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ABSTRACT
Imagine the following situation. You’re in your car, listening to
the radio and suddenly you hear a song that catches your attention. 
It’s the best new song you have heard for a long time, but you
missed the announcement and don’t recognize the artist. Still, you 
would like to know more about this music. What should you do?
You could call the radio station, but that’s too cumbersome.
Wouldn’t it be nice if you could push a few buttons on your
mobile phone and a few seconds later the phone would respond
with the name of the artist and the title of the music you’re
listening to? Perhaps even sending an email to your default email
address with some supplemental information. In this paper we
present an audio fingerprinting system, which makes the above
scenario possible. By using the fingerprint of an unknown audio
clip as a query on a fingerprint database, which contains the
fingerprints of a large library of songs, the audio clip can be
identified. At the core of the presented system are a highly robust
fingerprint extraction method and a very efficient fingerprint
search strategy, which enables searching a large fingerprint
database with only limited computing resources.

1. INTRODUCTION
Fingerprint systems are over one hundred years old. In 1893 Sir
Francis Galton was the first to “prove” that no two fingerprints of
human beings were alike. Approximately 10 years later Scotland
Yard accepted a system designed by Sir Edward Henry for
identifying fingerprints of people. This system relies on the pattern 
of dermal ridges on the fingertips and still forms the basis of all
“human” fingerprinting techniques of today. This type of forensic
“human” fingerprinting system has however existed for longer
than a century, as 2000 years ago Chinese emperors were already
using thumbprints to sign important documents. The implication is 
that already those emperors (or at least their administrative
servants) realized that every fingerprint was unique. Conceptually
a fingerprint can be seen as a “human” summary or signature that 
is unique for every human being. It is important to note that a
human fingerprint differs from a textual summary in that it does
not allow the reconstruction of other aspects of the original. For
example, a human fingerprint does not convey any information
about the color of the person’s hair or eyes.
Recent years have seen a growing scientific and industrial interest 
in computing fingerprints of multimedia objects [1][2][3][4]
[5][6]. The growing industrial interest is shown among others by a 
large number of (startup) companies [7][8][9][10][11][12][13]
and the recent request for information on audio fingerprinting
technologies by the International Federation of the Phonographic
Industry (IFPI) and the Recording Industry Association of
America (RIAA) [14].

The prime objective of multimedia fingerprinting is an efficient
mechanism to establish the perceptual equality of two multimedia
objects: not by comparing the (typically large) objects themselves,
but by comparing the associated fingerprints (small by design). In 
most systems using fingerprinting technology, the fingerprints of a 
large number of multimedia objects, along with their associated
meta-data (e.g. name of artist, title and album) are stored in a
database. The fingerprints serve as an index to the meta-data. The 
meta-data of unidentified multimedia content are then retrieved by 
computing a fingerprint and using this as a query in the
fingerprint/meta-data database. The advantage of using
fingerprints instead of the multimedia content itself is three-fold:

1. Reduced memory/storage requirements as fingerprints
are relatively small;

2. Efficient comparison as perceptual irrelevancies have
already been removed from fingerprints;

3. Efficient searching as the dataset to be searched is
smaller.

As can be concluded from above, a fingerprint system generally
consists of two components: a method to extract fingerprints and a 
method to efficiently search for matching fingerprints in a
fingerprint database. 
This paper describes an audio fingerprinting system that is suitable 
for a large number of applications. After defining the concept of
an audio fingerprint in Section 2 and elaborating on possible
applications in Section 3, we focus on the technical aspects of the 
proposed audio fingerprinting system. Fingerprint extraction is
described in Section 4 and fingerprint searching in Section 5.

2. AUDIO FINGERPRINTING CONCEPTS
2.1 Audio Fingerprint Definition
Recall that an audio fingerprint can be seen as a short summary of 
an audio object. Therefore a fingerprint function F should map an 
audio object X, consisting of a large number of bits, to a
fingerprint of only a limited number of bits. 
Here we can draw an analogy with so-called hash functions1,
which are well known in cryptography. A cryptographic hash
function H maps an (usually large) object X to a (usually small)
hash value (a.k.a. message digest). A cryptographic hash function
allows comparison of two large objects X and Y, by just
comparing their respective hash values H(X) and H(Y). Strict
mathematical equality of the latter pair implies equality of the
former, with only a very low probability of error. For a properly
designed cryptographic hash function this probability is 2-n, where 
n equals the number of bits of the hash value. Using cryptographic 
hash functions, an efficient method exists to check whether or not 
a particular data item X is contained in a given and large data set
Y={Yi}. Instead of storing and comparing with all of the data in Y,

