block 1608 are appropriately handled, and then
processing continues back to block 1606. If block 1630

any subset of FIG. 17 processing.
FIG. 18 depicts a flowchart for describing a preferred

embodiment of a procedure for variable configuration pro-
65 cessing, namely the Configure Value procedure, for example

for processing of block 1430. Processing starts at block 1802
and continues to block 1804 where parameters passed by the

Petitioners' Ex. 1001, Page 378 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
103

invoker of FIG. 18 are determined, namely the reference
(address) of the value for configuration to be modified, and
the validity criteria for what makes the value valid. Passing
the value by reference simply means that FIG. 18 has the
ability to directly change the value, regardless of where it is 5

located. In some embodiments, the parameter is an address
to a memory location for the value. In another embodiment,
the value is maintained in a database or some persistent
storage, and FIG. 18 is passed enough information to know
how to permanently affect/change the value. 10

104
process, respectively. For brevity, the names used herein are
by the process label of FIG. 19 in a form 19xx. There must
be at least one worker thread in a process. Worker thread(s)
are described with a flowchart as follows:

1902-FIG. 20;
1912-FIG. 21;
1922-FIG. 22;
1932-FIG. 23;
1942-FIG. 25; and
1952-FIG. 26A.

Threads of architecture MS are presented from a software
perspective, but there are applicable hardware/firmware
process thread embodiments accomplished for the same
functionality. In fact, hardware/firmware embodiments are

Block 1804 continues to block 1806 where the current
value passed is presented to the user (e.g. confidence floor
value), and then to block 1808 for awaiting user action.
When a user action is detected at block 1808, block 1810
checks if the user selected to modify the value, in which case
block 1812 interfaces with the user for a validated value
using the validity criteria parameter before continuing back
to block 1806. Validity criteria may take the form of a value
range, value type, set of allowable values, or any other
criteria for what makes the value a valid one.

15 preferred when it is known that processing is mature (i.e.
stable) to provide the fastest possible performance. Archi
tecture 1900 processing is best achieved at the highest
possible performance speeds for optimal wireless commu
nications processing. There are two (2) types of processes

20 for describing the types of worker threads:
1) "Slave to Queue"; and
2) "Slave to Timer".
A 19xx process is a slave to queue process when its

worker thread(s) are driven by feeding from a queue of

If block 1810 determines the user did not select to modify
the value, then block 1814 checks if the user wanted to exit
FIG. 18 processing. If block 1814 determines the user did
not select to exit FIG. 18 processing, then processing
continues to block 1816 where other user interface actions
leaving block 1808 are appropriately handled, and then
processing continues back to block 1806. If block 1814
determines the user did select to exit processing, then FIG.
18 processing appropriately returns to the caller at block
1818.

25 architecture 1900. A slave to queue process stays "blocked"
(O/S terminology "blocked"=preempted) on a queue entry
retrieval interface until the sought queue item is inserted to
the queue. The queue entry retrieval interface becomes
"cleared" (O/S terminology "cleared"=clear to run) when

LBX: LN-EXPANSE Interoperability FIG. 19 depicts an
illustration for describing a preferred embodiment multi
threaded architecture of peer interaction processing of a MS

30 the sought queue entry is retrieved from the queue by a
thread. These terms (blocked and cleared) are analogous to
a semaphore causing a thread to be blocked, and a thread to
be cleared, as is well known in the art. Queues have

in accordance with the present disclosure. MS architecture
1900 preferably includes a set of Operating System (O/S) 35

processes (i.e. O/S terminology "process" with O/S termi
nology "thread" or "threads (i.e. thread(s))), including a
whereabouts broadcast process 1902, a whereabouts collec
tion process 1912, a whereabouts supervisor process 1922,
a timing determination process 1932, a WDR request pro- 40

cess 1942, and a whereabouts determination process 1952.
Further included are queues for interaction of processing,

and process associated variables to facilitate processing. All
of the FIG. 19 processes are of PIP code 6. There is
preferably a plurality (pool) of worker threads within each of 45

said 19xx processes (i.e. 1902, 1912, 1922, 1932, 1942 and
1952) for high performance asynchronous processing. Each
19xx process (i.e. 1902, 1912, 1922, 1932, 1942 and 1952)
preferably has at least two (2) threads:

semaphore control to ensure no more than one thread
becomes clear at a time for a single queue entry retrieved (as
done in an O/S). One thread sees a particular queue entry,
but many threads can feed off the same queue to do the same
work concurrently. Slave to queue type of processes are
1912, 1932, 1942 and 1952. A slave to queue process is
properly terminated by inserting a special termination queue
entry for each worker thread to terminate itself after queue
entry retrieval.

A 19xx process is a slave to timer process when its worker
thread(s) are driven by a timer for peeking a queue of
architecture 1900. A timer provides the period of time for a
worker thread to sleep during a looped iteration of checking
a queue for a sought entry (without removing the entry from
the queue). Slave to timer threads periodically peek a queue,
and based on what is found, will process appropriately. A

1) "parent thread"; and
2) "worker thread".

A parent thread (FIG. 29A) is the main process thread for:
starting the particular process;
starting the correct number of worker thread(s) of that

particular process;

50 queue peek does not alter the peeked queue. The queue peek
interface is semaphore protected for preventing peeking at
an un-opportune time (e.g. while thread inserting or retriev
ing from queue). Queue interfaces ensure one thread is
acting on a queue with a queue interface at any particular

staying alive while all worker threads are busy process
ing; and

properly terminating the process when worker threads are

55 time. Slave to timer type of processes are 1902 and 1922. A
slave to timer process is properly terminated by inserting a
special termination queue entry for each worker thread to
terminate itself by queue entry peek.

terminated.
The parent thread is indeed the parent for governing behav- 60

ior of threads at the process whole level. Every process has
a name for convenient reference, such as the names 1902,
1912, 1922, 1932, 1942 and 1952. Of course, these names
may take on the associated human readable forms of where
abouts broadcast process, whereabouts collection process, 65

whereabouts supervisor process, timing determination pro
cess, WDR request process, and whereabouts determination

Block 2812 knows the type of 19xx process for preparing
the process type parameter for invocation of FIG. 29B at
block 2814. The type of process has slightly different
termination requirements because of the worker thread(s)
processing type. Alternate embodiments of slave to timer
processes will make them slave to queue processes by
simply feeding off Thread Request (TR) queue 1980 for
driving a worker thread when to execute (and when to
terminate). New timer(s) would insert timely queue entries

Petitioners' Ex. 1001, Page 379 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
105

to queue 1980, and processes 1902 and 1922 would retrieve
from the queue (FIG. 24A record 2400). The queue entries
would become available to queue 1980 when it is time for

106
accesses are assumed to have appropriate semaphore control
to ensure synchronous access by any thread at any particular
time to prevent data corruption and misuse. Queue entries

a particular worker thread to execute. Worker threads of
processes 1902 and 1922 could retrieve, and stay blocked 5

on, queue 1980 until an entry was inserted by a timer for
enabling a worker thread (field 2400a set to 1902 or 1912).
TR queue 1980 is useful for starting any threads of archi
tecture 1900 in a slave to queue manner. This may be a
cleaner architecture for all thread pools to operate the same 10

way (slave to queue). Nevertheless, the two thread pool
methods are implemented.

inserted to queue 26 may have arrived on different
channel(s), and in such embodiments a channel qualifier
may further direct queue entries from queue 26 to a par-
ticular thread 1912 or 1942 (e.g. thread(s) dedicated to
channel(s)). In other embodiments, receive processing feeds
queue 26 independent of any particular channel(s) moni
tored, or received on (the preferred embodiment described).
Regardless of how data is received and then immediately
placed on queue 26, a received date/time stamp (e.g. fields
llOOp or 2490c) is added to the applicable record for
communicating the received date/time stamp to a thread
(e.g. thread(s) 1912 or 1942) of when the data was received.
Therefore, the queue 26 insert interface tells the waiting

Each 19xx process has at least four (4) variables for
describing present disclosure processing:

19xx-PID=The O/S terminology "Process Identifier 15

(PID)" for the O/S PID of the 19xx process. This
variable is also used to determine if the process is
enabled (PID>0), or is disabled (PID=0 (i.e. <=0));

thread(s) when the data was actually received. This ensures
a most accurate received date/time stamp as close to receive
processing as possible (e.g. enabling most accurate TDOA 19xx-Max=The configured number of worker thread(s)

for the 19xx process;
19xx-Sem=A process local semaphore for synchronizing

19xx worker threads, for example in properly starting
up worker threads in process 19xx, and for properly
terminating worker threads in process 19xx; and

20 measurements). An alternate embodiment could determine
applicable received date/time stamps in thread(s) 1912 or
thread(s) 1942. Other data placed into received WDRs are:
wave spectrum and/or particular communications interface

19xx-Ct=A process local count of the number of worker 25

70 of the channel received on, and heading/yaw/pitch/roll
(or accelerometer readings) with AOA measurements, signal
strength, and other field 1100/ eligible data of the receiving thread(s) currently running in the 19xx process.

19xx-PID and 19xx-Max are variables of PIP data 8. 19xx
Sem and 19xx-Ct are preferably process 19xx stack vari
ables within the context of PIP code 6. 19xx-PID is a

MS. Depending on alternative embodiments, queue 26 may
be viewed metaphorically for providing convenient grounds
of explanation.

Send (Tx) queue 24 is for sending/communicating CK
1304 data, for example for wireless transmissions. At least
one thread (not shown) is responsible for immediately
transmitting (e.g. wirelessly) anything deposited to queue
24. Preferably, there is a plurality (pool) of threads for

semaphore protected global variable in architecture 1900 so 30

that it can be used to determine whether or not a particular
19xx process is enabled (i.e. running) or disabled (not
running). 19xx-Max is a semaphore protected global vari
able in architecture 1900 so that user configuration process
ing outside of architecture 1900 can be used to administrate 35 feeding off of queue 24 based on channel(s) being transmit

ted on, and data 1302 anticipated for being sent. Alternative
embodiments ofthread(s) of processes 1902, 1922, 1932 and
1942 may themselves directly transmit (send/broadcast) on
appropriate channels anything deposited to queue 24, in lieu

a desired number of worker threads for a 19xx process.
Alternate embodiments will not provide user configuration
of 19xx-Max variables (e.g. hard coded maximum number
of threads), in which case no 19xx-Max global variable is
necessary. "Thread(s) 19xx" is a brief form of stating
"worker thread(s) of the 19xx process".

Receive (Rx) queue 26 is for receiving CK 1304 or CK
1314 data (e.g. WDR or WDR requests), for example from
wireless transmissions. Queue 26 will receive at least WDR
information (destined for threads 1912) and WDR requests
(FIG. 24C records 2490 destined for threads 1942). At least
one thread (not shown) is responsible for listening on
appropriate channel(s) and immediately depositing appro
priate records to queue 26 so that they can be processed by
architecture 1900. Preferably, there is a plurality (pool) of
threads for feeding queue 26 based on channel(s) being
listened on, and data 1302 or 1312 anticipated for being
received. Alternative embodiments of thread(s) 1912 may
themselves directly be listening on appropriate channels and
immediately processing packets identified, in lieu of a queue
26. Alternative embodiments of thread(s) 1942 may them
selves directly be listening on appropriate channels and
immediately processing packets identified, in lieu of a queue
26. Queue 26 is preferred to isolate channel(s) (e.g. frequen
cy(s)) and transmission reception processing in well known
modular (e.g. Radio Frequency (RF)) componentry, while
providing a high performance queue interface to other
asynchronous threads of architecture 1900 (e.g. thread(s) of
process 1912). Wave spectrums (via particular communica
tions interface 70) are appropriately processed for feeding
queue 26. As soon as a record is received by an MS, it is
assumed ready for processing at queue 26. All queue 26

40 of a queue 24. Queue 24 is preferred to isolate channel(s)
(e.g. frequency(s)) and transmission processing in well
known modular (e.g. RF) componentry, while providing a
high performance queue interface to other asynchronous
threads of architecture 1900 (e.g. thread(s) 1942). Wave

45 spectrums and/or particular communications interface 70 are
appropriately processed for sending from queue 24. All
queue 24 accesses are assumed to have appropriate sema
phore control to ensure synchronous access by any thread at
any particular time to prevent data corruption and misuse. As

50 soon as a record is inserted to queue 24, it is assumed sent
immediately. Preferably, fields sent depend on fields set.
Queue entries inserted to queue 24 may contain specification
for which channel(s) to send on in some embodiments. In
other embodiments, send processing feeding from queue 24

55 has intelligence for which channel(s) to send on (the pre
ferred embodiment described). Depending on alternative
embodiments, queue 24 may be viewed metaphorically for
providing convenient grounds of explanation.

When interfacing to queue 24, the term "broadcast" refers
60 to sending outgoing data in a manner for reaching as many

MSs as possible (e.g. use all participating communications
interfaces 70), whereas the term "send" refers to targeting a
particular MS or group of MSs.

WDR queue 22 preferably contains at least one WDR
65 1100 at any point in time, for at least describing whereabouts

of the MS of architecture 1900. Queue 22 accesses are
assumed to have appropriate semaphore control to ensure

Petitioners' Ex. 1001, Page 380 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
107 108

synchronous access by any thread at any particular time to
prevent data corruption and misuse. A single instance of data
embodiment of queue 22 may require an explicit semaphore
control for access. In a WDR plurality maintained to queue
22, appropriate queue interfaces are again provided to ensure 5

synchronous thread access (e.g. implicit semaphore control).
Regardless, there is still a need for a queue 22 to maintain

2400a simply routes the queue entry to destined thread(s)
(e.g. thread(s) 1932 or thread(s) 1952). A thread 1932
remains blocked on queue 1980 until a record 2400 is
inserted which has a field 2400a containing the value 1932.
A thread 1952 remains blocked on queue 1980 until a record
2400 is inserted which has a field 2400a containing the value
1952. Data field 2400b is set to zero (0) when type field
2400a contains 1952 (i.e. not relevant). Data field 2400b
contains an MS ID (field 1100a) value, and possibly a
targeted communications interface 70 (or wave spectrum if
one to one), when type field contains 1932. Field 2400b will

a plurality of WDRs from remote MSs. The preferred
embodiment of all queue interfaces uses queue interface
maintained semaphore(s) invisible to code making use of 10

queue (e.g. API) interfaces. Depending on alternative
embodiments, queue 22 may be viewed metaphorically for
providing convenient grounds of explanation.

contain information for appropriately targeting the MS ID
with data (e.g. communications interface to use if MS has
multiple of them). An MS with only one communications
interface can store only a MS ID in field 2400b.

Thread Request (TR) queue 1980 is for requesting pro
cessing by either a timing determination (worker) thread of 15

process 1932 (i.e. thread 1932) or whereabouts determina
tion (worker) thread of process 1952 (i.e. thread 1952).
When requesting processing by a thread 1932, TR queue
1980 has requests (retrieved via processing 1934 after
insertion processing 1918) from a thread 1912 to initiate 20

TDOA measurement. When requesting processing by a
thread 1952, TR queue 1980 has requests (retrieved via
processing 1958 after insertion processing 1918 or 1930)
from a thread 1912 or 1922 so that thread 1952 performs
whereabouts determination of the MS of architecture 1900. 25

Records 2400 are used to cause appropriate processing by
19xx threads (e.g. 1932 or 1952) as invoked when needed
(e.g. by thread(s) 1912). Process 1932 is a slave to queue
type of process, and there are no queue 1980 entries 2400
which will not get timely processed by a thread 1932. No
interim pruning is necessary to queue 1980.

With reference now back to FIG. 19, Correlation
Response (CR) queue 1990 is for receiving correlation data
for correlating requests transmitted in data 1302 with
responses received in data 1302 or 1312. Records 2450 are
inserted to queue 1990 (via processing 1928) from thread(s) Requests of queue 1980 comprise records 2400. Preferably,

there is a plurality (pool) of threads 1912 for feeding queue
1980 (i.e. feeding from queue 26), and for feeding a plurality
each of threads 1932 and 1952 from queue 1980. All queue
1980 accesses are assumed to have appropriate semaphore
control to ensure synchronous access by any thread at any
particular time to prevent data corruption and misuse.
Depending on alternative embodiments, queue 1980 may be
viewed metaphorically for providing convenient grounds of
explanation.

With reference now to FIG. 24A, depicted is an illustra
tion for describing a preferred embodiment of a thread
request queue record, as maintained to Thread Request (TR)
queue 1980. TR queue 1980 is not required when a LN
expanse globally uses NTP, as found in thread 19xx pro
cessing described for architecture 1900, however it may be
required at a MS which does not have NTP, or a MS which
interacts with another data processing system (e.g. MS) that
does not have NTP. Therefore, TR queue record 2400 (i.e.
queue entry 2400) may, or may not, be required. This is the
reason FIG. lA does not depict queue 1980. When NTP is
in use globally (in LN-expanse), TDOA measurements can
be made using a single unidirectional data (1302 or 1312)
packet containing a sent date/time stamp (of when the data
was sent). Upon receipt, that sent date/time stamp received
is compared with the date/time of receipt to determine the
difference. The difference is a TDOA measurement. Know
ing transmission speeds with a TDOA measurement allows
calculating a distance. In this NTP scenario, no thread(s)
1932 are required.

Threads 1912 and/or DLM processing may always insert
the MS whereabouts without requirement for thread(s) 1952
by incorporating thread 1952 logic into thread 1912, or by
directly starting (without queue 1980) a thread 1952 from a
thread 1912. Therefore, threads 1952 may not be required. If
threads 1952 are not required, queue 1980 may not be
required by incorporating thread 1932 logic into thread
1912, or by directly starting (without queue 1980) a thread
1932 from a thread 1912. Therefore, queue 1980 may not be
required, and threads 1932 may not be required.

Records 2400 (i.e. queue entries 2400) contain a request
type field 2400a and data field 2400b. Request type field

1922 so that thread(s) 1912 (after processing 1920) correlate
data 1302 or 1312 with requests sent by thread(s) 1922 (e.g.
over interface 1926), for the purpose of calculating a TDOA

30 measurement. Additionally, records 2450 are inserted to
queue 1990 (via processing 1936) from thread(s) 1932 so
that thread(s) 1912 (after processing 1920) correlate data
1302 or 1312 with requests sent by thread(s) 1932 (e.g. over
interface 1938), for the purpose of calculating a TDOA

35 measurement. Preferably, there is a plurality (pool) of
threads for feeding queue 1990 and for feeding from queue
1990 (feeding from queue 1990 with thread(s) 1912). All
queue 1990 accesses are assumed to have appropriate sema
phore control to ensure synchronous access by any thread at

40 any particular time to prevent data corruption and misuse.
Depending on alternative embodiments, queue 1990 may be
viewed metaphorically for providing convenient grounds of
explanation.

With reference now to FIG. 24B, depicted is an illustra-
45 tion for describing a preferred embodiment of a correlation

response queue record, as maintained to Correlation
Response (CR) queue 1990. CR queue 1990 is not required
when a LN-expanse globally uses NTP, as found in thread
19xx processing described for architecture 1900, however it

50 may be required at a MS which does not have NTP, or a MS
which interacts with another data processing system (e.g.
MS) that does not have NTP. Therefore, CR record 2450 (i.e.
queue entry 2450) may, or may not, be required. This is the
reason FIG. lA does not depict queue 1990. The purpose of

55 CR queue 1990 is to enable calculation of TDOA measure
ments using correlation data to match a request with a
response. When NTP is used globally in the LN-expanse, no
such correlations between a request and response is required,
as described above. In the NTP scenario, thread(s) 1912 can

60 deduce TDOA measurements directly from responses (see
FIG. 21), and there is no requirement for threads 1932.

TDOA measurements are best taken using date/time
stamps as close to the processing points of sending and
receiving as possible, otherwise critical regions of code may

65 be required for enabling process time adjustments to the
measurements when processing is "further out" from said
points. This is the reason MS receive processing provides

Petitioners' Ex. 1001, Page 381 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
109

received date/time stamps with data inserted to queue 26
(field ll00p or 2490c). In a preferred embodiment, send
queue 24 processing inserts to queue 1990 so the date/time
stamp field 2450a for when sent is as close to just prior to
having been sent as possible. However, there is still the 5

requirement for processing time spent inserting to queue
1990 prior to sending anyway. Anticipated processing
speeds of architecture 1900 allow reasonably moving sent
date/time stamp setting just a little "further out" from
actually sending to keep modular send processing isolated. 10

A preferred embodiment (as presented) assumes the send
queue 24 interface minimizes processing instructions from
when data is placed onto queue 24 and when it is actually
sent, so that the sending thread(s) 19xx (1902, 1922, 1932
and 1942) insert to queue 1990 with a reasonably accurate 15

sent/date stamp field 2450a. This ensures a most accurate
sent date/time stamp (e.g. enabling most accurate TDOA
measurements). An alternate embodiment makes appropri-
ate adjustments for more accurate time to consider process
ing instructions up to the point of sending after queue 1990 20

insertion.

110
terminate a process (thread pool), and perhaps the number of
threads to start in the pool (see FIG. 14A). Starting a process
(and threads) and terminating processes (and threads) is
shown in flowcharts 29A and 29B. There are other embodi-
ments for properly starting and terminating threads without
departing from the spirit and scope of this disclosure.

LBX of data may also be viewed as LBX of objects, for
example a WDR, WDR request, TDOA request, AOA
request, charters, permissions, data record(s), or any other
data may be viewed as an object. A subset of an object or
data may also be viewed as an object.

While a consumer ready IbxPhone™ preferably incorpo
rates a multithreaded architecture 1900 using an optimized
O/S kernel and communications interfaces in hardware
("burned in" well tested semiconductor(s) microcode) for
maximum performance, some LBX enabled MSs may inte
grate the functionality as close to a MS O/S kernel as is
reasonable for a particular MS (e.g. with modifiable soft
ware, pluggable microcode chip, etc). Still other MSs may
provide plug-in adaptability for LBX processing, perhaps
even at an application layer. For example, Apple may
provide LBX processing, or a subset thereof, as an "App"
(_application) in their "App Store" for customer download
to an iPhone when the MS (iPhone) contains sufficient

Records 2450 (i.e. queue entries 2450) contain a date/time
stamp field 2450a and a correlation data field 2450b. Date/
time stamp field 2450a contains a date/time stamp of when
a request (data 1302) was sent as set by the thread inserting
the queue entry 2450. Correlation data field 2450b contains
unique correlation data (e.g. MS id with suffix of unique
number) used to provide correlation for matching sent
requests (data 1302) with received responses (data 1302 or
1312), regardless of the particular communications
interface(s) used (e.g. different wave spectrums supported
by MS). Upon a correlation match, a TDOA measurement is
calculated using the time difference between field 2450a and
a date/time stamp of when the response was received (e.g.
field ll00p). A thread 1912 accesses queue 1990 for a record
2450 using correlation field 2450b to match, when data 1302
or 1312 contains correlation data for matching. A thread
1912 then uses the field 2450a to calculate a TDOA mea-

25 performance and/or interfaces to provide optimal perfor
mance. There are many examples for carrying out the LBX
architecture.

FIG. 20 depicts a flowchart for describing a preferred
embodiment of MS whereabouts broadcast processing, for

30 example to facilitate other MSs in locating themselves in an
LN-expanse. FIG. 20 processing describes a process 1902
worker thread, and is of PIP code 6. Thread(s) 1902 purpose
is for the MS of FIG. 20 processing (e.g. a first, or sending,
MS) to periodically transmit whereabouts information to

surement. Process 1912 is not a slave to queue 1990 (but is

35 other MSs (e.g. at least a second, or receiving, MS) to use
in locating themselves. It is recommended that validity
criteria set at block 1444 for 1902-Max be fixed at one (1)
in the preferred embodiment. Multiple channels for broad
cast at block 2016 should be isolated to modular send

to queue 26). A thread 1912 peeks queue 1990 for a 40

matching entry when appropriate. Queue 1990 may contain
obsolete queue entries 2450 until pruning is performed.
Some WDR requests may be broadcasts, therefore records
2450 may be used for correlating a plurality ofresponses. In
another record 2450 embodiment, an additional field 2450c 45

is provided for specification of which communication inter
face(s) and/or charmel(s) to listen on for a response.

With reference now back to FIG. 19, any reasonable
subset of architecture 1900 processing may be incorporated
in a MS. For example in one minimal subset embodiment, a 50

DLM which has excellent direct locating means only needs
a single instance WDR (queue 22) and a single thread 1902
for broadcasting whereabouts data to facilitate whereabouts
determination by other MSs. In a near superset embodiment,
process 1942 processing may be incorporated completely 55

into process 1912, thereby eliminating processing 1942 by
having threads 1912 feed from queue 26 for WDR requests
as well as WDR information. In another subset embodiment,
process 1922 may only send requests to queue 24 for
responses, or may only start a thread 1952 for determining 60

whereabouts of the MS. There are many viable subset
embodiments depending on the MS being a DLM or ILM,
capabilities of the MS, LN-expanse deployment design
choices, etc. A reference to FIG. 19 accompanies thread
19xx flowcharts (FIGS. 20, 21, 22, 23, 25 and 26A). The 65

user, preferably an administrator type (e.g. for IbxPhone™
debug) selectively configures whether or not to start or

processing (feeding from a queue 24).
In an alternative embodiment having multiple transmis

sion channels visible to process 1902, there can be a worker
thread 1902 per charmel to handle broadcasting on multiple
channels. If thread(s) 1902 (block 2016) do not transmit
directly over the channel themselves, this embodiment
would provide means for communicating the channel for
broadcast to send processing when interfacing to queue 24
(e.g. incorporate a channel qualifier field with WDR inserted
to queue 24). This embodiment could allow specification of
at least one (1) worker thread per charmel, however multiple
worker threads configurable for process 1902 as appropri-
ated for the number of charmels configurable for broadcast.

Processing begins at block 2002, continues to block 2004
where the process worker thread count 1902-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1902-Sem)), and continues to block 2006 for peeking
WDR queue 22 for a special termination request entry.
Block 2004 may also check the 1902-Ct value, and signal
the process 1902 parent thread that all worker threads are
running when 1902-Ct reaches 1902-Max. Thereafter, if
block 2008 determines that a worker thread termination
request was not found in queue 22, processing continues to
block 2010. Block 2010 peeks the WDR queue 22 (using
interface 1904) for the most recent highest confidence entry
for this MS whereabouts by searching queue 22 for: the MS
ID field 1100a matching the MS ID of FIG. 20 processing,
and a confidence field 1100d greater than or equal to the

Petitioners' Ex. 1001, Page 382 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
111

confidence floor value, and a most recent NTP enabled
date/time stamp field 1100b within a prescribed trailing
period of time (e.g. preferably less than or equal to 2
seconds). For example, block 2010 peeks the queue (i.e.
makes a copy for use if an entry found for subsequent 5

processing, but does not remove the entry from queue) for
a WDR ofthis MS (i.e. MS of FIG. 20 processing) which has
the greatest confidence over 75 and has been most recently
inserted to queue 22 with an NTP date/time stamp in the last
2 seconds. Date/time stamps for MS whereabouts which are 10

not NTP derived have little use in the overall palette of
process 19xx choices of architecture 1900 because receiving
data processing systems (e.g. MSs) will have no means of
determining an accurate TDOA measurement in the unidi-

15
rectional transmission from an NTP disabled MS. A receiv-

112
LOCATION field 1100c is preferably set with: Field 1100c
from queue 22.
CONFIDENCE field 1100d is preferably set with: Field
1100d from queue 22.
LOCATION TECHNOLOGY field ll00e is preferably set
with: Field ll00e from queue 22.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set). Null indicates to send processing
feeding from queue 24 to use all available comm. interfaces
70 (i.e. Broadcast). Specifying a comm. interface targets the
specified interface (i.e. send).
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set). If MS ID (or pseudo MS
ID) is sent, this is all that is required to target this MS.
SPEED field 1100h is preferably set with: Field 1100h from
queue 22.
HEADING field ll00i is preferably set with: Field ll00i
from queue 22.
ELEVATION field 1100} is preferably set with: Field 1100}

ing data processing system will still require a bidirectional
correlated exchange with the MS of FIG. 20 processing to
determine an accurate TDOA measurement in its own time
scale (which is accomplished with thread(s) 1922 pulling
WDR information anyway). An alternate embodiment to
block 2010 will not use the NTP indicator as a search criteria

20 from queue 22.

so that receiving data processing systems can receive to a
thread 1912, and then continue for appropriate correlation
processing, or can at least maintain whereabouts to queue 22
to know who is nearby.

Thread 1902 is of less value to the LN-expanse when it
broadcasts outdated/invalid whereabouts of the MS to facili
tate locating other MSs. In an alternate embodiment, a
movement tolerance (e.g. user configured or system set (e.g.
3 meters)) is incorporated at the MS, or at service(s) used to
locate the MS, for knowing when the MS has significantly
moved (e.g. more than 3 meters) and how long it has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MS is aware of the period of time since last
significantly moving and the search time criteria is set using
the amount of time since the MS significantly moved
(whichever is greater). This way a large number of (perhaps
more confident candidates) WDRs are searched in the time
period when the MS has not significantly moved. Optional
blocks 278 through 284 may have been incorporated to FIG.
2F for movement tolerance processing just described, in
which case the LWT is compared to the current date/time of
block 2010 processing to adjust block 2010 search time
criteria for the correct trailing period. In any case, a WDR
is sought at block 2010 which will help other MSs in the
LN-expanse locate themselves, and to let other MSs know
who is nearby.

APPLICATION FIELDS field 1100k is preferably set with:
Field 1100k from queue 22. An alternate embodiment will
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2014 processing.

25 CORRELATION FIELD 1100m is preferably set with: null
(not set).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Sent date/time stamp as close in processing the broad
cast of block 2016 as possible.

30 RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. NIA for sending).

Block 2018 causes thread 1902 to sleep according to the
SPTP setting (e.g. a few seconds). When the sleep time has
elapsed, processing continues back to block 2006 for

35 another loop iteration of blocks 2006 through 2016. Refer
ring back to block 2012, if a useful WDR was not found (e.g.
candidates too old), then processing continues to block
2018. Referring back to block 2008, if a worker thread
termination request entry was found at queue 22, then block

40 2020 decrements the worker thread count by 1 (using
appropriate semaphore access (e.g. 1902-Sem)), and thread
1902 processing terminates at block 2022. Block 2020 may
also check the 1902-Ct value, and signal the process 1902
parent thread that all worker threads are terminated when

45 1902-Ct equals zero (0).

Thereafter, if block 2012 determines a useful WDR was
found, then block 2014 prepares the WDR for send process- 50

ing, block 2016 broadcasts the WDR information (using
send interface 1906) by inserting to queue 24 so that send
processing broadcasts data 1302 (e.g. on all available com
munications interface(s) 70), for example as far as radius
1306, and processing continues to block 2018. The broad- 55

cast is for reception by data processing systems (e.g. MSs)

Block 2016 causes broadcasting data 1302 containing CK
1304 wherein CK 1304 contains WDR information prepared
as described above for block 2014. Alternative embodiments
of block 2010 may not search a specified confidence value,
and broadcast the best entry available anyway so that
listeners in the vicinity will decide what to do with it. A
semaphore protected data access (instead of a queue peek)
may be used in embodiments where there is always one
WDR current entry maintained for the MS.

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for
listening MSs in the vicinity, send processing feeding from
queue 24, caused by block 2016 processing, will place WDR
information as CK 1304 embedded in usual data 1302 at the

in the vicinity. At least fields 1100b, 1100c, 1100d, and
1100n are broadcast. See FIG. llA descriptions. Fields are
set to the following upon exit from block 2014:
MS ID field 1100a is preferably set with: Field 1100a from 60

queue 22, or transformed (if not already) into a pseudo MS
next opportune time of sending usual data 1302. If an
opportune time is not timely, send processing should discard
the send request of block 2016 to avoid broadcasting out
dated whereabouts information (unless using a movement
tolerance and time since last significant movement). As the

ID (possibly for future correlation) if desired. This field may
also be set to null (not set) because it is not required when
the NTP indicator of field 1100b is enabled and the broadcast
is sent with an NTP enabled field 1100n.
DATE/TIME STAMP field 1100b is preferably set with:
Field 1100b from queue 22.

65 MS conducts its normal communications, transmitted data
1302 contains new data CK 1304 to be ignored by receiving
MS other character 32 processing, but to be found by

Petitioners' Ex. 1001, Page 383 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
113

listening MSs within the vicinity which anticipate presence
of CK 1304. Otherwise, when LN-Expanse deployments
have not introduced CK 1304 to usual data 1302 commu-
nicated on a receivable signal by MSs in the vicinity, FIG.
20 sends repeated timely pulsed broadcasts of new data 1302 5

(per SPTP) for MSs in the vicinity of the first MS to receive.
In any case, appropriate implementation should ensure field
1100n is as accurate as possible for when data 1302 is
actually sent.

An alternate embodiment to architecture 1900 for elimi- 10

nation of process 1902 incorporates a trigger implementa
tion for broadcasting MS whereabouts at the best possible
time-i.e. when the MS whereabouts is inserted to queue 22.
As soon as a new (preferably NTP enabled) WDR candidate
becomes available, it can be broadcast at a new block 279 of 15

FIG. 2F. (e.g. new block 279 continued to from block 278
and then continuing to block 280). Fields are set as described
above for FIG. 20. Preferably, the new block 279 starts an
asynchronous thread consisting of blocks 2014 and 2016 so
that FIG. 2F processing performance is not impacted. In a 20

further embodiment, block 279 can be further enhanced
using the SPTP value to make sure that too many broadcasts
are not made. The SPTP (Source Periodicity Time Period)
could be observed for getting as close as possible to broad
casting whereabouts in accordance with SPTP (e.g. worst 25

case there are not enough broadcasts).
FIG. 21 depicts a flowchart for describing a preferred

embodiment of MS whereabouts collection processing. FIG.
21 processing describes a process 1912 worker thread, and
is of PIP code 6. Thread(s) 1912 purpose is for the MS of 30

FIG. 21 processing (e.g. a second, or receiving, MS) to
collect potentially useful WDR information from other MSs
(e.g. at least a first, or sending, MS) in the vicinity for
determining whereabouts of the receiving (second) MS. It is
recommended that validity criteria set at block 1444 for 35

1912-Max be set as high as possible (e.g. 10) relative
performance considerations of architecture 1900, with at
least one thread per channel that WDR information may be
received on by the receiving MS. Multiple channels for
receiving data fed to queue 26 should be isolated to modular 40

receive processing (feeding a queue 26).
In an alternative embodiment having multiple receiving

transmission channels visible to process 1912 (e.g. thread(s)
1912 receiving directly), there can be a worker thread 1912
per channel to handle receiving on multiple channels simul- 45

taneously. Ifthread(s) 1912 do not receive directly from the
channel, the preferred embodiment of FIG. 21 would not
need to convey channel information to thread(s) 1912 wait
ing on queue 26 anyway. Embodiments could allow speci
fication/configuration of many thread(s) 1912 per channel. 50

114
terminate was not found in queue 26, processing continues
to block 2112. Block 2112 adjusts date/time stamp field
1100b if necessary depending on NTP use in the LN-expanse
and adjusts the confidence field 1100d accordingly. In a
preferred embodiment, fields 1100b and 1100d for the WDR
in process is set as follows for certain conditions:

Fields 1100b, 1100n and ll00p all NTP indicated: keep
fields 1100b and 1100d as is; or

Fields 1100b and 1100n are NTP indicated, ll00p is not:
Is correlation (field 1100m) present?: No, then set
confidence (field 1100d) to O (for filtering out at block
2114)/Yes, then set field 1100b to ll00p (in time terms
of this MS) and adjust confidence lower based on
differences between fields 1100b, 1100n and ll00p; or

Fields 1100b and ll00p are NTP indicated, 1100n is not:
Is correlation present?: No, then set confidence to O (for
filtering out at block 2114)/Yes, then set field 1100b to
ll00p (in time terms of this MS) and adjust confidence
lower based on differences between fields 1100b, 1100n
and ll00p; or

Fields 1100b NTP indicated, 1100n and ll00p not: Is
correlation present?: No, then set confidence to O (for
filtering out at block 2114)/Yes, then set field 1100b to
ll00p (in time terms of this MS) and adjust confidence
lower based on differences between fields 1100b, 1100n
and ll00p; or

Field 1100b not NTP indicated, 1100n and ll00p are: Is
correlation present?: No, then set confidence to O (for
filtering out at block 2114)/Yes, then set field 1100b to
ll00p (in time terms of this MS) and adjust confidence
lower based on differences between fields 1100b, 1100n
and ll00p; or

Fields 1100b and ll00p are not NTP indicated, 1100n is:
Is correlation present?: No, then set confidence to O (for
filtering out at block 2114)/Yes, then set field 1100b to
ll00p (in time terms of this MS) and adjust confidence
lower based on differences between fields 1100b, 1100n
and ll00p; or

Fields 1100b and 1100n are not NTP indicated, ll00p is:
Is correlation present?: No, then set confidence to O (for
filtering out at block 2114)/Yes, then set field 1100b to
ll00p (in time terms of this MS) and adjust confidence
lower based on differences between fields 1100b, 1100n
and ll00p; or

Fields 1100b, 1100n and ll00p not NTP indicated: Is
correlation present?: No, then set confidence to O (for
filtering out at block 2114)/Yes, then set field 1100b to
ll00p (in time terms of this MS) and adjust confidence
lower based on differences between fields 1100b, 1100n
and ll00p.

NTP ensures maintaining a high confidence in the LN
expanse, but absence of NTP is still useful. Confidence
values should be adjusted with the knowledge of the trailing
time periods used for searches when sharing whereabouts

Processing begins at block 2102, continues to block 2104
where the process worker thread count 1912-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1912-Sem)), and continues to block 2106 for interim
housekeeping of pruning the WDR queue by invoking a
Prune Queues procedure of FIG. 27A. Block 2104 may also
check the 1912-Ct value, and signal the process 1912 parent
thread that all worker threads are running when 1912-Ct
reaches 1912-Max. Block 2106 may not be required since
block 2130 can cause queue 22 pruning (block 292).

55 (e.g. thread(s) 1942 searches). Block 2112 continues to
block 2114.

Thereafter, block 2108 retrieves from queue 26 a WDR
(using interface 1914), perhaps a special termination request
entry, or a WDR received in data 1302 (CK 1304) or data
1312 (CK 1314), and only continues to block 2110 when a
WDR has been retrieved. Block 2108 stays blocked on
retrieving from queue 26 until any WDR is retrieved. If
block 2110 determines that a special WDR indicating to

If at block 2114, the WDR confidence field 1100d is not
greater than the confidence floor value, then processing
continues back to block 2106. If block 2114 determines that

60 the WDR field 1100d is satisfactory, then block 2116 ini
tializes a TDOA_FINAL variable to False, and block 2118
checks if the WDR from block 2108 contains correlation
(field 1100m).

If block 2118 determines the WDR does not contain
65 correlation, then block 2120 accesses the ILMV, block 2122

determines the source (ILM or DLM) of the WDR using the
originator indicator of field ll00e, and block 2124 checks

Petitioners' Ex. 1001, Page 384 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
115

suitability for collection of the WDR. While processes 19xx
running are generally reflective of the ILMV roles config
ured, it is possible that the more descriptive nature of ILMV
role(s) not be one to one in relationship to 19xx processes,
in particular depending on the subset of architecture 1900 in 5

use. Block 2124 is redundant anyway because of block 274.
If block 2124 determines the ILMV role is disabled for
collecting this WDR, then processing continues back to
block 2106. If block 2124 determines the ILMV role is
enabled for collecting this WDR, then processing continues 10

to block 2126.

116
perform processing. Blocks 2134 and 2136 may be replaced
with an alternative embodiment for starting a thread 1952.
Block 2136 continues back to block 2106.

Referring now back to block 2126, if it is determined that
a TDOA measurement carmot be made (i.e. (field 1100n or
ll00p not NTP indicated) OR if TDOA_FINAL is set to
False), then block 2138 checks if the WDR contains a MS
ID (or pseudo MS ID). If block 2138 determines there is
none, then processing continues back to block 2106 because
there is no way to distinguish one MS from another with
respect to the WDR retrieved at block 2108 for directing
bidirectional correlation. An alternate embodiment will use
a provided correlation field 1100m received at block 2108,
instead of a field 1100a, for knowing how to target the

If block 2126 determines both the first (sending) and
second (receiving) MS are NTP enabled (i.e. Fields 1100b,
1100n and ll00p are NTP indicated) OR if TDOA_FINAL
is set to True (as arrived to via block 2150), then block 2128
completes the WDR for queue 22 insertion, block 2130
prepares parameters for FIG. 2F processing and block 2132
invokes FIG. 2F processing (interface 1916). Parameters set
at block 2130 are: WDRREF=a reference or pointer to the
WDR completed at block 2128; DELETEQ=FIG. 21 loca
tion queue discard processing; and SUPER=FIG. 21 super
visory notification processing. Block 2128 calculates a
TDOA measurement whenever possible and inserts to field
1100/ See FIG. llA descriptions. Fields are set to the
following upon exit from block 2128:

15 originating MS for TDOAmeasurement processing initiated
by a thread 1932. If block 2138 determines there is a usable
MS ID (or correlation field), then block 2140 builds a record
2400 (field 2400a=1932, field 2400b=the MS ID (or pseudo
MS ID, or correlation) and particular communications inter-

20 face from field 1100/ (if available) of the WDR of block
2108, and block 2142 inserts the record 2400 to queue 1980
(interface 1918) for starting a thread 1932. Block 2142
continues back to block 2106. An alternate embodiment
causes block 2126 to continue directly to block 2140 (no

MS ID field 1100a is preferably set with: Field 1100a from
queue 26.
DATE/TIME STAMP field 1100b is preferably set with:

25 block 2138) for a No condition from block 2126. Regardless
of whether the originating MS ID can be targeted, a corre
lation (in lieu of an MS ID) may be used when the MS
responds with a broadcast. The WDR request made by

Preferred embodiment discussed for block 2112.
LOCATION field 1100c is preferably set with: Field 1100c 30

from queue 26.
CONFIDENCE field 1100d is preferably set with: Confi
dence at equal to or less than field 1100d received from
queue 26 (see preferred embodiment for block 2112).
LOCATION TECHNOLOGY field ll00e is preferably set 35

with: Field ll00e from queue 26.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: All available measurements from receive process
ing (e.g. AOA, heading, yaw, pitch, roll, signal strength,
wave spectrum, particular communications interface 70, 40

etc), and TDOA measurement(s) as determined in FIG. 21
(blocks 2128 and 2148).
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Field 1100g from queue 26.
SPEED field 1100h is preferably set with: Field 1100h from 45

queue 26.
HEADING field ll00i is preferably set with: Field ll00i
from queue 26.

thread 1932 can be a broadcast rather than a targeted request.
Thread(s) 1932 can handle sending targeted WDR requests
(to a known MS ID) and broadcast WDR requests.

Referring back to block 2118, if it is determined the WDR
does contain correlation (field 1100m), block 2144 peeks the
CR queue 1990 (using interface 1920) for a record 2450
containing a match (i.e. field 1100m matched to field 2450b).
Thereafter, if block 2146 determines no correlation was
found on queue 1990 (e.g. response took too long and entry
was pruned), then processing continues to block 2120
already described. If block 2146 determines the correlation
entry was found (i.e. thread 1912 received a response from
an earlier request (e.g. from a thread 1922 or 1932), then
block 2148 uses date/time stamp field 2450a (from block
2144) with field ll00p (e.g. from block 2108) to calculate a
TDOA measurement in time scale of the MS of FIG. 21
processing, and sets field 1100/ appropriately in the WDR.
Note that correlation field 2450b is valid across all available
MS communications interfaces (e.g. all supported active
wave spectrums). The TDOA measurement considers dura
tion of time between the earlier sent date/time of record 2450 ELEVATION field 1100} is preferably set with: Field 1100}

from queue 26.
APPLICATION FIELDS field 1100k is preferably set with:
Field 1100k from queue 26. An alternate embodiment will
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2128 processing.

50 and the later time of received date/time field ll00p. The
TDOA measurement may further be altered at block 2148
processing time to a distance knowing the velocity of the
wave spectrum used as received to queue 26. Block 2148

CORRELATION FIELD 1100m is preferably set with: Not 55

Applicable (i.e. not maintained to queue 22). Was used by
FIG. 21 processing.

continues to block 2150 where the TDOA_FINAL variable
is set to True, then to block 2120 for processing already
described.

Referring back to block 2110, if a WDR for a worker
thread termination request was found at queue 26, then block
2152 decrements the worker thread count by 1 (using

SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22). Was
used by FIG. 21 processing.
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).
Was used by FIG. 21 processing.

60 appropriate semaphore access (e.g. 1912-Sem)), and thread
1912 processing terminates at block 2154. Block 2152 may
also check the 1912-Ct value, and signal the process 1912
parent thread that all worker threads are terminated when

Block 2132 continues to block 2134 where a record 2400
is built (i.e. field 2400a=1952 and field 2400b is set to null 65

(e.g. -1)) and then block 2136 inserts the record 2400 to TR
queue 1980 (using interface 1918) so that a thread 1952 will

1912-Ct equals zero (0).
In the embodiment wherein usual MS communications

data 1302 of the MS is altered to contain CK 1304 or 1314
for listening MSs in the vicinity, receive processing feeding

Petitioners' Ex. 1001, Page 385 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
117

queue 26 will place WDR information to queue 26 as CK
1304 or 1314 is detected for being present in usual com
munication data 1302 or 1304. As normal communications
to are conducted, transmitted data 1302 or 1312 contains
new data CK 1304 or 1314 to be ignored by receiving MS 5

other character 32 processing, but to be found by listening
MSs within the vicinity which anticipate presence of CK
1304 or 1314. Otherwise, when LN-Expanse deployments
have not introduced CK 1304 (or 1314) to usual data 1302
(or 1312) communicated on a receivable signal by MSs in 10

the vicinity, FIG. 21 receives new data 1302 (or 1312) sent.

118
trailing period of time of block 2212 search processing using
a function of the WTV (i.e. f(WTV)=short-hand for "func
tion of WTV") for the period. For example, block 2212
peeks the queue (i.e. makes a copy for use if an entry found
for subsequent processing, but does not remove the entry
from queue) for a WDR of the first MS which has the
greatest confidence over 75 and has been most recently
inserted to queue 22 in the last 3 seconds. Since the MS
whereabouts accuracy may be dependent on timeliness of
the WTV, it is recommended that the f(WTV) be some value
less than or equal to WTV, but preferably not greater than the
WTV. Thread 1922 is of less value to the MS when not
making sure in a timely manner the MS is maintaining
timely whereabouts for itself. In an alternate embodiment, a

In any case, field ll00p should be as accurate as possible for
when data 1302 (or 1312) was actually received. Critical
regions of code and/or anticipated execution timing may be
used to affect a best setting of field ll00p.

So, FIG. 21 is responsible for maintaining whereabouts of
others to queue 22 with data useful for triangulating itself.

15 movement tolerance (e.g. user configured or system set (e.g.
3 meters)) is incorporated at the MS, or at service(s) used to
locate the MS, for knowing when the MS has significantly
moved (e.g. more than 3 meters) and how long it has been FIG. 22 depicts a flowchart for describing a preferred

embodiment of MS whereabouts supervisor processing, for
example to ensure the MS of FIG. 22 processing (e.g. first 20

MS) is maintaining timely whereabouts information for
itself. FIG. 22 processing describes a process 1922 worker
thread, and is of PIP code 6. Thread(s) 1922 purpose is for
the MS of FIG. 22 processing (e.g. a first, or sending, MS),
after determining its whereabouts are stale, to periodically 25

transmit requests for whereabouts information from MSs in
the vicinity (e.g. from at least a second, or receiving, MS),
and/or to start a thread 1952 for immediately determining
whereabouts. Alternative embodiments to FIG. 22 will
implement processing of blocks 2218 through 2224, or 30

processing of blocks 2226 through 2228, or both as depicted
in FIG. 22. It is recommended that validity criteria set at
block 1444 for 1922-Max be fixed at one (1) in the preferred
embodiment. Multiple channels for broadcast at block 2224
should be isolated to modular send processing feeding from 35

a queue 24.
In an alternative embodiment having multiple transmis

sion channels visible to process 1922, there can be a worker
thread 1922 per channel to handle broadcasting on multiple
channels. If thread(s) 1922 (block 2224) do not transmit 40

directly over the channel, this embodiment would provide
means for communicating the channel for broadcast to send
processing when interfacing to queue 24 (e.g. incorporate a
channel qualifier field with WDR request inserted to queue
24). This embodiment could allow specification of one (1) 45

thread per channel, however multiple worker threads con
figurable for process 1922 as determined by the number of
channels configurable for broadcast.

Processing begins at block 2202, continues to block 2204
where the process worker thread count 1922-Ct is accessed 50

and incremented by 1 (using appropriate semaphore access
(e.g. 1922-Sem)), and continues to block 2206 for interim
housekeeping of pruning the CR queue by invoking a Prune
Queues procedure of FIG. 27A. Block 2204 may also check
the 1922-Ct value, and signal the process 1922 parent thread 55

that all worker threads are running when 1922-Ct reaches
1922-Max. Block 2206 continues to block 2208 for peeking
WDR queue 22 (using interface 1924) for a special termi
nation request entry. Thereafter, if block 2210 determines
that a worker thread termination request was not found in 60

queue 22, processing continues to block 2212. Block 2212
peeks the WDR queue 22 (using interface 1924) for the most
recent highest confidence entry for this MS whereabouts by
searching queue 22 for: the MS ID field 1100a matching the
MS ID of FIG. 22 processing, and a confidence field 1100d 65

greater than or equal to the confidence floor value, and a
most recent date/time stamp field 1100b within a prescribed

(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MS is aware of the period of time since last
significantly moving and the f(WTV) is set using the amount
of time since the MS significantly moved (i.e. f(WTV)=as
described above, or the amount of time since significantly
moving, whichever is greater). This way a large number of
(perhaps more confident candidates) WDRs are searched in
the time period when the MS has not significantly moved.
Optional blocks 278 through 284 may have been incorpo
rated to FIG. 2F for movement tolerance processing just
described, in which case the LWT is compared to the current
date/time to adjust the WTV for the correct trailing period.
In any case, a WDR is sought at block 2212 which will
verify whether or not MS whereabouts are current.

Thereafter, if block 2214 determines a satisfactory WDR
was found, then processing continues to block 2216. Block
2216 causes thread 1922 to sleep according to a f(WTV)
(preferably a value less than or equal to the WTV (e.g. 95%
of WTV)). When the sleep time has elapsed, processing
continues back to block 2206 for another loop iteration of
blocks 2206 through 2214.

If block 2214 determines a current WDR was not found,
then block 2218 builds a WDR request (e.g. containing
record 2490 with field 2490a for the MS of FIG. 22
processing (MS ID or pseudo MS ID) so receiving MSs in
the LN-expanse know who to respond to, and field 2490b
with appropriate correlation for response), block 2220 builds
a record 2450 (using correlation generated for the request at
block 2218), block 2222 inserts the record 2450 to queue
1990 (using interface 1928), and block 2224 broadcasts the
WDR request (record 2490) for responses. Absence of field
2490d indicates to send processing feeding from queue 24 to
broadcast on all available comm. interfaces 70.

With reference now to FIG. 24C, depicted is an illustra-
tion for describing a preferred embodiment of a WDR
request record, as communicated to queue 24 or 26. When
a LN-expanse globally uses NTP, as found in thread 19xx
processing described for architecture 1900, a WDR request
record 2490 may, or may not, be required. TDOA calcula
tions can be made using a single unidirectional data (1302 or
1312) packet containing a sent date/time stamp (of when the
data was sent) as described above.

Records 2490 contain a MS ID field 2490a and correla
tion field 2490b. MS ID field 2490a contains an MS ID (e.g.
a value of field 1100a). An alternate embodiment will
contain a pseudo MS ID (for correlation), perhaps made by
a derivative of the MS ID with a unique (suffix) portion, so
that receiving MSs can directly address the MS sending the
request without actually knowing the MS ID (i.e. they know

Petitioners' Ex. 1001, Page 386 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
119

the pseudo MS ID which enables the MS to recognize
originated transmissions). Correlation data field 2490b con
tains unique correlation data (e.g. MS id with suffix of
unique number) used to provide correlation for matching
sent requests (data 1302) with received WDR responses 5

(data 1302 or 1312). Upon a correlation match, a TDOA
measurement is calculated using the time difference between
field 2450a and a date/time stamp of when the response was
received (e.g. field ll00p). Received date/time stamp field
2490c is added by receive processing feeding queue 26 10

when an MS received the request from another MS. Comm
interface field 2490d is added by receive processing insert
ing to queue 26 for how to respond and target the originator.
Many MSs do not have choices of communications inter-

15
faces, so field 2490d may not be required. If available it is
used, otherwise a response can be a broadcast. Field 2490d
may contain a wave spectruni identifier for uniquely iden
tifying how to respond (e.g. one to one with communications
interface), or any other value for indicating how to send 20

given how the request was received.

120
duced CK 1304 to usual data 1302 communicated on a
receivable signal by MSs in the vicinity, FIG. 22 sends new
WDR request data 1302.

FIG. 23 depicts a flowchart for describing a preferred
embodiment of MS timing determination processing. FIG.
23 processing describes a process 1932 worker thread, and
is of PIP code 6. Thread(s) 1932 purpose is for the MS of
FIG. 23 processing to determine TDOAmeasurements when
needed for WDR information received. It is recommended
that validity criteria set at block 1444 for 1932-Max be set
as high as possible (e.g. 12) relative performance consider
ations of architecture 1900, to service multiple threads 1912.

Processing begins at block 2302, continues to block 2304
where the process worker thread count 1932-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1932-Sem)), and continues to block 2306 for interim
housekeeping of pruning the CR queue by invoking a Prune
Queues procedure of FIG. 27A. Block 2304 may also check
the 1932-Ct value, and signal the process 1932 parent thread
that all worker threads are running when 1932-Ct reaches
1932-Max.

Thereafter, block 2308 retrieves from queue 1980 a record
2400 (using interface 1934), perhaps a special termination
request entry, or a record 2400 received from thread(s) 1912,
and only continues to block 2310 when a record 2400
containing field 2400a set to 1932 has been retrieved. Block
2308 stays blocked on retrieving from queue 1980 until a
record 2400 with field 2400a=1932 is retrieved. If block
2310 determines a special entry indicating to terminate was

30 not found in queue 1980, processing continues to block
2312.

With reference back to FIG. 22, block 2218 builds a
request that receiving MSs will know is for soliciting a
response with WDR information. Block 2218 generates
correlation for field 2450b to be returned in responses to the 25

WDR request broadcast at block 2224. Block 2220 also sets
field 2450a to when the request was sent. Preferably, field
2450a is set as close to the broadcast as possible. In an
alternative embodiment, broadcast processing feeding from
queue 24 makes the record 2450 and inserts it to queue 1990
with a most accurate time of when the request was actually
sent. Fields 2450a are to be as accurate as possible. Block
2224 broadcasts the WDR request data 1302 (using send
interface 1926) by inserting to queue 24 so that send
processing broadcasts data 1302, for example as far as radius 35

1306. Broadcasting preferably uses all available communi
cations interface(s) 70 (e.g. all available wave spectrums).
Therefore, the comm interface field 2490d is not set (which
implies to send processing to do a broadcast).

Block 2224 continues to block 2226 where a record 2400 40

is built (i.e. field 2400a=1952 and field 2400b is set to null
(e.g. -1)) and then block 2228 inserts the record 2400 to TR
queue 1980 (using interface 1930) so that a thread 1952 will
perform processing. Blocks 2226 and 2228 may be replaced
with an alternative embodiment for starting a thread 1952. 45

Block 2228 continues back to block 2216.

If at block 2312, the record 2400 does not contain a MS
ID (or pseudo MS ID) in field 2400b, processing continues
to block 2314 for building a WDR request (record 2490) to
be broadcast, and then to block 2318. Broadcasting prefer
ably uses all available communications interface(s) 70 (e.g.
all available wave spectrums). If block 2312 determines the
field 2400b is a valid MS ID (not null), block 2316 builds a
WDR request targeted for the MS ID, and processing
continues to block 2318. A targeted request is built for
targeting the MS ID (and communications interface, if
available) from field 2400b. Send processing is told which
communications interface to use, if available (e.g. MS has
multiple), otherwise send processing will target each avail
able interface. In the unlikely case a MS ID is present in field
2400b without the communications interface applicable,
then all communications interfaces 70 are used with the
targeted MS ID. In MS embodiments with multiple com
munications interfaces 70, then 2400b is to contain the

Referring back to block 2210, if a worker thread termi
nation request entry was found at queue 22, then block 2230
decrements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1922-Sem)), and thread 1922 pro
cessing terminates at block 2232. Block 2230 may also
check the 1922-Ct value, and signal the process 1922 parent
thread that all worker threads are terminated when 1922-Ct
equals zero (0).

50 applicable communication interface for sending. Block 2318
generates appropriate correlation for a field 2450b (e.g. to be
compared with a response WDR at block 2144), block 2320
sets field 2450a to the current MS date/time stamp, block
2322 inserts the record 2450 to queue 1990 (using interface

55 1936), and block 2324 sends/broadcasts (using interface
1938) a WDR request (record 2490). Thereafter, processing
continues back to block 2306 for another loop iteration. An
alternative embodiment will only target a WDR request to a
known MS ID. For example, block 2312 would continue

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for
listening MSs in the vicinity, send processing feeding from
queue 24, caused by block 2224 processing, will place the
request as CK 1304 embedded in usual data 1302 at the next
opportune time of sending usual data 1302. This may require
the alternative embodiment of adding the entry to queue
1990 being part of send processing. As the MS conducts its
normal communications, transmitted data 1302 contains
new data CK 1304 to be ignored by receiving MS other
character 32 processing, but to be found by listening MSs 65

within the vicinity which anticipate presence of CK 1304.
Otherwise, when LN-Expanse deployments have not intro-

60 back to block 2306 ifno MS ID is found (=null), otherwise
it will continue to block 2316 (i.e. no use for block 2314).

Block 2318 sets field 2450b to correlation to be returned
in responses to the WDR request sent/broadcast at block
2324. Block 2320 sets field 2450a to when the request is
sent. Preferably, field 2450a is set as close as possible to
when a send occurred. In an alternative embodiment, send
processing feeding from queue 24 makes the record 2450

Petitioners' Ex. 1001, Page 387 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
121

and inserts it to queue 1990 with a most accurate time of
when the request was actually sent. Fields 2450a are to be
as accurate as possible. Block 2324 sends/broadcasts the
WDR request data 1302 (using send interface 1938) by
inserting to queue 24 a record 2490 (2490a=the targeted MS
ID (or pseudo MS ID) OR null if arrived to from block 2314,
field 2490b=correlation generated at block 2318) so that
send processing sends data 1302, for example as far as
radius 1306. A null MS ID may be responded to by all MSs
in the vicinity. A non-null MS ID is to be responded to by
a particular MS. Presence of field 2490d indicates to send
processing feeding from queue 24 to target the MS ID over
the specified comm. interface (e.g. when MS has a plurality
of comm. interfaces 70 (e.g. cellular, WiFi, Bluetooth, etc;

122
a worker thread 1942 per channel to handle receiving on
multiple channels simultaneously. If thread(s) 1942 do not
receive directly from the channel, the preferred embodiment
of FIG. 25 would not need to convey charmel information to

5 thread(s) 1942 waiting on queue 24 anyway. Embodiments
could allow specification/configuration of many thread(s)
1942 per charmel.

Processing begins at block 2502, continues to block 2504
where the process worker thread count 1942-Ct is accessed

10 and incremented by 1 (using appropriate semaphore access
(e.g. 1942-Sem)), and continues to block 2506 for retrieving
from queue 26 a record 2490 (using interface 1948), perhaps
a special termination request entry, and only continues to
block 2508 when a record 2490 is retrieved. Block 2506

i.e. MS supports multiple classes of wave spectrum)). Refer- 15

ring back to block 2310, if a worker thread termination
request was found at queue 1980, then block 2326 decre
ments the worker thread count by 1 (using appropriate
semaphore access (e.g. 1932-Sem)), and thread 1932 pro
cessing terminates at block 2328. Block 2326 may also 20

check the 1932-Ct value, and signal the process 1932 parent
thread that all worker threads are terminated when 1932-Ct
equals zero (0).

stays blocked on retrieving from queue 26 until any record
2490 is retrieved. If block 2508 determines a special entry
indicating to terminate was not found in queue 26, process
ing continues to block 2510. There are various embodiments
for thread(s) 1912 and thread(s) 1942 to feed off a queue 26
for different record types, for example, separate queues 26A
and 26B, or a thread target field with either record found at
queue 26 (e.g. like field 2400a). In another embodiment,
thread(s) 1912 are modified with logic ofthread(s) 1942 to
handle all records described for a queue 26, since thread(s)
1912 are listening for queue 26 data anyway.

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for 25

listening MSs in the vicinity, send processing feeding from
queue 24, caused by block 2324 processing, will place the
WDR request as CK 1304 embedded in usual data 1302 at
the next opportune time of sending usual data 1302. As the
MS conducts its normal communications, transmitted data
1302 contains new data CK 1304 to be ignored by receiving
MS other character 32 processing, but to be found by
listening MSs within the vicinity which anticipate presence
of CK 1304. This may require the alternative embodiment of
adding the entry to queue 1990 being part of send process
ing. Otherwise, when LN-Expanse deployments have not
introduced CK 1304 to usual data 1302 communicated on a
receivable signal by MSs in the vicinity, FIG. 22 sends/
broadcasts new WDR request data 1302.

Block 2510 peeks the WDR queue 22 (using interface
1944) for the most recent highest confidence entry for this
MS whereabouts by searching queue 22 for: the MS ID field
1100a matching the MS ID of FIG. 25 processing, and a

30 confidence field 1100d greater than or equal to the confi
dence floor value, and a most recent date/time stamp field
1100b within a prescribed trailing period of time of block
2510 search processing (e.g. 2 seconds). For example, block
2510 peeks the queue (i.e. makes a copy for use if an entry

35 found for subsequent processing, but does not remove the
entry from queue) for a WDR of the MS (of FIG. 25
processing) which has the greatest confidence over 75 and
has been most recently inserted to queue 22 in the last 2

An alternate embodiment to block 2324 can wait for a 40

seconds. It is recommended that the trailing period of time
used by block 2510 be never greater than a few seconds.
Thread 1942 is of less value to the LN-expanse when it response with a reasonable timeout, thereby eliminating the

need for blocks 2318 through 2322 which is used to correlate
the subsequent response (to thread 1912) with the request
sent at block 2324. However, this will cause a potentially
unpredictable number of simultaneously executing thread(s)
1932 when many MSs are in the vicinity.

Thread(s) 1932 are useful when one or both parties to
WDR transmission (sending and receiving MS) do not have
NTP enabled. TDOA measurements are taken to triangulate
the MS relative other MSs in real time.

FIG. 25 depicts a flowchart for describing a preferred
embodiment of MS WDR request processing, for example
when a remote MS requests (e.g. from FIG. 22 or 23) a
WDR. Receive processing identifies targeted requests des
tined (e.g. FIG. 23) for the MS of FIG. 25 processing, and
identifies general broadcasts (e.g. FIG. 22) for processing as
well. FIG. 25 processing describes a process 1942 worker
thread, and is of PIP code 6. Thread(s) 1942 purpose is for
the MS of FIG. 25 processing to respond to incoming WDR
requests. It is recommended that validity criteria set at block
1444 for 1942-Max be set as high as possible (e.g. 10)
relative performance considerations of architecture 1900, to
service multiple WDR requests simultaneously. Multiple
channels for receiving data fed to queue 26 should be
isolated to modular receive processing.

In an alternative embodiment having multiple receiving
transmission channels visible to process 1942, there can be

responds with outdated/invalid whereabouts of the MS to
facilitate locating other MSs. In an alternate embodiment, a
movement tolerance (e.g. user configured or system set (e.g.

45 3 meters)) is incorporated at the MS, or at service(s) used to
locate the MS, for knowing when the MS has significantly
moved (e.g. more than 3 meters) and how long it has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MS is aware of the period of time since last

50 significantly moving and the trailing period of time used by
block 2510 is set using the amount of time since the MS
significantly moved, or the amount of time since signifi
cantly moving, whichever is greater. This way a large
number of (perhaps more confident candidate) WDRs are

55 searched in the time period when the MS has not signifi
cantly moved. Optional blocks 278 through 284 may have
been incorporated to FIG. 2F for movement tolerance pro
cessing just described, in which case the LWT is compared
to the current date/time to adjust the trailing period of time

60 used by block 2510 for the correct trailing period. In any
case, a WDR is sought at block 2510 to satisfy a request
helping another MS in the LN-expanse locate itself.

Thereafter, if block 2512 determines a useful WDR was
not found, then processing continues back to block 2506 for

65 another loop iteration of processing an inbound WDR
request. If block 2512 determines a useful WDR was found,
then block 2514 prepares the WDR for send processing with

Petitioners' Ex. 1001, Page 388 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
123

correlation field 1100m set from correlation field 2490b
retrieved at block 2506, and block 2516 sends/broadcasts
(per field 2490a) the WDR information (using send interface
1946) by inserting to queue 24 so that send processing
transmits data 1302, for example as far as radius 1306, and 5

processing continues back to block 2506. At least fields
1100b, 1100c, 1100d, 1100m and 1100n are sent/broadcast.
See FIG. llA descriptions. Fields are set to the following
upon exit from block 2514:
MS ID field 1100a is preferably set with: Field 2490a from 10

queue 26.
DATE/TIME STAMP field 1100b is preferably set with:
Field 1100b from queue 22.

124
the send request of block 2516 to avoid broadcasting out
dated whereabouts information (unless using a movement
tolerance and time since last significant movement). As the
MS conducts its normal communications, transmitted data
1302 contains new data CK 1304 to be ignored by receiving
MS other character 32 processing, but to be found by
listening MSs within the vicinity which anticipate presence
of CK 1304. Otherwise, when LN-Expanse deployments
have not introduced CK 1304 to usual data 1302 commu-
nicated on a receivable signal by MSs in the vicinity, FIG.
25 sends/broadcasts new WDR response data 1302. In any
case, field 1100n should be as accurate as possible for when
data 1302 is actually sent. Critical regions of code (i.e.
prevent thread preemption) and/or anticipated execution LOCATION field 1100c is preferably set with: Field 1100c

from queue 22. 15 timing may be used to affect a best setting of field 1100n.
CONFIDENCE field 1100d is preferably set with: Field
1100d from queue 22.
LOCATION TECHNOLOGY field ll00e is preferably set
with: Field ll00e from queue 22.
LOCATION REFERENCE INFO field 1100/ is preferably 20

set with: null (not set) for Broadcast by send processing,
otherwise set to field 2490d for Send by send processing.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set).
SPEED field 1100h is preferably set with: Field 1100h from 25

queue 22.
HEADING field ll00i is preferably set with: Field ll00i
from queue 22.

In an alternate embodiment, records 2490 contain a sent
date/time stamp field 2490e of when the request was sent by
a remote MS, and the received date/time stamp field 2490c
is processed at the MS in FIG. 25 processing. This would
enable block 2514 to calculate a TDOA measurement for
returning in field 1100/ of the WDR sent/broadcast at block
2516.

FIG. 26A depicts a flowchart for describing a preferred
embodiment of MS whereabouts determination processing.
FIG. 26A processing describes a process 1952 worker
thread, and is of PIP code 6. Thread(s) 1952 purpose is for
the MS of FIG. 26A processing to determine its own
whereabouts with useful WDRs from other MSs. It is
recommended that validity criteria set at block 1444 for ELEVATION field 1100} is preferably set with: Field 1100}

from queue 22.
APPLICATION FIELDS field 1100k is preferably set with:
Field 1100k from queue 22. An alternate embodiment will
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2514 processing.

30 1952-Max be set as high as possible (e.g. 10) relative
performance considerations of architecture 1900, to service
multiple threads 1912.1952-Max may also be set depending
on what DLM capability exists for the MS of FIG. 26A

CORRELATION FIELD 1100m is preferably set with: Field 35

2490b from queue 26.
SENT DATE/TIME STAMP field 1100n is preferably set
with: Sent date/time stamp as close in processing the send/
broadcast of block 2516 as possible.
RECEIVED DATE/TIME STAMP field ll00p is preferably 40

set with: Not Applicable (i.e. NIA for sending).

processing. In an alternate embodiment, thread(s) 19xx are
automatically throttled up or down (e.g. 1952-Max) per
unique requirements of the MS as it travels.

Processing begins at block 2602, continues to block 2604
where the process worker thread count 1952-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1952-Sem)), and continues to block 2606 for interim
housekeeping of pruning the WDR queue by invoking a
Prune Queues procedure of FIG. 27A. Block 2604 may also
check the 1952-Ct value, and signal the process 1952 parent
thread that all worker threads are rumiing when 1952-Ct
reaches 1952-Max. Block 2606 may not be necessary since
pruning may be accomplished at block 2620 when invoking
FIG. 2F (block 292).

Thereafter, block 2608 retrieves from queue 1980 a record
2400 (using interface 1958), perhaps a special termination

Embodiments may rely completely on the correlation field
2490b with no need for field 2490a. Referring back to block
2508, if a worker thread termination request was found at
queue 26, then block 2518 decrements the worker thread 45

count by 1 (using appropriate semaphore access (e.g. 1942-
Sem)), and thread 1942 processing terminates at block 2520.
Block 2518 may also check the 1942-Ct value, and signal
the process 1942 parent thread that all worker threads are
terminated when 1942-Ct equals zero (0). 50 request entry, or a record 2400 received from thread(s) 1912,

and only continues to block 2610 when a record 2400
containing field 2400a set to 1952 has been retrieved. Block
2608 stays blocked on retrieving from queue 1980 until a
record 2400 with field 2400a=1952 is retrieved. If block

Block 2516 causes sending/broadcasting data 1302 con
taining CK 1304, depending on the type of MS, wherein CK
1304 contains WDR information prepared as described
above for block 2514. Alternative embodiments of block
2510 may not search a specified confidence value, and
broadcast the best entry available anyway so that listeners in
the vicinity will decide what to do with it. A semaphore
protected data access (instead of a queue peek) may be used
in embodiments where there is always one WDR current
entry maintained for the MS.

55 2610 determines a special entry indicating to terminate was
not found in queue 1980, processing continues to block
2612.

Block 2612 peeks the WDR queue 22 (using interface
1954) for the most recent highest confidence entry for this

60 MS whereabouts by searching queue 22 for: the MS ID field
1100a matching the MS ID of FIG. 26A processing, and a
confidence field 1100d greater than or equal to the confi
dence floor value, and a most recent date/time stamp field

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for
listening MSs in the vicinity, send processing feeding from
queue 24, caused by block 2516 processing, will place WDR
information as CK 1304 embedded in usual data 1302 at the 65

1100b within a prescribed trailing period of time of block
2612 search processing using a f(WTV) for the period. For
example, block 2612 peeks the queue (i.e. makes a copy for next opportune time of sending usual data 1302. If an

opportune time is not timely, send processing should discard use if an entry found for subsequent processing, but does not

Petitioners' Ex. 1001, Page 389 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
125

remove the entry from queue) for a WDR of the MS (of FIG.
26A processing) which has the greatest confidence over 75
and has been most recently inserted to queue 22 in the last
2 seconds. Since MS whereabouts accuracy may be depen
dent on timeliness of the WTV, it is recommended that the 5

f(WTV) be some value less than or equal to WTV. In an
alternate embodiment, a movement tolerance (e.g. user
configured or system set (e.g. 3 meters)) is incorporated at
the MS, or at service(s) used to locate the MS, for knowing
when the MS has significantly moved (e.g. more than 3 10

meters) and how long it has been (e.g. 45 seconds) since last
significantly moving. In this embodiment, the MS is aware
of the period of time since last significantly moving and the
f(WTV) is set using the amount of time since the MS
significantly moved (i.e. f(WTV)=as described above, or the 15

amount of time since significantly moving, whichever is
greater). This way a large number of (perhaps more confi
dent candidate) WDRs are searched in the time period when
the MS has not significantly moved. Optional blocks 278
through 284 may have been incorporated to FIG. 2F for 20

movement tolerance processing just described, in which
case the LWT is compared to the current date/time to adjust
the WTV for the correct trailing period.

126
an appropriately sorted list ofWDRs which were originated
by this MS and are DLM originated (i.e. inserted by the
DLM of FIG. 26B processing). REMOTE_MS points to an
appropriately sorted list ofWDRs which were originated by
other MSs (i.e. from DLMs and/or ILMs and collected by
the ILM of FIG. 26B processing).

Thereafter, block 2634 peeks the WDR queue 22 (using
interface 1954) for most recent WDRs by searching queue
22 for: confidence field 1100d greater than or equal to the
confidence floor value, and a most recent date/time stamp
field 1100b within a prescribed trailing period of time of
block 2634 search processing using a f(WTV) for the period.
For example, block 2634 peeks the queue (i.e. makes a copy
of all WDRs to a result list for use if any found for
subsequent processing, but does not remove the entry(s)
from queue) for all WDRs which have confidence over 75
and has been most recently inserted to queue 22 in the last
2 seconds. It is recommended that the f(WTV) used here be
some value less than or equal to the WTV (want to be ahead
of curve, so may use a percentage (e.g. 90%)), but preferably
not greater than a couple/few seconds (depends on MS, MS
applications, MS environment, whereabouts determination
related variables, etc).

In an alternative embodiment, thread(s) 1952 coordinate
with each other to know successes, failures or progress of
their sister threads for automatically adjusting the trailing
f(WTV) period of time appropriately. See "Alternative IPC
Embodiments" below.

Thread 1952 is ofless value to the MS when whereabouts

Thereafter, if block 2614 determines a timely where
abouts for this MS already exists to queue 22 (current WDR 25

found), then processing continues back to block 2606 for
another loop iteration of processing. If 2614 determines a
satisfactory WDR does not already exist in queue 22, then
block 2600 determines a new highest confidence WDR for
this MS (FIG. 26B processing) using queue 22. 30 are calculated using stale WDRs, or when not enough useful

WDRs are considered. In an alternate embodiment, a move
ment tolerance (e.g. user configured or system set (e.g. 3
meters)) is incorporated at the MS, or at service(s) used to

Thereafter, if block 2616 determines a WDR was not
created (BESTWDR variable=null) for the MS of FIG. 26A
processing (by block 2600), then processing continues back
to block 2606. If block 2616 determines a WDR was created
(BESTWDR=WDR created by FIG. 26B) for the MS of 35

FIG. 26A processing by block 2600, then processing con
tinues to block 2618 for preparing FIG. 2F parameters and
FIG. 2F processing is invoked with the new WDR at block
2620 (for interface 1956) before continuing back to block
2606. Parameters set at block 2618 are: WDRREF=a refer- 40

ence or pointer to the WDR completed at block 2600;
DELETEQ=FIG. 26A location queue discard processing;
and SUPER=FIG. 26A supervisory notification processing.

locate the MS, for knowing when the MS has significantly
moved (e.g. more than 3 meters) and how long it has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MS is aware of the period of time since last
significantly moving and the f(WTV) is set using the amount
of time since the MS significantly moved (i.e. f(WTV)=as
described above, or the amount of time since significantly
moving, whichever is greater). This way a large number of
(perhaps more confident candidates) WDRs are searched in
the time period when the MS has not significantly moved.
Optional blocks 278 through 284 may have been incorpo-

45 rated to FIG. 2F for movement tolerance processing just
described, in which case the LWT is compared to the current
date/time to adjust the WTV for the correct trailing period.
In any case, all useful WDRs are sought at block 2634 and

Referring back to block 2610, if a worker thread termi
nation request was found at queue 1980, then block 2622
decrements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1952-Sem)), and thread 1952 pro
cessing terminates at block 2624. Block 2622 may also
check the 1952-Ct value, and signal the process 1952 parent
thread that all worker threads are terminated when 1952-Ct 50

equals zero (0).

placed into a list upon exit from block 2634.
Thereafter, block 2636 sets THIS_MS list and

REMOTE_MS list sort keys to be used at blocks 2644 and
2654. Blocks 2638 through 2654 will prioritize WDRs found
at block 2634 depending on the sort keys made at block
2636. A number of variables may be used to determine the

Alternate embodiments to FIG. 26A will have a pool of
thread(s) 1952 per location technology (WDR field ll00e)
for specific WDR field(s) selective processing. FIG. 26A
processing is shown to be generic with handling all WDRs
at block 2600.

55 best sort keys, such as the time period used to peek at block
2634 and/or the number of entries in the WDR list returned
by block 2634, and/or other variables. When the time period
of search is small (e.g. less than a couple seconds), lists
(THIS_MS and REMOTE_MS) should be prioritized pri-

60 marily by confidence (fields 1100d) since any WDRs are
valuable for determining whereabouts. This is the preferred
embodiment.

FIG. 26B depicts a flowchart for describing a preferred
embodiment of processing for determining a highest pos
sible confidence whereabouts, for example in ILM process
ing, such as processing of FIG. 26A block 2600. Processing
starts at block 2630, and continues to block 2632 where
variables are initialized (BESTWDR=null, THIS_MS=null,
REMOTE_MS=null). BESTWDR will reference the highest
confidence WDR for whereabouts of the MS of FIG. 26B
processing (i.e. this MS) upon return to FIG. 26A when 65

whereabouts determination is successful, otherwise
BESTWDR is set to null (none found). THIS_MS points to

When the time period is great, careful measure must be
taken to ensure stale WDRs are not used (e.g. >few seconds,
and not considering movement tolerance). Depending on
decision embodiments, there will be preferred priority order
sort keys created at exit from block 2636, for example

Petitioners' Ex. 1001, Page 390 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
127

"keyl/key2/key3" implies that "keyl" is a primary key,
"key2" is a second order key, and "key3" is a third order key.
A key such as "field-ll00b/field-ll00d/field-1100/signal
strength" would sort WDRs first by using date/time stamp
fields 1100b, then by confidence value fields 1100d (sorted 5

within matching date/time stamp WDRs), then by signal
strength field 1100/ sub-field values (sorted within matching
WDR confidences; no signal strength present=lowest prior
ity). Another sort key may be "field-ll00d/field-ll00b" for
sorting WDRs first by using confidence values, then by 10

date/time stamps (sorted within matching WDR confi
dences). The same or different sort keys can be used for lists
THIS_MS and REMOTE_MS. Any WDR data (fields or
subfields) can be sorted with a key, and sort keys can be of
N order dimension such that "keyl/key2/ ... /keyN". 15

Whatever sort keys are used, block 2686 will have to
consider confidence versus being stale, relative to the WTV.
In the preferred embodiment, the REMOTE_MS and
THIS_MS lists are set with the same sort keys of "field
ll00d/field-ll00b" (i.e. peek time period used at block 2634 20

is less than 2 seconds) so that confidence is primary.
Thereafter, block 2638 gets the first (if any) WDR in the

list returned at block 2634 (also processes next WDR in list
when encountered again in loop of blocks 2638 through
2654), and block 2640 checks if all WDRs have already been 25

processed. If block 2640 finds that all WDRs have not been
processed, then block 2642 checks the WDR origination. If
block 2642 determines the WDR is one that originated from
a remote MS (i.e. MS ID does not match the MS of FIG. 26B
processing), then block 2644 inserts the WDR into the 30

REMOTE_MS list using the desired sort key (confidence
primary, time secondary) from block 2636, and processing
continues to block 2638 for another loop iteration. If block
2642 determines the WDR is one that originated from this
MS (MS ID field 1100a matches the MS of FIG. 26B 35

processing (e.g. this MS being a DLM at the time ofWDR
creation (this MS ID=field 1100a) or this MS being an ILM
at the time of WDR creation (previous processing of FIG.
26A)), then processing continues to block 2646 to determine
how to process the WDR which was inserted by "this MS" 40

for its own whereabouts.
Block 2646 accesses field 1100/for data found there (e.g.

FIGS. 2D and 2E may have inserted useful TDOA measure
ments, even though DLM processing occurred; or FIG. 3C
may have inserted useful TDOA and/or AOA measurements 45

with reference station(s) whereabouts; or receive processing
may have inserted AOA and related measurements). There
after, if block 2648 determines presence of TDOA and/or
AOA data, block 2650 checks if reference whereabouts (e.g.
FIG. 3C selected stationary reference location(s)) is also 50

stored in field 1100/ If block 2650 determines whereabouts
information is also stored to field 1100/, then block 2652
makes new WDR(s) from the whereabouts information
containing at least the WDR Core and field 1100/ containing

128
abouts. Any DLM location technology processing discussed
above can facilitate FIG. 26B whereabouts processing when
reference whereabouts can be maintained to field 1100/
along with relative AOA, TDOA, MPT, confidence, and/or
other useful information for locating the MS. Various
embodiments will populate field 1100/ wherever possible
with any useful locating fields (see data discussed for field
1100/with FIG. llA discussions above) for carrying plenty
of information to facilitate FIG. 26B processing.

Referring back to block 2650, if it is determined that
whereabouts information was not present with the AOA
and/or TDOA information of field 1100/, then processing
continues to block 2644 for inserting into the REMOTE_MS
list (_appropriately with sort key from block 2636) the
currently looped WDR from block 2634. In-range location
technology associates the MS with the antenna (or cell
tower) location, so that field 1100c already contains the
antenna (or cell tower) whereabouts, and the TDOA infor
mation was stored to determine how close the MS was to the
antenna (or cell tower) at the time. The WDR will be more
useful in the REMOTE_MS list, then if added to the
THIS_MS list (see loop of blocks 2660 through 2680).
Referring back to block 2648, if it is determined that no
AOA and/or TDOA information was in field 1100/, then
processing continues to block 2654 for inserting the WDR
into the THIS_MS list (_appropriately with sort key (con
fidence primary, time secondary) from block 2636).

Block 2654 handles WDRs that originated from the MS of
FIG. 26B (this MS), such as described in FIGS. 2A through
9B, or results from previous FIG. 26A processing. Block
2644 maintains remote DLMs and/or ILMs (their where
abouts) to the REMOTE_MS list in hope WDRs contain
useful field 1100/ information for determining the where
abouts of the MS of FIG. 26B processing. Block 2652
handles WDRs that originated from the MS of FIG. 26B
processing (this MS), but also processes fields from station
ary references used (e.g. FIG. 3C) by this MS which can be
helpful as though the WDR was originated by a remote ILM
or DLM. Thus, block 2652 causes inserting to both lists
(THIS_MS and REMOTE_MS) when the WDR contains
useful information for both. Blocks 2652, 2654 and 2644
cause the iterative loop of blocks 2660 through 2680 to
perform AD LT using DLMs and/or ILMs. Alternate embodi
ments of blocks 2638 through 2654 may use peek method
ologies to sort from queue 22 for the REMOTE_MS and
THIS_MS lists.

Referring back to block 2640, if it is determined that all
WDRs in the list from block 2634 have been processed, then
block 2656 initializes a DISTANCE list and ANGLE list
each to null, block 2658 sets a loop iteration pointer to the
first entry of the prioritized REMOTE_MS list (e.g. first
entry higher priority than last entry in accordance with sort
key used), and block 2660 starts the loop for working with
ordered WDRs of the REMOTE_MS list. Exit from block

the AOA and/or TDOA information as though it were from 55 2640 to block 2656 occurs when the REMOTE_MS and
a remote DLM or ILM. Block 2652 also performs the
expected result of inserting the WDR of loop processing into
the THIS_MS list using the desired sort key from block
2636. Processing then continues to block 2644 where the
newly made WDR(s) is inserted into the REMOTE_MS list 60

using the desired sort key (confidence primary, time sec
ondary) from block 2636. Block 2644 continues back to

THIS_MS lists are in the desired priority order for subse
quent processing. Block 2660 gets the next (or first)
REMOTE_MS list entry for processing before continuing to
block 2662. If block 2662 determines all WDRs have not yet
been processed from the REMOTE_MS list, then processing
continues to block 2664.

Blocks 2664 and 2670 direct collection of all useful ILM
block 2638.

Block 2646 through 2652 show that DLM stationary
references may contribute to determining whereabouts of the
MS of FIG. 26B processing by making such references
appear to processing like remote MSs with known where-

triangulation measurements for TDOA, AOA, and/or MPT
triangulation of this MS relative known whereabouts (e.g.

65 other MSs). It is interesting to note that TDOA and AOA
measurements (field 1100.1) may have been made from
different communications interfaces 70 (e.g. different wave

Petitioners' Ex. 1001, Page 391 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
129

spectrums), depending on interfaces the MS has available
(i.e. all can participate). For example, a MS with blue-tooth,
WiFi and cellular phone connectivity (different class wave
spectrums supported) can be triangulated using the best
available information (i.e. heterogeneous location tech- 5

nique). Examination of fields 1100/ in FIG. 17 can show
wave spectrums (and/or particular communications inter
faces 70) inserted by receive processing for what the MS
supports. If block 2664 determines anAOAmeasurement is
present (field 1100/ sub-field), then block 2666 appends the 10

WDR to the ANGLE list, and processing continues to block
2668. If block 2664 determines anAOAmeasurement is not
present, then processing continues to block 2670. If block
2670 determines a TDOA measurement is present (field
1100/ sub-field), then block 2672 appends the WDR to the 15

DISTANCE list, and processing continues to block 2674.
Block 2674 uses WDRs for providing at least an in-range
whereabouts of this MS by inserting to the THIS_MS list in
sorted confidence priority order (e.g. highest confidence first
in list, lowest confidence at end of list). Block 2674 con- 20

tinues to block 2668. Block 2674 may cause duplicate
WDR(s) inserted to the THIS_MS list, but this will have no
negative effect on selected outcome.

Block 2668 compares the ANGLE and DISTANCE lists
constructed thus far from loop processing (blocks 2660 25

through 2682) with minimum triangulation requirements
(e.g. see "Missing Part Triangulation (MPT)" above). Three
(3) sides, three (3) angles and a side, and other known
triangular solution guides will also be compared. Thereafter,

130
Different embodiments of blocks 2678 through 2682 should
minimize inserting duplicate WDRs (for performance rea
sons) to THIS_MS which were determined using identical
REMOTE_MS list data. Block 2682 causes using ADLT at
blocks 2684 through 2688 which uses the best of breed
whereabouts, either as originated by this MS maintained in
THIS_MS list up to the thread processing point of block
2686, or as originated by remote MSs (DLMs and/or ILMs)
processed by blocks 2656 through the start of block 2684.

Referring back to block 2662, if it is determined that all
WDRs in the REMOTE_MS list have been processed, then
block 2684 sets the BESTWDR reference to the head of
THIS_MS (i.e. BESTWDR references first WDR in
THIS_MS list which is so far the best candidate WDR
(highest confidence) for this MS whereabouts, or null if the
list is empty). It is possible that there are other WDRs with
matching confidence adjacent to the highest confidence
entry in the THIS_MS list. Block 2684 continues to block
2686 for comparing matching confidence WDRs, and if
there are matches, then breaking a tie between WDRs with
matching confidence by consulting any other WDR field(s)
(e.g. field 1100/ signal strength, or location technology field
llOOe, etc). If there is still a tie between a plurality of
WDRs, then block 2686 may average whereabouts to the
BESTWDR WDR using the matching WDRs. Thereafter
processing continues to block 2688 where the BESTWDR is
completed, and processing terminates at block 2690. Block
2688 also frees resources (if any) allocated by FIG. 26B
processing (e.g. lists). Blocks 2686 through 2688 result in
setting BESTWDR to the highest priority WDR (i.e. the best
possible whereabouts determined). It is possible that FIG.
26B processing causes a duplicate WDR inserted to queue
22 (at block 2620) for this MS whereabouts determination,
but that is no issue except for impacting performance to
queue 22. An alternate embodiment to queue 22 may define
a unique index for erring out when inserting a duplicate to
prevent frivolous duplicate entries, or block 2688 will incor
porate processing to eliminate the chance of inserting a
WDR ofless use than what is already contained at queue 22.

if block 2676 determines there is still not enough data to 30

triangulate whereabouts of this MS, then processing contin
ues back to block 2660 for the next REMOTE_MS list entry,
otherwise block 2678 maximizes diversity of WDRs to use
for triangulating. Thereafter, block 2680 uses the diversified
DISTANCE and ANGLE lists to perform triangulation of 35

this MS, block 2682 inserts the newly determined WDR into
the THIS_MS list in sort key order, and continues back to
block 2660. Block 2680 will use heterogeneous (MPT),
TDOA and/or AOA triangulation on ANGLE and DIS
TANCE lists for determining whereabouts.

Block 2682 preferably keeps track of (or checks
THIS_MS for) what it has thus far determined whereabouts
for in this FIG. 26B thread processing to prevent inserting
the same WDR to THIS_MS using the same REMOTE_MS
data. Repeated iterations of blocks 2676 through 2682 will 45

see the same data from previous iterations and will use the
best of breed data in conjunction with each other at each
iteration (in current thread context). While inserting dupli
cates to THIS_MS at block 2682 does not cause failure, it
may be avoided for performance reasons. Duplicate inser- 50

tions are preferably avoided at block 2674 for performance
reasons as well, but they are again not harmful. Block 2678
preferably keeps track of previous diversity order in this
FIG. 26B thread processing to promote using new ANGLE
and DISTANCE data in whereabouts determination at block 55

40 Therefore, block 2688 may include processing for ensuring
a duplicate will not be inserted (e.g. null the BESTWDR
reference) prior to returning to FIG. 26A at block 2690.

2680 (since each iteration is a superset of a previous iteration
(in current thread context)). Block 2678 promotes using
WDRs from different MSs (different MS IDs), and from
MSs located at significantly different whereabouts (e.g. to
maximize surrounded-ness), preferably around the MS of
FIG. 26B processing. Block 2678 preferably uses sorted
diversity pointer lists so as to not affect actual ANGLE and
DISTANCE list order. The sorted pointer lists provide
pointers to entries in the ANGLE and DISTANCE lists for
a unique sorted order governing optimal processing at block
2680 to maximize unique MSs and surrounded-ness, without
affecting the lists themselves (like a SQL database index).

Averaging whereabouts at block 2686 occurs only when
there are WDRs at the head of the list with a matching
highest confidence value and still tie in other WDR fields
consulted, yet whereabouts information is different. In this
case, all matching highest confidence whereabouts are aver
aged to the BESTWDR to come up with whereabouts in
light of all matching WDRs. Block 2686 performs ADLT
when finalizing a single whereabouts (WDR) using any of
the whereabouts found in THIS_MS (which may contain at
this point DLM whereabouts originated by this MS and/or
whereabouts originated by remote DLMs and/or ILMs).
Block 2686 must be cognizant of sort keys used at blocks
2652 and 2654 in case confidence is not the primary key
(time may be primary).

If no WDRs were found at block 2634, or no THIS_MS
list WDRs were found at blocks 2652 and 2654, and no
REMOTE_MS list entries were found at block 2644; or no

60 THIS_MS list WDRs were found at blocks 2652 and 2654,
and no REMOTE_MS list entries were found useful at
blocks 2664 and/or 2670; then block 2684 may be setting
BESTWDR to a null reference (i.e. none in list) in which
case block 2686 does nothing. Hopefully, at least one good

65 WDR is determined for MS whereabouts and a new WDR
is inserted for this MS to queue 22, otherwise a null
BESTWDR reference will be returned (checked at block

Petitioners' Ex. 1001, Page 392 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
131

2616). See FIG. llA descriptions. IfBESTWDR is not null,
then fields are set to the following upon exit from block
2688:
MS ID field 1100a is preferably set with: MS ID of MS of
FIG. 26B processing.
DATE/TIME STAMP field 1100b is preferably set with:
Date/time stamp of block 2688 processing.
LOCATION field 1100c is preferably set with: Resulting
whereabouts after block 2688 completion.
CONFIDENCE field 1100d is preferably set with: WDR 10

Confidence at THIS_MS list head.
LOCATION TECHNOLOGY field ll00e is preferably set
with: "ILM TDOA Triangulation", "ILM AOA Triangula
tion", "ILM MPT Triangulation" or "ILM in-range", as
determined by the WDRs inserted to MS_LIST at blocks 15

2674 and 2682. The originator indicator is set to ILM.
LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set), but may be set with contributing data
for analysis of queue 22 provided it is marked for being
overlooked by future processing of blocks 2646 and 2648 20

(e.g. for debug purpose).
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set).
SPEED field 1100h is preferably set with: Block 2688 may
compare prioritized entries and their order of time (field 25

1100b) in THIS_MS list for properly setting this field, if
possible.
HEADING field ll00i is preferably set with: null (not set).
Block 2688 may compare prioritized entries and their order
of time (field 1100b) in THIS_MS list for properly setting 30

this field, if possible.
ELEVATION field 1100} is preferably set with: Field 1100}
of BESTWDR (may be averaged if WDR tie(s)), if avail
able.
APPLICATION FIELDS field 1100k is preferably set with: 35

Field(s) 1100k from BESTWDR or tie(s) thereof from
THIS_MS. An alternate embodiment will add, alter, or
discard data (with or without date/time stamps) here at the
time of block 2688 processing.
CORRELATION FIELD 1100m is preferably set with: Not 40

Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMP field 1100n is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMP field ll00p is preferably
set with: Not Applicable (i.e. not maintained to queue 22). 45

Block 2680 determines whereabouts using preferred
guidelines, such as whereabouts determined never results in
a confidence value exceeding any confidence value used to
determine whereabouts. Some embodiments will use the
mean (average) of confidence values used, some will use the 50

highest, and some the lowest of the WDRs used. Preferred
embodiments tend to properly skew confidence values to
lower values as the LN-Expanse grows away from region
1022. Blocks 2668 through 2680 may consult any of the
WDR fields (e.g. field 1100/ sub-fields yaw, pitch, roll; 55

speed, heading, etc) to deduce the most useful WDR inputs
for determining an optimal WDR for this MS whereabouts.

Alternative IPC Embodiments

132
provide IPC (Interprocess Communications Processing)
coordination between 1952 threads for higher performance
processing, for example:

As mentioned above, thread(s) 1952 can coordinate with
each other to know successes, failures or progress of
their sister 1952 thread(s) for automatically adjusting
the trailing f(WTV) period of time appropriately. The
f(WTV) period of time used at block 2634 would be
semaphore accessed and modified (e.g. increased) for
another 1952 thread when a previous 1952 thread was
unsuccessful in determining whereabouts (via sema-
phore accessed thread outcome indicator). After a suc
cessful determination, the f(WTV) period of time could
be reset back to the smaller window. One embodiment
of increasing may start with 10% of the WTV, then 20%
at the next thread, 30% at the next thread, up to 90%,
until a successful whereabouts is determined. After
successful whereabouts determination, a reset to its
original starting value is made.

A semaphore accessed thread 1952 busy flag is used for
indicating a certain thread is busy to prevent another
1952 thread from doing the same or similar work.
Furthermore, other semaphore protected data for what
work is actually being performed by a thread can be
informative to ensure that no thread 1952 starts for
doing duplicated effort.

Useful data of statistics 14 may be appropriately accessed
by thread(s) 1952 for dynamically controlling key
variables of FIG. 26B processing, such as the search
f(WTV) time period, sort keys used, when to quit loop
processing (e.g. on first successful whereabouts deter-
mination at block 2680), surrounded-ness preferences,
etc. This can dynamically change the FIG. 26B logic
from one thread to another for desired results.

FIG. 26B continues processing through every WDR
retrieved at block 2634. An alternative embodiment will
terminate processing after finding the first (which is highest
priority data supported) successful triangulation at block
2682.

FIG. 27A depicts a flowchart for describing a preferred
embodiment of queue prune processing. Queue pruning is
best done on an interim basis by threads which may insert to
the queue being pruned. In an alternate embodiment, a
background asynchronous thread will invoke FIG. 27A for
periodic queue pruning to ensure no queue which can grow
becomes too large. The Prune Queues procedure starts at
block 2702 and continues to block 2704 where parameters
passed by a caller for which queue(s) (WDR and/or CR) to
prune are determined. Thereafter, if block 2706 determines
that the caller wanted to prune the WDR queue 22, block
2708 appropriately prunes the queue, for example discarding
old entries using field 1100b, and processing continues to
block 2710. If block 2706 determines that the caller did not
want to prune the WDR queue 22, then processing continues
to block 2710. If block 2710 determines that the caller
wanted to prune the CR queue 1990, block 2712 appropri-
ately prunes the queue, for example discarding old entries
using field 2450a, and processing continues to block 2714.
If block 2710 determines that the caller did not want to prune

Thread(s) 1952 are started for every WDR collected from
remote MSs. Therefore, it is possible that identical new
WDRs are inserted to queue 22 using the same WDR
information at blocks 2634 of simultaneously executing
threads 1952, but this will not cause a problem since at least
one will be found when needed, and duplicates will be
pruned together when appropriate. Alternative embodiments

60 the CR queue 1990, then processing continues to block
2714. Block 2714 appropriately returns to the caller.

The current design for queue 1980 does not require FIG.
27A to prune it. Alternative embodiments may add addi
tional queues for similar processing. Alternate embodiments

65 may use FIG. 27A like processing to prune queues 24, 26,
or any other queue under certain system circumstances.
Parameters received at block 2704 may also include how to

Petitioners' Ex. 1001, Page 393 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
133

prune the queue, for example when using different con
straints for what indicates entry(s) for discard.

134
removal (e.g. reset back to system default setting) and
processing continues back to block 2728. If block 2740
determines the action was not for a role confidence default
value removal, processing continues to block 2744. If block
2744 determines the user selected to save user configured
role settings resulting from FIG. 27B processing up to this
point, then block 2746 saves all user configured confidence
default values for MS processing use, and processing con
tinues back to block 2728. If block 2744 determines the

FIG. 27B depicts a flowchart for describing a preferred
embodiment of setting confidence default values based on
user experience. Default confidence values used by the MS 5

for initially determining a suitable confidence may be
"tweaked" by a user, or an administrator, for cases where an
intervention may be desirable. In one embodiment, block
1496 may be modified to include new blocks 1496/, 1496g,
and 1496c such that: 10 action was not for saving user configurations, processing

continues to block 2748. If block 2748 determines the user Block 1496/ checks to see if the user selected to configure
(set) a default for confidence value(s) used for
WDRs-an option for configuration at block 1406
wherein the user action to configure it is detected at
block 1408;

Block 1496g is processed if block 1496/ determines the
user did select to configure (set) a default for confi
dence value(s). Block 1496g invokes FIG. 27B for
interfacing with the user accordingly, and processing
then continues to block 1496c.

selected to exit FIG. 27B processing, then processing con
tinues to block 2752 where the user interface is appropri
ately terminated and to block 2754 where FIG. 27B pro-

15 cessing is terminated, otherwise processing continues to
block 2750 where other user actions leaving block 2730 are
appropriately handled, and processing then continues back
to block 2728.

Referring back to block 2724, if no DLM or ILM roles are
20 determined for the MS, then block 2756 presents an error to

the user and processing continues to block 2752 and block
2754 thereafter, already described above.

Block 1496c is processed if block 1496/ determines the
user did not select to configure (set) a default for
confidence value(s), or as the result of processing
leaving block 1496g. Block 1496c handles other user
interface actions leaving block 1408 (e.g. becomes the 25

"catch all" as currently shown in block 1496 of FIG.
14B).

Default confidence values are the initial defaults used for
setting a WDR confidence value (e.g. at blocks 236, 258,
334, 366, 418, 534, 618, 648, 750, 828, 874, 958, 2128,
2688, 8120, 8144, 8164, etc, or any other processing block
where a confidence value is defaulted based on a location
technology used, logic used, or any particular location
processing used), however processing may further refine or
adjust the confidence as is deemed appropriate when con
sidering circumstances relevant for a particular processing

Confidence value configuration begins at block 2720
upon a user action to present the interface. In one embodi
ment, the user is an authenticated administrator prior to 30

being permitted to get access to processing of FIG. 27B.
Block 2720 continues to block 2722 where all conceivable
MS roles (DLM and ILM) are accessed, then to block 2724

block (e.g. surrounded-ness, timeliness ofWDR information
used for locating, heterogeneous sources considered, or any
other variable for consideration of adjustment to a confi-to ensure the MS is enabled for at least one role which can

have a setting configured. Depending on an embodiment,
block 2722 may access roles which are supported, currently
enabled, possible for future use, or those having other
accessible characteristics. If block 2724 determines at least
one role is available to the MS, then block 2726 accesses any
default confidence values for each role determined and block
2728 presents a list (scrollable if applicable) to the user with
any settings found. Block 2726 determines if there are any
user configured defaults already configured through a prior
use of FIG. 27B. The list presented at block 2728 will
indicate when no user configuration was determined and
what the current system default value is. The user can select
an entry from the list, for example with a cursor, and perform
a particular action on the selected entry as described below.
Block 2728 continues to block 2730 where processing waits
for certain user actions in response to the list presented.
When block 2730 detects a user action, processing continues
to block 2732.

If block 2732 determines the user selected to modify a
role default entry (e.g. which was configured at a prior use

35 dence default). In some embodiments, the user configured
default value is a hard coded numeric value. In some
embodiments, the user configured default value is an offset
to be incremented (added (+)) or decremented (subtracted
(-)) from an existing system default value. In other embodi-

40 ments, the user configured default value includes an expres
sion which elaborates to a default value or an offset to be
applied to a system default. There may be a plurality of
conditions specified for how to evaluate the expression.

FIG. 28 depicts a flowchart for describing a preferred
45 embodiment of MS termination processing. Depending on

the MS, there are many embodiments of processing when
the MS is powered off, restarted, rebooted, reactivated,
disabled, or the like. FIG. 28 describes the blocks of
processing relevant to the present disclosure as part of that

50 termination processing. Termination processing starts at
block 2802 and continues to block 2804 for checking any
DLM roles enabled and appropriately terminating if any are
found (for example as determined from persistent storage
variable DLMV). Block 2804 may cause the termination of

55 thread(s) associated with enabled DLM role(s) for DLM
processing above (e.g. FIGS. 2A through 9B). Block 2804
may invoke API(s), disable flag(s), or terminate as is appro
priate for DLM processing described above. Such termina-

of FIG. 27B), then block 2734 interfaces with the user for an
updated confidence value default setting and processing
continues back to block 2728. If block 2732 determines the
action was not for modifying an existing role default entry,
processing continues to block 2736. If block 2736 deter
mines the user selected to add a new default to a selected 60

tions are well known in the art of prior art DLM capabilities
described above. Block 2804 continues to block 2806.

role, then block 2738 interfaces with the user for a confi
dence value default setting and processing continues back to
block 2728. If block 2736 determines the action was not for
adding a confidence value default to a role, processing
continues to block 2740. If block 2740 determines the user 65

selected to remove a user configured confidence default
value for a role, then block 2742 interfaces with the user for

Blocks 2806 through 2816 handle termination of all
processes/threads associated with the ILMV roles so there is
no explicit ILMV check required. Block 2806 initializes an
enumerated process name array for convenient processing
reference of associated process specific variables described
in FIG. 19, and continues to block 2808 where the first
member of the set is accessed for subsequent processing.

Petitioners' Ex. 1001, Page 394 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
135

The enumerated set of process names has a prescribed
termination order for MS architecture 1900. Thereafter, if
block 2810 determines the process identifier (i.e. 19xx-PID
such that 19xx is 1902, 1912, 1922, 1932, 1942, 1952 in a
loop iteration of blocks 2808 through 2816) is greater than 5

0 (e.g. this first iteration of 1912-PID>O implies it is to be
terminated here; also implies process 1912 is enabled as
used in FIGS. 14A, 28, 29A and 29B), then block 2812
prepares parameters for FIG. 29B invocation, and block
2814 invokes (calls) the procedure of FIG. 29B to terminate 10

the process (of this current loop iteration (19xx)). Block
2812 prepares the second parameter in accordance with the
type of 19xx process. If the process (19xx) is one that is
slave to a queue for dictating its processing (i.e. blocked on
queue until queue entry present), then the second parameter 15

(process type) is set to 0 (directing FIG. 29A processing to
insert a special termination queue entry to be seen by worker
thread(s) for terminating). If the process (19xx) is one that
is slave to a timer for dictating its processing (i.e. sleeps until
it is time to process), then the second parameter (process 20

type) is set to the associated 19xx-PID value (directing FIG.
29B to use in killing/terminating the PID in case the worker
thread(s) are currently sleeping). Block 2814 passes the
process name and process type as parameters to FIG. 29B
processing. Upon return from FIG. 29B, block 2814 con- 25

tinues to block 2816. If block 2810 determines that the 19xx

136
With reference now to FIG. 29B, depicted is a flowchart

for describing a preferred embodiment of a procedure for
terminating a process started by FIG. 29A. When invoked by
a caller, the procedure starts at block 2952 and continues to
block 2954 where parameters passed are determined. There
are two parameters: the process name to terminate, and the
type of process to terminate. The type of process is set to 0
for a process which has worker threads which are a slave to
a queue. The type of process is set to a valid O/S PID when
the process worker threads are slave to a timer.

Thereafter, if block 2956 determines the process type is 0,
then block 2958 initializes a loop variable J to 0, and block
2960 inserts a special termination request queue entry to the
appropriate queue for the process worker thread to termi
nate. See FIG. 19 discussions for the queue inserted for
which 19xx process name.

Thereafter, block 2962 increments the loop variable by 1
and block 2964 checks if all process prescribed worker
threads have been terminated. Block 2964 accesses the
19xx-Max (e.g. 1952-Max) variable from shared memory
using a semaphore for determining the maximum number of
threads to terminate in the process worker thread pool. If
block 2964 determines all worker threads have been termi
nated, processing continues to block 2966 for waiting until
the 19xx-PID variable is set to disabled (e.g. set to 0 by
block 2922), and then to block 2978 which causes return to
the caller. Block 2966 uses a preferred choice of waiting
described for blocks 2918 and 2920. The 19xx process (e.g.

process is not enabled, then processing continues to block
2816. Upon return from FIG. 29B processing, the process is
terminated and the associated 19xx-PID variable is already
set to 0 (see blocks 2966, 2970, 2976 and 2922).

Block 2816 checks if all process names of the enumerated
set (19xx) have been processed (iterated) by blocks 2808
through 2816. If block 2816 determines that not all process
names in the set have been processed (iterated), then pro
cessing continues back to block 2808 for handling the next
process name in the set. If block 2816 determines that all
process names of the enumerated set were processed, then
block 2816 continues to block 2818.

30 1952) will have its 19xx-PID (e.g. 1952-PID) variable set at
0 (block 2922) when the process terminates. In some
embodiments, the waiting methodology used at block 2966
may use the 19xx-PID variable, or may be signaled by the

Block 2818 destroys semaphore(s) created at block 1220.

35
last terminating worker thread, or by block 2922.

If block 2964 determines that not all worker threads have
been terminated yet, then processing continues back to block
2960 to insert another special termination request queue
entry to the appropriate queue for the next process worker

40 thread to terminate. Blocks 2960 through 2964 insert the
proper number of termination queue entries to the same
queue so that all of the 19xx process worker threads termi
nate.

Thereafter, block 2820 destroys queue(s) created at block
1218 (may have to remove all entries first in some embodi
ments), block 2822 saves persistent variables to persistent
storage (for example to persistent storage 60), block 2824
destroys shared memory created at block 1212, and block
2826 checks the NTP use variable (saved prior to destroying 45

shared memory at block 2824).

Referring back to block 2956, if it is determined the
process type is not 0 (i.e. is a valid O/S PID), then block
2968 inserts a special WDR queue 22 entry enabling a queue
peek for worker thread termination. The reader will notice
that the process termination order of block 2806 ensures
processes which were slaves to the WDR queue 22 have

If block 2826 determines NTP is enabled, then block 2828
terminates NTP appropriately (also see block 1612) and
processing continues to block 2830. If block 2826 deter
mines NTP was not enabled, then processing continues to 50

block 2830. Block 2828 embodiments are well known in the
already been terminated. This allows processes which are
slaves to a timer to see the special termination queue entry

art of NTP implementations. Block 2828 may cause termi
nating of thread(s) associated with NTP use.

Block 2830 completes LBX character termination, then
block 2832 completes other character 32 termination pro
cessing, and FIG. 28 processing terminates thereafter at
block 2834. Depending on what threads were started at
block 1240, block 2830 may terminate the listen/receive
threads for feeding queue 26 and the send threads for
sending data inserted to queue 24. Depending on what
threads were started at block 1206, block 2832 may termi
nate the listen/receive threads for feeding queue 26 and the
send threads for sending data inserted to queue 24 (i.e. other
character 32 threads altered to cause embedded CK process
ing). Upon encounter of block 2834, the MS is appropriately
terminated for reasons as set forth above for invoking FIG.
28.

inserted at block 2968 since no threads (which are slaves to
queue) will remove it from queue 22. Thereafter, block 2970
waits until the 19xx process name (parameter) worker

55 threads have been terminated using a preferred choice of
waiting described for blocks 2918 and 2920. The 19xx
process (e.g. 1902) will have its 19xx-PID (e.g. 1902-PID)
variable set at 0 (block 2922) when the process terminates.
In some embodiments, the waiting methodology used at

60 block 2970 may use the 19xx-PID variable, or may be
signaled by the last terminating worker thread, or by block
2922. Block 2970 also preferably waits for a reasonable
timeout period in anticipation of known sleep time of the
19xx process being terminated, for cases where anticipated

65 sleep times are excessive and the user should not have to
wait for lengthy FIG. 28 termination processing. If the
timeout occurs before the process is indicated to be termi-

Petitioners' Ex. 1001, Page 395 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
137

nated, then block 2970 will continue to block 2972. Block
2970 also continues to block 2972 when the process has
successfully terminated.

138
privilege, and may provide a plurality of privileges. A
permission is granted from a grantor identity to a grantee
identity. Depending on what permissions are determined
relevant to (i.e. applicable to) a WDR being processed (e.g. If block 2972 determines the 19xx process did terminate,

the caller is returned to at block 2978 (i.e. 19xx-PID already
set to disabled (0)). If block 2972 determines the 19xx
process termination timed out, then block 2974 forces an
appropriate O/S kill to the PID thereby forcing process
termination, and block 2976 sets the 19xx-PID variable for
disabled (i.e. process 19xx was terminated). Thereafter,
block 2978 causes return to the caller.

5 by accessing at least one field in the WDR), an action or
plurality of actions which are associated with the permission
can automatically occur. Actions may be as simple as
modifying a setting which is monitored/used by an LBX
application, or as complex as causing many executable

10 application actions for processing. User configured charters
are maintained at a MS and their relevance (_applicability)
to WDRs that are being processed is determined, preferably
in context of the same recognized events (i.e. strategic
processing paths) which are used for determining relevance

There are many embodiments for setting certain queue
entry field(s) identifying a special queue termination entry
inserted at blocks 2960 and 2968. Some suggestions: In the
case of terminating thread(s) 1912, queue 26 insertion of a
WDR preferably sets the MS ID field with a value that will
never appear in any other case except a termination request
(e.g. -100). In the case of terminating thread(s) 1902, 1922
and 1952, queue 22 insertion of a WDR preferably sets the
MS ID field with a value that will never appear in any other
case except a termination request (e.g. -100). In the case of
terminating thread(s) 1942, queue 26 insertion of a WDR
request preferably sets the MS ID field with a value that will
never appear in any other case except a termination request
(e.g. -100). In the case of terminating thread(s) 1932, queue 25

1980 insertion of a thread request queue record 2400 pref
erably sets field 2400a with a value that will never appear in
any other case except a termination request (e.g. -100). Of
course, any available field(s) can be used to indicate termi
nation to particular thread(s).

15 of permissions to WDRs. A charter consists of a conditional
expression and can have an action or plurality of actions
which are associated with the expression. Upon evaluating
the expression to an actionable condition (e.g. evaluates to
a Boolean true result), the associated action(s) are invoked.

20 Charters can be created for a MS by a user of that MS, or by
a user of another MS. Charters are granted similarly to
permissions in using a grantor and grantee identity, therefore
granting a charter is equivalent to granting a permission to
execute the charter.

While some embodiments will provide disclosed features
as one at a time implementations, a comprehensive archi
tecture is disclosed for providing a platform that will survive
LBX maturity. FIGS. 30A through 30E depict a preferred
embodiment BNF (Backns Naur Form) grammar for per-

30 missions 10 and charters 12. A BNF grammar is an elegant
method for describing the many applicable derived subset
embodiments of syntax and semantics in carrying out pro
cessing behavior. The BNF grammar of FIGS. 30A through

Terminating threads of processing in FIG. 29B has been
presented from a software perspective, but there are hard
ware/firmware thread embodiments which may be termi
nated appropriately to accomplish the same functionality. If
the MS operating system does not have an interface for 35

killing the PID at block 2974, then blocks 2972 through
2976 can be eliminated for relying on a FIG. 28 invocation
timeout (incorporated for block 2814) to appropriately rob
power from remaining thread(s) of processing.

An ILM has many methods and systems for knowing its 40

own location. LBX depends on MSs maintaining their own
whereabouts. No service is required to maintain the where
abouts of MSs in order to accomplish novel functionality.

LBX: Permissions and Charters----Configuration 45

Armed with its own whereabouts, as well as whereabouts
of others and others nearby, a MS uses charters for govern
ing many of the peer to peer interactions. A user is preferably
unaware of specificities of the layer(s) providing WDR 50

interoperability and communications. Permissions 10 and
charters 12 surface desired functionality to the MS user(s)
without fully revealing the depth of features that could be
made available. Permissions provide authentication for
novel features and functionality, and to which context to 55

apply the charters. However, some permissions can provide
action(s), features, and functionality by themselves without
a charter. It is preferred that LBX features and functionality
be provided in the most elegant marmer across heteroge
neous MSs. 60

User configured permissions are maintained at a MS and
their relevance (_applicability) to WDRs that are being
processed is determined. WDR processing events are rec
ognized through being placed in strategic LBX processing
paths of WDRs. For example, permissions govern process- 65

ing of newly processed WDRs at a MS, regardless of where
the WDR originated. A permission can provide at least one

30E specifically describes:
Prescribed command languages, such as a programming

language, for encoding/representing permissions 10
and charters 12 (e.g. a Whereabouts Programming
Language (WPL));

Prescribed configuration in a Lex & Yacc processing of a
suitable encoding;

Prescribed XML encodings/representations of permis
sions 10 and charters 12;

Prescribed communications datastream encodings/repre
sentations of permissions 10 and charters 12, such as in
an ANSI encoding standard (e.g. X.409);

Prescribed internalized encodings/representations of per
missions 10 and charters 12, for example in a data
processing memory;

Prescribed internalized encodings/representations of per
missions 10 and charters 12, for example in a data
processing storage means;

Prescribed database schemas for encoding/representing
permissions 10 and charters 12;

Prescribed semantics of constructs to carry out permis
sions 10 and charters 12;

A delimited set of constructs for defining different repre
sentative syntaxes for carrying out permissions 10 and
charters 12; and

Prescribed data processing of interpreters and/or compil
ers for internalizing a syntax for useful semantics as
disclosed herein. There are many embodiments (e.g.
BNF grammar subsets) of carrying out permissions 10
and charters 12 without departing from the spirit and
scope of the present disclosure. A particular implemen
tation will choose which derivative method and system
to implement, and/or which subset of the BNF gram-
mars shall apply. Atomic elements of the BNF grammar

Petitioners' Ex. 1001, Page 396 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
139 140

to get through any number of indirect variable assignments
for the first encountered value in the indirect chain value
(e.g. *a=2) at the time of instantiation. Either semantic may
have useful features from a progrannning standpoint. Over-

(leaf nodes of the grannnar tree) are identified within
double quotes (e.g. "text string" implies the value is an
atomic element in text string form). Atomic elements
are not constructs which elaborate to other things
and/or types of data. 5 instantiating (e.g. *(*c)=error) should cause an error. An

assigned value is the leaf node in peeling back with instan
tiations.

FIGS. 30A through 30B depict a preferred embodiment
BNF grannnar 3002a through 3002b for variables, variable
instantiations and connnon grammar for BNF grannnars of
permissions 10, groups (e.g. data 8) and charters 12. Vari
ables are convenient for holding values that become instan- 10

tiated where appropriate. This provides a rich programming
language and/or macro nature to the BNF grannnar. Vari
ables can be set with: a) a typed value (i.e. value of a
particular data type (may be a list)); b) another variable for
indirect referencing; c) a plurality of typed values; d) a 15

plurality of variable references; ore) any combinations of a)
through d). Variables can appear anywhere in the permis
sions or charters encodings. When variables are referenced
by name, they preferably resolve to the name of the variable
(not the value). When variables are referenced by their name 20

with an instantiation operator (e.g.*), the variable is instan
tiated (i.e. elaborated/resolved) to assigned value(s). Instan
tiation also provides a macro (or function) ability to option
ally replace subset(s) (preferably string replacements) of the
variable's instantiated value with parameter substitutions. 25

This enables customizably instantiating values (i.e. option
ally, string occurrences in the value are replaced with
specified matching parameters). An alternate embodiment to
string substitution is for supporting numbers to be incre
mented, decremented, or kept as is, depending on the 30

substitution syntax. For example:

*myVar(555++,23-~4,888--,200+~l00)

The BNF Grannnar "null" is an atomic element for no
value. In a syntactic embodiment, a null value may be a
special null character (e.g. 0). The History construct is
preferably used to track when certain constructs were cre-
ated and last modified. An alternative embodiment will track
all construct changes to LBX history 30 for later human, or
automated, processing audit.

Grammar 3002b "system type" is an atomic element
(atomic elements are not constructs which elaborate to other
things; atomic elements are shown delimited in double
quotes) generalized for the type of MS (e.g. PDA, cell
phone, laptop, etc). Other embodiments will provide more
detail to the type of MS (e.g. iPhone, Blackberry Pearl,
Nextel i845, Nokia 741, etc). ID is an identity construct of
the present disclosure for identifying a MS, a user, a group,
or any other entity for which to associate data and/or
processing. IDType provides the type of ID to support a
heterogeneous identifying grannnar. An identity (i.e. ID
[IDType]) can be directly associated to a MS (e.g. MS ID),
or may be indirectly associated to a MS (e.g. user ID or
group ID of the MS). Indirect identity embodiments may
assume an appropriate lookup for mapping between identi
ties is performed to get one identity by looking up another
identity. There may be multiple identities for a MS. Identi-
ties, by definition, provide a collective handle to data. For
example, an email sender or recipient is an example of an
identity ("logical handle") which can be associated to a user This instantiation specifies that all occurrences of the string

"555" should be incremented by 1 such that the first occur
rence of "555" becomes "556", next occurrence of "555"
becomes "557", and so on. Changing all occurrences of
"555" to "556" is accomplished with the string substitution.
This instantiation also specifies that all occurrences of the
string "23" should be decremented by 4 such that the first
occurrence of"23" becomes "19", next occurrence of"23"
becomes "15", and so on. Changing all occurrences of"23"

35 identity and/or MS identity and/or group identity. A sender,
source, recipient, and system parameter in some atomic
connnands presented below is any of the variety of types of
identities.

Address elements of "ip address" and "SNA address" are

to "19" is accomplished with the string substitution. This
instantiation also specifies that all occurrences of the string
"888" should be decremented by 1 such that the first
occurrence of "888" becomes "887'', next occurrence of
"888" becomes "886", and so on. Changing all occurrences

40 examples of logical addresses, but are mentioned specifi
cally anyway. ID, IDType and Address construct atomic
elements (as elaborated on Right Hand Side (RHS)) are self
explanatory. The TimeSpec construct is one of various kinds
of"date/time stamp" or "date/time period" atomic elements.

of "888" to "887" is accomplished with the string substitu
tion. This instantiation also specifies that all occurrences of
the string "200" should be incremented by 100 such that the
first occurrence of"200" becomes "300", next occurrence of
"200" becomes "400", and so on. Changing all occurrences

45 In a syntactic embodiment, date/time stamps are specified
with prefixed character(s) and a time format such as
xYYYYMMDDHHMMSS.12 .. J (J=# places to right of
decimal point, such that 1 =is the one tenth (½o) second
place, two=the one hundredth (½oo) second place, etc). The

50 first character(s) (i.e. x) clarify the date/time stamp infor-

of "200" to "300" is accomplished with the string substitu
tion.

Preferably, when a variable is set to another variable (e.g. 55

a=b), an instantiation of the variable (i.e. *a) equals the
variable b, not b's value (i.e. *(*a)=b's value). If the variable
b is set to a variable c (e.g. b=c) in the example, and the
variable a is set to the variable b as already described (past
or future, prior to instantiation), and c was set (i.e. c=2) to 60

the value 2 (past or future, prior to instantiation), then the
preferred embodiment requires three (3) instantiations of
variable a to get to the value assigned to variable c (e.g.
((*a)))=2). Instantiation of variable a (e.g. *a) preferably
corresponds to a level of "peeling back" through the hier- 65

archy of variable assignments if one exists. Alternative
embodiments will allow a single instantiation of a variable

mation.
>20080314 indicates "in effect if current date/time after

Mar. 14, 2008;
>=20080314 indicates "in effect if current date/time on or

after Mar. 14, 2008;
<200803142315 indicates "in effect if current date/time

prior to Mar. 14, 2008 at 11:15 PM;
<=200803142315 indicates "in effect if current date/time

on or prior to Mar. 14, 2008 at 11: 15 PM; and
=20080314231503 indicates "in effect if current date/time

matches Mar. 14, 2008 at 11:15:03 PM.
Date/time periods may have special leading characters, just
as described above (which are also periods). When using the
date/time format, the granulation of the date/time stamp is a
period of time.

20080314 indicates "in effect if current date/time during
Mar. 14, 2008;

Petitioners' Ex. 1001, Page 397 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
141

200803142315 indicates "in effect if current date/time
during Mar. 14, 2008 at 11: 15 PM (anytime during that
minute); and

142
old ones retain their values and assigned function, and
operate properly with new software releases (i.e. backwards
compatible). Thus, new constants (e.g. \Ibxall=privilege for
allowing all LBX interoperable features) for "atomic privi-20080314231503 indicates "in effect if current date/time

during Mar. 14, 2008 at 11:15:03 PM (any time during
that second).

5 lege for assignment" should be chosen carefully.

Date/time periods can also be specified with a range using a
colon such as 20080314:20080315 (Mar. 14, 2008 through
Mar. 15, 2008). A date/time period can be plural such as
20080314:20080315, 2008031712:2008031823 (i.e. mul
tiple periods) by using a comma.

FIG. 30C depicts a preferred embodiment BNF grammar
3034 for permissions 10 and groups (of data 8). The termi
nology "permissions" and "privileges" are used interchange
ably in this disclosure. However, the BNF grammar shows

Grants are used to organize privileges in desired catego
ries and/or sub-categories (e.g. organization name, team
name, person name, etc and then privileges for that particu
lar grant name). A grant can be used like a folder. Grants

10 provide an hierarchy of tree branch nodes while privileges
are leaf nodes of the grant privilege tree. There are many
types of privileges. Many are categorized for configuring
charter conditions and charter actions, and some can be

15
subsets of others, for example to have an overall category of
privileges as well as many subordinate privileges within that
category. This facilitates enabling/disabling an entire set
with a single configuration, or enabling/disabling certain
privileges within the set. This also prevents forcing a user to

a permission can provide one privilege, or a plurality of
privileges. There are a massive number (e.g. thousands) of
values for "atomic privilege for assignment" (i.e. privileges
that can be assigned from a grantor to a grantee) in grammar
3034. Few examples are discussed below. This disclosure
would be extremely lengthy to describe every privilege. The
reader can determine a minimum set of LBX privileges
(permissions) disclosed as: Any configurable privilege
granted by one identity to another identity that can limit,
enable, disable, delegate, or govern actions, feature(s), func- 25

tionality, behavior(s), or any subset(s) thereof which are
disclosed herein. Every feature disclosed herein, or feature
subset thereof, can be managed (granted and enforced) with

20 define Grants to define privilege categories. BNF grammar
3034 does not clarify the Privilege construct with a param
eter for further interpretation, however some embodiments
will incorporate an optional Parameters specification:

an associated privilege. Privileges may be used to "turn on"
a feature or "tum off" a feature, depending on various 30

embodiments.
There are two (2) main types of permissions (privileges):

semantic privileges which on their own enable LBX features
and functionality; and grammar specification privileges
which enable BNF grammar specifications. Semantic privi- 35

leges are named, anticipated by applications, and have a
semantic meaning to an application. Semantic privileges are
variables to applications whereby values at the time of an
application checking the variable(s) determine how the
application will behave. Semantic privileges can also have 40

implicit associated action(s). Grammar specification privi
leges are named, anticipated by charter parser implementa
tion, and indicate what is, and what is not, permitted when
specifying a charter. Grammar specification privileges are
variables to charter parsing whereby values at the time of 45

charter parse logic checking the variable(s) determine
whether or not the charter is valid (i.e. privileged) for
execution. Impersonation is not directly defined in the BNF
grammar of charters, and is therefore considered a semantic
privilege. 50

The "MS relevance descriptor" atomic element is prefer
ably a binary bit-mask accommodating all anticipated MS
types (see "system type"). Each system type is represented
by a bit-mask bit position wherein a bit set to 1 indicates the
MS type does participate with the privilege assigned, and a 55

bit set to 0 indicates the MS type does not participate with
the privilege assigned. This is useful when MSs do not have
equivalent capabilities thereby limiting interoperability for a
particular feature governed by a privilege. When the
optional MSRelevance construct is not specified with a 60

privilege, the preferred default is assumed relevance for all
MSs (i.e. =all bits set to 1). An alternate embodiment will
make the default relevant for no MSs (i.e. =all bits set to 0).
Privilege codes (i.e. syntactical constants equated to an
"atomic privilege for assignment" description) are prefer- 65

ably long lived and never changing so that as new LBX
privileges are introduced (i.e. new privileges supported), the

Privilege="atomic privilege for assignment"[Parameters]
[MS Relevance] [TimeSpec] [Description] [History] IVarin
stantiations

In such embodiments, Parameters preferably resolves to the
Parameters construct of FIG. 30E for clarifying how to apply
a particular privilege. Parameters, if used for privileges,
have meaning within the context of a particular privilege.
Similarly, Parameters may also be used at a Grant level for
applying qualifying information to a group of privileges:
Grant="grant name"[Parameters] AND

(Privileges [TimeSpec] [Description] [History] I Grants
[TimeSpec] [Description] [History] IVarinstantiations)

Some examples of semantic privileges (i.e. "atomic privi
lege for assignment") that can be granted from a grantor
identity (ID/IDType) to a grantee identity (ID/IDType)
include:

Impersonate: allows the grantee to perform MS adminis
tration of grantor (alternate embodiments will further
granulate to a plurality of impersonate privileges for
each possible type, or target, of administration);

LBX interoperable: allows overall LBX interoperability
(all or none);

View nearby status: enables determining if nearby each
other;

Identify (beacon) the MS with an alert-see FIG. SSA
discussion;

View whereabouts status of MS users which have privi
leges configured at MS (e.g. friends of the MS user)
see FIG. SSA discussion;

View whereabouts status: enables determining where
abouts (e.g. on a map);

View Reports: enables viewing statistics and/or reports;
This privilege is preferably set with a parameter for
which statistics and/or which reports; An alternate
embodiment will have individual privileges for each
type of statistic and/or report;

View Historical Report: enables viewing history informa
tion (e.g. routes); This privilege is preferably set with
a parameter for which history information; An alternate
embodiment will have individual privileges for each
type of history information;

Set Geofence arrival alert: allows an action for alerting
based on arrival to a geofenced area; This privilege may
be set with parameter(s) for which eligible area(s) to

Petitioners' Ex. 1001, Page 398 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
143

define geofences; An alternate embodiment will have
individual privileges for each area(s);

Set Geofence departure alert: allows an action for alerting
based on departure from a geofenced area; This privi
lege may be set with parameter(s) for which eligible 5

area(s) to define geofences; An alternate embodiment
will have individual privileges for each area(s);

Set nearby arrival alert: allows an action for alerting based
on arrival to being nearby; This privilege may be set
with a parameter for quantifying amount nearby; 10

Set nearby departure alert: allows an action for alerting
based on departure from being nearby; This privilege
may be set with a parameter for quantifying amount
nearby;

Set Geofence group arrival alert: allows an action for 15

alerting based on a group's arrival to a geofenced area;
This privilege may be set with parameter(s) for which
groups or MSs apply;

Set Geofence group departure alert: allows an action for
alerting based on a group's departure from a geofenced 20

area; This privilege may be set with parameter(s) for
which groups or MSs apply;

Set nearby group arrival alert: allows an action for alert
ing based on a group's arrival to being nearby; This
privilege may be set with parameter(s) for quantifying 25

amount nearby, and/or which groups or MSs apply;
Set nearby group departure alert: allows an action for

alerting based on a group's departure from being
nearby; This privilege may be set with parameter(s) for
quantifying amount nearby, and/or which groups or 30

MSs apply;
Set Situational Location (as defined in U.S. Pat. Nos.

