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Preface

The dream of intelligent automata goes back to antiquity; its first major articulation
in the context of digital computers was by Turing around 1950. Since then, this
dream has been pursued primarily by workers in the fielttdicial intelligence,
whose goal is to endow computers with information-processing capabilities
comparable to those of biological organisms. From the outset, one of the goals of
artificial intelligence has been to equip machines with the capability of dealing with
sensory inputs.

Computer vision is the construction of explicit, meaningful descriptions of
physical objects from images. Image understanding is very different from image
processing, which studies image-to-image transformations, not explicit description
building. Descriptions are a prerequisite for recognizing, manipulating, and
thinking about objects.

We perceive a world of coherent three-dimensional objects with many
invariant properties. Objectively, the incoming visual data do not exhibit
corresponding coherence or invariance; they contain much irrelevant or even
misleading variation. Somehow our visual system, from the retinal to cognitive
levels,understands, or imposes order on, chaotic visual input. It does so by using
intrinsic informationthat may reliably be extracted from the input, and also through
assumptions anénowledgethat are applied at various levels in visual processing.

The challenge of computer vision is one of explicitness. Exactly what
information about scenes can be extracted from an image using only very basic
assumptions about physics and optics? Explicitly, what computations must be
performed? Then, at what stage must domain-dependent, prior knowledge about
the world be incorporated into the understanding process? How are world models
and knowledge represented and used? This book is about the representations an
mechanisms that allow image information and prior knowledge to interact in image
understanding.

Computer vision is a relatively new and fast-growing field. The first
experiments were conducted in the late 1950s, and many of the essential concept

Xiii
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Xiv

have been developed during thefiagtyears. With this rapid growth, crucial ideas
have arisen in disparate areas such as artificial intelligence, psychology, comput
graphics, and image processing. Our intent is to assemble a selethimmratterial
in a form that will serve both as a senior/graduate-level academic text and as
useful reference to those building vision systems. This book has a strong atrtificie
intelligence flavor, and we hope this will provoke thought. We believe that both the
intrinsic image information and the internal model of the world are important in
successful vision systems.

The book is organized into four parts, based on descriptions of objects at fou

different levels of abstraction.

1. Generalized images—images and image-like entities.

2. Segmented images—images organized into subimages that are likely t
correspond to "interesting objects."

3. Geometric structures—quantitative models ofimage and world structures.

4. Relational structures—complex symbolic descriptions of image and world
structures.

The parts follow a progression of increasing abstractness. Although the foul
parts are most naturally studied in succession, they are not tightly interdependent. P
| is a prerequisite for Part Il, but Parts Il and IV can be read independently.

Parts of the book assume some mathematical and computing backgroun
(calculus, linear algebra, data structures, numerical methods). However, throughot
the book mathematical rigor takeebackseato concepts. Our interis totransmitaset
of ideas about a new field to the widest possible audience.

In one book it is impossible to do justice to the scope and depth of prior work in
computer vision. Further, we realize that in a fast-developing field, the rapid influx of
new ideas will continuaVe hope that our readersll be challenged to think, criticize,
read further, and quickly go beyond the confines of this volume.

Preface
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Computer
Vision 1

Computer Vision Issues

1.1 ACHIEVING SIMPLE VISION GOALS

Suppose that you are given an aerial photo such as that of Fig. 1.1a and asked to
cate ships in it. You may never have seen a naval vessel in an aerial photograph kt
fore, but you will have no trouble predicting generally how ships will appear. You
might reason that you will find no ships inland, and so turn your attention to ocear
areasYou might be momentarily distracted by the glare on the water, but realizing
that it comes from reflected sunlight, you perceive the ocean as continuous an
flat. Ships on the open ocean stand out easily (if you have seen ships from the ai
you know to look for theiwakes)Near the shore the image is more confusing, but
you know that ships close to shore are either moored or docked. If you have a me
(Fig. 1.1b),it can help locate the docks (Fifz1c);in a low-quality photograph it

can help you identify the shoreline. Thus it might be a good investment of your
time to establish the correspondence between the map and the image. A sear
parallel to the shore in the dock areas reveals several ship4 (-

Again, suppose that you are presented with a set of computer-aided tomo
graphic (CAT) scans showing "slices" of the human abdomen 1Ftg).These
images are products of high technology, and give us views not normally available
even with x-rays. Your job is to reconstruct from these cross sections the three
dimensional shape of the kidneys. This job may well seem harder than finding
ships.You first need to know what to look for (Fij.2b),where to find it in CAT
scansand how it looks in such scans. You need to be able to "stack up" the scan
mentally and form an internal model of the shape of the kidney as revealed by it
slices (Fig. 1.2c and.2d).

This book is aboutomputervision. These two example tasks are typical com-

1
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puter vision tasks; both were solveg computers usinghesorts of knowledge

and techniques alludetb in thedescriptive paragraphs. Computer visisnthe
enterprise of automating and integrating a wide range of processes and represen
tions usedfor vision perceptionlt includesasparts many techniques thate
useful by themselves, suclas imageprocessindtransforming, encodingand
transmitting imagespndstatisticalpattern classification(statistical decision theory
applied to general patterns, visualr otherwise). More importantlyor us, it in-
cludes techniquefr geometric modeling and cognitive processing.

1.2 HIGH-LEVEL AND LOW-LEVEL CAPABILITIES

The examples of Section 1.1 illustrate vision that uses cogpitheessesgeometric
models,goals, andplans. Thesehigh-levelprocesses are very important; our exam
ples only weakly illustrate their powemdscope. There surely woulde some
overall purposeto finding ships; there mighbecollateral information that there
were submarines, bargesr small craftin theharbor, and sdorth. CAT scans
would be used with several diagnostic goadsnind and an associated medical his-
tory available. Goalsandknowledge are high-level capabilities thatanguide
visual activities, and a visual system should be able to take advantage of them.

@) (b)

Fig. 1.1 Finding shipsin anaerial photograph(a) Thephotograph;(b) acorresponding
map; (c) thedock areaofthe photograph{d) registered map and image, with ship location.

2 Ch. 1 Computer Vision
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Fig. 11 (cont)

Even such elaborated tasks are very special ones and in their way easier t
think about than the commonplace visual perceptions needed to pick up a baby
cross a busy street, or arrive at a party and quickly "see" who you know, your
host's taste in decor, and how long the festivities have been going on. All thes¢
tasks require judgment and large amounts of knowledge of objects in the world,
how they look, and how they behave. Such high-level powers are so well in-
tegrated into "vision" as to be effectively inseparable.

Knowledge and goals are only part of the vision story. Vision requires many
low-level capabilities we often take for granted; for example, our ability to extract
intrinsic images of "lightness," "color," and "range." We perceive black as black
in a complex scene even when the lighting is such that some black patches ar
reflecting more light than some white patches. Similarly, perceived colors are not
related simply to the wavelengths of reflected light; if they were, we would con-
sciously see colors changing with illumination. Stereo fusion (stereopsis) is a low-
level facility basic to short-range three-dimensional perception.

An important low-level capability is object perception: for our purposes it does
not really matter if this talent is innate, ("hard-wired"), or if it is developmental or
even learned ("compiled-in"). The fact remains that mature biological vision sys-
tems are specialized and tuned to deal with the relevant objects in their environ-

Sec. 1.2 High-Level and Low-Level Capabilities 3
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Fig. 1.2 Finding a kidney in a computer-aided lomographic scan, (a) One slice of scan data;
(b) prototype kidney model; (c) model fitting; (d) resulting kidney and spinal cord instances.

ments. Further specialization can often be learned, but it is built on basic immut-
able assumptions about the world which underlie the vision system.

A basic sort of object recognition capability is the "figure/ground” discrimi-
nation that separates objects from the "background." Other basic organizational
predispositions are revealed by the "Gestalt laws" of clustering, which demon-
strate rules our vision systems use to form simple arrays of stimuli into more
coherent spatial groups. A dramatic example of specialized object perception for

Ch. 7 Computer Vision
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human beings is revealed in our "face recognition" capability, which seems to oc-
cupy a large volume of brain matter. Geometric visual illusions are more surprising
symptoms of nonintuitive processing that is performed by our vision systems, ei-
ther for some direct purpose or as a side effeis specialized architecture. Some
other illusions clearly reflect the intervention of high-level knowledge. For in-
stance, the familiar "Necker cube reversal" is grounded in our three-dimensional
models for cubes.

Low-level processing capabilities are elusive; they are unconscious, and they
are not well connected to other systems that allow direct introspection. For in-
stance, our visual memory for images is quite impressive, yet our quantitative ver-
bal descriptions of images are relatively primitive. The biological visual
"hardware" has been developed, honed, and specialized over a very long perioc
However, its organization and functionality is not well understood except at ex-
treme levels of detail and generality—the behavior of small sets of cat or monkey
cortical cells and the behavior of human beings in psychophysical experiments.

Computer vision is thus immediately faced with a very difficult problem; it
must reinvent, with general digital hardware, the most basic and yet inaccessible
talents of specialized, parallel, and partly analog biological visual systems. Figure
1.3 may give a feeling for the problem; it shows two visual renditioadashiliar
subject. The inset is a normal image, the rest is a plot of the intensities (gray levels’
in the image against the image coordinates. In other words, it displays information

S

A R LA

"V !
Ve

e Y,
Fig. 1.3 Two representations of an
image. One is directly accessible to our
low-level processes; the other is not.
Sec. 7.2 High-Level and Low-Level Capabilities 5
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with "height" instead of "light." No information is lost, and the display is an
image-like object, but we do not immediately see aface in it. The initial represente
tion the computer has to work with is no better; it is typically just an array of
numbers from which human beings could extract visual information only very
painfully. Skipping the low-level processing we take for granted turns normally
effortless perception into a very difficult puzzle.

Computer vision is vitally concerned with both low-level or "early proc-
essing" issues and with the high-level and "cognitive" use of knowledge. Wher
does vision leave off and reasoning and motivation begin? We do not know pre
cisely, but we firmly believe (and hope to show) that powerful, cooperating, rich
representations of the world are needed for any advanced vision system. Witho
them, no system can derive relevant and invariant information from input that i
beset with ever-changing lighting and viewpoint, unimportant shape differences
noise, and other large but irrelevant variations. These representations can remc
some computational load by predicting or assuming structure for the visual worlc

Finally, if a system is to be successful in a variety of tasks, it needs som
"meta-level" capabilities: it must be able to model and reason about its own goal
and capabilities, and the success of its approaches. These complex and rela
models must be manipulated by cognitive-like techniques, even though introspec
tively the perceptual process does not always "feel" to us like cognition.

Computer Vision Systems

1.3 A RANGE OF REPRESENTATIONS

Visual perception is the relation of visual input to previously existimglelof the
world. There is a large representational gap between the image and the mode
("ideas," "concepts") which explain, describe, or abstract the image information
To bridge that gap, computer vision systems usually have a (loosely ordered) ran¢
of representationsonnecting the input and the "output" (a final description, deci-
sion, or interpretation). Computer vision then involves the design of these inter
mediate representations and the implementation of algorithms to construct thel
and relate them to one another.

We broadly categorize the representations into four parts (Fig. 1.4) which
correspond with the organization of this volume. Within each part there may be
several layers of representation, or several cooperating representations. Althoug
the sets of representations are loosely ordered from "early" and "low-level" sig
nalsto "late" and'cognitive"" symbols, the actual flow of effort and information
between them is not unidirectional. Of course, not all levels need to be used i
each computer vision application; some may be skipped, or the processing me
start partway up the hierarchy or end partway down it.

Generalized imageéPart 1) areiconic (image-like) andanalogicalrepresenta-
tions of the input data. Images may initially arise from several technologies.

6 Ch. 1 Computer Vision

Page 25 of 539



Fig. 14 Examples of the four categories of rep-
resentation used in computer vision, (a) Iconic; (b)
segmented; (c) geometric; (d) relational.

Domain-independent processing can produce other iconic representations more
directly useful to later processing, such as arrays of edge elements (gray-level
discontinuities) Intrinsic imagesan sometimes be produced at this level—they re-
veal physical properties of the imaged scene (such as surface orientations, range
or surface reflectance). Oftgrarallel processingan produce generalized images.
More generally, most "low-level" processes can be implemented with parallel
computation.

Segmented imagéPRart Il) are formed from the generalized image by gather-
ing its elements into sets likely to be associated with meanirgfjgctsin the
scene. For instance, segmenting a scene of planar polyhedra (blocks) might resul
in a set of edge segments corresponding to polyhedral edges, or a set of two

Sec. 1.3 A Range ol Representations 7
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Fig. 14 (cont.)

dimensionalregionsin the image corresponding to polyhedral faces. In producing
the segmented image, knowledge about the particular domain at issue begins to b
important both to save computation and to overcome problemsisgand inade-
quate data. In the planar polyhedral example, it helps to know beforehand that the
line segments must be straightextureand motionare known to be very important

in segmentation, and are currently topics of active research; knowledge in these
areas is developing very fast.

Geometric representation@®art Ill) are used to capture the all-important idea

Ch. 7 Computer Vision
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of two-dimensional and three-dimensiorslape.Quantifying shape is as impor-
tant as it is difficult. These geometric representations must be powerful enough t
support complex and general processing, such as "simulation" of the effects ¢
lighting and motion. Geometric structures are as useful for encoding previously
acquired knowledge as they are for re-representing current visual input. Compute
vision requires some basic mathematics; Appeddnas a brief selection of useful
techniques.

Relational modelgPart IV) are complex assemblages of representations use
to support sophisticated high-level processing. An important tool in knowledge
representatioris semanticnets,which can be used simply as an organizational cor
venience or as a formalism in their own right. High-level processing often use:
prior knowledge and models acquired prior to a perceptual experience. The bas
mode of processing turns froeonstructingrepresentations tmatchingthem. At
high levels, propositional representations become more important. They are ma
up of assertions that are true or false with respect to a model, and are manipulat
by rules ofinference.Inference-like techniques can also be used for planning,
which models situations and actions through time, and thus must reason abo
temporally varying and hypothetical worlds. The higher the level of representa:
tion, the more marked is the flow obntrol (direction of attention, allocation of
effort) downward to lower levels, and the greater the tendency of algorithms to ex
hibit serial processing.These issues of control are basic to complex informatiol
processing in general and computer vision in particular; Appehaiistlines some
specific control mechanisms.

Figure 15 illustrates the loose classification of the four categories into ana
logical and propositional representations. We consider generalized and segment
images as well as geometric structures to be analogical models. Analogical mode
capture directly the relevant characteristics of the represented objects, and a
manipulated and interrogated by simulation-like processes. Relational models ai
generally a mix of analogical and propositional representations. We develop thi:
distinction in more detail in Chapter 10.

1.4 THE ROLE OF COMPUTERS

The computer is a congenial tool for research into visual perception.

e Computers are versatile and forgiving experimental subjects. They are easil
and ethically reconfigurable, not messy, and their workings can be scrutinizec
in the finest detail.

e Computers are demanding critics. Imprecision, vagueness, and oversights a
not tolerated in the computer implementation of a theory.

e Computers offer new metaphors for perceptual psychology (also neurology
linguistics, and philosophy). Processes and entities from computer science prc
vide powerful and influential conceptual tools for thinking about perception
and cognition.

» Computers can give precise measurements of the amount of processing the

Sec. 1.4 The Role of Computers 9
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do. A computer implementation places an upper limit on the amount of compu-
tation necessary for a task.

« Computers may be used either to mimic what we understand about human pe
ceptual architecture and processes, or to strike out in different directions to tn
to achieve similar ends by different means.

e Computer models may be judged either by their efficacy for applications and
on-the-job performance or by their internal organization, processes, anc
structures—the theory they embody.

1.5 COMPUTER VISION RESEARCH AND APPLICATIONS

12

"Pure" computer vision research often deals with relatively domain-independent
considerations. The results are useful in a broad rangentéxts.Almost always
such work is demonstrated in one or more applications areas, and more often the
not an initial application problem motivates consideration of the general problem.
Applications of computer vision are exciting, and their number is growing as com-
puter vision becomes better understood. Table 1.1 gives a partial list of "classical
and current applications areas.

Within the organization outlined above, this book presents many specific
ideas and techniques with general applicability. It is meant to provide enough basi
knowledge and tools to support attacks on both applications and research topics.

Ch. 7 Computer Vision
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IMAGES
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The first step in the vision process is image formation. Images may arise from
variety of technologies. For example, most television-based systems convel
reflected light intensity into an electronic signal which is then digitized; other sys-
tems use more exotic radiations, such as x-rays, laser light, ultrasound, and hei
The net result is usually an array of samples of some kind of energy.

The vision system may be entirely passive, taking as input a digitized image
from a microwave or infrared sensor, satellite scanner, or a planetary probe, bt
more likely involves some kind activeimaging. Automated active imaging sys-
tems may control the direction and resolution of sensors, or regulate and direc
their own light sources. The light source itself may have special properties anc
structure designed to reveal the nature of the three-dimensional world; an examp
is to use a plane of light that falls on the scene in a stripe whose structure is close
related to the structure of opaque objects. Range data for the scene may be pi
vided by stereo (two images), but also by triangulation using light-stripe tech-
nigues or by "spotranging" using laser light. A single hardware device may deliver
range and multispectral reflectivity ("color") information. The image-forming
device may also perform various other operations. For example, it may automati
cally smooth or enhance the image or vary its resolution.

The generalized image sset of related image-like entities for the scene. This
set may include related images from several modalities, but may also include th
results of significant processing that can extiatinsic images.An intrinsic image
is an "image," or array, of representations of an important physical quantity suct
as surface orientation, occluding contours, velocity, or range. Object color, which
is a different entity from sensed red—green—blue wavelengths, is an intrinsic
quality. These intrinsic physical qualities are extremely useful; they can be relatec
to physical objects far more easily than the original input values, which reveal the
physical parameters only indirectly. An intrinsic image is a major step toward scene
understanding and usually represents significant and interesting computations.

Part] Generalized Images
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The information necessary to compute an intrinsic image is contained in the
input imageitself, and is extracted by "inverting" the transformation wrought by
the imaging process, the reflection of radiation from the scene, and other physica
processes. An example is the fusiortvad stereo images to yield an intrinsic range
image. Many algorithms to recover intrinsic images can be realizedpauiitiilel
implementations, mirroring computations that may take place in the lower neuro-
logical levels of biological image processing.

All of the computations listed above benefit from the idesesblutionpyra-
mids. A pyramid is a generalized image data structure consisting of the same imag
at several successively increasing levels of resolution. As the resolution increases
more samples are required to represent the increased information and hence tt
successive levels are larger, making the entire structure look like a pyramid.
Pyramids allow the introduction of many different coarse-to-fine image-resolution
algorithms which are vastly more efficient than their single-level, high-resolution-
only counterparts.

Part | Generalized Images 15
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Image
Formation 2

2.1 IMAGES

Image formation occurs whensansomegistersradiation that has interacted with

physicalobjects. Section 2.2 deals with mathematical models of images and imag

formation. Section 2.3 describes several specific image formation technologies.
The mathematical model of imaging has several different components.

1. An imagefunctioris the fundamental abstraction of an image.
A geometricamodel describes how three dimensions are projected into two.

3. A radiometrical model shows how the imaging geometry, light sources, anc
reflectance properties of objects affect the light measurement at the sensor.

4. A spatialfrequency model describes how spatial variations of the image may
be characterized in a transform domain.

5. A color model describes how different spectral measurements are related to ir
age colors.

6. Adigitizingmodel describes the process of obtaining discrete samples.

This material forms the basis of much image-processing work and is
developed in much more detail elsewhere, e.g., [Rosenfeld and Kak 1976; Prai
1978]. Our goals are not those of image processing, so we limit our discussion to ¢
summary of the essentials.

The wide range of possible sources of samples and the resulting different
implications for later processing motivate our overview of specific imaging tech-
niques. Our goal is not to provide an exhaustive catalog, but rather to give an ide
of the range of techniques available. Very different analysis techniques may be
needed depending on how the image was formed. Two examples illustrate thi:

17
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point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we ca
use these kinds of images together with knowledge about physics to derive th
orientation of the surfaces. If, on the other hand, the image is a computed toma
gram of the human body (discussed in Section 2.3.4), the image represents tissl
density of internal organs. Here orientation calculations are irrelevant, but genera
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighborin
samples of similar density into units representing organs) are appropriate.

2.2 IMAGE MODEL

18

Sophisticated image models of a statistical flavor are useful in image processing
[Jan 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An imagefunction is a mathematical representation of an image. Generally, an i
age function is a vector-valued function of a small number of arguments. A special
case of the image function is tlggital (discrete) imagéunction,where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on wihiislcharacteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative)twb real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, "opaque" and "transparent."
Most images are presented by functions of two spatial variables
fix) =fix, y), wherefix, y) isthe brightness of the gray level of the image ata
spatial coordinate ix, y). A multispectral image f is a vector-valued function with
components if]l.. ,f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of thre
wavelengths, that is,

[CO- 3red(*) >Iblue(*) green ()

Time-varying images fix,t) have an added temporal argument. For special
three-dimensional images, x = ix, y, z). Usually, both the domain and range of/
are bounded.

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points. The mathematical toc
we shall use is the deltafunction.

Formally, the delta function may be defined by

Ch. 2 Image Formation
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0 whenx ™~ O

8(X) = oowhenx =0 (219

J8(x)dx= 1

If some care is exercised, the delta function may be interpreted as the limit of a s
of functions:

8(x) = Iinz 8,0c)

wb”re
/l iful<n-
8AX) - 2«
0 otherwise 22
A useful property of the delta function is the sifting property:
j f(xX)8(x-a)dx = f(a) (2.3)

—o0

A continuous image may be multipled by a two-dimensional "comb," or array of
delta functions, to extract a finite number of disciegenpleg(one for each delta
function). This mathematical model of the sampling process will be useful later.

2.2.2 Imaging Geometry

Monocular Imaging

Pointprojectionis the fundamental model for the transformation wrought by
our eye, by cameras, or by numerous other imaging devicedirsp-ardeap-
proximation, these devices act like a pinhole camera in that the image results froi
projecting scenepoints through a single point onto an image plane (see Fig. 2.1).
Fig. 2.1, the image plane is behind the point of projection, and the image is re
versed. However, it is more intuitive to recompose the geometry so that the poir
of projection corresponds tovdewpointbehind the image plane, and the image oc-
curs right side up (Fig. 2.2). The mathematics is the same, but now the viewpoir
is +/on the axis,with z = 0 plane being the image plane upon whichthejmage is
projected, (f is sometimes callédefocal leligth in this context. The use of/in.
this section should not be CQnjjogd wijth the use of /for image function.) As the
imaged object approaches the viewpoint, its projection gets bigger (try moving
your hand toward your eye). To specify how its imaged size changes, one neet
only the geometry of similar triangles. In Fig. 2.2b y', the projected height of the
object, is related to its real height”, its positmand the focal length/by

A =£ (2.4)
f-z f

Sec. 2.2 Image Model 19
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Fig. 2.1 A geometric camera model.

The case for X' is treated similarly:

Xi (2.5)
f-z f
The projected image has z = 0 everywhere. However, projecting away the zcom
ponent is best considered a separate transformation; the projective transform
usually thought to distort thecomponent just as it does the xan@&rspectivelis-
tortion thus maps (x, y, z) to

' B ' fy h
be',y\ z iy tg fy (2.6)

The perspective transformation yields orthogragrimjectionas a special case
when the viewpoint is thgointatinfinity in thez direction. Then all objects are pro-
jected onto the viewing plane with no distortion of their x and “coordinates.

The perspective distortion yields a three-dimensional object that has beer
"pushed out of shape"; it is more shrunken the farther it is from the viewpoint.
The z component is not available directly from a two-dimensional image, being
identically equal to zero. In our model, however, the distorted z component has
information about the distance of imaged points from the viewpoint. When this
distorted object is projected orthographically onto the image plane, the result is ¢
perspective picture. Thus, to achieve the effect of railroad tracks appearing to com
together in the distance, the perspective distortion transforms the tracks so the
they do come together (at a point at infinity)! The simple orthographic projection
that projects away the z component unsurprisingly preserves this distortion.
Several properties of the perspective transform are of interest and are investigate
further in Appendix 1.

Binocular Imaging
Basic binocular imaging geometry is shown in Fig. 2.3a. For simplicity, we
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(b)
Fig. 2.2 (a) Camera model equivalent to thafigf 2.1; (b) definition ofterms.

use a system with two viewpoints. In this model the eyes doarterge;they are
aimed in parallel at the point at infinity in thez direction. The depth information
about a point is then encoded only by its different positialisparity) in the two

image planes.
With the stereo arrangement of Fig. 2.3,
w _ X - d)f
f-z
<+ d)f
f-z

where be',y") and be",y") are the retinal coordinates for the world point imaged
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N
Image Fig. 23 A nonconvergent binocular
plane imaging system.

through each eye. THeselineof the binocular system &1. Thus

(/- z2)x' = (x - d)f (2.7
(f - z)x" = (x +d)f (2.8)
Subtracting (2.7) from (2.8) gives
(f-z)(x"-x") = 2df
or
2=/ - ¥ (2.9)
x —X

Thus if points can be matched to determine the disparity—Cx") and the base-
line and focal length are known, the z coordinate is simple to calculate.

If the system can converge its directions of view to a finite distance, conver-
gence angle may also be used to compute depth. The hardest part of extracting
depth information from stereo is teatchingof points for disparity calculations.
"Light striping" is a way to maintain geometric simplicity and also simplify match-
ing (Section 2.3.3).

2.2.3 Reflectance

Terminology

A basic aspect of the imaging process is the physics of the reflectance of ob-
jects, which determines how their "brightness" in an image depends on their in-
herent characteristics and the geometry of the imaging situation. A clear presenta-
tion of the mathematics of reflectance is given in [Horn and Sjoberg 1978; Horn
1977]. Light energy flux® is measured in watts; "brightness" is measured with
respect to area and solid angle. Tadiant intensityl of a source is the exitant flux
per unit solid angle:

| = watts/steradian (2.10)
do)
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Heredco is an incremental solid angle. The solid angle of a small area dA measurel
perpendicular to a radius /-is given by

da> = 4* (2.11)
r
in units of steradians. (The total solid angleasphere is 4ir.)
The irradiance is flux incident on a surface element dA:

E=-n- watts/metér (2.12)
dA
and the flux exitant from the surface is defined in terms of the radiance L, which is
the flux emitted per unit foreshortened surface area per unit solid angle:

L=— ——  watts/(metet steradian) (2.13)
dA cos9do>

where 9 is the angle between the surface normal and the direction of emission.

Image irradiancef is the "brightness" of the image at a point, and is propor-
tional to scene radiance. A "gray-level" is a quantized measurement of image irra-
diance. Image irradiance depends on the reflective properties of the imaged sur
faces as well as on the illumination characteristics. How a surface reflects light
depends on its micro-structure and physical properties. Surfaces may be mattt
(dull, flat), specular (mirrorlike), or have more complicated reflectivity charac-
teristics (Section 3.5.1). The reflectance r of a surface is given quite generally by its
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus et al. 1977].
The BRDF is the ratio of reflected radiance in the direction towards the viewer to
the irradiance in the direction towards a small area of the source.

Effects of Geometry on an Imaging System

Let us now analyze a simple image-forming system shown in Fig. 2.4 with the
objective of showing how the gray levels are related to the radiance of imaged ob-
jects. Following [Horn and Sjoberg 1978], assume that the imaging device is prop-
erly focused; rays originating in the infinitesimal area ah the object's surface
are projected into some area,di the image plane and no rays from other por-
tions of the object's surface reach this area of the image. The system is assumed 1
be an ideal one, obeying the laws of simple geometrical optics.

, The energy flux/unit area that impinges on the sensor is defined tp G®E
show how E is related to the scene radiance L, first consider the flux arriving at
the lens from a small surface area,.d&rom (2.13) this is given as

d$> = dAgJLcos9doj (2.19)
This flux is assumed to arrive at an areg @Athe imaging plane. Hence the irradi-
ance is given by [using Eqg. (2.12)]

E, = £ - (2.15)
dAp
Now relate df to dA, by equating the respective solid angles as seen from the
lens;that is [making use of Eq. (2.12)],
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Fig. 2.4 Geometry of an image
forming system.

. cosfl . cos a
’ - S (2.16)
dA B - A Jp
Substituting Egs. (2.16) and (2.14) into (2.15) gives
E = cosa © JLdc (2.17)
fp

The integral is over the solid angle seen by the lens. In most instances we can as
sume that L is constant over this angle and hence can be removed from the in
tegral. Finally, approximatdoi by the area of the lens foreshortened by cosa, that
is, (TT/4)F cosa divided by the distang&losa squared:

wi = Jp2 cpVa 2.18
4 fd (2.18)
so that finally
E-y D_ cogair L (2.19)
fp

The interesting results here are that (1) the image irradiance is proportional to the
scene radiance L, and (2) the factor of proportionality includes the fourth power of
the off-axis angle a. Ideally, an imaging device should be calibrated so that the
variation in sensitivity as a function ofa is removed.

2.2.4 Spatial Properties

The Fourier Transform

An image is a spatially varying function. One way to analyze spatial variations
is the decomposition of an image function into a set of orthogonal functions, one
such set being the Fourier (sinusoidal) functions. The Fourier transform may be
used to transform the intensity image into the domain of sfratplency For no-
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tational convenience and intuition, we shall generally use as an example the con-
tinuous one-dimensional Fourier transform. The results can readily be extended to
the discrete case and also to higher dimensions [Rosenfeld and Kak 1976]. In two
dimensions we shall denote transform domain coordinates by iu, v). The one-
dimensional Fourier transform, denoted, is defined by

3 [fix)] = Fiu)
where
Fiu) = ffix)expi-j2irux)dx (2.20)
where j = V(-1). Intuitively, Fourier analysis expresses a function as a sum of
sine waves of different frequency and phase. The Fourier transform asese
~[F(u)] =fix). Thisinverse is given by

fix) =f F(u) exp@TTux)du (2.21)

The transform has many useful properties, some of which are summarized in Table
2.1.Common one-dimensional Fourier transform pairs are shown in Table 2.2.
The transform Fin) is simply another representation of the image function.
Its meaning can be understood by interpreting Eqg. (2.21) for a specific value of x,
say %
fixo) =JV(«)exp (j2irux)du (2.22)

This equation states that a particular point in the image can be represented by
a weighted sum of complex exponentials (sinusoidal patterns) at different spatial
frequencies u. Fiu) is thus a weightingfunction for the different frequencies. Low-
spatial frequencies account for the "slowly" varying gray levels in an image, such
as the variation of intensity over a continuous surface. High-frequency com-
ponents are associated with "quickly varying" information, such as edges. Figure
2.5 shows the Fourier transform of an image of rectangles, together with the effects
of removing low- and high-frequency components.

The Fourier transform is defined above to be a continuous transform.
Although it may be performed instantly by optics, a discrete version of it, the "fast
Fourier transform," is almost universally used in image processing and computer
vision. This is because of the relative versatility of manipulating the transform in
the digital domain as compared to the optical domain. Image-processing texts, e.g.,
[Pratt 1978; Gonzalez and Wintz 1977] discuss the FFT in some detail; we content
ourselves with an algorithm for it (Appendix 1).

The Convolution Theorem

Convolutionis a very important image-processing operation, and is a basic
operation of linear systems theory. The convolution of two functions / and g is a
function h of adisplacement y defined as

hiy)=f'g = jfix)giy-x)dx (2.23)
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Table 2.1
PROPERTIES OF THE FOURIER TRANSFORM

Spatial Domain FrequencyDomain
fix) Fiu)=[fix)]
gix) Giu)=U[gix)}

Linearity
C\fix) + cygix) dFiu) + cGiu)
C\,C2scalars
Scaling
fiax

) A\ [a]
Shifting
fix - Xo) e2"Fiy)
Symmetry
Fix) /(-«)
Conjugation
f*ix) F*i~u)
Convolution

nix) =f*g = J fix)gix - X) dx' Fiu)Giu)

Differentiation

d"fix) i2trju)"Fiu)

ax"

Parseval's theorem:

jif)\2dx = \F(2)\%dt
Jfix)g*ix) dx =jFi£)G*it) d$

fix) Fit)
ReaK/?) Real part even (RE)
Imaginary part odd (10)
Imaginary (1) RO,IE
RE,IO R
RE,IE |
RE RE
RO 10
IE IE
10 RO
Complex even (CE) CE
CcO CcOo
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Table 2.2

FOURIER TRANSFORM PAIRS
%) F(%)
Rectangle function

1

2 Rect(x) 2
Sinc(g) =

Triangle function
1

Gaussian

Unit impulse  8{x)

Unit step

2 277/
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Table 2.2 (cont.)

Comb function
— 2 (f__/\

urn-ill |II t_LLJIJ

oS 2irojox iI[5(?-wo) +5(? + w)

sin 27rcj,x 5/[-8(?-wo) +5{f + wo)]

ImF

Intuitively, one function is "swept past”" (in one dimension) or "rubbed over" (in

two dimensions) the other. The value of the convolution at any displacement is the
integral of the product of the (relatively displaced) function values. One common
phenomenon that is well expressed by a convolution is the formation of an image
by an optical system. The system (say a camera) has a "point-spread function,
which is the image of a single point. (In linear systems theory, this is the "impulse
response," or response to a delta-function input.) The ideal point-spread functior
is, of course,a point. A typical point-spread function is a two-dimensional Gaus-

sian spatial distribution of intensities, but may include such phenomena as
diffraction rings. In any event, if the camera is modeled as a linear system (ignor-

Fig. 2.5 (on facing page) (a) An image, fix, y). (b) A rotated version of (a), filtered to enhance high spatial
frequencies, (c) Similar to (b), but filtered to enhance low spatial frequencies, (d), (e), and (f) show the loga-
rithm of the power spectrum of (a), (b), and (c). The power spectrum is the log square modulus of the Fourier
transform F(u, v). Considered in polar coordinates (p, 0), points of small p correspond to low spatial frequencies
("slowly-varying" intensities), large p to high spatial frequencies contributed by "fast"
edgesThe power at (p, 9) is determined by the amount of intensity variation at the frequency p occurring at the

angle 0.
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ing the added complexity that the point-spread function usually varies over the
field of view), the image is the convolution of the point-spread function and the in-
put signal. The point-spread function is rubbed over the perfect input image, thus
blurring it.

Convolution is also a good model for the application of many other linear
operators, such as line-detecting templates. It can be used in another guise (callec
correlation) to perform matching operations (Chapter 3) which detect instances of
subimages or features in an image.

In the spatial domain, the obvious implementation of the convolution opera-
tion involves a shift-multiply-integrate operation which is hard to do efficiently.
However, multiplication and convolution are "transform pairs," so that the calcu-
lation of the convolution in one domain (say the spatial) is simplified by first
Fourier transforming to the other (the frequency) domain, performing a multipli-
cation, and then transforming back.

The convolution of /and gin the spatial domain is equivalent to the point-
wise product of Fands in the frequency domain,

°Sif*g) = FG (2.24)

We shall show this in a manner similar to [Duda and Hart 1973]. First we prove
the shifttheorem.If the Fourier transform of/Gc) is Fiu), defined as

F(u) =Jf(x) exp [- j2ir(ux)]dx (2.25)
then
5 [fix - a)] = ffix-a) exp [- j2ir(ux)]dx (2.26)
changing variables so that X' =x aand dx = dx’
= fi(x)  exp {j2irfu(x’ + a)))dx’ (2.27)
«
Now exp[— jliruix' + a)] = exp (— jl-rrua) exp (— JITTUX), wWhere the first
termisa constant. This means that
3 [fix - a)] = exp( - jl7rua)Fiu) (shift theorem)
Now we are ready to show thgff (X)*g (X)] = Fiu)Giu).
(Sifg) =j{j fix)giy - x)} exp (- jlituy) dx dy (2.28)
y X
= ffix){fgiy - X) exp (- jiTTuy) dy) dx (2.29)
x y

Recognizing that the terms in braces repredefgiy — x)] and applying the shift
theorem, we obtain

‘s(fg)

JIGc)exp (- j2irux)G(u) dx (2.30)

Fiu)Giu) (2.31)
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2.2.5 Color

Not all images are monochromatic; in fact, applications using multispectral image
are becoming increasingly common (Section 2.3.2). Further, human beings intt
tively feel that color is an important part of their visual experience, and is useful ¢
even necessary for powerful visual processing in the real world. Color vision prc
vides a host of research issues, bofior psychology andcomputer vision.\We
briefly discuss two aspectsf color vision: color spaceandcolor perception.
Several models of the human visual system not only include color but have prov:
useful in applications [Granrath 1981].

Color Spaces

Color spacesre a way of organizing the colors perceived by human bdings.
happens that weighted combinations of stinatlihree principal wavelengths are
sufficient to define almost all the colors we perceive. These wavelengths form ar
tural basis or coordinate system from which the color measurement process can
described. Color perception is not relatedasimple way to color measurement,
however.

Color is aperceptual phenomenon relateolhuman responséo different
wavelengths in the visiblelectromagnetic spectrufd00 (blue) to 700 nanometers
(red); ananometer (nmjs 10° meter]. The sensationf color arises fronthe
sensitivitiesof three typesof neurochemical sensoim the retinatothe visible
spectrum. The relative responeéthese sensoris shownin Fig. 2.6. Note that
each sensor respontis arangeof wavelengths. The illumination source hts
own spectral compositioffk) which is modified bythe reflecting surfacdé.et
r(k) be this reflectance function. Then the measurement R produced by the "re
sensoris given by

R = jf(K)r(k)hs(k) dk (2.32)

So thesensor outputis actually theintegral of three different wavelength-

dependent components: the source /, the surface refle¢tasicd the sensdi.
Surprisingly, only weighted combinations of three delta-function approxima-

tions to the differenf(k)h 00, that is, 8(A/?), 8(4), and8(Xg), are necessary to

1 p
£
a ~
400 500 600 700 Fig. 2.6 Spectral response of human
Wavelength, nm color sensors.
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produce the sensation of nearly all toéors.This result is displayed onclromati-
city diagram. Such a diagram is obtained by first normalizing the three sensor me
urements:

. R
=R +G+B
G
R g (2.33)
B
b=R+ic+B

and then plotting perceived color as a function of any two (usually red and green
Chromaticity explicitly ignores intensity or brightness; it is a section through the
three-dimensional color space (Fig. 2.7). The choigaks, \s) = (410, 530,
650)nm maximizes the realizable colors, but some colors still cannot be realize
since they would require negative values for some off-, g, and b.

Another more intuitive way of visualizing the possible colors from the RGB
space is to view these measurements as Euclidean coordinates. Here any color
be visualized as a point in the unit cube. Other coordinate systems are useful f
different applications; computer graphics has proved a strong stimulus for investi
gation of different color space bases.

Color Perception

Color perception is complex, but the essential step is a transformation o
three input intensity measurements into another basis. The coordinates of the ne

(a) (o)
Fig. 2.7 (a) An artist's conception of the chromaticity diagram —see color insert; (b) a

more useful depiction. Spectral colors range along the curved boundary; the straight boun-
dary is the line of purples.

Ch. 2 Image Formation

Page 50 of 539



Sec. 2.2

basis are more directly related to human color judgments.

Although the RGB basis is good for the acquisition or display of color infor-
mation, it is not a particularly good basis to explain the percepticolafs. Hu-
man vision systems can make good judgments about the relative surface reflec
tance r(A) despite different illuminating wavelengths; this reflectance seems to be
what we mean by surface color.

Another important feature of the color basis is revealed by an ability to per-
ceive in "black and white," effectively deriving intensity information from the
color measurements. From an evolutionary point of view, we might expect that
color perception in animals would be compatible with preexisting noncolor percep-
tual mechanisms.

These two needs—the need to make good color judgments and the need t
retain and use intensity information—imply that we use a transformed, non-RGB
basis for color space. Of the different bases in use for color vision, all are variations
on this theme: Intensity forms one dimension and color is a two-dimensional sub-
space. The differences arise in how the color subspace is described. We categoriz
such bases into two groups.

1. Intensity/Saturation/Hu¢/HS). In this basis, we compute intensity as

intensity: = R + G + B (2.34)

The saturation measures the lack of whiteness in the color. Colors such as "fire
engine" red and "grass" green are saturated; pastels (e.g., pinks and pale blue:
are desaturated. Saturation can be computed from RGB coordinates by the formul
[Tenenbaum and Weyl 1975]

, 3min (R, G, B) ~ ¥

saturation: =1 . (2.35)
intensity

Hue is roughly proportional to the average wavelength of the color. It can be
defined using RGBythe foIIowingM)rogram fragment:

R -G)

hue:= cos! +(R- B))} (2.36)
MNCR - Gf+ (R - BYG - BY

UB > Gthen hue: = 2pi— hue

The IHS basis transforms the RGB basis in the following way. Thinking of the
color cube, the diagonal from the origin to (1, 1, 1) becomes the intensity axis.
Saturation is the distance of a point from that axis and hue is the angle with regarc
to the point about that axis from some reference (Fig. 2.8).

This basis is essentially that used by artists [Munsell 1939], who term sat-
uration chroma. Also, this basis has been used in graphics [Smith 1978; Joblove
and Greenberg 1978].

One problem with the IHS basis, particularly as defined by (2.34) through
(2.36), is that it contains essential singularities where it is impossible to define the
color in a consistent manner [Kender 1976]. For example, hue has an essentia
singularity for all values of (R, G, B), where R = G = B. This means that special
care must be taken in algorithms that use hue.

2. OpponenprocessesThe opponent process basis uses Cartesian rather tha
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8 An IHS Color Space, (a) Cross section at one intensity; (b) cross section at one hue—see color inserts.

cylindrical coordinates for the color subspace, and was first proposed by Hering
[Teevan and Birney 1961]. The simplest form of basis is a linear transformation
from R, G, B coordinates. The new coordinates are termed—'i@",

"Bl- r",and""- Bk":

\R - G 1 -2 1g
Bl- Y 1 -1 2 G
W - Bk 1 1 1B

The advocates of this representation, such as [Hurvich and Jameson 1957], theor-
ize that this basis has neurological correlates and is in fact the way human beings
represent ("name") colors. For example, in this basis it makes sense to talk about
a "reddish blue" but not a "reddish green." Practical opponent process models
usually have more complex weights in the transform matrix to account for psycho-
physical data. Some startling experiments [Land 1977] show our ability to make
correct color judgments even when the illumination consists of only two principal
wavelengths. The opponent process, at the level at which we have developed it,
does not demonstrate how such judgments are made, but does show how stimulus
at only two wavelengths will project into the color subspace. Readers interested in
the details of the theory should consult the references.

Commercial television transmission needs an intensity, or—\Bk" com-
ponent for black-and-white television sets while still spanning the color space. The
National Television Systems Committee (NTSC) uses a "YIQ" basis extracted
from RGBVvia
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0.60 -0.28 -0.32
021 -0.52 031
030 059 011

This basis i@ weighted form of
(/, Q,Y) = ("R—cyan, " "magenta—qgreen, " "W—BK")

2.2.6 Digital Images

The digital imageswith which computer vision deals are represented by m-vector
discrete-valued image functions /(x), usually of one, two, three, or four dimen-
sions.

Usually m = 1, and both the domain and range of fix) are discrete. The
domain of / is finite, usually a rectangle, and the range of / is positive and
bounded: 0 < fix) ~ Mfor some integer M. For all practical purposes, the image
is a continuous function which is represented by measuremesasnglest regu-
larly spaced intervals. At the time the image is sampled, the intensity is usually
guantizedinto a number of differegtay levels.For a discrete image, fix) isan in-
teger gray level, and x = (x, y) is a pairiefegercoordinates representing a sam-
ple point in a two-dimensional image plane. Sampling involves two important
choices: (1) thesamplinginterval, which determines in a basic way whether all the
information in the image is represented, and (2)t¢sselatioror spatial pattern of
sample points, which affects important notions of connectivity and distance. In our
presentation, we first show qualitatively the effects of sampling and gray-level
quantization. Second, we discuss the simplest kinds of tesselationgplafrta&i-
nally, and most important, we describe the sampling theorem, which specifies how
close the image samples must be to represent the image unambiguously.

The choice of integers to represent the gray levels and coordinates is dictate:
by limitations in sensing. Also, of course, there are hardware limitations in
representing images arising from their sheer size. Table 2.3 shows the storage r¢
quired for an image i8-bit bytes as a function of m, the number of bits per sam-
ple,and N, the linear dimension of a square image.

For reasons of economy (and others discussed in Chapter 3) we often use irr
ages of considerably less spatial resolution than that required to preserve fidelity tc
the human viewer. Figure 2.9 provides a qualitative idea of image degradation with
decreasing spatial resolution.

As shown in Table 2.3, another way to save space besides using less spatii
resolution is to use fewer bits per gray level sample. Figure 2.10 shows an image
represented with different numbers of bits per sample. One striking effect is the
"contouring" introduced with small numbers of gray levels. This is, in general, a
problem for computer vision algorithms, which cannot easily discount the false
contours. The choice of spatial and gray-level resolution for any particular com-
puter vision task is an important one which depends on many factors. It is typical in
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Fig. 2.9 Using different numbers of samples, (@) A'= 16; (b) N = 32; (c) A' =
64; (d) N = 128; (e) A'= 256; (f) N = 512.
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Table 2.3

NUMBER OF 8-BIT BYTES OF STORAGE FOR
VARIOUS VALUES OF N AND M

2 64 18 X6 512

3z

128 512 2,048 8,192 32,768
26 1024 4,0% 16,384 65,536
512 2048 8192 32,768 131,072
512 2048 8192 32,768 131,072
4,096 16384 65536 262,144
1024 40% 16384 65536 262,144
1024 40% 16384 65536 262,144
1024 4096 16384 65536 262,144

ONOUNDWN
2
Q
R

computer vision to have to balance the desire for increased resolution (both gre
scale and spatial) against its cost. Better data can often make algorithms easier
write, but a small amount of data can make processing more efficient. Of course
the image domain, choice of algorithms, and image characteristics all heavily
influence the choice of resolutions.

TesselationandDistance Metrics

Although the spatial samples for/(x) can be represented as points, it is mor
satisfying to the intuition and a closer approximation to the acquisition process tc
think of these samples as finite-sized cells of constant gray-level partitioning the
image. These cells are termpitels,an acronym fopicture elementsThe pattern
into which the plane is divided is called tessselation.The most common regular
tesselations of the plane are shown in Fig. 2.11.

Although rectangular tesselations are almost universally used in compute!
vision, they have a structural problem known as the "connectivity paradox."
Given a pixel in a rectangular tesselation, how should we define the pixels to whict
it is connected? Two common ways &ver-connectivityand eight-connectivity,
shown in Fig. 2.12.

However, each of these schemes has complications. Consider Fig. 2.12c, col
sisting of a black object with a hole on a white background. If we use four-
connectedness, the figure consists of four disconnected pieces, yet the hole
separated from the "outside" background. Alternatively, if we use eight-
connectedness, the figure is one connected piece, yet the hole is now connected
the outside. This paradox poses complications for many geometric algorithms. Tri
angular and hexagonal tesselations do not suffer from connectivity difficulties (if
we use three-connectedness for triangles); howelistancecan be more difficult
to compute on these arrays than for rectangular arrays.

The distance between two pixels in an image is an important measure that i
fundamental to many algorithms. In general, a distance mstréic. That is,
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Fig. 2.10 Using different numbers of bits per sample, (@) m = 1; (5F 2 ()
m = 4; (d) m= 8.

(1) d(x, y)=0iffx=y

() dx, y)=d(y,x)

(3) d(x, y)+ «y, z) >d(\, 2)

For square arrays with unit spacing between pixels, we can use any of the followil
common distance metrics (Fig. 2.13) for two pixels x = (x\,yi) areb$*I")-

Euclidean:
de(X, V) - V(X,-X2)%+ (%2’ (2.37)
City block:
deb(*>y) ™ |ifi-*2I'+ \y\-y2\ (2.38)
38 Ch. 2 Image Formation
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Fig. 2.11 Different tesselations of the
image plane, (a) Rectangular; (b)
(© triangular; (c) hexagonal.

Chessboard:
den(X,y) = mMaxix\-x2l\y\-y2\ (2.39)

Other definitions are possible, and all such measures extend to multiple dimen-
sions.The tesselation of higher-dimensional space into pixels usually is confined to
(/7-dimensional) cubical pixels.

The Sampling Theorem

Consider the one-dimensional "image" shown in Fig. 2.14. To digitize this
image one must sample the image function. These samples will usually be separat:
ed at regular intervals as shown. How far apart should these samples be to allow
reconstruction (to a given accuracy) of the underlying continuous image from its
samples? This question is answered by the Shannon sampling theorem. An excel
lent rigorous presentation of the sampling theorem may be found in [Rosenfeld
and Kak 1976]. Here we shall present a shorter graphical interpretation using the
results of Table 2.2. For simplicity we consider the image to be periodic in order to
avoid small edge effects introduced by the finite image domain. A more rigorous
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Fig. 2.12 Connectivity paradox for rectangular tesselations. (a) A central pixel
and its 4-connected neighbors; (b) a pixel and its 8-connected neighbors; (c) a
figure with ambiguous connectivity.
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Fig. 2.13 Equidistant contours fokf-
ferent metrics.

Fig. 2.14 One-dimensional image and its samples.

treatment, which considers these effects, is given in [Andrews and Huni

1977].
Suppose that the image is sampled with a "comb" function of spacisge
Table 2.2). Then the sampled image can be modeled by

&) =frd(x- Ny (2.40)

where the image function modulates the comb function. Equivalently, this can be
written as

fs(x) =£ f(nx)8(x - nx) (2.41)
The right-hand side dEg. (2.40) is the product dfvo functions, so that property
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(6) in Table 2.1 is appropriate. The Fourier transforng>9ff is equal to the con-
volution of the transforms of each of the two functions. Using this result yields

Fdu) =Fu)* — T8(w - -£m) (2.42)
*o *0
But from Eq. (2.3),
Fiu) *8w- ~) =F@u - —) (2.43)
Xo XQ
so that
Ffu) = —"Fiu- ") (2.44)
0, ‘0

Therefore, sampling the image functifix) atintervals ofxois equivalent
in the frequency domain to replicating the transform of/at intewids. This

xQ
limits the recovery of fix) from its sampled representatigx), There are two
basic situations to considdf.the transform of fix) isbandlimitedsuch that Fiu)
= Ofor |u|> 1/(2xo), then there is no overlap between successive replications of
Fiu) in the frequency domain. This is shown for the cadépf2.15a, where we
have arbitrarily used a triangular-shaped image transform to illustrate the effects ol
sampling. Incidentally, note that for this transform Fm)F(—u) and thait has
no imaginary part; from Table 2.2, the one-dimensional image must also be rea

and even. Now if F{u) is not bandlimited, i.e., there are u— for which Fiu)

2*0
A0, then components of different replications of Fiu) will interact to produce the
composite functionF4u), asshownin Fig. 2.15b.In thefirst casefix) canbe
recovered from Fu) by multiplying Rju) by a suitablésiu):

1 lw|<
G = < e
0 otherwise (2.45)
Then
fix)=<r '[Fdu)Giu)] (2.46)

However, in the second casejujGiu) is very different from the origindFiu).
This is shown in Fig. 2.15¢c. Sampliad=iu) that is not bandlimited allows infor-
mation at high spatial frequencieso interfere with thatat lowfrequenciesa
phenomenon known adiasing.

Thus the sampling theorem has this very important result: As long as the im-
age contains no spatial frequencies greater than one-half the sampling frequenc
the underlying continuous imags unambiguously representdaly itssamples.
However, lest one be tempted to insist on images that have been so sampled, no
that it may be useful to sample at lower frequencies than would be required for to-
tal reconstruction. Such sampling is usually preceded by some form of blurring of
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Fig. 2.15 (a) Fiu) bandlimited sothat F(u) = O for \u\ > V2x. (b) Fiu) not band-
limited asin (a), (cyeconstructed transform.

the imagepr canbeincorporated with such blurring (by integrating the image in-
tensity overafinite areafor each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast arrayf methodgor obtaining a digital imagen a computerln this
section we havén mind only "traditional” images producday various formsof
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeks aranalogdevice whose response mbst
digitized for computer representatiomhetypesof imaging devices possibkre
limited only by the technical ingenuityf their developers; attempting a definitive

42 Ch. 2 Image Formation

Page 60 of 539



X-Ray
scanner

Fig. 2.16 Imaging devices (boxes), information structures (rectangles), and processes (circles).

taxonomy is probably unwise. Figure 2.16 is a flowchart of devices, information
structures, and processes addressed in this and succeeding sections.

When the image already exists in some form, or physical considerations limit
choice of imaging technology, the choice of digitizing technology may still be open.
Most images are carried on a permanent medium, such as film, or at least are ava
able in (essentially) analog form to a digitizing device. Generally, the relevant
technical characteristics of imaging or digitizing devices should be foremost in
mind when a technique is being selected. Such considerations as the signal-tc
noise ratio of the device, its resolution, the speed at which it works, and its ex-
pense are important issues.
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2.3.1 Photographic Imaging

The camera is the most familiar producer of optical images on a permane
medium. We shall not address here the multitudestilbfand movie-camera op-
tions; rather, we briefly treat the characteristics of the photographic film and of tt
digitizing devices that convert the image to machine-readable form. More on the
topics is well presented in the References.

Photographic (black-and-white) fim consists of an emulsion of silver halid
crystals on filmbase. (Several other layers are identifiable, but are not essential
an understanding of the relevant properties of film.) Upon exposure to light, tl
silver halide crystals forndevelopmententers,which are small grains of metallic
silver. The photographic development process extends the formation of meta
silver to the entire silver halide crystal, which thus becomes a binary ("light" ¢
"no light") detector. Subsequent processing removes undeveloped silver hali
The resulting filmnegativeis dark where many crystals were developed and ligt
where few were. The resolution of the film is determined bygthé@ size, which
depends on the original halide crystals and on development techniques. G
erally, the faster the film (the less light needed to expose it), the coarser the gr:
Film exists that is sensitive to infrared radiation; x-ray film typically has two emul
sion layers, giving it more gray-level range than that of normal film.

A repetition of the negative-forming process is used to obtain a photograpt
print. The negative is projected onto photographic paper, which responds roug
in the same way as the negative. Most photographic print paper cannot captur
one print the range of densities that can be present in a negative. Positive films
exist that do not require printing; the most common example is color slide film.

The response of film to light is not completely linear. The photographic der
sity obtained by a negative is defined as the logarithm (base 10) of the ratio of
cident light to transmitted light.

D = |0g10 -f

The exposureof a negative dictates (approximately) its response. Exposure
defined as the energy per unit area that exposed the film (in its sensitive spec
range).Thus exposure is the product of tiiensityand the time of exposure. This
mathematical model of the behavior of the photographic exposure process
correct for a wide operating range of the film, but reciprocity failure effects in tl
film keep one from being able always to trade light level for exposure time. At vet
low light levels, longer exposure times are needed than are predicted by the pr
uct rule.

The response of film to light is usually plotted in an "H&D curve" (named
for Hurter and Diriffield), which plots density versus exposure. The H&D curve o
film displays many of its important characteristics. Figure 2.17 exhibits a typice
H&D curve for a black and white film.

The toeof the curve is the lower region of low slope. It expresses reciprocit
failure and the fact that the film has a certain bias, or fog response, which do
inates its behavior at the lowest exposure levels. As one would expect, there is
upper limit to the density of the film, attained when a maximum number of silve
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Log (exposure) Fig. 2.17 TypicalH & D curve.

halide crystals are rendered developable. Increasing exposure beyond this ma
imum level has little effect, accounting for tehoulderin the H&D curve, or its
flattened upper end.

In between the toe and shoulder, there is typically a linear operating region of
the curve. High-contrast films are those with high slope (traditionally called
gamma);they respond dramatically to small changes in exposure. A high-contrast
film may have a gamma between about 1.5 and 10. Films with gammas of approxi
mately 10 are used in graphics arts to copy line drawings. General-purpose film:
have gammas of about 0.5 to 1.0.

The resolution of a general fim is about 40 lines/mm, which means that a
1400 x 1400 image may be digitized from a 35mm slide. At any greater sampling
frequency, the individual fim grains will occupy more than a pixel, and the resolu-
tion will thus be grain-limited.

ImageDigitizers (Scanners)

Accuracy and speed are the main considerations in converting an image ol
film into digital form. Accuracy has two aspects: spatial resolution, loosely the level
of image spatial detail to which the digitizer can respond, and gray-level resolution,
defined generally as the range of densities or reflectances to which the digitizel
responds and how finely it divides the range. Speed is also important because us!
ally many data are involved; imageslomillion samples are commonplace.

Digitizers broadly take two forms: mechanical and "flying spot." In a
mechanical digitizer, the film and a sensing assembly are mechanically transporte:
past one another while readings are made. In a flying-spot digitizer, the film and
sensor are static. What moves is the "flying spot,” which is a point of light on the
face of a cathode-ray tube, or a laser beam directed by mirrors. In all digitizers ¢
very narrow beam of light is directed through the film or onto the print at a known
coordinate point. The light transmittance or reflectance is measured, transformec
from analog to digital form, and made available to the computer through interfac-
ing electronics. The location on the medium where density is being measured ma
also be transmitted with each reading, but it is usually determined by relative offse
from positions transmitted less frequently. For example, a "new scan line" im-
pulse is transmitted for TV output; the position along the current scan line yields
an x position, and the number of scan lines yields a v position.
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The mechanical scanners are mostlywaf typesflat-bedanddrum. In a flat-
bed digitizer, the film is laid flat on a surface over which the light source and t
sensor (usually a very accurate photoelectric cell) are transported in a ra
fashion. In a drum digitizer, the film is fastened to a circular drum which revolv:
as the sensor and light source are transported down the drum parallel to its ax
rotation.

Color mechanical digitizers also exist; they work by using colored filter:
effectively extracting in three scans three "color overlays" which when superil
posed would yield the original color image. Extracting some "composite" col
signal with one reading presents technical problems and would be difficult to dc
accurately.

Satellite Imagery

LANDSAT and ERTS (Earth Resources Technology Satellites) have simil
scanners which produce images of 2340 x 3380 7-bit pixels in four spectral bar
covering an area of i00 x 100 nautical miles. The scanner is mechanical, scani
six horizontal scan lines at a time; the rotation of the earth accounts for f
advancement of the scan in the vertical direction.

A set of four images is shown in Fig. 2.18. The four spectral bands are nu
bered 4, 5, 6, and 7. Band 4 [0.5 to 0.6 /xm (green)] accentuates sediment-le
water and shallow water, bagd0.6 to 0.7 /xm (red)] emphasizes cultural features
such as roads and cities, bahf.7 to 0.8 fxm (near infrared)] emphasizes vegeta
tion and accentuates the contrast between land and water, band 7 [0.8 to 1.1
(near infrared)] is like band 6 except that it is better at penetrating atmosphe
haze.

The LANDSAT images are available at nominal cost from the U.S. gover
ment (The EROS Data Center, Sioux Falls, South Dakota 57198). They are
nished on tape, and cover the entire surface of the earth (often the buyer h
choice of the amount of cloud cover). These images form a huge data base of 1
tispectral imagery, useful for land-use and geological studies; they furnish sor
thing of an image analysis challenge, since one satellite can produce some 6 bi
bits of image data per day.

Television Imaging

Television cameras are appealing devices for computer vision applications
several reasons. For one thing, the image is immediate; the camera can s
events as they happen. For another, the image is already in electrical, if not di
form. "Television camera" is basically a nontechnical term, because ma
different technologies produce video signals conforming to the standards set by
FCC and NTSC. Cameras exist with a wide variety of technical specifications.

Usually, TV cameras have associated electronics which scan an entire "f
ture" at a time. This operation is closely related to broadcast and receiver sta
ards,and is more oriented to human viewing than to computer vision. An enti
image (of some 525 scan lines in the United States) is called a frame, and con
of twofields, each made up of alternate scan lines from the frame. These fields
generated and transmitted sequentially by the camera electronics. The transm
image is thusnterlaced,with all odd-numbered scan lines being "painted” on tt
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Fig. 2.18 The straits of Juan deFuca as seen by the LANDSAT multispectral scanner, (a)
Band4; (b) band 5; (c) band 6; (d) band 7.

screen alternating with all even-numbered scan lines. In the United States, eac
field takespo sec to scan, smwhole frame is scanned eveBp sec.The interlacing
is largely to prevent flickering of the image, which would become noticeable if the
frame were painted from top to bottom only oncédsec. These automatic scan-
ning electronics may be replaced or overridden in many cameras, allowing "ran
dom access" to the image. In some technologies, such as the image dissector, 1
longer the signal is collected from any location, the better the signal-to-noise per
formance.

There are a number of different systems used to generate television image
We discuss five main methods below.

Image orthicontube. This is one of the two main methods in use today (in
addition to the vidicon). It offers very stable performance at all incident light levels
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and is widely used in commercial television. It is a storage-type tube, since i
depends on the neutralization of positive charges by a scanning electron beam.