1 In the literature fingerprinting is sometimes also referred to as
robust or perceptual hashing[5].
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it is sufficient to store the set of hash values {hi = H(Yi)}, and to
compare H(X) with this set of hash values. 
At first one might think that cryptographic hash functions are a
good candidate for fingerprint functions. However recall from the
introduction that, instead of strict mathematical equality, we are
interested in perceptual similarity. For example, an original CD
quality version of ‘Rolling Stones – Angie’ and an MP3 version at 
128Kb/s sound the same to the human auditory system, but their
waveforms can be quite different.  Although the two versions are
perceptually similar they are mathematically quite different.
Therefore cryptographic hash functions cannot decide upon
perceptual equality of these two versions. Even worse,
cryptographic hash functions are typically bit-sensitive: a single
bit of difference in the original object results in a completely
different hash value. 
Another valid question the reader might ask is: “Is it not possible
to design a fingerprint function that produces mathematically
equal fingerprints for perceptually similar objects?” The question
is valid, but the answer is that such a modeling of perceptual
similarity is fundamentally not possible. To be more precise: it is a 
known fact that perceptual similarity is not transitive. Perceptual
similarity of a pair of objects X and Y and of another pair of
objects Y and Z does not necessarily imply the perceptual
similarity of objects X and Z. However modeling perceptual
similarity by mathematical equality of fingerprints would lead to
such a relationship.
Given the above arguments, we propose to construct a fingerprint
function in such a way that perceptual similar audio objects result 
in similar fingerprints. Furthermore, in order to be able
discriminate between different audio objects, there must be a very
high probability that dissimilar audio objects result in dissimilar
fingerprints. More mathematically, for a properly designed
fingerprint function F, there should be a threshold T such that
with very high probability ||F(X)-F(Y)||T  if objects X and Y are
similar and ||F(X)-F(Y)||>T when they are dissimilar. 

2.2 Audio Fingerprint System Parameters
Having a proper definition of an audio fingerprint we now focus
on the different parameters of an audio fingerprint system. The
main parameters are:

 Robustness: can an audio clip still be identified after
severe signal degradation? In order to achieve high
robustness the fingerprint should be based on perceptual
features that are invariant (at least to a certain degree)
with respect to signal degradations. Preferably, severely
degraded audio still leads to very similar fingerprints.
The false negative rate is generally used to express the
robustness. A false negative occurs when the
fingerprints of perceptually similar audio clips are too
different to lead to a positive match.

 Reliability: how often is a song incorrectly identified?
E.g. “Rolling Stones – Angie” being identified as
“Beatles – Yesterday”. The rate at which this occurs is
usually referred to as the false positive rate.

 Fingerprint size: how much storage is needed for a
fingerprint? To enable fast searching, fingerprints are
usually stored in RAM memory. Therefore the
fingerprint size, usually expressed in bits per second or
bits per song, determines to a large degree the memory
resources that are needed for a fingerprint database
server.

 Granularity: how many seconds of audio is needed to
identify an audio clip? Granularity is a parameter that

can depend on the application. In some applications the
whole song can be used for identification, in others one
prefers to identify a song with only a short excerpt of
audio.

 Search speed and scalability: how long does it take to
find a fingerprint in a fingerprint database? What if the
database contains thousands and thousands of songs?
For the commercial deployment of audio fingerprint
systems, search speed and scalability are a key
parameter. Search speed should be in the order of
milliseconds for a database containing over 100,000
songs using only limited computing resources (e.g. a
few high-end PC’s).

These five basic parameters have a large impact on each other. For 
instance, if one wants a lower granularity, one needs to extract a
larger fingerprint to obtain the same reliability. This is due to the
fact that the false positive rate is inversely related to the
fingerprint size. Another example: search speed generally
increases when one designs a more robust fingerprint. This is due
to the fact that a fingerprint search is a proximity search. I.e. a
similar (or the most similar) fingerprint has to be found. If the
features are more robust the proximity is smaller. Therefore the
search speed can increase.