6,456,234; 6,731,238; 7,187,997; U.S. PTO Publica
tion 2006/0022048 (Johnson)) arrival alert: allows an
action for alerting based on arrival to a situational 35

location; This privilege may be set with parameter(s)
for one or more situational location(s) defined;

Set Situational Location (as defined in U.S. Pat. Nos.
6,456,234; 6,731,238; 7,187,997; U.S. PTO Publica
tion 2006/0022048 (Johnson)) departure alert: allows 40

an action for alerting based on departure from a situ
ational location; This privilege may be set with a
parameter(s) for one or more situational location(s)
defined;

Set Situational Location (as defined in U.S. Pat. Nos. 45

6,456,234; 6,731,238; 7,187,997; U.S. PTO Publica
tion 2006/0022048 (Johnson)) group arrival alert:
allows an action for alerting based on a group's arrival
to a situational location; This privilege may be set with
parameter(s) for one or more situational location(s) 50

defined, and/or which groups or MSs apply;
Set Situational Location (as defined in U.S. Pat. Nos.

6,456,234; 6,731,238; 7,187,997; U.S. PTO Publica
tion 2006/0022048 (Johnson)) group departure alert:
allows an action for alerting based on a group's depar- 55

ture from a situational location; This privilege may be
set with parameter(s) for one or more situational loca
tion(s) defined, and/or which groups or MSs apply;

Allow action monitoring: allows condition for the moni
toring of certain action(s); This privilege may be set 60

with parameter(s) for which action(s) to be monitored;
Accept service routing: enables being a service routing

system; This privilege may be set with parameter(s) for
which service(s) to route;

Allow whereabouts monitoring (i.e. any WDR 1100 65

fields): allows condition for the monitoring of certain
whereabouts; This privilege may be set with

144
parameter(s) for which area(s) where whereabouts can
be monitored; Another embodiment will define a spe
cific privilege for each field and/or subfield of a WDR
1100 (e.g. speed monitoring (e.g. field ll00h));

Service informant utilization (includes derived subsets for
how to be used; e.g. log for me all successful detections
(or particular types) by the remote MS of interest);

Strip out WDR information inbound, outbound, and/or
prior to be inserting to queue 22: these types of privi
leges may also affect what charters can and cannot do;

Append WDR information inbound, outbound, and/or
prior to be inserting to queue 22: these types of privi
leges may also affect what charters can and cannot do;

Support certain types of service informant code process
ing, for example for carpool collaboration;

Participate in parking lot search functionality; this privi
lege may be set with parameter(s) for which parking
lots apply;

Be a candidate peer service target for any particular
application, types of applications, or all applications, or
for certain MSs, certain groups, or combinations of any
of these (parameter(s) may be specified);

Participate in LN-expanse as a master MS, for example to
maintain a database of historical MSs in the vicinity, or
a database of identity mappings (e.g. users to MSs;
parameter(s) may be specified);

Keep track of hotspot history;
Provide service propagation for any particular applica

tion, types of applications, or all applications, or for
certain MSs, certain groups, or combinations of any of
these (parameter(s) may be specified);

Enable automatic call forwarding functionality when
within proximity to a certain phone, for example to
route a wireless call to a nearby wired line phone; this
privilege may be set with parameter(s) for which
phones or phone numbers participate;

Enable configuration of deliverable content that can be
delivered in a peer to peer manner to a MS in the
vicinity, using any data type, size, location, or other
characteristic to be a unique privilege; parameter(s)
may be specified to qualify this;

Permit whereabouts to be queried in certain ways at a MS
for any of a variety of purposes (e.g. map term gen
eration);

Allow access to charters starters data, and permit a certain
subset of actions thereof (e.g. use of snippets, what can
be searched, etc);

Enable LBX interaction (e.g. via fields 1100k) for a
specific application or specific data for a specific appli
cation;

Enable particular paste command(s) involving particular
data;

Enable contextually creating charters involving applica
tions common to more than one MS user;

Enable MS profile (e.g. appfld.profile.contents) compari
sons;

Enforce known functionality (e.g. permitted values) for
data of application fields 11 OOk, in particular for data of
registered application sections commonly processed by
MSs;

Enable/disable service propagation, or a subset of func
tionality thereof;

Enable/disable a particular SPUI (e.g. parameter for SPUI
executable name);

Enable/disable a MS user's ability to send a targeted
transmission to another MS user;

Petitioners' Ex. 1001, Page 399 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
145

Enable/disable what data can or cannot be clipped and
pasted;

Enable/disable, and under what conditions, charters can
modify privileges or other charters;

Enable/disable various WDR based application record 5

sorting;
Allow being monitored on a vicinity monitor, perhaps

according to certain conditions;
Allow grantings to be assigned to other identifier, or

certain identifier(s), as a single unit (e.g. see resource 10

mapper);
Allow cross application addressing, perhaps for certain

applications and contexts;
A privilege for any functionality or feature disclosed

herein; 15

Any subordinate privilege of above, or of any function
ality or feature disclosed herein;

Any parent privilege of above, or of any functionality or
feature disclosed herein; and/or

Any privilege combination of above, or of any function- 20

ality or feature disclosed herein.
Granimar specification privileges can enable/disable permit
ted specifications of certain charter terms, conditions,
actions, or any other charter aspect. Some examples of
grammar specification privileges (i.e. "atomic privilege for 25

assignment") that can be granted from a grantor identity
(ID/IDType) to a grantee identity (ID/IDType) include:

Accept autodial #: allows an action for sending a speed
dial number;

Accept web link: allows an action for sending a hyper 30

link;
Accept email: allows an action for sending an email;
Accept SMS msg: allows an action for sending an SMS

message;
Accept content: allows an action for sending a content of 35

any type;
Accept broadcast email: allows an action for sending a

broadcast email;
Accept broadcast SMS msg: allows an action for sending

a broadcast SMS message; 40

Accept indicator: allows an action for sending an indica
tor;

Accept invocation: allows an action for invoking (option
ally with parameters for which executable and param
eters to it) an executable (_application, script, com- 45

mand file, or any other executable); Alternate
embodiments will have specific privileges for each type
of executable that may be invoked);

Accept file: allows an action for sending a file or direc-
tory; 50

Accept semaphore control: allows an action for setting or
clearing a semaphore; This privilege is preferably set
with a parameter for which semaphore and what to do
(set or clear);

Accept data control: allows an action for access, storing, 55

alerting, or discarding data (alternate embodiments will
further granulate to a plurality of data control privileges
for each data control type (access, store, alter, discard,
etc); This privilege may be set with parameter(s) for
which data and what to do; 60

Accept database control: allows an action for access,
storing, alerting, or discarding database data (alternate
embodiments will further granulate to a plurality of
data control privileges for each data control type (ac
cess, store, alter, discard, etc); This privilege may be set 65

with parameter(s) for which database data and what to
do;

146
Accept file control: allows an action for access, storing,

alerting, or discarding file/directory path data (alternate
embodiments will further granulate to a plurality of
data control privileges for each data control type (ac
cess, store, alter, discard, etc)); This privilege may be
set with parameter(s) for which directory or file path(s)
and what to do;

Allow profile match comparison: allows condition for the
monitoring of certain profile(s); This privilege may be
set with a parameter(s) for which profile(s) can be
monitored/compared; An alternate embodiment will
define a specific privilege for each ProfileMatch type;

Allow interest match comparison: allows condition for the
monitoring of interests; This privilege may be set with
parameter(s) for which interests can be monitored/
compared; An alternate embodiment will define a spe
cific privilege for each interest candidate;

Allow filters match comparison: allows condition for the
monitoring of filters; This privilege may be set with
parameter(s) for which filters can be monitored/com
pared; An alternate embodiment will define a specific
privilege for each filter candidate;

Allow movement monitoring: allows condition for the
monitoring of movement; This privilege may be set
with parameter(s) for quantifying how much move
ment, and/or how long for lack of movement (an
alternate embodiment will define distinct privileges for
each movement monitoring type);

Allow application use monitoring: allows condition for
the monitoring of application usage; This privilege may
be set with parameter(s) for specifying which applica
tion(s) to monitor, and/or how long for usage of the
application(s); Another embodiment specifies which
aspect of the application is to be monitored (e.g. data,
DB data, semaphore, thread/process invoke or termi
nate, file/ directory data, etc);

Allow invocation monitoring: allows an action for moni
toring application(s) used (optionally with parameter(s)
for which application/executable); Alternate embodi
ments will have specific privileges for each application
or executable of interest;

Allow application termination monitoring: allows condi
tion for monitoring application(s) terminated (option
ally with parameter(s) for which application/execut
able); Alternate embodiments will have specific
privileges for each application or executable of interest;

Allow file system monitoring: allows condition for moni
toring a file or directory; This privilege may be set with
parameter(s) for specifying which path(s) to monitor,
and/or what to monitor for, and how long for absence
or removal of the path(s);

Allow semaphore monitoring: allows condition for moni
toring a semaphore; This privilege may be set with
parameter(s) for specifying which semaphore(s) to
monitor, and/or what to monitor for (clear or set);

Allow data monitoring (file or directory): allows condi
tion for monitoring data; This privilege may be set with
parameter(s) for specifying which data to monitor,
and/or what value to monitor for (charter condition like
a debugger watch);

Allow data attribute monitoring (file or directory): allows
condition for monitoring data attribute(s); This privi
lege may be set with parameter(s) for specifying which
data attributes (e.g. chmod or attrib or extended attri
butes) to monitor, and/or what value to monitor for
(charter condition like a debugger watch);

Petitioners' Ex. 1001, Page 400 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
147

Allow database monitoring: allows condition for moni
toring database data; This privilege may be set with
parameter(s) for specifying which database data to
monitor, and/or what value to monitor for (like a
database trigger);

Allow sender monitor: allows condition for monitoring
sender information; This privilege may be set with
parameter(s) for specifying which sender address(es) to
monitor email or SMS messages from (may have
separate privileges for each type of distribution);

Allow recipient monitor: allows condition for monitoring
recipient information; This privilege may be set with
parameter(s) for specifying which recipient address(es)
to monitor email or SMS messages to (may have
separate privileges for each type of distribution);

Allow "modification" instead of "monitor"/"monitoring"
for each monitor/monitoring privilege described above;

Allow focused title bar use: allows using the focused title
bar for alerting;

10

15

Allow specifying map terms or certain types or forms of 20

map terms;
Allow specifying PointSet or any other Term construct;
Allow specifying AppTerm triggers or any aspect of

configuration thereof (charter types, which standard
ized MS applications can be configured, which cus- 25

tomized application can be configured, permitted App
Term condition terms, etc);

Permit local or remote charter or command execution;
Permit access to a pluggable interface, one provided by

another MS user at a MS, for example a dynamically 30

linked interface, or script;
Allow specifying profile operators, tags for compare, or

other profile permitted interrogation;
Enforce specific application fields and/or settings thereof

in fields 1100k of WDRs;
A privilege for any BNF grammar atomic command,

atomic operand, parameter(s), parameter type, atomic
operator, or underlying action performed in a charter
herein;

35

148
ments having the side affect of increasing, or decreasing, the
palette of available privileges for assignment. Privilege/
Permission embodiments include:

1) Administrated privileges are maintained and enforced
at the Grantor's MS. As privileged Grantee WDR
information is detected at the Grantor's MS, or as
Grantor WDR information is detected at the Grantor's
MS: the appropriately privileged Grantee is provided
with LBX application features at their (Grantee) MS in
accordance with the privileges granted;

2) Administrated privileges are maintained and enforced
at the Grantor's MS, but are also communicated to the
Grantee's MS for being used by the Grantee for infor
mative purposes. As privileged Grantee WDR infor
mation is detected at the Grantor's MS, or as Grantor
WDR information is detected at the Grantor's MS: the
appropriately privileged Grantee is provided with LBX
application features at their (Grantee) MS in accor-
dance with the privileges granted;

3) Administrated privileges are maintained at the Grant
or's MS for administration purpose, but are used for
governing features/processing at a Grantee MS. Privi
leges are appropriately communicated to a Grantee MS
for WDR information processing, such that as Grantor
WDR information is detected at the Grantee MS, the
Grantee is provided with LBX application features at
their (Grantee) MS in accordance with the privileges
granted; and/or

4) Privileges are stored at both the Grantor's MS and the
Grantee's MS for WDR information processing includ
ing any combination of#l through #3 above (i.e. WDR
information processing at each MS provides LBX
features benefiting the Grantor and/or Grantee).

5) See FIG. 49A discussions for some of the permission/
privilege assignment considerations between a Grantor
identity and a Grantee identity.

In an alternative embodiment, groups can be used to
handle groups of privileges as well as groups of IDs, so that
Groups/Group BNF constructs generically handle a collec-

Any subordinate privilege of above, or of any function
ality or feature disclosed herein;

Any parent privilege of above, or of any functionality or
feature disclosed herein; and/or

Any privilege combination of above, or of any function
ality or feature disclosed herein.

40 tion of things, regardless of the type of things, for example
using a qualifier like IDType. Grants and Groups have a
similar hierarchy. There may be no need to have separate
Grants/Grant BNF grammar definitions. The Groups/Group
constructs can be extended to handle Privileges in a similar

While the Grantor construct translates to the owner of the
permission configuration according to grammar 3034,
impersonation permits a user to take on the identity of a
Grantor for making a configuration. For example, a group by

45 manner. Groups/Group construct related changes may be
made to the BNF grammar, database tables and flowcharts
described below for consolidating collections ofIDs, groups
and privileges for properly carrying out and supporting

its very nature is a form of impersonation when a single user 50

of the group grants permissions from the group to another
identity. A user may also impersonate another user (if has the
privilege to do so) for making configurations. In an alter
native embodiment, grammar 3034 may include means for
identifying the owner of the permission(s) granted. Group 55

constructs provide means for collections of ID constructs,
for example for teams, departments, family, whatever is
selected for grouping by a name (atomic element "group
name"). The impersonation privilege should be delegated
very carefully in the preferred embodiment since the BNF 60

grammar does not carry owner information except through
a History construct use.

The Grantor of a privilege is the identity wanting to
convey a privilege to another identity (the Grantee). The
Grantee is the identity becoming privileged by administra- 65

tion of another identity (the Grantor). There are various
embodiments for maintaining privileges, some embodi-

groups and grants as disclosed.
FIGS. 30D through 30E depict a preferred embodiment

BNF grannnar 3068a through 3068b for charters. Charters
embody conditional events to be monitored and the actions
to cause when those events occur. Notice there is still a
Grantee and Grantor construct in charters, even in the face
of having privileges for governing the charters. Grantor and
Grantee constructs used in charters have to do with granting
the permission/privilege to enable charters at a particular
MS. Once they are enabled at a MS, permissions/privileges
of grammar 3034 may be used to govern how the charters
process.

It is important to note the context of terminology use
"Grantor" and "Grantee" appears in, since they are similarly
used in context of charters versus permissions. In both cases
there is an acceptance/authentication/configuration granted
by a Grantor to a Grantee. A permission Grantor grants a
privilege to a Grantee. A charter Grantor grants a privilege
to enable a Grantee's charters (may be at the mercy of

Petitioners' Ex. 1001, Page 401 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
149 150

charter processing at his (Grantee) MS, preferably in
accordance with privileges defined as described in #1
through #5 above; and/or

9) Charters are maintained at both the Grantor's MS and
the Grantee's MS for WDR information processing,
including any combination of#6 through #8 above (i.e.
WDR information processing at each MS provides
LBX features benefiting the Grantor and/or the
Grantee).

10) See FIG. 49B discussions for some of the charter
assignment considerations between a Grantee identity
and a Grantor identity.

Grammar 3068a "and" and "or" are atomic elements for
CondOp operators. In a syntactic embodiment, "and" and

privileges in the preferred embodiment). The Grantee con
struct in charters translates to the owner/creator/maintainer
identity of the charter configuration according to grammar
3068a and 3068b, and the Grantor construct translates to an
identity the Grantee has created the charter for, but does not 5

necessarily have the privilege to do so, or does not neces
sarily have the privilege for any subset of processing of the
charter. Privileges preferably govern whether charters are in
effect, and how they are in effect. An alternative embodiment
will activate (make in effect) a charter by granting it from 10

one identity to another as shown in grammar 3068a. A
charter consists of a conditional expression and can have an
action or plurality of actions which are associated with the
conditional expression. Upon evaluating the expression to

15 "or" may be special characters (e.g. &, I, respectively).
an actionable condition (e.g. evaluates to a Boolean true
result), the associated action(s) are invoked.

Impersonation permits a user to take on the identity of a
Grantee for making a configuration. For example, a group by
its very nature is a form of impersonation when a single user 20

of the group administrates charters for the group. A user may
also impersonate another user (if has the privilege to do so)
for making configurations. In an alternative embodiment,
grammar 3068a and 3068b may include means for identi
fying the owner of the charters administrated. The imper- 25

sonation privilege should be delegated very carefully in the
preferred embodiment since the BNF granimar does not
carry owner information except through a History construct
use.

The Grantee of a charter is the identity (e.g. creates and 30

owns the charter) wanting to have its charters processed for
another identity (the Grantor). The Grantor is the identity
targeted for processing the administrated charter(s) created
by the Grantee. The terminology "Grantor" and "Grantee"

35
will become reversed (to match privilege assignments) in an
embodiment which grants charters like privileges. There are
various embodiments for maintaining charters, some
embodiments having the side affect of increasing, or
decreasing, the palette of available charter processing 40

deployed. Charter embodiments include:
6) Administrated charters are stored at the Grantee's (the

administrator's) MS. As privilege providing Grantor
WDR information is detected at the Grantee's MS, the
Grantee is provided with LBX application charter pro- 45

cessing at his (Grantee) MS, preferably in accordance
with privileges defined as described in #1 through #5
above;

7) Administrated charters are maintained at the Grantee's
(the administrator's) MS, but are communicated to the 50

Grantor's MS for being used for informative purposes.
As privilege providing Grantor WDR information is
detected at the Grantee's MS, the Grantee is provided
with LBX application charter processing at his
(Grantee) MS, preferably in accordance with privileges 55

defined as described in #1 through #5 above;
8) Administrated charters are maintained at the Grantee's

MS for administration purpose, but are used for pro
cessing at the Grantor MS. Charters are appropriately
communicated to the Grantor MS for WDR informa- 60

tion processing, such that as Grantor WDR information
is detected at the Grantor MS, the Grantee is provided
with LBX application features for processing at the
Grantor's MS, preferably in accordance with privileges
defined as described in #1 through #5 above. Also, as 65

Grantee WDR information is detected at the Grantor's
MS, the Grantee is provided with LBX application

Grammar 3068a Value elaboration "atomic term" (RHS) is
an atomic element for a special type of term that can be used
in a condition specification, such as:

My MS location (e.g. \loc_my): preferred embodiment
resolves to field 1100c from the most recent WDR
which describes this MS (i.e. the MS of atomic term
evaluation processing); WTV may be used to determine
if this is of use (if not, may return a null, cause a failure
in a conditional match, or generate an error);

A specified MS, or group, mobile location (e.g.
\locByL_ -30.21,-97.2=location at the specified lati
tude and longitude (ensure no intervening blanks)):
preferred embodiment resolves to a specified location
comparable to a WDR field 1100c, not necessarily in
the same format or units used as field 1100c (i.e.
converted appropriately for a valid comparison when
used). There are many different formats and units that
can be specified here with a unique syntax. An eleva
tion (or altitude) may also be specified for a three
dimensional specification (e.g. \locByL_ -30.21,-97.2,
l0L=location 10 miles in elevation (or altitude); may
also be referred to as a situational location);

A specified MS, or group, situational location (e.g. \sl_ -
30.21,-97.2; 1050F=situational location at the speci
fied latitude, longitude and elevation in feet (ensure no
intervening blanks)): preferred embodiment resolves to
specified situational location comparable to applicable
WDR fields, not necessarily in the same format or units
used (i.e. converted appropriately for valid
comparison(s) when used). See U.S. Pat. No. 6,456,234
(Johnson) for the definition of a situational location that
can be specified. A reasonable syntax following the
leading escape character and "sl" prefix should be used;
this example assumes an anticipated order (lat, long,
elevation); One embodiment also assumes an order for
other situational location criteria wherein a semicolon
(;) delimits data (i.e. use ";" to show lack of data at
anticipated pos1t10n (e.g. \sl_ -30.21,-97.2;;;;56);
Another embodiment uses descriptors to indicate which
data is being described so any order can be specified
(e.g. \sl_lat=-30.21,lon=-97.2;elev=1050F). There are
many different formats, fields and units that can be
specified here with a unique syntax;

My current MS mobile location (e.g. \loc_my): same as
described above;

A current MS, or group, mobile location (e.g.
\locByID_Larry=location of MS with id Larry,
\locG_dept78=location of members of the group
dept78): preferred embodiment resolves to a location
associated with an identifier. Preferably, queue 22 is
accessed first for the most recent occurrence of a WDR
matching the identifier(s). An alternate embodiment

Petitioners' Ex. 1001, Page 402 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
151

additionally searches LBX history 30 if not found
elsewhere. In one embodiment, an averaged location is
made for a group identifier using locations of the
identifiers belonging to the group, otherwise a group
containing MSs with different locations (i.e. each indi- 5

vidual of the group compared for match) causes a false
condition when used in an expression, or alternatively
cause an error. This is preferably used to compare
locations of WDRs from a plurality of different MSs
without requiring a value to be surfaced back to the 10

expression reference;
A current MS, or group, situational location (e.g.

\s!ByID_Larry=situational location of MS with id
Larry, \sIByG_dept78=situational location of members
of the group dept78): preferred embodiment resolves to 15

a situational location associated with an identifier.
Preferably, queue 22 is accessed first for the most
recent occurrence of a WDR matching the identifier(s).
An alternate embodiment additionally searches LBX
history 30 if not found elsewhere. In one embodiment, 20

an averaged situational location is made for a group
identifier using locations of the identifiers belonging to
the group, otherwise a group containing MSs with
different locations causes a false condition when used
in an expression, or alternatively cause an error. This is 25

preferably used to compare situational locations of
WDRs from a plurality of different MSs without requir
ing a value to be surfaced back to the expression
reference;

A WDR with field(s) to search for directly from 30

queue 22 in form: \q_ref1=<criteria1>;_
ref2 =<criteria2 >; ... ;_ref,<criteria,> such that each ref,
is identical to the reference used in a WDRTerm
(e.g. _ref) for i>=l, and <criteria1> is a contextually
relevant expression for how to search for matching to 35

the particular referenced field(s);
A WDR with field(s) to search for directly from history 30

in form: \h_ref1 =<criteria1>; ref2 =<criteria2>; ... ;
ref,<criteria1> such that each ref, is identical to the
reference used in a WDRTerm (e.g. _ref) for i>=l, and 40

<criteria,> is a contextually relevant expression for
how to search for matching to the particular referenced
field(s);

Last application used (e.g. \appLast): preferably resolves
to an application reference (e.g. name) which can be 45

successfully compared to a MS operating system main
tained reference for the application (e.g. as maintained
to LBX history) that was last used by the MS user (e.g.
embodiments for last focused, or last used that had user
input directed to it). One embodiment implements only 50

known PRR applications using field 5300a and/or
5300b for the reference (See FIGS. 53 and SSA);

Last application context used (e.g. \appLastCtxt): prefer
ably resolves to an application context reference which
can be successfully compared to a MS operating system 55

context maintained for comparison to LBX history.
One embodiment implements only known PRR appli
cations using field 5300a and/or 5300b for the appli
cation reference (See FIGS. 53 and SSA), and saved
user input for the context of when the application was 60

focused. Another embodiment incorporates the system
and methods of U.S. Pat. No. 5,692,143 ("Method and
system for recalling desktop states in a data processing
system", Johnson et al) to maintain application contexts
to history; 65

Application in use (e.g. \appLive): preferably resolves to
an application reference (e.g. name) which can be

152
successfully compared to a MS operating system main
tained reference for the application (e.g. as maintained
to LBX history) that may or may not be running
(active) on the MS. One embodiment implements only
known PRR applications using field 5300a and/or
5300b for the reference (See FIGS. 53 and SSA);

Application context in use (e.g. \appLiveCtxt): preferably
resolves to an application context reference which can
be successfully compared to a MS operating system
context maintained for comparison. One embodiment
implements only known PRR applications using field
5300a and/or 5300b for the application reference (See
FIGS. 53 and SSA), and saved user input for the current
context of the application (e.g. maintained to LBX
history). Another embodiment incorporates the system
and methods of U.S. Pat. No. 5,692,143 ("Method and
system for recalling desktop states in a data processing
system", Johnson et al) to maintain application con
texts;

Application active (e.g. \appLive): same as application in
use above;

Application context active (e.g. \appLiveCtxt): same as
application context in use above;

Current MS system date/time (e.g. \timestamp); prefer
ably resolves to the MS date/time from the MS system
clock interface for a current date/time stamp;

Particular LBX maintained statistical value (e.g.
\st_statisticName wherein statisticName is the name of
the statistic): preferably resolves to the referenced
statistic name of statistics 14. There are potentially
hundreds of statistics maintained for the MS;

MS ID of MS hosting atomic term (e.g. \thisMS; alternate
embodiments support ID and IDType grammar rules):
preferably resolves to the identifier of the MS where the
atomic term is being resolved, and the context of use
may cause a conversion, broader consideration, or use
of an associated ID (i.e. for different IDType) for proper
MS ID IDType comparison;

Appropriate MS ID type/format of MS hosting atomic
term (e.g. \thisMS_type): preferably resolves to the
identifier of the MS in the specified explicit type (i.e.
"type") where the atomic term is being resolved (e.g.
\thisMS_email, \thisMS_userid, \thisMS_serno, etc
(e.g. using a field appfld.source.id.X));

Most current WDR field of \thisMS (e.g. \fldname);
fldname is identical to WDR in-process field names
which can reference any field, subfield, set, subset, or
derived data/information of a WDR in process (i.e. _
fldname, _I_fldname, _O_fldname). The difference
here is that the most recent WDR (e.g. of queue 22) for
\thisMS is accessed, rather than an in-process WDR.
The leading backslash indicates to reference the most
recent WDR for \thisMS. In some embodiments, the
WTV is accessed and an error is produced for \fldname
references that reference stale WDR information; and/
or

A partial or full address (e.g. \zip_75022=zip code,
\state_TX=two character state code,
\country_ US=character(s) country code,
\mapsco_ 458A=MAPSCO grid identifier,
\address_"1201 Jamison St., Valley View, MN"
wherein double quotes can be used to handle significant
blank characters, \city _Dallas=city, etc). There are
many embodiments for syntactically representing a
partial or full address, and ambiguous, un-resolvable,
or incomparable addresses should cause an error (e.g.
force False condition to prevent charter action from

Petitioners' Ex. 1001, Page 403 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
153

running, and log to history) for notifying of an issue;
Atomic terms are automatically converted in context of
condition/expression use when performing a compare
(e.g. it is legal to compare an address with a latitude and
longitude and range thereof to see if the same location). 5

Appropriate geocoding and location conversion data or
tables is used. Preferably, the conversion data is locally
maintained, but may be accessed remotely when
needed, for example through a propagated service.

Preferably, a convenient syntax using a leading escape 10

character refers to an atomic term (e.g. \loc_my=My MS
location). An atomic term may be clarified with a time
specification (period(s), specific time(s), etc) by qualifying
an appropriate atomic term, for example with a "(spec)"

15
syntax after the backslash (e.g. \(20090220100239.8)st_O
SThreads for total number of threads executing in MS at
particular time). When the time specification portion of an
atomic term is determined to not be appropriate, preferably
an error is presented to prevent the invalid qualified atomic 20

term from being used. Alternatively, an error can be pro
vided when processed, or the time specification may be
ignored. When used in conjunction with other conditions, an
"atomic term" provides extraordinary location based expres
sions. Other Grammar 3068a, and 3068b Data construct, 25

atomic elements are described here: "Any WDR 1100 field,
or any subset thereof' is self explanatory; "Any Application
data field, or any subset thereof' is an atomic element for
any semaphore, data, database data, file/directory data, or
any other reference-able data of a specified application; 30

"number" is any number; "text string" is any text string;
"True" is a Boolean representing true; "False" is a Boolean
representing false; "numeric(s)" is a set (may be ordered
(e.g. left to right)) of formatted binary data; "typed memory

35
pointer" is a pointer to memory location (of any memory or
storage described for FIG. lD) containing a known type of
data and length; "typed memory value" is a memory location
(of any memory or storage described for FIG. lD) contain
ing a known type of data and length; "typed file path" is a 40

file path location (of any memory or storage described for
FIG. lD) containing a known type of data and length; "typed
file path and offset" is a file path location (of any memory
or storage described for FIG. lD) and an offset therein (e.g.
byte offset) for pointing to a known type of data and length; 45

"typed DB qualifier" is a database data path (of any memory
or storage described for FIG. lD) for qualifying data in a
database (e.g. with a query, with a identity/table/row/colunm
qualifier, or other reasonable database qualifying method).

WDRTerm provides means for setting up conditions on 50

any WDR 1100 field or subfield that is detected for WDR(s):
Inserted by FIG. 2F processing (e.g. received from other

154
Yet another embodiment will allow combination operators
for qualifying a combination of any three MS code paths to
check.

AppTerm provides means for setting up conditions on
data of any application of an MS, for example to trigger an
action based on a particular active call during whereabouts
processing. A few AppTerm examples are any of the fol
lowing:

Any phone application data record data (e.g. incoming
call(s), outgoing call(s), active call(s), caller id, call
attributes, etc)

Any email/SMS message application data record data
(e.g. mailbox attributes, message last sent, message last
received, message being composed, last type of mes
sage sent, last type of message received, attribute(s) of
any message(s), etc)

Any address book application data record data (e.g.
group(s) defined, friend(s) defined, entry(s) defined and
any data associated with those, etc)

Any calendar application data record data (e.g. last sched
uled entry, most recently removed entry, number of
entries per time period(s), last scheduled event attendee
(s), number of scheduled events for specified qualifier,
next forthcoming appointment, etc)

Any map application data record data; and/or
Any other application data record data of a MS.
PointSet provides means for defining a set of points for a

variety of applications. Points of a PointSet may describe a
single point (i.e. one point record), a line segment, a poly
gon, a point with radius, a two dimensional area, a three
dimensional area in space, or any other multi-dimensional
region. An optional dimension qualifier (i.e. 2D or 3D;
default=2D) specifies whether or not the set of points are for
two dimensional space or three dimensional space. Alternate
embodiments support higher dimensions for certain appli
cations, for example to describe another universe dimension
as straightforward as time, or a situational location (e.g.
extending a point record definition), or as complex as a
string theory dimension. If point records can be specified for
the dimension qualifier(s), any dimension(s) may be used.
An optional point type qualifier (i.e. Geo, Cartesian or Polar;
default=Geo) specifies the type of points in the set wherein
each point is a record of appropriate data. Alternate embodi
ments support other type qualifiers for certain applications,
for example to describe lines, arcs, or regions containing an
infinite set of points (e.g. extending a point record definition
for describing a collection of points), or to specify different
models (e.g. Geodetic, Polar Cylindrical, Polar Spherical,
etc). When a "text string" format is used for the PointSet, it
is preferably null terminated (e.g. null included in ANSI
encoded length) and an appropriate syntax is used to identify
point record components (e.g. comma), and to delimit point
records (e.g. semicolon) in the set of points (e.g. "+33.27,-
97.4; +34.1,-97.3; +34.13,-97.12;" specifies a two dimen-

MSs, or created by the hosting MS); and/or
Sent/communicated outbound from a MS; and/or
Received/communicated inbound to a MS.
An alternate BNF grammar embodiment qualifies the

"Any WDR 1100 field, or any subset thereof' atomic
element with an operator for which of the three MS code
paths to check WDR field conditions (e.g. Operators of
"OUTBOUND" and "INBOUND", denoted by perhaps a
syntactical O and I, respectively). Absence of an operator
can be assumed for checking WDRs on FIG. 2F insert
processing. Such embodiments result in a BNF grammar
WDRTerm definition of:

55 sional Geo polygon PointSet (i.e. point records of latitude,
longitude decimal degree pairs) and "3D/Geo; +33.27,-
97.4, 4500F; +34.1,-97.3, 1 L; +34.13,-97.21, 2000Y;
+34.3,-97.1, 2000Y; +34.89,-97.08, 2000Y" specifies a
three dimensional Geo polygon solid region in space Point-

WDRTerm=[WDRTermOp]"Any WDR 1100 field, or any
subset thereof' [Description][History] IVarinstantiate

WDRTermOp="inbound"l "outbound"

60 Set (i.e. point records of latitude, longitude,altitude decimal
degree tuples)). A single point may have an additional
specification for a radius around the point (e.g. "+33.27,-
97.4,Rl 000F") as indicated with the "R" prefix. The R prefix
solves ambiguity between a 3D specification for a point at an

65 elevation/altitude and a point with a spherical radius. Syn
tactical unit qualifiers may, or may not, be supported for any
of the point record components (e.g. 4500F=4500 feet, IL= 1

Petitioners' Ex. 1001, Page 404 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
155

Mile, 2000Y=2000 Yards, latitude/longitude specified in
desirable way (e.g. 33.27N,97.4W;), etc). A numeric(s)
(binary) format will cause each PointSet record component
to occupy an anticipated number of bits/bytes along with an
overall length describing all bytes of the PointSet. Numeric 5

indication (e.g. bit(s)) is used to indicate whether a radius is
specified for a single point versus an altitude/elevation in a
3D specification. In some embodiments, the user interfaces

156
specifies 2D or 3D at block 9022. When the user specifies
the requested information, block 9024 automatically gener
ates a unique map term name (e.g. mt_035), preferably using
a round-robin sequence number and ensuring no current map
terms currently have the name in use, and then continues to
block 9026 where the map term information is saved to a
new record 9080. Block 9026 saves the user specifications
as a PointSet which can be referenced by the name. The user
may have specified only a single point for a location, or a to convenient units which are converted to a standard form

of units in the PointSet and converted when necessary. 10 single point and radius around it for a location when arriving
to block 9024 from block 9022. Block 9026 continues to
block 9028.

The Data construct is used for either string or binary
specification. In a preferred embodiment string syntax, a
Point Set is encoded like an atomic term with a leading
backslash and anticipated characters (e.g. \PS_ ...) for
proper conditional evaluation (e.g. at blocks 6122 and 15

6154). In another embodiment, a Point Set is treated as a
"special term" (e.g. atomic term) and gets replaced (e.g. at
blocks 6118 and 6152) with an internalized form for proper
condition evaluation. In some embodiments, a Point Set is
encoded with a unique syntax (e.g. PS: ...). A PointSet is 20

useful for specifying two dimensional polygons, or point
delimited regions in three dimensional space. Well known
polygon implementation techniques may affect how to inter
nalize a PointSet specification, for example to determine
whether or not a MS is relevant (i.e. in, not in, at, not at, was 25

in, was not in, was at, was not at, in vicinity of, not in
vicinity of, newly in vicinity of, not newly in vicinity of,
recently in vicinity of, not recently in vicinity of, departed
from, not departed from, recently departed from, not
recently departed from, etc) using processing of"Determin- 30

ing If A Point Lies On The Interior Of A Polygon" published
November 1987 by Paul Bourke.

With reference now to FIG. 90A, depicted is a flowchart
for a preferred embodiment for processing the request to
specify a map term. A map term is a name which resolves to 35

a point, point and radius or set of points (see PointSet
described above). There are a variety of MS applications
which can be used to create a point, point and radius, or
PointSet thereby preventing a tedious user encoding. The

With reference now to FIG. 90B, depicted is a preferred
embodiment of a Map Term Data Record (MTDR) 9080 for
discussing operations of the present disclosure, derived from
the granrmar of FIGS. 30A through 30E. A MTDR 9080
contains a name field 9080a which can be referenced in an
expression or condition with a"?" prefix (e.g. ?mt_035), a
type field 9080b which indicates the type of PointSet for
interpretation of field 9080c, and the PointSet encoding field
9080c. Encoding field 9080c may be a binary or textual
encoding depending on the embodiment. A description field
9080d may be included for user documentation of the map
term. A MS may enforce a maximum number of records
9080. Records 9080 may be used to save waypoints as well
known to those skilled in the art.

With reference back to FIG. 90A, block 9028 accesses all
records 9080, continues to block 9030 for producing a
scrollable list of map term names, and continues to block
9032 where processing waits for a user action in response to
the map term list. Block 9032 continues to block 9034 upon
a user action. Block 9030 preferably highlights a newly
created map term from FIG. 90A processing up to the point
of processing at block 9030. The user can highlight which
map term to perform an action on as handled by block 9052.

If block 9034 determines the user selected to delete a
particular map term from the list, then block 9036 deletes it
from records 9080 and processing continues back to block
9028 for a list refresh. If block 9034 determines the user did

user sets up a map term with a convenient user interface (e.g. 40 not select to delete a particular map term, processing con
FIG. 90A), gives it a name, and can then reference it in tinues to block 9038. If block 9038 determines the user
expressions by the map term name (using a ? prefix to the
name to indicate its is a map term). Otherwise, the user may
be faced with specifying a challenging encoding (e.g. com

selected to rename a particular map term from the list (e.g.
the newly created map term with a default name), then block
9040 interfaces with the user for a valid name and saves it

plex text string) for an expression.
Map term specification processing begins at block 9002

upon a user action to create a map term, continues to block
9004 where the user is prompted for how to specify the map
term, and waits at block 9006 for the user's response. Block
9006 continues to block 9008 when the user responds.

45 to the particular record 9080 field 9080a. A valid name is
unique in all records 9080. The name should be descriptive
so that the user knows why the map term was created.
Thereafter, processing continues back to block 9028 for a list
refresh. If block 9038 determines the user did not select to

50 rename a particular map term, processing continues to block
9042. If block 9042 determines the user selected to add a If block 9008 determines the user selected to use the

user's current location (i.e. current location of the MS), then
block 9010 accesses queue 22 for a current and most recent
MS location and makes a point (may make point and default
radius, or set of points in alternate embodiments) using the
location information if a reasonably current location was
found. Thereafter, if block 9012 determines there was no
current (i.e. reasonably recent) location found, then block
9014 provides the user with an error, block 9016 appropri
ately terminates the FIG. 90A user interface, and FIG. 90A 60

processing terminates at block 9018. Block 9014 preferably
requires the user to acknowledge the error. If block 9012
determines a current location was found, then block 9020
prompts the user for a radius, and block 9022 interfaces with
the user for specification of a valid radius. A three dimen- 65

sional embodiment additionally prompts the user for 2D or
3D for the point set to be created, and the user additionally

new map term, then processing continues back to block
9004, otherwise processing continues to block 9044. If block
9044 determines the user selected to display a particular map

55 term on a map, then block 9046 displays the map term on a
suitable map, block 9048 interfaces with the user for navi
gating and interfacing to the map, and processing continues
back to block 9028 for a list refresh when the user is done
at block 9048. The map term location information of the
particular record 9080 is preferably used at block 9046 to
provide a best map at a best zoom. Block 9048 preferably
supports any kind of map navigation (like blocks 9062
through 9068). If block 9044 determines the user did not
select to display a map term on a map, processing continues
to block 9050. If block 9050 determines the user selected to
exit list processing, then block 9016 terminates user inter
face processing, and FIG. 90A processing terminates at

Petitioners' Ex. 1001, Page 405 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
157

block 9018, otherwise block 9052 handles any other user
actions detected at block 9032 and continues back to block
9032.

Referring back to block 9008, if it is determined that the
user did not select to specify a map term with the current MS
location, processing continues to block 9060. If block 9060
determines the user selected to use a map to specify a map
term, then processing continues to block 9062, otherwise
any other actions leaving block 9006 are handled appropri
ately at block 9074 and processing continues back to block
9006.

In some embodiments, an action for processing blocks
9028 through 9050 is available to the user at block 9004 and
detected at block 9006 for being processed (e.g. at block
9074). This allows a user to browse map terms without
creating one first. While a map term should be named for
being easy to remember, there may be many defined. Main
taining existing map terms may be provided through a
separate user interface, or a user may use a database query
manager in a SQL database embodiment to manage MTDRs
9080 directly. In another embodiment, a user may specify at
block 9004 to use the last known location or current location
of another MS for map term creation, in which case pro
cessing at block 9074 includes continuing to a block 9010A
(like block 9010) for access to queue 22 (and/or possibly
LBX history 30 in some embodiments) for another MS
location. Processing already described for block 9010 would
involve another MS location in the block 9010A with
processing of blocks 9012 and thereafter for that location.
Other embodiments allow a user to specify any search
criteria at block 9004 for finding any WDR at queue 22
and/or from history 30, regardless of the originator, to then
have the associated location used for specifying a map term.

Block 9062 establishes latitude and longitude landmarks
upon the selected map (map is defaulted on first encounter
of block 9062 from block 9060) and associates correspond
ing x and y pixels, preferably with the leftmost bottom
corner at the Cartesian coordinate system origin, for
example the leftmost top corner (e.g. (x,y)=(0,Y)), rightmost
top corner (e.g. (x,y)=(X,Y)), rightmost bottom corner (e.g.
(x,y)=(X,0)), and leftmost bottom corner (e.g. (x,y)=(0,0))
of a rectangular map graphic. Other embodiments may use
a different system. Each map graphic is preferably stored
with the 4 corners being a well known latitude and longi
tude, along with a vertical and horizontal curvature factor. In
cases where humans have traveled to other planets (also
moons or any other body in space) with MS use, associated
planetary maps (parent map selectable) will contain appli
cable latitude and longitude coordinates with relative cur
vature factors depending on the particular body in space.

The map graphics are preferably small enough in area, yet
large enough in display, to avoid too much skewing of
latitude and longitude calculations based on points a user
selects in the map relative to the four well known corners.
Latitude and longitude considers earth curvature wherein
one embodiment of map selection may not. However, other
embodiments will use curvature factors relative to where
map points are selected.

Thereafter, block 9064 presents the selected (or defaulted)
map to the user, and the user navigates the map and
interfaces to the map at block 9066 until a certain action is
invoked. Thereafter, if block 9068 determines the user
selected to display a descending geographical map (map that
drills down into a territory on the current map), or ascending
map (map that covers more territory including the current
map), then processing continues back to block 9062 for the
desired map initialization. Convenient map hierarchy tra-

158
versa! is provided for zooming in or out. Panning may also
be provided at block 9066 which will access other maps for
display before returning to block 9062 for subsequent pro
cessing, as determined by action subsequent to block 9066.

5 The user can traverse the map hierarchy in any direction for
location specification.

If block 9068 determines the user did want a descending
or ascending map, then processing continues to block 9070.
If block 9070 determines the user completed location speci-

lO fications (e.g. a point, circle (point with radius), rectangle, or
polygon), then processing continues to block 9072, other
wise processing continues back to block 9066. Block 9066
is intended for the user to specify a point, circle (point with

15
radius), rectangle, or polygon on a map for convenient
automated location information specification. The user
makes selections with a cursor for a point, circle, rectangle,
or polygon. Block 9072 scales the specified points (point,
center of circle (with radius), 4 rectangle corners, polygon

20 sequence of points) according to pixel locations for deriving
the corresponding latitude(s) and longitude(s) as determined
relative to the map well known 4 corners and any curvature
skewing information. Processing then continues to block
9024 already described above. When block 9024/9026 is

25 arrived to after block 9072, block 9026 saves the user
specifications to a new record 9080 for a point, point with
radius, or set of points (i.e. PointSet).

Alternate embodiments to FIGS. 90A and 90B will enable
specification of certain atomic terms for convenient refer-

30 ence by name, for example situational locations. In such
embodiments, the user specifies additional information (e.g.
conditions) to clarify the location to a situational location. In
other embodiments, any Expression, Condition, Term, or
other charter portion may be specified with a map term so

35 that the reference (e.g. ?refname) is a way to substitute an
encoding that was conveniently configured as a map term in
advance of use. For example, a user may select on a map
another MS user and have any of a variety of associated
terms (e.g. atomic term \locByID_Larry) conveniently

40 specified for the map term which corresponds to the MS
user. Various mathematical models can be used to achieve
high accuracy on deriving user selected pixels on maps to
precise location coordinates. Some map embodiments of
blocks 9062 through 9068 will support selecting, panning,

45 and navigating MAPSCO maps, zip codes, and other map
means for specifying a location. In such embodiments, an
appropriate PointSet is generated for the user's specification.

With reference now to FIG. 30E, grammar 3068b com
pletes definition of grammar rules for charters. The Invoca-

50 tion construct elaborates to any of a variety of executables,
with or without parameters, including Dynamic Link
Library (DLL) interfaces (e.g. function), post-compile
linked interfaces (e.g. function), scripts, batch files, com
mand files, or any other executable. The invoked interface

55 should return a value, preferably a Boolean (true or false),
otherwise one will preferably be determined or defaulted for
it. The "optional params" may include any variety of the
Parameter construct, and may also include any special term
or expression that evaluates to: a) any variety of the Param-

60 eter construct; or b) any variety of data acceptable to the
invoked interface. The "optional params" may also include
other invocations which provide at least one return data
providing a data parameter to the hosting Invocation. This
allows nesting of invocations for bubbling back parameter

65 values to the next outermost invocation. Expressions in
"optional parameters" may include arithmetic operations,
string operations, formatting operations, or any other opera-

Petitioners' Ex. 1001, Page 406 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
159

tion involving evaluation to at least one value, preferably
with a stack based elaboration.

160
: recently in vicinity of (spec=time period (e.g. SH=in

last 8 hours), or specific time);
The Op construct contains atomic elements (called atomic

operators) for certain operators used for terms to specify
conditions. In syntactical embodiments, each atomic opera- 5

tor may be clarified with a not modifier (i.e. !). For example,
"equal to" is"=" and "not equal to" is"!=". Those skilled in
the art recognize which atomic operator is contextually
appropriate for which applicable terms (see BNF grammar
3068a). There are many reasonable syntactical embodiments 10

for atomic operators, with at least:

(spec)! $(range)
: not recently in vicinity of (spec=time period (e.g.

SH=in last 8 hours), or specific time);
(spec)$$(range)

: recently departed from vicinity of (spec=time period
(e.g. 5M=in last 5 minutes), or specific time); and

(spec)! $$(range)
: not recently departed from vicinity of (spec=time

period (e.g. 5M=in last 5 minutes), or specific time).
=: equal to;
!=: not equal to;
>: greater than;
!>: not greater than;
>=: greater than or equal to;
!>=: not greater than or equal to;
<: less than;
!<: not less than;
<=: less than or equal to;
!<=: not less than or equal to;
': in (e.g. LHS point in a RHS polygon);
!': not in (e.g. LHS line outside of a RHS circle);
": was in (e.g. searches queue 22 and LBX history 30);
!": was not in;
>>: Term LHS (Left Hand Side) "contains" Term RHS

(Right Hand Side);
<<: Term RHS "contains" Term LHS;
@: at (e.g. location at a specified address (e.g. city, state,

Values for "range" above can be any reasonable units such
as 3K implies 3 Kilometers, 3M implies 3 Meters, 3L
implies 3 Miles, 3F implies 3 Feet, etc. Values for "spec"

15 above can be any reasonable time specification as described
for TimeSpec (FIG. 30B) and/or using qualifiers like
"range" such as 3 W implies 3 Weeks, 3D implies 3 Days,
3H implies 3 Hours, 3M implies 3 Minutes, etc.

Resolving of conditions using atomic operators involves
20 evaluating conditions (BNF granimar constructs) and addi

tionally accessing similar data of LBX history 30 in some
preferred embodiments. Atomic operator validation errors
should result when inappropriately used.

Example syntactical embodiments of the "atomic profile
25 match operator" atomic element include:

#: number of profile matches;
%: percentage of profile matches;

zip code, country, MAPSCO grid reference, etc, com- 30

binations thereof));

#(tag(s)): number of profile tag section matches (e.g.
#(interests) compares one profile tag "interests"); and

% (tag(s)): percentage of profile tag section matches (e.g.
% (interest,activities) compares a plurality of profile
tags ("interests" and "activities"). !@: not at;

@@: was at;
!@@: was not at;
#: cached index;
<E>: East of (LHS east of RHS (e.g. PointSet specified

for point, line, area, polygon, circle, etc));
<W>: West of;
<N>: North of;
<S>: South of;
$(range): in vicinity of (range=distance (e.g. lOF=l0

Feet));
!$(range): not in vicinity of (range=distance (e.g. lL=l

Mile));
>$(range): newly in vicinity of (causes access to only

queue 22 so pruning of queue 22 enforces a system
default time window; Alternatively, if queue 22 main
tains a long trailing history, then a system default
trailing time can be assumed when searching queue 22
to check if MS detected prior to be within range);

!>$(range): not newly in vicinity of;
(spec)>$(range)

: newly in vicinity of according to a time specification
(i.e. time spec can be period (e.g. 15M=in last 15
Minutes), or specific time);

(spec)!>$(range)
: not newly in vicinity of according to a time specifi-

cation;
$>(range)

: departed from vicinity of (causes access to only queue
22 so pruning of queue 22 enforces a system default
time window; Alternatively, if queue 22 maintains a
long trailing history, then a system default trailing
time can be assumed when searching queue 22 to
check if MS detected prior to be within range);

!$>(range): not departed from vicinity of;
(spec)$(range)

In one embodiment of profiles maintained at MSs, a LBX
singles/dating application maintains a MS profile for user's

35 interests, tastes, likes, dislikes, etc. The ProfileMatch opera
tors enable comparing user profiles under a variety of
conditions, for example to cause an action of alerting a user
that a person of interest is nearby. See FIGS. 77 and 78 for
other profile information. In some embodiments, the quali-

40 fiers of the atomic profile match operators can be results of
an evaluated expression. For example, an expression which
results in a string can be used to specify a tag list (e.g.
("interests," && *var2) wherein the var2 variable elaborates
to a text string). In another example, the file for comparison

45 may be the result of an expression (e.g. *path && *fname).
Terms of Expressions/Conditions can themselves be expres
sions which elaborate to a particular term for contextual use.
A preferred embodiment performs automatic typecasting
when necessary to promote comparisons of condition Terms.

50 Appropriate operator precedence, and use of parenthesis to
override implemented precedence, is incorporated to ensure
no ambiguity across expressions and operators.

Atomic operators are context sensitive and take on their
meaning in context to terms (i.e. BNF Grammar Term) they

55 are used with (e.g. atomic operator evaluation may include
access to local or remote geo-coding conversion tables to
resolve locations in appropriate terms or format for com
parisons and other processing). An alternate embodiment
incorporates new appropriate atomic operators for use as

60 CondOp operators, provided the result of the condition is a
Boolean (e.g. term >=term results in a true or false). Also,
while a syntactical form of parenthesis is not explicitly
shown in the BNF grammar, the Conditions constructs
explicitly defines how to make complex expressions with

65 multiple conditions. Using parenthesis is one preferred
syntactical embodiment for carrying out the Conditions
construct. The intention of the BNF grammar is to end up

Petitioners' Ex. 1001, Page 407 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
161 162

with any reasonable conditional expression for evaluating to
a Boolean True or False. Complex expression embodiments
involving any conceivable operators, terms, order of evalu
ation (e.g. as syntactically represented with parentheses),
and other arithmetic similarities, are certainly within the 5

spirit and scope of this disclosure.

action2(... parameters ...), ... parameter(s)), and action2
may include returning value(s) from its parameters (which
are actions).

Wildcarding is of value for broader specifications in a
single specification. Wildcards may be used for BNF gram
mar specification wherever possible to broaden the scope of
a particular specification (e.g. Condition, TimeSpec, etc). BNF grammar terms are to cover expressions containing

conditions involving WDR fields (WDRTerm), situational
locations, geofences (i.e. a geographic boundary identifying
an area or space), two dimensional and three dimensional 10

areas, two dimensional and three dimensional space, point in

FIGS. 31A through 31E depict a preferred embodiment
set of command and operand candidates for Action Data
Records (ADRs) (e.g. FIG. 37B) facilitating the discussing
of associated parameters (e.g. FIG. 37C) of the AD Rs of the
present disclosure. Preferably, there are granimar specifica
tion privileges for governing every aspect of charters. Com
mands (atomic commands), operands (atomic operands),

an area, point in space, movement amounts, movement
distances, movement activity, MS IDs, MS group IDs,
current mobile locations, past mobile locations, future
mobile locations, nearness, distantness, newly near, newly
afar, activities at locations (past, present, future), applica
tions and context thereof in use at locations (past, present,
future), etc. There are many various embodiments for spe
cific supported operators used to provide interpretation to
the terms. Certain operators, terms, and processing is pre
sented for explanation and is in no way meant to limit the
many other expression (BNF Granimar Expression) embodi
ments carrying the spirit of the disclosure.

Terms (e.g. atomic terms, WDRTerms, etc) may or may
not be case sensitive, and term case sensitivity may or may
not be enforced. Regardless, users can be consistent when
using in environments where they are not enforced to be case
sensitive.

The Command construct elaborates to atomic commands.
The "atomic command" atomic element is a list of supported
commands such as those found in the colunm headings of
FIGS. 31A through 31E table (see discussions for FIGS.
31A through 31E). There are many commands, some popu
lar commands being shown. The Operand construct elabo
rates to atomic operands. The "atomic operand" atomic
element is a list of supported operands (data processing
system objects) such as those found in the row headings of
FIGS. 31A through 31E table (see discussions for FIGS.
31A through 31E). There are many operands, some popular
operands being shown. For each command and operand
combination, there may be anticipated parameters. The
command and operand pair indicates how to interpret and
process the parameters.

Constructs (e.g. Parameter, WDRTerm, AppTerm, Value,
PointSet, Data, etc) are appropriately interpreted within
context of their usage. An optional time specification is
made available when specifying charters (i.e. when charter
is in effect), expressions (i.e. a plurality of conditions (e.g.
with Conditions within Expressions construct)), a particular
condition (e.g. with Condition elaborations within Condition
construct), and actions (e.g. with Action elaborations within
Action construct). One embodiment supports multiple Host
specifications for a particular action. Some embodiments
allow an Invocation to include invocations as parameters in
a recursive manner so as to "bubble up" a resulting Boolean
(e.g. fcn1(2, fcn2(pl, x, 45), 10) such that fcn2 may also
have invocations for parameters. The conventional inside
out evaluation order is implemented. Other embodiments
support various types of invocations which contribute to the
overall invocation result returned.

In alternate embodiments, an action can return a return
code, for example to convey success, failure, or some other
value(s) back to the point of performing the action. Such
embodiments may support nesting of returned values in
BNF grammar Parameters so as to affect the overall pro
cessing of actions. For example: actionl(parameter(s), ... ,

15 operators (atomic operators and CondOp), parameters (Pa
rameter), associated conditions (Condition and CondOp),
terms (Term), actions thereof (Action), associated data types
thereof (Data), affected identities thereof (ID/IDType), and
any other charter specification aspect, can be controlled by

20 grammar specification privileges.
An "atomic command" is an enumeration shown in col

unm headings (i.e. 101, 103, ... etc) with an implied
command meaning. FIG. 32A shows what meaning is pro
vided to some of the "atomic command" enumerations

25 shown (also see FIG. 34D). A plurality of commands can
map to a single command meaning. This supports different
words/phrases (e.g. spoken in a voice command interface) to
produce the same resulting command so that different people
specify commands with terminology, language, or (written)

30 form they prefer. An "atomic operand" is an enumeration
shown in row headings (i.e. 201, 203, ... etc) with an
implied operand meaning. FIG. 32B shows what meaning is
provided to some of the "atomic operand" enumerations
shown (also see FIG. 34D). A plurality ofoperands can map

35 to a single operand meaning. This supports different words/
phrases (e.g. spoken in a voice command interface) to
produce the same resulting operand so that different people
specify operands with terminology, language, or (written)
form they prefer. Operands are also referred to as data

40 processing system objects because they are common objects
associated with data processing systems. FIGS. 31A through
31E demonstrate anticipated parameters for each combina
tion of a command with an operand. There are potentially
hundreds (or more) of commands and operands. This dis-

45 closure would be extremely large to cover all the different
commands, operands, and parameters that may be reason
able. Only some examples with a small number of param
eters are demonstrated in FIGS. 31A through 31E to facili
tate discussions. There can be a large number of parameters

50 for a command and operand pair. Each parameter, as shown
by the BNF granimar, may be in many forms. In one
preferred embodiment (not shown in BNF granimar), the
Parameter construct of FIG. 30E may also elaborate to a
ParameterExpression which is any valid arithmetic expres-

55 sion that elaborates to one of the Parameter constructs
(RHS) shown in the BNF Granimar. This allows specifying
expressions which can be evaluated at run time for dynami
cally evaluating to a parameter for processing.

The combination of a command with an operand, and its
60 set of associated parameters, form an action in the present

disclosure, relative the BNF grammar discussed above.
Some of the command/operand combinations overlap, or
intersect, in functionality and/or parameters. In general, if
parameters are not found (null specified) for an anticipated

65 parameter position, a default is assumed (e.g. parameters of
5, 7 indicates three (3) parameters of 5, use default or ignore,
and 7). Operands and parameters are preferably determined

Petitioners' Ex. 1001, Page 408 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
163

at executable code run time when referenced/accessed so
that the underlying values may dynamically change as
needed at executable code run time in the same references.
For example, a variable set with constructs which elaborates
to a command, operand, and parameters, can be instantiated 5

in different contexts for completely different results. Also, a
programming language enhanced with new syntax (e.g. as
described in FIG. 51) may include a loop for processing a
single construct which causes completely different results at
each loop iteration. The operand or parameter specification 10

itself may be for a static value or dynamic value as deter
mined by the reference used. An alternate embodiment
elaborates values like a preprocessed macro ahead of time
prior to processing for static command, operand, and param
eter values. Combinations described by FIGS. 31A through 15

31E are discussed with flowcharts. In another embodiment,
substitution (like parameter substitution discussed above for
FIG. 30A) can be used for replacing parameters at the time
of invocation. In any case, Parameters can contain values
which are static or dynamically changing up to the time of 20

reference.

164
or preferred command annunciation (e.g. in a voice control
interface). FIG. 34D enumerates some commands which
may appear in a command cross reference 3202.

FIG. 32B depicts a preferred embodiment of a NLS
directive operand cross reference. Each "atomic operand"
has at least one associated directive, and in many cases a
plurality of directives. It is advantageous for a plurality of
operand directives mapped to an "atomic operand" so a MS
user is not limited with having to know the one operand to
operate the MS. The MS should cater to everyone with all
anticipated user input from a diverse set of users which may
be used to specify an operand. The directive is input to the
MS for translating to the "atomic operand". One preferred
embodiment of a directive operand cross reference 3252
maps a textual directive (Directive column) to an operand
("atomic operand" of Operand colunm). In this embodiment,
a user types a directive or speaks a directive to a voice
control interface (ultimately converted to text). Cross refer-
ence 3254-1 demonstrates an English language cross refer
ence. Preferably, there is a cross reference for every lan-
guage supported by the MS, for example, a Spanish cross
reference 3254-2, a Russian cross reference, a Chinese cross
reference, and a cross reference for the L languages sup-

Parameters of atomic command processing will evaluate/
resolve/elaborate to an appropriate data type and form for
processing which is described by the #B matrices below
(e.g. FIG. 63B is the matrix for describing atomic send
command processing). The #B descriptions provide the
guide for the data types and forms supportable for the
parameters. For example, an email body parameter may be
a string, a file containing text, a variable which resolves to
a string or file, etc. The BNF grannnar is intended to be fully
exploited in the many possible embodiments used for each
parameter.

25 ported by the MS (i.e. 3254-L being the final cross refer
enced language). Operands disclosed are intended to be user
friendly through support of native language, slang, or pre
ferred command annunciation (e.g. in a voice control inter
face). FIG. 34D enumerates some operands which may

30 appear in an operand cross reference 3252.

FIG. 32A depicts a preferred embodiment of a National
Language Support (NLS) directive command cross refer
ence. Each "atomic command" has at least one associated
directive, and in many cases a plurality of directives.
Depending on an MS embodiment, a user may interact with
the MS with typed text, voice control, selected graphical
user interface text, symbols, or objects, or some other form

In the preferred embodiment, Parameters are contextually
determined upon the MS recognizing user directives,
depending on the context in use at the time. In another

35
embodiment, Parameters will also have directive mappings
for being interpreted for MS processing, analogously to
FIGS. 32A and 32B.

of communication between the user and the MS. A directive 40

(FIG. 32A command and FIG. 32B operand) embodies the
MS recognized communication by the user. Directives can
be a word, a phrase, a symbol, a set of symbols, something
spoken, something displayed, or any other form of commu
nications between a user and the MS. It is advantageous for 45

a plurality of command directives mapped to an "atomic
command" so a MS user is not limited with having to know
the one command to operate the MS. The MS should cater
to everyone with all anticipated user input from a diverse set
of users which may be used to specify a command. This 50

maximizes MS usability. The command directive is input to
the MS for translating to the "atomic command". One
preferred embodiment of a directive command cross refer
ence 3202 maps a textual directive (Directive colunm) to a
command ("atomic command" of Command column). In 55

this embodiment, a user types a directive or speaks a
directive to a voice control interface (ultimately converted to
text). Cross reference 3204-1 demonstrates an English lan
guage cross reference. Preferably, there is a cross reference
for every language supported by the MS, for example, a 60

Spanish cross reference 3204-2, a Russian cross reference, a
Chinese cross reference, and a cross reference for the L
languages supported by the MS (i.e. 3204-L being the final
cross referenced language). Single byte character (e.g.
Latin-I) and double byte character (e.g. Asian Pacific) 65

encodings are supported. Commands disclosed are intended
to be user friendly through support of native language, slang,

FIG. 33A depicts a preferred embodiment American
National Standards Institute (ANSI) X.409 encoding of the
BNF grammar of FIGS. 30A through 30B for variables,
variable instantiations and common grammar for BNF gram-
mars of permissions and charters. A one superscript (1) is
shown in constructs which may not be necessary in imple
mentations since the next subordinate token can be parsed
and deciphered on its own merit relative the overall length
of the datastream containing the subordinate tokens. For
example, a plural Variables construct and token is not
necessary since an overall datastream length can be provided
which contains sibling Variable constructs that can be
parsed. Preferably, Variable assignments include the X.409
datastreams for the constructs or atomic elements as
described in FIGS. 33A through 33C. FIG. 33B depicts a
preferred embodiment ANSI X.409 encoding of the BNF
grammar of FIG. 30C for permissions 10 and groups, and
FIG. 33C depicts a preferred embodiment ANSI X.409
encoding of the BNF grammar of FIGS. 30D through 30E
for charters 12. All of the X.409 encodings are preferably
used to communicate information of permissions 10 and/or
charters 12 (e.g. the BNF grammar constructs) between
systems.

The preferred embodiment of a WDRTerm is a system
well known WDR field/subfield variable name with two (2)
leading underscore characters (e.g. source code references
of: _confidence refers to a confidence value of a WDR
confidence field 1100d; _msyaw refers to a yaw value of a
WDR location reference field 1100/ MS yaw subfield).
Some useful examples using a WDRTerm include:

Petitioners' Ex. 1001, Page 409 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
165

A specified MS, or group, WDR 1100 field (e.g. condition
using field 1100a of (_I_msid !=George)&(_I_msid' -
ChurchGroup));

166
9870"/> ... </Permission>). It is a straightforward matter
for translating the BNF grammar of FIGS. 30A through 30E
into an efficiently processed XML encoding for communi
cations between MSs. An appropriate XML header will A specified MS, or group, WDR 1100 field or subfield

value;
A current MS, or group, WDR 1100 field (e.g. condition

using field 1100a of (_msid !=George)&(msid'Church
Group)); and

A current MS, or group, WDR 1100 field or subfield
value;

5 identify the datastream (and version) to the receiving system
(like HTML, WML, etc) and the receiving system (e.g. MS)
will process accordingly using the present disclosure guide
for proper parsing to internalize to a suitable processable
format (e.g. FIGS. 34A through 34G, FIGS. 35A through

10 37C, FIG. 52, or another suitable format per disclosure). See
FIG. 54 for one example of an XML encoding.

The preferred embodiment of an AppTerm is a system
well known application variable name with a registered
prefix, followed by an underscore character, followed by the
variable name in context for the particular application (e.g.
source code references of: M_source refers to a source email 15

address of a received email for the registered MS email
application which was registered with a "M" prefix; B_srch
criteria refers to the most recently specified search criteria
used in the MS internet browser application which was
registered with a "B" prefix). The preferred WDRTerm and 20

AppTerm syntaxes provide user specifiable programmatic
variable references for expressions/conditions to cause cer
tain actions. The double underscore variable references refer
to a WDR in process (e.g. inserted to queue 22 (_fldname),
inbound to MS (_I_fldname), outbound from MS (_O_fld- 25

name)) at the particular MS. There is a system well known
double underscore variable name for every field and subfield
of a WDR as disclosed herein. The registered prefix name
variable references always refer to data applicable to an
object in process (e.g. specific data for: email just sent, email 30

just received, phone call underway, phone call last made,
phone call just received, calendar entry last posted, etc)
within an application of the particular MS. There is a system
well known underscore variable name for each exposed
application data, and registering the prefix correlates the 35

variable name to a particular MS application (see FIG. 53).
An "atomic term" is another special type of user speci

fiable programmatic variable reference for expressions/con
ditions to cause certain actions. The preferred embodiment
of an atomic term is a system well known variable name 40

with a leading backslash (\) escape character (e.g. source
code references of: \loc_my refers to the most recent MS
location; \timestamp refers to the current MS system date/
time in a date/time stamp format). There can be atomic terms
to facilitate expression/condition specifications, some of 45

which were described above.
FIGS. 33A through 33C demonstrate using the BNF

grammar of FIGS. 30A through 30E to define an unambigu
ous datastream encoding which can be communicated
between systems (e.g. MSs, or service and MS). Similarly, 50

those skilled in the art recognize how to define a set of XML
tags and relationships from the BNF grannnar of FIGS. 30A
through 30E for communicating an unambiguous XML
datastream encoding which can be communicated between
systems. For example, X.409 encoded tokens are translat- 55

able to XML tags that have scope between delimiters, and
have attributes for those tags. The XML author may improve
efficiency by making some constructs, which are subordi
nate to other constructs, into attributes (e.g. ID and IDType
constructs as attributes to a Grantor and/or Grantee XML 60

tag). The XML author may also decide to have some XML
tags self contained (e.g. <History creatordt=" ... " creato
rid=" . . . " . . . /> or provide nesting, for example to
accommodate an unpredictable plurality of subordinate
items (e.g. <Permission . . . > . . . <Grantor userid= 65

"joe"/> ... <Grantee groupid="deptl"/> ... <Grantee
groupid="dept43"/>. <Grantee groupid="dept

FIGS. 34A through 34G depict preferred embodiment C
programming source code header file contents, derived from
the grammar of FIGS. 30A through 30E. AC example was
selected so that the embodiment was purely data in nature.
Another preferred embodiment utilizes an Object Oriented
Programming (OOP) source code (e.g. C++, C#, or Java),
but those examples mix data and object code in defining
relationships. A preferred object oriented architecture would
create objects for BNF grammar constructs that contain
applicable processing data and code. The object hierarchy
would then equate to construct relationships. Nevertheless,
a purely data form of source code is demonstrated by FIGS.
34A through 34G (and FIG. 52) to facilitate understanding.
Those skilled in the relevant arts know how to embody the
BNF grammar of FIG. 30A through 30E in a particular
programming source code. The C programming source code
may be used for:

Parsing, processing, and/or internalizing a derivative
X.409 encoding of the BNF grammar of FIGS. 30A
through 30E (e.g. FIGS. 33A through 33C);

Parsing, processing, and/or internalizing a derivative
XML encoding of the BNF grammar of FIGS. 30A
through 30E;

Compiler parsing, processing, and/or internalizing of a
programming language processing form of the BNF
grammar of FIGS. 30A through 30E;

Interpreter parsing, processing, and/or internalizing of a
programming language processing form of the BNF
grammar of FIGS. 30A through 30E;

Internalized representation of permissions 10, groups
(data 8) and/or charters 12 to data processing system
memory;

Internalized representation of permissions 10, groups
(data 8) and/or charters 12 to data processing system
storage; and/or

Parsing, processing, and/or internalizing any particular
derivative form, or subset, of the BNF grammar of
FIGS. 30A through 30E.

Source code header information is well understood by
those skilled in the relevant art in light of the BNF grammar
disclosed. The example does make certain assumptions
which are easily altered depending on specificities of a
derivative form, or subset, of the grammar of FIGS. 30A
through 30E. Assumptions are easily modified for "good"
implementations through modification of isolated constants
in the header file:

TLV tokens are assumed to occupy 2 bytes in length;
TLV length bytes are assumed to occupy 4 bytes in length;
Some of the header definitions may be used solely for

processing X.409 encodings in which case they can be
removed depending on the context of source code use;

Data structure linkage;
Data structure form without affecting objective semantics;
Data structure field definitions;

Petitioners' Ex. 1001, Page 410 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
167

Unsigned character type is used for data that can be a
typecast byte stream, and pointers to unsigned charac
ter is used for pointers to data that can be typecast;

Source code syntax; or
Other aspects of the source code which are adaptable to a 5

particular derivative form, or subset, of the BNF gram
mar of FIGS. 30A through 30E.

The TIMESPEC structure of FIG. 34E preferably utilizes
a well performing Julian date/time format. Julian date/time
formats allows using unambiguous floating point numbers 10

for date/time stamps. This provides maximum performance
for storage, database queries, and data manipulation. Open
ended periods of time use an unspecified start, or end
date/time stamp, as appropriate (i.e. DT_NOENDSPEC or
DT_NOSTARTSPEC). A known implemented minimal time 15

granulation used in Julian date/time stamps can be decre
ment or incremented by one (1) as appropriate to provide a
non-inclusive date/time stamp period delimiter in a range
specification (e.g. > date/time stamp).

168
indicator (-1), or indicated with its lack of being there (e.g.
varying length record embodiments). Fields described may
be converted: a) prior to storing; orb) after accessing; or c)
by storage interface processing; for standardized processing.
Fields described may not be converted (i.e. used as is).

FIG. 35A depicts a preferred embodiment of a Granting
Data Record (GDR) 3500 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A GDR 3500 is the main data record for
defining a granting of permissions 10, or charters 12. A
granting identifier (granting ID) field 3500a contains a
unique number generated for the record 3500 to distinguish
it from all other records 3500 maintained. For example, in a
Microsoft SQL Server deployment, granting ID field 3500a
is a primary key colunm. Another embodiment uses the
correlation generation techniques described above to ensure
a unique number is generated. Field 3500a facilitates well
performing searches, updates, deletes, and other I/O (input/
output) interfaces. Field 3500a may match (for joining) a
field 3520b or 3700a, depending on the GDR type (GDR
type field 3500t with value of Permission or Charter). A
granting type field 3500t distinguishes the type of GDR
(Permission or Charter) for: a Grantor granting all privileges
to a Grantee (i.e. Permission (e.g. ID field 3500a unique

The VAR structure provides a pointer to a datastream 20

which can be typecast (if applicable in embodiments which
elaborate the variable prior to being instantiated, or refer
enced), or later processed. Variables are preferably not
elaborated/evaluated until instantiated or referenced. For
example, the variable assigned value(s) which are parsed
from an encoding remains unprocessed (e.g. stays in X.409
datastream encoded form) until instantiated. Enough space

25 across GDRs but not used to join other data records)), a
Grantor granting specific privilege(s) and/or grants of privi
leges (permission(s)) to a Grantee ((i.e. Permission (e.g.
ascendant ID field 3520b value in ID field 3500a)), and a
Grantor granting enablement of a charter to a Grantee ((i.e.

is dynamically allocated for the value(s) (e.g. per length of
variable's value(s)) (e.g. X.409 encoding form), the vari
able's value (e.g. X.409 encoding) is copied to the allocated
space, and the v.value pointer is set to the start of the
allocated space. The v.value pointer will be used later when
the variable is instantiated (to then parse and process the
variable value(s) when at the context they are instantiated).

An alternate embodiment to the PERMISSION structure
of FIG. 34F may not require the grantor fields (e.g. grantor,
gortype) since the data processing system owning the data
may only maintain permissions for the grantor (e.g. the MS
user). An alternate embodiment to the CHARTER structure
of FIG. 34G may not require the grantee fields (e.g. grantee,
geetype) or the grantor fields (e.g. grantor, gortype) since the
data processing system owning the data may only maintain
charters for that user at his MS. Another embodiment to the
CHARTER structure of FIG. 34G may not require the
grantor fields (e.g. grantor, gortype) since the data process
ing system owning the data may be self explanatory for the
Grantor identity (e.g. charters used at MS of Grantor).

Some figures illustrate data records (FIGS. 35A through
37D, FIG. 53, FIG. 76C, FIG. SSA, 86C, FIG. 90B, FIGS.
91A and 91B, FIG. 95A, FIG. 97B, or any other disclosed
data records), for example maintained in an SQL database,

30 Charter (e.g. charter ID field 3700a value in ID field
3500a)). An owner information (info) field 3500b provides
who the owner (creator and/or maintainer) is of the GDR
3500. Depending on embodiments, or how the GDR 3500
was created, owner info field 3500b may contain data like

35 the ID and type pair as defined for fields 3500c and 3500d,
or fields 3500e and 3500/ An alternate embodiment to
owner info field 3500b is two (2) fields: owner info ID field
3500b-l and owner info type field 3500b-2. Yet another
embodiment removes field 3500b because MS user (e.g. the

40 grantor) information is understood to be the owner of the
GDR 3500. The owner field 3500b may become important
in user impersonation. A grantor ID field 3500c provides an
identifier of the granting grantor and a grantor type field
3500d provides the type of the grantor ID field 3500c. A

45 grantee ID field 3500e provides an identifier of the granting
grantee and a grantee type field 3500/ provides the type of
the grantee ID field 3500e.

FIG. 35B depicts a preferred embodiment of a Grant Data
Record (GRTDR) 3510 for discussing operations of the

50 present disclosure, derived from the grammar of FIGS. 30A
through 30E. A GRTDR 3510 is the main data record for
defining a grant. A grant identifier (grant ID) field 3510a
contains a unique number generated for the record 3510 to
distinguish it from all other records 3510 maintained. Field

or maintained in record form by a data processing system.
Depending on the embodiment, some data record fields
disclosed may be multi-part fields (i.e. have sub-fields),
fixed length records, varying length records, or a combina
tion with field(s) in one form or another. Some data record
field embodiments will use anticipated fixed length record
positions for subfields that can contain useful data, or a null
value (e.g. -1). Other embodiments may use varying length
fields depending on the number of sub-fields to be popu
lated, or may use varying length fields and/or sub-fields
which have tags indicating their presence. Other embodi
ments will define additional data record fields to prevent
putting more than one accessible data item in one field. In
any case, processing will have means for knowing whether 65

a value is present or not, and for which field (or sub-field)

55 3510a is to be maintained similarly to as described for field
3500a (e.g. primary key colurmi, correlation generation,
facilitates well performing I/O). An owner information
(info) field 351 Ob provides who the owner (creator and/or
maintainer) is of the GRTDR 3510. Field 3510b is to be

60 maintained similarly to as described for field 3500b (e.g.
embodiments for like ID and type pair, two (2) fields,
removal because MS user information understood to be
owner). A grant name field 3510c provides the name of the
grant.

FIG. 35C depicts a preferred embodiment of a Generic
Assignment Data Record (GADR) 3520 for discussing
operations of the present disclosure, derived from the gram-it is present. Absence in data may be indicated with a null

Petitioners' Ex. 1001, Page 411 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
169

mar of FIGS. 30A through 30E. A GADR 3520 is the main
data record for defining an assignment relationship between
data records. The assignment relationship can be viewed as
a container relationship, or a parent-child relationship such

170
anticipated MS types, such that a 1 in a predefined MS type
bit position indicates the MS participates with the privilege,
and a O in a predefined MS type bit position indicates the MS

as in a tree structure. An ascendant type field 3520a contains 5

the type of parent (or container) data record in the relation
ship. Values maintained to field 3520a include Permission,
Grant, or Group. An ascendant ID field 3520b provides an
identifier of the parent (or container) data record in the
relationship (used for joining data records in queries in an 10

SQL embodiment). Values maintained to field 3520b include
values of granting ID field 3500a, grant ID field 3510a, or
group ID field 3540a. A descendant type field 3520c con
tains the type of child (or contained) data record in the
relationship. Values maintained to field 3520c include Grant, 15

Privilege, Group, or ID Type (e.g. Grantor or Grantee ID
type). A descendant ID field 3520d provides an identifier of
the child (or contained) data record in the relationship (used

does not participate with the privilege. Optimally, there are
no records 3530 at a MS which implies all supported
privileges interoperate fully with other MSs according to the
present disclosure.

FIG. 35E depicts a preferred embodiment of a Group Data
Record (GRPDR) 3540 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A GRPDR 3540 is the main data record for
defining a group. A group identifier (group ID) field 3540a
contains a unique number generated for the record 3540 to
distinguish it from all other records 3540 maintained. Field
3540a is to be maintained similarly to as described for field
3500a (e.g. primary key column, correlation generation,
facilitates well performing I/O). An owner information
(info) field 3540b provides who the owner (creator and/or
maintainer) is of the GRPDR 3540. Field 3540b is to be
maintained similarly to as described for field 3500b (e.g.
embodiments for like ID and type pair, two (2) fields,

in joining data records in queries in an SQL embodiment).
Values maintained to field 3520d include values of grant ID 20

field 3510a, privilege identifier (i.e. "atomic privilege for
assignment"), group ID field 3540a, ID field 3500c, or ID
field 3500e. Records 3520 (key for list below is descendant
first; ascendant last (i.e. " ... in a ... ")) are used to
represent: 25

removal because MS user information understood to be
owner). A group name field 3540c provides the name of the
group.

FIG. 36A depicts a preferred embodiment of a Descrip-
Grant(s) (the descendants) in a permission (the ascen-

dant);
Privilege(s) in a permission;
Grant(s) in a grant (e.g. tree structure of grant names);
Privilege(s) in a grant;
Groups(s) in a group (e.g. tree structure of group names);
IDs in a group (e.g. group of grantors and/or grantees);

and/or
Other parent/child relationships of data records disclosed.
An alternate embodiment will define distinct record defi

nitions (e.g. 3520-z) for any subset of relationships
described to prevent data access performance of one rela
tionship from impacting performance accesses of another
relationship maintained. For example, in an SQL embodi
ment, there may be two (2) tables: one for handling three (3)
of the relationships described, and another for handling all
other relationships described. In another SQL example, six
(6) distinct tables could be defined when there are only six
(6) relationships to maintain. Each of the distinct tables
could have only two (2) fields defined for the relationship
(i.e. ascendant ID and descendant ID). The type fields may
not be required since it would be known that each table
handles a single type of relationship (i.e. GADR-grant-to
permission, GADR-privilege-to-permission, GADR-grant
to-grant, GADR-privilege-to-grant, GADR-group-to-group
and GADR-ID-to-group). Performance considerations may
provide good reason to separate out relationships maintained
to distinct tables (or records).

FIG. 35D depicts a preferred embodiment of a Privilege
Data Record (PDR) 3530 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A privilege ID field 3530a contains a unique
number associated to a supported privilege (i.e. "atomic
privilege for assignment"). Field 3530a associates a MS
relevance field 3530b to a particular privilege for indicating
the MS types which apply to a privilege. There should not
be more than one PDR 3530 at a MS with matching fields
3530a since the associated field 3530b defines the MS types
which are relevant for that privilege. If there is no record
3530 for a particular privilege, then it is preferably assumed
that all MSs participate with the privilege. MS relevance
field 3530b is preferably a bit mask accommodating all

tion Data Record (DDR) 3600 for discussing operations of
the present disclosure, derived from the grannnar of FIGS.
30A through 30E. A DDR 3600 is for maintaining descrip
tion information for certain constructs. A description ID field

30 3600a provides an identifier of the data record associated to
the description field 3600c. For example, values maintained
to field 3600a are used for joining data records in queries in
an SQL embodiment. Values maintained to field 3600a
include values of granting ID field 3500a, grant ID field

35 3510a, a privilege ID (e.g. as candidate to field 3530a), ID
field 3500c, ID field 3500e, charter ID field 3700a, action ID
field 3750a, parameter ID field 3775a, group ID field 3540a,
or any other ID field for associating a description. A descrip
tion type field 3600b contains the type of data record to be

40 associated (e.g.joined) to the description field 3600c. Values
maintained to field 3600b include Permission, Grant, Privi
lege, ID, Charter, Action, Parameter, or Group in accordance
with a value of field 3600a. Field 3600c contains a descrip
tion, for example a user defined text string, to be associated

45 to the data described by fields 3600a and 3600b. Alternate
embodiments will move the description data to a new field
of the data record being associated to, or distinct record
definitions 3600-y may be defined for any subset of rela
tionship/association to prevent data access performance of

50 one relationship/association from impacting performance
accesses of another relationship/association maintained
(analogous to distinct embodiments for GADR 3520).

FIG. 36B depicts a preferred embodiment of a History
Data Record (HDR) 3620 for discussing operations of the

55 present disclosure, derived from the grammar of FIGS. 30A
through 30E. A HDR 3620 is for maintaining history infor
mation for certain constructs. A history ID field 3620a
provides an identifier of the data record associated to the
history field 3620c. For example, values maintained to field

60 3620a are used for joining data records in queries in an SQL
embodiment. Values maintained to field 3620a include val
ues of granting ID field 3500a, grant ID field 3510a, a
privilege ID (e.g. as candidate to field 3530a), ID field
3500c, ID field 3500e, charter ID field 3700a, action ID field

65 3750a, parameter ID field 3775a, group ID field 3540a, or
any other ID field for associating a history. A history type
field 3620b contains the type of data record to be associated

Petitioners' Ex. 1001, Page 412 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
171

(e.g. joined) to the history field 3620c. Values maintained to
field 3620b include Permission, Grant, Privilege, ID, Char
ter, Action, Parameter, or Group in accordance with a value
of field 3620a. Field 3620c contains a history, for example
a collection of fields for describing the creation and/or 5

maintenance of data associated to the data described by
fields 3620a and 3620b. Alternate embodiments will move
the history data to new field(s) of the data record being
associated to, or distinct record definitions 3620-x may be
defined for any subset ofrelationship/association to prevent 10

data access performance of one relationship/association
from impacting performance accesses of another relation
ship/association maintained (analogous to distinct embodi
ments for GADR 3520). Another embodiment may break
out subfields of field 3620c to fields 3620c-l, 3620c-2, 15

3620c-3, etc. for individual fields accesses (e.g. see Creato
rlnfo and Modifierlnfo sub-fields).

FIG. 36C depicts a preferred embodiment of a Time
specification Data Record (TDR) 3640 for discussing opera
tions of the present disclosure, derived from the grammar of 20

FIGS. 30A through 30E. A TDR 3640 is for maintaining
time spec information for certain constructs. A time spec ID
field 3640a provides an identifier of the data record associ
ated to the time spec field 3640c. For example, values
maintained to field 3640a are used for joining data records 25

in queries in an SQL embodiment. Values maintained to field
3640a include values of granting ID field 3500a, grant ID
field 3510a, a privilege ID (e.g. as candidate to field 3530a),
charter ID field 3700a, action ID field 3750a, or any other

172
Future ("F"): indicates that the associated data record (e.g.

permission, charter, action, etc) applies to all WDRs
created/received (e.g. inserted to queue 22) in the future
by the MS (i.e. after configuration made);

Self Future ("SF"): indicates that the associated data
record (e.g. permission, charter, action, etc) applies to
all WDRs created in the future (e.g. inserted to queue
22) by the MS for its own whereabouts (i.e. after
configuration made);

Other Future ("OF"): indicates that the associated data
record (e.g. permission, charter, action, etc) applies to
all WDRs received (e.g. inserted to queue 22) in the
future by the MS for other MS whereabouts (i.e. after
configuration made);

All ("A"): indicates that the associated data record (e.g.
permission, charter, action, etc) applies to all WDRs
created/received in the future by the MS (i.e. after
configuration made) and WDRs already contained by
queue 22;

Self All ("SA"): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to all
WDRs created in the future by the MS for its own
whereabouts (i.e. after configuration made) and WDRs
already contained by queue 22 for the MS;

Other All ("OA"): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to all
WDRs received in the future by the MS for other MS
whereabouts (i.e. after configuration made) and WDRs
already contained by queue 22 for other MSs; and/or

Any combination of above (e.g. "SF,OA,OP")
A syntactical equivalent may be specified for subsequent
internalization causing configurations to immediately take
effect. Another embodiment qualifies which set of MSs to
apply time specification for, but this is already accomplished

ID field for associating a time spec (specification). A time 30

spec type field 3640b contains the type of data record to be
associated (e.g. joined) to the time spec field 3640c. Values
maintained to field 3640b include Permission, Grant, Privi
lege, Charter, or Action in accordance with a value of field
3640a. Field 3640c contains a time spec, for example one or
more fields for describing the date/time(s) for which the data
associated to the data described by fields 3640a and 3640b

35 below in the preferred embodiment through specifications of
conditions. Yet another embodiment provides an additional
qualifier specification for which WDRs to apply the time
specification: WDRs maintained by the MS (e.g., to queue
22), inbound WDRs as communicated to the MS, outbound

is applicable, enabled, or active. For example, permissions
can be granted as enabled for particular time period(s).
Alternate embodiments will move the time spec data to new
field(s) of the data record being associated to, or distinct
record definitions 3640-w may be defined for any subset of
relationship/association to prevent data access performance
of one relationship/association from impacting performance
accesses of another relationship/association maintained
(analogous to distinct embodiments for GADR 3520).
Another embodiment may break out subfields of field 3640c
to fields 3640c-l, 3640c-2, 3620c-3, etc. Field 3640c (and
sub-fields if embodiment applicable) can describe specific
date/time(s) or date/time period(s). Yet another embodiment,
maintains plural TDRs for a data record of ID field 3640a.
Field 3640c is intended to qualify the associated data of
fields 3640a and 3640b for being applicable, enabled, or
active at future time(s), past time(s), or current time(s). An
alternate embodiment of field 3640c may include a special
tense qualifier as defined below:

Past ("P"): indicates that the associated data record (e.g.
permission, charter, action, etc) applies to all WDR
information maintained to LBX History 30;

Self Past ("SP"): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to only
WDR information maintained to LBX History 30 for
the MS owning history 30;

Other Past ("OP"): indicates that the associated data
record (e.g. permission, charter, action, etc) applies to
only WDR information maintained to LBX History 30
for all MSs other than the one owning history 30;

40 WDRs as communicated from the MS; for enabling apply
ing of time specifications before and/or after privileges/
charters are applied to WDRs with respect to an MS. Blocks
3970, 4670 and 4470 may be amended to include processing
for immediately checking historical information maintained

45 at the MS which privileges/charters have relevance, for
example after specifying a historical time specification or
special tense qualifier.

FIG. 36D depicts a preferred embodiment of a Variable
Data Record (VDR) 3660 for discussing operations of the

50 present disclosure, derived from the grammar of FIGS. 30A
through 30E. A VDR 3660 contains variable information
that may be instantiated. A record 3660 provides a single
place to define an encoding that is instantiated in many
places. One advantage is for saving on encoding sizes. An

55 owner information (info) field 3660a provides who the
owner (creator and/or maintainer) is of the VDR 3660. Field
3660a is to be maintained similarly to as described for field
3500b (e.g. embodiments for like ID and type pair, two (2)
fields, removal because grantor information understood to

60 be owner). Variable name field 3660b contains the variable
name string, variable type field 3660c contains the variable
type, and variable value field 3660d contains the value(s) of
the variable for instantiation. Preferably, field 3660d remains
in its original form until the variable is instantiated. For

65 example, in an X.409 embodiment, field 3660d contains the
X.409 encoding datastream (including the overall length for
starting bytes) of the variable value. In a prograniming

Petitioners' Ex. 1001, Page 413 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
173

source, XML, or other syntactical embodiment (of grammar
of FIGS. 30A through 30F), field 3660d contains the
unelaborated syntax in text form for later processing (e.g.
stack processing). Thus, field 3660d may be a BLOB (Bi
nary Large Object) or text. Preferably, field 3660d is not 5

elaborated, or internalized, until instantiated. When a vari
able is set to another variable name, field 3660d preferably
contains the variable name and the variable type field 3660c
indicates Variable. Preferably, field 3660d handles varying
length data well for performance, or an alternate embodi- 10

ment will provide additional VDR field(s) to facilitate per
formance.

174
3700/ is useful for enabling or disabling charters (i.e. in
effect or not in effect), setting a default enabled/disabled
setting for the charter which a user reconciles later, or for
setting charters to be enabled or disabled depending on the
time and/or processing path involved with applicable charter
processing. Various embodiments will default field 3700/
appropriately. Type field 3700t contains the type of charter
(see Application Term Triggers below). When field 3700t is
set to NULL, the charter is not of an Application Term
trigger variety.

FIG. 37B depicts a preferred embodiment of an Action
Data Record (ADR) 3750 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. An action identifier (action ID) field 3750a
contains a unique number generated for the record 3750 to
distinguish it from all other records 3750 maintained. Field
3750a is to be maintained similarly to as described for field
3500a (e.g. primary key colunm, correlation generation,
facilitates well performing I/O). An owner information
(info) field 3750b provides who the owner (creator and/or
maintainer) is of the ADR 3750. Field 3750b is to be
maintained similarly to as described for field 3500b (e.g.
embodiments for like ID and type pair, two (2) fields,
removal because MS user information understood to be

25 owner). Host field 3750c contains the host (if not null) for
where the action is to take place. An alternate embodiment
allows multiple host specification(s) for the action. Host
type field 3750d qualifies the host field 3750c for the type of
host(s) to perform the action (helps interpret field 3750c). An

FIG. 37A depicts a preferred embodiment of a Charter
Data Record (CDR) 3700 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A 15

through 30E. A CDR 3700 is the main data record for
defining a charter. A charter identifier (charter ID) field
3700a contains a unique number generated for the record
3700 to distinguish it from all other records 3700 main
tained. Field 3700a is to be maintained similarly to as 20

described for field 3500a (e.g. primary key colunm, corre
lation generation, facilitates well performing I/O). Grantee
and Grantor information is linked to with a match of field
3700a with 3500a. An alternate embodiment will require no
Grantee or Grantor specification for a charter (e.g. charters
maintained and used at the user's MS). An owner informa
tion (info) field 3700b provides who the owner (creator
and/or maintainer) is of the CDR 3700. Field 3700b is to be
maintained similarly to as described for field 3500b (e.g.
embodiments for like ID and type pair, two (2) fields,
removal because MS user information understood to be
owner). An expression field 3700c contains the expression
containing one or more conditions for when to perform
action(s) of action field 3700d. Preferably, field 3700c
remains in its original form until the conditions are to be
elaborated, processed, or internalized. For example, in one
X.409 embodiment, field 3700c contains the X.409 encod
ing datastream for the entire Expression TLV. In the pre
ferred syntactical embodiment (programming source code,
XML encoding, programming source code enhancement, or
the like), field 3700c contains the unelaborated syntax in text
form for later stack processing of conditions and terms and
their subordinate constructs. Thus, field 3700c may be a
BLOB (Binary Large Object) or (preferably) text. An alter
nate embodiment to field 3700c may use General Assign
ment Data Records (GADRs) 3520 to assign condition
identifier fields of a new condition data record to charter
identifier fields 3700a (to prevent a single field from holding

30 alternate embodiment allows multiple host type specifica
tions for multiple host specifications for the action. Yet
another embodiment uses a single host field 3750c to join to
a new table for gathering all applicable hosts for the action.
Command field 3750e contains an "atomic command" (such

35 as those found at the top of FIG. 34D), operand field 3750/
contains an "atomic operand" (e.g. such as those found at the
bottom of FIG. 34D), and parameter IDs field 3750g con
tains a list of null, one or more parameter identifiers 3775a
(an ordered list) for parameters in accordance with the

40 combination of command field 3750e and operand field
3750/(see FIGS. 31A through 31E for example parameters).
There is a list of supported commands, list of supported
operands, and a set of appropriate parameters depending on
the combination of a particular command with a particular

45 operand. In the preferred syntactical embodiment, when
parameter IDs field 3750g contains "234, 18790", the param
eter IDs fields 3775a have been identified as an ordered list
of parameters 234 and 18790 which are each a parameter
identifier contained in a record 3775 field 3775a. An alter-an unpredictable number of conditions for the charter of

record 3700). Actions field 3700d contains an ordered list of 50

one or more action identifiers 3750a of actions to be
performed when the expression of field 3700c is evaluated

nate embodiment to field 3750g will use General Assign
ment Data Records (GADRs) 3520 to assign parameter
identifier fields 3775a to action identifier fields 3750a (to
prevent a single field from holding an unpredictable number
of parameters for the action of record 3750).

to TRUE. For example, in the preferred syntactical embodi
ment, when actions field 3700d contains "45,2356,9738",
the action identifier fields 3750a have been identified as an 55 FIG. 37C depicts a preferred embodiment of a Parameter
ordered list of actions 45, 2356 and 9738 which are each an
action identifier contained in an ADR 3750 field 3750a. An
alternate embodiment to field 3700d will use General
Assignment Data Records (GADRs) 3520 to assign action
identifier fields 3750a to charter identifier fields 3700a (to
prevent a single field from holding an unpredictable number
of actions for the charter of record 3700). Another alterna
tive embodiment may include Grantor and Grantee infor
mation as part of the CDR (e.g. new fields 3700e through
3700h like fields 3500c through 3500.1). Charter enabled
field 3700/ indicates whether or not the charter is active
(Y=Yes (is active), N=No (is not active)). Enabled field

Data Record (PARMDR) 3775 for discussing operations of
the present disclosure, derived from the granmiar of FIGS.
30A through 30E. A parameter identifier (parameter ID) field
3775a contains a unique number generated for the record

60 3775 to distinguish it from all other records 3775 main
tained. Field 3775a is to be maintained similarly to as
described for field 3500a (e.g. primary key colunm, corre
lation generation, facilitates well performing I/O). An owner
information (info) field 3775b provides who the owner

65 (creator and/or maintainer) is of the record 3775. Field
3775b is to be maintained similarly to as described for field
3500b (e.g. embodiments for like ID and type pair, two (2)

Petitioners' Ex. 1001, Page 414 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
175

fields, removal because MS user information understood to
be owner). Parameters field 3775c contains one or more
parameters pointed to by data of field 3750g, preferably in
a conveniently parsed form. Field 3750g can point to a
single record 3775 which contains a plurality of parameters 5

in field 3775c, or field 3750g can specify a plurality of
parameters pointing to plural records 3775, each containing
parameter information in fields 3775c.

FIG. 37D depicts a preferred embodiment of Charters
Starters schema for discussing operations of the present 10

disclosure, namely a Charters Starters Record (CSR) 3790
and a CDR to CSR mapping record (CDR2CSR) 3795, for
conveniently enabling or disabling a set of charters. A CSR
3790 may or may not be contained in a preferred embodi
ment for facilitating desirable charters to make effective in 15

a MS when accessed for charter processing, for example at
block 4608 and/or FIG. 57 WITS processing. A charter
starter identifier field 3790a contains a unique key field
identifier to the CSR table record and is used to join to field
3795b for associating the CSR to a CDR described in a field 20

3795a. An application(s) field 3790b provides a list (i.e. one
or more) of applications which are associated to charter(s)
(i.e. to CDR(s)). In some embodiments, field 3790b is a
unique join field to an Application table so that any number
of applications can be associated to charter(s). A category(s) 25

field 3790c provides a list (i.e. one or more) of categories
which are associated to charter(s) (i.e. to CDR(s)). In some
embodiments, field 3790c is a unique join field to a Cat
egories table so that any number of categories can be
associated to the charter(s). A snippet(s) field 3790d pro- 30

vides a list (i.e. one or more) of snippets which are associ
ated to the charter(s) (i.e. to CDR(s)). In some embodiments,
field 3790d is a unique join field to a Snippets table so that
any number of snippets can be associated to the charter(s).
Otherwise, a list of snippets may be maintained directly to 35

field 3790d. A snippet is preferably an executable subset of
the associated charter(s) (i.e. of the associated CDR(s)), and
may be automatically generated when a charter is created,
edited, or maintained. The snippet provides a reference-able
component which can be used to form new charters. When 40

a plurality of values are maintained to a field 3790b/c/d,a
suitable delimiter (e.g. semicolon) is used for separating
distinct values. Various embodiments may default CSR
fields appropriately. A CSR may include additional fields to
facilitate selecting, organizing, sorting, enabling, disabling, 45

or maintaining charters in the present disclosure. CDR2CSR
records 3795 support mapping many charters (CDRs) to a
single CSR, or many CSRs to a single charter (CDR).
Charter id field 3795a will contain a charter id field 3700a,
and charter starter id field 3795b will contain a charter starter 50

id field 3790a. This provides optimal well performing flex
ibility in isolating organization criteria from the charters
themselves. In some embodiments, field 3700/is maintained
to a CSR rather than a CDR.

176
subset of data records may be enabled or disabled as a
related set. Privileges may be configured for which subsets
can be enabled or disabled by a user. In another embodiment,
privileges themselves enable or disable a data record, a
subset of data records, a subset of data record types, or a
subset of data of data records. In some embodiments, an
administrator or authorized user makes configurations for an
intended MS user.

Data records were derived from the BNF grammar of
FIGS. 30A through 30E. Other data record embodiments
may exist. In a preferred embodiment, data records of FIGS.
35A through 37D are maintained to persistent storage of the
MS. A MS used for the first time should be loaded with a
default set of data (e.g. starter templates containing
defaulted data) preloaded to the data records for user con
venience. Loading may occur from local storage or from
remotely loading, for example over a communications chan
nel when first initializing the MS (e.g. enhanced block 1214
for additionally ensuring the data records are initialized, in
particular for the first startup of an MS). Owner fields (e.g.
field 3500b) for preloaded data are preferably set to a system
identity for access and use by all users. Preferably, a user
camiot delete any of the system preloaded data. While the
data records themselves are enough to operate permissions
10 and charters 12 at the MS after startup, a better perform
ing internalization may be preferred. For example, block
1216 can be enhanced for additionally using data records to
internalize to a non-persistent well performing form such as
compiled C encoding of FIGS. 34A through 34G (also see
FIG. 52), and block 2822 can be enhanced for additionally
using the internalized data to write out to data records
maintained in persistent storage. Any compiled/interpreted
programming source code may be used without departing
from the spirit and scope of the disclosure. FIGS. 34A
through 34G (also see FIG. 52) are an example, but may
provide an internalized form for processing. In any case,
many examples are provided for encoding permissions 10
and charters 12. Continuing with the data record examples,
for example a persistent storage form of data records in a MS
local SQL database (e.g. a data record corresponds to a
particular SQL table, and data record fields correspond to the
SQL table colunms), flowcharts 38 through 48B are pro
vided for configuration of permissions 10 and charters 12.
Data records are to be maintained in a suitable MS perfor
mance conscious form (may not be an SQL database). An
"s" is added as a suffix to disclosed acronyms (e.g. GDR) to
reference a plural version of the acronym (e.g.
GDRs=Granting Data Records).

FIGS. 35A through 37D assume an unlimited number of
records (e.g. objects) to accomplish a plurality of objects
(e.g. BNF granmiar constructs). In various embodiments, a
high maximum number plurality of the BNF grammar
derived objects is supported wherever possible. In various
embodiments, any MS storage or memory means, local or

Preferably, blocks 4630, 4632, 4636, 4654, 4662, 4664
and related charter processing described below support
presenting and managing appropriately per context the
applicable charters starters schema described above in the
applicable context.

55 remotely attached, can be used for storing information of an
implemented derivative of the BNF granmiar of this disclo
sure. Also, various embodiments may use a different model
or schema to carry out functionality disclosed. Various
embodiments may use an SQL database (e.g. Oracle, SQL

In one embodiment, data can be maintained to data
records (e.g. of FIGS. 35A through 37D, FIG. 53, FIG. 76C,
FIG. SSA, 86C, FIG. 90B, FIGS. 91A and 918, FIG. 95A,
FIG. 97B, and/or any other disclosed data records) such that
it is marked as enabled or disabled (e.g. additional colunm
in SQL table for enabled/disabled). In another embodiment,
a record is configured in disabled form and then subse
quently enabled, for example with a user interface. Any

60 Server, Informix, DB2, etc) for storing information, or a
non-SQL database form (e.g. data or record retrieval system,
or any interface for accessible record formatted data).

It is anticipated that management of permissions 10 and
charters 12 be as simple and as lean as possible on an MS.

65 Therefore, a reasonably small subset of the FIGS. 30A
through 30E grammar is preferably implemented. While
FIGS. 35A through 48B demonstrate a significantly large

Petitioners' Ex. 1001, Page 415 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
177

derivative of the BNF grammar, the reader should appreciate
that this is to "cover all bases" of consideration, and is not
necessarily a derivative to be incorporated on a MS of
limited processing capability and resources. A preferred
embodiment is discussed, but much smaller derivatives are 5

even more preferred on many MSs. Appropriate semaphore
lock windows are assumed incorporated when multiple
asynchronous threads can access the same data concurrently.

FIG. 38 depicts a flowchart for describing a preferred
embodiment of MS permissions configuration processing of 10

block 1478. FIG. 38 is of Self Management Processing code
18. Processing starts at block 3802 and continues to block
3804 where a list of permissions configuration options are
presented to the user. Thereafter, block 3806 waits for a user
action in response to options presented. Block 3806 contin- 15

ues to block 3808 when a user action has been detected. If

178
ing appropriately. If block 3840 determines the user did not
select to exit, then processing continues to block 3844 where
all other user actions detected at block 3806 are appropri-
ately handled, and processing continues back to block 3804.

In an alternate embodiment where the MS maintains
GDRs 3500, GRTDRs 3510, GADRs 3520, PDRs 3530 and
GRPDRs 3540 (and their associated data records DDRs,
HDRs and TDRs) at the MS where they were configured,
FIG. 38 may not provide blocks 3820 through 3830. The MS
may be aware of its user permissions and need not share the
data (i.e. self contained). In some embodiments, options
3820 through 3830 cause access to locally maintained data
for others (other users, MSs, etc) or cause remote access to
data when needed (e.g. from the remote MSs). In the
embodiment where no data is maintained locally for others,
blocks 3832 through 3838 may not be necessary. The
preferred embodiment is to locally maintain permissions
data for the MS user and others (e.g. MS users) which are
relevant to provide the richest set of permissions governing

block 3808 determines the user selected to configure per
missions data, then the user configures permissions data at
block 3810 (see FIG. 39A) and processing continues back to
block 3804. If block 3808 determines the user did not select 20 MS processing at the MS.
to configure permissions data, then processing continues to
block 3812. If block 3812 determines the user selected to
configure grants data, then the user configures grants data at
block 3814 (see FIG. 40A) and processing continues back to
block 3804. If block 3812 determines the user did not select 25

to configure grants data, then processing continues to block
3816. If block 3816 determines the user selected to configure
groups data, then the user configures groups data at block
3818 (see FIG. 41A) and processing continues back to block
3804. If block 3816 determines the user did not select to 30

FIGS. 39A through 39B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
permissions configuration of block 3810. With reference
now to FIG. 39A, processing starts at block 3902, continues
to block 3904 for initialization (e.g. a start using database
command), and then to block 3906 where groups the user is
a member of are accessed. Block 3906 retrieves all GRPDRs
3540 joined to GADRs 3520 such that the descendant type
field 3520c and descendant ID field 3520d match the user
information, and the ascendant type field 3520a is set to
Group and the ascendant ID field 3520b matches the group
ID field 3540a. While there may be different types of groups
as defined for the BNF granmiar, the GRPDR is a derivative
embodiment which happens to not distinguish. Alternate

35 embodiments may carry a group type field to select appro
priate records by group type. Yet another embodiment may
not have a block 3906 with processing at block 3908 for
gathering data additionally by groups the user is a member
of. Block 3906 continues to block 3908.

configure groups data, then processing continues to block
3820. If block 3820 determines the user selected to view
other's groups data, then block 3822 invokes the view
other's info processing of FIG. 42 with GROUP _INFO as a
parameter (for viewing other's groups data information) and
processing continues back to block 3804. If block 3820
determines the user did not select to view other's groups
data, then processing continues to block 3824. If block 3824
determines the user selected to view other's permissions
data, then block 3826 invokes the view other's info pro- 40

cessing of FIG. 42 with PERMISSION_INFO as a param
eter (for viewing other's permissions data information) and
processing continues back to block 3804. If block 3824
determines the user did not select to view other's permis
sions data, then processing continues to block 3828. If block 45

3828 determines the user selected to view other's grants
data, then block 3830 invokes the view other's info pro
cessing of FIG. 42 with GRANT_INFO as a parameter (for
viewing other's grants data information) and processing
continues back to block 3804. If block 3828 determines the 50

Block 3908 accesses all GDRs (e.g. all rows from a GDR
SQL table) for the user of FIG. 39A matching field 3500t to
Permission, and the owner information of the GDRs (e.g.
user information matches field 3500b) to the user and to
groups the user is a member of (e.g. group information
matches field 3500b (e.g. owner type=group, owner id=a
group ID field 3540a from block 3906). The GDRs are
additionally joined (e.g. SQL join) with DDRs and TDRs
(e.g. fields 3600b and 3640b=Permission and by matching
ID fields 3600a and 3640a with field 3500a). Description
field 3600c may provide a useful description last saved by
the user for the permission entry. Block 3908 may also
retrieve system predefined data records for use and/or man
agement. Thereafter, each joined entry returned at block
3908 is associated at block 3910 with the corresponding data

55 IDs (at least fields 3500a and 3540a) for easy unique record
accesses when the user acts on the data. Block 3910 also

user did not select to view other's grants data, then process
ing continues to block 3832. If block 3832 determines the
user selected to send permissions data, then block 3834
invokes the send data processing of FIG. 44A with PER
MISSION_INFO as a parameter (for sending permissions
data) and processing continues back to block 3804. If block
3832 determines the user did not select to send permissions
data, then processing continues to block 3836. If block 3836
determines the user selected to configure accepting permis
sions, then block 3838 invokes the configure acceptance 60

processing of FIG. 43 with PERMISSION INFO as a
parameter (for configuring acceptance of permissions data)
and processing continues back to block 3804. If block 3836
determines the user did not select to configure accepting
permissions, then processing continues to block 3840. If 65

block 3840 determines the user selected to exit block 1478
processing, then block 3842 completes block 1478 process-

initializes a list cursor to point to the first list entry to be
presented to the user. Thereafter, block 3912 sets user
interface indication for where the list cursor is currently set
(e.g. set to highlight the entry), and any list scrolling settings
are set (the list is initially not set for being scrolled on first
FIG. 39A processing encounter to block 3912 from block
3910). Block 3912 continues to block 3914 where the entry
list is presented to the user in accordance with the list cursor
and list scroll settings managed for presentation at block
3912. Thereafter, block 3916 waits for user action to the
presented list of permissions data and will continue to block

Petitioners' Ex. 1001, Page 416 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
179

3918 when a user action has been detected. Presentation of
the scrollable list preferably presents in an entry format such
that an entry contains fields for: DDR 3600 description;
GDR owner information, grantor information and grantee
information; GRPDR owner information and group name if 5

applicable; and TDR time spec information. Alternate
embodiments will present less information, or more infor
mation (e.g. GRTDR(s) 3510 and/or PDR(s) 3530 via
GADR(s) 3520 joining fields (e.g. 3500a, 3510a, 3520b)).

If block 3918 determines the user selected to set the list 10

cursor to a different entry, then block 3920 sets the list cursor
accordingly and processing continues back to block 3912.
Block 3912 always sets for indicating where the list cursor
is currently pointed and sets for appropriately scrolling the
list if necessary when subsequently presenting the list at 15

block 3914. If block 3918 determines the user did not select

180
3954. If block 3956 determines the user exited, then pro
cessing continues back to block 3912 by way of off-page
connector 3998. If block 3956 determines the user selected
to save changes made at block 3954, then block 3958
updates the data and the list is appropriately updated before
continuing back to block 3912. Block 3958 may update the
GDR and/or any associated records (e.g. GADR(s), DDR,
and/or TDR) using the permission id field 3500a (associated
to the entry at block 3910). Block 3958 will update an
associated HDR as well. Block 3958 may add new
GADR(s), a DDR and/or TDR as part of the permission
change. If block 3952 determines the user did not select to
modify a permission, then processing continues to block
3960.

If block 3960 determines the user selected to get more
details of the permission (e.g. show all joinable data to the
GDR that is not already presented with the entry), then block
3962 gets additional details (may involve database queries in
an SQL embodiment) for the permission pointed to by the

to set the list cursor, then processing continues to block
3922. If block 3922 determines the user selected to add a
permission, then block 3924 accesses a maximum number of
permissions allowed (perhaps multiple maximum values
accessed), and block 3926 checks the maximum(s) with the
number of current permissions defined. There are many
embodiments for what deems a maximum (for this user, for

20 list cursor, and block 3964 appropriately presents the infor
mation to the user. Block 3964 then waits for a user action
that the user is complete reviewing details, in which case
processing continues back to block 3912. If block 3960
determines the user did not select to get more detail, then
processing continues to block 3966.

If block 3966 determines the user selected to internalize
permissions data thus far being maintained, then block 3968
internalizes (e.g. as a compiler would) all applicable data
records for well performing use by the MS, and block 3970

a group, for this MS, etc). If block 3926 determines a
maximum number of permissions allowed already exists, 25

then block 3928 provides an error to the user and processing
continues back to block 3912. Block 3928 preferably
requires the user to acknowledge the error before continuing
back to block 3912. If block 3926 determines a maximum
was not exceeded, then block 3930 interfaces with the user
for entering validated permission data and block 3932 adds
the data record(s), appropriately updates the list with the
new entry, and sets the list cursor appropriately for the next
list presentation refresh, before continuing back to block
3912. If block 3922 determines the user did not want to add

30 saves the internalized form, for example to MS high speed
non-persistent memory. In one embodiment, blocks 3968
and 3970 internalize permission data to applicable C struc
tures of FIGS. 34A through 34G (also see FIG. 52). In
various embodiments, block 3968 maintains statistics for

a permission, processing continues to block 3934. Block
3932 will add a GDR 3500, DDR 3600, HDR 3620 (to set
creator information) and TDR 3640. The DDR and TDR are
optionally added by the user, but the DDR may be strongly
suggested (if not enforced on the add). This will provide a
permission record assigning all privileges from the grantor

35 exactly what was internalized, and updates any running
totals or averages maintained for a plurality of internaliza
tions up to this point, or over certain time periods. Statistics
such as: number of active constructs; number of user con
struct edits of particular types; amount of associated storage

to the grantee. Additionally, blocks 3930/3932 may support
adding new GADR(s) 3520 for assigning certain grants
and/or privileges (which are validated to exist prior to
adding data at block 3932).

40 used, freed, changed, etc with perhaps a graphical user
interface to graph changes over time; number of privilege
types specified, number of charters affected by permissions;
and other permission dependent statistics. In other embodi
ments, statistical data is initialized at internalization time to

45 prepare for subsequent gathering of useful statistics during
permission processing. In embodiments where a tense quali
fier is specified for TimeSpec information, saving the inter
nalized form at block 3970 causes all past and current tense

If block 3934 determines the user selected to delete a
permission, then block 3936 deletes the data record cur
rently pointed to by the list cursor, modifies the list for the
discarded entry, and sets the list cursor appropriately for the
next list presentation refresh, before continuing back to 50

block 3912. Block 3936 will use the granting ID field 3500a
(associated with the entry at block 3910) to delete the
permission. Associated GADR(s) 3520, DDR 3600, HDR
3620, and TDR 3640 is also deleted (e.g. preferably with a
cascade delete in a SQL embodiment). If block 3934 deter- 55

mines the user did not select to delete a permission, then
processing continues to block 3952 of FIG. 39B by way of
off-page connector 3950.

With reference now to FIG. 39B, if block 3952 determines
the user selected to modify a permission, then block 3954 60

interfaces with the user to modify permission data of the
entry pointed to by the list cursor. The user may change
information of the GDR and any associated records (e.g.
DDR, TDR and GADR(s)). The user may also add the
associated records at block 3954. Block 3954 waits for a 65

user action indicating completion. Block 3954 will continue
to block 3956 when the complete action is detected at block

configurations to become effective for being processed.
Bock 3970 then continues back to block 3912. If block

3966 determines the user did not select to internalize per
mission configurations, then processing continues to block
3972. Alternate embodiments of processing permissions 10
in the present disclosure will rely upon the data records
entirely, rather than requiring the user to redundantly inter
nalize from persistent storage to non-persistent storage for
use. Persistent storage may be of reasonably fast perfor
mance to not require an internalized version of permission
10. Different embodiments may completely overwrite the
internalized form, or update the current internalized form
with any changes.

If block 3972 determines the user selected to exit block
3810 processing, then block 3974 cleans up processing thus
far accomplished (e.g. issue a stop using database com
mand), and block 3976 completes block 3810 processing. If
block 3972 determines the user did not select to exit, then
processing continues to block 3978 where all other user

Petitioners' Ex. 1001, Page 417 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
181

actions detected at block 3916 are appropriately handled,
and processing continues back to block 3916 by way off
off-page connector 3996.

FIGS. 40A through 40B depict flowcharts for describing
a preferred embodiment of MS user interface processing for 5

grants configuration of block 3814. With reference now to
FIG. 40A, processing starts at block 4002, continues to
block 4004 for initialization (e.g. a start using database
command), and then to block 4006 where groups the user is
a member of are accessed. Block 4006 retrieves all GRPDRs 10

3540 joined to GADRs 3520 such that the descendant type
field 3520c and descendant ID field 3520d match the user
information, and the ascendant type field 3520a is set to
Group and the ascendant ID field 3520b matches the group

182
be represented by a visual nesting, if applicable. Thereafter,
each joined entry returned at block 4008 is associated at
block 4010 with the corresponding data IDs (at least fields
351 Oa and 3540a) for easy unique record accesses when the
user acts on the data. Block 4010 also initializes a list cursor
to point to the first grant item to be presented to the user in
the (possibly nested) list. Thereafter, block 4012 sets user
interface indication for where the list cursor is currently set
(e.g. set to highlight the entry) and any list scrolling settings
are set (the list is initially not set for being scrolled on first
FIG. 40A processing encounter to block 4012 from block
4010). Block 4012 continues to block 4014 where the entry
list is presented to the user in accordance with the list cursor
and list scroll settings managed for presentation at block

ID field 3540a. While there may be different types of groups
as defined for the BNF grammar, the GRPDR 3540 is a
derivative embodiment which happens to not distinguish.
Alternate embodiments may carry a group type field to
select appropriate records by group type. Yet another
embodiment may not have a block 4006 with processing at
block 4008 for gathering data additionally by groups the
user is a member of. Block 4006 continues to block 4008.

15 4012. Thereafter, block 4016 waits for user action to the
presented list of grant data and will continue to block 4018
when a user action has been detected. Presentation of the
scrollable list preferably presents in an entry format with
subordinate grants also reference-able by the list cursor. A

Block 4008 accesses all GRTDRs 3510 (e.g. all rows from

20 grant entry of the grant tree presented preferably contains
fields for: GRTDR name field 3510c; GRTDR owner infor
mation; GRPDR owner information and group name if
applicable; TDR time spec information; and DDR informa
tion. Alternate embodiments will present less information, or a GRTDR SQL table) for the user of FIG. 40A matching the

owner information of the GRTDRs (e.g. user information
matches field 3510b) to the user and to groups the user is a
member of (e.g. group information matches field 3510b (e.g.
owner type=group, owner id=group ID field 3540a from
block 4006). The GRTDRs 3510 are additionally joined (e.g.
SQL join) with DDRs 3600 and TDRs 3640 (e.g. fields 30

3600b and 3640b=Grant and by matching ID fields 3600a
and 3640a with field 3510a). Description field 3600c can
provide a useful description last saved by the user for the
grant data, however the grant name itself is preferably self
documenting. Block 4008 may also retrieve system pre
defined data records for use and/or management. Block 4008
will also retrieve grants within grants to present the entire
tree structure for a grant entry. Block 4008 retrieves all
GRTDRs 3510 joined to other GRTDRs 3510 through
GADRs 3520 which will provide the grant tree structure 40

hierarchy. Grants can be descendant to other grants in a grant
hierarchy. Descendant type field 3520c set to Grant and
descendant ID field 3520d for a particular grant will be a
descending grant to an ascending grant of ascendant type
field 3520a set to Grant and ascendant ID field 3520b. 45

Therefore, each list entry is a grant entry that may be any
node of a grant hierarchy tree. There may be grant infor
mation redundantly presented, for example when a grant is
subordinate to more than one grant, but this helps the user
know a grant tree structure if one has been configured. A 50

visually presented embodiment may take the following form
wherein a particular Grant appears in the appropriate hier
archy form.

Grant Info1

Grant Info11

Grant Info 12

Grant Info 121

Grant Info 122

Grant Info 12n

Grant Infolk
Grant Info2

Grant Info1
The list cursor can be pointing to any grant item within a
single grant entry hierarchy. Thus, a single grant entry can

25 more information (e.g.join PDR(s) 3530 via GADR(s) 3520
when applicable).

If block 4018 determines the user selected to set the list
cursor to a different grant reference, then block 4020 sets the
list cursor accordingly and processing continues back to
block 4012. Block 4012 always sets for indicating where the
list cursor is currently pointed and sets for appropriately
scrolling the list if necessary when subsequently presenting
the list at block 4014. If block 4018 determines the user did
not select to set the list cursor, then processing continues to

35 block 4022. If block 4022 determines the user selected to
add a grant, then block 4024 accesses a maximum number
of grants allowed (perhaps multiple maximum values
accessed), and block 4026 checks the maximum(s) with the
number of current grants defined. There are many embodi
ments for what deems a maximum (for this user, for a group,
for this MS, etc). If block 4026 determines a maximum
number of grants allowed already exists, then block 4028
provides an error to the user and processing continues back
to block 4012. Block 4028 preferably requires the user to
acknowledge the error before continuing back to block
4012. If block 4026 determines a maximum was not
exceeded, then block 4030 interfaces with the user for
entering validated grant data and block 4032 adds the data
record, appropriately updates the list with the new entry, and
sets the list cursor appropriately for the next list presentation
refresh, before continuing back to block 4012. If block 4022
determines the user did not want to add a grant, processing
continues to block 4034. Block 4032 will add a GRTDR
3510, DDR 3600, HDR 3620 (to set creator information)

55 and TDR 3640. The DDR and TDR are optionally added by
the user. Additionally, at block 4030 the user may add new
GADR(s) 3520 for assigning certain grants to the added
grant and/or privileges to the grant (which are validated to

60

exist prior to adding data at block 4032).
If block 4034 determines the user selected to modify a

grant, then block 4036 interfaces with the user to modify
grant data of the entry pointed to by the list cursor. The user
may change information of the GRTDR and any associated
records (e.g. DDR, TDR and GADR(s)). The user may also

65 add the associated records at block 4036. Block 4036 waits
for a user action indicating completion. Block 4036 will
continue to block 4038 when the action is detected at block

Petitioners' Ex. 1001, Page 418 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
183

4036. If block 4038 determines the user exited, then pro
cessing continues back to block 4012. If block 4038 deter
mines the user selected to save changes made at block 4036,
then block 4040 updates the data and the list is appropriately
updated before continuing back to block 4012. Block 4040 5

may update the GRTDR and/or any associated records (e.g.
GADR(s), DDR, and/or TDR) using the grant id field 3510a
(associated to the grant item at block 4010). Block 4040 will
update an associated HDR as well. Block 4036 may add new
GADR(s), a DDR and/or TDR as part of the grant change. 10

If block 4034 determines the user did not select to modify a
grant, then processing continues to block 4052 by way of
off-page connector 4050.

With reference now to FIG. 40B, if block 4052 determines
the user selected to get more details of the grant (e.g. show 15

all joinable data to the GRTDR that is not already presented
with the entry), then block 4054 gets additional details (may
involve database queries in an SQL embodiment) for the
grant pointed to by the list cursor, and block 4056 appro
priately presents the information to the user. Block 4056 20

then waits for a user action that the user is complete
reviewing details, in which case processing continues back

184
block 4104 for initialization (e.g. a start using database
command), and then to block 4106 where groups the user is
a member of are accessed. Block 4106 retrieves all GRPDRs
3540 joined to GADRs 3520 such that the descendant type
field 3520c and descendant ID field 3520d match the user
information, and the ascendant type field 3520a is set to
Group and the ascendant ID field 3520b matches the group
ID field 3540a. While there may be different types of groups
as defined for the BNF grammar, the GRPDR 3540 is a
derivative embodiment which happens to not distinguish.
Alternate embodiments may carry a group type field to
select appropriate records by group type. Yet another
embodiment may not have a block 4106 with processing at
block 4108 for gathering data additionally by groups the
user is a member of. Block 4106 continues to block 4108.

Block 4108 accesses all GRPDRs 3540 (e.g. all rows from
a GRPDR SQL table) for the user of FIG. 41Amatching the
owner information of the GRPDRs (e.g. user information
matches field 3540b) to the user and to groups the user is a
member of (e.g. group information matches field 3540b (e.g.
owner type=group, owner id=group ID field 3540a from
block 4106)). The GRPDRs 3540 are additionally joined
(e.g. SQL join) with DD Rs 3600 and TD Rs 3640 (e.g. fields
3600b and 3640b=Group and by matching ID fields 3600a

to block 4012 by way of off-page connector 4098. If block
4052 determines the user did not select to get more detail,
then processing continues to block 4058.

If block 4058 determines the user selected to delete a
grant, then block 4060 determines any data records (e.g.
GADR(s) 3520) that reference the grant data record to be
deleted. Preferably, no ascending data records (e.g. GRT
DRs) are joinable to the grant data record being deleted,
otherwise the user may improperly delete a grant from a
configured permission or other grant. In the case of descend
ing grants, all may be cascaded deleted in one embodiment,
provided no ascending grants exist for any of the grants to
be deleted. The user should remove ascending references to
a grant for deletion first. Block 4060 continues to block
4062. If block 4062 determines there was at least one
reference, block 4064 provides an appropriate error with the
reference(s) found so the user can subsequently reconcile.
Block 4064 preferably requires the user to acknowledge the
error before continuing back to block 4012. If no references
were found as determined by block 4062, then processing
continues to block 4066 for deleting the data record cur
rently pointed to by the list cursor, along with any other
related records that can be deleted. Block 4066 also modifies
the list for the discarded entry(s), and sets the list cursor
appropriately for the next list presentation refresh, before
continuing back to block 4012. Block 4066 will use the grant

25 and 3640a with field 3540a). Description field 3600c can
provide a useful description last saved by the user for the
group data, however the group name itself is preferably self
documenting. Block 4108 may also retrieve system pre
defined data records for use and/or management. Block 4108

30 will also retrieve groups within groups to present the entire
tree structure for a group entry. Block 4108 retrieves all
GRPDRs 3540 joined to other GRPDRs 3540 through
GADRs 3520 which will provide the group tree structure
hierarchy. Groups can be descendant to other groups in a

35 group hierarchy. Descendant type field 3520c set to Group
and descendant ID field 3520d for a particular group will be
a descending group to an ascending group of ascendant type
field 3520a set to Group and ascendant ID field 3520b.
Therefore, each list entry is a group entry that may be any

40 node of a group hierarchy tree. There may be group infor
mation redundantly presented, for example when a group is
subordinate to more than one group, but this helps the user
know a group tree structure if one has been configured. A
visually presented embodiment may take the following form

45 wherein a particular Groupi appears in the appropriate
hierarchy form.

Group Info 1

Group Infou
ID field 3510a (associated with the entry at block 4010) to
delete a grant. Associated records (e.g. DDR 3600, HDR 50

3620, and TDR 3640) are also deleted (e.g. preferably with

to Group Info12

Group Info 121

Group Info 122 a cascade delete in a SQL embodiment). If block 4058
determines the user did not select to delete a grant, then
processing continues to block 4068.

If block 4068 determines the user selected to exit block 55

3814 processing, then block 4070 cleans up processing thus
far accomplished (e.g. issue a stop using database com
mand), and block 4072 completes block 3814 processing. If
block 4068 determines the user did not select to exit, then
processing continues to block 4074 where all other user 60

actions detected at block 4016 are appropriately handled,
and processing continues back to block 4016 by way off
off-page connector 4096.