The image orthicon (Fig. 2.19) is divided into an imaging and readout sec-
tion. In the imaging section, light from the scene is focused onto a semitranspare
photocathode. This photocathode operates the same way as the cathode in a pht
tube. It emits electrons which are magnetically focused by a coil and are
accelerated toward a positively charged target. The target is a thin glass disk with
fine-wire-mesh screen facing the photocathode. When electrons strike it, secot
dary emission from the glass takes place. As electrons are emitted from the phot
cathode side of the disk, positive charges build up on the scanning side. The:
charges correspond to the pattern of light intensity in the scene being viewed.

In the readout section, the back of the target is scanned by a low velocity elec
tron beam from an electron gun at the rear of the tube. Electrons in this beam a
absorbed by the target in varying amounts, depending on the charge on the targ
The image is represented by the amplitude-modulated intensity of the returne
beam.

Vidicon tube. The vidicon is smaller, lighter, and more rugged than the
image orthicon, making it ideal for portable use. Here the target (the inner surfac
of the face plate) is coated with a transparent conducting film which forms a videc
signal electrode (Fig. 2.20). A thin photosensitive layer is deposited on the film,
consisting of a large number of tiny resistive globules whose resistance decreas
on illumination. This layer is scanned in raster fashion by a low velocity electron
beam from the electron gun at the rear of the tube. The beam deposits electrons
the layer, thus reducing its surface potential. The two surfaces of the target esse
tially form a capacitor, and the scanning action of the beam produces a capaciti
current at the video signal electrode which represents the video signal.

The plumbicon is essentially a vidicon with a lead oxide photosensitive layer.
It offers the following advantages over the vidicon: higher sensitivity, lower dark
current, and negligible persistence or lag.

Horizontal and vertical

. ’ deflection coils Alignment coil
Focusing coil |

Aperture disk Electron multiplier

s erg

Grid :
Dynode 1
Cathode

j Image section Multiplier section!

Fig. 2.19 The image orthicon.
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Photo sensitive
Focusing coil conductive target

Fig. 2.20 The vidicon.

Iconoscopetube. The iconoscope is now largely of historical interestit,In
an electron beam scaedarget consistingf a thin mica sheebr mosaic coated
with aphotosensitive layelln contrastto the vidicon and orthicon, the electron
beam and the light both strike the same side of the target surface. The back of t
mosaic is covered with a conductive film connected to an output load. The arrang:
ment is equivalent tamatrix of small capacitors which discharge through a com-
mon lead.

Image dissectotube. The image dissector tube operates on instantaneou:
scanning rather thaly neutralizing positive charges. Light fromhesceneis
focusedon acathode coated with photosensitive layer (Fig. 2.21). The cathode
emits electrons in proportion to the amount of light striking it. These electrons ar
accelerated towara target by theanode. Thetarget is anelectron multiplier
covered by a small aperture which allows only a small part of the "electron image
emitted by thecathodeto reachthetarget. The electron imags focused by a
focusing coil that produceanaxial magnetic field. The deflection coils then scan
the electron image past the target aperture, where the electron multiplier produc
a varying voltage representing the video signal. The image is thus "dissected" as
is scanned past the target, in an electronic version of a flat-bed digitizing process.

Charge transferdevices. A more recent developmeirt image formation
is that of solid-state image sensors, knowscharge transfer devices (CTDs).
There are two main classes@f Ds: charge-coupled devices (CCDs) and charge-
injection devices (CIDs).

CCDs resemble MOSFETs (metal-oxide semiconductor field-effect transis:
tor) in that they contaima"source" region and "drain" region couplecby a
depletion-region channel (Fig. 2.22rorimaging purposes, thegan becon-
sidered as amonolithic arrayof closely spaced MOS capacitors formiagshift
register (Fig. 2.23). Chargen the depletion region are transferréalthe output
by applying aseriesof clocking pulseso arow of electrodes between the source
and the drain.

Photons incidenbnthe semiconductor generageseriesof chargeson the
CCD array. They are transferred to an output register either directly oret bine
time (line transfer)orvia atemporary storage area (frame transfer). The storage
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Fig. 2.21 Image dissector.

area is needed in frame transfer because the CCD array is scanned more rapidl
than the output can be directly accommodated.

Charge injection devices (CIDs) resemble CCDs except that during sensing
the charge is confined to the image site where it was generated (Fig. 2.24). The
charges are read using #nY addressing technique similar to that used in com-
puter memories. Basically, the stored charge is "injected" into the substrate and
the resulting displacement current is detected to create the video signal.

CTD technology offers a number of advantages over conventional-tube-type
cameras: light weight, small size, low power consumption, resistance to burn-in,
low blooming, low dark current, high sensitivity, wide spectral and dynamic range,
and lack of persistence. CIDs have the further advantages over CCDs of tolerance
to processing defects, simple mechanization, avoidance of charge transfer losses
and minimized blooming. CTD cameras are now available commercially.

Analog-to-Digital Conversion

With current technology, the representatiorarofmage as an analog electri-
cal waveform is usually an unavoidable precursor to further processing. Thus the
operation of deriving a digital representation of an analog voltage is basic to com-
puter vision input devices.

FONE ELEMENT-*\

NTYPE SILICON Fig. 2.22 Charge coupled device.
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Fig. 2.23 A CCD array (line transfer).

The function of an analog-to-digital (A/D) converter is to take as input a vol-
tage such as a video signal and to produce as output a representation of the volte
in digital memory, suitabldor reading byaninterfaceto adigital computerThe
quality ofan A/D converteris measured byts temporal resolution (the speat
which it can perform conversiongndthe accuracyof its digital output. Analog-

/\ -
Photosensitive

—
/\ /\ element
Charging transfer f | M M

holding elements 1 | 11 11 11

Hori | ) Video
orizontal register out

Fig. 2.24 ACID array.
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to-digital converters are being produced as integrated circuit chips, but high-
quality models are still expensive. The output precision is usually in the 8- to 12-bit
range.

It is quite possible to digitize an entire frameadfV camera (i.e., approxi-
mately 525 scan lines by 300 or so samples along a scan line) in a single frame tinr
(1/30 sec in the United States). Several commercial systems can provide such fa
digitization into a "frame buffer" memory, along with raster graphics display capa-
bilities from the same frame buffer, and "video rate processing” of the digital data.
The latter term refers to any of various low-level operations (such as averaging
convolution with small templates, image subtraction) which may be performed as
fast as the images are acquired.

One inexpensive alternative to digitizing entire TV frames at once is to use an
interface that acquires the TV signal for a particular point when the scan passes tr
requested location. With efficient programming, this point-by-point digitization
can acquire an entire frame in a few seconds.

2.3.2 Sensing Range

The third dimension may be derived from binocular images by triangulation, as we
saw earlier, or inferred from single monocular visual input by a variety of "depth
cues,"such as size and occlusion. Specialized technology exists to acquire "deptl
images" directly and reliably. Here we outline two such techniques: "light strip-
ing," which is based on triangulation, and "spot ranging," which is based on
different principles.

Light Striping

Light striping is a particularly simple case of the usstdfictured light[Will
and Pennington 1971]. The basic idea is to use geometric information in the illumi-
nation to help extract geometric information from the scene. The spatial frequen-
cies and angles dfarsof light falling on a scene may be clustered to find faces; ran-
domly structured light may allow blank, featureless surfaces to be matched in
stereo views; and so forth.

Many researchers [Popplestone et al. 1975; Agin 1972; Sugihara 1977] have
used striping to derive three dimensions. In light striping, a single plane of light is
projected onto a scene, which causes a stripe of light to appear on the scene (Fi
2.25). Only the part of the scene illuminated by the plane is sensed by the visior
system. This restricts the "image" to be an essentially one-dimensional entity, anc
simplifies matching corresponding points. The plane itself has a known position
(equation in world coordinates), determinable by any number of methods involv-
ing either the measurement of the projecting device or the measurement of thi
final resulting plane olight. Every image point determines a single "line of sight"
in three-space upon which the world point that produces the image point must lie
This line is determined by the focal point of the imaging system and the image
point upon which the world point projects. In a light-striping system, any point
that is sensed in the image is also guaranteed to lie on the light plane in three
space. But the light plane and the line of sight intersect in just one point (as long a
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Fig. 2.25 Light striping, (a) A typical arrangement; (b) raw data; (c) data segmented into
strips; (d) strips segmented into two surfaces.

the camera's focal point is not in the light plane). Thus by computation of the in-
tersection of the line of sight with the plane of light, we derive the three-
dimensional point that corresponds to any image point visible as part of a stripe.

The plane of light may result from a laser or from the projection of a slit. Only
the light stripe should be visible to the imaging device; unless a laser is used, this
implies a darkened room. dcamera is fitted with the proper filter, a laser-based
system can be operated in normal light. Another advantage of the laser is that it can
be focused into a narrower plane than can a slit image.

The only points whose three-dimensional coordinates can be computed are
those that can be "seen" by both the light-stripe source and the camera at once
Since there must be a nonzero baseline if triangulation is to derive three-
dimensional information, the camera cannot be too close to the projector, and thus
concavities in the scene are potential trouble spots, since both the striper and the

Sec. 2.3 Imaging Devices tor Computer Vision 53

Page 71 of 539



camera may not be able to "see" into them. Surfaces in the scene that are near
parallel with the light plane will have a relatively small number of stripes projected

onto them by any uniform stripe placement strategy. This problem is ameliorated
by striping with two sets of parallel planes at right angles to each other [Agin 1972].
A major advantage of light striping over spot ranging is that (barring shadows) its
continuity and discontinuity indicate similar conditions on the surface. It is easy to
"segment" stripe images (Part Il): Stripes falling on the same surface may easily
be gathered together. This set of related stripes may be used in a number of ways
derive further information on the characteristics of the surface (Fig. 2.25b).

Spot Ranging

Civil engineers have used laser-based "spot range finders" fortsoenén
laboratory-size environments, they are a relatively new development. There are
two basic techniques. First, one can emit a very sharp pulse and time its returr
("lidar," the light equivalent of radar). This requires a sophisticated laser and
electronics, since light movek ft every billionth ofasecond, approximately. The
second technique is to modulate the laser light in amplitude and upon its return
compare the phase of the returning light with that of the modulator. The phase
differences are related to the distance traveled [Nitzan et al. 1977]. A representa-
tive image is shown in Fig. 2.26.

Both these techniques produce results that are accurate to withinl@dolt
the range. Both of them allow the laser to be placed close to a camera, and thu:
"intensity maps" (images) and range maps may be produced from single
viewpoints. The laser beam can easily poke into holes, and the return beam may b
sensed close to the emitted one, so concavities do not present a serious probler
Since the laser beam is attenuated by absorption, it can yield intensity information
as well. If the laser produces light of several wavelengths, it is possible to use filters
and obtain multispectral reflectance information as well as depth information from
the same device [Garvey 1976; Nitzaralel977].

The usual mode of use of a spot ranging device is to produce a range map tha
corresponds to an intensity map. This has its advantages in that the correspon
dence may be close. The structural properties of light stripes are lost: It can be hart
to "segment” the image into surfaces (to tell which "range pixels" are associated
with the same surface). Range maps are amenable to the same sorts of segmen
tion techniques that are used for intensity images: Hough techniques, region grow-
ing, or differentiation-based methods of edge finding (Part I1).

Ultrasonic Ranging

Just as light can be pulsed to determine range, so can sound and ultrasoun
(frequencies much higher than the audible range). Ultrasound has been used ex
tensively in medicine to produce images of human organs (e.g., [Waag and
Gramiak 1976]). The time between the transmitted and received signal determines
range; the sound signal travels much slower than light, making the problem of tim-
ing the returning signal rather easier than it is in pulsed laser devices. However,
the signal is severely attenuated as it travels through biological tissue, so that the
detection apparatus must be very sensitive.
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Fig. 2.26 Intensity and range images, (a) A (synthesized) intensity image of a
street scene with potholes. The roofs all have the same intensity, which is different
from the walls; (b) a corresponding range image. The wall and roof of each house
have similar ranges, but the ranges differ from house to house.

One basic difference between sound and visible light ranging is that a light
beam is usually reflected off just one surface, but that a sound beam is generally
partially transmitted and partially reflected by "surfaces." The returning sound
pulse has structure determined by the discontinuities in impedence to sound found
in the medium through which it has passed. Roughly, a light beam returns infor-
mation about a spot, whereas a sound beam can return information about the
medium in the entire column of material. Thus, although sound itself travels rela-
tively slowly, the data rate implicit in the returning structured sound pulse is quite
high. Figure 2.27 shows an image made using the range data from ultrasound. The¢
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Fig. 2.27 Image made from
ultrasound ranging.

sound pulses emanate from the top of the image and proceed toward the bottom
being partially reflected and transmitted along the way. In the figure, it is as if we

were looking perpendicular to the beams, which are being displayed as brighter
where strong reflectance is taking place. A single "scan line" of sound thus pro-
duces an image of an entire planar slice of medium.

2.3.3 Reconstruction Imaging

Two-dimensional reconstruction has been the focus of much research attention
because of its important medical applications. High-quality images such as that
shown in Fig. 1.2b can be formed by multiple images of x-ray projection data. This
section contains the principles behind the most important reconstruction algo-
rithms. These techniques are discussed in more detail with an expanded list of
references in [Gordon and Herman 1974]. For a view of the many applications of
two-dimensional reconstruction other than transmission scanning, the reader is re-
ferred to [Gordon etal. 1975].

Figure 2.28 shows the basic geometry to collect one-dimensional projections
of two-dimensional data. (Most systems construct the image in a plane and repea
this technique for other planes; there are few true three-dimensional reconstruc-
tion systems that use planes of projection data simultaneously to construct
volumes.)

In many applications sensors can measure the one-dimengiojedtion of
two-dimensional image data. The projectio®a) of an ideal image fix, y) in the
direction 9 is given by J fix', y') dy'where x' xR If enough different projec-
tions are obtained, a good approximation to the image can be obtained with two-
dimensional reconstruction techniques.

From Fig. 2.28, with the source at the first position along line AA', we can ob-
tain the first projection datum from the detector at the first position &&\drhe
line AB is termed a ray and the measurement at B a ray sum. Moving the source
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Sec. 2.3

Fig. 2.28 Projection geometry.

and detector along lines AA'and BB'in synchrony allows us to obtain the entire
data for projection 1. Now the lines AA'and BB'are rotated by a small d@gle
about 0 and the process is repeated. In the original x-ray systems d9 was 1° of a
gle, and 180 projections were taken. Each projection comprised 160 transmissior
measurements. The reconstruction problem is simply this: Given the projection
datagj-Cx'), k— 0, ..., N—I, construct the original image fix).

Systems in use today use a fan beam rather than the parallel rays showr
However, the mathematics is simpler for parallel rays and illustrates the funda-
mental ideas. We describe three related techniques: summation, Fourier interpole
tion, and convolution.

The Summation Method

The summation method is simple: Distribute every ray syri) gover the
image cells along the ray. Where there are N cells along a ray, each such cell is ir
cremented by—gix'). This step is termethackprojection. Repeating this process
for every ray results in an approximate version of the original [DeRosier 1971].
This technique is equivalent (within a scale factor) to blurring the image, or con-

volving it with a certain point-spread function. In the continuous case of infinitely
many projections, this function is simply the radically symmetric h(r) = \r.

Imaging Devices for Computer Vision 57
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Fig. 2.29 Basis of Fourier techniques, (a) Projection axis x'; (b) corresponding
axis in Fourier Space.

Fourier A lgorithms

If a projection is Fourier-transformed, it defines a line through the origin in
frequency space (Fig. 2.29). To show this formally, consider the expression for th
two-dimensional transform

Fin) = fffix, y) exp\a2T7T(wc+ vy)] dx dy (2.47)

Now consider® = 0 (projection onto thexaxis)=xA:and

Sot*) - ffix, y) dy (2.48)
The Fourier transform of this equation is
5 Igoix")] = fflfix, y) dy) expj2irux dx (2.49)

=J J fix, y) expj2iTux dydx
which, by comparison with (2.47), is
yfeoOcO] = F(u,0) (2.50)

Generalizing to any 0, the transform of an arbitrary g(x') defines a line in the
Fourier space representation of the cross section. Whés iS the cross section
of the Fourier transform along this line,

S(<0) = F(u cos0, u sin0) (2:51)
= J gk(x') exp [+I7ru(x)]dx’

Thus one way of reconstructing the original image is to use the Fourier transforrr
of the projections to define points in the transform of fix), interpolate the
undefined points of the transform from the known points, and finally take the in-
verse transform to obtain the reconstructed image.
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Exercises

r i«

»,

Fig. 2.30 Convolution method.

This technique can be applied with transforms other than the Fourier
transform, and such methods are discussed in [DeRosier 1971; Crowther and Klug
1971].

The Convolution Method

The convolution method is the natural extension of the summation method.
Since the summation method produces an image degraded from its convolution
with some function h, one can remove the degradation by a "deconvolution." The
straightforward way to accomplish this is to Fourier-transform the degraded image,
multiply the result by an estimate of the transformed hand inverse-Fourier-
transform the result. However, since all the operations are linear, a faster approach
is to deconvolve the projections before performing the back projection. To show
this formally, we use the inverse transform

fix) =ff F(u, v)exp{2rTUX + vy)ldu dv (2.52)
Changing to cylindrical coordinates ico, 9) yields
fix) =ff Fj(o)exp[j2ira>ixcos9 +y sin9)]\oo\dood9 (2.53)
Sincex'= xcos9 + y sin0, rewrite Eq. (2.53) as
fix) = fr-{Fda>)Hi<o)}d9 (2.54)

Since the image is bandlimited at some interval (—tm,) one can define Hico)
arbitrarily outside of this interval. Therefore, Hico) can be defined as a constant
minus a triangular peak as shown in Fig. 2.30. Finally, the operation inside the in-
tegral in Eq. (2.54) is a convolution. Using the transforms shown in Fig. 2.30,

fix) = flfoix’) ~ f,ix)comsméicox’)]  d9 (2.55)

Owing to its speed and the fact that the deconvolutions can be performed
while the data are being acquired, the convolution method is the method employed
in the majority of systems.

EXERCISES

2.1 In abinocular animal vision system, assume a focal lengtar eye of50 mm and a
separation distance rfof 5 cm. Make a ploAgfvs.—zusing Eq. (2.9). If the resolu-
tion of each eye is on the order5ffline pairs/mm, what is the useful range of the bi-
nocular system?
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In an opponent-process color vision system, assume that the following relations hold:

R-G

Red

Yellow Blue

B-Y
Green

For example, if thdR-G, B -Y, W-Bkyomponents of the opponent-process sys-
tem are (0.5, 3, 4), the perceived color will be blue.
Work out the perceived colofer the following (R,G,B) measurements:

(@ (0.2,0.3,0.4) (b) (0.2,0.3,0) () (7,4,1)
Developanindexing schemdor ahexagonal arraypnddefine a Euclidean distance
measure between points in the array.

Assume that a one-dimensional image has the following form:
fix) = COS@2TTgA)

and is sampled withsu= ug. Using the graphical method of Section 2.2.6, find an ex-
pressionfor fix) as givenbyEq. (2.49).Isthis expression equab the original im-
age? Explain.

A certain image has the following Fourier transform:

_ nonzero insideahexagonal domain
Fluy= o otherwise

(@) What are thesmallest valuegor u andv so thatFiu) can beeconstructed
from Fy (u)?

(b) Suppose now that rectangular sampiisgot used but that now the u and
directions subtendnangleof 7r/3. Does this change your answertasthe
smallest wand v? Explain.

Extend thebinocular imaging modebf Fig. 2.3 toinclude convergence: Let the two
imaging systems pivan they = Oplane about the viewpoint. Let the system teave
baselineof 2d and be convergedtsome angl® such that a point %/, z)appearsat
the origin of each image plane.

(@) Solve forz interms of ran®.
(b) Solve forz inthis situation for points with nonzero disparity.
Compute the convolution ¢fvo Rect functions, where

Recy = b 0<x<1
ectlv) = 0 otherwise

Show the steps in your calculations.
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2.8

b for [x]< a
Rect(x) = 0  otherwise

(@ WhatisRect(x)*8(x-a)?
(b) What is the Fourier transform of fix) where fix) = RectGc+c) +
Rect(x-c) and c> a?

2.9 Adigitizer has a sampling interval of Ax = by = A. Which of the following images
can be represented unambiguously by their samples? (Assume that effects of a finit
imagedomain can be neglected.)

@  (sm(7rx/A))I(TrxIA)
(b) cos (7r/x/2A)cos(37rx/4A)
() Rect(x) (see Problem 2.8)

@ e
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Early Processing 3

3.1 RECOVERING INTRINSIC STRUCTURE

The imaging process confounds much useful physical information into the gray-
level array. In this respect, the imaging process is a collection of degenerate
transformations. However, this information is not irrevocably lost, because there
is much spatial redundancy: Neighboring pixels in the image have the same or
nearly the same physical parameters. A collection of techniques, which we call
early processingexploits this redundancy in order to undo the degeneracies in th
imaging process. These techniques have the character of transformations fo
changing the image into "parameter images"intrinsic images [Barrow and
Tenenbaum 1978; 1981] which reflect the spatial properties of the scene. Commor
intrinsic parameters are surface discontinuities, range, surface orientation, anc
velocity.

In this chapter we neglect high-level internal model information even though
it is important and can affect early processing. Consider the case of the perceivec
central edge in Fig. 3.1a. As shown by Fig. 3.1b, which shows portions of the same
image, the central edge of Fig. 3.1a is not present in the data. Nevertheless, the ht
man perceiver "sees" the edge, and one reasonable explanation is that it is a proc
uct of an internal block model. Model-directed activity is taken up in later
chapters. These examples show how high level models (e.g., circles) can affec
low-level processors (e.g., edge finders). However, for the purposes of study it is
often helpful to neglect these effects. These simplifications make it easier to derive
the fundamental constraints between the physical parameters and gray levels. Onc
these are understood, they can be modified using the more abstract structures ¢
later chapters.

Most early computer vision processing can be done with parallel computa-
tions whose inputs tend to be spatially localized. When computing intrinsic images

63
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Fig. 3.1 (a) A perceived edge, (b) Portions of image in (a) showing the lack of image data.

the parallel computations are iterated until the intrinsic parameter measuremen
converge to a set of values. A computation that falls in the parallel-iterative
category is known in computer vision r@$axation[Rosenfeld etl. 1976]. Relaxa-
tion is a very general computational technique that is useful in computer vision
Specific examples of relaxation computations appear throughout the book; gener:
observations on relaxation appear in Chapter 12.

This chapter covers six categories of early processing techniques:

1. Filtering is a generic name for techniques of changing image gray levels tc
enhance the appearance of objects. Most often this means transformatior
that make the intensity discontinuities between regions more prominent.
These transformations are often dependent on gross object characteristics. F
example, if the objects of interest are expected to be relatively large, the imags
can be blurred to erase small intensity discontinuities while retaining those of
the object's boundary. Conversely, if the objects are relatively small, a
transformation that selectively removes large discontinuities may be appropri-
ate.Filtering can also compensate for spatially varying illumination.

2. Edge operatorsletect and measure very local discontinuities in intensity or its
gradient. The result of an edge operator is usually the magnitude and orienta
tion of the discontinuity.

3. Rangetransformsuse known geometry about stereo images to infer the dis-
tance of points from the viewer. These transforms make use of the inverse pel
spective transform to interpret how points in three-dimensional space project
onto stereo pairs. A correspondence between points in two stereo images ¢
known geometry determines the range of those points. Relative range ma
also be derived from local correspondences without knowing the imaging
geometry precisely.

4. Surfaceorientationcan be calculated if the source illumination and reflectance
properties of the surface are known. This calculation is sometimes called
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"shape from shading." Surface orientation is particularly simple to calculate
when the source illumination can be controlled.

5. Opticalflow ,or velocity fields of image points, can be calculated from local
temporal and spatial variations in sequences of gray-level images.

6. Apyramid isa general structure for representing copies of the image at multi-
ple resolutions. A pyramid is a "utility structure" which can dramatically im-
prove the speed and effectiveness of many early processing and later segmer
tation algorithms.

3.2 FILTERING THE IMAGE

Filtering is a very general notion of transforming the image intensities in some way
so as to enhance or deemphasize certain features. We consider only transforr
that leave the image in its original format: a spatial array of gray levels. Spurred on
by the needs of planetary probes and aerial reconnaissance, filtering initially
received more attention than any other area of image processing and there are e
cellent detailed reference works (e.g., [Andrews and Hunt 1977; Pratt 1978; Gon-
zalez and Wintz 1977]). We cannot afford to examine these techniques in greal
detail here; instead, our intent is to describe a set of techniques that conveys th
principal ideas.

Almost without exception, the best time to filter an image is at the image for-
mation stage, before it has been sampled. A good example of this is the way chemi
cal stains improve the effectiveness of microscopic tissue analysis by changing the
image so that diagnostic features are obvious. In contrast, filtering after sampling
often emphasizes random variations in the image, temoégk, that are undesir-
able effects introduced in the sampling stage. However, for cases where the imag
formation process cannot be changed, digital filtering techniques do exist. For ex-
ample, one may want to suppress low spatial frequencies in an image and sharpe
its edges. An image filtered in this way is shown in Fig. 3.2.

Note that in Fig. 3.2 the work of recognizing real-world objects still has to be
done. Yet the edges in the image, which constitute object boundaries, have bee
made more prominent by the filtering operation. Good filtering functions are not
easy to define. For example, one hazard with Fourier techniques is that sharg
edges in the filter will produce unwanted "ringing" in the spatial domain, as evi-
denced by Fig. 2.5. Unfortunately, it would be too muchdifjression to discuss
techniques of filter design. Instead, the interested reader should refer to the refer
ences cited earlier.

3.2.1 Template Matching

Template matching is a simple filtering method of detecting a particular feature in
an image. Provided that the appearance of this feature in the image is known acct
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@ (b)
Fig. 3.2 Effects of high frequency filtering, (a) Original image, (b) Filtered image.

rately, one can try to detect it with an operator callezteplate This template is, in
effect, a subimage that looks just like the image of the object. A similarity measure
is computed which reflects how well the image data match the template for each
possible template location. The point of maximal match can be selected as the loca-
tion of the feature. Figure 3.3 shows an industrial imageaaattvant template.

Correlation

One standard similarity measure between a fundtisf) and atemplatetix) is
the Euclidean distance diy) squared, given by

diy)? = YE[fix)-tix-y)] 2 (3.1)

M N
By IT we mean }£ 2£, for some M, N which define the size of the template ex-
X X=—My——N
tent. If the image at point y is an exact match, then &#0; otherwise, diy)>0.
Expanding the expression fof, dve can see that

dAy) = E[/3(x) - 2/(x)Kx - y) + fix- y)] (3.2
Notice that J)t%ix — y) is a constant term and can be neglected. VEi&fx) is

approximately constanit too can be discounted, leaving what is called the cross
correlation between /and t.

Ruaiy) = YLfix)tix-y) (3.3)
This is maximized when the portion of the image "undes'identical to t.
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Template

Industrial Image

Fig. 3.3 An industrial image and template for a hexagonal nut.

One may visualize the template-matching calculations by imagining the tem-
plate beingshiftedacross the image to different offsets; then the superimposec
values at this offset amaultipliedtogether, and the products a@ded.The result-
ing sum of products forms an entry in the "correlation array" whose coordinate:
are the offsets attained by the source template.

If the template is allowed to take all offsets with respect to the image such tha
some overlap takes place, the correlation array is larger than either the template
the image. An n x n image with an m x m template vyields an
(n+m —Ixn +m —\) correlation array. If the template is not allowed to
shit off the image, the correlation array is 4Am + 1 x n —m + 1); for
m < n. Another form of correlation results from computing the offsets modulo
the size of the image; in other words, the template "wraps around" the image. B
ing shifted offto the right, its right portion reappears on the left of the image. This
sort of correlation is called periodic correlation, and those with no such wraparoun
properties are calledperiodic. We shall be concerned exclusively with aperiodic
correlation. One can always modify the input to a periodic correlation algorithm by
padding the outside with zeros so that the output is the aperiodic correlation.

Figure 3.4 provides an example of (aperiodic) "shift, add, multiply" tem-
plate matching. This figure illustrates some difficulties with the simple correlation
measure of similarity. Many of the advantages and disadvantages of this measu
stem from the fact that it is linear. The advantages of this simplicity have mainly tc
do with the existence of algorithms for performing the calculation efficiently @n
transform domain) for the entire set of offsets. The disadvantages have to do wit

Correlation
Template Image Fig. 3.4 (a) A simple template, (b) An image

with noise, (c) The aperiodic correlation array of

111 110 00 742xx the template and image. Ideally peaks in the
111 11100 532xx correlation indicate positions of good match. Here
111 10 100 219xx the correlation is only calculated for offsets that
00000 X X X X X leave the template entirely within the image. The
00008 X X X X X correct peak is the upper left one at 0,0 offset. The
X — undefined "fal_se alar_m" fat offset 2, 2 i_s caused b_y the bright
"noise point" in the lower right of the image.
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the fact that the metric is sensitive to properties of the image that may vary with
the offset, such as its average brightness. Slight changes in the shape of the obje
its size, orientation, or intensity values can also disturb the match.

Nonetheless, the idea of template matching is important, particularly if Eq.
(3.3) is viewed asfdteringoperation instead of an algorithm that does all the work
of object detection. With this viewpoint one chooses one or more templates
(filters) that transform the image so that certain features of an object are more
readily apparent. These templates generally highlight subparts of the objects. On
such class of templates is edge templates (discussed in detail in Section 3.3).

We showed in Section 2.2.4 that convolution and multiplication are Fourier
transform pairs. Now note that the correlation operation in (3.3) is essentially the
same as a convolution with a function t'(x) tt—x). Thus in a mathematical
sense cross correlation and convolution are equivalent. Consequently, if the size ¢
the template is sufficiently large, it is cheaper to perform the template matching
operation in the spatial frequency domain, by the same transform techniques as fc
filtering.

Normalized Correlation

A crucial assumption in the developmentEef. (3.3) was that the image en-
ergy covered by the matching template at any offset was constant; this leads to
linear correlation matching technique. This assumption is approximately correct if
the average image intensity varies slowly compared to the template size, but ¢
bright spot in the image can heavily influence the correlation by affecting the sum
of products violently in a small area (Fig. 3.4). Even if the image is well behaved,
the range of values of the metric can vary with the size of the matching template
Are there ways of normalizing the correlation metric to make it insensitive to these
variations?

There is a well-known treatment of the normalized correlation operation. It
has been used for a variety of tasks involving registration and stereopsis of image
[Quam and Hannah 1974]. Let us say that two input images are being matched ti
find the best offset that aligns them.

Let/i(x) andA(x) be the images to be matchegigjthe patch of/ (possi-
bly all of it) that is to be matched with a similar-sized patch oif\.q\'\S the patch of
/] that is covered bygvhen g is offset by y.

Let EQ be the expectation operator. Then

o-@@)= [E@)- (Ef)?" (3:4)
o-(@= [E@) - (E@)* (35)
give the standard deviations of points in patcheang g. (For notational con-

venience, we have dropped the spatial arguments of g\.gn&icglly, the nor-
malized correlation is

E(a®k) - E(@E(®
N(y) = o\ 0.6)
crkqi)o-{ay)
and E(q\@) is the expected value of the product of intensities of points that are
superimposed by the translation byy.
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3.2

The normalized correlation metric is less dependent on the local properties ¢
the reference and input images than is the unnormalized correlation, but it is sen:
tive to the signal-to-noise content of the images. High uncorrelated noise in th
two images, or the image and the reference, decreases the value of the correlati
As a result, one should exercise some care in interpreting the metric. If the nois
properties of the image are known, one indication of reliability is given by the
"(signal + noise)-to-noise" ratio. For the normalized correlation to be useful, the
standard deviation of the patches of images to be matched (i.e., of the areas of i
age including noise) should be significantly greater than that of the noise. Then
correlation value may be considered significant if it is approximately equal to the
theoretically expected one. Consider uncorrelated noise of identical standard de\
ation, in a patch of true value fix, y). Let the noise component of the image b
n (X, ¥). Then the theoretical maximum correlation is

2
1- _,0SalL 3.7
2334l (3.7)

In matching an idealized, noise-free reference pattern, the best expecte
value of the cross correlation is

AT (38)

If the noise and signal characteristics of the data are known, the patch siz
may be optimized by using that information and the simple statistical argument
above. However, such considerations leave out the effects of systematic, nonsi
tistical error (such as imaging distortions, rotations, and scale differences betwee
images). These systematic errors grow with patch size, and may swamp the statis
cal advantages of large patches. In the worst case, they may vitiate the advantay
of the correlation process altogether.

Since correlation is expensive, it is advantageous to ensure that there
enough information in the patches chosen for correlation before the operation
done. One way to do this is to apply a cheap "interest operator" before the reli
tively expensive correlation. The idea here is to make sure that the image varit
enough to give a usable correlation image. If the image is of uniform intensity
even its correlation with itself (autocorrelation) is flat everywhere, and no infor-
mation about where the image is registered with itself is derivable. The "interes
operator" is a way of finding areas of image with high variance. In fact, a commor
and useful interest measure is exactly the (directional) variance over small areas
image. One directional variance algorithm works as follows.

The Moravec interest operator [Moravec 1977] produces candidate matcl
points by measuring the distinctness of a local piece of the image from its sut
round. To explain the operator, we first define a variance measure at a pixel (x) as

varUjo-v £ [foy)fx  +ky +1] (3.9)

k,lins

s =\(0, a), (0,-a), (a, 0), (-a, 0)
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where ais a parameter. Now the interest operator value is initially the minimum of
itself and surrounding points:
IntOpVal (x) = min [var (x + y)] (3.10)
y<\
Next a check is made to see if the operator is a local maximum by checking neigh
bors again. Only local maxima are kept.

IntOpVal(x) := O if
IntOpVal(x) > IntOpVal(x + y) (3.11)
fory<1
Finally, candidate points are chosen from the IntOpVal array by thresholding.

X is a candidate point iff IntOpVal (x) > T (3.12)

The threshold is chosen empirically to produce some fraction of the total image
points.

3.2.2 Histogram Transformations

A gray-level histogram of an image is a function that gives the frequency of oc-
currence of each gray level in the image. Where the gray levels are quantized fron
0 to «, the value of the histogram at a particular gray level p, denoted hip), is the
number or fraction of pixels in the image with that gray level. Figure 3.5 shows an
image with its histogram.

A histogram is useful in many different ways. In this section we consider the
histogram as a tool to guide gray-level transformation algorithms that are akin to
filtering. A very useful image transform is calledstogramequalization.Histogram
equalization defines a mapping of gray levels p into gray leyslgeh that the dis-
tribution of gray levelgy is uniform. This mapping stretches contrast (expands the

@ Fig. 3.5 (a) Animage, (b) Its intensity histogram.
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range of gray levels) for gray levels near histogram maxima and compresses con
trast in areas with gray levels near histogram minima. Since contrast is expandet
for most of the image pixels, the transformation usually improves the detectabihty
of many image features.

The histogram equalization mapping may be defined in terms of the cumula-
tive histogram for the image. To see this, consider Fig. 3.6a. To map a small inter
val of gray levelsiponto an intervatqin the general case, it must be true that

giq)dg = hip) dp (3.13)

where giq) is the new histogram. If, in the histogram equalization case, giq) is to

be uniform, then
2

gicii) = ',:'A (3.14)

9  hip)

Fig. 3.6 (a) Basis for a histogram equalization technique, (b) Results of histo-
gram equalization.
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whereN? is the number of pixels in the image and Mis the number of gray levels.
Thus combiningegs. (3.13) and (3.14) and integrating, we have

giq) ="™hip)dp (3.15)

But Eq. (3.15)issimply the equatiorfor thenormalized cumulative histogram.
Figure 3.6b shows the histogram-equalized image.

3.2.3 Background Subtraction

Background subtraction can be another important filtering step in early processing
Many images can have slowly varying background gray levels which are incidental
to the task at hand. Examples of such variations are:

» Solution gradients in cell slides
 Lighting variations on surfaces in office scenes
« Lungimages in a chest radiograph
Note that the last examplsonly a"background"in the contextof lookingfor
some smaller variations such as tumors or pneumoconiosis.
Background subtraction attempts to remove these variations by first approxi-

mating them (perhaps analytically) with a background infiggend then subtract-
ing this approximation from the original image. That is, the new imaige /,,

1,(x)=1(x)-1,(x) (3.16)

Various functional forms have been triédr analytic representationef slowly
varying backgrounds. In the simplest cag$x) may be a constant,

f(x) =c (3.17)
or linear,
fxX) =mX +c (3.18)

A more sophisticated background model is to use a low-pass filtered variant of the
original image:

fo(x)=".r' [H(U)F(u)) (3.19)

where //(u) is alow-pass filtering function. The problem with this technidgie
that it is global; one cannot count on the "best" effecany local area since the
filter treats all partof the image identically. For the same reasbis difficult to
design a Fourier filter that works for a number of very different images.

A workable alternativeis to approximate/”(x), using splines, whickre
piecewise polynomial approximation function3-hemathematicsof splinesis
treatedin Chapter 8 since they find more general application as representations of
shape. The filtering application is important but specialized. The attractive feature
of aspline approximatiorfor filtering is thatit is variation diminishingand spatially
variant. The spline approximation is guaranteexbe "smoother" than the origi-
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nal function and will approximate the background differently in different parts of
the image. The latter feature distinguishes the method from Fourier-domain tech
nigues which are spatially invariant. Figure 3.7 shows the results of spline filtering.

3.2.4 Filtering and Reflectance Models

Leaving the effects of imaging geometry implicit (Section 2.2.2), the definitions in
Section 2.2.3 imply that the image irradiance (gray level) at the image point x'is
proportional to the product of the scene irradiance E andefiectancer at its
corresponding world point x.

[(x") = £(X)r(x) (3.20)

The irradiance at x is the sum of contributions from all illumination sources, and
the reflectance is that portion of the irradiance which is reflected toward the ob-
server (camera). Usually Echanges slowly over a scene, whereas /-changes quick
over edges, due to varying face angles, paint, and so forth. In many cases or
would like to detect these changes inhile ignoring changes i&. One way ofdo-

ing this is to filter the image fix') to eliminate the slowly varying component.
However, as/is thproductof illumination and reflectance, it is difficult to define

an operation that selectively diminishes E while retaimingurthermore, such an
operation must retain the positivity of/. One solution is to take the logarithm of
Eq. (3.20). Then

log/ - log£ + log/- (3.21)

Equation (3.21) shows two desirable properties of the logarithmic transformation:
(1) the logarithmic image is positive in sign, and (2) the imagsugperposition of
the irradiance component and reflectance component. Since reflectance is an ir

Fig. 3.7 The results of spline filtering to remove background variation.
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trinsic characteristic of objects, the obvious goal of image analysis is to recogniz:
the reflectance component under various conditions of illumination. Since the
separation ofwo components is preserved under linear transformations and the ir-
radiance component is usuallylofv spatial frequency compared to the reflectance
component, filtering techniques can suppress the irradiance component of the sit
nal relative to the reflectance component.

If the changes in /-occur over very short distances in the images, rmay be isc
lated by a three-step process [Horn 1974]. First, to enhance reflectance change
the image function is differentiated (Section 3.3.1). The second step removes th
low irradiance gradients by thresholding. Finally, the resultant image is integratec
to obtain an image of perceived "lightness" or reflectance. Figure 3.8 shows thes
steps for the one-dimensional case.

A basic film parameter is density, which is proportional to the logarithm of
transmitted intensity; the logarithmically transformed image is effectivelgrsity
image. In addition to facilitating the extraction of lightness, another advantage of
the density image is that it is well matched to our visual experience. The ideas fo
many image analysis programs stem from our visual inspection of the image. How
ever, the human visual system responds logarithmically to light intensity and alsc
enhances high spatial frequencies [Stockham 1972]. Algorithms derived from

@

(b)

Fig. 3.8 Steps in processing an image
to detect reflectance, (a) Original image.
(b) Differentiation followed by
thresholding, (c) Integration of function
in (b).
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introspective reasoning about the perceived image (which has been transforme
by our visual system) will not necessarily be successful when applied to ar
unmodified intensity image. Thus one argument for using a density transformatior
followed by high spatial frequency emphasis filtering is that the computer is then
"seeing" more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex
periments with the human visual system show that boundaries in images are e
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrai
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundarie:
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ¢
tained by first transforming the image into an intermediate imagdecaf gray-
level discontinuities, or edges, and then composing these into a more elabora
boundary. This strategy reflects the principle: When the gap between represent:
tions becomes too large, introduce intermediate representations. In this casi
boundaries that are highly model-dependent may be decomposed into a series
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chan¢
ing rapidly in a simple (e.g., monotonic) way. Adge operatois a mathematical
operator (or its computational equivalent) with a small spatial extent designed tc
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance alor
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-€
demonstrate some different kinds of "edge profiles" that are commonly encoun-
tered. Ofcourse,in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operator
perform best in different task domains has prompted the development of a variet
of operators. However, the unifying feature of most useful edge operators is tha
they compute directionwhich is aligned with the direction of maximal gray-level
change, and anagnitudedescribing the severity of this change. Since edges are ¢
high-spatial-frequency phenomenon, edge finders are also usually sensitive t
high-frequency noise, such as "snow"aRV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multipl
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of thes
categories appear in this section. The computer vision literature abounds with edg
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@ (b)

XV

(© (d)
Fig. 3.9 Edge profiles.

operators, and we make no attempt to summarize them all here. For a guide to tt
literature, see [Rosenfeld and Kak 1976].

Parametric models generally capture more detailed edge structure than tr
two-parameter direction and magnitude vector; as a result, they can be more cor
putationally complicated. For this reason and others discussed in Section 3.3.4, v
shall omit a detailed discussion of these kinds of edge operators. One of the be
known parametric models is Hueckel's [Hueckel 1971, 1973], but several other
have been developed since [Mero and Vassy 1975; Nevada 1977; Abdou 197
Tretiakl979].

3.3.1 Types of Edge Operators

Gradient and Laplacian

The most common and historically earliest edge operator is the gradient [Robert
1965]. For an image function fix), the gradient magnitude six) and direction
<j> (x) can be computed as

s(x) = (Af + ARy (3.22)
<£(X) = atan(As- Ay) (3.23)

where
A - fix +ny)- fix, y) (3.24)

b2 = f(Xay + n)'ﬁXyY)

Cb. 3 Early Processing

Page 94 of 539



nis a small integer, usually unity, and atan (x, y) returns (afy) adjusted to

the proper quadrant. The parameter n is called the "span" of the gradien
Roughly, n should be small enough so that the gradient is a good approximation t
the local changes in the image function, yet large enough to overcome the effec
of small variations in /.

Equation (3.24) is only ondifferenceoperator, or way of measuring gray-
level intensities along orthogonal directions using A! and Rigure 3.10 shows
the gradient difference operators compared to other operators [Roberts 196
Prewitt 1970]. The reason for the modified operators of Prewitt and Sobel is tha
the local averaging tends to reduce the effects of noise. These operators do, in fe
perform better than the Roberts operator for a step edge model.

One way to study an edge operator's performance is to use an ideal edge st
as the step edge shown in RBgl1.This edge has two gray levels: zero and h units.
If the edge goes through the finite area associated with a pixel, the pixel is given
value between zero and h, depending on the proportion of its area covered. Cor
parative edge operator performance has been carried out [Abdou 1978]. In the ce
of the Sobel operator (Fig. 3.10c) the measured orienteffiggiven by

A A,
0 1 1 0
1 0 0 1
@
1 0 1 1 1 1
1 0 1 0 0 0
1 0 1 1 1 1
(b)
1 0 1 1 2 1
2 0 2 0 0 0
1 0 1 1 2 1
© Fig. 3.10 Gradient operators.
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Fig. 3.11 Edge models for orientation
and displacement sensitivity analyses.

<f> ifO < d> < tan

if tan™' <0< <f>< T4 (325
4 > + ean<s - 1 (3:25)

tan
Otarf</> + 22tan0 - 1

Arguments from symmetry show that only the O<g> < ITI'4 cases need be exam-
ined. Similar studies could be made using ramp edge models.

A rather specialized kind of gradient is that taken "between pixels." This
scheme is shown in Fig. 3.12. Here a pixel may be thougisaving fourcrack
edgessurrounding it, whose directions of are fixed by the pixel to be multiples of
7r/2. The magnitude of the edge is determined by |/(x) - /(y) |, where x arel
the coordinates of the pixels that have the edge in common. One advantage of tt
formulation is that it provides an effective way of separating regions and their
boundaries. The disadvantage is that the edge orientation is crude.

The Laplacianis an edge detection operator that is an approximation to the
mathematical Laplacianzizldxzg + d’f/dy? in the same way that the gradient is an

approximation to the first partial derivatives. One version of the discrete Laplaciar
is given by

x y
1

'Crack"edge  Fig. 3.12 "Crack" edge representation.
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LU y) =fix, y) - VAfix, y + 1) +fix, y - 1) (3.26)
+fix +\y) +fix- V)]

The Laplacian has two disadvantages as an edge measure: (1) useful directional
formation is not available, and (2) the Laplacian, being an approximation to the
second derivative, doubly enhances any noise in the image. Because of these dis
vantages, the Laplacian has fallen into disuse, although some authors have use
as an adjunct to the gradient [Wechsler and Sklansky 1977; Akatsuka 1974] in tt
following manner: There is an edge at x with magnitude g (x) and diredtio(x) if
gix) > r,andL(x) > T

Edge Templates

TheKirsch operator[Kirsch 1971] is related to the edge gradient and is giver
by

k+1
Six) = max[1, max£/(xfc)] (3.27)

k-l
where fiy) are the eight neighboring pixels to x and where subscripts are com
puted modulo 8. A3-bit direction can also be extracted from the value of k that
yields the maximum in (3.27). In practice, "pure" template matching has replace:
the use of (3.27). Four separate templates are matched with the image and t
operator reports the magnitude and direction associated with the maximum matc
As one might expect, the operator is sensitive to the magnitdik, ofso that in
practice variants using large templates are generally used. Figure 3.13 shou
Kirsch-motivated templates with different spans.

1 1
11 -1 1
101 1 11 0 11 110
n=1 101 0 0 0 10 1 1 0 -1
101 -1-1 -1 1-1 o 0 -1-1
101 11111 0 1111 11110
101 11111 -10 111 11 10-1
n=2 101 0 0 0 0O -1-10 1 1 11 0-1-1
1 01 -1-1-1-1 -1 -1-1-10 1 10 -1-1 -1
101 -1-1-1 -1 -1 -1-1-1-1 0 0 -1-1-1 -1

Fig. 3.13 Kirsch templates.

Sec. 3.3 Finding Local Edges

Page 97 of 539



80

This brief discussion of edge templates should not be construed as a com
ment on their appropriateness or popularity. In fact, they are widely used, and the
template-matching concept is the essence of the other approaches. There is al
evidence that the mammalian visual system responds to edges through speci
low-level template-matching edge detectors [Hubel and Wiesel 1979].

3.3.2 Edge Thresholding Strategies

For most images there will be but few places where the gradient magnitude is equi
to zero. Furthermore, in the absence of any special context, small magnitudes au
most likely to be due to random fluctuations, or noise in the image function /.
Thus in practical cases one may use the expedient of only reporting an edge el
ment at x if g (x) is greater than some threshold, in order to reduce these nois
effects.

This strategy is computationally efficient but may not be the best. An alter-
native thresholding strategy [Frei and Chen 1977] views difference operators a:
part of a set of orthogonal basis functions analogous to the Fourier basis of Sec
tion 2.2.4. Figure 3.14 shows the nine Frei-Chen basis functions. Using this
basis,the image near a poing gan be represented as

fix) - £ (f Whix - x)(h hd (3.28)

where the (/, §) is the correlation operation given by
(/,A*) = Z/(x0)Mx-x0) (3.29)
D

and Disthe nonzero domain of the basis functions. This operation is also regardec
as theprojection of the image into the basis function. When the image can be
reconstructed from the basis functions and their coefficients, the basis functions
span the space. In the case of a smaller set of functions, the basis functions spar
subspace.

The value of a projection into any basis function is highest when the image
function is identical to the basis function. Thus one way of measuring the "edge-
ness"of a local area in an image is to measure the relative projection of the image

1 1
1 1 11
11 1 1 1
11 1
1 1 1 1 1 V2 -1 2 1 -2
V2 V2 1 1 14 1
1 1 1Vv2 2 1 -2

Fig. 3.14 Frei-Chen orthogonal basis.
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into the edge basis functions. The relative projection into the particular "edge suk
space" is given by

cos 0 = (E_p (3.30)
where
« -1« h)?
k=\
and
s - Zif, h)?
k=0

Thus if 9 < T, report an edge; otherwise, not. Figure 3.15 shows the potential ac
vantage of this technique compared to the technique of thresholding the gradiel
magnitude, using two hypothetical projections B\ apdB¥en though Bhas a
small magnitude, its relative projection into edge subspace is large and thus wou
be counted as an edge with the Frei-Chen criterion. This is not true for B\.

Under many circumstances it is appropriate to use model information abou
the imageedgesThis information can affect the way the edges are interpreted after
they have been computed or it may affect the computation priceelfsAs an ex-
ample of the first case, one may still use a gradient operator, but vary the thresho
for reporting an edge. Many versions of the second, more extreme strategies of
ing special spatially variant detection methods have been tried [Pingle and Tenel
baum 1971; Griffith 1973; Shirai 1975]. The basic idea is illustrated in Fig. 3.16.
Knowledge of the orientation of an edge allows a special orientation-sensitive
operator to be brought to bear on it.

3.3.3 Three-Dimensional Edge Operators

In many imaging applications, particularly medicine, the images are three-
dimensional. Consider the examples of the reconstructed planes described in Se
tions 1.1 and 2.3.4. The medical scanner that acquires these data follows seve
parallel image planes, effectively producing a three-dimensional volume of data.

T, Edge
subspace
gw Fig. 3.15 Comparison of thresholding
@ (] techniques.
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I 77// /,// /.

Fig. 3.16 Model-directed edge
detection.

In three-dimensional data, boundaries of objects are surfaces. Edge element
in two dimensions become surface elements in three dimensions. The two-
dimensional image gradient, when generalized to three dimensions, is the loca
surface normal. Just as in the two-dimensional case, many different basis operatol
can be used [Liu 1977; Zucker and Hummel 1979]. That of Zucker and Hummel
uses an optimal basis assuming an underlying continuous model. We shall jus
describe the operator here; the proof of its correctness given the continuous imag
model may be found in the reference. The basis functions for the three-
dimensional operator are given by

g\bcyy, 2) (3.31)

T

2-

%(x, ¥.2)

g3(xlyv Z) = -

where r = (¥ + y* + 2\ The discrete form of these operators is shown in Fig.
3.17 for a3 x 3 x 3 pixel domain D. Only gi is shown since the others are obvious
by symmetry. To apply the operator at a poyt,xo, 70 compute projections a, b,
and c, where

a=(@\f = E|)_£i(x)/(x-><o)

b = (gi, 7 (3.32)
- (1)

The result of these computations is the surface normal n = (a, bGop,ab, zn)-
Surface thresholding is analogous to edge thresholding: Report a surface elemer
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3 2 3
~y 2 1 2
N/3 VA
3 2
o 0 0 v/2
3 2 3
0 0 0 2 ! 2
. . o v/3 Vi3 Fig. 3.17 The3 x 3 x 3 edge basis
3 2 3 functiong\(x, y, 2).

only if six, y, z) =\l exceeds some threshold. Figure 3.18 shows the results ¢
applying the operator to a synthetic three-dimensional image of a torus. Th
display shows small detected surface patches.

3.3.4 How Good are Edge Operators?

The plethora of edge operators is very difficult to compare and evaluate. For exar
ple, some operators may find most edges but also respond to noise; others may

X

Fig. 3.18 Results of applying the Zucker-Hummel 3-D operator to synthetic im-
age data in the shapeatorus.
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noise-insensitive but miss some crucial edges. The following figure of merit [Prati
1978] may be used to compare edge operators:

max (N, TV) ~ 1+ {ad?)

where M and Nj represent the number of actual and ideal edge points, respec
tively, ais a scaling constant, andsdhe signed separation distance of an actual
edge point normal to a line of ideal edge points. The term ad} penalizes detecte
edges which are offset from their true position; the penalty can be adjusted via ¢
Using this measure, all operators have surprisingly similar behaviors. Unsurpris
ingly, the performance of each deteriorates in the presence of noise [Abdou 1978
(Pratt defines a signal-to-noise ratio as the square of the step edge amplitude ¢
vided by the standard deviation of Gaussian white noise.) Figure 3.19 shows son
typical curves for different operators. To make this figure, the threshold for report-
ing an edge was chosen independently for each operator so as to maximize E
(3.33).

These comparisons are important as they provide a gross measure (
differences in performance of operators even though each operator embodies
specific edge model and may be best in special circumstances. But perhaps ti
more important point is that since all real-world images have significant amounts
of noise, all edge operators will generally produce imperfect results. This mean:
that in considering the overall computer vision problem, that of building descrip-
tions of objects, the efforts are usually best spent in developing methods that ca
use or improve the measurements from unreliable edges rather than in a search
the ideal edge detector.

o 1 1 1 1 1 1.
10 2.0 5.0 10 20 50 100

h?/a?

Fig. 3.19 Edge operator performance using Pratt's measure (Eq. 3.33).
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3.3.5 Edge Relaxation

One way to improve edge operator measurements is to adjust them based on me
urements of neighboring edges. This is a natural thing to walat tba weak hor-
izontal edge is positioned between two strong horizontal edges, it should gain cre
ibility. The edges can be adjusted based on local information using paralle
iterative techniques. This sort of process is related to more global analysis and
complementary to sequential approaches such as edge tracking (Chapter 4).

Early cooperative edge detection techniques used pairwise measuremel
between pixels [Zucker et al. 1977]. A later version [Prager 1980] allows for mort
complicated adjustment formulas. In describing the edge relaxation scheme, \
essentially follow Prager's development and use the crack edges described at
end of the discussion on gradients (Sec. 3.31). The development can be extent
to the other kinds of edges and the reader is invitel juost this in the Exercises.

The overall strategy is to recognize local edge patterns which cause tf
confidence in an edge to be modified. Prager recognizes three groups of patter
patterns where the confidence of an edge can be increased, decreased, or left
same. The overall structure of the algorithm is as follows:

Algorithm 3.1 Edge Relaxation

0. Compute the initial confidence of each edge C°(e) as the normalized gradie
magnitude normalized by the maximum gradient magnitude in the image.

1. k=\;
Compute each edge type based on the confidence of edge neighbors;

3. Modify the confidence of each edgé(€) based on its edge type and its pre-
vious confidence E'(e);

4. Test theC{eYs to see if they have all converged to either O or 4o/ktop;
else,increment /cand go to 2.

N

The two important parts of the algorithm are step 2, computing the edge type, ar
step 3, modifying the edge confidence.

The edge-type classification relies on the notation for edges (Fig. 3.20). Th
edge type is a concatenation of the left and right vertex types. Vertex types a
computed from the strength of edges emanating from a vertex. Vertical edges &
handled in the same way, exploiting the obvious symmetries with the horizonte
caseBesides the central edge e, the left vertex is the end point for three other pc
sible edges. Classifying these possible edges into "edge" and "no-edge" provid
the underpinnings for the vertex types in Fig. 3.21.
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@) mm Fig. 3.20 Edge notation, (a) Edge
® position with no edge, (b) Edge position
with edge, (c) Edge to be updated, (d)
Edge of unknown strength, (e)
Configuration of edges around a central

© (d) C] edge e.

To compute vertex type, choose the maximum confidence vertex, i.e., the
vertex is type j where j maximizes conf (/)

and

conf(0) (m-a)(m- b) (m-c)
conf(l) aim - b)(m- c)
conf(2) abim- c)

conf (3) abc

where

m = max (a, b, c, q)

g isa constant (0.1 is about right)
and a, b, and c are the normalized gradient magnitudes for the three edge:
Without loss of generality, a ~ b ~ c. The parameter m adjusts the vertex
classification so that it is relative to the local maximum. Thus {a, b, ¢).25,
0.01,0.01) is a type 1 vertex. The parameter g forces weak vertices to type zerc
[e.g.,(0.01,0.001,0.001) is typezero].

Once the vertex type has been computed, the edge type is simple. It is merel
the concatenation of the two vertex types. That is, the edge type is ((/), where /ani
y'are the vertex types. (From symmetry, only considey.)

@

(b) mm I

1

© mm i i 1 mm cz]

d) EM3
@ Fig. 3.21 Classification of vertex type
of left-hand endpoint of edge e, Fig. 3.20.
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Decisions in the second step of modifying edge confidence based on edge
type appear in Tablg.1.The updating formula is:

increment:  C*'(e) = min (1, C'(e) + 8)

decrement: C*'(e) = max (0, ¢(e) - 8)

leave ass: C'(e) = CNe)

where 8 is a constant (values from 0.1 to 0.3 are appropriate). The result of using
the relaxation scheme is shown in Fig. 3.22. The figures on the left-hand side show

Fig. 3.22 Edge relaxation results, (a) Raw edge data. Edge strengths have been threshold-
ed at 0.25 for display purposes only, (b) Results after five iterations of relaxation applied to
(a), (c) Different version of (a). Edge strengths have been thresholded at 0.25 for display
purposes only, (d) Results after five iterations of relaxation applied to (c).
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the edges with normalized magnitudes greater than 0.25. Weak edges cause ma
gaps in the boundaries. The figures on the right side show the results of five itera
tions of edge relaxation. Here the confidence of the weak edges has been increas:
owing to the proximity of other edges, using the rules in Taldle

Table 3.1

Decrement IncrementLeaveasis

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

88

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.

For a fixed viewpoint and direction, infinitely many continuous and discontinuous

three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverl
placed at varying distances so as to project onto the same area. An astronome
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a "grandmother constellation." All that can be

mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The "inverse perspective" transformation (Appendix 1) simply deter-

mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, aline and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has bes
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considerable effort in this direction [Moravec 1977; Quam and Hannah 1974; Bin-
ford 1971;Turner 1974; Shapira974].The technique is conceptually simple:

1. Take two images separated by a baseline.
2. Identify points between the two images.

3. Use the inverse perspective transform (Appendix 1) or simple tri-
angulation (Section 2.2.2) to derive the two lines on which the world
point lies.

4. Intersect the lines.

The resulting point is in three-dimensional world coordinates.

The hardest part of this method is step 2, that of identifying corresponding
points in the two images. One way of doing this is to use correlation, or template
matching, as described in Secti8r2.1. The idea is to take a patch of one image
and match it against the other image, finding the place of best match in the secon
image, and assigning a related "disparity" (the amount the patch has been dis
placed) to the patch.

Correlation is a relatively expensive operation, its naive implementation re-
quiring Q(rfn?) multiplications and additions for an mxm patch and nxn image.
This requirement can be drastically improved by capitalizing on the idea of variable
resolution; the improved technique is described in Section 3.7.2.

Efficient correlation is of technological concern, but even if it were free and
instantaneous, it would still be inadequate. The basic problems with correlation in
stereo imaging have to do with the fact that things can look significantly different
from different points of view. It is possible for the two stereo views to be
sufficiently different that corresponding areas may not be matched correctly.
Worse, in scenes with much obscuration, very important features of the scene ma
be present in only one view. This problem is alleviated by decreasing the baseline
but of course then the accuracy of depth determinations suffers; at a baselini
length of zero there is no problem, but no stereo either. One solution is to identify
world features, not image appearance, in the two views, and match those (the nos
of a person, the corner of a cube). However, if three-dimensional information is
sought as a help in perception, it is unreasonable to have to do perception first it
order to do stereo.

3.4.2 A Relaxation Algorithm for Stereo

Human stereopsispr fusing the inputs from the eyes into a stereo image, does no
necessarily involve being aware of features to match in either view. Most human
beings can fuse quite efficiently stereo pairs which individually consist of randomly

placed dots, and thus can perceive three-dimensional shapes without recognizin
monocular clues in either image. For example, consider the stereo pair of Fig. 3.23
In either frame hyitself, nothing but a randomly speckled rectangle can be per-

ceived. All the stereo information is present in the relative displacement of dots in
the two rectangles. To make the right-hand member of the stereo pair, a patch ¢
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Fig. 3.23 A random-dot stereogram.

the randomly placed dots of the left-hand image is displaced sideways. The dots
which are thus covered are lost, and the space left by displacing the fiieetliis
with random dots.

Interestingly enough, a very simple algorithm [Marr and Poggio 1976] can be
formulated that computes disparity from random dot stereograms. First consider
the simpler problem of matching one-dimensional images of four points as de-
picted in Fig. 3.24. Although only one depth plane allows all four points to be
placed in correspondence, lesser numbers of points can be matched in othe
planes.

The crux of the algorithm is the rules, which help determine, on a local basis,
the appropriateness of a match. Two rules arise from the observation that most im-
ages are of opaque objects with smooth surfaces and depth discontinuities only a
object boundaries:

1. Each point in an image may have only one depth value.
2. Apointis almost sure to have a depth value near the values of its neighbors.