3. APPLICATIONS
In this section we elaborate on a number of applications for audio 
fingerprinting.

3.1 Broadcast Monitoring
Broadcast monitoring is probably the most well known application 
for audio fingerprinting[2][3][4][5][12][13]. It refers to the
automatic playlist generation of radio, television or web
broadcasts for, among others, purposes of royalty collection,
program verification, advertisement verification and people
metering. Currently broadcast monitoring is still a manual process: 
i.e. organizations interested in playlists, such as performance
rights organizations, currently have “real” people listening to
broadcasts and filling out scorecards.
A large-scale broadcast monitoring system based on fingerprinting 
consists of several monitoring sites and a central site where the
fingerprint server is located. At the monitoring sites fingerprints
are extracted from all the (local) broadcast channels. The central
site collects the fingerprints from the monitoring sites.
Subsequently, the fingerprint server, containing a huge fingerprint 
database, produces the playlists of all the broadcast channels.

3.2 Connected Audio
Connected audio is a general term for consumer applications
where music is somehow connected to additional and supporting
information. The example given in the abstract, using a mobile
phone to identify a song is one of these examples. This business is 
actually pursued by a number of companies [10][13]. The audio
signal in this application is severely degraded due to processing
applied by radio stations, FM/AM transmission, the acoustical
path between the loudspeaker and the microphone of the mobile
phone, speech coding and finally the transmission over the mobile 
network. Therefore, from a technical point of view, this is a very
challenging application.
Other examples of connected audio are (car) radios with an
identification button or fingerprint applications “listening” to the
audio streams leaving or entering a soundcard on a PC. By
pushing an “info” button in the fingerprint application, the user
could be directed to a page on the Internet containing information 
about the artist. Or by pushing a “buy” button the user would be
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able to buy the album on the Internet. In other words, audio
fingerprinting can provide a universal linking system for audio
content.

3.3 Filtering Technology for File Sharing
Filtering refers to active intervention in content distribution. The
prime example for filtering technology for file sharing was
Napster [15]. Starting in June 1999, users who downloaded the
Napster client could share and download a large collection of
music for free. Later, due to a court case by the music industry,
Napster users were forbidden to download copyrighted songs.
Therefore in March 2001 Napster installed an audio filter based
on file names, to block downloads of copyrighted songs. The filter 
was not very effective, because users started to intentionally
misspell filenames. In May 2001 Napster introduced an audio
fingerprinting system by Relatable [8], which aimed at filtering
out copyrighted material even if it was misspelled. Owing to
Napster’s closure only two months later, the effectiveness of that
specific fingerprint system is, to the best of the author’s
knowledge, not publicly known.
In a legal file sharing service one could apply a more refined
scheme than just filtering out copyrighted material. One could
think of a scheme with free music, different kinds of premium
music (accessible to those with a proper subscription) and
forbidden music.
Although from a consumer standpoint, audio filtering could be
viewed as a negative technology, there are also a number of
potential benefits to the consumer. Firstly it can organize music
song titles in search results in a consistent way by using the
reliable meta-data of the fingerprint database. Secondly,
fingerprinting can guarantee that what is downloaded is actually
what it says it is. 

3.4 Automatic Music Library Organization
Nowadays many PC users have a music library containing several 
hundred, sometimes even thousands, of songs. The music is
generally stored in compressed format (usually MP3) on their
hard-drives. When these songs are obtained from different
sources, such as ripping from a CD or downloading from file
sharing networks, these libraries are often not well organized.
Meta-data is often inconsistent, incomplete and sometimes even
incorrect. Assuming that the fingerprint database contains correct
meta-data, audio fingerprinting can make the meta-data of the
songs in the library consistent, allowing easy organization based
on, for example, album or artist. For example, ID3Man [16], a
tool powered by Auditude [7] fingerprinting technology is already 
available for tagging unlabeled or mislabeled MP3 files. A similar 
tool from Moodlogic [11] is available as a Winamp plug-in [17].

4. AUDIO FINGERPRINT EXTRACTION
4.1 Guiding Principles
Audio fingerprints intend to capture the relevant perceptual
features of audio. At the same time extracting and searching
fingerprints should be fast and easy, preferably with a small
granularity to allow usage in highly demanding applications (e.g.
mobile phone recognition). A few fundamental questions have to
be addressed before starting the design and implementation of
such an audio fingerprinting scheme. The most prominent
question to be addressed is: what kind of features are the most
suitable. A scan of the existing literature shows that the set of
relevant features can be broadly divided into two classes: the class 
of semantic features and the class of non-semantic features.
Typical elements in the former class are genre, beats-per-minute,
and mood. These types of features usually have a direct

interpretation, and are actually used to classify music, generate
play-lists and more. The latter class consists of features that have a 
more mathematical nature and are difficult for humans to ‘read’
directly from music. A typical element in this class is
AudioFlatness that is proposed in MPEG-7 as an audio descriptor 
tool [2]. For the work described in this paper we have for a
number of reasons explicitly chosen to work with non-semantic
features:

1. Semantic features don’t always have a clear and
unambiguous meaning. I.e. personal opinions differ over 
such classifications. Moreover, semantics may actually
change over time. For example, music that was
classified as hard rock 25 years ago may be viewed as
soft listening today. This makes mathematical analysis
difficult.

2. Semantic features are in general more difficult to
compute than non-semantic features.

3. Semantic features are not universally applicable. For
example, beats-per-minute does not typically apply to
classical music.

A second question to be addressed is the representation of
fingerprints. One obvious candidate is the representation as a
vector of real numbers, where each component expresses the
weight of a certain basic perceptual feature. A second option is to
stay closer in spirit to cryptographic hash functions and represent
digital fingerprints as bit-strings. For reasons of reduced search
complexity we have decided in this work for the latter option. The
first option would imply a similarity measure involving real
additions/subtractions and depending on the similarity measure
maybe even real multiplications. Fingerprints that are based on bit 
representations can be compared by simply counting bits. Given
the expected application scenarios, we do not expect a high
robustness for each and every bit in such a binary fingerprint.
Therefore, in contrast to cryptographic hashes that typically have a 
few hundred bits at the most, we will allow fingerprints that have
a few thousand bits. Fingerprints containing a large number bits
allow reliable identification even if the percentage of non-
matching bits is relatively high.
A final question involves the granularity of fingerprints. In the
applications that we envisage there is no guarantee that the audio
files that need to be identified are complete. For example, in
broadcast monitoring, any interval of 5 seconds is a unit of music
that has commercial value, and therefore may need to be identified 
and recognized. Also, in security applications such as file filtering 
on a peer-to-peer network, one would not wish that deletion of the
first few seconds of an audio file would prevent identification. In
this work we therefore adopt the policy of fingerprints streams by 
assigning sub-fingerprints to sufficiently small atomic intervals
(referred to as frames). These sub-fingerprints might not be large
enough to identify the frames themselves, but a longer interval,
containing sufficiently many frames, will allow robust and reliable 
identification.

4.2 Extraction Algorithm
Most fingerprint extraction algorithms are based on the following
approach. First the audio signal is segmented into frames. For
every frame a set of features is computed. Preferably the features
are chosen such that they are invariant (at least to a certain degree) 
to signal degradations. Features that have been proposed are well
known audio features such as Fourier coefficients [4], Mel
Frequency Cepstral Coefficients (MFFC) [18], spectral flatness
[2], sharpness [2], Linear Predictive Coding (LPC) coefficients
[2] and others. Also derived quantities such as derivatives, means 
and variances of audio features are used. Generally the extracted

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


A Highly Robust Audio Fingerprinting System

features are mapped into a more compact representation by using
classification algorithms, such as Hidden Markov Models [3], or
quantization [5]. The compact representation of a single frame
will be referred to as a sub-fingerprint. The global fingerprint
procedure converts a stream of audio into a stream of sub-
fingerprints. One sub-fingerprint usually does not contain
sufficient data to identify an audio clip. The basic unit that
contains sufficient data to identify an audio clip (and therefore
determining the granularity) will be referred to as a fingerprint-
block.
The proposed fingerprint extraction scheme is based on this
general streaming approach. It extracts 32-bit sub-fingerprints for
every interval of 11.6 milliseconds. A fingerprint block consists of 
256 subsequent sub-fingerprints, corresponding to a granularity of 
only 3 seconds. An overview of the scheme is shown in Figure 1.
The audio signal is first segmented into overlapping frames. The
overlapping frames have a length of 0.37 seconds and are
weighted by a Hanning window with an overlap factor of 31/32.
This strategy results in the extraction of one sub-fingerprint for
every 11.6 milliseconds. In the worst-case scenario the frame
boundaries used during identification are 5.8 milliseconds off with 
respect to the boundaries used in the database of pre-computed
fingerprints. The large overlap assures that even in this worst-case
scenario the sub-fingerprints of the audio clip to be identified are
still very similar to the sub-fingerprints of the same clip in the
database.  Due to the large overlap subsequent sub-fingerprints
have a large similarity and are slowly varying in time. Figure 2a
shows an example of an extracted fingerprint block and the slowly 
varying character along the time axis.
The most important perceptual audio features live in the frequency 
domain. Therefore a spectral representation is computed by
performing a Fourier transform on every frame. Due to the
sensitivity of the phase of the Fourier transform to different frame
boundaries and the fact that the Human Auditory System (HAS) is 
relatively insensitive to phase, only the absolute value of the
spectrum, i.e. the power spectral density, is retained.
In order to extract a 32-bit sub-fingerprint value for every frame,
33 non-overlapping frequency bands are selected. These bands lie
in the range from 300Hz to 2000Hz (the most relevant spectral
range for the HAS) and have a logarithmic spacing. The
logarithmic spacing is chosen, because it is known that the HAS
operates on approximately logarithmic bands (the so-called Bark
scale). Experimentally it was verified that the sign of energy
differences (simultaneously along the time and frequency axes) is
a property that is very robust to many kinds of processing. If we
denote the energy of band m of frame n by E(n,m) and the m-th bit 
of the sub-fingerprint of frame n by F(n,m), the bits of the sub-
fingerprint are formally defined as (see also the gray block in 

Figure 1, where T is a delay element):

Figure 2 shows an example of 256 subsequent 32-bit sub-
fingerprints (i.e. a fingerprint block), extracted with the above
scheme from a short excerpt of “O Fortuna” by Carl Orff.  A ‘1’ 
bit corresponds to a white pixel and a ‘0’ bit to a black pixel.
Figure 2a and Figure 2b show a fingerprint block from an original 
CD and the MP3 compressed (32Kbps) version of the same
excerpt, respectively. Ideally these two figures should be identical, 
but due to the compression some of the bits are retrieved
incorrectly. These bit errors, which are used as the similarity
measure for our fingerprint scheme, are shown in black in Figure
2c.
The computing resources needed for the proposed algorithm are
limited. Since the algorithm only takes into account frequencies
below 2kHz the received audio is first down sampled to a mono
audio stream with a sampling rate of 5kHz. The sub-fingerprints
are designed such that they are robust against signal degradations. 
Therefore very simple down sample filters can be used without
introducing any performance degradation. Currently 16 tap FIR
filters are used. The most computationally demanding operation is 
the Fourier transform of every audio frame. In the down sampled
audio signal a frame has a length of 2048 samples. If the Fourier
transform is implemented as a fixed point real-valued FFT the
fingerprinting algorithm has been shown to run efficiently on
portable devices such as a PDA or a mobile phone.

4.3 False Positive Analysis
Two 3-second audio signals are declared similar if the Hamming
distance (i.e. the number of bit errors) between the two derived
fingerprint blocks is below a certain threshold T. This threshold
value T directly determines the false positive rate Pf, i.e. the rate at 
which audio signals are incorrectly declared equal: the smaller T,
the smaller the probability Pf will be. On the other hand, a small
value of T will negatively effect the false negative probability Pn,

Figure 2. (a) Fingerprint block of original music clip, 
(b) fingerprint block of a compressed version, (c) the 
difference between a and b showing the bit errors in 