FIGS. 41A through 418 depict flowcharts for describing
a preferred embodiment of MS user interface processing for 65

groups configuration of block 3818. With reference now to
FIG. 41A, processing starts at block 4102, continues to

Group Info 12u

Group Info 1,

Group Info2

Group Infos
The list cursor can be pointing to any group item within a
single group entry hierarchy. Thus, a single group entry can
be represented by a visual nesting, if applicable. Thereafter,
each joined entry returned at block 4108 is associated at
block 4110 with the corresponding data IDs (at least fields
3540a) for easy unique record accesses when the user acts
on the data. Block 4110 also initializes a list cursor to point
to the first group item to be presented to the user in the

Petitioners' Ex. 1001, Page 419 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
185

(possibly nested) list. Thereafter, block 4112 sets user inter
face indication for where the list cursor is currently set (e.g.

186
GADR(s), DDR, and/or TDR using the group id field 3540a
associated to the group item at block 4110. Block 4140 will
update an associated HDR as well. Blocks 4136/4140 may
support adding new GADR(s), a DDR and/orTDR as part of

set to highlight the entry) and any list scrolling settings are
set (the list is initially not set for being scrolled on first FIG.
41A processing encounter to block 4112 from block 4110).
Block 4112 continues to block 4114 where the entry list is
presented to the user in accordance with the list cursor and
list scroll settings managed for presentation at block 4112.
Thereafter, block 4116 waits for user action to the presented
list of group data and will continue to block 4118 when a
user action has been detected. Presentation of the scrollable
list preferably presents in an entry format with subordinate
groups also reference-able by the list cursor. A group entry

5 the group change. If block 4134 determines the user did not
select to modify a group, then processing continues to block
4152 by way of off-page connector 4150.

With reference now to FIG. 41B, if block 4152 determines
the user selected to get more details of the group (e.g. show

of the group tree presented preferably contains fields for:

10 all joinable data to the GRPDR that is not already presented
with the entry), then block 4154 gets additional details (may
involve database queries in an SQL embodiment) for the
group pointed to by the list cursor, and block 4156 appro
priately presents the information to the user. Block 4156

GRPDR name field 3540c; GRPDR owner information;
owning GRPDR owner information and group name if
applicable; TDR time spec information; and DDR informa
tion. Alternate embodiments will present less information, or
more information (e.g. join to specific identities via
GADR(s) 3520 when applicable).

15 then waits for a user action that the user is complete
reviewing details, in which case processing continues back
to block 4112 by way of off-page connector 4198. If block
4152 determines the user did not select to get more detail,

20

then processing continues to block 4158.
If block 4158 determines the user selected to delete a

group, then block 4160 determines any data records (e.g.
GADR(s) 3520) that reference the group data record to be
deleted. Preferably, no ascending data records (e.g. GRP
DRs) are joinable to the group data record being deleted,

If block 4118 determines the user selected to set the list
cursor to a different group entry, then block 4120 sets the list
cursor accordingly and processing continues back to block
4112. Block 4112 always sets for indicating where the list
cursor is currently pointed and sets for appropriately scroll
ing the list if necessary when subsequently presenting the
list at block 4114. If block 4118 determines the user did not
select to set the list cursor, then processing continues to
block 4122. If block 4122 determines the user selected to
add a group, then block 4124 accesses a maximum number

25 otherwise the user may improperly delete a group from a
configured permission or other group. In the case of
descending groups, all may be cascaded deleted in one
embodiment, provided no ascending groups exist for any of
the groups to be deleted. The user should remove ascending

30 references to a group for deletion first. Block 4160 continues
to block 4162. If block 4162 determines there was at least of groups allowed (perhaps multiple maximum values

accessed), and block 4126 checks the maximum(s) with the
number of current groups defined. There are many embodi
ments for what deems a maximum (for this user, for a group,
for this MS, etc). If block 4126 determines a maximum 35

number of groups allowed already exists, then block 4128
provides an error to the user and processing continues back
to block 4112. Block 4128 preferably requires the user to
acknowledge the error before continuing back to block 4112.
If block 4126 determines a maximum was not exceeded, 40

then block 4130 interfaces with the user for entering vali
dated group data and block 4132 adds the data record,
appropriately updates the list with the new entry, and sets the
list cursor appropriately for the next list presentation refresh,
before continuing back to block 4112. If block 4122 deter- 45

mines the user did not want to add a group, processing
continues to block 4134. Block 4132 will add a GRPDR
3540, DDR 3600, HDR 3620 (to set creator information)
and TDR 3640. The DDR and TDR are optionally added by
the user. Additionally, at block 4130 the user may add new 50

GADR(s) 3520 for assigning certain groups to the added
group and/or identities to the group (which are validated to
exist prior to adding data at block 4132).

one reference, block 4164 provides an appropriate error with
the reference(s) found so the user can subsequently recon
cile. Block 4164 preferably requires the user to acknowledge
the error before continuing back to block 4112. If no
references were found as determined by block 4162, then
processing continues to block 4166 for deleting the data
record currently pointed to by the list cursor, along with any
other related records that can be deleted. Block 4166 also
modifies the list for the discarded entry(s), and sets the list
cursor appropriately for the next list presentation refresh,
before continuing back to block 4112. Block 4166 will use
the group ID field 3540a (associated with the entry at block
4110) to delete the group. Associated records (e.g. DDR
3600, HDR 3620, and TDR 3640) are also deleted (e.g.
preferably with a cascade delete in a SQL embodiment). If
block 4158 determines the user did not select to delete a
group, then processing continues to block 4168.

If block 4168 determines the user selected to exit block
3818 processing, then block 4170 cleans up processing thus
far accomplished (e.g. issue a stop using database com
mand), and block 4172 completes block 3818 processing. If
block 4168 determines the user did not select to exit, then
processing continues to block 4174 where all other user
actions detected at block 4116 are appropriately handled,
and processing continues back to block 4116 by way off
off-page connector 4196.

FIG. 42 depicts a flowchart for describing a preferred
embodiment of a procedure for viewing MS configuration

If block 4134 determines the user selected to modify a
group, then block 4136 interfaces with the user to modify 55

group data of the entry pointed to by the list cursor. The user
may change information of the GRPDR and any associated
records (e.g. DDR, TDR and GADR(s)). The user may also
add the associated records at block 4136. Block 4136 waits
for a user action indicating completion. Block 4136 will
continue to block 4138 when the complete action is detected

60 information of others. Processing starts at block 4202 and
continues to block 4204 where an object type parameter is
determined for which information to present to the user as
passed by the caller of FIG. 42 processing (e.g.
GROUP _INFO, PERMISSION_INFO, GRANT_INFO,

at block 4136. If block 4138 determines the user exited, then
processing continues back to block 4112. If block 4138
determines the user selected to save changes made at block
4136, then block 4140 updates the data and the list is
appropriately updated before continuing back to block 4112.
Block 4140 may update the GRPDR and/or any associated

65 CHARTER_INFO, ACTION_INFO or PARAMETER_
INFO). Thereafter, block 4206 performs initialization (e.g. a
start using database command), and then the user specifies

Petitioners' Ex. 1001, Page 420 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
187 188

FIGS. 48A&B, per object typed passed. Block 4230 con
tinues to block 4232 upon a user action (complete/clone).

owner information (criteria), at block 4208, for the object
type data records to present. No privilege is assumed
required for browsing other's information since it is prefer
ably local to the MS of the user anyway. Block 4208
continues to block 4210.

If block 4232 determines the user action from block 4230
was to exit browse, processing continues to block 4220. If

5 block 4232 determines the user action from block 4230 was
to clone the data (e.g. to make a copy for user's own use),
processing continues to block 4234 for accessing permis
sions. Thereafter, if block 4236 determines the user does not
have permission to clone, processing continues to block

In an alternative embodiment, block 4208 appropriately
accesses privileges granted from the owner criteria to the
user of FIG. 42 to ensure the user has a privilege to browse
the data records (per object type parameter) of the specified
owner. Block 4208 will provide an error when there is no
privilege, and will continue to block 4210 when there is a
privilege. Block 4208 may also provide a user exit option for
continuing to block 4216 for cases the user cannot success
fully specify owner criteria. In similar embodiments, there

15
may be a separate privilege required for each object type a
user may browse.

10 4238 for reporting an error (preferably requiring the user to
acknowledge before leaving block 4238 processing), and
then back to block 4220. If block 4236 determines the user
does have permission to clone, processing continues to

Block 4210 gets (e.g. SQL selects) data according to the
object type parameter (e.g. GRPDR(s), GDR(s), GRTDR(s),
CDR(s), ADR(s) or PARMDR(s), along with any available 20

associatedjoinable data (e.g. DDR(s), HDR(s), TDR(s) and
data records via GADR(s) if applicable), per object type
passed). There are various embodiments to block 4210 in
accessing data: locally maintained data for the owner criteria
specified at block 4208, communicating with a remote MS 25

for accessing the MS of the owner criteria to synchronously
pull the data, or sending a request to a remote MS over an
interface like interface 1926 for then asynchronously receiv
ing by an interface like interface 1948 for processing. Block
4210 may access field 3700/ in the case of filtering desired 30

charter records. One preferred embodiment is to locally
maintain relevant data. In privilege enforced embodiments,
appropriate privileges are determined before allowing
access to the other's data.

block 4240 where the data item browsed is appropriately
duplicated with defaulted fields as though the user of FIG.
42 processing had created new data himself. Processing then
continues back to block 4220. If block 4226 determines the
user did not select to get more detail on a selected item, then
processing continues to block 4242.

If block 4242 determines the user selected to exit browse
processing, then processing continues to block 4216 already
described. If block 4242 determines the user did not select
to exit, then processing continues to block 4244 where all
other user actions detected at block 4222 are appropriately
handled, and processing continues back to block 4222.

In an alternate embodiment, FIG. 42 will support cloning
multiple entries in one action so that a first user conveniently
makes use of a second user's data (like starter template(s))
for the first user to create/configure new data without
entering it from scratch in the other interfaces disclosed.
Another embodiment will enforce unique privileges for
which data can be cloned by which user(s).

FIG. 43 depicts a flowchart for describing a preferred
embodiment of a procedure for configuring MS acceptance

Thereafter, if block 4212 determines there were no data
records according to the object type passed by the caller for
the owner criteria specified at block 4208, then block 4214
provides an error to the user, and processing continues to
block 4216. Block 4216 performs cleanup of processing thus
far accomplished (e.g. perform a stop using database com
mand), and then continues to block 4218 for returning to the
caller of FIG. 42 processing. Block 4214 preferably requires
the user to acknowledge the error before continuing to block
4216.

35 of data from other MSs, for example permissions 10 and
charters 12. In a preferred embodiment, permissions 10 and
charters 12 contain data for not only the MS 2 but also other
MSs which are relevant to the MS 2 (e.g. MS users are
known to each other). Processing starts at block 4302 and

40 continues to block 4304 where a parameter passed by a
caller is determined. The parameter indicates which object
type (data type) to configure delivery acceptance (e.g. PER
MISSION_INFO, CHARTER_INFO). Thereafter, block
4306 displays acceptable methods for accepting data from

45 other MSs, preferably in a radio button form in a visually
perceptible user interface embodiment. A user is presented
with two (2) main sets of options, the first set preferably
being an exclusive selection:

If block 4212 determines at least one data record of object
type was found, then block 4220 presents a browse-able
scrollable list of entries to the user (i.e. similar to lists
discussed for presentation by FIGS. 39A&B, FIGS. 40A&B,
FIGS. 41A&B, FIGS. 46A&B, FIGS. 47A&B or FIGS.
48A&B, per object typed passed), and block 4222 waits for 50

a user action in response to presenting the list. When a user
action is detected at block 4222, processing continues to
block 4224. If block 4224 determines the user selected to
specify new owner criteria (e.g. for comparison to field
3500b, 3510b, 3540b, 3700b, 3750b or 3775b, per object 55

type passed) for browse, then processing continues back to
block 4208 for new specification and applicable processing
already discussed for blocks thereafter. If block 4224 deter
mines the user did not select to specify new owner criteria,
processing continues to block 4226. 60

If block 4226 determines the user selected to get more
detail of a selected list entry, then processing continues to
block 4228 for getting data details of the selected entry, and
block 4230 presents the details to the user, and waits for user
action. Detail presentation is similar to getting detail pro- 65

cessing discussed for presentation by FIGS. 39A&B, FIGS.
40A&B, FIGS. 41A&B, FIGS. 46A&B, FIGS. 47A&B or

Accept no data (MS will not accept data from any source);
or

Accept all data (MS will accept data from any source); or
Accept data according to permissions (MS will accept

data according to those sources which have permission
to send certain data (perhaps privilege also specifies by
a certain method) to the MS).

And the second set being:
Targeted data packet sent or broadcast data packet sent

(preferably one or the other);
Electronic Mail Application;
SMS message; and/or
Persistent Storage Update (e.g. file system).
Block 4306 continues to block 4308 where the user makes

a selection in the first set, and any number of selections in
the second set. Thereafter, processing at block 4310 saves
the user's selections for the object type parameter passed,
and processing returns to the caller at block 4312. LBX
processing may have intelligence for an hierarchy of

Petitioners' Ex. 1001, Page 421 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
189

attempts such as first trying to send or broadcast, if that fails
send by email, if that fails send by SMS message, and if that
fails alert the MS user for manually copying over the data at
a future time (e.g. when MSs are in wireless vicinity of each
other). Block 4306 may provide a user selectable order of 5

the attempt types. Intelligence can be incorporated for
knowing which data was sent, when it was sent, and whether
or not all of the send succeeded, and a synchronous or
asynchronous acknowledgement can be implemented to
ensure it arrived safely to destination(s). Applicable infor- 10

mation is preferably maintained to LBX history 30 for
proper implementation.

In one embodiment, the second set of configurations is
further governed by individual privileges (each send type),
and/or privileges per a source identity. For example, while 15

configurations of the second set may be enabled, the MS will
only accept data in a form from a source in accordance with

190
permissions 10 or charters 12. Multiple channels for send
ing, or broadcasting should be isolated to modular send
processing (feeding from a queue 24). In an alternative
embodiment having multiple transmission channels visible
to processing of FIG. 44A (e.g. block 4430), there can be
intelligence to drive each channel for broadcasting on mul-
tiple channels, either by multiple send threads for FIG. 44A
processing, FIG. 44A loop processing on a channel list,
and/or passing channel information to send processing feed
ing from queue 24. If FIG. 44A does not transmit directly
over the channel(s) (i.e. relies on send processing feeding
from queue 24), an embodiment may provide means for
communicating the channel for broadcast/send processing
when interfacing to queue 24 (e.g. incorporate a channel
qualifier field with send packet inserted to queue 24).

In any case, see detailed explanations of FIGS. 13A
through 13C, as well as supporting exemplifications shown
in FIGS. SOA through SOC, respectively. Processing begins
at block 4402, continues to block 4404 where the caller

a privilege which is enabled (set for the source identity).
Privilege examples (may also each have associated time
specification) include: 20 parameter passed to FIG. 44A processing is determined (i.e.

Grant Joe privilege to send all types of data (e.g. charters
and privileges, or certain (e.g. types, contents, features,
any characteristic(s)) charters and/or privileges);

OBJ_TYPE), and processing continues to block 4406 for
interfacing with the user to specify targets to send data to, in
context of the object type parameter specified for sending

Grant Joe privilege to send certain type of data (e.g.
charters or privileges, or certain (e.g. types, contents, 25

features, any characteristic(s)) charters and/or privi
leges);

(PERMISSION_INFO or CHARTER_INFO). An alternate
embodiment will consult a configuration of data for vali
dated target information. Depending on the present disclo-
sure embodiment, a user may specify any reasonable sup
ported (ID/IDType) combination of the BNF grammar ID
construct (see FIG. 30B) as valid targets. Validation will

Grant Joe privilege to send certain type of data using
certain method (privilege for each data type and
method combination); and/or

Grant Joe privilege to send certain type of data using
certain method(s) (privilege for each data type and
method combination) at certain time(s).

30 validate at least syntax of the specification. In another
embodiment, block 4406 will access and enforce known
permissions for validating which target(s) (e.g. grantor(s))
can be specified. Various embodiments will also support

In another embodiment, there may be other registered appli
cations (e.g. specified other email applications) which are 35

candidates in the second set. This allows more choices for a

wildcarding the specifications for a group of ID targets (e.g.
department* for all department groups). Additional target
information is to be specified when required for sending, for

receiving application with an implied receiving method (or
user may specify an explicit method given reasonable
choices of the particular application). For example, multiple
MS instant messaging and/or email applications may be
selectable in the second set of choices, and appropriately
interfaced to for accepting data from other MSs. This allows
specifying preferred delivery methods for data (e.g. charters
and/or permissions data), and an attempt order thereof.

In some embodiments, charter data that is received may
be received by a MS in a deactivated form whereby the user
of the receiving MS must activate the charters for use (e.g.
use of charter enabled field 3700/for indicating whether or
not the charter is active (Y=Yes, N=No)). Field 3700/may
also be used by the charter originator for disabling or
enabling for a variety of reasons. This permits a user to
examine charters, and perhaps put them to a test, prior to
putting them into use. Other embodiments support activating
charters (received and/or originated): one at a time, as
selected sets by user specified criteria (any charter charac
teristic(s)), all or none, by certain originating user(s), by
certain originating MS(s), or any other desirable criteria. Of
course, privileges are defined for enabling accepting privi
leges or charters from a MS, but many privileges can be
defined for accepting privileges or charters with certain
desired characteristics from a MS.

FIG. 44A depicts a flowchart for describing a preferred
embodiment of a procedure for sending MS data to another
MS. FIG. 44A processing is preferably of linkable PIP code

example, if email or SMS message is to be used as a send
method (i.e. applicable destination recipient addresses to be
specified). An alternate embodiment to block 4406 accesses

40 mapped delivery addresses from a database, or table, (re
ferred to as a Recipient Address Book (RAB)) associating a
recipient address to a target identity, thereby alleviating the
user from manual specification, and perhaps allowing the
user to save to the RAB for any new useful RAB data. In

45 another embodiment, block 4428 (discussed below) accesses
the RAB for a recipient address for the target when prepar
ing the data for sending.

Upon validation at block 4406, processing continues to
block 4408. It is possible the user was unsuccessful in

50 specifying targets, or wanted to exit block 4406 processing.
If block 4408 determines the user did not specify at least one
validated target (equivalent to selecting to exit FIG. 44A
processing), then processing continues to block 4444 where
processing returns to the caller. If block 4408 determines

55 there is at least one target specified, then block 4410
accesses LBX history 30 to determine if any of the targets
have been sent the specific data already. Thereafter, if block
4412 determines the most recently updated data for a target
has already been sent, then block 4414 presents an infor-

60 mative error to the user, preferably requiring user action.
Block 4414 continues to block 4416 when the user performs
the action. If block 4416 determines the user selected to
ignore the error, then processing continues to block 4418,

6. The purpose is for the MS of FIG. 44A processing (e.g. 65

a first, or sending, MS) to transmit information to other MSs
(e.g. at least a second, or receiving, MS), for example

otherwise processing continues back to block 4406 for
updating target specifications.

Block 4418 interfaces with the user to specify a delivery
method. Preferably, there are defaulted setting(s) based on

Petitioners' Ex. 1001, Page 422 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
191 192

was received. Thereafter, if block 4434 determines an appli
cable ack was received (i.e. data successfully sent/received),
or none was anticipated (i.e. assume got it), then processing
continues back to block 4420 for processing any next
target(s). If block 4434 determines an anticipated ack was
not received, then block 4436 logs the situation to LBX
history 30 and the next specified delivery method is
accessed. Thereafter, if block 4438 determines all delivery
methods have already been processed for the current target,
then processing continues to block 4440 for logging the
overall status and providing an error to the user. Block 4440
may require a user acknowledgement before continuing
back to block 4420. If block 4438 determines there is
another specified delivery method for sending, then process-

15 ing continues back to block 4428 for sending using the next
method.

the last time the user encountered block 4418. Any of the
"second set" of options described with FIG. 43 can be made.
Thereafter, block 4420 logs to LBX history 30 the forth
coming send attempt and gets the next target from block
4406 specifications before continuing to block 4422. If 5

block 4422 determines that all targets have not been pro
cessed, then block 4424 determines applicable OBJ_TYPE
data for the target (e.g. check LBX history 30 for any new
data that was not previously successfully sent), and block
4426 gets (e.g. preferably new data, or all, depending on 10

embodiment) the applicable target's OBJ_TYPE data (per
missions or charters) before continuing to block 4428. Block
4428 formats the data for sending in accordance with the
specified delivery method, along with necessary packet
information (e.g. source identity, wrapper data, etc) of this
loop iteration (from block 4418), and block 4430 sends the
data appropriately. For a broadcast send, block 4430 broad
casts the information (using a send interface like interface
1906) by inserting to queue 24 so that send processing
broadcasts data 1302 (e.g. on all available communications 20

interface(s) 70), for example as far as radius 1306, and
processing continues to block 4432. The broadcast is for
reception by data processing systems (e.g. MSs) in the
vicinity (see FIGS. 13A through 13C, as further explained in
detail by FIGS. SOA through SOC which includes potentially 25

any distance). For a targeted send, block 4430 formats the
data intended for recognition by the receiving target. Block
4430 causes sending/broadcasting data 1302 containing CK
1304, depending on the type of MS, wherein CK 1304
contains information appropriately. In a send email embodi- 30

ment, confirmation of delivery status may be used to confirm
delivery with an email interface API to check the COD
(Confirmation of Delivery) status, or the sending of the
email (also SMS message) is assumed to have been deliv
ered in one preferred embodiment.

Referring back to block 4422, if all targets are determined
to have been processed, then block 4442 maintains FIG. 44A
processing results to LBX history 30 and the caller is
returned to at block 4444. In an alternate embodiment to
FIG. 44A processing, a trigger implementation is used for
sending/broadcasting data at the best possible time (e.g.
when new/modified permissions or charters information is
made for a target) as soon as possible, as soon as a target is
detected to be nearby, or in the vicinity (vicinity is expanded
as explained by FIGS. SOA through SOC), or as soon as the
user is notified to send (e.g. in response to a modification)
and then acknowledges to send. See FIGS. SOA through SOC
for explanation of communicating data from a first MS to a
second MS over greater distances. In another embodiment,
background thread(s) timely poll (e.g. per user or system
configurations) the permissions and/or charters data to deter
mine which data should be sent, how to send it, who to send
it to, what applicable permissions are appropriate, and when

35 the best time is to send it. A time interval, or schedule, for
sending data to others on a continual interim basis may also
be configured. This may be particularly useful as a user starts
using a MS for the first time and anticipates making many

In an embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for
listening MSs in the vicinity, send processing feeding from
queue 24, caused by block 4430 processing, will place
information as CK 1304 embedded in usual data 1302 at the 40

next opportune time of sending usual data 1302. This
embodiment will replace synchronous sending success vali
dation of blocks 4432 through 4440 and multiple delivery
methods of 4418 (and subsequent loop processing) with
status asynchronously updated by the receiving MS(s) for a 45

single type of delivery method selected at block 4418. An
alternate embodiment will attempt the multiple send types in
an appropriate asynchronous thread of processing depending
on success of a previous attempt. As the MS conducts its
normal communications, transmitted data 1302 contains 50

new data CK 1304 to be ignored by receiving MS other
character 32 processing, but to be found by listening MSs
within the vicinity which anticipate presence of CK 1304.
Otherwise, when LN-Expanse deployments have not intro
duced CK 1304 to usual data 1302 communicated on a 55

receivable signal by MSs in the vicinity, FIG. 44A sends/
broadcasts new data 1302.

configuration changes. The user may start or terminate
polling threads as part of FIGS. 14A/14B processing, so that
FIG. 44A is relied on to make sure permissions and/or
charters are communicated as needed. Appropriate blocks of
FIGS. 44A&B will also interface to statistics 14 for report
ing successes, failures and status of FIGS. 44A&B process
ing.

In sum, FIGS. 44A and 44B provide a LBX peer to peer
method for ensuring permissions and charters are appropri
ately maintained at MSs, wherein FIG. 44A sends in a peer
to peer fashion and FIG. 44B receives in a peer to peer to
fashion. Thus, permissions 10 and charters 12 are sent from
a first MS to a second MS for configuring maintaining,
enforcing, and/or processing permissions 10 and charters 12
at an MS. There is no intermediary service required for
permissions and charters for LBX interoperability. FIG. 44A
demonstrates a preferred push model. A pull model may be
alternatively implemented. An alternative embodiment may
make a request to a MS for its permissions and/or charters
and then populate its local image of the data after receiving
the response. Privileges would be appropriately validated at

For sending an email, SMS message, or other application
delivery method, block 4430 will use the additional target
information (recipient address) specified via block 4406 for
properly sending. Thereafter, block 4432 waits for a syn
chronous acknowledgement if applicable before either
receiving one or timing out. If a broadcast was made, one (1)
acknowledgement may be all that is necessary for valida
tion, or all anticipated targets can be accounted for before
deeming a successful ack. An email, SMS message, or other
application send may be assumed reliable and that an ack

60 the sending MS(s) and/or receiving MS(s) in order to ensure
appropriate data is sent/received to/from the requesting MS.

FIG. 44B depicts a flowchart for describing a preferred
embodiment of receiving MS configuration data from
another MS. FIG. 44B processing describes a Receive

65 Configuration Data (RxCD) process worker thread, and is of
PIP code 6. There may be many worker threads for the
RxCD process, just as described for a 19xx process. The

Petitioners' Ex. 1001, Page 423 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
193

receive configuration data (RxCD) process is to fit identi
cally into the framework of architecture 1900 as other 19xx
processes, with specific similarity to process 1942 in that
there is data received from receive queue 26, the RxCD
thread(s) stay blocked on the receive queue until data is 5

received, and a RxCD worker thread sends data as described
(e.g. using send queue 24). Blocks 1220 through 1240,
blocks 1436 through 1456 (and applicable invocation of
FIG. 18), block 1516, block 1536, blocks 2804 through
2818, FIG. 29A, FIG. 29B, and any other applicable archi- 10

tecture 1900 process/thread framework processing is to
adapt for the new RxCD process. For example, the RxCD
process is initialized as part of the enumerated set at blocks
1226 (preferably last member of set) and 2806 (preferably
first member of set) for similar architecture 1900 processing. 15

Receive processing identifies targeted/broadcasted data
(permissions and/or charter data) destined for the MS of
FIG. 44B processing. An appropriate data format is used, for
example the X.409 encoding of FIGS. 33A through 33C
wherein RxCD thread(s) purpose is for the MS of FIG. 44B 20

processing to respond to incoming data. It is recommended
that validity criteria set at block 1444 for RxCD-Max be set
as high as possible (e.g. 10) relative performance consider
ations of architecture 1900, to service multiple data recep
tions simultaneously. Multiple channels for receiving data 25

fed to queue 26 are preferably isolated to modular receive
processing.

In an alternative embodiment having multiple receiving
transmission channels visible to the RxCD process, there
can be a RxCD worker thread per channel to handle receiv- 30

ing on multiple channels simultaneously. If RxCD thread(s)

194
queue 26 (e.g. like field 2400a). In another embodiment,
there are separate queues 26C and 26D for separate pro
cessing of incoming charter and permission data. In another
embodiment, thread(s) 1912 are modified with logic of
RxCD thread(s) to handle permission and/or charter data
records, since thread(s) 1912 are listening for queue 26 data
anyway. In another embodiment, there are segregated RxCD
threads RxCD-P and RxCD-C for separate permission and
charter data processing.

Block 4460 validates incoming data for this targeted MS
before continuing to block 4462. A preferred embodiment of
receive processing already validated the data is intended for
this MS by having listened specifically for the data, or by
having already validated it is at the intended MS destination
(e.g. block 4458 can continue directly to block 4464 (no
block 4460 and block 4462 required)). If block 4462 deter-
mines the data is valid for processing, then block 4464
accesses the data source identity information (e.g. owner
information, sending MS information, grantor/grantee infor
mation, etc, as appropriate for an embodiment), block 4466
accesses acceptable delivery methods and/or permissions/
privileges for the source identity to check if the data is
eligible for being received, and block 4468 checks the result.
Depending on an embodiment, block 4466 may enforce an
all or none privilege for accepting the privilege or charter
data, or may enforce specific privileges from the receiving
MS (MS user) to the sending MS (MS user) for exactly
which privileges or charters are acceptable to be received
and locally maintained.

If block 4468 determines the delivery is acceptable (and
perhaps privileged, or privileged per source), then block
4470 appropriately updates the MS locally with the data
(depending on embodiment of 4466, block 4470 may
remove from existing data at the MS as well as per

do not receive directly from the channel, the preferred
embodiment of FIG. 44B would not need to convey channel
information to RxCD thread(s) waiting on queue 24 anyway.
Embodiments could allow specification/configuration of
many RxCD thread(s) per channel.

A RxCD thread processing begins at block 4452 upon the
MS receiving permission data and/or charter data, continues

35 privilege(s)), block 4472 completes an acknowledgment,
and block 4474 sends/broadcasts the acknowledgement
(ack), before continuing back to block 4456 for more data.
Block 4474 sends/broadcasts the ack (using a send interface
like interface 1946) by inserting to queue 24 so that send to block 4454 where the process worker thread count

RxCD-Ct is accessed and incremented by 1 (using appro
priate semaphore access (e.g. RxCD-Sem)), and continues to
block 4456 for retrieving from queue 26 sent data (using
interface like interface 1948), perhaps a special termination
request entry, and only continues to block 4458 when a
record of data (permission/charter data, or termination 45

record) is retrieved. In one embodiment, receive processing
deposits X.409 encoding data as record(s) to queue 26, and
may break up a datastream into individual records of data
from an overall received (or ongoing) datastream. In another
embodiment, XML is received and deposited to queue 26, or 50

some other suitable syntax is received as derived from the
BNF grannnar. In another embodiment, receive processing
receives data in one format and deposits a more suitable
format for FIG. 44B processing. Receive processing
embodiments may deposit "piece-meal" records of data as 55

sent, "piece-meal" records broken up from data received,
full charter or permission datastreams and/or subsets thereof

40 processing transmits data 1302, for example as far as radius
1306. Embodiments will use the different correlation meth-

to queue 26 for processing by FIG. 44B.

ods already discussed above, to associate an ack with a send.
In some embodiments, block 4470 may default field 3700/
in the case of receiving charter records.

If block 4468 determines the data is not acceptable, then
processing continues directly back to block 4456. For secu
rity reasons, it is best not to respond with an error. It is best
to ignore the data entirely. In another embodiment, an error
may be returned to the sender for appropriate error process
ing and reporting. Referring back to block 4462, if it is
determined that the data is not valid, then processing con
tinues back to block 4456.

Referring back to block 4458, if a worker thread termi
nation request was found at queue 26, then block 4476
decrements the RxCD worker thread count by 1 (using
appropriate semaphore access (e.g. RxCD-Sem)), and RxCD
thread processing terminates at block 4478. Block 4476 may
also check the RxCD-Ct value, and signal the RxCD process
parent thread that all worker threads are terminated when
RxCD-Ct equals zero (0).

Block 4474 causes sending/broadcasting data 1302 con
taining CK 1304, depending on the type of MS, wherein CK
1304 contains ack information prepared. In the embodiment
wherein usual MS communications data 1302 of the MS is

Block 4456 stays blocked on retrieving from queue 26
until any record is retrieved, in which case processing 60

continues to block 4458. If block 4458 determines a special
entry indicating to terminate was not found in queue 26,
processing continues to block 4460. There are various
embodiments for RxCD thread(s), thread(s) 1912 and
thread(s) 1942 to feed off a queue 26 for different record
types, for example, separate queues 26A, 26B and 26C, or

65 altered to contain CK 1304 for listening MSs in the vicinity,
send processing feeding from queue 24, caused by block
4474 processing, will place ack information as CK 1304 a thread target field with different record types found at

Petitioners' Ex. 1001, Page 424 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
195

embedded in usual data 1302 at the next opportune time of
sending usual data 1302. As the MS conducts its normal
communications, transmitted data 1302 contains new data
CK 1304 to be ignored by receiving MS other character 32
processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable
signal by MSs in the vicinity, FIG. 44B sends/broadcasts
new ack data 1302.

In an alternate embodiment, permission and/or charter
data records contain a sent date/time stamp field of when the
data was sent by a remote MS, and a received date/time
stamp field (like field 2490c) is processed at the MS in FIG.
44B processing. This would enable calculating a TDOA
measurement while receiving data (e.g. permissions and/or
charter data) that can then be used for location determination
processing as described above.

For other acceptable receive processing, methods are well
known to those skilled in the art for "hooking" customized
processing into application processing of sought data
received. For example, in an email application, a callback
function API is preferably made available to the present
disclosure so that every time an applicable received email
distribution is received with specified criteria (e.g. certain
subject, certain attached file name, certain source, or any
other identifiable email attribute(s) (provided by present
disclosure processing to API)) sent by block 4430, the
callback function (provided by present disclosure processing

196
grammar) to the receiving MS. It may take multiple SMS
messages to communicate the data in its entirety.

Regardless of the type of receiving application, those
skilled in the art recognize many clever methods for receiv-

5 ing data in context of a MS application which communicates
in a peer to peer fashion with another MS (e.g. callback
function(s), API interfaces in an appropriate loop which can
remain blocked until sought data is received for processing,
polling known storage destinations of data received, or other

10 applicable processing).
Permission data 10 and charter data 12 may be manually

copied from one MS to another over any appropriate com
munications connection between the MSs. Permission data
10 and charter data 12 may also be manually copied from

15 one MS to another MS using available file management
system operations (move or copy file/data processing). For
example, a special directory can be defined which upon
deposit of a file to it, processing parses it, validates it, and
uses it to update permissions 10 and/or charters 12. Errors

20 found may also be reported to the user, but preferably there
are automated processes that create/maintain the file data to
prevent errors in processing. Any of a variety of communi
cations wave forms can be used depending on MS capability.

FIG. 45A depicts a flowchart for describing a preferred
25 embodiment of MS charters configuration processing of

block 1482. FIG. 45A is of Self Management Processing
code 18. Processing starts at block 4502 and continues to
block 4504 where a list of charters configuration options are
presented to the user. Thereafter, block 4506 waits for a user

30 action in response to options presented. Block 4506 contin
ues to block 4508 when a user action has been detected. If

to the appropriate API) is invoked for custom processing. In
this example, the present disclosure invokes the callback
API for providing: the callback function to be invoked, and
the email criteria for triggering invocation of the callback
function; for processing of permissions or charter data. For
example, a unique subject field indicates to the email appli- 35

cation that the email item should be directed by the email
application to the callback function for processing. The
present disclosure callback function then parses permissions
and/or charter information from the email item and updates
local permissions 10 and/or charters 12. Data received in the 40

email item may be textual syntax derived from the BNF
grammar in an email body or attached file form, XML syntax
derived from the BNF grammar in email body or attached
file form, an X.409 binary encoding in attached file form, or
other appropriate format received with the email item (e.g. 45

new Document Interchange Architecture (DIA) attribute
data, etc). DIA is an IBM electronic mail (email) interchange
protocol standard between email systems. A process return
status is preferably returned by the callback function, for
example for appropriate email confirmation of delivery 50

block 4508 determines the user selected to configure char
ters data, then the user configures charters data at block 4510
(see FIG. 46A) and processing continues back to block
4504. If block 4508 determines the user did not select to
configure charters data, then processing continues to block
4512. If block 4512 determines the user selected to configure
actions data, then the user configures actions data at block
4514 (see FIG. 47A) and processing continues back to block
4504. If block 4512 determines the user did not select to
configure actions data, then processing continues to block
4516. If block 4516 determines the user selected to configure
parameter data, then the user configures parameter data at
block 4518 (see FIG. 48A) and processing continues back to
block 4504. If block 4516 determines the user did not select
to configure parameter data, then processing continues to
block 4520. If block 4520 determines the user selected to
view other's charter data, then block 4522 invokes the view
other's info processing of FIG. 42 with CHARTER INFO as
a parameter (for viewing other's charter data) and process
ing continues back to block 4504. If block 4520 determines processing.

In another embodiment, the present disclosure provides at
least one thread of processing for polling a known API, or
email repository, for sought criteria (e.g. attributes) which
identifies the email item as destined for present disclosure
processing. Once the email item(s) are found, they are
similarly parsed and processed for updating permissions 10
and/or charters 12.

Thus, there are well known methods for processing data
in context of this disclosure for receiving permissions 10
and/or charters 12 from an originating MS to a receiving
MS, for example when using email. Similarly (callback
function or polling), SMS messages can be used to commu
nicate data 10 and/or 12 from one MS to another MS, albeit

the user did not select to view other's charter data, then
processing continues to block 4524. If block 4524 deter
mines the user selected to view other's actions data, then

55 block 4526 invokes the view other's info processing of FIG.
42 withACTION_INFO as a parameter (for viewing other's
action data) and processing continues back to block 4504. If
block 4524 determines the user did not select to view other's
action data, then processing continues to block 4528. If

60 block 4528 determines the user selected to view other's

at smaller data exchange sizes. The sending MS may break 65

up larger portions of data which can be sent as parse-able
text (e.g. source syntax, XML, etc. derived from the BNF

parameter data, then block 4530 invokes the view other's
info processing of FIG. 42 with PARAMETER_INFO as a
parameter (for viewing other's parameter data information)
and processing continues back to block 4504. If block 4528
determines the user did not select to view other's parameter
data, then processing continues to block 4532. If block 4532
determines the user selected to send charters data, then block

Petitioners' Ex. 1001, Page 425 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
197

4534 invokes the send data processing of FIG. 44A with
CHARTER_INFO as a parameter (for sending charters data)
and processing continues back to block 4504. If block 4532
determines the user did not select to send charters data, then
processing continues to block 4536. If block 4536 deter- 5

mines the user selected to configure accepting charters, then
block 4538 invokes the configure acceptance processing of
FIG. 43 with CHARTER_INFO as a parameter (for config
uring acceptance of charters data) and processing continues
back to block 4504. If block 4536 determines the user did 10

198
PARMDRs. For example, all charters using certain atomic
commands, expressions conditions, etc may be searched and
provided in a list for enablement or disablement as a set. In
a simple example, the user specifies to retrieve all charters
associated to a category of "Shopping" (e.g. found in field
3790c), and associated to the applications of"Calendar" and
"Messaging" (e.g. found in field 3790b), in a sorted key
order of category first and application next, both in alpha
betic ascending order. Snippets field 3790d may also be
specified by the user for search. Various block 4552 embodi
ments support searching on entire entries of any of the CSR
or charter record fields, or in any subset string(s) of the
fields. Sort order can be ascending or descending with a
specified key order (e.g. 3790c first, then 3790b within each

not select to configure accepting charters, then processing
continues to block 4540. If block 4540 determines the user
selected to exit block 1482 processing, then block 4542
appropriately completes block 1482 processing. If block
4540 determines the user did not select to exit, then pro
cessing continues to block 4544 where all other user actions
detected at block 4506 are appropriately handled, and pro
cessing continues back to block 4504.

15 of those rows found).
Thereafter, block 4554 accesses all joined CSRs and

CD Rs through the CDR2CSR records 3795 for returning all
sought charters. Preferably, CSRs drive the ability to corre
late associated CDRs when searching on at least one CSR In an alternate embodiment where the MS maintains

GDRs, GADRs, CDRs, ADRS, PARMDRs and GRPDRs
(and their associated data records DDRs, HDRs and TDRs)
at the MS where they were configured, FIG. 45A may not
provide blocks 4520 through 4530. The MS may be aware

20 field (e.g. SQL inner join). Processing preferably presents
the list of charters found as a list of entries wherein each

of its user charters and need not share the data (i.e. self
contained). In some embodiments, options 4520 through 25

4530 cause access to locally maintained data for others
(other users, MSs, etc) or cause remote access to data when
needed (e.g. from the remote MSs). In the embodiment
where no data is maintained locally for others, blocks 4532
through 4538 may not be necessary. In sum, the preferred 30

embodiment is to locally maintain charters data for the MS
user and others (e.g. MS users) which are relevant to provide
the richest set of charters governing MS processing at the
MS.

FIG. 45B depicts a flowchart for describing a preferred 35

embodiment of MS charter enablement and disablement
processing. FIG. 45B provides a convenient method for a
user to enable or disable a specified set of charters. FIG. 45B
also provides means for maintaining charters starters
schema. While CSR records 3790 and CDR2CSR records 40

3795 may be defaulted ahead of time for a MS, a user can
create, change or delete CSRs and associated CDR2CSRs as
desired. In one embodiment, block 1496 may be modified to
include new blocks 1496h, 1496i, and 1496c such that:

entry contains enough information to determine there is a
unique charter, which search criteria it pertains to, and
whether or not it is currently enabled or disabled (e.g. field
3700.1). Also, each entry has associated to it the charter id
field 3795a and charter starter id field 3795b for convenient
subsequent I/O operations. Thereafter, block 4556 waits for
a user action in response to the list which can be scrolled,
and a specific entry selected for an applicable action. Block
4556 continues to block 4558 when a user action is detected.

If block 4558 determines the user selected to enable all
charters of the list presented at block 4554, then block 4560
updates all the charters to enabled (e.g. updates field 3700/
to enabled), block 4562 refreshes and re-presents the list to
reflect changes, and processing continues back to block
4556. If block 4558 determines the user did not select to
enable the search result charters of the list, then processing
continues to block 4564.

If block 4564 determines the user selected to disable all
charters of the list presented at block 4554, then block 4566
updates all the charters to disabled (e.g. updates field 3700/
to disabled), block 4562 refreshes and re-presents the list to
reflect changes, and processing continues back to block
4556. If block 4564 determines the user did not select to

Block 1496h checks to see if the user selected to configure
enablement or disablement of charters-an option for
configuration at block 1406 wherein the user action to
configure it is detected at block 1408;

45 disable the search result charters of the list, then processing
continues to block 4568.

Block 1496i is processed if block 1496h determines the
user did select to configure charters for enabled/disable. 50

Block 1496i invokes FIG. 45B for interfacing with the
user accordingly, and processing then continues to
block 1496c.

If block 4568 determines the user selected to manage (i.e.
add, change, delete, view details, etc) information of a
specific charter of the list, block 4570 interfaces with the
user for managing/maintaining the specified charter infor
mation and validating any modifications if applicable before
continuing to block 4562 already described. If block 4568
determines the user did not select to manage a charter, then
processing continues to block 4572. Blocks 4568 and 4570 Block 1496c is processed if block 1496h determines the

user did not select to configure charters for enable/
disable, or as the result of processing leaving block
1496i. Block 1496c handles other user interface actions
leaving block 1408 (e.g. becomes the "catch all" as
currently shown in block 1496 of FIG. 14B).

55 may include processing for managing charter data as already
described in FIGS. 45A, 46A, 46B, 47 A, 47B, 48A and 48B.
It should be understood that applicable charter management
processing of those Figures can be embodied in FIG. 45B for
user convemence.

CSR configuration begins at block 4550 upon a user 60

action to present the interface. In one embodiment, the user
is an authenticated administrator prior to being permitted to
get access to processing of FIG. 45B. Block 4550 continues
to block 4552 where the user is able to specify which search
criteria to use against CSR fields, charter fields and sort 65

preferences thereof. Any view of charters can be retrieved
using any combination of values ofCSRs, CD Rs, AD Rs, and

If block 4572 determines the user selected to use at least
one snippet of a charter list entry, then block 4574 accesses
data of associated field 3790d where the user can select at
least one snippet for in tum creating a new charter. Block
4574 enables a user to make use of charter snippets as
executable starters for new charters. Thereafter, processing
continues to block 4562. If block 4572 determines the user
did not select to use snippet data, then processing continues

Petitioners' Ex. 1001, Page 426 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
199

to block 4576. An enabled or disabled charter may be
created as a result of block 4574 if the user desires so.
Snippets are charter portions (i.e. subsets) which make it
convenient to clone, and from which to create new charters.

200
for what purpose to use snippets. Snippets provide building
blocks to build new and useful charters. A user may use his
own or other's snippets to create new charters. In an

In some embodiments, a reasonable plurality of subset 5

snippets is automatically generated from charter data when
adding a CDR2CSR record (block 4598). If more than one
charter is joinable to the CSR, then many snippets may
potentially be automatically made from associated charters
for subsequent use at block 4574.

If block 4576 determines the user selected to specify new
search criteria, then processing continues back to block
4552, otherwise processing continues to block 4578.

alternate embodiment, categories and applications are main
tained as folders for encapsulating and organizing charters,
and may be visually presented that way to a user for easy
interpretation (as opposed to charters starters schema of FIG.
37D). The most recent set of enabled charters are those that
remain in effect from that point in time forward for MS

10 processing. In other embodiments, configured charters for
WITS processing are affected (e.g. removed, altered, etc) by
FIG. 45B processing.

If block 4578 determines the user selected to exit FIG.
45B processing, then block 4580 terminates the FIG. 45B 15

interface and block 4582 terminates FIG. 45B processing. If
block 4578 determines the user did not select to exit, then
processing continues to block 4584.

FIGS. 46A through 46B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
charters configuration of block 4510. With reference now to
FIG. 46A, processing starts at block 4602, continues to
block 4604 for initialization (e.g. a start using database
command), and then to block 4606 where groups the user is If block 4584 determines the user selected to create a

CSR, then block 4586 interfaces with the user to create one
and terminate that interface before processing continues
back to block 4556 since there are no list changes. If block
4584 determines the user did not select to create a CSR, then
processing continues to block 4588.

20 a member of are accessed. Block 4606 retrieves all GRPDRs
3540 joined to GADRs 3520 such that the descendant type
field 3520c and descendant ID field 3520d match the user
information, and the ascendant type field 3520a is set to

If block 4588 determines the user selected to change a 25

CSR associated to a particular charter list entry, then block
4590 interfaces with the user to modify it, validate any
changes, and terminate that interface before processing
continues to block 4562. Any charters of the list from the
search result that now do not meet the search criteria are 30

removed from the list at block 4562 processing. Any charters
of the list from the search result that now newly meet the
search criteria are added to the list at block 4562 processing.

Group and the ascendant ID field 3520b matches the group
ID field 3540a. While there may be different types of groups
as defined for the BNF granmiar, the GRPDR is a derivative
embodiment which happens to not distinguish. Alternate
embodiments may carry a group type field to select appro
priate records by group type. Yet another embodiment may
not have a block 4606 with processing at block 4608 for
gathering data additionally by groups the user is a member
of. Block 4606 continues to block 4608.

Block 4608 accesses all CDRs (e.g. all rows from a CDR
SQL table) with enabled field 3700/ set to Yes for the user If block 4588 determines the user did not select to change a

CSR, then processing continues to block 4592.
If block 4592 determines the user selected to delete a CSR

associated to a particular charter list entry, then block 4594
interfaces with the user to delete it and terminate that

35 of FIG. 46A (e.g. user information matches field 3700b), and
for the groups the user is a member of (e.g. group informa
tion matches field 3700b (e.g. owner type=group, owner
id=a group ID field 3540a from block 4606)). The CD Rs are

interface before processing continues to block 4562. Any
charters of the list from the search result that do not meet the 40

search criteria are removed from the list at block 4562
processing. If block 4592 determines the user did not select
to delete a CSR, then processing continues to block 4596.

If block 4596 determines the user selected to add a CSR

additionally joined (e.g. SQL join) with GDRs, DDRs and
TDRs (e.g. fields 3500t, 3600b and 3640b=Charter and by
matching ID fields 3500a, 3600a and 3640a with field
3700a). Description field 3600c can provide a useful
description last saved by the user for the charter entry. Block
4608 may access field 3700/ in the case of filtering desired

45 charter records. Block 4608 may also retrieve system pre
defined data records for use and/or management. Thereafter,
each joined entry returned at block 4608 is associated at
block 4610 with the corresponding data IDs (at least fields
3700a/3500a and 3540a) for easy unique record accesses

or delete a list entry CSR, then block 4598 interfaces with
the user to add or delete before terminating that interface and
continuing processing to block 4562. In a preferred embodi
ment, the associated snippet(s) field 3790d is automatically
updated with reasonable useful charter subsets (e.g. condi
tions, expressions, actions, etc). In another embodiment, a
user manually updates CSR field 3790d at blocks 4586 and
4590. Any charters of the list from the search result that do
not meet the search criteria are removed from the list at
block 4562 processing. Any charters of the list from the
search result that now newly meet the search criteria are 55

added to the list at block 4562 processing. If block 4596
determines the user did not select to add or delete a
CDR2CSR, then processing continues to block 4599 where
any other action leaving block 4556 is appropriately
handled. Block 4599 continues to block 4556.

In some embodiments, and in accordance with permis
sions, users may access another user's data for the same FIG.
45B processing to maintain another user's data and make
use of other's snippets. It may be useful to determine which

50 when the user acts on the data. Block 4610 also initializes a
list cursor to point to the first list entry to be presented to the
user. Thereafter, block 4612 sets user interface indication for
where the list cursor is currently set (e.g. set to highlight the
entry), and any list scrolling settings are set (the list is
initially not set for being scrolled on first FIG. 46A process
ing encounter to block 4612 from block 4610). Block 4612
continues to block 4614 where the entry list is presented to
the user in accordance with the list cursor and list scroll
settings managed for presentation at block 4612. Thereafter,

60 block 4616 waits for user action to the presented list of
charters data and will continue to block 4618 when a user

of other's charters should be enabled or disabled. In other 65

embodiments, snippets may include tag fields to identify a
snippet description for facilitating which snippets to use, or

action has been detected. Presentation of the scrollable list
preferably presents in an entry format such that an entry
contains fields for: DDR 3600 description; GDR owner
information, grantor information and grantee information;
GRPDR owner information and group name if applicable;
CDR information; and TDR time spec information. Alter-

Petitioners' Ex. 1001, Page 427 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
201

nate embodiments will present less information, or more
information (e.g. join to ADR and/or PARMDR informa
tion).

If block 4618 determines the user selected to set the list
cursor to a different entry, then block 4620 sets the list cursor 5

accordingly and processing continues back to block 4612.
Block 4612 always sets for indicating where the list cursor
is currently pointed and sets for appropriately scrolling the
list if necessary when subsequently presenting the list at
block 4614. If block 4618 determines the user did not select 10

202
back to block 4612. Block 4658 may update the GDR, CDR,
ADR, PARMDR and/or any associated records (e.g. DDR,
and/or TDR) using the charter id field 3700a/3500a (asso-
ciated to the entry at block 4610). Block 4658 will update an
associated HDR as well. Block 4658 may add new CDR,
ADR(s), PARMDR(s), a DDR and/or TDR as part of the
charter change. If block 4652 determines the user did not
select to modify a charter, then processing continues to block
4660.

If block 4660 determines the user selected to get more
details of the charter (e.g. show alljoinable data to the GDR
or CDR that is not already presented with the entry), then
block 4662 gets additional details (may involve database

to set the list cursor, then processing continues to block
4622. If block 4622 determines the user selected to add a
charter, then block 4624 accesses a maximum number of
charters allowed (perhaps multiple maximum values
accessed), and block 4626 checks the maximum(s) with the
number of current charters defined. There are many embodi
ments for what deems a maximum (for this user, for a group,

15
queries in an SQL embodiment) for the charter pointed to by
the list cursor, and block 4664 appropriately presents the
information to the user. Block 4664 then waits for a user
action that the user is complete reviewing details, in which for this MS, etc). If block 4626 determines a maximum

number of charters allowed already exists, then block 4628
provides an error to the user and processing continues back 20

to block 4612. Block 4628 preferably requires the user to
acknowledge the error before continuing back to block
4612. If block 4626 determines a maximum was not
exceeded, then block 4630 interfaces with the user for
entering validated charter data and block 4632 adds the data
record(s), appropriately updates the list with the new entry,
and sets the list cursor appropriately for the next list pre
sentation refresh, before continuing back to block 4612. If
block 4622 determines the user did not want to add a charter,
processing continues to block 4634. Block 4632 will add a
CDR, GDR, DDR, HDR (to set creator information) and
TDR. The DDR and TDR are optionally added by the user,
but the DDR may be strongly suggested (if not enforced on
the add). This will provide a charter record. Additionally,
block 4630 may add new ADR(s) and/or PARMDR(s)
(which are validated to exist prior to adding data at block
4632). In one embodiment, a GDR associated to the CDR is
not added; for indicating the user wants his charter made
available to all other user MSs which are willing to accept
it.

case processing continues back to block 4612. If block 4660
determines the user did not select to get more detail, then
processing continues to block 4666.

If block 4666 determines the user selected to internalize
charters data thus far being maintained, then block 4668
internalizes (e.g. as a compiler would) all applicable data

25 records for well performing use by the MS, and block 4670
saves the internalized form, for example to MS high speed
non-persistent memory. In one embodiment, blocks 4668
and 4670 internalize charter data to applicable C structures
of FIGS. 34A through 34G (also see FIG. 52). In various

30 embodiments, block 4668 maintains statistics for exactly
what was internalized, and updates any running totals or
averages maintained for a plurality of internalizations up to
this point, or over certain time periods. Statistics such as:
number of active constructs; number of user construct edits

35 of particular types; amount of associated storage used, freed,
changed, etc with perhaps a graphical user interface to graph
changes over time; number of charter expressions, actions,
term types, etc specified, number of charters affected and
unaffected by permissions; and other charter dependent

40 statistics. In other embodiments, statistical data is initialized
at internalization time to prepare for subsequent gathering of
useful statistics during charter processing. In embodiments
where a tense qualifier is specified for TimeSpec informa
tion, saving the internalized form at block 4670 causes all

If block 4634 determines the user selected to delete a
charter, then block 4636 deletes the data record currently
pointed to by the list cursor, modifies the list for the
discarded entry, and sets the list cursor appropriately for the
next list presentation refresh, before continuing back to
block 4612. Block 4636 will use the Charter ID field
3700a/3500a (associated with the entry at block 4610) to
delete the charter. Associated CDR, ADR(s), PARMDR(s),
DDR 3600, HDR 3620, and TDR 3640 is also deleted (e.g.
preferably with a cascade delete in a SQL embodiment). If 50

block 4634 determines the user did not select to delete a

45 past and current tense configurations to become effective for
being processed.

Block 4670 then continues back to block 4612. If block
4666 determines the user did not select to internalize charter
configurations, then processing continues to block 4672.
Alternate embodiments of processing charters 12 in the
present disclosure will rely upon the data records entirely,

charter, then processing continues to block 4652 of FIG. 46B
by way of off-page connector 4650.

rather than requiring the user to redundantly internalize from
persistent storage to non-persistent storage for use. Persis
tent storage may be of reasonably fast performance to not

55 require an internalized version of charters 12. Different
embodiments may completely overwrite the internalized
form, or update the current internalized form with any
changes.

With reference now to FIG. 46B, if block 4652 determines
the user selected to modify a charter, then block 4654
interfaces with the user to modify charter data of the entry
pointed to by the list cursor. The user may change informa
tion of the GDR, CDR, ADR and/or PARMDR and any
associated records (e.g. DDR and TDR). The user may also
add applicable records at block 4654. Block 4654 waits for 60

a user action indicating completion. Block 4654 will con
tinue to block 4656 when the complete action is detected. If
block 4656 determines the user exited, then processing
continues back to block 4612 by way of off-page connector
4698. If block 4656 determines the user selected to save 65

changes made at block 4654, then block 4658 updates the
data and the list is appropriately updated before continuing

If block 4672 determines the user selected to exit block
4510 processing, then block 4674 cleans up processing thus
far accomplished (e.g. issue a stop using database com
mand), and block 4676 completes block 4510 processing. If
block 4672 determines the user did not select to exit, then
processing continues to block 4678 where all other user
actions detected at block 4616 are appropriately handled,
and processing continues back to block 4616 by way off
off-page connector 4696.

Petitioners' Ex. 1001, Page 428 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
203

FIGS. 47A through 47B depict flowcharts for describing
a preferred embodiment of MS user interface processing for
actions configuration of block 4514. With reference now to
FIG. 47A, processing starts at block 4702, continues to
block 4704 for initialization (e.g. a start using database 5

command), and then to block 4706 where groups the user is

204
number of current actions defined. There are many embodi
ments for what deems a maximum (for this user, for a group,
for this MS, etc). If block 4726 determines a maximum
number of actions allowed already exists, then block 4728
provides an error to the user and processing continues back
to block 4712. Block 4728 preferably requires the user to
acknowledge the error before continuing back to block
4712. If block 4726 determines a maximum was not
exceeded, then block 4730 interfaces with the user for

a member of are accessed. Block 4706 retrieves all GRPDRs
3540 joined to GADRs 3520 such that the descendant type
field 3520c and descendant ID field 3520d match the user
information, and the ascendant type field 3520a is set to
Group and the ascendant ID field 3520b matches the group
ID field 3540a. While there may be different types of groups
as defined for the BNF grammar, the GRPDR 3540 is a
derivative embodiment which happens to not distinguish.
Alternate embodiments may carry a group type field to
select appropriate records by group type. Yet another
embodiment may not have a block 4706 with processing at
block 4708 for gathering data additionally by groups the
user is a member of. Block 4706 continues to block 4708.

10 entering validated action data and block 4732 adds the data
record, appropriately updates the list with the new entry, and
sets the list cursor appropriately for the next list presentation
refresh, before continuing back to block 4712. If block 4722
determines the user did not want to add an action, processing

15 continues to block 4734. Block 4732 will add anADR, HDR
3620 (to set creator information) and TDR 3640. The DDR
and TDR are optionally added by the user. Additionally, at
block 4730 the user may add new PARMDR(s) for the
action.

Block 4708 accesses all AD Rs (e.g. all rows from a ADR 20

SQL table) for the user of FIG. 47A matching the owner
information of the ADRs (e.g. user information matches
field 3750b) to the user and to groups the user is a member

If block 4734 determines the user selected to modify an
action, then block 4736 interfaces with the user to modify
action data of the entry pointed to by the list cursor. The user
may change information of the ADR and any associated
records (e.g. DDR, TDR). The user may also add the
associated records at block 4736. Block 4736 waits for a
user action indicating completion. Block 4736 will continue
to block 4738 when the action is detected at block 4736. If
block 4738 determines the user exited, then processing
continues back to block 4712. If block 4738 determines the
user selected to save changes made at block 4736, then block
4740 updates the data and the list is appropriately updated
before continuing back to block 4712. Block 4740 may
update the ADR and/or any associated records (e.g. DDR
and/or TDR) using the action id field 3750a (associated to
the action item at block 4710). Block 4740 will update an
associated HDR as well. Block 4736 may add a DDR and/or
TDR as part of the action change. If block 4734 determines
the user did not select to modify an action, then processing
continues to block 4752 by way of off-page connector 4750.

With reference now to FIG. 47B, if block 4752 determines
the user selected to get more details of the action (e.g. show
all joinable data to the ADR that is not already presented
with the entry), then block 4754 gets additional details (may
involve database queries in an SQL embodiment) for the
action pointed to by the list cursor, and block 4756 appro
priately presents the information to the user. Block 4756
then waits for a user action that the user is complete
reviewing details, in which case processing continues back
to block 4712 by way of off-page connector 4798. If block

of (e.g. group information matches field 3750b (e.g. owner
type=group, owner id=group ID field 3540a from block 25

4706)). The ADRs are additionally joined (e.g. SQL join)
with DDRs 3600 and TDRs 3640 (e.g. fields 3600b and
3640b=Action and by matching ID fields 3600a and 3640a
with field 3750a). Description field 3600c can provide a
useful description last saved by the user for the action data. 30

Block 4708 may also retrieve system predefined data records
for use and/or management. Thereafter, each joined entry
returned at block 4708 is associated at block 4710 with the
corresponding data IDs (at least fields 3750a and 3540a) for
easy unique record accesses when the user acts on the data. 35

Block 4710 also initializes a list cursor to point to the first
action item to be presented to the user in the list. Thereafter,
block 4712 sets user interface indication for where the list
cursor is currently set (e.g. set to highlight the entry) and any
list scrolling settings are set (the list is initially not set for 40

being scrolled on first FIG. 47A processing encounter to
block 4712 from block 4710). Block 4712 continues to block
4714 where the entry list is presented to the user in accor
dance with the list cursor and list scroll settings managed for
presentation at block 4712. Thereafter, block 4716 waits for 45

user action to the presented list of action data and will
continue to block 4718 when a user action has been detected.
Presentation of the scrollable list preferably presents in an
entry format reference-able by the list cursor. An action
entry presented preferably contains ADR fields including
owner information; GRPDR owner information and group
name if applicable; TDR time spec information; and DDR
information. Alternate embodiments will present less infor
mation, or more information (e.g. join ADR(s) to
PARMDR(s) via field(s) 3750g).

50 4752 determines the user did not select to get more detail,
then processing continues to block 4758.

If block 4758 determines the user selected to delete an
action, then block 4760 determines any data records (e.g.
CDR(s)) that reference the action data record to be deleted.

55 Preferably, no referencing data records (e.g. CDRs) are
joinable (e.g. field 3700d) to the action data record being
deleted, otherwise the user may improperly delete an action
from a configured charter. The user should remove ascend
ing references to an action for deletion first. Block 4760

If block 4718 determines the user selected to set the list
cursor to a different action entry, then block 4720 sets the list
cursor accordingly and processing continues back to block
4712. Block 4712 always sets for indicating where the list
cursor is currently pointed and sets for appropriately scroll
ing the list if necessary when subsequently presenting the
list at block 4714. If block 4718 determines the user did not
select to set the list cursor, then processing continues to
block 4722. If block 4722 determines the user selected to
add an action, then block 4724 accesses a maximum number 65

of actions allowed (perhaps multiple maximum values
accessed), and block 4726 checks the maximum(s) with the

60 continues to block 4762. If block 4762 determines there was
at least one CDR reference, block 4764 provides an appro
priate error with the reference(s) found so the user can
subsequently reconcile. Block 4764 preferably requires the
user to acknowledge the error before continuing back to
block 4712. If no references were found as determined by
block 4762, then processing continues to block 4766 for
deleting the data record currently pointed to by the list

Petitioners' Ex. 1001, Page 429 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
205 206

Presentation of the scrollable list preferably presents in an
entry format reference-able by the list cursor. A parameter
entry presented preferably contains fields for: PARMDR
field 3775c; GRPDR owner information; owning GRPDR
owner information and group name if applicable; and DDR
information. Alternate embodiments will present less infor
mation, or more information (e.g. commands and operands
parameters may be used with, parameter descriptions, etc).

If block 4818 determines the user selected to set the list

cursor. Block 4766 also modifies the list for the discarded
entry, and sets the list cursor appropriately for the next list
presentation refresh, before continuing back to block 4712.
Block 4766 will use the action ID field 3750a (associated
with the entry at block 4710) to delete an action. Associated 5

records (e.g. DDR 3600, HDR 3620, and TDR 3640) are
also deleted (e.g. preferably with a cascade delete in a SQL
embodiment). If block 4758 determines the user did not
select to delete an action, then processing continues to block
4768. 10 cursor to a different parameter entry, then block 4820 sets the

list cursor accordingly and processing continues back to
block 4812. Block 4812 always sets for indicating where the
list cursor is currently pointed and sets for appropriately
scrolling the list if necessary when subsequently presenting

If block 4768 determines the user selected to exit block
4514 processing, then block 4770 cleans up processing thus
far accomplished (e.g. issue a stop using database com
mand), and block 4772 completes block 4514 processing. If
block 4768 determines the user did not select to exit, then
processing continues to block 4774 where all other user
actions detected at block 4716 are appropriately handled,
and processing continues back to block 4716 by way off
off-page connector 4796.

15 the list at block 4814. If block 4818 determines the user did

FIGS. 48A through 48B depict flowcharts for describing 20

a preferred embodiment of MS user interface processing for
parameter information configuration of block 4518. With
reference now to FIG. 48A, processing starts at block 4802,
continues to block 4804 for initialization (e.g. a start using
database command), and then to block 4806 where groups 25

the user is a member of are accessed. Block 4806 retrieves
all GRPDRs 3540 joined to GADRs 3520 such that the
descendant type field 3520c and descendant ID field 3520d
match the user information, and the ascendant type field
3520a is set to Group and the ascendant ID field 3520b 30

matches the group ID field 3540a. While there may be
different types of groups as defined for the BNF grammar,
the GRPDR 3540 is a derivative embodiment which happens
to not distinguish. Alternate embodiments may carry a group
type field to select appropriate records by group type. Yet 35

another embodiment may not have a block 4806 with
processing at block 4808 for gathering data additionally by
groups the user is a member of. Block 4806 continues to
block 4808.

not select to set the list cursor, then processing continues to
block 4822. If block 4822 determines the user selected to
add a parameter, then block 4824 accesses a maximum
number of parameter entries allowed (perhaps multiple
maximum values accessed), and block 4826 checks the
maximum(s) with the number of current parameter entries
defined. There are many embodiments for what deems a
maximum (for this user, for a group, for this MS, etc). If
block 4826 determines a maximum number of parameter
entries allowed already exists, then block 4828 provides an
error to the user and processing continues back to block
4812. Block 4828 preferably requires the user to acknowl
edge the error before continuing back to block 4812. If block
4826 determines a maximum was not exceeded, then block
4830 interfaces with the user for entering validated param
eter data, and block 4832 adds the data record, appropriately
updates the list with the new entry, and sets the list cursor
appropriately for the next list presentation refresh, before
continuing back to block 4812. If block 4822 determines the
user did not want to add a parameter entry, processing
continues to block 4834. Block 4832 will add a PARMDR,
DDR 3600 and HDR 3620 (to set creator information). The
DDR is optionally added by the user.

If block 4834 determines the user selected to modify a
40 parameter entry, then block 4836 interfaces with the user to

modify parameter data of the entry pointed to by the list
cursor. The user may change information of the PARMDR
and any associated records (e.g. DDR). The user may also
add the associated records at block 4836. Block 4836 waits

Block 4808 accesses all PARMDRs (e.g. all rows from a
PARMDR SQL table) for the user of FIG. 48Amatching the
owner information of the PARMDRs (e.g. user information
matches field 3775b) to the user and to groups the user is a
member of (e.g. group information matches field 3775b (e.g.
owner type=group, owner id=group ID field 3540a from 45

block 4806)). The PARMDRs are additionally joined (e.g.
SQL join) with DD Rs 3600 (e.g. field 3600b=Parameter and
by matching ID field 3600a with field 3775a). Description
field 3600c can provide a useful description last saved by the
user for the parameter data. Block 4808 may also retrieve 50

system predefined data records for use and/or management.
Thereafter, each joined entry returned at block 4808 is
associated at block 4810 with the corresponding data IDs (at
least fields 3775a and 3540a) for easy unique record
accesses when the user acts on the data. Block 4810 also 55

initializes a list cursor to point to the first parameter entry to
be presented to the user in the list. Thereafter, block 4812
sets user interface indication for where the list cursor is
currently set (e.g. set to highlight the entry) and any list
scrolling settings are set (the list is initially not set for being 60

scrolled on first FIG. 48A processing encounter to block
4812 from block 4810). Block 4812 continues to block 4814
where the entry list is presented to the user in accordance
with the list cursor and list scroll settings managed for
presentation at block 4812. Thereafter, block 4816 waits for 65

user action to the presented list of parameter data and will
continue to block 4818 when a user action has been detected.

for a user action indicating completion. Block 4836 will
continue to block 4838 when the complete action is detected
at block 4836. If block 4838 determines the user exited, then
processing continues back to block 4812. If block 4838
determines the user selected to save changes made at block
4836, then block 4840 updates the data and the list is
appropriately updated before continuing back to block 4812.
Block 4840 may update the PARMDR and/or any associated
DDR using the parameter id field 3775a (associated to the
parameter entry at block 4810). Block 4840 will update an
associated HDR as well. Block 4836 may add a new DDR
as part of the parameter entry change. If block 4834 deter-
mines the user did not select to modify a parameter, then
processing continues to block 4852 by way of off-page
connector 4850.

With reference now to FIG. 48B, if block 4852 determines
the user selected to get more details of the parameter entry,
then block 4854 gets additional details (may involve data
base queries in an SQ L embodiment) for the parameter entry
pointed to by the list cursor, and block 4856 appropriately
presents the information to the user. Block 4856 then waits
for a user action that the user is complete reviewing details,
in which case processing continues back to block 4812 by

Petitioners' Ex. 1001, Page 430 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
207

way of off-page connector 4898. If block 4852 determines
the user did not select to get more detail, then processing
continues to block 4858.

If block 4858 determines the user selected to delete a

208
mation (e.g. fields 3500c and 3500d) for matching to the
user's identity(s) (user and/or group(s)) for processing when
the choice is available (e.g. in a GDR for permissions and/or
charters). Similarly, an administrator or authorized user may
make configurations for an intended user of the MS.

FIGS. 39A, 40A, 41A, 46A, 47Aand 48Amay also utilize
VDRs 3660 if referenced in any data record fields of
processing for elaboration to constructs or values that are
required at a processing block. Appropriate variable name
referencing syntax, or variable names referenced in data
record fields, will be used to access VDR information for
elaboration to the value(s) that are actually needed in data
record information when accessed.

FIG. 49A depicts an illustration for preferred permission

parameter entry, then block 4860 determines any data 5

records (e.g. ADR(s)) that reference the parameter data
record to be deleted. Preferably, no referencing data records
(e.g. ADRs) are joinable (e.g. field 3750g) to the parameter
data record being deleted, otherwise the user may improp
erly delete a parameter from a configured action. The user 10

should remove references to a parameter entry for deletion
first. Block 4860 continues to block 4862. If block 4862
determines there was at least one reference, block 4864
provides an appropriate error with the reference(s) found so
the user can subsequently reconcile. Block 4864 preferably
requires the user to acknowledge the error before continuing
back to block 4812. If no references were found as deter
mined by block 4862, then processing continues to block
4866 for deleting the data record currently pointed to by the
list cursor, along with any other related records that can be
deleted. Block 4866 also modifies the list for the discarded
entry(s), and sets the list cursor appropriately for the next list
presentation refresh, before continuing back to block 4812.
Block 4866 will use the parameter ID field 3775a (associ
ated with the entry at block 4810) to delete the parameter 25

entry. Associated records (e.g. DDR 3600, and HDR 3620)
are also deleted (e.g. preferably with a cascade delete in a
SQL embodiment). If block 4858 determines the user did not
select to delete a parameter entry, then processing continues

15 data 10 processing in the present disclosure LBX architec
ture, for example when WDRs are in-process of being
maintained to queue 22, or being inbound to a MS (referred
to generally as "incoming" in FIG. 49A). Table 4920 depicts
considerations for privilege data (i.e. permission data 10)

20 resident at the MS of a first identity m 1 (grammar ID/ID
Type), depending on privileges granted in the following

to block 4868.
If block 4868 determines the user selected to exit block

4518 processing, then block 4870 cleans up processing thus

30

far accomplished (e.g. issue a stop using database com
mand), and block 4872 completes block 4518 processing. If
block 4868 determines the user did not select to exit, then 35

processing continues to block 4874 where all other user
actions detected at block 4816 are appropriately handled,
and processing continues back to block 4816 by way off
off-page connector 4896.

FIGS. 39A, 40A, 41A, 46A, 47A and 48A assume a 40

known identity of the user for retrieving data records.
Alternate embodiments may provide a user interface option
(e.g. at block 3904/4004/4104/4604/4704/4804) for whether
the user wants to use his own identity, or a different identity

scenanos:
2) The first identity m 1 (Grantor) granting a privilege to

a second identity m 2 (Grantee; grammar m/mType),
as shown in cell 4924: Privilege data is maintained by
ID1 at the ID1 MS as is used to govern actions, func-
tionality, features, and/or behavior for the benefit of
m 2 , by a) processing ID1 WDR information at the ID2

MS (preferably, privileges are communicated to ID2

MS for enforcing and/or cloning there), b) processing
m 2 WDR information at the m 1 MS (privileges locally
maintained to m 1), and c) processing m 1 WDR infor
mation at the m 1 MS (privileges locally maintained to
m1);

3) The first identity m 1 (Grantor) granting a privilege to
himself (Grantee), as shown in cell 4922: Preferably,
privilege data in this case is not necessary, no configu
ration interface is required for this scenario, and an
identity implicitly has all conceivable privileges
assigned to himself by default; however, alternatively
privileges may be appropriate for activating/deactivat-
ing functionality;

4) The second identity m 2 (Grantor) granting a privilege
to the first identity (Grantee), as shown in cell 4926:
Privilege data is used for informing ID1 (or enabling
ID1 to clone per a privilege) and to govern actions,
functionality, features, and/or behavior for the benefit
of IDi, by a) processing m 2 WDR information at the
ID1 MS (preferably, privileges are communicated to
m 1 MS for enforcing and/or cloning there), b) process
ing ID1 WDR information at the m 2 MS (privileges
locally maintained to ID2); and c) processing m 2 WDR
information at the ID2 MS (privileges locally main
tained to ID2); and/or

5) The second identity granting a privilege to himself, as
shown in cell 4928: Preferably, privilege data in this
case is not necessary, no communications interface is
required for this scenario, and an identity implicitly has
all conceivable privileges assigned to himself by
default; however, alternatively privileges may be
appropriate for activating/deactivating functionality.

(e.g. impersonate another user, a group, etc). In this embodi- 45

ment, processing (e.g. block 3904/4004/4104/4604/4704/
4804) would check permissions/privileges for the user (of
FIG. 39A, 40A, 41A, 46A, 47 A and/or 48A) for whether or
not an impersonation privilege was granted by the identity
the user wants to act on behalf of. If no such privilege was 50

granted, an error would be presented to the user. If an
impersonation privilege was granted to the user, then appli
cable processing (FIGS. 39A&B, FIGS. 40A&B, FIGS.
41A&B, FIGS. 46A&B, FIGS. 47A&B and/or FIGS.
48A&B) would continue in context of the permitted imper- 55

sonated identity. In another embodiment, an impersonation
privilege could exist from a group to another identity for
enforcing who manages grants for the group (e.g. 3904/
4004/4104/4604/4704/4804 considers this privilege for
which group identity data can, and cannot, be managed by 60

the user). One privilege could govern who can manage
particular record data for the group. Another privilege can
manage who can be maintained to a particular group. Yet
another embodiment could have a specific impersonation
privilege for each of FIGS. 39A&B, FIGS. 40A&B, FIGS.
41A&B, FIGS. 46A&B, FIGS. 47A&B and/or FIGS.
48A&B. Yet another embodiment uses Grantor field infor-

Table 4940 depicts considerations for privilege data (i.e.
permission data 10) resident at the MS of a second identity
m 2 (grammar m;mType), depending on privileges granted

65 in the following scenarios:
6) A first identity m 1 (Grantor) granting a privilege to the

second identity ID2 (Grantee; grammar m/mType), as

Petitioners' Ex. 1001, Page 431 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
209

shown in cell 4944: Privilege data is used for informing
ID2 (or enabling ID2 to clone per a privilege) and to
govern actions, functionality, features, and/or behavior
for the benefit of ID2 , by a) processing ID1 WDR
information at the ID2 MS (preferably, privileges are 5

communicated to ID1 MS for enforcing and/or cloning
there), b) processing ID2 WDR information at the ID1

MS (privileges locally maintained to ID1), and c)
processing ID1 WDR information at the ID1 MS (privi-
leges locally maintained to ID1); 10

7) The first identity ID1 (Grantor) granting a privilege to
himself (Grantee), as shown in cell 4942: Preferably,
privilege data in this case is not necessary, no commu
nications interface is required for this scenario, and an
identity implicitly has all conceivable privileges 15

assigned to himself by default; however, alternatively
privileges may be appropriate for activating/deactivat
ing functionality;

8) The second identity ID2 (Grantor) granting a privilege
to the first identity (Grantee), as shown in cell 4946: 20

Privilege data is maintained by ID2 at the ID2 MS as is
used to govern actions, functionality, features, and/or
behavior for the benefit of IDi, by a) processing ID2

WDR information at the ID1 MS (preferably, privileges
are communicated to ID1 MS for enforcing and/or 25

cloning there), b) processing ID1 WDR information at
the ID2 MS (privileges locally maintained to ID2) and
c) processing ID2 WDR information at the ID2 MS
(privileges locally maintained to ID2); and/or

9) The second identity granting a privilege to himself, as 30

shown in cell 4948: Preferably, privilege data in this
case is not necessary, no configuration interface is
required for this scenario, and an identity implicitly has
all conceivable privileges assigned to himself by
default; however, alternatively privileges may be 35

appropriate for activating/deactivating functionality.
FIG. 49B depicts an illustration for preferred charter data

12 processing in the present disclosure LBX architecture, for
example when WDRs are in-process of being maintained to
queue 22, or being inbound to a MS (referred to generally as 40

"incoming" in FIG. 49B). Table 4960 depicts considerations
for charter data resident at the MS of a first identity ID1

(grammar ID/IDType), depending on privileges granted in
the following scenarios:

1) The first identity ID1 (Grantee) owning a charter for use 45

at the MS of a second identity ID2 (Grantor; grammar
ID/IDType), as shown in cell 4964: Charter data is main
tained by ID1 at the ID1 MS for being candidate use at the
ID2 MS to cause actions, functionality, features, and/or
behavior, in accordance with configured permission data 10, 50

for the benefit of either ID1 or ID2 by a) processing ID2

WDR information at the ID2 MS (preferably, charters are
communicated to ID2 MS for use there), and b) processing
ID1 WDR information at the ID2 MS (preferably, charters
are communicated to ID2 MS for use there); 55

2) The first identity ID1 (Grantee) owning a charter for use
at his own MS, as shown in cell 4962: Charter data is
maintained locally for local use to cause actions, func
tionality, features, and/or behavior, in accordance with
configured permission data 10, for the benefit of either 60

ID1 or ID2 by a) processing ID1 WDR information at
the ID1 MS, and b) processing ID2 WDR information at
the ml MS;

3) The second identity ID2 (Grantee) owning a charter for
use at the MS of the first identity ID1 (Grantor; gram- 65

mar ID/IDType), as shown in cell 4966: Charter data is
used at the ID1 MS for informing ID1 and enforcing

210
cause of actions, functionality, features, and/or behav
ior, in accordance with configured permission data 10,
for the to benefit of either ID1 or ID2 by a) processing
ID2 WDR information at the ID1 MS (preferably, char
ters are communicated to ID 1 MS for use there), and b)
processing ID1 WDR information at the ID1 MS (pref
erably, charters are communicated to ID1 MS for use
there); and/or

4) The second identity ID2 (Grantee) owning a charter at
his own MS, as shown in cell 4968: Charter data may
be communicated to the ID1 MS for informing ID1 ,

allowing ID1 to browse, or allowing ID1 to use as a
template for cloning and then making/maintaining into
ID/sown charter(s), wherein each reason for commu
nicating to the ID1 MS (or processing at the ID1 MS)
has a privilege grantable from ID2 to ID1 .

Table 4980 depicts considerations for charter data resident at
the MS of a second identity ID2 (grammar ID/IDType),
depending on privileges granted in the following scenarios:

5) The first identity ID1 (Grantee) owning a charter for use
at the MS of the second identity ID2 (Grantor), as
shown in cell 4984: Charter data is used at the ID2 MS
for informing ID2 and enforcing cause of actions,
functionality, features, and/or behavior, in accordance
with configured permission data 10, for the benefit of
either ID1 or ID2 by a) processing ID2 WDR informa
tion at the ID2 MS (preferably, charters are communi
cated to ID2 MS for use there), and b) processing ID1

WDR information at the ID2 MS (preferably, charters
are communicated to ID2 MS for use there);

6) The first identity ID 1 (Grantee) owning a charter for use
at his own MS, as shown in cell 4982: Charter data may
be communicated to the ID2 MS for informing ID2 ,

allowing ID2 to browse, or allowing ID2 to use as a
template for cloning and then making into ID2 's own
charter(s), wherein each reason for communicating to
the ID2 MS (or processing at the ID1 MS) has a
privilege grantable from ID1 to ID2 .

7) The second identity ID2 (Grantee) owning a charter for
use at the MS of the first identity ID1 (Grantor; gram
mar ID/IDType), as shown in cell 4986: Charter data is
maintained by ID2 at the ID2 MS for being candidate
use at the ID1 MS to cause actions, functionality,
features, and/or behavior, in accordance with config
ured permission data 10, for the benefit of either ID1 or
ID2 by a) processing ID2 WDR information at the ID1

MS (preferably, charters are communicated to ID1 MS
for use there), and b) processing ID1 WDR information
at the ID1 MS (preferably, charters are communicated
to ID1 MS for use there); and/or

8) The second identity ID2 (Grantee) owning a charter at
his own MS, as shown in cell 4988: Charter data is
maintained locally for local use to cause actions, func
tionality, features, and/or behavior, in accordance with
configured permission data 10, for the benefit of either
ID1 or ID2 by a) processing ID1 WDR information at
the ID2 MS, and b) processing ID2 WDR information at
the ID2 MS.

Various embodiments will implement any reasonable sub
set of the considerations of FIGS. 49A and 49B, for example
to minimize or eliminate communicating a user's permis
sions 10 and/or charters 12 to another MS, or to prevent
storing the same permissions and/or charters data at more
than one MS. FIGS. 49A and 49B are intended to highlight
feasible embodiments wherein FIG. 49B terminology
"incoming" is used generally for referring to WDRs in
process which are a) being maintained (e.g. "incoming" as

Petitioners' Ex. 1001, Page 432 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
211

being maintained to queue 22); and b) incoming to a
particular MS (e.g. "incoming" as being communicated to
the MS).

In one subset embodiment, privileges and charters are
only maintained at the MS where they are configured for 5

driving LBX features and functionality. In another embodi
ment, privileges are maintained at the MS where they were
configured as well as any MSs which are relevant for those
configurations, yet charters are only maintained at the MS
where they are configured. In yet another embodiment, 10

privileges and charters are maintained at the MS where they
were configured, as well as any MSs which are relevant for
those configurations. In another embodiment, a MS may not
have all privileges assigned to itself (said to be assigned to
the user of the MS) by default. Privileges may require being 15

enabled as needed for any users to have the benefits of the
associated LBX features and functionality. Thus, the con
siderations highlighted by FIGS. 49A and 49B are to "cover
many bases" with any subset embodiment within the scope

212
a MS, service, router, switch, bridge, or any other interme
diary data processing system (between peer to peer interop
erating data processing systems 200a and 5000) capable of
communicating data with another data processing system.
Connection 5094 may be of any type of communications
connection, for example any of those connectivity methods,
options and/or systems discussed for FIG. lE. Connection
5094 may involve other data processing systems (not
shown) for enabling peer to peer communications between
DLM 200a and data processing system 5000. FIG. SOA
clarifies that "in the vicinity" is conceivably any distance
from the DLM 200a as accomplished with communications
well known to those skilled in the art demonstrated in FIG.
SOA. In some embodiments, data processing system 5000
may be connected at some time with a physically connected
method to data processing system 5092, or DLM 200a may
be connected at some time with a physically connected
method to data processing system 5090, or DLM 200a and
data processing system 5000 may be connected to the same

of the present disclosure. 20 intermediary data processing system. Regardless of the
many embodiments for DLM 200a to communicate in a
LBX peer to peer marmer with data processing system 5000,
DLM 200a and data processing system 5000 preferably

Preferably, statistics are maintained by WITS for counting
occurrences of each variety of the FIGS. 49A and 49B
processing scenarios. WITS processing should also keep
statistics for the count by privilege, and by charter, of each
applicable WITS processing event which was affected. 25

Other embodiments will maintain more detailed statistics by
MS ID, Group ID, or other "labels" for categories of
statistics. Still other embodiments will categorize and main
tain statistics by locations, time, applications in use at time
of processing scenarios, etc. Applicable statistical data can 30

be initialized at internalization time to prepare for proper
gathering of useful statistics during WITS processing.

FIGS. SOA through SOC depict an illustration of data
processing system wireless data transmissions over some
wave spectrum for further explaining FIGS. 13A through 35

13C, respectively. Discussions above for FIGS. 13A through
13C are expanded in explanation for FIGS. SOA through
SOC, respectively. It is well understood that the DLM 200a
(FIGS. 13Aand50A), ILM lOOOk(FIGS. 13B and SOB) and
service(s) (FIGS. 13C and SOC) can be capable of commu- 40

nicating bidirectionally. Nevertheless, FIGS. SOA through
SOC clarify FIGS. 13A through 13C, respectively, with a
bidirectional arrow showing data flow "in the vicinity" of
the DLM 200a, ILM 1000k, and service(s), respectively. All
disclosed descriptions for FIGS. 13A through 13C are fur- 45

ther described by FIGS. SOA through SOC, respectively. In
all embodiments, MSs communicate in a peer to peer
manner. Any of a variety of useful protocols may be used to
accomplish the peer to peer communications between MSs.
No server is required to carry out MS location based 50

functionality.
With reference now to FIG. SOA, "in the vicinity" lan

guage is described in more detail for the MS (e.g. DLM
200a) as determined by clarified maximum range of trans
mission 1306. In some embodiments, maximum wireless 55

communications range (e.g. 1306) is used to determine what
is in the vicinity of the DLM 200a. In other embodiments,
a data processing system 5090 may be communicated to as
an intermediary point between the DLM 200a and another
data processing system 5000 (e.g. MS or service) for 60

increasing the distance of "in the vicinity" between the data
processing systems to carry out LBX peer to peer data
communications. Data processing system 5090 may further
be connected to another data processing system 5092, by
way of a connection 5094, which is in turn connected to a 65

data processing system 5000 by wireless connectivity as
disclosed. Data processing systems 5090 and 5092 may be

interoperate in context of the LBX peer to peer architecture.
In some embodiments, data processing systems between
DLM 200a and the data processing system 5000 intercept
data for tracking, book-keeping, statistics, and for maintain
ing data potentially accessed by service informant code 28,
however, the LBX peer to peer model is preferably not
interfered with.

Data processing system 5000 may be a DLM, ILM, or
service being communicated with by DLM 200a as dis
closed in the present disclosure for FIGS. 13A through 13C,
or for FIGS. SOA through SOC. LBX architecture is founded
on peer to peer interaction between MSs without requiring
a service to middleman data, however data processing
systems 5090, 5092 and those applicable to connection 5094
can facilitate the peer to peer interactions. In some embodi
ments, data processing systems between DLM 200a and the
data processing 5000 intercept data for tracking, book
keeping, statistics, and for maintaining data potentially
accessed by service informant code 28, however, the LBX
peer to peer model is preferably not interfered with. Data
processing system 5000 generically represents a DLM, ILM
or service(s) for analogous FIGS. 13A through 13C process
ing for sending/broadcasting data such as a data packet 5002
(like 1302/1312). When a Communications Key (CK) 5004
(like 1304/1314) is embedded within data 5002, data 5002
is considered usual communications data (e.g. protocol,
voice, or any other data over conventional forward charmel,
reverse channel, voice data channel, data transmission chan-
nel, or any other appropriate charmel) which has been altered
to contain CK 5004. Data 5002 contains a CK 5004 which
can be detected, parsed, and processed when received by an
MS or other data processing system in the vicinity (con
ceivably any distance depending on embodiment) of data
processing system 5000 as determined by the maximum
range of transmission 5006 (like 1306/1316). CK 5004
permits "piggy-backing" on current transmissions to accom
plish new functionality as disclosed herein. Transmissions
radiate out in all directions in a marmer consistent with the
wave spectrum used, and data carried thereon may or may
not be encrypted (e.g. encrypted WDR information). The
radius 5008 (like 1308/1318) represents a first range of
signal reception from data processing system 5000 (e.g.
antenna thereof), perhaps by a MS. The radius 5010 (like
1310/1320) represents a second range of signal reception

Petitioners' Ex. 1001, Page 433 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
213

from data processing system 5000 (e.g. antenna thereof),
perhaps by a MS. The radius 5011 (like 1311/1322) repre
sents a third range of signal reception from data processing
system 5000 (e.g. antenna thereof), perhaps by a MS. The
radius 5006 (like 1306/1316) represents a last and maximum 5

range of signal reception from data processing system 5000
(e.g. antenna thereof), perhaps by a MS (not shown). The
time of transmission from data processing system 5000 to
radius 5008 is less than times of transmission from service
to radiuses 5010, 5011, or 5006. The time of transmission 10

from data processing system 5000 to radius 5010 is less than
times of transmission to radiuses 5011 or 5006. The time of
transmission from data processing system 5000 to radius
5011 is less than time of transmission to radius 5006. In

15
another embodiment, data 5002 contains a Communications
Key (CK) 5004 because data 5002 is new transmitted data

214
ing data potentially accessed by service informant code 28,
however, the LBX peer to peer model is preferably not
interfered with.

With reference now to FIG. SOC, "in the vicinity" lan
guage is described in more detail for service(s) as deter
mined by clarified maximum range of transmission 1316. In
some embodiments, maximum wireless communications
range (e.g. 1316) is used to determine what is in the vicinity
of the service(s). In other embodiments, a data processing
system 5090 may be communicated to as an intermediary
point between the service(s) and another data processing
system 5000 (e.g. MS) for increasing the distance of"in the
vicinity" between the data processing systems to carry out
LBX peer to peer data communications. Data processing
system 5090 may further be connected to another data
processing system 5092, by way of a connection 5094,
which is in tum connected to a data processing system 5000
by wireless connectivity as disclosed. Data processing sys
tems 5090 and 5092 may be a MS, service, router, switch,

in accordance with the present disclosure. Data 5002 pur
pose is for carrying CK 5004 information for being detected,
parsed, and processed when received by another MS or data
processing system in the vicinity (conceivably any distance
depending on embodiment) of data processing system 5000
as determined by the maximum range of transmission.

With reference now to FIG. SOB, "in the vicinity" lan
guage is described in more detail for the MS (e.g. ILM
1000k) as determined by clarified maximum range of trans
mission 1306. In some embodiments, maximum wireless
communications range (e.g. 1306) is used to determine what

20 bridge, or any other intermediary data processing system
(between peer to peer interoperating data processing system
service(s) and 5000) capable of communicating data with
another data processing system. Connection 5094 may be of
any type of communications connection, for example any of

25 those connectivity methods, options and/or systems dis
cussed for FIG. lE.

is in the vicinity of the ILM 1000k. In other embodiments,
a data processing system 5090 may be communicated to as 30

an intermediary point between the ILM 1000k and another
data processing system 5000 (e.g. MS or service) for
increasing the distance of "in the vicinity" between the data
processing systems to carry out LBX peer to peer data

35
communications. Data processing system 5090 may further

Connection 5094 may involve other data processing sys-
tems (not shown) for enabling peer to peer communications
between service(s) and data processing system 5000. FIG.
SOC clarifies that "in the vicinity" is conceivably any
distance from the service(s) as accomplished with commu-
nications well known to those skilled in the art demonstrated
in FIG. SOC. In some embodiments, data processing system
5000 may be connected at some time with a physically
connected method to data processing system 5092, or ser
vice(s) may be connected at some time with a physically
connected method to data processing system 5090, or ser
vice(s) and data processing system 5000 may be connected
to the same intermediary data processing system. Regardless
of the many embodiments for service(s) to communicate in
a LBX peer to peer manner with data processing system
5000, service(s) and data processing system 5000 preferably
interoperate in context of the LBX peer to peer architecture.
In some embodiments, data processing systems between
service(s) and the data processing system 5000 intercept
data for tracking, book-keeping, statistics, and for maintain-
ing data potentially accessed by service informant code 28,
however, the LBX peer to peer model is preferably not
interfered with.

In an LN-expanse, it is important to know whether or not
WDR information is of value for locating the receiving MS,
for example to grow an LN-expanse with newly located
MSs. FIGS. SOA through SOC demonstrate that WDR infor
mation sources may be great distances (over a variety of

be connected to another data processing system 5092, by
way of a connection 5094, which is in turn connected to a
data processing system 5000 by wireless connectivity as
disclosed. Data processing systems 5090 and 5092 may be 40

a MS, service, router, switch, bridge, or any other interme
diary data processing system (between peer to peer interop
erating data processing systems 1000k and 5000) capable of
communicating data with another data processing system.
Connection 5094 may be of any type of communications 45

connection, for example any of those connectivity methods,
options and/or systems discussed for FIG. lE. Connection
5094 may involve other data processing systems (not
shown) for enabling peer to peer communications between
ILM 1000k and data processing system 5000. FIG. SOB 50

clarifies that "in the vicinity" is conceivably any distance
from the ILM 1000k as accomplished with communications
well known to those skilled in the art demonstrated in FIG.
SOB. In some embodiments, data processing system 5000
may be connected at some time with a physically connected
method to data processing system 5092, or ILM 1000k may

55 communications paths) from a particular MS receiving the
WDR information. Carrying intermediary system indication
is well known in the art, for example to know the number of
hops of a communications path. The preferred embodiment
uses communications reference field 1100g to maintain

be connected at some time with a physically connected
method to data processing system 5090, or ILM 1000k and
data processing system 5000 may be connected to the same
intermediary data processing system. Regardless of the
many embodiments for ILM 1000k to communicate in a
LBX peer to peer manner with data processing system 5000,
ILM 1000k and data processing system 5000 preferably
interoperate in context of the LBX peer to peer architecture.
In some embodiments, data processing systems between
ILM 1000k and the data processing system 5000 intercept
data for tracking, book-keeping, statistics, and for maintain-

60 whether or not the WDR encountered any intermediate
systems, for example as identified with hops, network
address change(s), channel extender transmission indica
tions, or any pertinent data to indicate whether the WDR
encountered anything other than a wireless transmission

65 (e.g. directly between the sending MS and receiving MS).
This provides FIG. 26B with a means to qualify the peek at
block 2634 for only those WDRs which show field 1100g to

Petitioners' Ex. 1001, Page 434 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
215

be over a single wireless connection from the source to the
MS (i.e. block 2634 to read as "Peek all WDRs from queue

216
candidate privileges and/or charters in place, rather than a
broadcast for communicating WDRs. Broadcasting can
flood a network and may inundate MSs with information for
WITS filtering, however the multithreaded LBX architecture

22 for confidence > confidence floor and most recent in
trailing f(WTV) period of time and field 1100g indicating a
wireless connected source over no intermediary systems").
Field ll00gwould be set intelligently for all WDRs received
and processed by the MS (e.g. inserted to queue 22). In
another embodiment, fields ll00e and 1100/ are used to
indicate that the WDR can be relied upon for triangulating

5 may process efficiently even for broadcast data.
In another embodiment, a configuration can be made (user

or system) wherein FIGS. 13A through 13C are applicable,
and non-wireless range originated WDRs are always
ignored. For example, a WDR Range Configuration (WRC)

10 indicates how to perform WITS filter processing: a new location of the MS (e.g. block 2660 altered to get the
next WDR from the REMOTE_MS list which did not arrive
except through a single wireless path). In other embodi
ments, the correlation (e.g. field 1100m) can be used to know
whether it involved more than a single wireless communi
cations path. The requirement is to be able to distinguish 15

between WDRs that can contribute to locating a MS and
WDRs which should not be used to locate the MS. In any
case, WDRs are always useful for peer to peer interactions
as governed by privileges and charters (see WITS filtering
discussed below). 20

In other embodiments, the WDR fields ll00e and 1100/
information is altered to additionally contain the directly
connected system whereabouts (e.g. intermediary system
5090 whereabouts) so that the MS (e.g. 1000k) can use that
WDR information relevant for locating itself (e.g. triangu- 25

lating the MS whereabouts). This ensures that a MS receives
all relevant WDRs from peers and also uses the appropriate
WDR information for determining its own location. FIG.
26B would distinguish between the data that describes the
remote MS whereabouts from the data useful for locating the 30

receiving MS. A preferred embodiment always sets an
indicator to at least field ll00e, 1100/, or 1100g for indi
cating that the WDR was in transit through one or more
intermediary system(s). This provides the receiving MS with
the ability to know whether or not the WDR was received 35

directly from a wireless in-range MS versus a MS which can
be communicated with so that the receiving MS can judi
ciously process the WDR information (see WITS filtering
discussed below).

An alternate embodiment supports WDR information 40

source systems which are not in wireless range for contrib
uting to location determination of a MS. For example, a
system can transmit WDR information outbound in antici
pation of when it will be received by a MS, given knowledge
of the communication architecture. Outbound date/time 45

1) Ignore WDRs which are originated from a wirelessly
connected source (e.g. within range 1306);

2) Consider all WDRs regardless of source;
3) Ignore all WDRs regardless of source; and/or
4) Ignore WDRs which are not originated from a wire

lessly connected source.
WDR fields, as described above, are to contain where the
WDR originated and any relevant path it took to arrive.
Block 1496 may be modified to include new blocks 1496a,
1496b, and 1496c such that:

Block 1496a checks to see if the user selected to configure
the WRC-an option for configuration at block 1406
wherein the user action to configure it is detected at
block 1408;

Block 1496b is processed if block 1496a determines the
user did select to configure the WRC. Block 1496b
interfaces with the user for a WRC setting (e.g. a block
1496b-l to prepare parameters for FIG. 18 processing,
and a block 1496b-2 for invoking the Configure value
procedure of FIG. 18 to set the WRC). Processing then
continues to block 1496c.

Block 1496c is processed if block 1496a determines the
user did not select to configure the WRC, or as the
result of processing leaving block 1496b. Block 1496c
handles other user interface actions leaving block 1408
(e.g. becomes the "catch all" as currently shown in
block 1496 of FIG. 14B).

The WRC is then used appropriately by WITS processing
for deciding what to do with the WDR in process. Assuming
the WDR is to be processed further, and the WDR is not of
use to locate the receiving MS, then permissions 10 and
charters 12 are still checked for relevance of processing the
WDR (e.g. MS ID matches active configurations, WDR
contains potentially useful information for configurations
currently in effect, etc). In an alternative embodiment, WITS
filtering is performed at existing permission and charter
processing blocks so as to avoid redundantly checking
permissions and charters for relevance.

FIG. 51A depicts an example of a source code syntactical

information is strategically set along with other WDR infor
mation to facilitate making a useful measurement at a
receiving MS (e.g. TDOA). The only requirement is the
WDR conform to a MS interface and be "true" to how fields
are set for LBX interpretation and appropriate processing,
for example to emulate a MS transmitting useful WDR
information.

WITS filtering provides a method for filtering out (or in)
WDRs which may be of use for locating the receiving MS,
or are of use for permission and/or charter processing.
Supporting ranges beyond a range within wireless range to
a MS can cause a massive number ofWDRs to be visible at
a MS. Thus, only those WDRs which are of value, or are
candidate for triggering permissions or charter processing,
are to be processed. Application fields 1100k may also
contain data which affects WITS filtering (e.g. appfld
.loc.blackout). WITS filtering can use the source informa
tion (e.g. MS ID) or any other WDR fields, or any combi
nation of WDR fields to make a determination if the WDR

50 encoding embodiment of permissions, derived from the
grammar of FIGS. 30A through 30E, for example as user
specified, system maintained, system communicated, system
generated, authorized administrator defined, etc. In one
embodiment, a user may specify the source code as a portion

55 of a hosting prograniming source code like C, C++, C#,
Java, or any other programming language. The hosting
programming source code compiler or interpreter shall rec
ognize keywords (e.g. Permissions) to then uniquely parse
and process the source code stream between associated

60 delimiters (e.g. { }) in a unique way, for example as handled
by new compiler/interpreter code, or with a processing
plug-in appropriately invoked by the compiler/interpreter .
This allows adapting an existing prograniming environment

deserves further processing. The longer range embodiment 65

of FIGS. SOA through SOC preferably incorporates a send
transmission for directing the WDRs to MSs which have

to handle the present disclosure with specific processing for
the recognized source code section(s). In another embodi
ment, the present disclosure source code is handled as any
other source code of the hosting programming environment

Petitioners' Ex. 1001, Page 435 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
217

through closely adapting the hosting progrannning source
code syntax, incorporating new keywords and contextual
processing, and maintaining data and variables like other
hosting programming environment variables.

FIG. 51A shows that a Permissions block contains "stuff' 5

between delimiters ({,}) like C, C++, C#, and the Java
progrannning languages (all referred hereinafter as Popular
Progrannning Languages (PPLs)), except the reserved key
word "Permissions" qualifies the block which follows.
Statements within the block are also aligned with syntax of 10

PPLs. Here is an in-context description of FIG. 51A:
Text(str)="Test Case #106729 (context)";
The str variable is of type Text (i.e. BNF Granmiar "text
string") and is set with string "Test Case #106729 (context)".
Below will demonstrate variable string substitution for the 15

substring "context" when str is instantiated.
Generic(assignPrivs)="G=Family, Work,\vuloc

[T=>20080402000130.24,<20080428; D=*str; H;]";
The assignPrivs variable is of type Generic and is set with
a long string containing lots of stuff. Generic tells the 20

internalizer to treat the assigned value as text string without
any variable type validation at this time. The BNF grannnar
showed that variables have a type to facilitate validation at
parse time of what has been assigned, however type check
ing is really not necessary since validation will occur in 25

contexts when a variable is instantiated anyway. Another
variable type (Var Type) to introduce to the BNF grannnar is
"Generic" wherein anything assigned to the variable is to
have its type delayed until after instantiation (i.e. when
referenced later). Note that the str variable is not instantiated 30

at this time (i.e. =the preferred embodiment, however an
alternate embodiment would instantiate str at this time).
Below will demonstrate a Generic variable instantiation.
Groups

}

LBXPHONE_USERS=Austin, Davood, Jane, Kris, 35

Mark, Ravi, Sam, Tim;
"SW Components"="SM 1.0", "PIP 1.0", "PIPGUI 1.0",

"SMGUI 1.0", "COMM 1.0", "KERNEL 1.1";

Two (2) groups are defined. In this example embodiment, 40

"Groups" is a reserved keyword identifying a groups defi
nition block just as "Permissions" did the overall block. The
"LBXPHONE_USERS" group is set to a simplified embodi
ment of MS IDs Austin, Davood, etc; and the "SW Com
ponents" group is set to LBX Phone software modules with 45

current version numbers. Any specification of the BNF
Granmiar (e.g. group name, group member, etc) with inter
vening blanks can be delimited with double quotes to make
blanks significant.
Grants/* Can define Grant structure(s) prior to assignment 50

*/{

}
In this example embodiment, "Grants" is a reserved key
word identifying a Grants definition block just as "Permis- 55

sions" did the overall block. Statements within the Grants
block are for defining Grants which may be used later for
assigning privileges. "II" starts a connnent line like PPLs,
and "/*" ... "*/" delimits connnent lines like PPLs.

218
tions are made with delimiters "[" and"]", which coinci
dentally were used in defining the BNF grannnar optional
specifications. Each optional specification can have its own
delimiters, or all optional specifications could have been
made in a single pair of delimiters. The "D" specification is
a Description specification which is set to an instantiation of
the str variable using a string substitution. Thus, the Descrip
tion is set to the string "Test Case #106729 (Family)".
Work=[T=YYYYMMDD08:YYYYMMDD17;D=*str

(context="Work");H;] {

};
A grant named "Work" is assigned as a parent grant to other
grant definitions, in which case a delimited block for further
grant definitions can be assigned. Optional specifications
can be made for the Work grant prior to defining subordinate
grants either before the Work grant block, or after the block
just prior to the block terminating semicolon(";"). The Work
grant has been assigned an optional "T" specification for a
TimeSpec qualifying the grant to be in effect for every day
of every month of every year for only the times of 8 AM
through 5 PM. The Work grant also defined a Description of
"Test Case #106729 (Work)". The "H" specification tells the
internalizer to generate History information (e.g. FIGS. 36B,
33A, 34E HISTRY, etc) for the Work grant.
"Department 23 2"=\geoar, \geode, \nearar, \nearde;
The grant "Department 232" is subordinate to "Work" and
has four (4) privileges assigned, and no optional specifica
tions.
"Department 458"=[D="Davood lyadi's mgt scope";] {

"Server Development Team"=;
"IbxPhone Development Team"=

};
};

{
"Connn Layer Guys"=\mssys;\msbios;
"GUI girls"=\msguiload;
"Mark and Tim"=\msapps;

The grant "Department 458" is subordinate to "Work", has
an optional Description specification, and has two (2) sub
ordinate grants defined. The grant "Server Development
Team" is defined, but has no privileges or optional specifi
cations. The grant "IbxPhone Development Team" is sub
ordinate to "Work", has no optional specifications, and has
three (3) subordinate grants defined. The grant "Connn
Layer Guys" has two (2) privileges assigned (\mssys and
\msbios), the grant "GUI girls" has one (1) privilege
assigned (\msguiload), and the grant "Mark and Tim" has
one (1) privilege assigned (\msapps).
"Accounting Department" [H;]=\track;
The grant "Accounting Department" is subordinate to
"Work", has optional History information to be generated,
and has one (1) privilege assigned.
Parents={Mom=\Ibxall; Dad=\Ibxall;};
Michael-Friends=\geoarr; \geode;
Jason-Friends=\nearar; \nearde;
The grant "Parents" is independent of the Work grant (a
peer), has two (2) subordinate grants "Mom" and "Dad",
each with a single privilege assigned. The grants "Michael-

F amily=\Ibxall[R =0xFFFFFFFF;] [D=*str
(context="F amily")];

60 Friends" and "Jason-Friends" are each independent of other
grants, and each have two (2) privileges assigned. A nested
tree structure of Grants so far compiled which can be used
for privilege assignments are:

A grant named "Family" is assigned the privilege "\Ibxall"
and is relevant for all MS types (i.e. 0xFFFFFFFF such that
the "R" is a specification for MS Relevance). \Ibxall is the all
inclusive privilege for all LBX privileges. \Ibxall maps to a 65

unique privilege id (e.g. maintained to field 3530a, FIGS.
34F and 52 "unsigned long priv", etc). Optional specifica-

Family
Work
Department 232
Department 458

Petitioners' Ex. 1001, Page 436 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
219

Server Development Team
IbxPhone Development Team

Comm Layer Guys
GUI girls
Mark and Tim

Accounting Department
Parents
Mom
Dad
Michael-Friends
Jason-Friends

The nested structure of the source code was intended to
highlight the relationship of grants defined. Note that assign
ing the Work grant from one ID to another ID results in
assigning all privileges of all subordinate grants (i.e. \geoar;
\geode; \nearar; \nearde; \mssys; \msbios; \msguiload;
\msapps; \track).
Bill: LBXPHONE_USERS [G=\caller;\callee;\trkall;];
The MS ID Bill assigns (i.e. Grant specification "G") three
(3) privileges to the LBXPHONE_USERS group (i.e. to
each member of the group). Privileges and/or grants can be
granted. The \caller privilege enables LBXPHONE_USERS
member MSs to be able to call the Bill MS. The \callee
privilege enables the Bill MS to call LBXPHONE_USERS
member MSs. The \trkall privilege enables LBXPHO
NE_USERS members to use the MS local tracking appli
cation for reporting mobile whereabouts of the Bill MS. The
grants are optional (i.e. "["and"]") because without specific
grants and/or privileges specified, all privileges are granted.
LBXPHONE_USERS: Bill [G=\callee;\caller;];
Each member of the LBXPHONE_USERS group assigns
(i.e. Grant specification "G") two (2) privileges to the Bill
MS. The \caller privilege enables the Bill MS to be able to
call any of the members of the LBXPHONE_USERS group.
The \callee privilege enables the LBXPHONE_USERS
member MSs to call the Bill MS.
Bill:Sophia;
All system privileges are assigned from Bill to Sophia.
Bill:Brian [*assignPrivs];

220
source code as a portion of a hosting programming source
code like C, C++, C#, Java, or any other programming
language. The hosting programming source code compiler
or interpreter shall recognize keywords (e.g. Charters) to

5 then uniquely parse and process the source code stream
between associated delimiters (e.g. { }) in a unique way, for
example as handled by new internalization (e.g. compiler/
interpreter) code, or with a processing plug-in appropriately
invoked by the internalizer. This allows adapting an existing

10 programming environment to handle the present disclosure
with specific processing for the recognized source code
section(s). In another embodiment, the present disclosure
source code is handled as any other source code of the
hosting programming environment through closely adapting

15 the hosting programming source code syntax, incorporating
new keywords and contextual processing, and maintaining
data and variables like other hosting programming environ
ment variables.

It is important to understand that WDRs in process (e.g.
20 to queue 22 (_ref), outbound (_ 0 _ref), and inbound (_I_ref))

cause the recognized trigger of WDR processing to scan
charters for testing expressions, and then performing actions
for those expressions which evaluate to true. Expressions are
evaluated within the context of applicable privileges.

25 Actions are performed within the context of privileges.
Thus, WDRs in process are the triggering objects for con
sulting charters at run time. Depending on the MS hardware
and how many privileged MSs are "in the vicinity", there
may be many (e.g. dozens) of WDRs in process every

30 second at a MS. Each WDR in process at a MS is preferably
in its own thread of processing (preferred architecture 1900)
so that every WDR in process has an opportunity to scan
charters for conditional actions.

FIG. 51B shows that a Charters block contains "stuff"
35 between delimiters ({,}) like PPLs, except the reserved

keyword "Charters" qualifies the block which follows.
Statements within the block are also aligned with syntax of
PPLs. Here is an in-context description of FIG. 51B:
Condition(condl)="(_location @@ \loc_my) [D="Test

The assignPrivs variable is instantiated to "G=Family,Work, 40

\vuloc [T=>20080402000130.24,<20080428; D=*str; H;]"
Case #104223 (v)";]";

The variable condl is of type Condition and is set accord
ingly. Validation of the variable type can occur here since the
type is known. Condi is a Condition specification with an
optional specification for the Description. Since the type

as though that configuration were made literally as:
Bill:Brian [G=Family,Work,\vuloc

[T=>20080402000130.24,<20080428; D="Test Case
#106729 (context)";];

Note the str variable is now instantiated as well. Bill grants
Brian all privileges defined in the Family grant, all privileges

45 "Generic" can be used, it may be convenient to always use
that.
"ms group"={"Jane", "George", "Sally" };

of the Work grant, and the specific \vuloc privilege. The
privilege \vuloc has optional specifications for TimeSpec
(i.e. after 1 minute 30.24 seconds into Apr. 2, 2008 and prior 50

to Apr. 28, 2008), Description, and History to be generated.
The optional specifications ([...]) would have to be outside

This is another method for specifying a group without a
Groups block. The internalizer preferably treats an assign
ment using block delimiters outside of any special block
definitions as a group declaration. While there has been no
group hierarchies demonstrated, groups within groups can
certainly be accomplished like Grants. of the other optional delimiter specifications (e.g. [G= ...]

[...]) to be specifications for the Permission.
Bill:George [G=\geoall,\nearall;];
Bill assigns two (2) privileges to George.
Michael: Bill [G=Parents,Michael-Friends;];
Michael assigns to Bill the privileges \Ibxall, \geoarr and
\geode.
Jason: Bill [G=Parents,Jason-Friends;];
Jason assigns to Bill the privileges \Ibxall, \nearar and
\nearde.

FIG. 51B depicts an example of a source code syntactical
encoding embodiment of charters, derived from the gram
mar of FIGS. 30A through 30E, for example as user speci
fied, system maintained, system communicated, system gen
erated, etc. In one embodiment, a user may specify the

55

(((_msid="Michael") & *condl (v="Michael"))
((_msid="Jason") & *condl (v="Jason"))):
Invoke App myscript.cmd ("S"), Notify Autodial 214-

405-6733;
_msid is a WDRTerm indicating to check the condition of
the WDRs maintained to the local MS (e.g. processed for

60 inserting to queue 22). The condition _msid="Michael" tests
if the WDR in process has a WDR MS ID field 1100a equal
to the MS ID Michael. "&" is a CondOp. After instantiation
of condl with the string substitution the second condition is
"(_location@@ \loc_my) [D="Test Case #104223 (v)";]"

65 which tests the WDR in process (e.g. for insertion to queue
22) for a WDR location field 1100c which was at my current
location (\loc_my is a system defined atomic term for "my

Petitioners' Ex. 1001, Page 437 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
221

current location" (i.e. the current location of the MS check
ing the WDR in process)). @@ is an atomic operator for
"was at". There is an optional description specified for the
condition to be generated. The expression formed on the left
hand side of the colon (:) not only tests for Michael WDR 5

information, but also Jason WDR information with the same
WDR field tests. If the WDR in process (contains a MS
ID=Michael AND Michael's location was at my current
location at some time in the past), OR (i.e. ICondOp) the
WDR in process (contains a MS ID=Jason AND Jason's 10

location was at my current location at some time in the past),
then the Actions construct (i.e. right hand side of colon) is
acted upon. The "was at" atomic operator preferably causes
access to LBX History 30 after a fruitless access to queue 22.

15
It may have been better to specify another condition for
Michael and Jason WDRs to narrow the search, otherwise if
LBX history is not well pruned the search may be timely. For
example, the variable may have been better defined prior to

222
_I_msid is a WDRTerm indicating to check the condition of
the WDRs inbound to the local MS (e.g. deposited to receive
queue 26). The condition_I_msid="Brian" tests if the
inbound WDR has a WDR MS ID field 1100a equal to the
MS ID Brian. "=" is an atomic operator. & is a CondOp. _
I_location is the contents of the inbound WDR location field
1100c, so that the condition of (_I_location@\loc_my) tests
the inbound WDR for a WDR location field 1100c which is
at my current location. @ is an atomic operator for "is at".
There is an optional description specified for the condition
as well as history information to be generated. The expres-
sion formed on the left hand side of the colon (:) tests for
inbound WDRs from Brian wherein Brian is at my (i.e.
receiving MS) current location. Assuming the expression
evaluates to true, then the two (2) actions are performed. The
actions are similar to the previous example, except the
syntax is demonstrated to show parentheses may or may not
be used for command/operand parameters. Also, the first
action has an optional TimeSpec specification which man-

use as:
Condition(condl)="(_location

[D="Test Case #104223 (v)";]";
(2W)$(10F)\loc_my)

20 dates that the action only be performed any time during the
day of Mar. 2, 2008. Otherwise, the first action will not be
performed. The second action is always performed.

for recently in vicinity (i.e. within 10 feet) ofmy location in
last 2 weeks helps narrow the search.

Parenthesis are used to affect how to evaluate the expres- 25

sion as is customary for an arithmetic expression, and can be
used to determine which construct the optional specifica
tions are for. Of course, a suitable precedence of operators
is implemented. So, if the Expression evaluates to true, the
actions shall be processed. There can be one or more actions 30

processed. The first action performs an Invoke command
with an Application operand and provides the parameter of
"myscript.cmd("S")" which happens to be an executable
script invocable on the particular MS. A parameter of "S" is
passed to the script. The script can perform anything sup- 35

ported in the processable script at the particular MS. The
second action performs a Notify command with an Autodial
operand and provides the parameter of "214-405-6733".
Notify Autodial will automatically perform a call to the
phone number 214-405-6733 from the MS. So, if the MS of 40

this configuration is currently at a location where Jason or
Michael (in the vicinity) had been at some time before (as
maintained in LBX History if necessary, or in last 2 weeks
in refined example), then the two actions are processed.
LBX History 30 will be searched for previous WDR infor- 45

mation saved for Michael and Jason to see if the expression
evaluates to true when queue 22 does not contain a matching
WDR for Michael or Jason.

The _I_fldname syntax is a WDRTerm for inbound WDRs
which makes sense for our expression above. A careless
programmer/user could in fact create expressions that may
never occur. For example, if the user specified _O_ instead
of _I_, then outbound rather than inbound WDRs would be
tested. ((_O_msid="Brian")&(_O_location @ \loc_my))
causes outbound WDRs to be tested (e.g. deposited to send
queue 24) for MS ID=Brian which are at my current location
(i.e. current location of the MS with the configuration being
discussed). Mixing, _I_, and _O_ prefixes has certain
semantic implications and must be well thought out by the
user prior to making such a configuration. The charter
expression is considered upon an event involving each
single WDR and is preferably not used to compare to a
plurality of potentially ambiguous/unrelated WDRs at the
same time. A single WDR can be both in process locally (e.g.
inserted to queue 22) and inbound to the MS when received
from MSs in the vicinity. It will not be known that the WDR
meets both criteria until after it has been inbound and is then
being inserted to queue 22. Likewise, a single WDR can be
both in process locally (e.g. inserted to queue 22) and
outbound from the MS. It will not be known that the WDR
meets both criteria until after it has been retrieved from
queue 22 and then ready for being sent outbound. The
programmer/user can create bad configurations when mix
ing these syntaxes. It is therefore recommended, but not
required, that users not mix WDR trigger syntax. Knowing It is interesting to note that the condition "((\locByID_

Michael @@ \loc_my)l(\locByID_Jason @@ \loc_my))"
accomplishes the same expression shown in FIG. 51B
described above. \locRef_ is an atomic term for the WDR
location field with the suffix (Ref) referring to the value for
test. \loc"R e f' is an acceptable format when there are
significant blanks in the suffix for testing against the value
of the WDR field. It is also interesting to note that the
expression "(\loc_my @@ \locByID_Michael)" is quite
different. The expression "(\loc_my @@ \locByID_Mi
chael)" tests if my current location was at Michael's location
in history, again checking LBX history. However, the WDR
in process only provided the trigger to check permissions
and charters. There is no field of the in process WDR
accessed here.

50 a WDR is inbound and then in process to queue 22 is
straightforward (e.g. origination other than "this MS").
Knowing a WDR was on queue 22 and is outbound is also
straightforward (e.g. origination at outbound="this MS").
However, a preferred embodiment prevents mixing these

((_I_msid="Brian")&(_I_location @ \loc_my) [D="multi
cond text";H;]):
Invoke App (myscript.cmd ("B")) [T=20080302;],
Notify Autodial (214-405-5422);

55 syntaxes for triggered processing.
(M_sender=-emailAddrVar [T=<YYYYMMDD18]):

Notify Indicator (M_sender, \thisMS) [D="Test Case
#104223"; H;];
M_sender is an App Term for the registered Mail application

60 (see FIGS. 53 and 55A&B), specifically the source address
of the last email object received. -emailAddrVar references
a progranmiatic variable of the hosting progranmiing envi
ronment (PPLs), namely a string variable to compare against
the source address (e.g.bilij@iswtechnologies.com). If the

65 variable type does not match the AppTerm type, then the
internalizer (e.g. compiler/interpreter) should flag it prior to
conversion to an internalized form. Alternate embodiments

Petitioners' Ex. 1001, Page 438 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
223

will rely on run time for error handling. The Condition also
specifies an optional TimeSpec specification wherein the
condition for testing is only active during all seconds of the
hour of 6:00 PM every day Gust to explain the example).
Expressions can contain both AppTerms and WDRTerms 5

while keeping in mind that WDRs in process are the triggers
for checking charters. M_sender will contain the most recent
email source address to the MS. This value continually
changes as email objects are received, therefore the window
of opportunity for containing the value is quite unpredict- 10

able. Thus, having a condition solely on an App Term with
out regard for checking a WDR that triggers checking the
configuration seems useless, however a MS may have many
WDRs in process thereby reasonably causing frequent

15
checks to M_sender. Amore useful charter with an App Term
will check the AppTerm against a WDR field or subfield,
while keeping in mind that WDRs in process trigger testing

224
IF (the most recently specified B_srchSubj string is in (i.e.
is a substring of) the most recently received email object
M_subject (i.e. email subject string)), AND if (the invoca-
tion of the function_fcnTest() with the parameter of the
most recently specified B_srchSubj string returns false) (i.e.
! the return code results in true), THEN the configured action
after the colon (:) shall take place assuming there are
applicable privileges configured as well. Again, keep in
mind that WDRs in process (e.g. to queue 22, outbound
and/or inbound) provide the triggers upon which charters are
tested, therefore the fact that no WDR field is specified in the
conditions is strange, but makes a good point. The example
demonstrates using otherwise unrelated AppTerms and an
invoked function (e.g. can be dynamically linked as in a
Dynamic Link Library (DLL) or linked through an extern
label_fcnTest). B_srchSubj contains the most recently speci-
fied search criteria string requested to the MS browser
application. WDRTerm(s), AppTerm(s) and atomic terms
can be used in conditions, as parameters, or as portions in the charter(s). For example:

(_appfld.email.source=M_sender) 20 any part of a configured charter.
or the equivalent of:
(M_sender= _appfld.email.source)
checks each WDR in process for containing an Application
field 1100k from the email section (if available) which
matches an App Term. While this again seems unusual since 25

M_sender dynamically changes according to email objects
received, timeliness ofWDRs in process for MSs (e.g. in the
wireless vicinity) can make this useful. Further, the pro
grammer/user can specify more criteria for defining how
close/far in the vicinity (e.g. atomic operators of $(range), 30

(spec)$(range), etc.
((_appfld.email .source=M_sender)&(_location

\loc_my))
$(500F)

The WDR in process is checked to see if the originating
MS has a source email address that matches a most recently 35

received email object and the MS is within 500 feet of my
current location. This configuration can be useful, for
example to automatically place a call to a friend when they
just sent you an email and they are nearby. You can then
walk over to them and converse about the email information. 40

Good or poor configurations can be made. One embodiment
of an internalizer warns a user when an awkward configu
ration has been made.

The action demonstrates an interesting format for repre
senting the optional Host construct (qualifier) of the BNF
grammar for where the action should take place (assuming
privilege to execute there is configured). "ms group"[G].
tells the internalizer to search for a group definition like an
array and find the first member of the group meeting the
subscript definition. This would be "George" (the G). Any
substring of "George" (or the entire string) could have been
used to indicate use George from the "ms group". This
allows a shorthand reference to the item(s) of the group.
Multiple members that match "G" would all apply for the
action. Also, note that the double quotes are used whenever
variables contain significant blanks. "ms group"[G].Store
DBobject tells the internalizer that the Command Operand
pair is to be executed at the George MS for storing to a
database object per parameters. An equivalent form is
George.Store DB-object with the Host specification explic
itly specified as George. The parameters of (JOESD
B.LBXTABS.TEST, "INSERT INTO TABLESAV ("&&
\thisMS &&", "&& \timestamp &&", 9);", \thisMS) indi
cates to insert a row into the table TABLESAV of the TEST
database at the system "this MS" (the MS hosting the
configuration). The second (query) parameter matches the
number of colunms in the table for performing a database In looking at actions for this example, the command

operand pair is for "Notify Indicator" with two parameters
(M_sender, \thisMS). M_sender is what to use for the
indicator (the source address matched). Thus, an AppTerm
can be used as a parameter. \thisMS is an atomic term for this
MS ID. If the expression evaluates to true, the MS hosting
the charter configuration will be notified with an indicator
text string (e.g. billj@iswtechnologies.com). Notify Indica
tor displays the indicator in the currently focused title bar
text of a windows oriented interface. In another embodi
ment, Notify indicator command processing displays noti
fication data in the focused user interface object at the time
of being notified. The action has optional specifications for
Description and History information to be generated (when
internalized).

45 row insert. Like other compilers/interpreters, the " " evalu
ates to a single double quote character when double quotes
are needed inside strings. A single quote can also be legal to
delimit query string parameters (shown below). This
example shows using atomic term(s) for a parameter (i.e.

50 elaborates to underlying value; WDRTerm(s) can also be
used for parameters). This example introduces a concatena
tion operator (&&) for concatenating together multiple
values into a result string for one parameter (e.g. "INSERT
INTO TABLESAV '20080421024421.45', 9);"). Other

55 embodiments will support other programmatic operators in
expressions for parameters. Still other embodiments will
support any reasonable programmatic statements, operators,
and syntax among charter configuration to facilitate a rich

In general, History information will be updated as the user
changes the associated configuration in the future, either in 60

syntax (recognized on internalization (e.g. to data struc
tures)), with FIGS. 38 through 48B, etc.
(B_srchSubfM_subject) & !(_fcnTest(B_srchSubj)):

method for defining charters 12.
Note that while we are configuring for the MS George to

execute the action, we are still performing the insert to the
MS hosting the Charter configuration (i.e. target system is
\thisMS). We could just as easily have configured:

"ms group"[G].Store DBobject(JOESDB.LBXTABS.T
EST,
"INSERT INTO TABLESAV ("&& \thisMS &&",

"&& \timestamp &&", 9);", \thisMS);

65

Store DBobject(JOESDB.LBXTABS.TEST,
"INSERT INTO TABLESAV ("&& \thisMS && ","

&& \timestamp &&
9);");

Petitioners' Ex. 1001, Page 439 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
225

without using George to execute the action, and to default to
the local MS. Privileges will have to be in place for running
the action at the George MS with the original charter of FIG.
518.

226
processing. Permissions and charters provide rules which
govern the interoperable LBX processing between MSs.
While WPL is more suited for a programmer type of user,

(_I_msid="Sophia" & \loc_my (30M)$$(25M)_I_location): 5

"ms group".Invoke App (alert.cmd);

the intent of this disclosure is to simplify configurations for
all types of users. WPL may suit an advanced user while
FIGS. 35A through 37D may suit more prevalent and novice
users. _I_msid is a WDRTerm indicating to check the condition

of the WDRs inbound to the local MS (e.g. deposited to
receive queue 26). The condition_I_msid="Sophia" tests if
the inbound WDR has a WDR MS ID field 1100a equal to 10

the MS ID Sophia. "=" is an atomic operator. & is a
CondOp. _I_location is the contents of the inbound WDR
location field 1100c, so that the condition of (\loc_my
30M$$25M_I_location) tests my current location (i.e.
receiving MS) for being within 25 meters, within the last 30 15

minutes, of the location of the WDR received. A group is
specified for where to run the action (i.e. Host specification),
yet no member is referenced. The alert.cmd file is executed

Other embodiments may further simplify configurations.
Some WPL embodiments will implement more atomic
operators, AppTerm(s), WDRTerm(s) and other configurable
terms without departing from the spirit and scope of this
disclosure. It is the intent that less time be spent on docu
mentation and more time be spent implementing it. Permis-
sions and charters are preferably centralized to the MS, and
maintained with their own user interface, outside of any
particular MS application for supervisory control of all MS
LBX applications. See FIG. lA for how PIP data 8 is
maintained outside of other MS processing data and at each MS of the group (all three), provided there is a

privilege allowing this MS to run this action there, and 20

provided the alert.cmd file is found for execution (e.g.
preferably uses PATH environment variable or similar
mechanism; fully qualified path can specify).

resources for centralized governing of MS operations.
In alternate embodiments, an action can return a return

code/value, for example to convey success, failure, or some
other value(s) back to the point of performing the action. A
syntactical embodiment: (% c:\myprofs\interests.chk>90):

Send Email ("Howdy"&&_I_msid && "! !\n\nOur pro- 25

files matched>90%.\n\n"
((_I_msid="Brian")&(_I_location @ \loc_my) [D="multi

cond text";H;]):
&& "Call me at" && \appfld.phone.id && ". We are"

&&
(_I_location-\loc_my)F && "feet apart\n", \appfld

.source.id.email, "Call Me!",, _I_appfld.email

.source);
This example uses an atomic profile match operator (%).

A profile is optionally communicated in Application field
1100k subfield_appfld.profile.contents. A user specifies
which file represents his current profile and it is sent
outbound with WDRs (see FIG. 78 for profile example).
Upon receipt by a receiving MS, the current profile can be
compared to the profile information in the WDR. (%
c:\myprofs\interests.chk>90) provides a condition for
becoming true when the hosting MS profile interests.chk is
greater than 90% a match when matching to a WDR profile
of field 1100k (preferably matches on a tag basis). The
profile operator here is triggered on in process WDRs. An
alternate embodiment will specify where to check the WDR
(e.g. _I_%, _0_% or_%). If the expression evaluates to true,
the Send Email (Command Operand pair) action is invoked
with appropriate parameters. Note that the newline (\n)
character and concatenation operator is used. Also, note the
WDRTerm (_I_location) and atomic term (\loc_my) were
used in an arithmetic statement to figure out the number of
feet in distance between the location of the inbound WDR
and "my current location". The result is automatically type
cast to a string for the concatenation like most PPLs. The
recipient is the email source in Application fields 1100k. The
default email attributes are specified (,,).

In sum, there are many embodiments derived from the
BNF grammar of FIG. 30A through 30E. FIGS. 51A and
51B are simple examples with some interesting syntactical
feature considerations. Some embodiments will support
programmatic statements intermingled with the BNF gram
mar syntax derivative used to support looping, arithmetic
expressions, and other useful programmatic functionality
integrated into Privilege and Charter definitions. FIGS. 51A
and 51B illustrate a WPL for prograniming how a MS is to
behave. WPL is a unique prograniming language wherein
peer to peer interaction events containing whereabouts infor
mation (WDRs) provide the triggers for novel location based

Notify Autodial (214-405-5422,,,, Invoke App (my
script.cmd ("B"))
[T=20080302;]);

30 Based on an outcome from Invoke App (myscript ...), the
returned value is passed back and used as a parameter to
Notify AutoDial. The Notify AutoDial executable spawned
can then use the value at run-time to affect Notify process
ing. Invoke App may return a plurality of different values

35 depending on the time the action is processed, and what the
results are of that processing. Some parameters are specified
to use defaults (i.e. ,,,,).

There are many methods with different atomic operators
and different Terms to accomplish the same expression or

40 condition for providing convenient user specification. An
expression with a plurality of conditions facilitates conjunc
ture. A charter expression syntax or encoding may be output
by a MS accessed application (e.g. user interface to config
ure a geo-fence). The following are selected syntax

45 examples for various condition discussions:
Geofence

(_loc $(20Y)\locByL_ -30.21,-93.8) tests whether the
MS of the in-process WDR has a location which is within a
radius of 20 Yards of the point having the specified latitude

50 and longitude. Precision specification (e.g. number of degree
decimal places) of the point may include less or more two
dimensional geographical space to be within range of. A zero
elevation (or altitude) may be assumed, or one may be
specified, for example to support a spherical radius as well

55 as a circular radius.
(_I_loc>$(20Y)\locByL_ -30.21,-93.8) tests whether the

MS of the in-bound WDR has a location which is newly
within a radius of 20 Yards of the point above.

(_loc (5M)$$(0)\PS_ +33.27,-97.4; +34.1,-97.3;
60 +34.13,-97.12) tests whether the MS of the in-process WDR

has a location described to be departed in the last 5 minutes
from the vicinity defined by the two dimensional polygon
(triangle) described with points having latitude and longi
tude (PointSet specification). The zero (0) range specifies to

65 use the bounds of the polygon. A non-zero value for range
will cause checking the condition to be within the range of
the bounds of the polygon.

Petitioners' Ex. 1001, Page 440 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
227

(_I_loc (5M)$$(1000F)\PS_3DGeo_ +33.27,-97.4,
4500F; +34.1,-97.3, 1 L; +34.13,-97.21, 2000Y; +34.3,-
97.1, 2000Y; +34.89,-97.08, 2000Y) tests whether the MS
of the in-bound WDR has a location described to be departed

228
whether the most recent WDR from Sam on queue 22 later
than a date/time stamp has a location within 10 meters of the
most recent location of Sam from LBX history 30 during the

in the last 5 minutes from the vicinity defined by the three 5

dimensional polygonal region with points having latitude,
longitude and elevation (or altitude). The lO00F range
specifies to check if the WDR contains a location within

specified time period. An alternate embodiment may check
all WDRs in the time period. Note that any WDRTerm can
have a condition for search and the same WDRTerm refer-
ence may be used a plurality of times in the atomic term.
Application Activities

1 000F of any bounds of the three dimensional polygon. ((_msid="Sam")&((_appfld.rfid.passive.enabled= True) I
((_msid="Sam")&(_loc<E>\loc _my)& 10 (_appfld.rfid.active.enabled=True))&(_loc=\loc_my)) tests

whether the in-process WDR: is from the Sam MS AND the
application fields section shows RFID capability is enabled
AND the location matches the location of the MS where the

(_loc<S>\loc_my)) tests whether the in-process WDR has a
MS ID of "Sam" and if Sam is Southeast of the MS
processing the Sam WDR. Depending on embodiments of
MS IDs, an automatic conversion may occur via a lookup
when the MS ID embodiment is not already in a raw form 15

of"Sam". The lookup may be from local mapping informa
tion, or via access to mapping information remotely (e.g.
propagated service interface which in tum accesses a data
base service interface).

charter condition is being evaluated. Lack of a WDR field
for testing in a condition (e.g. not contained in WDR)
preferably causes an error which is logged which prevents
the Charter from action()s) from occurring. Other embodi
ments may assume a False condition to prevent charters
from firing.

Situational Location
(\s!By ID _Larry=\sl_lat=+34.1,lon=-97 .3;elev=IL;

speed>42) tests whether the MS with an ID of Larry can be
described by the specified situational location. Note that any
of the usual WDRTerm field reference names can be used in

20 \appLive="Geofencing")&(_I_msid="Sam")&(_I_loc
$(2500F)\loc_my)) tests whether the in-bound WDR: is
from the Sam MS AND SAM is within 2500 feet of my
current location AND the Geofencing application is active at
the MS of charter processing of this expression.

FIG. 52 depicts another preferred embodiment C pro-
gramming source code header file contents, derived from the
grammar of FIGS. 30A through 30E. FIG. 52 is more
efficient for an internalized BNF granimar form by removing
unnecessary data. When comparing FIG. 52 with FIGS. 34E

a situational location atomic term, and operators other than 25

testing equivalency (e.g. >) may be supported. In some
embodiments, a speed prefix or suffix is used to specify
speed units which are appropriately converted when neces
sary (e.g. 42 MPH). Any constant which can be specified in
more than one units of measurement are to support a
qualifier in appropriate places of processing for enabling
conversions when comparisons are processed.

30 through 34G, FIG. 52 has removed description and history
information since this is not necessary for internalization/
processing. A TIMESPEC is the same as defined at the top
of FIG. 34E, but time specification information has been
merged to where it is needed, rather than keeping it in

(WDR=\sl_lat=+34.1,lon=-97.3;elev=l L;speed>42)
tests whether the in-process WDR can be described by the
specified situational location. While a plurality of conditions
can be specified to check an expression involving a situ
ational location, a special syntax may also be used for
contextual comparison. A WDR specification (_I_ WDR
and _O_ WDR also) is a contextual WDRTerm for compari
son because the condition context implies which fields to
check. This saves on encoding lengths (e.g. syntax required).

(_I_ WDR =\sl_lat=+34.1,lon=-97 .3 ;appfld.profile.con-
tents: :hangouts>>"Starbucks") tests whether the in-bound
WDR can be described by the specified situational location.
Note that the usual WDRTerm field reference appfld.profi
le.contents is specified and a particular tag is checked to
contain "Starbucks". Preferably, tag element comparisons
are not case sensitive. Any profile tag can be accessed. A tag
hierarchy may be specified (e.g. ::home,state) if there is
chance of an ambiguous tag specification.
Movement Monitoring

((_msid="Sam")&(_loc $(2M)\locByID_Sam)) tests
whether the in-process WDR has a MS ID of Sam AND the
location of the in-process WDR is within 2 meters of the
most recent location (if found) of a WDR from Sam found
in history (e.g. on queue 22). Preferably, the expression
results in False if no record of Sam is found, depending on
the depth of queue 22 (supported number of entries) and/or
whether or not LBX history 30 is checked.

(\q_msid=Sam $(10M)\h_msid=Sam) tests whether the
most recent WDR from Sam on queue 22 has a location
within 10 meters of the location of the most recent Sam
WDR from LBX history 30. This condition should be made
with some knowledge of where history 30 starts and where
queue 20 ends for maintaining timely WDRs.

(\q_msid=Sam; _dt>20090927120405 $(10M)
\h_msid=Sam; _dt>=20090227; _dt<20090427) tests

35 multiple places as configured for deducing a merged result
later. There are many reasonable embodiments of a deriva
tive of the BNF granimar of FIGS. 30A through 30E.

FIG. 53 depicts a preferred embodiment of a Prefix
Registry Record (PRR) for discussing operations of the

40 present disclosure. A PRR 5300 is for configuring which
prefix is assigned to which application used in anAppTerm.
This helps to ensure that an AppTerm be properly usable
when referenced in a charter. A prefix field 5300a provides
the prefix in an AppTerm syntax (e.g. M_sender such that

45 "M" is the prefix). Any string can be used for a prefix (i.e.
configured in field 5300a), but preferably there are a mini
mal number of characters to save syntax encoding space. A
description field 5300b provides an optional user specified
description for a PRR 5300, but it may include defaulted

50 data available with an application supporting at least one
App Term. A service references field 5300c identifies, if any,
the data processing system services associated with the
application for the AppTerm referenced with the prefix of
field 5300a. Validation of such services may occur through

55 an API, or may be specified by a knowledgeable user,
administrator, or system setup. Field 5300c potentially con
tains a list of service references. An application references
field 5300d identifies, if any, data processing system appli
cation references (e.g. names) associated with the Applica-

60 tion for the AppTerm referenced with the prefix of field
5300a. Validation of such applications referenced may occur
through an API, or may be specified by a knowledgeable
user, administrator, or system setup. Field 5300d potentially
contains a list. A process references field 5300e identifies, if

65 any, data processing operating system processes for spawn
ing associated with the Application for the AppTerm refer
enced with the prefix of field 5300a. Validation of such

Petitioners' Ex. 1001, Page 441 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
229

processes may occur through an API, or may be specified by
a knowledgeable user, administrator, or system setup. Field
5300e potentially contains a list. A paths field 5300/ iden
tifies, if any, data processing system file name paths to
executables (e.g .. exe, .dll, etc) for spawning associated with 5

the Application for the AppTerm referenced with the prefix
of field 5300a. Validation of such paths may occur through

230
in response to presenting PRRs. Block 5508 continues to
block 5510 when a user action has been detected. If block
5510 determines the user selected to modify a PRR, then the
user configures the specified PRR at block 5512 and pro
cessing continues back to block 5506. Block 5512 interfaces
with the user for PRR 5300 alterations until the user is
satisfied with changes which may or may not have been
made. Block 5512 preferably validates to the fullest extent
possible the data of PRR 5300. If block 5510 determines the
user did not select to modify a PRR, then processing
continues to block 5514. If block 5514 determines the user
selected a PRR for delete, then block 5516 deletes the
specified PRR, and processing continues back to block 5506.
Depending on an embodiment, block 5516 may also prop
erly terminate the application fully described by the PRR
5300. If block 5514 determines the user did not select to
delete a PRR, then processing continues to block 5518. If
block 5518 determines the user selected to add a PRR, then
the user adds a validated PRR at block 5520 and processing

an API, or may be specified by a knowledgeable user,
administrator, or system setup. Field 5300/ potentially con
tains a list. A documentary field 5300g documents each 10

Application data variable (i.e. AppTerm data name without
prefix), and an optional description, for what data is exposed
for the Application which can be used in the AppTerm.
Validation of data in field 5300g data may occur through an
API, or may be specified by a knowledgeable user, admin- 15

istrator, or system setup. Field 5300g potentially contains a
list. Extension field 5300h contains other data for how to test
for whether or not the Application of the PRR is up and
rumiing in the MS, additional information for starting the
Application, and additional information for accessing appli
cation vitals. Validation of information may occur through

20 continues back to block 5506. Block 5520 preferably vali
dates to the fullest extent possible the data of PRR 5300.
Depending on an embodiment, block 5520 may also prop
erly start the application described by the PRR 5300. If

an API, or may be specified by a knowledgeable user,
administrator, or system setup. Field 5300h may be a list, or
null. Other PRR fields are described below in context of use.

In one preferred embodiment, PRRs are supplied with a 25

MS prior to user first MS use, and no administrator or user
has to maintain them. In another embodiment, only a special
administrator can maintain PRRs, which may or may not
have been configured in advance. In another embodiment, a
MS user can maintain PRRs, which may or may not have 30

been configured in advance.
FIG. 54 depicts an example of an XML syntactical

encoding embodiment of permissions and charters, derived
from the BNF grammar of FIGS. 30A through 30E, for
example as user specified, system maintained, system com- 35

municated, system generated, etc. Enough information is
provided for those skilled in the art to define an appropriate
XML syntax of the disclosed BNF grammar in light of
disclosure heretofore. A simple embodiment of variables can
be handled with a familiar Active Service Page (ASP) syntax 40

wherein variables are defined prior to being instantiated with
a special syntax (e.g. <%=varName %>). Double quotes can
be represented within double quote delimited character
strings by the usual providing of two double quotes for each
double quote character position. Those skilled in the art of 45

XML recognize there are many embodiments for XML tags,
how to support sub-tags, and tag attributes within a tag's
scope. FIG. 54 provides a simple reference using a real
example. FIG. 54 illustrates a WPL for less advanced users.

block 5518 determines the user did not select to add a PRR,
then processing continues to block 5522. If block 5522
determines the user selected to show additional detail of a
PRR, then block 5524 displays specified PRR details includ
ing those details not already displayed at block 5506 in the
list. Processing continues back to block 5506 when the user
is complete browsing details. If block 5522 determines the
user did not want to browse PRR details, then processing
continues to block 5526. If block 5526 determines the user
selected to enable/disable (toggle) a specified PRR, then
block 5528 uses PRR 5300 to determine if the associated
application is currently enabled (e.g. running) or disabled
(e.g. not rumiing). Upon determination of the current state of
the application for the specified PRR 5300, block 5528 uses
the PRR 5300 to enable (e.g. start if currently not running),
or disable (e.g. terminate if currently rumiing), the applica-
tion described fully by the specified PRR, before continuing
back to block 5506. Block 5528 should ensure the Appli-
cation has been properly started, or terminated, before
continuing back to block 5506. If block 5526 determines the
user did not want to toggle (enable/disable) a PRR described
application, then processing continues to block 5530. If
block 5530 determines the user selected to display candidate
App Term supported applications of the MS, then block 5532
presents a list of MS applications potentially configurable in
PRR form. Block 5532 will interface with the user until

The syntax "_location $(300M)\loc_my" is a condition
for the WDR in process being within 300 Meters of the
vicinity of my current location. Other syntax is identifiable
based on previous discussions.

50 complete browsing the list. One embodiment of block 5532
accesses current PRRs 5300 and displays the applications
described. Another embodiment accesses an authoritative
source of candidate App Term supported applications, any of

FIG. SSA depicts a flowchart for describing a preferred
embodiment of MS user interface processing for Prefix 55

Registry Record (PRR) configuration. Block 5502 may
begin as the result of an authenticated administrator user
interface, authenticated user interface, or as initiated by a
user. Block 5502 starts processing and continues to block
5504 where initialization is performed before continuing to 60

block 5506. Initialization may include initializing for using
an SQL database, or any other data form of PRRs. Process
ing continues to block 5506 where a list of current PRRs are
presented to the user. The list is scrollable if necessary. A
user preferably has the ability to perform a number of 65

actions on a selected/specified PRR from the list presented
at block 5506. Thereafter, block 5508 waits for a user action

which can be configured as a PRR. Processing continues
back to block 5506 when the user's browse is complete. If
block 5530 determines the user did not select to display
AppTerm supported applications, then processing continues
to block 5534. If block 5534 determines the user selected to
use a data source as a template for automatically populating
PRRs 5300, then block 5536 validates a user specified
template, uses the template to alter PRRs 5300, and pro-
cessing continues back to block 5506. PRRs may be option
ally altered at block 5536 for replacement, overwrite, adding
to, or any other alteration method in accordance with a user
or system preference. In some embodiments, existing PRRs
can be used for template(s). If block 5534 determines the
user did not select to use a data source for a PRR template,

Petitioners' Ex. 1001, Page 442 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
231

then processing continues to block 5538. If block 5538
determines the user did not select to exit PRR configuration
processing, then block 5540 handles all other user actions
detected at block 5508, and processing continues back to
block 5506. If block 5538 determines the user did select to 5

232
processing to an existing source code processing environ
ment (e.g. within PPLs). FIG. 56 can be viewed in context
for new compiler and interpreter processing of permissions
and/or charters (e.g. WPL). FIG. 56 can be viewed in context
for receiving Permission and/or Charter data (e.g. syntax,
datastream, or other format) from some source (e.g. com-
municated to MS). FIG. 56 can be viewed in context for
plugging in isolated Permission and Charter processing to
any processing point of handling a derivative encoding of

exit, then processing continues to block 5542 where con
figuration processing cleanup is performed before terminat
ing FIG. SSA processing appropriately at block 5544.
Depending on an embodiment, block 5542 may properly
terminate data access initialized at block 5504, and inter
nalize PRRs for a well performing read-only form accessed
by FIG. 55B. Appropriate semaphore interfaces are used.

10 the BNF granrmar of FIGS. 30A through 30E.
Data handling of a source code for compiling/interpreting,

an encoding from a communication connection, or an encod
ing from some processing source starts at block 5602. At
some point in BNF grammar derived data handling, a block

FIG. SSA is used to expose those AppTerm variables
which are of interest. Candidate applications are understood
to maintain data accessible to charter processing. Different
embodiments will utilize global variables (e.g. linked
extern), dynamically linked variables, shared memory vari
ables, or any other data areas accessible to both the appli
cation and charter processing with proper thread safe syn
chronized access.

15 5632 gets the next (or first) token from the source encoding.
Tokens may be reserved keywords, delimiters, variable
names, expression syntax, or some construct or atomic
element of an encoding. Thereafter, if block 5634 deter
mines the token is a reserved key or keyword, block 5636

20 checks if the reserved key or keyword is for identifying
permissions 10 (e.g. FIG. 51A "Permissions", FIG. 54
"permission", FIG. 33B Permissions/Permission, etc), in
which case block 5638 sets a stringVar pointer to the entire

FIG. 55B depicts a flowchart for describing a preferred
embodiment of Application Term (AppTerm) data modifi
cation. An application thread performing at least one App
Term update uses processing of FIG. 55B. A participating
application thread starts processing at block 5552 as the 25

result of a standardized interface, integrated processing, or
some other appropriate processing means. Block 5552 con
tinues to block 5554 where an appropriate semaphore lock
is obtained to ensure synchronous data access between the
application and any other processing threads (e.g. charter 30

processing). Processing then continues to block 5556 for
accessing the application's associated PRR (if one exists).
Thereafter, if block 5558 determines the PRR exists and at
least one of the data item(s) for modification are described
by field 5300g, block 5560 updates the applicable data 35

item(s) described by field 5300g appropriately as requested
by the application invoking FIG. 55B processing. Thereaf
ter, block 5562 releases the semaphore resource locked at
block 5554 and processing terminates at block 5564.

If block 5558 determines the associated PRR was not 40

datastream representative of the permission(s) 10 to be
processed, and block 5640 prepares parameters for invoking
LBX data internalization processing at block 5642.

If block 5636 determines the reserved key or keyword is
not for permission(s) 10, then processing continues to block
5646. Block 5646 checks if the reserved key or keyword is
for identifying charters 12 (e.g. FIG. 51B "Charters", FIG.
54 "charter", FIG. 33C Charters/Charter, etc), in which case
block 5648 sets a stringVar pointer to the entire datastream
representative of the charter(s) 12 to be processed, and block
5650 prepares parameters for invoking LBX data internal
ization processing at block 5642.

Blocks 5640 and 5650 preferably have a stringVar set to
the permission/charter data encoding start position, and then
set a length of the permission/charter data for processing by
block 5642. Alternatively, the stringVar is a null terminated
string for processing the permission(s)/charter(s) data
encoding. Embodiment requirements are for providing
appropriate parameters for invoking block 5642 for unam
biguous processing of the entire permission(s)/charter(s) for
parsing and processing. The procedure of block 5642 has

found or all data items of the found PRR for modification are
not described by field 5300g, then processing continues
directly to block 5562 for releasing the semaphore lock,
thereby performing no updates to an App Term. PRRs 5300
control eligibility for modification by applications, as well
as which AppTerm references can be made in charter pro
cessing.

An AppTerm is accessed (read) by granrmar processing
with the same semaphore lock control used in FIG. 55B.

45 already been described throughout this disclosure (e.g. cre
ating a processable internalized form (e.g. database records,
programmatic structure, etc)). Upon return from block 5642
processing, block 5644 resets the parsing position of the data
source encoding provided at block 5632 for having already

FIG. 56 depicts a flowchart for appropriately processing 50 processed the permission(s)/charter(s) encoding handled by
block 5642. Thereafter, processing continues back to block
5632 for getting the next token from the data encoding
source.

an encoding embodiment of the BNF granrmar of FIGS. 30A
through 30E, in context for a variety of parser processing
embodiments. Those skilled in the art may take information
disclosed heretofore to generate table records of FIGS. 35A
through 37C, and/or data of FIGS. 34A through 34G (and/or 55

FIG. 52), and/or datastreams of FIG. 33A through 33C,
and/or a suitable syntax or internalized form derivative of
FIGS. 30A through 30E. Compiler, interpreter, data receive,
or other data handling processing as disclosed in FIG. 56 is
well known in the art. Text books such as "Algorithms+Data 60

Structures=Programs" by Nicklaus Wirth are one of many
for guiding compiler/interpreter development. A BNF gram
mar of FIGS. 30A through 30E may also be "plugged in" to
a Lex and Yacc environment to isolate processing from
parsing in an optimal manner. Compiler and interpreter 65

development techniques are well known. FIG. 56 can be
viewed in context for adapting Permission and Charter

If block 5646 determines the reserved key or keyword is
not for charter(s) 12, then processing continues to process
the applicable reserved key or keyword identified in the
source data encoding. If block 5634 determines the token is
not a reserved key or keyword, then processing continues to
the appropriate block for handling the token which is not a
reserved key or keyword. In any case there may be process
ing of other source data encoding not specifically for a
permission or charter.

Eventually, processing continues to a block 5692 for
checking if there is more data source to handle/process. If
block 5692 determines there is more data encoding source,
processing continues back to block 5632 for getting the next
token. If block 5692 determines there is no more data

Petitioners' Ex. 1001, Page 443 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
233

encoding source, processing continues to block 5694 for
data encoding source processing completion, and then to
block 5696 for termination of FIG. 56 processing.

Depending on the embodiment, block 5694 may complete
processing for: 5

Compiling one of the PPLs (or other programming lan
guage) with embedded/integrated encodings for per
missions 10 and/or charters 12;

Interpreting one of the PPLs (or other programming
language) with embedded/integrated encodings for per- 10

missions 10 and/or charters 12;
Receiving the encoding source data from a communica

tions channel;
Receiving the encoding source data from a processing

source; 15

Receiving the encoding source data from a user config
ured source;

Receiving the encoding source data from a system con
figured source; or

Internalizing, compiling, interpreting, or processing an 20

encoding derived from the disclosed BNF grammar for
Permissions 10 and/or Charter 12.

Blocks 5636 through 5650 may represent plug-in pro
cessing for permissions 10 and/or charters 12. Depending on
when and where processing occurs for FIG. 56, appropriate 25

semaphores may be used to ensure data integrity.

LBX: Permissions and Charters-WDR Processing

As WDR information is transmitted/received between 30

MSs, privileges and charters are used to govern automated
actions. Thus, privileges and charters govern processing of
at least future whereabouts information to be processed.
There is WDR In-process Triggering Smarts (WITS) in
appropriate executable code processing paths. WITS pro- 35

vides the intelligence of whether or not privilege(s) and/or
charter(s) trigger(s) an action. WITS is the processing at a
place where a WDR is automatically examined against
configured privileges and charters to see what actions should
automatically take place. There are three different types of 40

WITS, namely: maintained WITS (m WITS), inbound WITS
(iWITS), and outbound WITS (oWITS). Each type of WITS
is placed in a strategic processing path so as to recognize the
event for when to process the WDR. Maintained WITS
(m WITS) occur at those processing paths applicable to a 45

WDR in process for being maintained at an MS (e.g. inserted
to queue 22). Other embodiments may define other main
tained varieties of a WDR in process for configurations (e.g.
inbound, outbound, in-process2Q22, in-process2History
(i.e. WDR in process of being maintained to LBX history 50

30), in-process2application(s) (i.e. WDR in process of being
maintained/communicated to an application), etc). Inbound
WITS (iWITS) occur at those processing paths applicable to
a WDR which is inbound to a MS (e.g. communicated to the
MS). Outbound WITS (oWITS) occur at those processing 55

paths applicable to a WDR which is outbound from a MS
(e.g. sent by an MS). There are various WITS embodiments
as described below. Users should keep in mind that a single
WDR may be processed multiple times (by different WITS)
with configuring charters that refer to different WITS (e.g. 60

first inbound, then to queue 22). One embodiment supports
only m WITS. Another embodiment supports only iWITS.
Another embodiment supports oWITS. Yet another embodi
ment supports use of any combination of available WITS.
mWITS: 65

The preferred embodiment is a new block 273 in FIG. 2F
such that block 272 continues to block 273 and block

234
273 continues to block 274. This allows mWITS pro
cessing block 273 to see all WDRs which are candidate
for insertion to queue 22, regardless of the role check
at block 274, confidence check at block 276, and any
other FIG. 2F processing. In some embodiments, block
273 may choose to use enabled roles and/or confidence
and/or any WDR field(s) values and/or permissions
and/or any other processing result to decisively affect
whether or not the WDR should be examined and/or
processed further by FIG. 2F. For example, block 273
may result in processing to continue directly to block
294 or 298 (rather than block 274). For example, upon
determining that the WDR source had not provided any
privileges to the receiving MS, the WDR can be
ignored so as to not use resources of the MS. In another
example, a WDR shows that it arrived completely
wirelessly (e.g. field(s) 1100.f) and did not go through
an intermediary service (e.g. router). The WDR may
provide usefulness in locating the receiving MS despite
the receiving MS not being privileged by the source
MS, in which case block 273 continues to block 27 4 for
WDR processing. It may be important to filter WDRs
so that only those WDRs are maintained which either
a) contribute to locating (per configurations), orb) are
associated with active permissions or charters for appli
cable processing. The WRC discussed above may also
be used to cause block 273 to continue to block 294 or
298. Such filtering is referred to as WITS filtering.
WITS filtering may be crucial in a LBX architecture
which supports MSs great distances from each other
since there can be an overloading number of WDRs to
process at any point in time. Charters and privileges
that are configured are used for deciding which WDRs
are to be "seen" (processed) further by FIG. 2F pro
cessing. If there are no privileges and no charters in
effect for the in process WDR, then the WDR may be
ignored. If there is no use for the WDR to help locate
the receiving MS, then the WDR may also be ignored.
If there are privileges and charters in effect for the in
process WDR, then the WDR can be processed further
by FIG. 2F, even if not useful for locating the MS.

One preferred embodiment does make use of the confi
dence field 1100d to ensure the peer MS has been
sufficiently located. Block 273 will compare informa
tion of the WDR with configured privileges to deter
mine which actions should be performed. When appro
priate privileges are in place, block 273 will also
compare information of the WDR with configured and
privileged charters (e.g. _fldname) to determine appli
cable configured charter actions to be performed.

Alternate embodiments can move m WITS at multiple
processing places subsequent to where a WDR is
completed by the MS (e.g. blocks 236, 258, 334, 366,
418, 534, 618, 648, 750, 828, 874, 958, 2128, 2688,
etc).

Another embodiment can support m WITS at processing
places subsequent to processing by blocks 1718 and
1722 to reflect user maintenance.

Yet another embodiment recognizes in m WITS that the
WDR was first inbound to the MS and is now in process
of being maintained (e.g. to queue 22). This can allow
distinguishing between an inbound WDR, maintained
WDR, and inbound AND maintained WDR. In one
embodiment, the WDR (e.g. field 1100g) carries new
bit(s) of information (e.g. set by receive processing
when inserting to queue 26) for indicating the WDR

Petitioners' Ex. 1001, Page 444 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
235

was inbound to the MS. The new bit(s) are checked by
m WITS for new processing (i.e. inbound AND main
tained WDR).

iWITS:
The preferred embodiment is a new block 2111 in FIG. 21 5

such that block 2110 continues to block 2111 (i.e. on No
condition) and block 2111 continues to block 2112.
This allows iWITS processing block 2111 to see all
inbound WDRs, regardless of the confidence check at
block 2114, and any other FIG. 21 processing. In some 10

embodiments, block 2111 may choose to use confi
dence and/or any WDR field(s) and/or permissions
and/or any other processing result to decisively affect
whether or not the WDR should be examined and/or
processed further by FIG. 21. Block 2111 may result in 15

processing to continue directly to block 2106 (rather
than block 2112). For example, upon determining that
the WDR source had not provided any privileges to the
receiving MS, the WDR can be ignored so as to not use
resources of the MS. In another example, a WDR 20

shows that it arrived completely wirelessly (e.g. field(s)
1100.1) and did not go through an intermediary service
(e.g. router). The WDR may provide usefulness in
locating the receiving MS despite the receiving MS not
being privileged by the source MS, in which case block 25

2111 continues to block 2112 for WDR processing.
Similar WITS filtering can occur here as was described
for m WITS processing above, with the advantage of
intercepting WDRs of little value at the earliest pos
sible time and preventing them from reaching subse- 30

quent LBX processing.
One preferred embodiment does make use of the confi

dence field 1100d to ensure the peer MS has been
sufficiently located. Block 2111 will compare informa
tion of the WDR with configured privileges to deter- 35

mine which actions should be performed. When appro
priate privileges are in place, block 2111 will also
compare information of the WDR with configured and
privileged charters (e.g. _I_fldname) to determine
applicable configured charter actions to be performed. 40

Another embodiment can support iWITS at processing
places associated with receive queue 26, for example
processing up to the insertion of the WDR to queue 26.

oWITS:
The preferred embodiment incorporates a new block 2015 45

in FIG. 20 such that block 2014 continues to block

236
embodiments, block 2515 may choose to use confi
dence and/or any WDR field(s) and/or permissions
and/or any other processing result to decisively affect
whether or not the WDR should be examined and/or
processed further by FIG. 25. Block 2515 may result in
processing to continue directly to block 2506. For
example, upon determining that the WDR is destined
for a MS with no privileges in place, the WDR can be
ignored and unprocessed (i.e. not sent). The WRC
discussed may also be used appropriately here. Similar
WITS filtering can occur here as was described for
m WITS, iWITS and o WITS processing above, with the
advantage of intercepting WDRs of little value to
anyone else in the LN-expanse, and preventing the
WDRs from reaching subsequent LBX processing at
remote MSs that will have no use for them.

Blocks 2015 and 2515 will compare information of the
WDR with configured privileges to determine which
actions should be performed. When appropriate privi
leges are in place, blocks 2015/2515 will also compare
information of the WDR with configured charters (e.g.
_O_fldname) to determine applicable configured and
privileged charter actions to be performed.

Another embodiment can support o WITS at processing
places associated with send queue 24, for example after
the insertion of the WDR to queue 24.

Yet another embodiment recognizes in oWITS that the
WDR was first maintained to the MS and is now in
process of being sent outbound. This can allow distin
guishing between an outbound WDR, maintained
WDR, and outbound AND maintained WDR. Different
embodiments will use different criteria for what desig
nates an outbound AND maintained WDR, for example
seeking certain values in maintained WDR field(s),
seeking certain values in outbound WDR field(s), or
both. In one embodiment, the WDR carries new bit(s)
of information (e.g. set by send processing) for indi
cating the WDR was outbound from the MS. WDR
processing for a maintained WDR and/or an outbound
WDR can also be made relevant for designating an
outbound AND maintained WDR. Criteria may be
important in this embodiment since an outbound WDR
was maintained in some fashion prior to being candi
date as an outbound WDR.

FIG. 57 depicts a flowchart for describing a preferred
embodiment ofWDR In-process Triggering Smarts (WITS)
processing. The term "Triggering Smarts" is used to
describe intelligent processing ofWDRs for privileges and/
or charters that may trigger configured processing such as

2015 and block 2015 continues to block 2016. This
allows o WITS processing block 2015 to see all its
outbound WDRs for FIG. 20 processing. In some
embodiments, block 2015 may choose to use confi
dence and/or any WDR field(s) and/or permissions
and/or any other processing result to decisively affect
whether or not the WDR should be processed further by
FIG. 20. Block 2015 may result in processing to
continue directly to block 2018. The WRC discussed
may also be used appropriately here. Similar WITS
filtering can occur here as was described for m WITS
and iWITS processing above, with the advantage of
intercepting WDRs of little value to anyone else in the
LN-expanse, and preventing the WDRs from reaching
subsequent LBX processing at remote MSs that will
have no use for them.

50 certain actions. FIG. 57 is presented to cover the different
WITS embodiments discussed above. WITS processing is of
PIP code 6, and starts at block 5700 with an in-process WDR
as the result of the start of new blocks 273, 2111, 2015 and
2515 (as described above). While preferred WITS embodi-

The preferred embodiment will also incorporate a new
block 2515 in FIG. 25 such that block 2514 continues

55 ments include new blocks 273, 2111, 2015, and 2515, it is to
be understood that alternate embodiments may include FIG.
57 processing at other processing places, for example as
described above. There are similarities between m WITS,
iWITS and oWITS. FIG. 57 is presented in context for each

60 WITS type. Thus, block 5700 shall be presented as being
invoked form WITS, iWITS, and o WITS in order to process
a WDR (i.e. in-process WDR) that is being maintained to the
MS of FIG. 57 processing (e.g. to queue 22), is inbound to

to block 2515 and block 2515 continues to block 2516. 65

the MS of FIG. 57 processing, and/or is outbound from the
MS of FIG. 57 processing. Applicable charter configurations
(_ref, _I_ref, _O_ref) and applicable privileges are to be This allows o WITS processing block 2515 to see all its

outbound WDRs of FIG. 25 processing. In some handled accordingly.

Petitioners' Ex. 1001, Page 445 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
237

Depending on the embodiment, charter fields 3700/, or an
equivalent descriptor thereof, may be accessed by WITS
processing to determine which charters are enabled for
applicable charter list use. Block 5700 continues to block
5702-a where the WRC and applicable origination informa- 5

tion of the WDR is accessed. Thereafter, if the WRC and
WDR information indicates to ignore the WDR at block
5702-b, then processing continues to block 5746, otherwise
processing continues to block 5704. Whenever block 5746 is
encountered, the decision is made (assumed in FIG. 57) to 10

continue processing the WDR or not continue processing the
WDR in processing which includes FIG. 57 (i.e. FIGS. 2F,
20, 21 25) as described above. This decision depends on how
block 5746 was arrived to by FIG. 57 processing. Blocks
5702-a and 5702-b may perform any variety of WITS 15

filtering for any reason to prevent further processing of a
WDR. In one embodiment, block 5702-a checks MS privi
lege and/or charter configurations for relevance of further
processing the WDR (e.g. there are no configurations exist
ing which are relevant to the WDR from that particular 20

originating MS, therefore no further WDR processing is
warranted).

Block 5704 determines the identity (e.g. originating MS)
of the in-process WDR (e.g. check field 1100a). A lookup,
conversion, and/or other facilitated determination may be 25

made. Thereafter, if block 5706 determines the identity of
the in-process WDR does not match the identity of the MS
of FIG. 57 processing, processing continues to block 5708.
Block 5706 continues to block 5708 when a) the in-process
WDR is from other MSs and is being maintained at the MS 30

of FIG. 57 processing (i.e. FIG. 57=m WITS); or b) the
in-process WDR is from other MSs and is inbound to the MS

238
terminology "WDR MS ID" (i.e. MS IDs other than the MS
ID (field 1100a) of the in-process WDR of FIG. 57 process
ing (also other than the "this MS" MS ID)). Privilege
configurations 5810 are privileges provided from an in
process WDR MS ID (i.e. WDR being processed by FIG. 57
at "this MS") to the MS ID of FIG. 57 processing. The
groups an ID belongs to can also provide, or be provided
with, privileges so that the universe of privileges granted
should consider groups as well. Privilege configurations
5820 are privileges provided from the MS of FIG. 57
processing (this MS) to the MS ID (field 1100a) of the
in-process WDR being processed by FIG. 57. Privilege
configurations 5830 are privileges provided from the MS of
FIG. 57 processing (this MS) to MS IDs (field 1100a)
configured in collection 5802 other than the MS ID of the
in-process WDR being processed by FIG. 57 (also other than
the "this MS" MS ID). Privilege configurations 5840 are
privileges provided from MS IDs configured in collection
5802 at the MS of FIG. 57 processing (this MS) which are
different than the MS ID of the in-process WDR being
processed by FIG. 57 (also different than the "this MS" MS
ID).

Also to facilitate discussion of FIG. 57, charter data 12
can be viewed as a charter data collection 5852 wherein
arrows shown are to be interpreted as "creates enabled
charters for" (i.e. Left Hand Side (LHS) creates enabled
charters for the Right Hand Side (RHS)). Any of the charter
representations heretofore described (internalized,
datastream, XML, source code, or any other BNF grammar
derivative) can be used to represent, or encode, data of the
collection 5852. Regardless of the BNF grammar derivative/
representation deployed, the minimal requirement of collec
tion 5852 is to define the charters granted by one ID to
another (and perhaps with associated TimeSpec qualifier(s);

of FIG. 57 processing (i.e. FIG. 57=iWITS). For example, a
first MS of FIG. 57 processing handles a WDR from a
second MS starting at block 5708. 35 TimeSpec may be an aggregate-result of TimeSpec specified

for the charter, charter expression, charter condition and/or
charter term). Preferably, for charters with multiple actions,
each action is evaluated on its own specified TimeSpec merit

With reference now to FIG. 58, depicted is an illustration
for granted data characteristics in the present disclosure
LBX architecture, specifically with respect to granted per
mission data and granted charter data as maintained by a
particular MS of FIG. 57 processing (i.e. as maintained by 40

"this MS"). To facilitate discussion of FIG. 57, permission
data 10 can be viewed as permission data collection 5802
wherein arrows shown are to be interpreted as "provides
privileges to" (i.e. Left Hand Side (LHS) provides privileges
to the Right Hand Side (RHS)). Any of the permissions 45

representations heretofore described (internalized,
datastream, XML, source code, or any other BNF grammar
derivative) can be used to represent, or encode, data of the
collection 5802. Regardless of the BNF grammar derivative/
representation deployed, the minimal requirement of collec- 50

tion 5802 is to define the relationships of privileges granted
from one ID to another ID (and perhaps with associated
MS Relevance and/or TimeSpec qualifier(s)). Whether grants

if applicable. In embodiments that use a tense qualifier in
TimeSpecs: LBX history, appropriate queue(s), and any
other reasonable source of information shall be utilized
appropriately.

Different identity embodiments are supported (e.g. MS ID
or user ID) for the LHS and/or RHS (see BNF grammar for
different embodiments). A privilege preferably grants the
ability to create effective (enabled) charters for one ID from
another ID. However, in some embodiments the granting of
a charter by itself from one ID to another ID can be treated
like the granting of a permission/privilege to use the charter,
thereby preventing special charter activating permission(s)
be put in place. Charter data collection 5852 is also to be
from the perspective of the MS of FIG. 57 processing. Thus,
the terminology "this MS ID" refers to the MS ID of the MS
of FIG. 57 processing. The terminology "WDR MS ID" is or explicit privileges are assigned, ultimately there are

privileges granted from a grantor ID to a grantee ID.
Different identity embodiments are supported (e.g. MS ID

or user ID) for the LHS and/or RHS (see BNF granimar for
different embodiments). Permission data collection 5802 is

55 the MS ID (field 1100a) of the in-process WDR of FIG. 57
processing distinguished from all other MS IDs configured
in collection 5852 at the time of processing the WDR. The
terminology "other MS IDs" is used to distinguish all other

to be from the perspective of one particular MS, namely the
MS of FIG. 57 processing. Thus, the terminology "this MS 60

ID" refers to the MS ID of the MS of FIG. 57 processing.
The terminology "WDR MS ID" is the MS ID (field 1100a)
of an in-process WDR of FIG. 57 processing distinguished
from all other MS IDs configured in collection 5802 at the
time of processing the WDR. The terminology "other MS 65

IDs" is used to distinguish all other MS IDs configured in
collection 5802 which are not the same as the MS ID of the

MS IDs configured in collection 5852 which are not the
same as the MS ID of the terminology "WDR MS ID" (i.e.
MS IDs other than the MS ID (field 1100a) of the in-process
WDR of FIG. 57 processing (also other than the "this MS"
MS ID)). Charter configurations 5860 are charters created by
the MS ID of an in-process WDR (i.e. WDR being processed
by FIG. 57 at "this MS") for being effective at the MS of
FIG. 57 processing (this MS ID). The groups an ID belongs
to can also provide, or be provided with, charters so that the

Petitioners' Ex. 1001, Page 446 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
239

universe of charters granted should consider groups as well.
Charter configurations 5870 are charters created by the MS
ID of FIG. 57 processing (i.e. this MS) for being effective at
the MS of FIG. 57 processing (this MS ID). Charter con
figurations 5870 include the most common embodiments of 5

creating charters for yourself at your own MS. Charter
configurations 5880 are charters created by the MS ID of
FIG. 57 processing (this MS) for being effective at MSs with
MS IDs configured in collection 5852 other than the MS ID
of the in-process WDR being processed by FIG. 57. Charter 10

configurations 5890 are charters at the MS of FIG. 57
processing (this MS) which are created by MS IDs other
than the MS ID of the in-process WDR being processed by
FIG. 57 (also other than the "this MS" MS ID).

Any subset of data collections 5802 and 5852 can be 15

resident at a MS of FIG. 57 processing, depending on a
particular embodiment of the present disclosure, however
preferred and most common data used is presented in FIG.
57. While FIG. 58 facilitates flowchart descriptions and
discussions for in-process WDR embodiments of being 20

maintained (e.g. to queue 22), being inbound (e.g. commu
nicated to the MS), and/or being outbound (e.g. communi
cated from the MS), FIGS. 49A and 49B provide relevant
discussions for WDR in-process embodiments when con
sidering generally "incoming" WDRs (i.e. being maintained 25

(e.g. to queue 22) or being inbound (e.g. communicated to
the MS)).

In the preferred embodiment, groups defined local to the
MS are used for validating which data using group IDs of
collections 5802 and 5852 are relevant for processing. In 30

alternate embodiments, group information of other MSs may
be "visible" to FIG. 57 processing for broader group con
figuration consideration, either by remote communications,
local maintaining of MS groups which are privileged to have
their groups maintained there (communicated and main- 35

tained like charters), or another reasonable method.
With reference back to FIG. 57, block 5708 forms a

PRIVS2ME list of configurations 5810 and continues to
block 5710 for eliminating duplicates that may be found.
Block 5708 may collapse grant hierarchies to form the list. 40

Duplicates may occur for privileges which include the
duplicated privileges (i.e. subordinate privileges). For
example, \Ibxall specifies all LBX privileges and \nearar is
only one LBX privilege already included in \Ibxall. Recall
that some privileges can be higher order scoped (subordi- 45

nate) privileges for a plurality of more granulated privileges.
Block 5710 additionally eliminates duplicates that may exist
for permission embodiments wherein a privilege can enable
or disable a feature. In a present disclosure embodiment
wherein a privilege can enable, and a privilege can disable 50

the same feature or functionality, there is preferably a tie
breaker of disabling the feature (i.e. disabling wins). In an
alternate embodiment, enabling may break a tie of ambigu
ity. Block 5710 further eliminates privileges that have a
MSRelevance qualifier indicating the MS of FIG. 57 pro- 55

cessing is not supported for the particular privilege, and also
eliminates privileges with a TimeSpec qualifier invalid for
the time of FIG. 57 processing (an alternate embodiment can
enforce TimeSpec interpretation at blocks 5734 (i.e. in FIG.
59 processing) and 5736 (i.e. in FIG. 60 processing)). 60

Thereafter, block 5712 forms a PRIVS2WDR list of con
figurations 5820 and continues to block 5714 for eliminating
duplicates that may be found in a mamier analogous to block
5710 (i.e. subordinate privileges, enable/disable tie breaker,
MSRelevance qualifier, TimeSpec qualifier). Block 5712 65

may collapse grant hierarchies to form the list. An alternate
embodiment can enforce TimeSpec interpretation at block

240
5738 (i.e. in FIG. 60 processing). Thereafter, block 5716
forms a CHARTERS2ME list of configurations 5860 and
preferably eliminates variables by instantiating/elaborating
at points where they are referenced. Then, block 5718
eliminates those charters which are not privileged. In some
embodiments, block 5718 is not necessary (5716 continues
to 5720) because un-privileged charters will not be permit
ted to be present at the MS of FIG. 57 processing anyway
(e.g. eliminated when receiving). Nevertheless, block 5718
removes from the CHARTERS2ME list all charters which
do not have a privilege (e.g. using PRIVS2WDR) granted by
the MS (the MS user) of FIG. 57 processing to the creator
of the charter, for permitting the charter to be "in effect"
(activated). In the preferred embodiment, there is a privilege
(e.g. \chrtrs) which can be used to grant the permission of
activating any charters of another MS (or MS user) at the
MS of FIG. 57 processing. In the preferred embodiment,
there can be any number of subordinate charter privileges
(i.e. subordinate to \chrtrs) for specifically indicating which
type of charters are permitted. For example, privileges for
governing which charters are to be active from a remote MS
include:

m WITS specifications (allow charters with _fldname);
iWITS specifications (allow charters with _I_fldname);
oWITS specifications (allow charters with _O_fldname);
specified atomic terms (e.g. a privilege for each eligible

atomic term use);
specified WDRTerms (e.g. a privilege for each eligible

WDRTerm use);
specified AppTerms (e.g. a privilege for each eligible

AppTerm use);
specified operators (e.g. a privilege for each eligible

atomic operator use);
specified conditions;
specified actions;
specified host targets for actions; and/or
any identifiable characteristic of a charter encoding as

defined in the BNF granrmar of FIGS. 30A through
30E.

In any embodiment, block 5718 ensures no charters from
other users are considered active unless appropriately privi
leged (e.g. using PRIVS2WDR). Thereafter, block 5720
forms a MYCHARTERS list of configurations 5870 and
preferably eliminates variables by elaborating at points
where they are referenced, before continuing to block 5732.

Block 5732 checks the PRIVS2ME list to see if there is
a privilege granted from the identity of the in-process WDR
to the MS (or user of MS) of FIG. 57 processing for being
able to "see" the WDR. One main privilege (e.g. \lbxiop) can
enable or disable whether or not the MS of FIG. 57 pro
cessing should be able to do anything at all with the WDR
from the remote MS. If block 5732 determines this MS can
process the WDR, then processing continues to block 5734.
Block 5734 enables local features and functionality in
accordance with privileges of the PRIVS2ME list by invok
ing the enable features and functionality procedure of FIG.
59 with the PRIVS2ME list, and the in-process WDR as
parameters (preferably passed by pointer/reference).

With reference now to FIG. 59, depicted is a flowchart for
describing a preferred embodiment of a procedure for
enabling LBX features and functionality in accordance with
a certain type (category) of permissions. Blocks 5920, 5924,
5928, 5932, 5936, 5940, 5944, and 5946 enable or disable
LBX features and functionality for semantic privileges.
Processing of block 5734 starts at block 5900 and continues
to block 5902 where the permission type list parameter
passed (i.e. PRIVS2ME (5810) when invoked from block

Petitioners' Ex. 1001, Page 447 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
241

5734) is determined, and the in-process WDR may be
accessed. The list parameter passed provides not only the
appropriate list to FIG. 59 processing, but also which list
configuration (5810, 5820, 5830 or 5840) has been passed
for processing by FIG. 59. There are potentially thousands 5

of specific privileges that FIG. 59 can handle. Therefore,
FIG. 59 processing is shown to generically handle different
classes (categories) of privileges, namely privilege classes
of: privilege-configuration, charter-configuration, data send,
impersonation, WDR processing, situational location, moni- 10

taring, LBX, LBS, and any others as handled by block 5946.
Privileges disclosed throughout the present disclosure fall
into one of these classes handled by FIG. 59.

242
certain conditions and/or terms-See BNF granimar). Block
5914 then continues to block 5916. Block 5916 will remove
charters from MYCHARTERS if appropriate to do that. For
example, a privilege (or absence thereof) detected in the list
parameter for indicating certain MYCHARTERS charters
(e.g. those that involve the in-process WDR) can/cannot be
defined/enabled in context of the list parameter causes block
5916 to remove charters from MYCHARTERS for subse
quent FIG. 57 processing. Changes to charters 12 for the
MYCHARTERS list does not occur. This prevents deleting
charters locally at the MS that the user spent time creating
at his MS. Removing from the MYCHARTERS list is
enough to affect subsequent FIG. 57 processing, for example
of an in-process WDR. Block 5914 shown does additionally

15 remove from charters 12 because the charters are not valid
Block 5902 continues to block 5904 where if it is deter

mined that a privilege-configuration privilege is present in
the list parameter passed to FIG. 59 processing, then block
5906 will remove privileges from the list parameter if
appropriate to do that. For example, a privilege (or absence
thereof) detected in the list parameter for indicating no
privileges can be defined/enabled in context of the list 20

parameter causes block 5906 to remove all privileges from
the list parameter and also from permissions 10 (i.e. 5810 of
collection 5802 when FIG. 59 invoked from block 5734).
Similarly, any more granular privilege-configuration privi
leges of the list parameter causes processing to continue to 25

block 5906 for ensuring remaining privileges of the list
parameter (and of permissions 10 configurations) are appro
priate. There can be many different privilege-configuration
privileges for what can, and can't, be defined in permissions
10, for example by any characteristic(s) of permissions data 30

10 according to the present disclosure BNF grammar. Block
5906 continues to block 5908 when all privilege-configu
ration privileges are reflected in the list parameter and
collection 5802 of permissions 10. If block 5904 determines
there are no privilege-configuration privileges to consider in 35

the list parameter passed to FIG. 59 processing, then pro
cessing continues to block 5908.

Block 5908 gets the next individual privilege entry (or the
first entry upon first encounter of block 5908 for an invo
cation of FIG. 59) from the list parameter and continues to 40

block 5910. Blocks 5908 through 5946 iterate all individual
privileges (list entries) associated with the list parameter of
permissions 10 provided to block 5908. If block 5910
determines there was an unprocessed privilege entry remain
ing in the list parameter (i.e. 5810 of collection 5802 when 45

FIG. 59 invoked from block 5734), then the entry gets
processed starting with block 5912. If block 5912 deter
mines the entry is a charter-configuration privilege, then
block 5914 will remove charters from CHARTERS2ME if
appropriate to do that. For example, a privilege (or absence 50

thereof) detected in the list parameter for indicating no
CHARTERS2ME charters can be defined/enabled in context

from a remote user anyway. One preferred embodiment to
block 5914 will not alter charters 12 (only
CHARTERS2ME) similarly to block 5916 so that subse-
quent FIG. 57 processing continues properly while prevent
ing a remote MS user from resending charters (use of FIGS.
44A and 44B) at a subsequent time for reinstatement upon
discovering the "this MS" FIG. 57 processing user had not
provided a needed permission/privilege. Block 5916 contin
ues back to block 5908 for the next entry. Blocks 5914 and
5916 make use of the privilege entry data from block 5908
(e.g. grantor ID, grantee ID, privilege, etc) to properly affect
change of CHARTERS2ME and MYCHARTERS.
CHARTERS2ME and MYCHARTERS are shown as global
variables accessible from FIG. 57 processing to FIG. 59
processing, but an alternate embodiment will pass these lists
as additional parameters determined at block 5902. If block
5912 determined the currently iterated privilege is not a
charter configuration privilege, then processing continues to
block 5918.

If block 5918 determines the entry is a data send privilege,
then block 5920 will enable LBX features and functionality
appropriately in context for the list parameter, and process
ing continues back to block 5908. A data send privilege may
be one that is used at block 4466 and enforced at block 4470
for exactly what data can or cannot be received. Any
granulation of permission data 10 or charter data 12 (e.g. by
any characteristic(s)) may be supported. A data send privi
lege may overlap with a privilege-configuration privilege or
a charter-configuration privilege since either may be used at
blocks 4466 and 4470, depending on an embodiment. It may
be useful to control what data can be received by a MS at
blocks 4466 and 4470 versus what data actually gets used for
FIG. 57 processing as controlled by blocks 5904, 5906,
5912, 5914, and 5916. If block 5918 determines the entry is
not a data send privilege, then processing continues to block
5922. Data send privileges can control what privilege,
charter, and/or group data can and cannot be sent to a MS
(i.e. received by a MS). Data send privileges can be overall
privileges, subordinate privileges, and/or privileges for any

of the list parameter causes block 5914 to remove all
charters from CHARTERS2ME and also from charters 12
(i.e. 5860 of collection 5852 when FIG. 59 invoked from
block 5734). Similarly, any more granular charter-configu
ration privileges of the list parameter causes processing to
continue to block 5914 for ensuring remaining charters of
CHARTERS2ME (and of charters 12 configurations) are
appropriate. There can be many different charters-configu
ration privileges for what can and can't be defined in
charters 12, for example by any characteristic(s) of charters
data 12 according to the present disclosure BNF grammar, in
particular for an in-process WDR from another MS. Any
aspect of charters can be privileged (all, certain commands,
certain operands, certain parameters, certain values of any of
those, whether can specify Host for action processing,

55 granulation of data based on type, size, value, age, or any
other characteristic(s) available from a derivative of the
BNF grammar of FIGS. 30A through 30E.

If block 5922 determines the entry is an impersonation
privilege, then block 5924 will enable LBX features and

60 functionality appropriately in context for the list parameter,
and processing continues back to block 5908. An imperson
ation privilege is one that is used to access certain authen
ticated user interfaces, some of which were described above.
Any granulation of permission data 10 (e.g. by any charac-

65 teristic(s)) may be supported, for example for any subset of
MS user interfaces with respect to the present disclosure.
Block 5924 may access security, or certain application

Petitioners' Ex. 1001, Page 448 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
243

interfaces accessible to the MS of FIG. 59 processing for
read, modify, add, or otherwise alter certain related data, or
cause the processing of certain related executable code, for
example to manage associated identity impersonation at the
MS. If block 5922 determines the entry is not an imperson- 5

ation privilege, then processing continues to block 5926.
Impersonation privileges can be overall privileges, subordi
nate privileges, and/or privileges for any granulation of
identity data or any other characteristic(s) available from a
derivative of the BNF grammar of FIGS. 30A through 30E. 10

If block 5926 determines the entry is a WDR privilege,
then block 5928 will enable LBX features and functionality
appropriately in context for the list parameter, and process
ing continues back to block 5908. A WDR privilege is one
that is used to govern access to certain fields of the in- 15

process WDR. Any granulation of permission data 10 (e.g.
by any characteristic(s)) may be supported, for example for
any subset of available in-process WDR data. Block 5928
may access any in-process WDR field, subfield(s), or asso
ciated in-process WDR data to make use of certain appli- 20

cation interfaces accessible to the MS of FIG. 59 processing
for read, modify, add, or otherwise alter certain related data,
or cause the processing of certain related executable code,
for example to manage appropriate in-process WDR pro
cessing. If block 5926 determines the entry is not a WDR 25

privilege, then processing continues to block 5930. WDR
privileges can be overall privileges, subordinate privileges,
and/or privileges for any granulation of in-process related
WDR data, perhaps using any characteristic(s) available
from a derivative of the BNF granmiar of FIGS. 30A 30

through 30E.
If block 5930 determines the entry is a Situational Loca

tion privilege, then block 5932 will enable LBX features and
functionality appropriately in context for the list parameter,
and processing continues back to block 5908. A Situational 35

Location privilege may overlap with a WDR privilege since
WDR fields are consulted for automated processing, how
ever it may be useful to distinguish. Any granulation of
permission data 10 (e.g. by any characteristic(s)) may be
supported, for example for any subset of available in-process 40

relevant WDR data. The term "situational location" is useful

244
modify, add, or otherwise alter certain related data, or cause
the processing of certain related executable code, for
example to manage appropriate in-process WDR processing
at the MS. If block 5934 determines the entry is not a
monitoring privilege, then processing continues to block
5938. Monitoring privileges can be overall privileges, sub-
ordinate privileges, and/or privileges for any granulation of
MS data (MS of FIG. 59 processing or of the in-process
WDR), perhaps using any characteristic(s) available from a
derivative of the BNF grammar of FIGS. 30A through 30E.

If block 5938 determines the entry is a LBX privilege,
then block 5940 will enable LBX features and functionality
appropriately in context for the list parameter, and process
ing continues back to block 5908. A LBX privilege governs
LBX processing behavior at the MS of FIG. 59 processing.
Other privileges so far discussed for FIG. 59 processing may
overlap with an LBX privilege. Any granulation of permis
sion data 10 (e.g. by any characteristic(s)) may be supported,
for example for unique LBX processing at the MS of FIG.
59 processing. Block 5940 may access any MS data, or
associated in-process WDR data for appropriate LBX pro-
cessing involving read, modify, add, or otherwise alter
certain related data, or cause the processing of certain related
executable code, for example to perform LBX processing at
the MS. If block 5938 determines the entry is not a LBX
privilege, then processing continues to block 5942. LBX
privileges can be overall privileges, subordinate privileges,
and/or privileges for any granulation of MS data (MS of
FIG. 59 processing or of the in-process WDR), perhaps
using any characteristic(s) available from a derivative of the
BNF grammar of FIGS. 30A through 30E.

If block 5942 determines the entry is a LBS privilege,
then block 5944 will enable LBS features and functionality
appropriately in context for the list parameter, and process
ing continues back to block 5908. A LBS privilege governs
LBS processing behavior at the MS of FIG. 59 processing.
Other privileges so far discussed for FIG. 59 processing may
overlap with an LBS privilege. Any granulation of permis
sion data 10 (e.g. by any characteristic(s)) may be supported,
for example for unique LBS processing at the MS of FIG. 59
processing. Block 5944 may access any MS data, or asso-
ciated in-process WDR data for appropriate LBS processing
involving read, modify, add, or otherwise alter certain
related data, or cause the processing of certain related

45 executable code, for example to perform LBS processing at
the MS, and perhaps cause processing at a connected LBS.
If block 5942 determines the entry is not a LBS privilege,
then processing continues to block 5946. LBS privileges can
be overall privileges, subordinate privileges, and/or privi-

for describing location based conditions (e.g. as disclosed in
Service delivered location dependent content of U.S. Pat.
Nos. 6,456,234; 6,731,238; 7,187,997 (Johnson)). Block
5932 may access any in-process WDR field, subfield(s), or
associated in-process WDR data for appropriate LBX pro
cessing involving read, modify, add, or otherwise alter
certain related data, or cause the processing of certain related
executable code, for example to manage appropriate in
process WDR situational location processing. If block 5930
determines the entry is not a situational location privilege,
then processing continues to block 5934. Situational loca
tion privileges can be overall privileges, subordinate privi
leges, and/or privileges for any granulation of in-process
related WDR data, perhaps using any characteristic(s) avail- 55

able from a derivative of the BNF granmiar of FIGS. 30A
through 30E.

50 leges for any granulation of MS data (MS of FIG. 59
processing or of the in-process WDR), perhaps using any
characteristic(s) available from a derivative of the BNF
grammar of FIGS. 30A through 30E, and perhaps using any
data or interface of a connected LBS.

If block 5934 determines the entry is a monitoring privi
lege, then block 5936 will enable LBX features and func
tionality appropriately in context for the list parameter, and 60

processing continues back to block 5908. A monitoring
privilege governs monitoring any data of a MS for any
reason (e.g. in charter conditions). Any granulation of per
mission data 10 (e.g. by any characteristic(s)) may be
supported, for example for any subset of MS data. Block 65

5936 may access any MS data, or associated in-process
WDR data for appropriate LBX processing involving read,

Block 5946 is provided for processing completeness for
handling appropriately (e.g. enable or disable MS process
ing) a privilege that some reader may not appreciate falling
into one of the privilege classes of FIG. 59 processing. Block
5946 then continues to block 5908. Referring back to block
5910, if it is determined there are no more unprocessed
entries remaining in the list parameter (i.e. 5810 of collec-
tion 5802 when FIG. 59 invoked from block 5734), then the
caller/invoker is returned to at block 5948.

FIG. 59 may not require blocks 5904 and 5906 since a
block 4466 embodiment may have already enforced what
has been received and integrated at block 4470 to a proper
set of collections 5802 and 5852. In any case, the procedure

Petitioners' Ex. 1001, Page 449 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
245

of FIG. 59 is made complete having blocks 5904 and 5906
for various caller/invoker embodiments. Similarly, FIG. 59
also may not require blocks 5912 through 5916 since a block
4466 embodiment may have already enforced what has been
received and integrated at block 4470 to a proper set of 5

collections 5802 and 5852. The procedure of FIG. 59 is
made complete by having blocks 5912 through 5916 for
various caller/invoker embodiments.

In one embodiment, FIG. 59 uses the absence of certain
privileges to enable or disable LBX features and function- 10

ality wherein block 5948-A determines which privileges
were not provided, block 5948-B enables/disables LBX
features and functionality in accordance with the lack of
privileges, and block 5948-C returns to the caller/invoker.

15
With reference back to FIG. 57, block 5734 continues to

block 5736. Some embodiments of FIG. 57 blocks 5710,
5714, 5718, 5742, 5750, 5756, etc may perform sorting for
a best processing order (e.g. as provided to procedures of
FIGS. 59 and 60). Block 5736 performs actions in accor- 20

dance with privileges of the PRIVS2ME list by invoking the
do action procedure of FIG. 60 with the PRIVS2ME list, and
the in-process WDR as parameters (preferably passed by
pointer/reference).

With reference now to FIG. 60, depicted is a flowchart for 25

describing a preferred embodiment of a procedure for per
forming LBX actions in accordance with a certain type of
permissions. Blocks 6012, 6016, 6020, 6024, 6028, 6032,
6036, and 6038 perform actions for semantic privileges.
Processing of block 5736 starts at block 6002 and continues 30

to block 6004 where the permission type parameter passed
(i.e. PRIVS2ME (5810) when invoked from block 5736) is
determined, and the in-process WDR may be accessed. The
list parameter passed provides not only the appropriate list
to FIG. 60 processing, but also which list configuration 35

(5810, 5820, 5830 or 5840) has been passed for proper
processing by FIG. 60. There are potentially thousands of
specific privileges that FIG. 60 can handle. Therefore, FIG.
60 processing is shown to generically handle different
classes (categories) of privileges, namely privilege classes 40

of: data send, impersonation, WDR processing, situational
location, monitoring, LBX, LBS, and any others as handled
by block 6038. Privileges disclosed throughout the present
disclosure fall into one of these classes handled by FIG. 60.

Block 6004 continues to block 6006. Block 6006 gets the 45

next individual privilege entry (or the first entry upon first
encounter of block 6006 for an invocation of FIG. 60) from
the list parameter and continues to block 6008. Blocks 6006
through 6038 iterate all individual privileges associated with
the list parameter of permissions 10 provided to block 6002. 50

If block 6008 determines there was an unprocessed privilege
entry remaining in the list parameter (i.e. 5810 of collection
5802 when FIG. 60 invoked from block 5736), then the entry
gets processed starting with block 6010.

246
If block 6014 determines the entry is an impersonation

privilege, then block 6016 will perform any LBX actions in
context for the list parameter (if any applicable), and pro
cessing continues back to block 6006. Block 6016 may
access security, or certain application interfaces accessible
to the MS of FIG. 60 processing for read, modify, add, or
otherwise alter certain related data, or cause the processing
of certain related executable code, for example to manage
associated identity impersonation at the MS. If block 6014
determines the entry is not an impersonation privilege, then
processing continues to block 6018.

If block 6018 determines the entry is a WDR privilege,
then block 6020 will perform any LBX actions in context for
the list parameter (if any applicable), and processing con
tinues back to block 6006. Block 6020 may access any
in-process WDR field, subfield(s), or associated in-process
WDR data to make use of certain application interfaces
accessible to the MS of FIG. 60 processing for read, modify,
add, or otherwise alter certain related data, or cause the
processing of certain related executable code, for example to
manage appropriate in-process WDR processing. If block
6020 determines the entry is not a WDR privilege, then
processing continues to block 6022.

If block 6022 determines the entry is a Situational Loca
tion privilege, then block 6024 will perform any LBX
actions in context for the list parameter (if any applicable),
and processing continues back to block 6006. Block 6024
may access any in-process WDR field, subfield(s), or asso
ciated in-process WDR data for appropriate LBX processing
involving read, modify, add, or otherwise alter certain
related data, or cause the processing of certain related
executable code, for example to manage appropriate in
process WDR situational location processing. If block 6022
determines the entry is not a situational location privilege,
then processing continues to block 6026

If block 6026 determines the entry is a monitoring privi
lege, then block 6028 will perform any LBX actions in
context for the list parameter (if any applicable), and pro
cessing continues back to block 6006. Block 6028 may
access any MS data, or associated in-process WDR data for
appropriate LBX processing involving read, modify, add, or
otherwise alter certain related data, or cause the processing
of certain related executable code, for example to manage
appropriate in-process WDR processing at the MS. If block
6026 determines the entry is not a monitoring privilege, then
processing continues to block 6030.

If block 6030 determines the entry is a LBX privilege,
then block 6032 will perform any LBX actions in context for
the list parameter (if any applicable), and processing con
tinues back to block 6006. Block 6032 may access any MS
data, or associated in-process WDR data for appropriate
LBX processing involving read, modify, add, or otherwise
alter certain related data, or cause the processing of certain
related executable code, for example to perform LBX pro
cessing at the MS. If block 6030 determines the entry is not
a LBX privilege, then processing continues to block 6034.

If block 6034 determines the entry is a LBS privilege,
then block 6036 will perform any LBS actions in context for
the list parameter, and processing continues back to block

Ifblock 6010 determines the entry is a data send privilege, 55

then block 6012 will perform any LBX actions in context for
the list parameter (if any applicable), and processing con
tinues back to block 6006. A data send privilege may be one
that is used at block 4466 and enforced at block 4470 for
exactly what data can or cannot be received, or alternatively,
block 6012 can perform actions for communicating data
between MSs, or affecting data at MSs, for an appropriate
local image of permissions 10 and/or charters 12. Any
granulation of permission data 10 or charter data 12 (e.g. by
any characteristic(s)) may be supported. If block 6010
determines the list entry is not a data send privilege, pro
cessing continues to block 6014.

60 6006. Block 6036 may access any MS data, or associated
in-process WDR data for appropriate LBS processing
involving read, modify, add, or otherwise alter certain
related data, or cause the processing of certain related
executable code, for example to perform LBS processing at

65 the MS, and perhaps cause processing at a connected LBS.
If block 6034 determines the entry is not a LBS privilege,
then processing continues to block 6038.

Petitioners' Ex. 1001, Page 450 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
247 248

Block 6038 is provided for processing completeness for
handling appropriately (e.g. performing any LBX actions in
context for the list parameter (if any applicable) a privilege
that some reader may not appreciate falling into one of the
privilege classes of FIG. 60 processing. Block 6038 then 5

continues to block 6006. Referring back to block 6008, if it

Note that atomic command processing solves performance
issues by providing a tightly linked executable environment
while providing methods for customized processing. Many
applications may be invoked for the same privilege (i.e.
blocks 6012, 6016, 6020, 6024, 6028, 6032, 6036 and/or
6038 can certainly invoke multiple applications (i.e. cause

is determined there are no more unprocessed entries remain
ing in the list parameter (i.e. 5810 of collection 5802 when
FIG. 60 invoked from block 5736), then the caller/invoker is
returned to at block 6040.

In one embodiment, FIG. 60 uses the absence of certain
privileges to perform LBX actions in context for the list
parameter wherein block 6040-A determines which privi
leges were not provided, block 6040-B performs LBX
actions in context for the lack of privileges, and block
6040-C returns to the caller/invoker.

FIG. 60 processing causes application types of actions
according to privileges set. Such application types of actions
are preferably caused using APis, callback functions, or
other interfaces so as to isolate FIG. 60 LBX processing
from applications that are integrated with it. This prevents
application "know-how" from being part of the LBX pro
cessing (e.g. software) built for MSs. FIG. 60 preferably
invokes the "know-how" through an appropriate interface
(software or hardware). In one preferred embodiment, par
ticipating applications register themselves as processing
particular atomic privileges so that FIG. 60 invokes the
interface with the privilege, its setting, and perhaps useful
environmental data of interest. The application itself can
then optimally process the privilege for an appropriate
application action. Invocation of the application interface
may be thread oriented so as to not wait for a return, or may
be synchronous for waiting for a return (or return code). In
one preferred embodiment, the PRR 5300 is modified for
further containing a privilege join field 5300} for joining to
a new Application Privileges Reference (APR) table con
taining all privileges which are relevant for the application
described by the PRR 5300. This provides the guide of all
privileges which are applicable to an application, and which
are to cause invocation of the interface(s) of the application.

multiple actions) for a single privilege), depending on what
is found in the APR table. Of course, integrated application
action processing can be built with LBX software so that the

10 MS applications are tightly integrated with the LBX pro
cessing. Generally, FIG. 60 includes appropriate processing
of applications while FIG. 59 affects data which can be
accessed (e.g. polled) by applications.

With reference back to FIG. 57, block 5736 continues to
15 block 5738. Block 5738 performs actions in accordance with

privileges of the PRIVS2WDR list by invoking the do action
procedure of FIG. 60 with the PRIVS2WDR list, and the
in-process WDR as parameters (preferably passed by
pointer/reference), and then continues to block 5740. FIG.

20 60 processing is analogously as described above except in
context for the PRIVS2WDR (5820) list and for the in
process WDR of FIG. 57 processing relative the
PRIVS2WDR list. One embodiment may incorporate a
block 5737 (block 5736 continues to 5737 which continues

25 to block 5738) for invoking FIG. 59 processing with
PRIVS2WDR. Generally, privilege configurations 5820
involve actions for the benefit of the WDR originator.

Block 5740 processing merges the MYCHARTERS and
CHARTERS2ME lists into a CHARTERS2DO list, and

30 continues to block 5742 for eliminating inappropriate char
ters that may exist in the CHARTERS2DO list. Block 5742
additionally eliminates charters with a TimeSpec qualifier
invalid for the time of FIG. 57 processing (an alternate
embodiment can enforce TimeSpec interpretation at block

35 5744). If all actions, or any condition, term, expression, or
entire charter itself has a TimeSpec outside of the time of
FIG. 57 processing, then preferably the entire charter is
eliminated. Action(s) are removed from a charter which
remains in effect if action(s) for a charter have an invalid

40 TimeSpec for the time of FIG. 57 processing, in which case
any remaining actions with no TimeSpec or a valid
TimeSpec are preserved for the effective charter. If all
charter actions are invalid per TimeSpec, then the charter is
completely eliminated. Thereafter, block 5744 performs

A PRR 5300 is to be extended with new data in at least one
field 5300k which contains interface directions for how to
invoke the application with the privilege for processing (e.g.
through an appropriate interface (e.g. Dynamic Link Library
(DLL), callback function, script, etc)). See FIGS. 59 and 60.
Preferably, a single API or invocation is used for all privi
leges to a particular application and the burden of condi
tional processing paths is put on the application in that one
interface. An alternate embodiment could allow multiple
interfaces to be plugged in: one for each of a plurality of 50

classes, or categories, of privileges so that the burden of
unique processing paths, depending on a privilege, is
reduced for one application. In any embodiment, it is
preferable to minimize linkage execution time between LBX
processing and an application which is plugged in. Linkage 55

time can be reduced by:

45 charter actions in accordance with conditions of charters of
the CHARTERS2DO list (see FIG. 61), and processing then
terminates at block 5746.

Block 5742 can eliminate charters which are irrelevant for
processing, for example depending upon the type of in
process WDR. For a maintained WDR, inappropriate char
ters may be those which do not have a maintained condition
specification (i.e. _fldname). For an inbound WDR, inap
propriate charters may be those which do not have an
in-bound condition specification (i.e. _I_fldname). For an
outbound WDR, inappropriate charters may be those which
do not have an out-bound condition specification

1) Performing appropriate and directed executable link
age as indicated by the PRR at initialization time of
block 1240;

2) Performing loading into executable memory of needed 60

dynamically linked executables (e.g. DLL) as indicated
by the PRR at initialization time of block 1240 wherein
the PRR provides link library information for resolving
linkage; and/or

3) Validating presence of, or performing loading of, the 65

executables/script/etc in an appropriate manner at an
appropriate initialization time.

(i.e. _O_fldname). The context of WITS processing
(mWITS, iWITS, oWITS) may be used at block 5742 for
eliminating inappropriate charters.

With reference back to block 5732, if it is determined that
this MS should not process (see) the WDR in-process,
processing continues to block 5746 where FIG. 57 process
ing is terminated, and the processing host of FIG. 57 (i.e.
FIGS. 2F, 20, 21, 25) appropriately ignores the WDR.

With reference back to block 5706, if it is determined that
the WDR identity matches the MS of FIG. 57 processing,
processing continues to block 57 48. Block 5706 continues to

Petitioners' Ex. 1001, Page 451 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
249

block 5748 when a) the in-process WDR is from this MS and
is being maintained at the MS of FIG. 57 processing (i.e.
FIG. 57=mWITS); orb) the in-process WDR is outbound
from this MS (i.e. FIG. 57=oWITS). Block 5748 forms a
PRIVS2OTHERS list of configurations 5830 and continues 5

to block 5750 for eliminating duplicates that may be found.
Block 5748 may collapse grant hierarchies to form the list.
Duplicates may occur for privileges which include the
duplicated privileges (i.e. subordinate privileges) as
described above. Block 5750 additionally eliminates dupli- 10

cates that may exist for permission embodiments wherein a
privilege can enable or disable a feature. In a present
disclosure embodiment wherein a privilege can enable, and
a privilege can disable the same feature or functionality,
there is preferably a tie breaker of disabling the feature (i.e. 15

disabling wins). In an alternate embodiment, enabling may
break a tie of ambiguity. Block 5750 further eliminates
privileges that have a MSRelevance qualifier indicating the
MS of FIG. 57 processing is not supported for the particular
privilege, and also eliminates privileges with a TimeSpec 20

qualifier invalid for the time of FIG. 57 processing (an
alternate embodiment can enforce TimeSpec interpretation
at block 5758 (i.e. in FIG. 60 processing)). Thereafter, block
5752 forms a MYCHARTERS list of configurations 5870
and preferably eliminates variables by instantiating/elabo- 25

rating at points where they are referenced. Then, block 5754
forms a CHARTERS2ME list of configurations 5890 and
preferably eliminates variables by instantiating/elaborating
at points where they are referenced. Then, block 5756
eliminates those charters which are not privileged. In some 30

embodiments, block 5756 is not necessary (5754 continues
to 5758) because un-privileged charters will not be permit
ted to be present at the MS of FIG. 57 processing. Never
theless, block 5756 removes from the CHARTERS2ME list
all charters which do not have a privilege granted by the MS 35

(the MS user) of FIG. 57 processing to the creator of the
charter, for permitting the charter to be enabled (as described
above for block 5718). In any embodiments, block 5756
ensures no charters from other users are considered active
unless appropriately privileged. Thereafter, block 5758 per- 40

forms actions in accordance with privileges of the
PRIVS2OTHERS list by invoking the do action procedure

250
bullet 2, 4986 bullet 3, 4984 bullet 2, 4924, 4946); and c)
this MS (or this MS user) privileges to others (5830 con
firmed by 4944 bullet 4, 4924 bullet 4, 4946 bullet 4, 4926
bullet 4). An alternate embodiment additionally uses d)
others' privileges to this MS (or this MS user) (5840), for
example to determine how nearby they are at outbound
WDR time or at the time of maintaining the MS's own
whereabouts. This alternate embodiment would cause FIG.
57 to include: a new block 5760 for forming a PRIVS2ME
list of privileges 5840; a new block 5762 for eliminating
duplicates, MSRelevance rejects and invalid TimeSpec
entries; a new block 5764 for enabling features an function
ality in accordance with the PRIVS2ME list of block 5760
by invoking the enable features and functionality procedure
of FIG. 59 with PRIVS2ME as a parameter (FIG. 59
processing analogous to as described above except for
PRIVS2ME); and a new block 5766 for performing actions
in accordance with PRIVS2ME by invoking the do action
procedure of FIG. 60 with PRIVS2ME as a parameter (FIG.
60 processing analogous to as described above except for
PRIVS2ME). Such an embodiment would cause block 5758
to continue to block 5760 which continues to block 5762
which continues to block 5764 which continues to block
5766 which then continues to block 5740.

When considering the terminology "incoming" as used
for FIGS. 49A and 49B, a WDR in-process at this MS (the
MS of FIG. 57 processing) which was originated by a
remote MS with an identity different than this MS uses: e)
this MS charters per other's privileges to this MS (or this MS
user) (5870 confirmed by 4962 bullet 2 part 2, 4988 bullet
2 part 2, 4926, 4944, 4924 bullet 2); f) others' charters per
this MS (or this MS user) privileges to them (5860 con
firmed by 4966 bullet 2, 4964 bullet 3, 4986 bullet 2, 4984
bullet 3, 4924, 4946); g) this MS (or this MS user) privileges
to others (5820 confirmed by 4944 bullet 3, 4924 bullet 3,
4946 bullet 3, 4926 bullet 3); and h) others' privileges to this
MS (or this MS user) (5810 confirmed by 4926 bullet 2,
4944 bullet 2, 4946 bullet 2, 4924 bullet 2). An alternate
embodiment additionally uses i) others' charters per this MS
(or this MS user) privileges to them (5890); and/or j) this MS
(or this MS user) privileges to others (5830); and/or k)
others' privileges to this MS (or this MS user) (5840). This
alternate embodiment would cause FIG. 57 to alter block
5716 to further include charters 5890, alter block 5708 to
further include privileges 5840, include a new block 5722
for forming a PRIVS2OTHERS list of privileges 5830, new
block 5724 for eliminating duplicates, new block 5726 for
enabling features an functionality in accordance with the
PRIVS2OTHERS list of block 5722, new block 5728 for

of FIG. 60 with the PRIVS2ME list, and the in-process
WDR as parameters (preferably passed by pointer/refer
ence), and then continues to block 5740 which has already 45

been described. FIG. 60 processing is the same as described
above except in context for the PRIVS2OTHERS (5830)
and for the in-process WDR of FIG. 57 processing relative
the PRIVS2OTHERS list. Of course the context of blocks
5748 through 5758 are processed for in-process WDRs
which are: a) maintained to the MS of FIG. 57 for the
whereabouts of the MS of FIG. 57 processing; or b) out
bound from the MS of FIG. 57 processing (e.g. an outbound
WDR describing whereabouts of the MS of FIG. 57 pro
cessing). One embodiment may incorporate a block 5757 55

(block 5756 continues to 5757 which continues to block
5758) for invoking FIG. 59 processing with
PRIVS2OTHERS. Generally, privilege configurations 5830
involve actions for the benefit of others (i.e. other than this
MS).

50 enabling features an functionality in accordance with the
modified PRIVS2ME list of block 5708, and new block
5730 for performing actions in accordance with the modified
PRIVS2ME (i.e. block 5720 continues to block 5722 which
continues to block 5724 which continues to block 5726
which continues to block 5728 which continues to block
5730 which then continues to block 5732). Also, blocks
5742 and 5744 would appropriately handle new charters of
altered block 5716. Such an embodiment would cause new
blocks 5726, 5728 and 5730 to invoke the applicable pro-

60 cedure (FIG. 59 or FIG. 60) with analogous processing as
described above except in context for the parameter passed. When considering the terminology "incoming" as used

for FIGS. 49A and 49B, a WDR in-process at this MS (the
MS of FIG. 57 processing) which was originated by this MS
with an identity for this MS uses: a) this MS charters (5870
confirmed by 4962 bullet 2 part 1, 4988 bullet 2 part 1, 4922, 65

4948); b) others' charters per this MS (or this MS user)
privileges to them (5890 confirmed by 4966 bullet 3, 4964

In some FIG. 57 embodiments, blocks 5708 and/or 5716
and/or 5754 and/or relevant alternate embodiment blocks
discussed are remotely accessed by communicating with the
MS having the identity determined at block 5704 for the
WDR in-process. The preferred embodiment is as disclosed
for maintaining data local to the MS for processing there. In

Petitioners' Ex. 1001, Page 452 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
251

other embodiments, there are separate flowcharts (e.g. FIGS.
57A, 57B and 57C) for each variety of handling in-process
WDRs (e.g. mWITS, iWITS, oWITS processing).

Various FIG. 57 embodiments' processing will invoke the
procedures of FIGS. 59 and 60 with appropriate parameters 5

(i.e. lists for 5810 and/or 5820 and/or 5830 and/or 5840) so
that any category subset of the permission data collection
5802 (i.e. 5810 and/or 5820 and/or 5830 and/or 5840) is
used to enable appropriate LBX features and functionality
according to the WDR causing execution of FIG. 57 pro- 10

cessing. For example, privileges between the MS of FIG. 57
processing and an identity other than the WDR causing FIG.

252
CHARTERS2DO list from FIG. 57 is processed by FIG. 61.
FIG. 61 (and/or FIG. 57 (e.g. blocks 5718/5756)) is respon
sible for processing grammar specification privileges. Block
5744 processing begins at block 6102 and continues to block
6104. Block 6104 gets the next charter (or first charter on
first encounter to block 6104 from block 6102) from the
CHARTERS2DO list and continues to block 6106 to check
if all charters have already been processed from the list.
Block 6104 begins an iterative loop (blocks 6104 through
6162) for processing all charters (if any) from the
CHARTERS2DO list.

If block 6106 determines there is a charter to process, then
processing continues to block 6108 for instantiating any
variables that may be referenced in the charter, and then

57 processing may be used (e.g. relevant MS third party
notification, features, functionality, or processing as defined
by related privileges). 15 continues to block 6110. Charter parts are scanned for

referenced variables and they are instantiated so that the
charter is intact without a variable reference. The charter
internalized form may be modified to accommodate instan-

Various FIG. 57 embodiments' processing will invoke
charter processing with appropriate parameters (i.e. lists for
5860 and/or 5870 and/or 5880 and/or 5890) so that any
category subset of the charter data collection 5852 (i.e. 5860
and/or 5870 and/or 5880 and/or 5890) is used to perform 20

LBX actions according to the WDR causing execution of
FIG. 57 processing. For example, charters between the MS

tiation(s). FIG. 57 may have already instantiated variables
for charter elimination processing. Block 6108 is typically
not required since the variables were likely already instan-
tiated when internalized to a preferred embodiment
CHARTERS2DO processable form, and also processed by
previous blocks of FIG. 57 processing. Nevertheless, block

of FIG. 57 processing and an identity other than the WDR
causing FIG. 57 processing may be used (e.g. relevant MS
third party charters as defined by related privileges).

FIG. 57 determines which privileges and charters are
relevant to the WDR in process, regardless of where the
WDR originated. The WDR identity checked at block 5706
can take on various embodiments so that the BNF grammar

25 6108 is present to cover other embodiments, and to handle
any instantiations which were not already necessary. In some
embodiments, block 6108 is not required since variable
instantiations can occur as needed when processing the

of FIGS. 30A through 30E are fully exploited. Preferably, 30

the identities associated with "this MS" and the WDR in

individual charter parts during subsequent blocks of FIG. 61
processing. Block 6106 would continue to block 6110 when
a block 6108 is not required.

Block 6110 begins an iterative loop (blocks 6110 through
6118) for processing all special terms from the current
charter expression. Block 6110 gets the next (or first) special

35 term (if any) from the charter expression and continues to
block 6112. A special term is a BNF grammar WDRTerm,
AppTerm, map term, or atomic term. If block 6112 deter
mines a special term was found for processing from the
expression, then block 6114 accesses privileges to ensure the

process are usable as is, however while there are specific
embodiments implementing the different identifier varieties,
there may also be a translation or lookup performed at block
5704 to ensure a proper compare at block 5706. The
identities of "this MS" and the WDR identity (e.g. field
1100a) may be translated prior to performing a compare. For
example, a user identifier maintained to the user configura
tions (permissions/charters) may be "looked up" using the
MS identifiers involved ("this MS" and WDR MS ID) in
order to perform a proper compare at block 5706. Some
embodiments may maintain a separate identifier mapping
table local to the MS, accessed from a remote MS when
needed, accessed from a connected service, or accessed as is
appropriate to resolve the source identifiers with the iden
tifiers for comparing at block 5706. In another embodiment
(preferred), the appfld.source section of fields 1100k con
tains the reasonable MS identities and is used contextually
for the correct identifier to do the compare (e.g. when
specifying appfld.source.id, the best fit appfld.source.id.X is 50

determined and used). There may be other appfld.sour
ce.id.X values for a MS which may be used in comparing
WDR identity values. Thus, permissions and/or charters can
grant from one identity to another wherein identities of the
configuration are associated directly (i.e. useable as is) or 55

indirectly (i.e. mapped) to the actual identities of the user(s),
the MS(s), the group(s), etc involved in the configuration.

40 special term is privileged for use. Appropriate permissions
5802 are accessed in this applicable context of FIG. 57
processing. Block 6114 then continues to block 6116. Blocks
6114 and 6116 may not be required since unprivileged
charters were already eliminated in previous blocks of FIG.

45 57 processing (e.g. see blocks 5718 and 5756). Nevertheless,
blocks 6114 and 6116 are shown to cover other embodi-

Preferably, statistics are maintained by WITS processing
for each reasonable data worthy of tracking from standpoints
of user reporting, automated performance fine tuning (e.g. 60

thread throttling), automated adjusted processing, and moni
toring of overall system processing. In fact, every processing
block of FIG. 57 can have a plurality of statistics to be
maintained.

FIG. 61 depicts a flowchart for describing a preferred 65

embodiment of performing processing in accordance with
configured charters, as described by block 5744. The

ments, and to ensure unprivileged charters are treated inef
fective. Depending on an embodiment, blocks 5718 and
5756 may only perform obvious eliminations. In other
embodiments, there may be no blocks 5718 or 5756 so that
charter part processing occurs only in one place (i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6114 and 6116 are not required since all charter
eliminations based on privileges already occurred at the
previous blocks of FIG. 57 processing. Block 6112 can
continue to block 6118 when blocks 6114 and 6116 are not
required.

If block 6116 determines the special term is privileged for
use (e.g. explicit privilege, or lack of a privilege denying
use, depending on privilege deployment embodiments), then
block 6118 appropriately accesses the special term data
source and replaces the expression referenced special term
with the corresponding value. Block 6118 accesses special
term data dynamically so that the terms reflect values at the
time of block 6118 processing. Block 6118 continues back
to block 6110. A WDRTerm is accessed from the in-process

Petitioners' Ex. 1001, Page 453 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
253

WDR to FIG. 57 processing. An App Term is an anticipated
registered application variable accessed by a well known
name, typically with semaphore control since an asynchro
nous application thread is writing to the variable. A map
term is an indicated name (e.g. ?refname) which references 5

a map point or map region found in records 9080. An atomic
term will cause access to WDR data at queue 22 or LBX
history 30, application status for applications in use at the
MS of FIG. 57 processing, system date/time, the MS ID of
the MS of FIG. 57 processing, or other appropriate data 10

source.

254
checks if the action is privileged for being executed at the
Host specified. The appropriate permissions 5802 are
accessed at block 6134 in this applicable context of FIG. 57
processing. If block 6136 determines the action is privileged
for rumiing at the Host, then block 6138 sets the REMOTE
variable to the Host specified and processing continues to
block 6140. If block 6136 determines the action is not
privileged for running at the Host, then processing continues
to block 6120 for error processing already described above.
If block 6132 determines there was no Host specified for the
action, processing continues directly to block 6140. Blocks
6134 and 6136 may not be required since unprivileged
charters were already eliminated in previous blocks of FIG.
57 processing (e.g. see blocks 5718 and 5756). Nevertheless,

Referring back to block 6116, if it is determined that the
special term of the charter expression is not privileged, then
block 6120 logs an appropriate error (e.g. to LBX history 30)
and processing continues back to block 6104 for the next
charter. An alternate block 6120 may alert the MS user, and

15 blocks 6134 and 6136 are shown to cover other embodi-

in some cases require the user to acknowledge the error
before continuing back to block 6104. So, the preferred
embodiment of charter processing eliminates a charter from
being processed if any single part of the charter expression 20

is not privileged.
Referring back to block 6112, if it is determined there are

no special terms in the expression remaining to process (or
there were none in the expression), then block 6122 evalu
ates the expression to a Boolean True or False result using 25

well known processing for a stack based parser for expres
sion evaluation (e.g. See well known compiler/interpreter
development techniques (e.g. "Algorithms+Data
Structures=Programs" by Nicklaus Wirth published by Pren
tice-Hall, Inc. 1976)). Block 6122 implements atomic opera- 30

tors using the WDR queue 22, most recent WDR for this
MS, LBX history 30, or other suitable MS data. Any
Invocation is also invoked for resulting to a True or False
wherein a default is enforced upon no return code, or no
suitable return code, returned. Invocation parameters that 35

had special terms would have been already been updated by
block 6118 to eliminate special terms prior to invocation. In
an alternate embodiment, stack processing of block 6122
evaluates all special terms when required so that expressions
may result in being evaluated to a special term which 40

subsequently gets resolved. In this alternate embodiment,
block 6122 would incorporate privilege validation of blocks
6114 and 6116 as well as special term elaboration/replace
ment of blocks 6110, 6112 and 6118; and block 6122 can
recognize a special indicator, or syntax, for specifying to 45

reduce an expression to a type of special term. Thereafter, if
block 6124 determines the expression evaluated to False,
then processing continues back to block 6104 for the next
charter (i.e. expression=False implies to prevent (not cause)
the action(s) of the charter). If block 6124 determines the 50

expression evaluated to True, then processing continues to
block 6126.

ments, and to ensure unprivileged charters are treated inef
fective. Depending on an embodiment, blocks 5718 and
5756 may only perform obvious eliminations. In other
embodiments, there may be no blocks 5718 or 5756 so that
charter part processing occurs only in one place (i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6134 and 6136 are not required since all charter
eliminations based on privileges already occurred at the
previous blocks of FIG. 57 processing. Block 6132 can
continue to block 6138 when blocks 6134 and 6136 are not
required and a Host was specified with the action. In some
embodiments, block 6136 may cause logging of an error and
a return to block 6126 so other charter actions are not
ignored for an unprivileged host.

Block 6140 accesses appropriate permissions 5802 in this
applicable context of FIG. 57 processing for ensuring the
command and operand are appropriately privileged. There
after, if block 6142 determines that the action's command
and operand are not privileged, then processing continues to
block 6120 for error processing already described. If block
6142 determines the action's command and operand are to
be effective, then processing continues to block 6144.
Blocks 6140 and 6142 may not be required since unprivi
leged charters were already eliminated in previous blocks of
FIG. 57 processing (e.g. see blocks 5718 and 5756). Nev-
ertheless, blocks 6140 and 6142 are shown to cover other
embodiments, and to ensure unprivileged charters are
treated ineffective. Depending on an embodiment, blocks
5718 and 5756 may only perform obvious eliminations. In
other embodiments, there may be no blocks 5718 or 5756 so
that charter part processing occurs only in one place (i.e.
FIG. 61) to achieve better MS performance by preventing
more than one scan over charter data. In another embodi-
ment, blocks 6140 and 6142 are not required since all charter
eliminations based on privileges already occurred at the
previous blocks of FIG. 57 processing. Block 6138, and the
No condition of block 6132, would continue to block 6144
when blocks 6140 and 6142 are not required. In some

Block 6126 begins an iterative loop (blocks 6126 through
6162) for processing all actions from the current charter.
Block 6126 gets the next (or first) action (if any) from the
charter and continues to block 6128. There should be at least
one action in a charter provided to FIG. 61 processing since
the preferred embodiment of FIG. 57 processing will have
eliminated any placeholder charters without an action speci
fied (e.g. charters with no actions preferably eliminated at
blocks 5740 as part of the merge process, at block 5742, or
as part of previous FIG. 57 processing to form privileged
charter lists). If block 6128 determines an unprocessed
action was found for processing, then block 6130 initializes
a REMOTE variable to No. Thereafter, if it is determined at
block 6132 that the action has a BNF grammar Host speci
fication, then block 6134 accesses privileges and block 6136

55 embodiments, block 6142 may cause logging of an error and
a return to block 6126 so other charter actions are not
ignored for an unprivileged action.

Block 6144 begins an iterative loop (blocks 6144 through
6152) for processing all parameter special terms of the

60 current charter. Block 6144 gets the next (or first) parameter
special term (if any) and continues to block 6146. A special
term is a BNF granimar WDRTerm, App Term, map term, or
atomic term (as described above). If block 6146 determines
a special term was found for processing from the parameter

65 list, then block 6148 accesses privileges to ensure the special
term is privileged for use. The appropriate permissions 5802
are accessed in this applicable context of FIG. 57 process-

Petitioners' Ex. 1001, Page 454 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
255 256

distinguishable from any Host specification for having the
meaning of "No Host Specification"), then processing con
tinues to block 6158 where the ExecuteAction procedure of
FIG. 62 is invoked with the command, operand and param-

ing. Block 6148 then continues to block 6150. Blocks 6148
and 6150 may not be required since unprivileged charters
were already eliminated in previous blocks of FIG. 57
processing (e.g. see blocks 5718 and 5756). Nevertheless,
blocks 6148 and 6150 are shown to cover other embodi
ments, and to ensure unprivileged charters are treated inef
fective. Depending on an embodiment, blocks 5718 and
5756 may only perform obvious eliminations. In other
embodiments, there may be no blocks 5718 or 5756 so that
charter part processing occurs only in one place (i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6148 and 6150 are not required since all charter
eliminations based on privileges already occurred at the
previous blocks of FIG. 57 processing. Block 6146 can
continue to block 6152 when blocks 6148 and 6150 are not
required.

5 eters of the action in process. Upon return from the proce
dure of FIG. 62, processing continues back to block 6126 for
any remaining charter actions. If block 6156 determines the
REMOTE variable is set to a Host for running the action,
then processing continues to block 6160 for preparing send

10 data procedure parameters for performing a remote action
(of the command, operand and parameters), and then invok
ing at block 6162 the send data procedure of FIG. 75A for
performing the action at the remote MS (also see FIG. 75B).
Processing then continues back to block 6126. An alternate

15 embodiment will loop on multiple BNF granimar Host
specifications for multiple invocations of the send data
procedure (i.e. when multiple Host specifications are sup
ported). Another embodiment to FIG. 61 processing permits If block 6150 determines the special term is privileged for

use (e.g. explicit privilege, or lack of a privilege denying
use, depending on privilege deployment embodiments), then 20

block 6152 appropriately accesses the special term data
source and replaces the parameter referenced special term
with the corresponding value (e.g. map term gets replaced
with associated PointSet). Block 6152 accesses special term
data dynamically so that the terms reflect values at the time 25

of FIG. 61 block 6152 processing. Block 6152 continues
back to block 6144. A WDRTerm, AppTerm, map term, and
atomic term are accessed in a manner analogous to accessing
them at block 6118.

multiple actions with a single Host specification.
Referring back to block 6128, if it is determined all

current charter actions are processed, then processing con
tinues to block 6104 for any next charter to process. Refer
ring back to block 6106, if it is determined all charters have
been processed, processing terminates at block 6164.

Depending on various embodiments, there may be obvi-
ous error handling in FIG. 61 charter parsing. Preferably, the
charters were reasonably validated prior to being configured
and/or previously processed/parsed (e.g. FIG. 57 process
ing). AppTerm specifications are to cause obvious error

30 handling processing for searching fields 5300g for deter
mining the matching PRR. If there is no match in any PRR,
the App Term specification is invalid. WDRTerm and atomic
term specifications are to cause obvious error handling

Referring back to block 6150, if it is determined that the
special term of the parameter list is not privileged, then
processing continues to block 6120 for error processing
already described. In some embodiments, block 6150 may
cause logging of an error and a return to block 6126 so other
charter actions are not ignored for an unprivileged param- 35

eter. Referring back to block 6146, if it is determined there
are no special terms in the parameter list remaining to
process (or there were none), then block 6154 evaluates each
and every parameter expression to a corresponding value
using well known processing for a stack based parser for
expression evaluation (e.g. See well known compiler/inter
preter development techniques (e.g. "Algorithms+Data
Structures=Programs" by Nicklaus Wirth published by Pren
tice-Hall, Inc. 1976)). Block 6154 implements the atomic
operators using the WDR queue 22, most recent WDR for
this MS, LBX history 30, or other suitable MS data. Any
Invocation is also invoked for resulting to Data or Value
wherein a default is enforced upon no returned data. Invo
cation parameters that had special terms would have been
updated at block 6152 to eliminate special terms prior to
invocation. Block 6154 ensures each parameter is in a ready

processing for being able to resolve the field reference.
TimeSpec and/or MSRelevance information may be used

in FIG. 61 so that charter part processing occurs only in one
place (i.e. FIG. 61 rather than FIG. 57) to achieve better MS
performance by preventing more than one scan over charter
data. Some embodiments of FIG. 61 may be the single place

40 where charters are eliminated based on privileges,
TimeSpecs, MSRelevance, or any other criteria discussed
with FIG. 57 for charter elimination to improve performance
(i.e. a single charter parse when needed). Third party MSs
(i.e. those that are not represented by the in-process WDR

45 and the MS of FIG. 57 processing) can be affected by charter
actions (e.g. via Host specification, privileged action, privi
leged feature, etc). Processing of special terms at blocks
6110 and/or 6144 can include concatenating of data, for
matting of data, or any other term of a reasonable expres-

50 sion. Blocks 6110 and/or 6144 may include stack processing
of blocks 6122 and/or 6154 for proper special term deter
mination (e.g. expressions which evaluate to a special term).
See discussions above (e.g. FIGS. 51A&B, Invocation,

to use form to be processed with the command and operand.
Each parameter results in embodiments of a data value, a
data value resulting from an expression, a data reference
(e.g. pointer), or other embodiments well known in the art of 55

passing parameters (arguments) to a function, procedure, or
script for processing. In an alternate embodiment, stack
processing of block 6154 evaluates all special terms when
required so that expressions may result in being evaluated to

Parameters, etc).
Preferably, statistics are maintained throughout FIG. 61

processing for how charters were processed, which charters
became effective, why they became effective, which com
mands were processed (e.g. invocation of FIG. 62), etc.

With reference now to FIG. 75A, depicted is a flowchart
a special term which subsequently gets resolved. In this
alternate embodiment, block 6154 would incorporate privi
lege validation of blocks 6148 and 6150 as well as special
term elaboration/replacement of blocks 6144, 6146 and
6152; and block 6154 can recognize a special indicator, or
syntax, for specifying to reduce an expression to a type of
special term. Thereafter, if block 6156 determines the
REMOTE variable is set to No (i.e. "No" equals a value

60 for describing a preferred embodiment of a procedure for
sending data to a remote MS, for example to perform a
remote action as invoked from block 6162. FIG. 75A is
preferably oflinkable PIP code 6. The purpose is for the MS
of FIG. 75A processing (e.g. a first, or sending, MS) to

65 transmit data to other MSs (e.g. at least a second, or
receiving, MS), for example an action (command, operand,
and any parameter(s)), or specific processing for a particular

Petitioners' Ex. 1001, Page 455 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
257

command (e.g. Send atomic command). Multiple channels
for sending, or broadcasting should be isolated to modular
send processing (feeding from a queue 24). In an alternative
embodiment having multiple transmission channels visible
to processing of FIG. 75A (e.g. block 6162), there can be 5

intelligence to drive each channel for broadcasting on mul
tiple channels, either by multiple send threads for FIG. 75A
processing, FIG. 75A loop processing on a channel list,
and/or passing channel information to send processing feed
ing from queue 24. If FIG. 75A does not transmit directly 10

over the channel(s) (i.e. relies on send processing feeding
from queue 24), an embodiment may provide means for
communicating the channel for broadcast/send processing
when interfacing to queue 24 (e.g. incorporate a channel

15
qualifier field with send packet inserted to queue 24).

In any case, see detailed explanations of FIGS. 13A
through 13C, as well as long range exemplifications shown
in FIGS. SOA through SOC, respectively. Processing begins
at block 7502, continues to block 7504 where the caller 20

parameter(s) passed to FIG. 75A processing (e.g. action for
remote execution, or command for remote execution) are
used for sending at least one data packet containing properly
formatted data for sending, and for being properly received
and interpreted. Block 7504 may reformat parameters into a 25

suitable data packet(s) format so the receiving MS can
process appropriately (see FIG. 75B). Depending on the
present disclosure embodiment, any reasonable supported
identity (ID/IDType) is a valid target (e.g. as derived from
a recipient or system parameter). Thereafter, block 7506 30

waits for an acknowledgement from the receiving MS if the
communication embodiment in use utilizes that methodol
ogy. In one embodiment, the send data packet is an unreli
able datagram(s) that will most likely be received by the
target MS. In another embodiment, the send data packet(s) 35

is reliably transported data which requires a final acknowl
edgement that it was received in good order. In any case,
block 7506 continues to block 7508.

258
Block 7506 waits for a synchronous acknowledgement if

applicable to the send of block 7504 until either receiving
one or timing out. Block 7506 will not wait if no ack/
response is anticipated, in which case block 7506 sets status
for block 7508 to "got it". If a broadcast was made, one (1)
acknowledgement may be all that is necessary for valida-
tion, or all anticipated targets can be accounted for before
deeming a successful ack. Thereafter, if block 7508 deter
mines an applicable ack/response was received (i.e. data
successfully sent/received), or none was anticipated (i.e.
assume got it), then processing continues to block 7510 for
potentially processing the response. Block 7510 will process
the response if it was anticipated for being received as
determined by data sent at block 7504. Thereafter, block
7512 performs logging for success (e.g. to LBX History 30).
If block 7508 determines an anticipated ack was not
received, then block 7512 logs the attempt (e.g. to LBX
history 30). An alternate embodiment to block 7514 will log
an error and may require a user action to continue processing
so a user is confirmed to have seen the error. Both blocks
7512 and 7514 continue to block 7516 where the caller
(invoker) is returned to for continued processing (e.g. back
to block 6162).

With reference now to FIG. 75B, depicted is a flowchart
for describing a preferred embodiment of processing for
receiving execution data from another MS, for example
action data for execution, or processing of a particular
atomic command for execution. FIG. 75B processing
describes a Receive Execution Data (RxED) process worker
thread, and is of PIP code 6. There may be many worker
threads for the RxED process, just as described for a 19xx
process. The receive execution data (RxED) process is to fit
identically into the framework of architecture 1900 as other
19xx processes, with specific similarity to process 1942 in
that there is data received from receive queue 26, the RxED
thread(s) stay blocked on the receive queue until data is
received, and a RxED worker thread sends data as described
(e.g. using send queue 24). Blocks 1220 through 1240,
blocks 1436 through 1456 (and applicable invocation of Block 7504 formats the data for sending in accordance

with the specified delivery method, along with necessary
packet information (e.g. source identity, wrapper data, etc),
and sends data appropriately. For a broadcast send, block
7504 broadcasts the information (using a send interface like
interface 1906) by inserting to queue 24 so that send
processing broadcasts data 1302 (e.g. on all available com
munications interface(s) 70), for example as far as radius
1306, and processing continues to block 7506. The broad
cast is for reception by data processing systems (e.g. MSs)

40 FIG. 18), block 1516, block 1536, blocks 2804 through
2818, FIG. 29A, FIG. 29B, and any other applicable archi
tecture 1900 process/thread framework processing is to
adapt for the new RxED process. For example, the RxED
process is initialized as part of the enumerated set at blocks

in the vicinity of FIGS. 13A through 13C, as further
explained by FIGS. SOA through SOC which includes poten
tially any distance. The targeted MS should recognize that
the data is meant for it and receives it. For a targeted send,
block 7504 formats the data intended for recognition by the
receiving target. In an embodiment wherein usual MS com
munications data 1302 of the MS is altered to contain CK
1304 for listening MSs in the vicinity, send processing
feeding from queue 24, caused by block 7504 processing,
will place information as CK 1304 embedded in usual data
1302 at the next opportune time of sending usual data 1302.
As the MS conducts its normal communications, transmitted
data 1302 contains new data CK 1304 to be ignored by
receiving MS other character 32 processing, but to be found
by listening MSs within the vicinity which anticipate pres
ence of CK 1304. Otherwise, when LN-Expanse deploy
ments have not introduced CK 1304 to usual data 1302
communicated on a receivable signal by MSs in the vicinity,
FIG. 75A sends/broadcasts new data 1302.

45 1226 (e.g. preferably next to last member of set) and 2806
(e.g. preferably second member of set) for similar architec
ture 1900 processing. Receive processing identifies targeted/
broadcasted data destined for the MS of FIG. 75B process
ing. An appropriate data format is used, for example using

50 X.409 encoding of FIGS. 33A through 33C for some subset
of data packet(s) received wherein RxED thread(s) purpose
is for the MS of FIG. 75B processing to respond to incoming
data. It is recommended that validity criteria set at block
1444 for RxED-Max be set as high as possible (e.g. 10)

55 relative performance considerations of architecture 1900, to
service multiple data receptions simultaneously. Multiple
channels for receiving data fed to queue 26 are preferably
isolated to modular receive processing.

In an alternative embodiment having multiple receiving
60 transmission channels visible to the RxED process, there can

be a RxED worker thread per channel to handle receiving on
multiple channels simultaneously. IfRxED thread(s) do not
receive directly from the channel, the preferred embodiment
of FIG. 75B would not need to convey channel information

65 to RxED thread(s) waiting on queue 24 anyway. Embodi
ments could allow specification/configuration of many
RxED thread(s) per channel.

Petitioners' Ex. 1001, Page 456 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
259

A RxED thread processing begins at block 7552, contin
ues to block 7554 where the process worker thread count
RxED-Ct is accessed and incremented by 1 (using appro
priate semaphore access (e.g. RxED-Sem)), and continues to
block 7556 for retrieving from queue 26 sent data (using 5

interface like interface 1948), perhaps a special termination
request entry, and only continues to block 7558 when a
record of data (e.g. action for remote execution, particular
atomic command, or termination record) is retrieved. In one
embodiment, receive processing deposits data as record(s) to 10

queue 26. In another embodiment, XML is received and
deposited to queue 26, or some other suitable syntax is
received as derived from the BNF grammar. In another
embodiment, receive processing receives data in one format
and deposits a more suitable format for FIG. 75B process- 15

ing.

260
present disclosure embodiment, block 7568 may include
little privilege verification, no privilege verification, or may
include all applicable action privilege verification discussed
already in FIG. 61.

In yet another embodiment, special terms processing of
FIG. 61 can be delayed until FIG. 75B processing (e.g. block
7566 continues to a new block 7567 which continues to
block 7568). It may be advantageous to have new block
7567 elaborate/evaluate special terms at the MS of FIG. 75B
processing in some embodiments. In a further embodiment,
a syntax or qualifier can be used to differentiate where to
perform special term elaboration/evaluation.

Thereafter, if block 7570 determines the action for execu
tion is acceptable (and perhaps privileged, or privileged per
source, or there was no check necessary), then block 7572
invokes the execute action procedure of FIG. 62 with the
action (command, operand, and any parameter(s)), com
pletes at block 7574 an acknowledgement to the originating

Block 7556 stays blocked on retrieving from queue 26
until data is retrieved, in which case processing continues to
block 7558. If block 7558 determines a special entry indi
cating to terminate was not found in queue 26, processing
continues to block 7560. There are various embodiments for
RxED thread(s), RxCD thread(s), thread(s) 1912 and
thread(s) 1942 to feed off a queue 26 for different record
types, for example, separate queues 26A, 26B, 26C and 26D,
or a thread target field with different record types found at
queue 26 (e.g. like field 2400a). In another embodiment,
there are separate queues 26D and 26E for separate process
ing of incoming remote action and send command data. In
another embodiment, thread(s) 1912 are modified with logic

20 MS of the data received at block 7556, and block 7576
sends/broadcasts the acknowledgement (ack), before con
tinuing back to block 7556 for the next incoming execution
request data. Block 7576 sends/broadcasts the ack (using a
send interface like interface 1946) by inserting to queue 24

25 so that send processing transmits data 1302, for example as
far as radius 1306. Embodiments will use the different

of RxED thread(s) to handle remote actions and send 30

command data requests, since thread(s) 1912 are listening
for queue 26 data anyway. In yet another embodiment, there
are distinct threads and/or distinct queues for processing
each kind of an atomic command to FIG. 75B processing
(i.e. as processed by blocks 7578 through 7584). 35

Block 7560 validates incoming data for this targeted MS
before continuing to block 7562. A preferred embodiment of
receive processing already validated the data is intended for
this MS by having listened specifically for the data, or by
having already validated it is at the intended MS destination 40

(e.g. block 7558 can continue directly to block 7564 (no
block 7560 and block 7562 required)). If block 7562 deter
mines the data is valid for processing, then block 7564
checks the data for its purpose (remote action or particular
command). If block 7564 determines the data received is for 45

processing a remote action, then block 7566 accesses source
information, the command, the operand, and parameters
from the data received. Thereafter, block 7568 accesses
privileges for each of the remote action parts (command,
operand, parameters) to ensure the source has proper privi- 50

leges for running the action at the MS of FIG. 75B process
ing. Depending on embodiments, block 7568 may include
evaluating the action for elaborating special terms and/or
expressions as described for FIG. 61 (blocks 6140 through
6154), although the preferred embodiment preferably 55

already did that prior to transmitting the remote action for
execution (e.g. remote action already underwent detailed
privilege assessment). However, in some embodiments
where privileges are only maintained locally, the action
processing of FIG. 61 processing would be required at block 60

7568 to check privileges where appropriate in processing the
action. In such embodiments, FIG. 61 would process local
actions as disclosed, but would not process actions known to
be for remote execution (i.e. Host specification) since a FIG.
75B embodiment would include FIG. 61 processing for 65

performing privilege check processing to determine that
sufficient privileges are granted. Thus, depending on the

correlation methods already discussed above, to associate an
ack with a send.

If block 7570 determines the data is not acceptable/
privileged, then processing continues directly back to block
7556. For security reasons, it is best not to respond with an
error. It is best to ignore the data entirely. In another
embodiment, an error may be returned to the sender for
appropriate error processing and reporting.

Referring back to block 7564, if it is determined that the
execution data is for processing a particular atomic com
mand, then processing continues to block 7578. Block 7578
accesses the command (e.g. send), the operand, and param
eters from the data received. Thereafter, block 7580 accesses
privileges for each of the parts (command, operand, param
eters) to ensure the source has proper privileges for running
the atomic command at the MS of FIG. 75B processing.
Depending on embodiments, block 7580 may include evalu
ating the command for elaborating special terms and/or
expressions as described for FIG. 61 (blocks 6140 through
6154), although the preferred embodiment preferably
already did that prior to transmitting the command for
execution. However, in some embodiments where privileges
are only maintained locally, the privilege processing of FIG.
61 would be required at block 7580 to check privileges
where appropriate in processing the command. In such
embodiments, FIG. 61 would process local actions as dis
closed, but would not process actions known to be for
remote execution (i.e. Host specification) since a FIG. 75B
embodiment would include FIG. 61 processing for perform
ing privilege check processing to determine that sufficient
privileges are granted. Thus, depending on the present
disclosure embodiment, block 7580 may include little privi
lege verification, no privilege verification, or may include all
applicable action privilege verification discussed already in
FIG. 61.

In yet another embodiment, special terms processing of
FIG. 61 can be delayed until FIG. 75B processing (e.g. block
7578 continues to a new block 7579 which continues to
block 7580). It may be advantageous to have new block
7579 elaborate/evaluate special terms at the MS of FIG. 75B
processing in some embodiments. In a further embodiment,

Petitioners' Ex. 1001, Page 457 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
261

a syntax or qualifier can be used to differentiate where to
perform special term elaboration/evaluation.

262

Thereafter, if block 7582 determines the command (Com
mand, Operand, Parameters) for execution is acceptable
(and perhaps privileged, or privileged per source, or there 5

was no check necessary), then block 7584 performs the
command locally at the MS of FIG. 75B processing. There
after, block 7586 checks if a response is needed as a result
of command (e.g. Find command) processing at block 7584.

MS in FIG. 75B processing. This would enable calculating
a TDOA measurement while receiving data (e.g. actions or
atomic command) that can then be used for location deter-
mination processing as described above.

For other acceptable receive processing, methods are well
known to those skilled in the art for "hooking" customized
processing into application processing of sought data
received, just as discussed with FIG. 44B above (e.g. mail
application, callback function API, etc). Thus, there are well
known methods for processing data in context of this
disclosure for receiving remote actions and/or atomic com-
mand data from an originating MS to a receiving MS, for
example when using email. Similarly, as described above,
SMS messages can be used to communicate data, albeit at
smaller data exchange sizes. The sending MS may break up
larger portions of data which can be sent as parse-able text
to the receiving MS. It may take multiple SMS messages to
communicate the data in its entirety.

Regardless of the type of receiving application, those

If block 7586 determines a response is to be sent back to the 10

originating MS, 7574 completes a response to the originat
ing MS of the data received at block 7556, and block 7576
sends/broadcasts the response, before continuing back to
block 7556 for the next incoming execution request data.
Block 7576 sends/broadcasts the response containing appro- 15

priate command results (using a send interface like interface
1946) by inserting to queue 24 so that send processing
transmits data 1302, for example as far as radius 1306.
Embodiments will use the different correlation methods
already discussed above, to associate a response with a send. 20 skilled in the art recognize many clever methods for receiv

ing data in context of a MS application which communicates
in a peer to peer fashion with another MS (e.g. callback
function(s), API interfaces in an appropriate loop which can
remain blocked until sought data is received for processing,

If block 7586 determines a response is not to be sent back
to the originating MS, then processing continues directly
back to block 7556. If block 7582 determines the data is not
acceptable/privileged, then processing continues back to
block 7556. For security reasons, it is best not to respond
with an error. It is best to ignore inappropriate (e.g. unprivi
leged, unwarranted) data entirely. In another embodiment,
an error may be returned to the sender for appropriate error
processing and reporting.

Blocks 7578 through 7584 are presented generically so
that specific atomic command descriptions below provide
appropriate interpretation and processing. The actual imple
mentation may replace blocks 7578 through 7584 with
programming case statement conditional execution for each
atomic command supported.

Referring back to block 7562, if it is determined that the
data is not valid for the MS of FIG. 75B processing,
processing continues back to block 7556. Referring back to
block 7558, if a worker thread termination request was
found at queue 26, then block 7586 decrements the RxED
worker thread count by 1 (using appropriate semaphore
access (e.g. RxED-Sem)), and RxED thread processing
terminates at block 7588. Block 7586 may also check the
RxED-Ct value, and signal the RxED process parent thread
that all worker threads are terminated when RxED-Ct equals
zero (0).

25 polling known storage destinations of data received, or other
applicable processing). FIGS. 75A and 75B are an embodi
ment of MS to MS communications, referred to with the
acronym MS2 MS. Various MS2 MS communication embodi
ments may include: reliable transport protocol involving a

30 plurality of packets (sends and acknowledgements) between
systems for a single send; unreliable transport protocol
involving a plurality of packets (sends and acknowledge
ments) between systems for a single send; or on-going
communications processing which is subsequent to an ini-

35 tiation send of data between systems (e.g. peer to peer
application processing (e.g. MS peer to peer phone call after
call initiation (i.e. no service involved))).

FIG. 62 depicts a flowchart for describing a preferred
embodiment of a procedure for performing an action corre-

40 sponding to a configured command, namely an ExecuteAc
tion procedure. Only a small number of commands are
illustrated. The procedure starts at block 6202 and continues
to block 6204 where parameters of the Command, Operand,
and Parameters are accessed (see BNF granimar), depending

45 on an embodiment (e.g. parameters passed by reference or
by value). Preferably, FIG. 62 procedure processing is
passed parameters by reference (i.e. by address) so they are
accessed as needed by FIG. 62 processing. Block 6204
continues to block 6206.

Block 7576 causes sending/broadcasting data 1302 con
taining CK 1304, depending on the type of MS, wherein CK
1304 contains ack/response information prepared. In the
embodiment wherein usual MS communications data 1302 50

of the MS is altered to contain CK 1304 for listening MSs
If it is determined at block 6206 that the action atomic

command is a send command, then processing continues to
block 6208 where the send command action procedure of
FIG. 63A is invoked. The send command action procedure
is invoked with parameters including the passed parameters

in the vicinity, send processing feeding from queue 24,
caused by block 7576 processing, will place ack/response
information as CK 1304 embedded in usual data 1302 at the
next opportune time of sending usual data 1302. As the MS
conducts its normal communications, transmitted data 1302
contains new data CK 1304 to be ignored by receiving MS
other character 32 processing, but to be found by listening
MSs within the vicinity which anticipate presence of CK
1304. Otherwise, when LN-Expanse deployments have not
introduced CK 1304 to usual data 1302 communicated on a
receivable signal by MSs in the vicinity, FIG. 75B sends/
broadcasts new ack/response data 1302.

In an alternate embodiment, remote action and/or atomic
command data records contain a sent date/time stamp field
of when the data was sent by a remote MS, and a received
date/time stamp field (like field 2490c) is processed at the

55 of Operand and Parameters discussed for block 6204. Upon
return from the send command action procedure, block 6208
continues to block 6256. Block 6256 returns to the calling
block of processing (e.g. block 6158) that invoked FIG. 62
processing. If block 6206 determines the action atomic

60 command is not a send command, then processing continues
to block 6210. If it is determined at block 6210 that the
action atomic command is a notify command, then process
ing continues to block 6212 where the notify command
action procedure of FIG. 64A is invoked. The notify com-

65 mand action procedure is invoked with parameters including
the passed parameters of Operand and Parameters discussed
for block 6204. Upon return from the notify command action

Petitioners' Ex. 1001, Page 458 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
263

procedure, block 6212 continues to block 6256. If block
6210 determines the action atomic command is not a notify
command, then processing continues to block 6214. If it is
determined at block 6214 that the action atomic command is

264
block 6204. Upon return from the move command action
procedure, block 6240 continues to block 6256. If block
6238 determines the action atomic command is not a move
command, then processing continues to block 6242. If it is

5 determined at block 6242 that the action atomic command is a compose command, then processing continues to block
6216 where the compose command action procedure of FIG.
65A is invoked. The compose command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the compose command action procedure, block 10

6216 continues to block 6256. If block 6214 determines the
action atomic command is not a compose command, then
processing continues to block 6218. If it is determined at
block 6218 that the action atomic command is a connect
command, then processing continues to block 6220 where 15

the connect command action procedure of FIG. 66A is
invoked. The connect command action procedure is invoked
with parameters including the passed parameters of Operand
and Parameters discussed for block 6204. Upon return from
the connect command action procedure, block 6220 contin- 20

ues to block 6256. If block 6218 determines the action

a store command, then processing continues to block 6244
where the store command action procedure of FIG. 72A is
invoked. The store command action procedure is invoked
with parameters including the passed parameters of Operand
and Parameters discussed for block 6204. Upon return from
the store command action procedure, block 6244 continues
to block 6256. If block 6242 determines the action atomic
command is not a store command, then processing continues
to block 6246. If it is determined at block 6246 that the
action atomic command is an administrate command, then
processing continues to block 6248 where the administrate
command action procedure of FIG. 73A is invoked. The
administrate command action procedure is invoked with
parameters including the passed parameters of Operand and
Parameters discussed for block 6204. Upon return from the
administrate command action procedure, block 6248 con-
tinues to block 6256. If block 6246 determines the action
atomic command is not an administrate command, then
processing continues to block 6250. If it is determined at

atomic command is not a connect command, then processing
continues to block 6222. If it is determined at block 6222
that the action atomic command is a find command, then
processing continues to block 6224 where the find command
action procedure of FIG. 67 A is invoked. The find command
action procedure is invoked with parameters including the
passed parameters of Operand and Parameters discussed for
block 6204. Upon return from the find command action
procedure, block 6224 continues to block 6256. If block
6222 determines the action atomic command is not a find
command, then processing continues to block 6226. If it is
determined at block 6226 that the action atomic command is

25 block 6250 that the action atomic command is a change
command, then processing continues to block 6252 where
the change command action procedure of FIG. 74A is
invoked. The change command action procedure is invoked
with parameters including the passed parameters of Operand

30 and Parameters discussed for block 6204. Upon return from
the change command action procedure, block 6252 contin
ues to block 6256. If block 6250 determines the action
atomic command is not a change command, then processing
continues to block 6254 for handling other supported action an invoke command, then processing continues to block

6228 where the invoke command action procedure of FIG.
68A is invoked. The invoke command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the invoke command action procedure, block
6228 continues to block 6256. If block 6226 determines the 40

35 atomic commands on the MS. There are many commands
that can be implemented on a MS. Block 6254 continues to
block 6256 for processing as already described. FIGS. 60
through 62 describe action processing for recognized events
to process WDRs.

action atomic command is not an invoke command, then
processing continues to block 6230. If it is determined at
block 6230 that the action atomic command is a copy
command, then processing continues to block 6232 where
the copy command action procedure of FIG. 69A is invoked. 45

The copy command action procedure is invoked with param
eters including the passed parameters of Operand and
Parameters discussed for block 6204. Upon return from the
copy command action procedure, block 6232 continues to
block 6256. If block 6230 determines the action atomic 50

command is not a copy command, then processing continues

Application Term Triggers

In-process WDRs (e.g. inbound, outbound, in process for
a particular reason, etc) provide processing paths for trig
gering charter processing. It may be desirable to additionally
provide charter processing which is triggered by changes to
particular AppTerm(s). For example, as a MS application
changes a processing state (e.g. as in "finite state machine")
for any reason, that processing state can be reflected in
changing at least one AppTerm. When that AppTerm is
changed, the change itself can cause related charter process-
ing. This provides a more rich method for automatically
processing conditions at a MS.

With reference back to FIG. 53, AppTerm trigger(s) field

to block 6234. If it is determined at block 6234 that the
action atomic command is a discard command, then pro
cessing continues to block 6236 where the discard command
action procedure of FIG. 70A is invoked. The discard
command action procedure is invoked with parameters
including the passed parameters of Operand and Parameters
discussed for block 6204. Upon return from the discard
command action procedure, block 6236 continues to block
6256. If block 6234 determines the action atomic command

55 5300m contains one or more AppTerm trigger records (or
pointers/join-to thereof), each record for causing automated
charter processing based on a change in the AppTerm. In
some embodiments, field 5300m provides a joining identifier
to another table for joining a plurality of rows containing

60 trigger records associated to the record 5300. An App Term
trigger record contains: is not a discard command, then processing continues to

block 6238. If it is determined at block 6238 that the action
atomic command is a move command, then processing
continues to block 6240 where the move command action
procedure of FIG. 71A is invoked. The move command 65

action procedure is invoked with parameters including the
passed parameters of Operand and Parameters discussed for

a. AppTerm reference name found in field 5300g. No
AppTerm can appear in field 5300m without also being
in field 5300g;

b. An optional charter directive specification may be
specified of "I", "O", "APP", "<name>", or "CB"
wherein "I" indicates to process inbound WDR related

Petitioners' Ex. 1001, Page 459 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
265 266

references are not made to in-process WDR fields (i.e. _
ref, _I_ref, _O_ref), however any other BNF grammar
charter expression specification may be made (e.g. atomic
term WDR reference (i.e. \ref)). Similarly, in an alternate

charters (i.e. _I_ ...), "O" indicates to process out
bound WDR related charters (i.e. _O_ ...), "APP"
indicates to process AppTerm section charters (see
below), "<name>" indicates to process named section
charters (see below), and "CB" indicates to invoke the
specified function interface (e.g. callback or DLL func
tion) with applicable and appropriately resolvable
parameters. Absence of a charter directive specification
indicates to process in-process WDR related charters
(i.e._ ...);

5 embodiment, references are supported to an in-process
WDR for the fields of the most recent in-process WDR
which applies. The "APP" specification provides a charter
section for processing all App Term variables for a PRR. The
"<name>" specification provides a special named charter

10
section for processing specific App Term variables of a PRR.
Charter embodiments and processing thereof heretofore
described also applies for App Term trigger processing char
ters, albeit with embodiment modifications made in light of
discussions (e.g. new charter type field 3700t (e.g. main,
AppTerm, named (an actual name in the field other than

c. An optional AppTerm condition may be specified for
the AppTerm, for example wrt a value: x="some
string", x>=5, x in [3, 340], etc. Any expression (see
BNF grammar 3068a Expression) can be specified for
the AppTerm condition, preferably involving the App
Term and appropriately accessible terms. TheAppTerm
condition must evaluate to a True of False. True causes
the directed charter(s) to be processed. False causes no
charter(s) to be processed for the changed App Term. Of
course, any charter conditions including resolvable
specifications apply for the charters processed anyway.

15 indicator for main and AppTerm)). Below is a syntactical
example to facilitate understanding. Note the use of scoped
(i.e. curly braced) sections which are referenced. These
sections are not executed by in-process WDR charter pro
cessing.