Fig. 3.24 The stereo matching problem.
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Figure 3.24 carbeviewed as abinary network where each possible matsh
represented by a binary state. Matches have viakmred nonmatches value 0. Fig-
ure 3.25 showsinexpanded versioof Fig. 3.24. The connectionsf alternative
matchesfor apoint inhibit each other and connections between mathegual
depth reinforce each other. To extend this idea to two dimensions, use parallel ¢
rays for different values ofy where equal depth matches have reinforcing connec
tions. Thus theextended arrays modeled asthematrix C(x,y, d) wherethe
point X, y, dcorrespondsto aparticular match betweeapoint (xi,y;) in the
right image andapoint (X, yi) in theleft image. The stereopsis algorithm pro-
ducesaseriesof matrices C, which convergetothecorrect solutionfor most
casesThe initial matrixCQ{X, y, d) has values of one wherey, dcorrespondo

a matchin the original data and has values of zero or otherwise.

Algorithm 3.2  [Marr and Poggio 1976]
Until C satisfies some convergence criterida,

Cur Uy d)=. £ C,(xiy\d)- £ C,ix,y.d) + Cox y,d)3.34)

x\y',d'ZS xy',d'€9
where the ternmin braces is handled as follows:
jhift>T
' '~ O otherwise
S = set ofpoints x', y',d" such thafx — x'|<landd= d'
$ = set ofpoints x', y',d"' such thajx— x| < land \d—d\= 1

Disparity

Match between
x and x'

Inhibitory
/ connection

Excitatory
connection

Fig. 3.25 Extension of stereo matching.
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One convergence criterion is that the number of points modified on an iteratior
must be less than some threshold T. Fig. 3.26 shows the results of this comput
tion; the disparity is encoded as a gray level and displayed as an image for differe
values ofn.

A more general version of this algorithm matches image features such a
edges rather than points (in the random-dot stereogram, the only features a

V&tt}

iK®

u ]
Fig. 3.26 The results of relaxation computations for stereo.
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points), but the principles are the same. The extraction of features more comg
cated than edges or points is itself a thorny problem and the subject of Part II.
should be mentioned that Marr and Poggio have refined their stereopsis algoritt
to agree better with psychological data [Marr and Poggio 1977].

3.5 SURFACE ORIENTATION FROM REFLECTANCE MODELS

The ordinary visual world is mostly composed of opaque three-dimensional ol
jects.The intensity (gray level) aipixel in a digital image is produced by the light
reflected by a small area of surface near the corresponding point on the object.

It is easiest to get consistent shape (orientation) information from an image
the lighting and surface reflectance do not change from one scene location
another. Analytically, it is possible to treat such lighting as uniform illumination, ¢
point source at infinity, or an infinite linear source. Practically, the human shap
from-shading transform is relatively robust. Of course, the perception of shag
may be manipulated by changing the surface shading in calculated ways. In pe
cosmetics work by changing the reflectivity properties of the skin and misdirectin
our human shape-from-shading algorithms.

The recovery transformation to obtain information about surface orientatiol
is possible if some information about the light source and the object's reflectivity
known. General algorithms to obtain and quantify this information are compli
cated but practical simplifications can be made [Horn 1975; Woodham 1978; Ike!
chi 1980]. The main complicating factor is that even with mathematically tractabl
object surface properties, a single image intensity does not uniquely define the s
face orientation. We shall study two ways of overcoming this difficulty. The first al-
gorithm uses intensity images as input and determines the surface orientation
using multiple light source positions to remove ambiguity in surface orientatior
The second algorithm uses a single source but exploits constraints between nei
boring surface elements. Such an algorithm assigns initial ranges of orientations
surface elements (actually to their corresponding image pixels) on the basis of
tensity. The neighboring orientations are "relaxed" against each other until ea
converges to a unique orientation (Section 3.5.4).

3.5.1 Reflectivity Functions

For all these derivations, consider a distant point source of light impinging on

small patch of surface; several angles from this situation are important (Fig. 3.21
A surface's reflectance is the fractionagfiven incident energy flux (irradi-

ance) it reflects in any given direction. Formally, the reflectivity function is define

asr = JI'—_Y where L is exitant radiance and E is incident flux. In general, for ar

isotropic reflecting surfaces, the reflectivity function (hence L) is a function of all
three angles /, e, argl The quantity of interest to us is image irradiance, which is
proportional to scene radiance, given by L # 3E. In general, the evaluation of

this integral can be quite complicated, and the reader is referred to [Horn ai
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Fig. 3.27 Important reflectance angles:
i, incidence; e, emittance; g, phase.

Sjoberg 1978ffor amore detailed study. For our purposes we consider surface:
with simple reflectivity functions.

Lambertian surfaces, those widmideal matte finish, havavery simple
reflectivity function which is proportional only to the cosine of the incident angle.
These surfaces have the property that under unifrieollimated illumination
they look equally bright from any direction. Thisbecause the amount of light
reflected fromaunit area goes dowasthe cosineof the viewing angle, but the
amount of area seen in any solid angle goes up as the reciprocal of the cosine of
viewing angle. Thus the perceived intensity of a surface element is constant wi
respecttoviewer position. Other surfaces with simple reflectivity functions are
"dusty" and "specular" surfaces. An exampledbisty surface is the lunar sur-
face, which reflects in all directions equally. Specular (purely mirror-like) surfaces
such as polished metal reflect only at the angle of reflecticangle of incidence,
and in adirection such thatheincidence, normal, and emittance veciarg
coplanar.

Most smooth things havaspecular componerto their reflection, butn
general some light is reflected at all angles in decreasing amounts from the specu
angle. One way to achieve this effect is to use the cosine of the angle between {
predicted specular angle and the viewing angle, wikigiven by C where

C — 2cos (/) cos (e}— cos (g)

This quantity is unity in thepure specular direction and faltsff to zeroat —
radians away from it. Convincing specular contributions of greatérss sharp-
ness are produced by taking power€ofA simple radiance formula that allows the
simulation of both matte and specular effects is

Lit, e,g) =s(C)"+ (I-s)cosO) (3.35)
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Sec. 3.5

Here 5 varies between 0 antland determines the fraction of specularly reflected
light; ndetermines the sharpness of specularity peaks.iAsreases, the specular
peak gets sharper and sharper. Computer graphics research is constantly extenc
the frontiers of realistic and detailed reflectance, refractance, and illumination ca
culations [Blinn 1978; Phon§975;Whitted 1980].

3.5.2 Surface Gradient

The reflectance functions described above are defined in terms of angles measu
with respect to a local coordinate frame. For our development, it is more useful 1
relate the reflectivity function to surface gradients measured with respect to
viewer-oriented coordinate frame.

The concept ofyradientspacewhich is defined in a viewer-oriented frame
[Horn 1975], is extremely useful in understanding the recovery transformation al
gorithm for the surface normal. This gradient refers to the orientation of a physic:
surface,notto local intensities. It must not be confused with ititensitygradients
discussed in Section 3.3 and elsewhere in this book.

Gradient space is a two-dimensional space of slants of scene surfaces.
measures a basic "intrinsic" (three-dimensional) property of surfaces. Considt
the point-projection imaging geometry of Fig. 2.2, with the viewpoint at infinity
(far from the scene relative to the scene dimensions). The image projection is th
orthographic, nor perspective.

The surface gradient is defined for a surface expressed as —z = fix, y). T
gradient is a vector (p, q), where

P =%y~ (3.36)
oX
_ dt2)
= gy
Any plane in the image (such as the face plane of a polyhedral face) may
expressed in terms of its gradient. The general plane equation is

AXx +By +Cz+D =0 (3.37)
Thus

_*_§*+!>+f 83

and from (3.36) the gradient may be related to the plane equation:
-z =px +qy +K (3.39)

Gradient space is thus the two-dimensional spa¢p, ef) vectors. The p and
g axes are often considered to be superimposed on the x and y image plane cor
inate axes. Then the (p, g) vector is "in the direction" of the surface slant of im
aged surfaces. Any plane perpendicular to the viewing direction has a (p, q) vect
of (0,0). Vectors on the g (ory) axis correspond to planes tilted aboxtattig in
an "upward" or "downward" ("jward") direction (like the tilt afiressing table
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mirror). The direction arctan iqlp) is the direction of fastest change of surfac
depth (—2) as x and y change? # ¢f)™? is the rate of this change. For instance, a
vertical plane "edge on" to the viewer has a (p, q) 66(0).

The reflectance maR (p, q) represents this variation of perceived brightnes
with surface orientation. Rip, Q) gives scene radiance (Section 2.2.3) as a funct
of surface gradient (in our usual viewer-centered coordinate system). (Figure 3
showed the situation and defined some important angles.) Rip, q) is usua
shown as contours of constant scene radiance (Fig. 3.28). The following are a-
useful cases.

In the case of a Lambertian surface with the source in the direction of tt
viewer (/ = e), the gradient space image looks like Fig. 3.28. Remember tr
Lambertian surfaces have constant intensity for constant illumination angle; the
constant angles occur on the concentric circldsigf3.28, since the direction of
tilt does not affect the magnitude of the angle. The brightest surfaces are thc
illuminated from a normal direction—they are facing the viewer and so thei
gradients are (0,0).

Working this out from first principles, the incident angle and emittance ang!
are the same in this case, since the light is near the viewer. Both are the angle
ween the surface normal and the view vector. Looking at the x—y plane mean
vector to the light source of (0,851), and at a gradient point ip, q), the surface
normal is ip, g—1). Also,

R = r,cost (3.40)

Fig. 3.28 Contours of constant radiance in gradient space for Lambertian sur-
faces;single light source near the viewpoint.
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where g is a proportionality constant, and we conventionally use R to denote re
diance in a viewer-centered frame. Letamd n be unit vectors in the source and
surface normal directions. Since cos / znn

— ro
R (+p?  + B (3.41)
Thus cos (/) determines the image brightness, and so a plot of it is the gradie
space image (Figs. 3.29 and 3.30).
For a more general light position, the mathematics is the same; if the ligr
source is in the @ g, —1) direction, take the dot product of this direction and
the surface normal.

R = rgn-ng (3.42)
Or, in other words,

ro(psP + Qs Q + 1)
[(+p? +a) L+ ¢+ )\
The phase angle g is constant throughout gradient space with orthographic proje
tion (viewer distant from scene) and light source distant from scene.

Setting R constant to obtain contour lines gives a second-order equatiol
producing conic sections. In fact, the contours are produced by a set of cones
varying angles, whose axis is in the direction of the light source, intersecting
plane at unit distance from the origin. The resulting contours appear in Fig. 3.2
Here the dark line is the terminator, and represents all those planes that are ed

R =

Fig. 3.29 Contours of constant radiance in gradient space. Lambertian surfaces;
light not near viewpoint.
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on to the light source; gradients on the back side of the terminator repsefent
shadowed surfaces (facing away from the light). One intensity determines a cc
tour and so gives a cone whose tangent planes all have that emittance. For a sul
with specularity, contours of constant /(/, e, g) could appear as in Fig. 3.30.

The point of specularity is between the matte component maximum brigh
ness gradient and the origin. The brightest matte surface normal points at the li
source and the origin points at the viewer. Pure specular reflection can occur if t
vector tilts halfway toward the viewer maintaining the direction of tilt. Thus its
gradient is on a line between the origin and the light-source direction gradient p
int.

3.5.3 Photometric Stereo

The reflectance equation (3.42) constrains the possible surface orientation tc
locus on the reflectance map. Multiple light-source positions can determine tt
orientation uniquely [Woodham 1978]. Each separate light position gives a sef
rate value for the intensity (proportional to radiance) at each point fix). If th
surface reflectance, lis unknown, three equations are needed to determine th
reflectance together with the unit normal #. If each source position vector

denoted by p h = 1,...,3, the following equations result:

40c, V) = ro(ne-n), k=1 ..,3 (3.43)
where / is normalized intensity. In matrix form
I = roNn (3.44)

Fig. 3.30 Contours of constant radiance for a specular/matte surface.
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where

1= ['I(XvY)JZ(X:Y),h{X,yW,
and
"n "12 "13
N= «w1 "2 "23 (3.45)
"31 32 "33

and | = fc where cis the appropriate normalization constastisihot known, it
can be regarded as being partrgfwithout affecting the normal direction calcula-
tion. As long as the three source posititvisn,, n; are not coplanar, the matrix
JVwill have an inverse. Then solve fegrand n by using (3.44), first using the fact
that n is a unit vector to derive

ro = W~N\ (3.46)
and then solving for n to obtain

n=—N-I (347)
fo

Examples ofa particular solution are shown in Fig. 3.31. Of course, a prerequisite
for using this method is that the surface point not be in shadows for any of th
sources.

R (p.q)=0.723

Fig. 3.31 A particular solution for
photometric stereo.

3.5.4 Shape from Shading by Relaxation

Combining local information allows improved estimates for edges (Section 3.3.5)
and for disparity (Section 3.4.2). In a similar manner local information can help in
computing surface orientation [Ikeuchi 1980]. Basically, the reflectance equatior
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provides one constraint on the surface orientation and another is provided by tt
heuristic requirement that the surface be smooth.

Suppose there is an estimate of the surface normal at a point (p(x, Y
q(x, y)). If the normal is not accurate, the reflectivity equation I(x, y) = Rip, Q)
will not hold. Thus it seems reasonable to seek p and g that minimize R
The other requirement is that p(x, y) and qix, y) be smooth, and this can b
measured by their LaplaciangpV and Vg. For a smooth curve both of these
terms should be small. The goal is to minimize the error at a point,

Eix, y) - Uix, Y)-R ip, af) + K[(V?p)® + (V)] (3.48)
where the Lagrange multiplier k [Russell 1976] incorporates the smoothness col

straint. Differentiating Eix, y) with respect to p and g and approximating deriva-
tives numerically gives the following equations for pix, y) ars, ¢y):

pXx, y) =PavUy) + T(x, y, p, Q)*- (3.49)
oq
ax, y) =audx y) + T, y, p, g)~r~ (3.50)
oq
where

T(X‘ Y, P, q) = (l/X)[/OC, y) _Rip‘ q))
using
PaiXy)-  jlpix  + 1,y) +pix- \y) +pixy + 1) +pixy - 1)] (3.51)

and a similar expression fog,q Now Egs. (3.49) and (3.50) lend themselves to
solution by the Gauss-Seidel method: calculate the left-hand sides with an est
mate for p and g and use them to derive a new estimate for the right-hand side
More formally,

Algorithm 3.3: Shape from Shading [Ikeuchi 1980].

Step 0. k = 0. Pick an initial p°®ix, y) and g°ix, y) near boundaries.
Stepl. k= k+ 1, compute

PP$?  +  TA-
dp

Step 2. If the sum of all the E's is sufficiently small, stop. Else, go to step 1.
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A loose end in this algorithm is that boundary conditions must be specified. Thes
are values of />and determined a priori that remain constant throughout each ite-
ration. The simplest place to specify a surface gradient is at an occluding conto
(see Fig. 3.32) where the gradient is nearly 90° to the line of sight. Unfortunately,
and q are infinite at these points. Ikeuchi's elegant solution to this is to use
different coordinate system for gradient space, that of a Gaussian sphe
(Appendix 1). In this system, the surface normal is described relative to where
intersects the sphere if the tail of the normal is at the sphere's origin. This is tf
point at which a plane perpendicular to the normal would touch the sphere if trar
slated toward it (Fig. 3.32b).

In this system the radiance may be described in terms of the spherical coc
dinates 9,<f>. For a Lambertian surface

R (9,<f>) = cos 9 cosO+ sin 9 sin 9 cos(<E - <f>) (3.52)

At an occluding contourf> —ir/2 and 9 is given by tah (By | 9x), where the
derivatives are calculated at the occluding contour (Fig. 3.32c).

@

(b) ©

Fig. 3.32 (a) Occluding contour, (b) Gaussian sphere, (c) Calculating O from
occluding contour.

Sec. 3.5 Surface Orientation from Reflectance Models 101

Page 119 of 539



To use the (0, <¥ formulation instead of the ip, q) formulation is an easy
matter. Simply substitut@ for p and<f> for qin all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICAL FLOW

102

Much of the work on computer analysis of visual motion assumes a stationary ob
server and a stationary background. In contrast, biological systems typically mow
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smoott
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs ca
mirror the continuous flow of the imaged world across the retina. Such continuous
information is callecbpticalflow.Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional "retinal velocity" at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete image
Methods of using optical flow to compute the observer's motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are
given in Chapter 7.

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function fix, y, t) in a Taylor series.

fix +dx,y +dy, t+dt) = (3.53)

fix,y,t) + ’;g(x + ’;g)/ + "aflg[jt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time t + dtis
the result of the original image at time / being moved translationally by dx and dy,
then in fact

fix +dx,y +dy, t+dt) =fix, y, t) (3.54)
Consequently, fromEgs. (3.53) and (3.54),

_BE - j9r dx 9/ dy_
dt dx dt By dt '

=3
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Now -e% -r% and -*- are all measurable quantities —ﬁdand -7- are estimates
at’” ox q ' dt

oy
of what we are looking for—the velocity in the x and ~directions. Writing
dx
dt = % dt
gives
M-M - 3.56
at & T oBy (359
or equivalently,
m if-v,. (357)

where V/is the spatial gradient of the image and u = (w, v) the velocity.

The implications of (3.57) are interesting. Consider a fixed camera with a
scene moving past it. The equations say thatitherate of change in intensity of a
point in the image is (to first order) explained as $patialrate of change in the
intensity of the scene multiplied by thvelocitythat points of the scene move past
the camera.

This equation also indicates that the velocity (u, v) must lie on a line
perpendicular to the vector,,(ff,) where §{ and§{ are the partial derivatives with
respect to x and y, respectively (Fig. 3.33). In fact, if the partial derivatives are very
accurate the magnitude component of the velocity in the directior)(fis (from
3.57):

At
[(fx2 +/?)]*

3.6.2 Calculating Optical Flow by Relaxation

Equation (3.57) constrains the velocity but does not determine it uniquely. The
development of Section 3.5.4 motivates the search for a solution that satisfies Et

Fig. 333 Relation betwedn, \) and
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(3.57) as closely as possible and also is locally smooth [Horn and Schunck 19¢€
In this case as well, the Laplacians of the two velocity componeﬁnsar\d Vv,
can measure local smoothness.

Again using the method of Lagrange multipliers, minimize the flow error

Ex y) = (hu +fv +1f,)2+ X?[(VZa) + (V)] (3.58)
Differentiating this equation with respect to u and v provides equations for th

change in error with respect to u and v, which must be zero for a minimun
Writing VAvasw — u,, and\Vfvasv — v,,, these equations are

CC+ A u +fhyv = KUy - T (3.59)
ffu  + O+ fliv = XA - i (3.60)
These equations may be solvedd@ndy, yielding
—w . P_
U=War/, 5 (3.61)
- P
VE Varfy (3.62)

where
P = A«av +fyVe + /,
D-=x*+L2+f?

To turn this into an iterative equation for solvingxuy) and vGc,y), again use
the Gauss-Seidel method.

Algorithm 3.4:  Optical Flow [Horn and Schunck 1980].

k =0.
Initialize all I andv* to zero.
Until some error measure is satisfied, do

Uk: W' fx—
VA AVERY M

As Horn and Schunck demonstrate, this method derives the flow for two tim
frames, but it can be improved by using several time frames and using the final si
ution after one iteration at one time for the initial solution at the following time
frame. Thatis:
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Algorithm 3.5:  Multiframe Optical Flow.
t=0.
Initialize all u(x, y, 0),v (x, y, O)
for t= 1 until maxframesdo
p
uix,y,t) =wy y,t-1) - f—

p
VXY, 1) = VaGey, t- 1) - f—

The resultof using synthetic data frorarotating checkered sphere are shawn
Fig. 3.34.

@

(b) ()

Fig. 3.34 Optical flow results(a), (b) and (cyre three frames frortherotating
sphere,(d) isthe derived three-dimensional flow after 32 such time frames.
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3.7 RESOLUTION PYRAMIDS

106

What is the best spatial resolution for an image? The sampling theorem states
the maximum spatial frequency in the image data must be less than half the s
pling frequency in order that the sampled image represent the original unambig
ously. However, the sampling theorem is not a good predictor of how easily obje
can be recognized by computer programs. Often objects can be more easily re
nized in images that have a very low sampling rate. There are two reasons for t
First, the computations are fewer because of the reduction in dimensionality. ¢
cond, confusing detail present in the high-resolution versions of the images r
not appear at the reduced resolution. But even though some objects are more e
found at low resolutions, usually an object description needs detail only revealec
the higher resolutions. This leads naturally to the noticepgfamidal image data
structure in which the search for objects is begun at a low resolution, and refinec
ever-increasing resolutions until one reaches the highest resolution of intere
Figure 3.35 shows the correspondence between pixels for the pyramidal structu

In the next three sections, pyramids are applied to gray-level images and et
images. Pyramids, however, are a very general tool and can be used to repre
any image at varying levels of detail.

3.7.1 Gray-level Consolidation

In some applications, redigitizing the image with a different sampling rate is a we
to reduce the number sbmplesHowever, most digitizer parameters are difficult

to change, so that often computational means of reduction are needed.
straightforward method is to partition the digitized image into nonoverlapping
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neighborhoods of equal size and shape and to replace each of those neighborhoor

by the average pixel densities in that neighborhood. This operatimmsslidation.

For an/? x fineighborhood, consolidation is equivalent to averaging the original

image over the neighborhood followed by sampling at intervals n units apart.
Consolidation tends to offset the aliasing that would be introduced by sam-

pling the sensed data at a reduced rate. This is due to the effects of the averagir

step in the consolidation process. For the one-dimensional case where

fix) =j[f(x) +fix +*)] (3.63)

the corresponding Fourier transform [Steiglitz 1974] is

(3.64)

which has magnitudeH(u)\ = cos[TT(u/ w)] and phase —TT(U# The sampling
frequency ¥ = LA where A is the spacing between samples. Thus the averaging
step has the effect of attenuating the higher frequencies of F{u) as shown in Fig.
3.36. Since the higher frequencies are involved in aliasing, attenuating these fre-
quencies reduces the aliasing effects.

3.7.2 Pyramidal Structures in Correlation
With correlation matching, the use of multiple resolution techniques can some-

times provide significant functional and computational advantages [Moravec
1977]. Binary search correlation uses pyramids of the input image and reference

F(u) THU) |

Fig. 3.36 Consolidation effects viewed in the spatial frequency domain, (a) Original
transform, (b) Transform of averaging operator, (c) Transform of averaged image.
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patterns. The algorithm partakes of the computational efficiency of binary (as o
posed to linear) search [Knuth 1973]. Further, the low-resolution correlatio
operations at high levels in the pyramid ensure that the earlier correlations are
gross image features rather than details.

In binary search correlation a feature to be located is at some unknown lo
tion in the input image. The reference version of the feature originates in anott
image, the reference image. The feature in the reference image is contained
window of n x « pixels. The task of the correlator is to find annxn window ir
the input image that best matches the reference image window containing 1
feature. The details of the correlation processes are given in the following alc
rithm.

Algorithm 3.6: Binary Search Correlation Control Algorithm

Definitions

OrigReference: an N x N image containing a feature centered at (Fea-
tureX, FeatureY).

Origlnput: anMx M array in which an instance of the Feature is
to be located. For simplicity, assume that it is at the
same resolution as OrigReference.

a window size; an n x n window in OrigReference is
large enough to contain the Feature.
Window: an n X «array containing a varying-resolution subim-
age of OrigReference centered on the Feature.
Input: a In x In array containing a varying-resolution subim-
age of Origlnput, centered on the best match for the
Feature.

Reference: atemporary array.

Algorithm

1. Input: = Consolidate Originpudy a factor of In/Mto  size In x In.

2. Reference := Consolidate OrigReference by the same factor 2n/M to si
2nN/Mx  2nN/M. This consolidation takes the Feature to a new (Featured
Feature Y).

3. Window := n x n window from Reference centered on the new (Featured
Feature Y).

4. Calculate the match metric of the window at the (n %Idations in Input at
which it is wholly contained. Say that the best match occurs at (BestMatch:
BestMatchY) in Input.

108 Ch. 3 Early Processing

Page 126 of 539



.37

5. Input := nx nwindow from Input centered at (BestMatchX, BestMatchlO,
enlarged by a factor &

6. Reference := Reference enlarged by a fact@r This takes Feature to a new
(Feature*, Feature Y).

7. Go to3.

Through time, the algorithm uses a reference image for matching that is a
ways centered on the feature to be matched, but that homes in on the feature
being increased in resolution and thus reduced in linear image coverage by a fac
of 2 each time. In the input image, a similar homing-in is going on, but the searc
area is usually twice the linear dimension of the reference window. Further, th
center of the search area varies in the input image as the improved resoluti
refines the point of best match.

Binary search correlation is for matching features with context. The templat
at low resolution possibly corresponds to much of the area around the featur
while the feature may be so small in the initial consolidated images as to be invis
ble. The coarse-to-fine strategy is perfect for such conditions, since it allows gros
features to be matched first and to guide the later high-resolution search for be
match. Such matching with context is less useful for locating several instasces o
shape dotted at random around an image.

3.7.3 Pyramidal Structures in Edge Detection

As an example of the use of pyramidal structures in processing, consider the use
such structures in edge detection. This application, after [Tanimoto and Pavlid
1975], uses two pyramids, one to store the image and another to store the ima
edgesThe idea of the algorithm is that a neighborhood in the low-resolution im-
age where the gray-level values are the same is taken to imply that in fact there
no gray-level change (edge) in the neighborhood. Of course, the low-resolutic
levels in the pyramid tend to blur the image and thus attenuate the gray-lev
changes that denote edges. Thus the starting level in the pyramid must be pick
judiciously to ensure that the important edges are detected.

Algorithm 3.7: Hierarchical Edge Detection

recursive procedure refine (k, x,y)
begin
ifk < MaxLevel then
for dx = Ountil 1 do
for dy= 0 until 1 do
//IEdgeOp (k, x +dx,y + dy) > Threshold (x)
thenrefine (k + |,x + dx,y +dy)
end;

Resolution Pyramids

Page 127 of 539



110

Page 128 of 539

Fig. 3.37 Pyramidal edge detection.
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procedure FindEdges:
begin
comment apply operator to every pixel in the
starting level s, refining where necessary;
forx:=0 until2> 1do
fory=" Ountil2?~ 1do
//IEdgeOp (s,x,y) > Threshold (s)
then refine  (s.x,y);
end;

Figure 3.37 shows Tanimoto's results for a chromosome image. The table inst
shows the computational advantage in terms of the calls to the edge operator as
function of the starting level s.

Similar kinds of edge detection strategies based on pyramids have bee
pursued by [Levine 1978; Hanson and Riseman 1978]. The latter effort is a little
different in that processing within the pyramid is bidirectional; information from
edges detected at a high-resolution level is projected to low-resolution levels of th
pyramid.

EXERCISES

3.1 Derive an analytical expression for the response of the Sobel operator to a vertic
step edge as a function of the distance of the edge to the center of the operator.

3.2 Use the formulas @fgs. (3.31) to derive the digital template function for g\ in°a 5
pixel domain.

3.3 Specify a version of Algorithm 3.1 that uses the gradient edge operator instead of tt
"crack" edge operator.

3.4 In photometric stereo, three or more light source positions are used to determine
surface orientation. The dual of this problem uses surface orientations to determin
light source position. What is the usefulness of the latter formulation? In particular,
how does it relate to Algorithm 3.3?

3.5 Using any one of Algorithms 3.1 through 3.4 as an example, show how it could b
modified to use pyramidal data structures.

3.6 Write a reflectance function to capture the "grazing incidence" phenomenon-
surfaces become more mirror-like at small angles of incidence (and reflectance).

3.7 Equations 3.49 and 3.50 were derived by minimizing the local error. Show how thes
equations are modified when total error [i.e., £ E(X, y)] is minimized.

Xy
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The idea of segmentation has its roots in work by the Gestalt psychologists (e.
Kohler), who studied the preferences exhibited by human beings in grouping ¢
organizing sets of shapes arranged in the visual field. Gestalt principles dictate ct
tain grouping preferences based on features such as proximity, similarity, and ca
tinuity. Other results had to do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories to post-
Gestaltists such as Gibson and Gregory, who emphasize that these groupi
mechanisms organize the scene into meaningful units that are a significant st
toward image understanding.

In computer vision, grouping parts @feneralized image into units that are
homogeneous with respect to one or more characteristics (or features) results i
segmente@nage. The segmented image extends the generalized image in a cruc
respect: it contains the beginnings of domain-dependent interpretation. At thi
descriptive level the internal domain-dependent models of objects begin t
influence the grouping of generalized image structures into units meaningful in th
domain. For instance, the model may supply crucial parameters to segmentati
procedures.

In the segmentation process there are two important aspects to consider: ¢
is the data structure used to keep track of homogeneous groups of features;
other is the transformation involved in computing the features.

Two basic sorts of segments are natural: boundaries and regions. These ¢
be used combined into a single descriptive structure, a set of nodes (one f
region), connected by arcs representing the "adjacency" relation. The "dual” «
this structure has arcs corresponding to boundaries connecting nodes represent
points where several regions meet. Chapters 4 and 5 describe segmentation w
respect to boundaries and regions respectively, emphasizing gray levels and gr:
level differences as indicators of segments. Of course, from the standpoint of tt

Part Il Segmented Images
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algorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps representing motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each he
several computationally difficult aspects, and neither has received the attention
given static, nontextured images. However, each is very important in the segmen
tation enterprise.
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Boundary
Detection 4

4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objects are perhaps the most important part of the hierasttucof
tures that links raw image data with their interpretation [Marr 1975]. Chapter 2
described how various operators applied to raw image data can yield primitive edc
elements. However, an image of only disconnected edge elements is relative
featureless; additional processing must be done to group edge elements into stri
tures better suited to the process of interpretation. The goal of the techniques
this chapter is to perform a level ®gmentationthat is, to make a coherent one-
dimensional(edge)feature from many individual local edge elements. The feature
could correspond to an object boundary or to any meaningful boundary betwee
scene entities. The problems that edge-based segmentation algorithms have
contend with are shown by Fig. 4.1, which is an image of the local edge elemen
yielded by one common edge operator applied to a chest radiograph. As can
seen, the edge elements often exist where no meaningful scene boundary do
and conversely often are absent where a boundary is. For example, consider t
boundaries of ribs as revealed by the edge elements. Missing edge elements ¢
extra edge elements both tend to frustrate the segmentation process.

The methods in this chapter are ordered according to the amount ¢
knowledge incorporated into the grouping operation that maps edge elements in
boundaries. "Knowledge" means implicit or explicit constraints on the likelihood
of a given grouping. Such constraints may arise from general physical argumen
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. If there is much knowledge, this implies the
the global form of the boundary and its relation to other image structures is ver
constrained. Little prior knowledge means that the segmentation must procee
more on the basis of local clues and evidence and general (domain-dependent)
sumptions with fewer expectations and constraints on the final resulting boundary

119
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Fig. 4.1 Edge elements achest
radiograph.

These constraints take many forms. Knowledge of where to expect a boul
dary allows very restricted searches to verify the edge. In many such cases, t
domain knowledge determines the type of curve (its parameterization or func
tional form) as well as the relevant "noise processes." In images of polyhedr:
only straight-edged boundaries are meaningful, and they will come together i
various sorts of vertices arising from corners, shadowsmfers,and occlusions.
Human rib boundaries appear approximately like conic sections in chest radic
graphs, and radiographs have complex edge structures that can compete with
edges.All this specific knowledge can and should guide our choice of grouping
method.

If less is known about the specific image content, one may have to fall bac
on general world knowledge or heuristics that are true for most domains. For ir
stance, in the absence of evidence to the contrary, the shorter line between t
points might be selected over a longer line. This sort of general principle is easil
built into evaluation functions for boundaries, and used in segmentation algc
rithms that proceed by methodically searching for such groupings. If there are na
priori restrictions on boundary shapes, a general contour-extraction method
called for, such as edge following or linking of edge elements.

The methods we shall examine are the following:

1. Searching neaanapproximateocation. These are methods for refining a boun
dary given an initial estimate.

2. The Houghtransform.This elegant and versatile technique appears in variot
guises throughout computer vision. In this chapter it is used to detect bour
daries whose shape can be described in an analytical or tabular form.

3. Graphsearching.This method represents the image of edge elements as
graph. Thus a boundary is a path through a graph. Like the Hough transforn
these techniques are quite generally applicable.

Ch.4 Boundary Detection
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4. Dynamicprogramming.This method is also very general. It uses a mathemat
cal formulation of the globally best boundary and can find boundaries in noisy
images.

5. Contourfollowing. This hill-climbing technique works best with good image
data.

4.2 SEARCHING NEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been determined
somehow, it may be used to guide the effort to refine that boundary [Kelly 1971].
The approximate location may have been found by one of the techniques below a
plied to a lower resolution image, or it may have been determined using high-leve
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 1977] (see Fig. 4.2). Local searches are carrie
out at regular intervals along directions perpendicular to the approximate (a priori,
boundary. An edge operator is applied to each of the discrete points along each
these perpendicular directions. For each such direction, the edge with the highe
magnitude is selected from among those whose orientations are nearly parallel -
the tangent at the point on the nearby a priori boundary. If sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degre
polynomial, and this curve becomes the representation of the boundary.

Fig. 4.2 Search orientations from an
approximate boundary location.

4.2.2 Non-linear Correlation in Edge Space

In this correlation-like technique, the a priori boundary is treated as a rigid tem-
plate, or piece of rigid wire along which edge operators are attached like beads. Tt
a priori representation thus also contains relative locations at which the existenc
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operatc
application "matches" the a priori boundary if its contour is tangent to the tem-
plate and its magnitude exceeds some threshold. The template is to be move
around the image, and for each location, the number of matches is computed.
the number of matches exceeds a threshold, the boundary location is declared
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Fig. 4.3 Atemplate for edge-operator
application.

be the current template location. If not, the template is moved to a different imag
point and the process is repeated. Either the boundary will be located or there w
eventually be no more image points to try.

4.2.3 Divide-and-Conquer Boundary Detection

This is a technique that is useful in the case that a low-curvature boundary

known to exist between two edge elements and the noise levels in the image ¢
low (Algorithm 8.1). In this case, to find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points
The point of maximum magnitude (if it is over some threshold) becomes a brea
point on the boundary and the technique is applied recursively to the two line se(
ments formed between the three known boundary points. (Some fix must be a|
plied if the maximum is not unique.) Figure 4.4 shows one step in this process
Divide-and-conquer boundary detection has been used to outline kidney bour
daries on computed tomograms (these images were described in Section 2.3,
[Selfridgeetal. 1979].

Fig. 4.4 Divide and conquer technique.
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(b)

Fig. 4.5 Aline (a) in image space; (b) in parameter space.
4.3 THE HOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is know
about the location of a boundary, but its shape can be described as a parame
curve (e.g., a straight line or conic). Its main advantages are that it is relative
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem c
detecting straight lines in images. Assume that by some process image points h
been selected that have a high likelihood of being on linear boundaries. The Hou
technique organizes these points into straight lines, basically by considering
possible straight lines at once and rating each on how well it explains the data.

Consider the point X' in Fig. 4.5a, and the equation for a liney = mx + «
What are the lines that could pass through x'? The answer is simply all the lin
with mandc satisfyingy'= mx'+ c. Regarding (x\ y') as fixed, the last equation is
that of a line inm—cspacepr parameter space. Repeating this reasoning, a secor
point (x", y") will also have an associated line in parameter space and, furthe
more, these lines will intersect at the point im', ¢') which corresponds to the lin
AB connecting these points. In fact, all points on the line AB will yield lines ir
parameter space which intersatthe point im', ¢'), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the foll
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm

1. Quantize parameter space between appropriate maximum and minimu
values forcand m.

2. Form an accumulator array(8, m) whose elements are initially zero.

3. For each point (x,y) in gradientimage such that the strength of the gradient
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exceeds some threshold, increment all points in the accumulator array alot
the appropriate line, i.e.,

A(c,m):=Ac,m) +1
for m and c satisfying ¢ =—mx+ > within the limits of the digitization.

4. Local maxima in the accumulator array now correspond to collinear points ir
the image array. The values of the accumulator array provide a measure of tl
number of points on the line.

This techniqués generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, a better parameter
zation of the line is xsintf + ycosB r This produces a sinusoidal curve(in9)
space for fixed x, y, but otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward anc
this method works for any curve fix, a) = 0, where a is a parameter vector. (|
this chapter we often use the symbol /as various general functions unrelated to t
image gray-level function.) In the case of a circle parameterized by

(x-a¥+  (y-b)*=r? 4.2)

for fixed x, the modified algorithrd.lincrements values of a, b, rlying on the sur-
face ofacone. Unfortunately, the computation and the size of the accumulator ar
ray increase exponentially as the number of parameters, making this techniqt
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of a generalized matchet
filtering strategy (i.e., a template-matching paradigm). For instance, in the case (
a circle, imagine a template composed of a circle of Ts (at a fixed radius R) and C
everywhere else. If this template is convolved with the gradient image, the result |
the portion of the accumulator array A (a, b, R).

In its usual form, the technique yieldset of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., aline or par
bola). Thus, if a finite curve segment is desired, some further processing is nece:
sary to establish end points.

4.3.1 Use of the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradiel
direction is integrated into the algorithm [Kimme et al. 1975]. For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values a, b lying on the circle given by
(4.1) are incremented. With the gradient direction, only the points near (a,b) ir
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,b)
given by
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Sec. 4.3

- nn Contents of accumulator tray

Li 3 1. I
Gradient direction information for artifa&<t> =45
O Denotes a pixel in P(x) superimposed on
TR *rTIT accumulator tray

~e Denote the gradient direction

SMBE-

U 3ed-isirieH .-

[ N W I A
Fig 4.6 Reduction in computation with gradient information
a = X —rsin<g (4.2)
b =y + rcos<f>

where (f>(x) is the gradient angle returned by an edge operator. Implicit in thes
equations is the assumption thai; the circle is the boundaaylisk that has gray
levels greater than its surroundings. These equations may also be derived
differentiating (4.2), recognizing that dy/dx tan</>, and solving foaandb
between the resultant equation and (4.2). Similar methods can be applied to oth
conies. In each case, the use of the gradient saves one dimension in the accumi
tor array.

The gradient magnitude can also be used as a heuristic in the incrementir
procedure. Instead of incrementing by unity, the accumulator array location ma
be incremented by a function of the gradient magnitude. This heuristic can balanc
the magnitude of brightness change across a boundary with the boundary lengt
but it can lead to detection of phantom lines indicated by a few bright points, or tc
missing dim but coherent boundaries.

4.3.2 Some Examples

The Hough technique has been used successfully in a variety of domains. Some ¢
amples include the detection of human hemoglobin fingerprints [Badad
1975], the detection of tumors in chest films [Kimme et al. 1975], the detection of
storage tanks in aerial images [Lantz et al. 1978], and the detection of ribs in che
radiographs [Wechsler and Sklansky 1977]. Figure 4.7 shows the tumor-detectic
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius :
units. In Fig. 4.7c, the resultant accumulator arrajaf, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated
various radii and then a set of likely circles is chosen by setting a radius-depende
threshold for the accumulator array contents. This result is shown in Fig. 4.7d. Th
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© (C)]

Fig. 4.7 UsingtheHough techniqudor circular shapes,(a) Radiograph,(b) Window, (c)
Accumulator arrayfor r = 3. (d) Resultsof maxima detection.

circular boundaries detectday theHough technique are overla@h theoriginal
image.

4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Considertheexampleof detecting ellipses that are knowm beorientedso thata
principal axisis parallelto the xaxis. Thesecan bespecified by four parameters.
Using theequationfor the ellipse together with its derivative, and substitufiorg
the known gradient as before, one can sfivéwo parameters. In the equation
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(X-X0)2, Ny ™ g
a? o-
X is an edge point andyxyo, a, and b are parameters. The equation for its deriva
tive is
INN N\ /N\
| +0
a b dx
where dy/dx = tad> (x). The Hough algorithm becomes:

=0 @4

Algorithm 4.2: Hough technique applied to ellipses

For each discrete value of xand.y, increment the point in parameter space given
a, b, % Y. where
(4.5)

X= XQt (| 4 152/82tant<n

YV o PR

(4_6)

that is,
A(a, b, XQ, yo) == A (a, b, xQ yoy 1

For aandbeach having m values the computational cost is proportionafto m

Now suppose that we consider all pairwise combinations of edge element
This introduces two additional equations like (4.3) and (4.4), and now the four
parameter point can be determined exactly. That is, the following equations can
solved for a uniquegx yo, a, b.

Xl _X02 L A —
> B t 1 (4.73)
_ _ 2

(% azxof > (2 - Yo (4.7b)

N NyiZlE (4.7¢)
al B dx

AL £E1Z/1 %+ (4-7d)
a b dx

_Ji =tan0 ﬁ)f'( is known from the edge operator)
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Their solution is left as an exercise. The amount of effort in the former case
was proportional to the product of the number of discrete values of a and b,
whereas this case involves effort proportional to the square of the number of edg
elements.

4.3.4 Generalizing the Hough Transform

Consider the case where the object being sought has no simple analytic form, b
has a particular silhouette. Since the Hough technique is so closely related to ten
plate matching, and template matching can handle this case, it is not surprising thi
the Hough technique can be generalized to handle this case also. Suppose for t
moment that the object appears in the image with known shape, orientation, an
scale. (If orientation and scale are unknown, they can be handled in the same wx
that additional parameters were handled earlier.) Now pick a reference point in th
silhouette and draw aline to the boundary. At the boundary point compute the gra
dient direction and store the reference point as a function of this direction. Thus i
is possible to precompute the location of the reference point from boundary point:
given the gradient angle. The set of all such locations, indexed by gradient angle
comprises a table termed the i?-table [Ball®81].Remember that the basic stra-
tegy of the Hough technique is to compute the possible loci of reference points ir
parameter space from edge point data in image space and increment the parame
points in an accumulator array. Figure 4.8 shows the relevant geometry and Tabl
4.1 shows the form of the i?-table. For the moment, the reference point coordi-
nates (¥ Y. are the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (X, y) with gradient orientation O constrains the
possible reference points to be at {x +(¢¥>) cos [«i (<F)] y +1\(<f>) sin [a\ (<B)]}
and so on.

Fig. 4.8 Geometry used to form the
fl-Table.
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Table 4.1

INCREMENTATION IN THE GENERALIZED HOUGH CASE

Angle measured
from figure boundary Set of radii"[i where

to reference point r=( a
<pl 1/, t\ rj,
b rlil  ...,xI

if", " ..., rE

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make atable (like Table 4.1) for the shape to be located.

Step 1. Form an accumulator array of possible reference points
A (Xmm Xemax  Yemm -Yemay initialized to zero.

Step 2. For each edge point do the following:
Step2.1. Compute 0(x)

Step 2.2a. Calculate the possible centers; that is, for each table entry
<f>, compute

X=X +r<f> cos[a(0)]
Yo = y+r (f> sinia(</>)]
Step 2.2b. Increment the accumulator array
Al Y) =AY + 1
Step 3. Possible locations for the shape are given by maxima in array A.

The results of using this transform to detecthape are shown in Fig. 4.9.
Figure 4.9a shows an image of shapes. The R-table has been made for the m
shape. Figure 4.9b shows the Hough transform for the shape, that js,yA (x
displayed as arimage. Figure 4.9c shows the shape given by the maxima «

Sec. 4.3 The Hough Method for Curve Detection 129

Page 145 of 539



Fig. 4.9 Applying the Generalized Hough technique, (a) Synthetic image, (b) Hough
Transform A (x Y for middle shape, (c) Detected shape, (d) Same shape in an aerial
image setting.

A (%, Yo) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.

What about the parameters of scale and rotation, Sand 01 These are readi
accommodated by expanding the accumulator array and doing more work in the in
crementation step. Thus in stépghe accumulator array is changed to

m Xamie -*rmax .Vemin ¢ J'emax*”min ¢ *ymax> min « "max

and step 2.2a is changed to
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for each table entry forf> do
for each S and 9

x+ r(<j))Scos[a($) + 9]

y +r (0)Ssin[a b + 9]

X
Ve !

Finally, step 2.2b is now
Al Yo S, 9) = Al Yo, S, 9) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {«¢4 and arcs betweer
nodes <R «,->. In this section we consider graphs whose arcs may have numeri-
cal weights orcostsassociated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image six) and direction im&@gex). Now interpret the elements
of the direction image&f>(x) as nodes in a graph, each with a weighting factor s (x).
Nodes x Xjhave arcs between them if the contour directifrs(x,), < (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x, to x,-, Xj must be one of the three possi-
ble eight-neighbors in front of the contour directir(x,) and, furthermore, g (x

Fig. 4.10 Interpreting@gradient image asgraph (see text).
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> T,9(xj) > T,where Tis a chosen constant, |@®#l (x,) - <f> (xj)] mod 2TT}\ <
it12. (Any or all of these restrictions may be modified to suit the requirements o
particular problem.)

To generate a path in a graph from to % one can apply the well-known
technique of heuristic search [Nilsson 1971, 1980]. The specific use of heuris
search to follow edges in images was first proposed by [Mat@fR]. Suppose:

1. That the path should follow contours that are directed frono g

2. That we have a method for generating the successor nodes of a given r
(such as the heuristic described above)

3. That we have an evaluation function /(xj) which is an estimate of the optim
cost path from xto % constrained to go through X,

Nilsson expresses /(x,) as the sum of two components: g(x,-), the estimated
ofjourneying from thestart nodex, to %, and h (x,), the estimated cost of the patt
from x, to %, the goal node.

With the foregoing preliminaries, the heuristic search algorithm (called the
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. "Expand" the start node (put the successors on a list called OPEN w
pointers back to the start node).

2. Remove the node x, of minimum /from OPEN. If X, 5 %hen stop. Trace
back through pointers to find optimal path. If OPEN is empty, fail.

3. Else expand node x,, putting successors on OPEN with pointers back to x,.
to step 2.

The component h (x,) plays an important role in the performance of the algorith
if h (x,) = 0 for all /, the algorithnis a minimum-costearch aspposed to &euristic
search. If h(x,) > /13*(X,) (the actual optimal cost), the algorithm may run faste
but may miss the minimum-cost path. If B)(x /?*(x,), the search will always
produce a minimum-cost path, provided that h also satisfies the following co
sistency condition:

If for any two nodes;- andXj, k (-, X;-) is the minimum cost of getting from
Xj to Xj (if possible), then

k( Xj) > hHxJ - hHxj)
With our edge elements, there is no guarantee that a path can be found si
there may be insurmountable gaps between x" gndf finding the edge is cru-

cial, steps should be taken to interpolate edge elements prior to the search, or ¢
may be crossed by using the edge element definition of [Martelli 1972]. He defin
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edges on the image grid structure so that an edge can have a direction even thot
thereis no local gray-level change. This definition is depicted in4ibla.

4.4.1 Good Evaluation Functions

A good evaluation function has components specific to the particular task as well ¢
components that are relatively task-independent. The latter components are di
cussed here.

1. Edgestrength.If edge strength is a factor, the cost of adding a particular edg
element at x can be included as

M — six) where M— max 5(x)
X
2. Curvature.If low-curvature boundaries are desirable, curvature can be mea:
ured as some monotonically increasing function of
difftyix:) - <f>(Xj)]
where diff measures the angle between the edge elemejtarat x.

3. Proximity to anapproximation.If an approximate boundary is known, boun-
daries near this approximation can be favored by adding:

d = dist (x,B)

to the cost measure. The dist operator measures the minimum distance of tl
new point x to the approximate boundary B.

4. Estimateofthe distance to thgoal. If the curve is reasonably linear, points nea
the goal may be favored by estimating h as, df.a), Where dis a distance
measure.

Specific implementations of these measures appear in [Ashkar and Modestin
1978;Lester etal. 1978].

4.4.2 Finding All the Boundaries

What if the objective is to findll boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel's operator (Chapter 3) is used to obtai

K J . “
@ (b) ©

Fig. 4.11 Successor conventions in heuristic search (see text).
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strokes, another name for the magnitude and direction of the local gray-lew
changes. Then these strokes are combined by heuristic search to form sequer
of edge elements callexdireaks.Streaks are an intermediate organization which are
used to assure a slightly broader coherence than is provided by the individu
Hueckel edges. A bidirectional search is used with four eight-neighbors defined i
front of the edge and four eight-neighbors behind the edge, as showndri Hig.
The search algorithm is as follows:

1. Scan the stroke (edge) array for the most prominent edge.

2. Search in front of the edge until no more successors exista@ap,is encoun-
tered).

3. Search behind the edge until no more predecessors exist.

4. If the bidirectional search generates a patB @f more strokes, the path is a
streak. Store it in a streak list and go to step 1.

Strokes that are part of a streak cannot be reused; they are marked when u
and subsequently skipped.

There are other heuristic procedures for pruning the streaks to retain on
prime streaks.These are shown in Fig. 4.12. They are essentially similar to the i

S
/
/
S
i
\
4y

\ \
\ \

Fig. 4.12 Operations in the creation of prime streaks.
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Fig. 4.13 Ramer's results.

laxation operations described in Section 3.3.5. The resultant streaks must still
analyzed to determine the objects they represent. Nevertheless, this meth
represents a cogent attempt to organize bottom-up edge following in an image. F

4.13 shows an example of Ramer's technique.
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4.4.3 Alternatives to theA Algorithm

The primary disadvantage with the heuristic search method is that the algoritt
must keep track of a set of current best paths (nodes), and this set may bec
very large. These nodes represent tip nodes for the portion of the tree of poss
paths that has been already examined. Also, since all the costs are nonnegati
good path may eventually look expensive compared to tip nodes near the s
node. Thus, paths from these newer nodes will be extended by the algorithm e
though, from a practical standpoint, they are unlikely. Because of these disadv
tages,other less rigorous search procedures have proven to be more practical,
of which are described below.

Pruning the TreefAlternatives

At various points in the algorithm the tip nodes on the OPEN list can b
pruned in some way. For example, paths that are short or have a high cost per
length can be discriminated against. This pruning operation can be carried 1
whenever the number of alternative tip nodes exceeds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structurec
a tree. Depth-first search means always evaluating the most recent expanded
This type of search is performed if the OPEN list is structured as a stack in the
algorithm and the top node is always evaluated next. Modifications to this meth:
use an evaluation function / to rate the successor nodes and expand the be
these. Practical examples can be seen in [Ballard and Sklansky 1976; Wechsler
Sklansky 1977; Persoon 1976].

Least MaximunCost

In this elegant idea [Lester 1978], only the maximum-cost arc of each path
kept as an estimate gfThis is like finding a mountain pass at minimum altitude.
The advantage is that g does not build up continuously with depth in the sea
tree, so that good paths may be followed for a long time. This technique has be
applied to finding the boundaries of blood cells in optical microscope images. Sor
results are shown in Fig. 4.14.

Branchand Bound

The crux of this method is to have some upper bound on the cost of the pi
[Chien and FuL974].This may be known beforehand or may be computed by actt
ally generating a path between the desired end points. Also, the evaluation fu
tion must be monotonically increasing with the length of the path. With these co
ditions we start generating paths, excluding partial paths when they exceed
current bound.

ModifiedHeuristic Search

Sometimes an evaluation function that assigns negative costs leads to gt
results. Thus good paths keep getting better with respect to the evaluation fu
tion, avoiding the problem of having to look at all paths near the starting poin
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Fig. 4.14 Using least maximum cosh heuristic searchto find cell boundariesn micro-
scope images(a) A stagein thesearch procesgp) The completed boundary.

However, theprice paidis thesacrifice of the mathematical guaranteé finding
the least-cost path. This coulde reflected in unsatisfactory boundaries. This
method hasbeen usedn cineangiograms with satisfactory results [Ashéad
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 196Zhtechniquefor solving op-
timization problems whemot allvariablesin theevaluation function are interre-
lated simultaneously. Consider the problem

max hCxi, X, X3, Xs) (4.8)
If nothing is known abouf, the only technique that guaranteggobal maximum

is exhaustive enumeratioaf all combinationsof discrete value®f x\,... ,X.
Suppose that

hi-) = hi (xn X2) + ha (X2, X3) + /% G, X4) (4.9)

xi only depends on Xi ih\. Maximize overxi in hiand tabulate the best value of
hi (xj xp) for eachx,:

fi (%) = max hi 0% %) (4.10)
X\

Since the valuesf h, and A do not depend o nxthey need not be consideratl
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this point. Continue in this manner and eliminatdyxcomputingf Gg) as

fo (x) = maxl/j Gg) + h; {X3, %3)] (4.12)
and
I3 (xs) = max |h Gg) + /%Us, X4)] (4.12)
so that finally
max h = maxd (Xq) (4.13)

Generalizing the example to M variables, where/o 1),
lo_s (%) = max [f,_2 (jc, i) + 2,_1Cx, L x)] (4.14)

maxh (%, ... %) = max/®-, (*#)
%/ N

If eachX; took on 20 discrete values, then to compytéX.i) one must evaluate
the maximand for 20 different combinations gfand x+\, so that the resultant
computational effort involves (W= 1)2C° + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations «
hi

Consider the artificial example summarized in Table 4.2. In this example
each x can take on one of three discrete values.hTae completely described by
their respective tables. For example, the value of/?,(0, 1) = 5. The solution ste
are summarized in Tabke3.In step 1, for each,xhe value ok\ that maximizes
h\{x\, %) is computed. This is the largest entry in each of the columinsStdre
the function value as f\ {xand the optimizing value @& also as a function af;.
In step 2, add\(x)) to h(x;, %). This is done by adding f\ to each row gf h
thus computing the quantity inside the braces of (4.11). Now to complete step
for each ¥, compute the xthat maximizes h+ f\ by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward ol
these are understood. The solution is found by tracing back through the tables.
example, for x = 2 we see that the besf is —1, and therefore the best s 3 and
X\ is 1. This step is denoted by arrows.

Table 4.2

DEFINITION OF h

1 2 3 \ 3 -1 0 1 X 1 2 3
*2 0\

5 7 3 1 1 7 1 1 7 9 8

2 1 8 2 1 1 3 0 2 3 6

6 3 3 3 5 6 2 1 5 4 1
), h, hs
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Table 4.3

METHOD OF SOLUTION USING DYNAMIC PROGRAMMING

X2 u
1 6 2
Step 1
2 7 0

Step 2 O
2 8 8 14
.00

\y 1
\

\ X 4
1 2 3
X3
.000 -
Step 3
6 % w © 0-

1 15 14 11 21 -1

Step 4:  Optimal x/s are found by examing tables
(dashed line shows the order in which they
are recovered).

Solution:  h* =22
x*=1,xE =3,x! =-1,*4 =2
4.5.2 Dynamic Programming for Images
To formulate the boundary-following procedure as dynamic programming, one
must define an evaluation function that embodies a notion of the "best boundary'
[Montanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ay
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plied to a gray-level picture to produce edge magnitude and direction information
Then one possible criterion for a "good boundary" is a weighted sum of high cu
mulative edge strength and low cumulative curvature; that is, for an ~-segmer
curve,

n «—1
NXJ, ... X,) = ES(X*) + ochq( %) (4.16)
*=1 k=\
where the implicit constraint is that consecutiye xnust be grid neighbors:
[1%,-X,+1KV2 (4.17)
Ao %) - difff<f>(x 1), <f>(Xi)] (4.18)

where a is negative. The function g we take to be edge strength @35 (X).
Notice that this evaluation function is in the form of (4.9) and can be optimized in
stages:

lo(xi)=0 (4.19)

/i (X2) = max Ls(xi) + aq(x x2) + /o(x,)I (4.20)
a

Rl - maxds () + adte Xer) +aea(Xa)] (4-.21)

These equations can be put into the following steps:

Algorithm 4.5:  Dynamic Programming for Edge Finding

1. Set/t-1.

2. Consider only x such th&t(x) » T.For each of these x, define low-curvature
pixels "in front of" the contour direction.

3. Each of these pixels may have a curve emanating from it. For k = 1, the curv
is one pixel in length. Join the curve to x that optimizes the left-hand side ol
the recursion equation.

4. If k =N, pick the bestf\ and stop. Otherwise, set k = k +1 and go to step
2.

This algorithm can be generalized to the case of pickitgneemanating from x
(that we have already generated): Find the end of that curve, and join the best:
three curves emanating from the end of that curve. Figure 4.15 shows this proces
The equations for the general case are
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Fig. 4.15 DP optimization for boundary tracing.
/o (xj) = 0
T (%+\) = max[s(X) +aq(e (%))

)

+ 11-i(x*)] (4.22)

where the curve length n is related to a by a building sequence n (I) such that n
= 1, n(L) = N, and nil) - n{l\) is amember of {n(k\k =1, .., /- 1}
Also, t(x) is a function that extracts the tail pixel of the curve headedby x
Further details may be found in [Ballard 1976].

Results from the area of tumor detection in radiographs give a sense of tF
method's performance. Here it is known that the boundary inscribes an appro;
mately circular tumor, so that circular cues can be used to assist the search. In F
4.16, (a) shows the image containing the tumor, (b) shows the cues, and (c) sho
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo
parallel road finder of Barrow [Barrow 1976].

4.5.3 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the component$ g(x
and g (% %-\) in the evaluation function are very localized; the variables x for
successive sand gare in fact constrained to be grid neighbors. This need not be
case:The x can be very distant from each other without altering the basic tect
nigue. Furthermore, the functiomsand q need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. Th
general formulation of the problem for images was first described by [Fischler an
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Elschlager 1973]. The Fischler and Elschlager formulation models an object as
set of parts and relations between parts, represented as a graph. Template ft
tions,denoted by g(x), measure how well a part of the model matches a part of tt
image at the point x. (These local functions may be defined in any manner whats
ever.) "Relational functions," denoted hy (x, y), measure how well the posi-
tion of the match of the /cth part at (x) agrees with the position of the match of th
y'thpartat (y).

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries ar
modeled with a polygonal approximation defined by the five key points. These
points are the top of the lung, the two clavicle-lung junctions, and the two lowel
corners. To locate these points, local functiong)g@re defined which should be
maximized when the corresponding point ig correctly determined. Similarly,

g (% Xj) is a function relating points »and . In their case, Chien and Fu used
the following functions:
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T(\) = template centered at x computed as
an aggregate of a set of chest radiographs

— T(\- f(x)
gCk>=1L VfV[')R
X Iw11/1
and

9(% Xj) = expected angular orientation qf from x

q (& Xj) = Kx, X,)-arctan

X Xj
With this formulation no further modifications are necessary and the solution ma
be obtained by solving Egs. (4.19) through (4.21), as before. For purposes of cor
parison, this method was formalized using a lower-resolution objective function
Figure 4.17 shows Chien and Fu's results using this method with five templat
functions.

4.5.4 Theoretical Questions about Dynamic Programming

The Interaction Graph

This graph describes the interdependence of variables in the objective funi
tion. In the examples the interaction graph was simple: Each variable depended
only two others, resulting in the graph of Fig. 4.18a. A more complicated case i
the one in 4.18b, which describes an objective function of the following form:

h() = h\(xX\, ¥ + hy (%, Xi, X)) + h-t,Gg X3, %, %)
For these cases the dynamic programming technique still applies, but the compu
tional effort increases exponentially with the number of interdependencies. Fc
example, to eliminate;xn hy, all possible combinations of and % must be con-
sidered. To eliminatX3 in A3, all possible combinations of,xx, and xe, and so
forth.
Dynamic Programming versus Heuristic Search

It has been shown [Martelli 1976] that for finding a path in a graph betweer
two points, which is an abstraction of the work we are doing here, heuristic searc
methods can be more efficient than dynamic programming methods. However, tt
point to remember about dynamic programming is that it efficiently builds paths
from multiple starting points. If this is required by a particular task, then dynamic
programming would be the method of choice, unless a very powerful heuristi
were available.

4.6 CONTOUR FOLLOWING
If nothing is known about the boundary shape, but regions have been found in tt
image, the boundary is recovered by one of the simplest edge-following oper:
tions: "blob finding" in images. The ideas are easiest to present for binary image:
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(@ (b)
Fig. 4.17 Resultsof using local templates and global relatioa) Model, (b) Results.

Given abinary imagethegoal is find theboundariewf all distinct regionsn the
image.

This can beadone simplyby aprocedure that functions like Papert's turtle
[Papert1973;Duda and Hart 1973]:

1. Scan the image until aregion pixel is encountered.
2. [Ifitis aregion pixel, turn left anstep;else, turn right and step.
3. Terminate upon return to the starting pixel.

Figure 4.19 showshepath tracedut by theprocedure. This procedure requires
the regionto befour-connectedfor a consistent boundary. Partf an eight-
connected region can be missed. Also, some bookkeepiegessary to generate
an exact sequence of boundary pixels without duplications.

A slightly more elaborate algorithrdue to[Rosenfeld 1968] generatése
boundary pixels exactlyit works by first finding a four-connected background
pixel from aknown boundary pixel. The next boundary piiethefirst pixel en-
countered whertheeight neighborareexaminedin acounter clockwise order
from thebackground pixel. Many details hate beintroduced into algorithms
that follow contoursof irregular eight-connected figureé\ good expositiorof
theseis given in [Rosenfeld and Kak 1976].

4.6.1 Extension to Gray-Level Images

The main idea behind contour following tostart withapoint thatis believedto
be on theboundaryand tokeep extendingheboundaryby adding pointsan the
contour directions. The details of these operations vary fromtaetsisk. The gen-
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Fig. 4.18 Interaction graphs for DP (see text).

eralization of the contour follower to gray-level images uses local gradients with a
magnitude s (x) and directiot# (x) associated with each point x. 0 points in the
direction of maximum change. Xfis on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contout
directions,<f>(x) + ir/2, as shown by Fig. 4.20. A representative procedure it
adapted from [Martelli 1976]:

1. Assume that an edge has been detected up to a point x,. Move to thg point >
adjacent to x, in the direction perpendicular to the gradient of x,. Apply the
gradient operator to x/, if its magnitude is greater than (some) threshold, this
point is added to the edge.

2. Otherwise, compute the average gray level of the 3 x 3 array centered on X|
compare it with a suitably chosen threshold, and determine whether Xjis in-
side or outside the object.

3. Make another attempt with a point adjacent to x, in the direction perpendic-
ular to the gradient at x, plus or minus (7r/4), according to the outcome of the
previous test.

JUI

Fig. 4.19 Finding the boundary &
binary image.
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HTw

Local edge

Search  Fig. 4.20 Angular orientations for
N space contour following.

4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977; Herman and Liu 1978]. The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
methods described in Section 4.4. Higher-dimensional image spaces arise when tl
image has more than two spatial dimensions, is time-varying, or both. In these im
ages the notion of a gradient is the same (a vector describing the maximum gra
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele
ments are primitive surface elements, separating volumes of differing gray level
The objective of contour following is to link together neighboring surface elements
with high gradient modulus values and similar orientations into larger boundaries
In four dimensions, "edge elements" are primitive volumes; contour following
links neighboring volumes with similar gradients.

The contour following approach works well when there is little noise present
and no "spurious" boundaries. Unfortunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory; they are
easily thwarted by gaps in the data produced by noise, and readily follow spuriou
boundaries. The methods described earlier in this chapter attempt to overcom
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with "crack" edges such as those i
Fig. 3.12.

4.2 Describe a modification of Algorithm 4.2 to detect parabolae in gray-level images.

4.3 Suppose that a relation h(x\, X() is added to the model described by Fig. 4.18a
that now the interaction graph is cyclical. Show formally how this changes the optimi-
zation steps described Bygs.(4.11) through (4.13).

4.4 Show formally that the Hough technique without gradient direction information is
equivalent to template matching (Chapter 3).
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4.5 ExtendtheHough techniqueor ellipses describedy Eqgs. (4.7a) through (4.7dp
ellipses orientedat anarbitrary angle Gothe xaxis.

4.6 Show howto use the generalized Hough technigoeletect hexagons.
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Region
Growing 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level
that often correspond to object boundaries, interesting surface detail, and so o
The "dual" problem to finding edges around regions of differing gray level is to
find the regions themselves. The goal of region growing is to use image characteris
tics to map individual pixels in an input image to sets of pixels cedigibns. An
image region might correspond to a world object or a meaningful pameof

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary to obtain a region. There are
several reasons why both region growing and line finding survive as basic segmer
tation techniques despite their redundant-seeming nature. Although perfect re
gions and boundaries are interconvertible, the processing to find them initially
differs in character and applicability; besides, perfect edges or regions are not a
ways required for an application. Region-finding and line-finding techniques can
cooperate to produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, the
are considered to be connected two-dimensional areas. Whether regions can
disconnected, non-simply connected (have holes), should have smooth bour
daries, and so forth depends on the region-growing technique and the goals of tt
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disjoint regions. That is, regions have no two-dimensional overlaps, anc
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region—they may be allowed to overlap, the whole image may not
be partitioned, and so forth.

Our discussion of region growers will begin with the most simple kinds and
progress to the more complex. The most primitive region growers use only aggre
gates of properties of local groups of pixels to determine regions. More sophisti-

149
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cated techniques "grow" regions tmergingmore primitive regions. To do this in
a structured way requires sophisticated representations of the regions and bot
daries. Also, the merging decisions can be complex, and can depend on descript
of the boundary structure separating regions in addition to the region semantics.
good survey of early techniques is [Zucker 1976].

The techniques we consider are:

1. LocaltechniguesPixels are placed in a region on the basis of their properties
the properties of their close neighbors.

2. GlobaltechniquesPixels are grouped into regions on the basis of the properti
of large numbers of pixels distributed throughout the image.

3. Splitting and mergingechniquesThe foregoing techniques are related to indivi
dual pixels or sets gfixels.State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both local and glot
merging and splitting criteria can be used.

The effectiveness of region growing algorithms depends heavily on the appli
cation area and input image. If the image is sufficiently simple, say a dark blob on
light background, simple local techniques can be surprisingly effective. However
on very difficult scenes, such as outdoor scenes, even the most sophisticated te:
niques still may not produce a satisfactory segmentation. In this event, regio
growing is sometimes used conservatively to preprocess the image for mor
knowledgeable processes [Hanson and Riseman 1978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions R are considered to be sets of points with the following properties:

X, in aregion R is connectedXy iff there
is a sequence {x,,..x%} such that x*and x"+i (5.1)
are connected and all the points are in R.

Risa connecterkgion if the set of points x in R has the (5.2
property that every pair of points is connected.

m

/, the entire image— (J R (5.3)

RAR] =<I>, i (5.4)

A set of regions satisfying (5.2) through (5.4) is knowr partition. In seg-
mentation algorithms, each region often is a unique, homogeneous area. That
for some Boolean function H(R) that measures region homogeneity,

H(R) = true for all k (5.5)
H(Ri U Rj) = false for i*j (5.6)

Note that R, does not have to be connected. A weaker but still useful criterion i
that neighboring regions not be homogeneous.
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5.2 ALOCAL TECHNIQUE: BLOB COLORING

The counterpart to the edge tracker for binary images is the blob-coloring algc
rithm. Given a binary image containing four-connected blobs of I's on a back:
ground of O's, the objective is to "color each blob"; that is, assign each blob
different label. To do this, scan the image from left to right and top to bottom with
a special L-shaped template shown in Bid. The coloring algorithm is as follows.

Algorithm 5.1: Blob Coloring
Let the initial color, k = 1. Scan the image from left to right and top to bottom.

If/(x.) = Othen continue
else
begin

if fUu) = land/(x) =0)
then color (%) := color (x")

if(/"(x L) = land/(x</) =0)
then color (%) := color (X)

if(/(x.) = land/ks) = 1)

then begin
color (x;) := color (x)
color (x) is equivalent to color (xy)
end

comment: two colors are equivalent.

if(f(x.) = O0and/(x) = 0)
then color () := A ki = k +1

comment: new color
end
After one complete scan of the image the color equivalences can be used to ass

that each object has only one color. This binary image algorithm can be used as
simple region-grower for gray-level images with the following modificationis. af

Fig. 51 L-shaped template for blob
coloring.
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gray-level image/(x) is approximately equal to/(x”), assign %o the same re-
gion (blob) as xy . This is equivalent to the condition)(x /(xy) = 1in Al-
gorithm 5.1. The modifications to the steps in the algorithm are straightforward.

5.3 GLOBAL TECHNIQUES: REGION GROWING VIA THRESHOLDING

Number?
of
pixels

152

This approach assumes an object-background image and picks a threshold th
divides the image pixels into either object or background:

X is part of the Object iff/ (x) > T
Otherwise it is part of the Background

The best way to pick the threshold T\s to search the histogram of gray levels
assuming it is bimodal, and find the minimum separating the two peaks, as in Fig
5.2. Finding the right valley between the peaks of a histogram can be difficult wher
the histogram is not a smooth function. Smoothing the histogram can help bu
does not guarantee that the correct minimum can be found. An elegant method fc
treating bimodal images assumes that the histogram is the sum of two composit
normal functions and determines the valley location from the normal parameter:
[Chow and Kaneko 1972],

The single-threshold method is useful in simple situations, but primitive. For
example, the region pixels may not be connected, and further processing such
that described in Chapter 2 may be necessary to smooth region boundaries and |
move noise. A common problem with this technique occurs when the image has
background of varying gray level, or when collections we would like to call regions
vary smoothly in gray level by more than the threshold. Two modifications of the
threshold approach to ameliorate the difficulty are: (1) high-pass filter the image tc
deemphasize the low-frequency background variation and then try the origina
technique; and (2) use a spatially varying threshold method such as that of [Cho
and Kaneko 1972].

The Chow-Kaneko technique divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail to have
threshold if its gray-level histogram is not bimodal. Such subimages receive inter

Gray level
Fig. 5.2 Threshold determination
Threshold from gray-level histogram.
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Sec. 5.3

polated thresholds from neighboring subimages that are bimodal, and finally th
entire picture is thresholded by using the separate thresholds for each subimage.

5.3.1 Thresholding in Multidimensional Space

An interesting variation to the basic thresholding paradigm uses color images; tt
basic digital picture function is vector-valued with red, blue, and green com-
ponents. This vector is augmented with possibly nonlinear combinations of thes
values so that the augmented picture vector has a number of components. T
idea is to re-represent the color solid redundantly and hope to find color paramt
ters for which thresholding does the desired segmentation. One implementation
this idea used the red, green, and blue color components; the intensity, saturatic
and hue components; and the N.T.S.C. R ¢omponents (Chapter 2) [Ohlander
etal. 1979].

The idea of thresholding the components of a picture vector is used in a prirr
itive form for multispectral LANDS AT imagery [Robertsonaét1973].The novel
extension in this algorithm is the recursive application of this technique to nonrec
tangular subregions.

The region partitioning is then as follows:

Algorithm 5.2:  Region Growing via Recursive Splitting

1. Consider the entire image as a region and compute histograms for each of tl
picture vector components.

2. Apply a peak-finding test to each histogram. If at least one component passk
the test, pick the component with the most significant peak and determine twi
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds
divide the region into subregions.

3. Each subregion may have a "noisy" boundary, so the binary representation
the image achieved by thresholding is smoothed so that only a single cor
nected subregion remains. For binary smoothing see ch. 8 and [Rosenfeld ai
Kakl976].

4. Repeat steps 1 through 3 for each subregion until no new subregions a
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978]. Multiple regions are often in th
same histogram peak when a single measurement is used. The advantage of
multimeasurement histograms is that these different regions are often separat
into individual peaks, and hence the segmentation is improved. Figure 5.4 show
some results using a three-dimensional RGB color space.

The figure shows the clear separation of peaks in the three-dimensional histc
gram that is not evident in either of the one-dimensional histograms. How many
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27 SREDS 231 0 SGRFEN < 222 44 <BLUES 231

80 160 2«0 50 150 250 350 50 150 250
27<INTENSITY<228 OS HUE < 359 4< SATURATIONS 255

60 120 180 240 250 300 350 200 240 280 320 360
15 <Y < 226 243S 1 S 358 219 SOS 340

(b)

Fig. 5.3 Peak detection and threshold determination, (a) Original image, (b) Histograms, (c) Image segmen
resulting from first histogram peak.
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Fig. 5.3 (d) Final segments.

dimensions should be used? Obviously, there is a trade-off here: As the dime
sionality becomes larger, the discrimination improves, but the histograms ai
more expensive to compute and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow at
Eisenbeis 1973]. Region growing is applied to a coarse resolution image. When tl
algorithm has terminated at one resolution level, the pixels near the boundaries
regions are disassociated with their regions. The region-growing process is then
peated for just these pixels at a higher-resolution level. Figure 5.5 shows this strL
ture.

5.4 SPLITTING AND MERGING

Given a set of regiongRk= 1,...,m, alow-level segmentation might require the
basic properties described in Section 5.1 to hold. The important properties fror
the standpoint of segmentation are Egs. (5.5) and (5.6).

If Eq. (5.5) is not satisfied for some k, it means that that region is inhomo:
geneous and should be split into subregiongglf(5.6) is not satisfied for some /
andy, then regions /and y'are collectively homogeneous and should be merged ir
a single region.

In our previous discussions we used

true if all neighboring pairs of points
HR) = in R are such that fix)— /(y) < T (5.7)
false  otherwise

and
true if the points in R pass a
HR) = bimodality or peak test (5.8)
false otherwise
Sec. 5.4 Splitting and Merging 155
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Fig. 54 Multi-dimensional

histograms in segmentation, (a) Image.

(b) RGB histogram showing successive

planes through a 16 x 16216 color

space, (c) Segments. (See color inserts.) (c)
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Fig. 5.5 Hierarchical region refinement.

A way of working toward the satisfaction of these homogeneity criteria is the
split-and-merge algorithm [Horowitz and Pavlidis 1974]. To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions.
this grid structure, regions are organized into groups of four. Any region can b
split into four subregions (excegtegion consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property H. If for any region R in
that structure, H(R) = false, split that region into four subregions. If for any
four appropriate regionsR,..., Ra, HRx [J Re U R3 U ~4)= "
merge them into a single region. When no regions can be further split o
merged, stop.

2. If there are any neighboring regions R, and Rj (perhaps of different sizes) suc
that H(Rj \J Rj) = true, merge these regions.

5.4.1 State-Space Approach to Region Growing

The "classical" state-space approach of artificial intelligence [Nilsson 1971, 1980
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initia
two-dimensional image as a discrete state, where every sample point is a separ
region. Changes of state occur when a boundary between regions is either remou
or inserted. The problem then becomes one of searching allowable changes in st
to find the best partition.

Sec. 5.4 Splitting and Merging 157
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e + o + o + o +
+0+0+0+0 « Unassigned

A A . + Edge data Fig. 5.6 Grid structurefor region
+0+0+0+0 ) .

e 4+ e 4 e+ o + 0 Grey level data  representation [BreadFennema
+0+0+0+0 1970].

An important pariofthe state-space approaisithe useof data structureto
allow regionsandboundariesto bemanipulatedasunits. This moves away from
earlier techniques, which labeled each individual pixel accordiitg region. The
high-level data structures do away with this expensive practice by representing
gions with their boundaries and then keeping track of what happehese boun-
daries during split-and merge-operations.

5.4.2 Low-level Boundary Data Structures

A useful representatiofor boundaries allows the splitting and mergfgegions
to proceedn asimple manner [Brice and Fennema 1970]. This representation
troduces the notioof asupergridSto the image grids. These grids are shovim
Fig. 5.6, where « and + correspondto supergridand O to thesubgrid. The
representation is assumed to be four-connected X.& a neighbor of x2 if || x—
x2]|<1).

With this notation boundariesf regionsaredirected crack edges (see Sec.
3.1) at thepoints marked+. That is,if point x* is aneighborof x; and x is in a
different region than y insert two edges for the boundaries of the regions contain-
ing X and x atthe point4-separating them, such that each edge traverses its as
sociated regiorin acounterclockwise sense. This makes merge operations very
simple: To merge regiorlR andR, remove edgesfthe opposite sense frothe
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sense in nearby points, as shown in Fig. 5.7b.

The methodof [Brice and Fennema 1970] uses three crittaanergingre-
gions, reflecting a transition from local measurements global measurements.
These criteria use measures of boundary strebgtimd Wy defined as

sy = |[1<x,)-1(x,)] (5.9)
1 |fSr< < T}
Wi =0 otherwise

1
\Y

@
Fig. 5.7 Region operationsnthe grid structuref Fig. 5.6.
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(b)

Fig. 57 (cont.)

where x, and x- are assumed to be on either side of a crack edge (Chapter 3). Th
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (Tk = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x, and x, if
/5"7andWy = 1. When no more boundaries can be removed, go to step 2.

2. Remove the boundary betwe&nand Rj if

—r—T>T, (5.11)

mm [py Pj\
where W'\s the sum of th&/y on the common boundary between Rj and R
that have perimeter®, and pj respectively. When no more boundaries can be
removed, go to step 3.

3. Remove the boundary betweenaRd R; if
W > T, (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data structure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred to as units. An adjunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this facilitates the storing and indexing of their semantic
properties.

The scheme is based on a special graph callecetiien adjacencgraph, and
its "dual graph."” In the region adjacency graph, nodes are regions and arcs exist
between neighboring regions. This scheme is useful as a way of keeping teack of
gions,even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9).
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Consider the regions of an image shown in Fig. 5.8a. The region adjacenc
graph has a node in each region and an arc crossing each separate boundary ¢
ment. To allow a uniform treatment of these structures, define an atrtificial region
that surrounds the image. This node is shown in Fig. 5.8b. For regions on a plan
the region adjacency graph is planar (can lie in a plane with no arcs intersecting
and its edges are undirected. The "dual” of this graph is also of interest. To cor
stuct the dual of the adjacency graph, simply place nodes in each separate regi
and connect them with arcs wherever the regions are separated by an arc in the i
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is lik
the original region boundary map; in Fig. 5.8b each arc may be associated with
specific boundary segment and each node with ajunction between three or moi
boundary segments. By maintaining both the region adjacency graph and its due
one can merge regions using the following algorithm:

Algorithm 5.5:  Merging Using the Region-Adjacency Graph and Its Dual

Task: Merge neighboring regions R, and Rj.

Phase 1. Update the region-adjacency graph.

1. Place edges between Rj and all neighboring regions of Rj (excluding, of
course, Rj) that do not already have edges between themselves and R;.

2. Delete Rj and all its associated edges.

Phase?. Take care of the dual.

1. Delete the edges in the dual corresponding to the borders between Rj and Rj

2. For each of the nodes associated with these edges:

(@) if the resultant degree of the node is less than or equal to 2, delete th
node and join the two dangling edges into a single edge.

(b) otherwise, update the labels of the edges that were associated with
to reflect the new region label /.

Figure 5.9 shows these operations.

5.5 INCORPORATION OF SEMANTICS

160

Up to this point in our treatment of region growers, domain-dependent "seman-
tics" has not explicitly appeared. In other words, region-merging decisions were
based on raw image data and rather weak heuristics of general applicability abot
the likely shape of boundaries. As in early processing, the use of domain-
dependent knowledge can affect region finding. Possible interpretations of region:
can affect the splitting and merging process. For example, in an outdoor scene po:
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related to measurable region properties such as intensi
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Fig. 5.8 (a) An image partition, (b)
The region adjacency graph (solid lines).
(c) The dual of the adjacency graph
(solid lines).

and hue. An example shows how semantic labels for regions can guide the mergii
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977; Hanson and Riseman 1978].

Early steps in the Feldman-Yakimovsky region grower used essentially the
same steps as Brice-Fennema. Once regions attain significant size, semantic ¢

Fig. 5.9 Merging operations using the region adjacency graph and its dual, (a) Before
merging regions separated by dark boundary line, (b) After merging.
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teria are used. The region growing consists of four steps, as summed up in the f
lowing algorithm:

Algorithm 5.6  Semantic Region Growing

Nonsemantic Criteria
T\ and T are preset thresholds

1. Merge regions /,j as long as they have one weak separating edge until no tw
regions pass this test.

2. Merge regions /,j where S(i, j) <, Where

C\ + OLjj

S(@i) = &+ of

whereC\ and ¢ are constants,

(area,f? + (areay?

au = perimeter,- * perimeter,-

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 2.)

Semantic Criteria

3. Let Bjj be the boundary between R, and Rj. Evaluate each By with a Bayesia
decision function that measures the (conditional) probability thaeBarates
two regions R, and Rj of the sameerpretation.Merge /?, and Rj if this condi-
tional probability is less than some threshold. Repeat step 3 until no region
pass the threshold test.

4. Evaluate the interpretation of each region Rj with a Bayesian decision functior
that measures the (conditional) probability that an interpretation is the correc
one for that region. Assign the interpretation to the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors. Repeat the entire process until all re-
gions have interpretation assignments.

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-
tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition. A
expression for the evaluation function is (fogiven partition and interpretations X
andY):

max Il [P[B, is aboundary between X andl fheasurements on,JB
X Y ij ’ ' ’

x n {P[Rjisan X| measurements on /?,]}

x n [P[Rj isan YA measurements on Rjl}
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where P stands for probability afidis the product operator.

How are these terms to be computed? Ideally, each conditional probability
function should be known to a reasonable degree of accuracy; then the terms ci
be obtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and storage. An
approximation used in [Feldman and Yakimovsky 1974] is to quantize the mea-
surements and represent them in terms of a classification tree. The condition:
probabilities can then be computed from data at the leaves of the tree. Figure 5..
shows a hypothetical tree for the region measurements of intensity and hue, ar
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivalent tree for
two boundary measurements m and n and the same interpretations. These t
figures indicate that PL/?, isaCAR |0 < i< /,0< h g K , and P[B, divides
two car regions \M < m < My, N < n” N4 = . These trees were created
by laborious trials with correct segmentations of test images.

Now, finally, consider again step 3 of Algorithm 5.6. The probability that a
boundary By between regions R, and Rj is false is given by

where

Pj = MP[B,j is between two subregions MBy*s measurements]} (5.148)
X{P[Ri is X\meas]}x{P[R] isX|meas]}

P,= £ {PiBtjis between X and Ymeas]} (5.14b)

Xy
x {P[Rj is J | meas [}X{P[Rj is r|meas]}

Fig. 5.10 Hypothetical classification tree for region measurements showing a
particular branch for specific ranges of intensity and hue.
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Fig. 511 Hypothetical classification
tree for boundary measurements
showinga specific branch for specific
rangesof two measurements Avand n.

And for step 4 of the algorithm,
_P[R, is XI |meas]

Confidence, "P[Ri is X2|meas]

(5.15)
where X\, XlI are the first and second most likely interpretations, respectively.
After the region is assigned interpretation Xl, the neighbors are updated using

P[R, is X |meas]\=Prob [Rj is X | meas] (5.16)

x P[Bjj is between X and XI| Imeas]

EXERCISES
5.1 In Algorithm 5.1, show how one can handle the case where colors are equivalent. Dt
you need more than one pass over the image?
5.2 Show for the heuristic of Eq. (5.11) that
(a) IT, > WT, > Pj
b Pn< P, +/(l/:r,-2)
where R, is the perimeter of RJ Rj, | is the perimeter common to both iand j
and R, = min {P, Pj). What does part (b) imply about the relation betweeand@
p 9

Y.

5.3 Write a "histogram-peak" finder; that is, detect satisfying valleys in histograms
separating intuitive hills or peaks.

5.4 Suppose that regions are represented by a neighbor list structure. Each region has
associated list of neighboring regions. Design a region-merging algorithm based on
this structure.

5.5 Why dojunctions of regions in segmented images tend to be trihedral ?

5.6- Regions, boundaries, and junctions are the structures behind the region-adjacenc
graph and its dual. Generalize these structures to three dimensions. Is another stru
ture needed?

5.7 Generalize the graph of Figure 5.8 to three dimensions and develop the merging algc
rithm analogous to Algorithm 5.5. (Hint: see Exercise 5.6.)

Ch.5 Region Growing
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Texture 6

6.1 WHAT IS TEXTURE?

166

The notion of texture admits to no rigid description, but a dictionary definition of
texture as "something composed of closely interwoven elements" is fairly apt
The description of interwoven elements is intimately tied to the idea of texture
resolution, which one might think ekthe average amount of pixels for each dis-
cemable texture element. If this number is large, we can attempt to describe ti
individual elements in some detail. However, as this number nears unity it be
comes increasingly difficult to characterize these elements individually and the
merge into less distinct spatial patterns. To see this variability, we examine son
textures.

Figure 6.1 shows "cane," "paper," "coffee beans," "brickwall," "coins,"
and "wire braid" after Brodatz's well-known book [Brodatz 1966]. Five of these
examples are high-resolution textures: they show repeated primitive elements th
exhibit some kind of variation. "Coffee beans," "brick wall" and "coins" all have
obvious primitives (even if it is not so obvious how to extract these from image
data). Two more examples further illustrate that one sometimes has to be creatiy
in defining primitives. In "cane" the easiest primitives to deal with seem to be the
physical holes in the texture, whereas in "wire braid" it might be better to mode
the physical relations of a loose weave of metallic wires. However, the paper te
ture does not fit nicely into this mold. This is not to say that there are not possibili
ties for primitive elements. One is regions of lightness and darkness formed by tt
ridges in the paper. A second possibility is to use the reflectance models describ:
in Section 3.5 to compute "pits" and "bumps." However, the elements seem t
be "just beyond our perceptual resolving power" [Laws 1980], or in our terms, the
elements are very close in size to individual pixels.
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Fig. 6.1 Six examples of texture, (a) Cane, (b) Paper, (c) Coffee beans, (d)
Brick wall, (e) Coins. (0 Wire braid.

The exposition of texture takes place under four main headings:

1. Texture primitives
2. Structural models
3. Statistical models
4. Texturegradients

Sec. 6.7 What is Texture 167
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We have already described texture as being composed of elements of texture pr
tives. The main point of additional discussion on texture primitives is to refine th
idea of a primitive and its relation to image resolution.

The main work that is unique to texture is that which describes how primi-
tives are related to the aim of recognizing or classifying the texture. Two broa
classes of techniques have emerged and we shall study each in tustrutheal
model regards the primitives as forming a repeating pattern and describes such |
terns in terms of rules for generating them. Formally, these rules can be termet
grammar. This model is best for describing textures where there is much regulari
in the placement of primitive elements and the texture is imaged at high resol
tion. The "reptile" texture in Fig. 6.9 is an example that can be handled by th
structured approach. Thetatisticalmodel usually describes texture by statistical
rules governing the distribution and relation of gray levels. This works well for
many natural textures which have barely discernible primitives. The "paper" tex
ture is such an example. As we shall see, we cannot be too rigid about this divisi
since statistical models can describe pattern-like textures and vice versa, but
general the dichotomy is helpful.

The examples suggest that texture is almost always a propestyfates.
Indeed, as the example Q. 6.2 shows, human beings tend to relate texture ele-
ments of varying size to a plausible surface in three dimensions [Gibson 195
Stevens 1979]. Techniques for determining surface orientation in this fashion a
termed texturegradienttechniques. The gradient is given both in terms of the
direction of greatest change in size of primitives and in terms of the spatial plac
ment of primitives. The notion efgradient is very useful. For example, if the tex-
ture is embedded on a flat surface, the gradient points toward a vanishing point
the image. The chapter concludes with algorithms for computing this gradien
The gradient may be computed directly or indirectly via the computation of the
vanishing point.

Fig. 6.2 Texture aasurface property.

Ch. 6 Texture
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6.2 TEXTURE PRIMITIVES

The notion ofaprimitive is central to texture. To highlight its importance, we shall
use the appelation texel (for texture element) [Kender 1978]. A texel is (loosely
a visual primitive with certain invariant properties which occurs repeatedly in
different positions, deformations, and orientations inside a given area. One bas
invariant property of such a unit might be that its pixels have a constant gray leve
but more elaborate properties related to shape are possible. (A detailed discuss
of planar shapes is deferred until Chapter 8.)) Figure 6.3 shows examples of tv
kinds oftexels:(a) ellipses of approximately constant gray level and (b) linear edge
segments. Interestingly, these are nearly the two features selected as texture pr
itives by [Julesz, 1981], who has performed extensive studies of human textui
perception.

For textures that can be described in two dimensions, image-based descri
tions are sufficient. Texture primitives may be pixels, or aggregates of pixels suc
as curve segments or regions. The "coffee beans" texture can be described by
image-based model: repeated dark ellipses on a lighter background. These mod
describe equally well an image of texture or an imagepifture of texture. The
methods for creating these aggregates were discussed in Chapters 4 and 5. As v
all image-based models, three-dimensional phenomena such as occlusion must
handled indirectly. In contrast, structural approaches to texture sometimes requi
knowledge of the three-dimensional world producing the texture image. One ex
ample of this is Brodatz's "coins" shownFig. 6.1. A three-dimensional model of
the way coins can be stacked is needed to understand this texture fully.

An important part of the texel definition is that primitives must occur repeat-
edly inside a given area. The question is: How many times? This can be answer:
qualitatively by imagining a window that corresponds approximately to our field of
view superimposed on a very large textured area. As this window is made smalle
corresponding to moving the viewpoint closer to the texture, fewer and fewer tex
els are contained in it. At some distance, the image in the window no longe

@ (b)

Fig. 6.3 Examples of texels. (a) Ellipses, (b) Linear segmenis.

'C. 6.2 Texture Primitives 169
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appears textured, or if it does, translation of the window changes the perceived te
ture drastically. At this point we no longer have a texture. A similar effect occurs if
the window is made increasingly larger, corresponding to moving theofielew
farther away fromtheimage. At some distance textural detadseblurred into
continuous tonesindrepeated elementare ndonger visibleasthewindow is
translated. (Thids thebasisfor halftone images, whiclre highly textured pat-
terns meanto be viewed from enough distance to blur the texture.) Thus the idez
of an appropriateesolution, or the numberof texelsin asubimage,is animplicit

part of our qualitative definition dexture.If the resolution is appropriate, the tex-
ture will beapparentandwil "look thesame"as thdield of view is translated
acrossthetextured area. Most often the appropriate resoluisonotknownbut
must becomputed. Often this computatias simpler to carry outthan detailed
computations characterizing the primitives and hence has been used as a precur
to thelatter computations. Figur@.4shows sucha resolution-like computation,
which examines the image for repeating peaks [Connors 1979].

Textures can be hierarchical, the hierarchies corresponding to different resc
lutions. The "brick wall" texture shows suchhierarchy.At one resolutionthe
highly structured pattern maday collections of bricks is inevidence;athigher
resolution, the variations of the texture of each brick are visible.

6.3 STRUCTURAL MODELS OF TEXEL PLACEMENT

Highly patterned textures tesselate the plane in an ordered way, and thus we mt
understand the different ways in which this can be done. In aregular tesselation tt

issdiaiaiajtiiit  fillfipTiliTI fti\

| BIVTaTi tvfiTaTsM
@ (b)

Fig. 6.4 Computing texture
resolutions, (a) French canvagb)
Resolution gridfor canvas,(c) Raffia.
(d) Grid for raffia.
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polygons surrounding a vertex all have the same number of sides. Semiregul
tesselations have two kinds of polygons (differing in number of sides) surrounding
a vertex. Figure 2.11 depicts the regular tesselations of the plane. There are ei(
semiregular tesselations of the plane, as shown in Fig. 6.5. These tesselations
conveniently described by listing in order the number of sides of the polygons sui

(4, 8, 8) (3, 6, 3, 6)

(3.3,3, 4,4 (3.3, 4,34

Fig. 6.5 Semiregular tesselations.

Sec. 63 Structural Models of Texel Placement 171
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rounding each vertex. Thus a hexagonal tesselation is described by (6,6,6)

every vertex in the tesselationFfy. 6.5 can be denoted by the list (3,12,12). It is
important to note that the tesselations of interest are those which describe
placement of primitives rather than the primitives themselves. When the primitiv
define a tesselation, the tesselation describing the primitive placement will be 1
dual of this graph in the sense of Section 5.4. Figure 6.6 shows these relationshi

Fig. 6.6 The primitive placement
tesselation as the dual of the primitive
tesselation.

6.3.1 Grammatical Models

A powerful way of describing the rules that govern textural structure is through
grammar. A grammar describes how to generate patterns by apglyiriing rules
to a small number afymbolsThrough a small number of rules and symbols, the
grammar can generate complex textural patternsoQfse,the symbols turn out

to be related to texels. The mapping between the stored model prototype text
and an image of texture with real-world variations may be incorporated into tt
grammar by attaching probabilities to different rules. Grammars with such rule
are termedstochastiqFu 1974].

There is no unique grammar for a given texture; in fact, there are usual
infinitely many choices for rules and symbols. Thus texture grammars ai
described asyntacticallyambiguousFigure 6.7 shows a syntactically ambiguous
texture and two of the possible choices for primitives. This texture isetsanti-
cally ambiguougZucker 1976] in that alternate ridges may be thought of in thre
dimensions as coming out of or going into the page.

There are many variants of the basic idea of formal grammars and we sh
examine three dhem:shape grammars, tree grammars, and array grammars. Fi
a basic reference, see [Hopcroft and Ullman 1979]. Shape grammars are ¢
tinguished from the other two by having high-level primitives that closely
correspond to the shapes in the texture. In the examples of tree grammars anc
ray grammars that we examine, texels are defined as pixels and this makes

Ch. 6 Texture
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Two choices for primitives:

A Fig. 6.7 Ambiguous texture.

grammars correspondingly more complicated. A particular texture that can b
described in eight rules in a shape grammar requires 85 rules in a tree grammar |
and Fu 1978]. The compensating tradeisthat pixels are gratis with the image;
considerable processing must be done to derive the more complex primitives ust
by the shape grammar.

6.3.2 Shape Grammars

A shape grammar [Stiny and Gips 1972] is defined as a four-tuplg; &/, R, S>
where:

1. Visafinite set of shapes
2. Vpisafinite set of shapes such that V, f), =V<j>

3. R is afinite set of ordered pairs (u, v) such that uis a shape consisting of el
ments of \VV," and vis a shape consisting of an element/ef combined with an
element of\V/*,

4. Sis ashape consisting of an element/af combined with an element &> ...

Elements of the seV/, are called terminal shape elements (or terminals). Elemen
of the set \, are called nonterminal shape elements (or markers). Tha%eand

Vi must be disjoint. Elements of the Set,” are formed by the finite arrangement
of one or more elements of V, in which any elements and/or their mirror image:
may be used a multiple number of times in any location, orientation, or scale. Th
set Vf = Vi U {A}, where A is the empty shape. The sets V, aNd*,, are
defined similarly. Elements (u, v) of R are called shape rules and are written u\
ins called the left side of the rulg;the right side of the rulajand v usually are en-
closed in identical dashed rectangles to show the correspondence between the t
shapes. S is called the initial shape and normally contains a u such that there i
(u, v) which is an element dR.

Sec. 6.3 Structural Models of Texel Placement 173
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A texture is generated from a shape grammar by beginning with the initis
shape and repeatedly applying the shape rules. The result of applying a shape |
R to a given shapesanother shape, consisting of 5 with the right side of R substi-
tuted in S for an occurrence of the left side of R. Rule application to a shaf
proceeds as follows:

1. Find part of the shape that is geometrically similar to the left sidewdé in
terms of both terminal elements and nonterminal elements (markers). The
must be a one-to-one correspondence between the terminals and markers
the left side of the rule and the terminals and markers in the part of the sha
to which the rule is to be applied.

2. Find the geometric transformations (scale, translation, rotation, mirror im-
age) which make the left side of the rule identical to the corresponding part i
the shape.

3. Apply those transformations to the right side of the rule.

4. Substitute the transformed right side of the rule for the part of the shape th.
corresponds to the left side of the rule.

The generation process is terminated when no rule in the grammar can be applie
As a simple example, one of the many ways of specifying a hexagonal textul
{F., VmRS) is

Vool ) (6.1)

Hexagonal textures can generatedy the repeated application of the single rule
in R. They can beecognized byhe application of the rule in the opposite direction
to a given texture until the initial shape, /, is produced. Of course, the rule wil
generate only hexagonal textures. Similarly, the hexagonal texture in Fig. 6.8a w
be recognized but the variants in Fig. 6.8b will not.

(b)
Fig. 6.8 Textures to be recognized (see text).
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Sec. 6.3

A more difficult example is given by the "reptile" texture. Except for the oc-
casional new rows, a (3,6,3,6) tesselation of primitives would model this texture
exactly. As shown in Fig. 6.9, the new row is introduced when a seven-sided pol
ygon splits into a six-sided polygon and a five-sided polygon. To capture this with &
shape grammar, we examine the dual of this graph, which is the primitive place
ment graph, Fig. 6.9b. This graph provides a simple explanation of how the extr:
row is created; that is, the diamond pattern splits into two. Notice that the dua
graph is composed solely of four-sided polygons but that some vertices are (4,4,4
and some are (4,4,4,4,4,4). A shape grammar for the dual is shown in Fig. 6.1(
The image texture can be obtained by forming the dual of this graph. One furthe
refinement should be added to rules (6) and (7); so that rule (7) is used less ofte
the appropriate probabilities should be associated with each rule. This would mak
the grammar stochastic.

Fig. 6.9 (a) The reptile texture, (b) The reptile texture as a (3,6, 3,6) semireg-
ular tesselation with local deformations.

6.3.3 Tree Grammars

The symbolic form oftree grammar is very similar to thata$hape grammar. A
grammar

G= (i, VmslR,S)
is a tree grammar if

V, is a set of terminal symbols

Vn is a set of symbols such that
Ynn v,=0

r :V,—> N (whereMis the set of nonnegative integers)
is the rank associated with symbols in V,

Sis the start symbol

R is the set of rules of the form
Xo —*X or X—X

Xore: %)
with xin V, and %... X(x in Vn

For a tree grammar to generate arraygixéls, it is necessary to choose some way
of embedding the tree in the array. Figure 6.11 shows two such embeddings.

Structural Models oi Texel Placement 175

Page 191 of 539



% => -e—e-

e = 0

-®- => -K— =>

O o

Fig. 6.10 Shape grammar for the reptile texture.

In the application to texture [Lu and Fu 1978], the notion of pyramids or
hierarchical levels of resolution in texture is used. One level describes the plac
ment of repeating patterns in texture windows—a rectangular texel placemer
tesselation—and another level describes texels in terpizetf. We shall illus-

176 Ch. 6 Texture
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point

Starting f—
point

(a) Structure A (b) Structure B

Fig. 6.11 Twowaysof embeddingatree structure in an array.

trate these ideas with Lu and Fu's grammar for "wire braid." The texture windows
are shown in Fig6.12a.Each of these can be described by a "sentence" in a
second tree grammar. The grammar is given by:

Gw: (Vn VmiryR1S)

where
r*-Ui.Ci
Vm = [X, Y, Z) (6.2)
r=1{0,12
R:X ] /j or/l,
X Y Y
Y-+ C or d
VA
Z —* Ai or Ai
Y

and the first embedding in Fig. 6.11 is used. The pattern inside each of these win
dows is specified by another grammatical level:

G= Ms VarR,S)

Sec. 6.3 Structural Models of Texel Placement m [77
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where
V,={1, 0}
Vi = {Ai, AA3, A4, A, A(, AT, C\, G, G;, C4 CS, Ce, C7,
No, Nv N, Ns, N}

r=4{0,1,2
S={A, d)
R:
Ho* 1
Ng A2 Ng \ S22 Nj, Y
0 N % '
S A s*/[i\ .
"0 A3\ < 3 M b
0
V/1\ ERN
No v No < S M4 N
0
w1\ \Y 1
N, As \ N3 Cs Ns N
2
0 0 0
VI 1
N2 %6 M2 N2 % M2 Ng
C6- 1]\
N3 A7 nj N, C? Nv

0 0 1
(2 A B U A A R B I R
(A g NN H, Ng C7 o
The application of these rules generates the two different patterns of pixels
shown in Fig. 6.13.

6.3.4 Array Grammars

Like tree grammars, array grammars use hierarchical levels of resolution [Milgram
and Rosenfeld 1971; Rosenfeld 1971]. Array grammars are different from tree
grammars in that they do not use the tree-array embedding. Instead, prodigiou
use of a blank or null symbol is used to make sure the rules are applied in appropr
ate contexts. A simple array grammar for generating a checkerboard pattern is

G =1, V.,R)

178 Ch. 6 Texture
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Fig. 6.12 Texture window and grammar (see text).

where

V, = {0, 1} (corresponding to black and white pixels, respectively)
Vv, =[b, S}
b is a"blank" symbol usedo provide contextfor the application of therules.

Another notational conveniends to use aubscriptto denotethe orientationof
symbols. For example, when describitgerulesRwe use

0,b -» 0y wherex is one ofU, D, L, R)
to summarize the four rules

2~*1" onro!' 0~—'01, 60-10
Thus the checkerboard rule $&given by

R: S—O0orl
Ob-" Q1 x in{U:D, L, R)
VW - 1,0

A compact encodingf textural patterns [Jayaramamurthy 1979] uses |efals
ray grammars dennemha pyramid.The terminal symbols of one layer are the start
symbolsof thenext grammatical layer defined lower downthepyramid. This
corresponds nicelyo theideaof having onegrammarto generate primitiveand
another to generate the primitive placement tesselations.

As another example, considéreherringbone patterin Fig. 6.14a,whichis
composedof 4x3 arraysof a particular placement patteasshownin Fig. 6.14b.
The following grammar is sufficient to generate the placement pattern.

Gw={V,, VmR,S)

Sec. 6.3 Structural Models of Texel Placement 179
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JHW'«C
AVA VN
Ly
< X 5

Fig. 6.13 Texture generated by tree
grammar.

where

y, - (ft5}
R:S->a
a6 —* aa x in {£/, D, L, R}

We have not been precise in specifying how the terminal symbol is projected ont
the lower level. Assume without loss of generality that it is placed in the uppet
left-hand corner, the rest of the subarray being initially blank symbols. Thus a sim
ple grammar for the primitive is

G= [Vi Va:R,S)

INITIAL ARRAY AT LEVEL 1

Fig. 6.14 Steps in generating
herringbone texture with an array
TERMINAL ARRAY AT LEVEL 1 FINAL ARRAY grammar.
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where

V,- {01

V, - {a, b)
a b bb 0 0 10
Rb bbb — 0101
b bbb 10 0O

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of "reptile" or "wire
braid"; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Stagiatieah recognition is.
paradigm that can classify statistical variations in patterns. (There are other statisti
cal methods of describing texture [Pratabt1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the idea
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszk
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a seflagsesFor example, given the tex-
tures in Fig. 6.15, the choice might be between the classes "orchard," "field,"
"residential," "water."

The basic notion of pattern recognition is the feattgetor. The feature vec-

tor v is a set of measurements {vie V) which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
feature spaceof m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas
urement values for a feature should be correlated with its class membership. Fig
ure 6.16 shows a two-dimensional space in which the features exhibit the desirec
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classe:
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the di
tributions of points in feature space. In the former case, analytic solutions are
sometimes available. In the latter, feature vectorchsterednto groups which
are taken to indicate partitions. During a test phase the feature-space partitions at
used to classify feature vectors from unknown samples. Figure 6.17 shows this
process.

Given that the data are reasonably well behaved, there are many methods fc
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].
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Fig. 6.15 Aerial image textures for
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Fig. 6.15 (cont.)
One popular way of doing this is to use prototype points for each class and ¢
nearest-neighbor rule [Cover 1968]:

assignv to classw, if / minimizes
mmdlv, W)

I
wherev”. is the prototype point for class

Parametric techniques assume information about the feature vector probabil
ity distributions to find rules that maximize the likelihood of correct classification:

assignv to class wif i maximizes

max/?(w/|v)
+ +
+
+ a a
D 0]
+ n
o D
0 0 0 0 ¢ o : :-

@ (b)
Fig. 6.16 Feature space for texture discrimination, (a) effective features (b)

ineffective features.
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+ Classified as w,

Fig. 6.17 Pattern recognition paradigm.

The distributions may also be used to formulate rules that minimize errors.

Picking good features is the essence of pattern recognition. No elaborate fol
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy to define features that (1)
cluster in feature space according to different classes, and (2) can separate textt
classes.

The ensuing subsections describe features that have worked well. These su
sections are in reverse order from those of Section 6.2 in that we begin witt
features defined on pixels—Fourier subspaces, gray-level dependencies—and co
clude with features defined on higher-level texels such as regions. However, th
lesson is the same as with the grammatical approach: hard work spent in obtainir
high-level primitives can both improve and simplify the texture model. Space does
not permit a discussion of many texture features; instead, we limit ourselves to i
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

If a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies. These peaks can form tl
basis of features @ pattern recognition discriminator. One way to define features
is to search Fourier space directly [Bajcsy and Lieberman 1976]. Another is to par-
tition Fourier space into bins. Two kindshihs, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrur
are used to define features. If F\s the Fourier transform, the Fourier power spec
trum is given by \F\%,

Radial features are given by

Virz = JAF(.u,v)fdudv (6.5)
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Fig. 6.18 Partitioning the Fourier domain into bins.

where the limits of integration are defined by
N<w+w <l
O< u,v< n-\

where [r\ r,\ is one of the radial bins and v is the vector (not related to v) defined
by different values of n and.rRadial features are correlated with texture coarse-
ness.A smooth texture will have high values of Vfor small radii, whereas a

coarse, grainy texture will tend to have relatively higher values for larger radii.
Features that measure angular orientation are given by

vy, =INF(u, v)fdudv (6.6)

where the limits of integration are defined by
01 < tan* <

O<uv<n-1

where [9, 9,) is one of the sectors and v is defined by different values of 0jand 9
These features exploit the sensitivity of the power spectrum to the directionality of
the texture. liatexture has as many lines or edges in a given directionayilF\

tend to have high values clustered around the direction in frequency space 9 +
TT/2.

TextureEnergy in theéSpatial Domain

From Section 2.2.4 we know that the Fourier approach could also be carried
out in the image domain. This is the approach taken in [1888].The advantage
of this approach is that the basis is not the Fourier basis but a variant that is mor:
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matched to intuition about texture features. Figure 6.19 shows the most import
of Laws'12 basis functions.

The image is first histogram-equalized (Section 3.2). Then 12 new images
made by convolving the original image with each of the basis func(orts,fy =
| *hy for basis functions h\, ../z;;). Then each of these images is transformec
into an "energy" image by the following transformation: Each pixel in the cor
volved image is replaced by an average of the absolute values in a local windov
15x15 pixels centered over the pixel:

[(%*)- 1 () ) (6.7)
X,y in window
The transformatioi—+ /*, k = 1, ... 12 is termed a "texture energy transform”
by Laws and is analogous to the Fourier power spectrum., Thke £ 1, ... 12
form a set of features for each point in the image which are used in a near
neighbor classifier. Classification details may be found in [Laws 1980]. Our ir
terestis in the particular choice of basis functions used.

Figure 6.20 shows a composite of natural textures [Brodatz 1966] used
Laws's experiments. Each texture is digitized into a 128 x 128 pixel subimage. 1
texture energy transforms were applied to this composite image and each pixel
classified into one of the eight categories. The average classification accuracy
about87%for interior regions of the subimages. This is a very good result for te
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popt
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. T
SGLD approach computes an intermediate matrix of measures from the digitiz
image data, and then defines features as functions on this intermediate ma
Given an image f with a set of discrete gray levels |, we define for eacsebbf
discrete values of dar@ithe intermediate matrix il 9) as follows:

S(/,j\d, 9), an entry in the matrix, is the number of times gray level /is
oriented with respetb gray level j such that where

fix) =/ and /(y) =] then

y = x + (dcos9, ds'm9)
1 -4 -6 -4 -1 1-4  6-4 1
-2 -8-12 -8 -2 -4 16 -24 16 -4
0 0 0 0O 6-24 36-24 6
2 8 12 8 2 -4 16-24 16 -4
14 6 4 1 1-4 6-4 1
1 2 0-1 1 0o 2 0-1
2040 - 2 4 080 - 4
00 0 0 0 6 012 0 -6 Fjg 619 Laws'basis functions (these
2 0-402 -4080 -4 are the low-order four of twelve actually
10-201 1 0 2 0-1 ysed).
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Fig. 6.20 (a)Texture composite(b) Classification.
Note that wethegray-level values appeasindicesof the matrixS,implying that
they are taken from some well-ordered discest), ..., K. Since
Sid, 9) = Sid, 9 +TT).

common practicés torestrict 9to multiplesof TT/4. Furthermore, informatiofs
not usually retainectboth 9and 9 +IT. Thereasoningfor thelatter stepis that
for most texture discrimination taskihe information is redundant. Thusve
define

Sid, 9) = >/2 [Sid, 9) + Sid, 9 +TT)
The intermediate matric&syield potential features. Commonly used features are:

1. Energy
Eid,9) =j~ £ [SO,M9)} (6.8)
/=0 j=0
2. Entropy
K K
Hid, 9) =~ £ Sii,j\d,9) log fii,j\d,0) (6.9)
3. Correlation
K K
Z L ii-* ij-Hy)Sit,j\d,9)
Cid, 9) =" 7 (6.10)
Cr0~y
4. Inertia
1id, 0) - £ f ii-)’Sii,j\d,9) (6.11)
/=0 j=0
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5. LocalHomogeneity

LU*)-£ £ r ASU,j\d,9) (6.12)

where §/, y|</,0) is the (/j) th element ofd, 9), and

Px-t, Ilt.SU.MB) (6.13a)
o y=o

f* -fy£ scute*) (6130)
/=0 y=0

»i-f  (i-V)*tf(U\d,0) (6.13c)
=0 y=0

and

°>27S¢ < J-fiy)’tfb>MO) (6.13d)

7=0 1-0

One important aspect of this approach is that the features chosen do not he
psychological correlates [Tamura et al. 1978]. For example, none of the measul
described would take on specific values corresponding to our notions of "rougt
or "smooth." Also, the texture gradient is difficult to defime terms of SGLD
feature values [Bajcsy and Lieberman 1976].

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pi»
els. Rather than defining features directly as functionpixéls, a region segmen-
tation of the image is created first. Features can then be defined in terms of tl
shapeofthe resultant regions, which are often more intuitive than the pixel-
related features. Naturally, the approach of using edge elements is also possit
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et &
1977].In that implementation, all regions are ultimately modeled as ellipses and
corresponding five-parameter shape descriptisrcomputed for each region.
These parameters only define gross region shape, but the five-parameter prin
tives seem to work well for many domains. The texture image is segmented ini
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ¢
plied to a sample of "straw" texture. Next, parameters of the region grower ar
controlled so as to encourage convex regions whidhtaveh ellipses. Figure 6.22
shows the resultant ellipses for the "straw" texture. One set of ellipse paramete
is X, &, b, 9 where xis the origin, a and b are the major and minor axis lengths
and9 is the orientation of the major axis (Appendix 1). Besides these shape parar
eters, elliptical texels are also described by their average gray level. Figure 6.2
gives a qualitative indication of how ranges on feature values reflect different tex
els.
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(a) Image
. . ®> With Region Boundaries
*ig. 6.21 Region segmentation for straw texture.

6.5 THE TEXTURE GRADIENT

methods are depicted in Fi 6 MUKITZA |~ ** tv DedMe Thes
embeddean aplanar surface od>assume that thgaxture is

eusge oithese primitives constrains the orientation of

Fig. 6.22 Ellipses for straw texture.
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Fig. 6.23 Features defined on ellipses.

the planein the following manner. The directioof maximum rateof changeof
projected primitive sizésthe directionof the texturegradient. The orientatiorof
this direction with respedio theimage coordinate frame determines how much
the plane is rotated about the camera lingigtfit. The magnitude of the gradient
can help determine how much the plane is tilted with requette cameraput
knowledge about the camera geometrglso required. We have seen these ideas
before in the form of gradient space; the rotation and tilt characterization is a pole
coordinate representationgfadients.

190

@

(b) ©

Fig. 6.24 Methods for calculating surface orientation from texture.
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The second way to measure surface orientation is by knowing the shape
the texelitself. For example, a texture composed of circles appears as ellipses o
the tilted surface. The orientation of the principal axes defines rotation with respec
to the camera, and the ratio of minor to major axes defines tilt [Stevens 1979].

Finally, if the texture is composed afegular grid oftexels,we can compute
vanishing points. For a perspective image, vanishing points on a plane P are tl
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments ol
plane that are oriented in two orthogonal directions in the physical world. The ger
eral method applies whenever the placement tesselation defines lines of texe
Two vanishing points that arise from texels on the same surface can be used
determine orientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect t
thezaxis (i.e., the intersection of the line joining the vanishing points with x = 0)
determines the tilt of the plane.

Line segment textures indicate vanishing points [Kender 1978]. As shown ir
Fig. 6.25, these segments could arise quite naturally from an urban image of tt
windows of a building which has been processed with an edge operator.

As discussed in Chapter 4, lines in images can be detected by detecting the
parameters with a Hough algorithm. For example, by using the line parameteriz:
tion

X COS6 +ysi®=r

and by knowing the orientation of the line in termdtofradientg = (Ax, Ay), a
line segment(x,y, Ax, Ay) can be mapped intp 9 space by using the relations

AIAX? + Aj;?

= tan? 6.15
tan® (6.15)

These relationships can be derived by using Fig. 6.26 and some geometry. TI
Cartesian coordinates of tire-9 space vector are given by

a= 9% 4 (6.16)

Fig. 6.25 Orthogonal line segments comprisitgxture.
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Fig. 6.26 r-9 transform.

Using this transformation, the set of line segments L\ shown in Fig. 6.27 are al
mapped into a single point ir—B space. Furthermore, the set of lines Li which
have the same vanishing poifX; y,) project onto a circle im—B space with the
line segment ((0, O)(xvi \)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity are projected into infinity, and (2) circles require some
effort to detect. Hence we are motivated to use the transform (x, y, Ax, Ay) -’

T 9 for some constant k. Now vanishing points at infinity are projected into the

origin and the locus of the set of pointsit now a line. This line is perpendicular
to the vector x andj—k<_< units from the origin, as shown in Fig. 6.28. It can be

I|x]
detected by a second stage of the Hough transform; each point a is mapped into
r'—B' space. For every a, compute all theB' such that

acosB' + bsinB'= r' (6.17)

and increment that location in the appropriate r', B' accumulator array. In this
second space a vanishing point is detected as

k (6.18)

B' = tan" (6.19)

Xy

(b)
Fig. 6.27 Detecting the vanishing point with the Hough transform.
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(b)
Fig. 6.28 Vanishing point loci.

In Render's application the texels and their placement tesselation are similar
that the primitives are parallel to arcs in the placement tesselation graph. In a m¢
general application the tesselation could be computed by connecting the centers
primitives.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

EXERCISES

Devise a computer algorithm that, given a set of texels from eaddetodf different
"windows" of the textured image, checks to see of the resolution is appropriate.
other words, try to formalize the discussion of resolution in Section 6.2.

Are any of the grammars in Section 6.3 suitable for a parallel implementation (i.¢
parallel application of rules)? Discuss, illustrating your arguments with examples «
counterexamples from each of the three main grammatical types (shape, tree, anc
ray grammars).

Are shape, array, and tree grammars context free or context-sensitive as defin
Can such grammars be translated into "traditional" (string) grammars? If not, ho
are they different; and sb, why are they useful?

Show how the generalized Hough transform (Section 4.3) could be applied to te:
detection.

In an outdoors scene, there is the problem of different scales. For example, cons
the grass. Grass that is close to an observer wil appear "sharp" and composec
primitive elements, yet grass distant from an observer will be much more "fuzzy
and homogeneous. Describe how one might handle this problem.

The texture energy transform (Section 6.4.1) is equivalent to a set of Fourier-dom:
operations. How do the texture energy features compare with the ring and sec
features?

The texture gradient is presumably a gradient in some aspect of texture. What asj
is it, and how might it be quantified so that texture descriptions can be made gradie
independent?

Write a texture region grower and apply it to natural scenes.
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Motion 7

7.1 MOTION UNDERSTANDING

Motion imagery presents many interesting challenges to computer vision, bu
static scene analysis received more attention in the 1960's and 1970's. In part, tl
may have been due to a technical problem: With most types of input media an
domains, motion vision input is much more voluminous than static vision input.
However, we believe that a more basic problem has been the assumption that m
tion vision could best be understood (or implemented) as many static frame
analyzed very quickly, with results linked up in temporal sequence. This character
ization of motion vision is extreme but perhaps illuminating. First, it assumes that
vision involves processing static scenes. Second, it acknowledges that massi
amounts of data may be required. Third, in it motion understanding degenerate
to a postprocessing step which is mostly a matching operation—the differences ¢
similarities between (understood) frames are analyzed and recorded. The extrer
"static is basic" view is that motion is an unnaturally complex or difficult problem

because it is ill suited to the techniques available.

A modified view is that object motion provides good image cues for segmen-
tation, much as color might. This approach leads to the use of motion for segmer
tation, so that motion gets a more basic role in the understanding process. In th
view, motion as such is useful for basic image understanding; a motion image s¢
guence may actually be easier to understand than a static image, because 1
effects of motion can help in segmentation. Recent examples may be found i
[Snyderl981].

A further departure from the "static is basic" view is that motion under-
standing is qualitatively different from static vision. A logical extreme of this view
is that there are many visual processing operations whose primitives are points
motion, and that in fact static vision is the puzzle, being ill-suited to the needs an
mechanisms of biological systems. Serious work in computer motion understanc

195
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ing has begun even more recently than computer vision as a whole, and it is t
early to dismiss any approach out of hand. There are domains and applications
which the "static is basic" paradigm seems natural, but it also seems very reast
able that animals have perceptual systems or subsystems for which "motion
basic."

Section 7.ds concerned with processing and understanding the "flow" of the
world image across the retina. Section 7.3 considers several techniques for und
standing sequences of static images.

7.1.1 Domain Independent Understanding

Domain independent motion processing extracts information from time-varying
images using the weakest possible assumptions about the world. Processing t
merely transforms the input data into another image-like structure is in the prc
vince of generalized image processing. However, if the motion processing aggr
gates spatial information on the basis of a common feature, then the processing
form of segmentation.

The basic visual input for domain-independent work in motion vision under-
standing is optical flow. Although Helmholtz noted the striking immediacy of
three-dimensional perception mediated through motion [Helmholtz 1925], Gib
son is usually credited with pioneering the theory that a primary visual stimulus fc
motion is the flow of elements in the optic array, or pattern of luminance in the ful
sphere of solid angle surrounding the observer [Gibson 1950, 1957, 1965, 196!
Human beings undoubtedly are sensitive to optical flow, as evidenced by tr
"looming" reflex [Schiff 1965], the effect of flow on balance [Lee and Lishman
1975], and many other documented phenomena [Nakayama and Loomis 197
The basic input to an "optical flow understander" is a continuously changing
visual field, which may be considered a fieldrettors,each expressing the instan-
taneous change of position on the optic array of the imageafld point. A field
of such vectors is shown in Fig.l. The extraction of the vectors from the chang-
ing image is a low-level operation often posited by optical flow research; one corr
putational mechanism was given in Chapter 3. Flow may also be approximated
an image sequence by matching and difference operations (Section 7.3.1).

Computer vision researchers have recently begun to concern themselv
with both the geometry and computational mechanisms that might be useful in tt
understanding of optical flow [Horn and Schunck 1980; Clocksin 1980; Prage
1979; Prazdny 1979; Lawton 1981]. Many formalisms are in use. Cartesian, pole
space, and spherical coordinates all have their appeal in different situation
differential vector geometry and simple analytic geometry are both used; even tt
geometry of the eye or camera varies from one study to another. This chapter dc
not contain a "unified flow theory;" instead it briefly describes several approache:
each of which uses a different aspect of optical flow.

7.1.2 Domain Dependent Understanding

The use of models, or at least stronger assumptions about the world, is comp
mentary to domain-independent processing. The changing image, or even the fi
of optical flow, can be treated as input to a model-driven vision process whose gc
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Fig. 71 An example of an optical flow field for an approaching “hill." (a) The hil, (b)

Flow field.
is typically to segment the input into areas corresponding to meaningful world ok
jects.The optical.flow field becomes just another component of the generalized im
age, together with intensity, texture-, or color. Motion often reveals information
similar to that from range data; flow and range are discontinuous at object boul
daries, surface orientation may be derived, and so forth. Object (or world) mc
tions determine image (or retinal) motions; we shall be explicit about which
motion we mean when confusion can occur.

Section 7.3 describes how knowledge of object motion phenomena can he
in segmenting the flow field. One useful assumption is that the world contains rigic
bodies. Tests for rigid bodies and calculations using data from them are quit
usefu—for example, the three-dimensional position of four points on a rigid ob-
ject may be determined uniquely from three views (Section 7.3.2). A weaker ok
ject model, that they are assemblies of compound rigid pendula (linkages),
enough to accomplish successful segmentation of very sparse motion input whi
consists only of images of the end points of links (Section 7.3.3). Section 7.3.
describes work with a highly specific and detailed model which is used in severe
ways to restrict low-level image processing and aid in three-dimensional interprete
tion of human motion images. Section 7.3.5 considers the processing of sequenc
of segmented images.

The coherence of most three-dimensional objects and their continuity
through time are two general principles which, although occasionally violated,
guide many segmentation and point-matching heuristics. The assumed correspc
dence of regions in images with objects is one example. Motion images provid
another example; object coherence implies the likelihood of many "continuity"
(actually similarity) conditions on the positions and velocities of neighboring
image points.
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Here are five heuristics for use in matching points from images separated by
small time interval [Prager 1979] (Fig. 7.2).

1. Maximumvelocity. If a world point is known to have a maximum velocity V
with respect to a stationary imaging device, then it can move at most V d
between two images made dttime units apart. Thus given the location of th
point in one image (and some assumptions about depth), this constraint limit
where the point can appear on the second image.

2. Smallvelocitychange.Since most visible physical objects have finite mass, thi:
heuristic is a conseqence of physical laws and the assumption of a "small inte
val" between images. Of course, the definition of "small interval" depends on
the definition of the velocity changes one desires to measure.

$ <
/
A> /
t t2
Maximum Velocity Small Velocity Changes
/
/
/
/
Common Motion Consistent Match
\ t X
\
L] —_—
>
IV N~
Model
Fig. 7.2 Five heuristics.
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3. Commonmotion. Spatially coherent objects often appear in successive ima
as regions of points sharing a "common motion." It is interesting that suct
weak notion as common motion (and the related "common position") act
ally can serve to segment very sparse scenafewf points with very complex
motion behavior iflalong-enough sequence of images is used (Sections 7.2
and 7.3.4).

4. Consistenmatch. Two points from one image generally do not match a sing
point from another image (exceptions arise from occlusions). This is one
the main heuristics in the stereopsis algorithm described in Chapter 3.

5. Knownmotion. If aworld model can supply information about object motions
perhaps retinal motions can be derived, predicted, and recognized.

In the discussions to follow these heuristics (and others) are often used
implicitly taken as principles. A careful catalog of the probable behavior of objec
in motion is often a useful practical adjunct to a mathematical treatment. T
mathematics itself must be based on a set of assumptions, and often these
closely related to the phenomenological heuristics noted above.

7.2 UNDERSTANDING OPTICAL FLOW

This section describes some more direct calculations on optical flow, using
other input information. Information may be obtained from flow that seems usel
both for survival in the world and (on a less existential level) for automated ima
understanding. As with shape from shading research (Chapter 3), the parad
here is often to see mathematically what information resides in the input and to
this to suggest mechanisms for doing the computation. The flow input is assun
to be known (Chapter 3 showed how to derive optical flow by local analysis
changing intensity in the image).

7.2.1 Focus of Expansion

As one moves through aworld of static objects, the visual world as projected on
retina seems to flow past. In fact, for a given direction of translatory motion ar
direction ofgaze,the world seems to Hewingout of one particular retinal point,
the focus oéxpansion(FOE). Each direction of motion and gaze induces a uniqt
FOE, which may be a point at infinity if the motion is parallel to the retinal (image
plane.

These aspects of optical flow have been studied by computing the simula
flow pattern an observer would see while moving through a "forest" of vertici
cylinders [Prager 1979] or Gaussian hills and valleys [Lawton 1981]. Some sam
FOEs are shown in Fig. 7.3. Figure 7.3c shows a second FOE when the field of v
contains an object which is itself in motion.

Our first model of the imaging situation is a simplification of the imaging
geometry given in Appendix 1. Let the viewpoint be at the origin with the viev
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Fig. 7.3 FOE for rectilinear observer motion, (a) An image, (b) Later image, (c) Flow
shows different FOEs for static floor and moving object.

direction out along the positive Zaxis, and let the focal lengthZ. ¥hen the per-
spective distortion equations simplify to

X! (7.2)

N X

= YZ— (7.2)

In the next two sections the letters u, v, and w (sometimes written as func-
tions of /) denote world point velocity components, or the time derivatives of
world coordinates (x, y, z). Observer motion with instantaneous vefesitixldt,
—dy/dt, —dz/dt) = (~u—v,-w), keeping the coordinate system attached to the
viewpoint, gives points in a stationary world a relative velocity (#)wonsidea
point located at Gecyo, z) at some initial time. After a time interval t, its image
will be at

X0+ ut ypt+ vt

*1 - 7.
™0 ZQ + Wt' zQ + Wt (7:3)
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As tvaries, this parametric "flow-path" equation is thaa sfiraight line; as rgoes
to minus infinity, the image of the point travels back along the straight line towarc
a particular point on the image, namely,

FOE = U_ V_ (7.4)
w'w
This focus of expansion is where the optical flow originates on the image. If the ok
server changes direction (or objects in the world change their direction), the FO
changes as well.

7.2.2 Adjacency, Depth, and Collision

The flow path equation of a point moving with a constant velocity reveals informa:
tion about its depth in z. The information is not provided directly, since all flow
paths for points at a given depth do not latike. However, there is the elegant re-
lation

Pit) ~ z(t) _

VU) w(t)
Here againw isdz/dt, and Fis dD/dt. Bthe distance along the straight flow path
from the FOE to the image of the point. Thus the distance/velocity ratio of the
point's image is the same as the distance/velocity ratio of the world point. Thi
result is basic, but perhaps not immediately obvious.

The above relation is called the time-to-adjacency relation, because th
right-hand side, z/w, is the z-distance of the point from the image plane divided t
its velocity toward the plane. It is thus the time until the point passes through th
image plane. This basic time interval is clearly useful when dealing with world ob-
jects; it changes when the magnitude of the world point's velocity (or the
observer's) changes.

Knowing the depth of any point determines the depth of all others of the
same velocity w, for it follows from the two time to adjacency equations of

the points that
Z2(0# 9

The time-to-adjacency equation allows easy determination of the world coor
dinates of a point, scaled by #selocity. If the observer is mobile and in control of
his own velocity, and if the world is stationary, such scaled coordinates may be us:
ful. Using the perspective distortion equations,

z(t):WM m_ 77
y{t):yuu{t)DU) (78)
XKt) vit) U»)
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As a last example, let us relate optical flow to the sensing of impending colli
sions with world objects. The focal point of the imaging system, or origin of coordi-
nates,is at any instant headed "toward the focus of expansion," whose imag
coordinates are (u/w, v/w). Itis thus traveling in the direction

0= {J ~,1) (7.10)
w w
and is following at any instant a path in the environment instantaneously define
by the parametric equation

oYz =tO=t(-, -,1) (7.11)
W w

where racts like a real scalar measurénoé. Given this vector expression for the
path of the observer, one can apply well-known vector formulas from analytic solic
geometry to derive useful information about the relation of this path to world
points, which are also vectors.

For example, the position P along the observer's path at which a world poir
approaches closest is given by

where O is the direction of observer motion and x the position of the world point
Here the period (.) is the dot product operator. The squared distarmsw@en
the observer and the world point at closest approach is then

Q*= (x-x) - (x-0)V(0-0) (7.13)

7.2.3 Surface Orientation and Edge Detection

It is possible to derive surface orientation and to characterize certain types of sL
face discontinuities (edges) by their motion. A formalism, computer program, anc
biologically motivated computational mechanisfior these calculations was
developed in [Clocksin 1980].

This section outlines mainly the surface orientation aspect of this work. As
usual, the model is foamonocular observer, whose focal point is the origin of
coordinates. An unusual feature of the model is that the observer has a spheri
retina. The world is thus projected onto an "image unit sphere" instead of an i
age plane. World points and surface orientation are represented in an obserw
centered Cartesian coordinate system. The image sphere has a spherical coo
nate system which may be considered as "longitude" 9 and "latitude" 0. Thes
coordinates bear no relation to the orientation of the retina. World points are the
determined by their image coordinates and a range observer-centered Carte-
sian coordinate system is also useful; it is related to the sphere as shown in Fig. 7
and by the transformations given in Appendix 1.

The flow of the image dhfreely moving world point may be found through
the following derivation. As before, let the world velocity of the point (possibly in-
duced by observer motion) (dx/dt, dy/dt, dz/dt) be written (w, v, w). Similarly,
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Fig. 7.4 Spherical coordinate system, and the definition of & .and
write the angular velocities of the image point in $@nd<j> directions as
do
8 - 7.14
dt (7.14)

<>
- 7.15
e = dt ( )

Then from the coordinate transformation equations of Appendix 1,
y = x tan9 (7.16)
Differentiating and solving for d9/dt (written as 8) gives

v — utan9
o = x seé9 (7.17)

Substituting for x its spherical coordinate expression r sn<> cos0 and simplifyin
yields the general expression for flow in Shdirection:

fta, Y ©0S" - U SIn® (n i o)
r si<k>
The derivation of e proceeds from the coordinate transformation equation
2 = r cos<f> (7.19)

Differentiating, solving ford<f>/dt (written as e), and using
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dr _ xu +yv + zw 5 ~IX
dt r
yields the general expression for flow in #fe direction:

_ (Xu +yv + zw) as- nv Cr 21)
r? sin<f>
As usual, general point motions are rather complicated to deal with, ant
more constraints are needed if the optic flow is to be "inverted" to discover mucl
about the outside world. Let us then make the simplification that the world is sta
tionary and the observer is traveling along zturection at some speed S (This as-
sumption is briefly discussed below.) Explicitly, suppose that

u-0, v-0 w- -S

Substituting these into the general flow equations (7.18) and (7.21) yield:
simplified flow equations:

8=0 (7.22)
e=" % - (7.23)

Thusrisa function of9 and $ and therefore so is e.

It is this simplified flow equation which forms the basis for surface orientation
calculation and edge detection. The goals are to assign to any point in theflowfiel
one of three interpretationsdge,surface, orspaceand also to derive the type of
edge and the orientation of the surface.

To find surface orientation, represent the surface normal of a surface | b
two anglescr and r defined as in Fig. 7.4 with the two planesraindT being the
RZ and QR planes, respectively. The slant is measured relative to the line of sigl
denoted by R in the figure, o and T correspond to depth changes in "dept
profiles" oriented along lines of constéand<E, respectively. Thus,

1 dr
- = 7.24
tana- = g (7.24)

tanr - (7.25)

1%
F 8
Surface orientation is defined by and r or equivalently by their tangents. A
surface perpendicular to the line of sight hasa =T = 0.
Equations (7.24) and (7.25) assume the range ris known. However, one ce
determine them without knowing r through the simplified flow equation, Eq.
(7.23).The latter may be written

_ 5sin<>
'~ ¢e(9, 0)

wheree (9, 0) gives the flow in thef> direction. Differentiating this with respect to
9 and<t gives
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dr - , e cos 0— sin 4 Qe/d0)

St &2 (7.26)
dr_=- $°"t fa/d9)

do e (7.27)

These last three equations may be substituted into Egs. (7.24) and (7.25), and 1
results may then be simplified to the following surface orientation equations:

J

tancr = cotd)—"— Ine (7.28)
90

tar—JLfcw) (7.29)

These tangents are thus easily computed from optical flow. The result doe
not depend on velocity, and no depth scaling is required. In fact, absolute depth
not computable unless we know more, such as the observer speed.

Turning briefly to edge perception: Although physical edges are a depth
phenomenon, in flow they are mirrored by e, the flow measure that allows deter
mination of orientation without depth. In particular, it is possible to demonstrate
that the Laplacian of e has singularities where the Laplacian of depth has singulat
ties. An arc on the sphere projects out onto a "depth profile" in the world, along
which depth may vary. If the arc is parameterized by a, relations among the dept
profile, flow profile, and the singularities in flow are shown in Fig. 7.5. Thus the
Laplacian of € provides information about edge type but not about edge depth.

The formal derivations are at an end. Implementing them in a computer pro:
gram or in a biological system requires solutions to several technical problems
More details on the implementation of this model on a computer and a possibl

Sing.v?A
Theoretical

Range FIO\_N edge

profile profile signature
Fig. 7.5 The singularities of the
second derivative of the flow profile
inform about the type of edge.
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implementation using low-level physiological vision primitives appear in [Clocksin
1980]. There are some data on human performance for the types of tasks
tempted by the program. The assumptiomfifted environment basically implies
that flow motions in the environment are likely to be interpreted as observer mc
tions. This view is rather strikingly borne out by "swaying room" experiments
[Lee and Lishman 1975], in which a subject stands in a swayable visual envirol
ment. (A large, low-mass bottomless box suspended from above may be lower
around the subject, giving him a room-like visual environment.) When the hanc
ing "room" is made to sway, the subject inside tends to lose balance. Furthe
moving surfaces in the real world are quite often objects of interest, such as e
imals.

A survey of depth perception experiments [Braunstein 1976] points to mo
tion as the dominant indicator of surface orientation perception. Random-dc
displays of monocular flow patterns [Rogers and Graham 1979] evoke striking pe
ceptions of solid oriented surfaces; flow may be adequate for shape and depth
ception even with no other depth information. The experiments on perception
"edges,"or discontinuities in flow caused by discontinuities in depth of textured
surfaces, are less common. However, there have been enough to provide sc
confirmation of the model.

The computational model is consistent with and has correctly predicte
psychological data on human thresholds for slant and edge perception in optic
flow fields. (The thresholds are on the amount of slant to the surface and the dey
difference of the edge sides.) The computational model can be used to determ
range, but only to poor accuracy; this happens to correspond with the human tr
that orientation is much more accurately determined by flow than is range. Quan
tatively, the accuracy of orientation and range determinations are the same for t
model and for human beings under similar conditions.

7.2.4 Egomotion

It is possible to extract information about complex observer motions from optica
flow, although at considerable computational cost. In one formulation [Prazdn
1979], a model observer is allowed to follow any space curve in an environment ¢
stationary objects, while at the same time turning its head. It is possible to deri
formulae that determine the observer's instantaneous velocity vector and head
tational vector from a small number (six) of flow vectors in the image on a (stand
ard flat) retina.

The equations that describe flow given observer motion and head rotatio
can be quite compactly written by using vector operators and a polar coordina
system (similar to that of the last section). The inherent elegance and power of t
vector operations is well displayed in these calculations. Inverting the equatior
results in a system of three cubic equation20derms each. Such a system can be
solved by normal methods for simultaneous nonlinear equations, but the solutiol
tend to be relatively sensitive to noise. In the noise-free case, the method seem:
perform quite adequately.

The calculation yields a method for deriving relative depth, or the ratio of the
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distances of points from the observer. An approximation to surface orientation
may be obtained using several relative depth measurements in a small area and ¢
suming that the surface normal varies slowly in tne area.

7.3 UNDERSTANDING IMAGE SEQUENCES

An image sequence is an ordered set of images. The image sequences of intere
here are samplings of four-dimensional space-time. Commonly, as in a movie, the
images are two-dimensional projectionsatfiree-dimensional physical world, se-
guenced through time. Sometimes the sequence consists of two-dimensional i
ages of essentially two-dimensional slices of the three-dimensional world, se-
guenced through the third spatial dimension. Some of the techniques in this sec
tion are useful in interpreting the three-dimensional nature of objects from such
spatial image sequences, but the main concern here is with temporal image st
guences. In many practical applications, the input must be such a sequence, ar
continuous motion must be inferred from discrete location differences of image
points. The thrust of work under these assumptions is often to extend static imag
understanding by making models that incorporate or explain objects in motion, ex-
tending segmentation to work across time [Thompson 1979, Tsotsos 1980].

When asked why he was listening to a metronome ticking, Ezra Pound is saic
to have replied that he did not listen to the ticks, but to the "spaces betweer
them." Like Pound, we take the ticks, or images, as given, and are really in-
terested in what goes on "between the ticks." We usually want to determine anc
describe how the images are related to each other. This information must be
derived from the static images, and two approaches immediately present them
selves: broadly, the first is to look for differences between the images, and the
second is to look for similarities.

These two approaches are complementary, and are often used together. ,
general paradigm for object-oriented motion analysis is the following:

1. Segment (describe) the individual images. This process may be complex,
yielding a relational structure or a segmentation into regions or edges. An im-
portant special case is the one in which the description (segmentation) proces
is null and the descriptiois just the imagetself. For example, an initial high-
level static description is impossible if motion is to be used as an aid to seg-
mentation.

2. Compute and describe the differences or similarities between the descriptions
(or undescribed images).

3. Build a description of the sequence as a whole from the single-frame primitives
and descriptions of difference or similarity that are relevant to the purpose at
hand.

7.3.1 Calculating Flow from Discrete Images

This method is a form of disparity calculation that is not only used for flow calcula-
tions, but may also be used for stereo matching or tracking applications. The com-
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putations are implemented with "relaxation” techniques.

The flow calculations have so far assumed an underlying continuous image
which was densely sampled. With those assumptions and a few more the funde
mental motion equation allows the calculation of flow (Chapter 3). The approach
of this section is to identify discrete points in the image that are very different from
their surround. Given such discrete points from each of two images at different
times, the problem becomes one of matching a point in one image with the right
point (if it exists) in the other image. This matching problem is known as the
correspondenceroblem [Duda and Hart 1973, Aggarwal et al 1981]. The solution
to the correspondence problem in the case of motion is, of course, the optic flow.

One algorithm for matching distinct points from two different frames [Bar-
nard and Thompson 1979] breaks the matching problem into two steps. The first i
the identification of candidate match points in each of the two frames. The seconc
is an iterative algorithm which adjusts match probabilities for pairs of match points.
After successful termination of the algorithm, correct matches have high probabil-
ities and incorrect matches have very low probabilities.

The Moravec interest operator ([Moravec 1977]; Section 3.2) produces can-
didate match points by measuring the distinctness of a local piece of the image
from its surround. Each frame is analyzed separately so that the end result is twi
sets of points S\ ang,Sne from each frame, which are candidates to be matched.
Candidates in S\ are indexed by /and thosg in\8

The iterative part of the algorithm is initialized with a data structure for the
possible matches that exploits the heuristic that a point in the world does not move
large distances between frames. Potential matches for a given point x, in S\, thi
firstimage, are all points,yn S such that

¥/-IVI< Vi (7.30)

where V. is the maximum disparity allowed between points. All points that are
selected by the Moravec operator have a given disparity vectmdsare kept as
possible matches. Each disparity has an associated probBpilitwhich changes
through time as the most likely disparities are found. The information kept for
each point x, in S\ looks like

(Vo Jyfrv* *We e e (<./5) w0
where K*is a special symbol that denotes "no match," and all they* are members
of S. Storing the flow vectors v implicitly stores the corresponding point;in S
since y, = X, + vy. Since the probabilities are adjusted iteratively, one final index
is needed to denote the iteration value so thatcRially becomeB-j for n ~ 0.

The initial approximation for the probabilities P-j takes advantage of the
"common motion" heuristic: Ifyyis the correct match point for x-, the image near
Yy should look like the image near x,. THjscan be defined by

Pg = -r-r ' x in 5, (7.32)
J 1+ CWjj
where
W= z QUi +dx, fi) - f§. + dx,t)]? (7.33)
\dx\4 k
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and c is constant. The updating formula is complex in form but basically is a
weighted sum of neighboring match probabilities where the neighboring match is
consistent (i.e., has nearly the same velocity). A neighboring match kis consisten
if

< dVim (7.34)
The goodness of a particular match is measured, byltere

pn—| (7.35)
k a neighbor of/ /s.t. ki satisfies (7.34)

and the probabilities are updated by

PS-pg{A +Bq)) (7.36)
pr
pp. = (7.37)
j s.t. ij is amatch
where the function of Eq. (7.36) is to renormalize the probabilities and A and B are
constants.
The following simplified example makes these ideas more concrete.
Consider the situation given in Fig. 7.6, where the points in (a) are from S\
and the points in (b) are from,.SUsing hypothetical values for P°, an initial
match data structure is, in terms of Eq. (7.31):

((4, 10) ((5,0), 0.7) ((4,-5), 0.25) ((2,-8).05))
((4,8) ((5, 4), 05) ((4 -1), 03) (2, -4), 0.2))
(2,3) ((7,7), 03) ((6,2),0.35) ({4, -1, 0.2)

\
/=1 10 - /-.1
8-
/=2 6
/=2
4
/=3
2 /-3
| | | i i
2 4 6 2 4 6 8 10

Fig. 7.6 Discrete matching: a concrete example.
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Also, Z)vmax = 1, using the chessboard norm. Using the updating formula (7.35),
the first set of 4,/ss given by

03 02 0
fj = 0 09 025
0 0 03

and the corresponding unnormalized probabilities, with A = 0.3 and B = 3, are

111 0.875 0.0151

[E)] - 015 2.79 0.80
0.09 0.105 0.65

which are normalized to be

055 0.44 001
wfl- 004 075 021
011 012 0.74

So after one iteration the match structure is already starting to converge to the be
match ofP, = 1, Py = 0 for /~j. Note that in general fPand g,j are, in matrix
form, sparse due to the consistency condition (7.34). To see the results for an e
ample of a more appropriate scale, consult Fig. 7.7.

7.3.2 Rigid Bodies from Motion

The human visual system is predisposed to interpret (perceive) two-dimension:
projections of moving three-dimensional rigid objects as just that—moving rigid
objects. This facility is an interesting one, since it persists even when all three
dimensions information is removed from any single static view. This sort of result
has been known for some time [Wallach and O'Connell 1953; Johansson 1964
The ability to interpret points as three-dimensional objects demonstrated by
Johansson means that the interpretation process does not rely solely on monitc
ing the changes of angles and length of lines, as suggested by Wallach ar
O'Connell.

Of course any change between two two-dimensional projections of points ir
three dimensions can be explained by any number of configurations and motion:
Our visual system only accepts a few interpretations, often only one. This one is, i
the world of moving objects in which we live, usually correct. This ability to reject
unlikely interpretations is consistent with a "rigidity assumption” [Ullman 1979]:
Any set of elements undergoing a two-dimensional transformation which has ¢
unique interpretation as a rigid body moving in space should be so interpreted.
seems likely that something like this rigidity assumption is built into our visual sys-
tem. However, saying that does not tell us much about how it could possibly work
Below we consider the problem of obtaining three-dimensional structure from set:
of corresponding two-dimensional points.

One related area of work is the reconstruction of three-dimensional structure
when the corresponding points in two dimensions are not known. The reconstruc
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S

Fig. 7.7 Optical flow from feature point analyses, (a) An image, (b) Later image, (c) Opti-
cal flow found by relaxation.

tion procedure must begin by matching points in the several views. It can be show
[Shapira 1974] that general wire-frame objects of straight wires (of which the edge
of polyhedra are only a special case) may be reconstructed from a finite number
perspective projections, but that for general wire-frame objects, the number ¢
projections needed may be quite large. In fact, given any set of projection:
(viewpoints and viewing planes), an object may be constructed that is only ambi
guously specified by those projections. Further work on reconstruction from pro-
jections is reported in [Shapira and Freeman 1978, Wesley and Markovsky 1981].

If point correspondences are known, it is possible to compute a unique
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three-dimensional location of four noncoplanar points from just three (ortho-
graphic) projections [Ullman 1979]. If the projections result from noncoplanar
viewpoints, the recovery of three-dimensional structure is straightforward and i
outlined below. If the projections are from coplanar viewpoints, the computation:
become more complex but still yield a unique result up to reflection. This secon
case is an important one; it applies if the camera is stationary and the object r
volves about a single axis, for instance. Since the reconstruction is unique, tt
method never gets a wrong structure from accurate two-dimensional evidenc
about a rigid body. The probability that three views of four nonrigidly connected
points can be interpretated as arigid body is very low. Thus, the method is unlike
to report structure that is not there.

The method may be heuristically extended to multiple objects. Given the ca
pability of describing the three-dimensional structure of four points, one can sec
ment large collections of points by treating them in groups of four, deriving their
structure and hence their motion. Groups of points that are not rigid have a ve
low probability of being interpreted as rigid, and the rest will presumably cluster
into sets that share motions associated with rigid objects in the imaged scene. TF
the method to be described may be adaptable for image segmentation.

The calculation may be applied to coplanar points. If a unique result is
derived, it is correct; otherwise, the fact that the points are coplanar is reveale
Generally, accuracy of two-dimensional positional information can be sacrificed tc
some degree if more points or more views are supplied. Perspective projections ¢
more difficult to analyze. Such views can easily be treated approximately by th
technique of breaking them into four element groups and treating each group as
it were orthographically projected in a direction depending on its position in the
scene. Thus perspective may be dealt with globally, although each group is local
treated as an orthogonal projection. The assumption of orthographic projection in
plies that the method cannot recover relative depth of objects. The method do
not lend itself well to "structure from receding motion" in which the motion infor-
mation is largely encoded in the perspective effects which render objects larger
smaller as they advance and recede. The method does not serve well to explain |
man performance on moving images of a few points on nonrigid objects (such ¢
those in Section 7.3.3).

Assume that three orthographic projections of four noncoplanar points ar
given, and that the correspondence between the points in the projection is know
Translational motion perpendicular to a projection plane is unrecoverable, an
translation in a plane parallel to the projection plane is explicitly reproduced in the
image by the projection process. The problem thus easily reduces to the case tl
one of the points is chosen as the origin of coordinates, and stays fixed throughao
the process. This treatment follows that of [Ullman 1979].

Let the four points be O, A, B, and C. Three orthographic views, projection:
on some planes lI)YbL, and ry, are the input to the process. A coordinate system is
chosen with origin at 0, and a, b, and c are vectors from 0 to A, B, and C. The
each view has a two-dimensional coordinate system with the imabat afs ori-
gin. Let p, and g, be the orthogonal unit basis vectors of the coordinate systems
the n,. Let the image coordinates of A, B, and Con Il, be Gg#,)), (xib,),
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y{b)\ and Gc(c,), j>(c,) for / = 1, 2, 3. The calculations produce vectors u,,,
which are unit vectors along the lines of intersectioh, afith Uj.
The image coordinates are in fact

X< - ap,  _y@) = ag-
x(6,) = b-p, .y(6,) = b-q, (7.38)
X@Q =cp, ytc,) =cq,

The unit vector uy is on both n, aRH; hence for some ri&y,ty; and vy,

» = tyP/ + syq, (7.39)
N+ sg-1
“u ~ fyPy + tyty (7.40)
Ntvl=1

Equations (7.39) and (7.40) yield

Taking the scalar product of a, b, and c with Eq. (7.41) yields three more equa
tions, which are linearly independent. These equations in /-, Sy, ty, and v, com
bined with Egs. (7.39) and (7.40), yield two solutions differing only in sign. But
this means that (up to a sign) u,, is determined in terms of the image coordinat
basis vectors (p, g,) and (p,)qTwo u vectors determine one of the planes of
orthogonal projection. For instance, u” ag8llie in PT,. Given the plane equation

for the n,, the three-dimensional locations are computed as the intersection ¢
lines perpendicular to the n, and through the two-dimensional image points. Ol
course, because of the ambiguity in sign, the expected mirror image ambiguity o
structure exists.

The extension to the case that & W3 = W, Where the three viewpoints
are coplanar, is not difficult. It is perhaps a little surprising that coplanar viewpoints
still yield a unique interpretation.

An extension of the mathematics to perspective imaging is not difficult to for-
mulate, but the equations are nonlinear and must be solved either conventionally
say by the multidimensional Newton-Raphson technique of Appendix 1, or
perhaps by cooperative algorithmsaafore artificial intelligence flavor [Lawton
1981].

In geometrically underconstrained situations, plausible interpretations can
sometimes be made by using other knowledge to give constraints. For example
one can minimize a second-difference approximation to the acceleration of point:
in order to use the "constraint" of smooth motion. Such a criterion may find a sin-
gle "best" location for points. Another example is the use of position and velocity
commonality over time to establish rigid members in linkages (Section 7.3.3), a
first step to location determination.

To see how the equations might be set up, consider the perspective geometr
of Section7.2.1.In this simplified Cartesian system, Eqgs. (7.1) and (7.2) are used
as before. Since z(x', y', 1) = (x, Y, z), the location of any point is determined (ug
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to a scale factor, since the focal length is not explicit) from its image coordinat
and its depth coordinate, z. For F > 1images and N > 3 points there arelFN
unknowns (the ability to scale distance allows one point to be placed arbitrarily).

To apply the rigid body constraint, enough pairwise distances between poir
must be specified to lock them into a rigid configuration. For three points, thre
distances are necessary. Each additional point requires another three distan
and so for each interframe inten8fl/ —2) constraints are needed, for a total of
3 (F—1) GV — 2) constraints. Thus, whenever

2FN -6F-3N  +1>0 (7.42)

consistent equations from the constraints can be solved [Lawton 1981]. With t
views, five points are needed; with three views, four points. This is not surprising
given the preceding analysis for orthographic projections.

Consider the simple casetwd points seen in two frames. If they are rigidly
connected, one constraint equation holds.dguivalent to

(Xn = Xi2HXn - X12) = (&l - X22)-(Xz) - X20) (7.43)
(x», X'ij are, respectively, the world and image coordinate vectors of point j il
frame (/). SincXy = Zyx'y, (recall (7.1) and (7.2)) the constraint becomes
2\ (X'n-x'n) + zZfc (XoX'12) - 2zZNzh(X'11-X'12)
- zZIX (X21-X21) - z% (X'22-X'20) + 2Z1722(XrX22) = 0 (7.44)
A further constraint that objects only move in the "ground plane," or at.

constant y, has the effect of removing two unknowns through substitution in tl
constraint equation above. Since for arbitrargnd n,

Yo = Zimyim = y-m = z,y', (7.45)

e in
As a final example, a restriction to purely translational motion of the poin
configurations yields the constraint

(XN - Xa) - (X12-X22) = 0 (7.47)

Expanding this as the product of unknown depths (z) and known image positio
(xO vyields a vector equation that may be written componentwise as three line
equations in four unknowns. Recall that a focal length must be fixed, effective
setting one unknown: setting oBfgto 1 gives a system of three linear equations in
the other three zy.

7.3.3 Interpretation of Moving Light Displays—A Domain-Independent Approach
One of the domains that provides the purest aspects of motion vision is movi
light displays (MLDs). These are sequences of images which track only a fe

discrete points per frame. A typical way to produce an MLD is to attach small gla:
bead reflectors to a person's major joints (shoulders, elbows, wrists, hips, kne
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ankles), focus a strong light on him or her, and manipulate the contrast of a vid:
tape recorder so as to produce on videotape a record of the movement of
reflective points on th@ints. A single frame from such arecord is unrecognizable
by an inexperienced subject (Fig. 7.8).

However, a sequence of such frames quickly gives (typically in 0.4 secon
not only a compelling perception of motion of a three-dimensional body, but &
lows recognition of the sequence as depicting a walking person, and a descrip!
of the type of motion (walking backward, jumping, walking left). Complicated
scenes such as several independently moving bodies and couples dancing ca
recognized. Sophisticated judgments can be made, such as determining the se»
subject from an MLD, or recognizing the gait of a friend [Johannson 1964].

MLDs thus present quite a challenge to computer vision. It could be thi
MLDs of moving people are interpreted by specialized neural mechanisms ¢
pressly tailored to the purpose of dealing with any visual input whatever that st

Yo &
o e

Frame 1 Frame 5 Frame 9 Frame 13
A
|*/. * >F . y
Frame 17 Frame 21 Frame 25 Frame 29
Frame 33 Frame 37 Frame 41 Frame 45
oo &
Frame 49 Frame 53 Frame 57 Frame 61

Fig. 7.8 An MLD foraman walking his dog.
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gests moving people. MLDs certainly demonstrate that texture, continuous fie
of flow, and especially that the interpretability of static versions of the scene are
necessary for human beings to do complex perception of certain three-dimensi
objects.

This section is concerned with MLDs of moving human beings, and the
terpretation we desire consists of separating images of individuals, in deriving tl
"connectivity" (i.e., the rigid links that connect the points), and possibly
describing the three-dimensional motion in which the subjects are engaged.

MLDs produced with perspective projection have few of the pleasant prop
ties of the rigid orthographic projection which were used in Se€ti®.In partic-
ular, both translating and rotating objects are inherently ambiguous in perspec
projections [Roache and Aggarwal 1979]. The approximate method outlined
Section7.3.1,in which local groups of four points are considered rigid and orthe
graphically projected, fails for MLDs of walking people. In many applications, d
gitization error will limit severely the accuracy returned. Worse, in a typical 1
point MLD of amoving person, there is never a rigid system of four noncoplan
points. The small departures from rigidity occurring in 30 ms of normal walking &
enough to render the rigidity assumptions invalid [Rashid 1980].

An algorithm in [Badler 1975] extracts the trajectory of two moving points
they move in parallel paths and are viewed by spherical projection. The projec
conditions are approximately met in typical moving-person MLDs, but the lack
points moving in parallel paths is enough to render the algorithm inapplicable.

A good start in the interpretation of MLDs involves solving the point
correspondence problem between frames. Knowing how points move from fre
to frame gives at least a start on perceiving the continuity of the objects in
scene. Solving this problem from frame to frame may be attacked in any numbe
ways;the relaxation approach of Section 7.2.3 is an example.

Another is to predict the location of a point in the two-dimensional imag
from its velocity in the preceding frame. Velocity is computed from the
differences in position of the point in the preceding two frames. Predicting wher
point will be in frame3 implies that one knew which point it was in framkesind 2.
One way of getting the process started is to associate points in flaares 2 that
are nearest neighbors. Evidence suggests that human beings in fact are not ir
ble trackers of points in MLDs [Rashid 1980]. However, they do not let local it
consistencies in point interpretation (say, if the ankle momentarily "turns int
the knee) detract from their overall perceptiorapfoving person. This is a good
example of how inconsistent interpretations arise in human vision.

A program can be given similar resilience by having it suspend judgment
contradictory clues and use succeeding frames to resolve the problem [Ra
1980; O'Rourke 1980]. Having established local point correspondences, the n
problem is to group the points into coherent three-dimensional structures
separate individual bodies moving in the scene. When constraints on the scent
available that make analytic techniques applicable (Section 7.3.1), explicit grot
ing of points prior to analysis may be unnecessary. In fact, with complex MLI
such as Ullman studied (e.g. two transparent but spotty coaxial cylinders rotat
in opposite directions about an axis in the viewing plane), most naive groupi
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strategies based on two-dimensional motion in the image will fail. Ullman's
method chooses four-tuples of points from such a scene; on the average sev
eighths of such groups involve points from both cylinders, but with accurate dal
the algorithm can identify such nonrigid four-tuples. The remaining one-eighth o
the groups have consistent interpretations as rigid rotating groups, and the grot
fall into two classes, one for each cylinder.

One straightforward heuristic approach to MLD interpretation enjoys
moderate success and does not use domain-dependent models [Rashid 198C
has the characteristic that it deals exclusively with two-dimensional motions it
order to extract information about three dimensions. The approach is more heur
tic than Lawton's and certainly more than Ullman's (Section 7.3.1). It is prey t
many of the same pitfalls that threaten any image-based (as opposed to wor
based) approach to computer vision. With sparse MLDs of nonrigid objects, clus
tering algorithms may be used to group points into related structures. Rashic
method computes the minimum spanning tree of points in a four-dimensions
space of two-dimensional position and two-dimensional velocity. That is, eacl
point in the MLD is represented at any time t by a four-vector

(x(r), v(r), u®, v(0)

where u and v are the velocity in image x and y coordinates. Points may |
clustered in this position-velocity space on the basis of a four-dimensiong
Euclidean metric, modified by information about distances derived from precedin
frames. Perspective distortion can affect the usefulness of two-dimensional di
tances computed in previous frames, and data scaling is useful to establish a r
sonable relation between units in the four-dimensional space. Rashid's techniq
is to scale the data in each dimension to have unit variance and zero mean, anc
compute cumulative distances between points in a frame by a function such as

Duli, j) = di, ) + £,_.(,j) x 0.95 (7.48)

whereD,(i, j) is the cumulative distance between points /and j in frame «, ant
d(i, j) is their Euclidean distance.

This clustering method can successfully group points on the two cylinders i
the rotating-cylinder sequence mentioned above after seven frames. Figure
gives the results of clustering the data for the MLD of Fig. 7.8. Clustering is stabl
after some 25 frames (about one-half of a step).

7.3.4 Human Motion Understanding—A Model-Directed Approach

Human motion understanding may be done with a much different approach the
the heuristic clustering applied to MLDs in Section 7.3.3. A very detailed model o
the domain can help restrict search, make inferences, disambiguate clues, and
forth. A program for understanding images of human motion successfully use
such an approach [O'Rourke 1980; O'Rourke and Badler 1980].

The body model accounts for such factors as relative location of body part:
joint angle ranges, joint angle acceleration limits, collision checkinggramity. A
motion simulation program drives a "bubble man" representation of a perso
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(Fig. 7.10a) [Badler and Smoliar 1979]. This representation is used to produce &
shaded graphic rendition which serves as input to the motion understanding pro
gram (Fig. 7.10b). Knowledge of the imaging process also provides constraints or
the configuration of the figure represented. For instance, perspective, the
figure/ground distinction, the location of features, and occlusion all have implica-
tions for the interpretation of the scene as a configuration of the model.
The system is another exampleaaboperative, constraint-satisfying system

(Chapter 12), this time one that involves a high-level domain-dependent model.

®

(0 O]
Fig. 7.10 Understanding human motion through the incorporation of many
constraints, (a) Bubble Man from simulation program, (b) Input to motion under-

stander; a bowing marc,d) Initial and final stages in understanding the motion
of the bowing man.
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The constraints imposed by the model restrict the application of low-level opers
tors, and their results reduce uncertainty in parts of the model configuration
Through the relations between model parts, improved estimates for part locatiol
are evolved and propagate throughout the model. Figure 7.10c and d show how 1
image of the bowing man is understood more accurately as time passes and m
constraints are propagated through the model. It should be noted that only ti
hand, foot, and head features are explicitly searched for in the image. The box
represent possible locations for the obvious body parts. Note how the occlusion h
been understood.

7.3.5 Segmented Images

MovingPolygonsandLine Drawings

As one step along the way to motion understanding, the analysis of ideal pt
lygonal images was popular for a time [Aggarwal and Duda 1975; Martin and Ag
garwal 1978; Potter 1975]. The assumptions are usually that opaque polygo
move in parallel planes and may obscure one another (this is often called a 2.
dimensional situation). The viewpoint is somewhere "above" the collection of
moving shapes. The viewer (program) is presented with a sequence of frames
ther of line drawings or gray level images of the scene (Fig. 7.11). Polygon motio
is assumed small between frames. The goal is usually to segment the scenes |
polygons, and to extract such information as their direction and speed of motio
The solutions to these problems usually reflect assumptions about the connectiv
of the polygons, or restrictions on their motion, and often revolve about the allow
able topological and geometrical transformations that can take place in suc
scenes.

For instance, in a frame with two polygons such as that shown in Fig. 7.1Z
certain scene vertices belong to primitive polyhedra (they are "true" vertices
whereas others are "false" artifacts of occlusion. The lines impinging at true vel
tices will not change their angle of meeting through time, but false vertices ma
change angles if the polygons rotate as they move. False vertices are usually ¢
tuse.

Complex connectivity changes can arise when nonconvex polygons slide pa
one another. Sorting out a coherent interpretation of a sequence of frames, es
cially in the presence of noisy vertex positions, is a challenging exercise.

A system was designed in [Badler 1975] which used sequences of line drav
ings produced by a spherical projection of a three-dimensional world to reconstru

Fig. 7.11 Two frames from a motion image of three moving polygons.
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Fig. 7.12 True (T) and False (F) vertices in a scene of two overlapping pol-

ygons.
some three-dimensional aspects of the input, and to transform the pictorial inj
into natural language descriptions of motion.

Similarity Analysis, Then Difference Measurement

This approach is probably the most intuitive if motion perception is thougt
to be built up from perception of successive frames. Theisdgmply to extract an
object in one frame, and to search for it in the next frame. Obviously, the ba:
techniques here are the description-extraction process (i.e., static computer vis
the topic of most of this book) and matching (Chapter 11).

The entire range of matching techniques, from image matching to descri
tion matching, has been applied to image sequences. One characteristic of
approach in its pure form is that motion is merely a nuisansegmentation is
performed without using motion information. Usually the approach is pursued in
more pragmatic and domain-dependent fashion: for instance, the matching may
guided by knowledge about the motions.

One advanced system that uses this basic paradigm is described in [P
1976; Price 1978; Price and Reddy 1977]. It segments and describes both ima
first. Using the symbolic descriptions, it matches complex scenes (such as hou
or aerial images) that have been relatively rotated by large amounts (45 to 18
and have size differences as well. It also derives the geometric transformation t
produced the second image from the first.

Clearly, the major problems in systems of this sort come from generating al
matching descriptions. The matching must be sophisticated, and to be successft
general it must combine symbolic and geometric components. The constraint tl
successive frames do not reflect violent motions eases the matching problem c
siderably, and iconic correlation techniques may sometimes apply.

DifferenceMeasurementThenSimilarity A nalysis

The idea behind this approach is to guide the similarity analysis with informe
tion about image differences. This seems a promising idea, because differences
easy to compute, whereas the very definition of similarity is open to question, al
computing it may be arbitrarily complex.
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In particular, in locating moving objects in an image sequence, one is invited
to ignore the stationary background. The area of changing image can be trackec
easily from image to image, and subjected to further analysis. Rather than trying to
track an object from image to image, it is attractive to consider letting the object
move far enough that it does not overlap between two images. Then the difference
between the images will actually reflect the structure of the object.

One possible method [Nagel 1978a, 1978b; Jain and Nagel 1978] proceeds a
follows:

1. Obtain two images from the motion sequence such that the object of interest
will have moved far enough not to overlap in position in the two images. (One
clearly needs information about the objects and the imaging parameters to as:
sure no overlap.)

2. Segment the two images into regions.

3. Compute a dissimilarity measure between the overlapping areas of regions in
the two images. One reasonable measure is the likelihood ratio for the two hy-
potheses that the intensities in the overlaps come from the same distribution
of intensities or from different distributions.

4. In one of the images, take all regions that are most consistent with the hy-
pothesis of different distributions and assume that they arise from the moving
object (or its old vacated position). Merge these regions by a reasonable tech-
nigue into one which is taken to include the moving object.

5. Take the boundary of the candidate region and use it as a template for correla:
tion detection tracking between adjacent frames.

6. The offsets revealed by the correlation process give the velocity, and can be
used to "subtract out" the motion, register the views of the object in several
images, and thus obtain a more accurate characterization of the object.

This approach leads to results such as those shown in Fig. 7.13.

EXERCISES

7.1 Write ageometric explanation tie FOEphenomenon.

7.2 Devise a motion segmentation scheme for rigid bodies in translational three-
dimensional motion that uses tRGE calculation.

7.3 Prove that the parameftiowpath equation (7.3) indeed does produce a straight
line in image coordinates.

7.4 Prove the time-to-adjacency relation (7.5). A geometrical demonstration may be
madewith similar trianglesan algebraic onis not very hard.

7.5 Express Eg. (7.12) as much as possible in terms of observables in the optical flow
"image." Whais left unspecified?
7.6 Perform Exercise 7.5 with equation (7.13).
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Fig. 7.13 Motion from segmented images. Initial (a) and final (b) frames from 16-frame
sequence. The object of interest is the car moving left to right in the intersection, (c) Car seg-
mentation from an intermediate frame, (d) Car reconstructed from several frames; the gray
values result from aligning the values extracted from individual frames by segmentation.

7.7

7.8

7.9
7.10

7.11

Exercises

Specialize the result of Exercise 7.6 to the case that the observer is moving in th
direction of his direction of view [the FOE is €,0)].

Fill in the steps in the derivations of the general and special csBesidbfe (Eqgs.
(7.18) and (7.21) through (7.23)).

Fill in the steps in the derivations of tarand tanr (Egs. (7.28) and (7.29)).

Show how to compute absolute depth from flow (Section 7.2.2) if the observer speec
is known.
The Laplacian af in Section 7.2.3 is the sum of the second partial derivatives of
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with respect to 0 andj>. Write it out and show that it has singularities only when the
Laplacian of depth (/) does excepkét = Qor-norr=0.

7.12 In Section 7.2.2, the 9, $ system is divorced from the retinal position. How might
this coordinate system be deduced from optical flow, or how might this deduction be
unnecessary?

7.13 Work out the details of the vector equation referred to in the last paragraph of Sec-
tion 7.3.2.

7.14 What do flow paths look like if the observer (or the environment) only executes ro-
tational motion? Pick a congenial coordinate system and prove your supposition.

7.15 Tighten up the "common motion" heuristic in Section 7.1.2. What domains under
what sorts of world motion yield what sorts of "common" image motions for ob-
jects?
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Ultimately, one of the most important things to be determined from an image i
the shapeof the objects in it. Shape is an intrinsic property of three-dimensiona
objects; in a sense it is the primal intrinsic property for the vision system, fron
which many others (surface normals, object boundaries) can be derived. It is p
mal in the sense that we associate the definitions of objects with shape, rather tt
with color or reflectivity, for example.

Webster defines shape as "that quality of an [object] which depends on tr
relative position of all points composing its outline or external surface." This
definition emphasizes the fact that we are aware of shapes through outlines a
surfaces of objects, both of which may be visually perceived. It also makes the di
tinction between the two-dimensional outline and the three-dimensional surfac
We preserve this distinction: Chapter 8 deals with two dimensional shape:
Chapterd with three dimensional shapes.

If our goal is to understand flat images, why bring solids into consideration®
Our simple answer is that we believe in many cases vision without a "solid basi:
is a practical impossibility. Much of the recent history of computer vision demon-
strates the advantages that can be gained by acknowledging the three-dimensic
world of objects. The appearance of objects in images may be understood by und
standing the physics of objects and the imaging process. The purest form of tw
dimensional recognition, template matching, clearly does not practically extend t
a world where objects appear in arbitrary positions, much less to a world of nonr
gid objects. It is true that in some important image understanding tasks (interpret
tion of chest radiographs, ERTS images or some microscope slides), the thi
dimension is irrelevant. But where the three-dimensionality of objects is impor-
tant, the considerable effort necessary to develop a usable three-dimensior
model will always be amply repaid.

Shape recognition is doubtless one of the most important facilities of the
mammalian visual system. We have seen how important shape information can

Part Il Geometrical Structures

Page 243 of 539



Part 1ll

extracted from images in early processing and segmentation. One of the majc
challenges to computer vision is to represent shapes, or the important aspects
shapes, so that they may be learned, matched against, recollected, and used. T
effort is hampered by several factors.

1. Shapesare oftencomplex.Whereas color, motion, and intensity are relatively
simply quantified by a few well-understood parameters, shape is much more
subtle. Common manufactured or natural shapes are incredibly complex; they
may be represented "explicitly" (say by representing their surface) only with
hundreds of parameters. Worse, it is not clear what aspects of shapes a
important for applications such as recognition. An explicit and complete
representation may be computationally intractable for such basic uses a:
matching. What "shape features" can be used to ease the burden of comput
tion with complex shapes?

2. Introspectionis nohelp. Human beings seem to have a large fraction of theil
brains devoted to the single task of shape recognition. This important activity
is largely "wired in" at a level below our conscious introspection. Why is
shape recognition so easy for human beings and shape description so harc
The fact that we have no precise language for shape may argue for the inacce
sibility of our shape-processing algorithms or data structures. This lack of cog-
nitive leverage is a trifle daunting, especially when taken with the complexity
of everyday shapes.

3. Thereidlittle classicalguidance.Mathematics traditionally has not concerned
itself with shape. For instance, only recently has there been a mathematica
definition of "rigid solid" that accords with our intuition and of set operations
on solids that preserve their solidity. The fact that such basic questions are
only now being addressed indicates that computer science must do more tha
encode some already existing proven ideas. Thus we have the next point.

4. The disciplindsyoung.Until very recently, human beings communicated abou
complex shapes mainly through words, gestures, and two-dimensional draw-
ings. It was not until the advent of the digital computer that it became of
interest to represent complex shapes so that they could be specified to th
machine, manipulated, computed with, and represented as output graphics
No generally accepted single representation scheme is available for all shape:
several exist, each with its advantages and disadvantages. Algorithms foi
manipulating shapes (for example, for computing how to move a sofa up a
flight of stairs,or computing the volume @fspecified shape) are surprisingly
complex, and are research topics. Often the representations good for one appl
cation, such as recognition, are not good for other computations.

It is the intention of this part of the book to indicate some of what is known
about the representation of shape. Although the details of geometric represente
tions may be still under development, they are an essential part of our layerec
computer vision organization. They are more abstract than segmented structure
and are distinguished from relational structures by their preponderance of metric
information.
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Representation of
Two-Dimensional
Geometric Structures 8

8.1 TWO-DIMENSIONAL GEOMETRIC STRUCTURES

The structures of this chapter are the intuitive ones of well-behaved planar region
and curves. A mathematical characterization of these structures that bars "path¢
logical" cases (such as regions of a single point and space-filling curves) is possibl
[Requicha 1977]. Basically the requirement is that regions be "homogeneously
two-dimensional" (contain no hanging or isolated structures of different

dimension—solids, lines or points). Similarly, curves should be homogeneously
one-dimensional. The property of regularity is sometimes important; a regular se
is one that is the closure of its interior (in the relevant one- or two-dimensional to-
pology). Intuitively, regularizing a two-dimensional set (taking the closure of its

interior) first removes any hanging one- and zero-dimensional parts, then cover:
the remainder with a tight skin (Fig. 8.1). In computer vision, often regions and
curves are discrete, being defined on a raster of pixels or on an orthogonal grid ¢
possible primitive edge segments. It is frequently convenient to associate a direc
tion with a curve, hence ordering the points along it and defining portions of the
plane to its left and right.

The one-dimensional closed curve that bounds a well-behaved region is ar
unambiguous representationipfSection 8.2 deals with representations of curves
and hence indirectly of regions. Section 8.3 deals with other unambiguous
representations of regions that are not based on the boundary. Sometimes unam|
guous representation is not the issue; it may be important to have qualitative
description of a region (its size or shape, say). Section 8.4 presents several ter:
descriptive properties for regions.
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Expanded view of
neighborhood

©

Fig. 8.1 (a, b, c) areRegions;(d) (e) and (f) are not.

8.2 BOUNDARY REPRESENTATIONS

8.2.1 Polylines

The "two-point" form of a line segment (see Appendix 1) extends easily pothe
lyline, which represents a concatenation of line segments as a list of points. Th
the point list % X,, X3 represents the concatenation of the line segments from xj tc
X, and from x to X3. If the first point is the same as the last, a closed boundary is
represented.

Polylines can approximate most useful curves to any desired degree of acc
racy. One might think there is one obvious way to approximate a boundary curv
(or raw data) with a polygonal line. This is not so: many different approaches ar
possible. Finding a satisfying polygonal approximation to a given curve basically
involves segmentation issues. The problem is to find cornebseakpointsthat
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yield the "best" polyline. As with region-based segmentation schemes, the ide:
here can be characterized by the conceptafgingand splitting. Splitting and
merging schemes may be combined, especially if the appropriate number of line
segments is known beforehand. For details, see [Horowitz and Pavlidis 1976].

In a merging algorithm, points along a curve (possibly in image data) are cor
sidered in order and accepted into a linear segment as long as they fit sufficient
well. When they do not, a new segment is begun. The efficiency and characteristi
of these schemes are quite variable, and endless variations on the general idea
possible. A few examples of "one pass" merging schemes are given here: expli
algorithms are available in [Pavlidis 1977].

If the boundary (represented on a discrete grid) is known to be piecewis
linear, it is specified by its breakpoints. To find them, one can look along the boun
dary, monitoring the angle between two line segments. One segment is betwe:
the current point and a point several points back along the boundary; the other
between the current point and one several points forward. When the angle betwe
these segments reaches a maximum over some threshold, a breakpoint is decle
at the current point. This scheme does not adjust breakpoint positions, and so
fast [Shirai 1975] but works best for piecewise linear input curves.

Tolerance-band solutions place a point on either side of the curve at the me
imum allowable error distance, and then find the longest piece of the curve the
lies entirely between parallel lines through the two points [Tomek 1974]. This
method proceeds without breakpoint adjustment, and may not find the mos
economical set of segments (Fig. 8.2).

An approximation of a curve with a polyline of minimum length in error by at
most a pixel is given in [Sklansky and Kibler 1976]. Each curve pixel is considerec
a square and the resulting pixel structure is four-connected. The approximatic
describes the shape of an elastic thread placed in the pixel structure (Fig. 8.3). T

| A

x

Fig. 82 Simple tolerance-band solution (dotted lines). Better
solution (solid lines).
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Fig. 8.3 Minimum length polyline.

method tends to have difficulties with curves that are sharp relative to the grid siz

Another scheme, [Roberts 1965] is to keep a running least-squared-err
best-fit line calculation for points as they are merged into segments [Appendix 1]
When the residual (error) afpoint goes over some threshold or the accumulated
error for a segment exceeds a threshold, a new segment is started. Difficulties ar
here because the conceptadireakpoint is nonexistent; they just occur at the in-
tersections of the best-fit lines, and without a phase of adjusting the set of points
be fit by each line (analogous to breakpoint adjustment), they may not be intu
tively appealing.

Generally, one-pass merging schemes do not produce the most satisfying
lylines possible under all conditions. Part of the problem is that breakpoints ar
only introduced after the fit has deteriorated, usually indicating that an earlie
breakpoint would have been desirable.

In asplittingscheme, segments are divided (usually into two parts) as long .
they fail some fitting condition [Duda and Hd®73;Turner 1974]. Algorithm 8.1
provides an example.

Algorithm 8.1: Curve Approximation

1. Given acurve as in Fig. 8.4a, draw a straight line between its end points (Fi¢
8.4b).

2. For every point on the curve, compute its perpendicular distance to thi
approximating (polyline. If it is everywhere within some tolerance, exit.

3. Otherwise, pick the curve point farthest from the approximating (poly)line,
make it a new breakpoint (Fig. 8.4c) and replace the relevant segment of pol
line with two new line segments.

4. Recursively apply the algorithm to the two new segments (Fig. 8.4d).

A straightforward extension is needed to deal with the case of curve segmen
parallel to the approximating one at maximum distance (Fig. 8.4e).
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Fig. 8.4 Stages in the recursive linear
©) segmenter (see text).

The area of a polygon may easily be computed from its polyline representa
tion [Roberts 1965]. For a closed polylinengboints (x(/),j>(/))» /=0,..., n~ 1,
labeled clockwise around a polygonal boundary, the area of the polygon is
! n-\

-z L (Mt - xy#+) (8.1)

where subscript calculations are modulo «. This formula can be proved by consic
ering it as the sum of (signed) areas of triangdash with a vertex at the origin, or

of parallelograms constructed by dropping perpendiculars from the polyline points
to anaxis.This method specializes to chain codes, which are a limiting case of poly-
lines.

8.2.2 Chain Codes

Chain codegFreeman 1974] consist of line segments that must lie on a fixec
grid with a fixed set of possible orientations. This structure may be efficiently
represented because of the constraints on its construction. Only a starting point
represented by its location; the other points on a curve are represented by succe
sive displacements from grid point to grid point along the curve. Since the grid is
uniform, direction is sufficient to characterize displacement. The grid is usually
considered to be four- or eight- connected; directions are assigned as in Fig. 8.!
and each direction can be represented in2Xits (it takes 18 bits to represent the
starting point in a 512 x 512 image).

Chain codes may be made position-independent by ignoring the "start
point." If they represent closed boundaries they may be "start point normalized'
by choosing the start point so that the resulting sequence of direction codes forrr
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an integer of minimum magnitude. These normalizations may help in matching
Periodic correlation (Section 3.2.1) can provide a measure of chain code similarit
The chain codes without their start point information are considered to be periodi
functions of "arc length." (Here the arc lengghust the number of steps in the
chain code.) The correlation operation finds the (arc length) displacement of th
functions at which they match up best as well as quantifying the goodness of tF
match. It can be sensitive to slight differences in the code.

The "derivative" of the chain code is useful because it is invariant under
boundary rotation. The derivative (really a first difference mod 4 or 8) is simply
another sequence of numbers indicating the relative direction of chain code se
ments; the number of left hand turns of n/2 or W4 needed to achieve the directic
of the next chain segment.

Chain codes are also well-suited for merging of regions [Brice and Fennemi
1970] using the data structure described in Sedidnl. However, the pleasant
properties for merging do not extend to union and intersection. Chain codes len
themselves to efficient calculation of certain parameters of the curves, such as are
Algorithm 8.2 computes the area enclosed by a four-neighbor chain code.

Algorithm 8.2: Chain Code Area

Comment:For a four-neighbor code (0: +x, 1. +y, 2: —X, 3: -v) surrounding a
region in a counterclockwise sense, with starting point (x, y):
beginChain Area;
1. area: = 0;
2. position :=y\
3. For eachelement of chain code
caseelement-direction of
begin case
[O] area :'= area-"position;
[1] ~position: = ~position + 1,
[2] area: = area + "position;
[3] /position : = position - 1;
end case;
endCha\n Area;

To merge two region boundaries is to remove any boundary they share, obtaining
boundary for the region resulting from gluing the two abutting regions together.
As we saw in Chapter 5, the chain codes for neighboring regions are closely relate
at their common boundary, being equal and opposite in a clearly defined sense (f
N-neighbor chain codes, one number is equal to the other plus Nil modulo N (se
Chapter 5). This property allows such sections to be identified readily, and easil
scissored out to give a new merged boundary. As with polylines, it is not immedi-
ately obvious from a chain-coded boundary and a point whether the point is withir
the boundary or outside. Many algorithms for use with chain code representation
may be found in [Freeman 1974; Gallus and Neurath 1970].
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(b) Chaincode: 11 10101030333032212322
(©) Derivative: 1003131331300133031130

Fig. 85 (a) Direction numbers for chain code elements, (b) Chain code for the
boundary shown, (c) Derivative of (b).

8.2.3 The «»$ Curve

The il—s curve is like a continuous version of the chain code representation; it i
the basis for several measures of shapds the angle made between a fixed line
and a tangent to the boundary of a shape. It is plotted against s, the arc length of
boundary traversed. For a closed boundary, the function is periodic, with a discol
tinuous jump from2TT back to 0 as the tangent reattains the angle of the fixed lin:
after traversing the boundary.

Horizontal straight lines in théi—scurve correspond to straight lines on the
boundary (/ is not changing). Nonhorizontal straight lines correspond to sec
ments of circles, sincd is changing at a constant rate. Thusifhre-scurve itself
may be segmented into straight lines [Ambleale1975], yielding a segmentation
of the boundary of the shape in terms of straight lines and circular arcs (Fig. 8.6).

L+s
(b]

@
(

Fig. 8.6 ilssegmentation, (a) Triangular curve and a tangent, (b) i<s curve showing re-
gions of high curvature. (c) Resultant segmentation.
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8.2.4 Fourier Descriptors

Fourier descriptors represent the boundary of a region as a periodic function whic
can be expanded in a Fourier series. There are several possible parameterizatic
summarized in [Persoon and BQ@74].These frequency-domain descriptions pro-
vide an increasingly accurate characterization of shape as more coefficients are i
cluded. In the infinite limit, they are unambiguous; individual coefficients are
descriptive representations indicating "lobedness" of various degrees.

The boundary itself may provide the parameters for the Fourier transform a:
shown in Fig. 8.7. The parameterizationFig. 8.7 gives the following series ex-
pansions:

XCp) = %™«  wo= 2-n/P, P = perimeter (8.2)
where the discrete Fourier coefficienxs are given by

Jkwos

X*- T?J xis)e'  ds (8.3)

A common feature for the Fourier descriptors is that typically the general
shape is given rather well by a few of the low-order terms in the expansion of th
boundary curve. Properly parameterized, the coefficients are independent of siz
translation, and rotation of the shape to be described. The descriptors do not lel
themselves well to reconstruction of the boundary; for one thing, the resulting
curve may not be closed if only a finite number of coefficients is used for the recon
struction.

The \\f-s curve may be used as the basis for a Fourier transform shap
description [Barrow and Popplestone 1971]. ijj(s) is converted to </>(s): 0(s) =
iji(s) - 27r s/P. This operation subtracts out the rising component. A number o
shape-indicating numbers arise from taking the root-mean-square amplitudes ¢
the Fourier components ef> (s), discarding phase information. The shape descri|
tors are again indicative of the "lobedness" of the shape.

(x.(s8).x2 (s))

Fig. 8.7 Parameterization for Fourier
*-*i  Series Expansion.
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8.2.5 Conic Sections

Polynomials ar@natural choice for curve representation, and certain polynomials
of degree 2 (namely, circles and ellipses) are closed curves and hence define 1
gions.Circles may be represented with three parameters, ellipses by five, and gel
eral conies by six. Thus the coefficients or parameters of conic sections are ters
representations. Conies are often good models for physical curves such as tl
edges of manufactured objects.

Conies are commonly used to represent general curves approximately [Patc
1970]. Conies have some annoying properties, however; an important one is th:
difficulty of producing a well-behaved conic from noisy data to be fitted. Unless
one is careful in defining the error measure [Turner 1974], a "least-squared error
fit of aconic to data points yields a conic which is a nonintuitive shape or eaen of
surprising type (such as a hyperbola when an ellipse was expected). Coni
representations and algorithms are explored in Appendix 1.

8.2.6 B-Splines

Interpolative techniques may be used to yield approximate representations. E
splines are a popular choice of piecewise polynomial interpolant. Introduced in
computer aided design and computer graphics, these classes of curves provide a
guate aesthetic content for much design and also have many useful analytic prope
ties. Usually, the fact that the curves are "interpolating" is not very relevant. What
is relevant is that they have predictable properties which make them easy to man
pulate in image processing, that they "look good" to human beings, that they
closely approximate curves of interest in nature, and so forth. Several schemes e
ist for constructing complex curves that are useful in geometric modeling, and de
tailed expositions are to be found in [deBoor 1978; Barnhill and Riesenfeld 1974].
The B-spline formulation is one of the simplest that still has properties useful for
interactive modeling and the extraction from raw data.

B-splines are piecewise polynomial curves which are relatecytodingpo-
lygon. Cubic polynomials are the most frequently used for splines since they are tt
lowest order in which the curvature can change sign. An example of the relation
ship between the guiding polygon and its spline curve is shown in Fig. 8.8. Spline:
are useful in computer vision because they allow accurate, manipulable interne
models of complex shapes. The models may be used to guide and monitor se
mentation and recognition tasks. Interactive generation of complex shape model
is possible with B-splines, and the fact that the complex spline curves have ters
representations (as their guiding polygons) allows programs to manipulate then
easily.

Spline approximations have good computational properties as well as gooc
representational ones. First, they amiation diminishing. This means that the
curve is guaranteed to "vary less" than its guiding polygon (many interpolation
schemes have a tendency to oscillate between sample points). In fact, the curve
guaranteed to lie between the convex hull of groups of censecutive points
wheren is the degree of the interpolating polynomial (Fig. 8.9.) The second advan-
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Fig. 8.8 A spline curve and its guiding
polygon.

tage is that the interpolation is local; if a point on the guiding polygon is moved,
the effects are intuitive and limited to nearby points on the spline. A third advan:
tage is directly related to its use in vision; a technique for matching a spline
represented boundary curve against raw data is to search perpendicular to t
spline tor edges whose direction is parallel to the spline curve and location perpel
dicular to the spline curve. Perpendicular and parallel directions are computabl
directlyfrornthe parameters representing the spline.

B-Spline Mathematics

The interpolant through a given set of points x,, / = 1,..., nis x(s), a vector
valued piecewise polynomial function of the parameter 5; s changes uniformly
between data points. For convenience, assume that x(/) = x,, that is: s assum
integer values at data points, and s = 1,..., n. g@aleof x(s) is a cubic polyno-

@

(b) ©

Fig. 8.9 The spline of degree n must lie in the convex hull formed by consecu-
tive groups of n +1 points, (@) n = 1 (linear), (b) n = 2 (quadratic), (c) n =3
(cubic).
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mial. Globally, x(s) has three orders of continuity across data points (i.e., up t
continuity of second derivative: curvature). Formally, x(s) is defined as

x(s) = £ Y,B,S) (8.4)
=0

The v, arecoefficientsrepresenting the curve x(s). They also turn out to be the
vertices of the guiding polygon. They are a dual to the set of pejrgach can be
derived from the other. The n data points x determine n v's. There are actual
n +2V's; the additional two coefficients are determined fiooundaryconditions.
For example, if the curvature at the end points is to be 0,

v =N A (8.5)

V" - (Vn_! ':: Vw+ 1)

Thus onlynof the n + 2 coefficients are selectable.

The basis functions B/(s) are nonnegative and hdiveited support,that is,
each B, is non-zero only for s between-2 and /+2, as shown in Fig. 8.10. The
limited support means that on a given span (/, / + 1) there are only four basis fun
tions that are nonzero, nameB;-\(s), B,(s), B\(s), and Z?2(s). Figure 8.11
shows this configuration. Thus, to calculategkfer some & simply find in which
span it resides, and then use only four terms in the summation (8.4), since the
are only four basis functions which are non-zero there.

The basis functions B,(s) are, themselves, piecewise cubic polynomials an
their definition depends on the relative size (in parameter space) of the spat
under their support. If the spans are of uniform size (e.g., unity), then all the bas
functions have the same form and are merely translates of each other. Moreow
each of the basis functions, on its nonzero support, is made of four pieces. So,
Fig. 8.11 in the span (/, / +1) appear: the fourth pie@\o{s), the third piece of
Bj(s), the second piece &.\(s), and the first piece d.2(s). Call these pieces
C, o(-8),..., Q3(5) respectively; then x is) on the interval (/, /isdlyen by:

X(S) - Cf-if3(S)Y,_i + Citz(shi
+ CI+i,iC))Viui + C2,0(S)Vyss

No matter what / is, C,j will have the same shape; this property allows &
simplification in calculations. Define foyrimitive basis functions, and interpolate
along the curve by parameter shifting:

Cjis)= Cjsi) [/=0,..,»+1; j=0,123 (8.6)

Fig. 810 Uniform B-spline: B,(s). Its
support is non-zero only for 5 between
i-2 i-1 i i+1 i+2 s /- 2and/ + 2.
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Fig. 811 The only four basis functions that are non-zero over the span (/,
/ + 1).Only the overlapping parts on this span are shown.

To find xGo),if sois in the span (/, i+1), use the formula:

X(s) = Vi-iCsis-  O+V/Ciis- i) + Vy+jCjCs-/) + V.,,Co(s-/) 8.7)
where the Q(t) are given by:
Cob) = |
6
3
Uy = ¥ -6t:3 +4

£ 0+ 3t -3t +1

o
Formal derivations may be found in [Barnhill and Riesenfeld 1974; deBoor 1978]

Useful Formulae
The formulae may be simplified still further. x(s) is calculated in pieces (se¢
ments);define the segments x,(f) where /ranges from D Then

x,(0) = X, for /=1, .., n-1
and
X,-i(D - X, (8.8)
In matrix notation, and explicitly calculating the definition of the cubic polynomi-
als C,-(f),
X - [P & HCHr i, Y, V.ep Vie2] (8.9)
where[C\ is the matrix:

-3
3
3
1

~oO 9
o O or

-1

1 3
6 -3
1
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The /th column in the matrix [C] in Eq. (8.9) above is the coefficients of the cubic
polynomial Qit) 0 =0, 1, 2, 3).

There is a distinction between open and closed curves. For open curves the
boundary conditions must be used to solve for the two additional coefficients, as
above. For closed curves, simply

Vo=v, and 4 i (8.10)

The relation between the different v, and x, is summarized as follows. For open
curves with zero curvature at the endpoints:

%
6 0 [ Vo 1 0l
1 4 1 \Y X
1 4 1 v,-i Xfl-1
0 6 Ve X,
and for closed curves:
[ Vo Xo 1
vy Xl
(8.11)
4 1 V-l -l
Ve X5 .

Equation (8.10) gives the relationship between the points on the guiding po-
lygon and the points on the spline. It may be derived from Eq. (8.9) with t=0 (see
exercises). To interpolate between these points, use a value of t between the ex-
tremes ofd and 1. Choosing t =k dtfor k = 0,..., nwhere ndt=\" and substituting
into Eq. (8.9) yields

X,(*dt) = [Adt)Kk dt)Hk dt)\ [C] [V, V, V/e1, MY (8.12)
This can be decomposed [Wu et al. 1977; Gordon 1969] into the following equa-
tion.
e 6 M k-i]
Xj(kdt) = -6 2 /
J( ) 0 [C| v
1 1 -1 dt V/+1 (8.13)
0 0 . Vi+2.
The tangent at a curve is obtained by differentiation: VI-1|
07 1 k 20 OphdA-1 3 -3 IV
Xikdt) = 0 1 1 -1 10 2dt 3 -6 3 0 VA (814
1 1117001 1 -3 0 30 v
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8.2.7 Strip Trees

In many computational problems there are space-time trade-offs. A nonredundar
explicit representation for a general discrete curve, such as a chain code, is ter
but may be difficult to use for certain computations. On the other hand, a represer
tation for curves may take up much space but allow operations on those curves t
very efficient. A representation with the latter propertstigp trees[Ballard 1981].
Strip trees are closed under intersection and union operations, and these opel
tions may be efficiently implemented.

A strip tree is a binary tree. The datum at each node is a eight-tuple, of whict
six entries define a strip (rectangle) and two denote addresses of the aog3. (if
Thus each strip is defined by a six-tuple,S(%> w) as shown in Fig. 8.12. (Only
five parameters are necessary to define an arbitrary rectangle, but the redunda
representation proves useful in union and intersection algorithms to follow.)

The tree can be created from any curve by the following recursive procedure
which is very similar to Algorithm 8.1.

Algorithm 8.3: Making a Strip Tree

Find the smallest rectangle with a side parallel to the line segmgnt,)that just
covers all the points. This rectangle is the datum for the root ncuteesf. Pick a
point X, that touches one of the sides of the rectangle. Repeat the above proce
for the two sublists f ..., X)) and [x* ..., X,). These become sons of the root
node. Repeat the process until the approximation is accurate enough.

The half-open interval facilitates the computatidisfollow. In the example
above the poink explicitly appears in both subtrees but implementationally need
not be part of the lethne. Figure 8.13 shows the strip tree construction process.

Intersecting Two Curves via Strip Trees

Consider what happens whexstrip from one tree intersectsstrip from
another, as shown in Fig. 8.14. If the strips do not intersect, the underlying curve:

\r Fig. 812 Strip definition.
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(5.12)
FORMAT: X, Yo Xe Ye W, W

3 72 7 5 3
(20.7)

37912OZOZ 91220704._n
9 12 1514 0 UZO 15 4 20 7 0 OiZO

Fig. 8.13 Strip tree construction process.

do not intersect. If the strips do intersect, the underlying curves may or may not.
To determine which, the computation may be applied recursively. At the leaf level
of the tree defined as the primitive level, the problem can always be resolved.

Algorithm 8.4: Intersecting Two Strip Trees Representing Curves

BooleanProcedure Treelnt (717*2, L)
Begin

caseintersection type of two strips 7T and T2 of

begin case

[primitive] return (true)

[null] return (false)

[possible] I/T2 is the "fatter" strip

return (Treelnt(71,LSon(72) or Treelnt(TI,RSon(T2))
Elsereturn (Treelnt (LSon{1),72) or Treelnt (RSq71),77));

end case;
end;
NULL POSSIBLE
b.
Fig. 8.14 Types of strip intersections.
(a) Two kinds ofintersectionsNULL on
the left; various POSSIBLE intersections
on the right, (b) Under certain
conditions the underlying curves must
intersect.
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The "Union" of Two Strip Trees

The "union" oftwo strip trees may be defined astrip that covers botbf
the two root strips. The two curves definday [x'o, ...,x",), [X"0, ...,X"m) are
treated as two concatenated lists. That is, the resultant ordiexsugh thatxo =
X'0, Xm+w+l = \"m. This construction is shown in Fig. 8.15.

Closed Curves Represented by Strip Trees

A region mayberepresentedoy its(closed) boundary. The strip-tree con-
struction method describeith Algorithm 8.3 works for closed curves and, inciden-
tally, alsofor self-intersecting curves. Furthermorié a regionisnot simply con-
nected (has "holes")t can still be represented astrip tree whichatsome level
has connected primitives.

Many useful operations on regions can be carried out with strip trees. Exam-
ples are intersection betweencurve andaregion and intersecting two regions.
Another exampleis thedetermination of whether a point is inside a region.
Roughly, if any semi-infinite line terminatin@tthe point intersects the boundary
of the region an odd number of times, the point is inside. The implied algoisthm
computationally simplified for strip trees in the following manner:

Point MembershigProperty. To decide whether a poinisza member of a region
represented brpstrip tree, compute the numbef nondegenerate intersec-
tions of the strip tree with any semi-infinite strip which has||jw\\= O and
emanates fronz. If thisnumber is odd, the point is inside the region.

This is becausefor clear intersections the underlying curves may intersect more
than once but must intersect an odd number of tirdegotential difficulty exists
when the stripL is tangenttothe curve. To overcome this difficultyn practice,a
different L may be used.

Intersecting a Curve with a Region

The strategy behind intersectirastrip tree representingcurve withastrip
tree representin@region is tocreateanew tree for the portiomfthe curve that
overlaps the region. This camedone by trimming theoriginal curve strip tree.

Trimming is done efficiently by taking advantage of an obvious property of the in-
tersection process:

PruningProperty: Consider two strip& from T. andS, from T,. If the inter-
section ofS. with T, is null, then (a) if any point 0% is inside T, the entire
tree whose root strip Scis inside or on J and (b) if any point oiscis out-
side of T, then the entire tree whose root strifisis outsideT,.

R AAAN / Fig. 815 Construction for "union” of
\'s strip trees representing two curves.

This leadstothe Algorithm 8.5for curve-region intersection using treés.
the curve stripis"fatter" (i.e., has more area), copy the node and resolve the in-
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tersection at lower levels. In the converse case prune the tree sequentially by firs
intersecting the resultant pruned tree with the right region strip.

Algorithm 8.5: Curve-Region Intersection
commenA. Reference Procedure returns a pointer;
referenceprocedureCurveRegionInt{ 1, 72)

begin

A:=72;

commentR iaglobal used by CRInt;

return (CRInt(71,72));

end;

reference procedure CRInt(TI ,T2)
begin
beginCos?StripInt(71,72) of
[Null or Primitive]
/lintersection (71,/?, TRUE) = null then
/Nnside(71,/?) then return (71)
else return(null);
else return(71);
[Possible] //71 is "fatter" then
begin
NT:= NewRecord;
Xa(NT):«x4(T);
Xe(NT):=x, (T);
W, (NT): = w/(T);
W((NT): = MVCT);
LSon(NT) := CRInt (ISon(71),72);
i?Son(NT) := CRInt (/?Son(71),72);
returniNT);
end
elsecomment 72 is "fatter”
[?el«m(CRInt(CRINt(71,LSon(72)),/?Son(72)));
end;
endCase;
end;

The problem of intersecting two regions can be decomposed into two curve-region
intersection problems (Fig. 8.16). Thus algorithm 8.5 can also be used to solve the
region-region intersection problem.

8.3 REGION REPRESENTATIONS

8.3.1 Spatial Occupancy Array

The most obvious and quite a useful representation for a region on a raster is ¢
membership predicate(g, y) which takes the valug when point 6c, y) is in the
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Fig. 8.16 Decomposition of Region-Region Intersection, (a) Desired result.
(b) Portion of boundary generated by treating three-lobed region as a curve, (c)
Portion of boundary generated by treafing-lobedegion as a curve, (d) Result

of union operation.

region and the value O otherwise. One easy way to implement such a function

with a membershifarray,an array of I's and O's with the obvious interpretation.
Such arrays are quicky interrogated and also quite easily unioned, merged and

tersected by AND and OR operations, applied elementwise on the operand array
The disadvantages of this representation are that it requires much space and d
not represent the boundary in a useful way.

8.3.2 y-Axis

A representation that is more compact and which offers reasonable algorithms fi
intersection, merging, and union is they-axis representation [ME3#B].This is

a run-length encoding of the membership array, and as such it provides no explic
boundary information. It is a list ¢ikts. Each element on the main list corresponds
to arowof constanty in the image raster. Each row of constanty is encoded as a |l
of x-coordinate points; the first x point at which the region is entered while moving
along thaty row, then the x point at which the region is exited, then the x point &
which it next is entered, and so forth. The y-rows with no region points are omittec
from the main list. Thus, in a notation where successive levels of sublist are su
rounded by successive levels of parentheses, the y-axis encoding of a region
shown in Fig. 8.17; here the first element of each sublist is the y coordinate
followed by a list of "into" and "out of" koordinatesWhereay coordinate con-

Fig. 817 .y-axisregion
(245 (@435 (3355) representation.
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tains an isolated point in the region, this point is repeated in the x-axis representa
tion, as shown by the example in Fig. 8.17. Thus "lines" (regions of unit width)
can be easily (although not efficiently) represented in this system.

Union and intersection are implementedjeaxisrepresentations as merge-
like operations which take time linearly proportional to the numberafg. Two
instances of M-axis representations and the representation of their union are show
in Fig. 8.18. Note that the union amounts to a merge of x elements along rows or-
ganized within a merge of rows themselves.

The .y-axis representation is wasteful of space if the region being representec
is long, thin, and parallel to theaxis.In this case one is invited to encode it in x-
axis format, in an obvious extension. Working with mixed x-axisjamds for-
mats presents no conceptual difficulties, but considerable loss of convenience.

8.3.3 Quad Trees

Quadtrees[Samet 1980] are a useful encoding of the spatial occupancy array. The
easiest way to understand quad trees is to consider pyramids as an intermedia
representation of the binary array. Figure 8.19 shows a pyramid (Section 3.7) mad
from the base image (on the left). Each pixel in images above the lowest level ha:
one of three values, BLACK, WHITE, or GRAY. A pixel in a level above the base
is BLACK or WHITE fif all its corresponding pixels in the next lower level are
BLACK or WHITE respectively. If some of the lower level pixels are BLACK and
others are WHITE, the corresponding pixel in the higher level is GRAY.

Such a pyramid is easy to construct. To convert the pyramid to a quad tree,
simply search the pyramid recursively from the top to the bageatfay element
in the pyramid is either BLACK or WHITE, form a terminal node of the
corresponding type. Otherwise, form a GRAY node with pointers to the results of

(12367)(227)(31133) (51 2) ((134) (215 (32257 (422)

AUB

(12467)(217)(31357) (422) <51 2)

Fig. 8.18 Two point sets A, B, and A U B, with their /-axis representations.
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A
3 4
Cc
5 6
B
7 8
9 10
0 .-
JJ 12
F G | J
; hi
o g9 9 Level 0
- g‘ Level 1
Level 2 D
J White
g| GCray

Level 3

Fig. 8.19 Pyramid used in quad tree construction. Letters correspond to pixels
in the pyramid that are either BLACK or WHITE.

the recursive examination of the four elements at the next level in the tree (Algo:
rithm 8.6).

Algorithm 8.6: Quad Tree Generation

Reference Procedu@uadTreg{integer arraypyramid; integerx,y, level);
Comment'N'WINE, SW, SE are fields denoting the sons of a quadtree node;
Newnode(/>);
TYPECP) := PyramiddNDxj/, Level));
/ITYPE(-P) - BLACK or WHITEthen return(P)
else begin

SWCP):=QuadTree(Pyrami@*x, 2*y, Level + 1);

SE(P):=QuadTree (Pyramid, 2*x + 2*Level, 2*y, Level + 1);
NW(P):=QuadTree(Pyramid, 2*x, 2*y + 2*Level, Level + 1);

NE(P):=QuadTree(Pyramid, 2*(x + Level), 2*(y + Level), Level + 1);
return (P)
end;
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Here an implementational point is that the entire pyramid fits into a linear array of
size 2(2¥*'*). IND is an indexing function which extracts the appropriate value
given thex> v and level coordinates. The reader can apply this algorithm to the ex-
ample in Fig. 8.19 to verify that it creates the tree in Fig. 8.20.

The quad tree can be created directly from the base of the pyramid, but the al-
gorithm is more involved. This is because proceeding upward from the base, one
must sometimes defer the creation of black and white nodes. This algorithm is left
for the exercises [Samet 1980].

Many operations on quad trees are simple and elegant. For example, conside
the calculation of area [Schneier 1979]:

Algorithm 8.7:  Area of a Quad Tree

Integer Procedure Area (reference QuadTree; integer height)
Begin
CommentNWNE, SW,SEardieldsdenoting the sons of
a quadtree node;
BlackArea: = 0O;
/ITYPE(QuadTree) = GRAY then
for I in the set {(NW, NE, SWSE} do
BlackArea = BlackArea 4- Area (I (QuadTree), height-1)
elseifTYVE (QuadTree) = BLACK then
BlackArea = BlackArea +22+"eignt
return (BlackArea)
end;

Other examples may be found in the References and are pursued in the Exercises.

The quad tree and the associated pyramid have two related disadvantages as
representation. The first is that the resolution cannot be extended to finer resolu-
tion after a grid size has been chosen. The second is that operations between quz

= Black
D White
O Gray

Fig. 8.20' Quad tree for the example in Fig. 8.19.
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trees tacitly assume that their pyramids are defined on the same grids. The gric
cannot be shifted or scaled without cumbersome conversion routines.

8.3.4 Medial Axis Transform

If the region is made of thin components, it can be well described for many pur-
poses by a "stick-figure" skeleton. Skeletons may be derived by thinning algo-
rithms that preserve connectivity of regions; the medial axis transform (MAT), of
[Blum 1973;Marr 1977] is a well-known thinning algorithm.

The skeleton is defined in terms of the distance of a point x to a set A:

dg(x, A) = inf{</(x, z)|z in A} (8.15)

Popular metrics are the Euclidean, city block, and chessboard metrics
described in Chapter 2.

Let B be the set of boundary points. For each point P in a region, find its
closest neighbors (by some metric) on the region boundanpori than onéoun-
dary point is the minimum distance from x, then x is on the skeleton of the region.
The skeleton is the set of pairs {¥(>d B)} where ¢, B) is the distance from x
to the boundary, as defined above (this is a definition, not an efficient algorithm.)
Since each x in the skeleton retains the information on the minimum distance tc
the boundary, the original region may be recovered (conceptually) as the union o
"disks" (in the proper metric) centered on the skeleton points.

Some common shapes have simply structured medial axis transform skele
tons. In the Euclidean metric, a circle has a skeleton consisting of its central point.
A convex polygon has a skeleton consisting of linear segments; if the polygon is
nonconvex, the segments may be parabolic or linear. A simply connected polygor
has a skeleton that is a tree (a graph with no cycles). Some examples of medial a
transform skeletons appear in Fig. 8.21.

The figure shows that the skeleton is sensitive to noise in the boundary.
Reducing this sensitivity may be accomplished by smoothing the boundary, using
a polygonal boundary approximation, or including only those points in the skele-
ton that are greater than some distance from the boundary. The latter scheme c
lead to disconnected skeletons.

Algorithm 8.8: Medial Axis TransformationRosenfeld and Kak 1976]
Let region points have valuk and exterior points value 0. These points define an
image/°(x). Let/*(x) be given by

fx) - fix) + min ifHx)], k>0

rf(x,z)<I
The points'{x) will converge when k is equal to the maximum thickness of the
region. Wherek(x) has converged, the skeleton is defined as all points x such that

fx) > #z), dix, z) < 1.
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(b)
Fig. 821 Medial Axis Transform skeletons (a), and the technique applied to
human cell nuclei (b). Shown in (b) are both the "normal” skeleton obtained by
measuring distances interior to the boundaries, and the exo-skeleton, obtained by
measuring distances exterior to the boundary.

This algorithm can produce disconnected skeletons for excursions or lobes off the
main body of the region. Elegant thinning algorithms to compute skeletons are
given in [Pavlidis 1977].

8.3.5 Decomposing Complex Regions

\l

Much work has been done on the decomposition of point sets (usually polygons)
into a union of convex polygons. Such convex decompositions provide structural
analysis of a complex region that may be useful for matching different point sets.
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An example of the desired result in two dimensions is presented here, and the
terested reader may refer to [Pavlidis 1977] for the details. Such a decompositior
not unique in general and in three dimensions, such difficulties arise that the prc
lem is often called ill-formed or intractable [Voelcker and Requicha 1977].

The shapes dfig. 8.22 have three "primary convex subsets" labeled X, Y
and Z. They form different numbers of "nuclei" (roughly, intersection sets). The
shape is described by a graph that has nodes for nuclei and primary convex sub
and an arc between intersecting sets (Fig. 8.22c). Without nodes for the nuc
(i.e., if only primary convex subsets and their intersections are represented), r
gions with different topological connectedness can produce identical graphs (Fi
8.22h).

8.4 SIMPLE SHAPE PROPERTIES

8.4.1 Area

The areaof a region is a basic descriptive property. It is easily computed from curv
boundary representations (8.3.1) and thus also for chain codes (8.3.2); their cc
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tinuous analog is also useful. Consider a curve parameterized on arc3estgth
that points (x, y) are given by functions (xis), Y(s))

p
area:Jf X & _y *£) as (8.16)
ds

0 ds

where Pis the perimeter.
8.4.2 Eccentricity

There are several measureeotentricity,or "elongation”. One of them is the ra-
tio of the length of maximum chord A to maximum chord B perpendicular to A
(Fig. 8.23).

Another reasonable measure is the ratio of the principal axes of inertia; this
measure can be based on boundary points or the entire region [Brown 1979]. Al
(approximate) formula due to Tenenbaum for an arbitrary set of points starts with
the mean vector

Xo=- £ X 8.17)
" xin R
To compute the remaining parameters, first compute the (/th moments My
defined by
My= Z (xo-xViyo-yV (8.18)
xin R

The orientation, 9, is given by

9:Ttan_l(17,\l7_) +..(-|-} (8_19)
2 AfQ - 2
and the approximate eccentriciys 0 - Mo
L= <"»-FFS' 4+ Yo (8-20)
area

8.4.3 Euler Number

The Euler number is a topological property defining the set of objects that are
equivalent under "rubber-sheet" deformations of the plane. It describes the con
nectedness of a region, not its shape&oAnected regiois one in which all pairs of

Fig. 8.23 An eccentricity measure:
A IB.
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points may be connected by a curve lying entirely in the region. If a complex two-
dimensional object is considered to be a set of connected regions, where each on
can have holes, tHeulernumberfox such an object is denned as

(number of connected regions) (number of holes)

The number of holes is one less than the connected regions in the set complemen
of the object.

8.4.4 Compactness

One measure afompactnesgnot compactness in the sense of point-set topology)
is the ratio (perimetéyarea, which is dimensionless and minimized by a disk.
This measure is computed easily from the chain-code representation of the boun-
dary where the length of an individual segment of eight-neighbor chain code is
given by (V2) if the (eight-neighbor) direction is odd and by 1 if the direction is
even. The area is computed by a modification of Algorithm 8.2 and the perimeter
may be accumulated at the same time.

For small discrete objects, this measure may not be satisfactory; another
measure is based on a model of the boundary as a thin springy wire [Young et al.
1974].The normalized "bending energy" of the wire is given by

e\ 3 Mixe)ids 8.21)

whereK is curvature. This measure is minimized by a circle. E can be computed
from the chain code representation by recognizing KhatdQ/dS, and also from
the Fourier coefficients mentioned below since

2 2
dx d}\
dA dsi\
so thatE, using Parseval's theorem, is

£ (kwe)H\XA? +1Y?) (8.23)
Nt

where % = {X, Y are the Fourier descriptor coefficients in (8.2).

8.4.5 Slope Density Function

Theijj—s curve can be the basis for thl®pedensity function (SDF) [Nahin 1974].
The SDF is the histogram or frequency distribution oft// collected over the boun-
dary. An example is shown in Fig. 8.24. The SDF is flat for a circle (or in a continu-
ous universe, any shape with a monotonically varying i//); straight sides stand out
sharply, as do sharp corners, which in a continuous universe leave gaps in the his-
togram. The SDF is the signature of theb curve along thé axis.
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©

Fig. 8.24 The Slope Density Function for three curves: a triangular blob, a cir-
cle,and a square.

8.4.6 Signatures

By definition, aprojection isnot an information-preserving transformation. But
Section 2.3.4 showed that (as with Fourier descriptors,) enough projections allow
reconstruction of the region to any desired degree of accuracy. (This observatiol
forms the basis for computer assisted tomography.)

Given a binary image /(x)= 0 or 1, define the horizontalgnaturepx) as
PO)-f(X,y) (8-24)
y

pix) is simply the projection gfonto the xaxis. Similarly, define piy), the verti-
cal signature, as

piy) = ffix,y) (8-25)
Maxima and minimaof signatures are often usefiibr establishing preliminary

Sec. 8.4 Simple Shape Properties 257

Page 271 of 539



258

landmarks in an image to reduce subsequent search effort [Kruger et al. 197z
(Fig. 8.25). If the region is not binary, but consists of a density function, Eq. (8.24)
may still be used. Polar projections may be useful characterizations if the point o
projection is chosen carefully.

Another idea is to provide a number of projectiong, g, ¢, the /th one
based on the /th sublist in each row in a ~-axis-like region representation. This
technique is more sensitive to non-convexities and holes than is a regular projec
tion (Fig. 8.26).

8.4.7 Concavity Tree

Concavity trees [Sklansky 1972] represent information necessary to fill in local in-
dentations of the boundary as far as the convex hull and to study the shape of tt
resultant concavities.

A region S is convex iff for any xj and X2in S, the straight line segment con-
necting xi and xis also contained in S. The convex hull of an object S is the small-
est //such that

S CH

and//is convex.

Figure 8.27 shows a region, the steps in the derivation of the concavity tree
and the concavity treiself.
8.4.8 Shape Numbers

For closed curves and &bit chain code (together with a controlled digitization
scheme), many chain-coded boundaries can be given a unique shape number [B

Heart Analysis: Papillary Muscles

Signature

Fig. 8.25 The use of signatures to
locate a left ventricle cross section in
ultrasound data. (Outer curves are
smoothed versions of inner signatures.)
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[CY (b) (0

Fig. 8.26 A shape (a) and projections; from the first (b) and second (c) sublists
of they-axis representation.

biesca and Guzman 1979]. The shape number is related to the resolution of th¢
digitization scheme. In a multiple resolution pyramid of digitization grids, every
possible shape can be represented as a path through a tree. At each grid rest
tion corresponding to a level in the tree, there are a finite number of possibl
shapes. Moving up the tree, the coarser grids tend to blur distinctions betwee
different shapes until at some resolution they are identical. This level can be use
as a similarity measure between shapes. The basic idea behind shape number
the following. Consider all the possible closed boundaries with n chain segments
These form the possible shapes of "ordet The chain encoding for a particular
boundary can be made unique by interpreting the chain-code direction sequen:
as a number and picking the start point that minimizes this number. Notice tha
the orders of shape numbers must be even on rectangular grids since a curve
odd order cannot close.

Algorithm 8.9 generates a shape number of order n.

Object, 0 I K

/O\ 0, O3
On 0

12 031

Fig. 8.27 Concavities of an object and
the concavity tree.
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Algorithm 8.9:  Making a Shape Number of Order n

Choose the maximal diameter of the shape as one of the coordinate axes.
Find the smallest rectangle that has a side parallel to this axis and just cover
the shape.

From the possible rectangles of order n, find the one that best approximate:
the rectangle in step Scale this rectangle so that the length of the longest side
equals that of the major axis, and center it over the shape.

Set all the pixels falling more th&0%inside the region to 1, and the rest to 0.
Find the derivative of the chain encoded boundary of the region of I's from
step 4.

Normalize this number by rotating the digits until the number is minimum.
The normalized number is the shape number.

Figure 8.28 shows these steps.

Order = 26

@) (2) and (3)

Chain code: 01030300100032323222221211
Derivative: 20020212011002020111102010

O]

00202011110201020020212011
)

Fig. 8.28 Steps in determinirshape number (see text).
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Generating a shape number of a specific order may be tricky, as there is a
chance that the resulting shape number may be greater than order n due to dee
concavities in the boundary. In this case, the generation procedure can be re
peated for smaller values of n until a shape numberddgits is found. Even this
strategy may sometimes fail. The shape number may not exist in special case:
such as boundaries with narrow indentations. These features may cause step 4 i
Algorithm 8.11 to fail in the following way. Even though the rectangle of step 3
was of order n, the resultant boundary may have a different order. Nevertheless
for the vast majority ofasesa shape number can be computed.

The degree of similarity for two shapes is the largest order for which their
shape numbers are the same. The "distance" between two shapes is the inver:
of their degree of similarity. This distance is@tradistancerather than a norm:

ds, s) =0
dSi, $) >0 for 5!~ S (8.26)
diS S) < maxG/(§ &), dS& )

Figure 8.29 shows the similarity tree for six shapes as computed from their shape
numbers. When the shape number is well defined, it is a useful measure since it i
unique (for each order), it is invariant under rotation and scale changes of an ob-
ject, and it provides a metric by which shapes can be compared.

—O ABCDEF

14 0

(2]
(2]
® o o O
(o2}
(2}

m m O o w >

Fig. 8.29 Six shapes, their similarity trees, and the ultradistances between the shapes.
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EXERCISES

8.1 Consider a regicsegmentationvhere regions are tfo types:(1)filledin and (2)
with holes. Relate the numberjunctions,boundariesand filled-in regions to the
Eulernumber.

8.2 Write a procedurdorfindingwheretwo chain codes intersect.

8.3 Devise algorithmso intersectand union twaegionsin the”-axisrepresentation.

8.4 Show that the number ioftersectionf the curves under a clear strip intersection
is odd.

8.5 Modify Algorithm 8.4 to work with strip trees with varyingumberf sons.

8.6 DeriveEg. (8.9) fromEg. (8.7).

8.7 Show thaEgs. (8.12) and (8.13) aeqjuivalent.

8.8 Given two points X andyandslopes (j>(x\)and(/>(%),findtheellipsewith major
axisa that fits the points.

8.9 Write aprocedurdo intersect two regions represented by quad tpeeducingthe
quadtree ofthe intersection.

810 Determine the shape numbers for (a) a circle and (b) an octagon. Whaliss the
tancebetween them?
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Representations of
Three-Dimensional Structures 9

9.1 SOLIDS AND THEIR REPRESENTATION

We consider three general classes of representations for rigid solids

1. Surface or boundary
2. Sweep (in general, generalized cylinders)
3. Volumetric (in general, constructive solid geometry)

The semantics of solid representations is intuitively clear but sometime:
mathematically tricky. The representations have different computational proper
ties, and readers should keep this in mind when assessing a representation for p
sible use. As a simple example, a surface representation can describe how an ob,
looks; a volumetric version, which expresses the solid as a combination of sub
parts,may not explicitly contain information about the surface of the object. How-
ever, the solid representation may be better for matching, if it can be structured 1
reflect functional subparts.

Certainly we believe, as do others, that model-based vision will ultimately
have to confront the issues of geometric modeling in three dimensions [Nishihar
1979]. Ultimately, nonrigid as well as rigid solids will have to be represented. The
characterization of nonrigid solids presents very challenging problems.

Nonrigid solids are often a useful way to model time-varying aspects of ob-
jects.Here, again, the kind of model that is best depends heavily on the domair
For example, a useful mammal model may be one with a piecewise rigid linkag
(for the skeleton) and some elastic covering (for the flesh). Computer vision in th
domain of mammals, either static in various positions or actually moving, might be
based on generalized cylinders (Section 9.3). However, another nonrigid domain
that of heart chambers, that change through time as the heart beats. Here t
skeleton is a much less intuitive notion, so a different model of nonrigidity may ap-
ply. In most cases, nonrigid objects are modeled as parameterized rigid objects.
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the example of the human figure, the parameters may be joint angles for linkag
representing the skeleton.

The last part of this chapter deals with understanding line drawings, ai
influential and well-publicized subfield of computer vision. This seemingly simple
and accessible domain avoids many of the problems involving early processing a
segmentation, yet it is important because it has furnished several important alg
rithmic and geometric insights. An important breakthrough in this domain was ¢
move from "image understanding" in two dimensions to to an approach based ¢
the three-dimensional world and laws governing three-dimensional solids.

9.2 SURFACE REPRESENTATIONS

The enclosingsurface,or boundary, of a well-behaved three-dimensional object
should unambiguously specify the object [Requicha 1980]. Since surfaces are wt
is seen, these representations are important for computer vision. Section 9.2
considers mainly planar polyhedral surface representations. More complex "scul)
tured surfaces" [Forrest 1972; Barnhill and Riesenfeld 1974; Barnhill 1977] are
treated in Section 9.2.2. Some useful surfaces are defined as functions of thre
dimensional directions from a central point of origin. Two of these are mentionec
in Section 9.2.3.

9.2.1 Surfaces with Faces

Figure 9.1 shows the solid representation scheme most familiar to computer scie
tists. Solids are represented by their boundaries, or enclosing surfaces, which a
represented in terms of such primitive entities as unbounded mathematical st
faces,curves, and points which together may be used to define "faces."

In general, a boundary is made up of a numbéaicafs;faces are represented
by mathematical surfaces and by information about their own boundaries (consis
ing of edges and possibly vertices). A closed surface such as the sphere or a sph
cal harmonic surface of Section 9.2.3 may be thought of as having only one face.

To specify a boundary representation, one must answer several importal
guestions of representation design. What is a face, and how are faces represent
What is an edge, and how are edges represented? How much extra informati
(i.e.,useful but redundant relationships and geometric data) should be kept?

What is a face? "Face" is an initially appealing but imprecise notion; it is at
its clearest in the context of planar polyhedra. A face should probably always be
subset of the boundary of an object; presumably, it should have area but no da
gling edges or isolated points, and the union of all the faces should make up th
boundary or the object. Beyond this little can be said. For many purposes it make
sense to have faces overlap; it may be elegant to consider the letter on an alphal
block a special kind of face on the block that is a subset of the face making up th
side of the block. On the other hand, it is easy to imagine applications in whictk
faces should not overlap in area (then one easily can compute the surface area c
solid from its faces). In some objects, just what the faces are is purely a matter ¢
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m

I I l Fig. 9.1 Avolume and the faces of a

boundary representation.

opinion (Fig. 9.2). In short, any single definition of face is likely to be inadequate
for some important application.

The availability of explicit representationseaafgesfaces, and vertices makes
boundary representations quite useful in computer vision and graphics. The con
putational advantages of polyhedral surfaces are so great that they are often press
into service as approximate representations of nonpolyhedra (Fig. 9.3).

An influential system for using face-based representations for planar po-
lyhedral objects is the "winged edge" representation [Baurd§ag].Included in
the system is an editor for creating complex polyhedral objects (such as that of Fic
9.3) interactively. The system uses rules for construction based on the theorem «
Euler that if Fis the number of vertices in a polyhedron, is the number of edges
and Fthe number of faces, then-VE + F = 2. In fact, the formula can be ex-
tended to deal with non-simply connected bodies. The extended relation it
V - E +F = 2(2?— H), with B being the number of bodies and H being the

Fig. 9.2 What are the faces?
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Fig. 9.3 A polyhedral approximation to a portion of a canine heart at systole and
diastole. Both exterior (coarse grid) and interior surfaces (fine grid) are shown.

number of holes, or "handles," each resulting from a hole through a body [Lak
tos 1976]. Baumgart's system uses these rules to oversee and check certain val
conditions on the constructions made by the editor.

The "winged edge" polyhedron representation achieves many desiderata
boundary representations in an elegant way. This representation is presen
below to give a flavor of the features that have been traditionally found usefu
Given as primitives the vertices, edges, faces, and polyhedra themselves, ¢
given various relations between these primitives, one is naturally thinks of a reco
and pointer (relational) structure in which the pointers capture the binary relatior
and the records represent primitives and contain data about their locations
parameters.

In the winged edge representation, there are data structure records, or noc
which contain fields holding data or links (pointers) to other nodes. An exampl
using this structure to describe a tetrahedron is shown in Fig. 9.4. There are fc
kinds of nodes: vertices, edges, faces, and bodies. To allow convenient acces:
these nodes, they are arranged in a circular doubly linked list. The body nodes .
actually the heads of circular structures for the faces, edges, and vertices of
body. Each face points to one of its perimeter edges, and each vertex points to
of the edges impinging on it. Each edge node has links to the faces on each sid
it, and the vertices at either end.

Figure 9.4 shows only the last-mentioned links associated with each ed
node. The reader may notice the similarity of this data structure with the da
structure for region merging in Section 5.4. They are topologically equivalent
Each edge also has associated four links which give the name "winged edge" to
representation. These links specify neighboring edges in order around the t
faces which are associated with the edge. The complete link set for an edge
shown in Fig. 9.5, together with the link information for bodies, vertices, anc
faces.To allow unambiguous traversal around faces, and to preserve the notion
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Fig. 9.4 A subset of edge links far
tetrahedron using the "winged edge"
representation.

interior and exterior ofpolyhedron, a preferential ordering of vertices and lines is
picked (counterclockwise, say, as seen from outside the polyhedron).

Data fields in each vertex allow storage of three-dimensional world coordi-
nates,and also of three-dimensional perspective coordinates for display. Eacl
node has fields specifying its node type, hidden line elimination information, anc
other general information. Faces have fields for surface normal vector informa
tion, surface reflectance, and color characteristics. Body nodes carry links to rela
them to a tree structure of bodies in a scene, allowing for hierarchical arrangeme
of subbodies into complex bodies. Thus body node data describe the scene strt
ture; face node data describe surface characteristics; edge node data give the toj
logical information needed to relate faces, edges, and vertices; and vertex noc
data describe the three-dimensional vertex location.

This rich and redundant structure lends itself to efficient calculation of useful
functions involving these bodies. For instance, one can easily follow pointers tc
extract the list of points around a face, faces around a point, or lines around a fac
Winged edges are not a universal boundary representation for polyhedra, but the
do give an idea of the components to a representation that are likely to be usef
Such a representation can be made efficient for accessing all faces, edges, or v
tices; for accessing vertex or edge perimeters; for polyhedron building; and for
splitting edges and faces (useful in construction and hidden-line picture produc
tion, for instance).

9.2.2 Surfaces Based on Splines

The natural extension of polyhedral surfaces is to allow the surfaces to be curve
However, with an arbitrary number of edges for the surface, the interpolation o
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NCCW(£)

Sec. 9.2

Boundary Representation Node Accessing Functions

To enter and traverse Face ring of a body:
NextFace, PreviousFace:  Body or Face »m Face

To enter and traverse Edge ring of a body:
NextEdge, PreviousEdge: Body or Edge “m Edge

To enter and traverse Vertex ring of a body:
NextVert, PreviousVert: Body or Vertex -* Vertex

First Edge of a Face:
FirstEdge: Face-* Edge

PCW{£) 5. FirstEdge of a Vertex:
FirstEdge: Vertex -> Edge

Faces of an Edge:  [see diagram in ()]

Edge N(ext) Face, P(revious) Face: Edge > Face
PFace(£) R _ -
e Vertices of an Edge: [see diagram in (a)]
N(extVert, P(revious)Vert: Edge -» Vertex

NVert(f) Neighboring Wing Edges of an Edge: [see diagram in (a)]
NCW, NCCW: Edge <»Edge (NFace Edge Clockwise,
NFace Edge Counterclockwise)

PCW, PCCW: Edge -* Edge (PFace Edge Clockwise,
NCW(£) PCCW(E) PFace Edge Counterclockwise

@ ()

NFacelf)

Fig. 9.5 (a) Node accessing functions, (b) Semantics of winged edge functions.

interior face points becomes impractically complex. For that reason, the number
edges foracurved face is usually restricted to three or four.

A general technique for approximating surfaces with four-sided surface
patchess that of Coons [Coons 1974]. Coons specifies the four sides of the pat
with polynomials. These polynomials are used to interpolate interior points
Although this is appropriate for synthesis, it is not so easy to use for analysis. Th
is because of the difficulty of registering the patch edges with image data. A give
surface will admit to many patch decompositions.

An attractive representation for patches is splines (Fig. 9.6). In genera
two-dimensional spline interpolation is complex: For two parameters wand vinter
polate with

x(w, v) = £ X VijBijiu, v) (9.1
o
similar to Eq. (8.4). However, for certain applications a further simplification can
be made. In a manner analogous to (8.9) define a grid of knot pgints v
corresponding tXy and related by
Xij - MVij 9.2)

Now rather than interpolating in two dimensions simultaneously, interpolate ir
one direction, say /, to obtain

Xa(t)=[P t? t I[CIIV _uoVss0sVisuoVis2sm0] ™ (9.3)

for each value ofj. Now compute v,(f) by solving
Xi) = M@ 9.4)
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Fig. 9.6 Using spline curves to model
the surface of an object: a portion ofa
human spinal column taken from CAT
data.

for each value of. Finally, interpolate in the other direction and solve:
Xa(s,t)=[s> ¢ s ClIr -.jU), TWU), Vi ijU),v,+ 2jO)] (9.5)

This is the basis for the spline filtering algorithm discussed in Section 3.2.3.
Some advantages of spline surfaces for vision are the following.

1. The spline representation is economical: the space curves are represented
sparse set of knot points from which the underlying curves can be interpolate:

2. It is easy to define splines interactively by giving the knot points; reference
representations may be built up easily.

3. ltis often useful to search the image in a direction perpendicular to the mod
reference surface. This direction is a simple function of the local knot points.

9.2.3 Surfaces That Are Functions on the Sphere

Some surfaces can be expressed as functions on the "Gaussian sphere." (the
tance from the origin to a point on the surface is a function of the direction of th
point, or of its longitude and latitude if it were radially projected on a sphere with
the center at the origin.) This class of surfaces, although restricted, is useful

some application areas [Schudy and Ballard 1978, 1979]. This section explort
briefly two schemes for representation of these surfaces. The first specifies exp
citly the distance of the surface from the origin for a set of vector directions from
the origin. The second is akin to Fourier descriptors; an economically specified s
of coefficients characterizes the surface with greater accuracy as the number
coefficients increases.

Direction-MagnitudeSets

One approximation to a spherical function is to specify a number of three
dimensional direction vectors from the origin and for each a magnitude. This i
equivalent to specifying a set of (@; p) points in a spherical coordinate system
(Appendix 1). These points are on the surface to be represented; connecting th
yields an approximation.
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It is often convenient to represent directions as points on the unit (Gaussian
sphere centered on the origin. The points may be connected by straight lines 1
form a polyhedron with triangular, hexagonal or rhomboidal faces. Moving the
points on the sphere out (or in) by their associated magnitude distorts this po
lyhedron, moving its vertices radically out or in.

The spherical function determines the distance of face vertices from the ori-
gin. Resolution at the surface increases with the number of faces. An approxi
mately isotropic distribution of directions over the surface may be obtained by
placing the face vertices (directions) in accordance with "geodesic dome"-like cal-
culations which make the faces approximately equilateral triangles [Clinton 1971].

Although the geodesic tesselation of the sphere's surface is more comple
than a straightforward (latitude and longitude, say) division, its pleasant properties
of isotropy and display [Brown 1979a; 1979b; Schudy and Ballard 1978] sometimes
recommend it. Some example shapes indicating the range of representable sL
faces are given in Fig. 9.7. Methods for tesselating the sphere are given in Apper
dix 1.

SphericaHarmonic Surfaces

In two dimensions, Fourier coefficients can give approximations to certain
curved boundaries (Section 8.3.4). Analogously in three dimensions, a set o
orthogonal functions may be used to express a closed boundary as a set
coefficients when the boundary is a function on the sphere. One such decompos
tion is sphericalharmonics.Low order coefficients capture gross shape characteris
tics; higher order coefficients represent surface shape variations of higher spatis
frequency. The function with m = 0 is a sphere, the three with trepresent
translation about the origin, the five with m = 2 are similar to prolate and oblate
spheroids, and so forth, the lobedness of the surfaces increasing with m. A samp
three dimensional shape and its "description" is shown in Fig. 9.8.

Spherical harmonics are analogs on the sphere of Fourier functions on the
plane; like Fourier functions, they are smooth and continuous to every order. They
may be parameterized by two numbers, mrmntius they are a doubly infinite set
of functions which are continuous, orthogonal, single-valued, and complete on the

Fig. 9.7 Sample surfaces described by
some 320 triangular facets in a geodesic
tesselation.
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Fig. 9.8 A spherical harmonic function description of an ellipsoid. Coefficients
are displayed on the right as grey levels in the matrix format

"00

sphere. In combination, the harmonics can thus produce all "well-behave
spherical functions.

The spherical harmonic functions,1J(9,<f>) and 4, (9,<f>) are defined ir
polar coordinates by:

Um.(9,<f>) = cos(nO) sin" (<f>)P(m, n, cos(0)) (9.€
Ymy(0> 0) = sin (n9) sin" (<p)P(mn, cos(</>)) 9.7)
with in = 0,1,2, ..., M\ n— 0,1, ..., m. Here P(m, n, x) is the «th derivative o

the Mwth Legendre polynomial as a functionxoflTo represent an arbitrary shape,
let the radius R in polar coordinates be a linear sum of these spherical harmonic:

M m
R(0,4>)=j: Z An, Unn(9, <f>) + Bmn Vinn(9, 0) 9.8)
OT =0 «=o0
Any continuous surface on the sphere may be represented by a set of these
constants; reasonable approximations to heart volumes are obtained with m <
[Schudy and Ballard 1979].
Figure 9.9 shows a few simple combinations of functions of low values o
(m, n). The sphere, or (0,0) surface, is added to the more complex ones to ens
positive volumes and drawable surfaces.
Spherical harmonics have the following attractive properties.

1. They are orthogonal on the sphere under the inner product;
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Fig. 9.9 Simple combinations of functions.
(«, V) — J uv s'm<f> dOd<f>

2. The functions are arranged in increasing order of spatial complexity.
3. The whole set is complete; any twice-differentiable function on the sphere car
be approximated arbitrarily closely.

Spherical harmonics can provide compact, nonredundant descriptions of sui
faces that are useful for analysis of shape, but are less useful for synthesis. Tl
principal disadvantages are that the primitive functions are not necessarily relate
to the desired final shape in an intuitive way, and changing a single coefficien
affects the entire resulting surface.

An example of the use of spherical harmonics as a volume representation |
the representation of heart volume [Schudy and Ballard 1978, 1979]. In extractin
a volume associated with the heart from ultrasound data, a large mass of data is |
volved. The data is originally in the form of echo measurements taken in a set ¢
two-dimensional planes through the heart. The task is to choose a surface sL
rounding the heart volume of interest by optimization techniques that will fit three
dimensional time-varying data. The optimization involved is to find the best
coefficients for the spherical harmonics that define the surface. The goodness of
of a surface is measured by how well it matches the edge of the volume as it appez
in the data slices. To extend spherical harmonics to time-varying periodic data, le
the radius R in polar coordinates be a linear sum of these spherical harmonics:

RO 450 = H" AvU)Und9. 0) + BulVedd. 0)  (9.9)

m=0 w=0
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The functions At) andB it) are given by Fourier time series:

/
An(t) =amm + 2 S>wW,iO-trt/r) + byasm (2irt/r) (9.10)
=i

Bm{l) = brno + X Guw COS2TT-1/r) + d,,wis\n iltrt/r) (9.11)
1=1

where t\s time, theamnn bmnn Cmnn @nd dmpi @re arbitrary real constants, ahdhe
period. Any continuous periodically moving surfacen thesphere may be
representedby some selectiorof these real constants8) thecardiac application,
reasonable approximations to the temporal behavior are obtainet Wit Fig-
ure 9.10 shows three stages from a moving-harmonic-surface representation of 1
heartin early systole. The atriagt thetop, contract and pump blood into the ven-
tricles below, after which there is a ventricular contraction.

9.3 GENERALIZED CYLINDER REPRESENTATIONS

The volumeof many biological and manufactured objects is naturally descaibed
the "swept volume'of a two-dimensionalsetmoved along some three-space
curve. Figure 9.11 shows a "translational sweep" wherein a solid is repreaented
the volume swepby atwo-dimensionalsetwhenit is translated alongline. A
"rotational sweep" is similarly defined by rotating the two-dimensional set arounc
an axis.In "three-dimensional sweeps," volumes are swep."reneral” sweep
scheme, the two-dimensionalset orvolume is swept alonganarbitrary space
curve, andthe setmay vary parametrically along the curve [Binford 1971; Soroka
and Bajcsy 1976; Soroka 1979a; 1979b; SH&80].General sweeps are quite a po-
pular representatiorin computer vision, where theyo by thenamegeneralized
cylinders(sometimes "generalized cones").

Fig. 9.10 Three stages from a moving har-
monic surfacgseetextand colorinsert).
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Sweep

Fig. 9.11 A translational sweep.

A generalized cylinder (GC) is a solid whose axis is a 3-D space curve (Fig.
9.12a). At any point on the axis a closed cross section is defined. A usual restrictiol
is that the axis be normal to the cross section. Usually it is easiest to think of an axi
space curve and a cross section point set function, both parameterized by al
length along the axis curve. For any solid, there are infinitely many pairs of axis
and cross section functions that can define it.

Generalized cylinders present certain technical subtleties in their definition.
For instance, can it be determined whether any two cross sections intersect, as tht
would if the axis of a circular cylinder were sharply bent (Fig. 9.2%the solid is
defined as the volume swept by the cross section, there is no conceptual or compt
tational problem. A problem might occur when computing the surface of such an
object. If the surface is expressed in terms of the axis and cross-section function
(as below), the domain of objects must be limited so that the boundary formula
indeed gives only points on the boundary.

Generalized cylinders are intuitive and appealing. Let us grant that "patho-
logical" cases are barred, so that relatively simple mathematics is adequate fo
representing them. There are still technical decisions to make about the represer
tation. The axis curve presents no difficulties, but a usable representation for the
cross-section set is often not so straightforward. The main problem is to choose ¢
usable coordinate system in which to express the cross section.

9.3.1 Generalized Cylinder Coordinate Systems and Properties

Two mathematical functions defining axis and cross section for each point define a
unique solid with the "sweeping" semantics described above. In a fixed Cartesian
coordinate system x, y, z, the axis may be represented parametrically as a functio
of arc lengths:

as) - (x(s)y(s),  zs) (9.12)

It is convenient to have a local coordinate system defined with origin at each
point of a (s). It is in this coordinate system that the cross section is defined. This
system may change in orientation as the axis winds through space, or it may be
most natural for it not to be tied to the local behavior of the axis. For instance, im-
agine tying a knot in a solid rubber bar of square cross section. The cross sectior
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@ (b)
Fig. 9.12 (a) A generalized cylinder and some cross-sectional coordinate sys-
tems. (b) A possibly “"pathological” situation. Cross sections may be simply
described as circles centered on the axis, but then their intersection makes volume
calculations (for instance) less straightforward.

will stay approximately a square, and (this is the point) will remain approximatel
fixed in a coordinate system that twists and turns through space with the axis of
bar. On the other hand, imagine bolt threads. They can be described by a sin
cross section that stays fixed in a coordinate system that rotates as it moves al
the straight axis of the bolt. There is no a priori reason to suppose that such a us
local coordinate system should twist along the GC axis.

A coordinate system that mirrors the local behavior of the GC axis spac
curve is the "Frenet frame," defined at each point on the GC axis. This frame pr
vides much information about the GC-axis behavior. The GC axis point forms th
origin, and the three orthogonal directions are given by the vectors (£, v, £
where

f = unit vector tangent axis

Vv = unit vector direction of center of curvature of axis
normal curve
£ = unit vector direction of center of torsion of axis

Consider the curve to be produced by a point moving at constant speed throu
space; the distance the point travels is the parameter of the space curve [O'N
1966]. Since £ is of constant length, its derivative measures the way the GC ax
turns in space. Its derivati'is orthogonal to £ and the lengthfdimeasures the
curvatureK of the axis at that point. The unit vector in the direction of £'is v.
Where the curvature is not zero, a binormal vector £ orthogonal to £ and v
defined. This binormat is used to define the torsion r of the curve. The vectors £
* £obey Frenet's formulae:

VI=KE + i (9.13)
C=-v
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where
K= curvature = —V'e£ = v of (9.14)
T=torsion - P'e£« -v of (9.15)

The Frenet frame gives good information about the axis of the GC, but it has
certain problems. First, it is not well defined when the curvature of the GC axis is
zero.Second, it may not reflect known underlying physical principles that generate
the cross sections (as in the bolt thread example). A solution, adopted in [Agir
1972, Shani 1980], is to introduce an additional parameter that allows the cros:
section to rotate about the local axis by an arbitrary amount. With this additiona
degree of freedom comes an additional problem: How are successive cross sectic
registered? Figure 9.13 shows two solutions in addition to the Frenet frame solu
tion.

The cross sectional curve is usually defined to be in the v-£ plane, normal t
£, the local GC axis direction. The cross section may be described as a point set
this plane, using inequalities expressed in the v-Z, coordinate system. The cro
section boundary (outline curve) may be used instead, parameterized by anoth
parameter r. Let this curve be given by

cross section boundary = (x(r, s), y(r, s))

The dependence dnreflects the fact that the cross section shape may vary along
the GC axis. The expression above is in world coordinates, but should be moved 1

©

Fig. 9.13 (a) Local coordinates are the Frenet frame. Points A and B must correspond.
(b) Local coordinates are determined by the cross sectional shape, (c) Local coordinates are
determined by heuristic transformation from world coordinates.
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the local coordinates on the GC axis. A transformation of coordinates allows the
GC boundary to be expressed (if the S@ell behaved) as

B(r, s) = a(s) +x(r, s)v(s) +y(r, s)£(s) (9.16)

One of the advantages of the generalized cylinder representation is that it a
lows many parameters of the solid to be easily calculated.

* In matching the GC to image data it is often necessary to search perpendiculi
to a cross section. This direction is given from x(r, s), y{r, s) by {{dy/ds)v,
-{dx/ds)0-

» The area of a cross section may be calculated from Eq. (8.16).

« The volume of a GC is given by the integral of. the area as a function of the axi
parameter multipled by the incremental path length of the GC axis, i.e.,

volume = J area(s) ds

9.3.2 Extracting Generalized Cylinders

Early work in biological form analysis provides an example of the process of fitting
a GC to real data and producing a description [Agin 1972]. One of the goals of thi
work was to infer the stick figure skeleton of biological forms for use in matching
models also represented as skeletons. In Fig. 9.14 the process of inferring the &
from the original stripe three-dimensional data is shown; the process iterates tc
ward a satisfactory fit, using only circular cross sections (a common constraint witk
"generalized" cylinders). Figure 9.15 shows the data and the analysis of a comple

Fig. 9.14 Stages in extracting a
generalized cylinder description for a
circular cone, (a) Front view, (b) Initial
axis estimate, (c) Preliminary center and
axis estimate, (d) Cone with smoothed
radius function, (e) Completed analysis.
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Fig. 9.15 (a) TVimageofadoll, (b) Completed analysisf doll.

biological form. In real data, complexly interrelated G@sehard to decompose
into satisfactory subparts. Without that, the ability to form a satisfactory articulatec
skeleton is severely restricted.

In later work, GCs with spline-based axasdcross sections were usta
model organs of the human abdomen [Shani 1980]. Figure 9.16 shows a renditit
of a GCfitto a human kidney.

9.3.3 A Discrete Volumetric Version of the Skeleton

An approximate volume representation that can be quite useful is based on an a
culated wire frame skeleton along which sphefiestcross sectionsareplaced.

Fig. 9.16 Generalized cylinder
representatiorof two kidneys anch
spinal column. This coarse, nominal
modelisrefined during examinatioof
CAT data (see Fig9.6).
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This representation has some of the flavor of an approximate sweep represel
tion. An example of the use of such a representation and a figure are given in £
tion 7.3.4. This representation was originally conceived for graphics applicatiol
(the spheres look the same from any viewpoint) [Badler and Bajcsy 1978]. Col
sion detection is easy, and three-dimensional objects can be decomposed
spheres automatically [O'Rourke and Badler 1979]. From the spheres, the ske
ton may be derived, and so may the surface of the solid. This representatior
especially apt for many computer vision applications involving nonrigid bodies i
strict surface and volumetric accuracy is not necessary [Badler and O'Rour
1979].

9.4 VOLUMETRIC REPRESENTATIONS

280

Most world objects are solids, although usually only their surfaces are visible. .
representation of the objects in terms of more primitive solids is often useful ar
can have pleasant properties of terseness, validity, and sometimes ease of con
tation. The representations given here are presented in order of increasing gene
ity; constructive solid geometry includes cell decomposition, which in turn in-
cludes spatial occupancy arrays.

Algorithms for processing volume-based representations are often of
different flavor than surface-based algorithms. We give some examples in Secti
9.4.4. Objects represented volumetrically can be depicted on raster graphics
vices by a "ray-casting" approach in which a line of sight is constructed throug
the viewing plane for a set of raster points. The surface of the solid at its interse
tion with the line of sight determines the value of the display at the raster poir
Ray casting can produce hidden-line and shaded displays; graphics is only one o
applications (Section 9.4.4).

9.4.1 Spatial Occupancy

Figure 9.17 shows that three-dimensional spatial occupancy representations
the three-dimensional equivalent of the two-dimensional spatial occupanc
representations of Chapter 8. Volumes are represented as a three-dimensiona
ray of cells which may be marked as filled with matter or not. Spatial occupancy a
rays can require much storage if resolution is high, since space requirements
crease as the cube of linear resolution. In low-resolution work with irregular ok
jects, such as arise in computer-aided tomography, spatial occupancy arrays i
very common. It is sometimes useful to convert an exact representation into an ¢
proximate spatial occupancy representation. Slices or sections through objects n
be easily produced. The spatial occupancy array may be run-length encoded
one dimension), or coded as blocks of different sizes; such schemes are actu
cell-decomposition schemes (Section 9.4.2).

With the declining cost of computer memory, explicit spatial occupancy ar-
rays may become increasingly common. The improvement of hardware facilitie
for parallel computation will encourage the development of parallel algorithms t
compute properties of solids from these representations.
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Fig. 9.17 A solid (the shape ofa
human red blood cell) approximated by
a volume occupancy array.

9.4.2 Cell Decomposition

In cell decomposition, cells are more complex in shape but still "quasi-disjoint"

(do not share volumes), so the only combining operation is "glue" (Fig. 9.18).

Cells are usually restricted to have no holes (they are "simply connected"). Cell
decompositions are not particularly concise; their construction (especially for
curved cells) is best left to programs. It seems difficult to convert other representa-
tions exactly into cell decompositions. Two useful cell decompositions are the
"oct-tree" [Jackins and Tanimoto 1980] and the kd-tree [Bentley 1975]. They

both can be produced by recursive subdivision of volume; these schemes are th
three-dimensional analogs of pyramid data structures for two dimensional binary
images.

The quasi-disjointness of cell-decomposition and spatial-occupancy primi-
tives may be helpful in some algorithms. Mass properties (Section 9.4.4) may be
computed on the components and summed. It is possible to tell whether a solid i
connected and whether it has voids. Inhomogeneous objects (such as human an
tomy inside the thorax) can be represented easily with cell decomposition and spa

Solid

Fig. 9.18 A volume and its cell decomposition.
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tial occupancy. The CT number (transparetmy-rays) ora material code cdme
kept inacell instead of a single bit indicatiaf "solid or space."

9.4.3 Constructive Solid Geometry

Figure 9.19 shows one constructive solid geometry (CSG) scheme [Voelcker and
Requicha 1977; BoysE979].Solids are represented as compositions, via set opera-
tions, of other solids which may have undergone rigid motions. At the lowest level
are primitive solids, which are bounded intersections of closed half-spaces definec
by someFix, y, z) ~ Owhere .Fis well-behaved (e.g., analytic). Usually, primi-
tives areentities suchasarbitrarily scaled rectangular blocks, arbitrarily scaled
cylinders and cones, and spheafarbitrary radius. They may be positioned arbi-
trarily in space.

Figure 9.20 shows a parameterized representation [Marr and Nishihara 1978,
Nishihara 1979] basednshapes (here cylinders) that might be extracted &onm
image.

A CSGrepresentatioris anexpression involving primitive solicand set
operators for combination and motion.

<CSG7?e/?>::= <primitive solid> |
MOVE <CSG Rep>BY < Motion Params>|
<CSG Rep> < Combine Op> <CSG Rep>

The combining operatorarebest takerto beregularizedversionsof setun-
ion, intersection, and difference (the complement is a possible operatdrabut
lows unbounded solids from bounded primitives).

Regularityis afundamental propertpf any set ofpoints that models a solid.
In a given space, a set Xis regular i=XkiX, where k and denote theclosureand
interior operators. Intuitivelyaregular set has néolated or dangling boundary
points. The regularization r afset Xis defined by rX kiX. Regularization infor-
mally amountsto taking whatis inside a set andovering that withatight skin.
Regular setsare notclosed under conventionaletoperations,but regularized

Fig. 9.19 Constructive solid geometry
for thevolume of Fig. 9.18.
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cylinder

limb quadruped biped

thick-limb _ cow

dove

Fig. 9.20 A parameterized
constructive representation for animal
shapes.

operators dreserve regularity. Regularized operators are defined by
X <OP> * Y= r(X <OP> YY)

Regularity and regularized set operators provide a natural formalization of th:
dimension-preserving property exhibited by many geometric algorithms, thus ok
viating the need to enumerate many annoying "special cases." Figure 9.21 illu
trates conventional versus regularized intersection of two sets that are regular
the plane.

If the primitives are unbounded, checking for boundedness of an object ca
be difficult. If they are bounded, any CSG representation is a valid volume
representation. CSG can be inefficient for some geometric applications, such as
line drawing display. (Converting the CSG representation to a boundary represe
tation is the one way to proceed; see Section 9.4.4.)

A B An*B

Fig. 9.21 Conventional (f] ) and regularized (P | * polygon intersection.
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9.4.4 Algorithms for Solid Representations

SetMembership Classification

The setmembership classification (SMC) function M takes a candidate point
set C and a referencget Sand returnghepointsof C that arein S, out of5, and
on the boundary of S.
(CmS, CoutS, ConS) M(C, S)

Figure 9.22a shows line-polygon classification.

SMC is ageneralizationof setintersection [Tilove 1980].lt is a useful
geometric utility; polygon-polygon classificatioiis generalized clippingand
volume-volume classification detects solid interference. Line-solid classification

@)

(b)
Fig. 9.22 (a) The sanembership classificatiofSMC) function M(L,P) finds

the portionsof the candidateset L(herealine) thatare in, on, and out af refer-

enceset (hereapolygon) P. (b)Image producedy raycasting,a special casef
SMC.
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may be used for ray casting visualization techniques to generate images of a knc
three-dimensional representation (Fig. 9.22b).

An algorithm for SMC illustrates a "divide and conquer" approach to com:
puting on CSG. Recall that CSG is like a tree of set operations, whose leaves
primitive sets which usually are simple solids such as cylinders, spheres, a
blocks. Presumably classification can be more easily computed with these sim,
sets as reference than with complex unions, intersections, and differences as re
ence.

The idea is that the classification of a set Cwith respect to a complex objeci
defined in CSG may be determined recursively. Any internal node S in the CS
tree is an operation node. It has left and right arguments and an operation Opc
Each subtree is itself a CSG subtree or a primitive.

MiX, S) - IF Sis a primitive THENrim-MiX, S)
ELSE Combine (MiX, left-subtre€S),
MiX, right-subtreeiS),
OPofS);

Prim-M s the easily computed classification with respect to a simple primi-
tive solid. The Combine operation is a nontrivial calculation that combines th
subresults to produce a more complex classification. It is illustrated in two dimet
sions for line classification in Fig. 9.23. Having classified the line L against the pc
lygon PI and P2, the classifications can be combined to produce the classificati
for PI f] P2. Precise rules for combine may be written for (regularized) union
intersection, and set difference. An important point is that when a point is in tt
"on" set of S\ and in the "on" set of $he result of the combination depends on
extra information. In Fig. 9.23, segments Xand Fboth result from this ON-OM
case of combine, but segment Xis OUT of the boundary of the intersection and
is IN the intersection. The ambiguity must be resolved by keeping "neighborhoc
information" (local geometry) attached to point sets, and combining the neighbo
hoods along with the classifications. The technical problems surrounding combir
can be solved, and SMC is basic in several solid geometric modeling syster
[Boyse 1979;Voelcker etal. 1978; Brown etl. 1978].

Mass Properties

The analog of many two-dimensional geometric properties is to be found i
"mass properties," which are defined by volume integrals over a solid. The fot
types of mass properties commonly of interest are:

Volume: V=J du

S

j X du
Centroid: e.g. G = —
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P\

Out On

(@)

P2

Out In On In On Out In Out

(b)

Fig. 9.23 Combining line-polygon classifications (a) and (b) must produce the

classification (c).
Moment of (9.17)
Inertia: e.g. 1" = m J {y+ ) du

Product of
Inertia:e.g. R =mJ xy du
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where m is a density measure, du the volume differential, and integrals are tak
over the volume.

Measures such as these are not necessarily easy to compute from a giv
representation. The calculation of mass properties of solids from various represe
tations is discussed in [Lee and Requicha 1980]. The approaches suggested by
representations are shown in Fig. 9.24.

One method is based on decomposing the solid into quasi-disjoint cells. A
integral property of the cell decompositi@just the sum of the property for each
of the cells. Hence if computing the property for the cells is easy, the calculation |
easy for the whole volume. One is invited to decompose the body into simple cell:
such as columns or cubes, as shown in Fig. 9.25. The resulting calculations, pt
formed to reasonable error bounds on fairly complex volumes, take unacceptab
long for the pure spatial occupancy enumeration, but are acceptable for the colun
and block decompositions. (The column decomposition corresponds to a ray ca:
ing approach.) The block decomposition method can be programmed using oc
trees or kd-trees in a manner reminiscent of the Warnock hidden-line algorithr
[Warnock 1969], in which the blocks are found automatically, and their size dimin-
ishes as increased resolution is needed in the solid. In calculating from a constrt
tive solid geometry representation, the same divide-and-conquer strategy that
useful for SMC may be applied. Again, it recursively solves subproblems induce:
by the set operators (Fig. 9.26). The strategy is less appealing here since t
number of subproblems can grow exponentially in the worst case.

In boundary representations, one can perhaps directly integrate over tt
boundary in a three-dimensional version of the polygon area calculation given i
Chapter 8. This method is often impossible for curved surfaces, which, howeve
may be approximated by planar faces. An alternative is to use the divergenc

Fig. 9.24 "Natural" approaches to computing mass properties from several
representations.
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<~z

(b)

CSG rep T

Fig. 9.25 Cell decompositions for
© mass properties.

theorem (Gauss's theorem). Tdigergence i scalar quantity defined at any point
in avector field by writing the vector function as

G, ¥, 2) = P(x, y, 2\ + Q(X, ¥, 2)] + R (X, y, 2)k. (9.18)
The divergence is

div G = h— H (9.19)
X y z
There is always a function G such that div G = fix, ){J z) for any continuous func-
tion/(/computes the integral property of interest.) Thus
/1 dv=J divGadv (9.20)
But the divergence theorem states that
J'divGdv=1J GndF, (9.21)

where Fk is a face of the solid S, n, is the unit normal toaRd dF; the surface
differential. Again this formula works well for planar faces, but may require ap-
proximation techniques for curved faces with complex boundaries.

Boundary Evaluation
The calculation of a face-based surface (boundary) representation from
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Divide and conquer

Reduction formula

A VB A ns
’A-B "A A NS
Example
Fig. 9.26 Recursive problem
*S *A ' 'm B 'm ACB ‘ANC ~BnC* A

decomposition for mass property
calculation.

CSG representation is callddundaryevaluation.It is an example afepresentation
conversion.Both the CSG and boundary are usually unambiguous representati
of a volume; a CSG expression (a solid) has just one boundary, but a bound
(representing a solid) usually has many CSG expressions. Since a solid may be
together from primitives in many ways, the mapping back from boundary to CS
is not usually attempted (but see [Markovsky and Wesley 1980, Wesley and M
kovskyl981]).

One style of boundary evaluation is based on the following observatior
[Voelcker and Requicha 1980; Boyse 1979].

» Boundaries of composite objects may be computed from certain set-theore
formulae. For (regularized) intersectiontwb objects S and T, the formula is

b(S C\' T)= (bS O' iT) U*QSH * bT) ©.22)
u'r*n'An *kilsn*T) ™
where p)* and {J* are regularized intersection and union: b, /, and k are tt

boundary, interior, and closure operators. (Recall thiatrkihe regularization
operator).

» Faces of composite objects can arise only from faces of primitives.
» Faces are either bounded by edges or are self-closing (as is the sphere).

These observations and the existence of the classification operation motiv:
the grand strategy that follows (ignoring several important details and concentr:
ing on the core of the algorithm.)
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1. Find all possible ("tentative") edges for each face of each primitive in the
composite.

2. Classify each tentative edge with respect to the composite solid.
3. The ON portions of those edges must be enough to define the boundary.

Given the grand strategy, several algorithms of varying sophistication ar
possible, depending on what edges should be classified (how to generate tental
edges),n what order they should be classified, and how classification is done. Th
following algorithm is very simple (but very inefficient); useful algorithms are
rather more complex.

Algorithm 9.1: CSG to Boundary Conversion (top-level control loop)

Input: Solid defined by CSG expression of regularized set operations applied
primitive solids.

Output: "Bfaces" in the object boundary. Bfaces are represented by their boundil
edgesThey may have little relation to the "intuitive faces" of the boundary; they
may overlap each other, and a Bface may be disconnected (specify more than «
region). Edges may appear many times. The Bface-oriented boundary may be p
cessed to remove repetition and merge Bfaces into more intuitively appealir
boundary faces.

BEGIN

Form a list PFaces of all ("intuitive") faces of primitive solids involved in the
CSG expression, and an initially empty list BFaces to hold the output faces.

For every PFace F\ in PFaces:
Create a B-Face called ThisBFace, initially with no edges in it.

For every PFace F2 after FI in the PFaces list (this generates all distinct pairs
PFaces just once):

Intersect FI and F2 to get TEdges, a set of edges tentatively on the bounde
of the solid. If FI and F2 do not intersect or intersect only in a point, TEdge:
is empty. If they intersect in aline, TEdges is the single resulting edge. If the
intersect in a two-dimensional region, TEdges contains the bounding edge
of the intersection region.

Classify every TEdge in TEdges with respect to the whole solid (the CSG e
pression). Put TEdges that are ON the solid boundary into ThisBFace.

If ThisBFace is not empty, put it into BFaces.
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End Inner Loop
End Outer Loop

END

Algorithms suchasthis involve many technical issues, suakmerging
coplanar faces, stitching edges together into faces, regularizstiaces, remov-
ing multiple versionof edges.Boundary evaluation is inherently rather complex,
and dependsnsuch things as the definition and representatibiaces as welas
the geometric utilities takeasbasic [VoelckerandRequicha 1981]. Boundary
evaluation is an example of exact conversion between significantly different
representations. Such conversions are useful, since no single representation see
convenientfor all geometric calculations.

9.5 UNDERSTANDING LINE DRAWINGS

"Engineering” line drawings have been (andagreat extent are stiljhemain
medium of communication between human beings about quantitative aspects
three-dimensional object3.he line drawingsof this section are only those which
are meant to represent a simple domain of polyhedral or simply curved oljects.
terpretationof "naturalistic" drawings (such as a sketchmap [Mackworth 1957])
another matter altogether.

Line drawings (evenn arestricted domain) are often ambiguous; interpret-
ing them sometimes takes knowledgfeeveryday physicsand camequire train-
ing. Such informed interpretation means that even drawings that are strictly non
sensecan beunderstoodandinterpretedasthey were meant. Missing linés
drawingsof polyhedra are oftesoeasyto supply ago pass unnoticedpr be "au-
tomatically supplied" by our model-driven perception.

Generalizing the line drawing to three dimensions as a list of lines or points is
not enoughto make an unambiguous representatioas isshown by Fig.9.27,

Fig. 9.27 Anambiguous (wireframe) representation$ a solid with two of
three possible interpretations.
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which illustrates that a set of vertices or edges can define many different solids. (
is possible, however, to determine algorithmically all possible polyhedral boun-
daries described by a three-dimensional wireframe [Markowsky and Wesley
1980].). A line drawing nevertheless does convey three-dimensional information.
For any set of Nprojection specifications (e.g., viewpoint and camera transform),
wire-frame object may be constructed that is ambiguous given the N projections
However, for a given object, there is a maximum number of projections that car
determine the object unambiguously. The number depends on the number 1
edges in the object [Shapira 1974]. Reconstruction of all solids represented by prt
jections is possible [Wesley and Markowsky 1981].

Line drawings were a natural early target for computer vision for the follow-
ing reasons:

1. They are related closely to surface features of polyhedral scenes.

2. They may be represented exactly; the noise and incomplete visual processir
that may have affected the "line drawing extraction" can be modelled at will or
completely eliminated.

3. They present an interpretation problem that is significant but seems approact
able.

The understanding of simple engineering (3-view) drawings was the first
stage in a versatile robot assembly system [Ejiri et al. 1971]. This application
underlined the fact that heuristics and conventions are indispensible in enginee
ing drawing understanding. This section deals with the problem of "understand
ing" a single-view line drawing representation of scenes containing polyhedral anc
simple curved objects like those in Fig. 9.28.

Our exposition follows a historical path, to show how early heuristic pro-
grams in the middle 1960s evolved into more theoretical insights in the early
1970s.

The first real computer vision program with representations of a three-
dimensional domain appeared around 1963 [Roberts 1965]. This system, amb
tious even by today's standards, was to accept a digitized image of a polyhedr
scene and produce a line drawing of the scene as it would appear when viewed frc
any requested viewpoint. This work addressed basic issues of imaging geometr
feature finding, object representation, matching, and computer graphics.

Since then, several systems have appeared for accomplishing either the sar
or similar results [Falk 1972; Shirai 1975; Turner 1974]. The line drawings of this
section can appear as intermediate representations in a working polyhedral visic
system, but they have also been studied in isolation. This topic took on a life of it:
own and provides a very pretty example of the general idea of going to the three
dimensional world of physics and geometry to understand the appearance of
two-dimensional image. The later results can be used to understand more clear
the successes and failures of early polyhedral vision systems. One form of unde
standing (line labelling) provided one of the first and most convincing demonstra-
tions of parallel constraint propagation as a control structure for a computer visior
process.
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Fig. 9.28 Several typical line drawing scenes for computer understanding.

9.5.1 Matching Line Drawings to Three-dimensional Primitives

Roberts desires to interpret a line drawing such as Fig. 9.28a in terms of a small
of three polyhedral primitives, shown in Fig. 9.29. A simple polyhedron in a scen
is regarded as an instance of a transformed primitive, where a transform may i
volve scaling along the three coordinate axes, translation, and rotation. Compoui
polyhedra, such as Fig. 9.28a, are regarded as simple polyhedra "glued togethe
(A cell-decomposition representation is thus used for compound polyhedra.) Th
program s first to derive from the scene the identity of the primitive objects usec
to construct it (including details of the construction of compound polyhedra).
Next, it is to discover the transformations applied to the primitives to obtain the
particular incarnations making up the scene. Finally, to demonstrate its unde
standing, it should be able to construct a line drawing of the scene from an
viewpoint, using its derived description.

To understand a part of the scene, the program first decides which primitive
comes from, and then derives the transformation the primitive underwent to ag
pear as it does in the scene. Identifying primitives is done by matching "topologi
cal" features of the line drawing (configurations of faces, lines, and vertices) witr
those of the model primitives; matching features induce a match between scel
and model points. At least four noncoplanar matching points are needed to deri
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Fig. 9.31 Topological match structures of Roberts.

The idea once again is to accumulate local evidence from the scene, and th
to group polygons on the basis of this evidence. The evidence takes the form
"links" which link two regions if they may belong to the same body; links are
planted around vertices, which are classified into types, each type always plantii
the same links (Fig. 9.32). No links are made with the background region.

Scenes are interpreted by grouping according to regions/links, using fairl
complex rules, including "inhibitory links" that preclude two neighboring regions
from being in the same body.

The final form of the program performs reasonably well on scenes without ac
cidents of visual alignment, but it is a maze of special cases and exceptions, a
seems to shed little light on what is going on in known polyhedral line-drawing per
ception. One might well ask where the links come from; no justification of why
they are correct is given. Further ([Mackworth 1973]), Guzman can accept as ot
body the two regions in Fig. 9.33a. Finally, one feels a little dissatisfied with ¢
scheme that just answers "one body" to a scene like Fig. 9.33b, instead of answ
ing "pyramid on cube" or "two wedges," for example.

Guzman's method is correct for a world of convex isolated trihedral polyhe:
dra: it is extended by ad hoc adjustments based on various potentially conflictin
items of evidence from the line drawing. Ultimately it performs adequately with a
much increased range of scenes, albeit not very elegantly. Further progress in t
line drawing domain came about when attention was directed at the three
dimensional causes of the different vertex types.

FORK ARROW ELL
PSI PEAK Fig. 9.32 Links around vertices.
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Fig. 9,33 (a) Non-polyhedral scene, (b) Two wedges or a pyramid on cube.

9.5.3 Labeling Lines

Huffman and Clowes independently concerned themselves with scenes similar
Guzman's, not excluding non-simply connected polyhedra, but excluding ac
cidents of alignment [Huffman 1971; Clowes 1971]. They desired to say more
about the scene than just which regions arose from single bodies; they wanted
ascribe interpretations to the lines. Figure 9.34 shows a cube resting on the floc
lines labeled with a + are caused by a convex edge, those labeled-withre
caused by a concave edge, and those labeled with a > are caused by matter occ
ing a surface behind it. The occluding matter is to the right of the line looking in
the direction of the >, the occluded surface is to the left. If the cube were floating
one would label the lowest lines with < instead of withThe shadow line labels
(arrows) were not used by Huffman.

A systematic investigation can find the types of lines possibly seen around
trihedral corner; such corners can be classified by how many octants of space ¢
filled by matter around them (one for the corner of a cube, seven for the insid
corner of a room, etc.). By considering all possible trihedral corners as seen froi

Fig. 9.34 A block resting on its
bottom surface.
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all possible viewpoints, Huffman and Clowes found that without occlusion, jus
four vertex types and only a few of the possible labelings of lines meeting at a ve
tex can occur. Figure 9.35 shows viewswé-and three-octant corners which give
rise to all possible vertices for these corner types. The vertices appear in the fi
two rows of Tabled.1, which is a catalogue @l possible vertices, including those
arising from occlusion, in this restricted world of trihedral polyhedra. It is easy t
imagine extending the catalog to include vertices for other corner types.

It is important to note that there are four possible labels for each line (-1—:
<), and thus %= 64 possible labels for the fork, arrow, and T and 16 possible la
bels for the ell. In the catalog, however, only 3/64, 3/64, 4/64, and 6/16, respe
tively, of the possible labels actually occur. Thus only a small fraction of possibl
labels can occur in a scene.

The main observation that lets line-labeling analysis work is the coherenc
rule: In a real polyhedral scene, liwe maychange its interpretation (label) betwer
vertices.For example, what is wrong with scenes like Fig. 9.36 is that they canr
be coherently labeled; lines change their interpretation within the impossible ol
ject. Perhaps the lines in drawings of real scenes can be interpreted quickly beca
the small percentage of meaningful labelings interacts with the coherence rule
reduce drastically the number of explanations for the scene.

How does line labeling relate to Guzman? A labeled-line description clearl
indicates the grouping of regions into bodies, and also rejects scenes like F
9.33a, which cannot be coherently labeled with labels from the catalog. The orig
of Guzman's links can be explained this way: consider again the world of conve
polyhedra; the only labels from the catalog that are possible are shown in Fi
9.37a. Further, it is clear that a convex edge has two faces of the same body on
ther side ofit, and an occluding edge has faces from two different bodies on eithe
side ofit. A convex label means the regions on either side of it should be linkec
this is Guzman's link-planting rule (Fig. 9.37b). The inhibition rules are a furthe
corollary of the labels; they are to suppress links across an edge if evidence tha

Fig. 9.35 Different views of various
corner types.

Sec. 9.5 Understanding Line Drawings 297

Page 310 of 539



Table 9.1
VERTEX CATALOGUE
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must be occluding is supplied by the vertex at its other end (Fig. 9.37c). When ver
tices at both ends of a line agree that the line is convex, Guzman would haw
planted two links; this is in fact the strongest evidence that the regions are part ¢
the same body. Ifjust one vertex gives evidence that the edge has a link, a decisic
based on heuristics is made; the coherence rule is being used implicitly by Guz
man. The same physical and geometric reality is driving both his scheme and the
of Huffman.

The labeling scheme explained here still has problems: syntactically nonsen
sical scenes are coherently labeled (Fig. 9.38a); scenes are given geometrically in
possible labels (Fig. 9.38b); and scenes that cannot arise from polyhedra are eas
labelled (Fig. 9.38c¢). It is very hard to see how a labeling scheme can detect the il
legality of scenes like (Fig. 9.38c); the problem is not that the edges are incorrectly
labeled, but that the faces cannot be planar.

Concern with this last-mentioned problem led to a program (see the next sec
tion) that can obtain information about a polyhedral scene equivalent to labeling it,

Fig. 9.36 An impossible object.
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Fig. 9.37 The relation of links to labels, (a) Line labels, (b) Link planting ver-

tices. (c) Inhibitory links.
and also can reject non-polyhedra as impossible. There has also been an excit
denoument to the line-labeling idea [Waltz 1975; Turner 1974].

Waltz extends the line labels to include shadows, three illumination codes fo
each face on the side of an edge, and the separability of bodies in the scene
cracks and concave edges; this brings the number of line labels possible up to jt
below 100. He also extends the possible vertex types, so that many vertices of fo
lines occur. He can deal with scenes such as the one shown in Fig. 9.28c.

The combinatorial consequence of these extensions is clear; the possible ve
tex labelings multiply enormously. The first interesting thing Waltz discovered was
that despite the combinatorics, as more information is coded into the lines, th
smaller becomes the percentage of geometrically meaningful labels for a vertex.
his final version, only approximately 0.03 percent of the possible arrow labels cal
occur, and for some vertices the percentage is approximately 0.000001.

The second interesting thing Waltz did was to use a constraint-propagating le
beling algorithm which very quickly eliminates labels for a vertex that is impossible
given the neighboring vertices and the coherence rule, which glansgaintson
labelings. The small number of meaningful labels for a vertex imposes severe col
straints on the labeling of neighboring vertices. By the coherence rule, the cor
straints may be passed around the scene from each vertex to its neighbors; eli
inating a label for a vertex may render neighboring labels illegal as well, and so o
recursively.

Fig. 9.38 Nonsense labelings and
(a) (b) () nonpolyhedra.
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Waltz found that for scenes of moderate complexity, eliminating all impossi-
ble labelings left only one, the correct one. The labeling process, which might hav
been expected to involve much search, usually involved none. This constraint pr
pagation is an example of parallel constraint satisfaction, and is discussed
Chapter 12 in a broader context. In the event that a vertex is left with several labe
after all junction coherence constraints have been applied, they all participate |
somelegal labeling. At this point one can resort to tree search to find the explicit la
belings, or one can apply more constraints. Many such constraints, heuristic ar
geometric, may be imagined. For instance, a constraint could involve color edg
profiles. Iftwo aligned edges are separated by some (possibly occluding) structure
but still divide faces of the same color, they should have the same label. Anothe
important constraint concerns how face planarity constrains line orientations.

Scenes with missing lines may be labeled; one merely adds to the legal verte
catalog the vertices that result if lines are missing from legal vertices. This idea he
the drawbacks of increasing the vertex catalog and widening the notion of cor
sistency, but can be useful.

Another extension to line labeling is that of [Kanade 1978]. This extension
considers not only solid polyhedra but objects (including nonclosed "shells")
made up of planar faces. This extension has been callgami worldafter the art
of making objects from folded (mostly planar) paper. An example from origami
world is the box in Fig. 9.39a. A quick check shows that this cannot be labeled witl
the Huffman-Clowes label set. It can be labeled using the origami world label se
(Table 9.2) and its interpretation is showrFig. 9.39b.

Table 9.2
EXPANDED JUNCTION TABLE
ELL FORK

+y+  -v- ry

ARROW
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Fig. 9.39 (a) Box. (b) Labeled edges according to origami world label sel.

The vertex labels may be extended to include scenes with cylinders, cones
spheres, tori, and other simple curves. In expanded domains the notion of "lege
line drawing" becomes very imprecise. In any event the number of vertex types
and labels grow explosively, and the coherence rule must be modified to cope witl
the fact that lines can change their interpretation between vertices and can tail o
into nothing, and that one region can attain all three of Waltz's illumination types
[Turner 1974, Chakravarty 1979]. The domain is of scenes such as appear in Fi
9.28d.

9.5.4 Reasoning About Planes

The deficiencies in the scene line-labeling algorithms prompted a consideration o
the geometrical foundations of the junction labels [Mackworth 1973, Sugihara
1981]. This work seeks to answer the same sorts of questions as do labeling prc
grams, but also to take account of objects that cannot possibly be planar polyhedr
such as those dfig. 9.40. Neither approach uses a catalog of junction labels, but
relies instead on ideas of geometric coherence. The basis is a plane-oriented fc
mulation rather than a line-oriented one.

Gradient Space

Mackworth's program relies heavily on the relation of polyhedral surface gra-
dients to the lines in the image (recall section 3.5.2). Image information from
orthographic projections of planar polyhedral scenes may be related to gradient in
formation in a useful way. An image line L is the projection of a three-space line M
arising from the intersection of two faces lying in distinct planeand n of gra-
dients (p\,q\) andpi®g”). With the (p, g) coordinate system superimposed on
the image (x,y) coordinate system, there is the following constraint. The orienta:
tion of L constrains the gradients of 11 j ang Bpecifically, the line lis perpendic-
ular to the lineG between (p\, q\) and {p) (Fig. 9.41).

Fig. 9.40 Labelable but not planar polyhedra.
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y.q / Ms.

X,P

(P, <72> Fig. 9.41 Gradient space constraint.

The result is easily shown. With orthographic projection, the origin may be
moved of the image plane to be in L without loss of generality. Then L is define
by its direction vector (X, /x) = (cos#, sin0). The three-space point ,on O
corresponding to (0,0) may be expressed as (0,0,k\), and at (X, fx) tt
corresponding point is (k,fx,kp] M- + Kk\). Thus moving along M(which isin
nj) from (x,y) = (0,0) to (x,y) - (X, /x) moves along —z by Xp, +.fxghe
coordinates of a unit vector on L can then be expressed as (X, A,ixg\). But
L isalso in 3, and this argument may be repeated fgruling p and g. Thus

X/7, + fig\ " APi + V-Q2 (9.23)
or
Ofiy(pi-  Pu Q- Q) = 0 (9.24)
Equation (9.24) is a dot product set equal to zero, showing that its two vectc
operands are orthogonal, which was to be shown.

Every picture line results from the intersection of two planes, and so it has
line associated with it in gradient space which is perpendicular to it. Furthermore
if the gradients of the surfaces are on the same side of the picture line as their s
faces,the edge was convex; if the gradients are on opposite sides of the line fro
their causing surfaces, the edge was concave (Fig. 9.42). For every junction in t
image there are just two ways the gradients can be arranged to satisfy the perpel
cularity requirement (Fig. 9.43). In the first, all edges are convex, in the secont
concave. Switching interpretations from one to the other by negating gradients
the psychological "Necker reversal."

Notice that if an image junction is a three-space polyhedral vertex, each edq
of the vertex is the intersection wio face planes. If the corresponding gradients
are connected, a "dual” (p, q) space representation of the (x ,y) space junctior
formed. The connected (p, g) gradient points form a polygon whose edges are p
pendicular to the junction lines in (x,y) space. The polygon is larger if the three
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(b) (©

Fig. 9.42 Relation of gradients, image and world structures, (a) Image, (b)

World, (c) Gradients.
dimensional corner is sharper, and shrinks toward the junction point as the corn
gets blunter.

Interpreting Drawings

It is possible to use these geometric results to interpret the lines in orthogc
nally projected polyhedral scenes as being "connect" (i.e., as being between t
connected faces) or occluding. It can also be determined if connect edges are ci
vex or concave, and for occluding edges which surface is in front. Hidden parts «
the scene may sometimes be reconstructed. The orientation of each surface ¢
edge in the scene may be found. Thus a program can determine that input suct
Fig. 9.40 is not a planar-faced polyhedron [Mackworth 1973]. Sugihara's work ger
eralizes Mackworth's; it does not use gradient space and does not rely on orth
graphic projection.
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Fig. 9.43 A scene junction and two resulting triangles in gradient space.

Mackworth's procedure to establish connect edges produces the most ¢
nected interpretation first (a nonconnected interpretation is just a collection
floating faces which line up by accident to give the line drawing). The backgrou
region is the first to be interpreted; that is, means to have its gradient fixed in g
dient space. After a region is interpreted, the region having the most lines in co
mon with regions so far interpreted is interpreted next.

The image of a scene is given in Fig. 9.44a; it is interpreted as follows. N
coherent interpretation is possible with five or four connect edges. Trying for thre
connect edges, the program interprets A by arbitrarily picking a gradient for tl
surface A represents (the background). It picks the origin of gradient space.
order to be able to reason about lines in the image, it needs to have an interpre
region on either side of the line, so it must interpret another region. It picks B |
would be as good).

The lines bounding B are examined to see if they are connectlisrmn-
sidered. If it is connect, the gradient space dual of it will be perpendicular to
through the gradient space point representing surface A (i.e., the origin). Nt
another arbitrary choice: The gradient corresponding to surface B is placed at t
distance from the origin, thus "imagining" the second gradient in a row. Frot
now on, the gradients are more strongly located. The arbitrary scaling and point
origin imposed by these first two choices can be changed later if that is important

In gradient space, the situation is now shown in Fig. 9.44b. Now consid
line 2; to establish it as a connect edge, € (pg, Is) (the gradient space point
corresponding to the surface B) must lie on a line perpendicular to 2 throygh (
(Fig. 9.44c). This cannot happen; the situation with 1 and 2 both connect is i
coherent. Thus, with a lingconnect edge, 2 must be occluding. This sort of in-
coherency result was what kept the program from finding four or five edges co
nect. Further interpretation involves assigning gradients and vertices into t
developing diagram in a noncontradictory, maximally connected manner (Fi
9.44d).

The next part of the program determines convexity or concavity of the line:
The final part of the program looks at occlusion. It also suggests hidden surfac
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Fig. 9.44 (a) Polyhedral scene considered by Mackworth. (b) Partial interpretation.
(c) Continued interpretation, (d) Occluding and connect interpretations, (e) Final interpre-
tation.

and thus hidden lines that are consistent with the interpretation (Fig. 9.44e). Thi
figure in gradient space resembles a tetrahedron, as well it might; it is formed ir
the same way as the graph-theoretic dual (point per face, edge per edge, face |
point) which defines dual graphs and dual polyhedra; the tetrahedron is self-dua
The arbitrary choices of gradient reflect degrees of freedom in the drawing that ar
also identified by Sugihara.
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Skewed Symmetry

Many planar objects are symmetrical about an axis. This axis and anothel
which is perpendicular to the first and in the plane of the object, form a natura
orthogonal coordinate system for the object. If the plane of the object is perpendic
ular to the line of sight from the viewpoint, the coordinate axes appear to be a
right angles. If the object is tilted from this position, the axes appear skewed. Som
examples are shown in Fig. 9.45.

A skewed symmetry may or may not reflect a real symmetry; the object may
itself be skewed. However, if the skewed symmetry results from a tilted real sym-
metry, a constraint in gradient space may be developed for the object's orientatic
[Kanadel979].

An imaged unit vector inclined at a inscribed on a plane at orientation (p, q)
must have three-dimensional coordinates given by

(cosa, sina, pcosa + “sina)

Thus if the two axes of skewed symmetry make angles of & waiitth the image x
axis, the two vectors in three-spaa@ndb must have coordinates

a = (cosa, sina, pcosa + gsina)
and
b = (cos/3, sin/3, p cos/3 - g sin/3)

Since these vectors reflect a real symmetry, they must be perpendicular (i.e
a-b = 0),or

cos (a- B) + (pcosa + gsine*) (pcos/3 + qsin/3) =0 (9.25)
By rotating the p and axesby X= (a -f /3)/2, that is
p' =p cosX + g sinX
q' = —p sinX + g cosX

@ (b)
ru
90°
Fig. 9.45 Skewed symmetries. (a,b,c)
are examples, (d) Each skewed
(0 d) symmetry defines two axes.
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Exercises

Equation (9.25) can be put into the form
p? cog q sirf = —cos (y)

where y =a—(3.Thus the gradient of the object must lie on a hyperbola with axis
tilted A from the xaxis, and with asymptotes perpendicular to the directions of a
and/S.This constraint is shown in Fig. 9.46.

To show how skewed symmetry can be exploited to interpret objects with
planar faces, reconsider the example of Fig. 9.43. In that example the three cor
vex edges constrained the gradients of the corresponding faces to be at the vertic
of atriangle, but the size or position of the triangle in gradient space was unknown
However, skewed symmetry applied to each face introduces three hyperbola upo
which the gradients must lie. The only way that both the skewed symmetry con-
straint and triangle constraint can be satisfied simultaneously is shown in Fig.
9.47—the combined constraints have uniquely determined the face orientations.

EXERCISES

9.1 Derive an expression for the volume of an object represented by spherical harmoni
of order M= 1.

9.2 Derive an expression for the perpendicular to the surface of an object represented
spherical harmonics in terms of the appropriate derivatives.

9.3 Derive an expression for the angle centroid of each of the spherical harmonic func
tions forM ~ 2.

9.4 Label the lines in the objects of Fig. 9.48.

Fig. 9.46 Skewed symmetry constraint
in gradient space.
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Fig. 947 Using skewed symmetry to orient the faces of a cube, (a) The cube.
(b) Skewed symmetries, (c) skewed symmetries and junction constraint plotted in
gradient space, (d) another possible object obeying the constraints.

9.5 Give two sets dESGprimitives with same domain.
9.6 Show that the dual of the plane of interpretation for a line and the duals of the tw
planes that meet in the edge causing the line are all on the dual of the edge.

9.7 Prove (Section 9.3.1) that in the Frenet frame £ ' is perpendicular to £.
9.8 Write the precise rules for combining classification results for \g~}* and -
operations.

9.9 Find two interpretations of the tetrahedron of Fig. 9.44a that differ in convexity or
concavity oflines. (Hint: The concave interpretation has an accident of alignment.)
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Fig. 9.48 Objectsfor labeling.
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Visualunderstandingelates input and its implicit structure to explicit structure that
already exists in our internal representations of the world. More specifically, vision
operations must maintain and updatdiefsabout the world, and achieve specific
goals.

To consider how higher processes can influence and use vision, one mus
confront the nonvisual world and powers of reasoning that have more genera
applicability. The world models that are capable of supporting advanced
application-dependent calculations about objects in the visual domain are quite
complex..General techniques lafowledge representatiaeveloped in other fields
of artificial intelligence can be brought to bear on them. Similarly, much research
has been invested in the basic processesfefenceand planning. These tech-
niques may be used in the visual domain to manipulate beliefs and achieve goals
as well as reasoning for other purposes.

The organization chcomplex visual system (Fig. 15 or Fig. 10.1), is a loose
hierarchy of models of world phenomena. Tekational modelshat concern us in
this chapter are removed from direct perceptual experience—they are used mainl
for the last, highest-level stages of perception. Also, they are used for knowledge
attained prior to the visual experience currently being processed. The represente
tions involved may b@nalogicalor propositional. Analogical representations allow
simulationsof important physical and geometric propertieslgects.Propositions
are assertions that are either true or false with respect to the world (or a worlc
model). Each form is useful for different purposes, and one is not necessarily
"higher" than the other. The techniques and representations of Part IV are mainly
propositional in flavor. Sometimes the reasoning they implement (say about
geometrical entities) would seem better suited to analogical calculations; however,
technical difficulties can render that impossible.

Part IV is concerned with techniques for making the "motivation" and
"world view" of avision system explicit and available. Such explicit models would
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be interesting from a scientific standpoint even if they were not directly useful. But
explicitly available models are decidedly useful. They are useful to the systerr
designer who desires to reconfigure or extend a system. They are useful to the sy
tem itself, which can use them to reason about its own actions, flexibly control its
own resources in accordance with higher goals, dynamically change its goals
recover from mistakes, and so forth.

We organize the major topics of Part IV as follows.

1. Knowledge representation (Chapter 1®@mantic netare an important tech-
nique for structuring complex knowledge, and can be used as a knowledg:
representation formalism in their own right.

2. Matching (Chapter 11). Matching puts a derived representation of an image
into correspondence with an existing representation. This style of processing
representations is more pronounced as domain-dependent knowledge
idiosyncratic goals, and experience begin to dominate the ultimate use (o
understanding) of the visual input.

3. Inference (Chapter 12). Classidagical inference(a technique for manipulat-
ing purely propositional knowledge representations) is a well-understood and
elegant reasoning technique. It has good formal properties, but occasionall
seems restricted in its power to duplicate the range of human processing
Extended inferencechniques such @soduction systemare those in which the
inference process as well as the propositions may contribute materially to the
derived knowledge. Labeling techniques can "infer" consistent or likely
interpretations for an input from given rules about the domain. Inference can
be used for both problem solving and belief-maintenance activity.

4. Planning (Chapter 13pRlanningtechniques are useful for problem solving,
and are especially tailored to integrating vision with real-wadtion. Planning
can be used for resource allocation and attentional mechanisms.

5. Control (Chapter 10; Appendix 2). Contrstrategiesand mechanismare of
vital concern in any complex artificial intelligence system, and are particularly
important when the computation is as expensive as that of vision processing.

Learning ismissing from the list above. Disappointing as it is, at this writing
the problem of learning is so difficult that we can say very little about it in the
domain of vision.
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Knowledge
Representation
and Use 10

10.1 REPRESENTATFONS

An internal representation of the world can help an intelligent system plan its
actions and foresee their consequences, anticipate dangers, and use knowledge
quired in the past. In Part IV we investigate the creation, maintenance, and use of
knowledgebase,an abstract representation of the world useful for computer vision
Chapterl introduced a layered organization for the knowledge base and divided it
contents into "analogical" and "propositional" models. In this section we con-
sider this high-level division more deeply.

The outside world is accessible to a computer vision program through the im-
aging process. Otherwise, the program is manipulating its internal representation:
which should correspond to the world in understood ways. In this sense, the
knowledge base of generalized images, segmented images, and geometric entiti
contains "models" of the phenomena in the world. Another more abstract sens
of "model" is high-level, prior expectations about how the world fits together.
Such a high-level model is often much more complex than the lower-level
representations, often has a large "propositional" component, and is often man
pulated by "inference-like" procedures. Explicit knowledge and belief structures
are a relatively new phenomenon in computer vision, but are playing an increas
ingly important role.

The goals of this chapter are three.

1. To develop in more depth some issues of high-level models (Section 10.1).

2. To describesemanticnets—an important and general tool for both organizing
and representing models (Sections 10.2 and 10.3).

3. To address issues obntrol, at both abstract and implementational levels (Sec-
tion 10.4 augmented by Appendix 2).
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10.1.1 The Knowledge Base—Models and Processes

Figure 10.1 showsherepresentational layeis theknowledge basas wehave
developedit throughthebook, andshowstheplaceof important processes. This
organization might be compared with that in [Barrow and Tenenbaum 1981].

The knowledge base organization is mirrored in the organizafithre book.
Partsl to Il dealt with analogical modekndtheir construction; PatyV is con-
cerned with propositionahndcomplex analogical model$n Chapters 110 13,
the emphasis moves frorthe structureof modelsto theprocesses (matching,
inference, and planning) needed to manipulate and use them.

The knowledge base should have the following properties.

* Represent analogical, propositional, and procedural structures
» Allow quick access to information

* Be easily and gracefully extensible

« Support inquiries to the analogical structures

» Associate and convert between structures

» Support belief maintenance, inference, and planning

Image
X j~ model
Generalized .
I mace Construction
“mag i_ Intrinsic
image
[>
Boundaries
Analogical
Regions
E?fgﬁli Segmented l 9
geometric, image Texture
procedural)
Motion
Two-
Knowledge Geometric I dimensional
represen- f>
tations Three- Matching
dimensional I'; and
| prediction
) 13__ )
Semantic nets v Matching
Analogical Propositions
and . Relational | and L*> Inference
propositional structures
models | hypotheses
" Plans <£ -~> Planning

Fig. 10.1 Theknowledge baseandassociated processés a computer vision
system.
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The highest levels of the knowledge base contain batilogicaland prop-
ositionalmodels. Analogical tools do not exist for many important activities, anc
when they do exist they are often computationally intensive. A three-dimensione
geometric modeling system for automatic manufacturing has very complex dat
structures and algorithms compared to their elegant and terse counterparts ir
propositional model that may be used to plan the highest-level actions. In general
makes sense to do some computation at the analogical level and some at the pra
sitional. This multiple-representation strategy seems more efficient than transla
ing all problems into one representation or the other.

The computations in a vision system should be organized so that informatio
can flow efficiently and unnecessary computation is kept to a minimum. This is thi
function of thecontroldisciplines that allocate effort to different processes. Even
the simplest biological vision systems exhibit sophisticated control of processing.

Constructiveprocesses dominate the activity in building lower-level models,
and matchingprocesses become more important as prior expectations and modk
are brought into play. Chaptéf is devoted to the process of matching.

We postulate that an advanced vision system is engaged in two sorts of hig
level activity: beliefnaintenancand goabchievementThe former is a more or less
passive, data-driven, background activity that keeps beliefs consistent and uj
dated. The latter is an active, knowledge-driven, foreground activity that consist
of planning future activities. Planning is a problem-solving and simulation activity
that anticipates future world states; in computer vision it can determine how th
visual environment is expected to change if certain actions are performed. Pla
ning can occur with symbolic, propositional representations (Chapter 13) or in
more analogical vein with such simulations as trajectory planning [Lozano-Pere
and Wesley 1979]. Planning is useful as an implementational mechanism even
contexts that are not analogous to human "conscious" problem solving [Garve
1976]. Helmholtz likened the results of perception to "unconscious conclusions'
[Helmholtz 1925]. Similarly even "primitive" vision processes (computer or bio-
logical) may use planning techniques to accomplish their ends.

Inference and planning are both classical sub-fields of artificial intelligence.
Neither has seen much application in computer vision. Inference seems useful f
belief maintenance. Extended inference can deal with inconsistent beliefs ar
with beliefs that are maintained with various strengths. We treat inference ir
Chapter 12. Applications of planning to vision [Garvey 1976; Bolles 1977] show
good promise. Planning is treated in Chapter 13.

10.1.2 Analogical and Propositional Representations

Our division of the internal knowledge base into "analogical" and "propositional”
reflects a similar division in theories of how human beings represent the worlc
[Johnson-Laird 1980]. Psychological data are not compelling toward either pur

theory; there are indications that human beings use both forms of representatic
We introduce the division in this book because we find it conceptually useful in the
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following way. Low-level representations and processes tend to be purely analogi
cal; high-level representations and processes tend to be both analogical and prop
sitional.

Analogical representations have the following characteristics [Kosslyn and
Pomerantz 1977; Shepard 1978; Sloman 1971; Kosslyn and Schwartz 1977, 197
Waltz and Boggess 1979].

1. CoherenceEach element of a represented situation appears once, with all i
relations to other elements accessible.

2. Continuity. Analogous with continuity of motion and time in the physical
world; these representations permit continuous change.

3. Analogy.The structure of the representation mirrors (and may be isomorphic
to) the relational structure of the represented situation. The represeigation
description of the situation.

4. Simulation.Analogical models are interrogated and manipulated by arbitrarily
complex computational procedures that often have the flavor of (physical or
geometric) simulation.

Propositional representations have the following characteristics [Anderson
and Bower1973;Palmer 1975; Pylyshyfh9731.

1. Dispersion.An element of a represented situation can appear in several proj
ositions. However, the propositions can be represented in a coherent manne
by using semantic nets.

2. DiscretenessPropositions are not usually used to represent continuous chang
However, they may be made to approximate continuous values arbitrarily
closely. Small changes in the representation can thus be made to correspor
to small changes in the represented situation.

3. Abstraction. Propositions are true or false. They do not have a geometric
resemblance to the situation; their structure is not analogous to that of the si
tuation.

4. Inference.Propositional models are manipulated by more or less uniform com-
putations that implement "rules of inference" allowing new propositions to be
developed from old ones.

Each sort of model derives its "meaning"” differently; the distinctions are in-
teresting, because they can point out weaknesses in each theory [Johnson-Lai
1980; Schank 1975; Fodor, et al. 1975]. Especially in computer implementations,
the two representations only differ essentially in the last two points. It is often pos-
sible to transform one representation to another without loss of information.

Some examples are in order. A generalized image (Part 1) is an analogica
model: to find an object above a given object, a procedure can "search upward" i
the image. An unambiguous three-dimensional model of a solid (Chapter 9) is
analogical. It may be used to calculate many geometric properties of the solid
even those unimagined by the designer of the representation. A set of predicai
calculus clauses (Chapter 12) is a propositional model. Closely related models ca
be used to solve problems and make plans [Nilsson 1971,1980; Chapter 13].
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A short digression: It is interesting that people do not seem to perform sy
logistic inference (formal propositional deduction) in a "mechanical” way. Given
two clauses such as "Some appliances are telephones" and "All telephones
black," we are much more likely to conclude "Some appliances are black" tha
the equally valid "Some black things are appliances." There is not a satisfyin
theory of the mental processes underlying syllogistic inference. An interestin
speculation [Johnson-Laird 1980] is that inference is primarily done through ane
logical mental models (in which, for example, a population of individuals is con-
jured up and manipulated). Then syllogistic inference techniques may have aris
as a bookkeeping mechanism to assure that analogical reasoning does not "n
any cases."

10.1.3 Procedural Knowledge

Procedures as explicit elements in a model pose problems because they are
readily "understood" by other knowledge base components. It is very hard to te
whataprocedure does by looking at its code.

In our taxonomy we think of "procedural" knowledge as being analogical.
The sequential nature of a program's steps is analogous to an ordering of action:
time that can only be clumsily expressed in current propositional representation
Knowledge about "how-to" perform a complex activity is most propitiously
represented in the form of explicit process descriptions. Descriptions not involvin
the element of time may be naturally represented as passive (analogical or propc
tional) structures.

There have been several attempts to organize chunks of procedur
knowledge by associating with the procedure a description of what it is to accon
plish. For example, procedural knowledge can be stored in the internal mod
structure (knowledge base) indexed unpatternsthat correspond to the argu-
ments of the procedurPattern-directed invocatioimvolves going to the knowledge
base for a procedure that matches the given pattern, matching pattern element:
bind arguments, and invoking the procedure. Several advantages accrue
pattern-directed invocation, such as not having to know the "proper names" «
procedures, only their descriptions (what they claim to do). Also, when severe
procedures match a pattern, one either gets nondeterminism or a chance to cho
the best. Often system facilities include a procedure to run to choose the best pi
cedure dynamically. Similar pattern matching is involved in resolution theorerr
provers and production systems (Chapter 12).

As an example, in a program to locate ribs in a chest radiograph [Ballart
1978], procedures to find ribs under different circumstances are attached to nod
in a mixed analogic and propositional model of the ribcage as shown in Fig. 10.;
Each procedure has an associated description which determines whether it can
run. For example, some programs require instances of neighboring ribs to be |
cated before they can run, whereas others can run given only rudimentary scali
information. When invoked, each procedure tries to find a geometric structur
corresponding to the associated rib in a radiograph. Instead of searching for ribs
a mechanical order, descriptors allow a choice of order and procedures and henc
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Fig. 10.2 A portion of a ribcage model
(see text). Procedural attachmentto
model is denoted by jagged lines.

more flexible, efficient and robust program (Appendix 2).

The representation and use of procedural knowledge is an important tog
[Schank and Abelson 1977; Winograd 1975; Freuder 1975]. We expect it to be i
creasingly important for computer vision.

10.1.4 Computer Implementations

A computer implementation can (and often does) obscure the sharp divisions i
posed by pure philosophical differences between analogical and propositior
models. A propositional representation need not be an unordered set of claus
but may have a coherent structure; the coherent versus dispersed distinctior
thus blurred. A geometry theorem prover or a block-stacking program may mar
pulate diagrams or simulate physical phenomena such as gravitational stability &
wobble in the manipulator [Gelernter 1963; Fahlman 1974; Funt 1977]. "Non
standard inference" is an important tool that extends classical inference tec
nigues. Although techniques such as production systems and relaxation labell
algorithms (Chapter 11) bear little superficial resemblance to predicate logic, bo
may be naturally used to manipulate propositional models.

Propositions may be implemented as procedures. If a proposition "evall
ates"to true or false, it is perhaps most naturally considered a function from
world (or world model) to a truth value. This is not to say that all such function:
exist or are evaluated when the proposition is "brought to mind"; perhap
"understanding a proposition" is like compiliagunction and "verifying a propo-
sition" is like evaluating it. The function may be implicit in an evaluation (infer-
ence) mechanism or more explicit, as in a "procedural" semantics such as that
the programming languages PLANNER and CONNIVER [Hewitt 1972; Sussmai
and McDermott 1972; Winograd 1978]. A proposition may thus be encoded as ¢
(analogical!) procedural recipe for establishing the proposition. An example migt
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be this representation of the fact "In California, Grass and Trees produce green |
gions."

(To-Establish (GreenRegion Xx)
Establish (AND (InCaliforniaO)
(OR (Establish (Grassx))
(Establish (Treesx)))))

This might mean: To infer that x is a green region, establish that you are i
California and then try to establish that x arose from grass. Should the grass infi
ence fail, try to establish that x arose from trees. Since the full power of the prc
gramming language is available to an Establish statement, it can perform gene
computations to establish the inference.

The important point here: Rather than a set of clauses whose applicatic
must be organized by an interpreter, propositions may be represented by an ex|
cit control sequence, including procedure calls to other programs. In the exampl
(Grass x) and (Trees x) may be procedures which have their own complicated cc
trol structures.

To say that in a computer "everything is propositions" is a truism; any pro-
gram can be reduced to a Turing machine described by a finite set of "prog
ositions" with a very simple rule of "inference." The issue is at what level the pro:
gram should be described. A program may be doing propositional resolutio
theorem proving or analogical trajectory planning with three-dimensional models
it is not helpful to blur this basic functional distinction by appealing to the lowest
implementational level.

10.2 SEMANTIC NETS

10.2.1 Semantic Net Basics

Semantic nets were first introduced under that name as a means of modeling
man associative memory [Quillian 1968]. Since then they have received much a
tention [Nilsson 1980; Woods 1975; Brachman 1976; Findler 1979]. We are con
cerned with three aspects of semantic nets.

1. Semantic nets can be used as a data structure for conveniently accessing b
analogical and propositional representations. For the latter their constructio
is straightforward and based solely on propositional syntax (Chapter 12).

2. Semantic nets can be used as an analogical structure that mirrors the relevi
relations between world entities.

3. Semantic nets can be used as a propositional representation with special ru
of inference. Both classical and extended inference can be supporteds aut it
challenging enterprise to design net structure that provides the properties
formal logic [Schubert 1976; Hendrix 1979].
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A semantic network represents objects and relationships between objects a:
graph structure ohodesand (labeled) arcs. The arcs usually represent relations
between nodes and may be "followed" to proceed from node to node. A directe
arc with label L between nodes Xand Yean signify that the prediqae Y) is
true. If, in addition, it has a valud/, the arc can signify that some function or rela-
tion holds: L(X, Y) = V.

The indexing propertyof a network is one of its useful aspects. The network
can be constructed so that objects that are often associated in computations, or
especially relevant or conceptually close to each other, may be represented
nodes in the network that are near each other in the network (as measured
number of arcs separating them). Figure 10.3 shows these ideas: (a) nodes car
associated by searching outward along arcs and (b) nodes near a specified node
readily available by following arcs. Semantic networks are especially attractive a
analogical representations of spatial states of affairs. If we restrict ourselves t
binary spatial relations ("above," and "west of," for example), physical objects ot
parts of objects may be represented by nodes, and their positions with respect
each other by arcs.

Let us look at a semantic net and make some basic observations. Figure 1(
is meant to be an analogical representation of an arrangement of chairs arounc
table. The LEFT-OF and RIGHT-OF relations are directed arcs, the ADJACENT
relation is undirected; there can be several such undirected arcs between nod
Note here that the LEFT-OF and RIGHT-OF relations do not behave in their nor
mal way. If they are transitive, as is normal, then every chair is both LEFT-OF anc

@

Fig. 10.3 Semantic networks as
structures for associative search, (a)
Associating two nodes, (b) Retrieving
nearby nodes.
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Fifi. 10.4 A representation of chairs at
it of atable.

RIGHT-OF every other chair. Flexible treatment of this sort of phenomenon is
sometimes difficult in propositional representations.

A simple but basic point: The net lefg. 10.4 seems to say interesting things
about furniture in a scene. But notice that merely by rewriting labels the same ne
could be "about" modular arithmetic, a stringpefarls,or any number of things.
There are two morals here. First, a sparsely connected representation (analogit
or propositional) may have several equally good interpretations. Second, a ne
without any interpretation procedures essentially represents nothing [McDermot
1976).

Now consider three neighboring chairs described by the following relations.

1. CHAIR (Armchair), CHAIR (Highchair), CHAIR (Stool)
WIDE(Armchair)
HIGH (Highchair)
LOW (Stool)
LEFT-OF (Armchair, Highchair)
LEFT-OF (Highchair, Stool)
7. BETWEEN (Highchair, Armchair, Stool)

The relations include four properties (relations with "one argument”), a
two-argument and a three-argument relation. One way to encode this informatio
in a net is shown in Fig. 10.5a. Nodes represent individuals, and properties ai
kept as node contents. The directed arcs represent only binary relations, ar
"betweenness" is left implicit. Properties can equally well be represented as la
beled arcs (Fig. 10.5b).

Relations are encoded as nodes in Fig. 10.6. Here the BETWEEN relation i

encoded asymmetrically: it is not possible to tell by arcs emanating from the stoo
that it is in a "between" relationship.

o 0hs wN
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Wide High Low

Fig. 10.5 (a) A simple semantic net.
(b) An equivalent net.

The three-place relation is treated more symmetrically in Fig. 10.7. In ger
eral, «-place relations may be "binarized" this way; create a node for the "relatic
instance" and new (relation) nodes for each distinct argument role in the «-ary
lation.

An important point: Arcs and nodes had a uniform semantics in Fig. 10./
This property was lost in the succeeding nets; nodes are either "things" or re
tions, and arcs leading into relations are not the same as those leading out. |
such nets to be useful, the net interpreter (a program that manipulates the n
must keep these things straight. It is possible but not easy to devise a rich and t
form network semantics [Brachman 1979].

("WideJ)

Fig. 10.6 A net with more explicit information.

326 Ch. 10 Knowledge Representation and Use

Page 337 of 539



Fig. 10.7 A net with yet more explicit information.

10.2.2 Semantic Nets for Inference

This section explores some further important issues in the semantics of semant
nets.In Chapter 12 semantic nets are used as an indexing mechanism in predica
calculus theorem proving. In some applications an inference system with provabl
good formal properties may be too restrictive. Some formal properties (such a
maintaining consistency by not deducing contradictions) may be considered vital
however. How can "good behavior" be obtained from a representation that ma
contain "inconsistent" information?

One example of an "inconsistent” representation is the net of Fig. 10.3, witt
its LEFT-OF and RIGHT-OF problem. Another example is a net version of the
propositions "All birds fly," "Penguins are birds," "Penguins do not fly." The
generalization is useful "commonsense" knowledge, but the rare exceptions ma
be important, too. Network interpreters can cope with these sorts of problems by
number of methods, such as only accessing a consistent subnetwork, makir
deductions from the particular toward the general (this takes care of penguins)
and so forth. All these techniques depend on the structure imposed by the net.

Some more subtle aspects of net representations appear below.
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Nodes

The basic notation of Fig. 10.4 may tempt us to produce a net such as t
shown in Fig. 10.8. Consider the object node sky in Fig. 10.8. Does it stand for 1
generic sky concept or for a particular sky at a particular time and location? Clea
both meanings cannot be embodied in the same node because they are ust
such different ways in reasoning. The standard solution is to use nodes
differentiate between type, or generic concept, and a token, or instande Big-
ure 10.9 shows this modification using the e (element of) relation to relate the i
dividual to the generic concept. In this simple case, the node sky stands for
type,and the empty node stands &oken,or instance of the sky concept.

The distinction between type and token is related to the distinction betwe:
intensional and extensional concepts. In analyzing an aerial image there is
difference between

"All bridges span roads or rivers." (10.1)
and
"All bridges (found so far) span roads or rivers." (10.2)

If "bridges" in (10.1) means any bridge that might be found, "bridges" is used
an intensionalsense. If "bridges" means a particular set, it is used it in an ext
sional sense. Normally relations between type nodes are used in an intensic
sense and relationships betwaekennodes have the extensional sense.

Virtual nodesare objects that are not explicitly represented as object nod
The need for them arises in expressing complex relations. For example, conside

"The bridge that is at the intersection of road 57
and river3 is near building 30." (10.3)

which may be represented as shown in Fig. 10.10. The node lahslbed xesult

of intersecting a particular road with a particular river. It is not represented exp
citly as an instance of any generic concept; ituiral node.Virtual nodes can be
eliminated by introducing very complex relations, but this would sacrifice an im
portant property of networks, the ability to build up a very large number of corr

Fig. 10.8 Type or token nodes?
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Fi. 10.9 Distinguishing between
types and tokens: (a) Tokenizing an
(b) instance, (b) Tokenizing an assertion.

M3rouncM

plex relations from a small set of primitives. Virtual nodes enhance this ability by
referring to portions of complicated relations.

Nodes in the network can also be usedatables.These variables can match
other nodes which represent constants. In Higl1l,x and y are variables and the
rest of the nodes are constants. If node x is matched to the "telephone" node, tr
xcan be regarded as a "telephone" node.

Road 57

Bldg >*- Bldg 30
Result
("Near jy
Result
Bridge V*-
Int.
’ e = element of
River V*-
Fig. 10.10 Virtual nodes.
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@

Fig. 10.11 Nodes as variables, (a)
Black telephone and pen on desk, (b)
Object denoted by variable x with

(b) variable colory.

Often, it is useful to have numerical values as node properties. This can e
tend the discrete representation of nodes and arcs to a continuous one. For exz
ple, in addition to "color of x is red37" we may also associate the particular value
of red that we mean with node red37. A special kind of value is a defdué. If a
value can be found for the node in the course of matching other nodes with valur
or by examining image data, then that value is used for the node value. Otherwis
the default is used.

Relations

Complex relations of many arguments are not uncommon in the world, bu
for the bulk of practical work, relations of only a few arguments seem to suffice. Se
mantic nets can clearly represent two-argument relations through their nodes ai
arcs. More complex relations may be dealt with by various devices. The links to
multiple arguments may be ordered within a relation node, or new nodes may t
introduced to label the roles of multiple arguments (Fig. 10.7).

If inference mechanisms are to manipulate semantic nets, certain importar
relations deserve special treatment. One such relation is the "IS-A" relation. Th
basic issue addressed by this relatioprégerty inheritancgMoore 1979]. That is,
if Fred 1S-A Camel and a Camel IS-A Mammal, then presumably Fred has the prc
perties associated with mammals. It often seems necessary to differentiate betwe
various senses of "IS-A." One basic sense of "JIS-A Y" is "Zis an element o
the set Y "; others are "~denotes Y" "~is asubset of F," and " Fis an abstra
tion of X" Notice that each sense depends on differently "typed" arguments; it
the first three cases X is, respectively, an individual, a name, and a set. Deef
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treatments of these issues are readily available [Brachman 1979; Hayes* 19
Nilssonl980].