black (BER=0.078).
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i.e. the probability that two signals are ‘equal’, but not identified
as such. 
In order to analyze the choice of this threshold T, we assume that 
the fingerprint extraction process yields random i.i.d.
(independent and identically distributed) bits. The number of bit
errors will then have a binomial distribution (n,p), where n equals
the number of bits extracted and p (= 0.5) is the probability that a 
‘0’ or ‘1’ bit is extracted. Since n (= 8192 = 32  256) is large in 
our application, the binomial distribution can be approximated by
a normal distribution with a mean μ = np and standard deviation
σ =√(np(1-p)). Given a fingerprint block F1, the probability that a 
randomly selected fingerprint block F2 has less than T = α n errors 
with respect to F1 is given by:
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x
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2
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where α denotes the Bit Error Rate (BER).
However, in practice the sub-fingerprints have high correlation
along the time axis. This correlation is due not only to the inherent 
time correlation in audio, but also by the large overlap of the
frames used in fingerprint extraction. Higher correlation implies a
larger standard deviation, as shown by the following argument.
Assume a symmetric binary source with alphabet {-1,1} such that 
the probability that symbol xi and symbol xi+1 are the same is
equals to q. Then one may easily show that

,]E[ ||k
kii axx 

(3)

where a = 2·q-1. If the source Z is the exclusive-or of two such
sequences X and Y, then Z is symmetric and 

.]E[ ||2 k
kii azz 

(4)

For N large, the standard deviation of the average NZ  over N
consecutive samples of Z can be approximately described by a
normal distribution with mean 0 and standard deviation equal to 

.
)1(

1
2

2

aN
a

 (5)

Translating the above back to the case of fingerprints bits, a
correlation factor a between subsequent fingerprint bits implies an 
increase in standard deviation for the BER by a factor 

.
1
1

2

2

a
a


 (6)

To determine the distribution of the BER with real fingerprint
blocks a fingerprint database of 10,000 songs was generated.
Thereafter the BER of 100,000 randomly selected pairs of
fingerprint blocks were determined. The standard deviation of the
resulting BER distribution was measured to be 0.0148,
approximately 3 times higher than the 0.0055 one would expect
from random i.i.d. bits.
Figure 3 shows the log Probability Density Function (PDF) of the 
measured BER distribution and a normal distribution with mean
of 0.5 and a standard deviation of 0.0148. The PDF of the BER is 
a close approximation to the normal distribution. For BERs below 
0.45 we observe some outliers, due to insufficient statistics. To
incorporate the larger standard deviation of the BER distribution
Formula (2) is modified by inclusion of a factor 3.

  






 
 nPf 23

)21(erfc
2
1 αα

The threshold for the BER used during experiments was  = 0.35. 
This means that out of 8192 bits there must be less than 2867 bits 
in error in order to decide that the fingerprint blocks originate
from the same song. Using formula (7) we arrive at a very low
false positive rate of erfc(6.4)/2= 3.6·10-20.

4.4 Experimental Robustness Results
In this subsection we show the experimental robustness of the
proposed audio fingerprinting scheme. That is, we try to answer
the question of whether or not the BER between the fingerprint
block of an original and a degraded version of an audio clip
remains under the threshold α
We selected four short audio excerpts (Stereo, 44.1kHz, 16bps)
from songs that belong to different musical genres: “O Fortuna”
by Carl Orff, “Success has made a failure of our home” by Sinead 
o’Connor, “Say what you want” by Texas and “A whole lot of
Rosie” by AC/DC.  All of the excerpts were subjected to the
following signal degradations:

 MP3 Encoding/Decoding at 128 Kbps and 32 Kbps.

 Real Media Encoding/Decoding at 20 Kbps.

 GSM Encoding at Full Rate with an error-free channel and 
a channel with a carrier to interference (C/I) ratio of 4dB
(comparable to GSM reception in a tunnel).

 All-pass Filtering using the system function: H(z)=(0.81z2-
1.64z+1)/ (z2-1.64z+0.81).

 Amplitude Compression with the following compression
ratios: 8.94:1 for |A|  -28.6 dB; 1.73:1 for -46.4 dB  |A|  -
28.6 dB; 1:1.61 for |A|  -46.4 dB.

 Equalization A typical10-band equalizer with the following
settings:

Freq.(Hz) 31 62 125 250 500 1k 2k 4k 8k 16k

Gain(dB) -3 +3 -3 +3 -3 +3 -3 +3 -3 +3

 Band-pass Filtering using a second order Butterworth filter
with cut-off frequencies of 100Hz and 6000Hz.

 Time Scale Modification of +4% and -4% . Only the tempo 
changes, the pitch remains unaffected.

(2)

(7)
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Figure 3. Comparison of the probability density function of 
the BER plotted as ‘+’ and the normal distribution.
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