20 Charters {

AppTerm trigger specifications should be used carefully
because the same charters configured for handling WDR
processing events may be processed as though a WDR
triggered the charter processing event. One preferred 25

embodiment substitutes the most recent applicable WDR
fields for referenced fields (_ref, _I_ref, _O_ref) in charter
expressions. Another embodiment ignores all charters
with expressions which reference an in-process (_ref, _I_
ref, _O_ref) WDR field. In either embodiment, a user must 30

consider if this is desirable, either by reviewing charters,
reviewing permissions that provide charter processing to
others, crafting new charters, or combinations thereof.
Appropriate privileges (permission 10) are provided for
governing every aspect of AppTerm trigger processing and 35

all permission descriptions heretofore do apply.
AppTerm triggered charters are executed locally and

permissible charter actions can be executed locally or
remotely as already discussed, however another charter
directive embodiment may be used. One embodiment of a 40

charter directive includes a specification of "MS_ID1 ,

MS_ID2 , ... ,MS_ID/' such that "n" is the number of MSs
for where to process charters wherein potential execution
hosting MSs include the local MS and any number of
privilege providing remote MSs. The local MS_ID can 45

alternatively be specified with a keyword "THISMS". The
charter directive will cause charters to be processed as
though an in-process WDR was received at each specified
MS. An optional directive qualifier of "I", "O", "APP",
"<name>", or "CB" may also be specified with similar 50

processing at the particular MS(s). Remote processing is
already described in detail.

When the APP directive qualifier "APP" is used, a charter
section identified with the associated prefix field 5300a is
processed. This charter section is only processed for App- 55

Term trigger specifications, and never processed for in
process WDRs. Consequently, references are not made to
in-process WDR fields (i.e. _ref, _I_ref, _O_ref), however
any other BNF grammar charter expression specification
may be made (e.g. atomic term WDR reference (i.e. \ref)). 60

In an alternate embodiment, references are supported to an
in-process WDR for the fields of the most recent in-process
WDR which applies. When the APP directive qualifier
"<name>" is used, a charter section identified with the
associated explicit <name> is processed. This charter sec- 65

tion is only processed for AppTerm trigger specifications,
and never processed for in-process WDRs. Consequently,

}

B_{

("harrow" 'B_srchSubj):

};

Notify Weblink
"http://www.dfwfarms.com/harrows.xls",,,

target="_blank";

doitHere {

(): Invoke App alertme.cmd (\thisAppTerm);

("harrow" 'B_srchSubj):
Notify We blink "http://www.dfwfarms.com/har-

rows.xls",,,target="_blank";
The "B_" charter section indicates that any AppTerm (all
AppTerms) modified for the application described by the
PRR with a prefix field 5300a is to execute the applicable B_
section charters. Here is a useful example where the MS user
is searching for farm harrows. The user has collected pre
vious research into a spreadsheet harrows.xis. The prefix
"B_" happens to be contained in a field 5300a for the MS
browser application so that every time the user enters a
search criteria into the MS browser, not only does the MS
search for the text entered to the text entry field of the
browser (i.e. maintained to App Term srchSubj variable), but
the srchSubj variable being modified causes this charter to
execute. This charter invokes (opens) the spreadsheet local
to the MS so the user can have the spreadsheet automatically
available for edit upon browsing for harrows. There may be
a plurality of charter specifications in the App Term section.
(): Invoke App alertme.cmd \thisAppTerm;
AnAppTerm named section "doitHere" is specified wherein
charters are executed whenever an App Term referencing the
named section is modified, or when the optional AppTerm
condition specified results to true. Here is a valid null charter
expression for unconditionally executing the atomic invoke
command action. A new atomic term \thisAppTerm is intro
duced which is valid only within the context of AppTerm
charter sections. The \thisAppTerm atomic term evaluated to
the App Term variable name which caused execution of the
AppTerm charter section. So, if an entered change to the
srchSubj App Term was made in the browser application, and

Petitioners' Ex. 1001, Page 460 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
267 268

App Term trigger for any of the App Term variables of field
5300g which have been updated. If block 5566 determines
one or more AppTerm triggers are applicable, then a block
5568 processes applicable AppTerm charter sections and/or

the App Term trigger specification used a named "doitHere"
charter directive, then the same AppTerm example above
which caused the "B_" section to execute would additionally
cause the "doitHere" section to be processed. The alert
me.cmd file would be invoked with "B_srchSubj" as a
parameter.

This example shows that the "APP" section charter speci
fications can be a catch all for any applicable PRRAppTerm
for that application. Named sections enable singling out
certain AppTerm processing for unique charter processing.
In a preferred embodiment, a specified "APP" section redun
dantly handles named section processing for the same App
Term in a PRR 5300. Charters are configured accordingly. In

5 callback interfaces for each AppTerm that was updated
which has an associated trigger defined as described above.
Processing continues from block 5568 to block 5562. If
block 5566 determines there is no AppTerm trigger config
ured for the App Term modified, then processing continues to

an alternate embodiment, a named section overrides an
"APP" section for AppTerm trigger charter processing so
that only one charter section is processed for an AppTerm
meeting criteria of either section.

10 block 5562. Block 5568 ensures applicableAppTerm charter
sections are processed as described above. In an alternate
embodiment, the semaphore resource is released as soon as
possible to prevent preempting critical MS processing, for
example by spawning an asynchronous charter processing

When the callback directive qualifier "CB" is used, the
applicable executable interface is invoked for processing
with parameters that may be specified. Any expressions,
terms, variables, etc supported in AppTerm conditions are
also supported as parameters to the callback interface. The
interface may be a well known name to a linked executable

15 thread for FIFO processing at block 5568 so block 5562 can
be performed immediately. There are a various synchroni
zation schemes that can be deployed for desired multi
threaded charter processing. App Term accesses in processed
charters may use the same semaphore lock control used in

20 FIG. 55B, or as described in fields 53001 which may
alternatively be used by FIG. 55B processing.

or a name which is dynamically linked as needed. Any
processing may occur within the callback interface.

There are many AppTerm trigger examples for unique
charter processing. An AppTerm variable can be set with a
value, and subsequently cause the event for automated

25 charter execution. The charter can access the AppTerm
variable along with other data discussed for novel conditions
and associated action processing, for example:

In another embodiment, App Term trigger sections may be
executed at remote MSs based on consistent referenced
AppTerm trigger sections across a plurality of MSs. Appli
cable permissions govern the ability to perform remote
AppTerm trigger charter processing. In another embodi- 30

ment, fields 5300} and 5300k may define assignable permis
sions which are only relevant within the context of a
particular application. When two or more MSs have the
same application, privileges are granted as heretofore
described because the privileges can be universally known. 35

Another embodiment supports defining new privileges via a
PRR field 5300} as long as codes used do not intersect with
a universal privilege code. These new privileges can then be
configured by cooperating users at interoperating MSs for
desired permissible functionality using permission embodi- 40

ments heretofore described. Yet another embodiment sup
ports broadcasting new PRR privileges defined to willing (or
privilege providing) MSs for making other users aware of
their use. Such new privileges can be explicitly assigned to
charter processing so that privilege semantics need not be 45

incorporated in MS processing logic. For example:
\33005::(): Invoke App alertme.cmd \thisAppTerm;

Caller id for call placed to the MS, or made from the MS,
is placed into an AppTerm upon call activation;

Email recipient, sender, subject, etc for email item
received or just sent is placed into an AppTerm upon
being sent/received;

Attendees, subject, scheduled date/time, etc for a calendar
item just accepted, created, or received at a MS, is
placed into an AppTerm;

Search criteria specified for a search at the MS is placed
into an AppTerm upon the search being requested by
the user;

Document source, name, or other attribute(s) of a docu
ment accessed by the MS user is placed into an App
Term;

Source, title, star name(s), etc of a video broadcast or
movie played at the MS is placed into suitable App
Term variables upon play of the video at the MS; and/or

Any variable for any application for any reason can be set
for causing a charter trigger, and for being used in
combination with other conditions using special terms
already described.

FIGS. 63A through 74C document a MS toolbox of useful
qualifies the charter for only executing it if the privilege
code \32005 (e.g. in embodiment where any code greater
than 33000 is a user specified privilege) has been granted for
charter execution by the MS causing the execution and the
MS hosting the execution. In fact, this special privilege
qualification may be used in any charters with universally
known privilege codes, or user defined privilege codes. For
example:

50 actions. FIGS. 63A through 74C are in no way intended to
limit LBX functionality with a limited set of actions, but
rather to demonstrate a starting list of tools. New atomic
commands and operands can be implemented with contex
tual "plug-in" processing code, API plug-in processing code,

\Ibxall::0: Invoke App alertme.cmd \thisAppTerm;
55 command line invoked plug-in processing code, local data

processing system (e.g. MS) processing code, MS2MS
plug-in processing code, or other processing, all of which
are described below. The "know how" of atomic commands

With reference now to FIGS. SSA and 55B, the additional
AppTerm trigger records and fields of the PRR are appro
priately handled in FIG. SSA, and FIG. 55B includes App
Term trigger processing. Block 5556 additionally accesses 60

AppTerm trigger information of the application's associated
PRR. Thereafter, if block 5558 determines the PRR exists
and at least one of the data item(s) for modification are
described by field 5300g, block 5560 updates the applicable
data item(s) described by field 5300g appropriately as 65

requested by the application invoking FIG. 55B processing.
Thereafter, a block 5566 checks if the PRR contains an

is preferably isolated for a variety of "plug-in" processing.
The charter and privilege platform is designed for isolating
the complexities of privileged actions to "plug-in" methods
of new code (e.g. for commands and/or operands) wherever
possible.

Together with processing disclosed above, provided is a
user friendly development platform for quickly building
LBX applications wherein the platform enables conve
niently enabled LBX application interoperability and pro-

Petitioners' Ex. 1001, Page 461 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
269

cessing, including synchronized processing, across a plural-
270

interchangeably to represent an entity of processing which
can be started, terminated, and have processing results.
Applications (i.e. executables) can be started as a contextual
launch, custom launch through an API or command line, or

5 other launch method of an executable for processing.

ity of MSs. Some commands involve a plurality of MSs
and/or data processing systems. Others don't explicitly
support a plurality of MSs and data processing systems,
however that is easily accomplished for every command
since a single charter expression can cause a plurality of
actions anyway. For example, if a command does not
support a plurality of MSs in a single command action, the
plurality of MSs is supported with that command through
specifying a plurality of identical command actions in the 10

charter configuration for each desired MS. Actions provided
in this LBX release enable a rich set of LBX features and
functionality for:

Desired local MS LBX processing;
Desired peer MS LBX processing relative permissions 15

provided; and
Desired MS LBX processing from a global perspective of

a plurality of MSs. MS operating system resources of
memory, storage, semaphores, and applications and
application data is made accessible to other MSs as 20

governed by permissions. Thus, a single MS can
become a synchronization point for any plurality of
MSs, and synchronized processing can be achieved
across a plurality of independently operating MSs.

There are many different types of actions, commands, aper- 25

ands, parameters, etc that are envisioned, but embodiments
share at least the following fundamental characteristics:

1) Syntax is governed by the LBX BNF grammar;
2) Command is a verb for performing an action (i.e.

atomic command);
3) Operand is an object which provides what is acted upon

by the Command---e.g. brings context of how to pro
cess Command (i.e. atomic operand); and

30

4) Parameters are anticipated by a combination of Com
mand and Operand. Each parameter can be a constant, 35

of any data type, or a resulting evaluation of any
arithmetic or semantic expression, which may include
atomic terms, WDRTerms, AppTerms, atomic opera
tors, etc (see BNF grammar). Parameter order, syntax,
semantics, and variances of specification(s) are antici- 40

pated by processing code. Obvious error handling is
incorporated in action processing.

Syntax and reasonable validation should be performed at
the time of configuration, although it is preferable to check
for errors at run time of actions as well. Various embodi- 45

Atomic command descriptions are to be interpreted in the
broadest sense, and some guidelines when reading the
descriptions include:

1) Any action (Command, Operand, Parameters) can
include an additional parameter, or use an existing
parameter if appropriate (e.g. attributes) to warn an
affected user that the action is pending (i.e. about to
occur). The warning provides the user with informative
information about the action and then waits for the user
to optionally accept (confirm) the action for processing,
or cancel it;

2) In alternate embodiments, an email or similar messag-
ing layer may be used as a transport for conveying and
processing actions between systems. As disclosed
above, characteristic(s) of the transported distribution
will distinguish it from other distributions for process-
ing uniquely at the receiving system(s);

3) Identities (e.g. sender, recipient, source, system, etc)
which are targeted data processing systems for process
ing are described as MSs, but can be a data processing
system other than a MS in some contexts provided the
identified system has processing as disclosed;

4) Obvious error handling is assumed and avoided in the
descriptions.

The reader should cross reference/compare operand
descriptions in the #B matrices for each command to appre
ciate full exploitation of the Operand, options, and intended
embodiments since descriptions assume information found
in other commands is relevant across commands. Some
operand description information may have been omitted
from a command matrix to prevent obvious duplication of
information already described for the same operand in
another command.

FIG. 63A depicts a flowchart for describing a preferred
embodiment of a procedure for Send command action
processing. There are three (3) primary methodologies for
carrying out send command processing:

1) Using email or similar messaging layer as a transport
layer;

2) Using a MS to MS communications (MS2MS) of
FIGS. 75A and 75B; or

3) Processing the send command locally.
In various embodiments, any of the send command Oper
ands can be implemented with either one of the methodolo-

ments may or may not validate at configuration time, and
may or may not validate at action processing time. Valida
tion should be performed at least once to prevent run time
errors from occurring. Obvious error handling is assumed
present when processing commands, such error handling
preferably including the logging of the error to LBX History
30 and/or notifying the user of the error with, or without,
request for the user to acknowledge the reporting of error.

FIGS. 63A through 74C are organized for presenting three
(3) parts to describing atomic commands (e.g. 63A, 63B
(e.g. 63B-1 through 63B-7), 63C):

50 gies, although there may be a preference of which method
ology is used for which Operand. Atomic send command
processing begins at block 6302, continues to block 6304 for
accessing parameters of send command "Operand" (BNF
Grammar Operand) and "Parameters" (BNF Grammar

#A=describes preferred embodiment of command action
processing;

#B=describes LBX command processing for some oper
ands; and

#C=describes one embodiment of command action pro-
cessing.

Some of the #A figures highlight diversity for showing
different methods of command processing while highlight
ing that some of the methods are interchangeable for com
mands (e.g. Copy and Discard processing). Also the termi
nology "application" and "executable" are used

55 Parameters), and then to block 6306 for checking which
"Operand" was passed. If block 6306 determines the "Oper
and" indicates to use email as the mechanism for performing
the send command, then block 6308 checks if a sender
parameter was specified. If block 6308 determines a sender

60 was specified, processing continues to block 6312, otherwise
block 6310 defaults one (e.g. valid email address for this
MS) and then processing continues to block 6312. Block
6312 checks if a subject parameter was specified. If block
6312 determines a subject was specified, processing contin-

65 ues to block 6316, otherwise block 6314 defaults one (e.g.
subject line may be used to indicate to email receive
processing that this is a special email for performing atomic

Petitioners' Ex. 1001, Page 462 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
271

command (e.g. send command) processing), and then pro
cessing continues to block 6316. Block 6314 may specify a
null email subject line. Block 6316 checks if an attributes
parameter was specified. If block 6316 determines attributes
were specified, processing continues to block 6320, other- 5

wise block 6318 defaults attributes (e.g. confirmation of
delivery, high priority, any email Document Interchange
Architecture (DIA) attributes or profile specifications, etc)
and then processing continues to block 6320. The terminol
ogy "attributes", for example as associated to an electronic 10

distribution (e.g. email, SMS message, etc) refers to DIA
attributes or other descriptive data associated to the distri
bution. Block 6318 may use email attributes to indicate that
this is a special email for send command processing while
using the underlying email transport to handle the delivery 15

of information. Block 6320 checks if at least one recipient
parameter was specified. If block 6320 determines at least
one recipient was specified, processing continues to block
6324, otherwise block 6322 defaults one (e.g. valid email
address for this MS) and then processing continues to block 20

6324. Block 6322 may specify a null recipient list so as to
cause an error in later processing (detected at block 6324).

Block 6324 validates "Parameters", some of which may
have been defaulted in previous blocks (6310, 6314, 6318
and 6322), and continues to block 6326. If bock 6326 25

determines there is an error in "Parameters", then block
6328 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller (invoker) at block 6334. If block 6326 determines that
"Parameters" are in good order for using the email transport, 30

then block 6330 updates an email object in context for the
send command "Operand" and "Parameters", block 6332
uses a send email interface to send the email, and block 6334
returns to the caller (e.g. block 6208). Block 6330 can use
the attributes parameter to affect how "Parameters" is to be 35

interpreted. The attributes parameter may be modified, and
can be used by any processes which receive the sent distri
bution. Those skilled in the art know well known email send
interfaces (e.g. APis) depending on a software development
environment. The email interface used at block 6332 will be 40

one suitable for the underlying operating system and avail
able development environments, for example, a standard
ized SMTP interface. In a C# environment, an SMTP email
interface example is:

272
a rece1vmg email system to treat the email uniquely for
carrying out the present disclosure. Depending on the
embodiment, integrated processing code is maintained/built
as part of the email system, or processing code is "plugged"
("hooked") into an existing email system in an isolated third
party mamier. Regardless, the email system receiving the
present disclosure email will identify the email as being one
for special processing. Then, email contents is parsed out
and processed according to what has been requested.

In embodiments where Send command Operands are
more attractively implemented using an existing transport
layer (e.g. email), those send commands can also be sent
with MS2MS encoded in data packet(s) that are appropriate
for processing.

Referring back to block 6306, if it is determined that the
"Operand" indicates to not use an email transport (e.g. use
a MS2MS transport for performing the send command, or
send command is to be processed locally), then block 6336
checks if a sender parameter was specified. If block 6336
determines a sender was specified, processing continues to
block 6340, otherwise block 6338 defaults one (e.g. valid
MS ID) and then processing continues to block 6340. Block
6340 checks if a subject message parameter was specified.
If block 6340 determines a subject message was specified,
processing continues to block 6344, otherwise block 6342
defaults one, and then processing continues to block 6344.
Block 6342 may specify a null message. Block 6344 checks
if an attributes parameter was specified. If block 6344
determines attributes were specified, processing continues to
block 6348, otherwise block 6346 defaults attributes (e.g.
confirmation of delivery, high priority, etc) and then pro-
cessing continues to block 6348. Block 6348 checks if at
least one recipient parameter was specified. If block 6348
determines at least one recipient was specified, processing
continues to block 6352, otherwise block 6350 defaults one
(e.g. valid ID for this MS) and then processing continues to
block 6352. Block 6350 may specify a null recipient list so
as to cause an error in later processing (detected at block
6352).

Block 6352 validates "Parameters", some of which may
have been defaulted in previous blocks (6338, 6342, 6346
and 6350), and continues to block 6354. If bock 6354
determines there is an error in "Parameters", then block
6356 handles the error appropriately (e.g. log error to LBX

SmtpClient
NAME);

smtpCl=new SmtpClient(SMTP _SERVER_

smtpCI. U seDefaultCredentials=true;

MailMessage objMsg;

45 History and/or notify user) and processing returns to the
caller (invoker) at block 6334. If block 6354 determines that
"Parameters" are in good order, then block 6358 updates a
data object in context for the send command "Operand" and
"Parameters", and block 6360 begins a loop for delivering

objMsg=new MailMessage(fromAddr, toAddr, subjLn,
emai!Bod);

smtpCI. Send(obj Msg);
objMsg.Dispose();

Those skilled in the art recognize other interfaces of
similar messaging capability for carrying out the transport of
an action (e.g. Send command). Email is a preferred embodi
ment. While there are Send command embodiments that
make using an existing transport layer (e.g. email) more
suitable than not, even the most customized Send command
Operands can use email (instead ofMS2MS) by implement
ing one or more recognizable signature(s), indication(s), or
the like, of/in the email distribution to be used for informing

50 the data object to each recipient. Block 6360 gets the next (or
first) recipient from the recipient list and processing contin
ues to block 6362.

If block 6362 determines that all recipients have been
processed, then processing returns to the caller at block

55 6334, otherwise block 6364 checks the recipient to see if it
matches the ID of the MS of FIG. 63A processing (i.e. this
MS). If block 6364 determines the recipient matches this
MS, then block 6366 (see FIG. 63B discussions) performs
the atomic send command locally and processing continues

60 back to block 6360 for the next recipient. If block 6364
determines the recipient is an other MS, block 6368 prepares
parameters for FIG. 75A processing, and block 6370 invokes
the procedure of FIG. 75A for sending the data (send
command, operand and parameters) to the other MS. Pro-

65 cessing then continues back to block 6360 for the next
recipient. Blocks 6366, 6368, and 7584 can use the attributes
parameter to affect how "Parameters" is to be interpreted.

Petitioners' Ex. 1001, Page 463 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
273

The attributes parameter may be modified, and can be used
by any processes which receive the send result.

274
recipient(s)=One or more destination identities for the Send

command (e.g. email address or MS ID).
MS2MS processing is as already described above (see

FIGS. 75A and 75B), except FIG. 75A performs sending
data for the send command to a remote MS, and FIG. 75B 5

blocks 7578 through 7584 carry out processing specifically
for the send command. Block 7584 processes the send
command locally (like block 6366-see FIG. 63A).

FIG. 63C depicts a flowchart for describing one embodi
ment of a procedure for Send command action processing,
as derived from the processing of FIG. 63A. All operands are
implemented, and each of blocks S04 through S54 can be
implemented with any one of the methodologies described
with FIG. 63A, or any one of a blend of methodologies
implemented by FIG. 63C. In FIG. 63A, "Parameters" for the atomic send command

in accordance with the "Operand" were shown to be vali- 10

dated for being properly privileged prior to FIG. 63A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 63A in context of where the "Parameters"

15

FIG. 64A depicts a flowchart for describing a preferred
embodiment of a procedure for Notify command action
processing. The Alert command and Notify command pro
vide identical processing. There are three (3) primary meth
odologies for carrying out notify command processing:

1) Using email or similar messaging layer as a transport
layer; are processed. Also, some embodiments may not validate

"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 63A
processing occurs (e.g. no blocks 6308 through 6328 and/or
6336 through 6356 required). In yet another embodiment, no
defaulting or some defaulting of parameters is implemented.
In some embodiments, any subset of send commands will
utilize email distributions for processing between MSs. In
other embodiments, any subset of send commands will
utilize FIGS. 75A and 75B for processing between MSs.
Operations of the send command can be carried out regard
less of the transport that is actually used to perform the send
command.

FIGS. 63B-1 through 63B-7 depicts a matrix describing
how to process some varieties of the Send command (e.g. as
processed at blocks 6366 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first
colunm). The second colunm shows the Preferred Method
ology (PM) for carrying out Send command processing:
E=Email transport preferably used (blocks 6308 through

6332);
O=Other processing (MS2MS or local) used (blocks 6336

through 6370).
Any of the Send command operand combinations can be
carried out with either of the methodologies. The second
colunm shows a preferred methodology (PM). The third
colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Send processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the colunm of information headed by "101" represents the
parameters applicable for the Send command. The Send
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Send command, typically tied to

the originating identity of the action (e.g. email address or
MS ID). A different sender can be specified if there is an
applicable privilege in place, or if impersonation has been
granted;

msg/subj=A message or subject associated with Send com
mand;

attributes=Indicators for more detailed interpretation of
Send command parameters and/or indicators for attributes
to be interpreted by external (e.g. receiving) processes
affected by the Send command result (e.g. handled appro
priately by block 7584 or receiving email system);

2) Using a MS to MS communications (MS2MS) of
FIGS. 75A and 75B; or

3) Processing the notify command locally.
20 In various embodiments, any of the notify command Oper

ands can be implemented with either one of the methodolo
gies, although there may be a preference of which method
ology is used for which Operand. Atomic notify command
processing begins at block 6402, continues to block 6404 for

25 accessing parameters of notify command "Operand" (BNF
Grammar Operand) and "Parameters" (BNF Grammar
Parameters), and then to block 6406 for checking which
"Operand" was passed. If block 6406 determines the "Oper
and" indicates to use email as the mechanism for performing

30 the notify command, then block 6408 checks if a sender
parameter was specified. If block 6408 determines a sender
was specified, processing continues to block 6412, otherwise
block 6410 defaults one (e.g. valid email address for this
MS) and then processing continues to block 6412. Block

35 6412 checks if a subject parameter was specified. If block
6412 determines a subject was specified, processing contin
ues to block 6416, otherwise block 6414 defaults one (e.g.
subject line may be used to indicate to email receive
processing that this is a special email for performing atomic

40 command (e.g. notify command) processing), and then
processing continues to block 6416. Block 6414 may specify
a null email subject line. Block 6416 checks if an attributes
parameter was specified. If block 6416 determines attributes
were specified, processing continues to block 6420, other-

45 wise block 6418 defaults attributes (e.g. confirmation of
delivery, high priority, any email DIA attributes or profile
specifications, etc) and then processing continues to block
6420. Block 6418 may use email attributes to indicate that
this is a special email for notify command processing while

50 using the underlying email transport to handle the delivery
of information. Block 6420 checks if at least one recipient
parameter was specified. If block 6420 determines at least
one recipient was specified, processing continues to block
6424, otherwise block 6422 defaults one (e.g. valid email

55 address for this MS) and then processing continues to block
6424. Block 6422 may specify a null recipient list so as to
cause an error in later processing (detected at block 6424).

Block 6424 validates "Parameters", some of which may
have been defaulted in previous blocks (6410, 6414, 6418

60 and 6422), and continues to block 6426. If bock 6426
determines there is an error in "Parameters", then block
6428 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller (invoker) at block 6434. If block 6426 determines that

65 "Parameters" are in good order for using the email transport,
then block 6430 updates an email object in context for the
notify command "Operand" and "Parameters", block 6432

Petitioners' Ex. 1001, Page 464 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
275

uses a send email interface to notify through email, and
block 6434 returns to the caller (e.g. block 6212). Block
6430 can use the attributes parameter to affect how "Param
eters" is to be interpreted. The attributes parameter may be
modified, and can be used by any processes which receive 5

the notify. The email interface used at block 6432 will be one
suitable for the underlying operating system and available
development environments, for example, a standardized
SMTP interface, and other messaging capability, as
described above for FIG. 63A. 10

276
ering the data object to each recipient. Block 6460 gets the
next (or first) recipient from the recipient list and processing
continues to block 6462.

If block 6462 determines that all recipients have been
processed, then processing returns to the caller at block
6434, otherwise block 6464 checks the recipient to see if it
matches the ID of the MS of FIG. 64A processing (i.e. this
MS). If block 6464 determines the recipient matches this
MS, then block 6466 (see FIG. 64B discussions) performs
the atomic notify command locally and processing continues
back to block 6460 for the next recipient. If block 6464
determines the recipient is an other MS, block 6468 prepares
parameters for FIG. 75A processing, and block 6470 invokes

While there are Notify command embodiments that make
using an existing transport layer (e.g. email) more suitable
than not, even the most customized Notify command Oper
ands can use email (instead of MS2MS) by implementing
one or more recognizable signature(s), indication(s), or the
like, of/in the email distribution to be used for informing a
receiving email system to treat the email uniquely for
carrying out the present disclosure. Depending on the
embodiment, integrated processing code is maintained/built
as part of the email system, or processing code is "plugged"
("hooked") into an existing email system in an isolated third
party manner. Regardless, the email system receiving the
present disclosure email will identify the email as being one
for special processing. Then, email contents is parsed out
and processed according to what has been requested.

15
the procedure of FIG. 75A for sending the data (notify
command, operand and parameters) to the other MS. Pro
cessing then continues back to block 6460 for the next
recipient. Blocks 6466, 6468, and 7584 can use the attributes
parameter to affect how "Parameters" is to be interpreted.

20 The attributes parameter may be modified, and can be used
by any processes which receive the notify result.

In embodiments where Notify command Operands are
more attractively implemented using an existing transport
layer (e.g. email), those notify commands can also be sent
with MS2MS encoded in data packet(s) that are appropriate
for processing.

MS2MS processing is as already described above (see
FIGS. 75A and 75B), except FIG. 75A performs sending
data for the notify command to a remote MS, and FIG. 75B

25 blocks 7578 through 7584 carry out processing specifically
for the notify command. Block 7584 processes the notify
command locally (like block 6466-see FIG. 64A).

In FIG. 64A, "Parameters" for the atomic notify com
mand in accordance with the "Operand" were shown to be

Referring back to block 6406, if it is determined that the
"Operand" indicates to not use an email transport (e.g. use

30 validated for being properly privileged prior to FIG. 64A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 64A in context of where the "Parameters"

a MS2MS transport for performing the notify command, or
35

notify command is to be processed locally), then block 6436
checks if a sender parameter was specified. If block 6436
determines a sender was specified, processing continues to
block 6440, otherwise block 6438 defaults one (e.g. valid
MS ID) and then processing continues to block 6440. Block 40

6440 checks if a subject message parameter was specified.
If block 6440 determines a subject message was specified,
processing continues to block 6444, otherwise block 6442
defaults one, and then processing continues to block 6444.
Block 6442 may specify a null message. Block 6444 checks 45

if an attributes parameter was specified. If block 6444
determines attributes were specified, processing continues to
block 6448, otherwise block 6446 defaults attributes (e.g.
confirmation of delivery, high priority, etc) and then pro
cessing continues to block 6448. Block 6448 checks if at 50

least one recipient parameter was specified. If block 6448
determines at least one recipient was specified, processing
continues to block 6452, otherwise block 6450 defaults one
(e.g. valid ID for this MS) and then processing continues to
block 6452. Block 6450 may specify a null recipient list so 55

as to cause an error in later processing (detected at block
6452).

Block 6452 validates "Parameters", some of which may
have been defaulted in previous blocks (6438, 6442, 6446
and 6450), and continues to block 6454. If bock 6454 60

determines there is an error in "Parameters", then block
6456 handles the error appropriately (e.g. log error to LBX
History and/or notify user) and processing returns to the
caller (invoker) at block 6434. If block 6454 determines that
"Parameters" are in good order, then block 6458 updates a 65

data object in context for the notify command "Operand"
and "Parameters", and block 6460 begins a loop for deliv-

are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 64A
processing occurs (e.g. no blocks 6408 through 6428 and/or
6436 through 6456 required). In yet another embodiment, no
defaulting or some defaulting of parameters is implemented.
In some embodiments, any subset of notify commands will
utilize email distributions for processing between MSs. In
other embodiments, any subset of notify commands will
utilize FIGS. 75A and 75B for processing between MSs.
Operations of the notify command can be carried out regard
less of the transport that is actually used to perform the
notify command.

FIGS. 64B-1 through 64B-4 depicts a matrix describing
how to process some varieties of the Notify command (e.g.
as processed at blocks 6466 and 7584). Each row in the
matrix describes processing apparatus and/or methods for
carrying out command processing for certain operands (see
FIG. 34D for the Operand which matches the number in the
first colunm). The second colunm shows the Preferred
Methodology (PM) for carrying out Notify command pro
cessing:
E=Email transport preferably used (blocks 6408 through

6432);
O=Other processing (MS2MS or local) used (blocks 6436

through 6470).
Any of the Notify command operand combinations can be
carried out with either of the methodologies. The second
colurmi shows a preferred methodology (PM). The third
colurmi describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Notify processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self
explanatory.

Petitioners' Ex. 1001, Page 465 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
277

With reference back to FIGS. 31A through 31E, note that
the column of information headed by "103" represents the
parameters applicable for the Notify command. The Notify
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Notify command, typically tied to

the originating identity of the action (e.g. email address or
MS ID). A different sender can be specified if there is an
applicable privilege in place, or if impersonation has been
granted;

msg/subj=A message or subject associated with Notify com
mand;

attributes=Indicators for more detailed interpretation of
Notify command parameters and/or indicators for attri
butes to be interpreted by external (e.g. receiving) pro
cesses affected by the Notify command result (e.g.
handled appropriately by block 7584 or receiving email
system);

recipient(s)=One or more destination identities for the
Notify command (e.g. email address or MS ID).
FIG. 64C depicts a flowchart for describing one embodi

ment of a procedure for Notify command action processing,
as derived from the processing of FIG. 64A. All operands are
implemented, and each of blocks N04 through N54 can be
implemented with any one of the methodologies described
with FIG. 64A, or any one of a blend of methodologies
implemented by FIG. 64C. The atomic command and atomic
operand pair of Notify Cursor can be used to provide a new
user interface (e.g. mouse pointer) cursor appearance, how
ever in touch type interfaces a cursor change may not be
seen until the user subsequently uses an interface where the
cursor is used.

278
the application which is invoked for composing the object.
Processing leaves block 6516 and returns to the caller
(invoker) at block 6514.

An example of block 6516 is similar to the Microsoft
5 Windows XP (Microsoft and Windows XP are trademarks of

Microsoft corp.) O/S association of applications to file types
for convenient application launch. For example, a user can
double click a file (e.g. when viewing file system) from
Window Explorer and the appropriate application will be

10 launched for opening the file, assuming an application has
been properly registered for the file type of the file opened.
In a Windows graphical user interface scenario, registration
of an application to the file type is achieved, for example,
from the user interface with the "File Types" tab of the

15 "Folder Options" option of the "File Types" pulldown of the
Windows Explorer interface. There, a user can define file
types and the applications which are to be launched when
selecting/invoking (e.g. double clicking) the file type from
the file system. Alternatively, an O/S API or interface may

20 be used to configure an object to associate to a launch-able
executable for handling the object. In this same scheme, the
MS will have a similar mechanism whereby an association
of an application to a type of object (e.g. file type) has been
assigned. Block 6516 makes use of the system interface for

25 association which was set up outside of present disclosure
processing (e.g. via MS O/S).

Referring back to block 6506, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to

30 block 6518. If block 6518 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 6520 and block 6522 checks the result. If
block 6522 determines there was at least one error, then
block 6524 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 6514. If block 6522 deter-
mines there were no parameter errors, then processing
continues to block 6526.

If block 6526 determines the custom launch is not to use

FIG. 65A depicts a flowchart for describing a preferred 35

embodiment of a procedure for Compose command action
processing. The Make command and Compose command
provide identical processing. There are three (3) primary
methodologies for carrying out compose command process
ing: 40 an Application Prograniming Interface (API) to launch the

applicable application for composing the object passed as a
parameter, then block 6528 prepares a command string for
launching the particular application, block 6530 invokes the
command string for launching the application, and process-

1) Launching an application, executable, or program with
a standard contextual object type interface;

2) Custom launching of an application, executable, or
program; or

3) Processing the compose command through a MS
operating system interface.

45 ing continues to block 6514 for returning to the caller.
If block 6526 determines the custom launch is to use an

Application Programming Interface (API) to launch the
applicable application for composing the object passed as a
parameter, then block 6532 prepares any API parameters as
necessary, block 6534 invokes the API for launching the
application, and processing continues to block 6514 for
returning to the caller.

Referring back to block 6518, if it is determined that the
"Operand" indicates to perform the compose command
locally (e.g. use operating system interface (e.g. set sema
phore, program object, data, signal, etc)), then parameter(s)
are validated at block 6536 and block 6538 checks the result.
If block 6538 determines there was at least one error, then
block 6540 handles the error appropriately (e.g. log error to

In various embodiments, any of the compose command
Operands can be implemented with either one of the meth
odologies, although there may be a preference of which
methodology is used for which Operand. Atomic compose 50

command processing begins at block 6502, continues to
block 6504 for accessing parameters of compose command
"Operand" (BNF Grammar Operand) and "Parameters"
(BNF Grammar Parameters), and then to block 6506 for
checking which "Operand" was passed. If block 6506 deter- 55

mines the "Operand" indicates to launch with a standard
contextual object type interface, then parameter(s) are vali
dated at block 6508 and block 6510 checks the result. If
block 6510 determines there was at least one error, then
block 6512 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 6514. If block 6510 deter
mines there were no parameter errors, then block 6516
interfaces to the MS operating system for the particular
object passed as a parameter. Block 6516 may prepare 65

parameters in preparation for the Operating System (O/S)
contextual launch, for example if parameters are passed to

60 LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 6514. If block 6538 deter
mines there were no parameter errors, then block 6542
performs the compose command, and block 6514 returns to
the caller.

In FIG. 65A, "Parameters" for the atomic compose com
mand in accordance with the "Operand" were shown to be
validated for being properly privileged prior to FIG. 65A

Petitioners' Ex. 1001, Page 466 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
279

processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 65A in context of where the "Parameters"
are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof) 5

can be understood to be in good order by the time FIG. 65A
processing occurs (e.g. no blocks 6510/6512 and/or 6522/
6524 and/or 6538/6540 required). In yet another embodi
ment, some defaulting of parameters is implemented.

FIGS. 65B-1 through 65B-7 depicts a matrix describing 10

how to process some varieties of the Compose command
(e.g. as resulting after blocks 6516, 6534 and 6542). Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain

15
operands (see FIG. 34D for the Operand which matches the
number in the first colunm). The second colunm shows the
Preferred Methodology (PM) for carrying out Compose
command processing:
S=Standard contextual launch used (blocks 6508 through 20

6516);
C=Custom launch used (blocks 6520 through 6534);
O=Other processing (O/S interface) used (blocks 6536

through 6542).
Any of the Compose command operand combinations can 25

be carried out with either of the methodologies. The second
colunm shows a preferred methodology (PM). The third
colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Compose processing descriptions without departing 30

from the spirit and scope of the disclosure. Descriptions are
self explanatory.

With reference back to FIGS. 31A through 31E, note that
the colunm of information headed by "105" represents the
parameters applicable for the Compose command. The 35

Compose command has the following parameters, all of
which are interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Compose command, typically tied 40

to the originating identity of the action (e.g. email address
or MS ID). A different sender can be specified if there is
an applicable privilege in place, or if impersonation has
been granted;

msg/subj=A message or subject associated with Compose 45

command;

280
vide identical processing. There are four (4) primary meth
odologies for carrying out connect command processing:

1) Launching an application, executable, or program with
a standard contextual object type interface;

2) Custom launching of an application, executable, or
program;

3) Processing the connect command through a MS oper
ating system interface; or

4) Using a MS to MS communications (MS2MS) of
FIGS. 75A and 75B.

In various embodiments, any of the connect command
Operands can be implemented with either one of the meth
odologies, although there may be a preference of which
methodology is used for which Operand. Atomic connect
command processing begins at block 6602, continues to
block 6604 for accessing parameters of connect command
"Operand" (BNF Grammar Operand) and "Parameters"
(BNF Grammar Parameters), and then to block 6606 for
checking which "Operand" was passed. If block 6606 deter
mines the "Operand" indicates to launch with a standard
contextual object type interface, then parameter(s) are vali-
dated at block 6608 and block 6610 checks the result. If
block 6610 determines there was at least one error, then
block 6612 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 6614. If block 6610 deter-
mines there were no parameter errors, then block 6616
interfaces to the MS operating system for the particular
object passed as a parameter. Block 6616 may prepare
parameters in preparation for the O/S contextual launch, for
example if parameters are passed to the application which is
invoked. Processing leaves block 6616 and returns to the
caller (invoker) at block 6614.

An example of block 6616 is similar to the Microsoft
Windows XP O/S association of applications to file types for
convenient application launch, and is the same as processing
ofblock 6516 described above. Block 6616 makes use of the
system interface for association which was set up outside of
present disclosure processing (e.g. via MS O/S).

Referring back to block 6606, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 6618. If block 6618 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 6620 and block 6622 checks the result. If
block 6622 determines there was at least one error, then
block 6624 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 6614. If block 6622 deter-

attributes=Indicators for more detailed interpretation of
Compose command parameters and/or indicators for attri
butes to be interpreted by external (e.g. receiving) pro
cesses affected by the Compose command result;

recipient(s)=One or more destination identities for the Com
pose command (e.g. email address or MS ID).

50 mines there were no parameter errors, then processing
continues to block 6626.

Compose command data is preferably maintained to LBX
history, a historical call log (e.g. outgoing when call placed),
or other useful storage for subsequent use (some embodi- 55

ments may include this processing where appropriate (e.g. as
part of blocks 6516, 6542, etc)).

FIG. 65C depicts a flowchart for describing one embodi
ment of a procedure for Compose command action process
ing, as derived from the processing of FIG. 65A. All 60

operands are implemented, and each of blocks P04 through
P54 can be implemented with any one of the methodologies
described with FIG. 65A, or any one of a blend of method
ologies implemented by FIG. 65C.

FIG. 66A depicts a flowchart for describing a preferred 65

embodiment of a procedure for Connect command action
processing. The Call command and Connect command pro-

If block 6626 determines the custom launch is not to use
an Application Prograniming Interface (API) to launch the
applicable application for the object passed as a parameter,
then block 6628 prepares a command string for launching
the particular application, block 6630 invokes the command
string for launching the application, and processing contin
ues to block 6614 for returning to the caller.

If block 6626 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for the object passed as a parameter,
then block 6632 prepares any API parameters as necessary,
block 6634 invokes the API for launching the application,
and processing continues to block 6614 for returning to the
caller.

Referring back to block 6618, if it is determined that the
"Operand" indicates to perform the connect command

Petitioners' Ex. 1001, Page 467 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
281

locally (e.g. use operating system interface (e.g. set sema
phore, program object, data, signal, etc)), or to use MS2MS
for processing, then parameter(s) are validated at block 6636
and block 6638 checks the result. If block 6638 determines
there was at least one error, then block 6640 handles the 5

error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller (invoker) at
block 6614. If block 6638 determines there were no param
eter errors, then block 6642 checks the operand for which
processing to perform. If block 6642 determines that 10

MS2MS processing is needed to accomplish processing,
then block 6644 prepares parameters for FIG. 75A process
ing, and block 6646 invokes the procedure of FIG. 75A for
sending the data (connect command, operand and param-

15
eters) for connect processing at the MS to connect. Process
ing then continues to block 6614. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs sending data for the connect command
to the remote MS for processing, and FIG. 75B blocks 7578 20

through 7584 carry out processing specifically for the con
nect command. Block 7584 processes the connect command
for connecting the MSs in context of the Operand. Referring
back to block 6642, if it is determined that MS2MS is not to
be used, then block 6648 performs the connect command, 25

and block 6614 returns to the caller.

282
the Connect processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the colunm of information headed by "119" represents the
parameters applicable for the Connect command. The Con
nect command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Connect command, typically tied

to the originating identity of the action (e.g. email address
or MS ID). A different sender can be specified if there is
an applicable privilege in place, or if impersonation has
been granted;

msg/subj=A message or subject associated with Connect
command;

attributes Indicators for more detailed interpretation of Con
nect command parameters and/or indicators for attributes
to be interpreted by external (e.g. receiving) processes
affected by the Connect command result;

recipient(s)=One or more destination identities for the Con
nect command (e.g. email address or MS ID).
Connect command data is preferably maintained to LBX

history, a historical call log (e.g. outgoing when call placed),
or other useful storage for subsequent use (some embodi
ments may include this processing where appropriate (e.g. as
part of blocks 6616, 6648, 7584, etc)).

FIG. 66C depicts a flowchart for describing one embodi-

In FIG. 66A, "Parameters" for the atomic connect com
mand in accordance with the "Operand" were shown to be
validated for being properly privileged prior to FIG. 66A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 66A in context of where the "Parameters"
are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 66A
processing occurs (e.g. no blocks 6610/6612 and/or 6622/
6624 and/or 6638/6640 required). In yet another embodi
ment, some defaulting of parameters is implemented.

30 ment of a procedure for Connect command action process
ing, as derived from the processing of FIG. 66A. All
operands are implemented, and each of blocks T04 through
T54 can be implemented with any one of the methodologies
described with FIG. 66A, or any one of a blend of method-

35 ologies implemented by FIG. 66C.
FIG. 67A depicts a flowchart for describing a preferred

embodiment of a procedure for Find command action pro
cessing. The Search command and Find command provide
identical processing. There are four (4) primary methodolo-In the case of automatically dialing a phone number at a

MS, there are known APis to accomplish this functionality,
depending on the MS software development environment,

40 gies for carrying out find command processing:

by passing at least a phone number to the MS API program
matically at the MS (e.g. see C# phone application APis,
J2ME phone APis, etc). In a J2ME embodiment, you can
place a call by calling the MIDP 2.0 platformRequest 45

method inside the MIDI et class (e.g. platformRequest("tel://
mobileNumber") will request the placing call functionality
from the applicable mobile platform).

FIGS. 66B-1 through 66B-2 depicts a matrix describing
how to process some varieties of the Connect command (e.g. 50

as processed at blocks 6648 and 7584). Each row in the
matrix describes processing apparatus and/or methods for
carrying out command processing for certain operands (see
FIG. 34D for the Operand which matches the number in the
first colunm). The second colunm shows the Preferred 55

Methodology (PM) for carrying out Connect command
processing:
S=Standard contextual launch used (blocks 6608 through

6616);

1) Launching an application, executable, or program with
a standard contextual object type interface;

2) Custom launching of an application, executable, or
program;

3) Processing the find command locally; or
4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote finding.
In various embodiments, any of the find command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology
is used for which Operand. Atomic find command process-
ing begins at block 6700, continues to block 6702 for
accessing parameters of find command "Operand" (BNF
Grammar Operand) and "Parameters" (BNF Grammar
Parameters), and then to block 6704 for getting the next (or
first) system parameter (block 6704 starts a loop for pro-
cessing system(s)). At least one system parameter is required
for the find. If at least one system is not present for being
processed by block 6704, then block 6704 will handle the

C=Custom launch used (blocks 6620 through 6634);
O=Other processing (MS2MS or local) used (blocks 6636

through 6648).
Any of the Connect command operand combinations can be
carried out with either of the methodologies. The second
colunm shows a preferred methodology (PM). The third
colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from

60 error and continue to block 6752 for returning to the caller
(not shown----considered obvious error handling, or was
already validated at configuration time). Block 6704 con
tinues to block 6706. If block 6706 determines that an
unprocessed system parameter remains, then processing

65 continues to block 6708. If block 6708 determines the
system is not the MS of FIG. 67 A processing, then MS2MS
processing is used to accomplish the remote find processing,

Petitioners' Ex. 1001, Page 468 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
283

in which case block 6708 continues to block 6710 for
preparing parameters for FIG. 75A processing. Thereafter,
block 6712 checks to see if there were any parameter errors
since block 6710 also validates them prior to preparing
them. If block 6712 determines there was at least one 5

parameter error, then block 6713 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing continues back to block 6704. If block 6712
determines there were no errors, then block 6714 invokes the
procedure of FIG. 75A for sending the data (find command, 10

operand and parameters) for remote find processing at the
remote MS. Processing then continues back to block 6704.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data for
the find command to the remote MS for finding sought 15

operand dependent criteria at the remote MS, and FIG. 75B
blocks 7578 through 7584 carry out processing specifically
for the find command. Block 7584 processes the find com
mand for finding sought criteria in context of the Operand at
the MS of FIG. 75B processing. Blocks 7574 and 7576 will 20

return the results to the requesting MS of FIG. 75A pro
cessing, and block 7510 will complete appropriate find
processing. Note that block 7510 preferably includes appli
cation launch processing (e.g. like found in FIG. 67A) for
invoking the best application in the appropriate manner with 25

the find results returned. The application should be enabled
for searching remote MSs further if the user chooses to do
so. Another embodiment of block 7510 processes the search
results and displays them to the user and/or logs results to a
place the user can check later and/or logs results to a place 30

a local MS application can access the results in an optimal
manner. In some embodiments, find processing is spawned
at the remote MS and the interface results are presented to
the remote user. In some embodiments, the find processing
results interface is presented to the user of FIG. 67A 35

processing. In some embodiments, find processing is passed
an additional parameter for whether or not to spawn the
search interface at the remote MS for the benefit of the
remote MS user (at MS of FIG. 75B processing), orto spawn
locally for the benefit of the user of the MS of FIG. 67A 40

processing.

284
O/S contextual launch, for example if parameters are passed
to the application which is invoked for finding the object.
Processing leaves block 6724 and returns to block 6704.

An example of block 6724 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 6716, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 6726. If block 6726 determines the "Operand" indi-
cates to perform a custom launch, then parameter(s) are
validated at block 6728 and block 6730 checks the result. If
block 6730 determines there was at least one error, then
block 6732 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to block 6704. If block 6730 determines there were no
parameter errors, then processing continues to block 6734.

If block 6734 determines the custom launch is not to use
an Application Prograniming Interface (API) to launch the
applicable search application for finding the object passed as
a parameter, then block 6736 prepares a command string for
launching the particular application, block 6738 invokes the
command string for launching the application, and process-
ing continues to block 6704.

If block 6734 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for finding the object passed as a
parameter, then block 6740 prepares any API parameters as
necessary, block 6742 invokes the API for launching the
application, and processing continues back to block 6704.

Referring back to block 6726, if it is determined that the
"Operand" indicates to perform the find command with
other local processing, then parameter(s) are validated at
block 6744 and block 6746 checks the result. If block 6746
determines there was at least one error, then block 6748
handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to
block 6704. If block 6746 determines there were no param
eter errors, then block 6750 checks the operand for which
find processing to perform, and performs find processing
appropriately. Processing then continues back to block 6704. In one embodiment, block 6714 causes processing at a

remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system
is not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 67 A process
ing). The remote data processing system may be a service
data processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage,
memory, or operating system resources which is shared by
many MSs.

Referring back to block 6704, if it is determined that there
are no remaining unprocessed system parameters, then pro-

45 cessing returns to the caller at block 6752.
In FIG. 67A, "Parameters" for the atomic find command

in accordance with the "Operand" were shown to be vali
dated for being properly privileged prior to FIG. 67A
processing (by FIG. 61 processing). However, an alternate

50 embodiment could move some or all applicable privilege
validation to FIG. 67 A in context of where the "Parameters"

Referring back to block 6708, if it is determined that the
system for processing is the MS of FIG. 67A processing,
then processing continues to block 6716 for checking which 55

"Operand" was passed. If block 6716 determines the "Oper
and" indicates to launch a search application for the sought
operand with a standard contextual object type interface,
then parameter(s) are validated at block 6718 and block
6720 checks the result. If block 6720 determines there was 60

are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 67 A
processing occurs (e.g. no blocks 6720/6722 and/or 6728/
6730 and/or 6746/6748 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 67B-1 through 67B-13 depicts a matrix describing
how to process some varieties of the Find command (e.g. as
processed at blocks 6750 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first
column). The second colunm shows the Preferred Method-

at least one error, then block 6722 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing returns back to block 6704. If block 6720
determines there were no parameter errors, then block 6724
interfaces to the MS operating system to start the search
application for the particular object passed as a parameter.
Block 6724 may prepare parameters in preparation for the

65 ology (PM) for carrying out Find command processing:
S=Standard contextual launch used (blocks 6716 through

6724);
Petitioners' Ex. 1001, Page 469 of 553

Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC
IPR2022-00420

US 10,477,994 B2
285

C=Custom launch used (blocks 6726 through 6742);
O=Other processing (MS2MS or local) used (blocks 6744

through 6750, blocks 6708 through 6714).
Any of the Find command operand combinations can be

carried out with either of the methodologies. The second 5

colunm shows a preferred methodology (PM). The third
colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Find processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self 10

explanatory.
With reference back to FIGS. 31A through 31E, note that

the colunm of information headed by "107" represents the
parameters applicable for the Find command. The Find
command has the following parameters, all of which are 15

interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
system(s)=One or more destination identities for the Find

command (e.g. MS ID or a data processing system 20

identifier).
FIG. 67C depicts a flowchart for describing one embodi

ment of a procedure for Find command action processing, as
derived from the processing of FIG. 67 A. All operands are
implemented, and each of blocks F04 through F54 can be 25

implemented with any one of the methodologies described
with FIG. 67A, or any one of a blend of methodologies
implemented by FIG. 67C.

Find command processing discussed thus far demon
strates multithreaded/multiprocessed processing for each 30

system to search. In one embodiment, the same methodol
ogy is used for each system and each launched find pro
cessing saves results to a common format and destination. In
this embodiment, block 6706 processing continues to a new
block 6751 when all systems are processed. New block 6751 35

gathers the superset of find results saved, and then launches
an application (perhaps the same one that was launched for
each find) to show all results found asynchronously from
each other. The application launched will be launched with
the same choice of schemes as blocks 6716 through 6750. 40

Block 6751 then continues to block 6752. This design
requires all applications invoked to terminate themselves
after saving search results appropriately for gathering a
superset and presenting in one find results interface. Then,
the new block 6751 handles processing for a single appli- 45

cation to present all search results.
In another embodiment, while an application may be

launched multiple times for each system, the application
itself is relied upon for handling multiple invocations. The
application itself has intelligence to know it was re-launched 50

thereby permitting a single resulting interface for multiple
target system searches, regardless of the number of times the
same search application was launched.

In one preferred embodiment, find processing permits
multiple instances of a search application launched wherein 55

Find processing is treated independently (this is shown in
FIG. 67A).

Preferably all find command embodiments provide the
ability to perform other commands (e.g. Copy, Move, Dis
card, Change, Administrate, etc) wherever possible from the 60

resulting interface in context for each search result found.
Find command data is preferably maintained to LBX

history, a historical log, or other useful storage for subse
quent use (some embodiments may include this processing
where appropriate). Additional find command parameters 65

can be provided for how and where to search (e.g. case
sensitivity, get all or first, how to present results, etc).

286
FIG. 68A depicts a flowchart for describing a preferred

embodiment of a procedure for Invoke command action
processing. The Spawn command, Do command, and
Invoke command provide identical processing. There are
five (5) primary methodologies for carrying out invoke
command processing:

1) Launching an application, executable, or program with
a standard contextual object type interface;

2) Custom launching of an application, executable, or
program;

3) Processing the invoke command locally;
4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote invocation; or
5) Using email or similar messaging layer as a transport

layer for invoking distributions.
In various embodiments, any of the invoke command Oper
ands can be implemented with either one of the methodolo
gies, although there may be a preference of which method
ology is used for which Operand. Atomic invoke command
processing begins at block 6802, continues to block 6804 for
accessing parameters of invoke command "Operand" (BNF
Grammar Operand) and "Parameters" (BNF Grammar
Parameters), and then to block 6892 for checking if the
Operand for invocation indicates to use the email (or similar
messaging transport). If block 6892 determines the Operand
is for email/messaging transport use, then block 6894
invokes send command processing of FIG. 63A with the
Operand and Parameters. Upon return, processing continues
to block 6852 for returning to the caller (invoker of FIG.
68A processing). If send processing of FIG. 63A (via block
6894) is to be used for Operands with a system(s) parameter,
then the system(s) parameter is equivalent to the recipient(s)
parameter and other parameters are set appropriately.

If block 6892 determines the Operand is not for the
email/messaging transport use, then processing continues to
block 6806 for getting the next (or first) system parameter
(block 6806 starts an iterative loop for processing
system(s)). At least one system parameter is required for the
invoke command at block 6806. If at least one system is not
present for being processed by block 6806, then block 6806
will handle the error and continue to block 6852 for return
ing to the caller (not shown-considered obvious error
handling, or was already validated at configuration time).
Block 6806 continues to block 6808. If block 6808 deter
mines that an unprocessed system parameter remains, then
processing continues to block 6810. If block 6810 deter
mines the system is not the MS of FIG. 68A processing, then
MS2MS processing is used to accomplish the remote invoke
processing, in which case block 6810 continues to block
6812 for preparing parameters for FIG. 75A processing, and
block 6814 invokes the procedure of FIG. 75A for sending
the data (invoke command, operand and parameters) for
remote invoke processing at the remote MS. Processing then
continues back to block 6806. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs sending data for the invoke command to
the remote MS for an invocation at the remote MS, and FIG.
75B blocks 7578 through 7584 carry out processing spe
cifically for the invoke command. Block 7584 processes the
invoke command for invocation in context of the Operand at
the MS of FIG. 75B processing (e.g. using invocation
methodologies of FIG. 68A).

In one embodiment, blocks 6812 and 6814 cause process
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data
processing system identifier accessible to the MS of FIG.

Petitioners' Ex. 1001, Page 470 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
287

68A processing). The remote data processing system may be
a service data processing system, or any other data process
ing system capable of similar MS2MS processing as
described for the invoke command, perhaps involving invo
cation of a suitable executable in context for the operand.

288
validated for being properly privileged prior to FIG. 68A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 68A in context of where the "Parameters"

5 are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 68A
processing occurs (e.g. no blocks 6820/6822 and/or 6830/
6832 and/or 6846/6848 required). In yet another embodi-

Referring back to block 6810, if it is determined that the
system for processing is the MS of FIG. 68A processing,
then processing continues to block 6816 for checking which
"Operand" was passed. If block 6816 determines the "Oper
and" indicates to invoke (launch) an appropriate application
for the operand with a standard contextual object type
interface, then parameter(s) are validated at block 6818 and
block 6820 checks the result. If block 6820 determines there
was at least one error, then block 6822 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns back to block 6806. If block
6820 determines there were no parameter errors, then block
6824 interfaces to the MS operating system to start the
appropriate application for the particular object passed as a
parameter. Block 6824 may prepare parameters in prepara- 20

tion for the O/S contextual launch, for example if parameters
are passed to the application which is invoked. Processing
leaves block 6824 and returns to block 6806.

10 ment, some defaulting of parameters is implemented.
FIGS. 68B-1 through 68B-5 depicts a matrix describing

how to process some varieties of the Invoke command (e.g.
as processed at blocks 6850 and 7584). Each row in the
matrix describes processing apparatus and/or methods for

15 carrying out command processing for certain operands (see
FIG. 34D for the Operand which matches the number in the
first colunm). The second colunm shows the Preferred
Methodology (PM) for carrying out Invoke command pro-
cessing:
S=Standard contextual launch used (blocks 6816 through

6824);
C=Custom launch used (blocks 6826 through 6842);
E=Email transport preferably used (blocks 6892 through

6894); An example of block 6824 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as described above for
block 6616.

Referring back to block 6816, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 6826. If block 6826 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 6828 and block 6830 checks the result. If

25 O=Other processing (MS2MS or local) used (blocks 6844
through 6850, blocks 6812 through 6814).

Any of the Invoke command operand combinations can be
carried out with either of the methodologies. The second
colunm shows a preferred methodology (PM). The third

30 colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Invoke processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self

block 6830 determines there was at least one error, then
block 6832 handles the error appropriately (e.g. log error to 35

LBX History 30 and/or notify user) and processing returns

explanatory.
With reference back to FIGS. 31A through 31E, note that

the colunm of information headed by "109" represents the
parameters applicable for the Invoke command. The Invoke
command has the following parameters, all of which are
interpreted in context of the Operand:

to block 6806. If block 6830 determines there were no
parameter errors, then processing continues to block 6834.

If block 6834 determines the custom invocation (launch)
is not to use an Application Programming Interface (API) to
invoke the application for the object passed as a parameter,
then block 6836 prepares a command string for invoking the
particular application, block 6838 invokes the command
string for launching the application, and processing contin
ues to block 6806.

If block 6834 determines the custom invocation (launch)
is to use an Application Programming Interface (API) to
invoke the application for the object passed as a parameter,
then block 6840 prepares any API parameters as necessary,
block 6842 invokes the API for launching the application,
and processing continues back to block 6806.

40 first parameter(s)=These are required, and are in context of
the Operand;

system(s)=One or more destination identities for the Invoke
command (e.g. MS ID or a data processing system
identifier);

45 sender=The sender of the Invoke command, typically tied to
the originating identity of the action (e.g. email address or
MS ID). A different sender can be specified if there is an
applicable privilege in place, or if impersonation has been
granted;

50 msg/subj=A message or subject associated with invoke
command;

Referring back to block 6826, if it is determined that the
"Operand" indicates to perform the invoke command with
other local processing, then parameter(s) are validated at
block 6844 and block 6846 checks the result. If block 6846 55

attributes=Indicators for more detailed interpretation of
invoke command parameters and/or indicators for attri
butes to be interpreted by external (e.g. receiving) pro
cesses affected by the invoke command result;

determines there was at least one error, then block 6848
handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to
block 6806. If block 6846 determines there were no param
eter errors, then block 6850 checks the operand for which
invoke processing to perform, and performs invoke com
mand processing appropriately.

Referring back to block 6808, if it is determined that there
are no remaining unprocessed system parameters, then pro
cessing returns to the caller at block 6852.

In FIG. 68A, "Parameters" for the atomic invoke com
mand in accordance with the "Operand" were shown to be

recipient(s)=One or more destination identities for the
Invoke command (e.g. email address or MS ID).
FIG. 68C depicts a flowchart for describing one embodi

ment of a procedure for Invoke command action processing,
60 as derived from the processing of FIG. 68A. All operands are

implemented, and each of blocks J04 through J54 can be
implemented with any one of the methodologies described
with FIG. 68A, or any one of a blend of methodologies

65

implemented by FIG. 68C.
In some embodiments, the invoke command may be used

as an overall strategy and architecture for performing most,
if not all, actions (e.g. other commands).

Petitioners' Ex. 1001, Page 471 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
289

FIG. 69A depicts a flowchart for describing a preferred
embodiment of a procedure for Copy command action
processing. There are four (4) primary methodologies for
carrying out copy command search processing:

290
application, block 6926 invokes the command string for
launching the application, and processing continues to block
6938 discussed below.

1) Launching an application, executable, or program with 5

a standard contextual object type interface, for finding
the source object(s) to copy;

If block 6922 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for searching, then block 6928 pre
pares any API parameters as necessary, block 6930 invokes
the API for launching the application, and processing con
tinues to block 6938.

2) Custom launching of an application, executable, or
program, for finding the source object(s) to copy;

3) Processing the copy command locally, for finding the 10

source object(s) to copy; or

Referring back to block 6916, if it is determined that the
"Operand" indicates to perform the copy command with
local search processing, then parameter(s) are validated at
block 6932 and block 6934 checks the result. If block 6934
determines there was at least one error, then block 6912
handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the

4) MS to MS communications (MS2MS) of FIGS. 75A
and 75B for finding the source object(s) to copy.

The source parameter specifies which system is to be the
15

source of the copy: the MS of FIG. 69A processing or a
remote data processing system. caller at block 6960. If block 6934 determines there were no

parameter errors, then block 6936 searches for the operand
object in context for the Operand, and processing continues

There are two (2) primary methodologies for carrying out
copy command copy processing:

1) Using local processing;
2) MS to MS communications (MS2MS) of FIGS. 75A

and 75B for remote copying.

20 to block 6938.

In various embodiments, any of the copy command Oper
ands can be implemented with either of the methodologies,
although there may be a preference of which methodology 25

is used for which Operand. Atomic copy command process
ing begins at block 6900, continues to block 6902 for
accessing parameters of copy command "Operand" (BNF
Granimar Operand) and "Parameters" (BNF Grammar

Referring back to block 6904, if it is determined the
source parameter is not for this MS, then block 6962
prepares parameters for FIG. 75A processing. Thereafter,
block 6964 checks to see if there were any parameter errors
since block 6962 also validates them prior to preparing
them. If block 6964 determines there was at least one
parameter error, then block 6912 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing returns to the caller at block 6960. If block
6964 determines there were no errors, then block 6966
invokes the procedure of FIG. 75A for sending the data

Parameters), and continues to block 6904. 30

If block 6904 determines the source system parameter
(source) is this MS, then processing continues to block 6906.
If block 6906 determines the "Operand" indicates to launch
a search application for the sought operand object with a

35
standard contextual object type interface, then parameter(s)
are validated at block 6908 and block 6910 checks the result.

(copy command, operand and parameters) for remote copy
search processing at the remote MS. Processing then con
tinues to block 6938 discussed below. MS2MS processing is
as already described above (see FIGS. 75A and 75B), except
FIG. 75A performs searching for data for the copy command
at the remote MS, and FIG. 75B blocks 7578 through 7584
carry out processing specifically for the copy command
search processing. Block 7584 processes the copy command

If block 6910 determines there was at least one error, then
block 6912 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 6960. If block 6910 deter
mines there were no parameter errors, then block 6914
interfaces to the MS operating system to start the search
application for the particular object (for Operand). Block
6914 may prepare parameters in preparation for the operat
ing system. Processing leaves block 6914 and continues to
block 6938 which is discussed below.

An example of block 6914 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 6906, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 6916. If block 6916 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 6918 and block 6920 checks the result. If
block 6920 determines there was at least one error, then
block 6912 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller at block 6960. If block 6920 determines there
were no parameter errors, then processing continues to block
6922.

If block 6922 determines the custom launch is not to use
an Application Programming Interface (API) to launch the
searching application for copying the object, then block
6924 prepares a command string for launching the particular

40 for finding the object to copy in context of the Operand.
Blocks 7574 and 7576 will return the results to the request
ing MS of FIG. 75A processing, and block 7510 will
complete appropriate copy search processing so that FIG.
69A processing receives the search results. FIG. 75A can

45 convey the found object(s) for copy by returning from a
function interface (the send procedure being a function),
returning to a file, setting data visible to both processes, etc.
Note that block 7510 may invoke application launch pro
cessing (e.g. like found in FIG. 69A) for invoking the best

50 application in the appropriate manner for determining copy
search results returned from FIG. 75B processing, or block
7510 may process results itself.

In one embodiment, block 6966 causes processing at a
remote data processing system which incorporates similar

55 MS2MS processing, but the remote data processing system
is not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 67A process
ing). The remote data processing system may be a service
data processing system, or any other data processing system

60 capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

By the time processing reaches block 6938 from any
65 previous FIG. 69A processing, a search result is communi

cated to processing and any launched executable (_applica
tion) for searching for the copy object(s) has terminated.

Petitioners' Ex. 1001, Page 472 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
291

Search results can be passed back as a function return,
placed to a well known directory, placed to a file, placed to
interfaced variable(s), or other communications of the result
to further processing. Regardless of the embodiment, search
results are accessed at block 6938. An alternate embodiment 5

is like FIG. 70A wherein the application/processing invoked
at blocks 6914, 6926, 6930 and 6936 handles the ack
parameter and ambiguous results appropriately (i.e. no need
for blocks 6938 through 6958) to proceed with completing
the copy (processing of blocks 6938 through 6958 incorpo- 10

rated). Different methods are disclosed for similar process
ing to highlight methods for carrying out processing for
either one of the commands (Copy or Discard).

Block 6938 checks the results of finding the source object
for copying to ensure there are no ambiguous results (i.e. not 15

sure what is being copied since the preferred embodiment is
to not copy more than a single operand object at a time). If
block 6938 determines that there was an ambiguous search
result, then processing continues to block 6912 for error
handling as discussed above (e.g. in context for an ambigu- 20

ous copy since there were too many things to copy). If block
6938 determines there is no ambiguous entity to copy, block
6940 checks the acknowledgement parameter passed to FIG.
69A processing. An alternate embodiment assumes that a
plurality of results is valid for copying all results to the target 25

system(s) (i.e. no ambiguous check). In another embodi
ment, an ambiguous result relies on user reconciliation to
reconcile whether or not to perform the copy (like FIG. 70A
discard processing).

If block 6940 determines the acknowledgement (ack) 30

parameter is set to true, then block 6942 provides the search
result which is to be copied. Thereafter, processing waits for
a user action to either a) continue with the copy; orb) cancel
the copy. Once the user action has been detected, processing
continues to block 6944. Block 6942 provides a user rec- 35

onciliation of whether or not to perform the copy. In another
embodiment, there is no ack parameter and multiple results
detected at block 6938 forces processing into the reconcili
ation by the MS user. In yet another embodiment, the ack
parameter is still provided, however multiple search results 40

forces processing into the reconciliation by the MS user
anyway for selecting which individual object shall be cop
ied. In still other embodiments, all results are copied.

If block 6944 determines the user selected to cancel
processing, then block 6946 logs the cancellation (e.g. log 45

error to LBX History 30) and processing returns to the caller

292
MS. Processing then continues back to block 6948. MS2MS
processing is as already described above (see FIGS. 75A and
75B), except FIG. 75A performs sending data for the copy
action to the remote MS for copying sought operand depen
dent criteria to the remote MS, and FIG. 75B blocks 7578
through 7584 carry out processing specifically for the copy
processing. Block 7584 processes the copy of the search
result from FIG. 69A to the system of FIG. 75B processing.

In one embodiment, blocks 6956 and 6958 cause process
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data
processing system identifier accessible to the MS of FIG.
69A processing). The remote data processing system may be
a service data processing system, or any other data process
ing system capable of similar MS2MS processing as
described for the copy command, perhaps involving storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 6950, if it is determined that there
are no remaining unprocessed system parameters, then pro
cessing returns to the caller at block 6960.

In FIG. 69A, "Parameters" for the atomic copy command
in accordance with the "Operand" were shown to be vali
dated for being properly privileged prior to FIG. 69A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 69Ain context of where the "Parameters"
are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 69A
processing occurs (e.g. no blocks 6908/6910 and/or 6918/
6920 and/or 6932/6934 required). In yet another embodi
ment, some defaulting of parameters is implemented.

The first parameter may define a plurality of entities to be
copied when the object inherently contains a plurality (e.g.
directory, container). In an alternate embodiment, the search
results for copying can be plural without checking for
ambiguity at block 6938, in which case all results returned
can/will be copied to the target systems.

FIGS. 69B-1 through 69B-14 depicts a matrix describing
how to process some varieties of the Copy command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first colunm). The second colunm shows the
Preferred Methodology (PM) for carrying out Copy com
mand processing:
S=Standard contextual launch used (blocks 6906 through

6914);
C=Custom launch used (blocks 6916 through 6930);
O=Other processing used (e.g. block 6936).
Any of the Copy command operand combinations can be
carried out with either of the methodologies. The second

at block 6960. If block 6944 determines the user selected to
proceed with the copy, then processing continues to block
6948 for getting the next (or first) system parameter (block
6948 starts a loop for processing system(s) for the copy 50

result). Also, if block 6940 determines that the ack param
eter was set to false, then processing continues directly to
block 6948. At least one system parameter is required for the
copy as validated by previous parameter validations. Block
6948 continues to block 6950. If block 6950 determines that 55 colurmi shows a preferred methodology (PM). The third

colurmi describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Copy processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self

an unprocessed system parameter remains, then processing
continues to block 6952. If block 6952 determines the
system (target for copy) is the MS of FIG. 69A processing,
then block 6954 appropriately copies the source object to the
system and processing continues back to block 6948. If
block 6952 determines the system is not the MS of FIG. 69A
processing, then MS2MS processing is used to accomplish
the copy processing to the remote data processing system
(e.g. MS), in which case block 6956 prepares parameters for
FIG. 75A processing, and block 6958 invokes the procedure
of FIG. 75A for sending the data (copy command, operand,
and search result) for remote copy processing at the remote

60 explanatory.
With reference back to FIGS. 31A through 31E, note that

the colurmi of information headed by "111" represents the
parameters applicable for the Copy command. The Copy
command has the following parameters, all of which are

65 interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the

Operand;

Petitioners' Ex. 1001, Page 473 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
293

ack=Boolean for whether or not to prompt user for perform
ing the copy, prior to doing the copy.

source=A source identity for the Copy command (e.g. MS
ID or a data processing system identifier);

system(s)=One or more destination identities for the Copy 5

command (e.g. MS ID or a data processing system
identifier).
In a preferred embodiment, an additional parameter is

provided for specifying the target destination of the system
for the copy. For example, a directory can be placed to a 10

target path, an email can be placed to a target folder, etc.
Otherwise, there is an assumed target destination. In another
embodiment, a user can select from a plurality of search
results which objects are to be copied.

FIG. 69C depicts a flowchart for describing one embodi- 15

ment of a procedure for Copy command action processing,
as derived from the processing of FIG. 69A. All operands are
implemented, and each of blocks C04 through C54 can be
implemented with any one of the methodologies described
with FIG. 69A, or any one of a blend of methodologies 20

implemented by FIG. 69C.
FIG. 70A depicts a flowchart for describing a preferred

embodiment of a procedure for Discard command action
processing. The Delete command, "Throw Away" com
mand, and Discard command provide identical processing. 25

There are four (4) primary methodologies for carrying out
discard command processing:

1) Launching an application, executable, or program with
a standard contextual object type interface;

2) Custom launching of an application, executable, or 30

program;
3) Processing the discard command locally; or
4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote discarding.

294
above (see FIGS. 75A and 75B), except FIG. 75A performs
sending data for the discard command to the remote MS for
discarding sought operand dependent criteria at the remote
MS, and FIG. 75B blocks 7578 through 7584 carry out
processing specifically for the discard command. Block
7584 processes the discard command for discarding sought
criteria in context of the Operand. In a preferred embodi
ment, the discard takes place when privileged, and when an
ack parameter is not provided or is set to false.

Blocks 7574 and 7576 will return the results to the
requesting MS of FIG. 75A processing when the ack param
eter is set to true, and block 7510 will complete appropriate
discard processing after prompting the user of the MS of
FIG. 75A processing for whether or not to continue (just like
blocks 7054 through 7060 discussed below). Note that block
7510 may include invoking the best application in the
appropriate manner (e.g. like found in FIG. 70A) with the
discard results returned when an acknowledgement (ack
parameter) has been specified to true, or block 7510 may
process results appropriately itself. Processing should be
enabled for then continuing with the discard through another
invocation of FIG. 75A (from block 7510 and a following
processing of blocks 7578 through 7584 to do the discard)
if the user chooses to do so. Block 7510 includes significant
processing, all of which has been disclosed in FIG. 70A
anyway and then included at block 7510 if needed there for
ack processing.

In one embodiment, block 7018 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system
is not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 70A process
ing). The remote data processing system may be a service
data processing system, or any other data processing system

In various embodiments, any of the discard command Oper
ands can be implemented with either one of the methodolo
gies, although there may be a preference of which method
ology is used for which Operand. Atomic discard command
processing begins at block 7002, continues to block 7004 for
accessing parameters of discard command "Operand" (BNF
Granimar Operand) and "Parameters" (BNF Grammar
Parameters), and then to block 7006 for getting the next (or
first) system parameter (block 7006 starts an iterative loop
for processing system(s)). At least one system parameter is
required for the discard. If at least one system is not present
for being processed by block 7006, then block 7006 will
handle the error and continue to block 7062 for returning to
the caller (not shown----considered obvious error handling,

35 capable of similar MS2MS processing as described for the
discard command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7010, if it is determined that the
40 system for processing is the MS of FIG. 70A processing,

then processing continues to block 7020 for checking which
"Operand" was passed. If block 7020 determines the "Oper
and" indicates to launch a search application for the sought
operand with a standard contextual object type interface,

45 then parameter(s) are validated at block 7022 and block
7024 checks the result. If block 7024 determines there was

or was already validated at configuration time). Block 7006
continues to block 7008. If block 7008 determines that an 50

at least one error, then block 7016 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing returns back to block 7006. If block 7024
determines there were no parameter errors, then block 7026
interfaces to the MS operating system to start the search unprocessed system parameter remains, then processing

continues to block 7010. If block 7010 determines the
system is not the MS of FIG. 70A processing, then MS2MS
processing is used to accomplish the remote discard pro
cessing, in which case block 7010 continues to block 7012
for preparing parameters for FIG. 75A processing. Thereaf
ter, block 7014 checks to see if there were any parameter
errors since block 7012 also validates them prior to prepar
ing them. If block 7014 determines there was at least one
parameter error, then block 7016 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing continues back to block 7006. If block 7014
determines there were no errors, then block 7018 invokes the
procedure of FIG. 75A for sending the data (discard com
mand, operand and parameters) for remote discard process
ing at the remote MS. Processing then continues back to
block 7006. MS2MS processing is as already described

application for the particular object passed as a parameter
and then to continue with the discard for ack set to false, and
to prompt for doing the discard for the prompt set to true.

55 Block 7026 may prepare parameters in preparation for the
operating system, for example if parameters are passed to
the application which is invoked for discarding the object.
Processing leaves block 7026 and returns to block 7006. An
alternate embodiment processes like FIG. 69A wherein the

60 application launched at block 7026 produces only a search
result prior to continuing to block 7050. Then, the search
result is discarded if there are no ambiguous results or the
ack parameter is set to false, or there are ambiguous results
and the user selects to continue, or the ack parameter is set

65 to true and the user selects to continue. FIG. 70A demon
strates processing where the executable launched is an all
inclusive processing. Likewise, FIG. 69A can be like FIG.

Petitioners' Ex. 1001, Page 474 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
295 296

sure what is being discarded since the preferred embodiment
is to not discard more than a single operand object at a time).
If block 7050 determines that there was an ambiguous
search result, then processing continues to block 7052. If

70A wherein the application launched handles the ack
parameter appropriately. Different methods are disclosed for
similar processing to highlight methods to carrying out
processing for either one of the commands (Copy or Dis
card).

An example of block 7026 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

5 block 7050 determines there is no ambiguity, then process
ing continues to block 7054. If block 7054 determines the
ack parameter is set to true, then processing continues to
block 7052, otherwise processing continues to block 7060.
Block 7054 checks the acknowledgement parameter passed

10 to FIG. 70A processing. An alternate embodiment assumes
that a plurality of results is valid and discards all results at
the target system(s) (i.e. no ambiguous check). In another
embodiment, an ambiguous result causes error handling at

Referring back to block 7020, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 7028. If block 7028 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 7030 and block 7032 checks the result. If 15

block 7032 determines there was at least one error, then
block 7016 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns

block 7016 (like FIG. 69A copy processing).
Block 7052 causes processing for waiting for a user action

to either a) continue with the discard; or b) cancel the
discard. Once the user action has been detected, processing
continues to block 7056. Block 7052 provides a user rec
onciliation of whether or not to perform the discard. In to block 7006. If block 7032 determines there were no

parameter errors, then processing continues to block 7034.
If block 7034 determines the custom launch is not to use

20 another embodiment, there is no ack parameter and multiple
results detected at block 7048 are handled for the discard.

If block 7056 determines the user selected to cancel
processing, then block 7058 logs the cancellation (e.g. log
error to LBX History 30) and processing returns to block
7006. If block 7056 determines the user selected to proceed
with the discard, then processing continues to block 7060.
Block 7060 performs the discard of the object(s) found at
block 7048. Thereafter, processing continues back to block
7006.

Referring back to block 7008, if it is determined that there
are no remaining unprocessed system parameters, then pro
cessing returns to the caller at block 7062.

In FIG. 70A, "Parameters" for the atomic discard com
mand in accordance with the "Operand" were shown to be

an Application Programming Interface (API) to launch the
applicable search application for discarding the object
passed as a parameter, then block 7036 prepares a command
string for launching the particular application, block 7038 25

invokes the command string for launching the application,
and processing continues to block 7006. An alternate
embodiment processes like FIG. 69A wherein the applica
tion launched at block 7026 produces only a search result
prior to continuing to block 7050. Then, the search result is 30

discarded if there are no ambiguous results or the ack
parameter is set to false, or there are ambiguous results and
the user selects to continue, or the ack parameter is set to true
and the user selects to continue. FIG. 70A demonstrates
processing where the executable launched is an all inclusive
processing (e.g. includes processing of blocks 7050 through
7060).

If block 7034 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for discarding the object passed as a
parameter, then block 7040 prepares any API parameters as
necessary, block 7042 invokes the API for launching the
application, and processing continues back to block 7006.
An alternate embodiment processes like FIG. 69A wherein
the application launched at block 7042 produces only a 45

search result prior to continuing to block 7050. Then, the
search result is discarded if there are no ambiguous results

35 validated for being properly privileged prior to FIG. 70A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 70A in context of where the "Parameters"

or the ack parameter is set to false, or there are ambiguous
results and the user selects to continue, or the ack parameter
is set to true and the user selects to continue. FIG. 70A
demonstrates processing where the executable launched is
an all inclusive processing (includes processing of blocks
7050 through 7060).

Referring back to block 7028, if it is determined that the
"Operand" indicates to perform the discard command with
other local processing, then parameter(s) are validated at
block 7044 and block 7046 checks the result. If block 7046
determines there was at least one error, then block 7016
handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to
block 7006. If block 7046 determines there were no param
eter errors, then block 7048 checks the operand for which
discard processing to perform, and performs discard search
processing appropriately. Thereafter, block 7050 checks the
results.

Block 7050 checks the results of finding the source object
for discard to ensure there are no ambiguous results (i.e. not

are processed. Also, some embodiments may not validate
40 "Parameters" since they (or some reasonable subset thereof)

can be understood to be in good order by the time FIG. 70A
processing occurs (e.g. no blocks 7022/7024 and/or 7030/
7032 and/or 7044/7046 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 70B-1 through 70B-11 depicts a matrix describing
how to process some varieties of the Discard command.
Each row in the matrix describes processing apparatus
and/or methods for carrying out command processing for
certain operands (see FIG. 34D for the Operand which

50 matches the number in the first colunm). The second colunm
shows the Preferred Methodology (PM) for carrying out
Discard command processing:
S=Standard contextual launch used (blocks 7020 through

7026);
55 C=Custom launch used (blocks 7028 through 7042);

O=Other processing (MS2MS or local) used (blocks 7044
through 7060, blocks 7012 through 7018).
Any of the Discard command operand combinations can

be carried out with either of the methodologies. The second
60 colunm shows a preferred methodology (PM). The third

colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from
the Discard processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self

65 explanatory.
With reference back to FIGS. 31A through 31E, note that

the colunm of information headed by "113" represents the

Petitioners' Ex. 1001, Page 475 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
297

parameters applicable for the Discard command. The Dis
card command has the following parameters, all of which
are interpreted in context of the Operand:

298
block 7112 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller (invoker) at block 7160. If block 7110 deter
mines there were no parameter errors, then block 7114 first parameter(s)=This is required, and is in context of the

Operand;
ack=Boolean for whether or not to prompt user for perform

ing the discard, prior to doing the discard.
system(s)=One or more identities affected for the Discard

command (e.g. MS ID or a data processing system
identifier).

5 interfaces to the MS operating system to start the search
application for the particular object. Block 7114 may pre
pare parameters in preparation for the operating system.
Processing leaves block 7114 and continues to block 7138
which is discussed below.

10

Discard command processing discussed thus far demon
strates multithreaded/multiprocessed processing for each
system to search. In search results processing, for example
when a plurality of results for discard are available, an
application may be launched multiple times. For each sys- 15

tern, the application itself is relied upon for handling mul
tiple invocations. The application itself has intelligence to
know it was re-launched thereby permitting a single result
ing interface for multiple target system searches, regardless
of the number of times the same search application was 20

launched. In a preferred embodiment, discard processing
permits multiple instances of a search application launched.

An example of block 7114 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7106, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 7116. If block 7116 determines the "Operand" indi-
cates to perform a custom launch, then parameter(s) are
validated at block 7118 and block 7120 checks the result. If
block 7120 determines there was at least one error, then
block 7112 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to the caller at block 7160. If block 7120 determines there In another embodiment, a user selects which of a plurality of

results are to be discarded prior to discarding. were no parameter errors, then processing continues to block
25 7122. FIG. 70C depicts a flowchart for describing one embodi

ment of a procedure for Discard command action process
ing, as derived from the processing of FIG. 70A. All
operands are implemented, and each of blocks D04 through
D54 can be implemented with any one of the methodologies
described with FIG. 70A, or any one of a blend of method- 30

ologies implemented by FIG. 70C.

If block 7122 determines the custom launch is not to use
an Application Prograniming Interface (API) to launch the
searching application for moving the object, then block 7124
prepares a command string for launching the particular
application, block 7126 invokes the command string for
launching the application, and processing continues to block
7138 discussed below.

If block 7122 determines the custom launch is to use an
Application Programming Interface (API) to launch the

FIG. 71A depicts a flowchart for describing a preferred
embodiment of a procedure for Move command action
processing. There are four (4) primary methodologies for
carrying out move command search processing:

1) Launching an application, executable, or program with
a standard contextual object type interface, for finding
the source object(s) to move;

35 applicable application for searching, then block 7128 pre
pares any API parameters as necessary, block 7130 invokes
the API for launching the application, and processing con
tinues to block 7138.

Referring back to block 7116, if it is determined that the 2) Custom launching of an application, executable, or
program, for finding the source object(s) to move;

3) Processing the move command locally, for finding the
source object(s) to move; or

4) MS to MS communications (MS2MS) of FIGS. 75A

40 "Operand" indicates to perform the move command with
local search processing, then parameter(s) are validated at
block 7132 and block 7134 checks the result. If block 7134
determines there was at least one error, then block 7112

and 75B for finding the source object(s) to move.
The source parameter specifies which system is to be the 45

source of the move: the MS of FIG. 71A processing or a
remote data processing system.
There are two (2) primary methodologies for carrying out
move command processing:

1) Using local processing;
2) MS to MS communications (MS2MS) of FIGS. 75A

and 75B for remote processing.

50

handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller at block 7160. If block 7134 determines there were no
parameter errors, then block 7136 searches for the operand
object in context for the Operand, and processing continues
to block 7138.

Block 7138 checks the results of finding the source object
for moving to ensure there are no ambiguous results (i.e. not
sure what is being moved since the preferred embodiment is
to not move more than a single operand object at a time). If
block 7138 determines there was an ambiguous search
result, then processing continues to block 7112 for error
handling as discussed above (e.g. in context for an ambigu-
ous move since there were too many things to move). If
block 7138 determines there is no ambiguous entity to move,
block 7140 checks the acknowledgement parameter passed

In various embodiments, any of the move command Oper
ands can be implemented with either of the methodologies,
although there may be a preference of which methodology 55

is used for which Operand. Atomic move command pro
cessing begins at block 7100, continues to block 7102 for
accessing parameters of move command "Operand" (BNF
Granimar Operand) and "Parameters" (BNF Grammar
Parameters), and continues to block 7104. 60 to FIG. 71A processing. An alternate embodiment assumes

that a plurality of results is valid and moves all results to the
target system(s) (i.e. no ambiguous check). In another
embodiment, an ambiguous result relies on user reconcili-

If block 7104 determines the source system parameter
(source) is this MS, then processing continues to block 7106.
If block 7106 determines the "Operand" indicates to launch
a search application for the sought operand object with a
standard contextual object type interface, then parameter(s) 65

are validated at block 7108 and block 7110 checks the result.
If block 7110 determines there was at least one error, then

ation to reconcile whether or not to perform the move (like
FIG. 70A discard processing).

If block 7140 determines the acknowledgement (ack)
parameter is set to true, then block 7142 provides the search

Petitioners' Ex. 1001, Page 476 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
299

result which is to be moved. Thereafter, processing waits for
a user action to either a) continue with the move; orb) cancel
the move. Once the user action has been detected, process
ing continues to block 7144. Block 7142 provides a user
reconciliation of whether or not to perform the move. In
another embodiment, there is no ack parameter and multiple
results detected at block 7138 forces processing into the
reconciliation by the user. In yet another embodiment, the
ack parameter is still provided, however multiple search
results forces processing into the reconciliation by the MS
user anyway for selecting which individual object shall be
moved. In still other embodiments, all results are moved.

If block 7144 determines the user selected to cancel

300
and FIG. 75B blocks 7578 through 7584 carry out process
ing specifically for at least the move command search
processing for the source system. Block 7584 processes the
move command for finding the object to move in context of

5 the Operand. Blocks 7574 and 7576 will return the results to
the requesting MS of FIG. 75A processing, and block 7510
will complete appropriate move search processing so that
FIG. 71A processing receives the search results. FIG. 75A
can convey the found object(s) for the move by returning

10 from a function interface (the send procedure being a
function), returning to a file, setting data visible to both
processes, etc. Note that block 7510 may include application
launch processing (e.g. like found in FIG. 71A) for invoking

processing, then block 7146 logs the cancellation (e.g. log
error to LBX History 30) and processing returns to the caller 15

at block 7160. If block 7144 determines the user selected to

the best application in the appropriate manner for determin
ing move search results returned from FIG. 75B processing,
or block 7510 may process returned results itself.

proceed with the move, then processing continues to block
7148 for getting the next (or first) system parameter (block
7148 starts an iterative loop for processing system(s) for the
move result). Also, if block 7140 determines that the ack
parameter was set to false, then processing continues
directly to block 7148. At least one system parameter is
required for the move as validated by previous parameter
validations. Block 7148 continues to block 7150.

If block 7150 determines that an unprocessed system
parameter remains, then processing continues to block 7152.

In one embodiment, block 7166 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system

20 is not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 71A process
ing). The remote data processing system may be a service
data processing system, or any other data processing system
capable of similar MS2MS processing as described for the

25 find command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs. If block 7152 determines the system (target for move) is the

MS of FIG. 71A processing, then block 7154 appropriately
moves the source object to the system and processing
continues back to block 7148. If block 7152 determines the
system is not the MS of FIG. 71A processing, then MS2MS
processing is used to accomplish the move processing to the
remote data processing system (e.g. MS), in which case
block 7156 prepares parameters for FIG. 75A processing,
and block 7158 invokes the procedure of FIG. 75A for
sending the data (move command, operand, and search
result) for remote move processing at the remote MS.
Processing then continues back to block 7148. MS2MS
processing is as already described above (see FIGS. 75A and
75B), except FIG. 75A performs sending data for the move
action to the remote MS for moving sought operand depen
dent criteria to the remote MS, and FIG. 75B blocks 7578
through 7584 carry out processing specifically for the move
processing. Block 7584 processes the move of the search
result from FIG. 71A to the system of FIG. 75B processing. 45

By the time processing reaches block 7138 from any
previous FIG. 71A processing, a search result is communi-

30 cated to processing and any launched executable (_applica
tion) for searching for the move object(s) has terminated.
Search results can be passed back as a function return,
placed to a well known directory, placed to a file, placed to
interfaced variable(s), or other communications of the result

35 to further processing. Regardless of the embodiment, search
results are accessed at block 7138. An alternate embodiment
is like FIG. 70A wherein the application/processing invoked
at blocks 7114, 7126, 7130 and 7136 handles the ack
parameter and ambiguous results appropriately (i.e. no need

40 for blocks 7138 through 7158) to proceed with completing
the move (processing of blocks 7138 through 7158 incor
porated). Different methods are disclosed for similar pro
cessing to highlight methods for carrying out processing for
either one of the commands (Move or Discard).

In one embodiment, blocks 7156 and 7158 cause process-
Referring back to block 7104, if it is determined the

source parameter is not for this MS, then block 7162
prepares parameters for FIG. 75A processing. Thereafter,
block 7164 checks to see if there were any parameter errors
since block 7162 also validates them prior to preparing
them. If block 7164 determines there was at least one
parameter error, then block 7112 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing returns to the caller at block 7160. If block
7164 determines there were no errors, then block 7166
invokes the procedure of FIG. 75A for sending the data
(move command, operand and parameters) for remote move
search processing at the remote MS. Processing then con
tinues to block 7138. In one embodiment, the object(s) to
move are discarded from the source system (via block 7166)

ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data
processing system identifier accessible to the MS of FIG.

50 71A processing). The remote data processing system may be
a service data processing system, or any other data process
ing system capable of similar MS2MS processing as
described for the move command, perhaps involving stor
age, memory, or operating system resources which are

55 shared by many MSs.
Referring back to block 7150, if it is determined that there

are no remaining unprocessed system parameters, then pro
cessing returns to the caller at block 7160.

In FIG. 71A, "Parameters" for the atomic move command
60 in accordance with the "Operand" were shown to be vali

dated for being properly privileged prior to FIG. 71A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 71A in context of where the "Parameters"

in preparation for the move command processing at blocks
7154 and 7158. In another embodiment, the object(s) to
move will be discarded from the source system when
completing move processing at blocks 7154 or 7158.
MS2MS processing via block 7166 is as already described 65

above (see FIGS. 75A and 75B), except FIG. 75A performs
searching for data for the move command at the remote MS,

are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 71A

Petitioners' Ex. 1001, Page 477 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
301

processing occurs (e.g. no blocks 7108/7110 and/or 7118/
7120 and/or 7132/7134 required). In yet another embodi
ment, some defaulting of parameters is implemented.

The first parameter may define a plurality of entities to be
moved when the object inherently contains a plurality (e.g. 5

directory, container). In an alternate embodiment, the search
results for moving can be plural without checking for
ambiguity at block 7138, in which case all results returned
will be moved to the target systems.

FIGS. 71B-1 through 71B-14 depicts a matrix describing 10

how to process some varieties of the Move command. The
end result of a move command is identical to "Copy"
command processing except the source is "Discard" -ed as
part of processing (preferably after the copy). Each row in

15
the matrix describes processing apparatus and/or methods
for carrying out command processing for certain operands
(see FIG. 34D for the Operand which matches the number
in the first colunm). The second colunm shows the Preferred
Methodology (PM) for carrying out Move command pro- 20

cessing:
S=Standard contextual launch used (blocks 7106 through

7114);

302
4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for storing remotely.
In various embodiments, any of the store command Oper
ands can be implemented with either one of the methodolo
gies, although there may be a preference of which method
ology is used for which Operand. Atomic store command
processing begins at block 7202, continues to block 7204 for
accessing parameters of store command "Operand" (BNF
Grammar Operand) and "Parameters" (BNF Grammar
Parameters), and then to block 7206 for getting the next (or
first) system parameter (block 7206 starts an iterative loop
for processing system(s)). At least one system parameter is
required for the store command. If at least one system is not
present for being processed by block 7206, then block 7206
will handle the error and continue to block 7250 for return
ing to the caller (not shown-considered obvious error
handling, or was already validated at configuration time).
Block 7206 continues to block 7208. If block 7208 deter
mines that an unprocessed system parameter remains, then
processing continues to block 7210. If block 7210 deter
mines the system is not the MS of FIG. 72A processing, then
MS2MS processing is needed to accomplish the remote
store processing, in which case block 7210 continues to
block 7212 for preparing parameters for FIG. 75A process-C=Custom launch used (blocks 7116 through 7130);

O=Other processing used (e.g. block 7136). 25 ing. Thereafter, block 7214 checks to see if there were any
parameter errors since block 7212 also validates them prior
to preparing them. If block 7214 determines there was at
least one parameter error, then block 7216 handles the error

Any of the Move command operand combinations can be
carried out with either of the methodologies. The second
colunm shows a preferred methodology (PM). The third
colunm describes processing which is placed into flowchart
embodiments. There are many embodiments derived from 30

the Move processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the col= of information headed by "115" represents the 35

parameters applicable for the Move command. The Move
command has the following parameters, all of which are
interpreted in context of the Operand:

appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing continues back to block 7206. If block
7214 determines there were no errors, then block 7218
invokes the procedure of FIG. 75A for sending the data
(store command, operand and parameters) for remote store
processing at the remote MS. Processing then continues
back to block 7206. MS2MS processing is as already
described above (see FIGS. 75A and 75B), except FIG. 75A
performs sending data for the store command to the remote
MS for storing operand dependent criteria at the remote MS,
and FIG. 75B blocks 7578 through 7584 carry out process-first parameter(s)=This is required, and is in context of the

Operand;
ack=Boolean for whether or not to prompt user for perform

ing the move, prior to doing the move.

40 ing specifically for the store command. Block 7584 pro
cesses the store command for storing in context of the
Operand.

source=A source identity for the Move command (e.g. MS
ID or a data processing system identifier);

system(s)=One or more destination identities for the Move 45

command (e.g. MS ID or a data processing system
identifier).
In an alternate embodiment, an additional parameter is

provided for specifying the target destination of the system
for the move. For example, a directory can be placed to a 50

target path, an email can be placed to a target folder, etc.
FIG. 71C depicts a flowchart for describing one embodi

ment of a procedure for Move command action processing,
as derived from the processing of FIG. 71A. All operands are
implemented, and each of blocks M04 through M54 can be 55

implemented with any one of the methodologies described
with FIG. 71A, or any one of a blend of methodologies
implemented by FIG. 71C.

FIG. 72A depicts a flowchart for describing a preferred
embodiment of a procedure for Store command action 60

processing. There are four (4) primary methodologies for
carrying out store command processing:

1) Launching an application, executable, or program with
a standard contextual object type interface;

2) Custom launching of an application, executable, or 65

program;
3) Processing the store command locally; or

In one embodiment, block 7218 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system
is not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 72A process
ing). The remote data processing system may be a service
data processing system, or any other data processing system
capable of similar MS2MS processing as described for the
store command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7208, if it is determined that the
system for processing is the MS of FIG. 72A processing,
then processing continues to block 7220 for checking which
"Operand" was passed. If block 7220 determines the "Oper
and" indicates to launch a store application for the sought
operand with a standard contextual object type interface,
then parameter(s) are validated at block 7222 and block
7224 checks the result. If block 7224 determines there was
at least one error, then block 7216 handles the error appro
priately (e.g. log error to LBX History 30 and/or notify user)
and processing returns back to block 7206. If block 7224
determines there were no parameter errors, then block 7226
interfaces to the MS operating system to start the storing
application for the particular object passed as a parameter.

Petitioners' Ex. 1001, Page 478 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
303

Block 7226 may prepare parameters in preparation for the
operating system, for example if parameters are passed to
the application which is invoked for storing the object.
Processing leaves block 7226 and returns to block 7206.

304
S=Standard contextual launch used (blocks 7220 through

7226);
C=Custom launch used (blocks 7228 through 7242);
O=Other processing (MS2MS or local) used (blocks 7244

An example of block 7226 is similar to the Microsoft 5

Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

through 7248, blocks 7212 through 7218).
Any of the Store command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third
column describes processing which is placed into flowchart Referring back to block 7220, if it is determined the

"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 7228. If block 7228 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 7230 and block 7232 checks the result. If
block 7232 determines there was at least one error, then
block 7216 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to block 7206. If block 7232 determines there were no

10 embodiments. There are many embodiments derived from
the Store processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
15 the colunm of information headed by "117" represents the

parameters applicable for the Store command. The Store
command has the following parameters, all of which are
interpreted in context of the Operand:

parameter errors, then processing continues to block 7234. 20

first parameter(s)=These are required, and are in context of
the Operand;

If block 7234 determines the custom launch is not to use
an Application Programming Interface (API) to launch the
applicable application for storing the object passed as a
parameter, then block 7236 prepares a command string for
launching the particular application, block 7238 invokes the
command string for launching the application, and process
ing continues to block 7206.

If block 7234 determines the custom launch is to use an

system(s)=One or more destination identities for the Store
command (e.g. MS ID or a data processing system
identifier).

In an alternate embodiment, an ack parameter is provided for
25 proving a user reconciliation of the store processing (like

ack parameter in other commands) wherein the reconcilia
tion preferably presents the proposed store operation in an
informative mamier so that the user can make an easy

Application Programming Interface (API) to launch the
applicable application for storing the object passed as a 30

parameter, then block 7240 prepares any API parameters as
necessary, block 7242 invokes the API for launching the
application, and processing continues back to block 7206.

decision to proceed or cancel.
FIG. 72C depicts a flowchart for describing one embodi-

ment of a procedure for Store command action processing,
as derived from the processing of FIG. 72A. All operands are
implemented, and each of blocks R04 through R54 can be
implemented with any one of the methodologies described Referring back to block 7228, if it is determined that the

"Operand" indicates to perform the store command with
other local processing, then parameter(s) are validated at
block 7244 and block 7246 checks the result. If block 7246
determines there was at least one error, then block 7216
handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to
block 7206. If block 7246 determines there were no param
eter errors, then block 7248 checks the operand for which
store processing to perform, and performs store processing
appropriately. Processing then continues back to block 7206.

35 with FIG. 72A, or any one of a blend of methodologies
implemented by FIG. 72C.

FIG. 73A depicts a flowchart for describing a preferred
embodiment of a procedure for Administrate command
action processing. There are four (4) primary methodologies

40 for carrying out administrate command processing:
1) Launching an application, executable, or program with

a standard contextual object type interface;
2) Custom launching of an application, executable, or

program;
Referring back to block 7206, if it is determined that there 45

are no remaining unprocessed system parameters, then pro
cessing returns to the caller at block 7250.

3) Processing the administrate command locally; or
4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote administration.
In FIG. 72A, "Parameters" for the atomic store command In various embodiments, any of the administrate command

Operands can be implemented with either one of the meth
odologies, although there may be a preference of which
methodology is used for which Operand. Atomic adminis-
trate command processing begins at block 7302, continues
to block 7304 for accessing parameters of administrate
command "Operand" (BNF Grammar Operand) and

in accordance with the "Operand" were shown to be vali
dated for being properly privileged prior to FIG. 72A 50

processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 72A in context of where the "Parameters"
are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 72A
processing occurs (e.g. no blocks 7222/7224 and/or 7230/
7232 and/or 7244/7246 required). In yet another embodi
ment, some defaulting of parameters is implemented.

55 "Parameters" (BNF Grammar Parameters), and then to
block 7306 for getting the next (or first) system parameter
(block 7306 starts an iterative loop for processing
system(s)). At least one system parameter is required for the
administrate command. If at least one system is not present

FIGS. 72B-1 through 72B-5 depicts a matrix describing
how to process some varieties of the Store command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first colunm). The second colunm shows the
Preferred Methodology (PM) for carrying out Store com
mand processing:

60 for being processed by block 7306, then block 7306 will
handle the error and continue to block 7350 for returning to
the caller (not shown----considered obvious error handling,
or was already validated at configuration time). Block 7306
continues to block 7308. If block 7308 determines that an

65 unprocessed system parameter remains, then processing
continues to block 7310. If block 7310 determines the
system is not the MS of FIG. 73A processing, then MS2MS

Petitioners' Ex. 1001, Page 479 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
305

processing is needed to accomplish the remote administra
tion processing, in which case block 7310 continues to block
7312 for preparing parameters for FIG. 75A processing.
Thereafter, block 7314 checks to see if there were any
parameter errors since block 7312 also validates them prior 5

to preparing them. If block 7314 determines there was at
least one parameter error, then block 7316 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing continues back to block 7306. If block
7314 determines there were no errors, then block 7318 10

invokes the procedure of FIG. 75A for sending the data
(administrate command, operand and parameters) for remote
administrate processing at the remote MS. Processing then
continues back to block 7306. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except 15

FIG. 75A performs sending data for the administrate com
mand to the remote MS for searching for sought operand
dependent criteria at the remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
administrate command search result. Block 7584 processes 20

the administrate command for searching for sought criteria
in context of the Operand. Blocks 7574 and 7576 will return
the results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate administrate process
ing. Note that block 7510 may include application launch 25

processing (e.g. like found in FIG. 73A) for invoking the
best application in the appropriate manner with the admin
istrate results returned. The application should be enabled
for searching remote MSs further if the user chooses to do
so, and be enabled to perform the privileged administration. 30

Another embodiment of block 7510 processes the search
results and displays them to the user for subsequent admin
istration in an optimal marmer. In some embodiments,
administrate processing is spawned at the remote MS and
the interface results are presented to the remote user. In 35

preferred embodiments, the administrate processing results
interface is presented to the user of FIG. 73A processing for
subsequent administration. In some embodiments, adminis
trate processing is passed an additional parameter for
whether or not to spawn the search interface at the remote 40

MS for the benefit of the remote MS user, or to spawn locally
for the benefit of the user of the MS of FIG. 73A processing.
Block 7510 may process results itself.

In one embodiment, block 7318 causes processing at a
remote data processing system which incorporates similar 45

MS2MS processing, but the remote data processing system
is not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 73A process
ing). The remote data processing system may be a service
data processing system, or any other data processing system 50

capable of similar MS2MS processing as described for the
administrate command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

306
administration application for the particular object passed as
a parameter. Block 7326 may prepare parameters in prepa
ration for the operating system, for example if parameters
are passed to the application which is invoked for adminis
tration of the object. Processing leaves block 7326 and
returns to block 7306.

An example of block 7326 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7320, if it is determined the
"Operand" does not indicate to launch with a standard
contextual object type interface, processing continues to
block 7328. If block 7328 determines the "Operand" indi
cates to perform a custom launch, then parameter(s) are
validated at block 7330 and block 7332 checks the result. If
block 7332 determines there was at least one error, then
block 7316 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns
to block 7306. If block 7332 determines there were no
parameter errors, then processing continues to block 7334.

If block 7334 determines the custom launch is not to use
an Application Prograniming Interface (API) to launch the
applicable administration application for administration of
the object passed as a parameter, then block 7336 prepares
a command string for launching the particular application,
block 7338 invokes the command string for launching the
application, and processing continues to block 7306.

If block 7334 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for administration of the object
passed as a parameter, then block 7340 prepares any API
parameters as necessary, block 7342 invokes the API for
launching the application, and processing continues back to
block 7306.

Referring back to block 7328, if it is determined that the
"Operand" indicates to perform the administrate command
with other local processing, then parameter(s) are validated
at block 7344 and block 7346 checks the result. If block
7346 determines there was at least one error, then block
7316 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to
block 7306. If block 7346 determines there were no param
eter errors, then block 7348 checks the operand for which
administration processing to perform, and performs admin
istration processing appropriately. Processing then continues
back to block 7306.

Referring back to block 7306, if it is determined that there
are no remaining unprocessed system parameters, then pro
cessing returns to the caller at block 7350.

In FIG. 73A, "Parameters" for the atomic administrate
command in accordance with the "Operand" were shown to
be validated for being properly privileged prior to FIG. 73A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 73A in context of where the "Parameters"
are processed. Also, some embodiments may not validate
"Parameters" since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 73A
processing occurs (e.g. no blocks 7322/7324 and/or 7330/
7332 and/or 7344/7346 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

Referring back to block 7310, if it is determined that the 55

system for processing is the MS of FIG. 73A processing,
then processing continues to block 7320 for checking which
"Operand" was passed. If block 7320 determines the "Oper
and" indicates to launch the administration application for
the sought operand with a standard contextual object type 60

interface, then parameter(s) are validated at block 7322 and
block 7324 checks the result. If block 7324 determines there
was at least one error, then block 7316 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns back to block 7306. If block
7324 determines there were no parameter errors, then block
7326 interfaces to the MS operating system to start the

FIGS. 73B-1 through 73B-7 depicts a matrix describing
how to process some varieties of the Administrate com-

65 mand. Each row in the matrix describes processing appara
tus and/or methods for carrying out command processing for
certain operands (see FIG. 34D for the Operand which

Petitioners' Ex. 1001, Page 480 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
307

matches the number in the first column). The second column
shows the Preferred Methodology (PM) for carrying out
Administrate command processing:
S=Standard contextual launch used (blocks 7320 through

7326);
C=Custom launch used (blocks 7328 through 7342);
O=Other processing (MS2MS or local) used (blocks 7344

through 7348, blocks 7310 through 7318).

308
There are many other reasonable commands (and oper

ands), some of which may intersect processing by other
commands. For example, there is a change command. The
change command can be described by operand as the other

5 commands were, except the change command has identical
processing to other commands for a particular operand.
There are multiple commands duplicated with the change
command, depending on the operand of the change com -
mand (like Connect command overlap of functionality). Any of the Administrate command operand combinations

can be carried out with either of the methodologies. The
second column shows a preferred methodology (PM). The
third column describes processing which is placed into
flowchart embodiments. There are many embodiments
derived from the Administrate processing descriptions with-

15
out departing from the spirit and scope of the disclosure.
Descriptions are self explanatory.

10 FIG. 74A depicts a flowchart for describing a preferred
embodiment of a procedure for Change command action
processing, and FIG. 74C depicts a flowchart for describing
one embodiment of a procedure for Change command action
processing, as derived from the processing of FIG. 74A.

Charters certainly provide means for a full spectrum of
automated actions from simple predicate based (conditional)
alerts to complex application processing. Actions includes
API invocations, executable script invocations (e.g. from
command line), executable program invocations, O/S con-

With reference back to FIGS. 31A through 31E, note that
the column of information headed by "121" is not shown.
However, it is assumed to be present (...). The Admin
istrate command has the following parameters, all of which
are interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
system(s)=One or more destination identities for the Admin

istrate command (e.g. MS ID or a data processing system
identifier).
FIG. 73C depicts a flowchart for describing one embodi

ment of a procedure for Administrate command action
processing, as derived from the processing of FIG. 73A. All
operands are implemented, and each of blocks A04 through
A54 can be implemented with any one of the methodologies
described with FIG. 73A, or any one of a blend of method
ologies implemented by FIG. 73C.

Administrate command processing discussed thus far
demonstrates multithreaded/multiprocessed processing for
each system to perform administration. In one embodiment,
the same methodology is used for each system and each
launched administrate processing saves results to a common
format and destination. In this embodiment, block 7308
processing continues to a new block 7349 when all systems
are processed. New block 7349 gathers the superset of
administrate results saved, and then launches an application
(perhaps the same one that was launched for each adminis
trate) to show all results found asynchronously from each
other. The application launched will be launched with the
same choice of schemes as blocks 7320 through 7350. Block
7349 then continues to block 7350. This design will want all
applications invoked to terminate themselves after saving
search results appropriately. Then, the new block 7349 starts
a single administration application to present all search
results for performing the administration.

In another embodiment, while an application may be
launched multiple times for each system, the application
itself is relied upon for handling multiple invocations. The
application itself has intelligence to know it was re-launched
thereby permitting a single resulting interface for multiple
target system searches, regardless of the number of times the
same search application was launched.

In one preferred embodiment, administrate processing
permits multiple instances of a search application launched.
Administrate processing is treated independently (this is
shown in FIG. 73A).

Preferably all administrate command embodiments pro
vide the ability to perform other commands (e.g. Copy,
Move, Discard, Change, ...) wherever possible from the
resulting interface in context for each search result found.

20 textual launch executions, integrated execution processing
(e.g. part of block processing), or any other processing
executions. As incoming WDRs indicate that a MS (MS
user) of interest is nearby, charters provide the mechanism
for the richest possible executions of many varieties to be

25 automatically processed. From as simple a use as generating
nearby/nearness/distantness status to performing a compli
cated set of processing based on nearby/nearness/distantness
relative a MS user, there is no limit to the processing that can
occur. All of the processing is handled locally by the MS and

30 no connected service was required.
A first LBX enabled MS with phone capability can have

a charter configuration for automatically placing a call to a
second LBX enabled MS user upon determining that the
second MS is close by the first MS user, for example when

35 both users are coincidentally nearby each other. Perhaps the
users are in a store at the same time, or are attending an event
without knowledge of each other's attendance. It is "cool" to
be able to cause an automatic phone call for connecting the
users by conversation to then determine that they should

40 "hook up" since they are nearby. Furthermore, a charter at
the first MS can be configured wherein the first MS auto
matically dials/calls the second MS user, or alternatively a
charter at the first MS can be configured wherein the second
MS automatically dials/calls the first MS user, provided

45 appropriate privileges are in place.
FIG. 76A depicts a flowchart for describing a preferred

embodiment of processing a special Term (BNF Grammar
Term: WDRTerm, AppTerm, atomic term, map term, etc)
information paste action at a MS. Special paste action

50 processing begins at block 7602 upon detection of a user
invoked action to perform a special paste using Term infor
mation. Depending on the embodiment, FIG. 76A process
ing is integrated into the MS user interface processing, either
as presentation manager code, a plug-in, TSR (Terminate

55 and Stay Resident) code, or other method for detecting
applicable user input at the MS (e.g. keystroke(s), voice
command, etc). Unique paste requests (user actions) cause
processing to start at block 7602. Block 7602 continues to
block 7604 where the most recent Term information for the

60 MS of FIG. 76A processing is accessed, then to block 7606
to see if the referenced value for the paste is set. Block 7604
access to a WDR may be for a particular most recent
in-process WDR (inbound, outbound, inserted to queue 22,
etc) depending on the paste request. A most recent inbound

65 WDR may be most recently inserted to queue 22 from
another MS, or may be accessed from LBX History 30. A
most recent outbound WDR may be accessed from LBX

Petitioners' Ex. 1001, Page 481 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
309

History 30. A most recent in-process WDR may be most
recently inserted to queue 22 regardless of originator.

Depending on when a user invokes the special paste
option, the sought Term for pasting may not have a value set
yet (e.g. AppTerm newly registered). If block 7606 deter- 5

mines the Term has not yet been set with a value, then block
7608 defaults the value for paste, otherwise block 7606
continues to block 7610. Block 7608 may or may not choose
to default with an obvious value for "not set yet" before
continuing to block 7610. Ifblock 7610 determines the Term 10

to be pasted is a WDRTerm, then processing continues to
block 7612 where the WTV is accessed, and then to block
7614 to see how timely the most recent WDR accessed at
block 7604 is for describing whereabouts of the MS. If block
7614 determines the WDR information is not out of date 15

with respect to the WTV (i.e. whereabouts information is
timely), then block 7616 pastes the WDR information
according to the special paste action causing execution of
FIG. 76A. If there is no data entry field in focus at the MS
at the time of FIG. 76A processing, then an error occurs at 20

block 7616 which is checked for at block 7618. If block
7618 determines the WDR information paste operation was
successful, processing terminates at block 7622, otherwise
processing continues to block 7624. If block 7624 deter
mines an image frame is not in the focused object, then 25

processing continues to block 7620 which provides the user
with an error that there is no appropriate target in focus
applicable for the paste operation. The error may require a
user acknowledgement to clear the error to ensure the user
sees the error. Block 7620 then continues to block 7622. 30

310
nates at block 7622, otherwise block 7626E continues
directly to block 7622. There are various embodiments of
when the FIG. 76A paste processing notifies the MS appli-
cation to take over processing for the paste operation. In fact,
FIG. 76A may notify the application at the earliest time, and
a block 7626 (generally covers blocks 7626A through
7628F) notifies the application to take over processing for
the paste operation. After such a block 7626 notifies the
application to take over the paste operation, FIG. 76A
processing terminates at block 7622. Block 7626 may or
may not modify the cursor prior to notifying the application
to take over paste processing.

If at block 7614 it is determined the user attempted to
paste WDR information from an untimely WDR, then block
7615 provides the user with a warning, preferably including
how stale the WDR information is, and processing waits for
a user action to proceed with the paste, or cancel the paste.
Thereafter, if block 7617 determines the user selected to
cancel the paste operation, then processing terminates at
block 7622, otherwise processing continues to block 7616.
Alternatively, block 7612 may access a different timeliness
variable, or perhaps one set up in advance specifically for
paste operations.

Referring back to block 7610, if it is determined the paste
operation is not for a WDRTerm, then processing continues
directly to block 7616 for pasting the other Term construct
terms being referenced by the paste operation (i.e. atomic
term, AppTerm, map term, etc).

FIG. 76A processes special paste commands for pasting
Term information to focused user interface objects (e.g. data
entry fields) of the MS user interface from Term data
maintained at the MS. In a preferred embodiment, queue 22
is accessed for the most recent WDR at block 7604 when a

If block 7624 determines an image lies in the focused
object, then processing continues to block 7626A. Block
7624 accesses appropriate status or data processing indica
tion for knowing an image (frame) is in the user interface
context. There are a variety of MS applications where an
image is detected for being present in the focused user
interface. These applications include:

MS camera mode after just taking a snapshot of an image
(a frame);

35 WDRTerm (WDR field/subfield) is referenced. In another
embodiment, a single WDR entry for the most recent WDR
information is accessed at block 7604. In a preferred
embodiment, there are a plurality of special paste commands
detected and each command causes pasting the associated

MS browse of a snapshot image previously taken;
MS camcorder/video while in standby or record mode;
MS browse/review of a previously recorded video image

stream (a plurality of frames);
MS edit of a snapshot image;
MS edit of an image stream; or

40 Term information field(s) in an appropriate format to the
currently focused user interface data entry field or frame(s).
In a picture application, a single frame is affected with the
change. In a video/stream application, a user designated set
of frames (one or more) are affected. There can be a

Any other application context where some image is
currently presented to the MS user interface.

Block 7626A updates a movable MS cursor with the data to

45 command (user input) for pasting any Term (e.g. WDR)
field(s) in a particular format to the currently focused data
entry field. In another embodiment, one or more fields are
accessed at block 7616 and then used to determine an

be pasted in the appropriate format, and the user can then
position the cursor for proper placement over a desired 50

location of the image at block 7626B. Appropriate user
interface control is provided for user navigation for a desired
paste target area, preferably while showing at the movable
cursor what is to be pasted (e.g. paste data moves with
cursor) with proper size and appearance. Further user input 55

control may be provided for changing the font of text, paste
data boldness, artistic appearance, content, or any other
visual appearance. When the user is satisfied with placement
and appearance at block 7626B, the user accepts the place
ment (e.g. user acceptance action) and processing continues 60

to block 7626C where the application context is notified to
perform an update of the image with the paste data and the
application then prompts the user for whether or not he
wants to save the change at block 7626D. Thereafter, block
7626E determines if the user selected to save the modified 65

image (frame(s)), in which case the image (frame(s)) is
saved at block 7626F and paste operation processing termi-

appropriate content for the paste operation to the currently
focused data entry field. For example, there can be a special
keystroke sequence (<Ctrl><Alt><I>) to paste a current
location (e.g. WDRTerm WDR field 1100c) to the currently
focused data entry field, a special keystroke sequence
(<Ctrl><Alt><s>) to paste a current situational location to
the currently focused data entry field (e.g. my most recent
atomic term situational location), a special keystroke
sequence (<Ctrl><Alt><I>) to paste the MS ID of the most
recently received WDR, a special keystroke sequence
(<Ctrl><Alt><c>) to paste a confidence (e.g. WDRTerm
WDR field 1100d) to the currently focused data entry field,
a special keystroke sequence (<Ctrl><Alt><e>) to paste a
current email source address from the WDR application
fields section of the WDR, a special keystroke sequence
(<Ctrl><Alt><Fl>) to paste a current email source address
from the WDR application fields section of the WDR, a
special keystroke sequence (<Ctrl><Alt><l>) to paste a
current statistical atomic term, etc. There can be a user input

Petitioners' Ex. 1001, Page 482 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
311

for pasting any Term data including from WDRs, atomic
terms, Application Terms, map terms, most recent Invoca
tion, etc.

In another embodiment, the keystroke sequence for the
particular paste operation includes a keystroke as defined in
a prefix 5300a, or in a new record field 5300i for an
application, so that particular application field(s) are acces
sible (e.g. App Term data field(s) and/or corresponding WDR
Application fields 1100k). Depending on an embodiment,
the keystroke sequence(s) field 5300i may define a start
sequence for applicable paste commands, or may define the
directory of valid paste keystroke command sequences. In
some embodiments, field 5300i provides a joining identifier
to another table for joining a plurality of rows containing
unique paste commands associated to the PRR 5300. In
other embodiments, there are special paste actions for LBX
maintained statistics, whereabouts information averages, or
any other useful current or past LBX data, including from
LBX History 30. In another embodiment, there are special
paste actions for predicted data which is based on current
and/or past LBX data, for example using an automated
analysis of a plurality of WDRs, application terms, atomic
terms, map terms, statistics, or information thereof. In some
embodiments, special paste commands are available for the
nearest N MSs (MS users) where "N" forms part of the paste
command. For example, the nearest 3 users' data is pasted
into a captured image at the MS for automatically docu
menting (as part of the image) LBX data appropriate for the
picture taken by the MS (e.g. the 3 LBX enabled MS users
taken in the photo). Unique paste commands (user input)
may be created to access any available LBX data, in any
format, combinations thereof, and any data that can be
derived from available LBX data.

Paste operations are a convenient method using the wealth
of LBX processing data in MS application interfaces. Paste
commands also provide an excellent mechanism for com
ponent testing IbxPhone™ features. Paste commands may
be configured as saved keystrokes for later execution by an
application which automates LBX data access (e.g. macro,
user input recording file, etc which may or may not be used
by an atomic command for automated processing).

Paste operations provide convenient methods for infor
mative markings to photographs and videos. Location, date/
time, who is in the vicinity (e.g. those nearby for picture just
taken), options, landmark(s), and historical information can
be accessed by a unique paste command in a particular
context. MS assets such as queue 22, LBX History 30, etc
can be accessed with specific paste commands for desired
information, even when wanting plural data across a plural
ity ofWDRs or MSs. For example, a paste command can be
provided to provide the nearest N MS identifiers in the
desired appfld.source.id.X format from queue 22, wherein N
is part of the paste command request (e.g. <ctrl><*><3>
provides nearest 3 MSs email identifiers and formats it to a
text string for convenient paste to the image or data entry
field).

Furthermore, paste commands described by FIG. 76Acan

312
contains AppTerm variables/data and associated description
information. Shared memory 7630 is preferably MS shared
memory accessible to any MS executable process (and
threads thereof) through an appropriate MS O/S shared

5 memory interface using a well known global shared memory
name. As well known to those skilled in the art, a thread
which accesses shared memory 7630 uses the shared
memory name to get a handle to the shared memory for
subsequent access to data therein. Appropriate control (e.g.

10 semaphore(s)) is used when accessing shared memory 7630
to ensure synchronous access across a plurality of asynchro
nous threads. In alternate embodiments accomplishing the
same functionality, shared memory 7630 is an SQL data
base, tabular database, shared data area, or other thread-safe

15 memory means for "middle-marming" data access. Depend
ing on an embodiment, shared memory 7630 includes PRRs
5300 or is separately maintained from PRRs 5300. Depend
ing on an embodiment, shared memory 7630 may reside in
main memory 56, persistent storage 60, removable storage

20 device 62, or any variety of memory accessible to the MS
locally, or remotely at an other data processing system 72.

An AppTerm configuration processing thread 7632 (e.g.
integrated with PRR configuration of FIG. SSA) updates
shared memory 7630 to correspond with PRR 5300 con-

25 figurations. As discussed above, an AppTerm is accessed
with a configured prefix which corresponds to a particular
application. Prefixes are unique across PRRs 5300. A prefix
prevents conflict between a plurality of applications which
happen to use the same source code variable name (prefix

30 field 5300a is unique) used for the data reference. Shared
memory 7630 contains a plurality of shared memory records
7650 for properly interfacing between applications and
threads 7632 through 7636. Shared memory 7630 may be of
a worst case size to accommodate a maximum number of

35 AppTerm enabled applications by: a) a maximum array size
of records 7650; b) a maximum sized array of pointers to
records 7650; c) a memory pointer to a) orb); or a suitable
means for maintaining records 7650. Pointers kept within
shared memory 7630 preferably point to dynamically allo-

40 cated memory which should be appropriately freed, for
example upon application termination, or AppTerm removal
(e.g. field 5300g removes AppTerm to expose).

With reference now to FIG. 76C, illustrated is a preferred
embodiment of Application term shared memory records,

45 namely shared main record 7650 and shared reference
record 7652. Prefix field 7650a is equivalent to field 5300a
and provides correlation of a record 7650 to a particular
application. Reference(s) pointer field 7650b contains a
pointer to a linked list (=NULL or pointer to first of a linked

50 list of one or more records) of shared reference records
7652. There will be a number of shared reference records
7652 in the linked list equal to the number of exposed
AppTerm data variables described by field 5300g for a
particular application of a PRR 5300. Application term(s)

55 memory pointer field 7650c points to a block of memory of
appropriate size to at least accommodate requirements of all
AppTerm data storage described in the linked list of field
7650b. be used to paste the current zip code, city, county, state,

address, etc. which has been converted from WDR location
information using the geo-coding conversion tables. This 60

provides a user with the ability to paste current accurate
address information into MS user interfaces without actually
knowing where he is located at the time.

Each record 7652, maintained through field 7650b, con
tains a name field 7652a which contains the particular
application source code variable name string for the App
Term shared, an offset field 7652b for which byte offset into
the memory pointed to by pointer 7650c contains the App
Term value, a length field 7652c for the length of AppTerm FIG. 76B-1 illustrates a preferred embodiment of Appli

cation term interface processing used by WITS processing, 65

FIG. 76A paste processing, or any other MS processing for
access to a BNF grammar AppTerm. Shared memory 7630

data value starting at the offset of field 7652b, a type field
7652d for how to interpret the AppTerm value, and next
pointer field 7652e for pointing to the next record 7652 in

Petitioners' Ex. 1001, Page 483 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
313

the linked list of field 7650b. Description field 5300b may
provide the default initial value for the AppTerm for the
particular record 7652, for example when newly allocating
an App Term reference to shared memory 7630. Fields 5300c
through 5300/, and 5300h are appropriately used for appli- 5

cation starting, terminating, checking if started/terminated,
or for determining required executable components. Fields
5300c through 5300/, and 5300h are used as required for a
particular application. Field 5300g documents any App
Term(s) which are maintained to records 7652 with appro- 10

priate sufficient detail as to enable configuring the applicable
records 7652 for the application represented by record 7650
(corresponding to the applicable PRR 5300).

With reference back to FIG. 76B-1, a WITS processing
thread 7634 (e.g. at block 5744) accesses shared memory 15

7630 according to App Term usage in configured charters 12.
A user interface paste processing thread 7636 (e.g. FIG. 76A
processing) also accesses shared memory 7630 according to
an AppTerm paste request. Programmers of threads 7632,
7634 and 7636 anticipate at programming source code 20

creation and executable build time what the global name is
of shared memory 7630, and what the architecture is of
shared memory 7630. Charter processing uses the prefix
(fields 5330a and 7650a) to identify which variable refer
ences are being made for which App Term data. Additionally, 25

programmers of a set of applications 7638 are to conform to
the LBX architecture, anticipate at programming source
code creation and executable build time what the global
name is, and architecture is, of shared memory 7630. This
ensures a consistent platform for well performing App Term 30

exposure, charter use, and threaded access across heteroge
neous applications, while providing "plug-in" capability of
application configurations and processing.

Block 5504 initializes to (or may already be initialized to
after block 1216) shared memory 7630, and PRRs if main- 35

tained separately. Block 5512 may allocate or deallocate
records 7652 according to PRR 5300 alterations. Block 5516
will deallocate any associated record 7650 and its associated
records 7652. Block 5520 will allocate an applicable record
7650 and its associated records 7652. Block 5524 may 40

present interesting information of statistics 14 maintained
for accesses to shared memory 7630. Block 5528 preferably
allocates and deallocate records 7652 (and associated
records 7652) to avoid errors in App Term accessing which
are handled as obvious error handling (e.g. AppTerm refer- 45

ence does not exist in shared memory 7630). Block 5532
displays candidate AppTerm supported applications of the
MS which are known to conform to LBX architecture shared
memory coding practices. Block 5536 allocates or deallo
cates as already described for similar reasons described. 50

Block 5542 terminates using (or may terminate using after
block 2824) shared memory 7630, and PRRs if maintained
separately.

An application thread performing at least one AppTerm
update uses processing of FIG. 55B. In a preferred embodi- 55

ment, the set of applications 7638 use at least one API for
interfacing to shared memory 7630 to prevent common
source code implementation from being reinvented within
different LBX conforming applications. Regardless of
implementation, an application of the set of applications 60

7638 conforms to the LBX architecture when programmers
of the application source code implemented the architecture
of shared memory 7630 in the framework of PRRs 5300. In
one preferred embodiment, a structure (struct) of AppTerm
variables is maintained by the application and offsets, 65

lengths, types, and names into the structure are maintained.
In this embodiment, field 7650c can point to memory

314
containing the structure which is referenced conveniently at
source code time with a typecast by the application, and is
referenced at run time with record 7650 and its record(s)
7652 by threads 7634 and 7636. Charter processing (e.g.
block 5744) may further contextually resolve the type of an
AppTerm based on its expression use context.

With reference now to FIG. 76B-2, illustrated is an
embodiment of Application term interface processing for
applications not using a standardized LBX coding practice
for a shared memory 7630. Threads 7632, 7634 and 7636, as
well as a set of applications 7638, are similar to as described
above except with a different access architecture for
"middle-manning" AppTerm data. The set of applications
7638 of FIG. 76B-2 can include:

1) a MS O/S executable process 7640 having a data
segment 7640-DS, code segment 7640-CS, stack seg
ment 7640-SS and perhaps other data or executable
code (i.e. " ... ") such as linked interfaces, heap and
dynamic memory allocation management, etc;

2) a MS O/S dynamically linked executable 7642 having
at least a code segment 7642-CS, for example an
invocable public interface for a function or procedure
(e.g. API). Executable 7642 may also include other data
or executable code (i.e. " ... ") such as a data segment
provided data is protected for executable 7642 being
reentrant by multiple simultaneous threads, linked
interfaces, reentrant heap and dynamic memory allo
cation management, etc. Alternatively, a known multi
threaded synchronization scheme can be leveraged; and

3) a MS O/S shared memory data segment 7644-DS
having data accessible with shared memory access
techniques.

An App Term mapper executable 7644 is intended to isolate
run time executable linkage to data of the set of applications
7638 so that no re-building (compile and/or link) is required
of executable code of threads 7632, 7634 and 7636, and any
applications of the set of applications 7638. Thread inter
faces 7632-if, 7634-if and 7636-if preferably invoke a
Dynamic Link Library (DLL) interface for executable 7644
to return the sought App Term data (or an error if not found).
The DLL interface never changes, however code within the
DLL executable 7644 will change for new requirements of
sharing AppTerm data. For example, the DLL interface
accepts, from a caller, parameters for sought App Term data
and where to return the value(s) (e.g. address to thread
7632/7634/7636 accessible memory). DLL executable 7644
is rebuilt for proper execution according to AppTerm share
requirements. Appropriate automation of re-building (com
pile and/or link) executable 7644 is incorporated wherever
possible within the framework of PRRs 5300.

For example, executable 7640 exposes one or more App
Term data references for external linkage (e.g. extern) and/or
more public interfaces for external linkage to return App
Term data. Interface 7640-dsif is accomplished with linking
executable 7644 to the external interface (e.g. to the extern
data). Interface 7640-csif is accomplished with linking
executable 7644 to the documented public interface for
access of AppTerm data at access times by threads 7632,
7634 and 7636.

For example, executable 7642 exposes one or more public
interfaces for external linkage to return AppTerm data.
Interface 7642-csif is accomplished with linking executable
7644 to the documented public interface for access of
AppTerm data at access times by threads 7632, 7634 and
7636.

For example, segment 7644 exposes one or more App
Term data references for shared memory access well known

Petitioners' Ex. 1001, Page 484 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
315

to those skilled in the art (e.g. shared memory name).
Interface 7644-dsif is accomplished with building the
executable 7644 to access the shared memory.

The upside of the FIG. 76B-2 architecture is applications
need not conform to an App Term access architecture, except 5

to make data and interfaces available as they conventionally
would anyway. The downside is rebuilding the executable
7644 during user configuration time. PRRs 5300 would be
configured for also driving automatic building, and rebuild
ing, of executable 7644 wherever possible, such as part of 10

FIG. SSA processing. In embodiments where full automation
is not possible, FIG. SSA should provide instruction in
response to configurations made for those situations that
require manual attention. Executable 7644 will provide

15
appropriate thread safe access to AppTerm data.

With regard to appropriate semaphore access, there are
various embodiments for AppTerm access:

Utilize a single semaphore for all AppTerm accesses;
Utilize an application independent semaphore for App- 20

Term accesses to uniquely associate a semaphore to a
PRR. The advantage is preventing globally synchro
nizing threads for unrelated data accesses. In a pre
ferred embodiment, a semaphore is automatically cre
ated using the unique prefix to ensure uniqueness. 25

Block 5520 may or may not enforce a validated maxi
mum number of PRRs relative a reasonable supported
number of semaphore resources. Also, block 5556
would access the applicable PRR, release the sema
phore (requested at block 5554) for PRR access, 30

request the appropriate application semaphore (e.g.
using prefix), continue to subsequent processing, and
release the application semaphore at block 5562; or

Anew PRR semaphore interface(s) field 53001 is defined
for specification of which AppTerms are managed by 35

which semaphores. Field 53301 enables a map of a
unique application semaphore to particular AppTerms
of the application. There are many embodiments for
field 53301 for providing administrator control of
which AppTerms are accessed appropriately with 40

which semaphores. In a preferred embodiment, at least
one semaphore is automatically created using the
unique prefix to ensure uniqueness, and the PRR
administrator can subsequently define a plurality of
unique semaphores using field 53001 along with App- 45

Term associations for the particular semaphore. This
has the advantage of enabling a PRR administrator to
define how to synchronize threads for being fully
executed to related sets of AppTerm data using appli
cation knowledge. The disadvantage is the administra- 50

tor can "screw up". Blocks 5512 and 5520 may or may
not enforce a validated maximum number of sema
phores identified for creation in field 53001. Also,
block 5556 would access the applicable PRR, release
the semaphore (requested at block 5554) for PRR 55

access, request the appropriate application semaphore
(e.g. using field 53001), continue to subsequent pro
cessing, and release the application semaphore at block
5562. In some embodiments, field 53001 provides a
joining identifier to another table for joining a plurality 60

of rows containing semaphore information with App
Term references associated to the record 5300.

Those skilled in the art will recognize alternative App
Term access implementations using some of the schemes
disclosed above. An Object Oriented Prograniming (OOP) 65

embodiment can embody an AppTerm as a public class
interface which consists of a data reference or a member

316
function invocation which returns the data of the appropriate
type to a caller (e.g. on the stack).

Related Linkage Discussion

A WITS processing thread will cause at least one sema
phore access when processing other special terms such as a
WDRTerm and atomic term, and access to LBX history 30,
queue 22 accesses, etc. Access to a WDRTerm, atomic term,
queue 22 or LBX History 30 can be made through an API to
isolate processing. MS embodiments may define a plurality
of semaphores to manage related sets of data accesses for
threads to fully execute wherever possible.

With reference now to FIG. 76B-3, illustrated is a pre
ferred embodiment of charter invocation interface process
ing, for example upon encounter of a BNF granimar Invo
cation construct. Here, the set of applications 7638 are
executable interfaces which additionally include executable
path interfaces (e.g. interface 7648-osif), for example a
script 7648 of a file system. In some embodiments, atomic
commands may be linked using any of the examples
depicted in FIG. 76B-3 or a LBX platform DLL interface,
however it is preferred that atomic command implementa
tions be statically linked with caller processing code (e.g.
WITS processing) for maximum performance.

Regardless of charter form (for WITS processing)
embodiments, appropriate linkage is accomplished for the
BNF granimar Invocation construct. An Invocation Mapper
7646 is built for proper link of a WITS processing thread
(e.g. 7634) to executable interfaces in an analogous manner
as described for Mapper 7644 (using an interface 7646-if for
middle-manning executable invocations). Interface 7646-if
preferably invokes a Dynamic Link Library (DLL) interface
for executable 7646 to "in turn" invoke the appropriate
interface. Interface 7640-csif is accomplished with linking
executable 7646 to the documented public interface for
access by a WITS processing thread. DLL executable 7642
exposes one or more public interfaces for external linkage
wherein interface 7642-csif is accomplished with linking
executable 7646 to the documented public interface for
access by WITS processing. Interface 7648-osif is prefer
ably provided by a MS O/S, and is used directly by a WITS
processing thread for invoking a script 7648 (e.g. command
line file). The advantage of Mapper 7646 is to isolate link
changes to outside of WITS processing code so that invo
cable interfaces are adapted to WITS processing without
rebuilding WITS processing itself. Mapper 7646 would
provide a single interface for all Invocations by accepting a
parameter over interface 7646-if for the requested invoca
tion, searching the corresponding linked interface, and then
invoking it. Interfaces of FIG. 76B-3 may return a resulting
return code conveyed back to a WITS processing thread.

Those skilled in the art will recognize alternative invo
cation access implementations. The set of applications 7638
of FIG. 76B-3 provides public interfaces (e.g. APis) which
accept parameters and/or process parameters from a WITS
processing thread, and may return data to a WITS processing
thread.

Permission and charter specification through WPL can be
processed in a variety of ways depending on the hosting
programming environment as described for FIG. 56. The
advantage ofWPL is extending a programming environment
with a rich set of user specified LBX functionality while
enhancing LBX user specifications with access to program
ming environment objects (e.g. variables). Preferably, the
PPL environment seamlessly supports a LBX permission
and charter syntax which may or may not take on identical

Petitioners' Ex. 1001, Page 485 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
317 318

output. In a simple embodiment, the MS O/S is a debug-like
framework environment wherein symbol information of
linked executable code provides the lookup capability to
access data and variables by name to real data processing

syntactical characteristics of the hosting progrannning
development environment. Variable data, executable Invo
cation interfaces (e.g. function interfaces), semaphores,
database interfacing, file system interfacing, shared memory
accesses, and any other symbol, data or interface of an
executable program is provided to user LBX specifications

5 memory as needed. Also, a data processing system can be
equipped with APis for returning base addresses for symbol
information ranges (like OS/2 selectors) to then determine
the offset where an address or value lives.

in a straightforward manner by coupling the hosting pro
gramming environment with LBX permission and charter
processing in an integrated processing environment. For
example, an interpreter or compiler processes embedded 10

charter and permission syntax as any other source encoding

Atomic commands and their parameters may utilize host
ing programmatic objects as described above when the
atomic commands are integrated for WPL source code
causing directly invoked interfaces from the interpreter or
compiler (e.g. statically or dynamically linked). When
atomic command interfaces are not used in the context of a
WPL environment, they are preferably invoked as statically
linked executable code of WITS processing, but may be
dynamically linked to WITS processing. Atomic command
script interfaces may be used, but performance would likely
be unacceptable. When atomic commands are invoked from
a WITS processing thread which is not integrated in a
conventional programming environment, but access is
needed from the atomic command implementation to O/S
resources (e.g. semaphore, application data, database object,
file system object, etc), then linkage is needed to accomplish
the access. As described above, symbolic information can be
made available to atomic command processing by specify-
ing a parameter of where to find required symbolic infor
mation to resolve the O/S object as described by an atomic
operand. For example, a symbol (variable name, semaphore
name, function name, etc) value, or address thereof, is
deduced using the symbol information from at least one link
output symbol file in context of a current base region/
segment memory address where the symbol lives. Some
embodiments may specify a directory where a plurality of

it processes, and enables a suitable executable. A special "-"
may not be necessary for a tightly coupled WPL syntax and
processing. The "-" syntax is particularly useful when
charter and permission source code accesses conventional 15

programming objects in source code processing (e.g. of an
interpreter or compiler) not tightly integrated. When the"-"
reference syntax is used, preferably the progrannning envi
ronment is relied upon for contextually bringing data, type,
and/or meaning to the reference. Alternatively, additional 20

LBX syntax can be provided to explicitly specify the type of
BNF grammar reference being made (e.g. to explicitly state
specifying a named variable address or data, named sema
phore, a named function Invocation interface, a named file,
named file and offset/length therein, named database object, 25

etc) so that interpretation or compilation will know how to
treat the syntactical reference, and produce an error prior to
run-time execution if improperly referenced. Raw source
code, internalized interpreter source code, or compiled and
linked source code of LBX privilege and charter specifica- 30

tions is preferably handled in the same programming envi
ronment context as the hosting progrannning environment
would handle its native source code. WPL embodiments
preferably incorporate syntactical embodiments disclosed
for special terms (AppTerm, WDRTerm, atomic term, map
term) with appropriate linkage and access (e.g. MS API(s)
provided), but may define alternative syntax to prevent
ambiguous use, conflict, or elegance issues of syntax already
used in conventional source code.

35 symbolic information files are checked for resolving a
symbolic name within a MS O/S. In atomic commands
involving database interfaces, the atomic command imple
mentation may assume authenticated credentials, may take
on credentials for authentication by the logged-on user of a

In an alternate embodiment, programming environment
symbolic link information is made accessible to permission
and charter processing so that the programming environment
supports access to its programmatic objects at appropriate
permission and charter processing times. Those skilled in the

40 MS, may require input of credentials to be authenticated, or
authentication credentials may be specified in, or as part of,
a parameter for an atomic command and operand pair. In any
case, appropriate database access authentication is incorpo
rated for database accesses. In atomic commands involving

art recognize that symbolic information is produced as part 45 file system interfaces, the atomic command implementation
may assume a file system search path (e.g. current working
directory, D PATH, PATH, etc), or the file search path is fully
specified in a parameter for an atomic command and oper
and pair. There are many embodiments for carrying out

of an executable link, and a human readable symbol infor
mation file can also be output as an option of program
linking. The symbolic information provides symbol offset
addresses relative a variable base address (e.g. a segment
(e.g. Data Segment (DS)). Data processing systems support
allocating executables to memory (e.g. memory 56) for
execution. After being loaded into memory, base addresses
provide base pointer addresses (e.g. stack pointer, data
segment pointer, code segment pointer, etc) for real relative
memory pointer address offsets identified in the symbolic
information. In a data processing environment which does
not support swapping, the addresses of loaded symbols may
not change and may be relied upon during execution. In a
data processing system environment which supports swap
ping, the addresses of loaded symbols may change as their 60

base addresses (base segment addresses) change when
swapped. Symbols accessed through the link output sym
bolic information have to be relative a current base address

50 atomic command and atomic operand processing disclosed.
FIG. 76D depicts a flowchart for describing a preferred

embodiment of processing for contextual charter creation.
FIG. 76D provides a convenient method for creating a
charter based on a desired application context. A charter is

55 created for associating LBX data (e.g. special terms, atomic
operands) with special terms, atomic operands or other
otherwise unrelated application data. Processing begins at
block 7660 upon a user action to create a contextual charter
and continues to block 7662 for where the user interface

to the region (segment) of memory where a symbol lives.
There are well known methods for determining where the 65

value or address of a symbol lives in data processing system
memory when consulting symbol information from link

context is determined. In some embodiments, the user
interface context is determined by access to a user interface
object handle (e.g. object class, title bar information, or
other unique handle information), and then comparing it to
a registry (or active object history) of user interface objects
invoked at the MS. Enough information should be contained
in the registry to identify a PRR if one has been created.
Alternatively, unique user interface handle information can

Petitioners' Ex. 1001, Page 486 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
319

be stored through a new PRR field 5300n for finding the
applicable PRR so that the application is identified. In
another embodiment, the user action itself which starts
processing at block 7660 uniquely identifies the application
context desired by the user (e.g. distinct keystroke(s)) 5

regardless of what user interface is currently in focus, so that
block 7662 accesses the command (user action) for specific
information of the requested context.

Thereafter, block 7664 searches for relevant special terms
(WDRTerm, AppTerm, atomic term, map term, etc) accord- 10

ing to the user desired context for charter creation and
interfaces with the user for selection(s), block 7666 waits for
a user action and block 7668 checks the user action detected.
Relevant special terms may be determined by block 7664
through hard coded anticipation logic, but is preferably 15

determined using a cross reference database, table, or map of
which special terms are relevant to which applications
wherein the cross reference database is maintained indepen
dently outside of FIG. 76D processing by a knowledgeable
administrator. A user can select a set of special terms from 20

the interface at block 7664 for further processing, or the user
can select to exit processing. If the user selected one or more
special terms for further processing as determined by block
7668, block 7670 presents operators, defaulted values, other
special terms, and pre-formatted charter expressions and/or 25

actions to minimize the user's effort in creating a useful
charter according to the desired application context. Many
ready made charter expressions and actions are preferably
presented using the special terms from block 7664 and
relevant information determined at block 7670. Relevancy 30

determined at block 7664 is application context dependent.
Relevancy determined at block 7670 may be application
dependent, but is certainly based on special terms selected
by the user at block 7664. Block 7670 may also determine
relevancy by access to data of queue 22, statistics 14, LBX 35

history 30, MS interoperability or any other LBX data
providing guidance for automatically creating a useful char
ter. At block 7670, the user may select, or create (e.g. drag
and drop portions), one or more charters to be automatically
created. A suitable user interface facilitating easy decisions, 40

and well validated charter construction options is deployed.
Only valid charters result when leaving block 7670 for
charter creation. Thereafter, block 7672 checks whether the
user selected to create one or more charters, or to create one
or more charters and also configure permissions, or to 45

configure permissions, or to exit processing.
If block 7672 determines the user did not select to exit,

then processing continues to block 7674. If block 7674
determines the user selected to configure permissions (e.g.
perhaps to coincide with the new charters), then block 7682 50

interfaces with the user for any charter associated relevant
permission modifications (i.e. permissions determined to be
relevant for the selected charter(s)), and processing contin
ues to block 7684, otherwise block 7674 continues to block
7676. If block 7684 determines the user selected to continue 55

charter creation from block 7670, then processing continues
to block 7676. Block 7676 updates charter data appropri
ately. Thereafter, block 7678 terminates the FIG. 76D user
interface, and processing terminates at block 7680. Block
7676 may update charters locally and/or remotely as appro- 60

priate. See charter configuration processing already dis
cussed above for additional information.

320
If block 7684 determines the user selected to exit FIG.

76D processing, processing continues to block 7678 for
termination processing. If block 7672 determines the user
selected to exit FIG. 76D processing, processing continues
to block 7678 for termination processing. If block 7668
determines the user selected to exit FIG. 76D processing,
processing continues to block 7678 for termination process
ing.

Application Fields 1100k

Application fields 1100k are preferably set in a WDR
when it is completed for queue 22 insertion (for FIG. 2F
processing). This ensures WDRs which are in-process to
queue 22 contain the information at appropriate times. This
also ensures the WDRs which are to be sent outbound
contain the information at the appropriate time, and ensures
the WDRs which are to be received inbound contain the
information at the appropriate time. See FIG. 84B for an
example embodiment. Fields 1100k may be set when pro
cessing at inbound time as well (e.g. by receive processing
prior to being placed to queue 26). Application fields can add
a significant amount of storage to a WDR. Alternate embodi
ments may not maintain field 11 OOk to queue 22, but rather
append information, or an appropriate subset thereof, to field
1100k when sending WDRs outbound to minimize storage
WDRs utilize at a MS (e.g. at blocks 2014 and 2514). This
alternate embodiment will enable appropriate WITS pro
cessing for maintained WDRs, inbound WDRs, and out
bound WDRs without an overhead of maintaining lots of
data to queue 22, however application fields functionality
will be limited to application data from an outbound origi
nated perspective, rather than application field setting at the
time of an in process WDR regardless of when it was in
process. For example, field ll00kmay alternatively be set at
blocks 2014 and 2514 and then stripped after being pro-
cessed by receiving MSs prior to any insertion to queue 22.
In some embodiments, certain field 1100k data can be
enabled or disabled for being present in WDR information.

WITS processing may modify the WDR (e.g. application
fields 1100k), or WDR related data at the MS, at a block
5703, such that processing of block 5702-b continues to
block 5703 and block 5703 continues to block 5704. Block
5703 will preferably modify WDR related statistics 14 and
may modify the in-process WDR (e.g. strip, append, or alter
applications fields 1100k section(s)) or any subset of data
therein for any reason, including based on permissions 10,
system settings, enabled/disabled fields (sections) according
to FIG. 77 (e.g. see FIG. 84B discussion), MS performance
constraints, statistics 14, special terms (map term, atomic
term, AppTerm, WDRTerm), application data, any other
detectable configuration(s) and/or condition(s). Block 5703
may read-access the WDR for information (e.g. application
fields) to use for related data maintenance or modification,
and then incorporate WITS filtering to prevent any further
processing of the WDR as was described above for blocks
5702-a and 5702-b (i.e. not continue processing the WDR in
processing which includes FIG. 57 (i.e. FIGS. 2F, 20, 21
25)).

Preferably, there are WDRTerms for referencing each
reasonable application fields section individually, as a sub
set, or as a set. For example, _appfld.appname.dataitem
should resolve to the value of "dataitem" for the application
section "appname" of application fields 1100k (i.e. "_app-

A preferred embodiment of block 7682 incorporates pro
cessing of FIG. 38, however, it is preferred that the FIG. 38
processing be restricted and informative for being limited to
managing permissions applicable to any charter(s) being
created.

65 fld"). The hierarchy qualification operator (i.e. "·") indicates
which subordinate member is being referenced for which
organization is use of field 1100k. The requirement is the

Petitioners' Ex. 1001, Page 487 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
321

organization be consistent in the LN-expanse (e.g. data
values for anticipated application categories). For example,
_appfld.email.source resolves to the email address associ
ated with the email application of the MS which originated
the WDR. For example, _appfld.phone.id resolves to the 5

phone number associated with the phone application of the
MS which originated the WDR (e.g. for embodiments where
the MS ID is not the same as the MS caller id/phone
number). If a WDRTerm references an application field
which is not present in a WDR, then preferably a run time 10

error during WITS processing is logged with ignoring of the
expression and any assigned action, or the applicable con
dition defaults to false. Preferably, a user has control for
enabling any application subsets of data in field 1100k. Of
course, appending, or setting, data in fields 1100k may 15

involve first accessing needed data from memory 56, storage
from secondary storage devices 58 such as persistent storage
60, a database, a file, or any other MS resource which
maintains the specific application data.

FIG. 77 depicts a flowchart for describing a preferred 20

embodiment of configuring data to be maintained to WDR
Application Fields 1100k. While there can certainly be
privileges put in place to govern whether or not to include
certain data in field 1100k, it may be desirable to differen
tiate this because of the potentially large amount of storage 25

and requirements to carry such data when transmitting and
processing WDRs. Highlighting such consideration and per
haps warning a user of its use may be warranted (e.g. MS
performance, storage capacity, communications speed and
bandwidth, generation of protocol used, etc are valid con- 30

siderations in deciding how much data in application fields
1100k can be enabled, and the priority for which data to
enable). FIG. 77 processing provides the differentiation.
Depending on present disclosure implementations, there are
privileges which require associated information, for 35

example for enabling profile communication (preferably can
define which file is to be used for the profile), accepting
data/database/file control (preferably can define which data
and what to do), etc. An alternate embodiment may define a
specific privilege for every derivation, but this may over- 40

whelm a user when already configuring many privileges.
Also, specific methods may be enforced without allowing
user specification (e.g. always use a certain file for the
profile). A preferred embodiment permits certain related
specifications with privileges and also differentiates han- 45

dling of certain features which could be accomplished with
privileges.

Application fields HOOK specification processing begins
at block 7702 upon a user action for the user interface
processing of FIG. 77, and continues to block 7704 where 50

the user is presented with options. Thereafter, block 7706
waits for a user input/action. The user is able to specify any

322
determines the user did not select to enable a particular
application fields 1100k section, then processing continues
to block 7712. If block 7712 determines the user selected to
disable a particular application fields 1100k section, then
block 7714 sets the particular indicator for disabling that
particular application fields 1100k section, and processing
continues back to block 7704. If block 7712 determines the
user did not select to disable a particular application fields
1100k section, then processing continues to block 7716. If
block 7716 determines the user selected to disable sending
profile information in a application fields 11 OOk section, then
block 7718 sets the profile participation variable to NULL
(i.e. disabled), and processing continues back to block 7704.
If block 7716 determines the user did not select to disable
sending profile information, then processing continues to
block 7720. If block 7720 determines the user selected to
enable sending profile information in a application fields
1100k section, then block 7722 prompts the user for the file
to be used for the profile (preferably the last used (or best
used) file is defaulted in the interface), and block 7724
interfaces with the user for a validated file path specification.
The user may not be able to specify a validated profile
specification at block 7724 in which case the user can cancel
out of block 7724 processing. Thereafter, if block 7726
determines the user cancelled out of block 7724 processing,
processing continues back to block 7704. If block 7726
determines the user specified a validated profile file, then
block 7728 sets the profile participation variable to the fully
qualified path name of the profile file, and processing
continues back to block 7704. Block 7724 preferably parses
the profile to ensure it conforms to an LN-expanse standard
format, or error processing is handled which prevents the
user from leaving block 7724 with an incorrect profile.

In an alternate embodiment, block 7728 additionally
internalizes the profile for well performing access (e.g. to a
XML tag tree which can be processed). This alternate
internalization embodiment for block 7728 would addition
ally require performing internalization after every time the
user modified the profile, in which case there could be a
special editor used by the user for creating/maintaining the
profile, a special user post-edit process to cause internaliza
tion, or some other scheme for maintaining a suitable
internalization. In an embodiment which internalizes the
profile from a special editor, the special editor processing
can also limit the user to what may be put in the profile, and
validate its contents prior to internalization. An internalized
profile is preferably always in correct parse-friendly form to
facilitate performance when being accessed. In the embodi-
ment of block 7728 which sets the fully qualified path name
of the profile file, a special editor may still be used as
described, or any suitable editor may be used, but validation
and obvious error handling may have to be performed when
accessing the profile, if not validated by block 7724 beyond

of a plurality of application data for enablement or disable
ment in at least outbound WDR fields 1100k. Various
embodiments will support enablement/disablement for
inbound, outbound, or any other in-process WDR event
executable processing paths. Field 1100k can be viewed as
containing application sections, each section containing data
for a particular type of MS application, or a particular type
of application data as described above.

55 a correct file path. Some embodiments may implement a
profile in a storage embodiment that is not part of a file
system.

Upon detection of a user action at block 7706, block 7708
checks if the user selected to enable a particular application
section of fields 1100k. If block 7708 determines the user
selected to enable a particular application fields 1100k
section, then block 7710 sets the particular indicator for
enabling that particular application fields 1100k section, and
processing continues back to block 7704. If block 7708

If block 7720 determines the user did not select to enable
profile information to be maintained to field 1100k, then

60 processing continues to block 7730. If block 7730 deter
mines the user selected to exit FIG. 77 processing, applica
tion fields 1100k specification processing terminates appro
priately at block 7732. If block 7730 determines the user did
not select to exit, then processing continues to block 7734

65 where any other user actions detected at block 7706 are
handled appropriately. Block 7734 then continues back to
block 7704.

Petitioners' Ex. 1001, Page 488 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
323

There can be many MS application sections of field 1100k
which are enabled or disabled by blocks 7708 through 7714.
In the preferred embodiment of profile processing, the
profile is a human readable text file, and any file of the MS
can be compared to a profile of a WDR so that the user can 5

maintain many profiles for the purpose of comparisons in
expressions. Alternate embodiments include a binary file,
data maintained to some storage, or any other set of data
which can be processed in a similar manner as described for
profile processing. Some embodiments support specification 10

of how to enable/disable at blocks 7708 through 7714
derivatives for mWITS, iWITS and/or oWITS.

In the preferred embodiment, a profile text file contains at
least one tagged section, preferably using XML tags. Alter
natively, Standard Generalized Markup Language (SGML) 15

or HTML may be used for encoding text in the profile. There
may be no standardized set of XML tags, although this
would make for a universally consistent interoperability. The
only requirement is that tags be used to define text strings
which can be searched and compared. It helps for a plurality 20

of users to know what tags each other uses so that compari
sons can be made on a tag to tag basis between different
profiles. A plurality of MS users should be aware of profile
tags in use between each other so as to provide functionality
for doing comparisons, otherwise profiles that use different 25

tags cannot be compared.
Indicators disabled or enabled, as well as the profile

participation variable is to be observed by WDR processing
so that field 1100k is used accordingly. In some embodi
ments, certain application field sections cannot be enabled or 30

disabled by users (i.e. a MS system setting). In preferred
embodiments, WITS processing checks these settings to
determine whether or not to perform applicable processing.
In some embodiments, WITS processing checks these set
tings to strip out (e.g. for setting(s) disabled) information 35

from a WDR which is to be in process.
FIG. 78 depicts a simplified example of a preferred XML

syntactical encoding embodiment of a profile for the profile
section of WDR Application Fields 1100k. This is also the
contents of a profile file as specified at block 7724. Any tag 40

may have any number of subordinate tags and there can be
any number of nested levels of depth of subordinate tags. A
user can define his own tags. Preferably, the user anticipates
what other MS users are using for tags. Individual text
elements for a tag are preferably separated by semicolons. 45

Blanks are only significant when non-adjacent to a semico
lon. The text between tags is compared (e.g. text elements
(e.g. Moorestown)), regardless of whether a tag contains
subordinate tags, however subordinate tags are compared for
matching prior to determining a match of contents between 50

them. Ultimately, the semicolon delimited text elements
between the lowest order tags (leaf node tag sections of tag
tree) are compared for matching. Ascending XML tags and
the lowest level tags hierarchy provide the guide for what to
compare. Thus, tags provide the map of what to compare, 55

and the stuff being compared is the text elements between
the lowest order tags of a particular tag hierarchy tree. Some
explanations of atomic operator uses in expressions are
described for an in-process WDR:

324
% d:\myprofs\benchmark.xml>=75
This condition determines if the benchmark.xml file con
tains greater than or equal to 75% of tag section matches in
the entire WDR profile of the WDR in process. Contents that
occurs between every tag is compared for a match. The
number of matches found divided by the number of tag
matches performed provides the percentage of matches
(after multiplying the result by 100). The resulting percent
age greater than or equal to 75% evaluates to true, otherwise
the condition evaluates to false.
#(interests)d: \myprofs \benchmark.xml> 2
In using FIG. 78 as an example, this condition determines if
the benchmark.xml file contains greater than two (2) semi
colon delimited matches within only the interests tag in the
WDR profile of the WDR in process. If either the bench
mark.xml file or the WDR profile does not contain the
interests tag, then the condition evaluates to false. If both
contain the interests tag, then the semicolon delimited items
which is interests tag delimited are compared. Three (3) or
more semicolon delimited interests that match evaluates to
true, otherwise the condition evaluates to false.
% (home,hangouts)d:\myprofs\benchmark.xml> 75
This condition determines if the benchmark.xml file con
tains greater than 75% matches when considering the two
tags home and hangouts in the WDR profile of the WDR in
process. Any number of tags, and any level of ascending tag
hierarchy, can be specified within the (...) syntax. If either
the benchmark.xml file or the WDR profile does not contain
the tags for matching, then the condition evaluates to false.
If both contain the sought tags for matching, then the text
elements of the lowest order subordinate tags are treated as
the items for compare. Of course, if the tags have no
subordinate tags, then text elements would be compared that
occurs between those tag delimiters. The number of matches
found divided by the number of comparisons made provides
the percentage of matches (after multiplying the result by
100). The resulting percentage greater than 75% evaluates to
true, otherwise the condition evaluates to false.

WITS processing preferably uses an internalized form of
FIG. 78 to perform comparisons. The internalized form may
be established ahead of time as discussed above for better
WITS processing performance, or may be manufactured by
WITS processing in real time as needed.

FIG. 79A illustrates a branch subset of a tree structure.
Tree structures and processing thereof are well known in the
art and facilitate automated processing. Any particular node
n of the tree is capable of any number of directly descending
nodes nl through ni. Nodes nl through ni are referred to as
peer nodes. The line drawn connecting any nodes is referred
to as a branch of the tree. Any particular node nl through ni
is in turn capable of any number of descending nodes. For
example, n2 has directly descending nodes n21 through n2j
(peer nodes), as shown with respective branches. Any par
ticular node n21 through n2j is in turn capable of any
number of descending nodes. For example, n22 has directly
descending nodes n221 through n22k. Node n2 is said to be
one level below node n. Node n22 is said to be two levels
below node n. Node n222 is said to be three levels below
node n. Peer nodes are on the same level in a tree and have

#d: \myprofs \benchmark.xml>5
This condition determines if the benchmark.xml file con
tains greater than 5 tag section matches in the entire WDR
profile of the WDR in process. Text elements of the lowest
order tag sections are used to decide the comparison results.
A tag hierarchy, if present, facilitates how to compare. Six
(six) or more matches evaluates to true, otherwise the
condition evaluates to false.

60 the same ascending node. For convention, the number of
digits appearing after the variable n is equivalent to the
number of levels below node n. If the variable n indicates a
node 345, then 34524184 is 5 levels below node 345. Any
node on the tree can also have any number of ascending

65 nodes, although ascending nodes are singular in nature and
correspond directly with the number of levels deep into the
tree. Node n222 has three ascending nodes if node n is the

Petitioners' Ex. 1001, Page 489 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
325

root node. This corresponds with the level 3. Those skilled
in the art associate a nesting of XML tags to a tag tree of
FIG. 79A. For example, the selected section of the XML file
example of FIG. 78 is represented by a tree using tabs to
show nesting as:

home
city
state

interests

hangouts
morning
lunch
evening

such that home, interests and hangouts are peer node tags on
the same level; city and state are peer nodes on the same
level with the same ascending node (homes); and morning,
lunch and evening are peer node tags on the same level with
the same ascending node (hangouts). Depending on disclo
sure embodiments and XML files in use, there can be a
complicated tree structure having many branches with many
tag levels. Any tag, regardless of having descendants, can be
used to perform a comparison by using all leaf node tag
elements within its scope. Leaf nodes of the XML tree have
no descending tags, and may or may not have data specified.

FIG. 79B illustrates a binary tree equivalent to the tree
structure of FIG. 79A which is used to support XML tag tree
traversal processing. Binary tree structures and processing
thereof are well known in the art and facilitate automated
processing of general tree structures. Making node n of FIG.
79A the root node 1 yields FIG. 79B. The advantage of
representing the tree structure as a binary tree is that only
two pointers are required at any particular node in the tree
to accomplish top down processing of all branches. FIG.
79B can represent FIG. 79A without loss of information and
is more easily processed by a data processing system.
Representing an internalized tree structure in main memory
56 and/or storage 58 according to FIG. 79A for a data
processing system may cause excessive re-allocations on
any node n, or wasted storage for allocating a maximum
node size, to satisfy the requirement of adding new descen
dants. Representing an internalized tree structure according
to FIG. 79B for a data processing system conveniently
allows one allocation in main memory 56 and/or storage 58
with two pointers for any particular node n. Some embodi
ments may add additional pointer(s) (e.g. FIG. 79C ascen
dant and peer_up) for providing "reverse" link(s) to an
ascending node and/or peer node.

326
Pointers, pomtmg to the left, point to the leftmost

descending node (peer nodes on a tree are ordered). Pointers,
pointing to the right, point to the next peer node. A tree node
record contains Data (or at least one pointer to Data) and is

5 indicated in FIG. 79B using the "Data" prefix as a notation
convention. The Data (i.e. data) in a node record is associ
ated with the "stuff' between leaf node tags (e.g.
Moorestown="stuff' between city leaf node tags; basketball;
programming;running;football="stuff' between interests

10 leaf node tags, etc). Data may be in any suitable form
capable of storing/representing the "stuff' between match
ing tag delimiters (e.g. <tagN>"stuff'</tagN>). In a pre
ferred embodiment, only leaf node tags contain data and
other tags have no (i.e. null) data, however data may be

15 present for non-leaf node tags for "stuff' of a branch node
for tag data matching embodiments that support "stuff'
associated with non-leaf tags of an XML tag hierarchy.

FIG. 79C depicts a preferred embodiment C progranmiing
source code structure for encoding a node in an internalized

20 XML tree. A preferred embodiment utilizes an OOP source
code (e.g. C++, C#, or Java), but those examples mix data
and object code in defining relationships. FIG. 79C depicts
a purely data form of an internalize XML tree node. Because
XML is well known and has many uses, preferred OOP

25 environments provide XML APis. In fact, there are many
XML APis available to a programmer for many different
programming environments. These existingAPis (e.g. XML
InfoSet interfaces, XML Element Tree interfaces, XML
document interfaces, etc) are preferably used to accomplish

30 the disclosed profile match operator evaluation. For
example, in Java there is a Document Object Model (DOM)
specification for parsing XML documents and constructing
a complete in-memory representation of the document using
classes modeling concepts found in the DOM specification.

35 There is a Simple API for XML (SAX) which includes the
SAXParser. Unlike the DOM parser, the SAX parser does
not create an in-memory representation of the XML docu
ment and is faster and uses less memory. The SAX parser
informs clients of the XML document structure by invoking

40 callbacks. There is a XML Stylesheet Language for Trans
formations (XSLT) which allows conversion of an XML
document into other forms of data. JAXP provides interfaces
allowing applications to invoke an XSLT transformation.
There is also XMLpull and related APis. Microsoft's .NET

45 has the System.XML namespace which contains major
XML classes, Python has the xml.etree.ElementTree XML
API, and there are third party API providers (e.g. for
JDOM). Those skilled in the art recognize many XML
interfaces of use for carrying out XML processing according

50 to the present disclosure. Some developers may choose to
write a "home grown" XML implementation using infor
mation found in FIGS. 79A through 79D. The implementa
tion scheme selected may affect processing at blocks 4668,
4670, 4470, 5744 and other related blocks of processing

FIG. 79B is a skeletal structure for representing an XML
tag tree for tag tree traversal processing of the present
disclosure. A root pointer of a tree points to the node Datall.
The first level of descending nodes from the root are nodes
Datall through Data li. Data 11 through Datali are peer
nodes. Any particular node of Datall through Datali is in
turn capable of any number of descending nodes. For
example, Data12 has directly descending nodes Data121 60

through Data12j (peer nodes), as shown with respective
branches. Any particular node Data121 through Data12j is in
turn capable of any number of descending nodes. For
example, Data122 has directly descending nodes Data1221
through Data122k. Node Data12 is one level below the root
node. Node Data122 is two levels below the root node. Node
Data1222 is three levels below the root node.

55 discussed above (e.g. in FIGS. 38 through 48B).
The XML_NODE type definition may or may not need a

data_type field since data may always be the same type (e.g.
null terminated strings such as in the FIG. 78 example which
uses semicolons to delimit a plurality of data elements).

FIG. 79D depicts a flowchart for describing a preferred
embodiment of a procedure for profile match operator
evaluation without locking a design into any particular XML
implementation, for example those discussed above. Pro
cessing begins at block 7952 (e.g. when invoked by block

65 5744 processing) and continues to block 7954. Block 7954
accesses parameters passed: the charter expression portion
where the profile match operator has been specified, refer-

Petitioners' Ex. 1001, Page 490 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
327

ence profile (e.g. Lprofile of FIG. 79C pointing to internal
ized tree of profile in expression), and attempt profile (e.g.
Rprofile of FIG. 79C pointing to internalized tree of WDR
profile section). Depending on an embodiment, the profiles
may already be internalized, or block 7954 will perform 5

internalization, or there is no need to internalize (e.g. depen
dent on APis used). The reference profile is the profile
maintained at/for the MS which is processing the charter
(preferably specified in the charter expression, although
some embodiments may assume a default profile when one 10

is not specified (e.g. #>5)). The attempt profile is the profile
of the in-process WDR (e.g. inbound WDR), or the profile
(section) of application fields 1100k of an in-process WDR.
The FIG. 79D procedure can be passed swapped parameters
for using the in-process WDR as the reference profile. Block 15

7954 continues to block 7956.

328
7976 determines the last element of data for the tag in the
TAG_CHECK_LIST entry has been processed (or none was
present to start with), then processing returns to block 7964
for the next entry in the TAG_CHECK_LIST.

If block 7976 determines there is a data element to
process, then block 7978 increments by 1 the TAG_DATA_
MATCH_ATTEMPTS counter and block 7980 checks if the
data element is found in the attempt profile for the matched
tag. If it is found, block 7980 continues to block 7982 where
the TAG_DATA_MATCHES counter is incremented by 1
and processing returns to block 7974 for processing the next
(if any) data element. If block 7980 determines the sought
data is not found in the attempt profile data, then processing
continues directly back to block 7974.

Note that blocks 7974 through 7982 form a loop for
iterating each data element (e.g. semicolon delimited) for the
tag in the entry ofTAG_CHECK_LIST for matching to data
with the same tag in the attempt profile. If block 7976

If block 7956 determines the profile match operator has
not been qualified with specific tags for matching (in charter
expression portion parameter), then block 7958 sets a TAG_
CHECK_LIST with a list of entries wherein each entry
includes a XML tree leaf node tag name (e.g. interests) and
associated tag element value (e.g. "basketball; program
ming; rumiing; football"). In another embodiment, block
7958 may build a list of all tags in the XML tree and then
maintain leaf node tag (within that tree node's descending
scope) element data values concatenated together like a
plurality of semicolon delimited data elements for compare

20 determines there are no more data elements to check, then
processing continues back to block 7964 for getting the next
TAG_CHECK_LIST entry. Note that blocks 7964 through
7982 form a loop for iterating each TAG_CHECK_LIST
entry for matching to data with the same tag in the attempt

25 profile. A match is preferably made when the reference
profile data element of block 7974 appears in any subset of
attempt profile data from block 7968.

as though the branch node was a leaf node with the element
data. The tag hierarchy may, or may not, be maintained in
the TAG_CHECK_LIST entry tag information for causing 30

the tag path to have relevance in matching. Block 7958
continues to block 7960. If block 7956 determines the profile
match operator has been qualified with specific tags for
matching (e.g. % (home,hangouts)
d:\myprofs\benchmark.xml >75), then block 7962 sets a 35

TAG_CHECK_LIST with a list of entries wherein each
entry includes a specified tag (e.g. home and hangouts) and
their associated values (home: "Moorestown; New Jersey",
and hangouts: "Starbucks; Jammin's; Mongolian Barbeque;
Confettis; limbos"). The preferred embodiment concat- 40

enates descending leaf node tag values (within the tag
node's scope) together like a larger leaf node. Another
embodiment may maintain separate TAG_CHECK_LIST
entries for unique branch paths from the specified tag to each
descending leaf node tag so that tag hierarchy path infor- 45

mation is considered in the compare. Block 7962 continues
to block 7960.

If block 7966 determines that all TAG_CHECK_LIST
entries have been processed, processing continues to block
7984. If block 7984 determines the profile match operator of
the charter expression portion passed to FIG. 79D is the"#"
operator, then block 7986 checks the charter expression
portion using TAG_DATA_MATCHES for evaluating the
condition. If block 7986 determines the condition is true,
then block 7988 returns a TRUE result to the caller (e.g.
block 5744 invoker processing), otherwise block 7990
returns a FALSE result to the caller. If block 7984 deter
mines the profile match operator of the charter expression
portion passed to FIG. 79D is the "%" operator, then block
7992 calculates a percentage of matching using TAG_
DATA_MATCHES and TAG_DATA_MATCH_AT
TEMPTS (i.e. solve for x such that TAG_DATA_
MATCHES/TAG_DATA_MATCH_ATTEMPTS=x/100)
and block 7994 checks the charter expression portion using
the percentage calculated for evaluating the condition. If
block 7994 determines the condition is true, then block 7988
returns a TRUE result to the caller (e.g. block 5744 invoker
processing), otherwise block 7990 returns a FALSE result to

Block 7960 initializes counter variables: TAG DATA
MATCH ATTEMPTS=O and TAG DATA MATCHES=O,
and continues to block 7964 for getting the next TAG_
CHECK_LIST entry. Thereafter, if block 7966 determines

50 the caller.

all entries from TAG_CHECK_LIST have not been pro
cessed, block 7968 uses the associated data for the tag from
the TAG_CHECK_LIST entry and attempts to access the
data in an analogous manner (to building TAG_CHECK_ 55

LIST) from the attempt profile. Block 7968 may, or may not,
enforce a matching tag hierarchy to get to a matching tag.

Thereafter, if block 7970 determines there was no match
ing tag in the attempt profile, or no data for a matched tag
in the attempt profile, then block 7972 increments the 60

counter TAG_DATA_MATCH_ATTEMPTS by the number
of data elements (e.g. semicolon delimited) in the TAG_
CHECK_LIST entry data, and processing continues back to
block 7964. If block 7970 determines the tag was found with
element data in the attempt profile, block 7974 gets the next 65

data element (e.g. string up to semicolon or end of string) of
the TAG_CHECK_LIST data entry. Thereafter, if block

With reference now to FIG. 80A, depicted is an example
LBX application fields 1100k implementation status table
8000 for being processed. As already discussed above, any
section of applications field 1100k can be enabled, or dis
abled for being included in inbound, outbound, or any other
in-process WDR, and a "section" may be an entire applica
tion section (i.e. all data within that application section), any
subset of data within an application section, or any specific
data item within an application section. Section is a broad
term for being any subset of data in fields 1100k. Application
fields processing (discussed with FIG. 77) allows a MS user
and/or MS system settings to control:

Data of fields 11 OOk that gets exposed in the LN-expanse
(i.e. stripped or appended before outbound);

Data of fields 1100k that gets stored to queue 22 (i.e.
stripped or appended before processing for insertion);
and/or

Petitioners' Ex. 1001, Page 491 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
329

Data of fields 1100k that gets seen by processing after a
WDR has been received (i.e. stripped or appended
before any MS post-receive processing).

WITS filtering and privileges in place can enforce what
WDRs are seen by others. This expands or narrows the 5

"playing field" for applying processing enforced with FIG.
77. In some embodiments, any section of application fields
1100k can be enabled or disabled in any WDR in-process
path for specific MSs, MS users, groups of MSs, groups of
MS users, or any identifiable collection of valid source(s) or 10

target(s) of WDRs. Similarly, privileges can be used for
enabling, disabling, hiding, un-hiding, or managing all
applications fields 1100k and applicable processing dis
closed.

330
1) Presented=new requirement(s) (e.g. 8006) presented to

the board for making case of compelling value. The
presentation may be as simple as an email, an escalated
customer trouble ticket, or as serious as a live presen
tation. Those skilled in the art should be able to
recognize alternatives for how to implement the appli-
cation presented and the benefits of having such an
application;

2) RFP=Request for Proposal of new requirement(s) (e.g.
8004) has been decided by the board for successfully
presented requirement(s). The proposing party must
formally submit their detailed proposal within the con
text of the LBX architecture before it is candidate for
implementation; When an item is marked RFP, imple
mentation is understood and documented, but addi
tional details may be required;

3) Registered=An RFP has been accepted and is formally
adopted for implementation in the LBX architecture
(e.g. 8002). New privileges are implemented for appro
priate interoperability between MSs. The registered
requirement(s) are documented as part of subsequent
LBX enabled product documentation. The scope of
current implementation is documented as well;

4) Tabled=Requirement(s) were presented or RFP was
considered, and it was decided to not pursue the
requirement(s) in the LBX architecture (e.g. 8008).
Reason(s) for being tabled is documented as part of
records; and

5) Retired=Requirement(s) which were registered have
been removed from the LBX architecture. Reason(s)
for being retired is documented as part of records.

FIG. 80B depicts some section descriptions of registered
LBX application fields 1100k. Note that many fields are

Applications fields are preferably hierarchical sections for 15

organizing data in an easily identifiable manner. Whether
MS users use local applications or internet accessed appli
cations (e.g. cloud computing), application fields commu
nicated between MS users is important for interoperability.
Any section of fields 1100k can be shared from one MS to 20

another. Application fields 11 OOk is in at least the reference
able form: appfld.appname.dataitem such that appfld refer
ences field 1100k, appname references a specific application
section of field 1100k and dataitem references a specific
value (or set of values) in the application section. Some 25

sections of fields 1100k are maintained in databases by the
application and are accessed as needed (e.g. for WDR
transmission, update from received WDR, etc). Syntactical
references include forms: \ref, _ref, _I_ref or _O_ref such
that ref is equivalent to the field referenced: \appfld.app- 30

name.dataitem, _appfld.appname.dataitem, _I_appfld.app
name.dataitem, _O_appfld.appname.dataitem. There may be
many sections and levels thereof to get to a data item. The
form name! .name2.name3 ... nameN is used as required to
get to the lowest order data in a higher order section.
Because of the very large number of subsets (sections) of
fields 1100k, it is preferred that most, if not all, user
controlled fields 1100k be disabled when a MS is powered

35 derived from, or are predecessors of, Application terms
accessible for use in charter expressions, and atomic com
mand processing. Also note that there are privileges and/or
charter specifications which can be specified for carrying out
identical functionality. The LBX architecture is emerging, so up for the first time. The user can later enable features after

learning to use a LBX enabled MS. Depending on the data
embodiment for carrying data of fields 1100k, human read
able names or corresponding parse-able binary identifiers
are used. X.409 or a similar encoding may be used to carry
data in fields 1100k. appfld section date/time specs can use
BNF grammar time specification methods.

Any subset of application fields 1100k can be moved to
LBX History 30 for any reason at any time in MS process
ing, for example to keep a history of application contexts,
states, data, occurrences thereof, etc

FIG. 80A is a snapshot of a LBX application fields 1100k
implementation status table. Requirements for amending
LBX processing are preferably fed into a review board of
key stake holders for consideration of implementation. A
proposed application fields section is submitted to the board
with a presentation and then later processed for a current
status. The section can be a completely new application
section, or a new hierarchically lower data field in an
existing application section. An LBX proposed amendment
has the following status:

40 there is intentional overlap between privilege and charter
processing, application term specifications and intended
features defined by sections of fields 1100k. It is not clear yet
which LBX option for overlapped features (App Term versus
fields 1100k section) will become more readily adopted in

45 the marketplace. There is a wealth of statistics generated for
application fields and processing thereof. Some of the sec
tion values below may be set to NULL.

Each data value of leaf nodes of a section hierarchy tree
may be set by a MS user and/or defaulted by a MS (see FIG.

50 SOC). Permissions may be used to govern permissible values
initialized or assigned. Application fields may be present to
share with others (e.g. in the vicinity) for a variety of
reasons, and the data can be accessed for user examination
at the MS with an appropriate user interface. Some appli-

55 cation fields require a database lookup when added to a
WDR, otherwise high speed MS memory will be impacted
for maintaining the data. With reference to FIG. 80B, source
section 8002a includes subordinate sections including the
following examples:

appfld.source.id.X appfld.source.id.email - "davood.iyadi@lbxphone.com";
appfld.source.id.phone - "214-405-2323";

appfld.source.id.calendar - "davood@lbxphone.com";
appfld.source.id.ab - "davood@lbxphone.com";

appfld.source.id.rfid - "0A12:43EF:985B:012F";
References to appfld.source.id in charter expressions

Petitioners' Ex. 1001, Page 492 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

appfld.source.type

appfld.source.mfr

appfld.source.serno

appfld.source.ip

US 10,477,994 B2
331

-continued

contextually uses the correct ID data value based on the
context of use. The fully qualified hierarchical name (e.g.
appfld.source.id.email") may also be used explicitly.
See BNF grammar atomic element "system type"
discussions.
See BNF grammar atomic element "system type"
discussions for breaking out manufacturer from atomic
element "system type".
See BNF grammar atomic element "logical handle" or
"physical handle".
Suitable ip address(es) notation (e.g.
192.168.1.25; 50.46.123.2)

15
Source section 8002a information is physical and logical
information about the MS which may be of use when sharing
between MSs for various applications and managing of
identities thereof.

Profile section 8002b includes at least the appfld.profile-
20

.contents section containing profile information as discussed
throughout this disclosure (e.g. XML or X.409 datastream).

Email section 8002c includes subordinate sections includ
ing the following examples:

appfld.email.source

appfld.email.default.attribute.Y

appfld.email.default.salutation

appfld.email.default.doctype
appfld.email.default.recips

appfld.email.default.encrypt

appfld.email.default.compress

appfld.email.defaults.$
appfld.email.type

appfld.email.pending.attribute.Y

appfld.email.pending.salutation

appfld.email.pending.doctype
appfld.email.pending.recips

appfld.email.pending.encrypt

appfld.email.pending.compress

appfld.email.pending.cdt

appfld.email.source - "davood.iyadi@lbxphone.com";
This value is preferably used to default
appfld.source.id.email, but can be changed based on
permissions (e.g. specify different source address for
emails).
Default attributes: appfld.email.attribute.cod - Y;
appfld.email.attribute.urgent - N;
appfld.email.attribute.charcode - 850; etc In one
embodiment, the attribute section is a bit mask for
enable/disable of well known bit position attributes. There
can be many attributes.
Textual salutation may be shared with others. May be
null.
Can inform others of preference.
Comma separated recipients for defaulting in an email
recipient list. These are not defaulted into emails unless
requested by the user during email composition. A
special qualifier is used to specify the type of recipient
(e.g. "davood.iyadi@lbxphone.com,
cc: ravi.sirrayanan@lbxphone.com,
be: sam.sunn@lbxphone.com" specifies a copy recipient
ravi and a blind copy recipient sarn. No qualifier is a
primary recipient. There may be other qualifiers for other
recipient types.)
Email encryption algorithm (settings for NONE (no
encryption), DES, AES, RSA, Blowfish, or any other MS
reference-able algorithm). May be null.
Email compression algorithm settings for NONE, ZIP,
LZO, LZX or any other MS reference-able algorithm),
May be null.
$ - other field sections.
Email app type/name can inform others which email
application is used.
Attributes of pending email being composed:
appfld.email.attribute.cod - N;
appfld.email.attribute.urgent - N;
appfld.email.attribute.charcode - 850; etc In one
embodiment, the attribute section is a bit mask for
enable/disable of well known bit position attributes. There
can be many attributes.
Textual salutation if present in composed email. May be
null.
Doc type of email being composed.
Comma separated recipients for email underway using
qualifiers discussed above.
Email encryption algorithm to be used as described
above. May be null.
Compression algorithm to be used as described above.
May be null.
Email initial creation date/time stamp for pending or last
entry.

332

Petitioners' Ex. 1001, Page 493 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

333

appfld.email.pending.content

appfld.email.pending.$
appfld.email.last. sent.ANYattribute. Y

appfld.email.last.sent.ANYsalutation
appfld.email.last.sent.ANYdoctype
appfld.email.last.sent.ANYrecips

appfld.email.last.sent.ANYencrypt

appfld.email.last.sent.ANYcompress

appfld.email.last.sent.ANYcdt

appfld.email.last.sent.ANYcontent

appfld.email.last.sent.ANY$
appfld.email.last.sent. {id}.*

appfld.email.last.rcvd.ANY*

appfld.email.last.rcvd. {id}.*

. . . otber field sections ...

US 10,477,994 B2

-continued

Email data (e.g. email body, attachment(s), etc) for
transporting between MSs. This enables a peer to peer
email delivery (see MS2MS processing). No email
service is required for MS users to talk to each other.
appfld.email.pending.content.body - tbe currently
constructed email body being composed for sending.
Attachments are referenced with
appfld.email.pending.content.attach.ct for tbe number (ct -
count) of attachments and
appfld.email.pending.content.attach.# (1 for first, 2 for
second, etc.) for an email currently being composed
which has not been sent yet. SMS messages may use
this same mechanism. See content subordinate fields
discussed above.
$ - otber field sections.
Attributes of email last sent to anyone from MS:
appfld.email.attribute.cod - N;
appfld.email.attribute.urgent - N;
appfld.email.attribute.charcode - 850; etc In one
embodiment, the attribute section is a bit mask for
enable/disable of well known bit position attributes. There
can be many attributes.
Textual salutation of email last sent to anyone from MS.
Doc type of email last sent to anyone from MS.
Comma separated recipients of email last sent to anyone
from MS.
Email encryption algorithm indicator of email last sent to
anyone from MS.
Compression algorithm indicator of email last sent to
anyone from MS.
Email initial creation date/time stamp of email last sent to
anyone from MS.
Email data (e.g. email body, attachment(s), etc) of email
last sent to anyone from MS for transporting between
MSs. This enables a peer to peer email delivery (see
MS2MS processing). No email service is required for MS
users to talk to each otber.
appfld.email.pending.content.body,
appfld.email.pending.content.attach.ct, and
appfld.email.pending.content.attach.# are analogous to
above for tbe last sent email to anyone from tbe MS.
$ - otber field sections.
There is a field here for each appfld.email.last.sent.ANY*
field above, however a specific id can be specified (e.g.
joe@yahoo.com). This allows access to fields of tbe most
recently sent email item to a specific recipient. There are
a plurality of fields (i.e. *) represented by tbis row to
prevent redundantly listing each field again for an
appfld.email.last.sent.{id} section ...
There is a field here for each appfld.email.last.sent.ANY*
field above, however rcvd qualifier indicates that each
field is for tbe most recent email received by tbe MS from
anyone. There are a plurality of fields (i.e. *) represented
by tbis row to prevent redundantly listing each field again
for an appfld.email.last.rcvd.ANY section ...
There is a field here for each appfld.email.last.rcvd.ANY *
field above, however a specific id can be specified (e.g.
joe@yahoo.com). This allows access to fields of tbe most
recently received email item from a specific recipient.
There are a plurality of fields (i.e. *) represented by tbis
row to prevent redundantly listing each field again for an
appfld.email.last.rcvd.{id} section ...

334

55
Email section 8002c information contains useful informa
tion for LBX sharing and novel applications thereof with
respect to (wrt) an email application. For example, a WDR
received may be treated uniquely based on an email in
progress (WDR in-process at receiving MS or sending MS)

60 or an email last sent (WDR in-process at receiving MS or
sending MS). Charters can use data above inAppTerm form

applications wherein the hierarchical section structure
would be affected for supporting each email application with
data specific for the particular application (e.g. appfld.email.
outlook for qualifying all outlook subordinate sections (e.g.
appfld.email.outlook.type), appfld.email.express for qualify
ing all express subordinate sections, etc).

Address Book (AB) section 8002e includes subordinate
sections including the following examples: as well. In some MS embodiments there are multiple email

appfld.ab.id This value is preferably used to default
appfld.source.id.ab, but can be changed based on
permissions.

Petitioners' Ex. 1001, Page 494 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
335

appfld.ab.default.attribute.Y

appfld.ab.default.background

appfld.ab.default.$
appfld.ab.type

appfld.ab.pending.attribute.Y

appfld.ab.pending.background

appfld.ab.pending.cdt
appfld.ab.pending.content

appfld.ab.pending.group

appfld.ab.pending.$
appfld.ab.last.local.ANY.attribute.Y

appfld.ab.last.local.ANY.background

appfld.ab.last.local.ANY.cdt

appfld.ab.last.local.ANY.content

appfld.ab.last.local.ANY.group

appfld.ab.last.local.ANY.$
appfld.ab.last.local.{id}. *

appfld.ab.last.otber.ANY *

appfld.ab.last.otber. {id}.*

. . . otber field sections ...

-continued

Defaults for composing AB entries:
appfld.ab.default.attribute.marker - NONE or specific
visual marker type for entry created;
appfld.ab.default.attribute.color - color of entry in
address book;
appfld.ab.default.attribute.font - font used for text;
appfld.ab.default.attribute.size - size of font used. In one
embodiment, the attribute section is a bit mask for
enable/disable of well known bit position attributes. There
can be many attributes.
Background color, pattern, tiled picture, stretched picture,
and/or animation file (e.g. HTML). May be null.
$ - otber field sections.
AB app type/name can inform otbers which application is
used.
Attributes of pending AB entry being composed as
described above. In one embodiment, the attribute
section is a bit mask for enable/disable of well known bit
position attributes.
Background color, pattern, tiled picture, stretched picture,
and/or animation file (e.g. HTML) for pending/composed
entry. May be null.
AB initial creation date/time stamp for pending entry.
AB data (e.g. ab body, attachment(s), etc) being created,
which may be transported between MSs. This enables a
peer to peer AB delivery (see MS2MS processing). No
service is required for MS users to talk to each other.
appfld.ab.pending.content.name - tbe currently
constructed AB entry name or reference to entry.
appfld.ab.pending.content.body - tbe currently
constructed AB entry body being composed.
Attachments are supported witb
appfld.ab.pending.content.attach.ct for tbe number (ct -
count) of attachments and
appfld.ab.pending.content.attach.# (1 for first, 2 for
second, etc.) for an AB entry being composed (i.e.
pending).
Optional group(s) (delimited if plural) tagging tbe AB
entry for organization (e.g. Family; Cousins). May be null.
$ - otber field sections.
Attributes of AB entry last created locally wherein
.attribute.Y described above for
appfld.ab.default.attribute.Y
Background color, pattern, tiled picture, stretched picture,
and/or animation file (e.g. HTML) of last completed AB
entry at MS.
AB creation date/time stamp of AB entry last created at
MS.
AB data (e.g. body, attachment(s), etc) of AB entry last
created at MS. See above for field section descriptions.
Optional group(s) tagging tbe AB entry last created at
MS.
$ - otber field sections.
There is a field here for each appfld.ab.last.local.ANY *
field above, however a specific id can be specified (e.g.
joe@yahoo.com). This allows access to fields of tbe most
recently created AB item for a specific person (e.g. MS
user). There are a plurality of fields (i.e. *) represented by
tbis row to prevent redundantly listing each field again for
an appfld.ab.last.local.{id} section ...
There is a field here for each appfld.ab.last.local.ANY *
field above, however tbe otber qualifier indicates tbat
each field is for tbe most recent AB entry created by
anotber user (e.g. received by tbe MS from anyone).
There are a plurality of fields (i.e. *) represented by tbis
row to prevent redundantly listing each field again for an
appfld.ab.last.otber.ANY section ...
There is a field here for each appfld.ab.last.otber.ANY*
field above, however a specific id can be specified (e.g.
joe@yahoo.com). This allows access to fields of tbe most
recently created AB item from a specific user. There are
a plurality of fields (i.e. *) represented by tbis row to
prevent redundantly listing each field again for an
appfld.ab.last.otber.{id} section ...

336

Petitioners' Ex. 1001, Page 495 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
337 338

AB section 8002e information may contain useful informa
tion for LBX sharing and novel applications thereof wrt an
AB application. For example, a WDR received may be
treated uniquely based on an AB entry in progress (WDR
in-process at receiving MS or sending MS) or an AB entry 5

last sent (WDR in-process at receiving MS or sending MS).
Charters can use data above in AppTerm form as well. In
some MS embodiments there are multiple AB applications

wherein the hierarchical section structure would be affected
for supporting each AB application with data specific for the
particular application (e.g. appfld.ab.outlook for qualifying
all outlook subordinate sections (e.g. appfld.ab.outlook.
type), appfld.ab.rolodex for qualifying all rolodex subordi
nate sections, etc).

Calendar section 8002d includes subordinate sections
including the following examples:

appfld.calendar.id

appfld.calendar.default.attribute.Y

appfld.calendar.default.recips

appfld.calendar.default.carup

appfld.calendar.default.$
appfld.calendar.type

appfld.calendar.pending.attribute.Y

appfld.calendar.pending.recips
appfld.calendar.pending.carup

appfld.calendar.pending.cdt

appfld.calendar.pending.content

appfld.calendar.pending.datetimes

appfld.calendar.pending.recurring

appfld.calendar.pending.$
appfld.calendar.last.local.ANYattribute.Y

appfld.calendar.last.local.ANYrecips

appfld.calendar.last.local.ANYcarup

This value is preferably used to default
appfld.source.id.calendar, but can be changed based
on permissions.
Defaults for composing CALENDAR entries:
appfld.calendar.default.attribute.cod - confirmation of
delivery of meeting notice;
appfld.calendar.default.attribute.urgent - mark
calendar entry/notice as urgent;
appfld.calendar.default.attribute.color - color for
highlight of entry or NONE;
In one embodiment, the attribute section is a bit mask
for enable/disable of well known bit position
attributes. There can be many attributes.
Comma separated recipients for defaulting in a
calendar notice recipient list. These are not defaulted
into meeting notices unless requested by the user
during composition. A special qualifier can used to
specify the type of recipient (e.g.
"davood.iyadi@lbxphone.com,
cc:ravi.sirrayanan@lbxphone.com,
bc:saru.sunn@lbxphone.com" specifies a copy
recipient ravi and a blind copy recipient sarn. No
qualifier is a required attendee. There may be other
qualifiers for other recipient types.)
Can share with others whether you permit meeting
notices created by others to camp on one of your
calendar entries already scheduled. Then, if the
original meeting is cancelled, the camped-on meeting
becomes scheduled and attendees are automatically
notified. True or False.
$ - other field sections.
CALENDAR app type/narue can inform others which
application is used.
Attributes of pending CALENDAR entry being
composed as described above. In one embodiment,
the attribute section is a bit mask for enable/disable
of well known bit position attributes.
Recipients of calendar entry being composed.
Camp-on permission of calendar entry being
composed.
CALENDAR initial creation date/time starup for
pending entry.
CALENDAR data (e.g. calendar body, attachment(s),
etc) being created, which may be transported
between MSs. This enables a peer to peer
CALENDAR delivery (see MS2MS processing). No
service is required for MS users to talk to each other.
appfld.calendar.pending.content.subj - the subject of
the calendar notice.
appfld.calendar.pending.content.body - the currently
constructed CALENDAR entry body being composed.
Attachments are supported with
appfld.calendar.pending.content.attach.ct for the
number (ct - count) of attachments and
appfld.calendar.pending.content.attach.# (1 for first, 2
for second, etc.) for an CALENDAR entry being
composed (i.e. pending).
CALENDAR scheduling information (when
scheduled).
CALENDAR appointment recurring information (e.g.
every week, every month, etc) of composed calendar
entry. May be null.
$ - other field sections.
Attributes of CALENDAR entry last created locally
wherein attribute.Y described above for
appfld.calendar.default.attribute.Y
Sarue as appfld.calendar.default.recips except for the
last entry created locally.
Sarue as appfld.calendar.default.carup except for the
last entry created locally.

Petitioners' Ex. 1001, Page 496 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

339

appfld.calendar.last.local.ANYcdt

appfld.calendar.last.local.ANYcontent

appfld.calendar.last.local.ANYdatetimes

appfld.calendar.last.local.ANYrecurring

appfld.calendar.last.local.ANY$
appfld.calendar.last.local. {id}.*

appfld.calendar.last.other.ANY *

appfld.calendar.last.other. {id}.*

appfld.calendar.next.X

appfld.calendar.nextavail.X

appfld.calendar.sched.X

. . . other field sections ...

US 10,477,994 B2

-continued

CALENDAR creation date/time stamp of CALENDAR
entry last created at MS.
CALENDAR data (e.g. body, attachment(s), etc) of
CALENDAR entry last created at MS. See above for
field section descriptions.
Same as appfld.calendar.default.datetimes except for
the last entry created locally.
Same as appfld.calendar.default.recurring except for
the last entry created locally.
$ - other field sections.
There is a field here for each
appfld.calendar.last.local.ANY * field above, however
a specific id can be specified (e.g.joe@yahoo.com).
This allows access to fields of the most recently
created CALENDAR item for a specific person (e.g.
MS user). There are a plurality of fields (i.e. *)
represented by this row to prevent redundantly listing
each field again for an appfld.calendar.last.local.{id}
section ...
There is a field here for each
appfld.calendar.last.local.ANY * field above, however
the other qualifier indicates that each field is for the
most recent CALENDAR entry created by another
user (e.g. received by the MS from anyone). There
are a plurality of fields (i.e. *) represented by this row
to prevent redundantly listing each field again for an
appfld.calendar.last.other.ANY section ...
There is a field here for each
appfld.calendar.last.other.ANY. * field above, however
a specific id can be specified (e.g.joe@yahoo.com).
This allows access to fields of the most recently
created CALENDAR item from a specific user. There
are a plurality of fields (i.e. *) represented by this row
to prevent redundantly listing each field again for an
appfld.calendar.last.other. {id} section ...
Always contains the next forthcoming (wrt current MS
date/time) appointment calendar entry information
such as date/time stamp, attendees, location, etc in
form: appfld.calendar.next.X for each section (field)
X. Can share as appropriate.
Can share your next free period of time X on your
calendar wrt current MS date/time, such that X is
hour (e.g. appfld.calendar.nextavail.hour), day, week,
etc. There are many embodiments for permitted
forthcoming periods of time available.
Can share any specified calendar portion schedule
with others. Embodiments support an X section for
any conceivable subset of time of a calendar. The X
field is parse-able data (e.g. string) for information .

340

Calendar section 8002d information contains useful infor
mation for LBX sharing and novel applications thereof wrt
a calendar application. For example, a WDR received may

45 wherein the hierarchical section structure would be affected
for supporting each calendar application with data specific
for the particular application (e.g. appfld.calendar.outlook
for qualifying all outlook subordinate sections (e.g. appfld.
ab.outlook.type), appfld.calendar.meetingplace for qualify
ing all meetingplace subordinate sections, etc).

be treated uniquely based on a calendar entry, or meeting
notice, in progress (WDR in-process at receiving MS or
sending MS) or a calendar entry, or meeting notice, last sent 50

(WDR in-process at receiving MS or sending MS). Charters
can use data above in AppTerm form as well. In some MS
embodiments there are multiple calendar applications

Phone section 8002/includes subordinate sections includ
ing the following examples:

appfld. phone.id

appfld.phone.default.volume
appfld. phone.default.encrypt

appfld. phone.default.

- (e.g. "214-405-9999") The real MS caller id which
cannot be changed. This number is provided by the
telecommunications service provider, or by the peer
to peer MS telephone plan. Can be shared with
others. This value is preferably used to default
appfld.source.id.phone, but can be changed based on
permissions (e.g. specify different phone id).
Phone call default volume.
Phone call default encryption algorithm for outgoing
voice call. Receiving system recognizes that call is
encrypted and handles appropriately. See encryption
choices discussed above. May be null.
compressPhone call default compression algorithm for outgoing
voice call. Receiving system recognizes that call is

Petitioners' Ex. 1001, Page 497 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

appfld.phone.default.camp

appfld.phone.default.$
appfld.phone.caller

appfld.phone.log.in

appfld.phone.log.out

appfld.phone.log.missed

appfld.phone.log.vmail

appfld.phone.log.$
appfld.phone.record.X

appfld.phone.ogm

appfld.phone.dt.out
appfld.phone.dt.in
appfld.phone.dt.missed
appfld.phone.type

appfld.phone.fwd

appfld.phone.ring

appfld.phone.vibe

appfld.phone.droplocs.X

US 10,477,994 B2
341

-continued

compressed and handles appropriately. See
compression choices discussed above. May be null.
Phone call default camp-on variable which when true
allows callers to camp-on a busy phone call session
(i.e. call waiting) in a priority order. A unique call
waiting tone notifies the MS user for each new party
camped-on.
$ - other field sections.
Can override appfld.phone.id with a different caller id
for the MS if appropriate privileges exist. This allows
overriding a real caller id with an acceptable text
string.
Log for calls received by the MS (analogous to a cell
phone log with historical number).
Log for calls made by the MS (analogous to a cell
phone log with historical number).
Log for calls missed by the MS (analogous to a cell
phone log with historical number).
Log for calls that left message to voice mail at the
MS (analogous to a cell phone log with historical
number).
$ - other log field sections.
appfld.phone.record.rx - True (record voice data of
all calls received); appfld.phone.record.tx - False (do
not record voice data of all calls made from MS:
False is the default so need not be specified);
appfld.phone.record.713-303-8900 - True (record
calls made to, or received from 713-303-8900);
appfld.phone.record.tx:713-303-8900 - True (record
calls made to 713-303-8900);
appfld.phone.record.rx:713-303-8900 - True (record
calls received from 713-303-8900); Other
embodiments will support other prefixes for qualifying
what to do with recording a specific number (e.g.
appfld.phone.record.tx, Houston:713-303-8900 - True
(record calls into the Houston folder made to 713-
303-8900). Wildcards are supported where
reasonable: appfld.phone.record.713* - True (record
calls made to, or received from any nwnber from area
code 713). appfld.phone.record.ct contains the total
number of current record.X configurations excluding
the .ct configuration. appfld.phone.record.folder -
where to place recording file. Each recording file is
identified with its create date/time stamp, and the MS
ID involved (e.g. file name convention). Storage is
limited, so the MS user should monitor to prevent out
of space conditions.
Can share your OutGoing voice mail Message.
Alternate embodiments support appfld.phone.ogm.X
wherein X in [primary, alternatel, alternate2, ...
altemateN].
Date/time stamp for last call made from MS.
Date/time stamp last call received to MS.
Date/time stamp for last call missed at MS.
Phone application type/name can inform others which
application is used.
A parse-able syntactical string of instructions in left to
right priority order for how to forward the call with
options for other phone number(s), directly to voice
mail, conversion to an email, or conversion to a fax.
This section is used by other section processing. See
appfld.phone.blackout section. This is also used for
the DND (Do Not Disturb) function for forwarding
directly to voice mail.
Ring setting = ring tone selection reference OR audio
file reference.
Vibration setting = None OR reference for vibration
type.
appfld.phone.droplocs.ct - number of dropped call
locations saved at MS, preferably after a system
threshold reached for same location;
appfld.phone.droplocs.#.data - (# in [1 ... ct]) parseable
data describing location information where
phone calls were likely consistently dropped by the
local MS poor reception. Data preferably qualifies the
location suspected of being dropped such as speed,
date/time, elevation, etc. A reasonably sized FIFO

342

Petitioners' Ex. 1001, Page 498 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

appfld.phone.macro.X

appfld.phone.pwd.X

appfld.phone.pwd.rx

appfld.phone.pwd.rxon
appfld.phone.blackout

US 10,477,994 B2
343

-continued

queue of dropped call data records is automatically
maintained for later warning MS user(s) of trouble
spots at a future time.
appfld.phone.macro.ct - number of automated ARU
interface macros saved/recorded for automated ARU
interface use. appfld.phone.#.name - (# in [1 ... ct])
macro name; appfld.phone.#.cdt - (# in [1 ... ct])
creation date/time in Julian format (e.g. 8 bytes);
appfld.phone.#.ldt - (# in [1 ... ct]) - last changed
date/time stamp in Julian format (e.g. 8 bytes);
appfld.phone.#.source - (# in [1 ... ct]) null terminated
string macro (e.g. for stocks."1-800-453-
6767:1323211"; This indicates a macro named
"stocks". The string which follows is the macro and
can take various forms; may also be in binary format).
See U.S. Pat. No. 5,835,571 ("Automated telephone
service interface", Johnson) for embodiments
supported here.
appfld.phone.pwd.ct - number of configurations;
appfld.phone.pwd.#.pred - (# in [1 ... ct]) called phone
identifier (e.g. called number) for assigned password
with wildcarding supported (e.g. 856-234-5589 for
specific number, 713 * predicate for all calls made to
713 area code, etc); appfld.phone.pwd.#.pwd - (# in
[1 ... ct]) for the associated password. Calling
passwords may be shared for a MS user's phone
directory maintained. appfld.phone.pwd.#.enabled -
(# in [1 ... ct]) for True to use/transmit the password,
otherwise False indicates to not send it as trailing
information. See U.S. Pat. No. 5,912,959 ("Method of
and system for password protection in a
telecommunications network", Johnson) for MS
receiving embodiments provided the origination of the
call and network, or peer to peer MS2MS
implementation, supports processing the password
information with the call. If the trailing password is not
supported by the receiving MS, or switch, the trailing
information is simply ignored.
appfld.phone.pwd.rx is a delimited (e.g. semicolon)
list of passwords which others must use in order for
their calls to succeed to this MS. The receiving MS
for MS2MS peer calls made will check for a match to
the password(s) in order to connect the call when
appfld.phone.pwd.rxon - True, otherwise
appfld.phone.pwd.rx is not used. One password is
typically used, but there may be reasons to provide
different password to different callers for unique call
processing - e.g. appfld.phone.record section,
appfld. phone.fwd section, etc. Calls received are
treated uniquely based on the password that
accompanies the call. See U.S. Pat. No. 5,912,959
("Method of and system for password protection in a
telecommunications network", Johnson). This
disclosure improves that U.S Patent with variable
processing based on the password entered. May be
null.
Boolean for enable or disable of appfld.phone.pwd.rx.
This configuration is very useful for preventing the
taking of calls. Calls are automatically forwarded to
appfld.phone.fwd processing when one or more
blackout conditions are true. This is a syntactical
expression which gets elaborated to determine a
Boolean True or False result. True causes forward
processing, False does not. A charter can be
configured for setting this as desired. In an alternate
embodiment, .blackout itself contains the Expression
(see BNF grannnar FIG. 30D) which determines
whether or not the call is forwarded as specified by
appfld. phone.fwd. Anything that can be specified in a
charter expression can be specified here syntactically
(e.g. FIG. 51B). In process WDR references (_ref,
_!_ref, _O_ref) and profile operators are somewhat
odd because a WDR is not the trigger for processing.
If used, these are supported by referencing the most
recent applicable WDR information being referenced
at the MS, and the most recent applicable profile
information (all of which are preferably cached as at
least a single last instance). WITS filtering would
incorporate/invoke/call processing described for FIG.

344

Petitioners' Ex. 1001, Page 499 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

appfld.phone.msg.X

appfld.phone.pendingvolume.
appfld.phone.pending.encrypt
appfld.phone.pending.compress
appfld.phone.pending.camp
appfld.phone.pending.cdt
appfld.phone.pending.recref

appfld.phone. pending. pwd
appfld.phone.pending.macro
appfld.phone.pending.orig
appfld.phone.pending.data

appfld.phone.pending.$
appfld.phone.last.out.ANYcdt
appfld.phone.last.out.ANYrecref
appfld.phone.last.out.ANYpwd
appfld.phone.last.out.ANYmacro
appfld.phone.last.out.ANYorig
appfld.phone.last.out.ANYedt
appfld.phone.last.out.ANY$
appfld.phone.last.out.{id}. *

appfld.phone.last.in.ANY *

appfld.phone.last.in. {id}.*

US 10,477,994 B2
345

-continued

57 and block 5744. In this alternate embodiment, the
.blackout section never forwards to .fwd when an
error occurs as the result of referencing undefined
data. Any error in the Expression is logged to LBX
History 30 and renders this configuration useless.
May be null.
appfld.phone.msg.new.recref = the reference where
messages are maintained (e.g. folder name);
appfld.phone.msg.new.ct = nwnber of new messages
(not yet listened to by MS user);
appfld.phone.msg.new.#.record - (# in [1 ... ct]) the
voice mail message left at the MS for the MS user
wherein the first 8 bytes contains a date/time stamp
in Julian floating point form, the following bytes are a
null terminated string containing the caller id, and the
remaining datastrearn contains the recording;
appfld.phone.msg.saved.recref - the reference where
messages are saved (e.g. folder name);
appfld.phone.msg.saved.ct - number of saved
messages (already listened to by MS user);
appfld.phone.msg.saved.#.record - (# in [1 ... ct]) the
voice mail message left at the MS for the MS user
wherein the first 8 bytes contains a date/time stamp
in Julian floating point form, the following bytes are a
null terminated string containing the caller id, and the
remaining datastrearn contains the recording;
The MS user can save voice mail messages to other
MS system destinations (e.g. folders), and other data
may be saved with the messages in
appfld. phone.msg.X.record.
Pending call volume.
Pending call encryption algorithm or null.
Pending call compression algorithm or null.
Pending call camp-on setting.(True or False).
Pending call creation/date time (when call started).
Pending call recording reference (e.g. file name) or
null.
Pending call applicable password used or null.
Pending call macro used or null.
Caller id of originator of the call.
This is voice call data which is only present in
incoming or outgoing WDRs when a peer to peer
MS2MS call is in progress. This section contains a
subset of the call since the call may be ongoing, and
previous WDRs contain old voice call data .. data
contains a snapshot of voice data of a call in
progress.
$ - other field sections.
Call start date/time.
Call recording reference if recorded, otherwise null.
Call password is used, otherwise null.
Call macro if used, otherwise null.
Call originator caller id.
Call end date/time.
$ - other field sections.
There is a field here for each
appfld.phone.last.out.ANY.* field above, however a
specific id can be specified (e.g. 214-403-4071). This
allows access to fields of the most recently completed
call made to a specific person (e.g. MS user). There
are a plurality of fields (i.e. *) represented by this row
to prevent redundantly listing each field again for an
appfld.phone.last.out.{id} section ...
There is a field here for each
appfld.phone.last.in.ANY* field above, however the
qualifier indicates that each field is for the most
recent phone call received from another MS user
(e.g. received from anyone). There are a plurality of
fields (i.e. *) represented by this row to prevent
redundantly listing each field again for an
appfld.phone.last.in.ANY section ...
There is a field here for each
appfld.phone.last.in.ANY* field above, however a
specific id can be specified (e.g. 214-403-4071). This
allows access to fields of the most recent phone call
received from a specific user. There are a plurality of

346

Petitioners' Ex. 1001, Page 500 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

. . . otber field sections ...

US 10,477,994 B2
347

-continued

fields (i.e. *) represented by tbis row to prevent
redundantly listing each field again for an
appfld.phone.last.in.{id} section ...

348

Phone section 8002/ information contains useful informa
tion for LBX sharing and novel applications thereof wrt a 10
phone application. For example, a WDR received may be
treated uniquely based on a phone call in progress (WDR
in-process at receiving MS or sending MS) or a phone call
last made (WDR in-process at receiving MS or sending MS).
Charters can use data above in AppTerm form as well. In 15

some MS embodiments there are multiple phone applica
tions wherein the hierarchical section structure would be
affected for supporting each phone application with data
specific for the particular application (e.g. appfld.phone.di
alit for qualifying all dialit phone application subordinate 20

sections (e.g. appfld.ab.dialit.type), appfld.phone.skype for
qualifying all skype subordinate sections, etc)). Additional
appfld.phone section data is defined for MS conference call
capability, such as tracking all callers who are parties to a
current or past conference call.

Dropped locations provide a directory to "trouble-spots"
that a MS user may encounter in the future. The directory of
"trouble-spots" are used to warn a MS user of areas to avoid
when engaging in phone calls. In one embodiment, when a
MS user travels to the direction of a location marked as a
dropped call location, the user is alerted with a reminder. In
another embodiment, the user is alerted with a reminder
during an active phone call when approaching a dropped call
location. In another embodiment, a threshold is configured
for a number of acceptable dropped calls in the vicinity of
a location. After to that threshold is reached (e.g. >=3 times),
the user is alerted for future travels to the particular location.
There are various embodiments for making user of"trouble
spot" history to inform a user at a future time.

Emergency section 8002g includes subordinate sections
including the following examples:

appfld.emergency. type

appfld.emergency.cdt
appfld.emergency.duration

appfld.emergency.content.type
appfld.emergency.content.alert

appfld.emergency.content.prefmetb

appfld.emergency.metbod.metb

appfld.emergency.metbod.font

appfld.emergency.metbodsize.

appfld.emergency.metbodcolor.

appfld.emergency.metbod.volume

appfld.emergency.metbod.$
appfld.emergency.last.self

appfld.emergency.last.otber

. . . otber field sections ...

appfld.emergency.type - "Fire", "Police", "Ambulance",
"Amber", "Person Needs Help", "Construction Caution",
"Traffic Caution", "Terror Alert", or any other
emergency, waming or alert situation description. This
may be a well known byte code indication for space
preservation rather than a string. An originator
specification.
Emergency/waming creation date/time stamp.
= a period of time in seconds, minutes, hours, days,
weeks, etc. See time period specifications discussed
above. NULL indicates to remain in effect until WDRs
are not being received with the information. This is used
with .cdt to determine when to move to .last. An
originator specification.
Content type (e.g. string). An originator specification.
The content alert - (e.g. "Ambulance Needs Right-Of
Way!"). An originator specification.
appfld.emergency content.prefmetb - preferred
metbod for notifying user (visual, audio, botb) in which
case a conversion may take place to recipient MS
.method. An originator specification.
appfld.emergency method, meth = audio, focused
object, alert area (predefined alert area), or any
combination thereof. A conversion may take place
depending how . prefmetb was specified. A recipient MS
specification.
Font to use when displayed in predefined area. A
recipient MS specification.
Size to use when displayed in predefined area. A
recipient MS specification.
Color of textual alert to use when displayed in
predefined area. A recipient MS specification.
Volume of audio alert to use. A recipient MS
specification.
$ - otber field sections.
An entire copy of the most recent WDR containing an
emergency which was sent out from this MS. An
alternate embodiment may choose any subset of tbe
WDR, but emergency sections of fields 1100k and tbe
WDR location information are important to maintain for
functionality herein.
An entire copy of the most recent WDR containing an
emergency which was received by tbis MS from
anotber MS. An alternate embodiment may choose any
subset of tbe WDR, but emergency sections of fields
1100k and tbe WDR location information are important
to maintain for functionality herein .

Petitioners' Ex. 1001, Page 501 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
349

Emergency section 8002g information contains useful infor
mation for LBX sharing and novel applications thereof wrt
an emergency or warning application. Furthermore, a MS
user ("Individual") may want to generate help requests using
this section. A WDR received may be treated uniquely based 5
on a known emergency situation in progress (WDR in
process at receiving MS or sending MS) or an emergency
situation which recently occurred (WDR in-process at
receiving MS or sending MS). Charters can use data above

350
In one example, fire trucks speed to the scene of a fire.

Without the use of a service (i.e. peer to peer MS commu
nications), an automobile (i.e. fire-truck) installed or fireman
handheld MS beacons WDRs which are received by other
MSs in the vicinity (e.g. other driver MSs). Recipient peer
MSs can determine from time and location information
whether or not to alert their users that the fire truck(s) is
nearby (e.g. approaching fast from behind) and needs the

in AppTerm form as well. In some MS embodiments there
are multiple emergency/warning/alerting/help-request appli
cations wherein the hierarchical section structure would be
affected for supporting each application variety with data
specific for the to particular application.

10 road cleared for easy passing. MS users can then drive to the
side of the road and allow easy access for the fire trucks.

Locational section 8002h includes subordinate sections
including the following examples:

appfld.loc.blackout

appfld.loc.mode

appfld.loc.geofence.X

appfld.loc.halo.units

appfld.loc.halo.value

appfld.loc.mark.X

This configuration is very useful for preventing the
beaconing ofWDRs (outbound). WDRs are prevented by
WITS filtering from being transmitted outbound. True
prevents transmission, False has no effect on the
outbound destined WDR. A charter can be configured for
setting . blackout as desired. May be null for False. This
could be simply set to True to always prevent beaconing
WDRs. In an alternate embodiment, .blackout itself
contains the Expression (see BNF grammar FIG. 30D)
which determines whether or not the WDR(s) are
beaconed. Anything that can be specified in a charter
expression can be specified here syntactically (e.g. FIG.
51B). In process WDR references (_ref, _!_ref, _O_ref)
and profile operators are somewhat odd because a WDR
is not the trigger for processing. If used, these are
supported by referencing the most recent applicable WDR
information being referenced at the MS, and the most
recent applicable profile information (all of which are
preferably cached as at least a single last instance). WITS
filtering would incorporate/invoke/call processing
described for FIG. 57 and block 5744. In this alternate
embodiment, the .blackout section evaluates to False
when an error occurs as the result of referencing
undefined data. Any error in the Expression is logged to
LBX History 30 and renders this configuration as set to
False.
Current MS mode - DLM or ILM (e.g. maintained at FIG.
2F processing).
appfld.loc.geofence.ct - count of geofences configured;
appfld.loc.geofence.#.name (# in [1 ... ct]) - a null
terminated string name for the geo fence configured;
appfld.loc.geofence.#.source (# in [1 ... ct]) - geofence data
encoding with a binary encoding length in the first 4 bytes,
or a null terminated encoding string. See "Pingimeters" of
U.S. Patent pending serial number 11/207,080 ("System
and Method for Anonymous Location Based Services",
Johnson). "Geofence" is the industry terminology
referenced with the gpsping.com trademark term
Pingimeter. The lbxPhone TM enforces a reasonable
maximum number configured by the user.
The units (inches, feet, meters, miles, etc) of the "halo"
around this MS.
The distance measurement of the halo around the mobile
MS in the units of appfld.loc.halo.units. This is identical to
a "moving interest radius" since it is a radius around the
MS. See "moving interest radius" of U.S. Patent pending
serial number 11/207,080 ("System and Method for
Anonymous Location Based Services", Johnson). A
"Halo" is a new coined term for a "mobile interest radius"
in the MS peer to peer LBX architecture. "Halo"
terminology provides software engineer jargon to
distinguish between a peer to peer moving interest radius
in the LBX architecture from a moving interest radius in a
conventional service centric architecture.
appfld.loc.mark.ct - count of marks being maintained at
the MS. appfld.loc.mark.#.name - (# in [1 ... ct]) null
terminated name/description for the mark;
appfld.loc.mark.#.cdt - (# in [1 ... ct]) 8 bytes containing
creation date/time in Julian format; appfld.loc.mark.#.ldt -
(# in [1 ... ct]) 8 bytes containing last changed date/time in
Julian format; appfld.loc.mark.#.source - (# in [1 ... ct])
appropriate encoding for mark location information (e.g.
WDR fields 1100c, ll00e, 1100h, ll00i, ll00j, etc). The

Petitioners' Ex. 1001, Page 502 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

appfld.loc.dcdb.X

appfld.loc.beacon.expr

appfld.loc.beacon.type

. . . other field sections ...

US 10,477,994 B2
351

-continued

length of location information is kept in the first 2 bytes of
the .source datastrearn, unless encoded as a null
terminated string. Location marks (sometimes called
"location tags" or "waymarks") can be set for use. For
example, a user wants to mark where he parked the car
prior to entering a shopping mall. The user sets a mark for
the location without needing to know details of the
location. That mark can then be used in a charter(s) to
automatically notify the user that he is approaching his
vehicle in the parking lot, or can direct the user to the
vehicle, indicate how far away, or provide other useful
navigation information.
appfld.loc.dcdb.ct - count for number of deliverable
content database (DCDB) records being maintained at the
MS for automated delivery to the MS user, or peer MS
users provided applicable permissions are in place, and
charters are configured for trigger processing;
appfld.loc.dcdb.#.desc - (# in [1 ... ct]) null terminated
description or name for the DCDB entry;
appfld.loc.dcdb.#.cdt - (# in [1 ... ct]) 8 bytes containing
creation date/time in Julian format; appfld.loc.dcdb.#.ldt -
(# in [1 ... ct]) 8 bytes containing last changed date/time in
Julian format; appfld.loc.dcdb.#.source - (# in [1 ... ct])
appropriate encoding for DCDB data. The length of DCDB
information is kept in the first 2 bytes of the .source
datastrearn, unless encoded as a null terminated string.
DCDB information is encoded as an embodiment of
DCDB record data disclosed in U.S. Pat. Nos. 6,456,234;
6,731,238; 7,187,997, and Ser. No. 11/207,080
(Johnson). A MS may maintain here its own content, as
well as content for, or from, others. Permissions govern
how the data is shared and charters configured govern
how the data is used. The DCDB is a set of records for
defining situational locations (see U.S. Pat. Nos. 6,456,234;
6,731,238; 7,187,997 (Johnson)) with associated DCDB
information for delivery. No service is involved here.
Delivery is automated between MSs in the vicinity of each
other, for example in a peer to peer manner.
appfld.loc.beacon.expr = expression to be evaluated at
the receiving MS for determining if true or false. A true
evaluation results in the received WDR being further
processed, otherwise a False results in WITS filtering
causing the WDR to be filtered out from further
processing. For, example, an expression of ((\thisMS -
"Larry") & \loc_my $(50F) _!_location) & (_I_msid - Joe))
is used to identify if the receiving MS Larry is within 50
feet of the MS Joe. Note that the expression gets
evaluated at the receiving MS as through the expression
were originally specified there, so the requesting user (if
privileged) must be careful to encode in terms of that MS.
Any supported charter expression can be specified.
Anything that can be specified in a charter expression can
be specified here syntactically (e.g. FIG. 51B), except
_ O _ref and _ref specifications are not supported since it
is an inbound WDR for processing. WITS filtering
incorporates/invokes/calls processing described for FIG.
57 and block 5744. Any error in the Expression is logged
to LBX History 30 and renders this configuration as set to
true. appfld.loc.beacon.cdt - 8 bytes containing creation
date/time in Julian format; appfld.loc.beacon.ldt - 8 bytes
containing last changed date/time in Julian format; In an
alternate embodiment wherein WDRs are Wireless Data
Records without location information, this data may be
moved to a more appropriate section for processing.
appfld.loc.beacon.expr - setting used when .expr has
been specified; NONE - do not beacon the receiving MS
(i.e. WDR is processed as usual); AUDIO - sound file to
be played at MS if the sending user is so privileged. In
one embodiment, an additional appfld.loc.beacon.vol
specifies a volume setting if the sending user is so
privileged; CHARTER - a named charter section which
can be executed if the sending MS user is so privileged
(i.e. any actions for any conditions can be performed);
Encoding includes a single type code followed by a null
terminated data string .

352

Petitioners' Ex. 1001, Page 503 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
353 354

Locational section 8002h information contains useful infor
mation for LBX sharing and novel applications thereof wrt
a locational application. Prior art required a service for
automated functionality using geofences and content deliv
ery. A WDR received may be treated uniquely based on a
known locational situation in progress (WDR in-process at
receiving MS or sending MS) or a locational situation which
recently occurred (WDR in-process at receiving MS or
sending MS). Charters can use data above inAppTerm form
as well. In some MS embodiments there are multiple loca
tional applications wherein the hierarchical section structure
would be affected for supporting each application variety
with data specific for the particular application.

Frequency (RF) energy to charge up and it receives com
mand/data signal information. The RFID device then
responds accordingly to the MS. The MS receives the
response and performs applicable processing. For example,

5 when appropriate radio waves from the MS are encountered
by a passive RFID device, a coiled antenna within the device
forms a magnetic field which provides power for energizing
circuits in the device. Other passive embodiments may also
be used. The device can then carry out capable functionality

10 (e.g. respond automatically with information). Active RFID
devices contain a power source (e.g. battery) for the device's
circuitry and antenna, and therefore tends to carry out richer
functionality. A MS may respond to an active RFID device
(i.e. RFID device initiates) or may initiate communicating Perhaps one of the more exciting registered applications

in the LBX architecture has been the Radio Frequency
Identification (RFID) section. The wireless multi-wave,
multi-frequency and multi-channel nature of an IbxPhone™
together with many emerging RFID applications makes a
great marriage. Passive RFID devices do not contain a
battery. The power is supplied by the MS when reading the
RFID tag. The MS transfers energy to the RFID device (e.g.
a transponder) by emitting electromagnetic waves through
the air (i.e. wireless). The RFID device uses the Radio

15 with it. A passive RFID device and active RFID device are
data processing systems. An LBX enabled MS is not
intended to address issues with RFID technologies (e.g.
zombies, distance, encryption, size, use, environment, etc),
but to leverage use and enhance user experiences with novel

20 applications. RFID operations, standards, frequency ranges
(e.g. LF, HF, UHF) and embodiments are well known in the
art. RFID section 8002i includes subordinate sections
including the following examples:

appfld.rfid.id This value is preferably used to default
appfld.source.id.rfid, but can be changed based on
permissions. RFID identifier of MS.

appfld.rfid.passive.enabled - True (MS is enabled for passive RFID capability),
otherwise False (the default). This means the MS has its
own RFID capability for other readers (e.g. an RFID
passive module incorporated therein/thereon). In one
embodiment, a MS is a small and minimal scale product
for being used as a more intelligent radioactive tag to be
placed on an article of manufacture (e.g. shipping
container). MS passive RFID capability.

appfld.rfid.passive.channel The unique channel identifier for MS RF communications
used in listening for probes to respond to. The channel is
set up ahead of time by an administrator and has
associated wave form characteristics (e.g. frequency).

appfld.rfid.passive.response The byte stream to respond to a (initial) probe with. This is
of a limited length dependent on the length of time
available for power to the installed passive RFID module.
The response may contain instructions for subsequent
MS interoperability processing (e.g. carried by
subsequent WDR data in application fields 1100k). In
some embodiments, the passive RFID module has no
interface to this data in which case the passive RFID
module provides its own data in response and the MS
user has no control over data which is responded with.

appfld.rfid.active.enabled - True (MS is enabled for active RFID capability),
otherwise False (the default). This means the MS has its
own RFID capability enabled on at least one channel for
other readers as evidenced in appfld.rfid.listen.X sections.
In one embodiment, a MS is a small and minimal scale
product for being used as a more intelligent radio-active
tag to be placed on an article of manufacture (e.g.
shipping container). All MS active RFID capability can be
enabled or disabled with this field. An alternate
embodiment supports a section
appfld.rfid.listen.#.enabled - True or False below for
enabling/disabling individual channel usage that remains
administrated.

appfld.rfid.listen.X This reflects MS configured capability to interact with
active initiating RFID devices. appfld.rfid.listen.ct - count
(number) of RFID channels configured to listen on.
appfld.rfid.listen.#.channel - (# in [1 ... ct]) a channel that
has been configured in advance so that any transmissions
received from active RFID tags is received through a
receive queue to at least one thread handling the channel.
A channel maps to a communications interface 70 for
supporting any variety of communications, preferably
through a receive queue interface of receive queue 26
with an identifier for distinguishing which thread(s) are to
receive what is deposited to the queue. A separate queue
may be implemented as well. This discussion is

Petitioners' Ex. 1001, Page 504 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

appfld.rfid.seek.X

. . . other field sections ...

US 10,477,994 B2
355

-continued

analogous to receive queue 26 discussions above. A
channel has associated wave form characteristics (e.g.
frequency) and anticipated protocol. An administrator has
configured the MS and receive threads in advance (e.g.
appfld.rfid.listen.1.channel - 12980000 such that
12980000 is the channel id (which coincidentally is the
same as 12.98 Mhz). Presence of appfld.rfid.listen.#
sections implies they are enabled. Removal of the entry
implies disabling it. appfld.rfid.listen.#.launch - (# in
[1 ... ct]) the fully qualified executable path (e.g. invoked
application) or callback interface to invoke. The preferred
embodiment passes the channel identifier from the
received queue so that a single executable is able to
handle all configured channels. However, that single
executable can receive appfld.rfid.listen.#.launch for in
turn invoking a unique executable specified here for the
channel. appfld.rfid.listen.#.cdt - (# in [1 ... ct]) 8 bytes
containing creation date/time in Julian format;
appfld.rfid.listen.#.ldt - (# in [1 ... ct]) 8 bytes containing last
changed date/time in Julian format; The .listen sections
are said to be a RFID listen registry.
This reflects MS configured capability to interact with
RFID devices whereby the MS is the initiator (i.e. RFID
device is not initiating). appfld.rfid.seek.ct - count
(number) of channels configured.
appfld.rfid.seek.#.channel - (# in [1 ... ct]) a channel that
has been configured in advance for transmissions to be
sent to RFID devices. A channel has been configured in
advance so that polling transmissions can be made for
active RFID devices, either in an automated manner, or
based on user request. A transmission is made through a
send queue using at least one thread handling the
channel. A channel maps to a communications interface
70 for supporting any variety of communications,
preferably through a send queue interface like send
queue 24 (or perhaps the same send queue 24 with an
identifier for which channel to send on). A channel has
associated wave form characteristics (e.g. frequency) and
prescribed protocol. An administrator has configured the
MS and send threads in advance (e.g. appfld.rfid.seek.1. -
13560000 such that 13560000 is the channel id (which
coincidentally is the same as 13.56 Mhz). Presence of
appfld.rfid.seek.# sections implies they are enabled.
Removal of the entry implies disabling it.
appfld.rfid.seek.#.poller - (# in [1 ... ct]) the fully qualified
executable path (e.g. invoked application) for polling RFID
devices in the vicinity. The preferred embodiment uses a
single executable to handle all configured channels, so
the same executable may be referenced across multiple
entries. Alternatively, there may be a unique executable
specified here for each channel. appfld.rfid.seek.#.probe -
(# in [1 ... ct]) the data to probe the RFID device with (the
initial data transmission). Various embodiments support
binary or string specification; appfld.rfid.seek.#.callback -
(# in [1 ... ct]) interface to invoke on a mapped response.
appfld.rfid.seek.#.cdt - (# in [1 ... ct]) 8 bytes containing
creation date/time in Julian format; appfld.rfid.seek.#.ldt -
(# in [1 ... ct]) 8 bytes containing last changed date/time in
Julian format; The .seek sections are said to be a RFID
seek registry .

356

RFID section S002i information contains useful information
for LBX sharing and novel applications thereof wrt a RFID
application. A WDR received may be treated uniquely based
on a known RFID situation in progress (WDR in-process at
receiving MS or sending MS) or a RFID situation which
recently occurred (WDR in-process at receiving MS or
sending MS). Charters can use data above inAppTerm form
as well. In some MS embodiments there are multiple RFID
applications wherein the hierarchical section structure
would be affected for supporting each application variety
with data specific for the particular application. See discus
sions for FIGS. SOD and SOE for the integration of RFID
technologies into the LBX application framework.

In some embodiments, Radio Data Systems (RDS) trans-
55 missions (e.g. over FM) are used for NTP synchronization

among MSs. In some embodiments, RDS transmissions are
used to broadcast WDRs for being received by MSs in the
vicinity for LBX processing. In some uses, RDS WDRs
received are processed for automated application behavior

60 according to privileges and/or charters which have been
configured at a MS. Some LBX uses replace similar con
ventional RDS applications with a richer user experience.
For example, FM radio stations transmit RDS data for
displaying information of the song, album, artist, etc. The

65 LBX architecture provides a fully automated platform for
receiving the same RDS transmissions, detecting and check
ing application fields therein, and then processing a multi-

Petitioners' Ex. 1001, Page 505 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
357

10 ... other field
sections ...

358
-continued

Address of dynamically routed service (e.g.
76.211.34.125 :23462). appfld.services.#.ldt -
Date/time stamp of when the service was last used
at the MS which includes this field outbound. There
are fields appfld.services.#.$ for fields $ from
records 8500 in the Service Directory 16. Fields in
this LBX release are the minimum set of
requirements for accomplishing propagated service
invocation functionality in a LN-expanse.

tude of automated conditional actions. Atomic commands
and operands disclosed provide excellent tools for automati
cally handling RDS transmissions, for example to record a
song being played, or notify a peer MS user with a song
selection, or saving a new song, title and/or other music 5

criteria for an artist of interest, perhaps to become automati
cally notified or made aware of other music of interest. A
desirable song may be automatically ordered by the MS
through automatically processed charters based on RDS data
received, user acknowledgement of RDS data received, or
through a MS application which exposes, or processes, RDS
data received. RDS fits well into the wireless multi-wave,
multi-frequency and multi-channel nature of a LBX enabled
MS (e.g. IbxPhone™). A channel can be administrated
analogously to a RFID listen channel for the same frame- 15

work of processing.
Hotspot section 8002} includes subordinate sections

including the following examples:

Services section 8002k information contains useful infor
mation for LBX sharing and novel applications thereof wrt
available services. A WDR received may have the services
made known added to the service directory 16 at the
receiving MS for use in cases where the needed service(s)
are not available when needed. A MS may route requests

appfld.hotspot.listen - True (keeping track of hotspots), otherwise False (the
default).

appfld.hotspot.X appfld.hotspot.history.ct - count of historical unique
hotspots detected by the MS with an associated signal
location for the hotspot saved. appfld.hotspot.history.#.cdt -
(# in [1 ... ct]) 8 bytes containing creation date/time in
Julian format; appfld.hotspot.history.#.ldt - (# in [1 ... ct]) 8
bytes containing last changed detected date/time in Julian
format; appfld.hotspot.history.#.name - (# in [1 ... ct])
hotspot name detected; appfld.hotspot.history.#.location -
hotspot information for the most recent location
information (e.g. WDR fields 1100c, ll00e, 1100h, ll00i,
11 00j, etc) detected for the strongest hotspot signal for
this named hotspot The length of location information is
kept in the first 2 bytes of a binary datastream, otherwise
an encoded string is null terminated; The location will
change when the strength of the same detected hotspot
has grown stronger relative previous detections. All
#.name entries are unique, however system settings may
be used to determine if the locations of detection are so
far apart that the configuration deserves its own saved
hotspot information (i.e .. #.name entries not unique).

appfld.hotspot.$ $ - other field sections .
. . . other field sections ...

Hotspot section 8002} information contains useful informa
tion for LBX sharing and novel applications thereof wrt a
hotspot dependent application (e.g. makes use of faster
connect speed). A WDR received may be treated uniquely 45

based on a known hotspot situation in progress (WDR
in-process at receiving MS or sending MS) or a hotspot
situation which recently occurred (WDR in-process at
receiving MS or sending MS). Charters can use data above

through another MS(s) in order to get access to a needed
service. There may be many services.X sections for many
services which are shareable between MSs. The service
handles are preferably standardized for use (i.e. a service
name) in MS user interfaces. See FIGS. 84 and SSA, and
related discussions for additional information. Section
8002k facilitates publishing propagate-able services.

Statistics section 8002! includes sections for statistical
data including the following examples:

appfld.statistics. phone.X Statistic X for the registered phone
application.

in AppTerm form as well. In some MS embodiments there 50

are multiple hotspot applications wherein the hierarchical
section structure would be affected for supporting each
application variety with data specific for the particular
application. Hotspot information supports feeding a direc
tory of available hotspots (e.g. WiMax or WiFi) which can 55 appfld.statistics.calendar.X Statistic X for the registered calendar

application.
be used to inform MS users of hotspot whereabouts for
future use.

Services section 8002k includes subordinate sections
including the following examples:

appfld.services.X appfld.services.ct - count of dynamically routed
services maintained here (# in other configurations is
from 1 ... N based on .ct); appfld.services.#.handle -
Handle (e.g. name) to the service;
appfld.services.#.route = Dynamic route last
detected to the service; appfld.services.#.address =

appfld.statistics.email.X

appfld.statistics.ab.X
appfld.statistics.$.X

60 ... other field sections ...

Statistic X for the registered email
application.
Statistic X for the registered ab application.
Statistic X for the registered $ application.
There are many statistics with an appropriate
hierarchy for organization.

Statistics section 8002! information contains useful infor
mation for LBX sharing and novel applications thereof wrt

65 useful reporting statistics. A WDR received may be treated
uniquely based on a known statistical situation in progress
(WDR in-process at receiving MS or sending MS) or a

Petitioners' Ex. 1001, Page 506 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
359

statistical situation which recently occurred (WDR in-pro
cess at receiving MS or sending MS). Charters can use data
above in atomic term form as well. In some MS embodi
ments there are multiple MS applications which make use of
statistics wherein the hierarchical section structure would be 5

affected for supporting each application variety with data
specific for the particular application. The statistics section
appeared prior to application fields 1100k registration.

Application sections which are not yet registered are
every bit as important as ones that are. The review process 10

may not keep pace with Presentations and RFPs. RFP
application sections have a variety of implementations in
context of the LBX architecture, including:

appfld.traffic. *=Traffic reports which are maintained by
MS users or by authorized traffic control administra- 15

tors, or automated traffic systems in the vicinity. This
may be useful data to share as MS users are mobile.

appfld.appliance. *=Data sharing for operating nearby
appliances. This may or may not be integrated with
RFID application section data. This is used for aper- 20

ating motor vehicle remote access, television remote
control operation, wash machine cycle operation, win
dow blind operation, or any other appliance with
capable remote control operation, preferably using
radio waves. For example, as a MS comes within range 25

of your window blinds in the living room, a set of blind
controls will expose themselves on your MS for con
trolling the blinds. A charter is used to automate reveal
ing (i.e. starting) the control application on the MS.

appfld.acctmgt. *=Data sharing for automatically per- 30

forming financial transactions. Strong encryption is a
necessary feature for this to be a marketable solution.
In general, WDRs may be compressed and/or
encrypted independent of specific WDR fields, how
ever some application sections will support encrypting 35

to be sure the MS provides an encryption option when
all WDRs are not being encrypted.

appfld.transport. *=Data sharing for making nearby trans
portation services aware of your need for a ride, and for
transportation services letting potential customers 40

know that a ride is available, the cost, etc. For example,
a MS user seeks a taxi, or taxi cab MS user seeks a
customer. Data sharing enables timely MS user aware
ness of availability with appropriate permission and
charter configurations. 45

appfld.carpool. *=Data sharing for discovering potential
carpool members who share common mobile routes
during similar scheduled times. The discovery is com
pletely automatic with appropriate permission and
charter configurations, and those who are interested in 50

such discovery are notified. For example, charters may
be configured for saving MS identifiers with location
and date/time information for then later comparing for
consistency. The MS user can make configurations
active for certain routes taken so that only MS users 55

along those routes are considered for carpool candi
dates. Repeated detections of the same MS identifiers at
similar times on the same route(s) can alert a MS user
as a possible candidate worthy of subsequent commu
nications, or automated communications (automatic 60

send of email) based on charter configuration(s).
appfld.advertise. *=Data sharing for a MS user's willing

ness to accept MS location based advertisements. Also,
permits users to advertise what they want to advertise
to willing receiving MS users (like a peer to peer 65

Craig's List). Privileges manage who gets what kind of
information.

360
appfld.news. *=Data sharing for a MS user's interested

topic areas for MS location dependent news, and the
actual news which is delivered to MS users. Data
depends on who (MS user or news data processing
system in the vicinity) is originating specified sections
herein.

appfld.media. *=Data sections for automatically marking,
dating, sizing, framing, tagging, or performing any
other special configuration to pictures or videos taken
at the MS. Media data can be shared in WDRs between
MSs as governed by privileges and charters. For
example, automatically send a copy to your sister when
detected within the vicinity.

appfld.parking. *=Data sharing for quickly guiding a
driver with a MS to a most preferred available parking
spot, and for carrying a MS user's preference for eh
type of parking spot (e.g. width, distance from estab
lishment,# accessible sides, etc). Data depends on who
(MS user or parking lot data processing system in the
vicinity) is originating specified sections herein.

Application sections which have been presented, but
require a formal RFP to be signed off include:

appfld.employ. *=Data sharing for making MS users
aware of job opportunities, and employers aware of
employee opportunities. MSs nearby each other per
form automated job matches for appropriate notifica
tion to a potential employer and potential employee or
contractor. This is much like www.linkedin.com func
tionality in a peer to peer framework context (no
service). Current economy conditions show promise for
this section.

appfld.real. *=Data sharing for real estate business oppor
tunities, real estate advertising, availability, and financ
ing-a sort of all things real estate section for MS users
in a peer to peer framework.

An application section which has been tabled includes:
appfld.personal. *=Data sharing for all things personal

between a group of MS users. The appfld.profile.con
tents is already in use for singles/dating information or
other personal match-making and sharing applications.
MS users maintain their own data of any kind in
appfld.profile.contents. In an alternate embodiment,
MS users may invoke API(s) which define new sections
in fields 1100k for being updated by WITS processing
(e.g. at blocks 5703). The API(s) can support adding,
stripping or altering the new section data for a variety
of home-grown application reasons.

There will be other application sections over time. None of
these sections are shared (e.g. sent outbound) by default. A
user enables appropriate section(s) for being shared. There
are other application sections such as:

appfld.music.*=MS user music preferences for being
notified of music share opportunities and store music
consensus play.

appfld.shopping. *=MS user shopping lists to be automati
cally used for guiding a shopping travel through a store,
for checkout, etc

appfld.religion. *=MS user peer to peer interaction with
other users for religious/church related interests.

appfld.stocks. *=MS user peer to peer interaction for Wall
street stock interests.

In a binary encoding embodiment, an appname section
(FIG. 80A), reference section (FIG. 80B (i.e. FIG. 80B-#)),
and field sections thereof are very similar to TCP/UDP
sockets and ports in the way they are implemented,
deployed, documented, standardized and functionally
amended. Registered application fields may be viewed like

Petitioners' Ex. 1001, Page 507 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
361

"well known ports", and users may use fields 1100k outside
of any specification (like "dynamic ports" or "private
ports"). Permissions 10 (privileges) enforce in WITS for any
in-process WDR path for controlling who sees what, when,
and how. For example, certain MS users can see another 5

user's calendar, but other users can't, or certain MS users
can see another user's calendar at certain times, but other
users can't, or certain MS users can see another user's
calendar during certain processing (e.g. application state(s)
provide enablement), but other users can't. Any privileges 10

may be specified with Parameters or TimeSpec information
as described above. Supporting a vast number of application
fields provides much richer charter specifications by sup
porting automated actions for rich complex expressions.

15
Groups of MS users (e.g. an audience) who are in the
vicinity with certain data can be responded to in an auto
mated marmer based on information received by another MS
(or MS user) or a strategically placed data processing system
emulating an LBX enabled MS. Applications are limitless in 20

the LBX architecture as WDRs are shared (e.g. beaconed)
between MSs. Various sections may be enforced by the MS
for:

Section(s) for local use only (i.e. not shared);
Section(s) have allowable set(s) of initialization data; 25

Section(s) shared in system configured (e.g. privileged)
manner; or

Section(s) indiscriminately shared.
Application fields 11 OOk descriptions have been presented

for easy reading. In another preferred embodiment, appli- 30

cation fields 1100k references (e.g. FIG. 80B and discus
sions above) include methods in an OOP environment. Main
sections (e.g. source, profile, email, etc) are defined with an
object programming "Class" and sections within that class

35
can be "public" functions (i.e. methods) of the class. In this
embodiment, WITS processing invokes the methods of the
appropriate class with data specified as parameters to the
methods. In this way, fields 1100k contains data for param
eters to methods of object classes identified with the section 40

reference. Classes may be quite complex and include private
and protected function processing, private and protected
data, and OOP relationships to other objects. WITS process
ing uses the public class APis to carry out functionality. In
this embodiment, when a method is invoked (e.g. from a 45

charter expression), the method returns a function result of
data that is appropriate for use where the method is used
(e.g. \ref, _ref, _I_ref or _O_ref all return data where they
are referenced as though they were simply referencing a data
field (overloaded)). The advantage to OOP is having the 50

ability to hide complex processing in what appears to be a
simple reference. This enables many other application fields
1100k sections (i.e. " ... "in the tables) for being defined
with significantly richer application offerings. Details of
OOP are well known to those skilled in the art, and such 55

detail will merely cloud discussion herein.
Some of the application fields 11 OOk sections are enumer

ated (e.g. appfld.services.1.handle,
appfld.rfid.listen.3.channel, etc). The number of enumera
tions depends on a count (e.g. appfld.services.ct, appfl- 60

d.rfid.listen.ct, etc) that may not be anticipated by a MS user
in a charter configuration. A MS user may also not be able
to anticipate which record of the enumerations contains the
sought value in a charter configuration. The # operator is
referred to as a cached index operator in charter configura- 65

tions. Any section which is enumerated can have the #
operator used. The last True condition result within a thread

362
which uses the # operator saves the index used in that
condition for subsequent use within the same thread context.
For example:
("SiteName"' _appfld.services.#.handle):

Notify Web link (_appfid.services.#.address,,,
target="_blank");

If any of the appfld.services.#.handle data fields (i.e. for 1 to
count (_appfld.services.ct automatically accessed by charter
processing)) contains "SiteName", then the cached index
retains the index value that produced the True condition
result so that it has meaning thereafter. Assuming 7 was
cached for the# operator because appfld.services.7.handle
was set to "SiteName", then the reference to
_appfld.services.#.address takes on the value of
_appfld.services.7.address. If "SiteName" was not found,
then# in _appfld.services.#.address would be undefined and
cause the charter expression to not be true and not execute
anyway.

The cached index operator should be carefully because it
has side effects:

retains the most recent index value for a True condition
result involving a# match (e.g. 'or!' operators) within
a thread context, therefore a most recent True condition
from many charters processed before the current char
ter in the same thread context will have the cached
index operator set to that most recently caused value,
regardless of how far back in thread context processing
occurred;

A cached index set value can be referenced many times
without changing the value until another True Condi
tion occurs thereafter in the same thread context;

Multiple condition expressions are performed left to right
where the rightmost condition is last unless a former
condition in the same expression already produced a
False result. Parenthesis govern condition ordering
with the most inside parenthesized conditions pro
cessed prior to the outermost conditions; and

A reference to # which has had no cached value saved in
the current thread context causes an error such that the
error is logged and charter ignored.

There are various embodiments for # processing schemes
and operator uses for carrying out comparisons and refer
ences involving sections which cannot be anticipated
exactly. In an alternate embodiment, special functions can be
provided for returning an index explicitly which can then be
used like a variable for an explicitly referenced array sec
tion. However, this may burden MS users with additional
syntax for getting to sought data.

FIG. SOC depicts a flowchart for describing a preferred
embodiment of a procedure for application fields 1100k
section initialization processing. Processing starts at block
8010, for example upon a user to request initialization, or
some MS initialization or termination processing. In one
embodiment, block 1496 may be modified to include new
blocks 1496d, 1496e, and 1496c such that:

Block 1496d checks to see if the user selected to perform
(configure) application fields 1100k section initializa
tion-an option for configuration at block 1406
wherein the user action to configure it is detected at
block 1408;

Block 1496e is processed if block 1496d determines the
user did select to perform application fields 1100k
section initialization. Block 1496e invokes FIG. SOC
for interfacing with the user for application fields 11 OOk
section initialization, and processing then continues to
block 1496c.

Petitioners' Ex. 1001, Page 508 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
363

Block 1496c is processed if block 1496d determines the
user did not select to perform application fields 1100k
section initialization or as the result of processing
leaving block 1496e. Block 1496c handles other user
interface actions leaving block 1408 (e.g. becomes the 5

"catch all" as currently shown in block 1496 of FIG.
14B).

364
information for starting, terminating and fully describing
essential executables and useful data, etc). When used
(otherwise null), new fields 5300-CHIN, 5300-CHOUT,
5300-P, 5300-Q and 5300-CALL describe a RFID applica
tion of the overall PRR 5300. In some embodiments, a field
5300-RFID provides a joining identifier to another table for
joining RFID related information of fields 5300-CHIN,
5300-CHOUT, 5300-P, 5300-Q and 5300-CALL to the
record 5300. Chamiel In field 5300-CHIN contains a chan
nel identifier, preferably provided by a MS administrator or
already populated with a manufactured MS. Field 5300-
CHIN is a globally unique handle to a channel for receiving
communications transmission data from a RFID device 72
via one of the MS communications interfaces 70 of the MS.
Chamiel Out field 5300-CHOUT contains a channel identi
fier, preferably provided by a MS administrator or already
populated with a manufactured MS. Field 5300-CHOUT is
a globally unique handle to a channel for sending commu
nications transmission data from the MS to a RFID device

Block 8010 processing continues to block 8012. A user
interfaces at block 8012 for specifying which application
fields section(s) (i.e. any subset of fields 1100k) are to be 10

initialized. Permissions 10 (e.g. system starter templates
which may or may not be alterable by the user) and/or
system configurations are used at block 8012 to enforce
what can be modified by the user. Only when the user
completes specifying which alterable section(s) (field(s)) are 15

to be initialized will processing leave block 8012, in which
case block 8014 checks the result. If block 8014 determines
the user opted to exit block 8012 processing, for example to
specify no alteration (e.g. decided not to continue), then
processing returns to the caller (invoker) at block 8016. 20 72 via one of the MS communications interfaces 70 of the

MS. Many of the RFID technology interfaces are plug-in
semiconductor components (referred to as RFIC (Radio
Frequency Identification Component)) manufactured to

If block 8014 determines that one or more sections were
specified, then block 8018 interfaces with the user for how
to initialize the section(s). Permissions 10 (e.g. system
starter templates which may or may not be alterable by the
user) and/or system configurations are used at block 8018 to 25

enforce what can be specified for initialization by the user.
Initialization criteria may be selected from a plurality of
initialization templates which have an overall theme for how
to initialize the data. For example, data used for initialization
may reflect themes of:

MS is newly started, powered up, used for the first time,
or the like (e.g. all values initialized to O);

Application(s) of the MS are newly started, used for the
first time, or the like (e.g. all values initialized to O);

communicate in a certain way for certain RFID devices (e.g.
a particular frequency and anticipated protocol). The RFIC
(or a plurality ofRFICs) is coupled/integrated to a MS in an
isolated mamier so that there is at least one channel interface
for communicating with it internally to the MS. Fields
5300-CHIN and 5300-CHOUT may or may not be the same

30 handle. LBX architecture 1900 is very flexible for isolating
a plurality of complex communications interfaces to sim
plified threaded queue interfaces. Adapting RFID technol
ogy is no exception. In some embodiments, a communica-

MS is to be placed in a processing state as though a 35

predictable set of MS processing occurrence(s) have
occurred to get to the initialized set of data (i.e.
initialized to prescribed values);

tions interface 70 provides a run-time modifiable parameter
interface for a plurality of unique transmission qualities (e.g.
on different frequencies).

In a preferred embodiment, fields 5300-CHIN and 5300-
CHOUT are all that are necessary for routing communica
tions traffic via a RFID receive queue and RFID send queue, Application(s) of the MS are newly terminated, used for

the last time, or the like; or
MS is newly terminated, powered off, used for the last

time, or the like.

40 respectively. The RFID receive queue may be distinct from
queue 26 and processes analogously to descriptions for
queue 26, however an embodiment can share queue 26 with
other processing provided the RFID data can be distin-Themes may be named, may be maintained as a configurable

collection of choices, and may have associated descriptions.
Only when the user completes specifying initialization cri- 45

teria will processing leave block 8018, in which case block
8020 checks the result. If block 8020 determines the user
opted to exit block 8018 processing, for example to specify

guished from other data fed from queue 26 (e.g. using
techniques already described above). The RFID send queue
may be distinct from queue 24 and processes analogously to
descriptions for queue 24, however an embodiment can
share queue 24 with other processing provided the RFIC, or
equivalent send transmission functionality, is able to feed no alteration (e.g. decided not to continue), then processing

returns to the caller (invoker) at block 8016. If block 8020
determines that one or more sections were specified with
valid initialization criteria, then block 8022 initializes the
section(s) accordingly and processing returns to the caller
(invoker) at block 8016. Block 8022 will update statistics 14
appropriately. Block 8022 may also be invoked directly as
needed by MS processing for initializing section(s) appro
priately.

FIG. SOD depicts a flowchart for describing a preferred
embodiment of MS Radio Frequency Identification (RFID)
probe processing. Amendments were made to PRRs 5300
for adapting RFID technologies to an IbxPhone™. RFID
device receive processing is intended to process passive and
active RFID device transmissions.

With reference now to FIG. 53, an application described

50 from queue 24 for data to be sent to a RFID device.
The plurality of MS communications interfaces 70 may

already support wave spectrum(s) appropriate for existing
RFID devices. In this embodiment, fields 5300-CHIN and
5300-CHOUT are configured in advance for mapping to

55 existing MS capability so that required wave interfaces
leverage existing MS capability. For example, a single
communications interface 70 may support a plurality of
distinct radio interfaces (e.g. different frequencies, ampli
tude, etc) and fields 5300-CHIN and 5300-CHOUT simply

60 map to appropriate parameters passed to the interface for
correct communications. The channel should be validated
before allowing specification to fields 5300-CHIN and 5300-
CHOUT. See appfld.rfid.listen.X and appfld.rfid.seek.X
channel information.

by a PRR may be a LBX application incorporating RFID 65

technology. PRR fields already described continue to be the
same for a RFID application of a PRR 5300 (e.g. containing

Probe data field 5300-P contains a datastream to be sent
on the outbound channel described by field 5300-CHOUT
for providing RFID device listening signature data and/or

Petitioners' Ex. 1001, Page 509 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
365

protocol data sought by potential receiving RFID devices.
Field 5300-P may contain user edited information, or may
point to the datastream in some MS storage. Queue field
5300-Q defines a globally unique handle (e.g. queue name)
to a MS queue for RFID receive processing. This value is 5

null when queue 26 is shared, otherwise the queue handle is
used by the RFID application of PRR 5300 for starting at
least one thread (see FIG. SOE) waiting on that particular MS
queue. Non-null values of fields 5300-Q should be validated
to ensure the referenced MS system queue exists for use (e.g. 10

as initialized by block 1218). RFID Trigger(s) field 5300-
CALL is equivalent in description to field 5300m except the
RFID communications interface is the trigger for invoking
processing of field 5300-CALL (sub-sections band c only).
A single application of a record 5300 may have application 15

term trigger(s) and/or RFID trigger(s). Thus, the LBX archi
tecture supports automatically triggered processing via in
process WDRs, application variable changes, and RFID
communications (e.g. automatically invoke processing when
in the vicinity of an authenticated RFI device). One pre- 20

ferred embodiment is to have a single callback function
interface for handling all of the RFID device communica
tions for the PRR 5300 which is overloaded (OOP polymor
phism) for different data typed parameters parsed from the
received data for unique processing, however multiple inter- 25

faces may be specified. If multiple callback interfaces are
specified, the appropriate interface can be contextually used
based on an appropriate typecast of received data. An
ordered list of parameter types can be assumed. However,
potentially messy conditional decision instructions may also 30

form part of field 5300-CALL. Another preferred embodi
ment utilizes named charter section processing only.

With reference back to FIG. SOD, MS RFID probe pro
cessing begins at block 8030 by way of: a user selecting to
manually perform a RFID request transmission; a RFID 35

application (e.g. appfld.rfid.seek.#.channel executable) per
forming a RFID request transmission; an atomic command
performing a RFID send transmission (e.g. as part of char
ters); or by MS processing related to RFID application
processing. Block 8030 processing continues to block 8032. 40

Depending on how FIG. SOD was invoked, PRR field
5300-CHOUT is determined at block 8032 by: 1) a param
eter (e.g. the PRR) passed to FIG. SOD processing; 2) a user
interface for validating (using PRRs 5300) a user specifica
tion; or 3) access to MS memory or MS storage (e.g. an 45

App Term, fields 1100k field, etc) for deducing the PRR and
channel. Block 8032 continues to block 8034. Block 8034
accesses PRRs 5300 for a field 5300-P in the same PRR
which had a field 5300-CHOUT. Thereafter, block 8036 uses
fields 5300-CHOUT and 5300-P to build a transmission 50

366
with a data packet processed by FIG. SOE). Also, TDOA
measurements may be similarly made as discussed above for
RFID inbound or outbound transmission data.

In some embodiments: {IF: A) RFID device probing is
automated; and B) usual communications spectrum capa
bilities includes wave form qualities acceptable for probing
RFID devices; and C) RFID devices can seek certain sig-
natures in usual communications spectrum in order to
respond; THEN usual MS communications data 1302 of the
MS is altered to contain CK 1304 for listening RFID devices
in the vicinity.) Send processing feeding from the RFID send
queue, caused by block 8038 processing, will place RFID
device probe data (e.g. probe data field 5300-P) as CK 1304
embedded in usual data 1302 at the next opportune time of
sending usual data 1302. If an opportune time is not timely,
send processing may or may not (e.g. may depend on
parameter(s)) discard the send request of block 8038 to
avoid broadcasting an untimely probe. As the MS conducts
its normal communications, transmitted data 1302 contains
new data CK 1304 to be recognized by RFID devices
listening for probe data of field 5300-P. An automation of
seeking RFID devices from a MS can send repeated timely
pulsed broadcasts.

FIG. SOE depicts a flowchart for describing a preferred
embodiment of processing for receiving data from an RFID
device. Architecture 1900 is an excellent model for RFID
applications. FIG. SOE processing describes a RFID Receive
(RFID_Rx) process worker thread, and is provided as part of
the application executables described in a PRR. There may
be a plurality of worker threads for the RFID_Rx process,
just as described for a 19xx process. The RFID_Rx process
operates analogously to the framework of architecture 1900
as other 19xx processes, with specific similarity to process
1942 in that there is data received from receive queue 26,
and the RFID_Rx thread(s) stay blocked on the receive
queue until data is received. The associated application is
responsible for RFID_Rx process initialization. Receive
processing identifies targeted/broadcasted RFID device data
destined for the MS of FIG. SOE processing through system
resources of fields 5300-CHIN and 5300-Q.

A RFID_Rx thread processing begins at block 8050 upon
the MS receiving RFID device originated data, continues to
block 8052 where processing is initialized (e.g. to the
application PRR 5300). Thereafter, at block 8054 the pro
cess worker thread count RFID_Rx-Ct is accessed and
incremented by 1 using appropriate semaphore access if
there is more than 1 thread, and continues to block 8056 for
retrieving data from the RFID queue (using interface like
interface 1948), perhaps a special termination request entry,
and only continues to block 8058 when a record of data is
retrieved. In one embodiment, receive processing may break
up a datastream into individual records of data from an
overall received (or ongoing) datastream. In one embodi
ment, receive processing receives data in one format and

packet for hopeful reception by at least one RFID device in
the vicinity of the MS of FIG. SOD processing. Field 5300-P
is anticipated protocol data (e.g. at least a signature) being
received by a RFID device (see appfld.rfid.seek.#.probe).
Thereafter, block 8038 broadcasts the packet by inserting to
the RFID send queue for the correct channel (field 5300-
CHOUT) for outbound wave characteristics, and processing
terminates at block 8040. For example, block 8038 broad
casts data 1302 as far as radius 1306. The broadcast is for
reception by RFID devices in the vicinity. FIGS. SOA
through SOC may increase distances for RFID device inter
facing.

55 deposits a more suitable format for FIG. SOE processing.

In some embodiments, a receiving RFID device may
require correlation built into the data packet at block 8036
for returning to the MS of FIG. SOD processing. Correlation
processing has been discussed above and similar processing
may be used to correlate a broadcast from block 8038 (e.g.

Block 8056 stays blocked on retrieving from the RFID
receive queue until any record is retrieved, in which case
processing continues to block 8058. If block 8056 deter
mines a special entry indicating to terminate was not found

60 in the RFID receive queue, processing continues to block
8060 for accessing applicable privileges through PRR field
5300}. In some embodiments, at least one privilege process
ing interface of PRR field 5300k is invoked with the received
data to determine if it is privileged for being processed.

65 Various embodiments support globally maintained LBX
architecture privileges and/or custom defined privileges for
particular applications, such as those plugged in through a

Petitioners' Ex. 1001, Page 510 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
367 368

PRR. Thereafter, block 8062 uses the application PRR to
retrieve field 5300-CALL, and determines any expression
outcome if embodied/configured therein. Block 8062 con
tinues to block 8064. Block 8064 checks for a configured
execution (e.g. callback invocation) and/or conditional char- 5

ter trigger processing depending on the embodiment/con
figuration.

interactions. Print jobs are not enabled for printing at the
printer until the MS is within range of fast communications
for printing as managed by configured charters. Special
AppTerm variables for print management can be enabled
(PR_ofiline=False) or disabled (PR_ofiline=True). Other
output peripherals are controlled similarly. The "PR_" prefix
is MS defined for the default printer installed for printing.
This allows print jobs to be saved by setting the printer
ofiline in a charter, and then to be printed when taken ofiline
in a charter, automatically and without user intervention.

There are an unlimited number of AppTerm variables for
being exposed to charters for an unlimited set of event based
processing using the many charter methods described above.

With reference now to FIG. 82A, depicted is a flowchart

If block 8064 determines no callback processing (or
trigger processing) is configured as determined at block
8062 or processing is not privileged as determined by block 10

8060, processing continues back to block 8056, otherwise
the applicable configured processing (e.g. callback or trig
ger) is invoked appropriately at block 8066, and processing
then continues back to block 8056. A callback function is a
preferred method for embodying the processing of received
RFID device data. The callback function may also use other
PRR fields and invoke processing thereof.

15 for describing a preferred embodiment of processing for
maintaining LBX history 30. Block 1494 processing begins
at block 8200, and then continues to block 8202 for initial
izing data for subsequent processing, block 8204 for pre
senting LBX history maintenance options to the user, and

20 block 8206 for waiting for an action by the user in response
to the presentation at block 8204. Once the user responds
with an action, processing continues to block 8208.

A preferred embodiment of RFID receive processing
without requiring application programmer coding of FIG.
SOE isolates FIG. SOE processing from applications with an
MS O/S API (called RFID_Rx API). An application pro
grammer provides the RFID receive queue, the channel and
callback function to the RFID_Rx API with a "start using"
interface. The RFID _Rx API is responsible for invoking the
callback function with RFID device data received. The 25

If block 8208 determines the user selected to browse or
edit the history 30 information, then block 8210 accesses
LBX history 30, block 8212 presents the history information
in an appropriate editor interface, block 8214 interfaces with RFID_Rx API has at least "start using" and "stop using"

interfaces.
Referring back to block 8058, if a worker thread termi

nation request was found at the RFID receive queue, then
block 8068 decrements the RFID_Rx worker thread count
by 1 using appropriate semaphore access if there is more
than 1 thread, and RFID_Rx thread processing terminates at
block 8070. Block 8068 may also check the RFID_Rx-Ct
value, and signal a RFID_Rx process parent thread that all
worker threads are terminated when RFID_Rx-Ct equals
zero (0).

Date/time stamp and/or correlation information in data
received may be used to calculate TDOA measurements as
already described in detail above. Regardless of the type of
receiving application, those skilled in the art recognize many
clever methods for receiving data in context of a MS
application which communicates in a peer to peer fashion
with a RFID device. Of course, the application of a PRR
5300 performing receive processing can leverage all features
of a PRR and LBX enabled MS as described above.

In one application, a user wears a RFID tag for being
within range of the MS he uses. When the MS is out of range
of the user (as configured in a charter by lack of RFI signal
availability), the MS peripherals can be locked so unauthor
ized use is prevented. There are system AppTerm variables
(e.g. SYS_kbdLock=True or False enables or disables MS
keyboard use); SYS_voiceCtl=True or False (enables or
disables voice control interface use), etc) which can auto
matically be set in the charter action(s) for controlling the
MS peripherals. Other input peripherals are controlled simi
larly. The range of the RFID tag can be used to determine
what is out of range (e.g. 3 meters). Similarly, the MS can
be configured to only permit certain data input at certain
peripherals with AppTerm list variables. The AppTerm list
variables are set with the allowable input, or the disallowed
input, for the peripheral, for example when at certain loca
tions/conditions as configured in charters.

In another application, a RFID is affixed or installed to a
printer. MS print jobs are queued up and saved for printing
later when the MS is out of range of the RFID tag of a
particular printer. In another embodiment, the printer has a
MS ID and is equipped with a MS emulation for LBX

user in the editor for any alteration or viewing as desired by
the user, and processing continues back to block 8204. In
one example, blocks 8210 through 8214 may have been

30 requested by the user to see who was nearby at some time
in history. Block 8214 is to provide a convenient history
search criteria specification interface for the user to find
sought history. Of course, a separate user interface can be
used to access history for desired information. One embodi-

35 ment maintains history as appended text lines in a flat ASCII
file for careful browse and edit by a user using a simple flat
file editor (e.g. Notepad, Personal Editor, etc). Charter
expressions may cause access to history 30, so it may be
desirable to maintain history to records of data, or a database

40 to facilitate searching performance, in which case blocks
8210 and 8214 deploy a suitable editor (or query manager),
or an appropriate home-grown interface. If block 8208
determines the user did not select to browse or edit history,

45

then processing continues to block 8216.
If block 8216 determines the user selected to modify the

destination for keeping history 30 information, then block
8218 saves the current destination setting (e.g. file folder, or
schema qualifier in a SQL embodiment), block 8220 inter
faces with the user for a new specified destination, and block

50 8222 checks the user's specification from block 8220. Block
8220 performs validation (e.g. valid path/table/place/etc for
storing history, enough space to store history, etc) before
processing can continue to block 8222. If block 8222
determines the user did not change the destination (i.e. not

55 different than original destination saved at block 8218), then
processing continues to block 8204, otherwise block 8224
prompts the user to confirm the change, and block 8226
checks his response. If block 8226 determines the user
cancels the change, then processing continues back to block

60 8204, otherwise block 8228 prompts the user for whether or
not to move the existing history data and block 8230 checks
the user's response. If block 8230 determines the user wants
to move existing history data to the new destination, then
block 8232 moves the history and block 8234 modifies the

65 history destination setting for future history data to be
maintained. If block 8230 determines the user did not select
to move existing history (e.g. wants to start a new set of

Petitioners' Ex. 1001, Page 511 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
369

history), then processing continues directly to block 8234.
Block 8234 continues to block 8204. In some embodiments,
block 8232 copies the history to the new destination rather
than moving it. Also, the user may use other tools for
copying or moving history information. If block 8216 deter- 5

mines the user did not select to modify the history destina
tion, then processing continues to block 8236.

If block 8236 determines the user selected to modify
criteria for what data to maintain to history, then block 8238
accesses the current criteria, block 8240 presents the current 10

criteria to the user for browsing or editing, block 8242
interfaces with the user for saving any modified criteria,
block 8244 prompts the user for whether to prune the history
data (e.g. to reflect criteria changes), and block 8246 checks
the user response. If block 8246 determines the user does not 15

want to prune history, processing continues to block 8204,
otherwise block 8248 performs pruning in accordance with
criteria for maintaining history and processing continues to
block 8204. If block 8236 determines the user did not select

370
current specifications to the user for browsing or editing,
block 8258 interfaces with the user for saving any modified
formatting specifications, block 8260 prompts the user for
whether to change the format of current history data, and
block 8262 checks the user's response. If block 8262 deter
mines the user does not want to modify the current history
data to the new format, processing continues to block 8204,
otherwise block 8264 modifies the format of current history
information accordingly and processing continues to block
8204. If block 8252 determines the user did not select to
modify history format specifications, then processing con-
tinues to block 8266.

Blocks 8256 and 8258 provide a format editor (e.g.
existing or home-grown), depending on the form that speci
fications are kept in, and which memory or storage run time
accessed history is kept. Formatting specifications may be
kept in a text file, as data records, in a SQL database, or any
other appropriate form. Formatting changes may involve
data record or SQL database schema changes in some

to modify the criteria for maintaining history, then process
ing continues to block 8250.

Blocks 8240 and 8242 provide a suitable criteria editor
(e.g. existing or home-grown), depending on the form cri
teria is kept in, and which memory or storage run time
accessed criteria is kept. Criteria may be kept in a text file,
as data records, in a SQL database, or any other appropriate
form. Criteria managed by blocks 8240 and 8242 includes
specification (e.g. for what to keep, and what not to keep) for
which information data to keep in history (e.g. date/time
stamp which is preferably required, MS ID, history main
tainer Process ID (PID), history maintainer thread ID (TID),
valid history maintainers, maintainable depth of history data

20 embodiments. Specifications managed by blocks 8256 and
8258 include order of fields saved, units used, appearance in
reporting/browsing/saving, whether or not special characters
are used (tabs, <CR> and/or <LF>), whether or not data
positions are reported as null when not available or filtered

(e.g. before history file wraps or closes for starting a new file

25 out (e.g. by criteria), or any other presentation variable.
Formatting specifications are in context of the criteria for
maintaining history.

If block 8266 determines the user selected to clear history,
then block 8268 clears the history to a zero (0) sized file, and

30 processing continues back to block 8204. In some embodi
ments, block 8268 interfaces with the user for exactly what
to remove from history. If block 8266 determines the user
did not select to clear history, then processing continues to
block 8270. at the destination, or number of records, date/time stamp

trailing history pruning cut-off, etc), WDR field(s), specific 35

data and fields, conditions for what data to keep, etc).
Criteria should be consistent with anticipated expression
terms. Block 1482 charter configuration processing and/or
BNF granmiar expression processing may consult history
criteria for knowing when to look in history 30, or when to 40

handle a not found, or error, condition. An invoker of FIG.
82B processing preferably passes all available data for being
maintained to history, but FIG. 82B processing will decide
what data is saved based on configured criteria. In one
embodiment, criteria includes expressions with conditions 45

for what to keep, and data passed for being logged to history

If block 8270 determines the user selected to exit block
1494 processing, then block 8272 appropriately terminates
block 1494 processing (e.g. clear user interface, etc), oth
erwise block 8274 handles any other user actions which
result in processing leaving block 8206. Block 8274 con
tinues back to block 8204.

FIG. 82B depicts a flowchart for describing a procedure
to maintain information to LBX history 30, preferably
embodied as an API for being invoked by all LBX process
ing points that want to log history information. The benefit
of the FIG. 82B history logger is to centralize all history
updates in a single module of processing code. Each invoker

is examined for satisfying the condition(s). For example,
expressions may be as complex as an expression of charter
BNF Grammar 3068a and 3068b. A True result of the
expression is to cause the history to be logged. If expressions
are supported, a generalized expression interface may be
used for history and statistics conditional information gath
ering. In other embodiments, generic expression interfaces
are provided for consistent expression specification and
stack based expression evaluation for conditional history
logging, conditional statistics logging, charter expressions
(including App Term expressions, etc), and other expression
embodiments used in the MS.

If block 8250 determines the user selected to perform
pruning to history, then block 8248 performs pruning
according to the criteria for maintaining history, and pro
cessing continues back to block 8204. If block 8250 deter
mines the user did not select to perform pruning, then
processing continues to block 8252.

If block 8252 determines the user selected to modify the
history information formatting, then block 8254 accesses the
current formatting specifications, block 8256 presents the

(caller) of FIG. 82B may have different data to be logged to
history as passed by appropriate parameters to FIG. 82B
processing. History logging processing begins at block 8280

50 when invoked by a caller to write out history data and
continues to block 8282 for getting parameters of data
(caller (i.e. history maintainer), data for logging, etc) passed
to be potentially written out (or appended) to history. There
after, block 8284 accesses criteria managed by blocks 8236

55 through 8248, accesses formatting specifications managed
by blocks 8252 through 8264, and accesses the history
destination setting managed by blocks 8216 through 8234.
All of this data is defaulted in a MS in case a user has not
made use of block 1494 processing. Thereafter, block 8286

60 gets useful system information (e.g. current MS date/time
stamp to the best granulation of time for writing with the
history information, PID, etc) which may be written to
history, and block 8288 prepares the history data for output
according to the parameters from block 8282 as well as the

65 criteria and specifications from blocks 8284 and 8286. Block
8288 may incorporate stack based condition processing for
complex expressions used to determine conditions for which

Petitioners' Ex. 1001, Page 512 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
371

history is to be logged. Thereafter, block 8290 appropriately
saves (e.g. appends) the history data prepared and formatted
at block 8288 to the history destination, block 8292 prunes
history data according to the criteria determined at block
8284, and block 8294 checks if statistics are to be contrib- 5

uted to with the history data just logged. Depending on the
form which history information is maintained, block 8290
may involve a plurality of write operations, or a single write
operation.

If block 8294 determines there are no statistics involved 10

with the history data logged, then the caller (i.e. history
maintainer) of FIG. 82B is returned to at block 8296,
otherwise block 8298 prepares parameters according to the
history data for generating statistics, block 8299 invokes
(calls) the statistics logger of FIG. 83B, and the caller of 15

FIG. 82B is returned to at block 8296.

372
user wants to move existing statistics data to the new
destination, then block 8330 moves the statistics and block
8332 modifies the statistics destination setting for future
statistics data to be maintained. If block 8328 determines the
user did not select to move existing statistics (e.g. wants to
start a new set of statistics), then processing continues
directly to block 8332. Block 8332 continues to block 8304.
In some embodiments, block 8330 copies the statistics to the
new destination rather than moving it. Also, the user may use
other tools for copying or moving statistics information. If
block 8314 determines the user did not select to modify the
statistics destination, then processing continues to block
8334.

If block 8334 determines the user selected to modify
criteria for what data to maintain to statistics, then block
8336 accesses the current criteria, block 8338 presents the
current criteria to the user for browsing or editing, block
8340 interfaces with the user for saving any modified
criteria, block 8342 checks if a statistics data layout or

Block 8292 is an ideal place to perform pruning. An
alternate embodiment MS includes at least one polling
thread for asynchronously pruning history data. There is a
wealth of history information which can be logged, but MS
users are cautioned to not waste MS resources unless it is
warranted. Statistics 14 can be taken/derived from any
history data 30, and other MS data which is useful for
tracking or reporting.

20 schema change (e.g. to reflect criteria changes) was made at
block 8340, and block 8344 checks the result. If block 8344
determines no layout or schema change was made by the
user, processing continues to block 8304, otherwise block
8346 appropriately modifies statistical layout/schema in

FIG. 83A depicts a flowchart for describing a preferred
embodiment of processing for configuring LBX statistics 14.
Block 1486 processing begins at block 8300, and then
continues to block 8302 for initializing data for subsequent
processing, block 8304 for presenting LBX statistics main
tenance options to the user, and block 8306 for waiting for
an action by the user in response to the presentation at block
8304. Once the user responds with an action, processing
continues to block 8308.

If block 8308 determines the user selected to browse
statistics 14 information, then block 8310 accesses LBX
statistics 14, block 8312 presents the statistics information in
an appropriate reporting interface, and processing continues
back to block 8304. Block 8312 is to provide a convenient
statistics search criteria specification interface for the user to
find sought statistics. Of course, a separate user interface can
be used to access statistics for desired information. Preferred
embodiments maintain statistics in SQL database, data
record, or tabular spreadsheet access form for optimal
graphical reporting capability. The interface of block 8312
should support graphing of statistics over time, saving
different views of statistics for additional reports, printing
report/graphs, and sending reports/graphs to others. If block
8308 determines the user did not select to browse statistics,
then processing continues to block 8314.

25 accordance with criteria for maintaining statistics and pro
cessing continues to block 8304. If block 8334 determines
the user did not select to modify the criteria for maintaining
statistics, then processing continues to block 8348.

Blocks 8338 and 8340 provide a suitable criteria editor
30 (e.g. existing or home-grown), depending on the form cri

teria is kept in, and which memory or storage run time
accessed criteria is kept. Criteria may be kept in a text file,
as data records, in a SQL database, or any other appropriate
form. Criteria managed by blocks 8338 and 8340 includes

35 specification (e.g. for what to keep, and what not to keep) for
which information data to keep in statistics and how the
statistics should be organized (e.g. layout or schema). Cri
teria should be consistent with anticipated statistical atomic
terms (e.g. \st_statisticName). Block 1482 charter configu-

40 ration processing and/or BNF granimar expression process
ing may consult statistics criteria for knowing when to look
in statistics 14, or when to handle a not found, or error,
condition. An invoker of FIG. 83B processing preferably
passes all available data for being maintained to statistics,

45 but FIG. 83B processing will decide what data is saved
and/or calculated based on configured criteria. In one
embodiment, criteria includes expressions with conditions
for what to keep, and data passed for being logged to
statistics is examined for satisfying the condition(s). For

50 example, expressions may be as complex as an expression of
charter BNF Grammar 3068a and 3068b. A True result of the

If block 8314 determines the user selected to modify the
destination for keeping statistics 14 information, then block
8316 saves the current destination setting (e.g. file folder, or
schema qualifier in a SQL embodiment), block 8318 inter
faces with the user for a new specified destination, and block
8320 checks the user's specification from block 8318. Block 55

8318 performs validation (e.g. valid path/table/place/etc for
storing statistics, enough space to store statistics, etc) before
processing can continue to block 8320. If block 8320
determines the user did not change the destination (i.e. not
different than original destination saved at block 8316), then 60

processing continues to block 8304, otherwise block 8322
prompts the user to confirm the change, and block 8324
checks his response. If block 8324 determines the user
cancels the change, then processing continues back to block
8304, otherwise block 8326 prompts the user for whether or 65

not to move the existing statistics data and block 8328
checks the user's response. If block 8328 determines the

expression is to cause the statistics to be logged. If expres
sions are supported, a generalized expression interface may
be used for statistics as described above.

If block 8348 determines the user selected to configure
automatic reporting, block 8350 interfaces with the user for
setting up, modifying, or removing automatic polled statis
tical reporting, and processing continues to block 8304.
Block 8350 supports setting up one or more asynchronous
threads of execution for polling desired statistics according
to a schedule, and then automatically sending the informa
tion (e.g. by MS alert/pop-up, email, SMS message, FIG.
75A, propagated service, service informant code 28, or other
configured method) to one or more recipients. Block 8350
supports configuring the "look and feel" of statistical infor
mation, graphs thereof, fonts, colors, or any other audible or
visual attribute for presentation to a recipient of the statistics

Petitioners' Ex. 1001, Page 513 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
373 374

destination setting managed by blocks 8314 through 8332.
All of this data is defaulted in a MS in case a user has not
made use of block 1486 processing. Thereafter, block 8376
gets useful system information (e.g. current MS date/time

information. Automatic reporting of statistics is preferably
generically implemented for accessing of history informa
tion, AppTerm data, atomic term data, WDRTerm data, map
term data, or any other MS data, as well as statistical
information data for reporting. If block 8348 determines the
user did not select to configure automatic reporting, then
processing continues to block 8352. Block 8350 may also be
used to configure and influence presentation at block 1812.

5 stamp to the best granulation of time for writing with the
statistics information, PID, etc) which may be written to
statistics, and block 8378 prepares the statistics data for
output according to the parameters from block 8372 as well
as the criteria and data from blocks 8374 and 8376. Block If block 8352 determines the user selected to configure

triggered reporting, block 8354 interfaces with the user for 10

setting up, modifying, or removing triggers (e.g. SQL data
base trigger, or similar mechanism) for automatic statistical
reporting, and processing continues to block 8304. Block
8354 supports setting up one or more triggers (e.g. expres
sion of at least one condition) for instantly reporting desired 15

statistics, and then automatically sending the information
(e.g. by MS alert/pop-up, email, SMS message, FIG. 75A,
propagated service, service informant code 28, or other
configured method) to one or more recipients. Block 8354
supports configuring the "look and feel" of statistical infor- 20

mation, graphs thereof, fonts, colors, or any other audible or
visual attribute for presentation to a recipient of the statistics
information. Triggered reporting of statistics is preferably
generically implemented for monitoring of history informa
tion, AppTerm data, atomic term data, WDRTerm data, map 25

term data, or any other MS data, as well as statistical
information data for reporting. If block 8352 determines the
user did not select to configure triggered reporting, then
processing continues to block 8356. Block 8354 may also be
used to configure and influence presentation at block 1812. 30

Blocks 8354 and 8350 preferably use a common set of APis
or code, and may be implemented in a common user
interface. Any "view" (as in SQL view) can be used to view,
report, save, schedule, or trigger informative statistical
reports.

If block 8356 determines the user selected to reset statis
tics, then block 8358 interfaces with the user for how to reset
them, block 8360 resets the statistics accordingly, and pro
cessing continues back to block 8304. Depending on differ
ent embodiments, block 8358 interfaces with the user for: a
reset template for how to reset which is used at block 8360;
a date/time stamp for when to reset statistics back to, or
forward from; or exactly what to remove from the statistics;
and what initial values to use for the reset. If block 8356

8378 may incorporate stack based condition processing for
complex expressions used to determine conditions for which
statistics is to be logged. Thereafter, block 8380 appropri
ately saves the statistics data prepared to the statistics
destination, calculates any statistics derived from the newly
updated statistical information, and updates the derived
statistics as well. Cumulative statistics may be updated at
block 8380. Thereafter, block 8382 checks trigger condi
tions/expressions managed by blocks 8352 through 8354
and generates any applicable reporting before continuing to
block 8384. Block 8384 prunes statistics data according to
the criteria determined at block 837 4, and block 8386 checks
if any statistics are to be logged to history.

If block 8386 determines there is no history to be output
as part of statistics logged, then the caller (i.e. statistics
maintainer) of FIG. 83B is returned to at block 8388,
otherwise block 8390 prepares parameters according to the
statistics data for generating history, block 8392 invokes
(calls) the history logger of FIG. 82B, and the caller of FIG.
83B is returned to at block 8388.

Block 8384 is an ideal place to perform pruning. An
alternate embodiment MS includes at least one polling
thread for asynchronously pruning statistics data. Another
embodiment maintains statistics so that pruning is never a
requirement. Some embodiments may only move to history

35 those statistics which have been pruned, for example to use
history for data which is no longer maintained at the MS.

Statistics are not just for reporting (e.g. WDR fields'
processing, privilege and charter processing, etc), but also to
be accessed by MS threads of processing for adjusting their

40 processing (e.g. IPC thread throttling, thread inter-commu
nications for efficient processing, best method for graphi
cally displaying data, etc), and to affect defaults that may
used in MS processing. \st_statisticName atomic references

determines the user did not select to reset statistics, then 45

processing continues to block 8362.

can be to raw statistics, cumulated statistics, statistics
derived from other statistics, or any data describing status,
state, progress, threshold, value, or the like.

If block 8362 determines the user selected to exit block
1486 processing, then block 8364 appropriately terminates
block 1486 processing (e.g. clear user interface, etc), oth
erwise block 8366 handles any other user actions which
result in processing leaving block 8306. Block 8366 con
tinues back to block 8304.

FIG. 83B depicts a flowchart for describing a procedure

In some embodiments, statistics 14 and history 30 infor
mation are integrated in a common data repository for
synergy of related data and access to it as needed (e.g. for

50 reporting or preventing redundant data copies). FIGS. 82B
and 83B should not cause a substantial or significant recur
sive chain of stack growth by calling each other. Appropriate
semaphore control is incorporated by processing of history
and statistics information. to maintain information to LBX statistics 14, preferably

embodied as an API for being invoked by all LBX process- 55

ing points that want to log statistics information. The benefit
FIG. 84A depicts a flowchart for describing a preferred

embodiment of processing for configuring service propaga
tion at block 1474. Service propagation leverages the LBX
architecture to maximize availability of services which are
available to at least one MS of a LN-Expanse. MSs without

of the FIG. 83B statistics logger is to centralize all statistics
updates in a single module of processing code. Each invoker
(caller) of FIG. 83B may have different data to be logged to
statistics as passed by appropriate parameters to FIG. 83B
processing. Statistics logging processing begins at block
8370 when invoked by a caller to write out statistics data and
continues to block 8372 for getting parameters of data

60 direct access to a needed service can access a needed service
through at least one peer MS, or through multiple MSs, for
routing service requests to successfully reach a desired
service which would otherwise be unreachable. The service

(caller (i.e. statistics maintainer), data for logging, etc)
passed for potentially affecting, or being written out to, 65

statistics. Thereafter, block 8374 accesses criteria managed

responses are also routed back to the originator through one
or more MSs. A first MS uses services through a second MS,
a second and third MS, a second and third and fourth

by blocks 8334 through 8346 and accesses the statistics MS, ... , a second and third and ... N th MS, etc as required

Petitioners' Ex. 1001, Page 514 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
375 376

to get to a needed service, for example when requesting a
help service (e.g. 911) that is not directly available from the
MS requesting help. Privileges are configured for governing
what services can be propagated from which MS for the
benefit of which users in the LN-Expanse. MSs may be 5

mobile at high speeds, so it is preferred that propagated
services be of the kind that cause reasonably small commu
nications request and response exchanges (e.g. internet
connected services) to prevent mobile roaming from inter
fering with large transmissions (e.g. file downloads), how- 10

ever error handling appropriately handles conditions when
transmission traffic does not reach its destination.

MS Greg by routing first from Stan to George, then
from George to Jane, and then from Jane to Greg (i.e.
3 hops). As will be seen in the flowcharts, if a SDR with
one or more hops is selected to process a service
request, the dynamic nature of processing at high speed
moving MSs may cause starting with an anticipated
number of hops (e.g. 3 per the example), but may end
up with less or more hops depending on where the
requested service is BEST made accessible in the
LN-Expanse at the time of processing the request.
Service requests are processed for minimizing the
number of hops from any MS to get to a service,
regardless of being processed by a MS with an origi
nally anticipated number of hops. Thus, routes are
completely dynamic as needed for maximum perfor
mance, and each MS hop processing makes a priori-

Block 1474 processing begins at block 8400 and contin
ues to block 8402 where options are presented to the user for
configuration of service propagation. Thereafter, block 8404 15

waits for a user action in response to the options presented
at block 8402. When a user action has been detected at block
8404, processing continues to block 8406.

tized best judgment of where to route next to satisfy the
request.

An address field 8500d (e.g. 12.234.56.140:23456)
describes where to reach the service (e.g. ip address) at the
MS with direct access, and may include at least one qualifier
(e.g. ip port) to better target the service at the address. A
URL (e.g. web site address) may be specified as well. Field
8500d is important for using at the MS with direct service

If block 8406 determines the user selected to manage a
service resource for propagation, block 8408 accesses ser- 20

vice directory 16 for SDRs (Service Directory Records) and
presents SDRs found in scrollable list form to the user with
options before continuing to block 8410 for waiting for a
user response action. Service directory 16 contains SD Rs for
which services can be shared in the LN-Expanse. 25 access and is less important for being propagated to remote

MSs since service requests ultimately access the MS with
direct service capability anyway regardless of how many
hops it took to get there. Field 8500d may contain a DLL

With reference now to FIG. SSA, depicted is a preferred
embodiment of a Service Directory Record (SDR) 8500 for
discussing operations of the present disclosure when inter
facing to the service directory 16. A SDR 8500 describes a
service to be accessible at the MS. SDR 8500 includes a 30

interface or other executable interface specification. A com
munication reference information field 8500e contains any
MS communications interface(s) 70 involved in communi-service handle field 8500a for uniquely defining a service in

a LN-expanse. Preferably, field 8500a is a service name (e.g.
text string) which is consistently used by MSs in a LN
Expanse, however any form (e.g. binary) may be used
provided it uniquely distinguishes the service from other
services. Charter expressions may reference a propagate
able service for a return to context, and an atomic command
may invoke a propagate-able service by name (e.g. Invoke
App "service handle", ...). Service requesters preferably
use field 8500a for making requests to the service (e.g. rather
than field 8500d). There may be multiple SDRs in service
directory 16 with the same field 8500a value when the same
service is reachable through peer MSs, or other MSs of the
LN-Expanse. A service description field 8500b is an optional
user entered string for describing the SDR. A route field
8500c contains a directed route description of MSs for
routing a request to the service.

Examination of field 8500c provides indication of which
MS the service of the SDR is directly accessed, and how
many hops (MSs) are involved in reaching the service at that
MS. Unique identification/correlation is maintained to field
8500c for each MS involved in the route, for example a MS
ID embodiment as described above. There is always at least
one MS ID of field 8500c. Examples of field 8500c include:

A. A single MS (MS ID) described in field 8500c implies
the SDR describes a service which is accessed directly
from the MS with the SDR. A single MS in field 8500c
(e.g. Stan) will always identify the MS which owns that
service directory 16; or

B. A plurality of ordered MSs (MS IDs) described in field
8500c implies there is a route through at least one
remote MS to access the service of the SDR. For
example, Stan; George (i.e. in a named syntactical MS
ID embodiment) indicates the MS with the SDR is Stan
and the service is accessible to Stan at the MS George.
Stan; George; Jane; Greg indicates the MS with the
SDR is Stan and the service is accessible to Stan at the

cating to the service. In some embodiments, one or more
interfaces are assumed on the MS (i.e. no field 8500e). In
some embodiments, an ordered list of interfaces may be

35 specified for ensuring success. Field 8500e may include
more detailed specifications (channel, wave spectrum, etc)
for how to communicate over an interface 70, for example
if more than one method is used over a single interface 70.
A date/time last used field 8500/ indicates when the service

40 was last used successfully by the MS. A test method field
8500g contains a user configured request that can be used to
test connectivity to the service. It is recommended that field
8500g be a request that causes a minimal response (e.g. a
return code). In use flag field 8500h is true when a service

45 request for the service is pending, and is false when one is
not pending. Proper FIG. 84A processing consults the con
dition of field 8500h (e.g. at blocks 8428, 8432, etc). Field
descriptions with the flowcharts provide additional detail.

With reference back to FIG. 84A, processing leaves block
50 8410 for block 8412 upon detection of a user action. If block

8412 determines the user selected to reset a SDR, then block
8414 resets the SDR by defaulting data fields for defining a
service which has never been used yet by the MS. An
appropriate semaphore lock window is incorporated to

55 ensure other threads are not interfered with when accessing
SDR information of the service directory 16 from block
8414 and other thread data sharing blocks of FIG. 84A
processing (e.g. around entire block 1474 processing, or
alternatively at specific blocks (e.g. 8414, 8430, 8434, etc)).

60 Block 8414 continues back to block 8408 where new field
values may be displayed depending on the embodiment of
how the list is displayed. If block 8412 determines the user
did not select to reset a SDR, then processing continues to
block 8418. If block 8418 determines the user selected to

65 test service connectivity, block 8420 prepares parameters for
the selected SDR service handle and block 8422 invokes the
procedure of FIG. 85B to process a service request described

Petitioners' Ex. 1001, Page 515 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
377

by test method field 8500g. Block 8420 prepares parameters
for making the request described by field 8500g to the
desired service of service handle 8500a, and to alert the user
for how the request succeeded or failed (at block 8532). The
request is preferably processed without regard to field 8500c 5

by automatically determining the optimal route for process
ing in request processing of FIG. 85B. Alternatively, the
route for the selected SDR could be enforced to perform the
test by passing a parameter prepared at block 8420 to
prioritize at block 8508 for the single SDR selected at block 10

8410 so that a specific route is tested. Upon return from
request processing at block 8422, processing continues back
to block 8408. If block 8418 determines the user did not

378
8448 can be embodied with processing of FIG. 38. If block
8446 determines the user did not select to configure permis
sion(s), then processing continues to block 8450.

If block 8450 determines the user selected to configure
service propagation charter(s), then block 8452 interfaces
with the user to configure charters related to service propa
gation and processing continues to block 8402. Block 8452
provides configuration of charters related to service propa
gation (e.g. inbound processing of WDRs to make use of
services made available by peer MSs), such as a charter
using the executable of FIG. SSE. Block 8452 can be
embodied with processing of FIG. 45. If block 8450 deter
mines the user did not select to configure charter(s), then
processing continues to block 8454.

If block 8454 determines the user did not select to exit
block 1474 processing, block 8456 handles any other user
actions detected at block 8404 and processing continues
back to block 8402, otherwise block 1474 processing appro
priately terminates at block 8458 (e.g. terminates user inter-

20 face).

select to test using a service described by a SDR, then
processing continues to block 8424. If block 8424 deter- 15

mines the user selected to add a SDR to the service directory
16, then the user interfaces for adding a validated SDR at
block 8426 and processing continues back to block 8408. If
block 8424 determines the user did not select to add a SDR,
then processing continues to block 8428. If block 8428
determines the user selected to delete a SDR from service
directory 16, then the selected SDR is deleted at block 8430
and processing continues back to block 8408. If block 8428
determines the user did not select to delete a SDR, then
processing continues to block 8432. If block 8432 deter
mines the user selected to view or modify a SDR, then the
user interfaces for viewing or modifying the selected SDR at
block 8434 and processing continues back to block 8408.
Block 8434 will ensure any modifications are validated
before processing leaves block 8434. If block 8432 deter
mines the user did not select to view or modify a SDR, then
processing continues to block 8436. If block 8436 deter
mines the user selected to exit managing service resources of
the services directory 16, then processing continues back to
block 8402 for presenting the user with overall service
propagation configuration options, otherwise block 8438
handles any other user actions detected at block 8410 and
processing continues to block 8408. Referring back to block
8406, if it is determined the user did not select to manage a
service resource for propagation, processing continues to
block 8440.

FIG. 84B depicts a flowchart for describing a procedure
to process application fields according to how they are
enabled or disabled for WDRs, for example as directed for
oWITS. See FIG. 77 and related discussions for enabling or

25 disabling sections (subsets of data) in application fields
1100k. Application fields sections (any subsets) can be
disabled or enabled for being stripped, appended, or modi
fied. Preferably, FIG. 77 facilitates governing what is
stripped or appended. FIG. 77 may influence how a section

30 is modified for a particular application, but privileges may
be used to more specifically influence specified application
fields section modifications form WITS, iWITS and o WITS.
The FIG. 84B procedure is preferably used for publicizing
services by appending the appfld.services subordinate sec-

35 tions from the service directory 16 for propagating services
to receiving MSs to populate their service directories 16 for
use. There are to be at least 3 fields appropriately (_appfld
.services.ct too) appended from the service directory 16 for
each service: handle field 8500a, route field 8500c and

40 date/time last used field 8500/ Field 8500d may be
appended. Field 8500/ is relevant within context of SD Rs
from the same MS because the date/time stamp is in time
terms of that MS. In embodiments where NTP is globally

If block 8440 determines the user selected to configure
publishing a service, then block 8442 accesses the service
directory 16 for all SDRs and block 8444 interfaces with the
user for enabling or disabling specific service sections of 45

applications fields 1100k. Thereafter, block 8444 processing
continues to block 8402. Publishing services is equivalent to
enabling the presence of service descriptions (i.e. SDR
information) in application fields 1100k of outbound WDRs
for processing by receiving privileged MSs. Publishing 50

enables service propagation by making services of a first MS
available to remote peer MSs which have privileges to
access the services described in fields 1100k (i.e. appfld.ser
vices section). Block 8444 uses processing of FIG. 77,
preferably with a scoped set of application fields sections of 55

block 8442 (e.g. parameter passed to a procedural form of
FIG. 77) to limit FIG. 77 processing to appfld.services
sections. If block 8440 determines the user did not select to
publish a service, then processing continues to block 8446.

used by MSs, field 8500/ could be consistent in time terms
across the entire LN-Expanse. Other SDR fields may also be
appended to outbound WDRs, but are not required to be
present in a WDR to be received by other MSs in many
embodiments.

Processing of FIG. 84B may be incorporated in overall
processing of application fields 1100k, as one of a plurality
of procedures for processing application fields 1100k (e.g.
used by block 5703), or as part of o WITS specific processing
of application fields 11 OOk. Processing application fields, for
example to show how service directory information is
appended to outbound WDRs, starts at block 8460 and
continues to block 8462 for getting parameters passed. At
least the WDR (reference/address thereof) is passed to FIG.
84B processing, along with a parameter communicated back
to the caller for whether to prevent processing the WDR

If block 8446 determines the user selected to configure
service propagation permission(s), then block 8448 inter
faces with the user to configure permissions related to
service propagation and processing continues to block 8402.
Block 8448 provides configuration of privileges for who can
use/see the published services when receiving WDRs, for
example for influencing WITS filtering (e.g. strip out spe
cific appfld.services section(s) based on permissions). Block

60 further (i.e. WITS filtering). A reference/address to privi
leges, and to enabled/disabled indicators for fields 1100k
sections, as well as how to process fields 1100k may also be
passed as parameters. Thereafter, block 8464 accesses the
WRC, or a similar outbound counter-part to it, for WITS

65 filtering processing, and the outbound WDR identity is used
to see what is known about its MS identity recent where
abouts in a reasonably current trailing amount of time (e.g.

Petitioners' Ex. 1001, Page 516 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
379

checking queue 22 and/or LBX history). Processing contin
ues to block 8466. Recall that the WRC indicates how to
perform WITS filter processing, except in this case it is used
for outbound processing:

380
map term, data (e.g. existing applications fields 1100k sec
tion(s)) of the passed WDR, or any other MS data.

5) Ignore (i.e. do not permit for outbound) WDRs which 5

are destined for a wirelessly connected MS (e.g. within
range 1306);

If block 8478 determines there are no remaining enabled
sections to process, block 8480 strips off the entire fields
1100k from the WDR passed for processing, block 8482
appends to the passed WDR a completely new fields 1100k
built to the work area, and the caller is returned to at block
8470. For service propagation, the appfld.services section
contains appropriate fields for receiving MSs to maximize
service availability in the LN-Expanse. Receiving MSs
update their service directories 16. See FIG. SSE discussion.

6) Consider (permit outbound) all WDRs regardless of
destination;

7) Ignore (i.e. do not permit for outbound) all WDRs 10

regardless of destination; and/or Ignore (i.e. do not
permit for outbound) WDRs which are not destined for FIG. 85B depicts a flowchart for describing a preferred

embodiment of a procedure for processing a request for a a wirelessly connected destination (e.g. this is a popular
configuration).

15
propagated service. FIG. 85B is to be thread safe (reentrant),
as are all procedures of this application for good coding
practices. Processing begins at block 8502, continues to
block 8504 for getting parameters passed (e.g. service

The WRC (or counter-part thereof) is then used appropri
ately by WITS processing for deciding what to do with the
WDR in process. Assuming the WDR is to be processed
further, then permissions 10 and charters 12 are still checked
for relevance of processing the WDR (e.g. MS ID matches 20

active configurations, WDR contains potentially useful
information for configurations currently in effect, etc). In an
alternative embodiment, WITS filtering is performed at
existing permission and charter processing blocks so as to
avoid redundantly checking permissions and charters for 25

relevance.

handle (e.g. name) desired (comparable to field 8500a), the
request data, reference/address to any response data returned
to the caller, whether to provide a notification to the user if
able/unable to reach the service), block 8506 for accessing
service directory 16 at the MS of FIG. 85B processing for all
SDRs describing where to find the desired service passed as
a parameter, and then to block 8508 for prioritizing SDRs
found at block 8506. If only one SDR, or none, is found for

If block 8466 determines the WRC and WDR information
indicates to ignore the WDR, then processing continues to
block 8468 for indicating to the caller of FIG. 84B to filter
out the WDR from further WITS processing (e.g. FIG. 57
and caller processing which invoked FIG. 57), and the FIG.
84B caller is returned to at block 8470. If block 8466
determines the WRC and WDR information indicates to
continue processing, then processing continues to block
8472 for indicating to the FIG. 84B caller to continue
processing the WDR (i.e. do not filter out), and processing
continues to block 8474.

Block 8474 loops through all fields 1100k sections
enabled, for example by FIG. 77 processing, to eliminate
subset sections when a higher level section includes all
enabled subordinate sections. For example, appfld.services
is a higher order section for all SDR corresponding sections
to be maintained therein of service directory 16, appfld.ser
vices.2 is a higher order section specifically for a web
service appfld.services.2.handle, etc. Fields to enable are at
least appfld.services.#.handle, appfld.services.#.route, and
appfld.services.#.ldt for each service (_appfld.services.ct
too). Enabling appfld.services indicates to FIG. 84B pro
cessing to get all SDRs from the service directory 16 for
being present in the WDR. Block 8474 continues to block
8476 when all enabled fields 1100k sections are identified.

Block 8476 gets the next (or first) enabled fields 1100k
section. Thereafter, block 8478 checks if all have been
processed (may be none, one or many to process). If block
8478 determines there is a section to process, block 8484
accesses section applicable privileges and block 8486
checks if anyone is privileged to receive the section in any
form. If block 8486 determines that at least one privilege is
in place, then block 8488 accesses data for the section, block
8490 builds the fields 1100k section appropriately into a
work area, perhaps in accordance with the associated privi
lege from block 8484, and processing continues back to
block 8476 to get a next section for processing. Block 8488
will access appropriate data for the application fields 1100k
section (e.g. directory 16 SDR information) as is appropriate
for that particular application set of data. This may include
accessing data of an AppTerm, atomic term, WDRTerm,

the desired service, then no prioritizing is performed. There
may be a plurality of SDRs from many MSs in the service
directory 16 based on privileges and enabled fields 1100k

30 sections shared between MSs. Prioritizing is preferably
carried out on SDRs by sorting SDRs with priority for a
minimum number of hops (i.e. least# ofMSs in routing field
8500c) and a most recent date/time stamp field 8500/ for
SDRs with the same MS ID in the final targeted MS of route

35 field 8500c. For example, there may be a plurality of SDRs
in a service directory 16 for a choice of routes to the
specified service.

Thereafter, block 8510 gets the next prioritized SDR (or
first) and block 8512 checks the result. If block 8512

40 determines there is a SDR to process for the desired service,
then block 8514 sets field 8500h to true in the corresponding
SDR of directory 16, block 8516 builds a targeted send
request for the request data parameter according to route
field 8500c (i.e. the service or first hop in the route) and

45 applicable field(s) 8500e, and block 8518 sends the request
and waits for the response. If a single MS ID is present in
field 8500c, then it is the MS of FIG. 85B processing in
which case the desired service is communicated with
directly from the MS of FIG. 85B processing using address

50 field 8500d. If there is a plurality ofMSs in field 8500c, then
the next MS to hop to is targeted for processing the service
request.

FIG. 85B makes use of appropriate semaphore control
discussed for FIG. 84A. Block 8518 processing preferably

55 involves asynchronous communications threads for sending
and receiving, analogously to architecture 1900 send and
receive processing discussed above wherein queued corre
lation is maintained to correlate a response with a request.
Block 8518 preferably sends using a targeted request using

60 a send queue (e.g. queue 24) like block 2516, and then
involves at least one asynchronous receiving thread blocked
on a receive queue (e.g. queue 26) at a MS or service to
provide a correlation containing response. Block 8518 pro
cessing continues to block 8520 when either of the following

65 conditions occur:
1) Response containing status and/or data received back

for the request sent at block 8518;
Petitioners' Ex. 1001, Page 517 of 553

Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC
IPR2022-00420

US 10,477,994 B2
381

2) Error response code status received back for the request
sent at block 8518; or

382
FIG. 85D depicts a flowchart for describing a preferred

embodiment of processing at a MS when receiving a request
for a propagated service from a remote MS. Processing
begins at block 8558 when a request for a service is received

3) A communications wait timeout occurred whereby a
response was never received in a reasonable time
period for the request sent at block 8518. 5 (e.g. at a receive queue (e.g. queue 26)) from another MS.

Block 8520 sets field 8500h to false in the corresponding
SDR of directory 16 from block 8510, and block 8522
checks results of the send at block 8518.

If block 8522 determines an error was returned, or a
timeout occurred whereby no response was received back, 10

then processing continues back to block 8510 for a next
prioritized SDR, otherwise at block 8524 the response
information received is appropriately placed into the param
eter for returning the response back to the caller of FIG. 85B,

15
block 8526 sets a return code to the caller for indicating a
response was received, block 8528 updates the correspond
ing SDR of directory 16 field 8500/to the current MS system
date/time and processing continues to block 8530. The
timeout value may be configurable or enforced by known 20

system constraints.

There is preferably a pool (plurality) of FIG. 85D threads for
servicing a plurality of MSs simultaneously. The pool of
FIG. 85D threads should be started like other MS 19xx
processes in an appropriate order and terminated like other
MS 19xx processes in an appropriate order (see applicable
discussions related to thread pools blocked on a queue (for
FIGS. 12, 28, 29A, 29B)). Thereafter, block 8560 prepares
parameters for invoking FIG. 85B processing that are in the
request, block 8562 invokes FIG. 85B processing, block
8564 builds a response from FIG. 85B processing correlated
to the request for the requesting MS, block 8566 sends the
response (e.g. using a send queue (e.g. queue 24)), and
thread processing terminates at block 8568. The response
built at block 8564 appropriately builds a correlated
response for any error or success condition. Note that
invoking FIG. 85B processing at the receiving MS ensures
a best route is obtained in minimum time using prioritized
local entries which may have changed (e.g. improved) since
the originating MS service directory 16 was updated. In

Referring back to block 8512, if block 8512 determines
there are no SDRs to process for the desired service, or the
last prioritized SDR was already processed, then block 8540
places a null into the parameter for returning the response
back to the caller, block 8542 sets the return code to the
caller for the error which last occurred, and processing
continues to block 8530. Loop iterations of blocks 8510
through 8522 provide the best ordered attempt to reach the
requested service in minimal time.

25 cases where the service directory 16 of the MS of FIG. 85D
processing has worsened for finding the service, an error is
returned to the requesting MS so that FIG. 85B processing
at the requesting MS processes a next prioritized SDR.
Service directory 16 SDRs enable a very dynamic nature for

30 optimal routing in a LN-Expanse for service requests.
In an alternate embodiment, MS response processing may

search the service directory 16 for finding the best route to
get back to the requesting MS, rather than using the same
route of the request hops. Response processing can imple-

If block 8530 determines a user notification parameter
passed to FIG. 85B processing indicates to notify the user of
request results, then block 8532 alerts the user with result
status information and processing continues to block 8534,
otherwise block 8530 continues directly to block 8534. The
results status information preferably requires the user to
acknowledge seeing the status information before process
ing can leave block 8532 for block 8534. Block 8534 logs
results (e.g. to history 30), continues to block 8536 for
pruning service directory 16 of the MS of FIG. 85 process
ing, and the return code is preferably returned as a "func
tion" FIG. 85B would so the caller knows how to handle
results.

35 ment searching directory 16 for finding the best and mini
mum number of hops back to the requesting MS. Directory
16 would be accessed for prioritizing SDRs just as was
disclosed for FIG. 85B, and with applicable processing, for
processing the prioritized list for the correlated response to

40 get it back to the requesting MS in the best possible path.
FIG. SSE depicts a flowchart for describing a preferred

embodiment of processing for an executable that updates
service directory 16 information, for example as used in a
charter action configured by FIG. 45A or block 8452. A user

45 can configure a charter to update the service directory 16
with all propagated services (i.e. in context of privileges),
such as:

Pruning SDRs will prune by current privileges in effect
and will prune SDRs originated by the same MS for the
same service so that only the most recent SDR using field
8500/ remains for redundancy or conflict (e.g. different
routes for same service from same MS with different last
used date/time stamps). An alternate embodiment imple
ments an asynchronous pruning thread (instead of a block 50

8536) to prevent impacting performance of request process-
ing.

FIG. SSC depicts a flowchart for describing an example
embodiment of MS application processing relevant for inter
facing to a propagated service. A MS application in use starts 55

at block 8546 and continues to block 8548 where a user uses

(_I_appfld.services !=NULL):
Invoke App updsvcd.exe (_I_msid, _I_appfld.services,

"ALL");
A user may configure charters to update the service directory
16 with certain propagated service(s) (i.e. in context of
privileges), such as:
(_I_appfld.services.#.handle="LBXsupervisory"):

Invoke App updsvcd.exe (_I_msid,
_I_appfld.services.#.handle,
"SPECIFIC");

NULL is a special keyword for indicating "not present" and
can be used on any section. The updsvcd.exe executable is

the application as is appropriate for the particular applica
tion. Block 8546 may involve many user interfaces, many
different kinds of processing, and may involve finally ter
minating the particular application. When a propagated
service is to be accessed by the application (e.g. block 8550),
block 8552 prepares appropriate service request parameters

60 passed appropriate parameters. An alternate embodiment of
FIG. SSE is a DLL interface wherein the DLL is already
loaded to MS processing memory for fast performance when
invoked by name from the charter (e.g. Invoke App updsvcd to FIG. 85B processing and block 8554 invokes FIG. 85B

processing for making the service request. Thereafter, pro
cessing continues to an applicable processing point within 65

the particular MS application at block 8548 for processing
return information from FIG. 85B.

(...)).
Service directory updater processing starts at block 8570

and continues to block 8572 which accesses parameters
passed. If the "ALL" parameter is passed, then all subordi-

Petitioners' Ex. 1001, Page 518 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
383

nate sections of appfld.services are processed so that all
WDR services being publicized can be used. If the "SPE
CIFIC" parameter is passed, then only the single propagated
service section being publicized can be used. A user may
specify multiple charters, each for specific services of inter- 5

est for propagated service requests. The entire WDR may be
passed for access using the special _I_ WDR parameter in
which case appropriate parsing would be performed on
sought WDR information.

Thereafter, block 8574 gets the next (or first) application 10

fields 1100k services section according to whether a single
section or multiple sections are to be processed, and block
8576 checks if they all have been processed (not at first
encounter to block 8576 from block 8570). If there is one to
process, then block 8578 gets the services section data fields 15

(e.g. at least fields for populating a SDR into the local
services directory 16 with fields 8500a, 8500c and 8500.1),
block 8580 accesses permissions data relevant for the sec
tion and originating MS identity, and block 8582 checks if
the MS of FIG. SSE processing is privileged for updating its 20

service directory 16 for making service requests using the
remote MS data received at block 8572. If block 8582
determines the MS of FIG. SSE is not privileged, then
processing continues back to block 8574 for any remaining
service sections for processing, otherwise block 8584 25

accesses the local service directory 16 for a matching SDR
by matching the service handle (e.g. name) and route
information (route received starts at MS identity being
received from). Thereafter, if block 8586 determines a match
was found (i.e. MS!; MS2; ... for a service matches a 30

received MS2; ... for the service), then block 8588 updates
the SDR route field 8500c (i.e. for MS!; MS2, ...) in
directory 16 with the section received (may be route infor
mation change), as well as any other fields received, before
continuing back to block 8574. If block 8586 determines a 35

match was not found, then block 8590 inserts a new SDR
into the local directory 16 for finding the service (i.e. with
route field 8500c of MS!; MS2, ...) with the section
received, as well as any other fields received before con
tinuing back to block 8574. Loop iterations of blocks 8574 40

through 8590 ensure services sections received in WDRs are
appropriately processed.

If all service sections have been processed as determined
by block 8576, then processing terminates at block 8592.
Appropriate semaphore control is used by FIG. SSE pro- 45

cessing for directory 16 processing.
Service propagation facilitates identifying peer MSs

which can help satisfy service requests made by a MSs that
does not have direct access to a needed service at the time
of making the request. Permissions help enforce what ser- 50

vice routing can be shared between MSs. For a basic
example, internet connected services are made available to
MSs which do not have direct access to the service by
routing through peer MSs which are in the vicinity. Routing
paths dynamically change as MSs are mobile, and a request 55

always leverages the best available path from any MS during
a pending request, and hops thereof. Services are made
"highly available". Some suggested services for service
propagation configuration include:

Supervisory service 1050 (e.g. 60

appfld.services.#.handle=LBXsupervisory) as dis
cussed above for common service informant code 28
processing among MSs. For example, the LBX archi
tecture supports peer to peer call processing which does
not require a "middleman" telephony service provider. 65

MSs communicate with each other in a peer to peer
manner. Consequently, service 1050 may be used for

384
reporting call processing usage information to a MS
manufacturer, MS software provider, etc so that peer to
peer call processing can be monitored and billed appro
priately;

Credit Card Transaction service (e.g.
appfld.services.#.handle=verifoneClearing) for auto
matic credit card transactions or validation of such
transactions processed by a MS, for example when
ordering from a vending machine within the vicinity of
the MS, processing or validating a purchase transaction
when within the vicinity of an automated teller (e.g.
StarBucks robotic coffee maker), processing or vali
dating a bank transaction, or any other debit or credit
card related automated service;

Call Processing service (e.g.
appfld. services.# .handle=callProcessor) for automati
cally placing a peer to peer phone call whereby a call
is placed through a request and response involving
multiple hops as described above. In some embodi
ments, SIP or H.323 ip phone call processing traffic is
routed through LBX propagated services. In an alter
nate embodiment, correlated requests and responses are
used to set up a communication path for call processing
much like a call processing SS7 STP (Signaling Trans
fer Point);

911 Emergency service (e.g.
appfld.services.#.handle=911) for handling a 911 emer
gency call that may only be reachable through service
propagation. For example, an injured skier's only
chance to reach a 911 service is through MSs which are
in the vicinity;

411 Directory service (e.g. appfld.services.#.handle=411)
for handling a 411 directory assistance call to find a
sought phone number;

Public Transportation service (e.g.
appfld.services.#.handle=publicXport) for providing
responses to MS user requests seeking a nearby taxi,
bus, other needed transportation, or information
thereof;

OnStar service (e.g. appfld.services.#.handle=OnStar) for
satisfying requests for needed OnStar services, for
example to ensure a person has access to OnStar in
times of need (e.g. to unlock automobile, alert OnStar
to a potential accident, theft, or other incident, etc);

NTP time service (e.g. appfld.services.#.handle=NTP) for
satisfying time synchronization requests in the LN
expanse to improve interoperability performance and
facilitating whereabouts determination; or

Gaming service (e.g.
appfld.services.#.handle=CallofDuty5) for satisfying
gaming interactions among MSs for ensuring "Call of
Duty" game interoperability availability. There may be
many other specific game service interfaces (specific
service handles (e.g. names)) for being supported
through propagated services.

FIG. 86A depicts a flowchart for describing a preferred
embodiment of processing for configuring the service infor
mant code 28. Block 1490 processing begins at block 8602
and continues to block 8604 for initializing variables for
subsequent processing, block 8606 for accessing an infor
mant map and building a workable copy used by FIG. 86A
processing, block 8608 for presenting a scrollable list of
current informant map entries, and then to block 8610 for
waiting for a user action in response to the list presented at
block 8608.

With reference now to FIG. 86C, depicted is a preferred
embodiment of a Service Informant Record (SIR) 8600 for

Petitioners' Ex. 1001, Page 519 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
385 386

actions detected at block 8610 and processing continues
back to block 8608, otherwise block 1490 processing appro
priately terminates at block 8638 (e.g. terminates user inter-
face).

FIG. 86B depicts a flowchart for describing a preferred
embodiment procedure to provide service informant code 28
processing. Service informant code 28 processing begins at
block 8650 when invoked by a calling thread (e.g. by block
296) with parameters of A) SIR handle; and B) list of
parameters, preferably contained in a parameter class object
(alternatively, a variable length list of parameters). While
service informant code 28 processing can be user configured
for desired functionality, parameters to FIG. 86B processing,
and order thereof, should be anticipated for FIG. 86B
processing in light of possible SIR configurations. An alter
nate embodiment expands SIRs to include additional param-
eter description information fields for which parameters, and
order thereof, to use out of all parameters passed to FIG. 86B
processing to accommodate SIR configuration changes for

discussing operations of the present disclosure. The infor
mant map is a collection of Service Informant Records
(SIRs) wherein each record contains three fields: a handle
field 8600a which is used by an invoker of service informant
code 28 to specify which SIR 8600 is being used; a method 5

field 8600b which contains a value for indicating: MS2MS,
PROPAGATED, HOMEGROWN, ALERT, or ATOMIC,
each of which are explained in detail with FIG. 86B; and a
reference field 8600c which is the reference to be invoked in
context of the method field 8600b, also explained in detail 10

with FIG. 86B. All values in fields 8600a are unique across
records to ensure a unique handle to a SIR. The purpose of
SIRs is to prevent re-building low level or middleware
executable LBX code (e.g. compiled and linked) when a
different method for performing service informant code 15

functionality is needed. A user updates the informant map
SIRs for desired functionality and invoking executable code
using FIG. 86B does not have to be rebuilt. SIRs externalize
and isolate variable service informant code 28 processing
behavior with convenient user configuration. 20 different service informant code 28 method processing.

With reference back to FIG. 86A, block 8610 continues to
block 8612 when a user action has been detected in response
to the list presented. If block 8612 determines the user
selected to test a SIR of the list presented at block 8608, then
the user interfaces at block 8614 for specifying parameters 25

for the reference field 8600c, and block 8616 invokes service
informant code 28 processing of FIG. 86B. Thereafter,
processing continues to block 8608. The user can check
results of having invoked service informant code 28. If block
8612 determines the user did not select to test a SIR, then 30

processing continues to block 8618. Depending on a par
ticular embodiment, the user of FIG. 86A may be an
authenticated/authorized administrator, or a MS user.

If block 8618 determines the user selected to browse
details of a selected SIR presented at block 8608, then the 35

details are presented to the user at block 8620, and the user
browses them until satisfied at block 8622. Thereafter,
processing continues to block 8608. Details presented at
block 8620 include data from related LBX history 30,
statistics 14, permissions 10, charters 12, and any other data 40

related to the SIR. If block 8618 determines the user did not
select to browse data for a selected SIR, then processing
continues to block 8624.

Other embodiments may expand SIRs for how to format
certain parameters for desired processing. Service informant
code 28 processing is capable of informing a data processing
system with MS2MS communications, invoking a propa
gated service, invoking a "homegrown" interface, providing
a MS local alert, or invoking an atomic command, wherein
each method depends on the SIR handle parameter passed to
FIG. 86B processing. In some embodiments, the informed
data processing system (e.g. supervisory service 1050)
includes at least one Database (e.g. via Database interface
(e.g. SQLNET) of service 1050 or service 1050 interface to
Database) to house data for many MSs in a LN-Expanse for
coordinated service processing. Regardless, the system con
tacted is any variety of a data processing system (including
another MS).

Block 8650 continues to block 8652 for getting the handle
field 8600a passed as a parameter, then to block 8654 for
using the handle to access the informant map for the
associated SIR, and then to block 8656. Block 8654 may
default the method, or cause an error to be handled at block
8686, if a SIR is not found for the handle.

If block 8656 determines the SIR (e.g. found at block
8654) indicates to perform MS2MS processing (i.e. indi
cated in SIR field 8600b), block 8658 uses the SIR (e.g. from If block 8624 determines the user selected to modify a

selected SIR presented at block 8608, then the SIR is
presented to the user at block 8626 in modifiable form, and
the user modifies the SIR until satisfied at block 8628.
Thereafter, processing continues to block 8608. SIR 8600
fields are presented at block 8626 for modification, and
block 8628 ensures any changes are valid. If block 8624
determines the user did not select to modify a selected SIR,
then processing continues to block 8630.

45 block 8654) reference field 8600c and parameter class object
to prepare parameters for MS2MS processing. The reference
may be used to indicate which command, or exactly what
type of processing to perform, in MS2MS processing being
requested (e.g. a command name). Thereafter, block 8660

50 invokes FIG. 75A processing already described above (see
FIGS. 75A and 75B), and processing continues to block
8688 which returns to the caller of FIG. 86B. If block 8656
determines a MS2MS method is not indicated in the SIR,
then processing continues to block 8662. Block 8660 should

If block 8630 determines the user selected to save the
working copy (e.g. memory kept only) of the informant map
(i.e. SIRs) for permanent subsequent use, then block 8632
writes the working copy to the informant map used by LBX
processing (kept in suitable MS storage), and processing
continues to block 8608. FIG. 86A supports making one or
more "in progress" changes to a temporary working copy
which may be saved at block 8632, or not saved when 60

terminating block 1490 processing at block 8638. If block
8630 determines the user did not select to save working copy
changes, then processing continues to block 8634. A work
ing copy minimizes a semaphore resource window when
updating.

If block 8634 determines the user did not select to exit
block 1490 processing, block 8636 handles any other user

55 perform appropriately well (i.e. prevent "loopback" at link
layer) when identifying the target MS as the same MS of
FIG. 86B processing.

If block 8662 determines the SIR indicates to invoke a
propagated service, block 8664 uses the SIR reference field
8600c and parameter class object to prepare parameters for
invoking the propagated service interface. The reference
may be used to indicate which named interface to invoke.
Thereafter, block 8666 requests the propagated service by
calling FIG. 85B already described above, and processing

65 continues to block 8688 which returns to the caller of FIG.
86B. Preferably, service informant code 28 processing is a
best attempt and any return code is not checked. Alterna-

Petitioners' Ex. 1001, Page 520 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
387 388

receiving data processing systems. In some embodiments,
privileges are enforced in FIG. 86B for certain target data
processing system informing (e.g. there is a block X-a for
accessing applicable privileges, block X-b for validating the

tively, a return code can be checked after performing any
informing method, and returned to the caller of FIG. 86B at
block 8688. If block 8662 determines a propagated service
(field 8600b=PROPAGATED) method is not indicated in the
SIR, then processing continues to block 8668.

If block 8668 determines the SIR indicates to invoke a
homegrown interface (field 8600b=HOMEGROWN)
method, block 8670 uses the SIR reference field 8600c and
parameter class object to prepare parameters for invoking
the interface. The SIR reference field 8600c may be used to
specify the first parameter to the homegrown interface.
Thereafter, block 8672 invokes the homegrown interface
(e.g. DLL), and processing continues to block 8688 which
returns to the caller of FIG. 86B. If block 8668 determines
a homegrown interface method is not indicated in the SIR,
then processing continues to block 8674.

5 applicable privileges, and block X-c for performing what is
already at block X wherein Xis 8658, 8664, 8670, 8676 and
8682; Each of blocks X-b continue directly to block 8688
when required privileges are not found, otherwise blocks
X-b continue to blocks X-c for continued processing as

10 shown).
In some embodiments, the service informant code 28 is

used to propagate services, for example to update service
directory 16 at a remote MS, or at an overall service
directory 16 for a LN-Expanse which is accessed remotely

If block 8674 determines the SIR indicates to notify the
local MS user (method field 8600b=ALERT), block 8676
prepares information to invoke a MS alert interface at the
MS, and uses the SIR reference field 8600c for the type of
alert (e.g. pop-up, log entry, title-bar informative mecha
nism, specific alert application, etc) and parameter class
object to prepare parameters (e.g. convert data to formatted
human readable string form), for alerting the user. Thereaf
ter, block 8678 invokes the specified alert interface, and
processing continues to block 8688 which returns to the
caller of FIG. 86B. If block 8674 determines an alert
interface method is not indicated in the SIR, then processing
continues to block 8680.

15 by MSs as needed for propagated service processing in the
LN-Expanse (e.g. block 8506 accesses remote overall ser
vice directory 16 database). Service informant processing of
FIG. 86B may be used by IbxPhone™ provider solution
processing (e.g. block 296, or any other processing point

20 disclosed), used by charters configured by a user (e.g. see
BNF grammar 3068b Invocation), or used by MS applica
tion providers. Different embodiments can expose SIR man
agement of FIG. 86A, informant processing of FIG. 86B,
and SIRs of FIG. 86C in various ways to various types of

25 users. Some uses of FIG. 86C include:

If block 8680 determines the SIR indicates to perform an 30

atomic command (method field 8600b=ATOMIC), block
8682 prepares parameters to invoke the atomic command,
and uses the SIR reference field 8600c for the atomic
command (i.e. name) and optionally the atomic operand, and
parameter class object to prepare parameters for the atomic 35

command and operand pair as already described in detail
above. Thereafter, block 8684 invokes FIG. 62 processing,
and processing continues to block 8688 which returns to the
caller of FIG. 86B. See details of atomic commands and
atomic operand for all the variations and type of informant 40

processing that can occur. If block 8680 determines an
atomic command method is not indicated in the SIR, then
processing continues to block 8686 where any unknown SIR
handle is appropriately dealt with (e.g. log error) before
returning to the caller at block 8688. 45

In alternate service informant embodiments, data which is
used to inform is analyzed to determine which is the best
method to use for informing, in which case block 8654 is
replaced with functionality for analyzing parameters passed.
In this embodiment, no informant map (i.e. no SIRs) is 50

required. Modified block 8654 would make a determination
what is the best method to perform informing based on data
used to inform with. In a related embodiment, expressions
having conditions may be configured for how to interpret
data passed as parameters for determining an appropriate 55

informing method. For example, expressions may be as
complex as an expression of charter BNF Granmiar 3068a
and 3068b. A True result of the expression is to cause certain
informing method(s) to be used as was directed by the
configuration. If expressions are supported, a generalized 60

expression interface may be used for synergy with expres
sions described above. In other embodiments, generic
expression interfaces are provided for consistent expression
specification and stack based expression evaluation, as
described above. 65

In some embodiments, a method for informing may be to
carry data in application fields 1100k for beaconing data to

Affecting Intersection Traffic Light switching-Applica
tion fields 1100k work well for beaconing WDRs to be
received not only by MSs in the vicinity, but also data
processing systems which can process specific appli
cation data of WDRs. For example, a data processing
system responsible for changing an intersection light
from red to green, and visa-versa, will analyze WDR
application fields 1100k for an applicable traffic appli
cation section (e.g. traffic section 8004a) for MSs in the
vicinity. As a number ofWDR emitting MSs are in the
vicinity of intersections, an intersection light manage-
ment data processing system uses the WDR informa
tion and directions, velocities, etc thereof, to make
good decisions for affecting light changing behavior. In
one preferred embodiment, an intersection light has a
normal and consistent schedule for when to change
light color for directions of traffic, and the intersection
management data processing system overrides the nor
mal schedule upon analyzing WDRs in the vicinity to
determine that a light change should occur, for
example, when there is a red light for a long line of
vehicles heading south and north at a four way inter
section, yet the light is currently green for no vehicles
heading east and west at that intersection. In another
embodiment, service informant processing is used to
keep the intersection management data processing sys-
tem informed for intelligent automated decision mak
ing, even when the informing MS is great distances
from the intersection.

Parking Lot Guidance-The service informant may be
used to inform a service that the MS desires to make
use of the service, for example to become informed of
available parking lot spaces. In one embodiment, a data
processing system responsible for helping "would-be
parkers" will analyze WDR application fields 1100k for
an applicable parking lot awareness application section
(e.g. parking lot awareness section 8004i) for MSs in
the vicinity of a particular parking lot. As a number of
WDR emitting MSs are in the vicinity of the parking
lot, a parking lot management data processing system
uses the WDR information and directions, velocities,
etc thereof, along with available parking lot spaces to

Petitioners' Ex. 1001, Page 521 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
389

provide the driver with useful guidance information in
order to find an available parking lot space. Maps,
audible directions, and other useful navigational infor
mation can be provided to the user automatically, or
according to user options. In another embodiment, 5

service informant processing is used to request parking
lot awareness information well in advance of being in
wireless vicinity of the parking lot for properly plan
ning ahead.

HotSpot Guidance-MSs which participate in high speed 10

communications with "hotspots" can keep track of
where the hotspots were located to remind the MS user
of where to find the hotspot again. The hotspot appli
cation field section 8002} is used for internet resource
binding between a MS and a hotspot service in the 15

vicinity of the MS. Further, the service informant may
be used to keep a master database automatically
updated so that other MSs are made aware of the
hotspot resources for their travels. The master database
should keep a record of successfully bound hotspot 20

uses that other users can be made aware of the same
resources when traveling nearby.

390
processing. SPUI rhymes with GUI, and for good reason. A
SPUI is a Graphical User Interface (GUI) which automati
cally appears on a MS without the user having manually
requested it to be started. A SPUI suddenly appears and is
used to interact with at least one device (another MS,
another data processing system, RFID device, etc) that is in
proximity to (i.e. in the vicinity of) the MS. Although not
named, a SPUI was previously disclosed, for example
resulting from a charter automatically launching an appli
cation (e.g. Invoke atomic command) based on the charter's
expression (e.g. being nearby another MS, or a data pro-
cessing system emulating MS functionality). Charters can
automatically start or terminate executable(s) (e.g. SPUI) by
invoking appropriate processing. Specific application fields
1100k presence and values can result in conditionally
spawning, or terminating, a SPUI.

SPUI processing begins at block 8700, and may begin as
the result of invocation by a privileged charter, privileged
passive or active RFID processing (e.g. 5300-CALL inter
face invocation) which automatically detected being in
range of a RFID device, manually requested by a user like
conventional application GUis, or the like as disclosed in
LBX processing. Processing continues to block 8702 where
the most recent SPUI application variables are accessed and

Carpool Collaboration-The service informant may be
used to automatically inform a carpool service with
scheduling, route, and travel consistency information.
In one embodiment, the carpool service supports user
registrations for soliciting others who travel similar
routes at similar times in order to identify possible
carpool arrangements. In another embodiment, the car
pool application section 8004e is used for interoperat
ing MSs in the vicinity of each other, in accordance
with permissions, to confirm that traveling carpool
service users are indeed in the vicinity of each other
during proposed carpool times. The service informant
is used to communicate intelligence findings to the
carpool service.

25 to block 8704 for checking if the SPUI application is already
running on the MS. If block 8704 determines the SPUI
application is not already running on the MS, then process
ing continues to block 8706 for presenting the SPUI to the
user, preferably using the most recently saved SPUI appli-

30 cation state variables from block 8702, and then to block
8708 where the user interfaces with the SPUI in context of
the particular SPUI application. The FIG. 87A flowchart
depicts processing of interest to SPUI processing during user
interface at block 8708. Of course, there can be many user

35 actions and processing that takes place at block 8708.

Mileage Reporting-The service informant is used to
automatically inform a mileage reporting service for
automatic accounting, for example to reimburse the MS
user (e.g. employee or contractor) for his travels. Many 40

companies reimburse their employees for work related
travels. This accounting is manual and burdensome for
employees when it comes time to do reporting. The
service informant can automatically report after a cer
tain number of miles, certain amount of time, or other 45

events, to the service for automated accounting and
reimbursement processing. In some embodiment, the
MS must be detected to be in close proximity of a
validated automobile data processing system in order to
account for mileage. In other embodiments, the MS is 50

mounted in the automobile.
Tracking-The service informant is used to automatically

inform a service in order to do tracking of the MS for
many different applications, and for many different
reasons. Useful observations and useful application 55

leveraging those observations can be made at the
service for novel services to a plurality of users using
the service. In one embodiment, the service uses track
ing information to predict future travels of the MS. In
another embodiment, the service uses tracking infor- 60

mation to govern, guide, or operate future travels of the
MS.

Sudden Proximal User Interface (SPUI)

FIG. 87A depicts a flowchart for describing a preferred
embodiment of Sudden Proximal User Interface (SPUI)

65

Processing of interest at block 8708 is first checked for at
block 8710.

If block 8710 determines that authentication is to be
performed to the remote data processing system (e.g. other
MS, MS emulator, RFI device, etc), then block 8712 pre
pares the authentication request using data specified in the
SPUI at block 8708 (e.g. password), block 8714 sends the
request to be received by the remote data processing system,
block 8716 waits for a response and processing does not
leave block 8716 for block 8718 until a response is received,
an error is received, or a timeout with no response being
received is detected. If block 8718 determines a correspond
ing non-error response (e.g. correlated) was received, then
block 8720 updates SPUI relevant data (e.g. any data
including local MS data, remote data, data for Service
Informant processing, etc) if applicable, block 8722 updates
the SPUI interface to reflect the response to the user, and
processing continues back to block 8708 for further user
interface to the SPUI. If block 8718 determines no response
was received within a reasonable timeout, or that an error
(correlated) was returned from the remote data processing
system, then block 8724 reports the error to the user (e.g. in
the SPUI) and processing continues back to block 8708.

There are various embodiments for authentication to the
remote data processing system which may be a passive RFI
device, an active RFI device, a MS, a MS emulator, or
another data processing system. Embodiments include:

See U.S. Pat. No. 5,912,959 ("Method of and system for
password protection in a telecommunications net
work", Johnson) wherein trailing digits are used for a
password to a numeric access interface (e.g. numbers
dialed). For example, as a MS comes within range of a

Petitioners' Ex. 1001, Page 522 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
391

vending machine, the SPUI gets automatically pre
sented, the user dials the advertised phone number
interface and uses the SPUI to make a purchase for
dispensing the product. Continuing with another
example, the MS comes within range of a personal 5

control center (e.g. outdoor lights at MS user's home),
the user dials the well known phone number interface
along with personally known trailing password digits
for authentication to then be able to interface through
the MS SPUI for controlling his personal home outdoor 10

lighting system. The outdoor lighting system interface
is embodied with a SPUI;

A password (may be encrypted when communicating) is
maintained by the remote data processing system for

15
being recognized from an authorized administrating
MS;

392
described. If block 8728 determines that no asynchronously
received data is to be processed, then processing continues
to block 8736.

If block 8736 determines the MS moved out of range of
the remote data processing system being interfaced with,
then block 8724 reports the error before continuing process
ing back at block 8708. In some embodiments, charter
processing causes the event of block 8736 subsequent pro
cessing. Moving out of range may automatically terminate
the SPUI application rather than providing an error in the
SPUI which remains rumiing. In some embodiments, the
timeout detected at block 8716 determines that the MS is out
of range. In some embodiments, there is no need for MS out
of range determination (e.g. explicitly depicted by block
8736) because every response by the remote data processing
system may be driven by a SPUI request. If block 8736
determines that the MS did not determine to be out of range,
then processing continues to block 8738.

If block 8738 determines that SPUI application variables

Use of probe data 5300-P, or a subset therein, at the
appropriate time (e.g. FIG. 87A processing) for authen
ticating to the device;

Use, at the appropriate time, of user entered authentica
tion criteria specified by a user of the SPUI;

Block 8710 and subsequent processing described above
for possibly re-authenticating at a much later time in
SPUI interface processing at block 8708 because RFID
processing already used probe data 5300-P to initiate
communications and authenticate to the remote data
processing system which is why processing began at
block 8700 anyway (i.e. already authenticated when
arriving to block 8700);

20 are to be saved (e.g. a user action to save), then block 8740
saves variables which can be used by the next processing at
block 8702 (e.g. take on characteristics of processing and/or
presentation desirable to prevent rework or redundant user
specification, incorporate past user habits, past user SPUI

25 orders, etc). Thereafter, processing continues to block 8708.
If block 8738 determines that no SPUI application variables
are to be saved, then processing continues to block 8742.

If block 8742 determines that the SPUI application is to
be exited (e.g. a user action to exit), then block 8744

No block 8710 and subsequent processing described
above because authentication was already granted by
virtue of having arrived to block 8700 for processing;

Charter, or atomic command, execution already passed
authentication criteria prior to invoking the SPUI; or

Another authentication processing embodiment in context

30 terminates the SPUI application appropriately (may save
variables like block 8740 thereby eliminating the require
ment for blocks 8738 and 8740 based on a user action), and
SPUI processing terminates at block 8746. If block 8742
determines the SPUI application is not to be exited, then

35 processing continues back to block 8708.

of the LBX architecture.
If block 8710 determines that authentication was not

requested by the user or SPUI application, then processing 40

continues to block 8726.
If block 8726 determines a request is to be sent to the

remote data processing system, then block 8712 prepares the
particular request (e.g. using data specified in the SPUI at
block 8708), block 8714 sends the request to be received by 45

the remote data processing system, block 8716 waits for a
response, and processing does not leave block 8716 for
block 8718 until a response is received or a timeout with no
response being received is detected. Processing continues
just as was described for an authentication request. If block 50

8726 determines that no request was to be sent, then
processing continues to block 8728.

If block 8728 determines that asynchronous data was
received for the SPUI application of FIG. 87A processing
(e.g. presumably from an applicable remote data processing 55

system), processing continues to block 8730. If block 8730
determines the data received was anticipated (e.g. using
correlation maintained from a prior send request), then block
8732 parses and analyzes the data received. Thereafter,
block 8718 determines if the data received was in error, or 60

if it is to be used for SPUI processing. Block 8718 and
subsequent processing is already described. If block 8730
determines the data received was not anticipated (e.g. no
correlation found), then block 8734 attempts to correlate the
data (e.g. to context of SPUI processing up to this point at 65

block 8708) to the SPUI of FIG. 87A processing before
continuing to block 8718 and subsequent processing already

Referring back to block 8704, if it is determined that the
SPUI application is already running in the MS, then block
8748 reports the SPUI is already active, and may surface the
SPUI in the MS user interface for notifying the user of its
presence. Thereafter, processing continues to block 8746
where processing terminates. In some SPUI embodiments,
there is no need to check at a block 8704 if the SPUI
application is already rumiing. For example, a MS may be in
proximity to a plurality of controllable remote data process
ing systems that use the same SPUI in which case multiple
instances of the SPUI are presented to the user for uniquely
controlling each system. One embodiment can have multiple
instances of the same SPUI launched for multiple remote
data processing systems, another embodiment can support
multiple remote data processing systems with a single SPUI,
and yet another embodiment enforces one SPUI instance at
a time for a single remote data processing system.

While blocks 8714 and 8716 are presented in a synchro
nous point of view by waiting for a response, the reader
should appreciate that the LBX architecture 1900 is a
preferred embodiment. As has been well described above for
threads of architecture 1900, the sending of requests, cor
relating the responses to those requests, and processing
responses, is most efficiently performed by multiple threads
executing concurrently. In the preferred embodiment of
architecture 1900, blocks 8716 through 8722 can be carried
out with receive thread processing after correlating a
response (if matched) with the request sent. This would be
a different asynchronous thread than the processing of block
8716, but would be as effective in producing the result.
Block 8716 would have to create an insert to a queue
correlation which can be used by the receive thread. The

Petitioners' Ex. 1001, Page 523 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
393

correlation must have enough information to uniquely dis
tinguish the response from other responses. Similarly, block
8728 depicts that the preferred asynchronous receive thread
design is accounted for in processing solicited and unsolic
ited responses from the remote data processing system, and 5

block 8736 processing may have been caused by an asyn
chronous processing thread which can affect SPUI applica
tion behavior. So, to not obfuscate the many thread relation
ships of a SPUI, FIG. 87A presents processing relevant to
SPUI application processing while reminding the reader the 10

context of architecture 1900 is a preferred embodiment.
Sudden Proximal User Interfaces (SPUis) are intended for

notifying a user with a GUI that a remote data processing
system of interest is nearby, or is within range. The user can
control SPUI invocation through charter and RFID configu- 15

ration as described above, however privileges on their own
merit could be deployed for the meaning of invoking a SPUI
when nearby an applicable remote data processing system.
The SPUI may contain all the things native to a GUI (e.g.
menus, options, icons, windows, etc) and may affect an 20

entire MS interface (e.g. desktop or main window back
ground or foreground, option or control layout, etc). The
SPUI may modify the look, feel, and/or options of the MS
user interface rather than invoke an application to the MS.
For example, as a user travels, SPUis present themselves to 25

the MS for use based on what is in the vicinity at the time.
The MS interface may be automatically reorganized to
reflect what is nearby at the time. The SPUI is the user's path
into an application that the user can interface to for driving
a remote data processing system. Regardless of how a SPUI 30

was invoked, there is a wealth of data accessible for pro
cessing such as WDR information of a WDR triggering a
SPUI, application variables and most recent WDR informa
tion of an AppTerm triggering a SPUI, callback function
processing for accessing AppTerm data and most recent 35

WDR information, any disclosed processing for access to
LBX History 30, statistics 14, or any other MS data herein
disclosed. A SPUI may be presented visually, with audio,
combinations thereof, or in any way that grabs the attention
of the MS user. Any data processing systems can be auto- 40

matically controlled, and user settings can be saved for
defaulting the next interaction. The user may configure
charters for automated processing, or may configure a SPUI

394
The application interface 87B-14 of environment 87B-1 is
integrated well into the application 87B-12, for example by
the builders (e.g. manufacturers, engineers, developers, etc)
of application 87B-12. In this embodiment, transponder
87B-16 was adapted to the environment 87B-1, for example
by a third party wherein transponder 87B-16 was developed
to middleman communications and control commands
between a MS (not shown) in the vicinity of transponder
87B-16 and the interface 87B-14 over at least one connec-
tion 87B-18. Connection(s) 87B-18 may be physical, wire
less, a plurality of different communication mediums, dif
ferent wave forms, or of embodiments discussed with FIG.
lE. Environment 87B-1 exemplifies that transponder 87B-
16 was provided as an add-on component to an existing
application interface 87B-14 for carrying out support for
automated control of application 87B-1 by an authorized MS
in the vicinity of transponder 87B-16.

A remote data processing system application environment
87B-2, or subset thereof, includes an application 87B-22,
some of which are discussed herein (e.g. SPUI examples
section below), and a transponder application interface 87B-
24. In this embodiment, a transponder application interface
87B-24 may include a RFID device for receiving and
sending information, another MS, a data processing system
providing a MS emulation, a data processing system pro
viding a RFID emulation, or a data processing system
specifically designed to interact with MSs for controlling
application 87B-22. In this embodiment, application 87B-22
may include a plurality of data processing systems, and will
provide a tightly coupled interface with transponder func
tionality (e.g. shared data processing system motherboard)
to a MS in the vicinity of interface 87B-24 for supporting the
controlling of the application 87B-22 (e.g. application
device(s), application appliance(s), application environment
data, application machine(s), application system(s), appli
cation data processing system(s), or the like). Interface
87B-24 of environment 87B-2 is integrated well into the
application 87B-22, for example by the builders (e.g. manu
facturers, engineers, developers, etc) of application 87B-22.
In this embodiment, interface 87B-24 already contained
transponder functionality that a MS can interact with
directly over at least one communications channel of the
MS. Environment 87B-2 exemplifies that the transponder
application interface 87B-24 was provided as part of the to present itself for subsequent processing (e.g. block 8708,

8712, 8730, etc). 45 application 87B-22 for carrying out support for automated
control of application 87B-22 by an authorized MS in the
vicinity of interface 87B-24.

FIG. 87B illustrates different embodiments for discussing
various data processing systems which can be automatically
controlled by a MS according to the present disclosure, for
example by: charter processing as a MS becomes nearby a
data processing system, through a SPUI, or through other 50

LBX processing. A remote data processing system applica
tion environment 87B-1, or subset thereof, includes an
application 87B-12, some of which are discussed herein
(e.g. SPUI examples section below), an application interface
87B-14, and a transponder 87B-16. In this embodiment, a 55

transponder 87B-16 may be a RFID device for receiving and
sending information, another MS, a data processing system
providing a MS emulation, a data processing system pro
viding a RFID emulation, or a data processing system
specifically designed to interact with MSs for controlling 60

application 87B-12. In this embodiment, application 87B-12
may include a plurality of data processing systems, and will
provide at least one application interface 87B-14 (e.g. API)
for supporting the controlling of the application 87B-12 (e.g.
application device(s), application appliance(s), application 65

environment data, application machine(s), application sys
tem(s), application data processing system(s), or the like).

A remote data processing system application environment
87B-3, or subset thereof, includes an application 87B-32,
some of which are discussed herein (e.g. SPUI examples
section below), and a transponder application interface 87B-
34. In this embodiment, a transponder application interface
87B-34 may include a RFID device for receiving and
sending information, another MS, a data processing system
providing a MS emulation, a data processing system pro
viding a RFID emulation, or a data processing system
specifically designed to interact with MSs for controlling
application 87B-32. In this embodiment, application 87B-32
may include a plurality of data processing systems, and will
support at least one control interface 87B-38 for the con
trolling of the application 87B-32 (e.g. application device(s),
application appliance(s), application environment data,
application machine(s), application system(s), application
data processing system(s), or the like). Control interface(s)
87B-38 may include software, hardware, machines, wires,
fiber, devices, or any combination of man-made apparatus in
order to control application 87B-32. Interface 87B-34 of

Petitioners' Ex. 1001, Page 524 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
395

environment 87B-3 was not integrated into the application
87B-32. In this embodiment, transponder application inter
face 87B-34 was adapted to the environment 87B-3, for
example by a third party wherein interface 87B-34 was
developed to middleman control between a MS (not shown) 5

in the vicinity of interface 87B-34. Control interface(s)
87B-38 were likely adapted (e.g. add-on) by a third party for
automated controlling of application 87B-32. Environment
87B-3 exemplifies that the transponder application interface
87B-34 was provided as an add-on component with add-on 10

control interface(s) 87B-38 for carrying out support for
automated control of application 87B-3 by an authorized MS
in the vicinity of interface 87B-34.

FIG. 87C depicts a flowchart for describing a remote data
processing system application environment covering an infi- 15

nite number of MS controllable applications. Processing is
presented in light of the many detailed applications which
are discussed herein (e.g. SPUI examples section below).

396
faces 70, or other embodiments discussed above for MS
communications, even during a single period of time
wherein the MS is in the vicinity for controlling the appli-
cation.

After parsing and interpreting MS data at block 8766,
processing continues to block 8768 to check what is neces
sary for further processing the MS data. If block 8768
determines the MS communicated for controlling a feature,
device, apparatus, machine, or some other aspect of the
application, then block 8770 appropriately invokes the
application interface for performing the requested function
ality. Processing continues to block 8762. If block 8762
determines no data (e.g. response) is to be communicated
back to the MS, then processing continues back to block
8752. If block 8762 determines that data should be sent back
to the MS, then block 8764 prepares a transmission, sends
the transmission, and processing continues to block 8752. If
block 8768 determines the MS did not communicate for

Those skilled in the particular application art will have controlling some application aspect, then processing contin-
enough information for implementation while preventing a 20 ues to block 8772.
tremendous number of written pages for unnecessary detail.
Processing begins at block 8750, and may begin as the result
of an application which is ready for interacting with a MS in
the vicinity. Thereafter, transponder functionality (i.e. MS
send/receive interfaces) waits for eligible MS data detected 25

in its vicinity at block 8752 either by waiting passively, or
actively seeking a MS (e.g. periodic polling). Eligibility may

If block 8772 determines the MS communicated for
initialization processing, then block 8774 performs initial
ization processing (may or may not invoke application
interface) and processing continues to block 8762. If block
8762 determines no data (e.g. response) is to be communi
cated back to the MS, then processing continues back to
block 8752. If block 8762 determines that data should be

be determined through participation on a monitored wave
spectrum, a special communications signature, anticipated
authentication criteria (e.g. field 5300-P data), or some other
MS communications data criteria. An eligible communica
tions from a MS in the vicinity cause processing to leave

sent back to the MS, then block 8764 prepares a transmis
sion, sends the transmission, and processing continues to

30 block 8752. If block 8772 determines the MS did not

block 8752 for block 8754.

communicate for initialization processing, then processing
continues to block 8776.

If block 8776 determines the MS communicated for
If block 8754 determines that authentication is to be

performed for the MS, then block 8756 performs authenti
cation and finalizes it if it was successful before continuing

accessing application data, then block 8778 interfaces to the
35 application for the sought data and processing continues to

block 8762 which was already described above. Data may be
sent back to the MS at block 8764. If block 8776 determines to block 8758, otherwise block 8754 continues to block

8758. Depending on the embodiment, finalizing at block
8756 may involve updating application data, accessing
application data, or modifying variable data for subsequent 40

processing.
If block 8758 determines the MS is not authorized, then

block 8760 handles the error, and block 8762 checks to see
if sending data back to the MS is warranted (e.g. error code).

the MS did not communicate for application data access,
then processing continues to block 8780.

If block 8780 determines the MS communicated for
setting application data, then block 8782 interfaces to the
application for the sought data and processing continues to
block 8762 which was already described above. If block
8772 determines the MS did not communicate for setting

If block 8762 determines no data (e.g. error information) is 45 application data, then processing continues to block 8784.
to be communicated back to the MS, then processing con
tinues back to block 8752. If block 8762 determines that data
(e.g. error) should be sent back to the MS, then block 8764
prepares a transmission, sends the transmission, and pro
cessing continues to block 8752. In some embodiments, 50

block 8760 logs an error, and may ignore the error so that no
response is sent back to the MS at block 8764. If block 8758
determines the MS is authorized, then processing continues
to block 8766 for processing MS data received.

Block 8766 processes data received from a MS in the 55

vicinity and determines what should be processed for the
data received. In some application embodiments, there is no
explicit authentication step, for example when all MS data
communications contain authentication criteria anyway as
processed at block 8766. If authentication was solely the 60

purpose of current FIG. 87C processing, processing leaves
block 8766 for block 8786 where authentication processing
may be completed for subsequent processing from the MS in
the vicinity. A MS will communicate to FIG. 87C process
ing, and FIG. 87C processing will communicate to a MS 65

over at least one supported wave spectrum, and may use
different wave spectrums, channels, communication inter-

If block 8784 determines the MS communicated data
which should cause an action at the MS (e.g. SPUI data
update), then processing continues to block 8764 which was
described above. If block 8784 determines the MS did not
communicate data resulting in an action to be performed at
the MS, then processing continues to block 8786. Block
8786 handles other processing determined to leave block
8766 and processing continues back to block 8752.

Blocks 8770, 8774, 8778, 8782, 8764 and 8786 may
include access: to a local or remote application database; to
a local or remote data processing system; to an interface to
the application through an API, script, command, or the like;
and/or to one or more MSs other than the one causing FIG.
87C processing (e.g. in the vicinity of the application). Also,
at any time during application processing (e.g. as the result
of processing subsequent to processing of blocks 8756,
8770, 8774, 8778, 8782, 8764 or 8786), the MS may be
communicated with in an asynchronous manner by the
application as is appropriate (e.g. update status in SPUI as
result of previous interactions). In some embodiments, data
at block 8766 may cause execution of any combination of
blocks 8770, 8774, 8778, 8782, 8764 and/or 8786.

Petitioners' Ex. 1001, Page 525 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
397

FIG. 87C preferably comprises a plurality of threads to
prevent missing any particular MS data which may be
communicated for processing, and for applications which
support a plurality of different MSs to communicate with.

SPUI Examples

As discussed, there are various methods for automated
trigger processing at a MS within context of the LBX
architecture. Typically, a SPUI is automatically presented at 10

the MS when the MS is in the vicinity of a nearby data
processing system (e.g. MS, an emulation of a MS, a RFID
device, or the like). The supported strength/range of com
munications (e.g. maximum range 1306) between the MS
and the nearby data processing system can be used to control 15

how close the MS must be to the data processing system in
order for the SPUI to present itself. For example, the user
enters the living room of his home, comes within range to a
RFID device associated to controlling living room window
blinds. Subsequently, charters at the user's MS automati- 20

cally execute to spawn an application for controlling the
window blinds in the living room (e.g. up, down, tilting to
desired angle, etc). In fact, each room of the MS user's home
may contain a window blinds associated RFID device which
supports a short wireless range so that the same blind 25

application can be used to control each unique blind appli
ance appropriately. In some embodiments, parameter(s)
passed contain unique RFID device information to the
charter action for automatically populating the SPUI cor
rectly for controlling the appropriate window blinds, or for 30

distinguishing between different blind systems. The user
may or may not spend time in the SPUI for controlling the
appropriate blinds. There are thousands of applications
wherein the MS becomes a powerful tool for the MS user's
every day life. While examples below are described in 35

context of processing of FIGS. 87A through 87C, it should
be appreciated that a SPUI may not be invoked at the MS.
For example, the MS may maintain user configurations so
that when the MS becomes within the vicinity of a nearby
data processing system, the configurations are automatically 40

used to control the appliance (e.g. window blinds) without
need for any user interface. Continuing with the window
blinds example, the user configures charters which indicate
that whenever the user is nearby the blinds (e.g. in the living
room) between the hours of 7:00 AM and 10:00 AM, the 45

window blinds are to be automatically tilted at 30 degrees to
allow appropriate outside daylight in. Parameters may be
passed to charter actions for variably affecting invoked
processing for a variety of reasons, and charter action
invocations maintain state data (e.g. blocks 8702 and 8740) 50

for preventing of redundantly invoking automated process
ing. Charters provide a very rich enablement for automatic
processing, with or without subsequent user interface as
desired by the user. Below are some examples for automated
control, with or without SPUI processing. Those skilled in 55

the relevant arts know how to couple/interface/integrate data
processing systems to the examples below in context of
embodiments of FIGS. 87A through 87C for appropriate
control of each of the examples, as driven by processing of
a nearby MS which communicates with them. No service is 60

required. All interactions can be performed in a peer to peer
manner. Application examples:

1) Appliances and controllable fixtures-Window blinds,
washers, dryers, dish washers, ovens, plumbing fix
tures, televisions, stereos/radios, media players (e.g. 65

DVD), lighting fixtures, fan fixtures, or any other
household appliance or operable fixture;

398
2) Automobiles-Any controllable interface to an auto

mobile (car, truck, bus, place, etc);
3) Vending machines-A nearby vending machine can be

interfaced to for product selection and payment. In one
embodiment, a SPUI uses U.S. Pat. No. 6,615,213
("System and method for communicating data from a
client data processing system user to a remote data
processing system", Johnson (e.g. blocks 8708, 8712)).
The MS may communicate with a remote service
through the application for credit or debit card process
ing in order to accomplish the purchase. Alternatively,
the LBX Informant may be used. Further still, earned
points from credit card purchases may be automatically
used to accomplish the purchase with little user inter
action, and an authenticated MS in the vicinity of an
ATM can be credited with points to be used to purchase
certain goods or services;

4) Retail Automated Menu Interfaces-As a MS user
enters a retail establishment (e.g. restaurant, product
store, retail store, grocery store etc), data for previous
interactions with the retail store is accessed (e.g. block
8702) and the SPUI automatically notifies the user with
most recent menu or order information for convenient
reorder by minimizing human interaction to accom
plish processing. In one example, the MS user enters a
certain Starbucks in the morning (Starbucks is a trade
mark of the Starbucks Corporation). Block 8702
accesses previous order information (perhaps selects
the most frequently made order by the user at that
Starbucks), automatically populates a SPUI with the
order information at block 8706, and the user performs
minimum actions to order the usual coffee product at
block 8708. In some embodiments, a charter may
automatically order the coffee when the user drives into
the parking lot so it is ready when the user enters the
store, and a charter can provide automatic payment
either by: a confirmed user action, as the user leaves the
store, etc. In some embodiments, previous order infor
mation is maintained at the Starbucks application and is
returned to the MS at block 8764. Any retail establish
ment can participate with a LBX enabled MS provided
appropriate authentication and automated processing is
supported for nearby MSs. In another example, a
grocery store is entered by the user wherein the MS
displays previous shopping list choices (for previous
purchases) and then provides the most efficient route
for getting the desired items from the selected list,
Further still, coupons available for store shopping or
for certain items in the user's products of interest are
automatically presented in the SPUI for optional use;

5) Parking Lot Guidance-As a MS user enters a parking
lot, a SPUI is presented at the MS for indicating where
the closest parking spots are, whether it is a small spot
or large spot, etc; For example, the application returns
informative data at block 8764;

6) Group Awareness-An application (e.g. recipients of
an email, attendees of a pending meeting appointment,
etc) applicable to a group of nearby MS users can be
invoked, for example as configured by a charter. For
example, proposed attendees of a forthcoming meeting
are automatically detected to be nearby. The MS
accesses relevant App Term data for nearby processing.
Consequently, a SPUI notifies the MS user that all
parties to the forthcoming meeting are in the same
business establishment (i.e. are within a close distance).
The MS user can then seek the other MS users, hold the

Petitioners' Ex. 1001, Page 526 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
399

meeting now when it convenient for everyone, and then
be able to free up that reserved time scheduled in the
future;

7) Emergencies-The MS automatically notifies its user
of an emergency situation (see emergency section of 5

field application fields 100k). For example, a SPUI
presents itself to notify the user that an emergency
vehicle is approaching. Charters may be configured to
automatically navigate an automobile using processing
of FIGS. 87A through 87C in a charter's automated 10

response to the emergency data received;
8) Traffic Control-a MS approaches an intersection (e.g.

in a vehicle or on the person of a pedestrian, bicycler,
etc), and interfaces to the traffic light application as
does many other MSs. The traffic light application can 15

use the locations, speeds, directions and other circum
stances of MSs in the vicinity to variably control when
the light(s) is to change, for how long to keep light(s)
or directional indication settings, and the like. Emer
gency data may also be received by the traffic control 20

application and processed accordingly (e.g. automati
cally change light for quick passing through by emer
gency vehicles). WDRs of MSs in the vicinity of each
other traveling at high speeds can help indicate a
forthcoming accident for appropriate MS automated 25

processing (e.g. warning, automated vehicle control,
etc);

9) Attendance Monitoring--Company employees carry
their MS for automatically clocking in and out of their
place of employment. Employees who forget their MS 30

will not be able to enter or leave without performing a
clock operation manually. Similarly, people automati
cally have their attendance registered when attending a
school, event, meeting, appointment, or the like;

10) Public transportation-A MS user approaches a taxi 35

or bus stand at an airport. The public transportation
application notifies the best candidate for providing
service to the MS user, and the public transportation
notifies the MS user with a SPUI of what to anticipate
for getting service. Similarly, a MS user approaches a 40

ticket counter for automated authentication and print
ing out of an appropriate boarding pass;

400
to request interface to the application. Outbound trans
missions are typically a reasonable subset of the WDR
for embodying the best interface to the application;

User requests to identify (beacon) a MS in the vicinity;
User wants to find out who is nearby;
User want to assist other MSs in the vicinity;
User wants to share location information with a data

processing system (e.g. application of FIGS. 87A
through 87C) in the vicinity so it can use the location
information to provide functionality to the user; and/or

User wants to notify a remote data processing system with
WDR information.

In one embodiment, block 1496 may be modified to include
new blocks 1496}, 1496k, and 1496c such that:

Block 1496} checks to see if the user selected to request
a transmission-an option for configuration at block
1406 wherein the user action to configure it is detected
at block 1408;

Block 1496k is processed if block 1496} determines the
user did select to make a transmission. Block 1496k
invokes FIG. SSA for interfacing with the user accord
ingly, and processing then continues to block 1496c.

Block 1496c is processed if block 1496} determines the
user did not select to make a transmission, or as the
result of processing leaving block 1496k. Block 1496c
handles other user interface actions leaving block 1408
(e.g. becomes the "catch all" as currently shown in
block 1496 of FIG. 14B).

Processing begins at block 8800, and continues to block
8802 where the user is prompted for the type of transmission
being requested. When a response is detected at block 8802,
block 8804 checks if the user specified to transmit WDR
information. If block 8804 determines the user wants to
transmit WDR information, then processing continues to
block 8806, otherwise processing continues to block 8826.

Block 8806 prompts the user for whether or not to modify:
a) WDR data to be transmitted outbound for only the WDR
of current FIG. SSA processing; orb) search criteria to use
at block 8812. Thereafter, if block 8808 determines the user
does want to modify WDR data to be sent at block 8820 or
search criteria to be used at block 8812, then the user
interfaces at block 8810 for directing which WDR data to
add, remove, or modify in the WDR and/or which search
criteria to modify. Processing does not leave block 8810 for
block 8812 until the user is satisfied with modifications. The
modifications requested are also validated at block 8810. If
block 8808 determines the user did not want to perform any
modification, then processing continues directly to block
8812.

11) Utility Meter Reading-The MS is used to automati
cally access information from a utility meter (e.g.
water, electric, gas) for proper customer account man- 45

agement when the authenticated MS is in the vicinity of
the meter. The service informant can then be used
periodically to keep a master database updated for data
backup, centralized account management, or other ser
vices; 50 By default (i.e. user did not specify search criteria modi-

12) Nearby Information System Support-The MS is
used to provide location information to the application
in the vicinity so the application can in turn use the
information to be more informative to the user, a
service, or for providing the user with functionality not
provided by the MS.

FIG. SSA depicts a flowchart for describing a preferred
embodiment of manually transmitting WDR information: a
WDR, subset of a WDR, WDR request, or a customized
outbound transmission. A user may want to manually trans
mit WDR information for a number of reasons including:

MS may be configured for not communicating outbound
WDRs;

MS interval for transmission (e.g. SPTP) may not be sent
as timely as needed for desired processing;

In reference to an application in the vicinity such as those
discussed in FIGS. 87A through 87C, a user may want

fications), block 8812 peeks the WDR queue 22 (using
interface like 1904) for the most recent highest confidence
entry for this MS whereabouts by searching queue 22 for:
the MS ID field 1100a matching the MS ID of FIG. SSA

55 processing, and a confidence field 1100d greater than or
equal to the confidence floor value, and a most recent
date/time stamp field 1100b within a prescribed trailing
period of time (e.g. preferably less than or equal to 2
seconds). For example, block 8812 peeks the queue (i.e.

60 makes a copy for use if an entry found for subsequent
processing, but does not remove the entry from queue) for
a WDR of this MS (i.e. MS of FIG. SSA processing) which
has the greatest confidence over 75 and has been most
recently inserted to queue 22 in the last 2 seconds. Optional

65 blocks 278 through 284 may have been incorporated to FIG.
2F for movement tolerance, in which case the default search
trailing period used by block 8812 may be appropriately

Petitioners' Ex. 1001, Page 527 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
401

adjusted. User search criteria modifications made at block
8810 will be used by block 8812 to override search defaults,
for example to solve the problem of a previous use of FIG.
88Anot finding a WDR (e.g. to modify trailing time period
for search). In some embodiments, block 8812 supports 5

searching LBX history for WDR information when the
search criteria is better suited for history information.

Thereafter, if block 8814 determines a useful WDR was
found, then block 8816 prepares the WDR for send process
ing, block 8818 modifies the WDR if modifications were 10

requested at block 8810, and block 8820 broadcasts the
WDR information (using send interface like 1906) by insert
ing to queue 24 so that send processing broadcasts data 1302
(e.g. on all available communications interface(s) 70), for
example as far as radius 1306, and processing appropriately 15

terminates at block 8822. The broadcast is for reception by
data processing systems in the vicinity. In some preferred
embodiments, o WITS processing is performed prior to
block 8818 (e.g. a block 8817 between blocks 8816 and
8818) or after block 8818 (e.g. a block 8819 between blocks 20

8818 and 8820). o WITS processing of blocks 2015 and 2515
would occur at the additional block as is appropriate for the
embodiment.

402
inserts the record 2450 to queue 1990 (using interface like
1928), and block 8834 broadcasts the WDR request (record
2490) for responses, and processing appropriately termi
nates at block 8822. Absence of field 2490d indicates to send
processing feeding from queue 24 to broadcast on all
available comm. interfaces 70. The user may have specified
a specific charmel at block 8802 when selecting to send a
request, in which case the specified charmel is set in field
2490d. An alternate embodiment to WDR request process-
ing may not insert correlation for making TDOA measure
ments. If block 8826 determines that the user did not select
to perform a WDR request, then processing continues to
block 8836 for performing a custom transmission.

Block 8836 interfaces with the user for preparing data to
be transmitted. Block 8836 does not continue to block 8836
until it is validated. If block 8838 determines the user
specified to target the request, block 8842 sends the request
and processing continues to block 8822, otherwise block
8840 broadcasts the request and processing continues to
block 8822.

In an alternate embodiment, processing paths of block
8806 through 8824, blocks 8828 through 8834. and block
8836 through 8842 are invoked in separate user interfaces
thereby eliminating the need for blocks 8802, 8804 and To prevent broadcasting the WDR on all communications

interfaces of the MS, the user can specify one or more
application fields appfld.rfid.seek.#.channel to override for
selecting only certain charmels to broadcast the WDR on.
The user must have knowledge of which charmels have been
administrated. Although this application fields 11 OOk section

25 8826.

is intended for RFID applications, the MS send capabilities 30

does not distinguish between RFID and non-RFID. A com
munications interface used by threads feeding off the send
queue may be available regardless of its targeted type of data
processing system. This is an advantage of the MS disclosed.
Multiple transmission charmels are useable by FIG. SSA 35

processing. As discussed with FIG. 20 above, there is means
for communicating the charmel for broadcast to send pro
cessing when interfacing to queue 24 (e.g. set channel
qualifier field with WDR inserted to queue 24 to
appfld.rfid.seek.#.charmel). In one embodiment, send pro- 40

cessing accesses appfld.rfid.seek.#.channel information. In
another embodiment, block 8820 loops on one or more
appfld.rfid.seek.#.charmel specifications to send the broad
cast over each charmel requested. In another embodiment,
send processing loops on one or more channel specifications 45

to send the broadcast over each channel requested.
Block 8810 supports the user modifying any data of a

WDR. Typically, application fields are modified for interface
to an application in the vicinity, but any WDR field can be
added, removed, or changed as desired. This allows the user 50

to transmit any data he wants, although a starting point is
with a WDR. The user can specify at block 8802 which
channel(s) and/or interfaces 70 to send/broadcast on.

Referring back to block 8814, if a WDR was not found,
block 8824 presents a not found error to the user and 55

preferably waits for the user to acknowledge the error before
continuing to block 8822 for appropriate FIG. SSA termi
nation. The user may then use FIG. SSA processing again
with new search criteria.

Referring back to block 8826, if it is determined that the 60

user selected to perform a WDR request, then block 8828
builds a WDR request (e.g. containing record 2490 with field
2490a for the MS of FIG. SSA processing (MS ID or pseudo
MS ID) so receiving MSs in the LN-expanse know who to
respond to, and field 2490b with appropriate correlation for 65

response), block 8830 builds a record 2450 (using correla
tion generated for the request at block 8828), block 8832

A user may send out an emergency transmission using
appfld.emergency sections described above (e.g. "Person
Needs Help"). Only authorized data processing systems can
transmit non-personal emergency transmissions (e.g. "Fire",
"Police", "Ambulance", "Amber", "Person Needs Help",
"Construction Caution", "Traffic Caution", "Terror Alert").
This is preferably enforced in a MS at MS manufacturing
time, or presale configuration time, to provide public service
officials with functionality unavailable to common MS
users.

When a user requests to identify a MS in the vicinity
through a beacon, fields 1100k may contain appfld.loc.bea
con.expr set with an expression to be evaluated at the
receiving MS. A receiving MS which has granted the privi
lege of being identified to the MS of FIG. SSA processing
shall identify itself so that the user of the MS of FIG. SSA
processing will know where it is. Privileges are also granted
for which conditions and terms may be specified. In a
preferred embodiment, FIG. 60 processing at the MS for a
beacon privilege with presence of appfld.loc.beacon.expr
and applicable expression privileges will perform the beacon
at the MS. Block 6020 performs the action of beaconing
after using expression evaluation processing already dis
closed. Beaconing includes embodiments of:

An audible sound that can be heard by the user of the
requesting MS;

A visible indication that can be seen by the user of the
requesting MS;

Sending data back to the requesting MS as a message,
email, or data packet which results in indication with an
audible and/or visual presentation with or without
another user interface action by the requesting MS user;
and/or

Any combination of above methods.
In another embodiment, charters are configured for handling
the inbound WDR having appfld.loc.beacon.expr data so
that any desired processing can be executed. The charter
may have been created by either the requesting MS user, or
receiving MS user, and proper charter privileges must be in
place.

In some embodiments, processing of FIG. SSA may be
invoked by MS processing automatically, and perhaps from

Petitioners' Ex. 1001, Page 528 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
403

configured charters for action processing. For example,
DCDB content may be sent in application fields 1100k as
part a WDR rather than as an email, SMS message, or other
method (e.g. using an atomic command).

FIG. 88B depicts a flowchart for describing a preferred 5

embodiment of MS task monitor processing. The task moni-
tor provides the user with information about tasks running
on the MS LBX operating system. Information for all MS
LBX threads is displayed for the user to interpret what is
happening at the time. Preferably, there is user interpretable 10

information describing the process and thread for easy
comprehension. Each process should have a name, and each
thread should also have a name prefixed by the process name
it belongs to. In operating systems wherein any thread can

15
contain children threads, a name hierarchy is displayed from
the process name, all the way down to the most descending
child thread. Furthermore, specific milestones in processing
within a thread can be treated as a qualified processing point
reached (e.g. trace information) for being a valid child event 20

in a thread, or a child event of another child event in a thread.
Thus, the task monitor is a processing trace monitor.

In a preferred embodiment, processing descriptions (e.g.

404
Block 1496c is processed if block 14961 determines the

user did not select to configure task monitor enable/
disable, or as the result of processing leaving block
1496m. Block 1496c handles other user interface
actions leaving block 1408 (e.g. becomes the "catch
all" as currently shown in block 1496 of FIG. 14B).

Similarly, block 1496 may be modified to include new
blocks 1496n, 14960, and 1496c such that:

Block 1496n checks to see if the user selected to work
with task monitor information-an option for configu
ration at block 1406 wherein the user action to config
ure it is detected at block 1408;

Block 14960 is processed if block 1496n determines the
user did select to work with task monitor information.
Block 14960 invokes FIG. 88B for interfacing with the
user accordingly, and processing then continues to
block 1496c.

Block 1496c is processed if block 1496n determines the
user did not select to work with task information, or as
the result of processing leaving block 14960. Block
1496c handles other user interface actions leaving
block 1408 (e.g. becomes the "catch all" as currently
shown in block 1496 of FIG. 14B).

25 Of course, block 1496c may become the catch all for any
combination of processing embodiments described for
blocks 1496a/1496b, 1496d/1496e, 1496j71496g, 1496h/
1496i, l496j/l496k, 14961/1496m, 1496n/1496o and/or any
other additional options presented at block 1406 with action

at least a name) are 64 character strings and may contain
blanks, however more or less characters may be imple
mented. In an embodiment which simplifies access to infor
mation at block 8878, a single statistic (e.g. \st_osactive)
maintains a list of all task monitor information. When a
thread starts executing or logs a processing milestone, it uses
the statistics logger (e.g. FIG. 83B) to append to the string.
When a thread completes executing or completes a logged
processing milestone, it uses the statistics logger (e.g. FIG.
83B) to remove the entry from the string. Because each MS
thread is "trusted" to maintain its own status, threads may
also maintain milestone trace information to \st_osactive for 35

logging certain milestones in processing, rather than only a
thread start and end processing entry. However, it is impor
tant that each thread remove what it has appended at an
appropriate time. The \st_osactive embodiment is somewhat
like a stack wherein current processing is reflected in the 40

depth of the stack and the stack grows with a new entry and
shrinks with a removed entry. A delimiter (e.g. A) separates
individual entries.

In a well performing embodiment, multiple reference-able
named statistics are used which are maintained by associated
threads. Setting a particular statistic involves setting or
clearing a bit, byte, or other binary data representation (no
strings) for maximum performance. Multiple statistics are
gathered at block 8878 and presented at block 8864.

In any embodiment, maintaining of task monitor infor
mation impacts MS thread performance, and therefore
should be a feature turned on or off, preferably off (disabled)
for customers with the ability to be turned on (enabled)
by/for MS support (e.g. engineers, developers, customer
service, etc). A request to use the task monitor may be
validated (e.g. administrator authentication). In one embodi
ment, block 1496 may be modified to include new blocks
14961, 1496m, and 1496c such that:

Block 14961 checks to see if the user selected to configure
enablement or disablement of task monitoring-an
option for configuration at block 1406 wherein the user
action to configure it is detected at block 1408;

Block 1496m is processed if block 14961 determines the
user did select to enabled/disable. Block 1496m inter-

30 detection at block 1408.
In the single statistics variable embodiment to facilitate

discussion, an entry such as "WDR Collection 54; WDR
Handler TID 3 (Tim,02/12/2009: 170711)" provides an infor
mative indication a WDR from MS ID Tim received at 11
seconds after 5:07 PM on Feb. 12, 2009 is being processed
by Thread #3 of process 1912 which has a PID of 54. Any
information can be placed into \st_osactive, but it must be
removed as soon as that information is not relevant in
processing. Nevertheless, the statistics logger can move the
information to history so there is always a record. For every
entry added by processing, that entry should be followed by
being removed at some future time relevant in context of
particular processing.

Task monitor processing starts at block 8850, and con-
45 tinues to block 8852 where the user is prompted for search

criteria desired to find task information. Thereafter, the user
specifies validated search criteria or exits processing, and
block 8856 checks the type of search criteria specified. The
user can search for any subset of task information specifying

50 date/time window(s), sought processing information, envi
ronment conditions, or any other criteria for finding a subset
of task information.

If block 8856 determines the user specified to search for
past task information, block 8858 accesses LBX history

55 information 30 and/or statistics information 14 (depends on
embodiment) for historical task information and block 8860
checks if any was found.

If block 8860 determines no task information was found,
block 8862 provides a not found error to the user and

60 processing continues back to block 8852 for subsequent
specifying of new criteria. If block 8860 determines task
information was found, block 8864 presents the information
in list form (i.e. scrollable if necessary), and the user

faces with the user for enabling/disabling maintaining 65

of task information, and processing then continues to
block 1496c.

interfaces with (e.g. browses) the information at block 8866.
Block 8866 also waits until the user has performed an action
to continue other processing. Thereafter, if block 8868
determines the user selected to make a charter, processing

Petitioners' Ex. 1001, Page 529 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
405

continues to block 8884 discussed below, otherwise pro
cessing continues to block 8870.

If block 8870 determines the user selected to exit working
with the list at block 8866, then processing continues to
block 8886 where the task monitor interface is appropriately 5

terminated and to block 8888 where FIG. 88B processing
terminates. If block 8870 determines the user did not select
to exit working with the list at block 8866, then processing
continues to block 8872.

If block 8872 determines the user selected to specify new
task monitor search criteria, then processing continues back

10

406
processing. For example, a charter for handling a lost phone
can be embodied in a single user selected option (e.g. enable
a privilege) in a MS user interface thereby relieving the user
of configuring the charter specifics. The user relies on a
single reference-able unit of processing to carry our func
tionality. Instead of configuring a charter, the user enables
lost phone functionality at the MS. Thus, charter explana
tions are to be considered in the many embodiments that can
accomplish the same functionality.

Automatic Communications Processing

>> Automatic MS Loss Detection and Processing

to block 8852, otherwise processing continues to block 8874
where any other user action leaving block 8866 is appro
priately handled. Block 8874 then continues back to block
8866.

Referring back to block 8876, if the search is for current
task information, then block 8878 accesses statistics 14 (e.g.
\st_osactive) and continues to block 8860 for subsequent
processing described above, otherwise processing continues
to block 8880. If block 8880 determines the user selected to
set task charter(s), then processing continues to block 8882,
otherwise processing continues to block 8886 already
described above (e.g. for when user selected to exit block
8854.).

15
A MS can be configured to automatically perform pro

cessing (e.g. call a phone number with a message) when it
undergoes a period of inactivity at the same location. In one
embodiment, an AppTerm variable named SYS_lastAc
tionDT contains a date/time stamp of the last time an action

20 was performed by the user at the MS via any of the input
peripheral interface(s) 66. The application associated to the
SYS prefix is preferably predefined at the MS (e.g. popu
lated in PRR 5300 from the MS factory) and contains a
plurality of overall MS App Terms applicable to the MS, for

25 example at the system level described by FIG. lD. Every
peripheral interface 66 updates the SYS_lastActionDT date/
time stamp upon input processing. FIG. 55B is used by
peripheral input threads to update the AppTerm wherein

Block 8882 creates proposed charters from user search
specifications made at block 8854. The user is able to specify
searching for task information which may occur in the
future, for example a certain string or plurality of strings in
\st_osactive during certain times, or along with other special
term (e.g. atomic term, AppTerm, WDRTerm) settings. 30

Thereafter, any charters automatically determined and cre
ated for the user's search specifications are presented to the
user in list form at block 8864. The user may further "tweak"
(edit) at block 8866 the charters which were created at block
8882. When leaving block 8866, if it is determined that the
user selected to activate the charters, then block 8884 creates
enabled charters for the local MS and processing continues
back to block 8852. Charters resulting from block 8884 can
be managed as any other charters (e.g. FIGS. 45A, 45B,
46A, 46B, 47A, 47B, 48A and 48B).

each input peripheral action results in FIG. 89A processing.
With reference now to FIG. 89A, depicted is a flowchart

for describing a preferred embodiment of updating a MS
global variable (AppTerm SYS_lastActionDT) for the last
time a MS input peripheral was acted upon by a MS user.
Block 8902 begins thread processing of interest upon rec-

35 ognizing a MS input peripheral action by the MS user.
Thereafter, block 8904 accesses the MS date/time informa
tion, block 8906 requests exclusivity to the appropriate
semaphore resource for modifying the SYS_lastActionDT
variable, and continues to block 8908 when that semaphore

40 request succeeds. Thereafter, SYS_lastActionDT is updated
at block 8908 with the current date/time information from
block 8904, block 8910 releases the semaphore lock
resource, block 8912 processes the input in the appropriate
manner (e.g. passes to MS user interface processor), and

Data processing systems can be strategically located for
MSs. For example, as MSs become in the vicinity of a
strategically located data processing system, the data pro
cessing system enables, disables, modifies, behaves for, or
causes specific processing based on the number of MSs, the
number of types of MSs, the number of MSs producing
WDR information containing certain data, etc within the
vicinity of the strategically located data processing system.
The strategically located data processing system processes
inbound WDRs analogously as disclosed for iWITS pro
cessing so that desired processing is performed based on
MSs in the vicinity. The strategically located data processing
system may cause playing certain "in-store" music based on
MSs in the vicinity (e.g. based on the current shopper
audience), or cause display of certain advertising based on 55

MSs in the vicinity, or perform other processing based on
WDR information received from MSs in the vicinity.

45 processing terminates at block 8914. Thus, a lost phone can
automatically make a phone call (e.g. MS user's home
phone), and even leave an automated message through an
appropriate interface. Continuing with the example
described above, the following charter configuration may be

50 made:
(\timestamp>=SYS_lastActionDT +4H):

Send Email ("Phone 1s lonely\n and at location:" &&
\loc_my,
\appfld.source.id, "COME GET ME",

williamjj@yahoo.com);
This configuration causes an email to be sent which

contains the MS location (default formatted for output in the
email (other embodiments support directing the format of
the output)) when the MS has not had a single user input Various Applications

Alternate embodiments of this disclosure may choose
specific implementations accomplishing identical novel
functionality. End results of certain charter processing may
become popular or prevalent in which case a self contained
processing of the end results are incorporated for being
privileged or unprivileged as a whole unit of processing not
requiring the LBX charter processing platform to carry out

60 action for 4 hours or more. The problem with this configu
ration is any triggers which cause execution of the charter
shall continue to send multiple emails until a user action
causes the condition to be false. The following configuration
ensures only a single email is sent for each lengthy time

65 period (e.g. 4 hours) without a user action:
(\timestamp>=SYS_lastActionDT +4H)&

(MS_LONELY=0):

Petitioners' Ex. 1001, Page 530 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
407

Send Email ("Phone is lonely\n and at location:" &&
\loc_my,
\appfld.source.id,

willj@yahoo.com);
"COME GET ME",

408
Grantor information, and are used when managing specific
privilege or grant configurations that exist (e.g. record(s)
3500), or new configurations to be created (e.g. new records
3500). For example, a privilege or grant can be granted or

Invoke Data (MS_LONELY, 1, \thisMS); 5 un-granted between identifiers.
Invoke App ("c:\charters\selfmod\privchg.exe ADD

PRIV 0xAB3E INIT Ox0000 NULL NULL NULL");
Here the same privilege code is being added back to the

MS of the charter configuration, so that subsequent configu-

Provided the MS_LONELY variable was initialized to 0,
only a single email is sent when the MS has not been used
for at least 4 hours. The user can subsequently modify the
variable back to 0 after retrieving the MS, either by direct
access to the variable, through a charter, through modifying
a privilege (e.g. Enable lonely MS detection), or using
another suitable manner. Notice the Invoke Data interface is
used for updating a variable. Some embodiments support
directly modifying variables which are resolvable in context
of charter processing.

10 rations can be made again. The "INIT" parameter specifies
to initialize the privilege for use (e.g. insert back to FIG.
35D), and the Ox00 parameter initializes MS Relevance to
all zeroes. Privilege codes are typically listed in a reference
manual in hexadecimal form, but hexadecimal is not

Self modifying charters may also be supported wherein a
charter can be written to change the charters themselves. For
example, continuing with our example, the charter may be
configured for deleting itself once it has executed:
(\timestamp>=SYS_lastActionDT +4H):

15 required. The leading "Ox" tells privchg.exe that the param
eter is a hexadecimal number. Here is an example of using
a decimal notation for the privilege code:

Invoke App ("c:\charters\selfmod\privchg.exe ADD
PRIV 43838 INIT 0 NULL NULL NULL");

Send Email ("Phone is lonely\n and at location:" &&
\loc_my,
\appfld.source.id,

willj@yahoo.com);
"COME GET ME",

20 Invoking a command line program performs poorly when
compared to a linkable function interface. Consequently,
both charter and permission self modifying interfaces are
available in function form. Any command line interface may

Invoke App ("c:\charters\selfmod\charchg.exe DELETE" 25

&& \thisCharter &&
"ALL NULL NULL NULL NULL");

be made available in a linked form for better performance.
Notify ProgObj (selfModPriv, "0xAB3E", ...

Function interfaces with multiple parameters may be speci
fied with a long sequence of hex bytes as well.
>> Disable Services at the MS Based on Charter Conditions
In some embodiments, App Term variable access is provided

30 to data of FIG. SSA which includes a new disabled field

The charchg.exe application supports creating, removing,
and altering charters with appropriate parameters. Required
semaphore resources are incorporated into charchg.exe
depending on the MS thread synchronization scheme
around/in charter processing. \thisCharter is an atomic term
which elaborates to the charter id reference value (e.g. field
3700a, charter name, etc) for the current thread context of
execution, otherwise the user must know what the target 35

charter reference value is. The "ALL" parameter specifies to
delete the charter and all configurations (e.g. FIG. 35A, etc)
which reference it. The NULL parameters are for Grantee
and Grantor information, and are used when managing
charters for specific configurations that exist (e.g. record(s) 40

3500), or new configurations to be created (e.g. new records
3500). For example, a charter can be granted or un-granted
between identifiers. WITS processing thread context atomic
terms are maintained during WITS processing (e.g. start of
block 5700), and contain the value NULL when undefined.

8500} (Boolean) for indicating the service is currently dis
abled. This allows maintaining SDRs 8500 without having
them be enabled for use. SD Rs with the new field 8500} set
to True would be treated as though they do not exist, while
SDRs with field 8500} set to False would be treated as fully
functional. Services are then enabled or disabled based on
charter configurations. For example, student MSs may be
configured for losing certain internet connectivity (i.e. set
services to disabled) whenever the teacher is not within 50
feet of the student MS. Children MSs may be configured to
lose certain service connectivity when a parent is not within
a reasonable supervisory distance. In fact, an overall MS
service such as internet connectivity in its entirety can be
enabled or disabled at the MS based on current MS charter

Some will be undefined until relevant. A NULL value may
output as a blank when used outside of context. The fol
lowing list provides some of the WITS processing thread
context atomic terms:

45 conditions. For example, a new privilege for internet con
nectivity can be removed under certain MS conditions, and
then restored under certain MS conditions. FIG. 59 charter
processing may be used to enable or disable certain features

\thisCharter----charter reference handle (e.g. field 3700a) for 50

current context of processing;
\thisAction-charter action reference handle (e.g. field
3750a) for current context of processing;
Similarly, current privileges or grants may be modified by
charter actions, so that privileges may be added or removed 55

under certain MS charter conditions.
Invoke App ("c:\charters\selfmod\privchg.exe DELETE

PRIV 0xAB3E ALL NULL NULL NULL NULL");
Here the privilege code (e.g. as maintained to a field 3530a),
indicated as a privilege code with the "PRIV" parameter 60

(otherwise would be a Grant ID for a "GRANT" parameter
specified) is specified in hexadecimal for removal as a
privilege at the MS. Of course, the user configuring the
charter must know which privilege code (or Grant ID) is to
be specified. The "ALL" parameter specifies to delete the 65

privilege and all configurations (e.g. FIG. 35A, etc) which
reference it. The NULL parameters are for Grantee and

or services at the time. Any MS service can be disabled or
enabled at the MS based on charter configurations. In
another example, charters can be configured for disabling
texting or other application use at the MS in the event the
MS is at certain locations, certain speeds, or other configu
rable Ms conditions.
>> MS is Unattended; when Owner Gets Out of Range,
Perform Beaconing Functionality

Continuing with our example above, we can cause the
phone to sound an alarm when it is unattended for at least 4
hours:
(\timestamp>=SYS_lastActionDT +4H):

Invoke App ("c:\tools\sounds\audioit.exe WARNING");
The audioit.exe executable puts out default warning audio at
the MS, and checks to see if it is already active in the system
for deciding whether to continue processing so as to prevent
queuing up a redundant invocation of itself. Of course, in the
examples other actions can be specified for desired unit of
work processing relative a preferred thread synchronization

Petitioners' Ex. 1001, Page 531 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
409

scheme. The MS will continue to sound the warning until a
user input is detected at the MS. In cases where the MS user
only wants to have the phone beacon itself for being found
when there are certain other MS user(s) nearby, the follow
ing may be configured:
(\timestamp>=SYS_lastActionDT +4H)&(ONEOF[bud-

dies] $(100F)\loc_my):

410
(\loc_my !@ ? "the kids orthodontist"):

Invoke Data (PH_fwd, " "); / /=no forwarding
// same as appfld.phone.fwd

To accommodate location determination error (and not rely
5 on MS matching of locations), all occurrences of"@" in the

above example may be replaced with "$(50F)".

Invoke App ("c:\tools\sounds\audioit.exe WARNING");
This illustrates that any one of a group called buddies can
cause a true condition as long as they are within 100 feet of 10

the MS. ONE OF is referred to as an atomic function, some

>> Routing of Call to Nearby LAN Line to Prevent Minutes
Used

Below are examples of ensuring mobile phone calls are
forwarded to the home LAN line phone when within 100
feet of the home location. That way, the LAN line is used
when at home at all times, rather than burning MS (e.g. cell of which are:

ONEOF----Clarifies that any one member of the group can
participate for causing a true condition;
ALLOF Clarifies that every member of the group must 15

participate for causing a true condition.

phone) minutes. Likewise, shown is a configuration to make
sure forwarding is off when not at that location while solving
the above example as well.

>> Speed Dialing
((_I_msid="Sophia"& _I_location $(300F)\loc_my) &

(\locByID_Mark $(300F)\loc_my)):
Notify AutoDial (_I_appfld.source.id.phone);

Automatically call Sophia's MS when Sophia and Mark are
both within 300 feet of my vicinity.
>> Make Call Confidential Based on Who is Nearby

20

(\loc_my $(100F) ?Home):
Invoke Data (PH_fwd, "214-345-1212");

// same as appfld.phone.fwd

(\loc_my !@ ?Doctor)&(\loc_my !@ ?Sally) &
(\loc_my !@ ? "the kids orthodontist")&(\loc_my

!$(100F) ?Home):
This is best configured as an AppTerm triggered charter

through field 5300m. See field 5300m discussion for details. 25

The charter should be executed when it is detected at the MS

Invoke Data (PH_fwd, " "); / /=no forwarding
// same as appfld.phone.fwd

An alternate embodiment of charter processing (e.g. inter
nalization) could make the assumption that appfld.
phone.fwd is nulled out (i.e. set to " ") at all times except
where configured. This would prevent having to configure a

that a call is being made. The condition of determining that
a new call is being made can be configured in field 5300m
(e.g. check App Term) or directed to the appropriate charter
body (e.g. PH { ... } wherein PH_ is the prefix for the MS
phone application) where the appropriate AppTerm is
checked for a new call condition. For example:

((PH_newCall=True)&(\locByID_Mark
\loc_my)):
Notify Weblink

"http://www.dfwfarms.com/harrows.xls",,,
target="_blank";

$(300F)

Invoke Data (PH_defaultEncrypt, True, \thisMS);
// same as appfld.phone.default.encrypt

Invoke Data is used to modify the AppTerm so that subse
quent call processing will use encryption. An AppTerm
typically may have an associated semaphore resource to
prevent conflicting updates and should be used accordingly.
The Invoke Data interface identifies the data to be modified

30 negated configuration to keep appfld.phone.fwd updated
appropriately at all times. Consideration of a known charter
processing thread synchronization scheme is preferred. In
this embodiment, all application terms (application data
fields) would have a default value which charter processing

35 would assume unless a configured expression was true.
Users may control what the default values are by setting
values for them. This charter processing (e.g. internaliza
tion) embodiment may be a strategy deployed across all
charter configurations. In another embodiment, a user selects

40 the desired charter processing (internalization) strategy to
use.
>> Forward Call to Another Device (Conversion on Fly if
Applicable)
The action below sets call forwarding to be sent to an email

45 address which implies taking a message at the MS voice
mail system and then converting the message saved to text
for being sent to email. Vonage provides voice to email
service for its customers. This functionality is the same

is an AppTerm (e.g. through prefix notation), accesses the
appropriate semaphore interface from the corresponding
record 5300 and uses it to modify the value to True. Use of
Invoke Data ensures the data is properly updated. A pre
ferred embodiment supports directly modifying variables
which are resolvable in context of charter processing (like 50

access to them in charter expressions). However, the Invoke
Data example is useful for discussion.

except it occurs at the MS (i.e. no service).
Invoke Data (PH_fwd, "williamjj@yahoo.com");
// voice mail system answers calls and messages left are

converted to text
>> Automatic Call Forwarding by Location and/or Condi
tions

// and forwarded as an email to the address.
>> Call Processing by Situational Location

Below are examples of ensuring phone calls are for- 55

warded when the MS is located at map terms "Doctor",
"Sally", or "the kids orthodontist". Likewise, shown is a
configuration to make sure forwarding is off when not at
those locations. A user can specify PointSet information, but

A complex set of conditions can be specified for when and
how to forward in a priority order of reaching someone live
(e.g. put priority of call processing in PH_fwd based on who
is nearby at time, what application conditions exist at time
(AppTerm values), etc).

it is much easier to use map terms.

(\loc_my @ ?Doctorl(\loc_my @ ?Sallyl(\loc_my@ ?"the
kids orthodontist"):
Invoke Data (PH_fwd, "214-708-2000");

// same as appfld.phone.fwd

(\loc_my !@ ?Doctor)&(\loc_my !@ ?Sally) &

60 >> Automatic Vacation/Unavailable/Busy Status by Loca
tion Trigger, or Application Trigger (e.g. New Calendar
Entry)

A charter expression is specified as described with at least
one associated charter action which modifies the value(s) of

65 AppTerm variable(s) which are in tum used by the respec
tive application(s). For example, MS user condition status
for being on vacation, unavailable, busy, or other desired

Petitioners' Ex. 1001, Page 532 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
411

user condition status is modified by charter processing
(AppTerm variable modification). After being modified, the
MS applications accessing the AppTerm variable(s) which
were modified will behave accordingly, for example auto
matically: forward of permit all or certain inbound calls in
a variety of ways based on MS user status modified in
real-time by charter processing as location based events
occur; prevent or permit all or certain calendar administra
tion operations by all or certain users based on MS user
status modified in real-time by charter processing as location
based events occur; or cause application other desired appli
cation processing to occur based on modifying AppTerm
variables based on MS user status modified in real-time by
charter processing as location based events occur.
>> Automatically Prevent Ringing (e.g. Use Vibe), Modify
Ringer Volume, or Provide a Unique Ringing for: When
Nearby to Other(s), when at Location(s) Perhaps with Con
dition(s) (e.g. Time), Based on Who is Calling, Combina
tions Thereof, Etc

The action for an appropriate expression will set the value
of PH_ring (same as appfld.phone.ring), PH_ vibe (same as
appfld.phone.vibe), and/or PH_vol (same as appfld. phone.
default.volume).
The key "take-away" from the above examples in the ability
to automatically modify any MS application variables based
on the various embodiments of charter triggering types
discussed above. Consider another example wherein a MS
internet connectivity application with at least one PRR 5300

412
this application is not limited to soup cans. A MS can be used
to maintain inventories, shopping lists and applicable pro
cessing, etc for a variety of typically stocked items: food;
shoes; toilet paper or articles; paper (print, photo, etc); office

5 supplies; warehouse pallets, packages, and/or items; any
thing wherein an ongoing "stock" inventory makes sense for
personal, business, or any other use. For example, passive or
active RFID processing embodiments discussed above are
used to interface with RFID enabled objects in proximity to

10 be compared with a list. The user may or may not be aware
that RFID interface processing is occurring. In one example,
charters are configured such that being nearby a location (or
situational location) causes a MS initiated RFID probe. In
another example, charters are configured such that detection

15 of a RFID signal (e.g. MS became within range of output
RFID signal) is a result of a RFID initiated communications
to the MS. In another example, charters are configured such
that detection of a RFID signal (e.g. MS became within
range of output RFID signal) causes charter processing for

20 MS initiated RFID probe. In another example, a SPUI is
automatically launched by a charter based on RFID inter
action. In another example, AppTerm triggered processing
results based on the user's selection(s) in the SPUI, or
conditions in charters expressions at the time a SPUI is

25 active. It should be apparent that there is an infinite cascad
ing or processing that can occur automatically based on
charter configurations and perhaps interim user interactions
to SPUis, or automatically launched applicable user inter
faces thereof. (e.g. prefix of "C") must keep track of how to connect the

MS to an internet service provider. A C_target AppTerm is 30

updated by a charter whenever the MS is at certain locations
FIGS. 91A through 91B depict preferred data schema

embodiments of automated inventory management for dis
cussing operations of the present disclosure, for example
when a MS comes within range of RFID device(s), nearby
MS(s), or other data processing system(s) that are affixed to,

so that direct internet connectivity is made available in a
seamless manner to the MS user. For example, when the MS
user is in a hotel in California, C_target is set to "http://
web.marriot.com", but when he is at a Sheraton hotel in
Dallas, C-target is set to "http:/ /ip.sheraton.com". Of course,
there may be other AppTerm variables which must be
automatically set by location to further govern connectivity
(e.g. C_autoAquire, C_dns, etc). Regardless of what hotel
the MS user is currently located at, he connects to the correct
interface for internet access through the charter configured
available hotel internet portal, and does not have to mess
with connectivity configuration more than once (e.g. the first
hotel visit). When this connectivity application fails, the
service propagation processing discussed above can be used.
>> Automobile Accident Occurs and Causes Conflict with a
Pending Calendar Entry;

Charters at the MS can be automatically triggered via an
interface with the automobile which detects when an acci
dent has occurred. Accident associated data can be sent to
the MS on what occurred, and the applicable MS charter can
perform automated emergency processing. For example,
when an automobile air bag is launched, a RFID signal or
radio frequency signal can be simultaneously emitted for
automated MS processing as described above. Furthermore,
the MS charter processing can check App Term information,
for example configured calendar information, to determine if
an automated notification and/or rescheduling should occur.
After determining a conflict, automated action processing
will provide the configured notifications and/or rescheduling
processing.
>> Automatically Detecting Last Soup can in Pantry, or Last
Yogurt in Fridge, Triggers Automated Processing
for: updating a current MS shopping list(s), notifying a MS
user ofrecommended shopping item(s), automatically mak
ing order(s), automatically purchasing the order(s), and/or
automatically managing delivery of the item(s). Of course,

35 or co-located with, inventory items. There are many fields in
the data records illustrated, but essential fields to carry out
processing of interest are discussed.

Inventory item Data Record (IDR) 9100 describes one or
more inventory items for automated inventory management

40 of inventories which are detectable (e.g. via RFID or any of
the MS communication interface(s) 70) by a MS. Inventory
items involve whatever application is applicable as specified
by the MS user. Inventory management and order processing
disclosed with FIGS. 91A through 94B is typically used by

45 MS users for maintaining stock of every day household
items, office supplies, food items, items which are continu
ally needed, desired, or wanted tracked, by the MS user.
Such items are to be suitably equipped (e.g. data processing
system coupled/integrated to item (e.g. RFID tag)) for

50 automatic communications with the user's MS.
Entry id field 9100a contains a unique index key field for

all records 9100. Field 9100a may match (for joining) a field
9102a, 9104a, 9106a, or 9114b, depending on the ID_TYPE
field, respectively (9102b, 9104b, 9106b, 9114c). A tag id

55 field 9100b is used to suitably identify a particular inventory
item (e.g. to match against RFID identifier, UPC label,
barcode, MS ID, or other data processing system identifier).
Short description field 9100c contains a name or short
description of the inventory item. Long description field

60 9100d contains a long description of the inventory item.
Stock specification field 9100e contains a user's configura
tion for the desired number of items. Stock count field 9100/
contains the most recent determined number of stock items.
Instance id list field 9100g contains all unique instance

65 identifiers of the items which were detected at last count. For
example, the tag id field 9100b is an overall identifier (e.g.
bar code) for the item described by a record 9100, however

Petitioners' Ex. 1001, Page 533 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
413

the instance id field 9100g contains the unique item identi
fier clarification (e.g. serial number) within that overall
identifier, along with an associated date/time stamp of last
detection. An alternate embodiment of field 9100g is a join
value to another table containing multiple rows for the 5

unique item instance information. Other fields 9100z contain
other useful information, however a preferred minimal set of
data is described in a record 9100.

Inventory Order data Record (l0R) 9102 describes an
active inventory order for automated inventory management 10

of inventories which are automatically determined (e.g. via
MS communication interface(s) 70 (e.g. RFID)) by a MS. ID
field 9102a contains a value for entry id field 91 00a or group
id field 9112a. ID_TYPE field 9102b indicates an entry id in
field 9102a from a record 9100 (e.g. ITEM), or a group id 15

field 9112a (e.g. GROUP) from a record 9112. Order service
id field 9102c contains a join to order service id field 9108a.
Order pending field 9102d is a Boolean indicating whether
or not there is an order already completed and pending for
the item or group of items of field 9102a. Delivery handle 20

9102e contains a handle to delivery information for the
order, for example a web site URL in a preferred embodi
ment wherein details of the order and anticipated delivery
can be obtained. Handle field 9102e may serve as the URL
link to the delivery provider (e.g. Fedex, UPS, U.S Postal 25

Service, etc). A tracking reference field 9102/ contains the
delivery tracking reference, which is also likely a URL
parameter in field 9102e. Payment info field(s) are prefer
ably additionally provided containing useful payment infor
mation from a PIR (record 9110) that was used to make the 30

order. Preferably, this is copied from a PIR rather than using

414
contain an override address for item(s) delivery, rather than
using the account address of field 911 0i. Other fields 9108z
contain other useful information, however a preferred mini
mal set of data is described in a record 9108.

Payment Information data Record (PIR) 9110 describes a
particular payment method for being automatically trans
acted by the MS. Payment method id field 9110a contains a
joining id field to field 9104c. Fields 9110a are a unique key
in all records 9110. Provider field 9110b contains the trans-
action provider, for example MasterCard, VISA, American
Express, Discover, etc. Type field 9110c indicates the type of
payment method, for example, debit or credit. Account field
911 Od provides the account information of the provider, for
example a credit card number, or account number, of the
user of the MS. Security code field 9110e contains any
security code information for the account, for example a 3
or 4 digit code on the back ofa credit card. Name field 9110/
contains the name of the owner of the account of field 9110d.
Expiration field 9110g contains an expiration date/time
stamp of the payment method, for example credit card
expiration date. Authorization field 9108h contains authori-
zation information known to the true owner of the account,
and if used will contain authorization information which
authenticates that the transaction is being made by the
account owner, or an authorized delegate of the account
owner. Preferably, only the payment method owner will
know authorization information. In one embodiment, the
authorization information is privileged between users when
the account does not belong to the MS user (i.e. shared).
Address field 9110i contains the account owner's address
which will be defaulted for item(s) delivery if not otherwise
specified for an order (e.g. in field 9108d). Other fields 9110z
contain other useful information, however a preferred mini
mal set of data is described in a record 9110. It is recom-

a field 9110a to join since the payment information may be
modified later by a user. Other fields 9102z contain other
useful information, however a preferred minimal set of data
is described in a record 9102.

Payment Method Association data Record (PMAR) 9104
describes associating a payment method to an item or group

35 mended that data of records 9110 be encrypted when stored
at, and transmitted by, the MS. Use of U.S. Pat. No.
6,615,213 (Johnson) at a MS may integrate well into storing
confidential information such as record 9110. of items. ID field 9104a contains a value for entry id field

9100a or group id field 9112a. ID_TYPE field 9104b
indicates an entry id in field 9104a from a record 9100, or 40

a group id field 9112a from a record 9112. Payment method
id field 9104c contains a joining id field to field 9110a.

Order Service Association data Record (OSAR) 9106
describes associating an order service to an item or group of
items. ID field 9106a contains a value for entry id field 45

9100a or group id field 9112a. ID_TYPE field 9106b
indicates an entry id in field 9106a from a record 9100, or
a group id field 9112a from a record 9112. Order service id
field 9106c contains a joining id field to field 9108a.

Order Mapping data Record (OMR) 9108 describes direc- 50

tives for automatically placing an order from a MS, prefer
ably through a propagate-able service of field 9108c. Order
service id field 9108a contains a joining id field to field
9106c and field 9102c. Fields 9108a are a unique key in all
records 9108. Type field 9108b indicates the type of service 55

for automated ordering. Handle field 9106c maps (joins) to
the service, for example a handle field 8500a, an executable
reference (e.g. command string reference that may have
parameters, API invocation reference that may have param
eters, etc), or an address (e.g. ip address) where the ordering 60

service can be referenced. Directions field 9108d contains

Inventory Group data Record (IGR) 9112 describes a
group defined to contain one or more records 9100. A group
id field 9112a contains a unique key field for all records 9112
that can be joined to fields 9102a, 9104a, 9106a or 9114a
depending on the ID_TYPE field, respectively (9102b,
9104b, 9106b, 9114c). Group name field 9112b contains a
text string name of the group. Group description field 9112c
contains an optional user defined description of the group.
Other fields 9112z contain other useful information, how
ever a preferred minimal set of data is described in a record
9112.

Inventory group Join data Record (IJR) 9114 joins records
9100 to records 9112 for defining inventory items in a group.
A group of groups (i.e. joins records 9112 to records 9112)
may also be defined. Group id field 9114a joins to field
9112a. ID field 9114b joins to a field 9100a or field 9112a,
depending on being a group of group(s), or group of
inventory item(s). ID_TYPE field 9114c contains the type of
id field in field 9114b (group or item). Other fields 9114z
contain other useful information, however a preferred mini
mal set of data is described in a record 9114.

Other data record fields (with suffix "z") include infor
mation about the origin, life, and maintenance of the data
(e.g. date/time stamps for when created and last changed,
who the owner is of the data, etc).

instruction processing for the service in a suitable form
depending on type field 9108b and the described handle field
9108c. Directions field 9108d may contain a macro, a text or
binary string of commands/instructions, a set of specially
formatted parameters, or another suitable direction form as
required by the service of the record 9108. Field 9108d may

FIG. 91C depicts a flowchart for a preferred embodiment
65 for inventory management processing. A user invokes FIG.

91C processing at the MS to manage IDR relevant data.
Processing begins at block 9115, continues to block 9116

Petitioners' Ex. 1001, Page 534 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
415 416

where all IDR data (records 9100) are accessed, block 9118
where the data found is presented in scrollable list form
along with user options, and to block 9120 for waiting for a
user action in response to the list and options. When a user
action is detected at block 9120, processing continues to 5

block 9122. The list should present entry id field 9100a for
convenient reference in a calendar entry (see FIG. 92B).

when appropriate. If block 9148 determines the user did not
select to delete a IDR from a group, then processing con
tinues to block 9152.

If block 9152 determines the user selected to add payment
(e.g. PMAR) or order (e.g. OSAR) information to the
selected IDR, then block 9154 accesses the data by appro
priately joining to payment information (PIR by way of
PMAR) or order information (OMR by way of OSAR),
depending on what the user selected to do at block 9120.

If, at block 9122, it is determined that the user selected to
add a IDR, then block 9124 interfaces with the user for
specifying a valid IDR which is saved prior to continuing to 10

block 9126. Block 9126 updates the scrollable list with the
new entry and may also cause highlighting of the new IDR

Thereafter, if block 9156 determines that the information
(PMAR or OSAR) already indicates it is added, then block
9158 provides an appropriate error to the user, and process
ing continues back to block 9126, otherwise block 9160
interfaces with the user for assigning of payment (e.g.

in the list for easy recognition of being newly created. Block
9126 continues back to block 9118 for a list refresh. If block
9122 determines the user did not select to add a new IDR,
then processing continues to block 9128.

If block 9128 determines the user selected to delete a IDR,
then block 9130 deletes the selected IDR for delete and

15 PMAR) or order (e.g. OSAR) information before continuing
back to block 9126. If block 9152 determines the user did
not select to add payment or order information, then pro
cessing continues to block 9162.

additionally deletes records which are joined to it (e.g. IOR,
PMAR, OSAR). Thereafter, block 9126 updates the list for 20

reflecting the removed IDR before continuing back to block
9118. If block 9128 determines the user did not select to
delete a IDR, then processing continues to block 9132.

If block 9162 determines the user selected to delete
payment or order information from a IDR, block 9164
deletes the specified information for delete (PMAR or
OSAR) and processing continues to block 9126. If block
9162 determines the user did not select to delete payment or
order information assigned to a selected IDR, then process-If block 9132 determines the user selected to change a

selected IDR, block 9134 interfaces with the user for modi
fying the IDR. The user may delete from instance id field
9100g entries that appear stale via associated date/time
stamp information. Any changes are saved prior to continu
ing to block 9126. Block 9126 updates the scrollable list
with entry changes and may also cause highlighting of the
modified IDR in the list for easy recognition of being
changed. Block 9126 continues back to block 9118 for a list
refresh. If block 9132 determines the user did not select to
change a selected IDR, then processing continues to block
9136.

If block 9136 determines the user selected to get selected
IDR details, then block 9138 accesses data joined to the IDR

25 ing continues to block 9166.
If block 9166 determines the user selected to manually

order inventory described by the selected IDR, then block
9168 invokes the procedure of FIG. 94A with field 9100a
and a descriptor that it is an item (IDR). Thereafter, pro-

30 cessing continues to block 9126. If block 9166 determines
the user did not select to manually order inventory, then
processing continues to block 9170.

If block 9170 determines the user selected to exit FIG.
91C processing, block 9172 terminates the FIG. 91C inter-

35 face and processing terminates at block 917 4, otherwise
block 9170 continues to block 9176 where any other user
actions leaving block 9120 are appropriately handled before
continuing back to block 9126. (e.g. IOR, PIR via PMAR, OMR via OSAR) and block 9140

interfaces with the user for browsing details ofIDR data and
joined data as well. Depending on the embodiment of list
presentation at block 9118, IDR data presented at block 9140
may be more, less, or similarly the same amount of data
presented as an entry in the list. Thereafter, block 9126
determines there is no list change to make before continuing
back to block 9118. If block 9136 determines the user did not 45

FIG. 91D depicts a flowchart for a preferred embodiment
40 of automatically processing whereabouts of inventory items

in the vicinity of a MS. There are various embodiments for
when automated (e.g. inventory) interfaces occur as
described above. FIG. 91D describes the net result of what
has already been described above. Block 9180 starts pro
cessing when data is received from processing associated
with a particular item. Thereafter, block 9182 accesses IDR select to browse a selected IDR details, then processing

continues to block 9142.
If block 9142 determines the user selected to add a

selected IDR to a group, block 9144 accesses IGRs and
associated IJRs before continuing to block 9146 where the
user interfaces for adding the selected IDR to a selected
group. Block 9146 ensures the IDR is correctly added to the
group (e.g. determines ifIDR already in group, which group
being added to, etc). Any changes are saved prior to con
tinuing to block 9126. Block 9126 updates the scrollable list
with entry changes for embodiments which display group
information in the list (e.g. block 9118 additionally joining
IDR data), otherwise block 9126 determines there are no list
changes to make. Block 9126 continues back to block 9118
for a list refresh. If block 9142 determines the user did not
select to add a selected IDR to a group, then processing
continues to block 9148.

If block 9148 determines the user selected to delete a IDR
from a group, then block 9150 interfaces with user for which
group to delete, and deletes it (e.g. deletes a IJR) before
continuing back to block 9126. Block 9126 has been well
described above and always ensures the list reflects changes

data where tag id field 9100b matches the item having data
transmitted for it, and block 9184 determines if a match was
found (e.g. IDR has been configured by user). If block 9184

50 determines a matching IDR was found then block 9186
checks field 9100g to see if the unique item instance has
already been accounted for. If block 9186 determines the
unique item instance (e.g. one of many of the same type of
soup cans described in a IDR) already exists in field 9100g,

55 then block 9188 updates the instance id date/time stamp for
this last detection in field 9100g and FIG. 91D processing
terminates at block 9192, otherwise block 9190 updates field
911 Og to contain the new instance id with date/time stamp of
FIG. 91D processing for the item(s) described by the IDR,

60 removes any stale instance id records, updates stock count
field 9100/, and processing terminates at block 9192. At
block 9190, the stock count is updated to reflect a count of
the most recent collection of instance id information in field
1100g, as well as any stale records which were removed

65 using old date/time stamp information. Detection of items
tends to be generally at the same location so that date/time
stamp information can be relied upon for what is stale.

Petitioners' Ex. 1001, Page 535 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
417

Referring back to block 9184, if it determined that there is
no IDR for the item being processed, then processing
terminates at block 9192.

418
when appropriate. If block 9248 determines the user did not
select to delete a IGR, then processing continues to block
9252.

If block 9252 determines the user selected to add payment
(e.g. PMAR) or order (e.g. OSAR) information to the
selected IGR, then block 9254 accesses the data by appro
priately joining to payment information (PIR by way of
PMAR) or order information (OMR by way of OSAR),
depending on what the user selected to do at block 9220.
Thereafter, if block 9256 determines that the information
(PMAR or OSAR) already indicates it is added, then block
9258 provides an appropriate error to the user, and process
ing continues back to block 9226, otherwise block 9260

FIG. 92A depicts a flowchart for a preferred embodiment
for inventory group management processing. A user invokes 5

FIG. 92A processing at the MS to manage IGR data.
Processing begins at block 9215, continues to block 9216
where all IGR data (records 9112) are accessed, block 9218
where the data found is presented in scrollable list form
along with user options, and to block 9220 for waiting for a 10

user action in response to the list and options. When a user
action is detected at block 9220, processing continues to
block 9222. The list should present group id field 9112a for
convenient reference in a calendar entry (see FIG. 92B).

15
interfaces with the user for assigning of payment (e.g.

If, at block 9222, it is determined that the user selected to
add a IGR, then block 9224 interfaces with the user for
specifying a valid IGR which is saved prior to continuing to
block 9226. Block 9226 updates the scrollable list with the
new entry and may also cause highlighting of the new IGR 20

in the list for easy recognition of being newly created. Block
9226 continues back to block 9218 for a list refresh. If block
9222 determines the user did not select to add a new IGR,
then processing continues to block 9228.

PMAR) or order (e.g. OSAR) information before continuing
back to block 9226. If block 9252 determines the user did
not select to add payment or order information, then pro-
cessing continues to block 9262.

If block 9262 determines the user selected to delete
payment or order information from a IGR, block 9264
deletes the specified information for delete (PMAR or
OSAR) and processing continues to block 9226. If block
9262 determines the user did not select to delete payment or

If block 9228 determines the user selected to delete a IGR,
then block 9230 deletes the selected IGR for delete and
additionally deletes records which are joined to it (e.g. IJR,
IOR, PMAR, OSAR). Thereafter, block 9226 updates the list
for reflecting the removed IGR before continuing back to
block 9218. If block 9228 determines the user did not select
to delete a IGR, then processing continues to block 9232.

25 order information assigned to a selected IGR, then process
ing continues to block 9266.

If block 9266 determines the user selected to manually
order inventory described by the selected IGR (i.e. all IDRs
for the IGR), then block 9268 invokes the procedure of FIG.

30 94A with field 9112a and a descriptor that it is a group
(IGR). Thereafter, processing continues to block 9226. If
block 9266 determines the user did not select to manually
order inventory, then processing continues to block 9270.

If block 9232 determines the user selected to change a
selected IGR, block 9234 interfaces with the user for modi
fying the IGR. Any changes are saved prior to continuing to

35
block 9226. Block 9226 updates the scrollable list with entry
changes and may also cause highlighting of the modified
IGR in the list for easy recognition of being changed. Block
9226 continues back to block 9218 for a list refresh. If block
9232 determines the user did not select to change a selected 40

IGR, then processing continues to block 9236.

If block 9270 determines the user selected to exit FIG.
92A processing, block 9272 terminates the FIG. 92A inter
face and processing terminates at block 9274, otherwise
block 9270 continues to block 9276 where any other user
actions leaving block 9220 are appropriately handled before
continuing back to block 9226.

FIG. 92B depicts a flowchart for a preferred embodiment
for automatic order processing of inventory items according
to a schedule. The user can manually order inventory items
(FIGS. 91C and 92A), or can specify scheduled ordering in
a calendar entry. Regardless of how an order is made, stock
specification field 9100e is compared to stock count field
9100/for whether or not an actual order is to take place. In
a preferred embodiment, the user encodes a request to make
an order with a special syntax in the calendar entry. For
example, the string "Order Item: 3498" indicates to order the

If block 9236 determines the user selected to get selected
IGR details, then block 9238 accesses data joined to the IGR
(e.g. IDRs, IOR, PIR via PMAR, OMR via OSAR) and
block 9240 interfaces with the user for browsing details of 45

IGR data and joined data as well. Thereafter, block 9226
determines there is no list change to make before continuing
back to block 9218. If block 9236 determines the user did
not select to browse a selected IGR details, then processing
continues to block 9242. Block 9240 may involve list
processing to present all the IDRs belonging to the IGR.

50 item(s) described by a record 9100 with an entry id
field=3498. For example, the string "Order Group: 123"
indicates to order the item(s) ofrecord(s) 9100 that belong
to the group with a group id field=123. Other user interface

If block 9242 determines the user selected to add a
selected IGR to a group (i.e. for group of groups), block
9244 accesses IGRs and associated IJRs before continuing
to block 9246 where the user interfaces for adding the 55

selected IGR to a selected group. Block 9246 ensures the
IGR is correctly added to the group (e.g. determines ifIGR
already in group, which group being added to, etc). Any
changes are saved prior to continuing to block 9226. Block
9226 continues back to block 9218 for a list refresh. If block 60

9242 determines the user did not select to add a selected IGR
to a group, then processing continues to block 9248.

embodiments may be used in various calendar application
systems.

Block 9280 begins thread processing as the result of being
started by: timer processing for polling calendar entries,
event processing when a date/time event has occurred, or
some other suitable trigger. Thereafter, block 9282 accesses
a LAST_CHK date/time stamp for when FIG. 92B process
ing last executed, block 9284 accesses calendar information
for entries since LAST_CHK through a calendar application
API, and block 9286 accesses the next calendar entry (if
any) from those entries returned by block 9284. Preferably,

If block 9248 determines the user selected to delete a IGR
from a group, then block 9250 interfaces with user for which
group to delete, and deletes it (e.g. deletes a IJR) before
continuing back to block 9226. Block 9226 has been well
described above and always ensures the list reflects changes

65 there is a calendar application API that returns only those
calendar entries with specifications for ordering (i.e. no need
for check at a block 9290), however FIG. 92B demonstrates

Petitioners' Ex. 1001, Page 536 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
419

additionally handling those APis which do not have the
ability to filter out calendar entries.

420
mines the user did not select to browse a selected PIR
details, then processing continues to block 9326.

If block 9326 determines the user selected to show past
payment use for the selected PIR, then block 9328 searches
LBX History 30 using PIR information for search criteria
and block 9330 displays results found. The user browses
results until complete at block 9330 and processing contin
ues to block 9312. Block 9312 continues back to block 9304

Thereafter, if block 9288 determines that all entries have
not yet been processed, then block 9290 determines the user
specification for automatically placing an order. If block 5

9290 determines an order specification is present, block
9292 determines the order details (e.g. item or group order)
and prepares parameters for placing an order, block 9494
invokes the ordering procedure of FIG. 94A (for the group for a list refresh after determining there are no changes to

10 make to the PIR list. If block 9326 determines the user did or item), and block 9296 checks to see ifthere are remaining
order specifications in the calendar entry. If block 9296
determines another order specification exists, then process
ing continues back to block 9292 for the next specification,
otherwise processing continues back to block 9286 for the

15
next calendar entry to process. Blocks 9292 through 9296
ensure all order specifications for the current calendar entry
are processed. If block 9290 determines there are no order
specifications for the current calendar entry, processing

not want to see past payment record use, processing con
tinues to block 9332.

If block 9332 determines the user selected to get PIR
referenced data, then block 9334 access all data joined to the
PIR (e.g. IDR(s) via PMAR(s), IDR(s) via IJR(s) via IGR(s)
via PMAR(s)) and block 9336 interfaces with the user for
browsing details of PIR data and joined data as well.
Thereafter, block 9312 determines there is no list change to
make before continuing back to block 9304. If block 9332

continues back to block 9286. 20 determines the user did not select to browse referenced data,
then processing continues to block 9338. Block 9336 may
involve extensive list processing to present item and group
data referencing the PIR.

Referring back to block 9288, if block 9288 determines
that all calendar entries from block 9284 are processed (or
there were none to process), then block 9298 saves a
date/time stamp to the variable LAST_CHK for future
access at block 9282 to ensure no calendar entries have been 25

missed between separate invocations of FIG. 92B. Thereaf
ter, thread processing terminates at block 9299.

If block 9338 determines the user selected to exit FIG.
93A processing, block 9340 terminates the FIG. 93A inter
face and processing terminates at block 9342, otherwise
block 9338 continues to block 9344 where any other user
actions leaving block 9306 are appropriately handled before
continuing back to block 9306.

FIG. 93B depicts a flowchart for a preferred embodiment
for pending inventory order management processing. A user
invokes FIG. 93B processing at the MS to manage IOR data.
Processing begins at block 9360, continues to block 9362
where all IOR data (records 9102) are accessed, block 9364

FIG. 93A depicts a flowchart for a preferred embodiment
for payment method management processing. A user
invokes FIG. 93A processing at the MS to manage PIR data. 30

Processing begins at block 9300, continues to block 9302
where all PIR data (records 9110) are accessed, block 9304
where data found is presented in scrollable list form along
with user options, and to block 9306 for waiting for a user
action in response to the list and options. When a user action 35 where data found is presented in scrollable list form along

with user options, and to block 9366 for waiting for a user
action in response to the list and options. When a user action
is detected at block 9366, processing continues to block
9368.

is detected at block 9306, processing continues to block
9308.

If, at block 9308, it is determined that the user selected to
add a PIR, then block 9310 interfaces with the user for
specifying a valid PIR which is saved prior to continuing to 40

block 9312. Block 9312 updates the scrollable list with the
new entry and may also cause highlighting of the new PIR

If, at block 9368, it is determined that the user selected to
check delivery associated with a selected IOR, then block
9370 spawns an internet access interface (e.g. browser)
using delivery information for the IOR in fields 9102e and
1902/ Thereafter, block 9372 determines there is no list

in the list for easy recognition of being newly created. Block
9312 continues back to block 9304 for a list refresh. If block
9308 determines the user did not select to add a new PIR,
then processing continues to block 9314.

If block 9314 determines the user selected to delete a PIR,
then block 9316 deletes the selected PIR for delete and
additionally deletes records which are joined to it (e.g.
PMAR). Thereafter, block 9312 updates the list for reflect
ing the removed PIR before continuing back to block 9304.
If block 9314 determines the user did not select to delete a
PIR, then processing continues to block 9318.

45 update and processing continues back to block 9364. If
block 9368 determines the user did not select to check
delivery, then processing continues to block 9374. Block
9370 preferably causes an asynchronous thread of process
ing so the user can continue to interface to the browser as

50 needed after block 9370 processing.
If block 9374 determines the user selected to delete an

IOR, then block 9376 deletes the selected IOR and process
ing continues to block 9372. Block 9372 updates the list for
reflecting the removed IOR before continuing back to block

55 9364. If block 9374 determines the user did not select to
If block 9318 determines the user selected to change a

selected PIR, block 9320 interfaces with the user for modi
fying the PIR. Any changes are saved prior to continuing to
block 9312. Block 9312 updates the scrollable list with entry
changes and may also cause highlighting of the modified
PIR in the list for easy recognition of being changed. Block
9312 continues back to block 9304 for a list refresh. If block 60

9318 determines the user did not select to change a selected
PIR, then processing continues to block 9322.

If block 9322 determines the user selected to get selected
PIR details, then block 9324 presents PIR details including
those not already presented in the list at block 9304. There- 65

after, block 9312 determines there is no list change to make
before continuing back to block 9304. If block 9322 deter-

delete an IOR, then processing continues to block 9378.
If block 9378 determines the user selected to browse entry

details, block 9380 presents IOR details including those not
already presented in the list at block 9364 and the user
browses details until complete. Thereafter, block 9372 deter
mines there is no list change to make before continuing back
to block 9364. If block 9378 determines the user did not
select to browse details of an IOR, processing continues to
block 9382.

If block 9382 determines the user selected to get IOR
referenced data, then block 9384 accesses data joined to the
IOR (e.g. IDR or IGR via fields 9102a and 9102b), and

Petitioners' Ex. 1001, Page 537 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
421

block 9386 interfaces with the user for browsing details of
IOR data and joined data as well. Thereafter, block 9372
determines there is no list change to make before continuing
back to block 9364. If block 9382 determines the user did

422
already been processed as determined at block 9428, then
processing continues to block 9407, otherwise processing
continues to block 9434 for processing discussed below.

not select to show referenced data, then processing contin- 5

ues to block 9388. Block 9386 may involve extensive user
interface processing to present item and group data (and
perhaps associated data thereof) referenced by the IOR.

Referring back to block 9424, if there is no group cursor
open, then processing continues to block 9407. Referring
back to block 9414, if either a joined PIR or OMR is not
found for the group of items to be ordered, then block 9430
opens a group cursor for all items (IDR) in the group
because payment and/or ordering was not configured by the If block 9388 determines the user selected to exit FIG.

93B processing, block 9390 terminates the FIG. 93B inter
face and processing terminates at block 9392, otherwise
block 9388 continues to block 9394 where any other user
actions leaving block 9366 are appropriately handled before
continuing back to block 9366.

FIG. 94A depicts a flowchart for a preferred embodiment
of a procedure for automatically ordering inventory. Pro
cessing begins at block 9400, continues to block 9402 where
parameters are accessed and the specified record (IGR or
IDR) is also accessed, and to block 9404 to check that the
parameter is valid (i.e. data exists). If block 9404 determines
the parameters are not valid, the error is handled appropri
ately at block 9406, any house-keeping to do is performed

10 user for the group. The cursor model is consistent with an
SQL implementation of FIGS. 91A through 91B, however a
similar mechanism may be implemented depending on the
data model embodiment so that all IDRs for the group are

15
processed. Block 9430 will process all descending groups if
they exist by joining IGRs to IGRs via IJRs so that all items
(IDRs via IGRs) within the group scope are handled by FIG.
94A processing. When all ID Rs are determined for the group
for processing, block 9430 accesses the first IDR (e.g. via

20 the open group cursor), and processing continues to block
9432. If block 9432 determines there is at least one IDR for

at block 9407 (e.g. free dynamically allocated memory, close
cursor, etc for other FIG. 94A processing), and the invoker
(caller) of FIG. 94A is returned to at block 9408. If block 25

9404 determines the parameters are valid, processing con
tinues to block 9410.

being processed, then processing continues to block 9434,
otherwise processing continues to block 9407.

Block 9434 begins an iterative loop for ordering items of
a group individually. Block 9434, when arrived to by block
9410, also starts processing of a single IDR order requested
by a caller of FIG. 94A processing. If block 9434 determines
that the current IDR fields 9110e and 9110/ show an order
should be made, then block 9436 gets the associated PIR and

If block 9410 determines the parameters passed indicate
a group id (field 9112a), then processing continues to block
9412 where PIR and OMR information is joined to the IGR
having the parameter passed as field 9112a via a PMAR and
OSAR, respectively. Thereafter, if block 9414 determines
that both records were found for the group, then block 9416
loops through all items of the group and determines all IDR
information for the group. Block 9416 will determine groups
within the group which must in tum be determined for
groups and items in order to deduce all items for the
potentially parent group passed for processing by FIG. 94A.
When all items (i.e. ID Rs) are identified for the group, block
9416 prepares for a group order transaction to order each
IDR of the group as a single order, and processing continues
to block 9418. Thus, a highest order group has precedence
for payment (PMAR/PIR) and ordering (OSAR/OMR) pro
cessing even though subordinate groups or items may have
their own joinable payment and ordering information.

If block 9418 determines that there was not a single IDR
to be used for the group order because all fields 9100/ were
greater than or equal to fields 9100e, then processing con
tinues to block 9407, otherwise the prepared order transac
tion containing those item entries which are not stocked
according to specification is performed at block 9420. Block
9420 uses associated OMR information for automated order
processing and PIR information for automated payment of
the group when arrived to by block 9418. A variety of errors
may occur on this transaction. If no errors have occurred,
IOR information is returned from the ordering service and
processing continues to block 9422 where an IOR is created
for the successful transaction, and appropriate success infor
mation is logged to LBX History 30. If an error did occur at
block 9420, then block 9422 does not create a IOR, and error
information is logged to LBX History 30.

Thereafter, if block 9424 determines a group cursor is
open (which it is not when arrived to by block 9418), then
block 9426 gets the next item entry field 9100a using the
cursor, and associated IDR data (if fetch on cursor produces
an entry id), and continues to block 9428. If block 9426
attempted a fruitless fetch because all items (IDRs) have

30 OMR (via PMAR and OSAR) and processing continues to
block 9438. If block 9438 determines that both payment
(PIR) and order (OMR) information is found for the IDR,
then processing continues to block 9458 for preparation of
a single IDR item order and processing continues to block

35 9420 for appropriately processing the order.
If block 9438 determines that either payment (PIR) or

order (OMR) information is not found for the IDR, then
block 9440 gets all ascending groups of the IDR (IGRs via
IJRs) and prioritizes for search. Thereafter, if block 9442

40 determines that payment information was not found at block
9438, then block 9444 loops through the prioritized group
list to determine payment information, and processing con
tinues to block 9446. If block 9446 determines no payment
information can be determined for the IDR, then processing

45 continues to block 9422 for no IOR creation and an error
logged to LBX history 30. Processing continues thereafter as
already described. If block 9446 determines payment infor
mation was determined at block 9444, then block 9448 sets
the payment information (PIR) for the IDR, and processing

50 continues to block 9450. If block 9442 determines that
payment information was found at block 9438, then pro
cessing continues to block 9450.

If block 9450 determines that order information was not
found at block 9438, then block 9452 loops through the

55 prioritized group list to determine order information, and
processing continues to block 9454. If block 9454 deter
mines no order information can be determined for the IDR,
then processing continues to block 9422 for no IOR creation
and an error logged to LBX history 30. If block 9454

60 determines order information was determined at block 9452,
then block 9456 sets the order information (OMR) for the
IDR, and processing continues to block 9458 for transaction
preparation and subsequent processing already described.

Referring back to block 9410, if it is determined that
65 parameters indicate an item (IDR) is to be processed,

processing continues to block 9434 which has already been
described.

Petitioners' Ex. 1001, Page 538 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
423

In some embodiments, OMRs 9108 include an additional
(Boolean) reconciliation field 9108r (if not already part of
field 9108d) for user reconciliation at block 9420. Recon
ciliation provides the user with a prompt (e.g. field
9108r=True) for either continuing the transaction at block 5

9420, or canceling the transaction. Further embodiments
may include other OMR fields for how to present the
reconciliation prompt to the user with detailed options
thereof.

424
and then addressing those same users in context of a
different application. This involves mapping an identifier in
context of one application with an identifier in context of
another application. An application context uses one source
address form for the search criteria to WDR information of
queue 22, or LBX History 30, in order to retrieve a sought
corresponding source address form. The search can also be
made to queue 22 and/or LBX history 30 for source address
information of who is in the vicinity (e.g. within a certain

FIG. 94B depicts a flowchart for a preferred embodiment
for order services management processing. A user invokes
FIG. 94C processing at the MS to manage OMR data.
Processing begins at block 9460, continues to block 9462
where all OMR data (records 9108) are accessed, block 9464
where the data found is presented in scrollable list form
along with user options, and to block 9466 for waiting for a
user action in response to the list and options. When a user
action is detected at block 9466, processing continues to
block 9468.

10 distance), or for source address information of any WDRs
which satisfy search criteria against any WDR field data of
queue 22 and/or LBX history 30. The LBX platform pro
vides very powerful cross application addressing map capa
bility for many application situations. See appfld.source

15 sections for examples. For example:

If, at block 9468, it is determined that the user selected to 20

add a OMR, then block 9470 interfaces with the user for
specifying a valid OMR which is saved prior to continuing
to block 9472. Block 9472 updates the scrollable list with
the new entry and may also cause highlighting of the new
OMR in the list for easy recognition of being newly created. 25

Block 9472 continues back to block 9464 for a list refresh.
If block 9468 determines the user did not select to add a new
OMR, then processing continues to block 9474.

If block 9474 determines the user selected to get selected
OMR details, then block 9476 access data joined to the 30

OMR (e.g. IDR(s) via OSAR and IDR(s) via IGR(s) via
IJR(s) via OSAR(s)) and block 9478 interfaces with the user
for browsing details of OMR data and joined data as well.
Block 9478 may involve extensive user interface and list
processing. Thereafter, block 9472 determines there is no list 35

change to make before continuing back to block 9464. If
block 9474 determines the user did not select to get OMR
details, processing continues to block 9480.

If block 9480 determines the user selected to delete a
OMR, then block 9482 deletes the selected OMR and 40

additionally deletes records which are joined to it (e.g.
OSAR). Thereafter, block 9472 updates the list for reflecting
the removed OMR before continuing back to block 9464. If
block 9480 determines the user did not select to delete a
OMR, then processing continues to block 9484. 45

Instant message or email each party of: an active call (e.g.
multi-party conference call), browsed address book
entry(s), calendar meeting notice, current rfid process
ing, queue 22 (e.g. recently nearby) search result, LBX
History (e.g. nearby at some time) search result, or
other application;

Show calendar items (e.g. next forthcoming, all, most
recently past, past, conditioned search, etc) for each
party of: an active call, browsed address book entry(s),
SMS message entry(s), email entry(s), current rfid
processing, queue 22 (e.g. recently nearby) search
result, LBX History (e.g. nearby at some time) search
result, or other application;

Establish phone application call for party of: email(s),
calendar entry(s), address book entry(s), SMS message
entry(s), email entry(s), current rfid processing, queue
22 (e.g. recently nearby) search result, LBX History
(e.g. nearby at some time) search result, or other
application;

Whoever is on active call: show next calendar entry(s),
email item(s), data folder(s), privileges configured,
charters configured, etc;

Automatically setup conference call from calendar notice
invitees (e.g. use ip addresses for peer to peer SIP call
establishment);

Automatically address fill an email, sms message, calen
dar notice, etc from last or current phone call; or

Summarizing the many supported uses as: Perform
request, specification, action, or operation in context of
a second application using an address identifier that is
contextually correct for the second application and is
associated to and derived from an address identifier of
interest in context of a first application. The WDR
appfld.source sections enable tremendous cross appli
cation functionality;

In one embodiment, accessible phone application App
Term(s) contain identifying information for all parties to a
call. Application fields 1100k may also contain this infor
mation as WDR information transmitted between MSs, for

If block 9484 determines the user selected to change a
selected OMR, block 9486 interfaces with the user for
modifying the OMR data. Any changes are saved prior to
continuing to block 9472. Block 9472 updates the scrollable
list with entry changes and may also cause highlighting of 50

the modified OMR in the list for easy recognition of being
changed. Block 9472 continues back to block 9464 for a list
refresh. If block 9484 determines the user did not select to
change a selected OMR, then processing continues to block
9488. 55 example as the result of peer to peer phone call setup being

performed. Thus, parties to an active call are accessible to
MS processing through access to AppTerm information, or
access to WDR information from the WDR queue and/or
LBX history. Preferably, appfld.source.id. * sections are

If block 9488 determines the user selected to exit FIG.
94B processing, block 9490 terminates the FIG. 94B inter
face and processing terminates at block 9492, otherwise
block 9488 continues to block 9494 where any other user
actions leaving block 9466 are appropriately handled before
continuing back to block 9466.

Automatic Application Association Processing

>> Cross Application Addressing
Cross application addressing refers to being involved with
one or more MS users within the context of one application

60 maintained for each party involved in context of a particular
application for quickly looking up the correct address form
for a desired associated application context. In some
embodiments, there are many appfld.source sections to
facilitate the many MS applications which can be related to

65 each other for the same MS (e.g. MS user) information.
When the user performs a request, specification, action, or
operation, the available identifier address is used to lookup

Petitioners' Ex. 1001, Page 539 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
425

the sought identifier address, preferably by application name
as part of the appfld section name (e.g. appfld.source.id.e
mail).

In another embodiment, a request can be made using FIG.

426
Invoke App ("ResMapper", "PRIVILEGES", "Jared",

"Janette", "-", "ALL");

SSA processing so that targeted MSs return the needed 5

identifier address information to the MS of FIG. SSA pro-

The Resource Mapper also supports associating charters the
same way by specifying "CHARTERS" for the first param
eter. Referring back to FIGS. 57 and 58, resource mapper
means and processing provides blocks 5716, 5720, 5740,

cessing.

Automatic MS Configuration Processing

>> Personalize Phone Features by Who is Nearby
((_I_msid="Poindexter")&(_I_loc $(1 0F)\loc_my)):

Invoke Data (SYS_vol, "3");
Invoke Data (SYS_bright, "2");
Invoke Data (SYS_desktop, "mypic.jpg");
II ...

The example shows modifying the MS volume to a con
figuration of 3, modifying the MS display brightness con
figuration to 2, and the MS background "wall-paper" to
mypic.jpg whenever Poindexter is within 10 feet. Any MS
peripheral can be automatically affected with a charter. Any
MS user interface (e.g. layout, organization, appearance,
background, foreground, text font, etc) can be customized or
modified with a charter. Similarly, by modifying any appli
cationAppTerm variables, any aspect of the application can
be automatically governed (_application maximum values,
application settings, application appearance, application
menus, application options, etc).

It may be desirable to share, or make temporary use of,
different permissions (privileges) set up for one MS user to
be applied conveniently to another MS user. For example,
when certain MS users are in the vicinity, you may want to
provide each with identical permissions while they are

5752, 5754, and any other charter processing disclosed with
the ability to treat one identifier being processed in context
of another identifier. Assuming the only changes made to the

10 examples is replacing "PRIVILEGES" with "CHARTERS",
then in the first example ("+"), anywhere there is charter
processing that Jared is involved, Jared gets treated for
having charters of Jared and additionally of Janette. Any-

15 where there is charter processing that Janette is involved,
Janette gets treated for having charters of Janette and addi
tionally Jared. Thus, Resource Mapper gets applied where it
makes sense in context of use. Below are detailed descrip
tions for providing the means and processing to automati-

20 cally assign privileges and charters in charter actions for
later being accessed in WITS processing.

FIG. 95A depicts a preferred embodiment of a resource
mapper record for resource mapper processing of the present
disclosure. Resource mapping refers to mapping a grantable

25 resource such as privileges or charters with a convenient
operation that does not require change of the resources
themselves. A resource mapper record 9500 contains the
following fields and descriptions. Resource field 9500a
contains the resource type (CHARTERS or PRIVILEGES)

30 which is being associated between users. Base id field 9500b
contains an identifier (see BNF granimar ID for embodi
ments) which is to be extended with additional resources.
Base id type field 9500c contains the type of identifier (see nearby:

((\locByID_Janette $(1 0F)\loc_my)&(\locByID_Jared 35
BNF grammar IDType for embodiments) of field 9500b.
Applied id field 9500d contains an identifier (see BNF
grammar ID for embodiments) owning the resource which is
being applied to the identifier offield 9500b. Applied id type
field 9500e contains the type of identifier (see BNF grammar

$(10F)\loc_my)):
Invoke App ("ResMapper", "PRIVILEGES", "Janette",

"Jared", "+", "ALL");
Invoke App ("ResMapper", "PRIVILEGES", "Jared",

"Janette", "+", "ALL");
The "ResMapper" (Resource Mapper) interface is prefer
ably a prepackaged API as part of the LBX MS OIS for
better performance of being accessed with a well known
name and invoked as a thread continuation of processing
(e.g. function interface), rather than a spawned process in its
own thread, however any reasonable executable form may
be used. In the example, Jared gets treated like Janette (in
addition to how currently treated), and Janette gets treated
like Jared (in addition to how currently treated) for ALL
privileges checked at the MS where the charter is executed
by WITS processing. Referring back to FIGS. 57 and 58,
resource mapper means and processing provides blocks
5708, 5712, 5722, 5748, 5760, and any other privilege
processing disclosed with the ability to treat one identifier
being processed in context of another identifier. Thus, any
where there is privilege processing that Jared is involved,
Jared gets treated for having privileges of Jared and addi
tionally of Janette. Anywhere there is privilege processing
that Janette is involved, Janette gets treated for having
privileges of Janette and additionally Jared.

Then, to return the Jared and Janette identifiers back to the
way they were, for example when both are no longer within
10 feet:
((\locByID_Janette (5M)$$(10F)\loc_my)l(\locByID_Jared

(5M)$$(1 0F)\loc_my)):
Invoke App ("ResMapper", "PRIVILEGES", "Janette",

"Jared", "-", "ALL");

40 IDType for embodiments) of field 9500d. Applied Mask
field 9500/ contains a mask for how to apply the resource
from identifier to another. For example, when resource field
9500a contains PRIVILEGES (i.e. privileges being applied),
mask field 9500/ may contain "ALL" for applying all

45 privileges of field 9500d to field 9500b, "Data" for applying
only the data send privileges, "Impersonate" for applying
only the impersonation privileges, "WDR" for applying only
the WDR privileges, "SL" for applying only the situational
location privileges, "Mon" for applying only the monitoring

50 privileges, "LBX" for applying only the LBX privileges,
"LBS" for applying only the LBS privileges, or any other
embodiment setting for identifying a category or subset of
privileges (FIGS. 59160 have privilege categories). When
resource field 9500a contains CHARTERS (i.e. charters

55 being applied), mask field 9500/ may contain "ALL" for
applying all charters of field 9500d to field 9500b, an
application prefix (e.g. "B_") for applying only certain
application prefix section charters, data send privileges, a
name (e.g. "doitHere") for applying only explicitly named

60 section charters, or any other embodiment setting for iden
tifying a category or subset of charters.

WITS processing points discussed above accesses all
resource mapper records 9500 with field 9500b and 9500c
set to the in-process WDR ID information. Then, fields

65 9500d and 9500e are used to access the resource information
identified in fields 9500a and 9500/for treating it as though
it were already part of resource information of fields 9500b

Petitioners' Ex. 1001, Page 540 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
427

and 9500c. There may be many records 9500 for supporting
mapping of a plurality of identified resources to a single
identified resource.

Charter/privilege processing points may also access all
resource mapper records 9500 with field 9500b and 9500c 5

set to the MS ID of particular processing where privileges
and charters are being determined for the MS. Then, fields
9500d and 9500e are used to access the resource information
identified in fields 9500a and 9500/for treating it as though
it were already part of resource information of fields 9500b 10

and 9500c.
FIG. 95B depicts a flowchart for a preferred embodiment

for automatic resource mapper processing. Execution of the
ResMapper interface (e.g. as exemplified above), begins at
block 9502, continues to block 9504 where all parameters 15

(one parameter for each field of a record 9500 wherein the
IDType type fields may be assumed in various embodi
ments) are validated and then to block 9506. If block 9506
determines one or more parameters are not valid, then block
9508 handles the error appropriately and the caller (invoker) 20

of FIG. 95B processing is returned to at block 9510, perhaps
with an error describing the return. If block 9506 determines
all parameters are valid, then processing continues to block
9512.

428
nated phone log (incoming, outgoing, missed, all, etc) can be
sorted based on MSs in the vicinity, from nearest to furthest
away using caller id. In a file system application use, all files
or documents of a designated MS system folder, drive, or
other storage specification can be sorted based on MSs in the
vicinity, from nearest to furthest away using creator, editor,
owner, assignor, or other document property identifier infor
mation as a key. The file system application example pro
vides the MS user with a quick method to identify pictures,
documents, files, videos, etc for others who are in the
vicinity. For example:

Invoke App ("LocSort", "BYID", \thisMS, "SOM", M_listP
trs, 112, "email", "ASC");

Location sort processing can be invoked in an action for a
variety of charter conditions. Parameters to location sort
processing include:
sort method=indicate to sort procedure the type of sort to
conduct;
sort method data=parameter passed based on the type of sort
being requested (e.g. a specified MS ID, or a specified
location);
distance specification=Distance in desired units around the

If block 9512 determines the specified operator is to apply
a resource (i.e. add operator), then block 9514 accesses
resource mapper records to see if an identical record for
creation already exists. Thereafter, if block 9516 determines
the record to be created by this invocation of FIG. 95B
already exists, then the caller is returned to at block 9510
perhaps with a duplication error. Block 9510 should always
return an error or success code to the caller depending on
what led up to the return. If block 9516 determines the
record does not already exist, then block 9518 creates the
record 9500 in the resource mapper data and processing
continues to block 9510. If block 9512 determines the
operator is not for applying (adding) a resource mapper
record, then processing continues to block 9520.

25 specified location or location of a specified MS;
pointer list=Two dimensional array of memory pointers (see
FIG. 96B), each array entry containing a pointer pointing to
a MS id or address, and a pointer to the overall record being
sorted in the application. For example, an email application

30 wanting to sort its inbox passes this parameter as a list of
pointers to source address information (e.g.
joe@yahoo.com) and its associated item inbox item record
being sorted. The offset (array index) into the array equates
to a current email inbox item. Upon return, the pointer list

35 is sorted for use by the application in sorting the application
records (e.g. inbox items). Any application (email, calendar,
etc) can provide novel item sorting based on the location of
the MS, MSs nearby, or a specified location.

If block 9520 determines the operator passed to FIG. 95B Pointer list count=Number of entries in the two dimensional
pointer list array for sorting;
ID section=The section name of appflds.source.ID.X which
is to be used for comparison to application values (e.g. the
first pointer in each two dimensional array item) for sorting;
Sort direction=Sort direction of ascending (ASC) or
descending (DESC).

FIG. 96A depicts a flowchart for a preferred embodiment
for automatic application sort index processing. The well
known procedure ("LocSort" maps to a linked API acces
sible for processing) is invoked at block 9602 and continues

is for removing an existing resource mapper record, then 40

block 9522 deletes the specified record from resource map
per data (if it exists) and processing continues to block 9510,
otherwise block 9524 handles any other resource mapper
operator passed (e.g. an intersection operator not shown)
which results in the resource intersection being set between 45

identifiers, and processing continues to block 9510. Thus,
FIG. 95B reflects the results of charter actions which auto
matically associate resources between users for influencing
WITS processing, for example in context of other MS user
privileges and/or charters. WITS processing uses the
resource mapper data for extending privileges and/or char
ters by one or more other granting identities.

50 to block 9604 where parameters are accessed and validated.
FIG. 96A may be invoked by an application continually on
a periodic basis based on a user application configuration
(e.g. keep inbox sorted by who is nearby (e.g. poll interface
every N seconds)), may be invoked by a user when needed

55 to perform desired sorting, may be invoked upon arrival of
new application entries (e.g. new email, calendar item, etc),
or may be invoked in a configured charter. Thereafter, if
block 9606 determines any parameters are not valid, block
9608 handles the error appropriately (e.g. logs to LBX

Another useful MS interface, preferably provided as an
API, is the location sorter interface made available to email
application inbox processing, calendar application entry
processing, phone application call log processing, file sys
tem application document/file processing, or any other
application where WDR queue contents can be used to
provide special sort functionality to a list of the particular
application. In an email application use, an email folder (e.g.
inbox) can be sorted based on MSs in the vicinity, from
nearest to furthest away using source, recipient or both as a
key. In a calendar application use, all past, forthcoming, or
currently defined calendar entries, perhaps of a certain type,
can be sorted based on MSs in the vicinity, from nearest to 65

furthest away using source, recipient or both as a key. In a
phone application use, specific phone numbers of a desig-

60 history 30) and the invoker is returned to at block 9610,
preferably with an error code or status indicating success
depending on FIG. 96 processing up to that point. If block
9606 determines all parameters are valid, then processing
continues to block 9612.

If block 9612 determines location sort index processing
sort method is for sorting the application list by a specified
location (e.g. "BYLOC" of Invoke App ("LocSort",

Petitioners' Ex. 1001, Page 541 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
429

"BYLOC", "75022", "SM", M_listPtrs, 98, "email",
"ASC")), then block 9614 accesses the location parameter
and prepares it for a search to the WDR queue. Various
embodiments support location parameters for latitude and
longitude, physical mailing address, zip code, or other 5

physical location information transformable at block 9614.
Block 9614 may access geo-coded data for deriving a
location suitable for searching WDR fields 1100c. After
search preparation, block 9616 accesses the WDR queue
source identifier field section information specified by the 10

identification sort key (e.g. ID
section=appflds.source.id.email) within the specified dis
tance to the specified location, and ordered by fields 1100b,
then by the identification sort key within that. Alternatively,
sorting can use how close to order search results, perhaps 15

specified with an additional parameter (e.g. for time or
distance sort order priority). Appropriate WD R access sema
phore(s), preferably within an appropriate WDR queue API,
is used for all WDRs within the specified distance (e.g.
"5M"=5 meters; any of a variety of distance units and 20

amounts are supported) of the specified location. Block 9616
also removes duplicate ID section values (i.e. keeps distinct
values) which occur after the first occurrence. This ensures
only a single source id is used for when it was closest to the
specified location. When block 9616 completes, a sorted list 25

of unique ID section values are made. Thereafter, block
9618 gets the next ordered ID section value from the sorted
WDRs, and then block 9620 determines ifthere (is a first, or)
are any remaining WDRs to process.

430
preferably within an appropriate WDR queue API, is used
for all WDRs within the specified distance (e.g. "l0M"=l0
meters) of the specified MS location. Block 9630 also
removes ID section duplicates which occur after the first
occurrence (i.e. keeps distinct values). This ensures only a
single source id is used for when it was closest to the
specified location. When block 9630 completes, a sorted list
of sort key values are made. Thereafter, block 9618 gets the
next ordered ID section value from the sorted WDR infor
mation, and then block 9620 determines if there (is a first,
or) are any remaining WDRs to process. Processing is as was
described above. If block 9624 determines a sort method
was not requested by a MS location, processing continues to
block 9632.

If block 9632 determines a sort method was requested by
the location of the MS of FIG. 96 processing (e.g. Invoke
App ("LocSort", "BYID", \thisMS, "!OM", M_listPtrs, 34,
"email", "ASC")), then block 9626 determines the specified
MS location using the specified MS ID and processing
continues as was described for block 9626 and subsequent
processing. If block 9624 determines a sort was not
requested by the location of the MS of FIG. 96 processing,
processing continues to block 9634. In a preferred embodi
ment, block 9624 handles block 9632 and block 9634
because the MS ID is passed as a parameter anyway.

If block 9634 determines a sort was requested by those
nearby the location of the MS of FIG. 96 processing (e.g.
Invoke App ("LocSort", "NEARBY", thisMS, "!OM",
C_listPtrs, 23, "calendar", "ASC")), then block 9626 deter
mines the specified MS location using the MS ID of the MS
of FIG. 96 processing, and processing continues as was
described for block 9626 and subsequent processing. If
block 9634 determines a sort was not requested by the
location of the MS of FIG. 96 processing, processing
continues to block 9610 where an error is preferably
returned to the caller.

In all cases the two dimensional array of pointers are
sorted base on the sort index ID section values found from
the corresponding sorted WDRs. For example, the email

If block 9620 determines there is a WDR to process in the 30

list from block 9616, then block 9622 accesses the pointer
list, searches for a matching sort key value, and modifies the
pointer list for ascending or descending according to
matches found. Ascending places pointers for a match at the
bottom of the list, and descending places pointers for 35

matches at the top of the list. Once a pointer has its position
set, it is not affected by subsequent processing of block 9618
through 9622 on the current invocation of FIG. 96. Block
9622 returns to block 9618. If block 9620 determines there
are no additional WDRs to process from block 9616, then
the caller (invoker) is returned to at block 9610. Upon return,
the pointer list has been sorted appropriately by FIG. 96A
processing. The application can apply the index (i.e. ID
section parameter) to whatever list it is concerned with (e.g.
email inbox).

40 application uses the pointer list to sort inbox items based.

Referring back to block 9612, if it is determined that the
invoker did not specify to sort the pointer list by a specified
location and distance thereabouts, then processing continues
to block 9624. If block 9624 determines a sort method was

45

While it is preferable that the invoking application uses the
pointer list for subsequent sort processing, an alternate
embodiment causes the application list to be sorted upon
return at block 9610.

Sorting the pointer list is far more efficient than sorting the
data which pointers point to. The data can live where it
makes sense in the application, and the pointers are sorted so
that the pointer list is used for displaying of the data
associated with the application identifiers being sorted.

The application uses LocSort, or LocSort results, to keep
application entries sorted every time a new entry arrives, is
posted, is changed, is deleted, etc. In such embodiments, the
application may use LocSort results as the initial starting
point, and then manage every entry to process thereafter. For

requested by a MS location (e.g. Invoke App ("LocSort", 50

"BYID", "Andy", "!OM", M_listPtrs, 98, "email", "ASC")),
then block 9626 determines the specified MS location using
the specified MS ID. Any MS can be specified wherein block
9626 accesses the WDR queue for the most recent where
abouts of the particular MS. Thereafter, if block 9628
determines the MS was not found on queue 22, then the
caller is returned to at block 9610, preferably with an error
code, otherwise processing continues to block 9630.

55 example, when a new email item arrives, the email appli
cation may perform a subset of FIG. 96A processing itself to
keep things sorted without invoking LocSort for an entire
sort refresh.

Block 9630 accesses the WDR queue source identifier
field section information specified by the ID section param- 60

eter (e.g. appflds.source.id.email) within the specified dis
tance to the specified MS location, and ordered by nearness
to the MS location (fields 1100c), then by the ID section
information from the WDR within that. Alternatively, sort
ing can use time to order search results, perhaps specified 65

with an additional parameter (e.g. for distance or time sort
order priority). Appropriate WDR access semaphore(s),

In some embodiments, any WDR search criteria can be
specified by a MS user for producing a sorted list ofWDRs
which can in turn contain the WDR data (e.g. identifier) used
as the sort index key for sorting application records associ
ated to the WDR data.

FIG. 96B illustrates an example application use of sort
index processing, specifically a MS email application. In the
example illustrated, an email inbox contains only 6 email
items shown generically as inbox display 9654. The inbox

Petitioners' Ex. 1001, Page 542 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
431

email items are each shown to the user with the sent
date/time stamp, who sent the email item (source address),
and a subject of the email item. Other embodiments may
show more or less information in the inbox display and the
user can select an email item for the email body and other
information. Prior to invoking FIG. 96A processing, the
email application prepares the two dimensional array of
pointers for the specified number of entries as shown in
pointer list 9652. Note that the Si pointer points to the sender
address of the email item, and the Ri points to the entire
email inbox row for the email item. When sorting has been
completed by FIG. 96A processing, pointer list 9656 has
been sorted to reflect whereabouts data found on the WDR
queue as requested for the particular sort method. When the
email application receives back the pointer list, it is used to
then sort the email inbox to the inbox 9658 for sorting based
on whereabouts data associated with email items.

Each sort method of the LocSort interface may be
accessed from the email application using a new email
interface request, or a charter may access the interface in a
charter action. Similarly, a calendar interface displaying a
plurality of calendar entries can have the entries sorted based
on whereabouts of MS users associated with the calendar
items. A phone application may sort various phone call logs
(inbound, outbound, etc) based on whereabouts of associ
ated MS users of the phone calls in the logs. Other appli
cations may sort a plurality of records in context of the
particular application based on whereabouts of associated
MS users.
>> Modify MS Performance Variables (e.g. Tbrottle for
More or Less Threads) Based on Activity, Nearby Status,
Statistics, Queue 22 Contents, or any Other Charter Condi
tion(s).
(\st_MSNearbyCt>=25):

In another example, the MS variables 19xx-Max or 19xx
Ct may be modified by a charter action by accessing the
appropriate SYS_xxx AppTerm variables.
>> Automatic Clipboard Management
(...):

Invoke Data (SYS_clipBoard, ...),
Invoke Data (SYS_clipType, ...);

The example shows that a given charter expression can be
used to cause action for automatically configuring the MS
system clipboard. A system clipboard AppTerm variable is
made accessible to charter processing wherein other App
Term variables can be accessed and used to populate the
system clipboard App Term variable from the charter action.
In another embodiment, a well known API is provided for
automatically capturing content of an applicable type from
the focused MS user interface object. The content may later

432
strings contained in the file are not eligible to be entered
from the keyboard. For example, inappropriate "four letter
words" can be configured in the file for those words which
cannot be entered at the MS keyboard. In another embodi-

5 ment, when SYS_inKBD is set to a valid file name, only the
character and text strings in the file can be entered at the
keyboard. In one embodiment, a keyboard interrupt intercept
program (e.g. Terminate and Stay Resident (TSR)) uses the
file to enforce what can or cannot be entered from the MS

10 keyboard. SYS_inMIC is similar to SYS_inKBD for defin
ing what cannot be detected at the MS microphone (or
alternately the universe of what can be detected). SYS_in
MIC is also preferably an input interrupt intercept program
which translates sound at the MS microphone to words and

15 then enforces what can or cannot be spoken to the MS. In
some embodiments, the voice control application makes use
of SYS_inMIC for an integrated solution rather than con
verting voice twice by intercepting sound at the microphone.
SYS_outSPKR is similar to SYS_inMIC for defining a file

20 containing what can or cannot be output at the MS
speaker(s). Again, an interceptor program (e.g. for system
words detected) is one embodiment. SYS_outMON is simi
lar to the other AppTerm variables for referencing a file
containing what can or cannot be output to the MS monitor

25 (screen). Again, a text stream output interceptor program,
and/or Optical Character Recognition (OCR) interceptor
program is one embodiment. While perhaps these special
App Term variables potentially involve processing impacting
MS performance, a parent of a child with a MS may desire

30 such features to sensor certain activities at the MS. Provid
ing various disclosed charter expressions can provide unique
input and output control at certain locations or other condi
tions the MS encounters. In some embodiments, a special
constant setting of "ALL" can be specified to prevent all

35 input and/or output from occurring at the MS, depending on
the variable set. This allows controlling whether any input or
output at all is permitted at configured charter locations or
other conditions.

A child will likely be reluctant to make such configura-
40 tions. Charter configurations may be made by a user of a MS

who has administration privileges at the MS. In some
embodiments, a Grantee or Grantor in permission and char
ter configurations represents activities by an authorized
administrator at the MSs involved. In other embodiments,

45 permission or charter configurations (e.g. use of FIGS. 35A
through 48A, or subset(s) thereof) can only be made after
authentication of who is performing configuration. Authen
tication may be in the form of a special MS user name and
password, a special MS administrator password, a MS user

50 option exposed only after entering a special MS passcode, or
other suitable authentication method.

be pasted to another user interface object. Similarly, the
system clipboard AppTerm variable can be accessed by
charter processing for copying its value to other AppTerm
variables, for example to automatically populate an Appli- 55

cation user interface object with the contents of the system
clipboard. An alternate embodiment implements a well
known interface for automatically pasting from the clip
board content which was most recently captured to it.
AppTerm variables may include any aspect of application 60

state variables for novel charter processing.

>> Environmental Sampling (Sound, Light, Location) for
Automated Charter

Some MSs incorporate sound level decibel detection
capability, and light intensity/brightness detection through
an iris capability. Detecting sound decibels is well known to
those skilled in the art by reading levels on at least one MS
microphone. Similarly, detecting light levels is well known
to those skilled in the art of automated iris light detection as
provided to some televisions for automatically adjusting
brightness levels. Both of these capabilities involve the MS

>> Data Input or Output Enforcement
Special AppTerm variables of SYS_inKBD, SYS_inMIC,
SYS_outSPKR, and SYS_outMON are defaulted to NULL
(e.g. 0) at the MS, however these App Term variables may be 65

used to enforce what can be input or output at the MS. When
SYS_inKBD is set to a file name, the characters and text

taking an environment sample with an input peripheral.
Sample values are used to change the values of correspond
ing AppTerm variables which are accessible to charter
processing (e.g. SYS_soundDB=most recent value for Deci
bels detected by MS at microphone.
SYS_lightLumens=most recent Lumens measurement for

Petitioners' Ex. 1001, Page 543 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
433 434

on embodiments. If block 9724 determines the user did not
select to delete the vicinity monitor, then processing con
tinues to block 9730.

light intensity measured by an iris of the MS). Thus, the MS
can be equipped with environment sensing devices for
setting AppTerm variables which are accessed for unique
charter processing. For example, when light or sound levels
reach certain values as described in a charter expression,
charter action(s) can be performed automatically.

If block 9730 determines the user selected to modify the
5 vicinity monitor VMDR, then block 9732 interfaces with the

user for VMDR modification until the user selects to save
modifications or exit. The user interfaces at block 9732 for
modifying data described with FIG. 97B. Thereafter, if block
9734 determines there was at least one modification made

>> Set Up Vicinity Monitor (e.g. Real-Time Updated Map
Graphic, Nearby MS Counter Gauge with Color Codes for
Set(s) of Characteristics, Visual and/or Audible Metaphor
for Depicting Nearby MS Conditions, or Other Graphical
Embodiment) for Number of Friends Nearby, or Conditions

10 which the user selected to save, then block 9736 saves the
VMDR data and block 9738 checks to see if the modified

of Nearby MSs
A standard IbxPhone™ feature is to provide a real-time

monitor for those nearby of interest in real time. As WDR
15

information is received by a MS from nearby MSs of interest
("of interest" as configured by a MS user), a vicinity monitor
provides visual and/or audible indication to the MS for
indicating those nearby. There may be a plurality of vicinity
monitors with different criteria for providing unique indica- 20

tion in each vicinity monitor.

vicinity monitor should be restarted to initialize with
change(s) made. If block 9738 determines the corresponding
vicinity monitor of FIG. 97C processing is active and should
be restarted with the modified data, then block 9740 termi
nates the vicinity monitor by inserting the special termina
tion entry into the WDR queue which contains field 9700b
as discussed above. Block 9740 waits for the corresponding
named vicinity monitor processing of FIG. 97C to terminate
(e.g. field 9700/ set to inactive) before continuing to block
9742 where the vicinity monitor (FIG. 97C) processing is
started again, and processing continues back to block 9720.
If block 9738 determines an active vicinity monitor does not
have to be restarted based on data modifications or the

25 affected vicinity monitor is not active, then processing
continues back to block 9720. Block 9720 always presents
the most recent VMDR information. If block 9730 deter
mines the user did not select to modify the vicinity monitor,

With reference now to FIG. 97A, depicted is a flowchart
for a preferred embodiment for vicinity monitor configura
tion processing. Vicinity monitor management/configuration
processing begins at block 9702 upon user request, and
continues to block 9704 where the user specifies a vicinity
monitor name, block 9706 which uses the specified name to
access Vicinity Monitor Data Records (VMDRs) 9700 for a
matching Vicinity Monitor Data Record (VMDR) having the
name specified, and to block 9708 to check if a VMDR with 30

matching name field 9700b was found. There may be many
vicinity monitors, each with a unique name that the user
must specify at block 9704 for specifying which one to
manage/configure. If block 9708 determines the user speci-

35
fled a name which was not found in VMDRs, block 9710

then processing continues to block 9744.
If block 9744 determines the user selected to restart the

vicinity monitor, then block 9740 terminates the vicinity
monitor as already described if it is determined to be active
(checking field 9700.1). Processing continues at block 9740
as described above. If block 9744 determines the user did
not select to restart the vicinity monitor, then processing
continues to block 9746. A user may select to restart a
vicinity monitor for a variety of reasons, for example after
using another method for modifying VMDR information
(e.g. query manager of a SQL Database form of VMDR

prompts the user to make sure he wants to create a new
VMDR with the specified name, and block 9710 waits for
the user's response. Thereafter, if block 9712 determines the
user specified he is creating a new vicinity monitor, pro
cessing continues to block 9714 where data is defaulted for
a new VMDR with the new name, otherwise the vicinity
monitor configuration interface is appropriately terminated

40 data).

at block 9716 (e.g. incorrectly specified name at block
9704), and FIG. 97A processing terminates at block 9718. 45

Block 9714 continues to block 9720. If block 9708 deter-
mines a VMDR was found with a matching name, then
processing continues to block 9720.

If block 9746 determines the user selected to activate
(start) the vicinity monitor, then block 9748 checks to see if
it is already active (started) in which case processing con
tinues back to block 9720. If the vicinity monitor is not
already active, then block 9742 starts an instance of FIG.
97C processing for the named vicinity monitor and FIG.
97A processing continues back to block 9720. Block 9742
passes as a parameter to FIG. 97C processing the name (field
9700b) so every FIG. 97C instance of processing knows Block 9720 presents to the user VMDR information for

the vicinity monitor being managed by FIG. 97A processing
(new vicinity monitor when arrived to from block 9714, or
existing vicinity monitor when arrived to by block 9708
directly). Thereafter, block 9722 waits for a user action in
response to data presented, and continues to block 9724
when such an action is detected.

50 which named vicinity monitor is being started. If block 9746
determines the user did not select to activate the vicinity
monitor, then processing continues to block 9750.

If block 9750 determines the user selected to deactivate
(terminate) the vicinity monitor, then block 9752 checks to

If block 9724 determines the user selected to delete the
vicinity monitor, then block 9726 checks field 9700/ to see

55 see if the vicinity monitor is active (running), in which case
the vicinity monitor is terminated by inserting the special
termination entry into the WDR queue which contains field
9700b as discussed above. Block 9752 waits for the corre-if the monitor is active and if so the vicinity monitor is

terminated by inserting a special termination entry into the
WDR queue which contains field 9700b and is used by 60

vicinity monitor processing (FIG. 97C). Block 9726 waits
for the corresponding named vicinity monitor processing of
FIG. 97C to terminate (e.g. field 9700/set to inactive) before
continuing to block 9728. Block 9728 deletes the VMDR
and processing continues to block 9716 for FIG. 97A 65

termination processing. Appropriate FIG. 97 thread sema
phore control is incorporated for data accesses, depending

sponding named vicinity monitor processing of FIG. 97C to
terminate (e.g. field 9700/ set to inactive) before continuing
back to block 9720. Block 9752 continues directly back to
block 9720 when the vicinity monitor is determined to not
be active (field 9700.1). If block 9750 determines the user did
not select to deactivate the vicinity monitor, then processing
continues to block 9754.

If block 9754 determines the user selected to exit FIG.
97A processing, block 9754 continues to block 9716 for

Petitioners' Ex. 1001, Page 544 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
435

termination processing, otherwise block 9756 handles any
other user actions which result in processing leaving block
9722. Block 9756 continues back to block 9720.

FIG. 97B depicts a preferred embodiment of a Vicinity
Monitor Data Record (VMDR) 9700 for discussing opera- 5

tions of vicinity monitor processing. ID field 9700a contains
a unique index key value for all VMDRs to facilitate I/O
accesses to the VMDR. Name field 9700b contains a user
specified unique vicinity monitor name which is unique
across all VMDRs. Preferably, the name is displayed in a 10

visual graphic of the vicinity monitor (e.g. window title bar
text) to remind the user which vicinity monitor is being
displayed. Identifier(s) field 9700c contains all MS identi
fiers of interest to the user for being monitored in the vicinity

15
monitor. Identifier(s) field 9700c contains a list of identifiers
including the type of identifier: group ID, MS ID, or MS ID
in second form associated to, or derived from, a first form of
MS ID, or other id as described in this disclosure. The type
of identifier is used to convert the identifier to a suitable use 20

436
Audible type field 9700h specifies whether or not to comple
ment the vicinity monitor display with audible information.
Preferably there is a variety of audible types supported for
specification, for example:

NULL=no audible to be used for the vicinity monitor;
NEW=provide a short audible indication when a new MS

is determined to be newly arrived to, or newly departed
from, within the vicinity (specific audible may be
configured by the user, and the user may specify a
vibrate rather than an audible sound);

PITCH=provide a unique pitch sound (or vibration
sequence) based on the number of MSs which are
included for being monitored by the vicinity monitor
(higher pitch sound (or more vibrations) for higher
number of MSs in the vicinity versus lower pitch sound
(or less vibrations) for a lower number of MSs in the
vicinity); or

Other audible method for communicating to the MS
information about MSs of interest in the vicinity.

State info field 9700} contains state information of the
most recently presented vicinity monitor, including the
currently displayed MS IDs and information thereof. Field
9700} is system maintained and is not editable by a user (e.g.
by FIG. 97A). VMDRs may be accessed at MS startup for

form. An alternate embodiment maintains a join value in
field 9700c for joining to one or more identifier records (e.g.
in another table) separately maintained to prevent a plurality
of identifiers from being maintained in a single data record
field. Field 9700c may be specified as NULL in which case
all MSs in the vicinity as defined by halo field 9700d which
satisfy the expression of field 9700e are included for being
monitored. Halo field 9700d is a measurement for the
distance (a radius) around the moving MS of FIG. 97C
processing for how nearby another MS must be to be of
interest. The vicinity monitor will only indicate those MSs
which are within halo distance from the current MS. Field
9700d may be maintained in certain units (e.g. converted
from conveniently specified user units) or may include a
units specification for carrying what units the halo distance
value is being maintained in. Field 9700d may be specified
as NULL in which case all MSs as defined in field 9700c

25 determining what to start on the MS so the user does not
have to restart vicinity monitor(s) after initializing a MS as
the result of a power off, reboot, etc.

FIG. 97C depicts a flowchart for a preferred embodiment
for vicinity monitor processing. Vicinity monitor processing

30 begins at block 9760 and continues to block 9762 where the
vicinity monitor name parameter is determined (passed
when starting FIG. 97A), block 9764 where the VMDR with
a matching name field 9700b is updated for field 9700/ set
to active (i.e. True), and to block 9766 where all VMDR data

35 for the matching name field 9700b is retrieved. Block 9766
also resolves any identifiers, such as groups to the MS
identifiers that belong to the group, and mapped identifiers
for MS identifiers which are to be converted for WDR

which satisfy the expression of field 9700e are included for
being monitored. Expression field 9700e may contain any 40

charter expression which can be applied to a WDR as
described in a field 3700c and processed as field 3700c is
processed. Depending on the embodiment, certain special
terms may not be supported (e.g. no AppTerm use). Active
field 9700/is a Boolean (True/False) for indicating whether 45

the particular vicinity monitor is active (running) or inactive.
Refresh period field 9700g specifies the timeliness (prefer
ably in seconds) for how often the vicinity monitor should
refresh its real-time monitoring. An alternate embodiment
may specify date/time information, or other time indication 50

for how to refresh the vicinity monitor. Visual type field
9700h specifies how to display the vicinity monitor. Pref
erably there is a variety of display types supported for
specification, for example:

55
Map=map subset having MS owning vicinity monitor at

center with scale of surrounding map area determined
by halo, or determined by least nearby MS when halo
is NULL;

comparison processing. Block 9766 also converts halo units
if necessary to suitable units for proper block 9772 search
ing, and state info field 9700} is accessed for any last active
state data for user presentation. Thereafter, block 9766
continues to block 9768.

Block 9768 gets the current location of the MS of FIG.
97C processing (e.g. access to WDR queue 22) and contin
ues to block 9770 which uses field 9700h and 9700d to
display an appropriate initial graphic at the MS. The graphic
may be presented in a window, icon, or other MS interface
presentation portion. When field 9700h is set to Map, a map
is presented with the MS of FIG. 97C processing at the
center of the map and enough scaled map showing to cover
the halo region around the MS. Various embodiments will
support conventional zoom in and out control, as well as
panning and other conventional map functions. When halo
field 9700d is NULL, a defaulted amount of map is pre
sented around the MS of FIG. 97C processing. MSs pre-
sented on the map (block 9782) are preferably indicated as
small colored icons which can be user selected for a pop-up
of information identifying MS ID information and attributes
which matched expression field 9700e. When field 9700e is
set to Gauge, an appropriate meter embodiment is presented
with an initial setting of 0. Processing continues to block
9772.

Gauge=visual gauge indicating the number of MSs in the 60
vicinity as described by a VMDR (preferred embodi
ments includes a real-time updated numeric for the
number of MSs in the vicinity along with a meter
graphic, and perhaps color change, for the user quickly
distinguishing how many); or

Block 9772 produces a list ofWDRs from WDR queue 22
65 which match criteria ofVMDR fields 9700c and 9700d, and

those that represent distinct MSs most recently added to
queue 22 having an acceptable confidence. An alternate

Other visual method for communicating to the MS infor
mation about MSs of interest in the vicinity.

Petitioners' Ex. 1001, Page 545 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
437

embodiment matches field 9700e to WDRs at the time of the
queue 22 search, however a preferred embodiment imple
ments special terms as disclosed herein which make for
handling expression comparisons at a block 9778. The
timeliness of maintaining entries to queue 22 provides a 5

convenient trailing time window for MSs currently in the
vicinity. An alternate embodiment can additionally access
LBX History 30 provided there is a new VMDR field 9700k
(e.g. Time criteria field 9700k) which governs how far back
in history to consider MSs which are/were in the vicinity. 10

After block 9772 produces a list of distinct MS originated
WDRs most recently added to queue 22, processing contin
ues to block 9774 for beginning a loop to process each
distinct MS entry of the list. Block 9774 gets the next (or
first) entry from the list. Thereafter, block 9776 checks to see 15

if all entries have been processed, or if the list is empty (i.e.
nothing found at block 9772). If block 9776 determines there
is a list entry (WDR) to process, block 9778 uses expression
field 9700e against the list entry (WDR fields thereof) to
check for a resulting true of false condition. Thereafter, if 20

block 9780 determines the WDR satisfies the expression,
then block 9782 updates the vicinity monitor visual (using
field 9700h) with the MS information and processing con
tinues back to block 9774, otherwise block 9780 continues
directly back to block 977 4 for processing any next list entry 25

(WDR from block 9772). Block 9782 additionally uses
fields 9700i and 9700} for audibly (or vibe option) indicating
an update.

Referring back to block 9776, if all WDRs in the list from
block 9772 have been processed, block 9784 updates field 30

9700} with information for unambiguously producing the
current vicinity monitor result at a later time (e.g. after a MS
is powered on with an active vicinity monitor when last
powered off), and block 9786 sleeps according to field
9700g (e.g. 3 seconds). When the named thread of FIG. 97C 35

has slept for the proper amount of time, processing continues
to block 9788.

438
current MS location of WITS processing to determine if the
WDR matches any active vicinity monitor criteria. If no
match is found, the WITS2VM queue processing loop
returns to get the next WDR communicated from WITS
processing (implicit wait on queues if nothing there to
process yet). If a match is found for an active vicinity
monitor, new FIG. 97D processing would insert an entry to
a "vicinity monitor check to vicinity monitor" queue (re
ferred to as VM2VM queue) for being processed by modi
fied FIG. 97C processing so that the monitor graphic is
updated accordingly. In this embodiment, a modified FIG.
97C would only be responsible for looping on the VM2VM
queue for retrieval of a named termination entry or for the
named vicinity monitor matching WDR information to be
indicated to the user in at least the vicinity monitor graphic.
All vicinity monitors processing (new FIG. 97C processing)
would access the VM2VM queue for updating their respec
tive monitor information, and would be started and termi
nated, as already described. There are other embodiments
without departing from the spirit and scope of a vicinity
monitor that indicates those nearby in real time, for example
in radio signal range of the MS running the vicinity monitor.

Other Embodiments

As mentioned above, architecture 1900 provides a set of
processes which can be started or terminated for desired
functionality. Thus, architecture 1900 provides a palette
from which to choose desired deployment methods for an
LN expanse.

In some embodiments, all whereabouts information can
be pushed to expand the LN-expanse. In such embodiments,
the palette of processes to choose from includes at least
process 1902, process 1912 and process 1952. Additionally,
process 1932 would be required in anticipation of LN
expanse participating data processing systems having NTP
disabled or unavailable. Additionally, process 1922 could be
used for ensuring whereabouts are timely (e.g. specifically
using all blocks except 2218 through 2224). Depending on

Block 9788 peeks the WDR queue 22 for a special
vicinity monitor named termination entry inserted by FIG.
97 A before continuing to block 9790. If block 9790 deter
mines the termination entry for this named vicinity monitor
thread was found, block 9792 removes the termination entry
from queue 22, block 9794 properly terminates the vicinity
monitor display graphic, block 9796 saves field 9700/ as
inactive (i.e. False), and the named instance of FIG. 97C
processing terminates at block 9798. If block 9790 deter
mines the termination entry for this named vicinity monitor
thread was not found, then processing continues to block
9768 for another iteration of vicinity monitor update pro
cessing.

40 DLM capability ofMSs in the LN-expanse, a further subset
of processes 1902, 1912, 1952 and 1932 may apply.
Thread(s) 1902 beacon whereabouts information, regardless
of the MS being an aflirmifier or pacifier.

Thus, the vicinity monitor reflects all those of interest in
the vicinity of the MS of FIG. 97C processing on a con
tinuous basis. Any changes between the last iteration begin
ning at block 9768 and the next iteration beginning at block
9768 is determined through field 9700}, for example to
provide an audible.

An alternate embodiment will incorporate asynchronous
vicinity monitor processing so that the monitor is updated
immediately upon arrival of matching WDR information at
the MS. Rather than a polling design, block 5703 for
m WITS or iWITS processing would incorporate processing
for communicating the WDR in its entirety, preferably
through a "WITS to vicinity monitor check" queue (referred
to as WITS2VM queue), to a FIG. 97D processing. FIG.
97D would loop on the WITS2VM queue for WDRs, and
when a WDR is obtained from the WITS2VM queue for
processing, all VMDRs would be accessed along with the

In some embodiments, all whereabouts information can
45 be pulled to expand the LN-expanse. In such embodiments,

the palette of processes to choose from includes at least
process 1922 (e.g. specifically using all blocks except 2226
and 2228), process 1912, process 1952 and process 1942.
Additionally, process 1932 would be required in anticipation

50 ofLN-expanse participating data processing systems having
NTP disabled or unavailable. Depending on DLM capability
of MSs in the LN-expanse, a further subset of processes
1922, 1912, 1952, 1942 and 1932 may apply.

There are many embodiments derived from architecture
55 1900. Essential components are disclosed for deployment

varieties. In communications protocols which acknowledge
a transmission, processes 1932 may not be required even in
absence ofNTP use. A sending MS appends a sent date/time
stamp (e.g. field 1100n) on its time scale to outbound data

60 1302 and an acknowledging MS (or service) responds with
the sent date/time stamp so that when the sending MS
receives it (receives data 1302 or 1312), the sending MS
(now a receiving MS) calculates a TDOA measurement by
comparing when the acknowledgement was received and

65 when it was originally sent. Appropriate correlation outside
of process 1932 deployment enables the sending MS to
know which response went with which data 1302 was

Petitioners' Ex. 1001, Page 546 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
439

originally sent. A MS can make use of 19xx processes as is
appropriate for functionality desired.

In push embodiments disclosed above, useful summary
observations are made. Service(s) associated with antennas
periodically broadcast (beacon) their reference whereabouts
(e.g. WDR information) for being received by MSs in the
vicinity. When such services are NTP enabled, the broad
casts include a sent date/time stamp (e.g. field 1100n). Upon
receipt by a NTP enabled MS in the vicinity, the MS uses the
date/time stamp of MS receipt (e.g. ll00p) with the date/
time stamp of when sent (e.g. field 1100n) to calculate a
TDOA measurement. Known wave spectrum velocity can
translate to a distance. Upon receipt of a plurality of these
types of broadcasts from different reference antennas, the
MS can triangulate itself for determining its whereabouts
relative known whereabouts of the reference antennas. Simi
larly, reference antennas are replaced by other NTP enabled
MSs which similarly broadcast their whereabouts. A MS can

440
ing) data processing system). In another embodiment, a
second (receiving) data processing system receives a sent
date/time stamp (e.g. field 1100n) and then becomes a first
(sending) data processing as described in the send initiated

5 embodiment. Whatever embodiment is used, it is beneficial
in the LN-expanse to minimize communications traffic.

The NTP bit in date/time stamps enables optimal elegance
in the LN-expanse for taking advantage of NTP when
available, and using correlated transmissions when it is not.

10 A NTP enabled MS is somewhat of a chameleon in using
unidirectional data (1302 or 1312 received) to determine
whereabouts relative NTP enabled MS(s) and/or service(s),
and then using bidirectional data (1302/1302 or 1302/1312)
relative MS(s) and/or service(s) without NTP. A MS is also

15 a chameleon when considering it may go in and out of a
DLM or ILM identity/role, depending on what whereabouts
technology is available at the time.

The MS ID (or pseudo MS ID) in transmissions is useful
for a receiving data processing system to target a response

20 by addressing the response back to the MS ID. Targeted
transmissions target a specific MS ID (or group of MS IDs),
while broadcasting is suited for reaching as many MS IDs as
possible. Alternatively, just a correlation is enough to target
a data source.

be triangulated relative a mixture of reference antennas and
other NTP enabled MSs, or all NTP enabled MSs. Stationary
antenna triangulation is accomplished the same way as
triangulating from other MSs. NTP use allows determining
MS whereabouts using triangulation achievable in a single
unidirectional broadcast of data (1302 or 1312). Further
more, reference antennas (service(s)) need not communicate 25

new data 1312, and MSs need not communicate new data
1302. Usual communications data 1312 are altered with a
CK 1314 as described above. Usual communications data
1302 are altered with a CK 1304 as described above. This
enables a MS with not only knowing there are nearby
hotspots, but also where all parties are located (including the
MS). Beaconing hotspots, or other broadcasters, do not need

In some embodiments where a MS is located relative
another MS, this is applicable to something as simple as
locating one data processing system using the location of
another data processing system. For example, the where
abouts of a cell phone (first data processing system) is used

30 to locate an in-range automotive installed (second) data
processing system for providing new locational applications
to the second data processing system (or visa-versa). In fact,
the second data processing may be designed for using the
nearby first data processing system for determining its

to know who you are (the MS ID), and you do not need to
know who they are in order to be located. Various bidirec
tional correlation embodiments can always be used for
TDOA measurements.

In pull embodiments disclosed above, data processing
systems wanting to determine their own whereabouts (re
questors) broadcast their requests (e.g. record 2490).
Service(s) or MSs (responders) in the vicinity respond.
When responders are NTP enabled, the responses include a
sent date/time stamp (e.g. field 1100n) that by itself can be
used to calculate a TDOA measurement if the requestor is
NTP enabled. Upon receipt by a requestor with no NTP, the
requestor uses the date/time stamp of a correlated receipt
(e.g. ll00p) with the date/time stamp of when sent (e.g.
fields 1100n or 2450a) to calculate a time duration (TDOA)
for whereabouts determination, as described above. New
data or usual communications data applies as described
above.

If NTP is available to a data processing system, it should

35 whereabouts. Thus, as an MS roams, in the know of its own
whereabouts, the MS whereabouts is shared with nearby
data processing systems for new functionality made avail
able to those nearby data processing systems when they
know their own whereabouts (by associating to the MS

40 whereabouts). Data processing systems incapable of being
located are now capable of being located, for example
locating a data processing equipped shopping cart with the
location of an MS, or plurality of MSs.

Architecture 1900 presents a preferred embodiment for
45 IPC (Interprocess Communications Processing), but there

are other embodiments for starting/terminating threads, sig
naling between processes, semaphore controls, and carrying
out present disclosure processing without departing from the
spirit and scope of the disclosure. In some embodiments,

50 threads are automatically throttled up or down (e.g. 1952-
Max) per unique requirements of the MS as determined by
how often threads loop back to find an entry already waiting
in a queue. If thread(s) spend less time blocked on queue,
they can be automatically throttled up. If thread(s) spend

be used whenever communicating date/time information
(e.g. NTP bit of field 1100b, 1100n or ll00p) so that by
chance a receiving data processing is also NTP enabled, a
TDOA measurement can immediately be taken. In cases,
where either the sending (first) data processing system or
receiving (second) data processing system is not NTP
enabled, then the calculating data processing system want
ing a TDOA measurement will need to calculate a sent and
received time in consistent time scale terms. This includes a
correlated bidirectional communications data flow to prop
erly determine duration in time terms of the calculating data
processing system. In a send initiated embodiment, a first
(sending) data processing system incorporates a sent date/
time stamp (e.g. fields 1100n or 2450a) and determines 65

when a correlated response is received to calculate the
TDOA measurement (both times in terms of the first (send-

55 more time blocked on queue, they can be automatically
throttled down. Timers can be associated with queue
retrieval to keep track of time a thread is blocked.

LBX history 30 preferably maintains history information
of key points in processing where history information may

60 prove useful at a future time. Some of the useful points of
interest may include:

Interim snapshots of permissions 10 (for documenting
who had what permissions at what time) at block 1478;

Interim snapshots of charters 12 (for documenting char
ters in effect at what times) at block 1482;

Interim snapshots of statistics 14 (for documenting useful
statistics worthy of later browse) at block 1486;

Petitioners' Ex. 1001, Page 547 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
441

Interim snapshots of service propagation data of block
1474;

Interim snapshots of service informant settings of block
1490;

Interim snapshots of LBX history maintenance/configu- 5

rations of block 1494;
Interim snapshots of a subset of WDR queue 22 using a

configured search criteria;

442
example, MS user Joe wants to alert MS user Sandy when
he is in her vicinity, or user Sandy wants to be alerted when
Joe is in her vicinity. Joe configures permissions enabling
Sandy to be alerted with him being nearby, or Sandy
configured permissions for being alerted. Sandy accepts the
configuration Joe made, or Joe accepts the configuration
Sandy made. Sandy's queue 22 processing will ensure Joe's
WDRs are processed uniquely for desired functionality.

Interim snapshots of a subset of Send queue 24 using a
configured search criteria;

Interim snapshots of a subset of Receive queue 26 using
a configured search criteria;

Interim snapshots of a subset of PIP data 8;
Interim snapshots of a subset of data 20;
Interim snapshots of a subset of data 36;
Interim snapshots of other resources 38;

FIG. SC was presented in the context of a DLM, however
10 architecture 1900 should be applied for enabling a user to

manually request to be located with ILM processing if
necessary. Blocks 862 through 870 are easily modified to
accomplish a WDR request (like blocks 2218 through 2224).

Trace, debug, and/or dump of any execution path subset
of processing flowcharts described; and/or

Copies of data at any block of processing in any flowchart

15
In keeping with current block descriptions, block 872 would
become a new series of blocks for handling the case when
DLM functionality was unsuccessful. New block 872-A
would broadcast a WDR request soliciting response (see
blocks 2218 through 2224). Thereafter, a block 872-B would

heretofore described. 20 wait for a brief time, and subsequently a block 872-C would
check if whereabouts have been determined (e.g. check
queue 22). Thereafter, if a block 872-D determines where
abouts were not determined, an error could be provided to

Entries in LBX history 30 preferably have entry qualifying
information including at least a date/time stamp of when
added to history, and preferably an O/S PID and O/S TID
(Thread Identifier) associated with the logged entry, and
perhaps applicable applications involved (e.g. see fields 25

1100k). History 30 may also be captured in such a way there
are conditions set up in advance (at block 1494), and when
those conditions are met, applicable data is captured to
history 30. Conditions can include terms that are MS system
wide, and when the conditions are met, the data for capture 30

is copied to history. In these cases, history 30 entries
preferably include the conditions which were met to copy
the entry to history. Depending on what is being kept to
history 30, this can become a large amount of information.
Therefore, FIG. 27A can include new blocks for pruning 35

history 30 appropriately. In another embodiment, a separate
thread of processing has a sleeper loop which when awake
will prune the history 30 appropriately, either in its own
processing or by invoking new FIG. 27A blocks for history
30. A parameter passed to processing by block 2704 may 40

include how to prune the history, including what data to
prune, how old of data to prune, and any other criteria
appropriate for maintaining history 30. In fact, any pruning

the user, otherwise the MS whereabouts were successfully
determined and processing continues to block 874. Appli
cations that may need whereabouts can now be used. There
are certainly emergency situations where a user may need to
rely on other MSs in the vicinity for being located. In
another embodiment, LBX history can be accessed to at least
provide a most recent location, or most recently traveled set
of locations, hopefully providing enough information for
reasonably locating the user in the event of an emergency,
when a current location carmot be determined.

To maintain modularity in interfaces to queues 24 and 26,
parameters may be passed rather than having the modular
send/receive processing access fields of application records.
When WDRs are "sent", the WDR will be targeted (e.g. field
1100a), perhaps also with field 1100/ indicating which
communications interface to send on (e.g. MS has plurality
of comm. interfaces 70). When WDRs are "broadcast" (e.g.
null MS ID), the WDR is preferably outbound on all
available comm. interfaces 70, unless field 1100/indicates to
target a comm. interface. Analogously, when WDR requests
are "sent", the request will be targeted (e.g. field 2490a), by FIG. 27 A may include any reasonable parameters for how

to prune particular data of the present disclosure.
Location applications can use the WDR queue for retriev

ing the most recent highest confidence entry, or can access
the single instance WDR maintained (or most recent WDR

45 perhaps also with field 2490d indicating which communi
cations interface to send on (e.g. MS has plurality of comm.
interfaces 70). When WDR requests are "broadcast" (e.g.
null MS ID), the WDR is preferably outbound on all

of block 289 discussed above). Optimally, applications are
provided with an API that hides what actually occurs in 50

ongoing product builds, and for ensuring appropriate sema
phore access to multi-threaded accessed data.

available comm. interfaces 70, unless field 1100/indicates to
target a comm. interface.

Fields 1100m, 1100n, ll00p, 2490b and 2490c are also of
interest to the transport layer. Any subset, or all, of transport
related fields may be passed as parameters to send process
ing, or received as parameters from receiving processing to
ensure send and receive processing is adaptable using plug
gable transmission/reception technologies.

An alternate embodiment to the BESTWDR WDR
returned by FIG. 26B processing may be set with useful data
for reuse toward a future FIG. 26B processing thread where-

Correlation processing does not have to cause a WDR
returned. There are embodiments for minimal exchanges of
correlated sent date/time stamps and/or received date/time 55

stamps so that exchanges are very efficient using small data
exchanges. Correlation of this disclosure was provided to
show at least one solution, with keeping in mind that there
are many embodiments to accomplish relating time scales
between data processing systems.

Architecture 1900 provides not only the foundation for
keeping an MS abreast of its whereabouts, but also the
foundation upon which to build LBX nearby functionality.
Whereabouts of MSs in the vicinity are maintained to queue
22. Permissions 10 and charters 12 can be used for govern- 65

ing which MSs to maintain to queue 22, how to maintain
them, and what processing should be performed. For

60 abouts determination. Field 1100/ can be set with useful data
for that WDR to be in turn used at a subsequent whereabouts
determination of FIG. 26B. This is referred to as Recursive
Whereabouts Determination (RWD) wherein ILMs deter-
mine WDRs for their whereabouts and use them again for
calculating future whereabouts (by populating useful
TDOA, AOA, MPT and/or whereabouts information to field
1100.1).

Petitioners' Ex. 1001, Page 548 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
443 444

An alternate embodiment may store remote MS move
ment tolerances (if they use one) to WDR field 1100/ so the
receiving MS can determine how stale are other WDRs in
queue 22 from the same MS, for example when gathering all
useful WDRs to start with in determining whereabouts of 5

FIG. 26B processing (e.g. block 2634). Having movement
tolerances in effect may prove useful for maximizing useful
WDRs used in determining a whereabouts (FIG. 26B pro
cessing).

service (in process) for MSs. In one embodiment, service
informant code 28 is used to keep the service informed of the
LBX network. In another embodiment, a conventional LBS
architecture is deployed for collecting whereabouts ofMSs.

An alternate embodiment processes inbound/outbound/
maintained WDRs in process transmitted to a MS from
non-mobile data processing systems, perhaps data process
ing systems which are to emulate a MS, or perhaps data
processing systems which are to contribute to LBX process
ing. Interoperability is as disclosed except data processing
systems other than MSs participate in interacting with

Many LBX aspects have been disclosed, some of which 10

are novel and new in LBS embodiments. While it is recom-
mended that features disclosed herein be implemented in the
context of LBX, it may be apparent to those skilled in the art
how to incorporate features which are also new and novel in
a LBS model, for example by consolidating distributed
permission, charters, and associated functionality to a shared
service connected database.

Privileges and/or charters may be stored in a datastream
format (e.g. X.409), syntactical format (e.g. XML, source
code (like FIGS. 51A and 518)), compiled or linked pro
gramming data, database data (e.g. SQL tables), or any other
suitable format. Privileges and/or charters may be commu
nicated between MSs in a datastream format (e.g. X.409),
syntactical format (e.g. XML, source code (like FIGS. 51A
and 51B)), compiled or linked programming data, database
data (e.g. SQL tables), or any other suitable format.

Block 4466 may access an all or none permission (privi
lege) to receive permission and/or charter data (depending
on what data is being received) from a particular identity
(e.g. user or particular MS). Alternate embodiments imple
ment more granulated permissions (privileges) on which
types, sets, or individual privileges and/or charters can be
received so that block 4470 will update local data with only
those privileges or charters that are permitted out of all data
received. One embodiment is to receive all privileges and/or
charters from remote systems for local maintaining so that
FIG. 57 processing can later determine what privileges and
charters are enabled. This has the benefit for the receiving
user to know locally what the remote user(s) desire for
privileges and charters without them necessarily being effec
tive. Another embodiment is for FIG. 44B to only receive the
privileged subset of data that can be used (privileged) at the
time, and to check at block 4466 which privileges should be
used to alter existing privileges or charters from the same
MS (e.g. altered at block 4470). This has the potential benefit
of less MS data to maintain and better performance in FIG.
57 processing for dealing only with those privileges and
charters which may be useable. A user may still browse
another user's configurations with remote data access any
way.

WPL is a unique programming language wherein peer to
peer interaction events containing whereabouts information
(WDRs) provide the triggers for novel location based pro
cessing, however a LBS embodiment may also be pursued.
Events seen, or collected, by a service may incorporate
WPL, the table record embodiments of FIGS. 35A through
37C, a suitable programming executable and/or data struc
tures, or any other BNF granmiar derivative to carry out
analogous event based processing. For example, the service
would receive inbound whereabouts information (e.g.
WDRs) from participating MSs and then process accord
ingly. An inbound, outbound, and in-process methodology
may be incorporated analogously by processing where
abouts information from MSs as it arrives to the service
(inbound), processing whereabouts information as it is sent
out from the service (outbound) to MSs, and processing
whereabouts information as it is being processed by the

WDRs. In other embodiments, the data processing systems
contain processing disclosed for MSs to process WDRs from
MSs (e.g. all disclosed processing or any subset of process-

15 ing (e.g. WITS processing)).
Communications between MSs and other MSs, or

between MSs and data processing systems, may be com
pressed, encrypted, and/or encoded for performance or con
cealing. For example, data is encrypted and/or compressed:

20 prior to being outbound (e.g. via queue 24) from a LBX
processing thread (e.g. encrypted and/or compressed at
blocks 2016, 2224, 2324, 2516); by communications pro
cessing closer to transmission (e.g. after feeding from queue
24); or at an appropriate software interface layer (e.g. link

25 layer); preferably providing configurations to a user for
which encryption and/or compression to perform. Any pro
tocol, X.409 encodings, datastream encodings, or other data
which is critical for processing shall have integrity regard
less of an encapsulating or embedded encoding that may be

30 in use. Further, internalizations of the BNF grammar may
also be compressed, encrypted, and/or encoded for perfor
mance or concealing. Regardless of an encapsulating or
embedded encoding that may be in use, integrity shall be
maintained for processing. When other encodings are used

35 (compression, encryption, etc), an appropriate encode and
decode pair of processing is used (compress/decompress,
encrypt/ decrypt, etc).

Grammar specification privileges are preferably enforced
in real time when processing charters during WITS process-

40 ing. For example, charters specified may initially be inef
fective, but can be subsequently enabled with a privilege. It
is preferred that privileges 10 and charters 12 be maintained
independently during configuration time, and through appro
priate internalization. This allows specifying anything a user

45 wants for charters, regardless of privileges in effect at the
time of charter configuration, so as to build those charters
which are desired for processing, but not necessarily effec
tive yet. Privileges can then be used to enable or disable
those charters as required. In an alternate embodiment,

50 privileges can be used to prevent certain charters from even
being created. This helps provide an error to the user at an
appropriate time (creating an invalid charter), however a
valid charter may lose a privilege later anyway and become
invalid. The problem of a valid charter becoming invalid

55 later has to be dealt with anyway (rather than automatically
deleting the newly invalid charter). Thus, it is preferable to
allow any charters and privileges to be specified, and then
candidate for interpreting at WITS processing time.

Many embodiments are better described by redefining the
60 "W" in acronyms used throughout this disclosure for the

more generic "Wireless" use, rather than "Whereabouts"
use. Thus, WDR takes on the definition of Wireless Data
Record. In various embodiments, locational information
fields become less relevant, and in some embodiments

65 mobile location information is not used at all. As stated
above with FIG. llA, when a WDR is referenced in this
disclosure, it is referenced in a general sense so that the

Petitioners' Ex. 1001, Page 549 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
445

contextually reasonable subset of the WDR of FIG. llA is
used. This notion is taken steps further.

A WDR 1100 may be redefined with a core section
containing only the MS ID field 1100a. The MS ID field
1100a facilitates routing of the WDR, and addressing a 5

WDR, for example in a completely wireless transmission of
FIGS. 13A through 13C. In an embodiment with a minimal
set ofWDR fields, the WDR may contain only two (2) fields:
a MS ID field 1100a and application fields 1100k. In an
embodiment with minimal changes to the architecture here- 10

tofore disclosed, all WDR 1100 fields 1100b through ll00p
are maintained to field 1100k. Disclosure up to this point
continues to incorporate processing heretofore described,
except WDR fields which were peers to application fields
1100k in a WDR 1100 are now subordinate to field 1100k. 15

However, the field data is still processed the same way as
disclosed, albeit with data being maintained subordinate to
field 1100k. Thus, field 1100k may have broader scope for
carrying the data, or for carrying similar data.

446
most recent WDR with this MS ID" and then sending/
broadcasting the response to the requesting MS. FIG. 25
would be relevant in an architecture wherein the application
does in fact rely on MSs within the vicinity for determining
its own WDRs.
One application using such a minimal embodiment may be
the transmission of profile information (see # and % opera
tors above). As a MS roams, it beacons out its profile
information for other MSs to receive it. The receiving MSs
then decide to process the profile data in fields 1100k
according to privileges and/or charters that are in place. Note
that there is no locating information of interest. Only the
profile information is of interest. Thus, the MSs become
wireless beacons of data that may or may not be processed
by receiving MSs within the wireless vicinity of the origi
nating MS. Consider a singles/dating application wherein
the profile data contains characteristics and interests of the
MS user. A privilege or charter at the receiving MS could
then process the profile data when it is received, assuming

20 the receiving MS user clarified what is of interest for
automated processing through configurations for WITS pro-

In a more extreme embodiment, a WDR (Wireless Data
Record) will contain only two fields: a MS ID field 1100a
and application fields 11 OOk; wherein a single application (or
certain applications) of data is maintained to field 11 OOk. For
example, the WDR is emitted from mobile MSs as a beacon
which may or may not be useful to receiving MSs, however 25

the beaconed data is for one application (other embodiments
can be for a plurality of applications). In this minimal
embodiment, a minimal embodiment of architecture 1900 is
deployed with block changes removing whereabouts/loca
tion processing. The following processes may provide such 30

a minimal embodiment palette for implementation:
Wireless Broadcast Thread(s) 1902-FIG. 20 block 2010
would be modified to "Peek WDR queue for most recent
WDR with MS ID=this MS". Means would be provided for
date/time stamps maintained to queue 22 for differentiating 35

between a plurality ofWDRs maintained so the more recent
can be retrieved. This date/time stamp may or may not be
present in a WDR during transmission which originated
from a remote MS (i.e. in the WDR transmitted (beaconed)).
Regardless, a date/time stamp is preferably maintained in 40

the WDR of queue 22. Appropriate and timely queue 22
pruning would be performed for one or more relevant WDRs
at queue 22. FIG. 20 would broadcast at least the MS ID field
1100a and application data field 1100k for the application.
Wireless Collection Thread(s) 1912-FIG. 21 would be 45

modified to remove location determination logic and would
collect WDRs received that are relevant for the receiving
MS and deposit them to queue 22, preferably with a date/
time stamp. Relevance can be determined by if there are
permissions or charters in place for the originating MS ID at 50

the receiving MS (i.e. WITS filtering and processing). The
local MS applicable could access WDRs from queue 22 as
it sees fit for processing in accordance with the application,
as well as privileges and charters.
Wireless Supervisor Thread(s) 1922-FIG. 22 block 2212 55

would be modified to "Peek WDR queue for MS ID=this
MS, and having a reasonably current date/time stamp" to
ensure there is at least one timely WDR contained at queue

cessing.
While a completely wireless embodiment is the preferred

embodiment since MS users may be nearby by virtue of a
completely wireless transmission, a longer range transmis
sion could be facilitated by architectures of FIGS. SOA
through SOC. In an architecture of transmission which is not
completely wireless, the minimal embodiment WDR would
include field(s) indicating a route which was not completely
wireless, perhaps how many hops, etc as disclosed above.
WITS filtering would play an important role to ensure no
outbound transmissions occur unless there are configura
tions in place that indicate a receiving MS may process it
(i.e. there are privileges and/or charters in place), and no
inbound processing occurs unless there are appropriate
configurations in place for the originating MS(s) (i.e. there
are privileges and/or charters in place). Group identities of
WDRs can become more important as a criteria for WITS
filtering, in particular when a group id indicates the type of
WDR. The longer range embodiment of FIG. SOA through
SOC preferably incorporates a send transmission for direct-
ing the WDRs to MSs which have candidate privileges
and/or charters in place, rather than a broadcast for com
municating WDRs. Broadcasting can flood a network and
may inundate MSs with information for WITS filtering.

FIG. 59 is typically used to set variables which are
anticipated or accessed by applications to carry out certain
application behavior and functionality. In one embodiment,
applications poll data set by FIG. 59 in order to determine
how they are to process. In another embodiment, FIG. 59
sets or clears semaphores for asynchronous application
thread(s) for instant or timely processing. In the essence of
other embodiments, FIG. 59 sets data which is used to
communicate privileged intention to one or more applica
tions. FIG. 59 provides a convenient "plug-in" model for
applications by isolating privileged action triggers to data
used to middleman the LBX platform to the "plug-in"
applications. There are a variety of "plug-in" models sup
ported. Applications "plug-in" through making available
data which is accessible to the LBX platform.

On the other hand, FIG. 60 allows defining new complex
privileges such that any subset of charter functionality, or
application functionality, becomes a FIG. 60 privileged
action, for example to cause certain application behavior and

22 for this MS. If there is not a timely WDR at the MS, then
processing of block 2218 through 2228 would be modified 60

to request helpful WDRs from MSs within the vicinity,
assuming the application applicable warrants requesting
such help, otherwise blocks 2218 through 2228 would be
modified to trigger local MS processing for ensuring a
timely WDR is deposited to queue 22. 65 functionality immediately just by presence of a set privilege.
Wireless Data Record Request Thread(s) 1942-FIG. 25
block 2510 would be modified to "Peek WDR queue for

Thus, a complex action or set of actions which may be
embodied as an application are brought into the LBX

Petitioners' Ex. 1001, Page 550 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
447

framework by being implemented in their entirety as a single
action which can be triggered by simply granting a privilege.

FIGS. 59 and 60 can be the same in results, but accom
plish the results in different ways. In one embodiment, FIG.
59 assumes an asynchronous application thread accesses 5

data which has been modified (e.g. enabled/disabled). In one
embodiment, FIG. 60 directly incorporates the application
processing for the privilege determined. However, FIGS. 59
and 60 may be implemented for being interchangeable.
Regardless of MS LBX utilization for RFID or WDR 10

interactions, automated peer to peer functionality disclosed
in a first form of: FIG. 59 processing, FIG. 60 processing,
atomic command processing, service informant processing,
charter processing, or combinations thereof; can be imple
mented in any other form: FIG. 59 processing, FIG. 60 15

processing, atomic command processing, service informant
processing, charter processing, home grown, Application
Terms (AppTerm), Application fields, or combinations
thereof; without departing from the spirit and scope of the
disclosure. For example, a proven popular MS charter 20

configuration may be replaced by providing a privilege
which can be used between MSs, thereby eliminating the
need to go through the time to configure the charter. The
privilege itself replaces what the charter provided. In another
example, a new atomic command may be used to replace 25

complex charter configurations, or replaces a set of specific
use of a plurality of other atomic commands, in order to
prevent burdening MS users with configuring desirable MS
behavior.

There are many embodiments for synchronizing key 30

regions of executable code of this disclosure, and locking
into a single detailed design is not intended. A synchroni
zation design can vary based on software prograniming
decisions. In some embodiments, a MS is equipped with
different synchronization models which are configurable at 35

manufacturing time, or by an administrator or user. In some
embodiments, a prescribed synchronization model is
deployed based on the type of MS and anticipated use of the
MS. For example, WITS processing, or subsets therein, may
be semaphore protected so that only a single WDR is 40

processed at critical regions in charter processing. Identify
ing critical regions can be dependent on different uses of the
LBX architecture. In one example, this can be advantageous
for WITS processing involving many MSs with privileged
configurations in the vicinity of a receiving MS. Consider an 45

electronic tag example. In this example, one MS is "it" and

448
Notice that the charter configuration assumes a single unit of
work including the time of checking the T_it variable
(True=your "it"), marking the MS which is within 1 meter
to this MS location as being "it", and the time of clearing the
local application variable which marks this MS as being "it".
Synchronization becomes quite important for this charter to
operator correctly, otherwise another MS can cause process
ing the same charter at substantially the same time for
unpredictable results. Thus, thread processing synchroniza
tion is to be analyzed and incorporated as is appropriate in
context of the various embodiments for deployment. In the
example, the electronic tag application (e.g. with prefix
"T_") may additionally monitor the T_it AppTerm variable
to cause a beaconing sound, and/or beaconing visual indi
cation (flashing bright red screen) so that nearby MS users
know who is "it".

Various company name and/or product name trademarks
used herein belong to their respective companies.

While various embodiments of the present disclosure
have been described above, it should be understood that they
have been presented by way of example only, and not
limitation. Thus, the breadth and scope of the present
disclosure should not be limited by any of the above
described exemplary embodiments, but should be defined
only in accordance with the following claims and their
equivalents.

What is claimed is:
1. A beaconing data processing system, comprising:
one or more processors;
a Bluetooth communications interface; and
a memory coupled to the one or more processors, wherein

the one or more processors access the memory and
control operations of the beaconing data processing
system, the operations comprising:
periodically beaconing outbound a broadcast unidirec

tional wireless data record communicated through
the Bluetooth communications interface to serve as a
physical location reference contributing to physical
location determination processing of one or more
user carried mobile data processing systems in a
Bluetooth wave spectrum range vicinity of the bea-
coning data processing system, the beaconing data
processing system:
not soliciting an inbound communication to the

beaconing data processing system from the one or
more user carried mobile data processing systems
in response to a receipt of the broadcast unidirec
tional wireless data record in the one or more user
carried mobile data processing systems, and

not configured to process inbound communications
resulting from the receipt of the broadcast unidi
rectional wireless data record in the one or more
user carried mobile data processing systems, the
broadcast unidirectional wireless data record com-
municated through the Bluetooth communications
interface to serve as the physical location refer
ence including:
no physical location coordinates of the beaconing

data processing system,

a plurality of other MSs are avoiding becoming "it". When
the "it" MS becomes close enough to an other MS, the other
MS becomes "it". But what happens when the MS becomes
close enough to a plurality of other MSs? Which MS 50

becomes "it"? It is important to prevent making more than
one MS "it", thus synchronization provides a more conve
nient method for preventing this from happening. To provide
clear explanation, assume that only a single iWITS WDR
processing thread can execute FIG. 57 at a time. While it is 55

certainly better performance to identify the processing
block(s) (i.e. subset(s)) of FIG. 57 processing that should be
synchronized rather than the entire FIG. 57 processing,
doing so here for exemplification simplifies the electronic
tag discussion. Thus, if there is a group of MSs in a group 60

called PlayTag known to each participating MS, every
privileged MS can have the following charter configuration

a data field containing a signal strength of the
beaconing data processing system, and

application identifier data stored in the memory.
2. The beaconing data processing system of claim 1

wherein the application identifier data stored in the memory
65 is configured in the beaconing data processing system to

match a configured location based condition in the one or
more user carried mobile data processing systems.

in light of the synchronization to FIG. 57 processing:
(_I_msid'"PlayTag" & \loc_my $(1M)_I_location &

T_it):
Invoke Data (T_it, True, _I_msid),
Invoke Data (T_it, False, \thisMS);

Petitioners' Ex. 1001, Page 551 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
449

3. The beaconing data processing system of claim 1
wherein the application identifier data stored in the memory

450
9. The method of claim 8 wherein the application iden

tifier data stored in the memory is configured in the bea
coning data processing system to match a configured loca
tion based condition in the one or more user carried mobile

is configured in the beaconing data processing system to
match a configured arrival or departure condition in the one
or more user carried mobile data processing systems. 5 data processing systems.

4. The beaconing data processing system of claim 1
wherein the application identifier data stored in the memory
is configured in the beaconing data processing system to
match a configured condition in the one or more user carried
mobile data processing systems, the configured condition
causing control of at least one of: an electrical appliance, a
mechanical appliance, an electrical device, or a mechanical
device.

10. The method of claim 8 wherein the application
identifier data stored in the memory is configured in the
beaconing data processing system to match a configured
arrival or departure condition in the one or more user carried

10 mobile data processing systems.
11. The method of claim 8 wherein the application iden

tifier data stored in the memory is configured in the bea
coning data processing system to match a configured con-5. The beaconing data processing system of claim 1

wherein the application identifier data stored in the memory
is configured in the beaconing data processing system to
match a configured condition in the one or more user carried
mobile data processing systems, the configured condition
causing a sorted data result.

15 dition in the one or more user carried mobile data processing
systems, the configured condition causing control of at least
one of: an electrical appliance, a mechanical appliance, an
electrical device, or a mechanical device.

12. The method of claim 8 wherein the application
6. The beaconing data processing system of claim 1

wherein the beaconing data processing system is a mobile
data processing system.

7. The beaconing data processing system of claim 1
wherein the application identifier data stored in the memory

20 identifier data stored in the memory is configured in the
beaconing data processing system to match a configured
condition in the one or more user carried mobile data
processing systems, the configured condition causing a
sorted data result.

is configured in the beaconing data processing system to 25

match a configured condition in the one or more user carried
mobile data processing systems, the configured condition
causing content delivery of at least one of: news, traffic, real
estate, a job opportunity, a religious interest, a stock interest,
a menu, a coupon, a product, a service, a boarding pass, a 30

transaction, an inventory, a customer account, a retail estab
lishment, a restaurant, a product store, a retail store, a
grocery store, an electrical appliance, a mechanical appli
ance, an electrical device, a mechanical device, public
transportation, or a parking lot. 35

8. A method in a beaconing data processing system, the
method comprising:

one or more processors periodically beaconing outbound
a broadcast unidirectional wireless data record com
municated through a Bluetooth communications inter- 40

face of the beaconing data processing system to serve
as a physical location reference contributing to physical
location determination processing of one or more user
carried mobile data processing systems in a Bluetooth
wave spectrum range vicinity of the beaconing data 45

processing system, the beaconing data processing sys
tem:
not soliciting an inbound communication to the bea

coning data processing system from the one or more
user carried mobile data processing systems in 50

response to a receipt of the broadcast unidirectional
wireless data record in the one or more user carried
mobile data processing systems, and

not configured to process inbound communications
resulting from the receipt of the broadcast unidirec- 55

tional wireless data record in the one or more user
carried mobile data processing systems, the broad
cast unidirectional wireless data record communi
cated through the Bluetooth communications inter
face to serve as the physical location reference 60

including:
no physical location coordinates of the beaconing

data processing system,
a data field containing a signal strength of the

beaconing data processing system, and
application identifier data stored in a memory of the

beaconing data processing system.

65

13. The method of claim 8 wherein the beaconing data
processing system is a mobile data processing system.

14. A non-transitory computer readable medium contain
ing executable instructions, that when executed, controls one
or more processors, based on the instructions, to perform
operations comprising:

periodically beaconing outbound a broadcast unidirec
tional wireless data record communicated through a
Bluetooth communications interface of a beaconing
data processing system to serve as a physical location
reference contributing to physical location determina
tion processing of one or more user carried mobile data
processing systems in a Bluetooth wave spectrum range
vicinity of the beaconing data processing system, the
beaconing data processing system:
not soliciting an inbound communication to the bea-

coning data processing system from the one or more
user carried mobile data processing systems in
response to a receipt of the broadcast unidirectional
wireless data record in the one or more user carried
mobile data processing systems, and

not configured to process inbound communications
resulting from the receipt of the broadcast unidirec
tional wireless data record in the one or more user
carried mobile data processing systems, the broad
cast unidirectional wireless data record communi
cated through the Bluetooth communications inter-
face to serve as the physical location reference
including:
no physical location coordinates of the beaconing

data processing system,
a data field containing a signal strength of the

beaconing data processing system, and
application identifier data stored in a memory of the

beaconing data processing system.
15. The non-transitory computer readable medium of

claim 14 wherein the application identifier data stored in the
memory is configured in the beaconing data processing
system to match a configured location based condition in the
one or more user carried mobile data processing systems.

16. The non-transitory computer readable medium of
claim 14 wherein the application identifier data stored in the
memory is configured in the beaconing data processing

Petitioners' Ex. 1001, Page 552 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

US 10,477,994 B2
451

system to match a configured arrival or departure condition
in the one or more user carried mobile data processing
systems.

17. The non-transitory computer readable medium of
claim 14 wherein the application identifier data stored in the 5

memory is configured in the beaconing data processing
system to match a configured condition in the one or more
user carried mobile data processing systems, the configured
condition causing control of at least one of: an electrical
appliance, a mechanical appliance, an electrical device, or a 10

mechanical device.
18. The non-transitory computer readable medium of

claim 14 wherein the application identifier data stored in the
memory is configured in the beaconing data processing
system to match a configured condition in the one or more 15

user carried mobile data processing systems, the configured
condition causing a sorted data result.

19. The non-transitory computer readable medium of
claim 14 wherein the beaconing data processing system is a
mobile data processing system. 20

* * * * *

452

Petitioners' Ex. 1001, Page 553 of 553
Hewlett Packard Enterprise Co. et al. v. BillJCo, LLC

IPR2022-00420