It is particularly helpful to have a denotion link to keep perceptual structure:
separate from model structures. Then if mistakes are made by the vision auton
ton, a correction mechanism can either sever the denotation link completely
create a new denotation link between the correct model and image structures.

When dealing with many spatial relations, it is economical to recognize tha
many relations are "inverses" of each other. That is, LEFT-OF (x.y) is the "in
verse" of RIGHT-OFOt,.y);

LEFT-OF(xyO <==> RIGHT-OF(y,x)
and also

ADJACENT Gey) <=> ADJACENT (y,x)

Rather than double the number of these kinds of links, one@amalize
them. That is, only one half of the inverse pair is used, and the interpreter infe
the inverse relation when necessary.

Properties have a different semantics depending on the type of object that t
the property. An "abstract" node can have a property that gives one aspect
refinement of the represented concept. A propery“abncrete” node presum-
ably means an established and quantified property of the individual.

Partitions

Partitions are a powerful notion in networks. "Partition" is not used in the
sense of a mathematical partition, but in the sense of a barrier. Since the networl
a graph, it contains no intrinsic method of delimiting subgraphs of nodes and arc
Such subgraphs are useful for two reasons:

1. Syntactic.lt is useful to delimit that part of the network which represents the
results of specific inferences.

2. Semantic. It is useful to delimit that part of the network which represent:
knowledge about specific objects. Partitions may then be used to impose
hierarchy upon an otherwise "flat" structurenofies.

The simple way of representing partitions in a net is to create an additional node
represent the partition and introduce additional arcs from that node to every no
or arc in the partition. Partitions allow the nodes and relations in them to be mar
pulated as a unit.

Notationally, it is cleaner to draw a labeled boundary enclosing the relevar
nodes (or arcs). An example is shown by Fig. 10.12 where we consider two objet
each made up of several parts with one object entirely left of the other. Rather th
use a separate LEFT-OF relation for each of the parts, a single relation can be u
between the two partitions. Any pair of parts (one from each object) should inher
the LEFT-OF relation. Partitions may be used to implement quantification in se
mantic net representations of predicate calculus [Hendrix 1975, 1979]. They m:¢
be used to implement frames (Section 10.3.1).
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Left of

( Table ") 6—m *< Chair )

Fig. 10.12 The use of partitions, (a) Constructiorapfrtition, (b) Two objects described
by partitions.

Conversions

It is important to be able to transform from geometric (and logical) represen-
tations to propositional abstract representations and vice versa. For example,
Fig. 10.13 the problem is to find the exact locatiom flephone on a previously
located desk. In this case, propositional knowledge that telephones are usually ¢
desktops, together with the desk top location and knowledge about thetsiee of
phones, define a search area in the image.

Converting image data about a particular group of objects into relational form
involves the inverse problem. The problem is to perform a level of abstraction tc
remove the specificity of the geometric knowledge and derive a relation that is ap
propriate in a larger context. For example, the following program fragment create
the relations ABOVEO04,5), where A and B are world objects.

Comment: assume a world coordinate system whéehe positive vertical.

Find ZAy» for Zin A and ZB. for Z in B.
If ZAnm > ZBnax then make ABOVE (A,B) true.

Many other definitions of ABOVE, one of which compares centers of gravity, are
possible. In most cases, the conversion from continuous geometric relations t
discrete propositional relations involves more or less arbitrary conventions. To ap
preciate this further, consult Fig. 10.14 and try to determine in which of the case
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Fig. 10.13 Search area defined by relational bindings.

block A is LEFT-OF block B. Figure 10.14d shows a case where different answer
are obtained depending on whether a two-dimensional or three-dimensional in
terpretation is used. Also, when relations are used to encode wkati$ytrue of

the world, it is often easy to construct a counterexample. Winston [Winston 1975]

used
SUPPORTS (B,A) ABOVE (A,B)
<3>
&
(@) @)
(b) (©)
Fig. 10.14 Examples to demonstrate difficulties in encoding spatial relation
LEFT-OF (see text).
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which is contradicted by Fig. 10.15, given the previous definition of ABOVE.
One common way around these problems is to associate quantitative, "cor
tinuous" information with relations (section 10.3.2 and later examples).

10.3 SEMANTIC NET EXAMPLES

334

Examples of semantic nets abound throughout Part IV. Two more examples illus
trate the power of the notions. The first example is described very generally, th:
second in detail.

10.3.1 Frame Implementations

Frame system theory [Minsky 1975] is a way of explaining our quick access to im-
portant aspects of a (perhaps perceptual) situation. It is a provocative and col
troversial idea, and the reader should consult the References for a full treatmer
Implementationally, a frame may be realized by a partition; a frame is a "chunk"
of related structure.

Associating related "chunks" of knowledge into manipulable units is a
powerful and widespread idea in artificial intelligence [Hayes 1980; Hendrix 1979]
as well as psychology. These chunks go by several names: units, frames, par
tions, schemata, depictions, scripts, and so forth [Schank and Abelson 1977
Moore and Newell 1973; Roberts and Goldstein 1977; Hayes* 1977; Bobrow anc
Winograd 1977, 1979; Stefik 1979; Lehnert and Wilks 1979; Rumelhart et al.
1972).

Frames systems incorporate a theory of associative recall in which one selec
frames from memory that are relevant to the situation in which onedimetelf.
These frames include several kinds of information. Most important, frames have
slotswhich contain details of the viewing situation. Frame theory dictates a strictly
specific and prototypical structure for frames. That is, the number and type of slot
for a particular type of frame are immutable and specified in advance. Further
frames represent specific prototype situations; many slots have default values; th
is where expectations and prior knowledge come from. These default values ma
be disconfirmed by perceptual evidence; if they are, the frame can contain infor
mation about what actions to take to fill the slot. Some slots ardittelkn by in-
vestigation. Thus a frame is a set of expectations to be confirmed or disconfirme:

Fig. 10.15 A counterexample lo
SUPPORTS(B, A) => ABOVEU B).
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and actions to pursue in various contingencies. One common action is to "bring ir
another frame."

The theory is that based on a partial match of a frame's definingasfiatisie
can be "brought to mind." The retrieval is much like jumping to a conclusion
based on partial evidence. Once the frame is proposed, its slots must be match:
up with reality; thus we have the initial major hypothesis that the frame represents
which itself consists of a number of minor subhypotheses to be verified. A frame
may have other frames in its slots, and so frames may be linked into "frame sys
tems" that are themselves associatively related. (Consider, for example, the
linked perceptual frames for being just outside a theater and for being just inside.
Transformations between frames correspond to the effects of relevant actions
Thus the hypotheses can suggest one another. "Thinking always begins with suc
gestive but imperfect plans and images; these are progressively replaced b
better—but usually still imperfect—ideas" [Minsky 1975].

Frame theory is controversial and has its share of technical problems [Hinton
1977]. The most important of these are the following.

1. Multiple instances of concepts seem to call for copying frames (since the in-
stances may have different sloffillers). Hence, one loses the economy of ¢
preexisting structure.

2. Often, objects have variable numbers of components (wheels on a truck, run
ways in an airport). The natural representation seems to be a rule for con:
structing examples, not some specific example.

3. Default values seem inadequate to express legal ranges of slot-filling values o
dependencies between their properties.

4. Property inheritance is an important capability that semantic nets can imple-
ment with "is a" or"element-of" hierarchies. However, such hierarchies
raise the question of which frame to copy when a particular individual is being
perceived. Should one copy the generic Mammal frame or the more specific
Camel frame, for instance. Surely, it is redundant for the Camel frame to du-
plicate all the slots in the Mammal frame. Yet our perceptual task may call for
a particular slot to be filled, and it is painful not to be able to tell where any par-
ticular slot resides.

Nevertheless, where these disadvantages can be circumvented or are i
relevant, frames are seeing increasing use. They are a natural organizing tool fc
complex data.

10.3.2 Location Networks

This section describes a system for associating geometric analogical data with a s
mantic net structure which is sometimes like a frame with special "evaluation"
rules.The system is a geometrical inference mechanism that computes (or infers,
two-dimensional search areas in an image [Russell 1979]. Such networks hawv
found use in both aerial image applications [Brooks and Binford 1980; Nevatia and
Price 1978] and medical image applications [Ballaral.€t979].
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The Network

A location network is a network representation of geometric point sets relate:
by set-theoretic and geometric operations such as set intersection and union, d
tance calculation, and so forth. The operations correspond to restrictions on the |
cation of objects in the world. These restrictions, or rules, are dictated by culture
or physical facts.

Each internal node of the location network contains a geometric operation, i
list of arguments for the operation, and a result of the operation. For instance,
node might represent the set-theoretic union of two argument point sets, and ti
result would be a point set. Inference is performed by evaluating the net; evaluatin
all its operations to derive a point set for the top (root) operation.

The network thus has a hierarchy of ancestors and descendents imposed or
through the argument links. At the bottom of this hierarchy are data nodes whicl
contain no operation or arguments, only geometric data. Each node is in one :
three states: A node is up-to-date if the data attached to it are currently considert
to be accurate. It is out-of-date if the data in it are known to be incomplete, inacct
rate, or missing. It is hypothesized if its contents have been created by net evalu.
tion but not verified in the image.

In a common application, the expected relative locations of features in ¢
scene are encoded in a network, which thus models the expected structure of t
image. The primitive set of geometric relations between objects is made up of foL
different types of operations.

1. Directional operations (left, reflect, north, up, down, and so on) specify a point
set with the obvious locations and orientations to another.

2. Area operations (close-to, in-quadrilateral, in-circle and so on) create a poin
set with a non-directional relation to another.

3. Set operations (union, difference and intersection) perform the obvious se
operations.

4. Predicates on areas allow point sets to be filtered out of consideration by
measuring some characteristic of the data. For example, a predicate testir
width, length, or area against some value restricts the size of sets to be tho
within a permissible range.

The location of the aeration tank in a sewage treatment plant provides i
specific example. The aeration tank is often a rectangular tank surrounded on €
ther end by circular sludge and sedimentation tanks (Fig. 10.16). As a general rul
sewage flows from the sedimentation tanks to aeration tanks and finally through t
the sludge tanks. This design permits the use of the following types of restriction
on the location of the aeration tanks.

Rule 1: "Aeration tanks are located somewhere close to both the sludge tanks
and the sedimentation tanks."
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Fig. 10.16 Aerial image cdsewage plant.
The various tanks cannot occupy the same space, so:

Rule2: "Aeration tanks must not be too close to either the sludge or sedimen-
tation tanks."

Rule 1is translated to the following network relations.
CLOSE-TO (Union (LocSludgeTanks, LocSedTanks), Distance X)

Rule 2 is translated to

NOT-IN(Union (LocSludgeTanks,LocSedTanks), Distance Y)

The network describing the probable location of the aeration tanks embodies
both of these rules. Rule 1 determines an area that is close to both groupings ¢
tanks and Rule 2 eliminates a portion of that area. Thinking of the image as a poin
set, a set difference operation can remove the area given by Rule 2 from tha
specified by Rule 1. Figure 10.17 shows the final network that incorporates both
rules.

Of course, there could be places where the aeration tanks might be locatec
very far away or perhaps violate some other rule. It is important to note that, like
the frames of Sectiori0.3.1, location networks give prototypical, likely locations
for an object. They can work very well for stereotyped scenes, and might fail to per-
form in novel situations.

The Evaluation Mechanism

The network is interpreted (evaluated) by a program that works top-down in
a recursive fashion, storing the partial results of each rule at the topmost node as
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Fig. 10.17 Constraint network for aeration tank.

sociated with that rule (with a few exceptions). Evaluation starts with the root
node. In most networks, this node is an operation node. An operation node i
evaluated by first evaluating all its arguments, and then applying its operation tc
those results. Its own result is then available to the node of the network that calle
for its evaluation.

Data nodes may already contain results which might come from a map o
from the previous application of vision operators. At some point in the course of
the evaluation, the evaluator may reach a node that has already been evaluated :
is marked up-to-date or hypothesized (such a node contains the results of evalu
tion below that point). The results of this node are returned and used exactly as if
were a data node. Out-of-date nodes cause the evaluation mechanism to execut
low-level procedure to establish the location of the feature. If the procedure is un
able to establish the status of the object firmly within its resource limits, the status
will remain out-of-date. At any time, out-of-date nodes may be processed without
having to recompute any up-to-date nodes. A node marked hypothesized has
value, usually supplied by an inference process, and not verified by low-level im-
age analysis. Hypothesized data may be used in inferences: the realllisferf
ences based on hypothesized data are marked hypothesized as well.
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If a data node ever has its value changed (say, by an independent process 1
adds new information), all its ancestors are marked out-of-date. Thus the ro
node will indicate an out-of-date status, but only those nodes on the out-of-da
path must be reevaluated to bring the network up to date. Figure 10.18 shows t
operation of the aeration tank networkRaj. 10.17 on the input dfig. 10.16. In
this case the initial feature data were a single sludge tank and a single sedimen
tion tank. Suppose additional work is done to find the location of the remaining
sludge and sediment tanks in the image. This causes a reevaluation of the netwc
and the new result more accurately reflects the actual location of the aeratic
tanks.

Propertiesof Location Networks

The location network provides a very general example of use of semantic ne
in computer vision.

1. It serves as a data base of point sets and geometric information. The tru
status of items in the network is explicitly maintained and depends on incom
ing information and operations performed on the net.

2. ltis an expansion @geometric expression into a tree, which makes the order
of evaluation explicit and in which the partial results are kept for each
geometric calculation. Thus it provides efficient updating when some but no
all the partial results change in a reevaluation.

3. It provides a way to make geometrical inferences without losing track of the
hypothetical nature of assumptions. The tree structure records dependenci
among hypotheses and geometrical results, and so upon invalidation of
geometric hypothesis the consequences (here, what other nodes have th
values affected) are explicit. The record of dependencies solves a major prol
lem in automated inference systems.

4. It reflects implicit universal quantification. The network claims to represent
true relations whose explicit arguments must be filled in as the network is "in-
stantiated" with real data.

5. It has a "flat" semantics. There are no element-of hierarchies or partitions.

6. The concept of "individual" is flexible. A point set can contain multiple
disconnected components corresponding to different world objects. In se
operations, such an assemblage acts like an explicit set union of the con
ponents. An "individual" in the network may thus correspond to multiple in-
dividual point (sub)sets in the world.

7. The network allows use of partial knowledge. A set-theoretic semantics of ex
istence and location allows modeling of an unknown location by the set-
theoretic universe (the possible location is totally unconstrained). If some-
thing is known not to exist in a particular image, its "location" is the null set.
Generally, a location is a point set.

8. The set-theoretic semantics allows useful punning on set union and the O
operation, and set intersection and the AND operation. If a dock is on the
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shoreline AND near a town, the search for docks need only be carried out i
the intersection of the locations.

10.4 CONTROL ISSUES IN COMPLEX VISION SYSTEMS

Computer vision involves the control of large, complex information-processing
tasks.Intelligent biological systems solve this control problem. They seem to have
complicated control strategies, allowing dynamic allocation of computational
resources, parallelism, interrupt-driven shifts of attention, and incremental
behavior modification. This section explores different strategies for controlling the
complex information processing involved in vision. Appendix 2 contains specific
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techniques and programming language constructs that have proven to be use
tools in implementing control strategies for artificial intelligence and computer vi-
sion.

10.4.1 Parallel and Serial Computation

In parallel computationseveral computations are done at the same time. For exa
ple, different parts of an image may be processed simultaneously. One issue
parallel processing is synchronization: Is the computation such that the differer
parts can be done at different rates, or must they be kept in step with each othe
Usually, the answer is that synchronization is important. Another issue in paralle
processing is its implementation. Animal vision systems have the architecture 1
do parallel processing, whereas most computer systems are serial (althou
developing computer technologies may allow the practical realization of som
parallel processing). On a serial computer parallelism must be simulated—this
not always straightforward.

In serial computation,operations are performed sequentially in time whethe
or not they depend on one another. The implied sequential control mechanism
more closely matched to a (traditional) serial computer than is a parallel mechai
ism. Sequential algorithms must be stingy with their resources. This fact has he
many effects in computer vision. It has led to mechanisms for efficient data acces
such as multiple-resolution representations. It has also led some to emphasize ¢
nitive alternatives for low-level visual processing, in the hope that the massiv
parallel computations performed in biological vision systems could be circum-
vented. However, this trend is reversing; cheaper computation and more pervasi
parallel hardware should increase the commitment of resources to low-level con
putations. Parallel and serial control mechanisms have both appeared in alg
rithms in earlier chapters. It seems clear that many low-level operations (correle
tion, intrinsic image computations) can be implemented with parallel algorithms
High-level operations, such as "planning” (Chapter 13) have inherently seria
components. In general, in the low levels of visual processing control is predorr
inately parallel, whereas at the more abstract levels some useful computations &
necessarily serial in nature.

10.4.2 Hierarchical and Heterarchical Control

Visual control strategies dictate the flow of information and activity through the
representational layers. What triggers processing: a low level input like a colo
patch on the retina, or a high level expectation (say, expecting to see a féd cat
Different emphasis on these extremes is a basic control issue. The two extrem
may be characterized as follows.

1. Image data driven. Here the control proceeds from the construction of thi
generalized image to segmented structures and finally to descriptions. This
also calledbottom-upcontrol.
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2. Internal model driven. Here high-level models in the knowledge base genera
expectations or predictions of geometric, segment, or generalized image str.
ture in the input. Image understanding is the verification of these prediction:
This is also calledop-downcontrol.

Top-down and bottom-up control are distinguished not by what they do bu
rather by the order in which they do it and how much of it they do. Both ap
proaches can utilize all the basic representations—intrinsic images, feature
geometric structures, and propositional representations—but the processi
within these representations is done in different orders.

The division of control strategies into top-down and bottom-up is a rathe
simplistic one. There is evidence that attentional mechanisms may be some of 1
most complicated brain functions that human beings have [Geschwind 1980]. Tt
different representational subsystems in a complex vision system influence ea
other in sophisticated and intricateys;whether control flows "up" or "down" is
only a broad characterization of local influence in the (loosely ordered) layers ¢
the system.

The term "bottom-up" was originally applied to parsing algorithms for for-
mal languages that worked their way up the parse tree, assembling the input ir
structures as they did so. "Top-down" parsers, on the other hand, notional
started at the top of the parse tree and worked downward, effectively generatil
expectations or predictions about the input based on the possibilities allowed |
the grammar; the verification of these predictions confirmed a particular parsing.

These two paradigms are still basic in artificial intelligence, and provide
powerful analogies and methods for reasoning about and performing mar
information-processing tasks. The bottom-up paradigm is comparable in spir
with "forward chaining,” which derives further consequences from establishet
results. The top-down paradigm is reflected in "backward chaining," which break
problems up into subproblems to be solved.

These control organizations can be used not only "tactically" to accomplisl
specific tasks, but they can dictate the whole "strategy" of the vision campaigi
We shall discover that in their pure forms the extreme strategies (top-down ar
bottom-up) appear inadequate to explain or implement vision. More flexible or
ganizations which incorporate both top-down and bottom-up components see
more suited to a broad spectrum of ambitious vision tasks.

Bottom-Up Control
The general outline for bottom-up vision processing is:
1. PREPROCESS. Convert raw data into more usable intrinsic forms, to be inte
preted by next level. This processing is automatic and domain-independent.

2. SEGMENT. Find visually meaningful image objects perhaps corresponding t
world objects or their parts. This process is often but not always broken up int
(a) the extraction of meaningful visual primitives, such as lines or regions o
homogeneous composition (based on their local characteristics); and (b) tt
agglomeration of local image features into larger segments.
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3. UNDERSTAND. Relate the image objects to the domain from which the imay
arose. For instance, identify or classify the objects. As a step in this process,
indeed as the final step in the computer vision program, the image objects a
the relations between them may be described.

In pure bottom-up organization each stage yields data for the next. The pr
gression from raw data to interpreted scene may actually proceed in many ste
the different representations at each step allow us to separate the process into
main steps mentioned above.

Bottom-up control is practical if potentially useful "domain-independent”
processing is cheap. It is also practical if the input data are accurate and yield r
able and unambiguous information for the higher-level visual processes. For €
ample, the binary images that result from careful illumination engineering and ir
put thresholding can often be processed quite reliably and quickly in a bottom-t
mode. If the data are less reliable, bottom-up styles may still work if they mak
only tolerably few errors on each pass.

Top-Down Control

A bottom-up, hierarchical model of perception is at first glance appealing ol
neurological and computational grounds, and has influenced much classical phil
sophical thought and psychological theory. The "classical" explanation of perce|
tion has relatively recently been augmented by a more cognition-based one invo
ing (for instance) interaction of knowledge and expectations with the perceptu
process in a more top-down manner [Neisser 1967; Bartlett 1932]. A similar evol
tion of the control of computer vision processing has accounted for the augmeni
tion of the pure "pattern recognition" paradigm with more "cognitive" para-
digms. The evidence seems overwhelming that there are vision processes which
not "run bottom-up," and it is one of the major themes of this book that internz
models, goals, and cognitive processes must play major roles in computer visi
[Gregory 1970; Buckhout 1974; Gombrich 1972].00firse there must be a sub-
stantial component of biological vision systems which can perform in a noncogn
tive mode.

There are probably no versions of top-down organization for computer visio
that are as pure as the bottom-up ones. The model to keep in mind in top-do
perception is that of goal-directed processing. A high-level goal spawns subgo:
which are attacked, again perhaps yielding sub-subgoals, and so on, until the gc
are simple enough to solve directly. A common top-down technique is
"hypothesize-and-verify"; here an internal modeling process makes predictiot
about the way objects will act and appear. Perception becomes the verifying
predictions or hypotheses that flow from the model, and the updating of the mod
based on such probes into the perceptual environment [Bolles 1977]. Of cours
our goal-driven processes may be interrupted and resources diverted to respont
the interrupt (as when movement in the visual periphery causes us to look towe
the moving object). Normally, however, the hypothesis verification paradigm re
quires relatively little information from the lower levels and in principle it can con-
trol the low-level computations.
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The desire to circumvent unnecessary low-level processing in computer vi-
sion is understandable. Our low-level vision system performs prodigious amounts
of information processing in several cascaded parallel layers. With serial computa
tion technology, it is very expensive to duplicate the power of our low-level visual
system. Current technological developments are pointing toward making parallel
low-level processing feasible and thus lowering this price. In the past, however, the
price has been so heavy that much research has been devoted to avoiding it, oft
by using domain knowledge to drive a more or less top-down perception paradigm
Thus there are two reasons to use a top-down control mechanism. First, it seems
be something that human beings do and to be of interest in its own right. Second,
seems to offer a chance to accomplish visual tasks without impractical expenditur
of resources.

Mixed Top-DownandBottom-Up Control

In actual computer vision practice, ajudicious mixture of data-driven analysis
and model-driven prediction often seems to perform better than either style in iso
lation. This meld of control styles can sometimes be implemented in a complex
hierarchy with a simple pass-oriented control structure. An example of mixed or-
ganization is provided by a tumor-detection program which locates small nodular
tumors in chest radiographs [Ballard 1976]. The data-driven component is neede
because it is not known precisely where nodular tumors may be expected in the ir
put radiograph; there is no effective model-driven location-hypothesizing scheme
On the other hand, a distinctly top-down flavor arises from the exploitation of what
little is known about lung tumor location (they are found in lungs) and tumor size.
The variable-resolution method using pyramids, in which data are examined in in-
creasingly fine detail, also seems top-down. In the example, work done at 1/1¢
resolution in a consolidated array guides further processing at 1/4 resolution. Only
when small windows of the input array are isolated for attention are they con-
sidered at full resolution.

The process proceeds in three passes which move from less to greater det:
(Fig. 10.19), zooming in on interesting areas of image, and ultimately finding ob-
jects of interest (nodules). Two later passes (not shown) "understand” the no
dules by classifying them as "ghosts," tumors or nontumors. Within pass Il, there
is a distinct data-driven (bottom-up) organization, but passes | and Ill have a
model-directed (top-down) philosophy.

This example shows that a relatively simple, pass-oriented control structure
may implement a mixture of top-down and bottom-up components which focus at-
tention efficiently and make the computation practical. It also shows a few places
where the ordering of steps is not inherently sequential, but could logically proceec
in parallel. Two examples are the overlapping of high-pass filteripgssil with
pass |, and parallel exploration of candidate nodule sites in pass Ill.

Heterarchical Control

The word "heterarchy" seems to be due to McCulloch, who used it to
describe the nonhierarchical (i.e., not partially ordered in rank) nature of neural
responses implied by their connectivity in the brain. It was used in the early 1970
to characterize a particular style of nonhierarchical, non-pass-structured contro
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(Find lung In 64 X 56
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Pass |1
(Find In 256 X 224 array,
candidate apply high-pass
nodule sites filter to enhance
and edges, then inside
large lung boundaries;
tumors) apply gradient at
proper resolution
Pass 111

(Find nodule  From 1024 X 896

boundaries) array, extract 64 X 64
window about each
candidate nodule site,
then in window apply
high-pass filter for
edge enhancement;
then apply gradient
at proper resolution

SEGMENT CONTROL

In 64 X 56 array,
find rough lung
outline; in

256 X 224 array,
refine lung
outline

TOP-DOWN

In 256 X 224 array
use gradient-
directed, circular
Hough method

to find candidate
sites; also detect
large tumors

BOTTOM-UP

In 64 X 64 full-
resolution, pre-
processed window,
apply dynamic
programming
technique

to find accurate
nodule boundaries

TOP-DOWN

Fig. 10.19 A hierarchical tumor-detection algorithm. Technical details of the
methods are found elsewhere in this volume. The processing proceeds in passes
from top to bottom, and within each pass from left to right. The processing exhi-
bits both top-down and bottom-up characteristics.

organization. Rather thaa hierarchical structure (suchs themilitary), one
should imagineacommunity of cooperating and competing experts. Theybeay
organized in their effort by a single executive, by a universal set of rules governii
their behavior,orby an a priori system of ranking. If one can think of a task as con
sisting of many smaller subtasks, each requiring some expe#isg noneces-
sarily performed globallyin a fixed order, thenthetask couldbe suitablefor

heterarchical-like control structure.

The ideais touse,atany given timetheexpert who can help most toward
final task solution. The expert mdpe thamost efficient, or reliable, or may give
the most informationit is selected because according to some criterion its subtas
is thebest thingto do atthat time. The criteridor selection are wide and varied,
and several ideas have been trifteexperts may compute their own relevance,
and thedecision madeon thebasisof those individual local evaluation@s in
PANDEMONIUM [Selfridge 1959]). Theymay beassigneda priori immutable
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rank, so that the highest-ranking expert that is applicable is always run (as i
[Shirai 1975; Ambler et al. 1975]). A combination of empirically predetermined
and dynamically situation-driven information can be combined to decide which ex
pert applies.

The actual control structure of heterarchical programming can be quite sim
ple; it can be a single iterative loop in which the best action to take is chosen, aj
plied, and interpreted (Fig. 10.20).

10.4.3 Belief Maintenance and Goal Achievement

Belief maintenance and goal achievement are high-level processes that imp
differing control styles. The former is concerned with maintaining a current state
the latter with a set of future states. Belief maintenance is an ongoing activit
which can ensure that perceptions fit together in a coherent way. Goal achiev:
ment is the integration of vision into goal-directed activities such as searching fc
objects and navigation. There may be "unconscious" use of goal-seeking tecl
niques (e.g., eye-movement control).

BeliefMaintenance

An organism is presented with a rich visual input to interpret. Typically, it all
makes sense: chairs and tables are supported by floors, objects have expec
shapes and colors, objects appear to flow past as the organism moves, nearer
jects obscure farther ones, and so on. However, every now and then somethi

START

Choose the best action
based on what is known
so far

Perform it

Inperpret its results
to increase knowledge

NoJ<f Done >>Cyes

STOP J
' Fig. 10.20 A main executive control
loop for heterarchical vision.
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enters the visual field that does not meet expectations. An unfamiliar object in
familiar environment or a sudden movement in the visual periphery can b
"surprises" that do not fit in with our existing beliefs and thus have to be reckones
with.

It is sometimes impossible to ignore movements in our visual periphery, bu
if we are preoccupied it is easily possible to stay unconscious of small changes
our environment. How is it possible to notice some things and not others? The b
lief maintenance mechanism seems to be resource-limited. A certain amount
"computing resource" is allocated for flob. With this resource, only a limited
amount of checking can be done. Checks to be made are ranked (somehow
responses to events in the periphery are like reflexes, or high-priority hard-wire
interrupts) and those that cannot be done within the resource limit are omittec
Changes in our beliefs are often initiated ibaitom-upway, through unexpected
inputs.

A second characteristic of belief maintenance is the almost total absence «
sequential, simulation-based or "symbolic" planning or problem-solving activity.
Our beliefs are "in the present"; manipulation of hypothetical worlds is not belief
maintenance. "Truth maintenance" schemes have been discussed in various ct
texts [Doyle1979;Stallman and Sussman 1977].

We conjecture that constraint-satisfaction (relaxation) mechanisms
(Chapters 3, 7, and 12) are computationally suited to maintaining belief structure:
They can operate in parallel, they seek to minimize inconsistency, they can tolera
"noise" in either input or axioms. Relaxation techniques are usually applied tc
low-level visual input where locally noisy parameters are combined into globally
consistent intrinsic images. Chapter 12 is concerned with inference, in which cor
straint relaxatioris applied to higher-level entities.

Characteristicoof Goal Achievement

Goal achievement involves two related activities: planning and acting. Plan-
ning is a simulation of the world designed to generate a plpharis a sequence
of actions that, if carried out, should achieve a gbelionsare the primitives that
can modify the world. The motivation for planning is survival. By being able to
simulate the effects of various actions, a human being is able to avoid dangerous :
tuations. In an analogous fashion, planning can help machines with vision. For e»
ample, a Mars rover can plan its route so as to avoid steep inclines where it migl
topple over. The incline measurement is made by processing visual input. Sinc
planning involves a sequenceadftions,each of which if carried out could poten-
tially change the world, and since planning does not involve actually making thost
changes, the difficult task of the planner is to keep track of all the different world
states that could result from different action sequences.

Vision can clearly serve as an important information-gathering step in plan-
ning actions. Can planning techniques be of use directly to the vision process
Clearly so in "skilled vision," such as photointerpretation. Also, planning is a use-
ful computational mechanism that need not be accompanied by conscious, cogr
tive behavior.
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These inductive conclusions leading to the formation of our sense perceptions
certainly do lack the purifying and scrutinizing work of conscious thinking.
Nevertheless, in my opinion, by their particular nature they may be classed as
conclusionsjnductive conclusions unconsciously formed. [Helmholtz 1925]

The character of computations in goal achievement is related to the inference
mechanisms studied in Chapter 11, only planning is distinguished by being
dynamic through time. Inference (Chapter 12) is concerned with the knowledge
base and deducing relations that logically follow from it. The primitives are prop-
ositions. In planning (Chapter 13) the primitives are actions, which are inherently
more complex than propositions. Also, planning need not be a purely deductive
mechanism; instead it can be integrated with visual "acting"”, or the interpretation
of visual input. Often, a long deductive sequence may be obviated by using direct
visual inspection. This raises a crucial point: Given the existence of plans, how
does one choose between them? The solution is to have a method of scoring plar
based on some measure of their effectiveness.

EXERCISES

10.1 (a) Diagram some networks for a simple dial telephone, at various levels of detail
and with various complexities of relations.
(b) Now include in your network dial and pushbutton types.
(c) Embed the telephone frame into an office frame, describing where the tele-
phone should be found.
10.2 Is a LISP vision program an analogical or propositional representation of
knowledge?
10.3 Write a semantic net for the concept "leg," and use it to model human beings,
tables,and spiders. Represent the fact "all tables have four legs." Can your "leg"
model be shared between tables and spiders? Shared within spiders?
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Matching 11

11.1 ASPECTS OF MATCHING

11.1.1 Interpretation: Construction, Matching, and Labeling

Figure 10.1 shows a vision system organization in which there are severe
representations for visual entities. A complex vision system will at any time have
several coexisting representations for visual inputs and other knowledge. Perce|
tion is the process of integrating the visual input with the preexisting representa
tions, for whatever purpose. Recognition, belief maintenance, goalseeking, ol
building complex descriptions—all involve forming or finding relations between

internal representations. These correspondences match ("model," "re
represent,” "abstract," "label") entities at one level with those at another level.

Ultimately, matching "establishes an interpretation” of input data, where an
interpretation is the correspondence between models represented in a comput
and the external world of phenomena and objects. To do this, matching associat
different representations, hence establishing a connection between their interpr
tations in the world. Figure 11.1 illustrates this point. Matching associates TOK-
NODE, a token for a linear geometric structure derived from image segmentatior
efforts with a model token NODE101 for a particular road. The token TOKNODE
has the interpretation of an image entity; NODE101 has the interpretation of a pai
ticular road.

One way to relate representations istmstructone from the other. An ex-
ample is the construction of an intrinsic image from raw visual input. Bottom-up
construction in a complex visual system is for reliably useful, domain-
independent, goal-independent processing steps. Such steps rely only ¢
"compiled-in" ("hard-wired," "innate") knowledge supplied by the designer of
the system. Matching becomes more important as the needed processing becon
more diverse and idiosyncratic to an individual's experience, goals, anc
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Fig. 11.1 Matching and interpretation.

knowledge. Thus as processing moves from "early" to "late," control shifts fro
bottom-up toward top-down, and existing knowledge begins to dominate perce
tion.

This chapter deals with some aspects of matching, in which two already exi
ing representations are put into correspondence. When the two representation:
similar (both are images or relational structures, say), "matching" can be usec
its familiar sense. When the representations are different (one image and
geometric structure, say), we use "matching” in an extended sense; pert
"fitting" would be better. This second sort of matching usually has a top-down
expectation-driven flavor; a representation is being related to a preexisting one.

As afinal extension to the meaning of matching, matching might include tt
process of checking a structure with a set of rules describing structural legali
consistency, or likelihood. In this sense a scene can be matched against rules tc
if it is nonsense or to assign an interpretation. One such interpretation proc
(called labeling) assigns consistent or optimally likely interpretations (labels)
one level to entities of another level. Labeling is like matching a given structu
with a possibly infinite set of acceptable structures to find the best fit. However, v
(fairly arbitrarily) treat labeling in Chapter 12 as extended inference rather th:
here as extended matching.

11.1.2 Matching Iconic, Geometric, and Relational Structures

Chapter 3 presented various correlation techniques for matotdamic (image-
like) structures with each other. The bulk of this chapter, starting in Section 11
deals with matchingelational (semantic net) structures. Another important sort o
matching between two dissimilar representations fits data to parameterized moc
(usually geometric). This kind of matching is an important part of computer vi
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sion. A typical example is shown in Fig. 11.2. A preexisting representation (here
straight line) is to be used to interpret a set of input data. The line that best "e:
plains" the data is (by definition) the line of "best fit." Notice that the decision to
use a line (rather than a cubic, or a piecewise linear template) is made at a higt
level. Given the model, the fitting or matching means determiningahemeters

of the model that tailor it into a useful abstraction of the data.

Sometimes there is no parameterized mathematical model to fit, but rather
given geometric structure, such as a piecewise linear curve representing a sho
line in a map which is to be matched to a piece of shoreline in an image, or t
another piecewise linear structure derived from such a shoreline. These geomet
matching problems are not traditional mathematical applications, but they ar
similar in that the best match is defined as the one minimizing a measure ¢
disagreement.

Often, the computational solutions to such geometric matching problems ex
hibit considerable ingenuity. For example, the shore-matching example abov
may proceed by finding that position for the segment of shore to be matched th.
minimizes some function (perhaps the square) of a distance metric (perhaps E
clidean) between input points on the iconic image shoreline and the nearest poi
on the reference geometric map shoreline. To compute the smallest distan
between an arbitrary point and a piecewise linear point set is not a trivial task, ar
this calculation may have to be performed often to find the best match. The con
putation may be reduced to a simple table lookup by precomputing the metric in
"chamfer array," that contains the metric of disagreement for any point arount
the geometric reference shoreline [Barrow et al. 1978]. The array may be corr
puted efficiently by symmetric axis transform techniques (Chapter 8) that "grow"
the linear structure outward in contours of equal disagreement (distance) until
value has been computed for each point of the chamfer array.

Parameter optimizatiotechniques can relate geometrical structures to lowe|
level representations and to each other through the use of a merit function measi
ing how well the relations match. The models are described by a vector of param:
ters a =(«!,...,&). The merit function Mmustrate each set of those parameters
in terms of a real number. For example, M could be a function of both a, the
parameters, and/Gc), the image. The problem is to find a such that

Af(a,/(x))

Reference Input

Ax + By +C=0

Fig. 11.2 Matching or fitting a straight
line model to data.
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is maximized. Note that if a were some form of template function rather than
vector of parameters, the problem statement would encompass the iconic corre
tion techniques just covered. There is a vast literature on optimization techniqu
and we cannot do more than provide a cursory discussion of a few cases with exe
ples.

Formally, the different techniques have to do with the form of the merit
function M. A fundamental result from calculus is that if M is sufficiently well
behaved (i.e., has continuous derivatives), then a condition for a local maximu
(or minimum) is that

Ma=|" =0 for;=1,..« (11.1)

This condition can be exploited in many different ways.

¢ Sometimes Egs. (11.1) are sufficiently simple so that the a can be determin
analytically, as in the least squares fitting, described in Appendix 1.

+ An approximate solution®acan be iteratively adjusted by moving in the gra-
dient direction or direction of maximum improvement:

af-af~! + cM.. (11.2)

where cis a constant. This is the most elementary of several kigdsdignt
(hill-climbing) techniques.Here the gradient is defined with respect to M ar
does not mean edge strength.

« If the partial derivatives are expensive to calculate, the coefficients can be pe
turbed (either randomly or in a structured way) and the perturbations kept
they improve M:

(L a=a+Aa
(2) a =a'ifM(a') > Mia)

A program to fit three-dimensional image data with shapes described b
spherical harmonics used these techniques [Schudy and Ballard 1978]. The det:
of the spherical harmonics shape representation appear in Chapter 9. The fitti
proceeded by the third method above. A nominal expected shape was matchec
boundaries in image data. If a subsequent perturbation in one of its paramete
results in an improvement in fit it was kept; otherwise, a different perturbation wa
made. Figure 11.3 shows this fitting processafoross section of the shape.

Though parameter optimization is an important aspect of matching, we sha
not pursue it further here in view of the extensive literature on the subject.

11.2 GRAPH-THEORETIC ALGORITHMS

The remainder of this chapter deals with methods of matching relational struc
tures.Chapter 10 showed how to represent a relational structure containing «-a
relations as a graph with labeled arcs. Recall that the labels can have values fror
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Fig. 11.3 An example of matching as
parameter optimization, (a) Initial
parameter set (displayed at left as three-
dimensional surface (see Fig. 9.8) (b)
Fitting process: iteratively adjust a based
on M (see text), (c) Final parameter set
yields this three-dimensional surface.
{See color inserts.)
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continuum, andthat labeled arcs couldereplacedby nodesto yield a directed
graph with labeled nodes.

Dependingon theattributesof the relational structure araf the correspon-
dence desiredthedefinition of a match mayemore orless elegantt is always
possibletotranslate powerful representations sadtabeled graphser «-ary rela-
tions into computational representations which are ameraffitemal treatment
(suchasundirected graphs). However, when graph algoritlresto bemple-
mented with computer data structurélsefreedom andpower of programming
languages often tempts the implementer away from pure graph theory. He can
place elegant(butoccasionally restrictiveandimpractical) graph-theoretic con-
cepts and operations with arbitrarily complex data structures and algorithms.

One examplds the"graph isomorphism" problenavery pure versiomf
relational structure matchingn it, all graph nodesndarcsareunlabeledand
graphs matclif there is a 1:1 and onto correspondence between the arcs and no
of the two graphsThe lack of expressive powein these graphand theequire-
ment that a match be "perfect” limits the usefulnafthis pure model of match-
ing in thecontextof noisy inputandimprecise reference structurelm practice,
graph nodes may have properties with continuous raofyeslues,and ararbi-
trarily complex algorithm determines whether nodearcs match. The algorithm
may even access information outsitieegraphs themselvesslong as itreturns
the answer "matchbdr "nomatch." Generalizing the graph-theoretic notioms
this way canobscure issuesf their efficiency, powerandproperties;onemust
steeracourse betweethe"elegantandunusable'and the'general and uncon-
trollable." This section introduces some "pure" graph-theoretic algorithms th:
form the basis for techniques in Sections 11.3 and 11.4.

11.2.1 The Algorithms

The following areseveral definitionsof matching between graphs [Harahp69;
Berge 1976].

» Graphisomorphism.Given two graphgV\, E\) and (Y, &), find al:land
onto mapping (an isomorphism) / between V\ and ¥ such thatfor
V\, w € V\, V,, f(v\) =, and foreach edgef E\ connectinganypair of
nodes viand v'i €V\, there is an edge of Eonnecting(v\) and f(y\).

¢ Subgraphisomorphism.Find isomorphisms between a graiy E\) and sub-
graphsof another graph(\V, Ej). This is computationally harder than isomor-
phism because one does not know in advance which sudfsétsire involved
in isomorphisms.

¢ "Double"subgraphisomorphismsFind all isomorphisms betweesubgraphof
a graph(V\ E\) andsubgraphofanother grapi(V,i E,). This sounds harder
than the subgraph isomorphism problem, but is equivalent.

e A match maynotconform to strict rulesof correspondence between arcs and
nodes (some nodesndarcs may be"unimportant"). Sucha matching cri-
terion may well be implemented as a "computational” (impure) version of on
of the pure graph isomorphisms.
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Figure 11.4 shows examples of these kinds of matches.

One algorithm for finding graph isomorphism [Corneil and Gotlieb 1970] is
based on the idea of separately putting each graph into a canonical form, fro
which isomorphism may easily be determined. For directed graphs (i.e., nonsyn
metric relations) a backtrack search algorithm [Berztiss 1973] works on bott
graphs at once.

Two solutions to the subgraph isomorphism problem appear in [Ullman
1976]: The first is a simple enumerative search of the tree of possible matche
between nodes. The second is more interesting; in it a process of "paralle
iterative" refinement is applied at each stage of the search. This pioaegsy of
rejecting node pairs from the isomorphism and of propagating the effects of suc
rejections; one rejected match can lead to more matches being rejected. When 1
iteration converges (i.e., when no more matches can be rejected at the curre
stage),another step in the tree search is performed (one more matching pair is h
pothesized). This mixing of parallel-iterative processes with tree search is useful i
a variety of applications (Section 11.4.4, Chapter 12).

"Double" subgraph isomorphism is easily reduced to subgraph isomorphisn
via another well-known graph problem, the "clique problemcligueof size Ms
a totally connected subgraph of si&(each node is connected to every other node
in the clique by an arc). Finding isomorphisms between subgraphs of a graph .
and subgraphs of a graghis accomplished by forming association graph Gom
the graphs A an® and finding cliques in G (for details, see Section 11.3.3). Clique

(b) ©

@ ©

Fig. 11.4 Isomorphisms and matches. The graph (a) has an isomorphism with
(b), various subgraph isomorphisms with (c), and several "double" subgraph iso-
morphisms with (d). Several partial matches with (e) (and also (b), (c), and (d)),
depending on which missing or extra nodes are ignored.

Ch. 11 Matching

Page 369 of 539



finding may be done with a subgraph isomorphism algorithm; hence the reduct
Several other clique-finding algorithms exist [Ambler et al. 1975; Knodel 196¢
BronandKerbosch973;0steen and Tou 1973].

11.2.2 Complexity

It is of some practical importance to be aware of the computational complexity
the matching algorithms proposed here; they may take surprising amounts of cc
puter time. There are many accessible treatments of computational complexity
graph-theoretic algorithms [Reingold et al. 1977; Aho, Hopcroft and Ulimai
1974]. Theoretical results usually describe worst-case or average time complexi
The state of knowledge in graph algorithms is still improving; some interestir
worst-case bounds have not been established.

A "hard" combinatorial problem is one that takes time (in a usual model «
computation based on a serial computer) proportional to an exponential functi
of the length of the input. "Polynomial-time" solutions are desirable because th
do not grow as fast with the size of the problem. The time to find all the cliques o
graph is in the worst case inherently exponential in the size of the input graphs,
cause the output is an exponential number of graphs. Both the single subgraph
morphism problem and the "“clique problem" (does there exist a clique of size £
areNP-completeall known deterministic algorithms run (in the worst case) in tim
exponential in the length of the description of the graphs involved (which mu
specify the nodes and arcs). Not only this, but if either of these problems (or a h
of other NP complete problems) could be solved deterministically in time polync
mial” related to the length of the input, it could be used to solve all the other M
problems in polynomial time.

Graph isomorphism, both directed and undirected, is at this writing in
netherworld (along with many other combinatorial problems). No polynomial
time deterministic algorithms are known to exist, but the relation of these pro
lems to each other is not as clear-cut as it is between the NP-complete problen
particular, finding a polynomial-time deterministic solution to one of them woulc
not necessarily indicate anything about how to solve the other problems deterrr
istically in polynomial time. These problems are not mutually reducible. Certai
restrictions on the graphs, for instance that they are planar (can be arranged 1
their nodes in a plane and with no arcs crossing), can make graph isomorphisrr
"easy" (polynomial-time) problem.

The average-case complexity is often of more practical interest than the wo
caseTypically, such a measure is impossible to determine analytically and must
approximated through simulation. For instance, one algorithm to find isomo
phisms of randomly generated graphs yields an average time that seems not
ponential, but proportional to®N with /Vthe number of nodes in the graph [UII-
man 1976]. Another algorithm seems to run in average time proportiond to |
[Corneil and Gotlieb 1970].

All the graph problems of this section are in NP. That is, a «o«determinist
algorithm can solve them in polynomial time. There are various ways of visualizir
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nondeterministic algorithms; one is that the algorithm makes certain significa
"good guesses" from arange of possibilities (such as correctly guessing which si
set of nodes from graph B are isomorphic with graph A and then only having
worry about the arcs). Another way is to imagperallel computation; in the
clique problem, for example, imagine multiple machines running in parallel, eac
with a different subset of nodes from the input graph. If any machine discovers
totally connected subset, it has, of course, discovered a clique. Checking whetl
TV nodes are all pairwise connected is at most a polynomial-time problem, so all |
machines will terminate in polynomial time, either with success or not. Several ir
teresting processes can be implemented with parallel computations. Ullman's al
rithm uses a refinement procedure which may run in parallel between stages of
tree search, and which he explains how to implement in parallel hardware [Ulime
1976].

11.3 IMPLEMENTING GRAPH-THEORETIC ALGORITHMS

360

11.3.1 Matching Metrics

Matching involvesquantifiable similarities. A match is not merely a correspon-
dence, but a correspondence that has been quantified according to its "goodne
This measure of goodness is tmatchingmetric. Similarity measures for correla-
tion matching are lumped together as one number. In relational matching the
must take into account a relational, structured form of data [Shapiro and Haralic
1979].

Most of the structural matching metrics may be explained with the physice
analogy of "templates and springs" [Fischler and Elschlager 1973]. Imagine th
the reference data comprise a structure on a transparent rubber sheet. The me
ing process moves this sheet over the input data structure, distorting the sheer
as to get the best match. The final goodness of fit depends on the individu
matches between elements of the input and reference data, and on the amour
work it takes to distort the sheet. The continuous deformation process is a pre
abstraction which most matching algorithms do not implement. A computationall
more tractable form of the idea is to consider the model as a set of rigid "ten
plates"connected by "springs" (see Fig. 11.5). The templates are connected
"springs" whose "tension" is also a function of the relations between elements.
spring function can be arbitrarily complex and nonlinear; for example the "ten
sion" in the spring can attain very high or infinite values for configurations of tem-
plates which cannot be allowed. Nonlinearity is good for such constraints as: in
picture ofaface the two eyes must be essentially in a horizontal line and must t
within fixed limits of distance. The quality of the match is a function of the good-
ness of fit of the templates locally and the amount of "energy" needed to strett
the springs to force the input onto the reference data. Costs may be imposed
missing or extra elements.

The template match functions and spring functions are general procedure
thus the templates may be more general than pure iconic templates. Furth
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Fig. 11.5 A templates and springs modekdéce.

matches may be defined not only between nodes and other nodes, but betwe
nodes and image data directly. Thus the template and springs formalism is work
able for "cross-representational” matching. The mechanism of minimizing the to-
tal cost of the match can take several forms; more detailed examples follow in Sec
tion 11.4.

Equation 11.3 a general form of the template-and-springs metric. Tem-
plateCost measures dissimilarity between the input and the templates, an
SpringCost measures the dissimilarity between the matched input elements' rel;
tions and the reference relations between the templates. MissingCost measures |
penalties for missing elements. F(-) is the mapping from templates of the referenc
to elements of the input data. F partitions the reference templates into two classe
those found {FoundinRefer} and those not found {MissinginReferj in the input
data. If the input data are symbolic they may be similarly partitioned. The genera
metric is

Cost= I TemplateCostU Fid))
d 6 {FoundinRefer)

+ L SpringCos{Fid), Fie)) (11.3)
id, e) 6 {FoundinRefer x Foundinlnputl
+ L MissingCost (c)
c € {MissinginReferl U {Missingininputj

Equation 11.3 may be written as one sum of generalized SpringCosts in whict
the template properties are included (as l-ary relations), as are "springs" involv
ing missing elements.
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As with correlation metrics, there are normalization issues involved with
structural matching metrics. The number of elements matched may affect the ul
mate magnitude of the metric. For instance, if springs always have a finite cos
then the more elements that are matched, the higher the total spring energy m
be; this should probably not be taken to imply that a match of many elements
worse than a match of a few. Conversely, suppose that relations which agree
given positive "goodness" measures, and a match is chosen on the basis of the
tal "goodness." Then unless one is careful, the sheer number of possibly medior
relational matches induced by matching many elements may outweigh the "goo
ness"of an elegant match involving only a few elements. On the other hand,
small, elegant match @fpart of the input structure with one particular reference
object may leave much of the search structure unexplained. This good "sul
match" may be less helpful than a match that explains more of the input. To son
extent the general metric (Eq.11.3) copes with this by acknowledging the "miss
ing" category of elements.

If the reference templates actually contain iconic representations of what tr
input elements should look like in the image, a TemplateCost can be associat
with a template and a location in the image by

TemplateCost (Template, Location)

= (1 - normalized correlation metric between
template shape and input image at the location).
If the match is, for instance, to match reference descriptioastwdir with
an input data structure, a typical "spring" might be that the chair seat must be su
ported by its legs. Thus .ifusthe association function mapping reference elements
such as LEG or TABLETOP to input elements,

SpringCost! (/"(LEG), /"(TABLETOP)

_JO if F(LEG) appears to support F(TABLETOP),
1 if F(LEG) does not appear to support F(TABLETOP).

For guantified relations, one might have

SpringCost = number of standard deviations from the
canonical mean value for this relation.
Another version of SpringCasis the following [Barrow and Popplestone
1971].
P . ou .,= SpringCosts of properties (unary) and binary relations /,, X
total number of unary and binary springs
, Empirical Constant
Total number of reference elements matched
The first term measures the average badness of matches between proper
(unary relations) and relations between regions. The second term is inversely pr
portional to the number of regions that are matched, effectively increasing the co
of matches that explain less of the input.
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11.3.2 Backtrack Search

Backtrack search is a generic name for a type of potentially exhaustive search ol
ganized in stages; each processing stage attempts to extend a partial solutic
derived in the previous stage. Should the attempt fail, the search "backtracks" t
the most recent partial solution, from which a new extension is attempted. The
technique is basic, amounting to a depth-first search through a tree of partial solu
tions (Fig. 11.6). Backtracking is a pervasive control structure in artificial intelli-

Fig. 11.6 The graph of (a) is to be matched in (b) with arcs all being unlabeled
but nodes having properties indicated by their shapes, (c) is the tree of solutions
built by abacktrack algorithm.
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gence, and through the years several general classes of techniques have evolv
make the basic, brute-force backtrack search more efficient.

Example:Graph Isomorphisms

Given two graphs,
* - (VB
Y= (Vy, By),

without loss of generality, let,\= Vy — {1, 2,...,»}, and let Xbe the reference
graph, Ythe input graph. The isomorphism is given by: If (€thé correspond-
ing node under the isomorphism is F(i) €.V

In the algorithm, $the set of nodes accounted for in Yby a partial solutior
Ogives the current level of the search in the tree of partial solutions, the numbe
nodes in the current partial solution, and the node of X whose match in Y
currently being soughty is a node of Y currently being considered to extend th
current partial solution. As written, the algorithm finds all isomorphisms. It i
easily modified to quit after finding the first.

Algorithm 11.1 Backtrack Search for Directed Graph Isomorphism
Recursive Procedur®irectedGraphlsomorphismiS, k);

begin
if S=\W then ReportAsisomorphism(F)
else
forallvt  (Vy-S)
do
/IMatch (A, v)
then
begin
F(k):=v;
DirectedGraphlsomorphisms (£€ {v},A:-rl);
end;
end,

ReportAsisomorphism could print or save the current valle thfe global
structure recording the current solution. Match(/c,v) is a procedure that te:
whether v€ Ycan correspond to k €, nder the isomorphism so far defined by
F. Let X% be the subgraph of A'with vertices {1,2,. . .,k). The procedure "Match
must check for i < k, whether (/, k) is an edge offiX (F(i), V) is an edge of Y
and whether (k, i) is an edge/¥ iff (v, F(i)) isan edge of Y.

Improving Backtrack Search

Several techniques are useful in improving the efficiency of backtrack sear:
[Bittner and Reingold 1975]:
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Sec. 77.3

1. Branchpruning. All techniques of this variety examine the current partial solu-
tion and prune away descendents that are not viable continuations of the soli
tion. Should none exist, backtracking can take place immediately.

2. Branchmerging.Do not search branches of the solution tree isomorphic witl
those already searched.

3. Tree rearrangemergndreordering.Given pruning capabilities, more nodes ar
likely to be eliminated by pruning if there are fewer choices to make early in
the search (partial solution nodes of low degree should be high in the searc
tree).Similarly, search first those extensions to the current solution that have
the fewest alternatives.

4. Branchandbound.If acost may be assigned to solutions, standard technique
such as heuristic search and the A* search algorithm [Nilsson 1980] (Sectior
4.4) may be employed to allow the search to proceed on a "best-first" rathe
than a "depth-first" basis.

For extensions of these techniques, see [Haralick and Elliott 1979].
11.3.3 Association Graph Techniques

Generalizedstructure Matching

A general relational structure "best match" is less restricted than graph iso
morphism, because nodes or arcs may be missing from one or the other grap
Also, it is more general than subgraph isomorphism because one structure may n
be exactly isomorphic to a substructure of the other. A more general match cor
sists of a set of nodes from one structure and a set of nodes from the other and a
mapping between them which preserves the compatibilities of properties and rele
tions. In other words, corresponding nodes (under the node mapping) have
sufficiently similar properties, and corresponding sets under the mapping haw
compatible relations.

The two relational structures may have a complex makeup that falls outside
the normal purview of graph theory. For instance, they may have parameterize
properties attached to their nodes and edges. The definition of whether a noc
matches another node and whether two such node matches are mutually compe
ble can be determined by arbitrary procedures, unlike the much simpler criteri
used in pure graph isomorphism or subgraph isomorphism, for example. Reca
that the various graph and subgraph isomorphisms rely heavily on a 1:1 match,
least locally, between arcs and nodes of the structures to be matched. However, t
idea of a "best match" may make sense even in the absence of such perfe
correspondences.

The association grapfalefined in this section is an auxiliary data structure pro-
duced from two relational structures to be matched. The beauty of the associatic
graph is that it is a simple, pure graph-theoretic structure which is amenable t
pure graph-theoretic algorithms such as clique finding. This is useful for severa
reasons.
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» It takes relational structure matching from the ad hoc to the classical domain

¢ It broadens the base of people who are producing useful algorithms for str
ture matching. If the rather specialized relational structure matching enterpr
is reducible to a classical graph-theoretical problem, then everyone working
the classical problem is also working indirectly on structure matching.

* Knowledge about the computational complexity of classical graph algorithms
luminates the difficulty of structure matching.

Clique Finding for Generalized Matching

Let a relational structure be a set of elemextsa set of properties (or more
simply unary predicates) P defined over the elements, and a set of binary relati
(or binary predicates) R defined over pairs of the elements. An example of a gri
representation of such a structure is given in Fig. 11.7.

Given two structures defined by (V\, P, R) and, (@, R), say that "simi-
lar" and "compatible” actually mean "the same."” Then we construct an assot
tion graph Gas follows [Ambler et al. 1975]. For each v\ in V\ ard V,, con-
struct a node oGlabeled(vi, w) if vi and v have the same properties [p(V\) iff
p (vp) for each pin Pi. Thus the nodes@flenote assignments, or pairs of nodes
one each from V\ and,Mvhich have similar properties. Now connect two nodes
(vj, w) and (V'i, W) of Gif they representompatibleassignments according to R,
that is, if the pairs satisfy the same binary predicates [r(v\, V\) ¥f i(y) for
each rmR].

A match between (FP, R) and (¥ P,R), the two relational structures, is
just a set of assignments that are all mutually compatible. The "best match" cc
well be taken to be the largest set of assignments (node correspondences)
were all mutually compatible under the relations. But this in the association gre
G isjust the largest totally connected (completely mutually compatible)—set
nodes.lt is aclique. A clique to which no new nodes may be added without destrc
ing the clique properties is a maximal clique. In this formulation of matching, larc
cliques are taken to indicate better matches, since they account for more no

FIR. 11.7 A graph representation of a
relational structure. Elements (nodes) W\
and V3 have property pi, 12and i> have
property p2, and the arcs between nodes
indicate that the relation rl holds
between i>| and i>;and between v, and
vV and r2 holds between v; and v, and
between viand vj.
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Thus the best matches are determined by the largest maximal cliques in the asso
ation graph. Figure 11.8 shows an example: Certain subfeatures of the objects ha
been selected as "primitive elements" of the objects, and appear as nodes (el
ments) in the relational structures. To these nodes are attached properties, a
between them can exist relations. The choice of primitives, properties, and rela
tions is up to the designer of the representation. Here the primitives of the
representation correspond to edges and corners of the shape.

The association graph is shown in 11.8e. Its nodes correspond to pairs ¢
nodes,one each from A and B, whose properties are similar. [Notice that there is
no node in the association graph 6r6')]. The arcs of the association graph indi-
cate that the endpoints of the arc represent compatible associations. Maxim:
cliques in the association graph (shown as sets of nodes with the same shape) in
cate sets of consistent associations. The largest maximal cliqgue provides the noc
pairings of the "best match."

In the example construction, the association graph is formed by associating
nodes with exactly the same properties (actually unary predicates), and by allowin
as compatible associations only those with exactly the same relations (actuall
binary predicates). These conditions are easy to state, but they may not be exact
what is needed. In particular, if the properties and relations may take on ranges ¢
values greater than the binary "exists" and "does not exist," then a measure ¢
similarity must be introduced to define when node properties are similar enougr
for association, and~when relations are "similar enough~for ccjnpaTibility TArbitrarily
complex functions can decide whether properties and relations are similar. As long
as the function answers "yes" or "no," the complexity of its computations is ir-
relevant to the matching algorithm.

The following recursive clique-finding algorithm builds up cliques a node ata
time [Ambler et al. 1975]. The search tree it generates has states that are ordere
pairs (set of nodes chosen for a clique, set of nodes available for inclusion in the
clique). The root of the tree is the state (0, all graph nodes), and at each branch
choice is made whether to include or not to include an eligible node in the clique.
(If anode is eligible for inclusion in clique X, theachclique including A"'must ei-
ther include the node or exclude it).

Algorithm 11.2: Clique-Finding Algorithm
CommentNodes ighe set of nodes in the input graph.

Comment
Cliques (X, Y) takes as arguments a clique X, aadsédt,of nodes that includes
X. ltreturns all cliques that include Jand are included in Y.
Cliques(0,Nodes) finds all cliques in the graph.
CliquesiXJ) : =
/I no node inY—X\sconnected to all elementsXf
then{X\
else
CliquesUriJ {y],V) \J Cliques (XY-{y})
wherey iconnected to all elements of X.
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( ) Property "comer" Property "short" —» — Relation "next"

Fig. 11.8 Clique-finding example. Entities to be matched are given in (a) (refer-

ence) and (b) (input). The relational structures corresponding to them are shown
in (¢) and (d). The resulting association graph is shown in (e) with its largest

cliques indicated by node shapes.
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Extensions

Modifications to the clique-finding algorithm extend it to finding maximal
cliques and finding largest cliques. To find largest cliques, perform an additiona
test to stop the recursion @liquesif the size of X plus the number of nodes in
Y—X connected to all of X becomes less than k, which is initially set to the size
the largest possible clique. If no cliques of size k are found, decrement k and rt
Cliques with the new k.

To find maximal cliques, at each stagedtiques,compute the set

Y' = {z € