
EX1021
Roku V. Media Chain

U.S. Patent No. 9,715,581

(12)

(54)

(75)

(73)

CNY

(21)

(22)

(65)

(60)

(51)

(52)

(58)

United States Patent
Boccon-Gibodet al.

DIGITAL RIGHTS MANAGEMENT ENGINE
SYSTEMS AND METHODS

Inventors: Gilles Boceon-Gibod. Los Altos. CA

(US); Julien G. Boeuf, Paris (FR)

Assignee: Intertrust Technologies Corporation,
Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C, 154(b) by 2200 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 11/583,693

Filed: Oct. 18, 2006

Prior Publication Data

US 2007/0180519 Al Aug. 2, 2007

Related U.S. Application Data

Provisional application No, 60/728,089, filed on Oct.
18, 2005. provisional application No. 60/772.024,
filed on Feb. 9, 2006, provisional application No.
60/744,574, filed on Apr, 10, 2006, provisional
application No. 60/791,179. filed on Apr. 10, 2006,
provisional application No. 60/746,712, filed on May
8, 2006, provisional application No. 60/798.925,filed
on May 8, 2006, provisional application No.
60/835,061, filed on Aug. 1, 2006.

Int. Cl.

GU6F 12/00 (2006.01)
US. CL
LISP ee cevesiearessqacesvessagnareeel PEDIRL POOLE OE PEOLDE
Field of Classification Search
USPC. cccsnsn seteenene 726/21, 26-27

See application file for complete search history.

US008776216B2

(10) Patent No.: US 8,776,216 B2
(45) Date of Patent: *Jul. 8, 2014

(56) References Cited

U.S, PATENT DOCUMENTS

4,827,508 A 5/1989 Shear
4,077,504 A 12/1990 Shear
5,050,213 A 9/1991 Shear
S5410,598 A 4/1995 Shear
5.414.845 A §/1995 Behm etal.
5,530,235 A 6/1996 Stefik etal.
5,534,975 A 7/1996 Stefik et al.
5,629,980 A §/1997 Stetik et al.
5.634.012 A 5/1997 Stefik et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP O71S 247 Al 6/1996
EP O840194 AZ 6/1998

(Continued)

OTHER PUBLICATIONS

‘Tari et al,, “Controlling Aggregation in Distributed Object Systems:
A Graph-Based Approach,” Dee, 2001, IEEE, pp. 1236-1256,"

(Continued)

Primary Examiner — Bradley Holder
(74) Attorney, Ageni, or Firm — Finnegan, Henderson,
Farabow, Garrett & Dunner, L.LP

(57) ABSTRACT

Systems and methods are described for performing digital
rights management. In one embodiment, a digital rights man-
agement engine is provided that evaluates license associated
with protected content to determine if'a requested access or
other use olthe content is authorized. In some embodiments,

the licenses contain control programsthat are executable by
the digital rights management engine.

11 Claims, 44 Drawing Sheets

EX1021

Roku V. Media Chain

U.S. Patent No. 9,715,581

US 8,776,216 B2
Page 2

(56)

5,638,443
5.673315
5.715.403
5,765,152
5,774,652
5,892,900
§,910,987
5,915,019
5,917,912
5,920,561
5,937,041
5,940,504
5,943,422
5.949876
5,968,175
5,982,891
5,991,399
5,999,949
6,006,332
6,023,765
6,044,469
6,052,780
6112181
6,1SR119
6,157,721
6,185,683
6,188,995
6.223,291
6,226,618
6,233,577
6,233,608
6.237.786
6,240,185
6,253,193
6,292,569
6,363,488
6,389,402
6,427,140
6,449,367
6,618,484
6,640,304
6,658,568
6,668,325
6,735,253
6,769,019
6,785,815
6,807,534
6,832,316
6.842863
6.850.252
6,928,545
6,934,702
6,959,290
6.961.858
6,976,164
6,985,953
6,996,544
TAO89 594
TL07,449
7,113,912
TATA S58
7,203,966
7,210,039
7,272,228
7,308,717
7.356.690
T3459 S17
7,389,270
7,389,273
7,484,103
7,A87.363
7,493,289
7.496.757
TA16331
7,549,172

SPPPeereSSSSPeereerreeeeere
BI
Bl
BL
B2
Bl
Bl
Bl
Bl
Bl
BI
B2
B2
B2
BL
Bl
B2
B2
B2
B2
BI
B2
B2
B2
B2
B2
Bl
B2
B2
Ba
B2
B2*
B2
B2
B2

References Cited

LLS. PATENT DOCUMENTS

6/1997
9/1997
2/1998
6/1998
6/1998
4/1999
6/1999
6/1999
6/1999
T1999
8/1999
8/1999
8/1999
9/1999

10/1999
11/1999
11/1999
12/1999
12/1999
2/2000
3/2000
4/2000
8/2000

10/2000
12/2000
2/2001
2/2001
4/2001
§/2001
4/2001
§/2001
4/2001
32001
6/2001
9/2001
3/2002
§/2002
7/2002
9/2002
9/2003

10/2003
12/2003
12/2003
5/2004
7/2004
8/2004

10/2004
12/2004

1/2005
2/2005
8/2005
8/2005

10/2005,
11/2005
12/2005

1/2006
2/2006
8/2006
9/2006
9/2006
1/2007
4/2007
4/2007
9/2007

12/2007
4/2008
4/2008
6/2008
6/2008
1/2009
2/2009
2/2009
2/2009
4/2009
6/2009

Stefik et al.
Wolf
Stelik
Erickson
Smith
Ginteret al.
Ginter et al,
Ginterel al.
Ginter et al,
Hall et al,
Cardillo et al.
Griswold
Van Wie et al.
Ginter el al.
Morishita et al.
Ginter et al,
Graunke et al.
Crandall
Rabneet al,
Kuhn
Horstmann
Glover
Shear etal.
Hallet al,
Shear et al.
Ginterel al.
Garstet al,
Puhlet al.
Downsetal.
Ramasubramaniet al,
Laursen et al.
Ginteret al,
Van Wie et al,
Ginteret al,
Shear et al,
Ginteret al.
Ginter et al.
Ginteret al,
Van Wie et al.
Van Wieet al.
Ginteret al.
Ginter et al,

Collberg et al.
Changetal.
Ferguson
Serret-Avila et al.
Erickson
Sibert
Fox et al,
Hoffberg
Litai et al.
Faybishenkoet al.
Stefik et al.
Fransdonk

Kinget al.
Sandhuetal.
Sellars etal.
Lalet al,
Montet al,
Stefik et al.
Mourad et al.
Abburi et al.
Rodgers et al.
Atlin et al,
Kovedet al.
Benantar
Rowe
Stefik etal.
Invin etal,
Wooet al. oo...
Alve et al.
Verosub etal,
Abbott et al.
Jin et al.
Tokutani et al,

ssoPEBITBO

conve TOSISL

7,558,759
TAT429
7.587368
7,590,863
7,610,011
7.031318
TTV1647
8,234,387
$302,178

2001/0001 147
200 10033554
200 1/0042043
200 1/005 1996
2002/0002674
2002/00 10679
2002/0023214
2002/0044657
2002/ 0048369
2002/0059425
2002/0087859
2002/0108050
2002/0112171
2002/0144 108
2002/0144283
2002/0152173
2002/0157002
2002/0161996
2002/0164047
2002/0 194081
2003/0009423
2003/0009681
2003/0023856
2003/0028488
2003/0037 139
2003/0041239
2003/0046244
2003/0051 134
2003/0055878
2003/0061404
2003/0065956
2003/0069748
2003/0069749
2003/0078891
2003/0084003
2003/0084 172
2003/0105721
2003/0105864
2003/0 126086
2003/0135628
2003/0140119
2003/0144859
2003/0145044
2003/0145093
2003/0159033
2003/0163431
2003/0167236
2003/0172127
2003/0177 187
2003/0184431
2003/0194093
2003/0207687
2003/0220835
2003) 0220880
2003/0225701
2003/0226012
2003/0236978
2004/0003 139
2004/0003270
2004/0003398
2004/0024688
2004/0054630
2004/0054894
2004/00549 12
2004/005995 |
2004/0073813
2004/0103305
2004/0103312
2004/0107356.
2004/0107368

B2
B2
B2
B2
B2
B2
B2*
B2*
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
AL
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al*
Al
Al
Al
Al
Al
Al
Al
Al
Al
AL?
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
AL
Al
AL®
Al™
Al*
Al
Al
Al
Al
Al

Al
Al

Al

7/2009
8/2009
9/2009
9/2009

10/2009
12/2009
5/2010
T2012

10/2012
5/2001

10/2001
1/2001
12/2001

1/2002
1/2002
2/2002
4/2002
4/2002
5/2002
7/2002
8/2002
§/2002

10/2002
10/2002
10/2002
10/2002
10/2002
11/2002
12/2002

1/2003
1/2003
1/2003
2/2003
2/2003
2/2003
3/2003
3/2003
3/2003
3/2003
4/2003
4/2003
4/2003
4/2003
5/2003
5/2003
6/2003
6/2003
7/2003
7/2003
7/2003
7/2003
7/2003
7/2003
8/2003
8/2003
9/2003
9/2003
9/2003

10/2003
10/2003
11/2003
11/2003
11/2003
12/2003
12/2003
12/2003

1/2004
12004
1/2004
2/2004
32004
32004
3/2004
3/2004
4/2004
5/2004
5/2004
6/2004
6/2004

Valenzuela et al.
Rotheari et al.
Felsher
Lambert
Albrett
Cottrille et al.
Gunaseelan et al, ...
Bradley et al...
Camiel
Hutchison et al.

Ayyagariet al.Shear et al.

Cooperetal,Grimes etal,
Felsher
Shear etal.
Asano et al.
Ginter et al.
Belfiore et al,
Weeksetal.

Raley et al.
Ginter etal.
Benantar
tleadings et al.
Rudd
Messergesetal,Koved et al.
Yuval
Perkowski

Wang etal.
Harada et al.
Horneet al,
Mohammedet al. 705/59
Shieyn
Shear etal,
Shear etal,
Gupta
Fletcher etal.
Atwaletal.
Belapurkar et al,
Shear et al.
Shear etal.

Capitant oo...Pinkas et al.

deJonget al.
Ginteret al.
Mulligan etal,
Safadi
Fletcheret al.
Acharyaet al.
Hsu et al.
Raivisto et al.
Oren et al.
Ishiguro
Ginter et al.
Stefik et al.
Northrup et al,
Levine et al.
Lundkvist
Evans etal.
Svedevall et al.
Barnes
Lao etal,
Lee et al.
Asokan et al.
Evans et al.
Cottrille etal occ FOV33L
Bourne et al, .. ew F13/193
Donan et als ccc. 725/34
Bret al.
Ginter et al.
Lambert
Adentet al.
Pinkas et al.
Pinkas et al.
Ginteret al.

Messergeset al,
Shamoonet al.
Colvin

eu. 705/59
uw 709/229

viva, TOSISF

US 8,776,216 B2

Page 3

(56) References Cited Wo WO 99/48296 Al 9/1999WoO WO 00/75925 Al 12/2000
U.S. PATENT DOCUMENTS Wo WO 01/06374 Al 1/2001

wo WO 0109702 Al 2/2001

2004/0117490 AL 6/2004 Peterkaet al. wo WO GUTOGTE AL. 2/2004
2004/0123129 Al 6/2004. Ginteret al, wo WO 01/80472 10/2001
2004/0128499 Al 7/2004. Peterka etal. WO We Oieedae AL|1200
2004/0128546 Al 7/2004. Blakley et al. Wo WO02/078238 10/2002
2004/0133793 Al 7/2004. Ginter et al. WO WE DORGATS 2) LN200E
2004/0139312 AL 7/2004. Medvinsky Wits WO02/093290 A2 11/2002
2004/0143546 Al 7/2004 Woodet al. Wo WO 03/034408 AZ 4/2003
2004/0143736 AL* 7/2004 Crosseal, occuT1165=WO WRAMAGTG As, DUS
2004/0158709 AL* 8/2004 Narin etal, .., 713/156=WO WO 2004/008297 AL 1/2004
2004/0158731 AL* 8/2004 Narimetal, essesonens 713/200 WO WO 2004/027588 A2 4/2004
2004/0162870 Al 8/2004 Matsuzaki et al. WO WO 2004/030311 Al 4/2004
2004/0205028 Al* 10/2004 Verosubetal, wc... 705/59 WO WO 2004/038568 A2 5/2004
2004/0205333 Al 10/2004 Bjorkengren WO WO 2004/055650 Al 7/2004
2004/0205768 Al 10/2004 Beringer etal. WoO WO2004/059451 Al T2004
2004/0216127 Al 10/2004 Datta et al, WO WO 2004/070538 A2 8/2004
2004/0249768 AL* 12/2004 Kontioet ale jesse705/65 WO WO 2005/055009 A2 6/2005
2004/0254851 Al* 12/2004 Himenoetal. cescconn- 705/26 WO WO 2006/118391 Al 11/2006
2004/0267965 Al 12/2004 Vasudevan et al. WO=WO. 2007/043015 A2 4/2007
2005/0004875 AL* 1/2005 Kontio etal.0...--. 705/52 . ~
2005/0008163 Al 1/2005 Leser et al, OTHER PUBLICATIONS
2005/0022227 Al 1/2005 Shen etal. / ow ‘ :
2005/0027871 Al 2/2005 Bradley et al.c...0. 709/227 Simonetal., “A Digital Licensing Model for the Exchangeof Learn-
2005/0050332 Al 3/2005 Serret-Avila et al, ing Objects in a Federated Environment,” 2004, IEEE, pp. 1-8."

Snnenecy = ean re , Chang el al.. “Multimedia Rights Management for the MultipleZU _ sinter et al, ices of End-Liser,” 2003, IEEE 1-6"2005/0078822 Al* 4/2005 Shavit etal, oj. 380/201 Devices of End-User,” 2003, IEEE, pp. 1-6, ~
; * Jonker et al., “Digital Rights Management in Consumer Electronics

2005/0086501 Al 42005 Wooetal. cocTIS/189 ae . : :
2005/0L02513 Al 5/2005 Alve Products, Mar. 2004, IEEE Signal Processing Magazine, pp-
2005/0108555 Al 5/2005. Sibert §2-92.*
2005/Q108707 Al §/2005 ‘Taylor et al. Office Action dated Jan. 4, 2008 issued in related U.S. Appl. No.
200S/0L19977 Al * 6/2005 Raciborskiccc 7035/59 10/863,551. filed Jun. 7. 2004,
edueane Ms ones beta et ate Bei Office Action dated Jun, 28, 2008 issued in related U.S. Appl. No,£ i oe - Ye hams . on rh ie 55 ote ‘
2005/0204391 Al 9/2005 Hunlethetal. aei; tae ee ie ccbunzd Wee Gand
2005/0228858 Al* 10/2005 Mizutani et ab. 709/20! pe fhtia dina ates Ard se era MASS EAR Sos Ee NER ee
2005/0234735 Al 10/2005 Williams 10/865,551, filed Jun. 7, 2004,
2005/0235361 Al 10/2005 Alkove et al. Office Action dated Dec. 8, 2009 issued in related LS. Appl. No,
2005/0262520 Al 11/2005 Burnett etal, 10/863.551, filed Jun. 7, 2004.

meets Al . ees oe et = sisis Office Action dated Sep. 11, 2009 issued in related U.S. Appl. No.2005/0273629 AL* 12/2005 Abrams-et al. soc. TLV IR | 1/804,667, filed May 17, 2007,
500510278256 ALT 12/2005 Nandewateret alsy705/97 Office Action dated Jan: 6, 2010 issued in related U.S, Appl, No,
2005/0278259 AL* [2/2005 Gunaseelan el al. wens 105/59 11/829.751. filed Jul. 27, 2007
2006/0015580 AI* 1/2006 Gabriel et al, co.cc... 709/219 pee eta UE Relay ‘ c
20060020784 Al 1/2006 Jonker et al. Office Action dated Feb. 3, 2010 issued in related U.S. Appl. No.
2006/0021065 AL 1/2006 Kamperman et al, 11/894,624, filed Aug. 20,2007, -
2006/0041642 Al 3/3006 Rosneret al. Office Action dated Oct, 23, 2008 issued in related U.S. Appl. No,
2006'0050870 Al 3/2006 Kimmelet al. 11/894,372, filed Aug. 20, 2007.
2006/0129818 Al 62006 Kim etal. Office Action dated Jun, 10, 2009 issued in related U.S. Appl. No.
2006/0136718 Al 6/2006 Moreillon 11/894,372, filed Aug, 20, 2007.
2006/0150257 Al 7/2006 Leung et al. Office Action dated Nov. 13, 2009 issued in related LS, Appl No
2O0G6/OL73985 Al 8/2006 Moore 11/894,372, filed Aug. 20, 2007.
2006/0248340 Al 11/2006 Lee etal. Office Action dated Nov. 14, 2008 issued in related U.S. Appl. No,
2006/0294580 Al 12/2006 Yeh 11929,937, filed Oct. 30, 2007,

2007/0074270 Al 3/2007 Meehan etal. International Search Report mailed Feb. 1, 2006 issued in related
2007/0083757 Al 4/2007 Nakanoet al. International Application No. PCT/US04/ 18120,
2007/0192480 Al 8/2007 Han et al. International Preliminary Examination Report mailed Jul. 17. 2006,
2007/0300070 AL=12/2007 Shen-Orret al. issued in related International Application No. PCT/(/S04/ 18120,
20080133417 Al 6/2008 Robinson Examiner’s First Report dated Mar, 30, 2009 issued in related Aus-
2009/0007198 AL* 1/2009 Lavender etal, ou... 725/91 tralian Application No. 2004264582,
2010/0070774 Al 3/2010 Bradley et al. Office Action issued Apr. 3. 2009 issued in related Chinese Patent

FOREIGN PATENT DOCUMENTS

JP 2001-290724
JP 2003-122635
WoO WO96/27155
wo WO 97/41654
WO WO97/43761
Wo WO98/09209
WO WO98) 10381
wo WO 98/37481
WO WO 99/01815
Wo WO 99/05600
WoO WO99/24928

A
A2
A2
Al
A2
Al
Al
Al
Al
Al

10/2001
4/2003
9/1996

11/1997
11/1997
3/1998
3/1998
8/1998
1/1999
2/1999
5/1999

Application No. 200480021795.9.
Office Action issued Oct. 15, 2009 issued in related Chinese Patent

Application No. 200480021795.9.
Supplementary European Search Report completed Apr. 14, 2008
issued in related European Application No. 047763503.
Examination Repori dated Sep, 17, 2009 issuedin related European
Application No. 047763503.
Notice ofReasons for Rejection mailedJul. 14, 2009issuedin related
Japanese Patent Application No, 2006-509076,
Notice of Grounds for Rejection issued Feb. 10, 2010 issued in
related Korean Application No, 2005-7023383.
Official Action issued in related Eurasian Application No-
200700510/27.

US 8,776,216 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Chinnici, Roberto et al, “Web Services Description Language
(WSDL) Version 1.2, Part 1: Core Language”, W3C Working Drafi,
Jun. 11, 2003, 78 pages.
Curbera et al., “Using WSDL in a UDDI Registry, Version 1.07."
UDDI Best Practice, found online at http:/www.uddi.org/pubs!
wsdlbestpractices-V 1.07-Open 20020521 pdf, May 21, 2002.
Erickson, John 8..*Loward an Open Rights Management [nteroper-
ability Framework”, Yankee Book Peddler, Inc, Jun, 24. 1999,
Erikson, LS., “A Digital Object Approach to Interoperable Rights
Management: Fine-grained Policy Enforcement Enabled by a Digital
Object Infrastructure,” D-Lib Magazine, Jun. 2001, 18 pages, vol. 7,
No. 6, available at http.//www.dlib.org/dlibjune0! /erickson/
O6erickson.huml.

Gudgin, M, etal.. "SOAP Version 1.2 Part 2: Adjunts, W3C Recom-
mendation Jun. 24, 2003," W3C,pp. 1-58, from hitp://www.w3.org/
TR/2003/REC-soap|2-part2-20030624/ on Nov. 4, 2004.
http://en.wikipedia.org/wki/Authorization Certificate, Sep. 27,
2008.

http://en.wikipedia.org/wiki/Public_key_Certificate,
2008.

Peltz, C., “web services orchestration: a review of emerging tech-
nologies, tools, and standards.” Hewlett Packard, Co., Jan. 2003: pp.
1-19,

Sibert, 0.et al., “Digibox: A Self-Protecting Container for Informa-
tion Commerce.” Proceedings of the First USENIX Workshop on
Electronic Commerce, Jul, 1995, 13 pages, New York, NY.
Sibert, ©. et al., “Securing the Content, Not the Wire, for Information
Commerce,” 1996, |2 pages. InterTrust Technologies Corporation.
Stefik, M., “Introduction to Knowledge Systems, Chapter 7: Classi-
fication,” 1995, pp. 543- 607, Morgan Kaufmann Publishers, Inc.,
San Francisco, CA,
Stefik, M.. “Letting Loose the Light: Igniting Commerce in Elee-
tronic Publication.” 1994-1995, 37 pages, Xerox Pare, Palo Alto, CA.
Stefik, M.. “Letting Loose the Light: Igniting Commerce in Elec-
tronic Publication,” Internet Dreams: Archetypes, Myths, and Meta-
phors, 1996, pp. 219-53, Massachusetts Institute ofTechnology.
Stefik, M., “Trusted Systems,” Scientific American. Mar. 1997, pp.
TRB L.

Swenson, K., “Process Management Standards Overview,” Fujitsu
Sofiware Corporation, 26 pages.
Using WSDL im a UDDI Registry.
zur Muehlen, M. et al. “Developing Web Services Choreography
Standards—The Case ofRESTvs. SOAP” Wesley J, Howe School of
Technology Management, Stevens Institute ofTechnology, pp. 1-25.
Office Action dated May 12. 2010 issued in related U.S. Appl. No.
10/863,551. filed Jun, 7, 2004.
Inlernational Search Report mailed Aug. 13, 2007, for Internalional
Application No, PC'T/US2006/040898, filed Oct. 18, 2006,
International Preliminary Report on Patentability issued Apr. 23,
2008, for International Application No. PCT/US2006/040898,filed
Oct. LB, 2006,

European Search Report and European Search Opinion completed
Jul. 2, 2009, for European Application No. EPOY1S663 1.5.
Hancke et al.. “An RFID Distance Bounding Protocol.” Proceedings
of IFER/Create-Net SecureComim 2005, [Online| LIRD:htip:/www.
rhidblog.org.uk/ RF1Ddistancebound-Securecomm2005,pdf.
Office Action dated Apr, 19, 2010 issued in related U.S. Appl. No.
11/804,667, fled May 17, 2007.
Office Action mailed May 12, 2010 issued in related U.S. Appl. No.
10/863.551, filed Jun, 7, 2004.
Office Action mailed Mar, 31, 2010 issued in related U.S. Appl. No.
11/829,805, filed Jul, 27, 2007,
Office Action mailed Feb. 17, 2009 issued tn related U.S, Appl. No.
11/583,671, filed Oct. 18, 2006.

Office Action mailed Nov. 24, 2009 issued in related U.S. Appl. No.
11/583.67L, filed Oct, 18, 2006.

Bradley et al., “The NEMOP2P Service Orchestration Framework.”
37th HICSS, Jan. 5-8, 2004, All pages.

Sep. 27.

Office Action mailed Nov, 6, 2008 issued in related U.S, Appl. No,
11/583,646, filed Oct, 18, 2006,

Office Action mailed Apr, 10, 2009 issued in related U.S. Appl. No.
11/583,646,filed Oct, 18. 2006,

Office Action mailed Dee, 2, 2009 issued in related U.S, Appl. No,
11/S83,646, filed Oct. 18, 2006,

Office Action matled Feb, 16, 2010 issued in related U.S. Appl. No,
11/583,622, filed Oct. 18, 2006,

Office Action mailed Mar. 15, 2010 issued in related U.S. Appl. No.
11/583,695, filed Oct, 18, 2006,

Office Action mailed Jul, 5, 2007 issued in related U.S. Appl. No-
11/583,527, filed Oct. 18, 2006.

Office Action matled Jan. 3, 2008 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006,

Office Action mailed Jun. 13, 2008 issued in related U.S. Appl. No.
11/583,527, filed Oct. 18, 2006,

Advisory Action mailed Oct. 6, 2008 issued in related U.S. Appl. No,
1 1/583,527, filed Oct, 18, 2006,

Office Action mailed Mar. 17, 2009 issued in related U.S. Appl No.
11/583,527, filed Oct, 18, 2006.

Office Action mailed Dee. 29, 2009 issued in related U.S. Appl. No,
11/583,527, filed Oct. 18, 2006.

Examination Report dated Feb. 19, 2010, for European Application
No. EPO9156631.5.

White. How Computers Work. Que Corp. Millennium Ed. 1999, All
pages.
Smith et al., “Virtual Machines: Versatile Platforms for Systems and
Processes.” Elsevier Science. May 20045. All pages.
English language translation of Notice of Grounds for Rejection,
issued Jul. 29, 2010 in related Korean Application No. 2010-
7007909,

English translation of Notice of Grounds for Rejection issued Aug.
24, 2010issued in related Korean Application No. 2005-7023383,
English translation of Notice of Reasons for Rejection mailed Aug,
10, 2010 issued in related Japanese Patent Application No. 2006-
509076.

English translation ofOfficial Action issued Aug. 3, 2010 in related
Eurasian Application No. 200901153.
Examination Report dated Jul. 7, 2010, issued in related Canadian
Application No, 2,528,428,
English translation of Office Action issued on Aug. 20, 2010 for
related Chinese Application No. 2006-80047 769.2.
European Search Opinion mailed Oct, 19, 2010 torrelated European
Application No. 09156727,1.
European Search Opinion mailed Oct, 19, 2010 forrelated European
Application No, 09156702 4,
English translation ofconclusion on Invention mailed Mar. 31, 2011
in related Eurasian Patent Application No. 2009011543.
Examination Report dated Apr. 13, 2011 issued in related European
Application No. 06826285.6.
“IBM Cryptolope Live!,” General Information guide, Version |, pp.
1-36 (1997).
Kaplan, “IBM Cryptolopes®, Super Distribution and Digital Rights
Management,”retrieved from internet on Mar. 14, 2000: URL:http://
www.research ibm.com’people/k/kaplan’cryptolope-docs/crypap.
himl (1996).
First Examination Report dated Apr. 4, 2011 issued in related Aus-
tralian Application No. 2006-304655.
English translation ofNotice of Reasons for Rejection mailed Apr. 5,
2011 issued in related Japanese Patent Application No, 2007-320348.
English translation ofDecision on Rejection issued Apr. 25, 2011 in
related Chinese Patent Application No, 200480021795.9.
Examination Report dated Apr. 11, 2011 issued in related Australian
Patent Application No, 2010212301.
Examination Report mailed Jul, 13, 2011 issued in related European
Application No. 047763503.
English translation of Decision of Final Rejection mailed Jul. 12,
2011 in related Japanese Application No. 2006-509076,
English translation of Notice of Grounds for Rejection, issued Sep.
22, 2011, for Korean Application No. 2008-7011L852.
English translation of a Decision ofFinal Rejection mailed Oct. 25,
2011 in related Japanese Patent Application No, 2007-320348.

US 8,776,216 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

English translation of Decision of Vinal Rejection mailed Noy, 22.
2011 in related Japanese Patent Application No. 2008-536800.
English translation of Notification No, 25, Official Action, mailed
Nov. 8, 2011 in related Israch Patent Application No. 172366.
Examination Report dated Feb. 23, 2012 issued in related European
Application No. 09156702.4.
English translation of Notice of Grounds for Rejection issued Feb.
17, 20)2 in related Korean Patent Applicaton No. 201 |-7030396.
English translation of Conclusion on Patentability mailed Jan. 26,
2012, issued in related Eurasian Patent Application No, 200901153/
31.

English translation of Notice of Amendment mailed Feb. 21, 2012
issued in related Chinese Patent Application No, 2011 10260513.2.
Examination Report dated Apr. 2, 2012 issued in related European
Application No, 09156631.5,
Notice ofAcceptance mailed Feb. 29, 2012 issued in related Austra-
lian Patent Application No, 2010212301.
English translation of Preliminary Rejection (final notification)
issued May 31, 2012 in related Korean Application No, 2008-TOLLSS2.

Office Action dated Jun, 25, 2012 in related Israeli Patent Application
No, 190957,

European Search Report dated Jul. 11, 2012 in related European
Patent Application No. LOLSO088.6,
European Search Report dated Jul. 11, 2012 in related European
Patent Application No. 10181095.0,

English Translation ofNotice ofGrouds for Rejection issued Jul. 12.
2012 in related Korean Patent Application No, 2012-7015783,
Examination Report dated Sep, 11, 2012 in related Australian Patent
Application No. 2012202810.
English Translation of Notice of Grounds for Rejection issued Oct
26, 2012 in related Korean Patent Application No. 2011-7030396,
International Search Report and Written Opinion dated Oct, 23, 2012
in related PC'T Application No. PCT) US2012/033150.
English translation of Conclusion on Patentability mailed Sep, 28.
2012, issued in related Eurasian Patent Application No. 200901153.
Search and Examination Report dated Oct. 10, 2012, issuedin related
ARIPOPatent Application No, AP/P/2008/004453,
Summons to Attend Oral Proceedings Pursuant to Rule 115¢1) EPC
dated Feb. 21, 2013 in related European Patent Application No.
06826285.6.

Wong, et al. “Dynamically Loaded Classes as Shared Libraries: an
Approach to Improving Virtual Machine Sealability’Parallel and
Distributed Processing Symposium, 2003, Proceedings International
Apr. 22-26, 2003, pp. 38-47, cited in related European Patent Appli-
cation No. 06826285 .6.

English translation of Notification No, 25, Official Action, mailed
May9, 2013 in related Israeli Patent Application No, 223027.
English translation of Notice of Reasons for Rejection mailed Aug.
20, 2013 in related Japanese Patent Application No. 201 |-248897,.
English translation ofFirst Office Action mailed Jun, 6, 2013, issued
in related Mexican Patient Application No, 201 1000735,
English translation of Third Office Action, mailed Sep. 23, 2013 in
related Chinese Patent Application No. 200480021795.9.

* cited by examiner

U.S. Patent Jul. 8, 2014 Sheet 1 of 44 US 8,776,216 B2

U.S. Patent Jul. 8, 2014 Sheet 2 of 44 US 8,776,216 B2

USER INTERFACE
NETWORK

INTERFACE

210

SYSTEM MEMORY

OS - 220

DRM ENGINE — 232
VM — 222

FIG. 2

U.S. Patent Jul. 8, 2014 Sheet 3 of 44 US 8,776,216 B2

300b
302 o

HOST APPLICATION WEB SERVICES
304b 305b

DRM ENGINE SERVICES
303b 306b

 CONTENT

145)

 203c 305a

304¢ 306a
DRM ENGINE

O3a
 HOST APPLICATION

304d
DAM ENGINE SERVICES

303d 306a

FIG. 3

U.S. Patent Jul. 8, 2014 Sheet4 of 44 US 8,776,216 B2

MUSIC
SERVICE

SUBSCRIBERS

Ai2

RIAA
APPROVED

414

CAREY
FAMILY

408

 PUBLIC
LIBRARY

410

 DEVICE
MANUFACTURER

416

PORTABLE
DEVICE

406

FIG. 4

U.S. Patent Jul. 8, 2014 Sheet 5 of 44 US 8,776,216 B2

RECEIVE REQUEST

EVALUATE LICENSE

AUTHORIZATION?

500

502

508

DENY REQUEST

506

GRANT REQUEST

FIG. 5

US 8,776,216 B2Sheet 6 of 44Jul. 8, 2014U.S. Patent

9‘Sis

+L

HSVHASHLNALNOS43HASHLNALNOS HSWH434dayTULNODASYLNALNODLNSLNOD

dayTOULNOO

 HOLDJSLOUWd

HSTIOHLNOD

3003FLAGTOHLNOD

vivdASMGAlLdAHINA

oo

AayLNALNOD

c09aSN3901N1

 GANDIS=(_)LNALNODG3LdAYON]LINSLNOD

U.S. Patent Jul. 8, 2014 Sheet 7 of 44 US 8,776,216 B2

702

SYSTEMA 716 SYSTEMB
\

DB DRM DB DRM
ENGINE ENGINE

= Q; ™
711

FIG. 7A

SYSTEM B
SYSTEMA

DB DRM
ENGINE

£04

DRM ENGINE
FIG. 7B

U.S. Patent Jul. 8, 2014 Sheet 8 of 44 US 8,776,216 B2

800

FIG. 8

U.S. Patent Jul. 8, 2014 Sheet 9 of 44 US 8,776,216 B2

START

RECEIVE REQUEST 900

FIND PROTECTOR FOR EACH CONTENTID 902

FIND CONTENTKEY FOR EACH CONTENTID ae

FIND CONTROLLER FOR CONTENTKEY(S) 906

FIND CONTROL FOR CONTENTKEY(S) 908

EXECUTE CONTROL 910

912
RETURN RESULT

FIG. 9

U.S. Patent Jul. 8, 2014 Sheet 10 of 44 US 8,776,216 B2

START

LOAD BYTE CODE

SET UP RUNTIME ENVIRONMENT

EXECUTE BYTE CODE

RETURN RESULT

1000 1002

 1004

1006

START

FIG. 10

U.S. Patent Jul. 8, 2014 Sheet 11 of 44 US 8,776,216 B2

constraint.check
Play.Perform

TsNodeReachable (ul)

GetDate
CMP Date, Start_Date

Return
FIG. 11

U.S. Patent Jul. 8, 2014 Sheet 12 of 44 US 8,776,216 B2

START

CALL IsNodeReachable(User1)

1200

DOES A PATH TO

User1 EXIST?

FOR EACH LINK

EVALUATE CONTROL

PROGRAMIN LINK

YES NO

MORE LINKS?

CURRENT DATE >

START DATE?
YES

1214

SUCCESS

FIG. 12

U.S. Patent Jul. 8, 2014 Sheet 13 of 44 US 8,776,216 B2

1300

USER INTERFACE

1304

 HOST APPLICATION

1302

MEDIA

RENDERING

ENGINE
1312

 CRYPTO

SERVICES
1314

 DRM HOST

CLIENT SERVICES
ENGINE INTERFACE

1306 1308

CONTENT

SERVICES
1310

FIG. 13

U.S. Patent Jul. 8, 2014 Sheet 14 of 44 US 8,776,216 B2

1400

USER INTERFACE
1404

SERVICE GENERAL
ACCESS HOST APPLICATION CRYPTO

POINT 1402 SERVICES
toe 1410

DRM
PACKAGING

ENGINE

1416

HOST
SERVICES

INTERFACE

1412

MEDIA CONTENT
FORMAT ENCRYPTION

SERVICES |*|SERVICES
1406 1408

FIG. 14

U.S. Patent

1500a

Koay (A) iy

K.[A] fs
DLA

<N
S

SSSEARS
N

|SE
ENCRYPTED

WITHK, [A]
OR K,,,, [A]

OBTAINED FROM
PERSONALITY

NODE A

Gi = KEPT SECRET BY ENTITY
= DECRYPT WITH PRIVATE OR

SYMMETRIC KEY

Jul. 8, 2014 Sheet 15 of 44

1500b

OBTAINED BY
PERSONALITY LINK

A-B

US 8,776,216 B2

[pe
AKes(Clee

A _K,IC|CeOe

ENCRYPTED

WITH K,[B]
ORK,,, [BI

OBTAINED BY
PROCESSING

LINK B-C

K.. [C]priv [

KIC]

FIG. 15

U.S. Patent Jul. 8, 2014 Sheet 16 of 44 US 8,776,216 B2

1600

DOMAIN MANAGER

U.S. Patent Jul. 8, 2014 Sheet 17 of 44 US 8,776,216 B2

1706

SERVER

LINK
Tu
F: PG2
KEY INFO
CTAL PROC

PASSWORD 1712

FIG. 17

U.S. Patent Jul. 8, 2014 Sheet 18 of 44 US 8,776,216 B2

ae 1800

REGISTRATION POLICY
DIRECTORY SERVER

SERVICE SERVICE
1812 1806 i

SERVICE ORGHESTRATION LAYER- 1810

DRM PLUGIN

1808

EDITING

EMAIL

APP CLIENT

1802 1804

FIG. 18

U.S. Patent Jul. 8, 2014 Sheet 19 of 44 US 8,776,216 B2

DIRECTORY POLICY
SERVER SERVICE

1906 1916
5
1
!

LIST OF GROUPS

'
‘

vata -~@ REQUESTPOLICY =fFOR “SPECIAL

ron PROJECT TEANT; POLICY

i

!

¥

PACKAGE AND CREATE
DRM PLUGIN LUIGENSE ACCORDING TOPOLICY

t 1920‘
1913 ‘

“save WITH=#

PERMISSIONS” ; ATTACH AND SENDt
é
i

PROTECTED
FILE

AND
LICENSE

EMAIL PROTECTED EDITING
APP CLIENT

1904 ANDLICENSE
FIG. 19

U.S. Patent Jul. 8, 2014 Sheet 20 of 44 US 8,776,216 B2

2010

CHECK CURRENT AD GROUP
MEMBERSHIPS FOR THE USER

REGISTRATION
SERVICE ACTIVE DIRECTORY

2004

AEPRESENTS GEORGE'S
MEMBERSHIP IN SPECIAL

PROJECT TEAM

2012

d DELIVER LINK OBJECT THAT

2006

} REGULARLY CHECK REGISTRATIONSERVICE FOR NEW OR REFRESHED LINKS
2014

DRM PLUGIN

2000

FIG. 20

US 8,776,216 B2Sheet 21 of 44Jul. 8, 2014U.S. Patent

Le‘Sid

3SNa9nONvV

vOle

20le

LNAIN9DddV
ais

a310810Hdcoms!UNSceceoOHbeccaacesONILIGS@aL0310¥dOblcoleINSWHOVLLY03.L031L0Hdeo)ANSWHOVLLYSHLIMTVASAIS03YNadOBOL<NISNI1dWHA
3SN3I9I7ONY

ASN39I7SS.LN93xK3NIONIdWHONIVHOGIIWASVHS91A30 éDISVHOWSYSOONwWVSLNOWWOMNddvOL314LOBPOdWIS,SI‘STOHLNOOQ4Sv31SHO1YO“SYN40©PELSSEL

—
OLSSNOWE

»JOON301A30,
OeLe«DOR.cole

WIVL193°OHdWID93dS;,

U.S. Patent Jul. 8, 2014 Sheet 22 of 44 US 8,776,216 B2

2200

YG POLICY
SERVICE

2216
! t

REQUEST “SPECIAL

i
!
i
i

LIST OF GROUPS PROJECT TEAM DRM uTO CHOOSE FROM TEMPLATE POLICY”
. POLICY

_p4:
+

PACKAGE AND CREATE
DRM PLUGIN LICENSE ACCORDINGTO POLICY

i
‘

“SEND WITH :
PERMISSIONS’ |

i
i
!

EDITING
APP
2202

PROTECTED
MSG. BODY

AND
LICENSE

FIG. 22

U.S. Patent Jul. 8, 2014 Sheet 23 of 44 US 8.776.216 B2

MEDICALCARDIOLOGIST ALL DOCTORS FOUNDATION z (w=)

APPROVED APPROVED
HCPs ICs

INSURANCE

COMPANY W weeseeeeeeeseonnnennel
eeeeeeaaoe 2a

 YS Of &

FIG. 23

U.S. Patent Jul. 8, 2014 Sheet 24 of 44 US 8,776,216 B2

SUBSCRIPTION

(= 2404SUBSCRIPTION

4222 2410 2400

D424 2402 SUBSCRIPTION

2420 ALICE@123_MSP ALICE @XYZ_ISP C)

a ALICE @ABC_CSP
PC

2401 "

FIG. 24

U.S. Patent Jul. 8, 2014 Sheet 25 of 44 US 8,776,216 B2

CSP_ACCOUNT

2502 —C)

2500
SMITH

FAMILY

DOMAIN

ALICE’S PC

CARL'S PVR

ALICE’S PHONE

JOE’S PSP

FIG. 25

U.S. Patent Jul. 8, 2014 Sheet 26 of 44 US 8.776.216 B2

new()

secureFileSysiem "|

yaos

FIG. 26

Al the initialization of the session, the file
system will ba accessed in ordor to deal wih
read/wile oparalion in secuna slonmige.at

i
8

os drmObjectO can be a contre). Hl itis the case,ine signature of the contol has to be vertied
using @ callback with Ihe hastContext,

trealeDige:
i i}

——=—
hostGontoad geiDigestr() getbigest()

hmObject2 can be a controller. This one musi
be signed and its signature venfied and the

drmObject! can be the encrypted contant Key.

nv

palctmObjectt)

i
hash of the encrypted content kay has lo bechackad.

processOneratiermObjeci4)

oponContant(contentFel)

———_——_—————_Fi

Wha the action ig cnecked, It
may vaelly date and countar.The answor bo thes weil be a
asult code tnat the hostage:

can handing. i ——————1]

Whan the pclion is partarmed, the
Consequences are andonced. Hare

for axample, the courmer of Ine |
number of time you can play ihe acontentis decremented.

|.
dinmObject3 can be ihe protector of the key.

demObject’ can be tha content.

contantRelis (he (D of the
drmObject4,

Optional call, Can be used to get
eontral meta data in onder to get”
human readable" inte on whal the

PY|contra ios.

ew(session, conteniAet)

aegz =

 ws ewltonent"PLAY")

conlant. gets 28900().gelHos!Gontuxt{).getCurg

e g
giL

eh .gelSesson().getFilsSystem) decrsnentCounter(conteanthel)

U.S. Patent Jul. 8, 2014 Sheet 27 of 44

hastContext

Few)

fere(hestContax)

gatiubiiend=:-
roraae

endl aee
[_anassiogtFtaSystar|getNodaSed

_guiSession(}.gatHosiCont
ss ori}.gotHostContest}.ger

2i

Thencryplinod seiey, Gxh

agetHostGortast().p alunncontalOaia)

pelSossion() gotrignContont() createDigester()
 petDigestl)

().gethiostiontexdjoe gralutalcontiolarOata)

gelOAMObects()

i

FIG. 27

US 8,776,216 B2

At the initialization of tha session, the
fila system will be aocessed jin orderto
deal with nodes and their keys in order
to-encryplthe content key.

The content onectis
created with one or
more content
telerances representing,
lhe number of tracks
(ie., the number ol
heys) to be encrypted,

The node representing theuser Io whom the content
will be bind fo is accassed
In ordar to gal its secret
key,

A conlent key is created
using the Random Number
generalor implemented bythe host.

The conient key will be
encrypted with the nade's
Secret key.

control objects must be
signed,

controller objects must
¢ary a hash of the content
kay and must be signed aswell.

US 8,776,216 B2Sheet 28 of 44Jul. 8, 2014U.S. Patent

V8~e‘Sis
 SNICNIGTOHLNOD

ONIGNIBASHLNILNOS

dauAJYHLNALNODtae
LNSLNOS

(H3TIOW.LNOO)SSONSuS334HATIOHLNOD

Aauy

 HATIOULNODYOLD3S.LOYd

SHNLVYNODISDid(DISInds(WSTIOWLNOD)SADNAWSASHSHNLYNOISDla

3000Vivo
ASH

SLAGTOHLNOSSONSH343HQsLdAWONS
HATIOWLNOD

JOXLNODAByLNSLNOD

3SN3S9N

LIN3LNOOO3LdAHON3INSLNOD

U.S. Patent Jul. 8, 2014 Sheet 29 of 44 US 8,776,216 B2

1 ATTRIBUTESi (NODE TYPE, ETC.) i
aeSHARING KEY 2[optional] } i

"rare SHARING KEV\}« 5s ES
PUBLICSHARING KEY

d foptional] es

an ATTRIBUTES eil (NODE TYPE, ETC) BS
\roeere SHARING KEY.WS[optional] e

« PRIVATE SHARINGKEY\.WSbe seeets-‘Mlli)PuBLic SHARING KEV 2
4 [optional])

 CONTROLaston‘,

| KEY DERIVATION INFO\
deptanall, }

= SIGNED

= CONFIDENTIAL FIG. 28B

CERTIFIED

US 8,776,216 B2Sheet 30 of 44Jul. 8, 2014U.S. Patent

SSSIAWSSLSOH

 62‘Sis

AYOWAWPO6esTivodiezLNAWNOHIANSW3LSAS9062qdaLvisaIndow3q09cO6c-WA806c-INISDNAWHO||006¢-NOILLYOMddV¥LSOH

U.S. Patent Jul. 8, 2014 Sheet 31 of 44 US 8,776,216 B2

3000

Number of Entries [WN (32 bits)]

Each Entry:
[nameSize (8 bits) J
(nmameSize (nameSize * 8 bits)]
{offset (32 bits)

vmVersion (32 bits)

MinDataMemory (32 bits)
minCallStack (32 bits)

flags (32 bits)

FIG. 30

U.S. Patent Jul. 8, 2014 Sheet32 of 44

3112

3114 Siva
Sh

jes]es
FIG. 31A

3120

S122 3124
“J

jes[es
FIG. 31B

3122 3130

FIG. 31C

US 8,776,216 B2

U.S. Patent Jul. 8, 2014 Sheet 33 of 44 US 8,776,216 B2

FIG. 31D

3170

Se 3174
SS}

FIG. 31E

U.S. Patent Jul. 8, 2014 Sheet 34 of 44 US 8,776,216 B2

ge 3200

SOURCE SINK

3212 3210

REQUEST

3202

RESPONSE

3204

CONFIRMATION

3206

FIG. 32

U.S. Patent Jul. 8, 2014 Sheet 35 of 44 US 8,776,216 B2

SOURCE

3312

SETUP

3302

iiiiiiiiiinion <_<eee

RUNAGENT

3304

CAN HAVE
0+ OF THESE

AGENTRESULT

3306
Sea

TEARDOWN
3308

FIG. 33

U.S. Patent Jul. 8, 2014 Sheet 36 of 44 US 8,776,216 B2

3404 3406

CONTENTKEY1 CONTROL

3412

 MAG(CK1)
3410

FIG. 34

U.S. Patent Jul. 8, 2014 Sheet 37 of 44 US 8,776,216 B2

CONTENTKEY 2

PKI MAC(CK1)

MAC(CK2)

FIG. 35

U.S. Patent

3602

doo
c
w
Cc
ms)
m
=
m
2
=

4

Jul. 8, 2014 Sheet 38 of 44 US 8,776,216 B2

Setup Request E(PubB, {Q,S})

Setup Response

3612 » Challenge Request{k, Roi)

: Challenge Response —
3614

FIG. 36

U.S. Patent Jul. 8, 2014 Sheet 39 of 44 US 8,776,216 B2

3708

poesisa
a

—~—.,
~

= ~
a“ ~n

“ “\
/ \

/ \

2 DEVICE 1 ‘
/ 3704 \

/ \
/ \
| \
| |
| PVR
\ 3702
\ /
\ /
\ /
\ /
\ /
\ ff

NX 4
~“\ a“

~ “
~ oad

~*~ ~~, me — — a

DEVICE 2

3706

FIG. 37

U.S. Patent Jul. 8, 2014 Sheet 40 of 44 US 8,776,216 B2

3800

CONTENT 3804

RENDERING
CLIENT

3806
DRM LICENSE

3802 SERVICE

FIG. 38

U.S. Patent Jul. 8, 2014

CONTENT
3800 RENDERING

CLIENT

AUTHORIZATION

AUTHENTICATION

MESSAGE SECURITY

3900 §=3900

UNSECURED COMMUNICATIONS CHANNEL

Sheet 41 of 44

3804

DAM LICENSE
SERVICE

AUTHORIZATION

AUTHENTICATION

MESSAGE SECURITY

FIG. 39

US 8,776,216 B2

U.S. Patent Jul. 8, 2014 Sheet 42 of 44 US 8,776,216 B2

SERVICE

CACHE

AUTHORIZATION a
AUTHENTICATION ASSERTION

KEYSTORE

MESSAGE SECURITY

UNSECURED COMMUNICATIONS CHANNEL

FIG. 40

U.S. Patent Jul. 8, 2014 Sheet 43 of 44 US 8,776,216 B2

SERVER CLIENT

BootstrapRequestMessage

ChallengeRequestMessage

Chal lengeResponseMessage

BootstrapRequestMessage

FIG. 41

U.S. Patent Jul. 8, 2014 Sheet 44 of 44 US 8,776,216 B2

<xml> <xml>

OCTOPUS si we

FIG. 42

US 8,776,216 B2

1
DIGITAL RIGHTS MANAGEMENT ENGINE

SYSTEMS AND METHODS

CROSS-REPERENCE TO RELATED
APPLICATIONS

‘This application claims the benefit of U.S. Provisional
Application No. 60/728,089,filed Qet. 18, 2005, U.S. Provi-
sional Application No, 60/772,024,filed Feb. 9, 2006, U.S.
Provisional Application No. 60/744,574,filed Apr. 10, 2006,
US. Provisional Application No, 60/791.179, filed Apr. 10,
2006, U.S. Provisional Application No, 60/746,712. filed
May 8, 2006, U.S. Provisional Application No. 60/798,925,
filed May &, 2006, and U.S. Provisional Application No.
60/835,061, filed Aug, 1, 2006, U.S. Provisional Application
Nos. 60/728,089, 60/772,024, 60/744,574, 60/791,179,

60/746,712, 60/798,925. and 60/835,061 are incorporated
herein by reference in their entirety for any purpose.

COPYRIGHT AUTHORIZATION

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection, The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent documentor the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright nghts
whatsoever.

BACKGROUND AND SUMMARY

In modern computing systemis,it is often desirable to limit
access lo electronic content. services, and/or processing
resources, and/or to allow only certain entities to perform
certain actions. A variety of techniques have been developed 3
or proposed to enable such control. These techniques are
often referred to as digital rights management (DRM) tech-
niques because. in general terms, their goal is to manage the
rights ofvarious entities in digital or other electronic content,
services, or resources. A problem with many priorart tech-
niques is that they are overly complex, overly restrictive,
relatively inflexible. fail to enable certain natural types of
relationships and processes, and/or are uninteroperable with
other DRM systems.

Systems and methods are described herein that can be used
to ameliorate some or all of these problems. It should be
appreciated that embodiments of the presently described
inventive body of work can be implemented in numerous
ways, including as processes. apparatuses, systems, devices.
methods, computer readable media, and/or as a combination
thereof. Several illustrative embodiments are described
below.

BRIEF DESCRIPTION OP THE DRAWINGS

The inventive body of work will be readily understood by
referring to the following detailed description in conjunction
with the accompanying drawings, in which:

FIG. 1 shows an illustrative system for managing the use of
electronic content.

FIG, 2 shows a more detailed example of a system that
could be used to practice embodiments ofthe inventive body
of work.

FIG, 3 shows how an illustrative digital nghts management
(DRM)engine might function in a network that uses DRM.

FIG. 4 shewsa collection ofnodes and links used to model

the relationships ina DRM system.

wi

cer)

Ae

45

Se

60)

65

2

FIG. 5 is a Aowchart illustrating how an embodiment ofa
DRMengine might determine whether a requested action is
authorized.

FIG, 6 shows an example ofa DRM license in accordance
with one embodiment of the inventive body ofwork.

FIGS. 7A and 7Billustrate the use ofagents in one embodi-
ment,

FIG, 8 shows an example of a DRM license,
FIG. 9 is a more detailed example of how a DRM engine

might determine whether a requested action is authorized.
FIG. 10 is a more detailed example of how a DRM engine

executes a control programin one embodiment object.
FIG, 11 shows an illustrative embodiment DRM engine

running on a device.
FIG, 12 is a flowchart illustrating the steps involved in

executing a control program in one embodiment.
FIG. 13 shows the elements that make up a content con-

suming client application in one embodiment.
PIG. 14 shows the elements that make up a content pack-

aging application in one embodiment.
FIG. 15 shows a key derivation mechanismin accordance

with one embodiment.

FIG. 16 shows an example ofa DRM system.
PIG. 17 shows an example ofa DRM system that provides

lor temporary login.
FIG. 18 showsthe high-level architecture ofanillustrative

system lor managing enterprise documents.
FIG. 19 shows an example of a howa system such as that

shownin FIG_ 18 can be used to manage access to or other use
ofa document.

FIG, 20 shows an additional example of a how a system
such as that shown in FIG. 18 can be used to manage access to
or other use of a document,

FIG. 21 showsadditional} features of the example shown in
FIG. 20.

FIG, 22 shows another illustrative system for managing
electronic content within an enterprise.

FIG, 23 illustrates how the systems and methods described
herein could be applied to manage healthcare records.

FIG. 24 is an illustration of howthe systems and methods
presented herein could be used in a context of an electronic
subscription service,

FIG, 25 is an illustration of how the systems and methods
described herein could be used ina context ofa home network
domain.

FIG. 26 illustrates the interactions that take place between
a host application and a DRM chent engine in one example
embodiment,

FIG, 27 illustrates the interactionsthat take place between
a host application and a packaging engine inone illustrative
embodiment.

PIG. 28A is a more detailed illustration of a license in
accordance with one embodiment.

FIG, 28B illustrates the relationship between links and
5 nodes in one example embodiment.

FIG. 29 illustrates the operating environment ofan illus-
trative implementation of a virtual machine.

FIG, 30 illustrates an extended status block data structure
in accordance with one embodiment.

FIG, 31A shows a memory image ofa data segment in one
embodiment,

FIG, 31B shows an example of the memory image ol'a code
segment in one embodiment.

FIG, 31C shows an example of an export entry memory
image in one embodimem.

FIG, 31D shows a generic example ofan export table entry
in one embodiment.

US 8,776,216 B2

3

FIG. 31E shows an example ofan export table entry for an
example eniry point.

FIG. 32 shows an example of a license transfer protocol.
FIG. 33 shows another example ofa license transfer pro-

tocol in accordance with one embodiment.

FIG. 34 shows a mechanismforprotecting the integrity of
license objects in one embodiment.

PIG, 35 shows a mechanism for protecting the integrity of
license objects in another embodiment.

FIG. 36 illustrates a proximity checking protocol in accor-
dance with one embodiment.

FIG. 37 illustrates the use ofa proximity check protocol in
accordance with one embodiment.

FIG, 38 illustrates an interaction between a client and a
license server in one embodiment.

FIG, 39 is more detailed illustration of an interaction
between a client and a license server in one embodiment.

PIG. 40 shows an example ofan entity with multiple roles.
PIG. 41 illustrates a bootstrap protocol in accordance with

one embodiment.

PIG, 42 shows the relationship between cl4n-ex and an
illustrative XML. canonicalization in one embodiment.

DETAILED DESCRIPTION

A detailed description of the inventive body of work ts
provided below. While several embodiments are described.it
should be understood that the inventive body of work is not
limited to any one embodiment, but instead encompasses
numerous alternatives, modifications, and equivalents, In
addition, while numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the inventive bady of work, some embodiments
can be practiced without someor all of these details. More-
over, for the purpose ofclarity, certain technical material that
is knownin the related art has not been described in detail in

order to avoid unnecessarily obscuring the inventive body
work.

Commonly-assigned U.S. patent application Ser. No.
10/863,551, Pub. No. 2005/0027871 Al (“the °551 applica-
tion”), which is hereby incorporated by reference, describes
embodiments ofa digital rights management (DRM)archi-
tecture and a novel DRM enginethat overcome some ofthe
weaknesses that characterize many previous DRM imple-
mentations. The present application describes enhancements,
extensions. and modifications to, as well as alternative

embodimentsof, the architecture and DRM engine described
in the 551 application, as well as new components, architec-
tures, and embodiments. [t will thus be appreciated that the
material described herein can be used in the context of an 5

architecture and/or DRM engine such as that described in the
551 application, as well as in other contexts.
1. Example DRM System

PIG. 1 showsan illustrative system 100 for managing elec-
tronic content. As shown in FIG, 1, an entity 102 holding
rights in electronic content 103, packages the content for
distribution and consumption byend users 108a-e (referred to
collectively as “end users 108,” where reference numeral 108
refers interchangeably to the end user or the end user's com-
puting system, as will be clear from the context). For
example, entity 102 may comprise a content owner, creator,
or provider, such as 4 musician, movie studio, publishing
house, software company. author, mobile service provider,
Internet content download or subscription service, cable or
satellite television provider, the employee ofa corporation, or
the like. oran entity acting on behalfthereof. and content 103
may comprise any electronic content, such as digital video,

wi

at

35

Ae

45

ra

60

65

4

audio, or textual content, a movie, a song, a video game, a
piece ofsoftware. an email message, a text message. a word
processing document, a report, or any other entertainment,
enterprise, or other content.

In the example shownin FIG. 1, entity 102 uses a packag-
ing engine 109 lo associate a license 106 with the packaged
content 104. License 106 is based on the policies 105 or other
wishes of entity 102, and specifies permitted and/or prohib-
ited uses of the content and/or one or more conditions that

must be satisfied in order to make use ofthe content, or that

must be satisfied as a condition or consequence ofuse, The
content may also be secured by one or more cryptographic
mechanisms such as encryption or digital signature tech-
niques. for which a trust authority 110 may be used to obtain
the appropriate cryptographic keys. certificates, and/or the
like.

As shown in FIG, 1, packaged content 104 and licenses 106
can be provided to end users 108 by any suitable means, such
as Via a network 112 like the Internet, a local area network

103. a wireless network, a virtual private network 107, a wide
area network, and/or the like, via cable, satellite, broadcast, or
cellular communication 114, and/orvia recordable media 116

such as a compact dise (CD), digital versatile disk (DVD). a
flash memory card (e.g., an Secure Digital (SD) card), and/or
the like. Packaged content 104 can be delivered to the user
together with license 106 in a single package or transmission
113, or in separate packages or transmissions received from
the same or different sources.

The end user's system (e.g., a personal computer 108e, a
mobile telephone 108a, a television and/or television set-top
box 108c, a portable audio and/or video player. an eBook
reader, and/or the like) contains application software 116,
hardware, and/or special-purpose logic that is operable to
retrieve and render the content. The user's system also
includes software and/or hardware, referred to herein as a

digital rights management engine 118, for evaluating the
license 106 associated with the packaged content 104 and
enforcing the terms thereof (and/or enabling application 116
to enforce such terms), such as by selectively granting the
user access to the content only ifpermitted by the license 106.
Digital rights managementengine 118 may be structurally or
functionally integrated with application 116, or may com-
prise a separate piece of software and/or hardware. Alterna-
lively, or in addition, a user’s system, such as system 108e,
may communicate with a remote system, such as system
108+, (e.g.. a server, another device in the user’s network of
devices, such as a personal computer or television set-top
box, and/or the like) that uses a digital rights management
engine to make a determination 120 as to whether to grant the
user access to content previously obtained or requested by theuser.

The digital rights management engine, and/or other sofi-
ware onthe user’s system, or in remote communicationthere-

5 with, mayalso record information regarding the user's access
to or other use of the protected content. In some embodi-
ments, some or all ofthis information might be communi-
cated to a remote party (e.g., a clearinghouse 122, the content
creator, owner, or provider 102, the user’s manager, an entity
acting on behalf thereof, and/or the like), e.g., for use in
allocating revenue (such as royalties, advertisement-based
revenue, etc.), determining user preferences, enforcing sys-
tem policies (e.g., monitoring how and when contidential
information is used), and/or the like. It will be appreciated
that while FIG, 1 showsanillustrative DRM architecture and

a set of illustrative relationships, the systems and methods
deseribed herein can be practiced in any suitable context, and

US 8,776,216 B2

5

thus it will be appreciated that PIG.1 is provided for purposes
ofillustration and explanation, not for purposes oflimitation.

FIG. 2 shows a more detailed example ofa system200 that
could be used to practice embodiments ofthe inventive body
of work. For example, system 200 might comprise an
embodiment ofanend user’s device 108, a content provider's
device 109. and/or the like. For example, system 200 may
comprise a general-purpose computing device suchas a per-
sonal computer 108e or network server 105, or a specialized
computing device suchas a cellular telephone 108a, personal
digital assistant, portable audio or video player. television
set-top box, kiosk, gaming system, or the like. System 200
will typically include a processor 202, memory 204, a user
interface 206, a port 207 for accepting removable memory
208, a network interface 210, and one or more buses 212 for
connecting the alorementioned elements. The operation of
system 200 will typically be controlled by processor 202
operating under the guidance of programsstored in memory
204. Memory 204 will generally include both high-speed 2
random-access memory (RAM) and non-volatile memory
such as a magnetic disk and/or fash EEPROM. Somepor-
tions of memory 204 may be restricted, such that they cannot
be read from or written to by other components of the system
200, Port 207 may comprise a disk drive or memoryslot for
accepting computer-readable media 208 such as floppydis-
kettes, CD-ROMs, DVDs, memory cards, SD cards, other
magnetic or optical media, and/or the like. Network interlace
210 is typically operable to provide a connection between
system200 and other computing devices (and/or networks of
computing devices) via a network 220 such as the Internet or
an intranet (e.g,, a LAN, WAN, VPN,ete,), and may employ
one or more communications technologies to physically
make such connection (e.g,, wireless, Ethernet, and/or the
like), In some embodiments,system 200 might also include a
processing unit 203 that is protected fromtampering by 4 user
ofsystem 200 or other entities. Such a secure processing unit
can help enhancethe security ofsensitive operations such as
key management, signature verilication, and other aspects of
the digital rights management process.

As shown in FIG, 2, memory 204 ofcomputing device 200
may include a variety ofprograms or modules for controlling
the operation ofcomputing device 200. Forexample, memory
204 will typically include an operating system 220 for man-
aging the execution of applications. peripherals, and the like:
a hostapplication 230 for rendering protected electronic con-
tent; and a DRM engine 232 lor implementing someorall of
the rights management functionality described herein. As
described elsewhere herein, DRM engine 232 may comprise, 5
interoperate with, and/or control a variety of other modules,
such asa Virtual machine 222 for executing control programs,
and a stale database 224 [orstoring state information for use
by virtual machine 222, and/or one or more cryptographic
modules 226 for performing cryptographic operations suchas 5:
encrypting and/or decrypting content, computing hash func-
tions and message authentication codes, evaluating digital
signatures, and/or the ike. Memory 204 will also typically
include protected content 228 and associated licenses 229,as
well as cryptographic keys, certificates, and the like (not
shown).

One of ordinary skill in the art will appreciate that the
systems and methods described herein can be practiced with
computing devices similar or identical to that illustrated in
FIG,2, or with virtually avy other suitable computing device,
including computing devices that do not possess some ofthe
components shown in FIG. 2 and/or computing devicesthat

wi

15

Sanh

Ae

45

ra

60

65

6

possess other components that are not shown, Thus it should
be appreciated that /'1G. 2 is provided for purposes of illus-
iration and not limitation.

A digital rights management engine and related systems
and methods are described herein that can be used to provide
some or all of the rights management functionality ofsystems
such as those shown in FIGS. 1 and 2, or in other types of
systems. In addition, a variety of other systems and methods
are described below that could be used in the context of

systems such as those shown in FIGS. | and 2. as well as in
other contexts, including contexts unrelated to digital rights
management.
2.DRM Engine Architecture

In one embodimenta relatively simple, open, and flexible
digital rights management (DRM) engine is used to imple-
ment core DRM functions. In a preferred embodiment, this
DRMengine is designed to integrate relatively casily tto a
webservices environment suchas that deseribed in the "551

application, and into virtually any host environment or sofi-
ware architecture. In a preferred embodiment, the DRM
engine is independent ofparticular media formats and cryp-
tographic protocols, allowing designers the flexibility to use
standardized or proprietary technologies as required by the
particular situation, The governance model used by preferred
embodiments ofthe DRM engine is simple, but can be used to
express sophisticated relationships and business models.

Some of the illustrative embodiments of a DRM engine
that are described below relate to an example implementation
referred to as “Octopus”; however, it will be appreciated that
the present inventions are not limited to the specific details of
the Octopus example, which are provided for purposes of
illustration. not limitation.

1.1, Overview

FIG. 3 shows howanillustrative DRM engine 3034 might
fiinetion ina system 302 that uses DRM, As shown in FIG, 3,
in one embodiment DRM engine 303a is embeddedorinte-
grated within a host application 304a (e.g... a content render-
ing application such as an audio and/or video player, a text-
rendering application such as an email program, word
processor, eBook reader, or documentreader, and/orthelike)
oris in communication therewith. In one embodiment, DRM

engine 303a performs DRM functions and relies on host
application 304q for services such as encryption, decryption,
file management, and/or other functions can be more effec-
lively provided by the host. Por example, in a preferred
embodiment DRM engine 303a is operable to manipulate the
DRM objects 305 which comprise a license 306 lo protected
content 308. In some embodiments, DRM engine 303a may
also delivers keys to host application 304@. As shown in FIG,
3, either or both of DRM engine 303a¢ and host application
304@ may make use ofweb services 305¢ and/or host services
306a for processing and/or information needed to complete
their respective tasks. The °551] application provides
exaniples of such services, and the manner in which a DRM
engine 303a and host application 304a might interoperate
therewith.

In the example shown in FIG. 3, DRM engine 303a, host
application 304a, host services 306a, and web services inter-
face 305qa are loaded onto a device 3004, such as an end user's

personal computer (PC). Device 300a is communicatively
coupled to a server 3004, from which content 308 and license
306 were obtained, as well asa portable device 300d, to which
device 300a@ may forward content 308 and/or license 306,
Each ofthese other devices may include a DRM engine 303
that is similar or identical to DRM engine 3002, which can be
integrated with the particular host application and host envi-
ronment of the device, For example, server 3005 might

US 8,776,216 B2

7

include a host application 3044 that performs bulk packaging
of content and/or licenses, and makes use ofa DRM engine
300e to evaluate controls associated with the content that 1s

being packaged in order to comply with any redistribution
restricions. Similarly, device 300¢ might mclude a host
application 304e that is capable of both rendering and pack-
aging content, while device 300a might include a host appli-
cation that is simply able to render content. As yet another
example of the potential diversity of host environments,
device 300d mightnot include a web services interface, but
may instead rely on communication with device 300a, and
web services interface 305a to the extent host application
304d and/or DRM engine 303d require the use of any web
services. 1G. 3 is only one example of a system in which a
DRM engine might be used; it will be appreciated that
embodiments of the DRM engines described herein can be
implemented and integrated with applications and systems in
many different ways. and are not limited to the illustrative
examples shown in FIG,3.

1.2, Objects
In preferred embodiments, content protection and gover-

nance objects are used to represent entities in a system, Lo
protect content, to associate usage rules with the content, and
to determine if access can be granted when requested.

As described in more detail below, in one embodiment. the

following objects are usec:

Object Type Function

Node Represents entities
Link Represents a directed relationship between

entities
Content Represents content (e.g., Inedia content)
ContentRey Represents encryption keys used to encrypt

content
Contral Represents usage niles that govern interaction

with content
Controller Represents associations between Control and

ContentKey objects
Protector Represents associations berween Content and

CoutentKey objects

1.2.1. Node Objects
Node objects are used to represent entities in the system. In

practice, a node will usually represent a user, a device, or a
group. Node objects will also typically have associated
attributes that represent certain properties of the entity asso-
ciated with the node.

For example, FIG. 4 shows twousers (Xan 400 and Knox
402). two devices (PC 404 and portable device 406), and
several entities that represent groups (e.g., members ofthe
Carey family 408, members of the public library 410, sub-
scribers to a particular musi¢ service 412, RIAA-approved
devices 414, and devices manulactured by a specific company
416), each having an associated node object.

In one embodiment node objects include attributes that
define what the node represents, One example of anattribute
is anode type. Besides representing users, groups, or devices,
the node typeattribute could be used to represent other enti-
lies. In some embodiments. a node object can also include
cryptographic key information, such as when an embodiment
ofthe key derivation and distribution techniques described
elsewhere herein is used.

In some embodiments, node objects also include a confi-
dentiality asymmetric key pair that is used for targeting con-
fidential information to the subsystemsthat have access to the
confidential parts of the node object. This could be the entity
that the node represents (for example, the Music Service 412)

wi

ba

ae

33

Ae

45

3

ot

65

8

or some entity responsible for managing the node (for
example, the end user (e.g.. Knox 402) could be responsible
for managing his or her portable device 406).

1,2,2. Link Objects
Ina preferred embodiment,link objects are signed objects

used to showthe relationship between two nodes. lor
example, in PIG. 4 the link 418 from the PC node 404 to Knox
402 shows ownership, The link from Knox 402 to the Carey
family node 408 shows membership, as does the link from the
Carey family node 408 to the Music Service Subscribers node
412. In one embodiment, link objects expressthe relationship
between two nodes, and thus the relationships shown in FIG.
4 could be represented using ten links.

As shown in FIG, 4, a graph 420 can be used to express the
relationship between nodes, where link objects are the
directed edges between nodes. For example, in FIG. 4, the
relationship between the Carey family node 408 and the
Music Service node 412 asserts that there exists a directed

edge 422 in the graph whose vertices are the Carey family
node 408 and the Music Service node 412. Knox 402 and Xan

400 are members ofthe Carey family 408. Because Knox 402
is linked to the Carey family 408 and the Carey family 408 is
linked to the Music Service 412 there is said to be a path
between Knox 402 and the Music Service 412. A DRM

engine considers a node to be reachable [rom another node
whenthere is a path from that node to the other node. This
allows a control to be written that allows permission to access
protected content based on the condition that a node is reach-
able from the device where the application thal requests
access lo the protected contentis executing.

As described in more detail below. link objects can also
optionally contain some cryptographic data that allows deri-
vation ofcontent keys. Link objects may also contain control
programsthatdefine the conditions underwhichthe link may
be deemed to be valid. Such control programs can be executed
or interpreted (these terms are used interchangeably herein)
by a DRM engine’s virtual machine to evaluate the validity of
a link (e.g., to determine whether the link may be used to
reach a given node in an authorization graph).

In one embodiment, links are signed. Any suitable digital
signature mechanism can be used, and in one embodiment the
DRMengine does not detine how the link objects are signed
and does not evaluate any associated certificates, instead, it
relies on the host system to verily any such signatures and/or
certificates. This allows the system architect or administrator
to define the lifetime of a link object, to revoke il, and so on
(e.g.. by using expiring keys or certificates. revocation, and/or
the like), thus providing an additional layer of policy man-
agement and security on top of the policy management and
security provided by the DRM engine’s evaluation ofcontrol
programs and DRM objects in the context ofspecific pieces of
protected content and/or links (for example, expiration ofa
link could alternatively, or in addition, be implemented by

5 including an appropriate control program in the link object
itself, which, when executed would enforce the expiration
date or other validity period). In one embodiment, the DRM
engine is generic, and works with any suitable encryption.
digital signature, revocation, and/or other security scheme
that is used by the host application and/or environment. Thus,
for example, if the DRM engine needs to determine if a
particular link has been properly signed, it might simply call
the host application (and/or a host or system cryptographic
service) to verily the signature in accordance with the par-
ticular signature scheme chosen by the system designer, the
details of which the DRM engine itself may be unaware. In
other embodiments, the DRM engine ttself performs the

US 8,776,216 B2

9

actual signature evaluation, relying on the host simply to
indicate the appropriate signature algorithm to use.

1,2.3. Content Protection and Governance

Referring once again to FIG. 3, in a typical scenario, a
content provider 3004 uses an application 3044that includes
a packaging engine to encrypt or otherwise cryptographically
secure a piece ofelectronic content 308 and creates a license
306 that governs access to or other use of that content. In one
embodiment, license 308 comprises a set of objects 305 that
specily how content 308 may be used, and also includes the
content’s encryption key(s) and/or the information needed to
obtain them. In one embodiment, content 308 andlicense 306

are logically separate, but are bound together by internal
references (e.g., using object [Ds 310). In many situations it
may be convenient to store and/or deliver the content and the
license together: however, this is not required in preferred
embodiments. In one embodiment, a license can apply to
more than one item ofcontent. and more than one license can

apply to any single item of content,
As shown in FIG, 3, when a host application 304a running 2

on a client device 300@ wants to perform an action on a
particular piece ofcontent308, it asks DRM engine 303ato
check if the action it intends to perform (e.g., “play”) is
allowed. In one embodiment. the DRM engine 303a will.
fromthe information contained in the objects 305 comprising
content license 306, load and execute a control programasso-
ciated with content 308, and permissionto perforthe action
will be granted or denied based on the result returned bythe
control program. Permission will typically require that some
conditions be met, such as the condition that a node be reach-

able from the node representing the requesting entity/device
300a.

PIG. § is a flowchartillustrating how an embodiment of a
DRM engine might determine whether a requested action
(e.g., viewing a piece of content) is authorized, As shown in
FIG, 5, a request to evaluate a license for a given action is
received (500), For example, this request might be received
from the host application, afler the host received a request
from a user to performthe specified action. As shown in FIG.
§, the DRM engine evaluates the specified license (502), and
determines whether the requested actionis authorized (504),
For example, the license may contain a control program that
the DRM engine executes, the output ofwhichis used to make
the authorization decision. If the license authorizes the

requested action (i.¢., a “yes” exit [rom block 504), then the
DRM engineindicates to the host application that the request
is granted (506), Otherwise, the DRM engine indicatesto the
host application that the request is denied (508). In some
embodiments, the DRM engine may also return to the host
application a variety of metadata that e.g, associates condi- 5
tions with a grant of authorization (e.g., obligations and/or
callbacks). or provides additional information regarding the
cause of a denial of authorization, For example, the DRM
engine may indicate that the requested actionis allowed only
if the host application logs certain information regarding
performance ofthe requested action, or as long as the host
application calls the DRM engine back at predefined time
intervals to, e.g., re-evaluate the license. Additional informa-
lion on such obligations, callbacks, and olher metadata
returned by the DRM engine is provided below. If the
requested action is authorized, the content key will be
retrieved (e.g,, from the license’s ContentKey object), and
used to release the content for the requested use.

1.2.4. License DRM Objects
As shownin FIG.6, in preferred embodimenta license 600

is a collection of objects. In the example shownin FIG. 6.
license 600 comprises a ContentKey object 602, a protector

wi

nd

3c

35

Ae

45

60)

65

10

object 604, a controller object 606, and a control object 608,
As shown in FIG. 6, ContentKey object 602 includes
encrypted key data 610 (e.g., an encrypted version of the key
needed to decrypt encrypted content item 612) and informa-
tion regarding the cryptosystemused to encryptthe key data.
Protector object 604 binds ContentKey object 602 to one or
more content objects 614, As shown in FIG, 6, control object
608 includes and protects a control program 616 that specifies
howconient object 614 is governed. In a preferred embodi-
ment. contro] program 616 is a piece of executable bytecode
that runs on a virtual machine operated by the DRM engine.
The control program governs whether certain actions can be
performed on the content by checking for satisfaction of
conditions specified in the control program, such as whether
certain nodes are reachable using valid link objects, whether
cerlain state objects have been stored, whetherthe host envi-
ronment has certain characteristics, and/or the like. Referring
once again to FIG. 6, controller object 606 is used to bind one
or more ContentKey object 602 to control abject 608,

License 600 may also comprise additional objects, such as
metadata providing a machine- or human-readable deserip-
tion of the content-access conditions required by the license,
Alternatively, or inaddition, such metadata canbe included as
a resource extension ofone ofthe other objects (e.g., control
object 608). In the embodiment shown in FIG. 6, conirol
object 608 and controller object 606 are both signed, so that
the system can verify that the control information is from a
trusted source before using it to make content-access deci-
sions. In one embodiment. the validity of control object 608
can also be checked through verification of a secure hash
included in controller object 606. Controller object 606 can
also contain a hash value for each of the keys or other key data
contained in the ContentKey object(s) 602 that it references,
thereby rendering it relatively difficult for an attacker to
tamper with the binding between the key data and the Con-
tentkey object.

As shownin FIG. 6, in one embodiment content 612 is

encrypted and is included in a content object 614. The decryp-
tion key 610that is used is included within (or referenced by)
ContentKey object 602, and the binding between the two is
represented by the protector object 604, As shownin FIG. 6,
unique IDs are used to facilitate the binding between content
object 614 and ContentKey object 602, The rules that govern
the use ofkey 610 to decrypt content 612 are included within
control object 608, and the binding between control object
608 and ContentKey 602 is represented by controller object
606, again using unique IDs.

It will be appreciated that while PIG. 6 showsthe objects
that comprise a license in one preferred embodiment, the
DRM systems and methods described herein are not limited
to the use ofthis license structure, For example, without
limitation. licenses could be used in which the functionality
ofthe various objects shown in FIG. 6 are combined in a
smaller number of objects, or spread out over additional
objects. or broken up between objects in a different manner.
Alternatively, or in addition, embodiments of the systems and
methods described herein can be practiced with licenses that
lack someofthe functionality enabled bythe license structure
shownin FIG. 6, and/or that provide additional functionality,
‘Thus it will be appreciated that any suitable mechanism for
associating licenses with content can be used in accordance
with the principles described herein, although in preferred
embodiments the advantageous structure shown in FIG, 6 is
used.

1.3. State Database

In one embodiment. the DRM engine includes. or has
access to, a secure, persistent object store that can be used to

US 8,776,216 B2

11

provide a secure state storage mechanism. Sucha facility is
useful to enable control programs to be able to read and write
state information that is persistent from invocation to invoca-
tion. Such a state database can be used to store state objects
such as play-counts, date offirst use, accumulated rendering
limes, and/or the like, as well as membership status, and/or
any other suitable data. In some embodiments. aDRM engine
executing ona firstsystem may not have accessto a localstate
database, and may be operable to access a remotestate data-
base, e.g., using web and/or hostservices. In some situations,
it may be necessary for a DRM engine executing on a first
system to access State information stored in a database on a
remote system, For example thefirst system may not inchide
astate database, or may not have the informationit needsinits
own state database. In some embodiments. when a DRM

engine is faced with such asituation, it might access a remote
stale databaSe via a servicesinterface, and/or by using agent
programs, as described in more detail below.

1.4, About Control Programs
The systems and methods described herein make use of

control programs in a variety ofcontexts. For example, con-
trol programs contained in control objects can be used to
express the rules and conditions governingthe use ofprotect
content. In addition, control programsin link objects can be
used to express the rules and conditions used to determine
whether the link is valid for a given purpose (e.g.. a node
reachability analysis), Such control programs are sometimes
referred to herein as link constraints. Yet another context in

which control programs may be usedis in agent or delegate
objects, were the control code ts used to perform an action on
behalf of another entity (in the case of agent control pro-
grams) or on behalfofanother control(in the case ofdelegate
control programs).

In one embodiment, contro] programs are executed or
interpreted by a virtual machine hosted by a DRMengine, as
opposed to being executed directly by a physical processor.It
will be appreciated, however, that a physical processor or
other hardware logic could be readily constructed to execute
control programs. In one embodiment, the control programs
are in byte-code format, which facilitates interoperability
across platforms.

Ina preferred embodiment, control programsare written in
assembly language and converted into byte code by an assem-
bler program. In other embodiments, templates and/or high-
level rights expression languages could be used to provide the
initial expression ofrights, rules, and/or conditions, and a
compiler could be used to convert the high-level expression
into byte code for execution by an embodiment of the DRM
engine described herein. For example, rights expressions 5
written in a proprietary DRM format could, with an appro-
priate compiler, be converted ortranslated into a functionally
equivalent byte code expressionfor execution on an embodi-
ment of the DRM engine described herein, thus enabling a
protected piece ofcontent to be used, in accordance with the
conditions specified by the content provider, on systems that
understand the proprietary DRM format, as well as systems
that included a DRM engine such as that described herein. It
should also be appreciated that the digital rights management
engine systems and methods described herein are not limited
to the use of byte code rights expressions, interpreted by a
virtual machine.Instead, in some embodiments, rights can be
expressed in any suitable manner (e.g., using a high-level
rights expression language (REL), a template. etc,), and the
authorization graph and/or other techniques described herein
performed using an appheation program designed to recog-
nize and evaluate such rights expressions.

ei

ra

20

a0

40

45

60

65

12
1.4.1, Conditions

As previously indicated, control programs typically
express one or more conditions that must be satisfied in order
for a request to use a piece of content to be granted, for a link
to be deemed valid, and/orthe like. Any suitable conditions
can be used, depending on the requirements of the content
provider or system architect, and/or the functionality pro-
vided by the system.

In preferred embodiments, the virtual machine used by the
DRM engine supports arbitrarily complex programsthat are
capable oftesting for conditions such as some orall ofthe
following:

Tune-based conditions: Comparing a client time yalue to a
value or values specified in the control program.

Targeting a particular node: Checking whether a certain
node is reachable from another node. This concept pro-
vides support for such models as domains, subscrip-
tions, memberships, and the like.

Testing if certain node attributes match specified values:
Checking any of a node's attributes, such as, for
example, whether the rendering capabilities of a device
associated with a node meetfidelity requirements.

Testing if the security-related metadata at the client is
up-to-date: Checking, for example, whether the clieat
has an acceptable version of the client software and an
accurate measure oftime. In some embodiment, such a

check might rely, for example, on assertions in one or
more certificates froma data certification service.

State-hased conditions: Checking information in the state
database. For example, the stale database may contain
information generated as a result of previous execution
of control programs, and/or tokens attesting to owner-
ship of subscriptions, membership, and/or the like,
thereby enabling evaluation of conditions involving
counters (@.g., number of plays, number of exports,
elapsed time limits. etc.) and other information regard-
ing recorded events and conditions,

Environmental characteristics: For example. checking
whether hardware and/or software in the hast environ-

ment has certain characteristics, such as the ability to
recognize and enforce obligations; checking for the
presence or absence of certain software or hardware
components, such as a secure output channel; checking
proximity information, such as the proximity of a
requesting device to another device or application;
checking the characteristics of, and/or data stored on,
remote systems using network services and/or agents:
and/orthe like.

Using these or any other suitable conditions. a control
object can express rules that govern how content can be
rendered, transferred, exported, and/or the like. [t will be
appreciated that the abovelist of conditions is illustrative in
nature, and that any suitable conditions could be defined and
used by, e.g.. implementing a systemcall for use in testing for
the desired condition, For example, without limitation, ifit
were desired to require that a device be located on a particular
sub-network, a system call could be defined (e.g., GetIPCon-
fig) that would be operable to return the host device’s [PCon-
lig information (or aremote device's |PConfig information,if
the system call were run on a remote device using an agent),
which could be used by a control program to test for whether
the device was located onthe prescribed sub-network.

1.4.2. Agents
Preferred embodiments of the DRM engine-related sys-

tems and methods described herein provide support for inde-
pendent objects thal carry control programs. Such “agents”
can be distributed to a DRM engine running on a remote

US 8,776,216 B2

13

system in order to accomplish specified functions, such as
writing into the remote DRM engine's secure siate store. Por
example, an agent could be sent as a consequence ofcontact-
ing a remote service, or executing a remote control program.
Anagent can also be used toeffect a content move operation,
to initialize a counter, to deregister a node, and/or the like. As
yel another example. an agent could be used to perform a
reachability analysis from a remote node to another node.
Such an agent could, e.g., be useful in enforcing a policy that
prohibited a device registered toa first user from being reg-
istered to a second user. If the second user requested registra-
tion, an agent could be sent to the device by the second user,
Or a registration service acting on his or her behall, to deter-
mine if the device was already registered to the first user, in
which case the second user's registration request would be
denied.

FIGS. 7.4 and 7B illustrate the use ofagents in one embodi-
ment.As shownin FIG. 7.4, assumethat twoentities —system
A 700 and system B 702—-wish to communicate with each 2
otherover a computer network 703, and that a DRM systemts
being used that is capable of describing and enforcing rules
for certain operations, such as accessing protected content, or
creating DRM objects that can be used to represent member-
ships, registration status. and/or the like. In some cases, the
rule(s) will be evaluated on system A 700. but will require
information that depends onthe state of system B 702, That
information needs to be trusted by the DRM system704 that
is enforcing the rule(s) on system A 700.

For example, the DRM system 704 on system A 700 may
be evaluating/enforcing a rule for performing a remote ren-
dering ofcontent from system A 700to system B 702, and the
rule might indicate that such an operationis permitied only if
system B 702 is part of a certain group of devices, where the
membership in thal group is asserted bythe presence ofastate
object 711 ina secure state database 716 accessible on system
B 702.

A method used in a preferred embodiment to handle such
situations makes use ofagents. For example, if system A 700
needs information from system B 702, system A 700prepares
an agent 705, which, in one embodiment, is a control program
(€.g., a sequence of instructions that can be executed by a
DRM engine) thatis sent from system A 700 to system B 702.
In one embodiment, system A 700 sends agent code 705 to
system B 702 over an authenticated communication channel
720 so that system A 700 can be confident that itis indeed on
system B 702 that agent 705 will run. In some embodiments,
along with agent code 705, system A 700 may also commu-
nicates to system B 702 one or more parameters that may be 5
used by agent code 705 to performits work,

AAs shown in FIG, 7B, system B 702 receives agent 705 and
any associated agent parameters, and runs the agent code 705.
When agent 705 is run on system B 702, it accesses system
B’s state database 716, retrieves state information 711 and/or

performs one or more computations therewith, and sends the
results 713 back to system A 700. preferably over authenti-
cated communication channel 710. At this point, system A
700 has the informationit needs to continue withts evalua-
tion.

L4.3. Link Constraints

In one embodiment, the set ofroutines that represent the
rules that governthe performance ofa certain operation (such
as “play”) on a content item 1s called an “action control”, The
set of routines that represent validity constraints on a link
object is called a “link constraint”. Like action controls, in
preferred embodiments link constraints can express any sutt-

wi

nd

at

35

4c

45

at

60

65

14

able combination ofconditions, Also like action controls, link
constraints can be evaluated locally and/or remotely using a
services interlace or an agent.

1.4.4. Obligations and Callbacks
In one embodiment, certain aclions, when granted, require

further participation from the host application. Obligations
represent operations that need to be performed by the host
application upon or after the use of the content key it is
requesting. Callbacks represent calls to one or more ofthe
control program's routines that need to be performed by the
host application uponorafter the use of the content key it is
requesting. Examples ofobligations include, without limita-
tion, a requirement thal certain outputs and/or controls be
turned off while content is being rendered (e.g., to prevent
writing the content to an unprotected output or to prevent
fast-forwarding through certain important segments ofthe
content); a requirement that information regarding use of the
content be recorded (e.g., metering or audit information) and/
or sent lo a remotesite (¢.g., a clearinghouse, service pro-
vider, or the like): a requirement that an agent program be
executed locally or remotely; and/or the like. Examples of
callbacks include, without limitation a requirement that the
host cal! the contro! program back at a certain absolute time,
afier a certain elapsed time (e.g... an elapsed time of content
usage), after occurrence ofa certain event (e.g., the comple-
tion ofa trial content-rendering period), when the content has
stopped being used, and/or the like. For example, a callback
after a certain elapsed time could be used to increment or
decrement budgets, playcounts, and thelike (e.g., only deb-
iting the users budget if they use a piece ofcontent for at least
a certain amount of time), thus protecting the user from hav-
ing his or her account debited ifhe ar she accidently presses
the play button but immediately presses stop.

In one embodiment, there are different types ofobligations
and callbacks. and if an application encounters any critical
obligation or callback that il does not support, or does not
understand (for example because the obligation type may
have beendefined after the application was implemented), the
application is required to refuse to continue the action for
whichthis obligationor callback parameter was returned.

1.4.5. Example
FIGS. 8-12 show an example of how an illustrative

embodiment ofa DRM engine might control the use ofa piece
ofcontent. Referring to FIG. 8, assume that the DRM engine
has received a request to play a group 800 of content items
802, 804. For example, content items 802, 804 might com-
prise different sub-parts ofa mullimedia presentation,differ-
ent tracks of an album, different pieces of content obtained
from a subscription service, email attachments. or the like,
Therequest may have been received by the DRM engine from
a host application, which,in turn, received the request from a
user of the computing device upon whichthe host application
was runoing. The request fromthe host application will lypi-
cally identify the requested action, the piece or pieces of

5 content upon whichthe action is to be taken, and the license(s)
that govern the content. DRM engine follows the process
illustrated in FIG, 5 to determine whether the request should
be granted.

FIGS. 8 and 9 provide a more detailed non-limiting
example of the process shown in FIG. 5, Referring to FIG, 9,
upon receiving the request to access content items 802 and
804 (block 900), the DRM engine examines the license(s)
identified in the request, or otherwise in its possession, to see
ita valid license exists. For example, the DRM engine might
first identify the protector objects 806 and 808 that containthe
unique identifiers of content items 802 and 804 (i.c., NS:007
and NS:008, respectively)(block 902 in FIG, 9). Next, the

US 8,776,216 B2

15

DRMengine locates the ContentKey objects 810 and 812
identified in protector objects 806 and 808 (block 904 in FIG.
9), which, in turn, enables the DRM engine to identify con-
troller 814 which references both Contentkey objects 810
and 812 (block 906 in FIG, 9). Ina preferred embodiment,
controller 814 is signed, and DRM engine verifies its signa-
ture (or asks host services to verily it).TheDRM engine uses
controller 814 (o identify the contro] object $16 that governs
use of ContentKey objects 810 and 812 (and, thus, content
items 802 and 804)(block 908 in FIG. 9), In a preferred
embodiment, the DRM engineverifies the integrity ofcontrol
object 816 (e.g.. by computing a digest ofcontrol abject 816
and comparing it toa digest contained in controller 814. [fthe
integrity verification succeeds, the DRM engine executes the
control code contained in control object 816 (block 910), and
returns the result (block 912) to the host application, which
usesit to grantor deny the user’s request to access the content.
The result of the control code might also optionally specify
one or more obligations or callbacks which the host applica-
tion will need to fulfill.

PIG. 10 is a more detailed example of how a DRM engine
might perform the actions specified in blocks 910 and 912 of
FIG, 9 (ie., executing a control program and returning the
result), As shown in FIG. 10, upon identifying the relevant
control object. the DRM engineloads the byte code contained
in the control object into a virtual machine that is preferably
hosted by the DRM engine (block 1000), The DRM engine
and/or the virtual machine will also typically initialize the
virtual machine’s runtime environment (block 1002). Por
example, the virtual machine might allocate the memory
needed for execution ofthe control program, initialize regis-
ters and other environment variables, and/or obtain inlorma-
tion about the host environment in which the virtual machine

is operating (e.2.. by making a System.Host.GetObjectcall,
as described below), [t will be appreciated that in some
embodiments blocks 1000 and 1002 could effectively be
combined or interleaved, and/or their order reversed, As
shown in FIG, 10, the virtual machine next executes the

control program’s byte code (block 1004), As described else-
where herein. this may involve making calls to other virtual
machine code, retrieving state information from secure stor-
age, and/or the like. Whenthe control program has finished
execuling. it provides an output (e.g., in a preferred embodi-
ment, an ExtendedStatusBlock) that may, for example, be
used by the calling application to determine whether a request
has been granted. and. ifso, whether any obligations or call-
backs are associated therewith: whether a request has been
denied, and, if so, the reason for denial: or whether any errors
occurred during execution(block 1006).

As previously indicated, the control code contained in con-
trol object $16 specifies the conditions or other requirements
that must be satisfied in order to make the requested use of
content items 802 and 804. The systems and methods
described herein enable the specification of arbitrarily com-
plex sets of conditions: however, for purposes of this
example. assume that the control program is designed to

; Sample Control

wi

5

30

Tah

40

16

require that, in order to play content items 802 and 804, (a)a
givenuser's node must be reachable from the device on which
the request to play the content was made, and (b) the current
date must be after a specified date.

FIG. 11 shows how anillustrative embodiment of a DRM

engine 1100 running on 9 device 1102 might execute the
example contre! program described above, and FIG, 12 is a
flowchart of the steps involved in the execution process. As
shown in FIG, 11, DRM engine 1100 creates a virtual
machine execution context (eg., by calling System.
Host.SpawnVm)1104 and loads the control program, Virtual
machine 1104 begins execution of the contro! prograni atthe
entry point specified by DRM engine 1100 (e.g., at the loca-
tion of the Control.Actions.Play.perform routine). In this
exaniple, the control program needs to determine whether a
given node is reachable from the personality node of the
device 1102 on which the DRM engine 1100is running, To
make this determination, the control program makes a call
1105 to a link manager service 1106 provided by the DRM
engine 1100, specifying the node to which linkage is required
(block 1200 in PIG, 12), Link manager 1106 is responsiblefor
evaluating link objects to determine if one node is reachable
from another. To do this efficiently, link manager 1106 may
pre-compute whethera pathexists from the personality node
1110 of device 1102 to the various nodes 1114 specified in
any link objects that device 1102 possesses. That is, link
manager 1106 may. simply by checking the “to” and “from”
fields of the links to which it as access, determine which

nodes are potentially reachable from the personality node
1110 of device 1102. When link manager 1106 receives the
call 1105 from virtual machine 1104, it determines whether

the specified node 1112 is reachable byfirst determining if'a
path exists frompersonality node 1110 to the specified node
1112 (e.g., by checking for the node’s 1D in the list of nodes
that it previously determined to be theoretically reachable)
(block 1202 in VIG. 12). Wa path exists, link manager 1106
evaluates any contro! programs containedinthe links to see if
the links are valid (blocks 1204-1210 in FIG, 12). To evaluate

the control programsin the link objects (block 1206 in FIG.
12). link manager 1106 may use its own virtual machine
1108, on which it executes the control programs included in
the link objects. Link manager 1106 returns the results of tts
determination (i.¢., whether the given node is reachable) to
the control program executing in virtual machine 1104, where
it is used in the overall evaluation of whether the request to
play the piece of content will be granted. Upon determining
that the specified node 1112 is reachable fromthe personality
node 1110 ofdevice 1102. the control programexecuting on
virtual machine 1104 next determines ifthe specified date
restriction is met (block 1212 in PIG. 12). If the date restric-
tion has been met (1.¢., a “yes”exit from block 1212), then the
control program returns a result indicating that the specified
conditions have been met (block 1214 in FIG. 12); otherwise.
control program returns a result indicating that the specified

_ conditions were notsatisfied (block 1216 in FIG, 12).
An example of a control program such as that described

above is shownbelow:

3 This Control checks that a user node is reachable
; anid that the date is afler a specific start date
j and before a-specific end date
: The values are retrieved from attributes in the control
{ =====
; constants

 i

] Seeeseeess=sssssssssseee=

17
-continued

equ DEBUG_PRINT_SYSCALL,
.equ FIND_SYSCALL_BY_NAME,
qu SYSTEM_HOST_GET_OBJECT_SYSCALL,
equ SUCCESS,
equ FAILURE.

atlata
Contro!TargetNodeldAttributePath;

string, “Octopus’Control/Atributes!TargetNodeld™
ContralStartDateAnributePath:

string “Octopus/Control/Attributes/StartDate”ControlEndDateAttributePath:
siting “Octopus/Control/Attributes!EndDate"

TargetNodeld:
zeros 236

StartDate:
slong 0

EndDate:
slong =1

IsNodeReachableFunctionName:
‘string “Octopus.Links.IsNodeReachable™

IsNodeReachableFunctionNumber:
long=0

GetTimeStampFunctionName;
string “System, Host.GetLocalTime”

GetTimeStamp FiuectionNumber:
long 0) -

> code

"etl
Global.OnLoad:
+ load global finetions

US 8,776,216 B2

abj

7 pet the syscall number for Octopus. Links.IsNodeReachable
PUSH ‘ailsNodeReachableFunctionName
PUSH FIND_SYSCALL_BY_NAME
CALL
DUP

PUSH @lsNodeReachableFunetionNumberPOKE
BRN OnLoad__Fail
; get the syscall number for Systerm.Host,GetTimeStamp
PUSH @GetTimeStampFunctioname
PUSH FIND_SYSCALL_BY_NAME
CALL
DUP
PUSH @GetTimeStampFunetionNumber
POKE
BRN Onload_ Tul
yok
PUSH O
RET

OnLoadFail:
PUSH FAILURE
RET

Control.Actions,Play,Init;
+ pet the values from the attributes
? get the target node (guaranteed to. be there)
PUSH 256
PUSIL @TargetNodeld
PUSH f@ControlTargetNodeldAttributePath
PUSH 0
PUSH SYSTEM_HOST_GET_OBIECT_SYSCALL
CALL

i get the start date
PUSIT 4

PUSH(@\StartDate
PUSH @Control StartDateAtributePath
PUSHLO
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
; Bet the end date
PUSH 4
PUSH @EndDate
PUSH @Control End DateAtri butePath
PUSH O
PUSI] SYSTEM_HOST_GET_OBJECT_SYSCALL

; RetwnBufferSize (256 bytes)
» Retum value
Name
; Parent = root container

: RetumnBuflersize (4 bytes)
: Retum value
+ Name
; Parent = root container

+ ReturnBuflerSize (4 bytes)
: Return value
; Name
> Parent = rool container

18

US 8,776,216 B2

19

-continued

CALL
: success
PLUSH O
PUSH SUCCESS
STOP

ControlActions,Play.Perform:
Control.Actions. Play.Check;

: check that the target node is reachable
PUSH(@iTargetNodeld
PUSH@lsNodeReachableFunctionNumberPEEK
CALL

BRN Play. Fail
: put the ctirrent time on the stack
PUSH @GetTimeStampFunctionNumber
PEEK
CALL
cheek that the date is before the end date
DUP current time
PUSH @EndDatePEEK
SWAP
CMP
BRN Play_Fail
pcheck that the date is after thestart dare
ithe current time ison the stack
PUSH(@StartDate:
PEEK
CMP
BRN Play Fail
success
PUSH O
PUSHL SUCCESS
STOP

Plaw__ Fail:
PUSITO
PUSH FAILURE
STOP

export Global.QnLoad
export Control Actions.Play. Init
2export Control,Actions,Play.Check
export Control.Actions.Play, Perform

An additional example of a control program is included in
Appendix EB.
3. Content Consumption and Packaging Applications

The following ts a more detailed descriptionof illustrative
embodiments of an application that consumes DRM-pro-
tected content (¢.g,, a media player, a word processor, an
email client, etc., such as applications 303a, 303c, and 303d
in FIG. 3), and a packaging application, such as application
303, that packages content targeted to consuming applica-
tions.

1,5, Content-Consuming Application Architecture
A content-consuming application will typically focus on

accessing protected content, or could be part of a general-
purpose application that also performs other functions, such
as packaging content. In various embodiments, a content-
consuming application might perform someorall ofthe fol-
lowing:

Provide an interface by which a user can request access to
protected content objects and receive information about
the content or error information;

Manageinteraction with the file system:
Recognize the format of protected content objects;
Request a DRM engine to evaluate licenses for pieces of

content to see ifpermission to access the content can be
granted:

Verity digital signatures and deal with other general-pur-
pose cryptographic functions thal the DRM engine
needs performed:

40

45

Se

60

65

20

Request the DRM engine to provide the keys needed to
decrypt protected content; and/or

Decrypt the protected content and interact with media ren-
dering services to render the content.

In one embodiment, a DRM client engine evaluates the
licenses associated with content, confirms or denies permis-
sion to use the content, and provides decryption keys to the
content-consuming application. The DRM client engine may
also issue one or more obligations and/or callbacks to the
content-consuming application, requiring the applicationto
perform certain actions as a consequence of having been
given access to the content.

FIG, 13 shows the elements that make up a content-con-
suming chent application 1300 in one embodiment, As shown
in FIG, 13. hostapplication 1302 is the logical central point of
the client, It is responsible for driving the interaction pattern
between the other modules, as well as interaction with the

user through user interface 1304. The host application 1302
provides a set of services to DRM engine 1306 via a host
services interface 1308. The host services interface 1308

allows the DRM engine 1306 to get access to data managed
by the host application 1302, as well as certain library func-
tions implemented by the host application 1302. In one
embodiment, the host services interface 1308 it is the only
outbound interface for the DRM engine 1306.

In one embodiment. the DRM engine 1306 does not inter-
act directly with the multimedia content managed by the host
application 1302. The host application 1302 logically inter-
acts with content services 1310 for accessing the multimedia

US 8,776,216 B2

21

content, and passes on to the DRM engine 1306 only the
portions ofdata that must be processed by the engine. Other
interactions with the content are performed by the media
rendering engine 1312. For example. in one embodiment
content services 1310 are responsible for acquiring, content
from media servers, and storing and managing the content on
the client's persistent storage, while media rendering engine
1312 is the subsystemresponsible lor accessing the multime-
dia content and rendering it (e.g.. on a video and/or audio
output). In one embodiment. the media rendering engine
1312 receives some information from DRM engine 1306
(such as content decryption keys), but in one embodimentthe
DRM engine 1306 does not interact with media rendering
engine 1312 directly, but rather through the host application
1302.

Someofthe information needed by the DRM engine 1306
might be available in-band with the multimedia content, and
can be acquired and managed through the content services
1310, but some of this information may need to be obtained
via means ofother services such as a personalization service
or a membership service (not shown).

In the embodiment shown in F1G. 13, cryptographic opera-
lions (e.g., encryption, signature verification, etc.) are
handled by crypto services block 1314, In one embodiment,
the DRM engine 1306 does not interact directly with the
erypto services block 1314,but insteadinteracts indirectly via
the host 1302 (using host services interlace 1308), which
forward its requests. Crypto services 1314 may also he used
by, e.g.. the media rendering engine 1312 in orderto perform
content decryption

It will be appreciated that FIG. 13 is provided for purposes
of illustration, and that in other embodiments the various

components shownin PIG. 13 could be rearranged, merged,
separated, eliminated, and/or new components could be
added. For example, withoutlimitation, the logical divisionol
functionality between the DRM engine and the host applica-
lion in FIG. 13 is simply illustrative ofone possible embodi-
ment, and in practical implementations variations can be
made. For example, the DRM engine could be integrated
wholly or partially with the host application. Thus,it will be
appreciated that any suitable division of functionality
between host application and DRM engine can be used.

1.6. Packager Architecture
‘The following provides an example of the functions that a

packaging engine might perform for a host application that
packages electronic content, In practice, a packaging appli-
cation may focus on packaging specifically, or could be part
ofa general-purpose application operating at a user system
that also accesses protected content(either packaged locally 5
or elsewhere, e,2,, on a network).

In various embodiments, a packaging host application
might perform someorall of the following:

Provide a userinterface by which contentand license infor-
mation can be specified:

Encrypt content;
Create the DRM objects that make up a license; and/or
Create a content object that contains or references the

content and contains or references a license

PIG. 14 shows the elements that make up a packaging
application 1400 in one embodiment. DRM packaging
engine 1416 is responsible for packaging licenses such as
those described herein (e.g., licenses comprising DRM
objects such as controls, controllers, protectors, and the like).
In some embodiments. DRM packaging engine 1416 may
also associale metadata a license to explain. in human-read-
able form, what the license does.

20

30

Ae

45

ra

60

65

22

Inone embodiment, a host application 1402 provides a user
interlace 1404 and is responsible for obtaining information
such as content references and theaction(s) the user (typically
a content owneror provider) wants to perform (e.g., to whom
to bind content, what content-usage conditionsto include ina
license, etc), User interlace 1404 canalso display information
about the packaging process, such as the text of the license
issued and, if a failure occurs, the reason forthe failure. In

some embodiments, some information needed by the host
application 1402 may require the use of other services, such
as authentication or authorization services, and/or member-

ship through a Service Access Point (SAP). Thus, in some
embodiments the packaging application 1400 and/or the host
application 1402 may need to implement someor all of the
following:

Media format services 1406: In one embodiment. this ele-

ment is responsible for managing media format opera-
tions such as transcoding and packaging. It is respon-
sible as well for content encryption, which is achieved
via content encryption services module 1408.

General-purpose cryptographic services 1410: In one
embodiment, this element is responsible for issuing/
verifying signatures, as well as enerypling/deerypting
some data, Requests for such operations could be issued
by the Service Access Point 1414 or by the DRM pack-
aging, engine 1416 via host services interface 1412.

Content encryption services 1408: In one embodiment, this
module is logically separated [rom the general-purpose
cryptographic services 1410 because it does not know
about the application.It is driven by the media format
services at content packaging lime with a set of keys
previously issued by the DRM packaging engine 1416.

4. Key Derivation
The following describes a key derivation systemthat fits

naturally with preferred embodiments of the DRM engine
and system architecture described herein. and/or can be used
in other contexts. Some of the examples in the following
section are taken from a reference implementation of a pre-
ferred embodiment of this key derivation system knownas
“Scuba”, Additional embodiments are described in the 7551

application.
As shownin FIG, 15, in some embodiments link objects

1530a, 15306 are used to distribute keys, in addition to their
primary purpose ofestablishing relationships between nodes
1500¢@, 15004, 1500c. As described above, a control object
cun conlain a control programthat can be used to decide if'a
request to performan action should be granted or not. To do
this. the control program may check whether a specific node
is reachable via a chain oflinks. The key derivation tech-
niques described herein take advantage of the existence of
this chain of links to facilitate the distribution of a key. such
that the key can be made available to the DRM enginethatis
executing the control program.

In one illustrative embodiment, each node object 1500a,
15006, 1500ina given deploymentthatuses the optional key
distribution system has a set of keys that are used to encrypt
content keys and other nodes’ keys. Link objects 1530a.
15306 created lor use in the same deployment contain some
eryptographie data as a payload that allows key information
do be derived whenchains oflinks are processed by a DRM
engine.

With nodes and links carrying keys in this manner, given a
chain of links 153(a, 15304 from a node.A 1500a toa node C

1500C.an entity (e.g., the DRM engine ofa client host appli-
cation) that has access to the secret sharing keys of node A
1515a, 1$25a, also has access to the secret sharing keys of

US 8,776,216 B2
23

node C 1515c¢, 1525¢, Having access to node C’s secret shar-
ing keys gives the entity access to any content key encrypted
with those keys.

1.7. Nodes, Entities, and Keys
1.7.1, Entities

In one embodiment of a DRM system, nodes are data
objects, not active participants in the system. Active partici-
pants, in this context, are called entities.Examples ofentities
are media players, devices, a subscription service, content
packagers, andthe like. Entities typically have nodes associ-
ated with them. An entity that consumes content uses a DRM
engine and managesat least one nade object that constitutes
its personality. In one embodiment, an entity is assumed to
have access to all the data of the node objects it manages.
wicludingall the private information of those objects,

1.7.2. Nodes

Node objects that participate in an illustrative embodiment
ofthe key derivation system contain keys as part oftheir data.
In one embodiment, nodes may contain two general types of 2
keys: sharing keys and confidentiality keys. The following
sectionslist the different key types that can be used in various
embodiments.It will be appreciated, however, that a specific
deployment may use only a subsetofthese keys. For example,
a system could be configured to work only with key pairs.
omitting the use of secret symmetric keys. Or a system could
be deployed without provisioning nodes with confidentiality
keys if it only needed to use the sharing keys.

1.7.2.1. Sharing Keys
Sharing keys are public/private key pairs and/or symmetric

keys that are shared by a node N and all the nodes Px for
which there exists a link from Px to N that contains key
derivation extensions,

Sharing Public Key: Kpub-share[N] This is the public part
ofa pair ofpublic/private keys forthe public key cipher, This
key typically comes with a certificate sothat its credentials
canbe verified by entities thal want to crypiographically bind
confidential informationto il.

Sharing Private Key: Kpriv-share[N] This is the private
part ofthe public/private key pair. The entity that manages the
node is responsible for ensuring that this private key is kept
secret. For that reason, this private key will generally be
stored and transported separately trom the rest of the node
information. his private key can be shared downstream with
other nodes through the key derivation extensions oflinks.

Sharing Symmetric Key: Ks-share[N] This is a key thatis
used witha symmetric cipher. As withthe private key, this key
is confidential, and the entity that manages the nodeis respon-
sible for keeping it secret. This secret key can be shared
downstream with other nodes through the key derivation
extensionsoflinks.

1.7.2.2. Confidentiality Keys
Confidentiality keys are key pairs and/or symmetric keys

that are only known to the entity that manages the node to
which they belong. The difference between these keys and the
sharing keys described above is that they will not be shared
with other nodes through the key derivation extensions in
links.

Confidentiality Public Key; Kpub-con!]N| This is the pub-
lic part of a pair of public/private keys for the public key
cipher. This key typically comes with a certificate so that its
credentials can be verified by entities that want to crypto-
graphically bind confidential information to it,

Confidentiality Private Key: Kpriv-conf]N] Thisis the pri-
vate part of the public/private key pair. The entity that man-
ages the node is responsible for ensuring that this private key

wi

au

Af

a5

3st

60)

65

24

is kept secret, For that reason, this private key will generally
be stored and transported separately [rom the rest of the node
information.

Confidentiality Symmetric Key: Ks-conf]N]| This is a key
that is used with a symmetric cipher. As with the confidenti-
ality private key, this key is kept secret.

1.8. Cryptographic Elements
Preferred embodiments ofthe key derivation and distribu-

tion systems described herein can be implemented using a
variety of different cryptographic algorithms, and are not
restricted to any specific choice of cryptographic algorithm.
Nevertheless, for a given deployment or profile, all partici-
palingentities will generally need to agree on a set ofsup-
ported algorithms (where the term profile will generally refer
to the specification of a set of actual technologies used in a
particular implementation (e.2.. an RSA for key derivation;
XML for encoding objects; MP4 for the file format, etc.)
and/orother representation of the semantic context that exists
when objects are defined in a practical deployment).

In one embodiment. deployments include support forat
least one public key cipher (such as RSA) and one symmetric
key cipher (such as AES).

The following notation will be used when referring to
cryptographic funetions:

Ep(pub|N], M) means “the message, M, encrypted with
the public key, Kpub, of node, N, using a public key
cipher"

Dp(Kpriv[N], M) means “the message, M, decrypted with
the private key, Kpriv, of node, N, using a public key
cipher”

Lis(Ks|N], M) means “the message, M, encrypted with the
symmetric key, Ks. of node, N, using a symmetric key
cipher™

Ds(Ks[N], M) means “the message. M, decrypted with the
symmetric key, Ks, of node, N, using a symmetric key
cipher”

1.9. Targeting of Content Keys
In a preferred embodiment, two types of cryptographic

targeting are used. ‘Targeting a content key to a target node's
sharing keys means making that key available toall entities
that share the secret sharing keys of that target node.Targeting
a content key to a node’s confidentiality keys means making
that key available only to the entity that manages that node.
Targeting of a content key is done by encrypting the content
key, CK. carried in a ContentKey object using one or both of
the following methods:

Public Binding: Create a ContentKeyobject that contains
Ep(Kpub[N]. CK)

Symmetric Binding: Create a ContentKey object that con-
tains Es(Ks[N], CK)

In a preferred embodiment, symmetric binding is used
where possible,as it involves a less computationally intensive
algorithm, and therefore makesit less onerousto the receiving
entity. Llowever, the entity (typically, a content packager) that

5 creates the ContentKey object may nol always have access to
Ks[N]. [f the packager does not have Ks|N], then it can use
public binding, since Kpub[N]is not confidential information
and theretore can be made availableto entities that need to do

public binding. Kpub[N] will usually be made available to
entities that need to target content keys, accompanied by a
certificate that can be inspected by the entity to decide
whether Kpub[N] is indeed the key of a node that can be
trusted to handle the content key in accordance with some
agreed-upon policy (e.g., that the node corresponds to an
entity running a DRM engine and hostapplication that com-
ply with the functional. operational. and security policies of
the system).

US 8,776,216 B2

25

1.10, Derivation of Keys Using Links
‘To allow anentity to have access to the sharing keys ofall

the nodes reachable from its personality node, in one embodi-
mentlink objects contain an optional key extension payload.
This key extension payload allowsentities that have access to
the private/secret keys of the link’s “from”node to also have
access to the private/secret sharing keys of the link’s “to”
node. In this way, an entity can decrypt any content key
targeted to a node that is reachable from its personality node
(if the targeting was done using the target node’s sharing
keys).

In one embodiment, when a DRM engine processes link
objects, if processes the key extension payload ofeachlink in
order to update an internal chain of keys to which it has
access. In one embodiment, the key extension payload ofa
link, L, from node, F. to node, I, comprises either:

Public derivation information: Ep(Kpub-share|F], {Ks-
share(T],Kpriv-share[T']}) or

Symmetric derivation information: Es(Ks-share[F], {Ks-
share|T|.Kpriv-share [T]})

Where {Ks-share[T], Kpriv-share[T]} is a data structure
containing Ks-share[T] and Kpriv-share[T].

‘The public derivation information is used to convey the
secret sharing keys of node |, Ks-share[T| and Kpriv-share
[T]. 10 any entity that has access to the private sharing key of
node PF, Kpriv-share|I].

‘The symmetric derivation information is used to convey
the secret sharing keys of node T, Ks-share[T] and Kpriv-
share[T], to any entity that has access to the symmetric shar-
ing key of node F, Ks-share[F'].

As for targeting content keys to nodes, the preferred pay-
load to include in a link is the symmetric derivation inlorma-
tion. This is possible when the link creator has access to
Ks-share[F], If not, then the link creator will fall back to
including the public derivationinformation as the payload for 3
the link.

Assuming that the DRM engine processing a link already
had Ks-share|F| and Kpriv-share| P| inits internal key chain,
afier processing the link, L[P—T). it will also have Ks-share
|T] and Kpriv-share['T].

Since, in one embodiment, links can be processed tn any
order, the DRM engine may not be able to do the key deriva-
tion computations at the time a given link, L, is processed.
This might be due to the fact that, at that time, the DRM
engine’s key chain might not yet contain the keys of the
“from” node ofthat link. In this case, the link is remembered.

and processed again when newinformation becomes ayail-
able to the DRM engine, such as after processing 4 newlink,
P. Ifthe “te” node of link P is the same as the “from” node of
link L, and the “from”node of link P is a reachable node, then

the “from”node of link L will also be reachable, and the key
derivation step adds the private sharing keys of the “Irom”
node of link Lto the key chain.
5. Implementation Examples

Several examples are provided below to illustrate how
various embodiments of the systems and methods described
herein could be applied in practice. The systems and methods
described herein can enable a wide range of rights manage-
ment and other functionality, and thus it will be appreciated
that the specific examples that are given here are not intended
to be exhaustive, but are rather illustrative of the scope ofthe
inventive body of work.

1.11. Example: Users, PCs, and Devices
Assume that you want to implement a DRM system that

ties the right to play content to a particular user, and you want
to make it easy for the user to play content onall the playback
devices that he or she owns. Assume that you decide thal you

we

15

ba

3c

Ae

45

Se

60

65

26

are going to provide users with software that enables them to
add playback devices as needed (¢.g.. mobile players). Also
assume, however, that you want to sel somepolicy to limit the
number of general-purpose devices ta which the user can
transfer the content, so that the user does not have the ability
to act as a distribution agency.

Based onthese system requirements,it might, for example,
make sense to tie the licenses you create to users, and to
establish relationships between users and the devices that
they use. ‘Thus, in this example, you mightfirst decide what
kinds ofnodes you need to establish the sorts ofrelationships
that you require. For example, you might define the following
types ofnodes:

User (e.g.. an individual who ownsthe rights to use the
content)

PC (e.g.. a software application, runing on a personal
computer, that can play content and specify additional
playback devices)

Device (e.g.. a portable content-rendering, device)
Each node object caninclude a typeattribute that indicates

whether the object represents a user, a PC, or a device.
Say, for example, that you decide to restrict the maximum

number of PC node objects that can be attached to any one
user ata particular time to four (4), You decide there is no need
to restrict the number ofdevices attached to the useras lony as
you provide restriction on the number of PCs. Based onthis,
a control program can beset up to allow accessif a relation-
ship can be established between the user node and the node
that requests access. That node, then, could be either a PC or
a device.

FIG. 16 shows a system designed to fulfill the foregoing
requirements. Server 1600 assigns a user node object 1602a,
16024 to each new user 1604@, 16044, and manages the
ability of users 16044, 16044 to associate devices 1606, L608
and PCs 1610, 1612 therewith for the purpose of accessing
protected content. When a user 1604a@ wishes to associate a
newdevice 1606 withhis or her user node 1602q, server 1600

determines whether the device 1606 already contains person-
alization information 1614, as might be the case if the device
1606 was personalized at the time manulacture, If the device
does contain personalization information 1614, server 1600
uses that personalization information 1614 to create a link
1616 from the device 1606 to the user’s node 1602, and
sendslink 1616 to the user’s device 1606. When user 1604a

obtains protected content 1618 (¢.g., from server 1600 or
from some other content provider), that content 1618 is tar-
geted to the user’s node 1602a(e.g., by encrypting the con-
tent’s decryption key with one ofthe secret sharing keys
associated with the user's node 16024) and a license 1619 is
associated therewith specifying the conditions under which
the content can be accessed. Whenuser 1604a attempts to
play content 1618 on device 1606, the DRM enyine 1620
running on device 1606 evaluates the license 1619, which
indicates that the content 1618 can be played as long as user
node 1602a is reachable. DRM engine 1620 evaluateslink
1616, which showsthat user node 1602a is reachable from

device 1606, and grants user 1604a’s request to access con-
tent 1618, e.g., by authorizing decryption of the content
decryption key contained within license 1619,

Sinee the content decryption key. in this example. is
encrypted using a secret key associated with the user’s node
1602a, this secret key will need to be obtained in order to
decrypt the content decryption key, If the optional key deri-
vation techniques described elsewhere herein have been used.
the user node’s key can be obtained simply by decrypting the
key derivation information contained in link 1616 using one
of device 1606's secret keys. The decrypted key derivation

US 8,776,216 B2

27

informationwill contain the key needed to decrypt the content
decryption key contained in license 1619 (or information
from whichit can be derived or obtained).

Referring once againto PIG, 16, assume user 16044 wishes
to associate a new PC 1610 withhis or her user node 1602a.
Server 1600 verifies that the maximum number of PCs have

not already been associated with user node 1602a, and autho-
rizes PC 1610 to be associated with user node 1602a. To

performthe association, however, server 1600 needs to obtain
personalization information from PC 1610 (e.g.. crypto-
graphic keys, a unique identifier, etc.). If, however, the PC
1610 has not been previously personalized (as might be the
case ifthe user simply downloaded a copy ofthe PC software)
server 1600 will perform the personalization process(e.g., by
creating a PC node object using the bootstrap protocol
described elsewhere herein) or direct the user to a service
provider who can perform the personalization process. Upon
completion of the personalization process, server 1600 can
create a link 1624 from PC 1610 to user node 16024 and send

the link to the PC 1610. which could continue to use it as long, 2
as it remained valid,

The user could request to add additional PCslater, and the
server would enforce the policy that limits the number of PC
node objects per user to 4 (typically it would also provide the
ability for users to remove PCs trom tts activelist as needed).

As yet another example, assume now thatthe service pro-
vider has decidedthat users should be able to play any content
that they own on any device that they own, The service pro-
vider might also wishto allow the user’s PC software to create
links 16 each ofhis or her devices, rather than requiring the
user to contaet server 1600. lo such an embodiment, when the
user Wished to play content on a newdevice, the user’s PC
soltware would access the new device’s confidential person-
alization information and use it to create a new link for that

device (e.2., a link from the newdevice to the user’s node
1602). If the device was not personalized, then the PC soft-
ware might access a remote service, or direct the device to
access the remote service, to perform the personalization
process. The PCsoftware would then send the link to the new
device, at which point the new device would be able to play
the content as long as it remained valid, since. in one embodi-
ment, once a link object exists there is no need to create
another one unless the link object expires or is otherwise
invalidated.

In the examples shown above, content is targeted to the
user, To do this, a packager application chooses a new ID for
the content, or uses an existing one, creates an encryption key
and associated ContentKey object. as well as a protector
object to bind the content object and the ContentKey object.
The packager then creates a control object with a control
program(e.g., compiled in byte code executable by the DRM
engine’s virtual machine) that allows the “play” action to take
place ifand only ifthe user node is reachable from the PC or
device node thatis requesting the action. Typically, the con-
trol, controller, protector and ContentKey objects are embed-
ded inthe packaged content ifappropriate, so that the PCs and
devices do not have to obtain them separately,

In one embodiment, when a device or a PC wants to play
content. It follows a process suchus that previously described
in connection with FIG. 9. That is, the DRM engine finds the
protector object for the content 1D of the content, then the
ContentKey object referenced by that protector, then the con-
troller object that references that ContentKey object, and
finally the control object referenced by that controller. The
DRM engine executes the control program ofthe control
object, which checks whether or not the user node is reach-
able. Ifthe device or PC nodehas the necessary link objects to

wi

15

ud

at

35

4c

45

30)

60

65

28

verily that there exists a path betweenits node and the user
node, then ihe condition is met and the control program
allows the use of the key represented in the Contentkey
object. The media rendering engine of the device or PC can
then decrypt and play the content.

1.12. Example: Temporary Login
VIG, 17 is another example ofa potential application ofthe

DRM systems and methods described herein. This example is
similar to the example in the preceding section, except here
the policy that governs creation oflink objects between PC
node objects and user node objects allows for a temporary
login of no more than 12 hours, as long as the user does not
already have a temporary login on another PC. This feature
would allow a user 1700 to take his content 1702 to a friend’s

PC 1704, log in to that PC 1704 fora period of time, and play
the content 1702 on the friend’s PC 1704.

To accomplish this, a link object 1710 would be created
witha limited validity period. In one embodiment, this could
be done as follows:

For ease of explanation, assume that the DRM-enabled
consuming software 1714 required to play the DRM-pro-
tected content 1702 is already present on the friend’s PC
1704. The file containing the content 1702 and license 1708 is
transferred to the friend's PC 1704, When the user tries to

play the content 1702. the software 1714 recognizes that there
is noValid link object linking the local PC node with the node
ofthe user who ownsthe content. Software 1714 prompts the
user for his credentials 1712 (this could be provided via a
usermame/password. a mobile phone authentication protocol,
a smartcard, or any authentication system allowed under the
policy of the system) and communicates with a backend
system 1706, The backend system 1706 checksthe attributes
of the user node object and PC node object for whichthe link
is requested, and checks that there is no active temporary
login link objectstill valid. If those conditions are met, the
backend service 1706 creates a link object 1710 linking the
friend’s PC node object and user’s node, with a validity
period limited to the requested login duration(e.g., less than
12 hours, to comply with the policy in this example). Having
the link object 1710 nowenables the [riend’s PC 1704 to play
the user’s content 1702 until the link 1710 expires.

1.13. Example: Enterprise Content Management
FIG. 18 shows the high-level architecture ofan illustrative

system 1800 for managing enterprise documents (e.g., email,
word processing documents, presentation slides, instant mes-
saging text, and/or the like). In the example shownin FIG. 18,
a documentediting application (e.g., a word processor) 1802.
an email client 1804, and a directory server (e.g., an Active
Directory server) 1806 make use ofa digital rights manage-
ment (DRM) plug-in 1808, a network service orchestration
layer 1810. a registration service 1812. and a policy service
1816 to facilitate management of documents, email mes-
sages, and/or the like in accordance with policies. In a pre-

5 ferred embodiment, the DRM plug-in 1808, network service
orchestration layer 1810, policy service 1816, and registra-
tion service 1812 are implemented using the DRM engine and
service orchestration technologies described elsewhere
herein and in the “551 application. For example, in one
embodiment DRM plug-in 1808 may comprise an embodi-
ment ofthe DRM engine described above.It will be appreci-
ated that while FIG, 18 shows an embodiment in whichexist-

ing applications such as word processor 1802 and email client
1804 are integrated with the DRM enginevia aplugin thatthe
applications cancall, in other embodiments the DRM engine
could be included as an integral part of either or both ofthe
applications themselves. It will also be appreciated that the

US 8,776,216 B2

29

illustrative system shown in FIG, 18 can be implemented
within a single enterprise or may span multiple enterprises,

In the illustration shown in PIG. 18, the directory server
1806 may. for example. contain userprofiles and group deti-
nitions. For example, a group called “Special Projects Team”
may be set up by a company’s system administrator to iden-
tify the members of the company’s Special Projects Team.

In one embodiment the directory server 1806 may com-
prise an Active Directory server running webservices, such as
these described in the "551 application (and implemented,
e.g., with standard HS based technologies on the Windows®
platform), thal issue nodes, links, and licenses to the people in
the Special Projects Team group based on content that is
accessed, If membership changes in the group, then new
tokens may be issued. For revocationofrights, the directory
server 1806 can run a security metadata service based on
technology such as that described in the “551 application
(occasionally referred to herein as “NEMO”technology). In
some embodiments, the client can be required to have an
to-date time value or notionoftime (based on whateverfresh- 2
ness value the company choosesto define (e.g., 1 week, 1 day.
1 hour, every 5. minutes. ete.)) in order to use DRM licenses.
For example, a token thai the security metadata service pro-
vides might include atrusted and authenticable time value, In
some embodiments, the client can identify user node [Ds in
securily metadata service interactions. Security metadata can
be evaluated directly in the context of license controls to
determine if a user still has a given membership. Security
metadata can also return agents that can determineifrelation-
ships such as being a memberin the Special Projects ‘Team are
valid. Thus, in some embodiments tt is possible to leverage a
company’s existing authorization and authentication infra-
structure (e.g., the company’s Active Directory server) with
just the addition ofa few well-defined web services.

FIG. 19 shows an example of howa system such as that
shown in FIG, 18 can be used to manage accessto or otheruse
ofa document. [n this example, a particular employee (John)
might frequently work on highly confidential strategic
projects, and may have already installed the DRM plugin
1908 for his applications (e.g., a word processing program
1902, an email program 1904, a calendar program, a program
or program suite that integrates such programs, and/or the
like), At some point during the creation ofhis document, John
accesses a “permissions” pull-down menu item that has been
added to his application’s toolbar (action 1913). A permis-
sions dialog box appears which contacts his company’s
Active Directory Server 1906 for a directory ofindividuals
and groups that have been set up on the system. He selects
“Special Projects Team” from the list. and elects to give
everyone on the team permission to view, edit, and print the 5
document, Using the NEMO service orchestration technolo-
gies described in the “551 application, the DRM plugin 1908
contacis a NEMO-enabled Policy Service extension 1916 to
theActive Directory 1906 and requests a copy ofthe Policy to
use to protect files for the Special Projects Team (action
1914). When John saves the document, the DRM plugin
automatically encrypts the file 1912, and creates a license
object targeted and bound to the group known as “Special
Projects Team” 1910. The license 1910 allows the file 1912 to
be accessed (e.g. viewed, edited, printed, ete.) by any device
ihat ean produce a valid chainof links from its Device Node
to the Special Projects Team Group Node.

John can access the document 1912 because his device has
a link to John’s User Node, and it also has a link from John’s

User Node tothe “Special Projects Team” Group Node, Like-
wise, if he forwards this document to others, they can only
access 1 if they also can produce a valid chain of links to the

wi

5

at

35

40

a5

nt

6l

65

30

“Special Projects Team” Group Node(e.g, by requiring that
the Special Projects Team Node be reachable by the device).

John might save the file (already protected) on his com-
puter, and later attach it to an email message (action 1920),
Porexample, he might open an old email to his boss (George).
attach thefile as he normally does, and send the message. As
shown in PIG, 20, George also has the DRM plugin 2000
installed on his computer 2014. When he logged in to his
computer 2014, the plugin 2000 opportunistically checked all
of the groups that he has been added to (action 2006), and
downloaded new, refreshed links for any that had expired
(action 2012). If he had been added to “Special Projects
Team”sincehis last login, his plugin 2000 would download a
Link Object 2008 that links his User Node to the “Special
Projects Team” Group Node. This Link 2008 signifies that
User Node “George”is a memberofthe Group Node “Special
Projects Team”. In this example. assume Link Object 2008
has an expiration date after whichit will no longer be valid
(e.g.. 3 days).

As shownin PIG. 21, when Georgetries to open the docu-
ment (actions 2130. 2132), the DRM plugin 2108 checks the
embedded (or attached) license, and learns that the “Special
Projects Team” node must be reachable, His plugin 2108
constructs (and validates) a chamoflinks 2120. 2122 from his
compuier’s Device Node to the User Node “George”; and
from User Node “George” to Group Node “Special Projects
Team” (action 2134). Since the device has a valid chain of
Links 2120, 2122, his plugin 2108 permits access to thefile.

Asdescribed elsewhere herein, in some embodiments links

can also carry a secure chain ofkeys. Thus, in some embodi-
ments, by producing a chain of Links to the Special Projects
‘TeamNode. the plugin can not only prove thatit is permitted
to access the content, but also that it is capable ofdecrypting
a chain of keys that enable it to deerypt the content.

If, for example, another employee (“Carol”) receives
John’s email accidentally, and attempts to open the docu-
ment, her DRM plugin will retrieve the license bundled with
the file and evaluate the terms of the license. Her PChas a link
to her User Node “Carol”: but since she is nota member ofthe

team, there 1s no Link from “Carol”to the “Special Projects
Team” Group Node. Since “Special Projects Team” is not
reachable, she is not permitted to accessthefile.

IfCarol is eventually added to the group “Special Projects
Team”. The next time her DRM plugin refreshes her mem-
berships, it will detect this new group, and download a Link
Object that links her User Node to the Special Projects Team
Node. Her plugin nowhasall of the linksit needs lo construct
achain from her Device Nodeto her User Node to the Special
Projects Team Node. The Special Projects Team node now“is
reachable” and she can open any documents or emails that are
targeted ta the Special Projects Team—eventhose that were
created before she joined the team.

Assumethat a month later George moves on to a new role
and is removed from the Special Projects Team Groupin the
Active Directory. The next time George logs in, his plugin
does not receive a new, refreshed Link Object associating his
User Nede “George”to the “Special Projects Team”. When,
weekslater, he tries to open John’sfile, his plugin attempts to
construct a chain of links to the Special Projects Team. His PC
still has a link to the User Node “George” (George's PCstill
belongs to him); bul the Link trom “George”to the “Special
Projects Team”has expired. Since “Special Projects Team”is
hot reachable, he is not permitted to accessthefile.

Assume that the company has a policy that requires access
to all confidential information to be logged. In one such an
embodiment. the policy forthe Special Projects Team dictates
that all licenses that are created for this group also need to

US 8,776,216 B2

31

require collection and reporting ofusage informationto, e.g..
a central repository. Thus, in this example, when evaluating
(e.g., executing) the control programin the license, the plugin
executes the requirementto log the access and does so. For
example, activity of consequences can be logged in a local
protected state database such as that described herein, and
when network connectivity is re-established the relevant con-
tem can be reported via services previously described.

FIG. 22 shows anotherillustrative system 2200 for man-
aging electronic content within an enterprise. In the example
shown in PIG, 22 an LDAPserver 2206 is used to manaye
user profiles, group definitions, and role assignments, and
contains a group definition called “Special Projects Team’,
and a role definition of “Attorney”.

Assume that John is an attorney and wishes to send an
email with an attachment to other members of the Special
Projects Team. WhenJohninstalls the DRM plug-in 2208 for
his applications, it also installs items to his email toolbar. At
some point during his composition of the email message, 2
John accesses “Set Permissions” from a pull-down menu that
was added to his toolbar. The DRM plug-in 2208 contacts a
Policy Servic 2216 and displays a list ofcorporate messaging
policies from which to choose. John selects “Special Project
DRM Template” and the DRM plug-in 2208 uses the NEMO
protocol to request and ensure the authenticity, integrity, and
confidentiality of policy objectthat it receives. The policy
describes how the licenses that use this template should be
created, including how they should be targeted and bound.

When John hits “Send”, the DRM plugin 2208 encrypts the
message and attachment, and generates the associated
license(s). The license requires that in order to access the
email or the attachment, either the Special Projects Team
Group Node or the “Attorneys” Group Node must be reach-
able.

The license(s) are bundled with the encrypted message
payload and encrypted attachment. The message is subse-
quently sent to a list of recipients using standard email fiune-
tionality. Since the license rules and encryptionare not depen-
dent on the addressing ofthe email, the fact that an incorrect
email recipient might be erroneously included does not put
the contents of the email or attachmentatrisk.

Since such an unintended recipient will not have a valid
Link Object linking his User Node to the Special Projects
Team, he is not permitted to access the content and when he
attempts to do so. Furthermore,since his device does not have
the necessary chain of Links (and the keys they contain), his
device does not even have the capability to decrypt the con-
tent,

However, if the unintended recipient, in turn, forwards the
same, unmodified email using standard email functionality to
a member of the Special Projects Team. That memberwill
have a Link Object that Links his User Nodeto the “Special
Projects Team” Group Node, and will be able to access the
email’s contents.

Assume that another attorney (“Bill”) at the companyhas
also received a Link Object that associates him with the
“Special Projects Team” Group Node. Bill can also view the
file. [he forwards the messageto a paralegal (“Trent”), who
is neither an attorney nor associated with the Special Projects
Team, Trent will not have a Link Object that connects him
with the “Special Projects Team” Group Node, and he will not
be able to access the document.

IfTrent is subsequently added tothe Special Projects Team
group in the LDAP directory 2206, he will be given the
necessary Link Object(s) and will be able to access the pre-
viously forwarded email.

wi

nd

it

35

4c

45

30

60

65

32

If, as previously discussed, the company has a policy indi-
cating that a reporting requirementbe included in all licenses,
then, in one embodiment. whenever a control program within
one of these licenses is executed (e.g. when someone
attempts to accessthe file), a reporting event can be triggered.
‘The reporting step can additionally include an indicatoras to
whether or not access was granted or denied—this is a matter
of implementation choice, If such an indicator is used, a log
can be maintained of the number of atiempis to access a
particular document, and status or other information on each
(e.g., success, failure, etc.).

As yet another example, assume that one of the members
(“Stephen”) of the Special Projects Teamtravels to another
company to perform work on the special project. Before
leaving for the other company, Stephen’s email client down-
loads a local copy ofall the email in is Inbox. The protected
report attached to one ofthese emails also includes an embed-
ded (or attached) license. This license object includes both the
rules foraccessing the content as well as an encrypted content
key. The only “missing link” required to access the contentis
the necessary link objects to reach the “Special Projects
Team” Group Node,

Since, in this example, the company’s policy is to allow
Link Objects to remain valid for 3 days, the Link Objectthat
links Stephen’s User Node to the Special Projects Team
Node, will remain valid while he is traveling and discon-
nected, If he attempts to access the file while offline, the
Special Projects Team Group Node will still be reachable, and
he will be permitted to access the file.

If, however, Stephen stays ofline for more than three days,
the Link Objectlinking him to the Special Projects Teamwill
expire. The Special Projects Team Group Node will then no
longer be reachable, and he will not be permitted to accessthe
file.

If Stephen eventually travels to a location where he can
connect to the company’s system (e.g., via VPN), his DRM
plug-inwill request refreshed copies of Link Objects for each
ofthe groups to which he belongs. Since he is still part of the
“Special Projects Team™ group, he will receive a new link
object from his User Node to the Special Projects ‘Team
Group Node. This link replaces the ‘old’ link which has
expired and is no longer valid.

Since the “Special Projects Team” Node is now reachable
using this new, refreshed Link, he is once again able to access
the protected report. The new link object will be valid for a
period of 3 days, after which it will also expire.

As yet another example, assumethat a member(“Sally”) of
the Special Projects Team wishes to communicate with
another team membervia an instant messenger, save a copy of
the communication,andgive it to another memberofthe team
(e.g., Via an email attachment, a diskette, a dongle, or the
like). In this example, the instant messenger client (and.
potentially any other messaging or communication products
which the companyoffers its employees)is linked toa DRM

5 plugin which, as in the previous examples, accesses the
Policy “Special Project DRM Template” that dictates how
licensesare to be targeted and bound. WhenSally attempts to
save her instant messaging conversation (e.g.. by selecting
“Save-As”), the plug-in chooses an encryption key (e.g., ran-
domly) and packages (encrypts) the text of the conversation,
Percompany policy, the DRM plugin then generates a license
object that is targeted and bound to the Special Projects ‘Team
Group Node.

The file containing the protected IM transeript is bundled
with the license to access the transcript contents. As in the
previous examples, the License contains both the mules that
govern access to the content, as well as an encrypted copy of

US 8,776,216 B2

33

the content key, Sally can transfer this bundled file to an
email, USB dongle, diskette, etc, using standard ‘drag and
drop’ procedures, and send it to someone else. Provided that
the recipient's device can produce valid links to the Special
Project Group Node, access to the content is permitted and
possible.

Assume that Sally gives the file to John, who is also a
member of the Special Projects Team. If John has a recently-
refreshed Link Objectthat identifies him as a memberof the
Special Projects Team, he will be able to accessthe file. Per
the company's policy, this Link Object containsan expiration
date that will cause it to expire in three days. Therefore, even
if John remains disconnected, he will still have access as long
as that link remains valid.

If. at somelater time, John leaves the Special Projects Team
for another job assignment, and finds the USB dongle from
Sally in his bag and attempts to open thefile using his desktop
computer, the Link Object associating his User Node to the
Special Projects Team will have expired. Since heis no longer
part ofthe team, the DRM plugin on his device no longercan 2
acquire new, refreshed links. Since the “Special Projects
Team” Group Node is no longer reachable by his device,
access is not permitted.

Figuring that his laptop has not been connected to the
network since he changed jobs, he also tries to openthefile
with that device. Since the maximumallotted time has passed.
that Link is also no longer valid. In some embodiments, each
time he attempts to access the file, a report can be generated
and queued to be sent to.a central repository.

The central repository receives multiple reports of unsuc-
cessful attempts to access the file and Nags a manager via
email. The manager reminds John that he is no longer permit-
ted to access the confidential material and asks forall files to

be destroyed (even though the system indicates that access
has not been granted),

As yet another example. assume that a governmental
agency or outside auditor wishes to investigate or audit the
Special Projects Teams handling ofconfidential information.
‘To supportthe investigation, the company wishes to demon-
strate audit records for access to sensitive information related

to the Special Project.
To this end, the company first scans all cleartext message

archives for any messages related to the Special Project. To
their relief, they discover that, in adherence to company
policy, no employees sent messages discussing the Special
Project without appropriate DRM protection (e.g, outside of
the system).

‘The companythen uses the DRM access recordsto produce
an audit trail detailing who was given access to protected
information, and when.

Per company procedure, when the Special Projects Team
Group wasestablished,it also included the ChiefCompliance
Officer (CCO) by default. A Link Object for Chie! Compli-
ance Officer was created and saved to the archive server.

which allows himor herto review the contents ofall messages
if needed in the future.

In this example, the policy defined for the Special Projects
Team indicated thatall Licenses generated by the team must
includethe requirement to report any attempted access to the
file, including the date and time, UserNode. and whether or
not access was granted. These reports were saved in an access
log on a central repository.

The CCO checksthe access logs forall accesses associated
with the Special Projects Team prior to the date when any leak
or other irregularity was suspected to have occurred. The
CCOalso searches the email, IM. and network backup
archives for all message traffic and system files on or before

wi

0

5

nd

Tah

Ae

45

Se

>at)

65

34

that date. Since eachfile has an attached license (with content
key), and the CCO has the necessary Link Objects to satisly
the requirements of the License, he or she is permitted to
access the contents of each and every message that was
aceessed prior to the time in question,

The access logs and unencrypted message contents are
made fully available to the agency/auditor as part of the
investigation,

In some embodiments the policy for the Special Projects
Team could also have included the requirement to set an
expiration date for the all licenses related to the Special
Project. For example, if the company were only statutorily
required to keep records ofthis nature fora period of| year,
they could indicate in the policy that Licenses expire one year
following date ofissue, In that case, the company might only
keep records as long as legally required to do so. Even the
CCO would not have access after thal lime.

In the foregoing discussion, reference has occasionally
been made to “targeting”and “binding”. In preferred embodi-
ments, targeting and binding represent two different. yet
closely related processes. In preferred embodiments, “bind-
ing” is primarily a cryptographic process, concerned with
protecting the key that was used to enerypt the content. When
a License is *bound™ to a Node (for example the “Special
Projects Team” Node), it can mean, e.g., that the conteni key
is encrypted with the public key associated with that Node.
Thus, only devices that have access to the private key of the
Node will have the necessary key to decrypt the content (and
in preferred embodiments, the only way to get access to the
private key of a Node is to decrypt a chain ofLinks to that
Node); however, simply having the correct privaie key only
indicates that the device has the capability to decrypt the
content, ifit is also permitted to do so.

In preferred embodiments, whetheror not a deviceis per-
mitted to access the content is determined by a Control Pro-
gram within the License, and specifically, how itis “targeted”,
“Targeting” refers to adding a requirement in the Control
Program to specify that a particular node (or nodes) “are
reachable” to perform a use ofthe content. In the examples
shown above, the Control Programtypically specifies that a
particular Node “Special Projects Team”is reachable by the
consuming device.

In some instances, it may be desirable to have licenses
targeted to more than one Node, such as a new productdevel-
opment teamal a company (“Company”) that is working with
multiple suppliers to bid on components fora newtop secret
product. Assume that during the early stages ofthe project,
Supplier A and Supplier B (competitors) both have links to
“SecretProjectX”, Supplier A wants its ideas to be shared
with all members of SecretProjectX, but does not want them
to inadvertently leak to Supplier B. Supplier A can target
these licenses such that: (“SecretProjectX is reachable”)
AND (“SupplierA is reachable” or “Companyis reachable”).
IfCompany inadvertently shares this information to everyone

5 in Seeret Project X (including Supplier B), those at supplier B
will not be permitted to lookat it, limiting any non-disclosure
risk to Company and eliminating the prospect of Supplier A
losing its trade-secrets.

1.14. Example: Healthcare Records
FIG, 23 illustrates how the systems and methods described

herein could be applied to manage healthcare records.
Assume that medical records have different levels of confi-

dentiality, and that it is desirable to grant different access
rights to different entities in the system(e.g., patients, doc-
tors, insurance companies, and the like). Por example, it may
be desirable to permit some records to be viewed only by the
patient, to permit some records to be viewed only by the

US 8,776,216 B2

35

patient's doctor, to permit some records to be viewable by the
patient but only editable by the patient's docior, to permit
some records to be viewable byall doctors, to permit some
records to be viewed by all insurance companies, to permit
some records to be viewable only by the patient's insurance
company, and/orthe like.

As shown in FIG, 23, this healthcare ecosystem 2300 can
be modeled using DRM objectslike nodes and links, such as
those describe elsewhere herein, For example, nodes could be
assigned to the patient 2302, the patient's doctors 2304, the
patient’s insurance company 2306, the patient’s devices
(2308, 2310) a specific one of patient's doctors 2312, the
doctor’s computing devices 2314, 2316, the group ofall
doctors 2318,the group ofdoctors ofa certainspecialty 2320,
a medical institution 2322, an insurance company 2324, the
computing devices used by the insurance company 2326. the
group ofall insurance companies 2328, and the like.

Assumethat the patient's doctoruses his orher PC to create
a medical record regarding the patient. For example, the
medical record may comprise a document template with a
numberoffields for his or her notes, diagnoses, prescription
instructions, instructions for the patient and/or the like. ‘The
template may also allow the doctor to select the security
policies for governing the document and/or the individual
field thereof For example. the doctor’s application may
present a set ofstandard security policy choices. and, upon
obtaining the doctor’s selection, may automatically generate
a license based on those choices and associate with the pro-
tected (e.g., encrypted) content of the medical record.

For purposes of this example, assume the license grants
viewing accessto the patient, to all healthcare providers who
treat the patient, and to all insurance companies that provide
coverage for the patient. Further assume, for the sake of
illustration, that the license grants editing rights only to car-
diologists alt medical institution x.

The packaging application accepis the doctor’s policy
specification input (which may simply comprise a mouse
click on a standard template) and generates a license that
includes a control program suchas that shown below:

Action.Edit.Perform() {
if (IsNodeReachable(“MedicalFoundationX™) &ae

IsNodeReachable(“Cardiologist")) {
return new ESB(ACTION GRANTED);

Lelse {
return new ESB(ACTION_DENIED);

}ii

Action. View. Poerforn() {
if (IsNodeReachable(“PatientY”) |)

IsNodeReachable(“HCPsPatient¥”)||
IsNodeReachable(“ICsPatientY”) {
return new ESBLACTION_ GRANTED);

} else if (Emergency Exception == TRUE) {
return new ESBLACTION GRANTED, new
Notification@bligationt }): }

else {
retura new ESB(ACTION_DENIED):

I

‘The medical record and its associated license might then be
stored in a central database of medical records, a database

operated bythe particular medical foundation, and/orthelike.
Ifpatient Y subsequently visits another healthcare provider,
and authorizes that healthcare provider as one othis approved
healthcare providers (e.g., by signing an authorization form),
that healthcare provider will obtain a link to the patient y
approved healtheare providers node, which the healthcare

we

|

3c

At

a5

3

60

65

36

provider would store on his computer system, Ifthat health-
care provider were to then obtain the medical record created
by doctor x, he would be able to gain viewing access to that
medical record, since patieni y's approved healthcare pro-
vider node would be reachable from the new healthcare pro-
vider’s computer system. Ifon the otherhand. an unapproved
healtheare provider were to obtain a copy of the (encrypted)
medica] record, he would be unable to accessit since none of

the required nodes (i.e.. patient y’s node, the node forall of
patient y’s approved healthcare providers, and the node forall
of patient y's approved insurance companies) would be
reachable from his computing system.

Note, however, that the example control program shown
aboveincludes an override feature that can be invoked.e¢.g., in
emergencies if, for example, a healthcare provider needs to
access the protected medical record, but is unable to satisly
the conditions of the control program (e.g.. because the
healtheare provider attempting lo make emergency access lo
the medical record has not previously been registered as a
healtheare provider of patient Y). Note also, however, that
invocation of the emergency access exception will cause
information to be automatically recorded regarding the invo-
cation and/or other circumstances, and. in this example, will
also cause a notification to be sent (e.g., to the patient's
preferred healtheare provider—i.e.. an entity expliciily
authorized by the patient-—and/orthe patient himself). The
association ofsuch obligations with the emergency exception
may discourage abuse ofthe exception, since a record ofthe
abuse would exist.

it will be appreciated that this example program has been
providedto facilitate explanation of certain embodiments of
the systems and methods described herein, For example.
whether a system includes support for emergency exceptions

5 will typically depend on the requirements and desires of the
system architect, Thus, for example, some embodiments may
not support emergency exceptions. others may support emer-
geney exceptions, but limit the class of entities who can
invoke such exceptions to the class of “all doctors” (e.g., by
requiring that the EmergencyException flag be set to “true”
AND the All Doctors node be reachable), and others sul] may
support emergency exceptions, but not associate mandatory
obligations therewith(since inability to comply withthe obli-
gation would, ina preferred embodiment, render the content
inaccessible), relying instead on non-technical, legal or insti-
tutional means for enforcement (e.g., by trusting healthcare
providers not to abuse the ability to invoke the exception,
and/or relying onindustry certification and the legal systemto
prevent abuse).

Yet another variation that could be made to the examples
provided above might be to require stronger proof that a
doctor, or a specifically named doctor, was actually the one
accessing a medical record, as opposed to someoneelse sit-
ting at the computerthat the doctor uses to access records (and

5 thus a computer potentially containing the links necessary to
satisly a reachability analysis). Such a stronger form of
authentication could be enforced in any suitable manner. For
example, it could be wholly or partially enforcedat the appli-
cation or system level by protecting the doctor's computer
and/or the software used to access medical records using
passwords, dongles, biometric identification mechanisms.
and/or the like. Alternatively, or in addition, the contro] pro-
grams associated with certain medical records could them-
selves include an obligation or condition require suchstron-
ger identification, such as checking for the presence ofa
dongle, requiring the host to obtain a password. and/or the
like.

US 8,776,216 B2
37

1.15, Example: Subscriptions
FIG. 24 is an illustration of how the systems and methods

presented herein could be used in the context ofan electronic
subscription service. Say, for example, that a user (Alice)
wishes to obtain a subscription to jazz music froman Internet
service provider (XYZ ISP). The Internet service provider
may offer a variety ofdifferent subscription options, includ-
ing a trial subscriptionthat is free of charge, but can only be
used to play subscription content five times before expiring
(e.g., by playing one songfive times, by playing five different
songs once each, orthe like). The trial subscription also will
only make the content available in slightly degraded form
(e.g., reduced fidelity or resolution). Alice uses her personal
computer to access the service provider's Internet website,
and opts for the trial subscription. The service provider then
issues a link object 2400 and an agent 2401 and sends themto
Alice’s personal computer 2406. The agent 2401 is operable
to initialize a state in Alice’s secure state database that will be

used to keep track of the number of times Alice has used trial
content. The link 2400 is from Alice’s ISP account node

(Alice@XYZ_ISP) 2402 to subscription node 2404 and
includes a control programthat, when Alice requests to play
a piece of content, checks the current value of the state vari-
able set by the agent 2401 to see if additional plays are
allowed.

When Alice downloads a piece of content to her PC and
attempts to play it, the DRM engine on her PC evaluates the
license associated with the content, which indicates that sub-
scription node 2404 must be reachable in order to play the
content. Alice had previously registered her PC with her [SP.
at which time she received a link 2405 from her PC node 2406

to her account node 2402, The DRM engine thus possess link
objects 2405, 2400 connecting PC node 2406to subscription
node 2404; however, before granting Alice’s request to play
the content, the DRM engine first determines whether the
links are valid by executing any control programs that the
links contain. When the control program in link 2400 is
executed, the DRM engine checks the state database entry to
determine if5 plays have already been made, and, if they have
not, grants her request to play the content, but also issues an
obligation to the host application. The obligation requires the
host to degrade the content before rendering. The host appli-
cation determinesthatit is able to fulfill this obligation, and
proceeds to render the content. In order to enable Alice to
preview content before counting that content againsther five
free trial-offer plays, the control program might also include
a callback that checks, e.g., 20 seconds after a request to play
apiece ofcontenthas been granted, to see ifthe content is still
being played, If the content is still being played, the play
count is decremented, otherwise it is not. Thus, Alice can

select from any of the content items offered by the subserip-
tion service, and play any five of them before her trial sub-
scription expires.

wa

ae

35

40

38

Once Alice’s trial subscription expires, Alice decides to
purchase a full, monthly subscription which enables her to
play as many content ilems as she wishes for a monthlyfee.
Alice use’s her PC to sign up for the subscription, and
receives a link 2410 trom her account node 2402 to the

subscription node 2404, The link includes a control program
indicating that the link is only valid for one month(e.g., the
control program checks anentry inthe state database to see if
one month has elapsed since the link was issued). This link
2410 is sent to Alice’s PC, along with an agent programthat
is operable to initialize an appropriate entry in the state data-
base ofthe PC’sDRM engineindicatingthe date on which the
link was issued, When Alice downloads a piece of content
from the subscription service and attemptstoplay it, her PC’s
DRM engine determines that-apathto the subseription node
exists comprised of links 2405, 2410. The DRM engine
executes any control programs contained in links 2405, 2410
to determine if the links are valid. If less than a month has

elapsed since link 2410 was issued, the control program in
link 2410 will return a result indicating that link 2410 is still
valid. and Alice’s requestto play the piece ofcontent. IfAlice
attempts to play a piece of content she previously obtained
during her free trial period, the DRM engine on her PC will
perform the same analysis and grant her request. Since the
license associated with the piece of content obtained during
the trial period indicates that ifthe TrialState variable in the
secure database is not set, the only conditionis that the sub-
scription node must be reachable, Alice can now access that
content once again since the subscription node is once again
reachable from Alice’s PC, this time via link 2410, not link

2400, whichis no longer valid, Thus, Alice does not need to
obtain a second copy of the content item to replace the copy
she obtained during the free trial offer. Similarly. if Alice
obtains a piece of subscription content from her friend, Bob,
whois also a subseriber to the same service, Alice will, in this
example, be able to play that content, too, since the content’s
license simply requires that the subscription node be reach-
able, not that it be reachable via Bob’s PC or account.

lt will be appreciated that the above examples are simply
intended to illustrate some of the functionality that can be
enabled bythe systems and methods described herein, and is
not intended to suggest that subscriptions must be imple-
mented in precisely the manner described above. For
example, in other embodiments, the license associated with a
piece ofsubscription content might be bound to auser’s node,
rather than the subseription node, thus preventing two sub-
scribers fromsharing content like Bob and Alice were able to
do in the example described above. [t will be appreciated that
many othervariations to the above examples could be made.

The table below provides someillustrative pseudo-code for
the agent, link, and license control programs in the example
described above:

The subscription trial gives you access to up tS pieces of
subscription content, The content will be marked as rendered only after
20 seconds ofrendering, Content rendered in the context ofthe trial
will have te be degraded by the rendering applieatio.
The real subscription will be renewed every month and hag ao such
limitations on the number or quality of the renderings.
The code of the agent is as lollows:

TrialAgent() {
SetObject(*TnalState”, 51;\‘
 sciid

The code of the control programin the trial link will be;

US 8,776,216 B2

39
-continued

Control:Link.Constraint.Check() {
if (GetObject(*TrialStare”, 5) >) {

retiim SUCCESS;
} else {

return FATLURE;
}11

When Alice reyjsters for real to the subseription service, she gets back
a link (from: Alice, to: Subseription) and an agent
The code of the agent is as follows:

RealSubscriptionAgent() {
‘erase the TrialState if present
tridState = GetObject(*TrialState”):
if (trialState != NULL) {

SerObject(“TrialStare", NULL): // erase
}

j

Control. Link.Constraint.,Check() {
if (GetTrustedTime() = ExpiratronDate) [

return SUCCESS;
} else {

retuiti) FAILURE:
}

}

The content licenses targeted to the subscription all have the same
control program:

oooaea

Action. Play.Perfonn() {
‘' first check if the subscription node is reachable
if ([lsNodeReachable(“SubseriptionNode™)) [

retum new ESA(ACTION_DENITED):;
}
// now cheek if the Trial State is present
if (GetObject("TrialState) t= NULL) {

(we're in the trial mode: We need a callback and an obligation
return new ESB(ACTION GRANTED,

40

new OnTimeElapsedCallback(20, DecrementCounier),
new DegradeRenderingObligation());

} else {
we're in paid subscription mode: just return ACTION. GRANTED
returmnew BSB(ACTION GRANTED);

174

/ code of the callback function of OnTimeLlapsed
Decrement@ounter() {

SerObject("TrialSrate", GerObject(“TrialState") - 1: +

Referring once again to FIG, 24, Alice alsa has an account
2420 with her mobile service provider, which remains valid
as long as she remains connected to the network. Alice is not
required to make a special payment for the subscription, in
exchange for whichshe gets sent a link; instead renewallinks
2424 are sent to her phone automatically when she connects
to the network, These links enable her to access any of the
content items or services offered by the mobile service pro-
vider, which havelicenses that require only that the subserip-
tion node 2422 be reachable. IfAlice changes mobile service
providers, she will unable to access previously acquired con-
tent once her links 2424 expire.

FIG, 25 shows an example ofhow a service provider might
interact with a home network domain 2500. [n this example.
devices are registered to a home network domain which
enforces a policy that allows up to 5 devices to belong to the
domain at any one time. Although the Smith family’s cable
service provider did not provide the domain manager sofi-
ware used lo set up the home network domain 2500, cable

30

60

65

service provider knows that the domain manager has been
implemented by a certified provider ofhome network domain
manager software, and thus trusts the domain manager sofi-
ware to operate as intended. As shown in FIG, 25, the Smith
family connects Alice’s phone and PC, Carl's PVR, and Joe’s
PSPto the domain 2500, resulting in links being issued from

\ each ofthese devices to the domain node 2500, When new

contentis received. e.g.. at the PVR, discovery services such

as those described in the °551 application enable the other
devices in the domain to automatically obtain the content and
any necessary links. Links are issued from the domain node
2500 to the service provider account node 2502, Some of the
cable service provider's content has a license with an obliga-
tion that fast forward and rewind must be disabled so that
advertisements will be viewed. Carl’s PVR and PC Alice’s

PCare able to enforce the obligation, and thus can play the
content. Alice's mobile phone is unable to enforce the obli-
gation and thus denies access to the content.

US 8,776,216 B2

41

1.16. Additional Examples: Content and Rights Sharing
As the preceding examples illustrate, embodiments ofthe

systems and methods presented herein enable electronic con-
tent to be shared in natural ways. For example, the systems
and methods deseribed herein can be used to enable consum-
ers to share entertainment content with their friends and fam-

ily members, and/or enjoy it on all oftheir family’s devices,
while simultaneously protecting against wider, unauthorized
distribution, For example, automated peer-to-peer discovery
and notification services can be used. such that when one

device obtains content or associated rights, other devices can
automatically become aware ofthat content, thereby provid-
ing a virtual distributed library that can be automatically
updated. For example, in one embodiment ifone user obtains
content or rights on a portable device at one location, then
comes home, the user’s family’s devices can automatically
discover and make use of those rights. Conversely, if a user
obtainsrights on a device on his or her home network. his or
her portable devices can discover and carry away thal content
for use elsewhere. Preferred embodiments of the systems and 2
methods described herein can be used to create services and

rights objects that allow the above-described scenarios to be
completely automated, using, for example, the service dis-
covery and inspectiontechniquesdescribed in the "551 appli-
cation, For example, the devices registered tu a particular
domain may provide services to each other (e.g.. sharing of
rights and content), and/or remote services can be invoked to
facilitate local sharing of content. The systems and methods
described enable the creation of DRM frameworks that are

not focused on preventing the creation of copies per se, but
rather are designed to work harmoniously with network tech-
nology to allow content to be shared. while protecting against
consumers becoming illicit distributors of the content.

Preferred embodiments of the DRM systems and methods
described herein also enable the determination of rights with-
out the verbose types ofrights expressions characteristic of
some other DRM systems. Instead, preferred embodiments
use a set of crafied rights objects that can interact contextu-
ally. These objects describe relationships and controls among
entities such as users, devices, content, and groups thereof.
For example, such contextual interactions might allow a
device to determine that a given piece of content can be
played because(a) the content was obtained froma legitimate
content service that the user currently subseribes to, (b) the
user is part of a specific family group, and (c) the device is
associated with this specifie family group. There are numer-
ous types of relationships such as those described in this
example. which users understand intuitively, and preferred
embodiments of the systems and methods described herein
enable the creation ofsystemsthat naturally understand these
kinds ofrelationships, The relationships among, entities can
be created, destroyed. and changed over time, and preferred
embodiments provide a natural way of determining rights in
a dynamic networked environment—an environment that
consumers can naturally understand. Nevertheless, if a con-
tent deployer wants to use a moretraditional nights expression
approach, preferred embodiments can accommodate that as
well. For example, tools can be used to translate traditional
rights expressions intoseis ofobjects such as those described
above, and/or a DRM engine can be implemented that oper-
ates directly on such rights expressions. Alternatively, in
some embodiments, devices do not need to understand such
traditional rights expressions, and are not constrained by their
limitations.

Preferred embodiments of the systems and methods
described herein also have a very general notion af a media
service. A broadcast service and an Internet download or

wa

5

nd

ae

AC

45

Su)

60)

42

subscription service are examples ofmedia services. Restric-
tions associated with these services can make contentdifficult

to share. With preferred embodiments of the systems and
methods described herein, content can be obtained on broad-

cast, broadband, and mobile services, and shared on a group
ofnetworked devices in the home, including portabledevices,
Alternatively, or in addition. services can be offered by indi-
vidual devices in a peer-to-peer fashion via wireless connec-
tivity. For example, the new generation of WiFi enabled cell-
phones can provide content catalog services to other devices.
Such a service allows other devices to “see” what contentis

available to be shared from the device. The service provides
information that can be used to determine the rights so that
anylimitations can be accepted or easily eliminated.

Preferred embodiments of the systems and methods
described herein are not confined to one service or to one

platform. As explained above, preferred embodiments are
capable of working with numerousservices, including “per-
sonal” services. This is becoming more and more important
as home and personal networks become more ubiquitous. For
example, digital cameras are now available with WiFi con-
nectivity, making it very convenient to share photos over
networks. It is nice to be able to automate the sharing of
photographs, but the camera will encounter many different
networks as it is carried about. Automated sharing is conve-
nient, but personal photos are, ofcourse, personal, E:mbodi-
ments ofthe systems and methods described herein makeit
easy to share photos within a family on the family’s devices,
but not with arbitrary devices that happen to encounter the
camera on a network. In general. as more devices become
networked,it is going to be increasingly important to manage
the rights ofall content on those devices, Although the pur-
pose of networkingis to allowinformation onthe networked
devices to be shared, networks will overlap and merge into
one another. Networks enable contentto be shared easily but
it should not be sharedarbitrarily, Thus.it is desirable to have
a DRM system that is network-aware and that can use the
context provided by the content, the user, the network, and
characteristics of devices to determine if and how content

should be shared. Preferred embodiments of systems and
methods described herein enable such an approach.
6. Reference Architecture for Content Consumption and
Packaging

The following is a description ofa reference architecture
for a consuming application (e.2., a media player) that con-
sumes DRM-protected content, and a packaging application
(e.g.. an applicationresiding on a server) that packages con-
tent targeted to consuming applications,

1.17. Client Architecture

The following provides an example of functions that an
illustrative embodiment of a DRM engine might perform for
a host application that consumes content.

1.17.1, Host Application to DRM Engine Interface
Although in a preferred embodiment there is no required

API for DRM engines, the following are high-level descrip-
tions ofthe type ofinterface provided by anillustrative DRM
engine (referred to as the “Octopus” DRM engine) to a host
application in one illustrative embodiment:

Octopus::CreateSession(hostContextObject)—Session—
Creales a session given a Host Application Context. The
context object is used by the Octopus DRM engine to make
callbacks into the application.

Session::ProcessObject(drmObject)—This function
should be called by the host application when it encounters
certain types ofobjects in the mediafiles that ean be identified
as belonging to the DRM subsystem. Such objects melude

US 8,776,216 B2

43

content control programs, membership tokens, etc. The syn-
tax and semantics of those objects is opaque to the host
application.

Session:: OpenContent(contentReference}~Conteni—
The host application calls this function when it needs to
interact with a multimedia content file. The DRM engine
returns a Content object that can be used subsequently for
retrieving DRM information about the content, and interact-
ing withit.

Content:GetDrmInfo()—Returns DRM metadata about
the contentthat is otherwise notavailable in the regular meta-
data for the file.

Content::CreateAction(actionInfo)—>Action—The host
applicationcalls this function whenit wants to interact with a
Content object. ‘The actionInfo parameter specifies what type
ofactionthe application needs to perform(e.2.. Play), as well
as any associated parameters, if necessary. The function
returns an Action object that can then be used to perform the
action and retrieve the content key.

Action::GetKeyInfo(}—Returns information that is nec-
essary for the decryption subsystem to decrypt the content.

Action::Check(}—Checks whether the DRM subsystem
will authorize the performance of this action (i.e. whether
Action::Perform() would succeed),

Action::Perlorm()—Performs the action. and carries out
any consequences(with their side effects) as specified by the
rule that governs this action.

1.17.2. DRM Engine to Host Services Interface
The following is an example of the type of Host Services

interface needed by anillustrative embodiment of a DRM
engine from anillustrative embodiment ofa host application.

HostContext::;GetPileSysteni(type)—FileSystem—Re-
turnsa virtual FileSystem object that the DRM subsystem has
exclusive access to. This virtual FileSystem will be used to
store DRM state information. The data withinthis FileSystem
should only be readable and writeable by the DRM sub-
system.

HostContext::;GetCurrentTime()—Returns the current
date/time as maintained by the host system.

HostContext:;Getidentity()}—Returns the unique ID of
this host.

HostContext::ProcessObject(dataObject)—Gives back to
the host services a data object that may have been embedded
inside a DRM object, but that the DRM subsystem has iden-
lfied as being managed bythe host (¢.g.. certificates),

HostContext::VerifySignature(signatureln{o) Checks
the validity of a digital signature over a data object. In one
embodiment the signaturelnfo object contains information
equivalent to the information found in an XMLSig element.
The Host Services are responsible for managing the keys and
key certificates necessary to validate the signature.

HostContext::;CreateCipher(cipherlype, keylnfo)Ci-
pher—Creates a Cipher object that the DRM subsystem can
use to encrypt and decrypt data. A minimalset ofcipher types
will be defined, and for each a formatfor describing the key
mfo required by the cipher implementation.

Cipher::Enerypt(data)
Cipher::Deerypt(data)
HostContext:;CreateDigester(digesterlype)—>Digester—

Creates a Digester object that the DRM subsystem can use to
compute a secure hash over somedata. In one embodiment, a
minimal set of digest types can be defined.

Digester::Update(data)
Digester: :GetDigest()

ei

ba

ae

35

4c

45

3

60

65

44

1.17.3. UML Sequence Diagram
FIG. 26 illustrates the use ofthe illustrative APIs set forth

in the preceding sections, and the interactions that take place
betweenthe hostapplication and the DRM client engine in an
exemplary embodiment.

1.18. Packager Reference Architecture
The following provides an example ofthe functions that a

packaging engine might perform for a host application that
packages content, Ln practice, a packaging application may
focus on packaging specifically, or could be part ol'a general
purpose application operating at a user system thal also
accesses protected content (either packaged locally or else-
where in a network).

1.18.1. Host Application to Packaging Engine Interface
This section provides a high-level description of an illus-

trativeAPI between a host application and a packaging engine
used in connection with a reference DRMengine referred to
as “Octopus”.

Octopus::CreateSession(hostContextObject)—Session.
Creates a session givena host application context. The con-
text object that is returned by this function is used by the
packaging engine to make callbacks into the application.

Session::CreateContent(contentReferences| |)—Content,
The host application calls this function in order to create a
content object that will be associated with license objects in
subsequent steps. Having more than one content reference in
the contentReferences array implies that these are bound
together in a bundle (e.g., one audio and one video track) and
that the license issued should be targeted to these as one
indivisible group.

Content:SetDrmInfo(drminfo). The drmlnfo parameter
specifies the metadata ofthe license that will be issued. The
drminfo will act as a guideline to translate the license into
bytecode for the virtual machine.

Content::GetDRMObjects(format)=drmObjects. “This
functionis called whenthe host applicationis ready to get the
drmObjects that the packager engine created, The format
parameter will indicate the format expected for these objects
(e.2.. XML, or binary atoms).

Content::GetKeys()keys||. This function is called by
the host packaging application whenit needs keys in order to
encrypt content. In one embodiment, there is one key per
contentreference.

1.18.2. Packaging Engine to Host Services Interface
The following is an example ofthe type ofinterface that an

illustrative packaging engine needs the host application to
provide in one embodiment.

HostContext:;GetFileSystem(type)—FileSystem, Returns
a virtual FileSystem object that the DRM subsystem has
exclusive access to. This virtual FileSystem can be used to
store DRM state information. The data within this FlleSystem
should only be readable and writeable by the DRM sub-
system.

HostContext::GetCurrentTime()Time. Returns the cur-
rent date/time as maintained by the host system.

HostContext::Getldentity()ID. Returns the unique ID of
this host.

HostContext::PerformSignature(signaturelnto, data).
Some DRM objects created by the packaging engine will
have tobe trusted. ‘This service provided by the host will be
used to sign a specified object.

HostContext:;CreateCipher(cipherlype, keyInfo)—Ci-
pher. Creates a cipher object (an object thatis able to encrypt
and decrypt data) that the packaging engine canuse to encrypt
and decrypt data. In one embodiment, the cipher object is
used to encrypt the content key data in the ContentKeyobject.

Cipher::Encrypt(data). Eineryptsdata.
Cipher:: Deerypt(data). Decrypts data.

US 8,776,216 B2

45

HostContext::CreateDigester(digesterType)—Digester.
Creates a digester object that the packaging engine canuse to
compute a secure hash over somedata.

Digester::Update(data). Feeds data to the digester object.
Digester::GetDigest(). Computes a digest.
TostContext::GenerateRandomNumber(), Generates a

random numberthat can be used for generating a key,
FIG, 27 is a UMLdiagram showing an example of the use

of the illustrative APIs set forth above. and the interactions

that take place between the host application and the packag-
ing engine in one illustrative embodiment.
7. Objects

This section provides more information regarding the
DRM objects that serve as the building blocks of an illustra-
tive implementation of a DRM engine. First, a relatively
high-level overviewis given ofthe types afobjects the DRM
engine uses for content protection and governance. Next, a
more detailed description ofthese objects and the information
they conveyis provided, along with some example dala struc-
tures used in oneillustrative embodiment.

1.19. Content Protection and Governance DRM Objects
As previously described in connection with FIG.6, content

governance objects (sometimes referred to, collectively with
node and link objects, as “DRM objects”) are used to associ-
ate usage rules and conditions with protected content.
Together. these objects forma license.

As shown in FIG.6, the data represented by content object
614 is encrypted using a key. That key needed to deerypt the
content is represented by CantentKey object 602, and the
binding between the content and the key used to encryptit is
represented byprotector object 604. The rules that govern the
use of the decryption key are represented by control object
608, and the binding between the ContentKey 602 and the
control object 608 is represented by controller object 606. In
one embodiment, trusted systems will only make use ofthe
content decryption key under governance of the rules
expressed bythe byte code in control object 608. FIG. 28.4 is
a more detailed illustration ofa license such as that shownin

FIG. 6, and illustrates a signature scheme that 1s used in one
embodiment.

1.19.1. Common Elements

In one embodiment, objects share common basic traits:
they can each have an ID, a list ofattributes, and a list of
extensions.

1.19.1.1. IDs

Objects that are referenced by other objects have a unique
ID, In one embodiment, [Ds are simply URIs, and the con-
vention is that those URIs are URNs

1,19.1.2. Attributes

Attributes are typed values. Attributes can be named or
unnamed, The name ofa named attribute is a simple string or
URI. The value of an attribute is of a simple type (string.
integer, or byie array) or a compound type (list and array).
Attributes of type ‘list’ contain an unordered list of named
attributes. Attributes of type ‘array’ contain an ordered array
of unnamed attributes.

An object’s ‘attributes’ field is a (possibly empty) unor-
dered collection of named attributes.

1.19.1.3. Extensions

Extensions are elements that can be added to objects to
carry optional or mandatory extra data. Extensions are typed,
and have unique [Ds as well, Extensions can be internal or
external,

1.19.1.3.1. Internal Extensions

Internal extensions are contained in the object they extend.
They havea ‘critical’ flag that indicates whether the specific
extension data type for the extension is required to be known

i

ra

ba

at

40

45

se

ot

65

46

to the implementation that uses the object. In one embodi-
ment, ifan implementation encounters an object with a criti-
cal extension with a data type that it does not understand,it
must reject the entire object.

In one embodiment. the ID of an internal extension needs

(o be locally unique: an object cannot contain two extensions
with the same [D, butit is possible that two different objects
each contain an extension with the same ID as that ofan

extension of(he other object.
An object's ‘extensions’ field is a (possibly empty) unor-

dered collection of internal extensions.
1.19.1.3.2, External Extensions

External extensions are not contained in the object they
extend. They appear independently of the object, and have a
‘subject’ field that containsthe ID ofthe object they extend. In
one embodiment, the [D ofan external extension needs to be
globally unique.

1.19.2, Content

In one embodiment, the content object is an “external”
object. Its formatand storage are not underthe control of the
DRM engine, but under the content management subsystem
of the host application (for instance, the content could be an
MP4 movie file, an MP3 music track, etc.). In one embodi-

meni, the format for the content needs to provide support for
associating an [D with the content payload data, The content
payload Is encrypted ina format-dependent manner(typically
with a symmetric cipher, such as AES).

1.19.3. ContentKey
The ContentKey object represents a unique encryption key,

and associates an 1D withil, The purposeofthe ID is to enable
Protectorobjects and Controllerobjects to make references ta
ContentKey objects. The actual key data encapsulated in the
ContentKey object is itself encrypted so that it can only be
read by the recipients that are authorized to decrypt the con-
tent. The ContentKey object specifies which cryptosystem
was used to encrypt the key data. The cryptosystem used to
protect the content key data is called the Key Distribution
System. Different Key Distribution Systems can be used. An
example of a Key Distribution System is the Scuba Key
Distribution System described above.

1.19.4. Protector

The Protector object contains the information that makesit
possible to find out which key was used to encryptthe data of
Content objects. [t also contains information about which
encryption algorithm was used to encrypt that data. In one
embodiment, the Protector object contains one or more [Ds
that are references to Content objects, and exactly one [IDthat
is a reference to the ContentKey object that represents the key
that was used to encrypt the data. If the Protector points to
more than one Content object, all those Content objects rep-
resent data that has been encrypted using the same encryption
algorithm and the same key, In one embodiment, unless the
cryptosystem used allows a sale way ofusing the same key for
different data items, it is not recommended that a Protector

object point to more than one Content object.
1.19.5, Control

The contro! object contains the information that allows the
DRMengine to make decisions regarding whether certain
actions on the content should be permitted When requested by
the host application.In one embodiment, the rules that govern
the use of content keys are encoded in the control object as
byte code for execution by the virtual machine, The control
object also has a unique ID sothat it can be referenced by a
controller object. In one embodiment, control objects are
signed. so that the DRM engine can verify that the control
byte code is valid and trusted before it is used to make deci-

US 8,776,216 B2

47

sions, The validity ofthe control object can also optionally be
derived through the verification ofa secure hash contained mm
a controller object.

1.19.6. Controller

The controller object contains the informationthat allows
the DRM engine to find out which control governsthe use of
one or more keys represented by ContentKey objects. The
controller object contains information that binds it to the
ContentKey objects and the control object that it references.
In one embodiment, controller objects are signed (e.g. by a
packagerapplication thathasa certificate allowing it to sign
controller objects), so that the validity ofthe binding between
the ContentKey and the contro! object that governsit, as well
as the validity ofthe binding between the ContentKey ID and
the actual key data, can be established. The signature ofthe
controller object can be a public key signature or a symmetric
key signature, or a combination ofboth. Also. whenthe digest
ofthe contral object referenced by the controller object is
included in the controller object, the validity of the control
object can be derived without having to separately verily the 2
signature ofthe contro! object,

1.19.6.1. Symmetric Key Signature
In one embodiment, this is the preferred type of signature

for controller objects, and is implemented by computing a
Message Authentication Code (MAC) of the controller
object. keyed with the same key as the key represented by the
corresponding ContentKey object. In one embodiment. the
canonical method for this MAC is to use HMAC with the

same hashing algorithm as the one chosenfor the PKI signa-
ture algorithm used in the same deployment.

1.19.6.2. Public Key Signature
‘This type of signature is used when the identity of the

signer of the controller object needs to be known. This type of
signature is implemented with a public key signature algo-
rithm, signing with the private key ofthe principal whois
asserting thevalidity of this object. In one embodiment, when
using this type ofsignature, a symmetric key signature will
also be present, and sign both the controller object as well as
the public key signature, so that is can be guaranteed that the
principal who signed with its private key also had knowledge
of the actual value of the content key carried in the Content-
Key object.

1,20. Identity and Key Management DRM Objects
As previously described, node objects represent entities in

a DRM profile, and no implicit or explicit semantics are used
to define what the node objects represent. A given deployment
(DRM profile) ofa systemwill define what types ofprincipals
exist. and what roles and identities different node objects
represent, That semantic information is typically expressed
using, attributes of the node object.

Link objects represent relationships between nodes. Link
objects can also optionally contain some cryptographic data
that allows the link to be used for content key derivation.Just
as for nodes, in one embodiment no implicit or explicit
semantics are used to deline whata link relationship means.
Depending onwhatthe fromand to nodesof the link represent
ina given DRM Profile, the meaning ofthe link relationship
can express membership, ownership, association, and/or
many other types ofrelationships. Ina typical DRM profile,
some node objects could represent users, other nodes could
represent devices, and other nodes could represent user
groups or authorized domains (ADs). In such a context, links
between devices and users might represent an ownership
relationship, and links between users and user groups or
authorization domains might represent membership relation-
ships. FIG. 28Billustrates the structure and interrelationship
between nodes and links in one example embodiment.

w

0

5

nd

At

4

45

Man

l

65

48
1.20.1, Node

The node object represents an entity in the system. The
node object's attributes define certain aspects of what the
node object represents, suchas the role or identity represented
by the node object in the context of a DRM profile. The node
object may also have a confidentiality asymmetric key pair
that is used for targeting confidential information to the sub-
systemsthat have access to the confidential parts ofthe node
object (typically. the entity represented by the node, or some
entity that is responsible for managing that node), Confiden-
hal informationtargeted at a node can be encrypted with that
node's confidentiality public key. The node object may also
have a sharing asymmetric key pair and a sharing symmetric
key can be used in conjunction with link objects when the
system uses a ContentKey derivation system for ContentKey
distribution, such as that described elsewhere herein. [n a

preferred embodiment. only entities that need to be refer-
enced by link or control objects, or to receive cryptographi-
cally targeted information, need to have corresponding node
objects.

1.20.2, Link

The link object is a signed assertion that there exists a
directed edge in the graph whoseverticesare the nodeobjects.
For a given set ofnodesand links. we say that there is a path
between a node X and a node Yif there exists a directed path
betweenthe node X veriex and the nodeY vertex in the graph.
Whenthere is a path between node X and node Y, we say that
node Y is reachable from node X. The assertions represented
by link objects are used to express which nodes are reachable
from other nodes. The controls that govern content objects
can check, before they allowan action to be performed, that
certain nodes are reachable from the node associated with the

entity performing the action, For example, if node D repre-
sents a device that wants to perform the “play” action on a

§ content object, a contro] that governs the content object can
test ifa certain node, U, representing a certain user, is reach-
able from node D. To determine if node U is reachable, the
DRM engine can check whetherthere 1s a set of link objects
that can establish a path between node D and node U.

In one embodiment, the DRM engine verifies link objects
beforeil uses them to decide the existence olpaths in thenode
graph. Depending on the specific features of the certificate
system(e.g.. x509v3) used to sign link objects, link objects
can be given limited lifetimes, be revoked, ete. In one embodi-
ment, the policies that govern which keys cun sign link
objects, which link objects can be created, and the litetime of
link objects are not directly handled by the DRM engine.
Instead. those policies leverage the node’s attribute informa-
tion, To facilitate the task ofenforcing certain policies, in one
embodiment, a way to extend standard certificate formats
with additional constraint checking is provided. These exten-
sions make it possible to express validity constraints on cer-
tificates for keys that sign links, such that constraints such as
what type of nodes the link is connecting, as well as other

5 attributes. can be checked before a link is considered valid.

In one embodiment, a link object can contain a control
object that will be used to constrain the validity of the link. In
addition, in one embodimenta link object may contain eryp-
tographic key derivation data that provides ihe user with
sharing keys for key distribution. That cryptographic data will
contain, in addition to metadata, the private and/or symmetric
sharing keys of the “from” node, encrypted with the sharing
public key and/or the sharing symmetric key ofthe “to”node.

1.21, Data Structures

The following paragraphs describe, in more detail, anillus-
trative object model for the objects discussed above.defining
the fields that each type of object has in one illustrative

US 8,776,216 B2

49

embodiment. Data structures are described usingarelatively
simple object description syntax. Each object type ts defined
by a class that can extend a parent class (this is an “is-a”
relationship). The class descriptions are in terms of the simple
abstract types “string” (character strings), “int” (integer
value), “byte” (8-bit value), and “boolean”(true or false) but
do not define any specific encoding for those data types, or for
compound structures containing those types. The way objects
are encoded, or represented, can vary depending onthe imple-
mentation ofthe engine. In practice, a given profile ofuse of
the DRM engine can specify how the fields are represented
(e.g., using an XML, schema),

In one illustrative embodiment, the following notations are
used:

class ClassName [
field;
field 2+

String

Tat
Byte

Boolean

class SubClass extends

SuperClass {...}

Abstract class {,..}

{typefield; }

(type feld;)

class SubClass extends
SuperClass(field=value) {..}

Defines a class type. A class typeis 4
heterogeneous compound cata type
(also called object type). This
compound type is made up of one or
more fields, each of a sumple or
compound type. Each field can be of a
different type.
Defines s homogeneous compound data
type (also called list or array type). This
compound type is made up of 0 or mere
elements ofthe same type (G when the
list is ernipty).
Simple type: represents a character
siting
Simple type: represents an integer value
Simple type: represents an integer valuebetween (and 255

Simple type: represents a boolean value
(true or false)
Defines a class type that extends
mother class type. A class that extends
another one contains all the fields of the
class i extends (called the superclass)in addition to its own fields.

Defines an abstract class type. Abstract
class types are types that can be
extended. but are never used by
themselves.
Defines an optional field. An optional
field is a field that may be omitted from
the compound data type that contains it.
Defines 4 field that will be skipped
when computing the canonical byte
sequence for the enclosing compound
field
Defines a subelass ofa class pe and
specifies that for all instances of that
subclass, the value of a certainfield of
the superclass is always equal to a fixedvalue.

1.21.1. Common Structures

In one illustrative embodiment, the following common
structures are used;

abstract class Octobject {
{string id:}
Attribute| attributes;
Internal Extensian| | extensions:

class Transform {
string algorit lin:

class Digest{
Transform| | transforms;
string algorithm:
byte[] value:

class Reference {

wi

10

i, a

au

aa an

40)

45

a on

60

al oe

50
-continued

siring id;

{Digest digest; }

1.21.1.1, Attributes

In one embodiment, there are four kinds ofattributes: Inte-

gerAttribute, StringAttribute: ByteArrayAtiribute, and
ListAttribute, each having a name and a type.

abstract class Attribute {
{string mame:|
string type:

I
class InteperAttribute extends Atmbute(type="iat’) {

int values
p
class StringAttribute extends Attribute(type="string’) {

string value:
!
class ByreArmay Attribute extends Attributettype= ‘bytes’}|

byte[| value:1i

Class ListAttribute exténds Attribute(type="list’) {
Attnibute[| attributes; // must all be named1

y

Class ArrayAttribute extends Attribute(type="array’) {
Attribute[| attributes: // must all be unnamed

rl

1.21.1.2. Extensions

In the illustrative embodiment under discussion, there are

two types of extensions: internal extensions, which are car-
ried inside the Octobject, and external extensions. which are
carried outside the Octobject.

abstract class ExtensionData {
string type;

\

abstract class Extension {
string id:

i
class ExtermalExtension extends Extension {

string. subject:
ExtensionData data;

class InternalEstension extends Extension |
boolean critical;
{Digest dataDigest:}
(ExtensionData data;)

In some embodiments, it will be important to be able to
verify the signature of an object even if a particular type of
UxtensionData is not understood by a given implementation.
Thus, in one embodiment, a level of indirection with the

dataDigest field is added. If the specification of the Pxten-
sionData mandates that the data is part ofthe signature within
the context of a particular object, then the dataDigest field
will be present. An implementation that understands this
ExtensionData, and is therefore capable of computing its
canonical representation, can then verify the digest, If, in such
an embodiment, the specification of this /xtensionData man-
dates that the data is not part of the signature. then the data-
Digest field will not be present.

US 8,776,216 B2

51

1.21.2. Node objects

class Node extends Octobject|
j

1.21.3. Link objects

elass Link extends Octobject |
stting fromld;
string told;
{Control control;}

1.21.4. Contral objects

class Control extends Octobject |
string protocol:
Siritype;
byte[| codeModule;

1.21.5. ContentKey objects

abstract class Key{
string id:
string lisige:
string format:
byte]] data;

abstract class PalredKey extends Key [
string pairld:

class ContentKey extends Octobject {
Key secretKey:

/

In one embodiment, each key has a unique id, a format, a
usage (that can be null), and data. The ‘usage’ field, if itis not
empty. specifies the purpose for which the key can be used.
For normal content keys, this field is empty. In embodiments
in Which a key distribution scheme such as that described
aboveis used,this field may specify if this is a sharing keyor
a confidentiality key. The ‘format’ field specifies the format at
the ‘data’ field (such as, for example, “RAW*for symmetric
keys. or *PKCCS#8" for RSAprivate keys, ete.). The ‘data’ field
contains the actual key data, formatted accarding to the *for-
mat’ field.

For keys thatare part ofa key pair (suchas RSA keys), the
extra field ‘pairld’ gives a unique identifier for the pair, so that
the pair can be referenced from other data structures.

Jn one embodiment the data field in the key object is the
plaintext value ofthe actual key (i.e., it is the plaintext value
olthe key thatwill be hashed), even though the object's actual
representation contains an encrypted copyof the key.

1.21.6. Controller objects

class Controller extends Octobject{
Reference controlRef;
Refereuce| | content KeyRefs;

8. Virtual Machine

Preferred embodiments of the DRM engine described
herein use a virtual machine (sometimes referred to herein as

wi

Lo

20

A

35

=4

45

60

65

§2

the “control virtual machine.” the “control VM.or simply the
“VM") to execute control programs that govern access to
content. Illustrative embodiments of such a virtual machine

are described below, as are various modifications and design
considerationsthat could be madetothis illustrative embodi-

ment. The integration of an illustrative embodiment ofthe
virtual machine (referred to as the “Plankton” virtual
machine) with an illustrative embodimentofthe DRM engine
(referred to as “Octopus”) is also described. It should be
appreciated, however, that embodiments of the digital rights
management engine, architecture, and other systems and
methods described herein can be used with any suitable vir-
tual machine, or, in some embodiments, without a virtual
machineat all, and thus it will be appreciated that the details
provided below regarding example embodiments ofa virtual
machineare for purposesofillustration and not limitation.

ina preferred embodiment, the contro! VM is a traditional
virtual machine, designed to be easy to implement using
various programming languages with a very small code [oot-
print. It is based on a simple, stack-oriented instruction set
that is designed to be minimalist, without undue concern for
execution speed or code density.In situations where compact
codeis required, data compression techniques can be used to
compress the virtual machine’s byte code.

In preferred embodiments, the control virtual machine is
designed to be suitable as a target for low or high level
programming languages, and supports assembler, C, and
FORTH,In addition, it will be appreciated that compilers for
other languages, such as Java or custom languages, can be
created in a relatively straightforward fashion to compile
code into the format (e.g.. byte code) used by the virtual
machine. In one embodiment the control virtual machine is

designed to be hosted within a host environment, not run
directly on a processor or in silicon. In preferred embodi-
ments, the natural host environment for the virtual machine is
the DRM engine, although it will be appreciated that the
virtual machine architecture described herein could alterna-

tively, or in addition, be used in other contexts.
FIG. 29 illustrates the operating environment of an illus-

irative implementation of the contro! virtual machine 2902,
As shown in FIG, 29, in one embodiment virtual machine
2902 runs within the context of its host environment 2904,

which implements some of the functions needed bythe vir-
tual machine as it executes programs 2906. Typically, the
control VM runs within the DRM engine 2908, which imple-
ments its host environment. As shown in l'IG. 29, in a pre-
lerred database, the virtual machine 2902 and the DRM

engine 2908 have access to a secure database 2910 for per-
sistent storage ofstate information.

1.22. Architecture
1.22.1. Execution Model

In preferred embodiments. the VM runs programs by
executing instructions stored in byte code in code modules,
Some ofthese instructions can call functions implemented

5 outside of the programitselfby making systemcalls. System
calls can be implemented by the VM itselfor delegated to the
host environment,

In one embodiment, theVM executes instructions stored in

code modules as a stream of byte codes loaded into memory,
The VM maintains a virtual register called the Program
Counter (PC), which is incremented as instructions are
executed. The VM executes each instruction, in sequence.
until an OP_STOPinstruction is encountered, an OP_RET
instruction is encountered with an empty call stack, or a
runtime exception occurs. Jumps are specified either as a
relative jump (specified as a byte offset from the current value
of PC), or as an absolute address.

US 8,776,216 B2

53

1.22.2, Memory Model
In one embodiment, the VM uses arelatively simple

memory model. in which memoryis separated into data
memory and code memory. For example, data memory can be
implemented as a single, Mal, contiguous memory space,
starting at address 0, and can be implemented as an array of
bytes allocated within the heap memory ofthe host applica-
tien or host environment. In one embodiment, attempts to
access memory outside of the allocated space will cause a
runime exception which will cause program execution to
terminate.

Data memory is potentially shared between several code
modules concurrently loaded by the virtual machine. The data
in the data memory can be accessed by memory-access
instructions, which, in one embodiment, canbe either 32-bit
or 8-bit accesses. 32-bit memory accesses are performed
using, big-endian byte order. In a preferred embodiment, no
assumptions are made with regardsto alignment between the
virtual machine-visible memory and the hosi-managed
memory (ie., the host CPU virtual or physical memory).

In one embodiment, code memory is a flat, contiguous
memory space, starting at address 0, and can be implemented
as an array of bytes allocated within the heap memory ofthe
host appheation or host environment,

The VM may support loading more than one code module.
Ifthe VM loads several code modules, in one embodimentall

the code modules share the same data memory (although each
module's data is preferably loaded at a different address), but
each has its own code memory, thus preventing a jump
instruction in one code module to cause a jump to code in
another code module.

1.22.3. Data Stack
In one embodiment, the VM has the notion ofa data stack,

whichrepresents 32-bit data cells stored in the data memory.
The VM maintains a virtual register called the Stack Pointer
(SP). After reset, the SP points to the end of the data memory,
and the stack grows downward (whendata is pushed on the
data stack, the SP register is decremented), The 32-bit data
cells on the stack are interpreted either as 32-bit addressesor
32-bit integers, depending on the instruction referencing the
stack data. Addresses are unsigned integers. In one embodi-
meni, all other 32-bit integer values on the data stack are
interpreted as signed integers unless otherwise specified.

1.22.4. Call Stack

In one embodiment, the VM managesa call stack used for
making subroutine calls. In one embodiment, the values
pushed onthis stack cannot be read or written directly by the
memory-access instructions. This stack is used internally by
the VM when executing OP_JSR, OP_ISRR, and OP_RET
instructions. Fora given VM implementation, the size of this
return address stack can be fixed to a maximum, which will

allow only a certain number ofnested calls.
1.22.5, Pseudo Registers
In one embodiment. the VM reserves a small! address space

at the beginning of data memory to map pseudo-registers. In
one embodiment, the addresses ofthese pseudo-registers are
fixed. For example. the following registers could be defined:

Address Size Name Deserplion

o 4 ID 42-bit ID of the currently executing code
sewnent, This 1D is chosen by the WMwhen a module is loaded, The VM

changes this register if it changes from
the code segment of one module to the
code segment of another module

wi

ha 0

30

40)

45

30)

60

54

-continued

Address Size Name Description

4 4 32-bit value set tothe absolute data
address at which the dala segment ofthe
currently executing module has been
loaded. This value is determined by theVM's medule loader
32-bit value set to the absolute code
address at which the code segment of the
currently executing module has been
loaded. This value is determined by the
VM‘s module loader.
32-bit valug set to the absolute data
address ofthe first byte following the
region of the data memory space where
the data sepments of code modules have
beenloaded,

DS

CS

UM

1.22.6. Memory Map
The following shows the layout of data memory and code

memory in an illustrative embodiment:

Data Memory

Address Range Description

Oto la Pseiido-registe rs
16 to 127 Reserved for future VM/System use

128 to 255 Reserved for application use
234t0DS=1 Unspecified, The VM mayload the data

segments of code modules at any address at or
above 256. Ifit chooses an address larger tun
256, the use of theaddress space between 256
and DS is lefi unspecified, This means that the
virtual machine implementation is free to use il
any way it sees lit.

DSto UM=1 Image ofthe data seginents of one or more code
modules loaded by the virtual machine.

UM te End Shared address space. The code modules’ dats
and the data stack share this space. The data stack
is located at the end of that space and grows
down. The end represents the last address of the
data memory space, The size ofthe data memory
space is fixed by the VM based on memory
requirements containedin the code module and
implementation requirements.

Code Memory

Address Range Description

Ht csS-1 Unspecified. The virttial machine may load the
code segments of code modules at any address at
orabove 0. If it chooses an address larger than (),
Wie use of the address space between 0 and CS is
left unspecified. This means that the virtual
machine is free to use it in any wayit sees fit.
Image of the codé sesment of a code modiile
loaded by the virtual machine

CS to CS + size(code
segment!)—1

1.22.7. Executing Routines
Before executing a code routine, in one embodiment the

virtual machine implementationresets the data stack pointer
to point to the top of the initialized data stack. Theinitialized
data stack contains the routine’s input data, and extends to the
end of the data memory. The initialized data stack may be
used as a way to pass input argumentsto a routine. When there
1s no initialized data stack, the data stack pointer pointsto the
end of the data memory. In one embodiment, the initial call
stack is either empty or contains a single terminal return
address pointing to an OP_STOP instruction, which will

US 8,776,216 B2

55

force execution of the routine to end on an OP_STOPinstruc-
tion in case the routine finished with an OP_RETinstruction.

When execution stops, either because a final OP_LRET
instruction with an empty call stack has been executed or a
final OP_STOPinstruction has been executed, any data lefi
on the data stack is considered to be the outputof the routine.

1,22.8, Runtime Exceptions
In ane embodiment, any ofthe following conditions is

considered to be a runtime exception which causes execution
lo stop immediately:

An attempt to access data memory outside the current data
memory address space.

Anattemptto set the PC to. or cause the PC to, reach acode
address outside the current code memory address space.

56
1.23, Instruction Set

In one embodiment, the control VM uses a relatively
simple instruction set. Though limited, the number of instruc-
tions is sufficient to express programs ofarbitrary complexity,
Instructions and their operandsare represented by a stream of
byte codes. In one embodiment, the instructionsetis stack-
based, and except for the OP_PUSHinstruction, none ofthe
instructions have direct operands. Operandsare read from the
data stack, and results pushed on the data stack. In one
embodiment, the VM is a 32-bit VM: all the instructions
operate on 32-bit stack operands, representing either memory
addresses or signed integers. Signed integers are represented
with 2 s complement binary encoding. An illustrative
embodimentofan instruction set for use with the control VM

An attempt to execute undefined byte code. 15 is shownin the following table. In the table, the stack oper-
An attempt to execute an OP_DIVinstruction with a top- ands for instructions with two operands are listed as “A,B”

of-stack operand equal to 0. where the operand on the top of the stack is listed last (1.e.,
An attempt to execute an OP_MOD instruction with a “B”). Unless otherwise specified, the term “push,” as used in

lop-of-stack operand equalto 0. the following description of one illustrative embodiment,
An overflow or underflow ofthe Call Stack. refers to pushing a 32-bit value onto the top of the data stack.

Byte
OP CODE Name Code Operands Description

OP_NOP No u Do Nothing
Operation

OP_PUSH Push | Nidirect) Push a 32-bit constant
Constaut

OP_DROP Drop z Remove the top cell of the data
stack

OP _DUP Duplicate 3 Duplicate the top cell of the data stack
OP_SWAP Swap. 4 Swap top two stack cells
OP_ADD Add 5 A,B Pushthe sum of A and B (A+B)
OF_MUL Multiply 6 AB Push the product of A and B

(A* B)
OP_SUB Subtract 7 A,B Push the difference between A

and BLA = B)
OP_DIV Divide 8 A,B Push the division ofA by B

(A'B}
OP_MOD Modulo 9 AB Push A modulo B (A %B)
OP_ NEG Negate WW A Puslt the 2s complement

negation ofA (—A)
OP_CMP Compare ll A,B Push -! ifA less than B, 0 ifA

equals B, and 1 ifA greater
than B

OP_AND Ariel 2 ALB Push bit-wise AND of A and B
(A & B)

OF_OR Or 13. A,B Push the bit-wise OR of A and
BA! B)

OP_XOR Exclusive 4 AB Push the bitwise eXclusive OR,
Or ofA and B(A B)

OF_NOT Logical Is oA Push the logical negation of A
Negate (ifAds 0, and OTA is not 0)

OP_SHL Shift Left i6 A,B Push A logically shifted left by
B bits (A << B)

OP_ SHR Shift Right i7 AB Push A logically shifted right
by B bits (A >> B)

OP_JMP Jump le A Jump toA
OP_ISR Jump te vy A Jump te subroutine at absolute

Subroritine address A, The cutrem value of
PCis pushed on the call stack.

OP_JISRR Jump to 2). AW Jump to subroutine at PC +A.
Subroutine The current value of PC is
(Relative) pushed on the call stack.

OF_RET Return from 21 Return from subroutine to the
Subroutine return address popped from the

call stack.
OP_ BRA Branch 22 A Jump toPC +A

Always
OP_BRP Branoh if 23. A,B Jump to PC + BilA >

Positive

OF _BRN Branch if 34 A,B Jump to PC + BifA= 0.
Negative

OP_BRZ Branch if 25. A,B Jump to PO+ BifA is 0
Zero

OP_PEEK Peek 26. A Pushthe 32-bit value at address A

US 8,776,216 B2

57
-continued

Byte
OP CODE Name Code Operands Description

OP_POKE Poke 27 AB Store the 32-bit value A al
address B

OP_PFEKB Peek Byte 38 A Read the 8-bit value at address
A, U-extend it to 32-bits and
push i! onthe data stack

OP_POKEB Poke Byte 29 A,B Store the leust significant 8 bits
of value A at address B

OP_PUSHSP=Push Stack 30 Push the value of SP
Pouter

OP_POPSP Pop Stack 31 A Set the value of SP to APointer
OP_ CALL System Call 32 A Perform System Call with

index. A
OP_STOP Stop 255 Terminate Execution

1,24. Code Modules

In a preferred embodiment, code modulesare stored in an 2
atom-based format, similar or identical to that used for the
MPEG-4 file format, in which atoms contain a 32-bitsize

(e.g., represented by 4 bytes in big-endian byte order), fol-
lowed by a 4-byte type (e.g.. bytes that correspond to ASCII
values of letters of the alphabet). followed by a payload (e.g.,
& bytes).

FIG. 30 shows the format of an illustrative code module

3000. Referring to FIG. 30, pkCM atom3002is the top-level
code module atom,It contains a sequence of sub-atoms. In
one embodiment, pkCM atom 3002 contains one pkDS atom
3004, one pkCS atom 3006, one pkEX atom3008, and pos-
sibly one pkRQ atom 3010. The pkCM atom 3002 may also
contain any number ofother atoms that, in one embodiment,
are ignored if present, In one embodiment, the order ofthe
sub-atoms is not specified, so implementations should not
assume a specific order.

1.24.1. pkDS Atom
As shown in FIG. 30, pkDS atom 3004 contains a memory

image 3005 of a data segment that can be loaded into data
memory. As shownin FIG, 31.4, in one embodiment memory
umage 3005 is represented by a sequence of bytes 3112,
consisting ofone header byte 3114 followed by zero ormore
data bytes 3116. Header byte 3114 encodes a version number
that identifies the format ofthe bytes that follow 3116.

In one embodiment, only one version number is defined
(.e., DataSezmentFormatVersion=0), and in this format the
data bytes of the memory image represent a raw image to be
loaded into memory. The virtual machine loader only loads
the data bytes 3116 of the memory image 3105,not including
the header byte3114. In one embodiment, the virtual machine 5
loader is operable to refuse to load an image in any other
format,

1.24.2. pkCS Atom
As shown in FIG. 30. pkCS atom 3006 contains a memory

image 3007 of a code segment that can be loaded into code
memory. As shown in PIG, 31B, in one embodiment memory
image 3007 is represented by a sequence ofbytes 3120 con-
sisting ofone header byte 3122 followed by zero or more data
bytes 3124. Header byte 3122 encodes a version numberthat
identifies the format of the bytes that follow 3124.

In one embodiment, only one version numberis defined
(Le., CodeSegmentFormatVersion=0), and, as shownin FIG.
31C, in this version the byte following header byte 3122
contains another header byte 3130 containing a version num-
ber that identifies the byte code encoding ofthe following
bytes 3132. In the example shown in PIG. 31C. header byte
3130identifies ByteCodeVersion=0, whichspecifies that data

nd

au

35

40

45

60)

65

5 wmVersion

bytes 3132 contain a raw byte sequence with byte code values
such as those delined in the example instruction set thatis set
forth above. In a preferred embodiment. the virtual machine
loader only loads the byte cade portion 3132 ofthe data bytes,
not the two header bytes 3122, 3130.

1.24.3. pkEX Atom
Referring once again to FIG. 30, the pkEX atom 3008

contains a list ofexport entries. In the example shown in FIG,
30, the first four bytes 3009 of pkEX atom 3008 encode a
32-bit unsigned integer in big-endian byte order equal to the
numberof entries that follow. As shown in FIG, 31D, each

following export entry 3160 consists of a name, encoded as
one byte 3162 containing the name size, S, [followed by 8
bytes 3164 containing the ASCH characters of the name.
including a terminating zero 3166, followed by a 32-bit
unsigned integer 3168 in big-endian byte order representing
the byte offset of the named entry point, measured from the
start of the byte code data stored in the 3] CS atom. 1G. 31
shows an example ofan export table entry 3170 lor the entry
point MAINat offset 64, in whichthefirst byte 3172 indicates
that the size of the name (1.e., “MAIN”), plus the terminating
zero. is five bytes, and in which the last four bytes 3174
indicate that the byte offset is 64.

1.24.4. pkRQ Atom
As shownin FIG. 30, pkRQ atom 3010 contains require-

ments that need to be met by the virtual machine implemen-
tation in order (o execute the code in the code module, In one

embodiment, this atomis optional, and ifit is not present, the
virtual machine uses default implementation settings, such as
may be delined by an implementationprofile.

In one embodiment, the pkRQ atom consists ofan array of
32-bit unsigned integer values, one for each field:

Field Name Description

Version ID of the VM Spee
Minimum size in bytes of the data memory
available to the code. This includes the data
memoryused to load the image of the Data
Sepmient, as well as the data memory used by
the Data Stack, In one embodiment, the VM
must refuse to load the module if it cannot
satisty this requirement,
Minimum number ofnested subroutine calls
(OP_JSR and OP _JSRR) that must be
supported by the VM. In one embodiment,
the VM must refuse to load the module if it

cannot satisfy this requirement,
Set of bit-flags lo signal required features of
the VM,

minDalaMemorysize

minCallStickDepth

Flags

US 8,776,216 B2

59
-continued

Field Name Description

Tn one enibodiment, a VM implementation.
must refiise to load a code module that has

ay unknown flag set, For example, if there
are no flags defined, in one embodiment a

Mnemonic

wi

60

(these System Calls will have the same number on all VM
implementations). System Call Numbers 1024 to 16383 are
available for the VM to assign dynamically (for example, the
System Call Numbers returned by System.FindSystemCall-
ByNamecan be allocated dynamically by the VM, and do not
have to be the same numbers on all VM implementations).

In one example embodiment, the following fixed System
Call Numbers are specified:

Number System Call

SYS_NOP
SYS_DEBUG_PRINT
SYS_FIND_SYSTEM_CALL_ BY NAME
SYS_SYSTEM_HOST_GET_OBJECT
SYS_SYSTEM_HOST_SET_OBJECT

-continued

Field Name Description

VM implementation must check that this flag
is Set to 1),

1.24.5. Module Loader

The virtual machine is responsible for loading code mod-
ules, When a code module is loaded, the Data Segment
memory image encoded in the pkDS atomis loaded at a
memory address in the Data Memory. ‘That address is chosen
by the VM loader, and is stored in the DS pseudo-register
whenthe code executes.

The Code Segment memory image encoded in the pkCS
atom is loaded at a memory address in the Code Memory.
That address is chosen by the VM loader, andis stored in the
CS pseudo-register when the code executes.

When a code module is loaded, the special routine named
“Global-OnLoad”is executed if this routine is found in the

entries of the Export table. This routine takes no argument on
the slack, and returns an integer status uponreturn, () signi-
fying success, and a negative error code signifying an error
condition.

When a code module is unloaded (or when the virtual
machine that has loaded the module is disposed of), the spe-
elal routine named “Global.OnUnload” is executed if it ts

found in the Export table. This routine takes no argument on
the stack, and returns an integer status uponreturn, 0 signi-
fying success, and a negative error code signifying an error
condition.

1.25. System Calls
The virtual machine’s programs cancall functions imple-

mented outside oftheir code module's Code Segment. This is
done through the use of the OP_CALL instruction, which
takes an integer stack operand specifying the System Call
Numberto call. Depending on the System Call, the imple-
mentation can be a byte code routine in a different code
module (for instance, a library ofutility functions), executed
directly by the VM in the VM’s native implementation for-
mat, or delegated to an external software module. such as the
VM'shost environment,

In one embodiment, if an OP_CALL instruction. is

executed with an operand that contains a numberthat does not
correspond to any System Call, the VM behaves as if the
SYS_NOPsystem call was called.

1.25.1. System Call Numbers Allocation
In the illustrative embodiment under discussion, System

Call Numbers 0 10 1023 are reserved lor fixed System Calls

ta u

at

35

At

45

Se

60)

65

System.NoOperation
System. DebugPrint
System. FindSystemCallByNaimne
System.Host.GretObject
System. Host. SetObject

fewhe
1.25.2. Standard System Calls
In one embodiment, a few standard system calls are sup-

ported that are useful for writing control programs. These
calls include the fixed-number system calls listed in the table
above, as well as system calls that have dynamically deter-
mined numbers (i.e., their system call numberts retrieved by
calling the System.FindSystemCallByName system call with
their name passed as the argument).

In one embodiment, the systemcalls specified in this sec-
tion that can return a negative error code may return error
codes with any negative value. Section 8.4.4 defines specific,
illustrative values. In one embodiment, ifnegative error code
values are returned that are not predefined, they are inter-
preted as if they were the generic error code value FAILURE,

System.NoOperation.
This call takes no inputs and returns no outputs, and simply

returns without doing anything.It is used primarily fortesting
the VM.

System.DebugPrint.
This call takes as its input, from the top ofthe stack, the

address of a memory location containing a null-terminated
string. and returns no output. A call tothis function causes the
string, of text to be printed to a debug output, which can be
useful in debugging. If the VM implementation does not
include a facility to output debug text (such as might be the
case ina non-development environment), theVM may ignore
the call and treat itas ifSystem.NoOperationhad been called.

System.FindSystemCallByName,
This call finds the number ofa systemcall given its name.

The call takes as its input (from the top of the stack) the
address of a null-terminated ASCII string containing the
name ofthe systemcall for whichto look, and returns (to the
top ofthe stack) the system call number if'asystem call with
the specified name is implemented, an ERROR_NO_SU-
CH_ITEM ifthe system call is not implemented, and a nega-
tive error code if'an error occurs.

System.Host.GetLocalTime.
This call takes no inputs, and returns, to the top ofthe stack,

the current value ofthe local time of the host, which, in one

embodiment, is expressed as a 32-bit signed integer equal to
the number ofminutes elapsed since Jan. 1, 1970 00:00:00, or
a negative error cade.

System.[ost.GetLocalTimeOfiset.
This call takes no inputs, and returns, to the top ofthe stack,

the currenttime offset (from UTC time) ofthe host, which, in
one embodiment, is expressed as a 32-bit signed integer num-
ber equal to the number of minutes difference between local
lime and UTC time (i.e. LocalTime-UTC).

US 8,776,216 B2

61

System.Host,GetTrustedTime,
This call takes no inputs, and returns, to the top ofthe stack,

the trusted time and the value of one or more flags. In one
embodiment. the trusted time is the current value of the

trusted time clock (if the system includes such a trusted
clock), or 4 negative error code if the trusted time is not
available, In one embodiment. the value of trusted time is

expressed as a 32-bit signed integer equal to the number of
minutes elapsed since Jan. 1, 1970 00:00:00 UTC, or a nega-
live error code. In one embodimentthe flags are the bit-set of
flags that further define the current state of the trusted clock.
In one embodiment, if'anerror has occurred (e.g. the value of
TrustedTime is a negative error code) the value returned for
the Mags is 0.

In one embodiment, the following flag is defined:

Bit index
(Gis LSB) Name Deseriplion

0 TIME_IS_ESTIMATE=The value of TrustedTimeis
known to not be af its most
accurate valle, and therefore
should be considered an estimate.

This system call is relevant on systems that implement a
trusted clock that can be synchronized with a trusted time
source and maintain a monotonic time counter. The value of

the trusted timeisnot guaranteed to always be accurate, but in
one embodiment the following properties are required to be
true:

The value of the trusted time is expressed as a UTC time
value (the trusted limeis not in the local time zone. as the

current locality usually cannot be securely determined).
The trusted time never goes back.
The trusted clock does not advance faster than realtime.

Theretore, in this example embodiment, the value ofTrust-
edTime is between the value of the last synchronized time
(synchronized with a trusted time source) and the current real
ume. If the systemis able to determine that its trusted clock
has been operating and updating continuously and normally
without interruption since the last synchronizauion with a
trusted time source, it can determine that the value of Trust-

edTimeis not an estimate, but an accurate value, and set the
TIME_IS_ESTIMATEflag to 0.

In one embodiment, if the trusted clock detects that a
hardware or software failure condition has occurred, andit is
unable to return even an estimateofthe trusted time, an error

code is returned, and the value ofthe returned flags is set to 0.
System.Host.GetObject:
This system call isa generic interface that allowsaprogram 5

to access objects provided by the virtual machine’s host. The
System.Host.GetObjectcall takes the following inputs (listed
fromthe top ofthe stack downwards): Parent, Name, Return-
Butler. and ReturnButfer Size. Where “Parent” is the 32-bit

handle of the parent container; “Name” is the address of a
null-terminated string containing the path to the requested
object, relative to the parent container: “ReturnBulfer”is the
address ofa memory bulfer where the value ofthe objectis to
be stored; and “RetumMufferSize™is a 32-bit integer indicat-
ing the size in bytes of the memory buffer in which the value
ol the objectis to be stored.

The System.Host.GetObject call produces the following
outputs(listed fromthe top ofthe stack downwards): TypelD,
Size. Where“Typeld”is the object type id. or a negative error
code ifthe call failed, If the requested object does not exist,
the error returned is ERRORNO_SUCH_ITEM. IW the
bulfer supplied for the return value is too small, the error

wi

u

20

ae

Ae

45

60

65

62

returned is ERROR_INSUFFICIENT_SPACE.If the part of
the object tree that 1s being accessed is access-controlled, and
the calling program does not have the permission to access the
object, ERROR_PERMISSION_DENIEDis returned. Other
error codes may be returned. “Size” is a 32-bit integer indi-
cating the size in bytes of the data returned in the buffer
supplied by the caller. or the size required ifthe caller pro-
vided a buffer that was too small.

In one embodiment, there are four types of host objects:
strings. integers, byte arrays, and containers,

Object Type Type Id Name ‘Type Id Value

Container OBJECT_TYPE_CONTAINER u
lnteger OBJECT_TYPE_INTEGER 1
String OBJECT_TYPE_STRING 2
Byte Armay OBJECT_TYPE_BYTE_ARRAY 3

In one embodiment, the value ofa byte array object is an
array of 8-bit bytes, the value of a string object is a null-
terminated character string incoded in UTV-8, and the value
ofan integer objectis a 32-bit signed integer value. Contain-
ers are generic containers that contain a sequence of any
numberofobjects of any combination oftypes. Objects con-
tained in a container are called the children of that container,
The value of a container ts a 32-bit contamer handle that is

unique within a given VM instance. In one embodiment, the
root container */* has the fixed handle value0.

In one embodiment, the namespace for host objects is
hierarchical, where the name of a container’s child object is
constructed by appending the name ofthe child to the name of
the parent container, separated by a ‘/* character. String and
integer objects do not have children. For example, if a con-
tainer is named ‘/Node/Attributes’, and has a string child
named *Type*. then */Node/Attributes/Type” refers to the
child string.

The root of the namespace is ‘/’. All absolute namesstart
witha */*. Names that donot start witha */* are relative names.

Relative names are relative to a parent container. For
example, the name “Attributes/Type’, relative to parent
*/Node’, is the object with the absolute name */Nade/At-
tributes/Type’.

In one embodiment, container objects can also have real
and virtual child objects that be accessed by using virtual
names. Virtual names are namesthat are not attached to host

objects, but a convention to identify either unnamed child
objects, child objects with a different name, or virtual child
objects (child objects that are not real children of the con-
tainer. bul created dynamically when requested).

In one embodiment. for objects, the following virtual
names are defined as virtual child object names:

Virtual Name Description

(Name Virtual string object: the name ofthe object.
Ifthe object is unnamed, the valne is an empty
string. Note that unnamed objects are only
accessible through the (@=n> virtual name ofa
contsiperobject (see below)
Virtual integer object, The integer value is equal
to the size in bytes required to stone this object.
For integers, this value is 4; for strings, il is the
oumber of bytes needed to store the UITE-8
string plus a null byte terminator, For byte
arrays, this fs the number of bytes in the array,
Virtual integer object. The integer value is equal
to the object’s Type Id.

size

(Type

US 8,776,216 B2

63

For containers, the following virtual names are defined as
virtual child object names in one embodiment;

wiVirtual
Name Description

Virtual Index i@<n>=Virtual object: the <n>th object ina container.
The first object im a container has index 0, “n>
is expressed as a decimal munber,
Example: if “Attributes” is a container that
contains 3 child objects, “Attributes@4" is the
5" child of the container,

Virtial Size (@Size=Virtiial integer object. The integer value is equal
to the number of objects in the container.

0

EXAMPLES

The following table shows an example ofa hierarchy of
Host Objects:

2

Name Value Children

Node | Name Value Children 25

‘Type “Device”
Name Value Children

Attributes 2 Name=Value Children
3)

Color “Red”
Name Value Children

Size 78
Name=Value Children

: 35
Domain “TopLevel™

In this example, calling System.Host.GetObject(parent=0,
name=“Node”) returns a type ID of0 (i.e., container), and 40
causes the handle value of| to be written in the buffer sup-
plied by the caller. The size of the value is 4 bytes.

Calling System.Host.GetObject(parent=0, name="Node/
Attributes/Domain”) returns a type [D of 2 (i.e.. string), and
causes the string “TopLevel” to be written in the buffer sup- 45
plied by the caller. The size of the value is 9 bytes.

Calling System.Host.GetObject(parent=1,
name=“‘Attributes/@ 1°) returns a type [D of1 (1.e., integer),
and causes the integer 78 to be written in the buffer supplied
by the called. Thesize ofthe value is 4 bytes.

Nan

Calling System.Host.GetObject(parent=0,
name=“DoesNotlxist”) returnsthe error code ERROR_NO_
SUCH_ITEM.

System. Host.SetObject. This system call isa generic inter- 55
face that allows a programtocreate, write, and destroy objects
provided by the virtual machine's host, The description ofthe
object names and types is the same as for the System.Host.
GetObjectcall described above. Not all host objects support
being written to or destroyed, and notall containers support
having child objects created. When a SetObjectcall is made
for an object that does not stipport the operation, ERROR_
PERMISSION_DENIEDis returned,

The System. Host.SetObject systemcall takes as input the 65
following parameters, listed from the top of the stack down-
wards:

60

64

Top ofstack

Parent
Name

ObjectAddress
Object Type
ObjectSize

Parent: 32-bit handle of the parent container.
Name: address of a null-terminated string containing the

path to the object, relative to the parent container.
ObjectAddress: address of a memory bulfer where the

value of the object is stored. If the address is 0, the call is
interpreted as a request to destroy the object, The data at the
address depends on the type of the object.

ObjectType: the type ID of the object,
ObjectSize: 32-bit integer indicating size in bytes ofthe

memory buffer where the value ofthe objectis stored, In the
illustrative embodiment under discussion, the size is set to 4

for integer objects, and to the size of the memory buffer,
including the null terminator, for string objects. For byte array
objects, the size is the number of bytes in the array.

The System.[ost.SetObject system call returns a Result-
Code to the top ofthe slack as an output. The ResuliCodeis 0
if the call succeeded, and a negative error code if the call
failed. If the call is a request to destroy an object and the
requested object does not exist, orthe call is a requestto create
or write an object and the abject’s parent does not exist, the
error code returned is ERROR_NO_SUCH_ITIEM.Ifthe part
of the object tree that is being accessed is access-controlled,
and the calling program does not have the permission to
access the object, ERROR_PERMISSION_DENIED is
returned. Other error codes may also be returned.

There is a special case when the object refers to a container
and the ObjectAddress is not 0. In this case the ObjectSize
parameter is set to 0 and the value of ObjecitAddress is
ignored, [{the containeralready exists, nothing is done, and a
SUCCESS ResultCode is returned. If the container does nol

exist, and the parent ofthe container is writeable, an empty
containeris created,

Octopus.Links.IsNodeReachable.
This system call is used by control programs to check

whether a given nodeis reachable from the node associated
with the entity hosting this instance of the virtual machine,
The call takes as its input a Nodeld fromthe top of the stack,
where the Nodeld is a mill-terminated string containing, the
ID of the target node to be tested for reachability. As output.
the call returns a ResuliCode and a StatusBlockPointerto the

top ofthe stack. The ResultCodeis an integer value thatis 0
ifthe nodeis reachable, ora negative error code ifit is not, The
StatusBlockPointer ts the address ofa standard E:xtendedSta-
tusBlock, or 0 if no status block is returned.

System.Host.SpawnVm.
This system call is used by control programsto request that

anew instance ofa virtual machine be created, and a newcode

module loaded. In one embodiment, the host of the newly
created virtual machine exposes the same host objects as the
ones exposed to the caller, excepi the hast object “/Octopus/
Runtime/Parent/Id” is set to the identity of the caller. In one
embodiment, this host object is a container. The children of
this container are objects of type string, each with a value
representing a name. In one embodiment, the semantics and
specific details of those names are specified by the specitica-
tion ofthe virtual machine’s host.

In one embodiment, when the virtual machine that 1s run-

ning the code for the caller terminates, any spawned virtual

US 8,776,216 B2

65

machine that has not been explicitly released by calling Sys-
tem. Flost. ReleaseVm is automatically released by the system
as if System.Host.ReleaseVm had been called.

The System.Host.SpawnVmcall takes as its input a Mod-
uleld from the top of the stack. The Moduleld identifies the
code module to be loaded into the new virtual machine

instance. In one embodiment. the specification ofthe virtual
machine’s host describes the mechanism by whichthe actual
code module corresponding to this module IDis to be located.

‘The System.Host.SpawnVm call returns a ResultCode and
a VmHandle to the top of the stack. The ResultCode is an
integer valuethat is 0ifthe call was successful, and a negative
error code if it failed. The VmHandle is an integer value
identifying the instance of the virtual machine that has been
created, Ifthe call fails, this handle is set to 0. In one embodi-

ment, this handle is only guaranteed to be unique within the
virtual machine in which this call is made.

System.Host-CallVm.
This systemcall is used by control programsto call rou-

tines that are implemented in code modules loaded in virtual
machine instances created using the System.Host.SpawnVm
systemcall. This system call takes the following, input from
the top ofthe stack:

Top of stack:

VmHaidle
Entry Point
ParameterBlockAddress
ParameterBlockSize
ReturnBufferAddress
ReturnBufferSize

VmdHandle: an integer value representing the handle of a
virtual machine that was created by calling System.
Host.SpawnVm.

EntryPoint: the address of a null-terminated string that
specifies the name ofthe entry pointto call, This name needs
to match one of the entry points in the Export ‘Table ofthe
code module that was loaded into the virtual machine instance

that corresponds to the VmHandle parameter.
ParameterBlockAddress: the address of a memory block

that contains data to be passed tothe callee. Ifno parameters
are passed to the callee, this address is set to 0.

ParameterBlockSize:the size in bytes of the memory block
at address ParameterBlockAddress, or 0 1f ParameterBlock-
Address is 0.

ReturnBulferAddress: the address of a memory buffer
where the caller can receive data from the callee. If the caller

does not expect any data back fromthe callee, this address is
set to 0,

RetumButtferSize: the size m bytes of the memory bufferat
address ReturnBulterAddress. or 0 ifReturnBulferAddressis
0.

The System.Host.CallVm call returns the following output
to the top ofthe stack:

Top of Stack:

System ResultCode
CalleeResultCode
RetumBlockSize

SystemResultCode: an integer value thatis 0 ifthe call was
successful or a negative error code if it failed. This value is

w

30

35

40)

45

St

60)

65

66

determined by the system, not by the callee, Success only
indicates that the system was able to successfully find the
routine to call, execute the routine, and get the return value
from the routine. The return value from the routine itself is
returned in the CalleeResultCode value.

CalleeResultCode: an integer value that is returned by the
callee.

ReturnBlockSize: the size in bytes of the data returned in
the buffer supplied by the caller, or the size required if the
caller provided a buffer that was too small. If no data was
returned by the callee, the value is 0.

In the illustrative embodimentunder discussion, the called

routine complies with the following interlace conventions:
Whenthe routine ts called. the top of the siack contains the
value ParameterBlockSize, supplied by the caller, indicating
the size ofthe parameter block, followed by ParameterBlock-
Size bytes ofdata, [f the size is nota multiple of4, the data on
ihe stack will be padded with zeros to ensure that the stack
pointer remains a multiple of 4, Upon return, the called rou-
tine provides the following return values onthe stack:

Top ofstack:

ResullCode
ReturnBlockAddress
ReturnBlockSize

ReturnBlockAddress: the address ofa memory block that
contains data to be returnedto the caller. 1{no data is returned.
this address ts set to 0.

ReturnBlockSize: size in bytes of the memory block at
address ReturnBlockAddress., or 0 if ReturnBlockAddress is
0.

System.Host.ReleaseVm.

This system call is used by control programs to release a
virtual machine that was spawned by a previous call to Sys-
tem.Host.SpawnVm. Any virtual machines spawned by the
released virtual machine are released, and so on, recursively.
The System.Host.ReleaseVm call takes as its input a
VmHandle from the top of the stack, the VmHandle repre-
senting the handle of a virtual machine that was created by
calling System.Host.SpawnVm. The System.Host.Re-
leaseVmcall returns a ResultCodeto the top ofthe stack as an
output. The ResultCode is an integer value that is 0 if the call
was successful or a negative error code ifit failed,

1.25.3. Standard Data Structures

The following are standard data structures used by some of
the standard system calls.

1.25.3... Standard Parameters

ParameterBlock:

Name Type

Name NameBlock
Value: ValueBlock

Name: name ofthe parameter.

Value: value of the parameter

67

US 8,776,216 B2

ExtendedParameterBlock:

Name

Flags
Parameter

Flags: vector of boolean flags.
Parameter: parameterblock containing a name anda value.

Type

32-bit bit field
ParameterBlock

NameBlock:

Name Type

Size 32-bit integer
Characters Arrayof 8-bit characters

Size: 32-bit unsigned integer equalto the size in bytes of
ihe “characters” field that follows. If this value is 0. the 5
characters field is left empty (i-e.. nothing follows),

Characters: Null-terminated UTF-8 string.

‘Type: 32-bit type identifier. In one embodiment, the fol-

lowing types are defined:

Identifier Type Name

0 Integer

| Real

2 String

4 Date

4 Parameter
5 ExtendedParameter

Resource

ValueList

ByteAtay

ValueBlock:

Name Type

‘Type 32-bit integer
Size 32-bit integer
Data Array of8-bit bytes

Description

32-bit integer valite,
encoded as four §-bit bytes
in big-endian byte order. In
one embodiment the value
is considered signed unless
otherwise specified,
32-bit floating point value.
encoded as Tnb-734 in
big-endian byte onderNull-terminated LTF-8
string
32-bit unsigned integer
value, representing the
Number of minutes elapsed
sinee January 1, 1970OOWCLO0. Tn -one
embodiment, unless
otherwise specified. the
value is considered te be a
UTC date, the mest
significant bitof which
must be 0,
ParameterBlock structure
Extended ParameterBlock
structure
The value isa resource. The
resource here is referenced
by ID: the Data field of the
value is a oull-termunated
ASCII string contauming the
ID ofthe resource that
should be de-referenced lo
produce the actual data.
An array of values (encoded
as a ValueListBlock)
The value is an array of 8-
bit bytes

wi

13

nd

bala

at

4

45

Sf

60

65

68

Size: 32-bit unsigned integer equal to the size in bytes of
ihe “data” field that follows, If this value is 0, the data field is

lefi empty (i.e., nothing follows the size field in the Value-
Block).

Data: array of 8-bit bytes representing a value, The actual
bytes depend on the data encoding specified by the typefield.

ValueListBlock:

Name Type

ValueCount 32-bit integer
Valuet) ValueBlock
Walnel ValueBlock

ValueCount: 32-bit unsigned integer equal to the number
of ValueBlock structures that follow. HWthis value is 0, no
ValueBlocks follow.

ValueO. Value], ... : sequence ofzero or more ValueBlock
structures.

1.25.3.2. Standard ExtendedStatus

The standard ExtendedStatusBlock is a data structure typi-
cally used to convey extended information as a return status
from a call to a routine or a system call. It is a generic data
structure that can be used ina variety ofcontexts, witha range
ofdifferent possible valuesforits fields. In one embodiment,
an ExtendedStatusBlock is defined as follows:

Extended StansBlock:

Name Type

GlobalFlags 32-bit bit field
Category 32-bit integer
SubCategory 32-bit integer
LocalFlaps 32-bit bil Held
CacheDuration CacheDurationBlock
Parameters ValueListBlock

Globalllags: boolean Nags whose semantics are the same
regardless of the category field, The position and meaning of
the flags are defined by profiles that use standard Extended-
StatusBlock data structures.

Category: Unique integer identifier of a category to which
this status belongs. The category identifier values are defined
by profiles that use standard ExtendedStatusBlockdata struc-
tures.

SubCategory: Integer identifier (unique within the cat-
egory) of a sub-category that further classifies the type of

. status described by this block.

LocalFlags: Boolean hags whose semantics are local to the
category and subcategory ofthis status block. The position
and meaning ofthe Nags are defined by profiles that define
and use the semantics ofthe category,

CacheDuration: Indicates the duration for which this status

can be cached (i.e. remains valid). See the definition of the
CacheDurationBlock type. below, for howthe actual value of
the duration is defined.

Parameters: List of zero or more ValueBlocks. Each Val-

ueBlock contains a parameter encoded as a value of type
Parameter or ExtendedParameter. Each parameter binds a

US 8,776,216 B2

69

nameto a typed value, and is used to encode flexible variable
data that describes the status block in more detail than just the
eategory, sub-category, cache duration, and flags.

 CacheDurationBlock:

Name Type

Type 32-bit integer
Value 32-bit integer

Type: Integer identifier for the type of the value. In one
embodiment, the following types are defined:

Type Deseription

u The value isa 32-bit unsigned integer that
represents the number of seconds from the
current time, A value of 0 means that the
slatis cannot be cachedat all, and therefore
can only be Used once. The special value
OxFFFEFEFFis interpreted as aninfinite
duration (ie. the status can be cached
indefinitely).

| The value is a 32-bit unsigned integer that
represents an absolute locul time, expressed
as the number of minutes elapsed since
January 1, 1970 GO200:00. La one
embodiment. the most significant bit must beOo.

Value: 32-bit integer, the meaning ofwhich dependson the
‘Type field.

1,254. Standard Result Codes
Standard result codes are used in variousAPIs. Other result

codes may be defined for use in more specific APIs.

Value Name Deseription

6b SUCCESS Suicvess
-| FAILURE Unspecified failure
-2 ERROR_INTERNAL An internal

(implementation) error
has occurred

-3 ERROR_INVALID PARAMETER A parameter hus an
invalid value

—4 ERROR OUT OF MEMORY Not enough memory
available to complete
successfully

=5 ERROR_OUT_OF_RESOURCES Not enough resources
available to complete
successfully

-6 ERROR_NO_SUCHITEM The requested item
does not exist or was
not found

-7 ERROR_INSUFFICIENT_ SPACE Not enough memory
supplied by the caller
(typically used when areturn buffer is too
small)

-8 ERROR PERMISSION DENIED Permission to perform
the call is denied to the
caller,

-9 ERROR_RUNTIME_EXCEPTION Anerror has occurred
during execution of
byte code

-10 BPRROR INVALIDFORMAT Error caused by clita
with an fvalid format
(for example, invalid
data ina code module)

1.26, Assembler Syntax
‘This section descnbes an example syntax for use in com-

piling programs inta the bytecode format described else-

IE

ba

at

AC

45

3t

60

65

70

where herein. It should be appreciated that this is just one
example ofone possible syntax, and that any suitable syntax
could be used, As previously indicaled, it should also be
understood that the bytecode format presented herein is also
just an example, and the systems and methods described
herein could be used with any other suitable byte code format
or other cade format,

An assembler reads source files containing code, data, and
processing instructions, and produces binary code modules
that can be loaded by a control virtual machine. In one illus-
trative embodiment, the assembler processes a source file
sequentially, line by line. Lines can be zero or more charac-
ters. followed by a newline. Nach line can be one of; an empty
line (whitespace only), a segmentdirective, a data directive,
anassemblerdirective, a codeinstruction, a label, or an export
directive. In addition, cach line can end with a comment.
whichstarts with a *:" character and continues until the end of
the line.

Data and instructions read from the sourcefiles have an

implicit destination segment(i,e., where they end up when
loaded by the VM). At any point during the parsing process,
the assembler will have a “current” segment which is the
implicit destination segment for data and instructions. The
current segment can be changed using segment directives,

1.26.1. Segment Directives
Segment directives change the current segment ofthe

parser. In one embodiment. the supported segmentdirectives
are ,code and .data. The code segmentholds the byte code
instructions, and the data segment holds global variables,

1.26.2. Data Directives

Data directives specify data (e.g., integers and strings) that
will be loaded in the virtual machine's data segment. In one
embodiment, the supported data directives are:

string “<some chars>"— Specifies a string of characters.
In one embodiment, the assembler adds an octet with

value 0 at the end ofthe string.
.byte <value>—Specifies an 8-bit value. <value> can be

expressed as a decimal number, or a hexadecimal num-
ber (prefixed by Ox).

-long <value>—Specifies a 32-bit value. <value> can be
expressed as a decimal number, or a hexadecimal num-
ber (prefixed by Ox).

1.26.3. Assembler Directives

In one embodiment, the supported assemblerdirectives are
equ <symbol>, <value>, whichsets the symbol <symbol> to
be equalto the value <value>. Symbols are typically used as
operands or code instructions.

1.26.4, Labels

Labels are symbols that point to locations within segments,
Labels pointing to instructions in the code segmentare typi-
cally used for jump/branchinstructions. Labels pointing to
data in the data segment are typically used to refer to vari-
ables. In one embodiment, the syntax for a label is:
<LABEL>:

Note that there is nothing after the “:", except an optional
comment. A label points to the location of the next data or
instruction.In ohne embodiment.it is ok to have more than one

label pointing to the same address.
1.26.5. Export Directives
Export directives are used to create entries in the “export”

section ofthe code module produced by the assembler. Each
entry in the export section is a (name, address) pair, In the
illustrative embodiment under discussion, only addresses
within the code segment can be specified in the export section.

The syntax of the export directive is: export <label>, which
will export the address pointed to by <label>, with the name
“<Jabel>".

US 8,776,216 B2

71
1.26.6. Code Instructions

When compiling data destined for the code segment. the
assembler reads instructions that map directly, or indirectly,
into byte codes. [n the example instruction set shown above,
most virtual machine byte codes have nodirect operands, and
appear with a simple mnemonic on a single line, ‘To make the
assembler syntax more readable, some instructions accept
pseudo-operands, which look as if they were byte code oper-
ands, but are not really; in this case, the assembler generates
one or more byte code instructions to produce the same eflect
as if the instruction did have a direct operand. For example,
the branch instructions use pseudo-operands.

1.26.6.1. Branch Operands
Branch instructions can be specified verbatim (without any

operand), or with an optional operand that will be converted
by the assembler into a corresponding byte code sequence.
The optional operand is an integer constant or a symbol.
When the operand is a symbol, the assembler coniputes the
correct integerrelative offset so thal the branch ends up at the
address corresponding to the symbol.

1,26.6.2. Push Operands
In one embodiment, the PUSH instruction always takes

one operand. ‘The operand can be one of an integer constant,
asymbol, or the prefix “(@”* directly followed by a label name.
When the operand is a symbol, the value that is pushed is the
direct value ofthat symbol, whether the symbolisa label oran
equ symbol (the value is nol incremented by a segment
offset). Whenthe operand is a label nameprefixed with “@”,
the value pushed depends on what the label points ta. The
value pushed on the stack is the absolute address represented
by the label (i.e., the local label value added to the segment
offset).

1.26.7. Examples

} constants
equ SOMECONST, 7

: what follows gees into the data segment
data

VARI:
byte B

VAR:
string “helle\ii"

VAR3:
slong OxFFFCDAUT

VAR4:
long 0

> what follows goes into the code seamment
ood

FOO:
PUSH)
ADD
RET

BAR:
PUSH 2
PUSIT @FOO
ISR
PUSH SOMECONST

PUSH @VARIPUSH VARI

; push the address of the label FOO
¢ jump tothe code at label FOO
: push the value 7
: push the addr ofVAR L
; push the offset of VARI within the data

segment
PUSH @VAR3 ; push the addr of VAR3
PEEK } push the value of VARS
PUSH @VAR4 ; push the addr of VAR4
PORE store the value on top of the stack iteVARS
PUSH @VAR2 push the addr of the string “hello”

1.26.8, Command Line Syntax
Jn one embodiment, the assembler is a command-line tool

that can be invoked withthe following syntax: “PktAssembler
options|<input_file_path> <output_file_path>". where the
[options] can be: -cs int, -ds int, -xmlid, or -h, where “-cs mt”

a

ba

a0

35

Al

45

3)

60

65

72

is a Code Segment Address Value (default=8), “-ds int” is a
Data Segment Address Value (default=4). “-xmlid” is used to
output a conirol object as an XMLfile with the specified ID,
and “-h” is used to display help information,
9. Controls

This section describes illustrative embodiments ofcontro]

objects. Contro] objects can be used to represent rules that
govern access to content by granting or denying the use of the
ConteniKey objects they control. They can also be used to
represent constraints on the validity ofa link object in which
they are embedded, They can also be used as standalone
program containers that are run on behalf of another entity,
such as in agents or delegates. In one embodiment, controls
contain metadata and byte-code programs, which implement
a specific interaction protocol. The purpose of a Control Pro-
tocol is to specify the interaction between the DRM engine
and a control program or between a host application and a
control program through the DRM engine, This section also
describes illustrative actions the application can perform on
the content, which action parameters should be supplied to
the control program, and howthe control program encodes
the return status indicating that the requested action can or
cannot be performed, as well as parameters that can further
describe the return status.

In this section, the following abbreviations and acronyms
are used:

ESB: Extended Status Block

LSB: LeastSignificant Bit
Byte: 8-bit value, or octet
Byte Code: stream ofbytes that encode executable instruc-

tions and their operands
1.27. Control Programs
In one embodiment, a contro] object contains a control

program. The contro! program includes a code module con-
taining byte-codethat is executable by a virtual machine, and
a list of named routines(e.g., entries in the export table).

In one embodiment, the set of routines that represent the
mules that governthe performance ofa certain operation (such
as “play”) on a content ttem is called an “action control’. The
set of routines that represent validity constraints on a link
object is called a “link constraint”. The set ofroutines that are
intended to be executed on behalf ofa remote entity (such as
during a protocol session with a DRM engine running on a
differenthost) is called an “agent”. The set ofroutines that are
intended to be executed on behalf ofanother control (such as
when a control program uses the System.Host.CallVm sys-
tem call) is called a “delegate”.

1.27.1. Interface to Control Programs
In ove embodiment. control programs are executed by a

virtual machine running in a host environment. The host
environment can be implemented in any suitable manner:
however, for ease of explanation and for purposesofillustra-
tion, it will be assumed in the following discussionthat the
implementation of the virtual machine's host environment

5 can be logically separated into bwo parts: a host application,
and a DRM engine.It will be appreciated, however,that other
embodiments may have a different logical separation offunc-
tions, which may be equivalent to the logical structure
described above.

As was shown in PIG. 29, in preferred embodiments, the
DRMengine 2908 is the logical interface between the host
application 2900 and control programs 2906. The host appli-
cation 2900 makes logical requests to the engine 2908, such
as requesting access to a content key for a certain purpose
(e.g., to play or render a content stream). In one embodiment,
the engine 2908 ensures that the interaction protocol
described below is implemented correctly, such as by ensur-

US 8,776,216 B2

73

ing that any guarantees regarding a control program’s initial-
ization, call sequence, and other interaction details are met.

When the host application 2900 requests the use ofcontent
keys for a set of content 1Ds, the DRM engine 2908 deter-
mines which Control object to use. The Protector objects
allow the engine to resolve which ContentKey objects need to
be accessed for the requested content IDs. The engine then
finds the Controller object that references those ContentKey
objects. In one embodiment, a Controller object canreference
more than one ContentKey object. This allows multiple Con-
tentKey objects to be governed by the same Conirol object.
Whenthe host applicationrequests access to.a content key by
invoking an action, it can request content [Ds as a group, to
the extent that the ContentKey objects that correspond to
them are referenced by the same Controller object. In one
embodiment, a request to aceess a group of content keys
referenced by more than one controller object is not allowed.

In one embodiment, the DRM engine follows a convention
for mapping actions to routine names. For example, in one
embodiment, for each of the routines described below, the

name that appears in the Export Table entry in the code
module is the respective string shown below in Sections
9.1.4-9.1.7.

1,27.1.1. Control Loading
In one embodiment, before the engine can make calls to

control routines, it needs to load the control’s code module

into the virtual machine. In one embodiment, only one code
module per VM is loaded.

1,27.1.2. Atomicity
In one embodiment, the engine ensures that calls to rou-

tines within contro! programs are atomic with respect to the
resources itmakes available to the routine. such as the object
(or “state”) database. ‘Thus, in such an embodiment, the
engine needs to ensure that those resources remain unmodi-
tied during the execution of any ofthe routinesit calls, This
may be done byeffectively locking those resources during a
routine call, or by preventing multiple VMs to run coneur-
rently. However, the engme need not guarantee that those
resources are unmodified across successive routine invoca-
lions,

1.27.2. Control Protocol

In one embodiment, the routine naming, the input/output
interface, and the data structures for each routine in a code

module, together, constitute a Control Protocol. The protocol
implemented by a code module is signaled in the Control
object's “protocol” field, The illustrative Control Protocol
described belowwill be called the Standard Contro] Protocol,
and its identifier (the value of the ‘protocol’ field) is “hettp://
www.octopus-drm.com/specs/sep-1 0”.

In one embodiment, before the DRM engine loads a code
module and calls routines in the control program, it needs to
guarantee that the interaction with the control programwill be
consistent with the specification for the specific protocol id
signaled in the protocol field. That includes any guarantee
about the features of the virtual machine that need to be

implemented, guarantees about the size of the address space
available to the control program, and the like.

lt is possible for control protocols, such as the Standard
Control Protocol. to evolve over time without having to create
anewprotocol specification, As long as the changes made to
the protocol are consistent with previous revisions efthe
specification, and as long as existing implementationsofthe
DRM engine, as well as existing control programs that com-
ply with that protocol, continue to perform according to the
specification, then the changes are deemed compatible. Such
changes may include, for instance, new action types.

wi

Lo

ba

at

40

a

60)

74

1.27.3, Byte Code Type
In the illustrative embodiment described above involving

the Standard Control Protocol, the type of the byie-code
module is “Plankton byte-code module version 1.0”. In this
example embodiment, the value for the “type” field ofthe
Control object is “http:/Avww-.octopus-drm.com/specs/
pkem-1__0”,

1.27.4. General Control Routines

General routines are routines that are applicable to the
control as a Whole, and arenot specific to a givenactionorlink
constraint. The following general control routines are nsed in
one illustrative embodiment:

1.27.4.1. Control. Init

This routine is optional (1.¢., it is mot required in all con-
trols). Ifthis routine is used, the engine calls itonce before any
other control routine ts called. The routine has no inputs, and
returns a ResultCode to the top of the stack as an output. The
ResultCode is 0 on success, or a negative error code on
failure. In one embodiment, if the ResultCode is not 0, the

engine aborts the current control operation and does not make
any further calls to routines for this control.

|.27.4.2. Control.Describe

This routine is optional. The routine is called when the
application requests a description ofthe meaning of the rules
represented by the control program in general(i.e, not for a
specific action). The routine has no inputs. and returns a
ResultCode and a StatusBlockPointerto the top olthe stack as
outputs, where the ResultCode is an integer value (0 if the
routine completed successfully, or a negative error code oth-
erwise). and where the StatusBlockPointeris the address ofa
standard ExtendedStatusBlock. The ExtendedStatusBlock

contains information that an application can interpret and use
to provide information to the user regarding the meaning of
the rules represented by the control program.

1.27.4.3. Control.Release

This routine is optional. If this routine exists, the DRM
engine calls it once after it no longer needs to call any other
routine lor the control. Noother routine will be called for the

contro! unless a new use of the control is initiated (in which
case, the Control.Init routine will be called again). The rou-
tine has no inputs, and returns a ResultCodeto the top ofthe
stack as an output. The ResultCode is 0 on success, or a
hegative error code on failure.

1.27.5. Action Routines

Each possible action has a name(¢.g., play, transfer, export,
etc.). In one illustrative embodiment, lor a given action
<Acton>, the following routine names are defined (where
“<Action=>" denotes the actual name ofthe action (e.g.,
“play”. “transfer”, “export”, etc.)):

1.27.5.1. Control.Actions.<Action>.Init

This routine is optional. Ifit exists, the engine calls it once
before any other routine is called for this action. The routine
has no inputs, and returns a ResultCode tothe top ofthe stack
as an output. The ResultCode is 0 on success, or a negative

5 error codeon failure. In one embodiment, ifResultCodeis not
0, the engine aborts the current action and does not make any
further calls to routines for this action inthis control.

1.27,5.2, Control.Actions.<Action>.Check

In theustrate embodiment being discussed, this routine is
required, and is called to check. without actually performing
a given acuion, what the return status would be ifthe Perform
routine were to be called for that action, ILis important forthis
routine nol to have any side effects. Note that ifthe Perform
routine also has no side efects, the Check and Perform entries

in the control’s Entries Table can point to the same routine.
‘This routine has the same inputs and outputs as the Perform
routine described below.

US 8,776,216 B2

75
1.27.5.3. Control,Actions <Action>.Perform

In one embodiment, this routine is required, and is called
when the application is about to perform the action. The
routine has no inputs. and returns a ResultCode and a Status-
BlockPointer to the top of the stack as outputs, where the
ResultCode is an integer value (0 if the routine completed
successfully, or a negative error code otherwise). and where
the StatusBlockPointer is the address of a standard Extend-
edStatusBlock, Note that in one embodiment a success

ResultCode (1.e., 0) does not mean that the request was
granted, Itonly means that the routine was able to run without
error.It is the ExtendedStatusBlock that indicates whether the

request was granted or denied. However, if the ResultCode
indicates a failure, the host application proceeds as if the
request was denied. For example, in one embodiment the
StatusBlock’s category should beACTION_DENIED, orthe
returned ExtendedStatusBlock is rejected, and the host appli-
cation aborts the action.

Whenan action is performed, only the Perform routine
needs to be called. The engine does notneed to call the Check
routine beforehand, An implementation of the Perform rou-
tine can call the Check routine intemally ifitchooses to do so,
but should not assume that the system will have called the
Check routine beforehand,

1.27.5.4. Control.Actions.<Action>. Describe

This routine is optional, and is called when an application
requests a description of the meaning ofthe rules and condi-
tions represented by the control program for the givenaction.
The routine has no inputs, and returns a ResultCode and a
StatusBlockPointer to the top of the stack as outputs, where
the ResultCode is an integer value (0 ifthe routine completed
successfully, or a negative error code otherwise), and where
the StatusBlockPointeris the address of a standard Extend-
edStatusBlock.

1.27.5.5. Control. Actions<Action>.Release

‘This routine ts optional. [fit exists, itis called once afier the
DRM engine nolonger needsto call any other routines for the
given action, No other routine are called for the given action
unless a new use ofthe actionis initiated (in whichcase, the
Init routine will be called again), The routine has no inputs,
and returns a ResultCode to the top of the stack as an output.
The ResultCode ts 0 on success and a negative error code on
failure. If the ResultCodeis not 0. the engine does not make
any further calls to routines for the given action

1,27.6, Link Constraint Routines

In one embodiment, whena link object has an embedded
control, theDRM enginecalls the link constraint routines in
that control to verify the validity of the link object. The
following link constraint routines are used in oneillustrative
embodiment:

1.27.6.1. Control.Link.Constraint.Init

This routine is optional, and, if it exists, is called exactly
once before any other routine is called for the given link
constraint. The routine has no inputs, and returns a Result-
Code to the top ofthe stack as an output. The ResultCodeis 0
on success and a negative error code onfailure, If the Result-
Code is not 0, the engine deemsthe validity constraint for the
link object to be unsatisfied. and avoids making further calls
to routines for the link control.

1,27.6.2, Control.Link.Constraint.Check

In theillustrative embodimentbeing discussed,this routine
is required, and is called to check ifthe validity constraint for
a givenlink is satisfied. The routine has no inputs, and returns
a ResultCode and a StatusBlockPointerto the top ofthe stack
as outputs, where the ResultCode js an integer value (0if the
routine completed successfully, or a negative error code oth-
erwise), and where the StatusBlockPointeris the address ofa
standard ExtendedStatusBlock. Ifthe ResultCadeis not 0, the

engine deems the validity constraintfor the link object to be

ei

ra

nd

at

35

4

45

Nan

60)

65

76

unsatisfied, and avoids making furthercalls to routines for the
link control. Evenif the ResultCode is 0 (success). this does
not mean that the constraint has been satisfied: it only means
that the routine was able to run withouterror. [t is the Status-
Block that indicates whetherthe constraintis satisfied or not,

1.27.6.3, Control.Link.Constraint.Deseribe

This routine is optional, and is called whenthe application
requests a description of the meaning ofthe constraint repre-
sented by the contro! program fora given link. The routine has
no inputs, and returns a ResultCode and a StatusBlockPointer
to the top of the stack as outputs, where the ResultCode is an
integer value (0 if the routine completed successfully, or a
negative error code otherwise), and where the StatusBlock-
Pointeris the address of a standard ExtendedStatusBlock.

1.27.6.4, Control.Link,Constraint.Release

This routine is optional, and, if it exists, is called by the
engine once after the engine no longer needs to call any other
routine for the given constraint. The routine has no inputs, and
returns a ResultCode tothe top ofthe stack as an output. The
ResultCode is 0 on success and a negative error code on
failure. In the embodiment being discussed, after calling this
routine, no otherroutine can be called for the given constraint
unless a new cycle is initiated (in which case, the Init routine
is called again). Similarly, if the ResultCode is not 0, the
engine does not make further calls to routines for the given
link constraint.

1.27.7. Agent Routines
In one embodiment, an agent is a control object that is

designed to run on behalf ofan entity. Agents are typically
used in the context of a service interaction between two

endpoints, where one endpoint needs to execute somevirtual
machine code within the context of the second endpoint, and
possibly obtain the result of that execution. In one embodi-
ment, 4 control can contain multiple agents, and each agent
can contain any number ofroutines that can be executed:
however, in practice, agents typically have a single routine.

In oneillustrative embodiment, the following entry points
are defined for, agents, where <Agent> is a namestring that
refers to the actual name of an agent.

1.27.7.1, Control,Agents.<Agent>.Inil
This routine is optional, and, if it exists, the engine calls tt

once before any other routineis called for the given agent. The
routine has no inputs, and returns a ResultCode to the top of
the stack as an output. The ResultCode is 0 on success and a
negative error codeon failure.

1.27.7.2. Control.Agents.<Agent>.Run
In the illustrative embodiment under discussion, this rou-

line js required, and is the main routine ofthe agent. The
routine has no inputs, and returns a ResultCode, a Return-
BlockAddress, and a ReturnBlockSize to the top ofthe stack
as outputs, The ResultCodeis anintegervalue (0 ifthe routine
completed successfully, or a negative error code otherwise),
the ReturnBlockAddressis the address ofa block ofmemory
that contains data that the agent code is expected to return to
the caller (if the routine does not need to return anything, the
address is 0), and the ReturnBlockSizeis the size in bytes of
the block of memory at the ReturnBlockAddress. In one
embodiment, if ReturnBlockAddress is 0. the value of
ReturnBlockSize ts also 0.

1.27.7.3. Control,Agents.<Agent>.Describe
This routine is optional, and is called when an application

request a description of a given agent. The routine has no
inputs, and returns a ResultCode and a StatusBlockPointerto
the top of the stack as outputs, where the ResultCode is an
integer value (0 if the routine completed successfully, or a
negative error code otherwise), and where the StatusBlock-
Pointer 1s the address of a standard ExtendedStatusBlock.

US 8,776,216 B2

77

1.27.74. Control,Agents<Agent>.Release

This routine is optional, and, if it exists, the engine calls it
once alter the engine no longer needs to call any other rou-
tines for this agent. No other routine will be called for this
agent unless a new cycle is initiated (in which case, the Init
routine will be called again). The routine has no inputs, and
returns a ResultCode to the top ofthe stack as an output, The
ResultCode is 0 on success and a negative error code on
failure.

1.28. Extended Status Blocks

‘The following example definitions are applicable to the
ExtendedStatusBlock data structures returned by illustrative
embodiments of several of the routines described above.

Lo

78

Examples of ExfendedStatusBlock data structures are
described in connection with the description of the virtual
machine.

In one embodiment, there are no global ExtendedStatus-
Block flags. In this embodiment. contro! programs set the
GlobalFlag field of the ExtendedStatuBlock to 0,

1.28.1. Categories
The following paragraphs define values for the Category

field of ExtendedStatusBlocks in accordance with one

embodiment, In one embodiment, none of these categories
have sub-categories, and thus the value of the SubCategory
field of the ExtendedStatusBlocksis set to 0,

In one embodiment. the following category codes are
detined:

1.28.1.1. Actions Check and Perform Routines

Value Name Desenption

O° ACTION GRANTED The application is authorized to use the content

1 ACTION__DENIED

keys controlled by the coutrol program for the purpose of
the requested action.
The parameter list of the returned
ExtendedStamsBlock should not contain any of
the constraint parameters, but may contain
obligation and/or callback parameters.
Theapplication is not authorized to use the camtent
keys controlled by the control program for the
purpose ofthe requestedaction.
When an action is denied, the contro! program
shouldinclude in the parameterlist of the returned
ExtendedStatusBlock one or more of the
constraints thal were not met and caused the action
to be denied(the constraints that were not
evaluated and the constraints that did not cause the
action to fail should be omitted).
In one embodiment, the parameterlist ofthe
returned ExtendedStatusBlock must not contain
any obligation or callback parameter.

In one embodiment, in the context ofExtendedStatusBlock

parameters retumed by action routines, a constraint means a
condition that is required fo be true or a criterion that is
required to be met in order for the result of the routine to

gy feturnan ExtendedStatusBlock with the categoryACTION_GRANTED.

In one embodiment, values for the LocalFlagsfield com-
mon to both categories described above include:

Fit Index
(is LSB) Name Description

ho

wn

OBLIGATION_NOTICE

CALLBACK NOTICE

GENERIC CONSTRAINT

TEMPORALCONSTRAINT

SPATIAL_CONSTRAINT

GROUP CONSTRAINT

DEVICE_CONSTRAINT

COUNTER_CONSTRAINT

The parameter list contains
one or

nore parameters that ate related to
obligations
The parameter list contains one or

more parameters that are related to callbacks
The parameterlist contains
more parameters that are re
constraints
The parameter list contains
mare parameters that are reconstraints

The parameterlist contains
ingore parameters thaf are reconstraints

The parameterlist contains
more parameters Ihat are re
group construnts
The parameterlist contains
mare parameters that are re
constraints
The parameter list contains
more parameters thal ane re,
constraimts

one or

ated to generic

ohe or

ated to temporal

one or

ated to spatial

one or
ated to

ole or
ated to device

one or
ated to counter

US 8,776,216 B2

79

In the table shown above,the parameterlist that is referred
to is the “Parameters” field of the ExtendedStatusBlock data
structure,

1,28.1.2. Describe Routine Category Codes
In one embodiment, no category codes are defined for

Describe routines. In one embodiment, the samelocal flags as
the ones defined for Action routines apply to Describe rou-
tines, and Describe routines should include in their returned

ExtendedStatusBlock a parameter named ‘Description’ as
specified below. Inone embodiment, Describe routines do not
containin their returned ExtendedStatusBlock any obligation
or callback parameters: however, Describe routines should
include in their returned ExtendedStatusBlock parameters
that describe someorall ofthe constraints that are applicable
for the corresponding action orlink constraint.

1.28.1.3. Link Constraint Routine Category Codes

Value Name Description

0 LINK_VALID The link constrained by this control programts
valid,
The parameterlist of the returned ESB should
not contain anyof the constraint parameters,
and, in one embodiment, must not contain
obligation or callback parameters
The link constrained by this control progrumis
invalid,

Whena link is invalid, the control program
should include in the parameter list of the
tehirned ESB one or orore of the constraints
that were not met and caused the link to
be invalid (the constraints that were not
evaluated and the constraints that did
pot cause the action to fail should be omitted).
Tn one embodiment, the pararneter list of the
returned ESB must not contain any obligation
or callback parameter,

1 LINK_INVALID

Inone embodiment, the same local fags as the ones defined
for Action routines apply for each ofthese categories.

In one embodiment, in the context ofExtendedStatusBlock

parameters returned by link constraint routines, a constraint
means a condition thatis required to be true oracriterionthat
is required to be met in order for the result of the routine to
return an ExtendedStatusBlock with the category
LINK_VALID.

1.28.2. Cache Durations
‘The CacheDuration field of an ExtendedStatusBlock is an

indication ofthe validity period ofthe information encoded in
the ExtendedStatusBlock. When an ExtendedStatusBlock

has a non-zero validity period, it meansthat the E-xtendedSta-
tusBlock can be stored in a cache, and that during that period
of time a call to the exact same routine call with the same

parameters would return the same ExtendedStatusBlock, so
the cached value may be returned to the host application
instead of calling the routine.

1.28.3. Parameters

Some parameters are used to convey detailed information
about the return status, as well as variable bindings for tem-
plate processing (see Section 9,4),

In one embodiment, except for obligations and callbacks,
all the constraints described here arestrictly for the purpose of
helping the host application classify and display. not for
enforcement ofthe usage rules. The enforcementofthe niles
is the responsibility of the control program.

In one embodiment, the parameters defined in the follow-
ing section are encoded either as a ParameterBlock, if no
parameter flags are applicable, or as an ExtendedParameter-
Block. of one or more Nags are applicable. Representative
flags are described below:

wi

15

at

35

40

45

30)

60)

65

80

1,.28.3.1, Deseription
Parameter Name; Description
Parameter Type: ValueList
Description: List of description parameters. Each value in

the list is of type Parameter or Extended Parameter. In one
embodiment, the following parameters are defined: Default.
Short and Long. Each ofthem,ifpresent has fora value the [D
ofone ofthe control’s resources, That resource should con-

tain a textual payload, ora template payload. Ifthe resource is
a template,it is processed to obtain a textual description of the
result (either a description ofthe entire contro! program, or of
a specific action). The templateis processed using as variable
bindings the other parameters of the list in which the
‘Description’ parameter appears.

In one embodiment, the “Short and ‘Long’ descriptions
can only be included if a “Default” description is also
included.

Name Type Description

Default Resource Id of the resource that contains the normal
description text or template

Short Resource Id of the resourcethat contains the short
deseription text or template

Long Resource Id of the resource that contains (te long
description text or template

1.28.3.2. Constraints

In one embodiment, constraint parameters are grouped in
lists that contain constraints ofsimilar types. In one embodi-
ment, standard constraints are defined for some ofthe types.
In one embodiment, controls may return constraint param-
eters that are not included in the set of standard constraints,

provided thatthe name ofthe constraint parameters be a URN
in a namespace that guarantees the uniqueness of that name.
This may include vendor-specific constraints, or constraints
defined in other specifications.

1.28.3.2.1, Generic Constraints

Parameter Name: GenericConstraints

Parameter Type: ValueList
Deseription: List of generic constraints that may be appli-

cable. Each value inthe list is of type Parameter or Ixtend-
edParameter.

In one embodiment, generic constraints are constraints that
do not belong to any of the ether constraint types defined in
this section. In one embodiment, no generic constraint param-
eters are defined.

1.28.3.2.2. Temporal Constraints
Parameter Name: TemporalConstraints
Parameter Type: ValueList
Description: List oftemporal constraints that may be appli-

cable. Each value inthe list is of type Parameter or Extended
. Parameter. Temporal constraints are constraints that are

related to time, date, duration, and/or the like. In one embodi-

ment, the following temporal constraint parameters are
defined:

Name Type Desenption

NotBefore Date Date before which the action is denied
NotAfier Date Date after which the action is denied
NotDuring ValueList List of 2 values of type Date, The first

value is the start of the period, and the
secondis the end of the period
that is excluded.

US 8,776,216 B2

81
-continued

Name ‘Type Description

Max muonber ofseconds after first
use, In one embodiment. this value
is unsigned,
Max number of seconds of accumulated
use Hime. Tn one embodiment. this

value is unsigned.

NotLongerThan=Integer

NotMoreThan Integer

1.28.3.2.3. Spatial Constraints
Parameter Name: SpatialConstraints
Parameter Type: ValueList
Description: List of spatial constraints that may be appli-

cable. In one embodiment, each value in thelist is of type
Parameter or ExtendedParameter. Spatial constraints are con-
straints that are related to physical locations. In one embodi-
ment, no standard spatial constraints are defined.

1,.28.3.2.4. Group Constraints
Parameter Name: GroupConstraints
Parameter Type: Valuelist
Description: List of group constraints that may be appli-

cable. Each value in the list is of type Parameter or Extended
Parameter. Group constraints are constraints that are related
to groups, group membership, identity groups, and/or the
like, In one embodiment, the following parameters are
defined:

10

-

20

 Narie Type Deseription

DeviceTypeRequired Resource=Id of the resource that contains the
text or template for the type af
host device that is required
Id of theresource thal contains
the text or template for name of
feature that the host device
must have
Id thal the device is: required to
have. This Id nay be any string
that cant be ised to identify the
device (e.g., device name,
device serial number, a node
id, and/or the like).

DeviceFeanireRequired —Resouree

Devieeld Required String

1.28.3.2.6. Counter Constraints
Parameter Name: CounterConstraints

Parameter Type: ValueList
Deseription: List of counter constraints that may be appli-

cable. Each value inthe list is of type Parameter or Extend-
edParameter. Counter constraints are constraints that are

related to counted values, such as play counts, accumulated
counts. and/or the like. In one embodiment, no standard
counter constraints are defined.

1.28.3.3, Parameter Flags
In one embodiment, the following flags may be used forall

the parameters described in Section 9.2.3. when they are
encoded as an ExtendedStatusBlock:

Bit Index
((is LSB) Name Description

oO

1

CRITICAL

HUMAN READABLE

The semantics associated with this parameter
need to beunderstood by the host application,
If theyare not, the entire ExtendedStatusBlock
should be treated as not understood and rejected,
In one embodiment, this fag should not be
used for parameters that are descriptive in nature,
‘This parameter represents a value whose name
and value are suitable to display in a textual or
graphical user interface. Any parameter that
does not have this fag set should be reserved
for the host wpplicution, and not be showntoo
user, For parameter values oftype Resource,it
is not the resource [D, but the resource data
payload referenced by the 1D, that is hurran-readable,

Name Type Description

Id of the resource that contains

the text or template for the name or
identifier of'a group of which a
membership is required
Id of the resource that contains
the text or template for the mane or
identifier of an individual

MembershipRequired Resource

IdentityRequired. Resource

1.28.3.2.5. Device Constraints

Parameter Name: DeviceConstraints

Parameter Type: ValueList

Description: List of device constraints that may be appli-
cable. Each value in the list is of type Parameter or Extended
Parameter. Device constraints are constraints that are related
to characteristics of a device, such as features, attributes.
names, identifiers, and/or the like. In one embodimeni, the

following parameters are defined:

30

60

1.29, Obligations and Callbacks
In one embodiment, certain actions, when granted, require

further participation from the host application. Obligations
represent operations that need to be performed by the host
application upon or after the use of the content key it is
requesting. Callbacks represent calls to one or more of the
contro] program routines that need to be performed by the
host application uponor after the use of the content key they
are requesting.

In one embodiment, if an application encounters any criti-
cal obligationor callback that it does not support. or does not
understand (for example because the obligation type may
have been defined after the application was implemented),it
must refuse to continue the action for whichthis obligation or
callback parameter was returned, In one embodiment, a criti-
cal obligation or callback is indicated by setting the CRITI-
CAL parameter flag for the parameter that describesit.

Ifa control has side effects (such as decrementing a play
count, for example), it should use the OnAccept callback to
require the host applicationto call a certain routine ifitis able
to understand and comply with all critical obligations and

US 8,776,216 B2

83 $4

callbacks. The side effect should happen in the callback rou- -continued
line. In one example embodiment, implementations are
required to understand and implement the OnAccept call- Name Type Description
back, since it can be useful in preventing side effects (e.g., -
updates to the state database) from occurring prematurely . Str Name ofthe agent to run,
(e.g., before the host application determinesthatitis unableto ~ Integer Tstance Id. This value is used
comply with a givencritical obligation or callback and needs raSeales eneaT
to terminate performanceofan action), thus providing a mea- wailaaaliow-tieaterm
sure of transactional atomicity. corvelate this aganbab ligation

1.29.1, Parameters with an OnAgentCompletion
‘The following parameters define several types of obliga- 10 callback parameter,

tions and callbacks that can be returned in ExtendedStatus- String Context Id. This Id will be
Block data structures, visible to the running agent on

1,29.1.1. Obligations the peer under the agent'seen Pi session context Host Object
Parameter Name: Obligations path:
Parameter Type: ValueList 15 Octopus/Agent/Parameters!
Description: List of obligation parameters. Each value in ee. SOTS,

the list is of type Parameter or Extended Parameter. In one valuatjat eeea
embodiment, the following obligation parameters are All those parameters will be
defined: visible to the agent as input

20 parameters,
Name Type Deseription

RunAgentOnPeer VulueList The host application needs to send an 1.29,.1.2. Callbacks
agent control 10 ran ona peer ofthe

AISEaLE) ninning assteot RESSION. Parameter Name: Callbacks
Type Description 3s Parameter Type: ValueList
String Id ofthe Control that contains Deseription: List ofcallback parameters. Each value in the

the agent fo run. list is of type Parameter or [ixtended Parameter. In one
embodiment, the following callbacks parameters are defined:

Name Type Description

OnAccept Callback The host application must call back if it is able to
understand all the critical obligations and callback
parameters contained inthis ESB,
In one embodiment, there can be al most one
OnAccept callback parameter in a list of callback
parameters, [fother callback parameters are
specified inthe list, the OnAccept is executed first.

OnTime ValueList The host application mustcall back after the
specified date/time.
Type Description

Date The date after which the host

application needs to perform the
callback,

Callback Routine to call back, and associated
cookie,

OnTimeElapsed ValueList The host application must call back after the
specified duration has elapsed (the counting staris
When the host application actually performs the
wetion for which the perniission that was granted).
Type Description

Integer Number of seconds, The value ts
Unsigned.

Callback Routine to call back, aud associated
cookie,

Onfvent ValneList The hest application must call back when 4 certain

OnAgentCompletion ValueList

EVETL OCCLIS.

Type Description

String Event Name
Integer Event Flags (the integer valus js

interpreted as a bit-field)
Event Parameter
Routine to call back, and associated
cookie,

See the paragraph abour events: for more details
about the everits,
The host application mist call back when an agent
specified in. one of the obligation paruneters has
completed. or failed to run.

Intewer
Callback

US 8,776,216 B2

85 86

-continued

Name Type Description

Type Description

Integer Agent instance id.
The instance id’specified in an agent
obligation,

Callback
cookie.

When calling back, the host application must
provide the following AreumentsBlock:

Routine to call hack. and associated

Type Encoding, Deseription

32-bit 4 bytes in Completion stats
integer big-endian code,order

32-bit 4 bytes in Agent result code
imteger big-eudian

order
B-bit byte Byte Agent ReturnBlock
arty sequence
The completion status code value is Cif Ihe agent
was able to nunor a uegative error code if it was not.
The agent ReturnBlockis the data returned by the
agent, This is omitted if the agent was unable to nin
(the Completion status code is not ().

In one embodiment, the “Callback” type mentioned in the
table above is a ValueListBlock with three ValueBlock ele-
ments:

Value
Type Description

Integer [DD ofthe callback type. In one embodiment, two types of
callbacks ure defined:
Ip Deseription

RESET =0 All pending callbacks requests und active
obligations are cancelled upon calling the
callback routine, The callback routine
retiims an ESB that indicates if and how the
application can continue withthe current
operation.

CONTINUE=1 The-callback routine is called while all
other pending callback requests and active
obligations remain in effect. The callback
routing rettums a simple result code. The
application can continue with the current
operation unless that result code indicates aFailure.

String=Entry point to call in the code module. In one embodiment,
this must be one of the entnes i the Export Table ofthe
code module forthe same control as the one containing
the routine that returned the ESB with this parameter,

Integer Cookie. This vale will be passed om the stack to the routinethat is called.

Lee)

40

30)

1.29,1.3. Parameter Flags

In one embodiment, the same parameterflags as defined in
the previous section are used. In one embodiment,callbacks
and obligations that a caller is required to implement are
marked as CRITICAL.so as to avoid giving a host application
the choice to ignore these parameters.

1.29.2. Events

In one embodiment, events are specified by name. Depend-
ing on the type ofevent, there may be a set offlags defined that
further specify the event. In one embodiment. if'no flags are
defined for a specific event, the value ofthe flag field is set to
0, Also, some events may specify that some information be
supplied to the callback routine when the event occurs. In one
embodiment, if no special informationis required fromthe
host application, the host application must call with an empty
ArgumentsBlock (see the description ofthe callback routine
interface in section 3.3, below).

Jn one embodiment, if the name ofan event in a callback
parameter marked CRITICALis not understood or not sup-
ported by the host application. the host application must
consider this parameter as a not-understood CRITICAL
parameter (and the action for which permission was
requested must not be performed).

Inone embodiment, the following event names are defined:

Event Name Flags Parameter
Event Event

Description

OnPlay

OnStop

OnTimecode

None None The host application must call back

when the multimedia object starts playing.
None None The host application must call back

when the multimedia stops playing (or is paused)
None Presentarion The host application must call back

time: whenthe specified presentation time has
expressedint been reached or exceeded (during
number of normal real-time playback or after a
seconds since—seek), ‘The origin of the presentation
the stan of lime is when the rendering begins. The
the presentation time relates to the source

US 8,776,216 B2

87
-continued

Event Event

Event Name Flings Panuneter Deseription

88

media time, not the wall-clock lume.
(ez. when a presentation is paused, the
presentation time does not change}.
The host application must call back
when a direct access to an arbitrary point
ina multimedia presentation occurs.
In one embodiment, when calling back,
the host application must provide the
following data it a ArgumentsBlock:

presentation

OnSeek None None

Type Eneoding Deseription

32-bit 4 bytes in Seck
unsigned big-endian position
integer order offset
32-bit 4 bytes in Seck
unsigned big-endian position
integer order range
The position within the multimedia
presentation is oflSet “marks” oul of
range total “marks” in the presentation.
For instance, for a presentation that is
327 seconds long, seeking to the 60"
second can be represented with
offset = 60, range = 327, It is up to the
caller to choose the unit Ulat corresponds
to the measurement! of the offset and
range (it could be a time unit, a byte-size
unit, or any other unit), provided that the
“marks”are homogeneously distributed
over the entire presentation, The value
of offset must be less than or equal to the
value of range.

1.29.3. Callback Routines

In one embodiment, callback routines take the same input:

Input: Top ofstack:
Cookie
ArgumentsBlockSize (
«data... 4

Cookie: the value of the Cookie field that was specified in
the callback parameter.

ArgumentsBlockSize; number of bytes of data passed on
the stack below this parameter, When the routineis called, the
stack contains the value ArgumentsBlockSize supplied by the
caller, indicating the size of the arguments block at the top,
followed by ArgumentsBlockSize bytes of data. In one
embodiment, ifthe size is nota multiple of4, the data on the
stack will be padded with O-value bytes to ensure that the
stack pointer remains a multiple of4.

1,29.3.1, CONTINUECallbacks

In one embodiment, callbacks with the type CONTINUE
(type [D=0) have the following output:

45

30)

Output; Top of stack:

ResultCode

60

ResultCede: an integer value. The result value is 0 if the
routine was able to execute ora negative error code if anerror
occurred.

Description: if the ResultCode indicates that the callback
routine was able to tun (i.c., the value is 0), the host applica-
tion can continue the current operation, If the ResultCode

65

5 ESB,

indicates that an error occurred, the host application aborts

, the current operation and cancels all pending callbacks and
obligations.

1.29.3.2. RESET Callbacks

Whena contro! routine has specified one or more callbacks
oftype RESET in the ESB returned froma routine, the host
application will call any specified callback routine when the
conditionfor that callback is met, In one embodiment, as soon

as the conditions of any ofthe callbacks are met, the host
application needs to:

Cancel all other pending callbacks
Cancel all current obligations
Provide the required parameters (1! any) for that callback
Call the specified callback routine.
The return status from the routine indicates to the host

applicationifit can continue performing the current opera-
tion. In one embodiment, if the permission is denied or the
routine fails to execute successfully, the host application must
abort the performance of the current operation. Similarly, if
the permission is granted, the host application must comply
with any obligation or callback that may be returned in an

just as if at) had called the—original
ControlActions.<Action>.Perform routine. Previous obliga-
tions or callback specifications are no longervalid.

In one embodiment, all routines specified as callback entry
points for this type ofcallback have the following output:

Output: Top of stack:
ResultCode
StatusBlockPointer

US 8,776,216 B2

89

ResultCode: an integer value. The result value is 0 if the
routine was able to execute, ora negative error code if'an error
oecurred.

StatusBlockPointer: address ofa standard ExtendedStatus-
Block.

Description: the return semanticsofthis routine are equiva-
lent 10 what is described for the
Control.Actions.<Action>.Perform routine,

1.30. Metadata Resources

In one embodiment, control objects can contain metadata
resources, which can be referenced from the parameters
returned in ExtendedStatusBlock data structures. Resources

can be simple text, text templates, or other data types. Each
resource 1s identified by a resource ID, and can contain one or
more text strings or encoded data, one for each versionin a
different language. It is not required that resources be pro-
vided for all languages, [1 is up to the host application to
choose which language version is most appropriate for its
needs.

Resource

Field Type Deseription.

Id ASCII String URI (typically a URN referring, to
the Id of an Extension ofthe
Control object that contains the
code module with the routine that is
currently running)
MIME-type of the resource data as
deseribed m IETF RFC 2046
List ofall the different versions of
the resource, for different locales

Type ASCTI String

Data List of
LocalrzedData

LocalizedData

Field Type Desenpuou

Language ASCH String Language code as specified m IETF
REC66

Data Type depends The actual dara for the resource
onthe specified (text, ete...)
time type

Resources accompany control programs by being included 45
as Extensions ina Control object. The resource Id maps to the

wi

a

90

Id ofan internal extension ofthe Control object that contains
the code module with the routine that is currently running.

For the purpose of computing the canonical byte sequence
for Resource objects, in one embodimentthe data structure
description is the following:

class LocalizedData |
string language
byte| | data;

H
class Resource {

stringid
string type;
LocalizedData data;

1.30.1, Simple Text
Simple text is specified as MIME-type ‘text
1.30.2. Text Templates
In addition to the standard text resources, in one embodi-

ment, a text template typeis defined. The MIMI-typefor this
is ‘text/vndintertrust.octopus-text-template’,

Inone embodiment, a text template contains text characters
encoded in UTP-8, as well as named placeholders that are to
be replaced by text values obtained from parameters returned
in the parameters list, such as thal of an ExtendedStatus-
Block. The syntax for a placeholderts “\PLACEHOLDER\’,
where PLACEHOLDER specifies the name of a Parameter
Block and an optional formatting hint. In one embodiment,
ihe template processor must replace the entire token
‘\PLACEHOLDERYwith the formatted representation of the
Value field of that Parameter Block. and the formatting ofthe
Value data is specified belowin Section 4.2.1.

In one embodiment, if the character *\appears in the text
outside of a placeholder, it must be encoded as *\\", and all
occurrences of‘\\’ in the text will be reverted to ‘\ by the
template processor.

The syntax for the placeholder is: FORMAT|/NAME,.
where NAMEis the name of a Parameter Block. and FOR-

MATis the formatting hint to convert the parameter’s data
into text. If the default formatting rules for the parameter
value’s data type are sufficient, then the formatting hint can be
omitted, and the placeholder is simply NAME.

1.30.2.1, Formatting
1,.30.2.1.1, Default Formatting
In one embodiment. the default formatting rules for the

different value types are:

Type

Integer

Real

String
Due

Parameter

Formatting

Test representation of the integer value asa signed
decimal. The text is composed only of the characters for
the digits “0" to “9” and the character “-". If the value is 0,
the text is the string “0”. Ifthe value is not 0, the text does
not start with the character “1, Ifthe value is negative, the
text starts with the character *—". 1the value is positive, the
text starts with a non-zero digit character,
Text representation ofthe floating point value in decimal,
The integral part of the value is represented using the same
rules as for Integer values. The decimal separator [s
represented with the host application's preferred decimal
separator, The factional part of the value consists oF up to 6
“0”characters followed by up to 3 non-zero digit characters,
The string value itself
A human readable representation ofthe date, according to
the host's preferred text representation of dates
The text “shame>=<value>", where *name> ts the
puraineter name, and <valueis ihe parameter value
formatted according to the default formatting rules for its type

US 8,776,216 B2

-continued

Type Formatting.

ExtetdedParameter Same as for Parameter
Resource Text string of the resource’s data. In one embodiment, the

resource referenced bythe placeholder must have a MIMI-
type that is text-based (e.g.. text or
text/ynd_ intertrust.octopus-text-template),

ValueList The text “<value>, Svalue>,..." with all the values in the
list formatted according to the default formatting niles for their type.

1,30.2.1.2. Explicit Formatting
Explicit format names can be used as the FORMATpart of

a placeholder tag. Ifan unknown FORMATnameis encoun-
tered, the template processing engine will use the default
formatting rules.

Name Formatting

Lex. Hexadecimal representation of an integer yalue interpreted as
unsigned, In one embodiment, this formatting hint-should be
ignored for data types that are not integers.

1.31. Context Objects
In one embodiment, when a control routine is executing,it

has access to a number of context objects through the use of
the System. [ost.GetObject systemcall.

1.31.1. General Context

In one embodiment, the following context is present for
running controls.

Name Type Deseription

ID of the current

personality NodeAttributes of the current
personality Nexde

Octopus!/Personality/Td String

Octopus/Personality/Attributes Container of
Attributes

1.31.2. Runtime Context

In ane embodiment, the following contextis present for all
controls that are running ina VM that has been created using
the System. lost.SpawnVm systemcall. In one embodiment.
this context must be non-existent or an empty container for
controls that are ninning ina VM that was not created using
System.Host.SpawnVm,

 Name Type Description

Octopus/Runtime! Container The identity under which the caller
Parent/Id of of the systenr cull is running.

unnamed
String.
objects

1.31.3. Control Context

In one embodiment. the following contextis present when-
ever a routine of a control is running:

Name Type Description

Octopus/Control/ Te Stmg Id of the muuing control
Octopus/Contral/Attributes Container Attributes of the numming comtral.

This object may be omitted if
the control has ne attributes.

au

bal (a

Tas

taal Man

=4

60

1.31.4. Controller Context

Jn one embodiment, the following context is present when-
ever a routine of a control is running and the contro! was
pointed to by a controller object (e.g.. when accessing a
ContentKey object in order to consume protected content).

Name Type Deseription

Octopus/ControllerId String Id of the Controller that points to the
currently running contro!
Attributes of the Controller pointing
tothe eurrenthy sunning control. This
object nay be omitted if the
controller has no attributes.

Octopus/Controller! Container
Attributes

Inembodiments where a host applicationis allowed to only
group content keys that are controlled by a single controller
object, for a given action, there will be only one applicable
controller object.

1.31.5, Action Context

In one embodiment, the following context is present when-
ever a control is called for the purpose of controlling an
Action.

 Name Type Description

Octopus! Container Array of Name!Value pairs
Action’ representing the parameters that are
Paraineters relevant for the current action, ifary.

In one embodiment, each action type
defines a list of optional and required
parameters. This contamer may be
omitted ifthe action las no panumeters.

1.31.6. Link Context

In one embodiment, the following context is present when-
ever a controlis called for the purpose of limiting the validity
of a link object (e.g., a control object embedded in a link
object):

 Name Type Description

Octopus/LinkTd String Id of the Link object
Octopus!Links Container Attributes of the Link object that contains
Altributes: the nmning control. This abject muy be

omitted if the link bas to attributes.

1.31.7. Agent Context
In one embodiment, the following context is present when

an agent routine of a control 1s running:

Name Type Description

Octopus!/Agent’ Parameters Contamer Array of Name/Value parameter
pairs representing the input
parameters for the agent.

US 8,776,216 B2

-continued

Name Type Description

OctopusAgent Stung, Identifier for the session context
Session/Contextid im which the agent is running.

The Parameter and Session containersare normally used to
allow the protocols that require one entity to send and run an

94

This action is intended to be used in conjunction with a
service protocol that allows an Agent to be transferred from
the source to the sink 1n order to do the necessary updates in
the source’s and sink’s persistent states (e.g... objects in the
state database described herein). In one embodiment, a con-

trol uses the RunAgentOnPeerobligation for that purpose.
Additional information about illustrative embodiments of

this service protocol are provided below in connection with
the discussionof the state database.

agent on another entity to specify which input parameters to Parameters:

Name ‘Type Description

Sink/Id String Node Id of the Sink
Sink) Attributes Container Attributes of the Sink’s node. This contaimer may be

omitted ifthe node: has no attributes,
‘TrousterMode=String Transfer Mode [D indicating in which mode the cantent is

being transferred. This [D cau be a standard mode as
defined below, or aURN fora system proprietary made,
In one embodiment, the following standard modes are
defined:

1D Deseriplion

Render The sink is receiving the content forthe:
purpose of rendering

Copy ‘The sink is receiving a copy of the content
Move The content is being movedto the sunk.
CheckOur The conten! is being checked-out to the

sink. This is similar te, Move but withte
distinction that the resulting state on the
sink may prevent any other move than a
move back to the source,

TrausferCount Integer Integer value indicating how many instances of the state
counters associated with this control need to be transferred
to the sink,
In one embodiment, this parameteris optional. If itis not
present. only one inslance is being transferred. [t should not
be present when the trninsfer mode is Render or Copy.

pass to the agent, and which session context objects the hast
needs to sel under certain conditions. The presence or absence
ofcertain session context objects may allow the agent code to
decide whether it is running as part of the protocol it was
designed to support, or ifit is running out ofcontext, in which
case it may refuse to run, For example, an agent whose pur-
pose is lo create a state object. on the host on whichit runs may
refuse to run unless it is being executed during a specific
protocal interaction.

1,32. Actions
In one embodiment, each action has a name and a list of

parameters. In one embodiment, some parameters are
required—the application must provide them when perform-
ing this action—and someare optional—the application may;
provide them or may omit them.

In one embodiment, the following standard actions are
defined:

1.32.1. Play
Description: Nonnal real-timeplayback ofthe multimedia

content.

1.32.2. Transfer

Description: Transfer to a compatible target system.
‘Translerring to a compatible targel system is used when the

content has to be made available to a system with the same
DRM technology, suchthat the target system canuse the same
license as the one that contains this control, but state infor-

mation may need to be changed on the source, the sink, or
both. The system from which the transfer is being done is
called the source. The target system to which the transfer is
being done ts called the sink.

40

60)

65

1.32.3. Export

Description: Export to a foreign target system.

Exporting toa foreign target system is an action thatis used
when the content has to be exported to a system where the
original content license cannot be used. This could be a sys-
tem witha different DRM technology. a system with no DRM
technology. or a system with the same technology but under a
situation that requires a license different from the original
license. The system from whichthe transfer is being doneis
called the source. The target system to which the transfer 1s
being doneis called the sink.

In one embodiment, in the Extended Status result for the
Describe, Check, and Perform methods ofthis action, the

following, parameter shall be set:

Name Type Description

Exportinfo Amy Information that is relevant when exporting content to

the target system specified in the action parameters,

‘The actual type and content ofthis information is

specific to each target system. For example, for
CCI-based systems. this would contain the CCI

bits to set for the exported content.

US 8,776,216 B2
95 96

Parameters:

Naine Type Description

TargetSystem=String=System [D of the foreign systemto which the export is
being made, This ID is a URN,

ExpotMode=String Export Mode [D indicating in which mode the content is
being exported, This ID can bea standard mode.as
defined below, or a URN for a system proprietary mode,
In one embodiment, the following standard modesare defined:
ID Description
DontKnow The caller does not know what the sink’s

intended mode is. In this case, the control
program should assume that anyof the
allowed modes for the TaretSystem can
be assumed by the sink, and should
indicate anyrestriction un the return
status of the action routines. For
example, fora CCT-based system, the
control can return CCT bits that will
cilher allow the equivalent of Render or
Copy depending on what the license
permits.Render

ausable copy ofthe content except for
caching purposes as specified by each
target system
The sink is recetving «copy ofthecontentCopy

Move

Other input parameters may be required by specific target 30
systems.

1,32.3.1. Standard Target Systems

35

.32.3.1.1. Audio CD or DVD

In one embodiment, the standard TargetSystem[) *Cleart-
exiPemAudio’ is used when the target system is an unen-
erypted medium onto which uncompressed PCM audio is
written. such as a writeable audio CD or DVD. Forthis target
system, the Exportin{o parameteris a single Integer param-
eter representing a copyright Mag, This flag is indicated in the
leastsignificant bit ofthe integer value.

40

45

Bi index Description

O(LSB) Whenthis flag is set, the Copyright bit or fag must be set in
the format of the recoded audio if the format supports the
signaling ofsich obit or flag. 50

10. State Database

secure object store that can be used by prelerred embodi-
ments of a DRM engine to provide a secure state storage
mechanism is described below. Such a facility is useful to
enable conirol programs to be able to read and write in a
protected state database that is persistent [rom invocation to
invocation, Such a state database can be used to store state

objects such as play-counts, date of first use, accumulated
rendering times, and/or the like. In a preferred embodiment,
the secure database is implemented in non-volatile memory.
such as flash memory on a portable device, or an encrypted
area ofthe hard disk drive on a PC, It will be appreciated,
however, that the secure database could implemented on any
suitable medium.

60

65

The sink is receiving the content for the
purpose Of rendering. and will not retain

The content is being moved to the sink,

The term “object”, as used in this section, generally refers
to the data objects contained within the secure object store,
and not to the objects (e.g.. controls, controllers, links. etc.)
discussed elsewhere herein: if necessary to distinguish
beiween these two categories of objects, the term “DRM
object” will be used to refer to the objects described else-
where herein (i.¢., controls, controllers, protectors, Content-
Keys, links, nodes, and the like), while the term “stale object™
will be used to refer to the objects stored within the state
database. In the following discussion. reference will occa-
sionally be madeto anillustrative implementation of the state
database, called “Seashell,” whichis used in connection with

the Octopus DRM engine embodiment described elsewhere
herein. It will be appreciated: however, that embodiments of
the systems and methods described herein can be practiced
without someorall of the features ofthis illustrative imple-
mentation.

1.33. Database Objects

The object store (¢.g., a database) contains data objects. In
one embodiment, objects are arranged in a logical hierarchy,
where container objects are parents oftheir contained chil-
dren objects. In one embodiment, there are four types of

_ objects: string, integer, byte array, and container. Each object
has associated metadata and a type, Depending onils type. an
object can also have a value.

In one embodiment, state objects can be accessed from
virtual machine programs using the System.Host.GetObject
and System,Host,SetObject system calls, and, as described in
more detail below, object metadata can be accessed using
virtual names. In one embodiment, some of the metadata

fields can be changed by clients of the database (i.e., they are
read-write (RW) accessible), while other metadata fields are
read-only (RO).

In one embodiment, the metadata fields shownin the fol-

lowing table are defined:

US 8,776,216 B2

9897

Field ‘Type Accessibility Deseription

Name String RO Name of the object. In one
embodiment only the following
characters areallowed as object
names (all the other ones are
reserved): az, Ae, U)-G, =", =",
Se, 2 yrae

Owner String RW Id of the owner ofthat object
CreationDaie Unsigned RO Time at which the object was

32-bit created, expressed as the number
integer of minutes elapsed since Jan. 1,

1970 00:00:00 loeal time.
ModifieationDate Unsigned RO Tine at whichthe object was last

32-bit modified, expressed as the number
integer ofminutes elapsed since Jan, 1,

1970 00;00;00 local time.

For container objects, this is the
Hine at which a child was last
added to or removed from the

container. For other objects, this is
the tine at which their value was last
changed,

ExpirationDate Unsigned RW Time at whichthe object expires,
33-bit expressed as the number of
integer minutes elapsed since Jan. 1, 1970

00;00;00 local time, A value of 0
means the object does not expire.

Flags 32-bit bit field RW Set of boolean flags indicating
properties of the object.

In one embodiment. the metadata flag shownin the follow-
ing table is defined:

Bit index Name Meaning

O(LSB) PUBLIC READ [set, indicates that the access control
for this object is such that any client can
read the object and its metadata.

As previously indicated, in one embodiment there are four
types ofstate objects: strings, integers, byte arrays, and con-
tainer. In this embodiment, the value of a string objectis a
UTF-8 encoded character string, the value an integerobjectis
a 32-bit integervalue, and the value ofa byte arrayobject is an
array of bytes. In this embodiment, a container object con-
tains zero or more objects. A container objectis referred to as
the parentofthe objects it contains. The contained objects are
referred to as the children of the container. All the container

objects that make up the chain of an object's parent, the
parent’s parent, and so on. are called the object’ s ancestors. If
an abject has another objectas it ancestor, that object is called
a descendantofthe ancestor object.

1.34. Object Lifetime
In one embodiment, the lifetime of objects in the state

database follows a numberofrules. Objects can be explicitly
destroyed. or implicitly destroyed. Objects can also be
destroyed as the result of a database parbage collection.
Regardless ofhowan object is destroyed, in one embodiment
the following rules apply:

The ModificationDate for the parent container of that
objectis set to current local time.

If the object is a container, all its children are destroyed
when the object is destroyed,

1.34.1, Explicit Object Destruction
Explicit object destruction happens when a client of the

database requests that an object be removed (see Object
Access for more details on how this can be done using the
Host.SetObject systemcall).

35

Ae

45

3

60

65

1.34.2. Implicit Object Destruction
Implicit object destruction happens when an object is being

destroyed as the result of one of the objects in its ancestry
being destroyed.

1.34.3, Garbage Collection
In one embodiment, the state database destroys any object

that has expired.An object is considered to have expired when
the local time on the systemthat implements the database is
later than the ExpirationDate field of the object’s metadata.
An implementation may periodically scan the database for
expired objects and destroy them, or it may wait until an
object is accessed to checkits expiration date. [n one embodi-
ment, an implementation must not returntoa client an expired
object. In one embodiment, when a container object is
destroyed (e.g., because it has expired), its children objects
are also destroyed (and all their descendants, recursively)
even if they have not expired yet.

1.35, Object Access
In one embodiment, the objects in the state database can be

accessed from virtual machine programs through a pair of
system calls: System.Host.GetObjectto read the value of an
object, and System.Host.SetObject to create, destroy, or set
the value of an object.

In one embodiment, to be visible as a tree of host objects.
the state database is “mounted” under a certain name in the

host object tree. This way,the databaseis visible as a sub-tree
5 inthe more general tree ofhost abjects. To achievethis, in one

embodiment the state database contains a top-level, built-in
root container object that always exists. This root containeris
essentially the name of the database. All other objects in the
database are descendants ofthe root container, Multiple state
databases can be mounted at different places in the host object
tree (for two databases to be mounted under the same host
container, they need to have different names for their root
container). For example, ifa state database whose root con-
tainer is named Databasel. contains a single integer child
object named Child1, the database could be mounted under
the host object container “/SeaShell”. in which case the
Child] object would be visible as “/SeaShell/Databasel/

US 8,776,216 B2

99

Child1”. In one embodiment, accesses to objects in the state
database are governed by an access policy.

1.35.1. Reading Objects

The value ofan object can be read by using the systemcall!
System. Host.GetObject. In one embodimentofthe state data-
base, the four object types (integer, string, byte array, and
container) that can exist in the database map directly onto
their counterparts in the virtual machine. The object values
can be accessed in the normal way, and the standard virtual
names can be implemented.

1.35.2. Creating Objects
Objects can be created calling System.Host.SetObject for

an object namethat does notalready exist, The object creation
is done according to the system call specification. In one
embodiment. when an object is created, the state database
does the following:

Sets the “owner”field ofthe object metadata to the value of
the “owner”field of the parent container object’s meta-
data.

Sets the CreationDate field of the metadata to the current
local time.

Sets the ModificationDatefield ofthe metadata to the cur-
rent local time.

Seis the ExpirationDatefield ofthe metadata to0 (does not
expire).

Sets the Flags field of the metadatato 0).

Sets the ModificationDate of the parent container to the
current local time.

When creating an object under a path deeper than the
existing container hierarchy. in one embodiment the state
database implicitly creates the container objects that need to
exist to create a path to the object being created. In one
embodiment. implicit container object creation follows the
same rules as an explicit creation. For example. if there is a
container “A” with no children, a request to set “A/B/C/
SomeObject” will implicitly create containers “A/B” and
“A/B/Cbelore creating “A/B/C/SomeObject".

135.3. Writing Objects
The value of objects can be changed by calling System.

Host.SetObject for an object that already exists. If the speci-
fied Object'lype does not match the type [D of the existing
object, ERROR_INVALIDPARAMETER is returned. In
one embodiment, if the type ID is OBJECT_TYPE_CON-
TAINER, no value needs to be specified (the ObjectAddress
must be non-zero, but its value will be ignored). When an
existing objectis set, the state database sets the Modification-
Date of object to the current local lime.

1.35.4. Destroying Objects

Objects can be explicitly destroyed by calling System.
Host.SetObject for an object that already exists, with an
ObjectAddress value of 0. When an object is destroyed, the
state database preferably:

Sets the ModificationDate of the parent container to the
current local time.

Destroys all its child objects if the destroyed object is a
container,

1.35.5. Object Metadata

In one embodiment, the metadata for state database objects
is accessed by using the System.Host.GetObject and System.
Host.SetObject system calls with virtual names. The follow-
ing tablelists the standard and extended virtual namesthat are
available for objects in one embodimentofthe state database.
and howthey map to the metadata fields.

wi

ba

ae

35

40

45

60

65

Virmal Name ‘Type Deseription

(@Name String The Name field of the abjcet
retaca

(@Owner String The Owner field of the object
ietadata

(@CrealionDate 32-bit unsigned ‘The CreationDate field of the
integer object metadata

(@)ModificationDate 32-bit unsigned The ModificationDate field of the
integer object metadata

(@ExpirationDate 32-bit unsigned The ExpirationDate field of
integer the object metadata

(Flags 32-bit bil field ‘The Flags field ofthe object
metadata

In one embodiment, an implementation must refuse a
requestto set the Plags metadata field if one or more unde-
fined flags are set to 1. In this case, the return value for the
System.Host.SetObject is ERROR_INVALID_PARAM-
ETER. In one embodiment, when reading the Flags metadata
field. a client must ignore anyflag thatis not predefined, and
when setting the Flags field of an object, a client mustfirst
read its existing value and preserve the value of anyflag that
is not predefined (e.g., ina system specification).

1.36, Object Ownership and Access Control
In one embodiment, whenever a request is made to read.

write, create, or destroy an object, the state database imple-
mentation first checks whetherthe caller has the permission
to perform the request. The policy that governs access to
objects is based on the concepts ofprincipal identities and
delegation.In orderfor the policy to be implemented, the trust
model under which the implementation operates needs to
support the notion of authenticated control programs. ‘This is
typically done by having the virtual machine code module
that contains the program be digitally signed (directly or
indirectly through a secure reference) with the private key of
a PKI key pair, and having anamecertificate that associates a
principal name with the signing key; however, it will be
appreciated that different ways of determining control pro-
gram identities are possible, any suitable one of which could
be used.

In one embodiment, the access policy for the objects in the
state database is comprised of a few simple rules:

Read access to an object’s value is granted ifthe caller’s
identity is the same as the owner ofthe object orifthe
PUBLIC_READ flagis set in the object's Flags meta-
data field.

Read access to an object's value is granted if the caller has
Read access to the object’s parent container.

Write access to an object’s value is granted if the caller's
identity is the same as the owner ofthe object.

Write access to an object's valueis granted ifthe caller has
Write access to the object's parent container.

Create or Destroy access to an objectis granted ifthe caller
has Write access to the parent container of the object.

Read and Write access to an object’s metadata (using vir-
tual names) tollows the same policy as Read and Write
access to the object’s value, with the additional restric-
tion that read-only fields cannot be written to,

In one embodiment, when the access policy denies a cli-
ent’s request, the retorn value of the system call for the
request is ERROR_PERMISSION_DENIED.

‘The root container of the state database is preferably fixed
when the database is created, When an object is created, the
value of its Owner metadata field is set to the same value as

that of its parent container Owner metadata field, Ownership
of an object can change. ‘To change the ownership of an
object, the value of the Owner metadata field can be set by

US 8,776,216 B2

101

calling the Sytem.Host.SetObject system call for the
‘@Owner” virtual name of that object, provided that it is
permitted under the access control rules.

In embodiments where it is not possible for a control pre-
gram to access objects (hat are not owned by the sameprin-
cipal as the one whose identity it is running under, a control
program needs to delegate access to “foreign” objects to
programs loaded from code modules that have theability to
run underthe identity ofthe owner of the “foreign” object. To
do this, a control program may use the System.
Host.SpawnVm, System.Host.CallVm, and System.Host.
ReleaseVm systemcalls in the control virtual machine.

1.37. License Transler Protocol

The storage ofstate information in a database such as that
described above enables rights to be moved between devices
or exported from a domain (e.g., by transferring the slate
information to another device). The following section
describes embodiments ofprotocols by whichthe state of a
database canbe transferred [rom a source to a sink. Note that

althoughthis process will be referred to as a license transfer 2
protocol, it is the state of the state database that is being
transferred, as opposed to merely an actual license (e.g., a
control object, etc.). The protocol is referred to as a license
transfer protocol because, in one embodiment, the transfer is
initiated by execution of a transfer action in a control pro-
gram, and because transfer ofthe state information enables
the sink to successfully execute the relevantlicense fora piece
ofcontent.

FIG. 32 shows an example ofa license transfer 3200 com-
posed of three messages 3202, 3204, 3206. In the example
shown in FIG. 32. the protocolis initiated by sink 3210 by
sending a request 3202 to source 3212. In one embodiment.
request 3202 holds the ID ofa piece of content to be trans-
ferred. Source 3212 sends a response 3204 to sink 3210,
containing (i) an agent that will set a state in the state database
ofsink 3210, as well as (ii) the ContentKey object(s) targeted
to the sink 3210. As shown in FIG. 32 sink 3210 sends the

source 3212 a confirmation 3206 that the agent has nun. Upon
receiving the Content Key(s) and/or the piece ofcontent, the
sink may then use the content(e.g., play it through speakers,
display il on a video screen, and/or render it in some other
manner) in accordance withits associated controls.

While the approach shown in FIG. 32 can be used in some
embodiments, some potential problems include:

‘There is No Way to Proactively Tell the Source that Ren-
dering is Over,

In one embodiment, the protocol shown in FIG. 32 sup-
ports two modes where this is a problem: (i) render (no stop
render), and (ii) checkout (no check-in). Because ofthis prob-
lem, control issuers may be led to issue timeouts on thestates 5
that are transferred, However, this can result in a bad con-

sumer experience when. for example, a user wants to render
content on one device but decides that she actually wants to
render this content on another one: with the currentdesign, it
is likely that she will have to wail for the entire piece of
content to be rendered on the first device before she is able to

renderit on the other device. This might be undesirable if the
contentis relatively long (e.g., a movie).

lt can be Difficult to Resolve the License Associated with

the Content [Ds in the Request.
In one embodiment, the request contains only the Content

IDs, and the source retrieves the license associated with the
Content IDs fromits license database. However, this process
can be proneto error, since the licenses may be stored on a
removable media, and at the time of engagement ofthe pro-
tocol, a particular license may not be available if the media
has been removed. Moreover, even ifthe licenses are avail-

wi

nd

at

4

45

60

65

102

able, it can be cumbersome to perform a lookup for the
licenses in the license store. Also, because there. can be mul-

tiple licenses associated with a set of Content [Ds, it may be
difficult to determine ifthe resolved licenseis the sameas the

one that was intended in the request.
There is No Way for the Control Program to Proactively

Ask for a Proximity Check,
In one embodiment, the set of system calls/callbacks/obli-

gations does not support a way lor a Control to ask for prox-
imity checking ofa peer. Instead, a control can only read a
value ofa host object Octopus/Action/Parameters/Sink/Prox-
imity/LastProbe that is populated by the application during a
transfer with a value it got from a previous execution ofa
proximity checking protocol, This can be a problem in the
case where it may be desirable to avoid a proximity check if
such a proximity check is not needed (e.g. if the sink is
knownto be within a certain domain).

There are Only Three Roundsto the Protocol.
In the embodiment shown in PIG, 32, the protocol is lim-

ited to three rounds. This can be a serious limitation, since the

protocol will be unable to handle the case where the
OnAgentCompletion callback returns an extended status
block with another RunAgentOnPeer obligation. Moreover,
after the protocol ts finished, the sink will not really know if
the protocol! has succeeded ornot. In addition, the proximity
check will need to occur before the response is sent (see
previous problem) but this is not needed in the case where the
source and the sink are in the same domain.In addition, in the

protocol shown in FIG, 32,the source gives the content key to
the sink without knowing ifthis content key will ever be used.

No Way in the ESB to Hint that a License Transfer is
Needed,

In the embodiment shown in FIG. 32, when a DRM Client

evaluatesa license (e.g. Control.Actions.Play.Check), there is
no easy way for the control writer to hintthat a license transfer
is needed in orderto getthe state that will enable a successful
evaluation of the control.

The Source Cannot Initiate the Transfer.

In the protocol shown in FIG. 32, the license transleris
initiated by the sink. It would be desirable for the source lo be
able to initiate the transfer as well.

Improved Embodiments

The embodiments described belowcan solve or ameliorate

some or all ofthe problems described above.
Solution for the Release Problem.

In one embodiment, a newrelease operation is introduced,
Whenthis operation is specified in the request, the Transfer
Mode ID is set to Release, In order, for the client to do the

correlation between a render/checkout and a release opera-
tion, an oplional element Sessionld is added to the request
(see section below). Inone embodiment, when this elementis

5 present, it is reflected in the host object tree ofthe Transter
Action context under Sessiontd.

The sink knows that it has to send this SessionId in the

release requestifthe Extended Status Block it will get in the
‘Teardown message (see below) contains a parameter:

Parameter Name: Sessionld

Parameter Type: String
The flag of this parameter is set to CRITICAL.
Solution for the License Resolution Problem (Refactoring

the Request).
In one embodiment, the solution consists ofhaving the sink

device put the license bundle(s) in the request so that there is
essentially a guarantee that the sink and the source will

US 8,776,216 B2

103
execute the same license. In the embodiment shownin FIG.

32. the XML schema for the request is the following:

<xs:complexType name="LicenseTransferRequestPayloadType">
“xe iseqnence>

<xs:element rel="ContentidList’"/>

<xs:element ref="Operation/>
<xsielement ref“oct:Bundle” >

</xsisequence>
</xscomplex Type>

Where the ContentldList contains the list of Content [Ds

(one per track/stream) identifying the content, the Operation
contains the typeoflicense transfer operation, and the Bundle
contains the Personality node ofthe requestor and the asso-
ciated signature.

‘To avoid the license resolution problem described above.
the license bundle(s) can be included in the request, e.g.. by
amending the schema as follows:

<f-new elements —
<xsielenient name="“LicensePart” type="LicensePartType"/=
<xs:complexType name="LicensePart Type">

<xsisequence>
“xscelement ref="oct;Bundle” minQceurs=("!>

</xaisequence>
<xs:attribute oame="contentld™ use="optional’!>

</xs:complexType>
<xs:element name="License” type="LicenseType”'>
=xs:complexType name="LicenseType"=

=xsisequence>
<xs:element ref"LicensePart” maxOccurs=“unbounded”/>

</xstsequience>
</xs:complex Type>
=t-+ modified License’TransferRequestPay loadType -->
sxsicomplexType name="LicenseTransferRequestPayloadType">

“Asisequence>
<xs:element ref="License”)=
=xs;element ref="Operation
<xsiclement ref="etiBundle"
<xs:element name="Sessionid" type="xs:string” minOccurs=(">
<xs:element mume="NeedsContentKeys” type="xs:boolean”
minOceurs=""/>

=/xsisequence>
</xs:complexType>

=‘see above for definition ->

In this schema, the ContentidList element is replaced bya
License element. This element carries a set of LicensePart
elements. A LicensePart element carries an oct: Bundle ele-

ment containing license objects as well as an optional Con-
tentid attribute indicating that the license objects are applied
to this particular ContentId, A LicensePart element with no
Contentld attribute means that the objects contained in the
underlying bundle are applied to all Content [Ds (generally
the controller and the control objects).

In one embodiment, the Session|d optional element cannot
be present. except if the operation is urnimarlin:core:1-2:
service:license-transfer:release in which case it may be
present ifa Session|d parameter was received in the l’xtended
Status Block ofthe corresponding render or checkout action
(see above).

In one embodiment, the NeedsContentKeys optional ele-
ment should be present with a value offalse if the sink knows
that it is already capable of decrypting the content keys. The
absence of this element means that the source has to re-

encrypt the Content Keys ofthe sink in case of success ofthe
protocol.

In one embodiment, when receiving such a request, the
license element will be processed as follows:

wi

10

ba

At

33

4

45

30)

60

65

104

(1) Collect all the ContentId attributes found in the
LicensePart elements.

(2) Process all the Bundle elements
LicensePart elements.

(3) Openthe set of content [Ds collected above.
(4) Verify the appropriate signatures on the relevant

objects.
(5) Optionally invoke the Control.Actions.Transfer,Check

method on the processed Control object.
(6) Invoke the Control.Actions.Transfer.Perform on the

process Control object.
Allowing the Control] Programs to Proactively Ask for

Proximity Check ofthe Sink.
In order to allow Control programsto do this, a new pair of

Obligations/Callbacks can be defined. Specifically. the con-
trol can put a “ProximityCheckSink” obligation in its
extended status block. This indicates to the application that
proximity with the sink has to be checked. When the proxim-
ity check is done, the application will call back the control
using the “OnSinkProximityChecked”callback.

In one embodiment, a ProximityCheck obligation is
defined that is only applicable in the context of a License
Transfer. In this embodiment, there needs to be zero or one

such obligation per extended status block, and, ifpresent, an
OnSinkProximityChecked callback needs to be present as
well.

found in the

Name Type Description

ProximityCheck ValueList The host application heeds to performa
proximity check protocol with the
sink device,
Type Description

Td ofthe Personality Node that
has to be proximity checked

String

OnSinkProximityChecked Callback

Name Type Description

OuProximityChecked Value The host application needs to cal) back
List when a proximity check in one of the

obligation parameters has completed.
Type Description

Callback Routine to call back. and
associated cookie.

Allowing Multiple Round Trips in the Protocol.
FIG. 33 outlines a modification ofthe protocol that would

allow multiple round trips. In the embodiment shownin FIG.
33, the Setup message 3302 can, for example, be the same.as

; the improved license transfer request message described
above in connection with the license resolution problem/
solution.

As shown in VIG. 33, alter the Setup 3302, the application
will run the Control as explained above and will get an
Extended Stats Block (ESB). This ESB may contain a
RunAgentOnPeer obligation/OnAgentCompletion callback.
In one embodiment, the RunAgentOnPeer obligation will
contain all the parameters that the Source 3312 application
needs to build the RunAgent message 3304. Note that in one
embodiment, the RunAgent message 3304 will also be sent if
the application encounters another RunAgentOnPeer/On-
AgentCompletion callback/obligation pair in the Extended

US 8,776,216 B2

105

Status Block of the OnAgentCompletion callback (after one
or more RunAgent/AgentResult message exchanges).

In one embodiment, if the ESB does not contain a

RunAgentOnPeer obligation/OnAgentCompletion callback.
il meansthat the Teardown message (see below) needs to be
sent. Note that this ESB may contain a ProximityCheck obli-
galion/OnSinkProximityChecked callback in which case the
proximity check protocol will be performed and the result
will be read from the ESB ofthe OnSinkProximity checked
callback before sending the ‘Teardown message.

Jn one embodiment,the payload of the RunAgent message
3304 is identical to the Response message ofthe previous
design except that it does not carry a ContentKeyList.

As shown in PIG. 33, after the sink 3310has rin the agent
sent by the source in the RunAgent message 3304, the sink
3310 sends an AgentResult message 3306 to the source 3312.
In one embodiment, the message payload is the same as the
Confirmation message described in connection with FIG. 32.

As shown in FIG, 33, the Teardown message 3308 is sent 5
by the Source application 3312 when the extended status
block of the OnAgentCompletion does not carry any
RunAgentOnPeer/OnAgentCompletion callback/obligation
pair which meansthat the protocol is over. In one embodi-
ment, theTeardown message 3308 carries twopieces of infor-
mation: (i) a description ofthe protocol result so that the sink
3310 knowsifthe protocol has succeeded or not and ifnot, an
indication of why it failed (see below for more details), and
(ii) in case ofsuccess oftheprotocol, the updated ContentKey
objects (the ContentKeyList of the Response inthe previous
message) if the NeedsCunteniKey element of the setup mes-
sageis set to true or not present,

In one embodiment, the description of the protocol result is
actually the Extended Status Block (ESB) ofthe last invaca-
tion of the control carrying no agent related obligation/call-
back patr.

In case of failure, the parameters of the ESB may point to
resources. In one embodiment. these resources are located in
the ResourcelList extension ofthe Control that wassentin the

Setup message.
In case of success, in one embodiment the cache duration

will indicate for how much time the Content Keys may be
used without asking the control again.

An example of such an ESB XML. representation is shown
below, and can be added to the virtual machine schema:

‘element name="CacheDuration” types"CacheDumtionType"!
<1-- CacheDurationType -->
=xsicomplexType name="CacheDurationlType>

<xevattribute name="“type” type="xstiat>
=xsrattribute name="value” type="xerint"/>

</xsscomplexType=
sxsiclement hame="ExtendedStatusBlock”
twpe="ExtendedStutusBlockType"/>
<=i- ExtendedStatusBlockType -->
<xs:complexType name="ExtendedStatusBlockType”>

Sxsisequence>
<xs:element rel="CucheDuration™/>

<xs:element name="Parameters” type="ValueListBlockType™
minQceurs=""/>

</xsisequence>
<xscattribute name="“globalFlags” type="xsiint™ default="U"
use=“optional’/>
<xstattribule name="category” type="xstint” use="required’/>

tattribute nume="“subcategory” type="xs:iat™ use=“optional>
<xsraltribute name="local Flags” type="xs:int” use="requined™/>

=/xsicomplex Type>

The following is an example of a rendering use case in
accordance with an embodiment of the improved license

10

au

35

40

45

3)

oo

65

106

transfer mechanisms described above. In this example, a
broadcast import function imports a piece ofcontent with the
following license:

Play: OK ifa local state is present
Transfer:

Render OK if sink is in domain X or ifsink is in prox-
imity. Only one parallel stream can be rendered al a
time.

Assume a Core DRMClient] requests permission to render
the content stream. A Setup Request is sent from the sink
(Core DRMClient1) to the Source (BC Import function) con-
taining the following parameters:

License: the license associated with the content that the
sink wants to render

Operation=urn:marlin:core:1-O:service:license-transler:
render

Bundle=Personality node ofthe sink

Upon receiving the request, the source application popu-
lates the relevant host objects and invokes the Control.Ac-
tions.Transfer.Perform method. Illustrative pseudo-code for
the method governing renderingtransfer is shown below:

'* pseudo-code of the method governing
rendering transfer "/
ESB* TransferRenderPerform(HostObjectTree* t) {(fcbeck the lock

if (l-SGerObject(“SeaShell/.../lock") != NULL) {
retum new ESB(ACTION DENIED):

} else {
// time limited lock, we Will unlock un case offailure
!-=SetObject(“SeaShell/.../lock™. 1):
t->SetObject(“SeaShell/.,.lock@ExpirationTime,

Time.GetCurrent|) + 180);
‘Tetum an ESB that contains a RunAgentOnPeer
‘obligation and s OnAgentCompleted callback
retum new ESB(ACTION GRANTED,

new obligation(RUN_AGENT_ON_ PEER,
CheckDomainAgent),

new Callbuck(ON AGENTCOMPLETED,
RenderAgentCompleterd));

Assuming that the rendering is not locked, the RunAgen-
tOnPeer obligation is executed. A RunAgent message is sent
with the Control containing the CheckDomainAgent Method.
Uponreceiving this message, the sink will populate the rel-
evant host objects and invoke the CheckDomainAgent
method,[lustrative pseudo-code for the CheckDomainAgent
is shownbelow:

 pseuco-code of the CheckDomainAgent*/
AgentResult® CheckDomainAgent(HostObjectTree* t) {') check if the domain node is reachable

if (IsNodeReachable(“urn:marlin:.,.:domain2042x")) {|
return new AgentResult(SUCCESS):

} else |
rehimn new AgentResull(FALLURE);

Assume for purposes of this illustration that the sink is
indeed in the domain. The sink will then send an AgentResult
message containing this agent result. Upon receiving the
AgentResuli, the Source will invoke the callback method,
Illustrative pseudo-code for RenderAgentCompleted is
shown below:

US 8,776,216 B2

107

/* psendo-code of the RenderAgentCompleted */
ESB* RenderAgentCompleted(HostObjectTree® 1,

AgentResult” ar)

lf (ar=TsSuevesst)) {
// give an ESB with no obligation/callback
‘and a Cache duration
return new ESE(ACTION GRANTED, new CacheDuration(0));

pele [
(ry todo a proxinuty check
Tetum new ESB(ACTION GRANTED,

tewobligation(CHECK PROXIMITY,
t->GetObject(*../Sink/Id"),

new Callback(ON_SINK_ PROSIMITY CHECKED,
ProximityCheckCompleted)):

We had assumed that the agent successfully checked the
domain membership on the sink. A Teardown messageis sent
with (i) the re-encrypted content keys for the sink (using the
keys provided withthe sink node in the Setup request), and
(ii) the ESB carrying the cache durationspecified above (0 in
this case, meaning that the sink has to re-ask next timeit wants
to access the content). When the sink receives this message,il
knows it is allowed to render the content and has the needed

content keys.
Nowassumethat the user wants to render the content on his

other device, DRMChent2, The problem is that the content is
locked for 180 minutes onthe source. Fortunately, when the
user presses STOP on DRMClient], DRMClient! will ini-
liate a new license transfer protocol with the operation:
Release, Upon receiving the request, the source application
will populate the relevant host objects and invoke the Con-
trol.Actions.Transfer.Perform method, Illustrative pseudo-
code for the method governing transfer release is shown
below:

/* pseudo-code of the method governing
transfer release */

ESB* TransferReleasePerform(HostObjectTree* t) {‘ check the lock

if (1->CetObject(“SeaShell/.../lock") t= NULL) {
t-SetObject(“SeaShell/...'lock, NULL); // delete
return new ESB(ACTION_GRANTED):

} else {
return new ESB(ACTION_ DENIED};

}

Since no obligation/callback is found in the ESB, this
means that a Teardown message will be sent back with this 5
BSB.

‘This rendering use case thus illustrates that, in certain
embodiments, there isno need for the requesting DRMChient
ofa render operation to re-evaluate the control locally, state
does not haveto be transferred from the sourceto the sink, the
control can proactively ask for a proximity check, and the
content can be released when the renderer is done with it.
1]. Certificates

In one embodiment, certificates are used to check the cre-

dentials associated with cryptographic keys before making,
decisions based on the digital signature created with those
keys,

In some embodiments, the DRM engine is designed to be
compatible with standard certificate technologies, and can
leverage information found in the elements of such certifi-
cates, suchas validity periods, names, and the like. In addition
to those basic constraints, in some embodiments additional

wi

Lt

nd

at

35

4

45

ra

60

65

108

constraints can be defined about whata certified key can and
cannol be used for. This can accomplished by, for example,
using key-usage extensions available as pari of the standard
encoding ofthe certificates. The information encoded in such
extensions allows the DRM engineto check ifthe key that has
signed a specific object was authorized to be used [or that
purpose, Forexample. a certain key may have a certificate that
allows it to sign link objects only if the link is from a node
with a specific attribute, to a node with another specific
attribute, and no other link. Since the semantics ofthe generic
technology used to express the certificate will generally not
be capable of expressing such a constraint, as it will have no
way of expressing conditions thal relate to DRM engine-
specific elements such as links and nodes, in one embodiment
such DRM engine-specific constraints are conveyedas a key
usage extension ofthe basic certificate that will be processed
by applications that have been configured to use the DRM
engine.

In one embodiment, the constraints in the key usage exten-
sion are expressed by a usage category and a VM constraint
program. The usage category specifies what type of objects a
key is authorized to sign. The constraint program can express
dynamic conditions based on context. In one embodiment,
anyverifier that is being asked to verily the validity ofsuch a
certificate is required to understand the DRM engine seman-
tics, and delegates the evaluation of the key usage extension
expression to a DRM engine, which uses an instance of the
virtual machine to execute the program. The certificate is
considered valid ifthe result of the executionofthat program
is successful.

In one embodiment, the role of a constraint program is to
return a boolean value. “True” means that the constraint con-

ditions are met, and “false” means thal they are not met, none
embodiment the control program will have access to some
context information that can be used to reach a decision, such
as information available to the program through the virtual
machine’s Host Object interface. The information available
as context depends on what type ofdecision the DRM engine
is trying to make when it requests the verification of the
certificate. Por example, before using the informationin a link
object, in one embodiment a DRM engine will need toverily
that the certificate of the key that signed the objectallows that
key to be used forthat purpose. When executing the constraint
program, the virtual machine’s environment will be popu-
lated with information regarding the link’s attributes, as well
as the attributes of the nodes referenced by the link.

In one embodiment, the constraint program embedded in
the key usage extensionis encoded as a virtual machine code
module that exports at least one entry point named
“Octopus.Certificate<Category>.Check”, where “Category”
a name indicating which categoryofcertificates needs to be
checked, Parameters to the verification program will be
pushed onthe stack before calling the entry point. The num-
ber and types of parameters passed onthe stack will generally

s depend on the category ofcertificate extension being evalu-
ated.

12. Digital Signatures
In preferred embodiments, someorall of the objects used

by the DRM engine are signed. The following is a description
ofhowobjects are digitally signed in one embodiment using
the XMLdigital signature specification(http://www.w3.org/
TR/xmildsig-core) (“XMLDSig”). In addition, a canonical-
ization method ofXML compatible with the XML exclusive
canonicalization—(http://www.w3.org/TR/xml-exc-cl4n/)
(“cl4n-ex”) is also described, the output of which can be
processed by a non-XML-namespace-aware parser. Appen-
dix D provides more information on an exemplary object

US 8,776,216 B2

109

serialization, including an illustrative way to compute a
canonical byte sequence lor objects in an encoding-indepen-
dent manner.

As shown in PIGS. 28, 34, and 35 in preferred embodi-
ments certain elements in a DRM license are signed. ‘Tech-
niques such as those shownin FIGS. 28, 34, and 35 are useful
In prevent or impeding tampering with or replacementofthe
license components, As shown in FIG. 34, in a preferred
embodiment, controller object 3402 includes cryptographic
digests or hashes (or other suitable bindings) 3405, 3407 of
contentkey object 3404 and control object 3406, respectively.
Controller 3402is ttselfsigned witha MAC (or, preferably, an
HMACthat makes use of the content key) and a public key
signature (typically of the contentor license provider) 3412.
In a preferred embodiment, the public key signature of the
controller 3412 is itselfsigned with an HMAC3410 using the
content key. It will be appreciated that in other embodiments,
other signature schemes could be used, depending on the
desired level of security and/or other system requirements. 2
For example, different signature schemes could be used for
the signature ofthe controller and/or control], such as PKI,
standard MACs, and/or the like. As another example, a sepa-
rate MACsignature could be computed for both the control
and the controller, rather than including a digest ofthe control
inthe controjler and computing a single MAC signature ofthe
controller. In yet another example, the controller could be
signed with both a MAC and a public key signature, Alterna-
tively or in addition different keys than those described above
could be used to generate the various signatures. Thus while
FIGS.28, 34, and 35illustrate several advantageoussignature
techniques in accordance with some embodiments,it will be
appreciated that these techniques are illustratrve and non-
limiting. PIG, 35 illustrates an embodiment in which a con-
trollerreferences multiple content keys. As shown in FIG. 35,
in one embodiment, each of the content keys 1s used to gen-
erate an HMACofthe controller and the PKI signature.

In one embodiment the data mode, processing, inpul
parameters, and output data for XML. canonicalization are the
same as for Exclusive Canonical XML, (cl4n-ex) except that
hamespace prefixes are removed (namespaces are indicated
using the default namespace mechanism) and external enti-
ties are nol supported, only character entities are. The first
limitation implies that an attribute and its element need to be
in the same namespace.

FIG. 42 showsthe relationship between cl 4n-ex and an
ilustrative XML, canonicalization in one embodiment, where

<xml> is any valid XML. and where <xml>'=<xml>"only if
<xml> has no external entities and no namespaceprefixes.

A simple example of the simplified signature scheme is
provided below: In a preferred embodiment, however, the
standard XML. canonicalization is used.

original <nl:elem? id="foo"
xmlns:nti=foo:bar™
ximins:ni="“http://example.net”
xmins:n3="fips//example.or”>

<y3:stu ff! >
</nl:elem2>

processed selom2 xmins="hitpi//example.net™ id=foo?=
<stuff senins="tip://example.org"/>

</elem2=

The signature elements discussed in this section belong to
the XMLDSig namespace (xmlns=http://www.w3.org/2000/
()9/xmldsig#) and are defined in the XML schema defined in

wi

u

15

heal an

Sands

4c

45

Go

65

110

the XMLDSig specification, In one embodiment, the con-
tainer element of the XML representation of DRM objectsis
the <Bundle> element.

In one embodiment, the following objects need to be
signed:

Nodes
Links
Controllers

Controls (optional)
Extensions (depending on the data they carry)
In one embodiment, the signatures need to be detached and

the <Signature> element needs to be present in the <Bundle>
object that contains the XML. representation of the objects
that need to be signed.

In one embodiment, the <Signature> block will contain:
A <SignedInfo> element
A <SignatureValue> element
A <Keylnfo> element
In one embodiment, the <SignedInfo> embedsthe follow-

ing elements:
<CanontealizationMethod>
In one embodiment, the <CanonicalizationMethod> ele-

mentis empty and its Algorithm attribute has the following
value: http://www_.w3,org/2001/10/xml-exe-c 1 4n#

<SignatureMethod>
In one embodiment. the <SignatureMethod> element is

emply and its Algorithm attribute can have the following
values:

hitp://www.w3.org/2000/09/xmldsig#hmac-shal (HMAC
signature)

hittp://www.w3.org/2000/09/xmldsig#rsa-sha 1
Key Signature)

<Relerence>
In one embodiment. there can be one or more <Reference>

elements inside the <SignedInfo> block if more than one
objects need to be signed by the samekey (¢.g.. this would be
the case for the Control and the Controller object).

In one embodiment. whensigning an object, the value of
the ‘URT attribute ofthe <Reference> elementis the ID ofthe

referenced object. When signing a local XML element (for
example, in the multiple signature case ofthe public signature
method for Controller objects), the value of the URIis the
value ofthe ‘Id’ atiribute of the referenced element.

In one embodiment. when a reference points to an object,
whatis digested in the reference is not the XMLrepresenta-
tion of the object but its canonical byte sequence. ‘This trans-
form of the object is indicated in XMLDSig by the means of
the <Tranforms> block. Therefore, in one embodiment, the
<Reference> element will embed this block:

(Public

=Tranforms>

~<Transform Algorithm="http://www.intertrust.com/octopus/ebs-1_0"/>
«/Tranforms>

Appendix D provides additional information. In one
embodiment, no other <Tranform> is allowed for objectrel-
erences,

In one embodiment, the <DigestMethod> elementis empty
and its Algorithmattribute has the following value: hitp://
www.w3.orz/2000/09/xmldsig#sha|

The <DigestValue> element contains the base64 encoded
value ofthe digest,

<SignatureValue>
In one embodiment, the signature value is the base64

encoded value ofthe signature ofthe canonicalized (ex-cl4n)
<SignedInfo> element withthe key described in the <Key-
Info> element.

US 8,776,216 B2
111

<Keylnto>
HMAC-SHAI Case for Signatures of Controller Objects
In one embodiment, in this case the <KeyInfo> will only

have one child: <KeyName> that will indicate the ID of the
key that has been used for the IMAC signature.

Example

=Keylufo>
=KeyName>um:x-oclopuscsecret-key:1001</KeyName>

</Keyinfo>

RSA-SHAI Case

In one embodiment, in this case the public key used to
verily the signature will be carried in an X.509 v3 certificate,
and may be accompanied by other certificates that may be
necessary to complete the certificate path to a CA root.

These certificates are carried, encoded in base64, in
<X509Certificate> elements. These <X509Certificate> ele-
ments are embedded in an <XS509Data> element child of the

<Keylnfo> element, and appear in sequential order, starting
fromthe signing key’s certificate. The certificate ofthe root ts
usually omitted.

Example (for the sake ofbrevity, the entire values ofthe
example certificates have not been reproduced; the material
that has been deleted is indicated byellipses):

lt

ha

112

<KeyInto=
=MS09Data=>

<!-—- cert of the signing public key -->
=<X500Certificate>MIICh..</XS09Cenifieaie>
=|— intermediate cert te the trust roor-->
<X500Certificate*MICo...</X509Cenificate>
=/X509Data>

<~/KeyInio=

In one embodiment, controller objects need to have at least
one HMAC signature for each ContentKey referenced in their
list of controlled targets. The key used for each ofthose
signatures is the value of the content key contained in the
ContentKey object referenced.

Controllers may also have an RSA signature. In one
embodiment. ifsuch a signature is present. this signature also
appears as a<Reference> in each ofthe HMACsignatures for
the object. To achieve this, in one embodiment the <Signa-
ture> element for the RSA signature must have an ‘ld’
attribute, unique within the enclosing XML document, which
is used as the “URIattribute in one of the <Reference>

elements of each of the HMACsignatures. In one embodi-
ment, the verifier must reject RSA signatures that are not
corroborated by the HMACsignature,

Example

<Signature ld="Signature,0” xmins=“hinps!/ www.og2000/09sunidsig¢"=
<SignedInfa>

=CanonicalizationMethod Algonthmi="http:/iwww,.w3,org!/2001/10/xml-exc-c L4nt"/>
<SignanireMethod Algorithm="httpy/www.w3.org/2000/09/xiidsig#rsa-sha 1"y>
“Reference URI=“um:x-oclopus.inlentrust.com:contrller:37 ASO2 62 REI389A 4ABCUBCTBESD43EA">

<Transfarms>

~Transform Algorithm="htip://www.intertrust.com/Octopus/xmidsigtebs-1_(>
</Transforms>

<DigestMethod Algorithm="htpy//(wwww3 org!2000/00.0nldsigeshal"/=
<DigestValue+GlzXF9S2/2CwH6MaFm0ObOQcsuk=</Digest Vale>

</Reference>

~/SignedInfo>
~Signature Value>mjoyW+w2S9iZDG/hadeWYD1 RaihQug RuuSN97 TNODpzwUDO2FdsAICV|Acw7 fink
WuvtawW/clF2¥P/pj FebESCvirHUsEaR 1/LYLDkpW Wah)LlEpsray ROKUsSUAL Sa4BDx DxQE 7 oUdql9
YMpnjAZEGpuxdPeZJM vyKqNDpTko4=</SignatureValue>

~Keylufo>
<X509 Datay<XS09Certi ficate>MIICh,..</X509Certificate</XS09Data> s/KeyInlo>

</Sipnature>
“Signature amlns=“hitp:/www.w3,org/2000/09/xmldsigi">

=Sipnedinfo>
<CanonicalizationMethed Alporithm="“httpy/www,w3.org/2001/10/xml-exc-c140g"/>
<SignanureMethod Algorithm="http://www.w3.org/2000/09/xmidsio#hmnac-shal ">
“Reference URI=“#Signature,0">

=DigestMethod Algorithm=“http://www.w3.org/2000/09/xmlidsig#shal “>
=DigestValue>Ag?VOnvNj/ve5 | leMy KIngGNKtM=</DigestValue>

</Reference>
«Reference URI=“urm:x-octopus.intertrust.comcontroller: 1357°>

~Transforms>
<Transfonn Algorithm="http)/www-intertrust.com/Octopius/xmldsigvchs-1 _ 0°/=

=/Transforms=

=DigestMethod Algori(him="“htpswww.w3.org/ 2000/09)smldsieststua | 7)
=Digest Vallie>G1 eX F9S2/2Cw H6Marm00ObOQecxuk=</Digest Value>

</Reference>

</Siguedinto=
<SignatiireValue>TeKBs4.Zy+¥padoOkZ62LTTy+mQ=</SignatureValue>
<Keylnfo>

<KeyName=um:x-octopus.intertrust.com:secret-key:2001</KeyName=
=/KeyInio=

</Sipnatire>

US 8,776,216 B2

113

13. Proximity Check Protocol
In some embodiments, tt may be desirableto restrict access

to content, services, and/or other system resources based on
the physical proximity of the requesting entity (¢.2., to help
enforce rules indicating that a protected piece of content
cannot be copied outside a user’s home network, office com-
plex, and/or the like). Embodiments of a proximity check
protocol are described belowthat provide security without
unduly impeding the performance ofihe proximity check
itself. The proximity check protocol lends itselfto application
in a wide variety of contexts, one of whichis, as indicated
above, in the context of digital rights management controls;
however, it will be appreciated that the proximity checking
systems and methods described below are not limited in
application to the digital rights management context. For
example. without limitation, the proximity checking tech-
niques presented herein can also be used in the context of a
network service orchestration system such as. that described
in the °551] application and/or anyother suitable context.

In one embodiment, a proxiniuty check is performed by
measuring the amountoftime it takes a first computing node
to receive a response from a second computing node to the
first computing node’s request. [f the amount of time is less
than a predefined threshold (generally indicating that the
second computing node is within a certain physical distance
of the first computing node), then the proximity check is
deemed a success.

It will be appreciated that due to the wide variety ofdiffer-
ent network connections over which the request and/or the
response might be sent, a given amount of time may corre-
spond to range of possible distances. In some embodiments.
this variation is simply ignored, and the proximity check is
deemed a success if the round-trip time of the request/re-
sponse exchange 1s less than the predefined threshold (e.g... 8
milliseconds, or any other suitable amount of time). regard-
Jess ofwhether, e.g., a fast network connection is being used
that could meanthat the requesting and responding nodes are
actually relatively distant from each other, In other embodi-
ments, a determination could be made asto the type ofnet-
work connection being used, and different round-trip ume
requirements could be applied to eachdifferent network con-
nection.

Ina preferred embodiment, the proximity check allows an
anchor(e.g., a client) to check the proximity ofa target (e.g...
aservice). In one embodiment, the protocolis asymmetric. in
that the anchorgenerates the secret seed that is used, and is the
onlyone that makes use ofa secure timer. Moreover, the target
does not need to trust the anchor. Preferred embodiments of

the proximity check are also cryptographically efficient: in
one embodiment making use of only two public key opera-
tions.

Generation ofa Set, R, of Q Pairs from a Seed, S
In one embodiment, a set R is obtained from a seed §

according to the following formula: R=EP’'(S). Where
H(M) ts the digest value of the hash function H over the
message M. and H’(M)=H(H""'(M)) for n>=1 and H°(M)=
M.It will be appreciated that this is simply oneillustrative
technique for generating a shared secret, and that in other
embodiments other techniques could be used without depart-
ing from the principles hereof.

In one embodiment, the algorithm used for the hash func-
tion H is SHAI (see, e.g., FIPS PUB 180-1, Secure Hash
Standard. U.S. Department of Commerce/National Institute
ofStandards and Technology), althoughit will be appreciated
that in other embodiments, other hash. message digest. or
functions could be used.

wi

a0

35

40

45

Se

60)

65

114

In one embodiment, a proximity check is performed as
follows, where “A”is the anchor(e.g. client) and “13”is the
larget (e,.g.. service):

(a) A generates a set R ofQ pairs ofrandom numbers {R,,
Ry}. {Ro. Rs}... (Reg_2: Rg_) }. a8 shown above.

(b) A sends to B: E(Publ3, {Q.S}), where E(Y, X) denotes
the encryption of X with the key Y. and PubB denotes B’s
public key ina public/private key pair.

(c) B decrypts {Q.S} and precomputes R as shownabove.
(d) B sends A an acknowledgement to indicate that it is

ready to proceed.
(e) A sets a loop counter. k, to zero.
(1) A measures T)=current time.
(g) A sends to B: {k, Rsa,}.
(h) Ifthe value of R,., is correct, B responds with R..;,,
(i) A measures D=newcurrent time-T’,,.
(j) [EB responded to A with the correct value for Re,,\,

and D is less than a predefined threshold,then the proximity
check is deemed a success,

Ifk+1<Q, A can retry a new measurement by incrementing
k-and going to step (f). [fit is needed to perform more than Q
measurements, A can start fromstep (a) with a new set R. For
example, in some embodiments the proximity check can be
performed repeatedly (ora predefined number of times) until
a correct response is received within the predefined threshold
(or if correct responses are received within the predefined
threshold more than a predefined percentage ofa sequence of
challenge/responses), since even if two computing nodes are
within the required proximity of each other, an abnormally
slow network connection, heavy traffic, noise, and/or the like
can cause B's response to be delayed.

FIG. 36 illustrates an embodiment of the protocol
described above. in which anchor (A) determines whether
target (B) is within an acceptable proximity ofanchor(A). For
example, as shown in FIG, 36, A may comprise a computing
node 3602 that contains protected content (e.2.. music, video,
text, software, and/or the like) and/or content-access material
(e.g.. a link. a key, and/or the like) needed by a remote com-
puting node (3) 3606 to access protected content stored at, or
accessible to, computing node B 3606. Controls associated
with the content or contenl-access material may indicate thal
it can only be shared with devices within a certain proximity
ofnode A 3602(e.g. to approximate limiting the distribution
ofthe content to a home network). Alternatively, or in addi-
tion, such a policy may be enforced at the system level of
computing node A 3602 (which may, for example. comprise
the domain manager of a homeor enterprise network). That
is, the proximity check need not be a condition in a control
programexecuted by a virtual machine: it could instead sim-
ply be something that computing node A 3602 requires as a
matter ofoperational policy before sending content orcontent
access material to computing node B 3606, To enforce such
controls and/orpolicies, software and/orhardware running on
computing node A 3602 can perform the proximity checking

5 protocol described above each lime a request is made to
distribute protected content or content-access material to
computing node B 3606. Alternatively,or in addition, a prox-
imity check could be performed at predefined intervals (e.g..
once a day) to determine if node B 3606 is in the required
proximity. and, if the proximity check is successful. node B
3606 could be treated as being within the required proximity
for a predefined period (e.g., until the next check is per-
formed, until a predefined amount of time elapse, and/or the
like),

As shown in FIG. 36, once A and B complete any initial
set-up steps (e.2., steps (a) through (e), above) 3604. 3608, A
and B engage in a secure, timed, challenge-response

US 8,776,216 B2

115

exchange (e.g. steps (1) through(i), above) 3610 that enables
A to determine whether B is within an acceptable proximity.

As shownin FIG. 36, in one embodiment A 3602 sends B
3606 a Setup Request 3604 comprising E(PubB. {Q. S})—
i.e., the numberofpairs. Q, as well as the secret pairs seed. 8.
encrypted with B’s public encryptionkey (e.g., a key used by
B in the context of’service orchestration). In one embodiment.
{Q. S} is the byte stream concatenation of Q (1 byte) and S
(16 bytes) in network byte order. lo one embodiment, the
encryption is performed using RSA public key encryption
(e.g., as described in B. Kaliski, J. Staddon, PACS #1: RSA
Cryptography Specifications Version 2.0. WETP RVC2437.
October 1998). In a preferred embodiment, PubB will have
been previously accessed by A through inspection, and its
certificate will have been verified. Although a Setup
Response 3608 trom B 3606 to A 3602 is shownin PIG. 36,
in other embodiments, a Setup Response 3608is not used. As
previously indicated, afier receiving the Setup Request 3604,
B 3606 preferably precompules the set R, so as to facilitate
rapid response to subsequent challenges from A 3602.

As shown in FIG, 36, A 36-2 sends B a Challenge Request
3612 consisting of [k, R».;|—i.e., the index, k, and the cor-
responding secret computed from the seed. In one embodi-
ment, [k. R.,.,| is the byte stream concatenation olk (1 byte)
and R,.,,(20 bytes) in network byte order, encoded in base64
for transport. As shown in FIG. 36, in one embodiment. B
3606 is operable to send a Challenge Response 3614 to A
3602, the Challenge Response 3614 consisting, of R,+;,,—
i.e., the corresponding secret from the Challenge Request
3612. In one embodiment, R,.,,, is the byte stream ofR,.,,,
(20 bytes) in network byte order, encoded in base64 for trans-
port,

FIG. 37 shows an example of how an embodiment of the
proximity check protocol described above could be used to
control access to protected content. Relerring to FIG. 37.
assumethat a cable or satellite content provider has a policy
ofallowing all devices within a predefined proximity 3708 of
a user's personal video recorder (PVR) 3702 to access con-
tent through the PVR. Thus, for example, domain manager
software running on the PVR 3702 might perform a proximity
cheek on deyice 3704 and 3706 requesting access to content
through PVR 3702.In the example, shown in FIG, 37, device
3706 is not within the proximity 3708 defined by the service
provider's policy, and would be denied access by PVR 3702.
In contrast, device 3704is within the proximity, and would be
provided with access (e.g., by receiving the content along
with an expiring link from device 3704 to the PVR 3702.
Alternatively, or in addition, the link might contain a control
programthat wasitselfoperable to initiate a proximity check
with PVR 3702, and deny device 3704 further access to the
content ifdevice 3704 moved beyond the predefined proxim-
ity 3708 of PVR 3702.

Security Considerations
In preferred embodiments, care should be taken to adhere

to someor all of the following:
The loop comprising steps (f) through(i) is not repeated

with the same value ofk for any set R.
The protocol is aborted if an unexpected message is

received by either party, including:
IPB receives an incorrect value for R,., in step (¢)
IfQis not within a specified range in step (a)
Ifk is repeated in the loop
If k exceeds Q

The protocol can alternatively or in addition be aborted ifA
receives an incorrect value of R,.,,, in step (h). In other
embodiments, a certain number ofincorrectresponses [rom B
maybe tolerated.

we

at

35

4c

45

St

60

65

116

It will be appreciated that optimal values for Q and the
predefined time threshold will typically depend on the unique
circumstances ofthe application at hand(e.g... the speed ofthe
network, the importance of ensuring a relatively tight prox-
imily, etc.), Therefore, implementations should preferably
provide for flexibility in configuring these values. In one
embodiment,it is assumed that implementations will support
a minimum value of 64 for Q and a value of 8 ms for the
threshold (where, al some of today’s network speeds, 8 ms
may correspond to a proximity of a fewmiles).

Protocol Security Policies
In a preferred embodiment, no additional security is

needed for the exchange of the request and the response.
Because ofthe size ofthe messages being exchanged (e.g., 20
bytes), and their effective randomness (through use ofthe
SHA hashing algorithmor other method), it will be erypto-
graphically infeasible for an attacker to determinethe correct
response, even if the attacker manages to intercept the
request.

It should be appreciated that the above-described embodi-
iments areillustrative. and that numerous modifications could

be made withoutdeparting from the inventive principles pre-
sented herein. Por example, while a recursively hashed secret
seed is described above, any suitable shared secret could be
used for the challenge/response. In one embodiment. the
shared secret might simply comprise an encrypted number/
message sent from A to B, and the challenge/response could
simply comprise A and B exchanging portions ofthe number/
message (e.g., A sends B the first character of the message,
and B sends A the second character of the message, and so
forth). Although such a technique may lack the security of the
embodiment described in connection with FIG. 36 (since a

character in a message would be mucheasier to guess than a
20 byte hash), in some embodiments such a level of security
may be adequate (especially where, for example, the variabil-
ity of network delays makes the proximity checking mecha-
nism a fairly coarse control ofactual proximity anyway), and
in other embodiments security could be enhanced by per-
forming the proximity check multiple times, where, allhough
any particular digit or bit maybe relatively easy to guess, the
likelihood that an atlacker would be able to correctly guess a
given sequenceofdigits or bits will rapidly decrease with the
length of the sequence, In such an embodiment, the proximity
check could be deemed a success only if B is able to provide
more than a predefined number of consecutive correct
responses (or a predefined percentage of correct responses).

For purposes of illustration and explanation, an additional
Ulustrative example ofa proximity check protocolis provided
below. In this example, a first device, SRC, communicates
with a second device, SNK, over a communication channel

(€.g., a computer network). We want to be able to securely
determine if SRC and SNK are within proximity of each
other, as measured by the time it takes [or SNK to respond to
a communication request from SRC. A challenge or probe

5 message is sent from SRC to SNK, and SNK replies with a
response message. The period of time between the emission
ofthe challenge and the reception of the response will be
called the round trip time or RTT. To avoid introducing unnec-
essary overheadin the time it takes SNK to compute and send
back a responseto the challenge,it will generally be desirable
to make the challenge/response communication as light-
weightas practical. In particular, it will typically be desirable
to avoid requiring cryptographic operations by SRC or SNK
between the emission ofthe challenge and the reception ofthe
response.

Also. to ensure that only SNK ts able to produce a valid
response to the challenge from SRC (e.g., to avoid a man-in-

US 8,776,216 B2

117

the-middle attack, where a third party could intercept the
challenge from SRCand send a response back, as ifSNK had
responded), the protocol could proceed as follows:

(1) SRCcreates a secret. This secret is composed ofone or
more pairs of randomor pseudo-random numbers.

(2) SRCsends to SNKthe secret. This part of the protocol
is not time-sensitive, The secret is kept confidential by SRC
and SNK. The secret is also sent in a waythat ensures that
only SNK knowsit. This typically involves sending the secret
over a secure authenticated channel between SRC and SNK

(for example, SRC can encrypt the secret data with a public
keyfor whichit knows that only SNK has the corresponding
private key). The secret data does not have tobe the pair(s) of
random or pseudo-random numbers described above. Even in
embodiments where suchpairs are used, the secret data trans-
mitted in this step only needs to be enough information to
allow SNK to compute or deduct the values of the pair(s) of
numbers, For example, the secret data could bea randomseed
number from which one or more pair(s) of pseudo-random
numbers can be generated using a seeded pseudo-random 2
number generator.

(3) Once SRC knowsthat SNK is ready to receive a chal-
lenge (for example, SNK may senda READY messageafter
receiving and processing the secret data), SRC creates a chal-
lenge message. To create the challenge message. For
example, in a preferred embodiment, SRCselects one of the
random number pairs. If more than one pair is used, the
challenge message data contains the information to indicate
which pair was chosen, as well as one ofthe two numbers in
that pair.

(4) SRC measures the value ofthe current time.0. Imme-
diately after, SRCsends the challenge message (no need for
encryption or digital signature), to SNIK and waits for the
response. Alternatively. SRC could measure the current time,
TO. immediately before sending the challenge message.
although preferably alter any concomitant cryptographic
operations (e.g.. encryption, signing, and/or the like) had
been performed.

(5) SNK receives the challenge, from which 1 can identify
one ofthe pairs it has received previously, SNK checks that
the random number in the challenge is part of the pair, and
constructs a response message that contains the value of the
other random number ofthat pair.

(6) SNK sends the response message to SRC (no need for
eneryplion or digital signature).

(7) SRC receives the response message, and measures the
value ofthe currenttime, 11. The round trip ime RTT is equal
to TI-TO.

(8) SRC verifies that the numberreceivedin the responseis
equal to the other value in the pair that was chosen for the 5
challenge. [f the numbers match, the challenge response is
successful. and SRCcan beassured that SNK was within the

proximily indicated by the roundtrip time. Ifthe numbers do
not match. SRC can abort the protocol. or. if more than one
pair was shared, and thereis at least one pair that has not been 55
used, go back to step (3), and use a different pair.

It will be appreciated that a numberofvariations could be
made to the illustrative proximity checking protocols
described above without departing [rom the principles
thereof. For example. without limitation. different crypto-
graphic algorithms could be used, different shared secrets
could be used, and/orthelike.
14. Security

In practical applications of the systems and methods
described herein, security can be provided at a variety of
different levels and using a variety of different techniques.
The discussion herein has focused primarily on the design

we

0

5

;

at

35

Ae

a

60

65

118

and operation of a DRM engine and related host application
for use in efficiently regulating potentially complex business
relationships. When the DRM engine and host application
operate as intended, content is protected from unauthorized
access or other use by the enforcement of the license terms
associated therewith.

Protection of the DRM engine and/or the environment in
which the DRM engine runs (e.g., the applications and hard-
ware with which it interacts) from malicious tampering or
modification can be done using any suitable combination of
security techniques. For example, cryptographic mechanisms
such as encryption, digital signatures, digital certificates,
message authentication codes, and thelike can be employed.
e... as described elsewhere herein, to protect the DRM
engine, host application, and/or other system software or
hardware from tampering and/or other attack, as could struc-
tural and/or tactical security measures such as software
obfuscation, sel-checking, customization. watermarking.
anti-debugging, and/or other mechanisms. Representative
examples of such techniques can be found, for example, in
US. Pat. No. 6,668,325 Bl, Obfuscation Techniques for
Enhancing Software Security, and in commonly assigned
U.S. patent application Ser. No. 11/102.306, published as
US-2005-0183072-Al; U.S, patent application Ser. No,
09/629.807; U.S. patent application Ser. No, 10/172,682.
published as US-2003-0023856-A1; U.S. patent application
Ser. No. 11/338.187. published as US-2006-01]23249-A1;
and U.S. Pat. No. 7,124,170 Bl, Secure Processing Unit
Systems and Methods, each of which is hereby incorporated
by reference hereinin its entirety. Alternatively or in addition,
physical security techmaues (e.g., the use of relatively inac-
cessible meniory, secure processors. secure memory manage-
ment units, hardware-protected operating system modes, and/
or the like) can be used to further enhance security. Such
security techniques will be well-known to one of ordinary
skill in the art, and it will be appreciated that any suitable
combination of some, none, or all ofthese techniques could
be used depending on desired level of protection and/or the
details of the particular application at hand. ‘Thus, it will be
appreciated that while certain security mechanisms(e.2., key
derivation techniques, digital signature techniques, encryp-
tion techniques, and thelike) are described herein in connec-
hon with certain embodiments, use of these techniques ts not
required in all embodiments.

Yet another formof security can be provided by the insti-
tutional design and operation of the system, and by the legal
and social regulationofthe participants therein, Por example,
in order to obtain a personality node, keying material, pro-
tected content, and/or the like, a device or entity may be
required to contractually agree to adhere to systemspecifica-
Hons and requirements. may need to submit to a certification
process during which the entity’s compliance with system
requirements could be verified, and/or the like. For example,
a device or application may be required to implement the
DRM engine in. a way that is compatible with other imple-
mentations in the environment, and/or be required to provide
a certain type or level of tamper resistance or other security,
Digital certificates could be issued that attested to a device's
or other entity’s compliance with such requirements, and
these certificates could be verified before allowing the device
or entity to participate in the system, or as a condition of
allowing continuing access.

Additional, non-limiting information on security tech-
niques that can be used in connection with the inventive body
ofwork 1s provided below,

US 8,776,216 B2

119

System Security
In some embodiments, a system designer may choose to

use a combination of renewability, refusal, and/or remedia-
tion techniques to manage risks and mitigate threats that may
arise from attacks on and compromise of devices. applica-
tions, and services. Uxamples of various technical mecha-
nismsthat can be used to mitigate threats are presented below.

Renewal mechanisms can be used to serve at least two

distinct purposes.First, they can be used to convey up-to-date
information to trusted system entities that allow them to
refuse access or service to untrusted system entities. Second,
renewal mechanisms enable an untrusted entity to regain
trusted status by updating any compromised component(s).
Refusal countermeasures can be further characterized as

exhibiting one or more ofthe following behaviors:
Revocation, or annulling a credential (typically by black-

listing some entity)
Exelusion, or denying access by applying cryptographic or

policy enforcement mechanisms
Shunning, or denying access or a service based on an 2

identity or some otherattribute bound to a credential
Expiration, or annulling a credential or privilege based on

a temporal event.
For example, refusal mechanisms can be used to counter

wi

Ls

nt

120

Certificate Revocation Lists (CRLs)
Revocation lists can be used bydifferent entities to revoke

identity certificates, licenses, links, and other security asser-
tions. This mechanismis most effective to remedy the situa-
tion which results from a service being compromised. A
numberof techniques canbe used fordistributing CRLs. Por
example, some systems may employ an indirect CRL, so that
there is a single CRL governing the entire ecosystem. In
addition, entities can advertise (or publish) the CRL(s) in
their possession. and/or subscribe to an update service.
CRL(s) can be distributed peer-to-peer in a viral fashion
and/or portable devices can receive published CRL(s) when
tethered. The service orchestration techniques described in
the "551 application can also be used for this purpose.

Validity Services
Validity services can be used to provide up-to-date infor-

mation on the status of credentials and other security related
data. Validity services can performeither active validation
operations on behalf ofa relying party or they can be used to
manage security information on behalfofrelying parties. An
example of anactive validity service is one that can check the
validity of a credential or attribute. Examples of validity
services that manage security information are those which
disseminate CRL or security policy updates. or provide a

threats such as device cloning, impersonation attack, protocol 25 secure time service, The use of validity services can help
failures, policy enforcement failures, application security ensure that relying parties have current data to inform gover-
failures, and stale or suspicious information, nance decisions.

The following table provides examples ofpotential threats, Typically, not all system entities will need up-to-the-
some ofthe risks they pose. and mechanisms to remedy the minute information on the validity ofcredentials and security
threat and renew system security. data. For example. not all consumer devices will use an

Reinediation Renewal
Threat Risks Mechanism Mechanism

Cloned Device Free-access devices. Broadgast BKB Update.
Eneryption

Compromused Unauthorized licenses. Certificate CRI, Distribution,
Certified Key links, device state. Revocation Key renewal,

identities, service access,
Implementation Recipes for device Specification Software upgrade

Version Assertion
Security MetadataAssertion

Failure
Protec! Failure

hacking.
Cormpromised keys.
Ungoverned gecess to
hcensed content.
Bogus service interaction.Stale Security Seeurity MetadataMetadata Clock rollback, reliance Assertion
on compromised
information.

Revocation
Revocation can be viewed as a remediation mechanism

that relies on blacklisting an entity. Typically, what is revoked
is a credential suchas a public-key certificate. Upon revoking
the credential, the blacklist will need to be updated and a
renewal mechanism used to convey the update so that a rely-
ing party may benefit therefrom.

Thus, for example, devices, users, and/or other entities can
be required to present identity certificates, other credentials.
and a variety of security data before they are given the infor-
mation necessary to consume content ora service. Similarly,
in order for a client to trust a service, the service may need to
provide its credentials to the client,

Examples of waysthat an entity can elfectively invalidate
information necessary for accessing a service include:

Certificate Revocation Lists (CRIs)
Credential and data validity services, such as an Online

Certificate Status Protocol (OCSP) responder
Commands for self-destruction of credentials and data

30

60

65

Software upgrade

Security Metadata
update service.
Software upgrade,

Online Certificate Status Protocol (OCSP) service to validate
a license server's certificate chain each time a licenseis used

or a new license is obtained. However, a license server may
use an OCSPservice with some frequency to checkthe valid-
ity of subscriber credentials. Policy (which can be easily
updated) can determine when and what services must be used,
By providing an opportunity to dynamically update policy,

\ license servers can adapt to operational changes. Thus, secu-
rity policy can evolve based on experience, technological
progress, and market factors.

Directed Self-Destruction of Security Objects
Self-destruction of credentials and data by an entity is

appropriate whenthe integrity of the entity’s security pro-
cessing isnotsuspect, When this optionis available, itis often
the moststraightforward, expeditious, and efficient method of
revocation. It can be particularly useful whenthere is little or
no suspicion of breach ofintegrity, and bi-directional com-
munication supports a protocol allowing specific directions
for destruction along with verification that destruction has
been completed.

US 8,776,216 B2

121

There are a number ofsecurity objects that will often be
useful to have destroyed or disabled, For example. when a
device leaves a domain, or a content license times out, it will

be useful for the associated objects that contain keys and can
be used to access content to be destroyed. The agent control
programsdescribed in moredetail elsewhere herein are well-
suited to the implementation ofself-destruction mechanisms.
Agents can be crafted to destroystate in secure storage (e.g.,
the state database) to alfect changes in domain membership or
to remove keys that are nolonger usable (e.g. due to changes
in membership or policy).

Exclusion
Exclusion is a remediation mechanism which bars a bad

actor (or group of bad actors) from participating in future
consumption ofgoods and services. Dueto the severe conse-
quences exclusion imposes,it is typically only used as a last
resort when circumstances warrant. Exclusion relies on a

mechanismthat effectively blacklists the bad actors, thereby
prohibiting them [rom consuming media and media-related
services. Disseminationofthe blacklist relies upon a renewal 2
mechanism to enable this remediation. However, exclusion
does not necessarily provide a renewal mechanismto restore
a bad actorto a trusted status.

Key Exclusion
Key exclusion isa key management mechanism thatis used

to broadcast key informationto a set ofreceivers insucha way
that at any given me a decision can be made to logically
exclude some subset of receivers from the ability to decrypt
future content. This is activated by using efficient techniques
to construct a Broadcast Key Block (BKB) that includes
information necessary for each member of a large group of
receivers to decrypt content. The BKBis structuredin such a
way that it can be easily updated, excluding one or more
members ofthe group fromthe ability to decrypt the content.
In other words. the design ofthe BKB allowsforan authority
to update the system with a new BKB,so that a content
provider can specifically exclude a target set of devices from
making use ofthe BEB, even though s/he may have access to
it.

This mechanism is particularly effective against a cloning
attack, where a pirate reverse engineers a legitimate device,
extracts its keys, and then deploys copies of those keys to
clone devices. The clones externally act like the original,
except that these clones will nat necessarily adhere to the
governance model. Once the compromise ts discovered, an
updated BKB can be deployed that excludes the compro-
mised device and all ofits clones, However. key exclusion
incurs some storage. transport, and computation overhead
that in somesituations make it less efficient than other meth-

ods. This is especially true when the content is not broadcast 5
or whenthere is a back channel.

Shunning
Shunning is a remediation mechanism very similar in

behavior to exclusion but with less severe repercussions.
Essentially, it is a means for refusing service because of a
runtime policy decision. Instead of more heavy-handed
approaches to disable a device's capability through directed
self-destruction or access denial via key exclusion, shunning
offers a simple approach to disabling a device by having
service providers refuse to supply it with services, With the
current trend towards extending the value ofdevices by using
externally provided services, shunning becomes a more
effective security mechanism,

Device shunning is driven by policy and can be used to
discriminate against entities (e.g., clients, servers, and spe-
cific role players) that do not produce all of the appropriate
eredentials that policy requires. Policy could, for example,

|

at

35

4c

45

nt

60

65

122

require that an entity demonstrate it has administered the
latest security update. Therefore shunning can be either a
consequence ofrevocation orthe failure to take some specific
action. Shunning can be facilitated in a peer-to-peer fashion
using, the inspection services and services such as those
describe in the *551 application. Also, a data certification
service (e.g., an instance of a validity service) can perform
shunning at policy enforcement time. After a system entity
has been shunned, it can be informed of the specific credential
or object that is failing to comply with the policy of the
service. This can trigger the shunned entity to renew the
object through an appropriate service interlace,

Expiration
Expiration is a remediation mechanism that relies upon

some temporal eventto invalidate a credential orobject. Expi-
ration is effective in enabling temporary access to media or
media services; once these have expired, the governance
mode] ensures that access is no longer permitted. [fective
use of expiration may require renewal mechanisms whereby
the credential or object can be relreshed to enable continued
access to media or media services.

Expiration ofCredentials
Certified keys can have various expiry attributes assigned

to protect relying parties. Expiration of credentials can be
used to ensure that entities whose certificates have expired are
refused service and used in conjunction with key rollover and
key renewal procedures. When entities are expected to be
frequently connected to a wide area network, best-practice
dictates renewing credentials and other security data regu-
larly. Another best-practice is to keep the validity period of
these objects as short as reasonable. Various techniques such
as overlapping validity periods and grace periods in validity
checking policies can be used to ensure smooth operation
during transitions. Short validity periods also help to reduce
the size of CRLs.

Expiration ofLinks
As previously described. link objects may be assigned

validity periods. Upon expiration, a link is deemed invalid
and a DRM engine will not consider it in the construction of
its graph. This mechanism can be used to enable temporary
access lo goods and services. Links can be renewed so that
continued access to media may be granted as long asil is
permitted by policy. Because. in one embodiment, links are
relativelylightweight, self-protected objects they can be eas-
ily distributed over peer-to-peer protocols.

Renewability Mechanisms: Application and Policy
Renewahility

[ficient renewability will typically entail the rapid
deployment ofremedies to protocol failures, which are often
the dominant security problems seen in security applications
(including in DRM systems), Software updates can then be
used to update the business logic and security protocols.
Whenapplications are designed to separate security policy
and trust policy from application logic, a separate mechanism

5 can be used to update policy; this is a less risky approach,In
fact, peer-to-peer publishing mechanisms can be used to rap-
idly update policy. Otherwise, the application deployer’s
sottware update methods can be used to update security and
trust policy.

Using the Right Tool for the Right Job
It will generally be desirable to use relatively lightweight

tools whenpossible. Using credentials with |nmited validity
periods and policies that check validity dates can help keep
the overall population of entities to a manageable size and
eliminate the need for growing CRLs too rapidly. Shunning
an entity rather than excluding it from access to keys can
extend the lifetime of BKBs: moreover, it has the advantage

US 8,776,216 B2

123

ofenabling fine-grained policies that can be temporary and
change with circumstances. Different CRIs that track spe-
cific types of credentials of inierest to different role players
can be used instead of BKBs which can be deployed where
they are most effective (such as dealing with cloned receiv-
ers). Policies can direct the use of online validity services
whenthose services can be expected to provide a reasonable
return on investment of time and effort, where tresh creden-

tials are very important, and where slower revocation mecha-
nismsare inadequate. When a nodeis likely to have integrity
and can be expected to do the right thing, and when a license
or security object (such as a link for a subscription or a
domainlink) needsto be revoked, then a reasonable approach
will typically be to tell the node to destroy the object. In such
a situation, there is no needto tell the world that the license is

invalid and there is no need to deploy a BKB or re-key a
domain, Self-destruction driven by local policy or by an
authoritative command is one ofthe moreefficient methods
for revocation.

lt will be appreciated that while a variety of revocation, 2
renewal, remediation, and other technologies and practices
have been described, it will be appreciated that different
situations call for different tools, and that preferred embodi-
ments of the systems and methods described hereimcan be
practiced using any suitable combination of some or none of
these techniques.

Network Services Security
The following discussionillustrates some ofthe security

considerations and techniquesthat can be relevant to embodi-
ments in Which the DRM engine and applications described
above are used in connection with networked service orches-

tration systems and methods such as those described in the
551 application.

Practical implementations of DRM systems employing a
DRM engine and architecture such as those disclosed herein
will often perform networked transactionsfor accessing con-
tent and DRM objects. In such a context, the systems and
methods described in the °55] application can be used to inter
alia standardize message-layer security, including entity
authentication and formats for authorization attributes

(roles).
For the sake of discussion, the transactions that occur ina

DRM system can be separated into at least two general cat-
egories based on the type of information being accessed,
acquired, or manipulated:

Content Access Transactions involve direct access to or

manipulation of mediaor enterprise content or othersensitive
informationprotected by the DRM system. Examples ofcon-
lent access transactions include rendering a protected video
clip. burning a copy ofa protected audio track to a compact 5
disc, moving a protected file to a portable device, emailing a
confidential document, and the like. Content access transac-

tions typically involve direct access to a content protection
key and are performed at the point of consumption underthe
direction ofa user.

Object Transactions are transactions in which a user or
system acquires or interacts with objects defined by the DRM
system that in some way govern access to protected content.
Such objects include DRM licenses, membership tokens,
revocation lists, and so forth. One or more object transactions
are usually required before all of the collateral necessary to
perform a content access transaction is available. Object
transactions are typically characterized by the use of some
type ofcommunications networkto assemble DRM objectsat
the point ofconsumption.

‘These two types of transactions define two points of gov-
emance that are generally relevant to most DRM systems.

wi

ra

nd

at

35

40

45

ra

60)

65

124

FIG. 38 shows a typical pair ofinteractions in which a DRM-
enabled client 3800 requests a DRM license 3802 from an
appropriate DRM license service 3804. Inthe example shown
in PKG, 38, the DRM license 3802 is sent trom the DRM
license service 3804 to the client 3800, where it is evaluated

in order to provide access to content 3806.
DRM systems typically require that both content access

and object transactions be performed in a manner that pre-
vents unauthorized access to content and creation ofobjects
that protect the content. However, the security concerns for
the two types of transactions are naturally different. Por
example:

Content Access Transactions may require authenticating a
human principal, checking a secure rendercount, evaluating
a DRM heense to derive acontentprotection key, etc. A major
threat against legitimate execution of a content access trans-
actionis breach ofthe tamper-resistant boundarythat protects
the objects and the data inside.

Object Transactions usually involve a communications
channel between the entity that requires the DRM objectand
the entity that can provideit. As such, object transactions face
communications-based threats such as man-in-the-middle

attacks, replay attacks, denial-of-service attacks, and attacks
in which unauthorized entities acquire DRM objecis that they
should not legitimately possess.

In general, object transactions involve authentication of
two interacting entities, the protection of the messages passed
between them, and authorization ofthe transaction. The pri-
mary purpose of such transactions is to gather inlegrity-pro-
tected DRM objects from legitimate sources so that content
access transactions can be performed. From the perspective
of a content access transaction, the mechanisms by which
legitimate DRM objects are obtained and the collateral infor-
mation used in obtaining themare essentially irrelevant: these
mechanisms can (and preferably should) be invisible to the
content access itself, This natural separation of concerns
leads. in a preferred embodiment. to a layered communica-
tions mode! that distinguishes the trusted communications
framework from applications that are built on top of it.

The simplified license acquisition and consumption
example shown in FIG, 38 obscures some details that will
generally be importantin practical applications. For example,
it does not show how the DRM license service verifies that the

entity requesting a DRM license is in fact a legitimate DRM
client and not a malicious entity attempting to obtain an
unauthorized license or lo deny service to legitimate chents
by consuming network bandwidth and processing power. Nor
does it show howsensitive information is protected for con-
fidentiality and integrity as it moves through the communi-
cations channels connecting the client and service.

A more detailed view of this example transactionis shown
in FIG. 39. Referring to FIG. 39, the dotted line represents the
logical transaction fromthe point of view of the application-

5 Jayer content rendering client 3800 and DRM license server
3804. The stack 3900 below represents the layers ofprocess-
ing used to ensure trusted and protected delivery between the
two endpoints,

In FIG. 39 a rendering client 3800 requests a license 3802
from a DRM license server 3804. The dotted line in the

diagram indicates that the original source and ultimate con-
sumer of the information are the content rendering client
3800 and the DRM license server3804, However, in practice
the message payload may actually be handled by several
layers ofprocessing interposed between the application-layer
logic and the unsecured communications channel 3902 con-
necting the two endpoints.

US 8,776,216 B2

125

The processing layers that separate the application layer
components from the unsecured communications channel
will be referred to collectively as the security stack, The
security stack can be thought ofas a secure messaging frame-
work that ensures integrity-protected. confidential delivery of
messages between trusted endpoints. The layered stack
model offers advantages suchas:

(1) Designers ofthe application layer logic do not need to
expend effort developing the underlying secure communica-
tions mechanisms that connect endpoints. The trusted mes-
saging infrastructure is a common design pattern that, once
designed, can be deployed in many different situations
regardless ofthe application layer logic that they are support-
ing,

(2) The messaging frameworkitselfcan remain agnostic to
the precise semantics of the messages il is conveying and
focus its efforts on preventing communications-related
attacks and attacks on the authenticity of the messaging end-
points,

In one embodiment. the security stack consists of several
distinct layers of processing. as described below. In one
embodiment the service orchestration systems and methods
described in the °551 application can be used to provide some
or all of the operationsof the security stack.

Authentication

In one embodiment, messaging endpoints may be authen-
ticated. Authenticationis a process by which a given endpoint
demonstrates to another that it has been given a valid name by
an authority trusted for this purpose. The naming authority
should be trusted by the relying endpoint in a transaction:
establishing such an authority is typically undertaken by the
organizations deploying the trusted technology.

A common mechanism lor demonstrating, possession of a
valid name uses public key cryptography and digital signa-
tures. Using this approach, an entity is provided with three
pieces of information:

(1) Adistinguished namethat providesan identifier for the
entity;

(2) An asymmetric key pair, consisting ofa public key and
a secret private key; and

(3) A digitally signed certificate that asserts that the holder
of the private key has the given distinguished name.

The certificate binds the distinguished name and the private
key. An entity that uses the private key to sign a piece of
information ts trusted to have the given distinguished name.
The signature can be verified using only the public key, For
example, authentication can be based on the X.509v3 stan-
dard.

Since, in one embodiment, an entity that can demonstrate
possession of a certified private key is trusted to have the
distinguished nameindicated in the certificate, protecting the
private key used to sign information becomes an important
consideration. [n effect, the ability to use the private signing
key defines the boundaries of the entity identified by the
distinguished name, At the application layer, senders and
recipients need to know that messages originate from trusted
counterparts. As such, in one embodiment it is important that
ihe application layer logic itself be part of the authenticated
entity. For this reason, in one embodiment the security slack
and the application layers that rely upon it are preferably
enclosed ina trust boundary, suchthat a subsystem contained
within the trust boundary is assumed to share access to the
entity’s private message signing key.

Authorization

The authentication mechanism described above proves to
distributed messaging endpoints that their correspondent’s
identityis trustworthy. In manyapplications, this formation

wi

5

|

Sanh

Af

45

60

65

126

is (oo Coarse—more detailed information about the capabili-
ties and properties of the endpoints may be needed to make
policy decisions about certain transactions, For example, in
the context of PIG, 38, the content rendering client may need
to know not only thatit is communicating with an authenti-
cated endpoint, but also whetherit is communicating with a
service that has been deemed competent to provide valid
DRM license objects.

Embodiments of the security stack provide a mechanism
lor asserting. conveying, and applying policy that is based on
more fine-grained attributes about authenticated entities via
an authorization mechanism. Using this mechanism,entities
that already possess authentication credentials are assigned
role assertions that associate a named set ofcapabilities with
the distinguished name ofthe entity. Por example, role names
can be defined for a DRM client and a DRMlicense server.

The named roles are intended to convey specific capabili-
ties held by anentity. In practice, roles can be attached to an
entity by asserting an association betweenthe entity’s distin-
guished name and the role name. As with authentication
certificates, which associate keys with distinguished names,
in one embodimentrole assertions used for authorization are

signed by a trusted role authority that may be different from
the name issuer. Inside an entity. role assertions are verified
along, with the authentication credentials as a condition for
granting access to a messaging endpoint’s applicationlayer.

An entity may hold as many role attributes as are required
by the application being built. The example in FIG. 40 shows
anentity with multiple roles: one role that indicatesthe ability
to function as a DRM client and twoservice roles. For

example, one entity may be simultaneously a DRM client, a
DRM object provider, and a security data provider. In one
embodiment, SAML 1.1 is used for assertions regarding
entity attributes.

Message Security
The bottom layer of the security stack is the message secu-

rity layer, which provides integrity, confidentiality, and tresh-
ness protection for messaves,and mitigates the risk ofattacks
oo the communications channel! such as replay attacks. In the
message security layer:

Messages between application layer processes are signed
using the entity'sprivatemessagesigning key. providing
integrity protection and resistance to man-in-the-middle
attacks.

Messages are encrypted using a public key held by the
destination entity. This guarantees that unintended
recipients cannot read messages intercepted in transit.

Nonces and timestampsare added to the message, provid-
ing immunity to replay attacks and facilitating proofs of
liveness between the messaging endpoints.

Using server timestamps for updating trusted time ofthe
DRMengine

In one illustrative embodiment, support is provided for
AES symmetric encryption, RSA public key cryptography.
SILA-256 signature digests, and mechanismsto signal other
algorithms in messages.
15, Bootstrap Protocol

In some embodiments, a bootstrap protocol is used to
deliver initial confidential configuration data to entities such
as devices and software chents. For example, when an entity
wishes to join a larger network or system and conumunicate
with other entities using cryptographic protocols, itmay need
to be configured with personalized data, including a set of
keys (shared, secret, and public). Whenit is not possible or
practical for the entity to be pre-configured with personalized
data, it will need to “bootstrap”iiself using a cryptographic
protocol.

US 8,776,216 B2

127

The example protocol described belowuses a shared secret
as the basis for bootstrapping an entity with a set ofkeys and
other configuration data. In the following sections, the fol-
lowing notation will be used:

E(K, D) is the encryption of some data D with a key K.
Ds, D) is the decryption ofsome encrypted data D with a

key K.
SUK, D)is the signature ofsome data D with a key K. This

can be a Public Key signature, ora MAC.

wi

128

process (for example, whenverifying a signature or a certifi-
cate chain) will lead to an error and stop the protocol progres-
sion.

BootsirapRequestMessage
The client sends a request to the server, indicating thatit

wants to initiate.a bootstrap session and provides someinitial
parameters (e.g,. protocol version, profile, etc.), as well as a
session ID (to prevent replay attacks) and a list of Trust
Domains in which it can participate. The following table

H(D) is the message digest of data D. 19 Showsanillustrative format fora BootStrapRequesiMessage:
Vs, D) is the verification ofthe signature over some data

D with a key K. It can be the verification ofa Public Key
signature or of a MAC. Name BootstrapRequest Message

CertChain(K)is the certificate chain associated with Public Attributes Name Description
Key K. The value of K is included in thefirst certificate ,
inthe chain, : Se) eehepa

CertVerify(RootCert, CertChain) is the verification thatthe Profile Name ofthe Profile for this protecal/version
certificate chain CertChain (including the Public Key Direction Client > Server
found inthe first certificate ofthe chain)is valid under Payload BootstrapRequest
the root certificate Root@ert Sram Tye esoription

A\BIC]... is the byte sequence obtained by concatenating 7" Sessiontd String UhigivsesintiD
the individual byte sequences A, B.C, ... chosenby the client

CN(A)is the canonical byte sequence for A TrustDomains Listof Strings Names of alll the Trust
CN(A, B, C,...) is the canonical byte sequence for Domains in whichthe

compound fields A, B.C... client can participate,
1.38. Initial State as ee ChullengeRequestMessage
1.38.1. Client oor
In one embodiment, the client has the following set of

bootstrap tokens (preloaded at manufacturing time and/or in The Protocol andVersion messageattributes specify which
firmware/soltware): protocolspecification the client is using, and the Profile field

One or more read-only certificates that are the root of trust 4, identifies a predefined set of cryptographic protocols and
for the bootstrap process: BootKootCertilicate encoding formats used for exchanging messages and data.

One or more secret Bootstrap Authentication Keys: BAK The Client chooses a SessionId, which should be unique to
(shared) that client and not re-used, Vor example, a unique [D for the

An optional seeret Bootstrap Seed Generation Key (unique client and an incrementing counter value can be used as a way
lo each client) BSGK.Ifthe client has a good source of__to generate a unique sessionID.
random data, this seed is not needed. 43 Tn one embodiment. the Client also sendsa list ofall the

Some information, ClientInformation, the client will need Trust Domains for which it has been configured.
fo give to the Bootstrap service in order to get its confi- In one embodiment, the server receives the BootstrapRe-
dentiality key (e.g,, ChentInformation can include a questMessage and performs the followiny, steps:
device's serial number, the name of the manufacturer, Checksthat it supports the specified Protocol, Version, and
ete.). This information consists of a list of attributes. 49 Profile requested by the client.
Bachaltribute is a (name, value) pair. Generates a Nonce (strongly random number).

The client may be configured with multiple BootRootCer- Optionally generates a Cookie in order to carry informa-
tificate certificates and BAK authentication keys, in order to tion such as a timestamp, session token, or any other
be able to participate in the Boot Protocol with different Boot server-side information that will persist throughout the
Servers that may require different trust domains. 45 session. The value of the cookie is meaning!ul only to

1.38.2. Server the server, and is considered as an opaque data block by
In one embodiment the server has the following tokens: the client,
At least one ofthe client’s Bootstrap Authentication Keys: Extract the value of SessionId fromthe BootstrapRequest-

BAK(the shared secret) Message.
A Public/Private Keypair used for signature: (Es, Ds) sy Generate a challenge: Challenge=[Nonce. Ke, Cookie.
A certificate chain ServerCertificateChain=CertChain(ls) Session!d],

that is valid under one ofthe root certificates: BootRaot- Compute S(Ds, Challenge)to sign the challenge with Ds.
Certificate Construct a ChallengeRequestMessage and send it back to

A Public/Private Key Pair used for Pineryption: ([e/De) the client in response.
1.39. Protocol Description : ChallengeRequestMessage
An illustrative embodiment of a bootstrap protocol is ~—The following table showsanillustrative format for a Chal-

shown in FIG. 41 and described below. A failure during the lengeRequestMessage:

Name ChallengeRequestMessage
Direction Server — Client

Payload Challenge
Namie Type Description

Nonce- Byte Sequénce Server-pencrated random nonce
ServerEneryptionKey Byte Sequence Encoded Public Key Ee used for

message payload encryption

US 8,776,216 B2

130
-continued

Cookie Byte Sequence Server-generated opaque data
SessionId String Client-generated session TD
Sienahiure Byte Sequence Encoded Digital Signature 5(Ds,

CN(Challenge)) of the
Challenge’s canonical byte sequence
Canon(Challenge) =CN
(CN(Nonce),
ON (ServerEncryptionKey),
CN(Cookie), CN(Sessionid))

ServerCertificuteChain
Name Type Description

TrustDomain String
valid

Certificates List of Byte
Sequences

Trust Domain in which the certificate chain ts

An list of Encoded Certificates that form a
chain: CentChain(hs), The first certificate
in the array certifies the Public Key Es. and
each of the following certificates, in turn,
certify the Public Key of the preceding
certificate. The last certificate in the array has
a public key certified by the Root CA
Certificate for the Trust Domain

In Response To BootstrapRequestMessage

In one embodiment, aller receiving the ChallengeRequest-
Message, the client performs the following steps:

Verify that the certificate chain ServerCertificateChain ts
valid under the root certificate BootRootCertificate:

CertVeril(BootRootCertificate, ServerCertificat-
eChain).

Extract the Public Rey Iss from the ServerCertificateChain.
Verily the signature of the challenge: V(Es, Challenge).
Check that the SessionId matches the one chosenfor the

session when the BootRequestMessage was sent.
Construct a ChallengeResponseMessageand sendit to the

server,

ChallengeResponseMessage
‘lo generate a ChallengeResponseMessage, the client per-

forms the following steps:
Generate a Session Key SK using one ofthe two following

methods:

Name
Direction
Payload

Sessionkey Byte

Name

Challenge

Clienthaformation Array of

SessionKey

bal 5

au

35

Directly using a secure random key generator
Indirectly using the Nonce and BSGK: compute

HSK=H(BSGEK|Nonce), and set SK=First N bytes of
HSK

Generate a ChallengeResponse object that contains [Chal-
lenge, ClientInformation, SessionKey| Here, the Chal-
lenge is the one fromthe previously received Challeng-
eRequesiMessage. with the ServerEncryptionKey
omitted.

Compute S(BAK. ChallengeResponse) to sign the
response with BAK.

Enerypt the signed ChallengeResponse with SK: E(SK,
|ChallengeResponse, S(BAK, ChallengeResponse)])

Encrypt the SessionKey with the Server's Public Key Ee
Construct a ChallengeResponseMessage and sendit to the

server

ChallengeResponseMessageClient — Server
SessionKey [encrypted with Ee]

Naine ‘Type Deseription

Encoded Session key SK encrypted with the
Sequeice Server's Public Key Ee

ChallengeRespouse |encrypted with SK]
Type Description

Object Challenge
Name Type Description

Notice Byte Server-penérated
Sequence randomnonce

Cookie Byte Server-genertted
Sequence opaque data

Sessionld Sinag, Linigit@ sessionID
Array of 0 or more Attribute Objects:

Attributes Attribute

Name Type Description

Namie String Name of theattribute

Value Stag Walue ofthe
attribute

Byte Encoded value of secret session key SK
Sequence
Byte Encoded Digital Signature 5(BAK,Signature
Sequence CN(ChallengeResponse)) of the canonical byte

US 8,776,216 B2

131
-continued

132

sequence CN(ChallenpeResponse) = CN
(CN(Challenge),
CN(ClientInformation), CN(SessionKey))

Expected BootstrupResponseMessage
Response

The server receives the BootstrapChallengeResponse and
performsthe following steps:

Deerypt the session key SK using its private key De: D(De,
SessionKey)

Deerypt the ChallengeResponse with the session key SK
from the previous step: D(SK. Challenge)

Verily the signature ofthe challenge: V(BAK, Challeng-
eResponse)

Check that the session key SK matches the one used to
decrypt

Check the Cookie and Nonce values if needed (e.g., a
timestamp)

Check that the Sessionld matches the one chosen for the

session Whenthe BootRequestMessage was sent.
Construct a BootstrapResponseMessage and send it to the

Server.

BootstrapResponseMessage
‘To generate a BootstrapResponseMessage, the server per-

formsthe following steps:
Parse the ClientInformation received in the ChallengeRe-

sponseMessage and lookup or generate the client con-
figuration Data that needs to be sentfor this bootstrap
request (this may include confidentiality keys (Ee/De)
for the node that represents the client), The server will
typically use the value of the Nonce and Cookie to help
retrieve the correct information for the client.

Create a BootstrapResponse with the Sessionid and the
configuration Data

Compute S(Ds, BootstrapResponse) to sign Data with Ds
Encrypt the signed BootstrapResponse with the session

key SK: F(SK, [BooistrapResponse, S(Ds, Bootstrap-
Response)})

Nanie BootstrapResponse Message
Direction Server > Client
Payload BootstrapResponse [encrypted with SK]

Name Type Description

Sessionid=Sinn Session ID
Data Byte Configuration data for the client

Sequence
Signatre Signature Digital Signature S(Ds,

CN(BootstrapRespouse}) of
the canonical byte sequence

at

35

40

a5

Su)

-continued

CN(Bootstrap Response) = CN
(CN(SessionID), CN(Data))

In Response To ChallengeResponseMessage

1.40. Trust Domains

In one embodiment, each trust domain includes a Root
Certificate Authority and a unique name for the domain.
When a client sends a BootstrapRequest. it identifies all the
trust domainsthatitis willing to accept (1.¢. which certificates
it will considervalid), The server selects a trast domain from
the list sent by the client. if it supports any.

1.41. Signatures
In one embodiment, whenever signatures are used in mes-

sage payloads, the signatures are computed over a canonical
byte sequence for the data fields contained in the signed
portion(s) of the message. The canonical byte sequence is
computed from thefield values, not from the encoding ofthe
field values. Each profile preferably defines the algorithm
used to compute the canonical byte sequenceofthefields for
each message type.

1.42. Profiles

A profile of thebootstrap protocolis a set ofchoicesfor the
various cryptographicciphers andserialization formats. Fach
profile preferably has a unique name, and includes choice of:

Public Key Eneryption Algorithm
Public Key Signature Algorithm
Seeret Key Encryption Algorithm
Secrei Key Signature Algorithm
Public Key encoding
Digest Algorithm
Canonical Object Serialization
Certificate Format
Minimum Nonce Size

Message Marshalling

APPENDIX A

The following is an examples of a contriller object with
multiple, interlocking signatures. NOTE:in this example,the
content keys are not encrypted

<Controller xmins="hitp://www,intertrust.conwOctopus!10°" id=uenx-
octopus. intertrust.comicontroller:s 7A50262E3380.414A BCOBCTBESDAIES”=
<ControlReference>

<1d>urn:x-oclopus,intertrust.comscontral1s/Td>
=Digest=

<DigestMethod xmilns=“hepi//wyew.w3.ong/2000/00/smtdsigi"
Algorithm="http://wwwow3.orgJOU)eraldsigishal/>

=DigestValue
xmins="“http://wwwows ore2000/00/xmidsig"> 10sn LOVICRKs rSsOrXky KyAmeA=/DigestVale

igest>
=/ControlReference>

<ControlledTargets>
<ContentKeyReference>

=JdtnX-octopus.inlerinist.comicontent-key 20014 /Td=
~/ContentKeyReference=

US 8,776,216 B2
133 134

-continued

=ContentKey Reference>
<Id>uru:x-octopus.intertnist.com:coutent-key;20012</1d>
</CantentKeyReference>

<ContentKeyReference>
<Id>urn:x-octopus.intertrust.com:content-key:2003=/Td>
</ContentKeyReterence>
</ControlledTargets>
</Controller>

<Signature Id="Signature.0" xmins=“hitpy/www.w3org/2000/00)xmidsigé>
<Signedinio>

=CanonicalizationMethod Algorithm="hirp>//www.w3.org/ 2001/10/xml-exc-01 4nd" (>
<SignatureMethod Algonthm="httpy//www.w3.org/2000/09/xmldsig#rea-shal” />

“Reference URI="urn:x-octopus. imertnust,com:controller:37A30262EEI389A14.ABCUBC7BES D43ES~Transforms>

<Transform Algorithm="hnp:/www.inlertnist.com/Octoplis/xmldsig#chs-|__0° >
</Transforrns>
=DigestMethod Algorithm="httpi//www.w3.org/2000/09xmldsigesbral” >
<DigestValiie™G1 2XFOSz/2Cw H6Mak mObOQcxuk=<'DigestValue>
</Reference>
</SignedInfo>

= Signature Value>mjoyW+w289iZDG/hadeWYD1 RmhQuqRuiSN977NODpzwUD02FdsAICVjAcw7 lan
FWuvtaw W/clFYP/pjFebESCvurHUsEaR1/LYLDkpWWxbiLI Epsr3y ROKUsOAUSa4DxDxQE7nUdgui
9YMpnjA#EGpuxdPeZJMlvyKqNDpTk94=</SignatureValue>
<Keylnfo>
=X509Data>
<XS09Certificate>MIC6jCCAlOgAwIBAgIBBjANBpkghkiG2w0BAQUFADCBszELMAkGALUEBhM
CVVMxEzZARBgNVBAgTCKENhbGImb3 JuaWExFDASBeNVBAcTC! NhbuRhlENsYXJhMSAwlgyDV
QQKEaxdJbnRlenRydXNOIFRIY 2hub2xvZ2llezEUMBIGAIUECXMLT2NO0b3B leyBEUKOXGDAW BaNV
BAMTDO9|dG9wdXMeVGVedCBDQTERMCUGCSGSIb3 DQEIARYYb2N0b3 Bl cy UZXNOLWNhO
DhwdXMubmVOMB4XDTAUMDOQWODAwWNTUyOVoXDTAOMDUWODAWwNTUyOVowgceExC2AlBg
NVBAYTAIVIMRMwEQYDVQQIEwpDYWxpZim9ybnuliMRQwEgYDVQQHEWwtTYW50YSBDbGFy
YTEeMB4GA1UEChMXSWS0ZXJ0enV2dCBUZWNobmYsh2dpZXMxF DASBENVBAsTCO9jdG9wdX
MgRFINMR&wHOYDVQODESZPY3RvcHVelFRlcIQgTm9kZSAwMDAXMS4wLAYIRoZlhveNAQkB
PhovYSRvcHVeLXRlcIOthmekZS0wM DAXQDhwdX Mubm VOMIGIMANGCSqGs [bsDQEBAQUAAd
GNADCBIQKBEQDUSAIQATIE+VTuawUO2MvssCuinZbCys)AGvbgQc+ePXpleldACiCL 1 nleml/ZLI0
TéaRwQeolyiSeKS7bxv+chW 14FLjngS/IKLGS4RG1eoMIOTI IhErb2nUJxTOKCgxsEXFADIWAYOLX7
lipy/tho2mn'TnilbpksWoPrPw3xMPCYwIDAQABMA0GCSqGSIb3DQEBBQUAA4GBAH I rHStXeQkFm
eVhlizekitwsNIRF+/LHZGuTGReb6+J2ZLK6sNUWX LOID 1 oPRMde7X 1 RigpDNkbG4xo PoxHi KoVal
BstjvoQ8iUceziMIXVV/q+XJMd7HIBsq25XqBSeSo/R AKKKwuRRKQHEV3uBABYVLSCzIRSIH9bFuyz
NeVae/X509Certificate>

</XS09Data>
</KeyInfo>
</Signahure>

Signature xmns="httpy//www.w3.0!2000/09 samldsipi'=
=Signedinfo>

=CanonicalizationMethod Algorithm="http://wwworg2001 LO/ximl-exe-c1qi" j=
<SignatureMethod Alporithm="http://www.w3.org/2000/09/xmildsig#hrnac-shal”/=

<Reference URJ="#Signature.">
=DigesiMethod Algorithm="hith.//www.w3 .org/2000/09/xmidsigfshal’ />
<DigestValue>AgPVOnvNj/ves eMyKJogGNKtM=</Digest Valiie>
</Reference>

Reference URI="urn:x-octopus. intertrust.com:controller:3 7AS0262EE3389A14ABCOBCT BESD43ES"=
='Transforms>

«Transform Algorithm="htp://www.intertnist.conyOctopus!xmidsig#cbs-10" >
</Transforms=
=DigestMethod Algorthin="http://www.w3.org/2000/09) smildsigp#sha Ll (>
<DigestVilue>G1eXPOSa/7Cw H6Mafm0ObOQcxiik=sDigestVahie=
</Reference>
=/SignedInfo=
<SignatureValue>TcKBsZZy+-VpadoOkZ62LTTY4mQ=</SignaturVahie>

<Keylnfo>
<KeyName>urn:x-octopus.intertrust.comisecret-key:200 1</KeyWame=
</Key Info=
</Signature>

Signature xmilns="hopy/www.w3ong2000/09xumidsigi'>
<Signedinio=

=CanontcalizationMethod Algorithn="bttp:/(www.w3.ong/2001 /10/xml-exe-cl 4ntli>
=SignarureMethod Algorithm="http://www.w3.org/2000/09/xmidsig#hmac-shal” '>

Reference URI=""Ay">

<DigestMethod Algoritm="“https//www.w3.org/20NI0/09/smldsigt@shal” />
<DigestValue>AgPVO0nvNj/ves LleMyKJogGNKIM=</DigestValue>
</Reference>

Reference URJ=“urn:x-octopus.intertrust.conteontroller37 AS02626£33894 | 4ABCOUBCT] BES D43E5"=
~Tronsiorms=

<Transform Algorithm=“https//www,intertrust.com/Octopus/xinldsigtebs- 10" />
</Traustorms>

<DigestMethod Algorithm="htip://www.w3,org/2000/09/xmildsigtsha |” (>
<DigestValueG LeZXT9Se/2Cw H6MalmUObOQexuk=s)DigestValue>
</Reference>

US 8,776,216 B2

135
-continued

136

</SignedInfo>
<SienatireValue>gAumOpXC1 &kIsVeoRLIHbeXTQHCA=</SignatureValue>

<Keylnto>
<KeyName~urn:x-oclopus.intertrusl.connsecret-key-2002</KeyName>
</KeyInio=
</Signature>

=Stanatire xmilns="‘hitpy//www.w3.org/2000/09/xmldsigt>
<Signedinfo>

<CanonicalivationMethod Algorithm="Ittp://wwwew3.org/2001/10/sunl-exe-e1 oni” (>
<SignatureMethod Algorithm="“httpywww.w3.org/2000/09/xmidsig#hmac-sha |" /=

<Reference URJ="#0"=>

<DigestMethod Algorithm="http:!/www.w3.org/2010/09/xmldsig#shal” />
<Digest Value>AqPVO0nvNjives leMyKIneGNKtM=</DigestValue>
</Reference>

<Reference URJ="urn:x-octopus.intertmist.com:contraller:3 7ASU262R FI389.A 4ABCOBCTBES D43ES=
<Transforms>

<Transform Algorithm="http://www.intertnist.com/Octopus/xmldsig#ebs: 10" />
</Transfornis>
<DigestMethod Algorthm=“hitp://www.w3.org/2000/09/xmldsig#shal” />
<DigestValue>GLzXF9Se/2Cw HoMaFmiObOQcxuk==/DigestValue=
</Reference>
</SignedInfo>
<SignatureValue*bRxLSMs82d4ktwsszouhBxzlisOo=</SivnatureValue>

<KeyInio>
<KeyName>urnix-octopus.intertnist.cam:secret-key:2003</KeyName>
</KeyInfo>
</Sipnature>
</Bundle>

APPENDIX B

‘This Appendix B presents the XML encoding ofobjects in
one embodiment of a system using the example Octopus
DRM engine described elsewhere herein. Por a particular
application, an application-specific XML schema can be cre-
ated by importing the XML schema shownbelow (the “Octo-
pus XML Schema”) and adding elements specific to the
application (e.g., extensions used for revocation). In one
embodiment, the encoding ofobjects in XML need to be able
to be validated against the application-specific XML schema.
Additional possible constraints on these XML encodings can
be found below.

In the example illustrated in this Appendix B, the base
XML-Schema Type for all the DRM objects is OctopusOb-
jectlype. This means that all the objects support attributes

aa

40

and extensions. The type of each Octopus object elementis
derived from this base type. These types may aggregate other
elements such as the SecretKey element for the ContentKey-
‘Type for instance.

In this example embodiment, the Scuba key distribution
system keys are described in terms of an extension; the Scu-
bakeys element will then be a child ofthe extension element.
‘The same applies forrevocation keys with the Torpedo exten-
sion,

As described elsewhere herein, there are different kinds of
Octopus Objects (e.g, ContentKey, Protector, Controller,
Control, Node, and Link). These objects can be bundled
together along with extensions using the <Bundle> element.
Tn one embodiment, ifobjects orextensions are signed within
the <Bundle>, the <Bundle> will contain <Signature> ele-
ments as described elsewhere herein.

Octopus XMLSchema (Octopns.xsd):

=<han! version="1.0" encoding="UTF-8°1>
<xeischema targetNameéspace="hittp://intertrust.comv/Octopus|7
amins=“http://intertrust.com/Octopus/1.U" xmins:xs="hitps/www.w3.org/2001/KMLSchema”
amilns:ds="http:)www.w3.org/2000/09/xmidsig#" xmlns:xenc="http://www.w3org/2001 (U4/xmlence™
elementFormDefault="qualified” attributeFormDefault="unqualified”>

~=!-- imports —>
<xXsLMport namespace=“http:/www.w3 org/2000/09/xmidsig#” schemaLocation="xmldsig-core-

schemaxsd)>
<ximpor namiespace="“http:/wwwow3 Ore/2001/04/snmilenc#” schemaLocation="xene-schema.xed"/>
<!— top level elements -->
<xs:element nume="RootLevelObject™ type="RootLevelObjectType”abstract="truey>
=xscelement namee*OctopusObject” type="OctopusOhjectType” abstract="trne"/>
=!-- base element -->
<xs:element name="Bundle™ type="BundleType"")>
=xselement name="Link” type=“LinkType”substitutionGroup=“RootLevelObject/>
<xsielement name="Node" type="NodeType™substitutionGroup="RootLevelObject/>
<xstelement name="Control” type="ControlType” substitutionGroup=""RootLevelObject"/>
exsiclement mume="Controller” type="ControllerType" substitutionGroup="RootLevelObject”
=xsielement name="Protector” type=“ProtectorType” substiutionGroup=""RootLevelObject>
<xe:clement fame="ContentKey™ type="ContentKeyType” substintionGroup="RootLevel Object"!
<1-- key elements —
=xsi¢lement name="SecretKey” type="KeyType"/>
~xsielement name="PublicKey™ type="PairedReyType"!>
<xsielément name="PrivateKey” type="PairedKeyType"/=
<sxsielement name="Key Data” type="KeyDalalype"!>
~!~ other elements -->

US 8,776,216 B2
137 138

-continued

<xsrelemen! name="AttibuteList” type="AltributeList Type'y>
<xetelement! name="Attribute”type="AttributeType/>
<xs:element name="ExtensionList” type="ExtensionListType/>
<xscelement name="FExtension” type="ExtensionType” substitulionGroup="RootLevelObject"/>
<xsielement name="LinkFrom” type="OctopusObjectReferenceType"/>
<xsielement name="LinkTo”type="OctopusObjectReferenceType?/>
<xs:element name="Id" type="xs:string”™/>
<xs:element name="Digest” type="DigestType"/>
=xstelement names"ControlProgram” type="ControlProgram'Type"/>
<xs:element name="CodeModule” type="CodeModuleType"!>
sxscelemen!) name="CoutrolReference™ type="“OctopusObjectReferenceType)>
<xgielemen! name="ContentKeyReference™ type="OctopusObjectReferenceType"/>
<xs:element name="ContentReference” type="OctopusObjectReferenceType"/>
<xs:elementname=""ProtectedTargets” type="ProtectedTargetsType""!>
<xs:element name="Controlled/argets” type="ControlledTargersType">
<!-- scuba -->
<xs:element name="ScubaKeys”type="“ScubaKeysType"/>
<!— base type for Octopus Objects -->
<xs:complexTypename="RootLevelObjectType"/>
<xs:complexType name="OctopusObjectType”=

~xsicomplexContent=
sxsiexlension base=“RoolLevelObjectType">

“NSisequence>
=xscelement ref="AtiributeList™ minOccurs="0"">
<xs:element ref="ExtensionList” minQccurs='0"'>

</xisequence>
<xs:altribute name="id" type="xsistring” use="optional>

</xeuextension>
<ixs:complexContent=

</xs:complexType>
=xs:complexType name="AnyContainerlype”>

<xsicomplexContent=
<xs:extension hase="“RootLevelObjectType">

=xsisequence>
xsiany process(ontents="lax"/>

~/xsisequence>
</xsiextension>

=/xscomplexContent=
=/xe:complexType>
<xé:complexType name="ExtensionType">

=xs:complexContent=
=xsiextension base="AnyContainerType">

“<xsisequence minOccurs="0)">
=xsiclement ref="Digest” minQceurs="1)"/>

</xeipequence>
exscattribute name="id" type="xsistring” use="“required"/>
<xgtattribiite namne="“subject” type="xsistring’/>

</xsiexlension>
</xs:complexContent=

</xs complexype=
<xs:complexType name="ExtensionListType">

xeSequence>
<xsielement rel="Extension” maxOcecurs=“unbounded"!>

</xsisequence>
</xs:comiplexType=
=xsccomplexType mune="AtiributeListlype">

<“xsiscquence>
<xsrelement refe“Attribute” mayOQceurs="unbounded™! >

=/xsisequence>
</xsccomplex[ype>
<xs:complexType name="AttributeType"=

=xsisimpleContent=
“xsiextension base="Nxs:string’ ">

=xscaltribute name="name”type="xs:string” use="'required""/>
<xsiattribute name="type” nype="se:string” default="string’)=

</xs textension>
</xscsimpleContent=

=/xs:complexType>
=xs:complexType name="DigestType">

“xeisequence>
<xs:element ref="ds:DigestMethod"!>
<xs:element ref="ds:DigestValue™/>

</xsisequence>
</xscomplexType>
<xs:complexType name="“OctopusObjectReferenceType">

=xeisequence>
=xscelement ref="[d"/>
<xs:element ref="Digest™ minOccurs="0")>

/xsisequence>

US 8,776,216 B2
139 140

-continued

</xsccomplexType>
<xsicomplexType nume="ProtectedTargetsType*>

<xSTsequencE>
=xscelement ref="ContentReference” maxOccurs=“unbounded"!>

</xaisequience>
</xs:complexType>
sxs:complexType name="ControlledTargetsType">

<xeisequence>
<xs:element ref="Content KeyReference” maxOccurs="unbounded'’>

</xssequence=
/xsicomplexType=
<!-- Bundle Type —>
<xs:complexType name="BundleType”=

=xsisequence>
=xscelement rel="RootLevelObject™ maxQceurs="unbounded”/>
<xsielement ref="ds:Signature” minQOccurs="0" maxOccurs="unbounded=

~<ixesequence>
~/xsicomplesType=
<!-- Node ‘Types -->
<xs:complexType name="NodeType">

~xsicomplexContent=
=xsiextension hase="“OctopusObjec! ype"! >

=/xeicomplenContent=
</xs:complexType>
<!— Link Types —>

<xs:coutplexType name="LinkType">
=xs:complexContent>

=xeiextension base="QctopusObjectType"=
<xSsequence>

<xsielement ref="LinkFrom’*!>
=xscelement ref="LinkTo"/>
sxscelement ref="Control” minQccurs="0"7/>

</xsequence>
</xstextens ton

</xsicomplexContent=
</xs:complexType>
<!-- Protector Types -->
<xs:coniplexType name="ProtectorType”>

=xs:complexContent>
<xs:extension base="OctopusObjectType">

<xeisequence>
<xs:element ref="ContentKeyReference"/>
<xs:element ref="ProtectedTargets"/>

“/xssequence>
</xsrextension>

</xstcomplexContent>
=/xs:complexType>
<!-- Control Types —>
=xs:complexType name="CodeModuleType">

<=xsisimpleContent=
<xs:extension base="xsistring”>

<xsiattribute name=“byteCodeType” use="required™!>
</xscextension>

</xsisimpleContent>
</xs:comiplexType>
sxs:complexType nune="ControlProgramType">

<“xsiscquence=
<xs:element refe"CodeModule>

=/xsisequence>
=xsalinbule name="“type” use="‘required”/>

</xs:complexType>
<xs:complexType name="ControlType">

=xsicomplexContent=
<=xstexteosion base=“OctopusObjectType"'>

SxS igequence>
~xs:element ref="Control Program) >

</xsisequence>
</xsrextension>

=/xs:complexContent>
</xs:complexType>
<!-- Controller Type -->
<xs:complexType name="Controllerfype">

<xscomplexContent>
<xs:extension base="OctopusOhjectType"=

Xsbequence>
<xs:element ref="ControlReference™/>
=xsielement ref="ControlledTargets")>

</xsisequence>
=/xsrextension>

US 8,776,216 B2
141

-continued

</xsicomplexContent=
</xs:complex'lype>
<!-- Key types -->
=xs:complexType name="KeyType"">

“xgisequence>
<xsielement ref="KeyData"/>

</NSSequence>
<xevattribute name="id"type="“xs:string” use=“required™!>
=xsiattribute nume=“usage™ type="xs:8tring” use=“optional")>

</xs:complexType>
«xe:complexType name="PairedKeyType">

=xsicomplexContent>
<xarextension base="KeyType”>

<xsiattribute name="pair” type="xsistring™ use="required”/>
‘</xsiextension>

</xs;complexContent=
</xs:complexType>
<xsicomplexType tame="KeyDataType” mixed="trie"=

<xeisequence>
<xs:element rel="xenc:Enérypted Data” minQeeurse\"/>

</xsisequence>
<xscaltnibule nume="“encoding” use="required”=>

=xeisimpleType>
=xs:restriction base="xs7string”>

<xstenumeration vallie=xmlene"/>
=xs:enumeration value=“hase64"/>

</xscrestriction>
</xsisimpleType>

<Ixscattribile>
<xe:attribute name="fornat™ use="required”™>

=xsisimpleType>
<xscrestriction base="xsistring™>

<xsrenumerition valuc="PRCS#8"/>
<kerenumerition value="%.S09">
“xscenumerition value="RAW"/>

xszrestriction>
</xsisimpleType=

Sixszattribute>
=/xe:complexType>
<!--ContentKey Types -->
<xs:complexType name="ContentKeyType"=

=xs:complexContent=
<xsiextension hase="OctopusObjectType">

‘sxsisequence>
<xs:element ref="SecretKey"/>

XsSequence>
</xstextension>

=/xsecomplexContent=
s/xsccomplexType=
<1-- Scuba extensions -->
<xs:complexType name="ScubaKeysType”>

=xeSequence>
<xsielement ref="Seerel Key” minQecurs="0" maxOcours=“unbounded">
<xeielerment ref="PublieKey" minQceurs="(0" maxOccurs="unbounded"/=
<xs:element rel="PrivateKey” minQccurs="\)"traxOceurs="unbounded’/=

</xsisequence=
<ms complexype>

</xeischema>

An Illustrative Application-Specifie Schema:

Tani version="1,0" encoding=“UTF-8°9>
=xsischema targe(Namespace="litp://latertrust.com/kformat! 1.07
xmins="hitp://intertrust.com/kformat! 1.0” xmilns:oel="hitp.intertnist.cam/Octopus!| .07
xinlns:xs=“hitp: www.w3.org/2001/XMLSchema” xmilns:ds=“hup:! www.w3.org/2000/09/xmldsig#”
xmins:xenc="“http://www.w3.org/200 1/04'xmilenc#” elementFormDefault="qualified”
attributeFormDefault=“unqualified">

<!-- iniports -->
<xs: import namespace=“http://intertrust.com/Octopus/1.0" schermuLocation="Qctopus.xsd"/>
<!-- elements —>
<xsielement name="Torpedo”type="TorpedoType"!>
<xs:element name>" BroadcastKey” type="BroadcastKeyType>
<xs:element name="BroadcastKeyMethod” type="BroadcastKeyMethodType"/>
= types —
<xs:complexType name="“TorpedoType"=

=xXsisequence>

142

US 8,776,216 B2

143
-continued

<xs:element refe"“BroadcastKey"! >
</xSgequence=

</xsroomplexType
<xscomplexType name="BroadeastKeyType">

“xgSequence>
“xsielement rel="GroadeastKeyMethod"/>
<xs:element ref="oct:;KeyData"'>

</xsisequence>
<}+- the id is the name of the MNK -->

=xs:attribute name="id" type="xssstring” >
<l+- the souree is the name of the MET =->
=xstattribute name="“source” bype="xststring”/>

</xs:coniplexType=
=xsicomplexType name="Broadcasi KeyMethodType"=>

</xsscomplexType></xeschema>

B.1. Additional Constraints
B.1.1. Nodes

In one embodiment, the following types of nodes are
defined:

Octopus Personality nodes. which are the root nodes of a
given DRM engine(e.g., Device Node or PC Software
Node).

Other types of nodes, such as User Nodes, or nodes for
proup ofusers, such as Subscription Nodes or Member-
ship Nodes.

In one embodiment, nodes contain keys (e.g., in Exten-
sions such as ScubaKeys) and it is necessary to be able to
separate the public information of the node (e.g., the id,
attributes, and public keys) andits private extensions (that
will, e.g., carry the secret and private keys). Moreover, there
will be one signature per part (the public and the private) so
that the public node withits signature can be exported asis (as
a parameterof the requestto the license service for example).

In one embodiment, the private extensions will be carried
in an ExternalExtension and signed. The public nade and its
private extensions can be packaged in the same <Bundle>
element or can arrive separately, An example of a signed
Octopus Personality Node is given below in Annex A to
Appendix B.

1.1.1.1 Attributes

In one embodiment, each XML, encoding of a Node object
will carry an <AttributeList> with the following
<Attribute>(s):

For Octopus Personalities:

=AttibuteList xmins="http://intertmst.com/Octopus/1L.07°=
Attibute name="“urnx-marlin.intertrastconnmtype>.<!Attribute>
<Attribute name="urn:x-muarlinintertrust.commdnk id"...
<= Attribute>
<Atmibute nante="urn:x-marl in, intertrist.comiinanufachurer”=...
=< Attribute>
<Attribute name="urn-x-marlin.intertrustcomumodel",,</Attribute>
< Atnibute name=“urn:x-marlLu. intertnust.conmversion’=...</Attribute>

</Atti buteList>

For other type of nodes:

<AttributeList xmlis="hitps//intertnist.com/Octopus!LU"
Attribute name="“urnix-marlinintertust.com:type=..<!Attribute>

AttributeList>

B.1.1.2 Extensions

As shown in Annex A to this Appendix B. in one embodi-
ment Octopus personality nodes carry extensions for Scu-

ha

At

35

40

45

30

Go

144

xstattribute name="Algonthm” fixed="http://marlin-drm.com/mangrovel 1 .0°/=

bakeys (both sharing and confidentiality keys) and Torpedo
(broadcast secret key), Other types ofnodes carry only Scuba
sharing keys.

All the public keys are carried inside the <Node> element
in an <Extension> element in the <E'xtensionList>. Other

keys are carried ina separate <Extension> element outside of
the <Node> element.

In one embodiment, the <ScubaKeys> extensions are
signed in the <Node>. In this embodiment, the internal
<Extension> carrying <ScubaKeys> inside the <Node>
(public keys) will need to include a <ds:DigestMethod> ele-
meantas well as a <ds:DigestValue>element. Theprivate keys
carried in an external <Extension=> will need to be signed and
this by signing the whole extension. Likewise, the <Torpedo>
extension will be signed.

B.1,2 Links
In one embodiment, the <LinkTo> and <LinkFrom> ele-

ments of the <Link> element contain only an <Id> element
and no <Digest> element. The <Control> elementis optional.
Annex C to this Appendix B contains an example ofa signed
link object.

B.1.1.1 Attributes

In one embodiment, links do not have mandatory
attributes, This means that the <AttributeList> is not required
and will be ignored by a compliant implementation.

B.1.1.2 Extensions

In the example embodiment shown tn this Appendix B,
links have <ScubaKeys> internal extensions carried inside
the <Link>, and thus the <ExtensionList> element is manda-

tory. In addition, the <ScubaKeys> extensionin a link is not
signed. and thus, oo <ds:DigestMethod> and <ds:Di-
gestValue> element are carried inside the <Extension> ele-
ment, This <ScubaKeys> extension contains an encrypted
version of the private/secret Scuba Sharing keys (in a <Pri-
vateKey> and a<SecretKey> element) of the “To Node”with
the public or secret Scuba Sharing key of the “From Node”.

5 This encryptionis signaled using the XMLencryption syntax,
Inthe embodimentillustrated in this Appendix B, the “encod-
ing” attribute of the <KeyData> element. child ofthe <Pri-
vateKey> and <SecretKey> elements, is set to “xmlene”. The
child of this <KeyData> element will be an <xene:Enerypt-
edData> element. The name of the encryption key will be
advertised in the <KeyInfo>/<KeyName> element.

In one embodiment, if the encryption key is a public key,
then:

The <KeyName> element is the name ofthe pair to which
the key belongs.

If the encrypted data (e.g. a private key) is too big to get
encrypted directly with a public key, an intermediary

US 8,776,216 B2
145

128-bit secret key is generated. The data is then
encrypted with this intermediary key using, e.g., aes-
128-cbe, and the intermediary key is encrypted with the
public key (using the <EneryptedKey> element).

The XML. chunk will then look like:

={-E(1, data) -->
<EneryptedData xmlns="http7/www.org! 2001 /04/xtnilenca”>

146

by the <SecretKey> element will be only encrypted by the
Scuba key (public or secret) of the entity the content is bound
io (the user for example). (2) Afier the first revocation where
the content key is encrypted according to the Mangrove
breadcast encryption scheme. The resulting data is then

<EneryptionMethod Algonthm=“htpywww.w3.org/2001 /04/smlencHaes] 28-che">
<Keyinfo xmins="httpy/www.w3,ore/2000/09)xmlds| aH=

<!-E(PU Ba, 1) -=>
<EncroyptedKey aming=“hitp:/www-w3.ore/200 1/04/amlenci™=

=EnecryptionMethod Algorthm="http:)/www.w3.org/2001 U4!xmlenci#rsa-1
=Keylnfo xmins="“hitp:/'www.w3.org/ 2000/09 xoldsige">

<KeyName=um:x-oclopus.intertrust.conukey-paing00a~) KeyName>
=/Keylnfo>
<CipherData>

<CipherValuc

oS

fFeGD4KAPEmESz/|W6CkbRegpMSky HOOy/o0/iDQ78PaShwUMoozeO4a0b785YnB
13Qa1ZUPYqROVSTCUaOcHTwxxvBElsd] o¥ KkVOeW/kPuRASUDFVUGOPRysh PSA,
Bb+JuAUnvxYX47qOVQyBOGGgzFssBDKmUk+s98dkPR8=

</CipherValue>
=/CipherData>

</EncryptedKey>
=Keytnfo=
<CipherData>

=CipherValue>
8LBSBL2GOYv/GT3Y4wikewTYbrsfHNJhCOQ|ULuvoh/OYVZKKCpUY+muCXC/s
1OTU+8tMiaMil GUpkCZOhSaTNeluCsxOy BoA6Xh/bmyZLDI7 84a /sITmiNpiGdb
¥Tal7x9DD1Mpi mvFEjpAU TTvruN32e4bxeF7 FD8C1L RWNAcshS96nF DemzoOSpR
dda6mswFKGSBOKY7mYbhach lowXkAk] We/OuXA+Q1 HdLithxeajoXNPIAGR2OFM3b
puwxbxDAsaAJDxoReiTtS LnGaHhgalhvLCpKklzliBowHyvTvDLEIL/HYEPeGéxSH
BbzpT298tdKUbXfaY6vvdeeMdVNuBVL3eZP |jkiDxeaBy leetxlQKZpo6Pjuxlh
bnKUMPsWp7rLase786S74lewuN63+/RgienxPK ICHYO3htMIThhvagvO9lyLD
RvcgnSEY9RASExy/6g15/gouljPU8r705 6XcEk4/TBodTWDefyli/v8g5QA/0VaDo
YI0ER1p3pVulwi/leXM4esBD3 leadToviKTKYkZjow ROPopsy5 Ta+K4LZKDmiVH
2G/p7s2XcoPb9o6mVAR 7+aLwamoileykkR+ipkPntvqvx YRPkphheVdzj2IMVv
scpX BXTWx7whQURXkiew7RARINQy3wev+ZFIplONsAE lyqyWy4rBobe47eTNMR
znit+WwaSGOIBxzU9 WIFZPd/ Rn2HYLaTi7 LLCadVRauNpr+eXM¥lp9LjLPRUnNb
28KrMdAddceyopYyilPSpBidihov/a/LKdE7IARqGewk 1 Yrvgh6CheRISoOMjh
kuNx3BR/iHxm31 Hle3ZK(As=</CipherVialue=

=/CipherData>
</EneryptedData>

B.1.3 License Objects
Annex C to this Appendix B provides an example of a

signed license (before the first revocation has occurred, see
the ContentKey section, below).

B.1.3.1 Protector

In the example embodiment shownin this Appendix B, the
<ContentKeyReference> element and the <ContentRefer-
ence> elements (¢.g.. inside the <ProtectedTargets> element)
contain only an <Id> element and no <Digest> element. Lo
this illustrative embodiment, Protector objects contain no
mandatory attributes or extensions; the <AttributeList> and
<lixtensionList> elements are optional and will be ignored.

B.1.3.2 ContentKey
In the example embodiment shownin this Appendix B,

ContentKey objects contain no mandatory attributes or exten-
sions. Therefore, the <AttributeList> and <ExtensionList>

elements are optional and will be ignored,
In one embodiment, <ContentKey> elements contain a

<SecretKey> element whichrepresentthe actual key that will
be used to decrypt the content, The <KeyData> associated
with the <SecretKey> is encrypted. In one embodiment, it is
mandatory that the “encoding”attribute of<KeyData> is set
to “xmlene”.

In one embodiment, there are two distinct cases for Con-
tentKey objects: (1) Before thefirst revocation of a device or
a PC application: in this case, the content key Ke represented

40

45

30)

60)

65

encrypted with the Scuba key (public or secret) ofthe entity
the content is bound to. In this case, we have super-encryp-
tion,

Illustrative methods for encrypting the <EncryptedData>
elementin case ofsuper-encryption are described elsewhere
herein. The following explains how to apply this to case b.

In one embodiment, the xmlene syntax for the encryption
ofthe content key Ke with the Mangrove Broadcast Encryp-
tion schemeis:

<Enerypted Data xmlns=“hittp://www.w3 ore/2001 /04/sumlenci”>
~EneryptionMethod Algorithm="see (*)"/>
<Keylofo xmins='"htip://www.w3.org/2000/09/xmidsigé>

=KeyName>see (*")</KeyNane>
KeyInfio>
=CipherData>

=CipherValue>see (*"*)</CipherValue>
=/CipherData>

~/EneryptedData>
(*) is the URLidentifying the Mangrove Broadeast Encryption scheme,
which, in one embodiment, is algo the =BroadcasiKeyMethod> Algonthm
of the <Torpedo> extension in an application-specific xml schema call
“kformat.xsd”.

(**) isthe name of the Mangrove Key Tree. In one embodiment, this
value must be the same as the source attribute of the <Broadeast Key=
element defined in kformat.xsd.
(*"*) is the base64 encoded value of the ASN.1] sequence represénting the
eneryphon of the content key Ke according to the Mangrove Broadcas!
Key algornthm:

US 8,776,216 B2
147

-continued

SEQUENCE{
tugs BIT STRING
keys OCTET STRING

In one embodiment, the byte sequence of the <Enerypted-
Data> referred to above is encrypted with the scuba sharing
key (public or secret) of the entity the license is bound to. If
ihe public key is used, then the same conventions apply as the
one described in below (e.g., see encrypting with a public
key) and anintermediary key is needed if the byte sequence of
the <EncryptedData> is too big for a RSA 1024 public key.
An example of the XML encoding of such a ContentKey
object can be found in Annex D to this Appendix B.

B.1.3.3 Controller

Jn one embodiment, controller objects contain no manda-
tory attributes or extensions, Therefore the <AtiributeList>
and <IxtensionList> elements are optional and will be
ignoredby a compliant implementation.

148

In one embodiment, the value of the Algorithm attribute of
the <DigestMethod> elementsis always http://www.w3.org/
2000/09/xmidsigfshal .

In one embodiment, the <ControlReference> must have a
<Digest> element. The <DigestValue> element must contain
the base64 encoding of the digest of the referenced control.

In one embodiment, if the signature over the Controller is
a PKI signature (rsa-shal), the <ContentkeyRefence> ele-
ments (within the <ControlledTargets> elements) need to
include a <Digest> elementand the <DigestValue> element
must contain the digest of the plain-text content key embed-
ded in the ContentKey object.

B.1.3.4 Control

In one embodiment, control objects contain no mandatory
attributes or extensions. Therefore the <AttributeList> and

<ExtensionList> elements are optional and will be ignored by
a compliant implementation.

In one embodiment. the type attribute of the <ControlPro-
gram> element is set to “plankton.” and the byteCodeType

20 attribute of the <CodeModule> element is set to “Plankton-
1-0"

APPENDIX B

Annex A: Example ofsigned Octopus personality node

<Bundle xaminsids="littp://www. w.org/2000/09/xmildsip#”
axmilns7xene="hitp:/www.w3.org/2001/04/xmlenc#" xmins="hitys/intertnist.com/Octopus! 1.0"
smmlustxsi="http:/www-w3.org/2001/XMLSchema-instance™
xsiischemaLocation="littp://iatertrust.com/kfornat/ 1.0
CADGCUME~1\julien\Desktop\kformat'kformat.xsd">

‘<{-- FIRST THE NODE with PUBLIC INFO-->
“Node id=“urn:kformatdeviceW01">

<ArribureList=
< Attribute name=“urn:x-marlin.intertrast.com:type”devices)Attribute
Attribute name="uux-marlin, iitertrust,.com:duk_id">urn:kformai:mangrove:0001</Attribute>
<Attribute name="urn(x-marlin.intertrust.comananufacturer_id”>SONY</Atribute=
<Atribute name=“urn:x-marlin.intertrist.comanodel™urnsonywalkmans/Attributes
<Attribute name="1ro;x-marlin, intertrust.com:version”>urn:sony;walkman:002a<)Attribute>

<) Attribute ist=
<ExtensianList=

«Extension id="urn:kformatdevice:0001:scuba:public">
=<ScubaKeys>

<PublicKeyid="urnckformatidevice:000 L:scuba:public:sharing”
pair=“urnkformandevice:000 1 :scubaspairsharing”>

<KeyData encoding="base64” format="X509">MIIC...MEbB</KeyData>
=/PublicKey>
<PublicKey id="urn:kformat:device:000 1 scuba:public:confidentiality”

nsage="confidentiality™
pair=“urnkformatdeviced U0 Liscuba:pair:confidential ity"’=

<KeyData encoding="hasef4” format="X.509"°>MUChHDCC,.. vyh8BM52</KeyData>
=/Publickey>

</Scubakeys>
<Digest>

=DipestMethod xmins="hittps//www.w3.arg/2000/09/xmilds iat”
Algorithm="hitp:!/www.w3 org! 2000/09/xmidsig#shal"/>

~DigestValue xmins="hirp:/www.w3.org/2000/09/xmldsig#”>OGZGBY8OpQOXs=/DigestValue=
=/Digest>

</Extension>
</ExtensionList=

=/Nede>
<!— THEN the PRIVATE Seuba extension -—>

<Extension id=“umckformatidevices00| scubazprivale” subject="urn:kfornatdevice:01001 ">
<ScubaKeys=

=PrivateKey id=“um:kformat:device:0001 :scuba:private:sharing”
pair=“urn:kfornmatidevice:0001 sscuba;pairsharing’>

<KeyData encoding=“baseé4” format="PKCS8">MI[CdpIBADAN.,. DXywQOLg==</KeyData>
</PrivateKey>
<PrivateKeyid="urn-kformat:deviee:0001 :scuba:private:confidentiality™

usage="confidentiality™
palr=“urnckformat:device:((M :scuba:pairconfidentiality’>

sKeyDate encoding="base64” format="PKCS8">MIICdwIBADAN... q4olog3d=</KeyData=
=/PrivateKey>
<SecretKey id="urn:kformat:device:000L:scuba:secret;sharing’">

~KeyData encoding=“basei4" format="RAW">In2/2cbz loOZo9xmyA==</ KeyData>
</SeeretKey>
=SecretKey id=“urn:kformat:device:(00 | :scuba:secret:confidentiality”

US 8,776,216 B2
149 150

APPENDIX B-continued

Annex A: Example ofsigned Octopus personality node

usage="confidentiality”>
=KeyData encoding="hase64” fonnat="RAW”S)CI8bcORW6GLX4G?TTXKve==</KeyData>

</SecretKey>
</Scubakeys>

</Extension=
<!+- Then the PRIVATE Torpedo extension -->
Extension id=“urn:kformat :device:0001 terpedo™ subject="urn:kformutidevice:O001">

<Torpedo xming="http://intertrust.com/kformat/1.0">
<BroadeastKey id="urntkfonmat:mangrove;0001">

=BroadcastKeyMethod Algorithm="http:/ (matlin-cirm.com/mangrove/1.0°7/>
sKeyData xinins="“http://intertrust.com/Octopus/1.0" encodimg="base64"

format="RAW">,..=/KeyData>
</BroadcastKey>

</Torpeda>
</Extension>
=!-- Then the signature onthe public part -->
= Signature xmiins="“http;//www.w3_ore/2000/09/xmldsi gi=

<SignedInfo>
<CanonicalizationMethod Algonthm="“http://www.w3.org/2001/L0/xml-exe-cl dni">
<SignatureMethod Algorithm="hitps/www.w3,org/2000/09/xmldsighrsashal=
<Reference URI="urn:kformat:device(W01">

<Transforms>

=Transfoon Algoritlim="“hitpy/www.octopus-dimn.com/2004/07) fornat-independent-cang#'=
</Transforms>

=DigestMethod Algorithm="httpy//www.w3.org/2000/09/sunldsigishal">
<DigestValue>gISQoD7MUAgiepkPielZhoS HbEQ=</DigestValue>

</Reference>

</SignedInfo>
<SignatureValue>g15QoD7TMLIAgjepkP iciZhoSHbEQ=/ SignatureValue=
<Keylnfio>

X59Data

<1Put the public key cert ofthe signing key here -->
=XS09Certificate>,..</%509Cen ificate>
<t-- and the certificate chain without the root if needed —>
=N509Certificate>...=N509Certificate>

</X500Data>
=/Keylnfo>

=/Signature>
<!-- Then the signature on the private part -—>
“Signature xmlos=“hittpy//www.aw3org/2000//09/smldsigi>

=SignedInfo>
<CanonicalizationMethod Algonthm="“hitp://(www.w3.org/2001/10/>eml-exc-cl4ng"!>
<SignatureMethod Algorithm="httpy//www.w3.org/2000/09/xmldsig#rsa-sha [v=
=Reference URI="urn:kformats 001 scuba:private’>

<Transfomis>

<Transform Alporithm="hitp://www. octopus-dim.conv/2004/07/format-independent-canai#”/>
</Transforms>

<DigestMethod Algorithm="“https/www.w3 .org/2000/00/xmldsig#sha Ll!
<DigestValue>gI5QoD7MUApjepkPiciZhoSHbEQ=</DigestValue

</Reference>

Reference URI="umi-kformat:device:0001 storpedo*>
<Transforms>

<Transtonn Alvorithm="httpy/www.octopus-din-com/2004/07/format-independent-cano#"/=
=/Transfonns>

<ds:DigestMethod Algorithm="“http:/www.w3.org/2000/09sonldsigH#shal"/>
<ds:Digest Value>97 mDfnwv F/ECQHev Dk= ds:DipestVialue>

-/Reference>
=/SignedInfo>
<SignatureValue>g15QoD7MUAgjepkPiciZhoSHbEQ=<)SignatureValue>
~KeylInfo=

=X509Data>

<!~ Pur the public key cert ofthe signing key here -->
<X509Certificate=.< XS09Centificate=
<!— and the certificate chain without! the root if needed -->
<NS509Certificate>...</XS00Certificate>

</X509Datra>
</Keylnfo>
=/Signature>

</Bundle=

US 8,776,216 B2
151 152

APPENDIX B

Annex B: Example of u signed Octopus link

Tam! versione") 0” encoding="UITF-8")>
<t--Sample XML file generated by XMLSPY v200¢4rel. 2 U (htrp://www.xmlspy.com }-->
=Bundle xmins=“hitp://intertrust.com/Octopus! 1.0" ximlnsads="hitp:/waw.w3org/2000/00/xmldsiga”
xanlns:xenc="http://www.ow3.org/2001/(4/xmlenc#” xan ns:xsi=“http://www.w3.org/2001/XMLSchema-
iistance” xsiischemaLocation="hittp://intertrust.com/Oc¢topus! L.0
Cows\Octopus\Source\Xm) SchemasOctopus.xsd">

“Link id=“urkformat;link:device:000Litowuser:1234">
=ExtensionList>

<Extension id=“ur-kfonnatilink:deviee 0001 to user:1234:souba">
<ScubaKeys>

<1-- E(PUBdevice, PRIVuser) -->
<PrivateKey id="“urn:kformat:user:1234:scuba:private:sharing™

pair=“urn:kfonmataiser; | 234:scuba;pairsharing”>
<KeyData encoding="xolene” format="PECS8"*>

<!-+ E(I, PRIVoser) 1: intermediate key-->
<Enerypted Data xmins="hipe/www.w3 org/2001/04/xmlenen">

=EneryptionMethod Algorithm="hitp:(/www.w3,ore/2001/04/xmlenciaes128-che"y>
<Keylnfo xmins="“https)/www.w3.org/2000/09/xiuldsigi">

<j E{PUBdevice, I) ->
<EnernypledKey xmlng="bitp:/www.w3.org/2001 /04/xmlench">

<EneryptionMethod Algorithm="Ittp://www.w3.org/2001 (04/smlene#rsa-1__45>
=Key Info xmlos=“http:/www.w3org2000/09/xmidsige>

<KeyName>urn:kfomat:device:0001 ‘scuba:pairsharing=/ KeyName>
</Keylnfo=
=CipherData>

<CipherValue>fFeGD4K,.. s98dkPR&=</CipherValue=
</CipherData>

~/EneryptedKey>
~/KeyInfo>
=CipherData>

<CipherValoe>
c8LB)4BL2GOYv..,Hle3ZKiA==</CipherValue>

<JCipherData>
</EneryptedData>

~/KeyData>
+/PrivateKey>
=!+ E(PUBdevice, Suser) ->
~SecretKey id="urn:kformat-:user:1234:secret:sharing>

=KeyData encoding="“xmlenc” format="RAW">
<EneryptedData xmins="hitp:/www.w3.ore/2001/04/xmilenc#”=

<EncryptionMethod Algorithm="hitp://www.w3.org/2001/04/xmlencirsa-1_37>
<Keylnfo xmlns="hitps//www.w3org/2000/N9sanldsige=

<KeyName=urn:kformat:device:000 | :scuba:pairsharing=/KeyName=
=/Keylnfo>
=CipherData>

<CipherValue>OHViH... kjLA=</CipherValue>
~/CipherData>

</EneryptedData>
~/KeyData>

</SecretKey>
</ScubaKkeys>

</Extension=
=/Extensionlist
~LinkFrom>

=1d>urn:kformatidevice:0001</1d>
</LinkFromn>
sLinkTo>

<]d=urnckformaringer: | 234</1d>
</LinkTo>

=/Link>
<Signatire xmlns="“hitpewww.w4 org/2000/08/xmidsigie>

<SignedInfo>
~CanonicalizationMethod Alporithm="http:/(wwwow3org2001! L0/xnl-exc-oLaney
<SiguatureMethod Algorithin="http;!/www.w3,org/2000/09/xmidsigrsa-slial"/>
<Reference URI=“um:kormatslink:device:000 1 tosuser: | 234°>

<Transiorms>

<Transforn Algorithm="hitp://www.octopus-dem.cony2004/07formal-independent-cano” =</Transfonns>

<DigestMethod Algorithm="http://www.w3.org/20(0/09/xmidsipeshalL’
<DigestValue>gl3Qo0D7MUAgicpkPiciZhoSHbEQ=~/DigestValue>

</Reference>
=/SienedInfo=
<SiguanireValue=g]5 QoD7MUAgiepkPiciZloS HbEQ=</SignatureValue>
=Keylnfo>=X309Data>

<!~ Pur the public key cert of thesigning key here -—>
<XS09Certificate=,..5/XS09Centificate>
<!-- and the certificate chain without the root if needed -->

US 8,776,216 B2

153 154
APPENDIX B-continued

Annex B: Example of « signed Octopus link

<AN9Certificate™,</X509Certificare=
=/X509Data>

«/Keylnfo>
</Signature>

=/Bundle>

APPENDIX B

Annex C; Example ofa signed Octoptis license (withoutrevocation}

=Buodle xmins="http://intertrust,com/Octopus/ 1.0" xmlns:xsi=“hitps/www.w3.ore/200 |AMLSchema-
instance” xsischemaLocation="http://intertrust.com/Octopis’ 1.0
C:r\ws\Octopus\Source!Xml\Schemas'Octopus. xsd">

<ContentKey id=“urn:x-octopus.imtertrust.comecontent-key:2002">
<SecretKey id=“urnix-octopus. intertrust.com:secret-key:2002">

<KeyData encoding="xmlenc™ format="RAW">
<Enerypted Data xmlns="hitp:/www.w3.org/2001/04/sanlenc#”">

=EneryptionMethod Algorithm="http)//www.w3.org/2001/04/xmlenci#aes L18-cbe"/ >
<Keylifo xmlns="hitp)//Wwww.w3 org/2000/09/xmldsigi">

<KeyName>urn:x-octopus. intertnust.com:seeret-key 303c</KeyName>
=/Keylifo>
<CipherData>

<CipherValue>
MCRULGaoyuO2o 62sIWLOOS MihuZCrv20094/O1QSdHbU3q2vZrawRbJepLvRa

“/CipherValue>
=CipherData>

</EneryptedData>
<"KeyData>

</SecretKey =
</ContentKey>
<ContentKey id="“urn:x-octopus.intertrust.councontent-key:2001>

=SeeretKey id="urn:x-octopus,inlertrist.com secret-key:200 ">
<KeyData encoding="xnilene” format="RAW">

<Encrypted Data xmins="http:/www.w3.org/200 1 /U4/sanlenet">
<EneryptionMethod Algorithim="htpywww.w3,org/2001(04/xmlencnsa-1__5"/>
<Keylnfo xmlns="http://www.w3,org/2000/09/xmidsie#">

<KeyName*urn:x-octopus.intertrust.com:key-pair:300c</KeyName>
</KeyInto>
=CipherData>

<C ipherValue>
LDALel7 1 Bswwb2GtPoPi|Mythn3ocel Wvh2ZPASmEY06RSIKZ) xkDteCmbOlY7SHy
bldgQ3hy74/mQF3 AILjRXa9/yoimasVBxsJnv426BoIkeTTICGqN|S+WPORLONZC
gnRWgulmks&dO+jaxW3 1SOSjpaMCpGZBésziveuBD 7qk=

“(CipherValue>
<CipherData>

</EncryptedData>
</KeyData>

</SecretKey>
</ContentKey>
«Control d="iunsx-octopus, Witertrust, contcantraliQuol=

Control Progrun type="Plankton"™>
<CodeModule byteCodeType={"Plankton-1-0">

AAABUnBrQ0OAAAAIcCIFWAAAAAIORIxy¥mFsLkouTGohZAAAAAAAEKPidGIvbiSQbGESLkNo
ZWNrAAAAAFSAAACTICGIDUWEAAAARGEEAAAAABORAAAACTAMBAAAABBOBAAAAHBLb
AQAAACWYAQAAAAQUAQAAACTFAQAAAATSAWEAAAARGGEAAAATBRSBAAAABHEBAAAA
ABUBIXUBAAAABBoBAAAAPWUBAAAABBOBAAAAHBUalABAAAABGABAAAARGEE AAAA
TBRogAQEOX30LAQAAAAYYAQAAAAAVAL//BVAAAADIBRENPY3RvcHV2LkapbmtalL.kleTino
kKZVILYWNoYWIsZQAAAAAALBledGVILkhve3QuR2VOVGIZVNOYW IwAAAAAAB lom4oeC Lv¥3
RvcHVeLmludGVydhn Quy29romsvZGU6MDAwMwA=

</CodeModule>
~/ControlProgram>

</Control>
<Protector>

=ContentKeyReference>
<Td>uniex-octopus.imtertrust.com:content-key 2002/Td>

</ContentKeyReference>
~ProtectedTirgets>

=ConlentReference>

<Id>urn:x-octopus.intertrust.com:content2001</Id=>
</ContentReference>
<ContentReference=

<Id>urn:x-octopus,intertrust.com:content2002<Id>
<=/ContentReference>

~/ProtectedTargets=

US 8,776,216 B2
155 156

APPENDIX B-continued

Annex C: Example of a signed Octopus license (without
revocation|

=/Protector>
<Protector>

<ContentheyReterence>
Td>urn:x-cctopus,intertrust.com:content-key:2001~/Td>

</ContentKeyReference>
=ProtectedTurgets>

<ContentReference>
STd@urti:x-octo pus. inlertrust.conmeomtent2003s)Tl

=/ContentReference>
=ContentReference>

<[d-urn:x-octopus,intertrust.com:content;2004</Td=
</ContentReFerence>

</Protected Targets>
=/Protector>
Controller id="Ut: k-OclopitsDueMrtustcom contra ler000 | >

=ControlReference>

<Td>urn:x-octopus,intertrust.comcontrol:0001</Td>
=Digest>

<DigestMethod Algorithm="hitp:www.w 3.org/2000/09/xmidsigtshal">
xoulus=“http:/www.w3,org/2000/09/xmidsige"!>

<DigestValue
amlns="hitpswww3,org/2000/00/sanldsigt"02ACFS6742 87FF45CEASAG6D7OLISFEFS601 AGIFTs
Digest Value>

«/Digest>
=)ContralReference>
<=ControlledTargets>

=“ContentKeyReference>
=[d=urn:x-octopus.intertrust.comcontent-key:2(02=/Td>

='ContentKeyRefermce>
~ContentKeyReference>

<Id>urn:x-octopus.intertrusteontcontent-key: 200 L</Td>
</ContentKeyReference>

</ControlledTargets></Coutroller=

=Signature xmins=“http:wwww3.ong/2000/09/xmldsip>
<Sienedinfo=

<CanonicalizationMethed Algorithm="https//www.w3.or/2001 /1xml-exc-cl4ne/>
<SignatureMethod Algorithm=“http://www.w3,org/2000/09/san ldsig#hmac-shal"/>
=Reference URI="urn:x-octopus,intertrust,com:controller:Q001>

<Transforns=

<Transfonn Algenthin="“http.//www. octopus-dim.comy/2004/07 /fornat-independent-canot/>
~/Transforms>

=DigestMethod Algoritim="httpy/www.w3org2000/09mildsigshal!>
=Digest Value>A42CZFR4DOQvb/MOwqOLZRuyi81Y¥=</Digest Value>

</Reference>
«(SignedInfo=
=SignatureValue>2I5QoD7MUAgijepkPiciZhoSHbEQ=! SignatureValue>
<Keylo>

<KeyName>um:x-octopus.untertrust.com:secret-key:2002 1um:x-octopus.intertrust.com-secret-
key:2001</KeyName=>

</Keylnfo=
=/Signature>

=/Bundle>

APPENDIX B

Annex D: Example ofa ContentKey with revocation

=ContentKey id="wmn;x-octopus.intertrust.commcontent-keyi200
<SecretKey ide"urn:x-octopus,intertrust,comssecret-key20017>

“KeyData encoding="xmlenc” format="RAW">
<EneryptedData xmlns="hittp:/)/www.w3.org/2001/04/xmlenct!>

<EnervptionMethod Algorithn="httpy//Avww.w3.org/2001 /04/emlencitaes 1 28-che"/>
<Keylafo xmins="hitp://www.w3.ong/2000/00/xmldsigh=

~EncryptedKey xmins="bttp://www.w3.org/2001 /04/xmlencH#">
<EncryptionMethod Algorithm="httpy//www.w3.org/2001/04/xmilenedrsa-1_ $°'>
“Keyinio xmins="http:/www.w3 ong2000409sonldsigi=
“KeyNameurn:kformataiser:000 |scuba‘pair:sharing=) KeyName®
JKeylnfo>
<CipherData>

<CipherValue=E(PUBuser, Li-/CipherValue>
</CipherData>

~/EncryptedKey>
</KevInfo>

US 8,776,216 B2

157
APPENDIX B-continued

Anuex D: Example of a ContentKey with revocation

=CipherData>
=CipherValue>

Enerypuon ofthe EneryptedData element containing
the encryption of Ke with the broadcast encryption
scheme (see note on xmlenc and broadcast key encryption
in the ContentKey section) with the intermediate key 1
</CipherValue>

</CipherData>
=/EucryptedData~

=/KeyDala>
</Secretkey>

=/ContentKey=>

APPENDIX C

This Appendix C shows an example of simple profile for
use with the bootstrap protocol] described above. Also pro- 3
vided are a simple canonical serialization, an example XML,
marshalling, and example WSDL for the Octopus Bootstrap
SOAP Web Service.

Simple Profile

In one embodiment, a simple profile is used that consists of
the following:

Profile Name SimpleProfile

Public Key Eneryption
Algorithm
Public Key Signature
Algorithm
Secret Key Encryption
Algorithm
Secret Key Signature
Algorithm
Digest Algorithm
Certificate Format

Message Marshalling
Minimum Nonee Size
Canonical Object
Serialization

hitp://www.w3org/2001/04/xtnlenc#rsa-1_5

http:)/www.w3 org/2000/09/sinidsig#rsa-shal

https)wwwiwd .ore/2001 /04/xmlenc#aes] 28-che

bitps/www.w3org/2000/09sunldsigthmac-shal

hitp:!/www.w3ore 2000/09) 3m dstavshal
X.509 (version 3)
Simple XML. Marshalling 1.0
16 bytes
Simple CanoniéalSerialization 1.0

Simple Canonical Serialization 1.0

In one embodiment, the simple canonical byte sequence
used in the simple profile described above consists of con-
structing sequences ofbytes from the values ofthe fields of
ihe objects in the messages. Each message and each objectis
made of one or more fields, Each field is either a simple field,
or a compound field.

Simple fields can be one oftour types: integer, string, byte
sequence, or arravs of fields. Compound fields consist ofone
or more sub-fields, each sub-field being simple or compound.

Jn one embodiment, the rules for constructing the canoni-
cal byte sequence for eachfield type are as follows:

Compound Fields

Field 6 Field 1 Field 2

The canonical byte sequence is the concatenation of the
canonical byte sequences ofeach sub-field (optional fields are
not skipped. but serialized according to the nile for optional
fields).

ta ae

60

Arrays ofFields

Field count Field 0 Field 1

The field count, encoded as a sequence of 4 bytes im big-
endian order, followed by each field’s canonical byte
sequence. If the field count is 0, then nothing follows the
4-bytes field count (in this case, all 4 bytes have the value 0).

lnleger

10 i Q

32-bit signed value, encoded as a sequence of4 bytes, in
big-endian order.

Sting

Byte Count Byte 0 Byte 1

The string is represented by a UTF-8 encoded sequence of
8-bit bytes. The byte count ofthe encoded byte sequence is
encoded as a sequence of4 bytesin big-endian order. The byte
count is followed by the sequence of bytes of the UTF-
encodedstring.

3s

Byte Sequence

Byte Count Byle(Byte| jake

The byte count is encoded as a sequence of 4 bytes in
big-endian order(if the byte sequence is empty, or the corre-
sponding field has been omitted. the Byte Count is 0, and no
byte value follows the 4-byte byte count), Each byie is
encoded as-is.

Simple XML. Marshalling 1.0
Schema SimpleBootProtocol.xsd

<xeischema xmins:xs="http:/www.w3.org/2001/XMLSchema”
elementPorm Default="qualified™>

<xs:element name="BootstmpRequestMessage”">
<xs:complexType>

xesequence>
<xs:element refe"BootstrapRequest! >

</xsisequence>
<xstattribute name="Proteco!” type="xsistring” use="required”/>
<xsiattn bute name=“Profile” type="xsistring” use=“required”/>
=xstathibute name="Version” type="xsidecimal”use="required!/>

US 8,776,216 B2
159

-continued

</xsscomplexType></xs:element>

<xs:element jame="BootstrapRequest">

160

-continued

“xsielement nome="HootstrapResponseMessape”>
<xsicomplexType>

=KxSiseqiience>
=xs:complexType> 3 =xaielemenl ref="E nerypledBootstrapResponse’ =>

=xsisequence= </xgisequence>
<xsielement re="Sessiond”/> </xs:complexType>
<xs:element ref="TrustDomain” maxOccurs="“unbounded™= </xstelement>

=/xscsequence> <xs:element name="EncryptedBootstrap Response” type=
</xsccomplexType> “xs:base64Binary"!>

</xsie¢lement> 10 <xs‘element name=""BoosirapResponse”™ >
«xeelement name="ChallengeRequestMessage”> <xsicomplexType>

=xs:complexType> <xsisequence>
=xaisequence> <asiclement ref="Sessionid”) >

<xstelement ref="ChallengéRequest™/> =xselement ref]"Data"y=
</xsisequence> =xsiclement refe“Signanire’=

</xs;complexType> 3 </xsisequence>
</xscelement> =/xs:complexType=
exs:element nanie="ChallengeRequest”> </xsrelement=

<xsicomplexType> <xs:element name="ErrorResponseMessage"™>
=xsisequence> =xs:complexType=

<xs:element ref="Challengey> =xsisequence>

<xsiclement ref="Signatire™ > 20 <xs:element ref=“ErrorResponse’'/>
“<xs:element ref="CertificateChain"/> -</Meiseqnence>

~/xs Sequence> </xs:complexType>
=/xsicoinplexType= </xstelenent=

</xsrelement> <xstelement name="ErrorResponse” type="xs:string”/ >
<xs:element name="ChallengeResponseMessage”’> <xsielement name="CertificateChain”=

=xsicomplexType> 45 <xsicomplexType>“xe Sequence> “xs sequence>
=asielement ref="SessionKey"/> <xsielement ref="Certificate” maxOccurs=“unbounded™>
<xs:element ref="EneryptedChallengeRespanse"/> </xssequence>

</xsisequence> =xszalin bute name="TrustDomain” type="xs:string” use=
~</xsicomplexType> “required"!>

=/xsiclement> </xs:complexType
<xsielement name="EneryptedChallengeResponse” type= 30 </xsselement=
“xetbaseé4Binary”> sxs:element nume="Certificale” type="xs:baseb4Binary"!>
<xs:element uame="ChallengeResponse”> <xs:element name="“Cliemlnfo">

=xs:comiplexType= =xsicomplexType>
<xsisequence> <xsbequence>

<xerelement ref="ClientInfo"/> <xe:element ref="Attribute! >
<xs:element rel="Challenge"/> 35 </xsisequence>
<xs:element ref="SessionKey"/> </xs:complexType=
<xs:element ref="Signature"/> <!xsrelement>

‘s/xsisequence= <xslement name="Altribute” type=“xs:string’/>
</xsicomplexLype> <xs:element name="Cookie" type="xsibase64Binary"/>

/xsielement> <xs:element name="Data” type="xs:baseé4Binary"/>

<xs:element name="Challenge™> a0 <xs:element name="“EneryptiouKey™ type="xs‘base64Binary™
=xstcamplexl'ype> ” <xs:element, nume="Nonce” type="xs;base64Binary/>

<xstsequence> <xs:element name="Sessionld” type="xsistring’/>
<xs:element ref]"Cookie"/> <xsielement name="SessionKey” type="xs:based4 Binary’/>
<xs:element ref="Nonee”/> <xs:element name="Signature” type="xs:base64Binary”/>
<x5-element ref="Stssionld"/= <xs:element name=""TrmstDomain” type="xsistring”/>
<xs:element ref="Eneryptionkey" mimnQccurse"1"'> 45 “</xsiechema>

s/xsisequence>
=/xsicamplexType=

</xselement

Example

<BootstrapRequestMessage Protocol="OctopusSimpleBoot” Profile="SimpleProfile” Version="1,1)">
<BootstrapRequest>

<Sessionld>some-uyjque-session-id-VO08</Sessionld>
<TrustDomain=urn:x-octopus.intertrust.com:scuba:boot;trust-domauntest001</TrustDemain=>

=/BoolstrapRequest>
</BoolstrapRequestMessage>
<ChallengeRequestMessage>

~<ChallengeRequest>
=Challengze>

<Cookie=c29t2.8 11 bmixdWUte2V2e2lvbil p2COWMDA4</Cookie>
<Nonce>Mv5 Viv73cx05b+gisQIP8Q==</Nonce>
<Sessionid=some-tunique-session-id-0008</Session ld =>
<Encryptionkey>

MIGIMAUGCSG8Ibi DQEBAQUAASGNADCBIQKBeQOCpMY4wveTIVVPTUNVbdTUWOi4F2Pte
Jezet¥9ox5 LObdRn4+LKRPg nsSXCRSZIWRUyoNZCOQe3 SLobUhX DéuTsrVSxtRROSKATLIDAZLSAT
ddSrAAITSbaDGMiSKOPow7qB2Ci/MmYhadJix LUltvizWI KmSpytgHCsi/QIDAQAB

</EncryptionKey>
</Challenge>
=Signature>

GsWP3yPT36r3eliZfullS7xpswlelTiTSAYDI31X4+pSIrpeKAtq2 BTZHQ1 Ac|GorPIw2zWHDanc:

US 8,776,216 B2
161 162

-continued

cut9/rin!g3DrwS2bOX LzhZbZLXadIGFPSYP lpTKPus2VCYCLA/YTIbdulWin TKDemi34/66H0sz
DCCyxQsdFZbSNk6pyQE=

</Signature>
~CertificateChain TrustDomain="“urnx-octopus.intertmst.comscubaboot:trust-domain testy ">

<Certificate>

MIID..<t+- End entity cert -->
</Certificate>

MID...<!— intermediary cert --><Certificate=

MIIE...<!-- intermediary cert -->
</Certifieare=
<Certificate>

MIID...<!— cert that chains directly to the trust anchor -->
~/Certificate>

</CertificateCham>
</ChallengeRequest>

</ChallengeRequestMessage>
=ChallengeResponseMessage>

<SessionKey>
PizJeFT2sisW7oR4 latHASdRmZerspktQArleAWVikIIWeclZTN2g2 YeCQwORg2 9OXOksUbut
OmegfEHY 15 1LideMFake3JC wquvVNow/TmiFEgt Doc+GluKeYeQXNIRHaISMURSISHFIA/owZHdINK
n4w8MWMDDn3sUDd6a8/Z1=

</Sessionkey>
<EneryptedChallengeResponse>

mQCEPLS60D0N0...
</EneryptedChallengeResponse>

<=/ChallengeResponseMessage =
=ChallengeResponse>

=ChientInfo=
Attribute Name="SomeAttribute*>Bla Blas) Attribute>

=/ClientInfo=
<Challenge>

<=Cookie=c29t251 lbmlsdWLite2 Vze2lvin lpZCtwMDA4<'Cookie=
=Nonce>MvSVlv7T3cxo5b+gisQJP8Q==TNonce>
<Sessionld=sonmie-inique-session-id008</Sessionid=

</Challenge>
<Session Key =bbBGE/sGaAphd]gohFriQ==-/SessionKey >
<Signature>WYMULPpFalOl6MiAnal lueN7p/4=</Signatire>

</ChallengeResponse>
~BootstrapResponseMessage>

<EneryptedBootstrapResponse>
chXTp204yI7/ilpHLawFOLNdGh...

</EncryptedBootstrapRespouse>
</Bootstrap ResponseMessage>
=BootstrapResponse>

=Sessionld=some-unique-session-id-O08/Sessionld>
=Data>

PDo4hWwedmVye.-</Data=

<Signature>
XgCeVRb4VaVAK9II) 6BSR1hOO3thpHPw3wM MATbeUfgCpEX LAB7u2/qnis9iLgWwTOOvLDESC5a
VVMvzlnRnDvOGHL|s6e43 HusVx7fpazw HoFrb3M3eKwXMoYsléxpdYy2EX lbsSQT2xdwBv2ClBjo7
KeQiinbbYEO+sKGdg48=

</Signanure>
~/BootstrapResponse>
<ErrorResponseMessage>

<ErrerResponse Code="6">Some Error Info</LnorResponse>
</ErrorResponseMessage>

WSDLfor the Bootstrap SOAP Web Service

=Tainl version="1,0" encoding=“UTF-8°9>An

This wsdl file describes the interfice fora stateless multiround hoolstmp protocel
The protocol works this way:
1. C-=S; BootstrapRequestMessage
2. 5-=C: ChallengeRequesiMessage
3, C->8: ChallengeResponseMessage
4. 5->C; BootstrapResponseMessage+>

~<wsdl:definitions name="OctopusBootstrap”
targetNamespace="hitp://www-intertrust.com/services/OctopusBootstrap”
xmins="hittp://schemas.xmisoap.org/wsdl” xmins:apachesoap="hittp://xmLapache.org/sml-soap”
smnilns:impl=“https/‘www.intertrust.com/services/OclopusBoolstrap”
anilascinth=“hitps!/www.inlertrust.cont/services/OctopusBootstrap”
xmlns:soapenc="http://schernas.xmlsoap,orwsoap/encoding/™

US 8,776,216 B2
163 164

-continued

xmlns:tnstype="http://www. intertrust.com/services/OctopusBootstrap”
xmilns: wedl="hitp://sclemas.xmlsoap.ory/ wsdl!" xmlns:wsdlsoup="http://schemas.ximisoap.org/wsdl‘soup™
xmlos:xsd=“hitps!/www3org/2001 XMLSchema™”
xmilns:ob="hitps/www. intertmsl. com/Octopts/Bootstrap)1.0"
xmilns:nc="http:/www, intertrust.comcore™>

<wedl:types>
schema targetNamespace="hittp:/ www. intenrust.com/services/OctopusBootstrap™

xmins=“httoy/iwww.w3org/200 1/XMLSchema">
<!-- imports -->
import mumespace="htrp:)/www,interiust.com/Octopus/Bootstrap!| 0"

schemaLocation=",/SimpleBootProtocol.xsd"/=
<!~— elements -->

<element name="requesidata”>
<complexType>

<!— This is a millttround stateless (thanks to the cookie) protoeal:
the client can senda BootstrapRequestMessage or
ChallengeReponseMessuge -->

<chpiee>
“element refe“ob:BoolstrapRequestMessage"/>
element ref="ob:ChallengeResponseMessage”/>

Yohoice>
</complexType>Selement>

<element name="responsedata’>
stoinplexType>

<!-- This is 4 multiround stateless (thanks to the cookie) protocol;
the server can send back a ChallengeRequestMessage or
BootstrapResponseMessage orn Errorkesponse Message -->

sehoice>

“element ref="ob:ChallengeRequestMessage™/>
element ref="oh;BootstrapResponseMessuge™/>
element ref="ob:ErrorKesponseMessage/>

“Jchoice>
<icomplexType>

</¢lement>
</schema>

wedlitypes>
<b- message declarations ->
<wadlanessage name="invokeRequest”>

<wedl:part element="tustype:requestdata” name="invokeRequest>
</wad|inessage>
<wsdl message lame="jnvokeResponse”™>

<wedl:part element="tistype:responsedata” name="“invokeResponse"/>
</wedl imessaye>
=!-+ port type declarations =-=>
<wsdl:portType name="OctopusBootstrap=

<wsdl operation name="invoke">
~wsdl:input message="impl:invokeRequest” name="invokeRequest”/>
~wed| output message="implinvokeResponse” name="invokeResponse’/>
</wedloperation>

</wed|-portType>
=!-+ binding declarations -->
<wedl:binding name="OctopusBootstrapSoapBinding" lype=“itnpliOctopusBootstrap’>

=wsdisoap:binding style="dociunent™ transport="httpy /schernas.xmlsoap.org/soap/http")>
<waidlaperation name="invoke”>

<wedlsoapoperniion soapAction="")>
swedl:inpul name="invokeRequest"=>

~wailsoapibody encodingStyle="""
namespace="hitp://www.intertristicom/services/OctopusBootstrap” use="literal”/=

=/wedlinput>
“wedl:output name=“invokeResponse*>

<wedlsoap;body encodingstyle=""
hainespace="hitp!//www. intertrust.com/services/OctopusBootstrap” use="literal”!>

</wsdl:oulput
=/wedloperation>

~wedlibinding=
<!-- service declarations -->
<wedlservice name="OctopusBootstrapService>

<wedh:port binding="impl:OctopusBootstrapSoap Binding” name="OctopusBootstrap”>
=Wadlsoapiaddress location=“hitp)//localhost:8080/OctopusBootstrap’services/OctopusBootstrap”!>

</wsdl:sport>
Owedlservice>

</wsdl:definitions=

APPENDIX D preferred embodiments, in the calculation of digests for use
6s digitally signing objects. This byte sequence is independent

An encoding-neutral way of computing a canonical byte of the way the objects are represented or transmitted, thus
sequence (CBS) for objects is presented below and used, in enabling the same digest and signature values to be used

US 8,776,216 B2

165

throughout systems in which multiple encoding formats (e.g..
XML, ANSI), programming languages, or the like are used.
1. Canonical Byte Sequence Algorithm

The canonical byte sequence algorithm consists of con-
structing sequences of bytes from value of fields. Mach field
has a value with a simple type or a compound type. Some
fields can be specified to be optional (the field may be present
or omitted).

In one embodiment, simple types are: integer. string, byte,
and boolean.

Compound types consist of one or more sub-fields; each
sub-field having a value with a simple or compound type.
Compound types are either heterogeneous or homogenous,
meaning that there are one or more sub-field values (simple or
compound) ofdifferent types (i.e., heterogeneous), or that
there are one or more sub-field values (simple or compound)
all of the same type (homogeneous).

‘The canonical byte sequence ofafield is obtained by apply-
ing the encoding rule to the field’s value whenthe field is 3
always present or the encoding rule for optional fields when
the field is specified to be optional. In the following encoding
rule descriptions, the term byte means an §-bit value (octet):
L.1. Optional Fields

If an optionalfield is present, its value is serialized as the
byte value | followed by the canonical byte sequence ofthe
field value. If it is omitted, its value is serialized as the byte
value 0.

1.2, Heterogeneous Compound
The canonical byte sequence is the concatenation ofthe

canonical byte sequences of each sub-field value (optional
fields are not skipped, but serialized according to the rule tor
optional fields).
|.3. Homogeneous Compound

The canonical byte sequence is the sub-field count,
encoded as a sequence of 4 bytes in big-endian order, fol-
lowed by the concatenation ofeach sub-field value’s canoni-
cal byte sequence. If the sub-field count is 0, then nothing
follows the 4-bytes field count(in this case, all 4 bytes have
the value 0),
1.4. Integer

32-bit integer value. encoded as a sequence of4 bytes, in
big-endian order.

String

Byte Count Byte 0 Byte1

Strings are represented by a UTF-8 encoded byte sequence
(not null-terminated), The canonical byte sequence for a
string consists of (1) the byte count of the string, encoded as
a sequence of4 bytes in big-endian order, followed by (2) the
sequence of bytes of the string.
1.6. Byte

8-bit value
1.7, Boolean

8-bit value: 0 for false, and | for true

2. Application to Octopus Objects
In one embodiment, the canonical byte sequence for an

Octopus object is the concatenation of the canonical byte
sequences ofeachofits fields, in the order theyare defined in
the object model.

For heterogeneous compound types, the order of the fields
is the one specified in the type definition. For homogeneous
compound types. the order ofthe elements is specified in the
following paragraphs.

wi

lt

nd

a0

40

a5

30

60

65

166
Attributes

An object's “attributes” field is treated as an unnamed
attribute of type “hist” (it is an unsorted container of named
attributes), Named attributes contained in the value of
altributes of type “list” are sorted lexicographically by their
“name” field. Unnamed Attributes contained in the value

attribute of type “array”are not sorted (they are serialized in
their array order).

Extensions

An object’s internal extensions are sorted lexicographi-
cally by their ‘id’ field. In one embodiment, for internal exten-
sions, the “extensionData’ field is nol used in the computation
of the canonical byte sequence. For such extensions, if they
need to be included in the computation of a digest for the
purpose ofa signature, they will contain a ‘digest’ field that
will represent the digest of the actual data carried in the
*extensionData’. For each type ofextension data, a definition
will be given that allows the computation ofits canonical byte
sequence.

Controller

ContentKey references are sorted lexicographically by
their ‘id’ field.

3. ScubaKeys
The keys in the *publicKeys*, ‘privateKeys’ and ‘secret-

Keys’ fields are sorted lexicographically by their “id’ field.
4. Example

Class X [
int i;
int jy

}
class A [

int al];
siting s!

class B extends A {
{X optional,_x:}MM:
(string toDiseardinCano;)
string $2;

)

The canonical byte sequence of an instance ofclass B
where al |={7.8,9}, s=“Abe”, x={5.4}, s2=* ”, and option-
al_x is not presentis serialized as:

“Abe"as
5 7 8 g 3 UTF-8 0 Cano(X) 0

4 4 4 4 4 3 bytes | 8 bytes 4
bytes bytes bytes bytes bytes byte bytes

Where Cano(X) is:

5 4

4 bytes 4 bytes

APPENDIX E

An example ofa control programis provided below.In this
example, the license indicates that the play action can be
granted if the membership state (provisioned during registra-
tion)or thelicense state (provisioned during a license trans-
fer) can be found in the state database (referred to as the
“Seashell” database in this example embodiment). ‘The
license also allows a peer 1o request a license transfer. This

US 8,776,216 B2
167

transfer will be granted if the two peers are in a given prox-
imity. The license contains an agent that will set the license
state on the peer.

In the code files that follow, “MovableDomainBoundLi-
cense.asm”is the main control, “LicenseUtils/*”are helpers
for the license, “GenericUtils/*”are generic helpers that per-
form functions such as computing the length ofa string.
comparing strings, manipulating the stack, and/or the like.
and “ExtendedStatusBlockParameters/*” contains an XML

description of an extended status block parameter and the
corresponding representation as a series of bytes compiled
from the XML.

EF.) MovableDomainBound.asm

COREE SSE SSHSAESEEM CHEEEEEREeeeeeHeeere

: File Name: MovableDomainBoundLicense.asm
; Deseription: Example ofa movable licenseapeaneaa

> constants

qu DEBUG_PRINT_SYSCALL, 1
.tqu FIND_SYSCALLBY NAME_SYSCALL, 2
qu SYSTEM_HOST_GET_OBJECT_SYSCALL, 3
.equ SYSTEM_HOST_SET_OBJECT_SYSCALL. 4
equ SUCCESS. u
equ FAILURE, -1
equ ERROR_NO_SUCH_ ITEM. =f
equ CONTAINERIGNOREDADDRESS, 1

: Inclodes:
.aSSSa=

include “StrCrmpasm™
-include *PrinfIntasm”
Jnclide “MembershipUtils.asm™
-inclide “LicenseStateUlils.asm”

: data,

data
GetTrustedTimeFunctionName:

string “System.Host.GetTrustedTime”
GetTrustedTimeF unctionNumber:

-lomge 0
ActionGranted NoObligationXStatus:

long Ox00000000 ; global Aags
slong OxOO0000000 ; category = ACTION GRANTED
long OxQO000000 ; sub-category
slong Ox00000000 ; local lags
long Ox00000000 ; cache duration wpe
dong OxQOOQOG000 ; cache duration value
dong OxOO000000 ; value list size = 0

AchonDeniedXStatus:
long Ox00000000 ; global fags
dong OxO0Q00001 5 category =ACTION_ DIENTRD.
long OXx0O0O00000; sub-category
-long OxOOOOOOOD ; local flags
clong Ox00000000 ; cache duration type
long OxQO00000C ; cache duration value
slong OxOOO00000; value list size = 0

TransferCirantedProximityNotChecked:
slong Ox00000000 ; global fags
long OxOOQ00000 ; category = ACTION GRANTED
long Ox00000000 ; sub-category
slong Ox00000003 ; local flags: Obligation and Callback Notices
dong Ox00000000 ; cache duration type
dong Ox00000000 ; cache duration value
nelude “Trans ferXStatusProximityCheckFuiled.asm™

TronsferGirantedProximityChecked:
-long OxOOOOOO00 ; global flags
slong UxXHOO0O000 ; category = ACTION GRANTED
dong Ox00000000 ; sub-category
wlong Ox00000003 ; local Mags: Obligation and Callback Notices
slong Ox00000000; cache duration type
long OxOOOQ0000 ; cache duration value
-include “TranslerXStatusProximityCheckSucceed.asm™

3a

ry ‘ti

40)

a5

Su)

Ln vo

oo

168

-continued

AgentContextPath:
-string “Octopus!Agent/Session/Contextid"

AgentContextDesiredValier
sstring “MoveStateContent023"

AgentContextValue:
-feros 32

SinkProximityLastProbePath:
-string, “Octopus/Action/Parameters!Sink/Proximity/LastProbe”

SinkProxunityLastProbeResult:
long =1

AgentProximityCheekedPathy
string “Octopus/Agent/Parameters!ProximityChecked”

AgentProximityCheckedValue:
long 0

ControllerTimestampAttn butePath:
-string “Octopus/Controller/Attributes/Import-time”

ControllerTimestampaAttri buteValue:
dong 0

idebug,
Aflef DEBUG
Controller.Timestamp.Query, Debug:

string “---+---- Entering Controller.Timestamp.Query -------—_==\n"

Control.Actions.Play.Perform. Debug:
string “-—---— Enteritg Control Actions.Play,Perform —-———-

mane
Control.Agents.SetStateContent(i023.Run. Debug;

ating “—-—-— Enteting Contra.Agents. SetstateContentti023 Rueeeeeeeeens
Control.Actions.Transfer.Perform,Debug:

string “-—-—--- Entering Control Actions.Trinsfer.Perform -—--—
met

Control. Agents.SetStateContent(i23,OnAgentCompletion.Debug:
SUTIN, “~n-r--~~ Entering,

Control.AgentsSetStateContent0023,OnAgentCompletion
aaan”

‘Transfer OK_Proxumity_Not_Checked. Debug:
string “Hitt? TransferOKProximityNot_Checked
He”

Transfer_OK__Proximity_Checked.Debug:
string “AHHH Transfer OK Proximity Checked#tHeio”

Agent_Failure,Debug:
string “HAH Agent Failure Havain”

Agent_ Success.Debug:
String “Hitt Agent Success #atityi”

ActionGranted. Debug:
string, “HHH Action Granted Htitttin”

Action__Denied.Debug;
string “HHH Action Denied #iHHiHiin”

 endif

, code
ceode

: Global.OnLoad

Global,OnLoad:
; get the GetTrustedTime functionNumber
PUSH GetTrustedTimeFunctionName
PUSH FIND_SYSCALL_BY_NAME_SYSCALL
CALL
DUP
PUSH (@GetTrustedTimeFunectianNumberPORE
BRN OnLoad_Failed
70k
PUSH SLICCESS
STOP
: fail

OnLoad_Failed:
PUSH FAILURE
STOP

; Controller, Timestamp-Query

Controller.Timestamp.Query:
diffe? DEBUG

debug

US 8,776,216 B2
169

-continued

PUSH @Controller.Timestamp.Queéry.Debug
PUSH DEBUG_PRINT_SYSCALL
CALL

sendif
} get the timestamp attribute in the controller object
PUSH 4 : ReturnBulferSize (4

bytes)
PUSH @ControllerTimestampAttributeValue ; RetumBufter (type is

long)
PUSH @ControllerTimestampAtiributePath =; Name
PUSELO ; Parent = root

container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
RET

; Control.Actions,Play.Check

Control.Actions. Play.Check:

; Control.Actions. Play.Perform

Control.Actions.Play. Perform:
query the state patlis
JSR MernbershipStatePath,Query
BRN Action_ Denied
JSR LicenseStatePath.Query
BRN ActionDenied

ftef DEBUG
debug
PUSH @Control_Actions.Play.PerformDebug,
PUSH DEBUG_ PRINT SYSCALL
CALL

endif
ifthe timestamp of the membership state is =
; to the timestamp of the controller
JSR MembershipStateValueQuery
BRN Action_Denied
JSR Controller.Timestamp.Query
BRN Action_Denied
PUSH @MembershipStateValuePEEK

PUSTL @ControllerTimestampAttnbuteValue
PEEK
SUB
BRP Action. Granted ; we don't) need to check for the license ste

+ in this case
; we just check that the state is present
TSR LicenseStateValue.Query
BRN Action_Denied

Action Grantert:
ifdef! DEBUG

sdebue
PUSH (@)Action_Granted.DebusPUSH DEBUG_PRINT_SYSCALL
CALL

endif
PUSH @ActionGrantedNoObligationNStutus
PUSH SUCCESS
STOP

Action__Denied:
jfdef DEBUG

debug
PUSH @Action_Denied.Debuy
PUSH DEBUG_PRINT_SYSCALL
CALL

endif
PUSH @ActionDeniedX Stams
PUSIT SUCCESS
STOP

; Control. Actions. Trausfer.Check

Control,Actions.TransfernCheck:

; Control.Actions.Transfer. Perform

Control.Actions.Transfer, Perform:
; query the state paths

30

35

Su)

Ln iw

60

170
-continued

ISR MembershipStatePath.Query
GEN Action_ Denied
ISR LicenseStatePath, Query
BRN ActionDenied

widef DEBUG
idebug
PUSH(@.Control.Actions,Transfer,Perform.Debug
PUSH DEBUG_PRINT_SYSCALL
CALL

endif
+ get the last time proximity has been checked
PUSH 4 ; ReturnBuffersize
PUSH @SinkProximityLastProbeResult—; ReturnBulfer
PUSH (@SinkProximityLastProbePath : Name
PUSH O + Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
7 if the object is not viseble, proxumuty has not been cheeked.
; the resulting agent (look al the

TransferxStatusProximityCheckFailed.xml
; file on line 23), The agent will then make sute that the agent is

par
; of the domain before setting the state
BRN Transter_OK_Proximity_Not_Checked
;eheck that proximity has been checked inthe last 10 minutes
DROP : we know that

the type id is long
DROP i we knowthat

the size is 4
PUSH ‘@GetTrustedTimeFunctionNumber
PEER
CALL
SWAP
DROP
PUSH @SinkProximityLast ProbeRestlt
PEEK
SUB
PUSH 10
SWAP
SUB

; last time proximity was checked js more than 10! agoysame thing
as ifproximity had not been checked atall (see above)
BRN Transfer_OK_Proximity_Not_Checked
; proximity has been checked successfully

Afdef DEBUG
debug
PUSH @TransferOKProximityChecked.Debug
PUSH DEBUG_PRINT_SYSCALL
CALL

endif
PUSH @TransferGrantedProximityC heckedPUSH SUCCESS
STOP

Transfee_OK_ProxumityNotChecked:
ifdef DEBUG

debug
PUSH@Transfer_OK_Proximity _Not__Checked. Debug
PUSH DEBUG_PRINT_SYSCALI,
CALL

endif
; give back the RunAgentOnPeer Obligation (indicating that
; proximity has-not been checked) and the OnAgentCompletion

Callback
PUSH @TransterGrantedProximityNotChecked
PUSH SUCCESS
STOP

7 we just need te value

; Control Agents: SetStateContentW023.Ruy

Control Agents.SetStateContent(i029.Run:
; query the state paths
ISR MembershipStatePath.Query
BRN AgentRunFailed
ISR LicenseStatePath, Query
BRN Agent_Run_ Failed

wide? DEBUG
debug
PUSH Control.Agents.SetStareContento23, Run,Debug
PUSH DEBUG_PRINT_SYSCALL

US 8,776,216 B2
171

-continued
CALL

endif

; ifthe peeris in the domain we don't need to deo anything
JSR Membership.Check
BRZ Avent_Success
check that the context is set
PUSIL 32

PUSH @AgentContextValue
PUSH @iAgentContextPath + Name
PUSHO } Parent = root container
PUSH SYSTEM_HOST_GET_OBIECT_SYSCALL
CALL

; RetumnButferSize
; ReturnBuffer

> check the result
BRN Agent_Run_Failed
DROP ; we know that

the type id is string
DROP y we don’t care

about the size
PUSH @AgentContextValue
PUSH @AgentContextDesiredValue
JSR streq

inthe good context
BRN Agent. Run_ Failed
i check if the source has successfully proxmity checked the sink

?nlake sure We te

PUSH 4 ; ReturmBuflerSize
PUSH (@AgentProximityCheckedValue : ReturnBuffer
PUSH (@AgentProximityCheckedPath 2 Name
PUSH O { Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
check the result
BRN Agent_ Run Failed

should always be set
2 His parameter

; by the app when
receig the agent

DROP 7 we know that the
typeid is long

DROP 3 we know that the
size is4

PUSH (@AgentProximityChecked Value
PEEK
NOT
BRZ Agent_Set_State

Agent_Run_ Failed:ifdef DEBUG
idebug
PUSH @Agent_Failure. Debug
PUSH DEBUG PRINT _SYSCALL
CALL

endif
PUSH O
PUSH 0
PUSH FAILURE
STOP

Agent_Set_ State:
: set the stale
ISK LicenseStute.Set

BRN Agent. Run_Failed
Agent_Success:
ifdef DEBUG

debug
PUSIL @Agent_Success.Debug
PUSH DEBUG_PRINT_SYSCALL
CALL

endif
{ suceess
PUSH O
PUSITO
PUSIT SUCCESS
STOP

: Return Block Sive
+ Return Block Address
: Result Code

? Return Block Size
; Return Block Aderess
; Result Code

; Control.Agents. SetStateContent023.OnAgentCompletion callback (of
type RESET)

Control_Agents.SetStateContent0023 OnAgentCompletion:
.tdef DEBUG

debug
PUSH
f@Control Agents, SetStateContentQ023,OnAgentCompletion. Debug

a0

40)

45

St

in on

60

172

-continued

PUSH DEBUG_PRINT_SYSCALL
CALL

sendif
i check that theagent result code is OR
: the stack is:
>... AgentResultCode CompletionStatusCode ArgumentsBlockSizeCookie

>wedon’! need
the cookie
7 we don’t need the

DROP

DROP
arguments block size

BRN Action_Denied
able to run, failure

BRN Action_Denied same thing if the agent
was nol able to set the slate on the peer

} SUCCESS
PUSH @ActionGrantedNoObligationXStatus
PUSH SUCCESS
STOP

Agent_ Completion._Failed:
PUSH FAILURE
STOP

; Uf the agent was not

p exports

export Global,OnLoad
export Control.Actions.Play,Check
export Control. Actions.Play,Perfo
export Control.Actions.Transfer, Check
.export Control, Actions.Transfer. Perform
export Control. Agents.SetSrateContentQ023,Ruin
export Control, Agents.SetStateContent0023,OnAgentCompletan

E.2 LicenseUtils

E.2.1 LicenseStateUtils.asm

PREP CRTATRA AERAE PERRET RAETOA4

File Name: LicenseStateUtils.asm

Deseription: Utils for License States<=Aeaaawaeaealai

data

sta
LicenseS tatePathControl Attribute:

string “Octopus/Contral/Auributes’LicenseStatePath"
LicenseStatePath:

zeros 256
LicenseStateValtie:

long 0
7debug
LicenseStatePath,Query.Debug:

string “----—-— Entering LicenseStatePath,Query ----------—\ai"”
LicenseStateValue.Query.Debug:

string “----—--- Entering LicenseStateValue.Query -------—-+--+ ut?
LicenseState. Gnise, Debug:

string, “*------+— Entering LicenseState.Erase --------------ny
LicenseStateSet.Debug:

Sting “——— Entering LicenseStare.Set -—-———-—-\n"

; code

code.

; LicenseStatePathQuery

LicenseStatePath.Query;
sdebug
PUSH @LicenseState Path,QueryDebug,
PUSH DEBUG_PRINT_SYSCALL
CALL
PUSH 256
PUSH(@LicenseStatePath
PUSH@LicenseStatePathControlAttribute :; Name
PUSH 0) ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL

; ReturnBuffersize
» ReturnBuffer

US 8,776,216 B2

173
-continued

A.2.1 LicenseStateUtils.asm

CALL
RET

; LicenseStateValue.Query

LicenseStuteValue.Query:
debug
PUSH @LicenseStateValue.Query,Debug
PUSH DEBUG_PRINT_SYSCALL
CALL
PLUSH 4
PUSH (@LicenseStateValue
PUSH @LicenseStatePath

; ReturnBufferSize (4 bytes)
: ReturnBulfer (type is long)
? Name.

PUSH; Parent = root contamer
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL
RET

; LicenseState.Erase

LicenseState. Erase:

debug
PUSH @LicenseState, Erase, Debug
PUSH DEBUG_PRINT_SYSCALL
CALL
; erase the local state
PUSH 0 7 Object Size (container)
PUSILO ; Object Type (container)
PUSH O ? Delete the container
PUSH @LicenseStatePath ; Name
PUSILO ‘ Parent = root container
PUSH SYSTEM_HOST_SET_OBJECT_SVYSCALL
CALL
RET

; LicenseState.Set

LicenseState.Sett
debug
PUSH @LicenseState.Set.Debug
PUSTL DEBUG_PRINT_SYSCALL
CALL
} set the state
PUSH O + Object Size (container)
PUSH O + Object Type (container)
PLUSH CONTAINER_IGNORED_ADDRESS
PUSH @)LicenseStatePath ; Name
PUSILO ; Parent = root container
PUSH SYSTEM_HOST_SET_OBJECT_SYSCALL
CALL
RET

E.2.2 MembershipUtils.asm
PSSEEEE RSE PREES EEE EEE RES EERE SESE EEE EE EEE ee EEE ET ESS ESE1

> File Name: MembershipUtils.asim
: Desorption: Utils for Broadcast Membership:

SeSteaeeeeeaahe ianoaia aeaaaaap @:

+ date

data
MernbershipStatePathControlAuribute:

‘string “Octopus/Control/Attributes/MembershipStatePath”
MembershipStatePath:

~nerog 256
MembershipStateValne:

clong 0
; debug
mtiStrOurput:

SSUTUNE scscccnance”
MembershipStatePath Query, Debug:

string “+----—-» Entering MemibershipStatePath,Query ----—----- han”

aa

ve ‘h

4

a5

30

Ln wn

oo

174
-continued

E.2.2 MembershipUtls.asin

MembershipStateValue.Query.Debug:
sstring “-—-—-— Entering MembershipStateValueQuery —-----—in”

Mermbership.Check.Debug:
sstring “-------— Entering Membership.Check ----—--------- a”

MembershipCheck_Success.Debug:
string “SH#H#4#8H Membership Check Success #H###\n"

Membership_ Check Failure.Debug:
string“Ht! Membership Check Failure #4444\n"

MembershipPath, Debug:
string “MembershipState path:

MembershipGetObjOutput. Debug:
string “MembershipState get object returns: ”

Membership_Expired.Debug:
-string “MembershipState has expired, Check the Value of the

Membership SeaShell token against the local time,"
NewlineString:

string “\n"

peode

code

MeimbershipStateParh,Query

MembershipStatePath.Query:
debug
PUSH @MembershipStatePath. Query.Debug
PUSH DEBUG_ PRINT_SYSCALL
CALL
PUSH 256 ; RetumBullerSiae
PUSH @MembershipStatePath ; RetumButfer
PUSH @MemberslupStatePathControlAttribure ; Name
PUSH O : Parent = root

container
PUSH SYSTEM HOST_GET_OBJECT_SYSCALL
CALL
RET

i; MetnbershipStateValue,Query

MembershipStateValue.Query:
debug
PUSH @MembershipStateValue.Query. Debug
PUSH DEBUG_PRINT_SYSCALL
CALL

PUSH @MembershipPath.Debug
PUSH DEBUG_PRINT_SYSCALL
CALL
PUSH @MembershipStatePath
PUSH DEBUG_PRINT_SYSCALL
CALL
PUSH ‘aNewlineString
PUSH DEBUG_PRINT_SYSCALL
CALL
PUSH 4
PUSH (a@)/MembershipStateValue
PUSH(@MembershipStatePath ; Name
PUSH 6 ; Parent = root container
PUSH SYSTEM_HOST_GET_OBJECT_SYSCALL
CALL.
PUSH @iMembershipGerOhjOutput. Debtig:
PUSH DEBUG_PRINT_SYSCALL
CALL

} print result — first convert intto string,
DUP
PUSH @intStrOurput
ADD
SWAP

ISR printiot
; call print result
PUSH @intStrOurput
PUSH DEBUG_PRINT_SYSCALL
CALL
PUSH@NewlineString
PUSH DEBUG_PRINT_SYSCALL,
CALL
RET

; RetirnBulferSize (4 bytes)
: ReturnBulver (type is long)

US 8,776,216 B2

175
-continued

E,2.2 MembershipUtils.asm

Membership.Check

Membership.Check;
debug
PUSH @Membership.Check. Debug
PUSH DEBUG_ PRINT _SYSCALL
CALL
query the membership state
ISK MembershipStateValue.Query
; see if we succeeded
BRN MembershipCheckFailed
; check thal ime is < the one retrieved in the membership state
PUSH @MembershipStateValue ; timestanrpPEEK
PUSH @GerTrustedTimePunctionNumber
PEEK
CALL
SWAP
DROP ; we just need the value (not the estimate)
SUB

BRN MembershipExpiredp success

debug
PUSH (@Membership_Check_Success.Debug,
PUSH DEBUG_PRINT_SYSCALL
CALL
PUSH SUCCESS
RET

Membership Expired:
debug,
PUSH @Membership_Expired. Debug
PUSH DEBUG_PRINT_SYSCALL
CALL
BRA Membership CheckFailed

MembershipCheck_Failed:
debug
PUSH @Membership_Check_Failure.Debug
PUSH DEBUG_ PRINT SYSCALL
CALL
PUSH FAILURE
RET

E.3 GlobalUtils

ES3.1 [ntUtils.asm

reePOSTE FT OFTVET EET EES OTTER EEOTeaa
File Name: [ntUtils.asm

: Deseription: utils for comparing 2 ints
a CF RESORTE ETE CREATES CREE SA AEE EHECEHR EH OE Oe Eh ee

; includes

inolide “StackUtils.asm”Seesesseeeee== ;
2 code

code

> mun

; computes the min between 2 ints

tinput... ab
;outpiit:, . ..asb7azb

minis
DUP iy
PUSH 2

JSR pickCMP
BRN Swap_ Stack
DROP
RET

Labb

ti .dtbba
t...ab emp_result
ion eb

a

wn

A

AL

ry ti

40)

45

3)

Ln ar

oo

176
-continued

E.3.1 IntUtils.asm

pmax
i

; computes the max between 2 ints

Pinpury .., ab
ij outpult ... e>bvab

THAN!
DUP
PUSH 2
ISR pick ;
CMP ‘
NEG

BRN Swap_Stack
DROP
RET

fe.eabb

-- abba
.. abemp_resulr

E3.2 Printintasm

ae OP CPE DEAKRERH ENESENATEEe
File Name: Printint.asm
Description: converts an integer (signed or unsigned) into a

stritig
kaaRadea ESET ERSA SEARAAAS EET SHAE SEARSREESE
3 NOTE: requires “StackUtils.asm" to have been included already
i data section

data
:cade section

code

; converts an integer into siring representation
; params; dest, int
printint:

: duplicate dest paramSWAP
DUP
PUSH 2
JSR pick
» STACK:orlgval, startstring. startstring,
unsignedval
now, we end up with an extra copy of int. at bottom
: we use this to test original sign later

printintLoop:
get the single digit
DUP
PUSH10
MOD
} convert to ascii
PUSH 48 ; ASCTI for ‘0’
ADD
; get the address for the output buffer
PUSH 2
JSR pick
POKES; print to the buffer
; move our buffer pointer alongSWAP
PUSH1
ADD
SWAP
7 divide by 10) and see where we're at
PUSH 10
DIV
DUP

BRP printintloop
DROP ; gets rid of the 0 at the top
; STACK = orignum, startofstring, endo fstring,
: original number was negative, put a minus sign
: tenminate with anull
DUP
PUSH

177
-continued

US 8,776,216 B2

E.3.2 Printintasmn

SWAP
POKEB
:move end ofstring ap 1, so don’t flip terminator
PUSH 1
SUB

; we're done: just need to reverse string
Hiplowp:

; wet second byteBUP
PEEKB

3 get finst bytePUSH2
ISR pick
PEEKB
: put first byte in last place
PUSH2
JSR pick
POKEB
? put last byte in first place
PUSH 2
ISR pick
PORKEB
; move the end pointer up one
PUSH1
SUB
¢ Move the start pointer down one
SWAP
PUSH 1
ADD
SWAP
see Lf the pointers have met
2 must cup the values first
DUP
PUSII2

ISR pickSUB

BRP fiploop
get rid of some detritus on the stack
DROP
DROP
DROP
RET

bal a

au

a tah

40

E.3.3 StackUtils.asm
CORESTEESETARTS SSEHESHRRES HE SESE ERSTE ES ESSE EREEEE ESSS

: File Name? StackUtils.asm
Description: Stack utils functions inspired from FORTH

Po]

ae 5eeOPhEeeIEHEEE EeeeeEyeh
ifndef STACK_UTILS_
define _ STACK _ UTILS _

: code = Seessss552====

ode

pover

copy the second item on the stack

jinpuk...ab
poulput:. .caba

pick

}imput: ...v3-v2 vi vO N
soutputs. 2. v3 v2v1 vWUVN

3)

60

178
-continued

E.3.3 StackUtils.asin

pick:
PUSH 1
ADD
PUSH 4
MUL
PUSHSP
ADD
PEEK
RET

endif: STACKUTILS_

E.3.4 StdLib.asm

: Standard Library for Plankton
equ HEAP ADDR, 16

dala section
peode section

code
strlen:

DUP
loop:

DUP
PEEKB
BR done
PLISH |
ADD
BRAloop

done:
SWAP
SUB
RET
.export strlen

E,3.5 StreCmp.asm.
eaeeEESEEEeeEEEEEEEESE SSS

{File Name: StirCmp.asm
Description: streq tests for the equality of nwo strings

a POPPE TES AREE PORATEDET
ifndefSTR_CMP_
define _STR_CMP_ FSS

 EI i

include “StackUtils-asm”
BED88088SeesseoeoeS
peode
Se
code

psiteq

itest for the equality of two strings

input...
;outpoh

. (str ist?
tes (res = 0 ifstrings are equal.-1 otherwise)

siteq:
; get the offset btw the 2 stringsJSR over
SUB
SWAP

streqloop:
{get the cur char ofstrl
DUP
PEEKB +... offset (@strl charl
; get the cur char of str2
JSR over Bie
PUSH 3
JSR pickADD

p++ Offset (@istrl

Offset fajstrl charl (@strl

>... offset @istr] char! (@str] offset

179
-continued

E.3.5 StrCinp.asm

US 8,776,216 B2

180
-continued

E.3.5 StrCinp.asin

PREKB 3.4. offset@strl char] char2 : DROP
: nowcompare the two chars ° DROP
ISR over DROP
SUB t.a Offset @str] char! charl-chard PUSH-1
: fail if the charl t= char2 RET
NOT richie?
BRZ sireq failure eeatin @strl
;ifchar) is 0 (char == char2 == 0) we're done 10 DROP =
BRZ streqsuccess ;.. offset @istr] DROP: increment the @istr! pointer and loop ry
PUSH1 PLUSH
ADD _ RET
BRA streqloop endif: STRCMP_

streq failure: 15
;., offset (@str1 charl

E.4 ExtendedStatusBlock Parameters

E41 TransferNStatusProximityCheckSucceeded.xml

= <ValueListBlock>
=<ValueBlock type="Parameter">

~=ParaneterBlock name="Obligations>
- =ValueBlock type="ValueList">

-=VilueListBlock>
==ValueBlock type="FxtendedParameter’>

+ =ParameterBlock name="RunAgentQnPeer” flags="1">
-=ValueBlock type="ValueList">
=<ValueListBlock>

- =! Control ID -->
=ValueBlock type="String*urnmarlin-control023/ValueBlock>

- =!-- Agent Name ==>
<ValueBlook type="String”>SetStateContent0023=/ValueBlock>

~ <!-- instance ID ->

=ValueBlock type="Luteger*>240543<ValueBlock=
-=t= Context [D -->
<ValueBlock type="String”>MoveStateC antent023</ValueBlock>

-<!— additional parameters ->
- =ValueBlock types"ValueList”=

~ <ValueListBlock>
- <ValueBlock type="Parameter">

~ =! The ONLY thing that changes with
TransferXStatusProximityCheeckFailed.xml ->

= =ParameterBlock name="ProximityChecked">
ValtteBlock type="Integer">1</ValueBlock>
=/ParameterBlock>

=/ValueBlock=
~/ValueListBlock>

=WalueBlock>
~/ValueListBlock=

</VulueBlock>
~/ParameterBlock>

<NWalueBlock>
=/ValueListBlock=

*/VahieBlock>
=/ParameterBlock>

~/ValueBlock>
~~ValueBlock type="Parameter”>
- <ParameterBlock name="Callbacks">-

= <ValueBlock type="ValueList”>
= <ValueListBlock>

= ¢ValueBlock type="ExlendedParameter">
-=ParameterBlock name="OnAgentCompletion” flags="">

= =ValueBlock type="ValueList”>
~=ValueListBlock>

-<!-- Agent instance ID -->
=ValueBlock type="String”>240343</ValueBlock>

~ <!- Callback Routine -->
- =ValueBlock type=""ValueList">
= “ValueListBlock>
= <!-- RESET->

<ValueBlock type="Integer”=< "ValueBlock>
-<!-- Name ->

<ValueBlock
type="String>Control_Agents, SetStateContent023.OnAgentCompletion=/ValueBlock>
- <b- cookie ->
=ValueBlock type="Integer*>0</ValueBlock>

US 8,776,216 B2

181 182
-continued

E.4.1 TransferStatusProximityCheckSueceeded.xml
 ValueistBlock>

</ValueBlock>
</ValueListBlock=

<WalueBlock>
=/ParameterBloek>

J/ValueBlock>
=/ValucListBlock>

</ValueBlock>
</ParameterBlock>

=/ValueBlock>
</ValueListBlock>

E.4.2 TranslerNStatusProximityCheekFailedsml

-=ValueListBlack>
-=ValueBlock type="Parameter">
- <ParameterBlock name="Obligations”™>
==ValueBlock type="ValueList”>

~ = ValiieListBlock>
+ <ValueBlock type="ExtendedParameter">
- =ParameterBlock name="RunAgentOnPeer™ flags="1">

= <ValieBlock type="ValueList">
-<ValueListBlock>- =! Control [D -->

=VilueBlock type=“String’>urnamarlincontrol:0023< ValueBlock=
-<!-- Agent Name -->

=WValueBlock type="String">SetStateContent023</VialueBlock>
~ =1-- instance [D -->
~ValueBlock type="Integer”>240343</ValueBlock=

~<t-- Content ID -->

~ValueBlock type="String’ >MoveStateContent023=/ValueBlack>
- =!-- additional parameters -->
= sValueBlock type="ValueList”>

+ =ValueListBlock>
==ValueBlock type="“Parameter”=

><!The ONLY thing that changes with TransférXStarsProximityCheckSucceed xml -->
-<ParameterBlock name="ProximityChecked">

=WalueBlock type="Integer">0=/ValueBlock>
</ParameterBlock=
=/ValueBlock>
</ValueListBlock>

=/ValueBlock>
</WalueListBlock>

</ValueBlock>
</ParameterBlock=

=/ValueBlock>
</ValieListBlock>

</ValueBlock=
~/ParameterBlock>

</ValueBlock>
- <ValueBlock type="Parameter"=
- <ParameterBlock name="Callbacks">
==ValueBlock type="ValueList”>

~ <ValueListBlock>
= <ValueBlock type="ExtendedParameter">

= <ParameterBlock name="QnAgentCompletion”™ flags="1">
-<ValueBlock type="Waluel ist">

= *ValueListBlock>
-=t-- Agent tostance [D ->

<ValueBlock type="Strng”>240343</ValueBlock=
~~! Callback Routine ->

-~<ValueBlock type="ValueList"™>
~ =Valuel istBlock>
-<!- RESET ->

~ValueBlock type="Inteper">0</ValueBlock>~ “1Namie -->

=ValueBlock type="String’>ControlAgents. SetStateContent(023.OnAgentCampletion=/ValueBlock=
z=!cookie ->

=ValueBlock type="iteger"4I</ValueBlock=
=/WValuel, istBlock=
=ValueBlock>

</ValueListBlock>
</ValueBlock>

</ParameterBlock=

</ValueBlock>
</ValueListBlack>

<=/ValueBlock>
</ParameterBlock>

</ValtieBlock>
</ValueListBlock>

183

US 8,776,216 B2

-continued

E.4.2 TransferXStatusProximityCheekFailed.xml

E.4.3 TransferXStatusProximityCheckSucceeded.asm
OxO0 Ox00 Ox00 Ox02 Ox00 OxD0 Ox00 Oxd4 0x00 Oxf (x00 Ox20
Ox Ox00 Ox00 Ox0C OxdF O62 (e6C 0x69 Oxb7 OxGl (ix74 OxGg
Ox6F Ox6E Ox73 OxbO 0x00 0x00 0x00 OxD7 x00 0x00) fx00)=Ox0C
Ox00 0x00 0x00 Ox0T 0x00 0x00 0x00 0x05 Ux00 Ox00 Ox00 Ux04
Ox) Ox00 0x00 Ox01 Os00 O00 0900 OOF 0x52 Ox75 (x6 0x41
Ox67 Ux65 Ox6E Ox7+ Und OxGR 0x50 On65 OxGS Ox72 Ux00 Ox00
Ox0O 0x00 0x07 0x00 Ox00 Ox00 0x92 OKO0 0x00 Ox00 Ox05 Ox00
x00 Ox00 OxU2 Ox00 Ox00 OxON18 Ox7S Ox72 (x6E Ox3A Ox6D
Ox61 Ox72 (x6C 0x69 Ox6E Ox3A 0x63 Ux6F Ox6E 0x74 (x72 Ox6F
Ox6C Ox3A 0430 0630 0x32 0x35 0x00 0x00 0x00 0x00 OKO? Ox00
Ox00 Ox00 Oxl4 0x53 Ox65 Ox74 0x53 Ox74 Ux6l Ox74 0x65 0x43
(x6F Ox6E Ox74 0x65 Ox6E 0x74 0x30 0x30 0x32 0x33 0x00 OxG0
x00 0x00 0x00 0x00 O500 Ox00 Ox04 0x00 0x05 OxAA OxD? 0x00
Ox00 0x00 0x02 0x00 x00 Ox00 Ox15 Ox4D Ox6F Ox76 0x65 UxS3
Ox74 Um6l Ox74 0x65 0x43 OxGF Ox6E Ox74 0x65 Ox6E (tix74 0x30
Ox30) 0x32 0933 0x00 0x00 Ox00 Ox00 OxO7 Ox00 0x00 x00 0x25
Ox00 Ox00 Ox00 Oxdl Ox00 Ox00 Ox00 Ox04 0x00 Oxd0 Ox00 OxlD
OxoO0 Ox00 Ox00 Oxll 0x30 Ox72 OxGF Ox78 0x69 Ox6D Ox69 Ox74
Ox79 Oxd3 07x68 0x65 0x63 Ox6B 0x65 Ox6d Ox00 Ox00 OxON Ox00
Ox) Ox00 0x00 0x00 Ox04 Ox00 0x00 Ox00 OxOL Ox00 Ox00 Ox00
OxOd Ox00 0x00 0x00 Ox Ox00 Ox00 0x00 OxOA Oxd3 Ox6l Ox6C
Ox6C Ux62 Ox6l Ox63 Ox6BR Ox73 Ox00 Ux00O Oxo Oxi tis07 Ox00
Ox ORO OXOC 0x00 0X00 Ox0U Ox01 Ox00 0x00 Ox00 0x05 Oxt0
ox00 Ox00 Ox04 Ox00 OxtO Ox00 OxOK00 OX00 OxtO x12 Onde
Ox6E Ox4l Ox67 Ox65 OxGE Ox74 0x43 Ox6F Ox6D 0x70 UxKoO 0x65
Ox74 0x69 Ox6F Ox6E Ox00 0x00 0x00 Ox00 0x07 Ox0 0x00 Oxd0
Ox6C 0x00 0x00 0x00 Ox02 O00 0x00 ORO 0x02 Ox00 Ox00 Ox00
Ox07 0x32 0x34 0x30 0x33 0x34 0x33 0x00 x00 CKx00 0x00 0x07
OxOO Ox00 Ox00 OxS5 Ox00 Oxd0 Ox00 0x03 0x00 Ox Ox00 Oxo
Ox00 0x00 Ox00 0x04 0x00 Ox00 0x00 0x00 0x00 0x00 x00 0x02
Ox00 0x00 O00 0x35 0x43 Ox6F Ox6E Ox74 (K72 ONGF UxK6éC OKIE
Ox4. Ox67 O65 OxGE Ox74 0x73 Ox2E 0x53 Ux65 Ox74 On53 Ox74
Ox6l Ux74 Ox65 0x43 Ux6F Ox6R 0x74 OxGS (KG 0x74 0x30 0x30
Ox32 0x33 Ox2E OxéF OxGE Oxdl 0x67 0x65 Ox6E Ox7d Onda ONGF
Ox6D Ox70 Ox6C Ox65 Ox74 0x69 ONGF OXGE UXO Ox00 OxO0 Oxon
Oxo) Ox00 Ox00 Ox00 0x04 Ox00 O00 OxOD Ox)

E44 TransferXStatusProximityCheckFailed.asm
Ox00 Ox00 Ox0O Ox02 Ox00 Ox00 Ox00 OxO4 0x00 Ox00 OxO0 Ox20
Ox0O Ox00 Ox00 Ox0C Ox4F Ox62 Ox6C Ox69 Ox67 OxGl Ox74 On6o
Ox6F Ox6E 0x73 Ox00 Ox00 0x00 Ox00 Ox07 Ox00 0x00=Ox00 Ox0C
OxOO 0x00 0x00 Oxdl OxO0 Ox00 Ox00 Ox0S Ux00 Ox00 Ox00 Oxt4
OxO Gxt Ox00 0x01 Ox00 0x00 0x00 OxOF 0x82 Ox7S One Oxdl
0x67 0x65 OXGE Ox74 Ox4F Ox6E 0x50 0x65 6x65 0x72 ONOD ONOD
x00) Ox00 0x07 0x00 Ox00 0x00 0592 0600 x00 Ox00 0x05 Ux00
Oxi) Osx00 Ox02 0x00 (s00 Gs00 0x18 Ux7S Ox7?2 Yx6E Ox3A tx6D
x61 Ux72 Ox6C 0x69 Ox6R (3A 0x63 Ux6F Ux6K (x74 0x72 OxGF
Ox6C O83A 0x30 0X30 0x32 0333 Ox00 Ox00 Ox00 0x00=Ox02 0x00
OxO0 CxO) Oxl4 0x53 0x65 Ox74 0x53 On74+ OxGl Ox74 0x65 Ondd
(x6F Ox6h Ox74 0x65 Ox6h (x74 0x50 1x30 0x32 0x33 x00 Ox(h0
oxoo Ox00 0x00 0x00 x00 0x00 OxOd 0x00 0503 OxAA 0xD7 Ox00
Oxi) Ox00 Ox02 OxO0 Ox0O0 Ox00 Ox1S Ox4D Ox6F 0x76 0x65 0x53
Ox74 (x61 Ox74 0x65 0x43 OxGF Ox6E Ox74 Ux65 Ox6E (x74 0x30
0x30 Ox32 0x33 0x00 0x00 Ox00 O00 Ox07 0x00 Ox00 Ox00 0x25
Ox00 0x00 0x00 OxOL Ox00 Gx00 0x00 Ox04 0x00 Ox00 Ox00 OxID
OxO0O Ox00 Ox0O Oxll 0x50 Ox72 OxGF ON78 Ox69 Ox6D 0x69 Ox74
Ox79 Oxds 0x68 Ox65 0x63 Ox6B Ox6S On6d OK00 0x00 0x00) Oxdid
Ox0O 0x00 0x00 0x00 Ox Ox00 Ox00 Ox00 0x00 0x00 OxOx00
Ox04 Ox00 Ox00 0x00 OxlE Ox00 Ox00 0x00 Ox0A 0x43 OxGl 0x6C
Ox6C Ux62 0x61 Ox63 Ox6B Ox73 OxbO 0x00 x00 Ox00 Ux07 Oxt0
Ox00 0x00 Ox0C 0x00 0x00 Oxd0 Ox0OT 0x00 0x00 0x00 x05 Ox00

184

US 8,776,216 B2

185

-continued

E44 TransferXStatusProxinmityC heckFailed asm

CxO O00 O04 0X00 ORO iO OROL OX00 ORO0 ONG
OxOE Oxdl x67 Ox65 Und Ox74 0x43 Ox6F Ox6D Ox70
Ox74 0x69 Ox6F (x6E 0x00 Us00 Ox00 (x00 Ox07 Ox00
OxeC Ux00 O00 OKO) 0x02 Usbt Ost Ox00 0x02 OxOU
OxO7 (x32 Ox34 0930 Ox33 0x34 0x33 OKOO x08=6Ox00
Ox00 C800 0x00 0x55 0x00 Os00 0x00 0603 Ox00 Oxt0
OxO O00 O00 0x04 0x00 O00 O00 Ox00 OOO O00
Ox) OX00 O00 Ox35 Ox45 OxGF Ox6R Ox74 0x72 Ox6F
Ox4l Ox67 0x65 Ox6E Oxtd Ox73 OKZE On53 Ox65=OTA
Ox61 (x74 Ox6S 0x43 OxGF OxGR Ox74 0x65 Ox6E ONT4
Ox32 0x33 Ox2E Ox4F Ox6E Ux4! 0x67 Ox65 Ox6r Ox74
Ox6D 0x70 Ox6C 0x65 Ox74 Ox69 OXGF OxX6E Ox00 Oxo0
ox Ox00 0x00 Gx00O Oxd4 Ox00 0x00 Ox00 OxO00

Although the foregoing has been described in some detail
for purposes ofclarity, it will be apparent that certain changes
and modifications may be made within the scope of the
appended claims. It should be noted that there are many
allernalive ways of implementing both the processes and
apparatuses described herein. Accordingly. the present
embodiments are to be considered as illustrative and not

restrictive, and the inventive body ofwork is not to be limited 5
to the details given herein, but may be modified within the
scope and equivalents of the appended claims.

The invention claimed is:

1, A method of authorizing access lo a piece ofelectrome
content on a host computer system, the method comprising:

receiving a request [roma user ofthe host computer system
to access the piece of electronic content;

retrieving a license associated withthe piece ofelectronic
content, the license comprising a control object, a con-
troller object, a protector object, and a content key
object:

retrieving a first control program fromthe control object:
executing the first control program using a digital rights

management engine running on the host computer sys-
tem to determine whether the request is granted, includ-
ing determining that a path of valid link objects exists
between nodes in a first authorization graph from a first
node associated with the user to a second node associ-

ated with the host computer system, wherein eachlink
object represents a relationship between two entities in
an authorization graph, wherein a link object is valid if
all ofone or more conditions expressed by thelink object
are met; and

executing a second control programincluded ina first link 5
object using the digital rights management engine run-
ning on the host computer system to determine whether
all of the one or more conditions expressed by the first
link object are satisfied, wherein the one or more condi-
uons expressed by the first link object inchides a ime
restriction, and wherein the first authorization graphis
formed by adding the first link object to a second autho-
nzation graph.

2, The method of claim L, in which the controller object ts
configured to bind the control object with the content key
object.

3. The method of claim 1, wherein the time restriction
requires that the current time be on before a predefined time.

4. The method of claim 1, wherein the time restriction

requires that the current time be after a predeterminedtime,
§. The method ofclaim 1, in which at least one of the one

or more conditions expressed by the link object comprises a

186

Yxt2 Ox4k
Ox6C Oxos
x00 0x0
(sO) Oxi
fxO0 Oxtt7
Ox00 x00
OxOO Ox?
Ox6C ORE,
O53) Ox74
(a3) 0x30
(ix43 OxaF
x00 Ox0D

at

40)

4a

60

65

requirement that the second control program not have been
previously executed more than a predefined number of times.

6. The method ofclaim J, in which at least one of the one

or more conditions expressed bythe link object comprises a
requirement that a counter stored in memory not exceed a
predefined value.

7. The method ofclaim1, in whichatleast one of the one

or more conditions expressed by the link object comprises a
requirement that a predefined event not have previously
occurred,

8. The method of claim 1, in which at least one of the one

or more conditions expressed by the first contro] program
comprises a requirementthat the host computer system must
have one or more predefined characteristics.

9. The method of claim 1, in which at least one of the one
or more conditions expressed by the first contro] program
comprises a requirement that software running on the host
computer systemfor rendering the piece ofelectronic content
be unable to export the piece of electronic content to a pre-
defined interface.

10. A method ofauthorizing a given action to be performed
ona piece ofelectronic content, the method comprising:

executing a first control program using a virtual machine
running ona first digital rights management engine, the
first control program being configured to determine
whether the given action on the piece of electronic con-
tent is authorized, whereinthe first control programis
configured to evaluate a first set of one or more condi-
tions thal must be salished in order for the given action
to be authorized, and whereinal least oneofthe firstset

of one or more conditions comprises a requirementthat
each link object be valid among one or more link objects
along a path of link objects between nodes in a first
authorization graph from afirst node representing a first
entity to a second node representing a second entity:

retrieving the one or more link objects, each ofthe link
objects expressing a relationship between twoentities,
wherein a link object is valid if all of one or more
conditions expressed by the link object have been met,
and a first link object includes a second control program
configured to evaluate one or more conditions all of
Which must be satisfied in order for the first link object to
be considered valid; and

executing the second control program using the digital
rights management engine running onthe host computer
system to determine whether all of the one or more
conditions expressed by thefirst link object are satisfied,
wherein the oneormore conditions expressed bythefirst
link object includes a time restriction, and wherein the

US 8,776,216 B2
187 188

first authorization graph is formed by adding the first
link object to a second authorization graph.

11. The method of claim 10, in which ai least one ofthe

conditions comprises a requirement that a counter stored in
memory not exceed a predefined value. 5

* - * *

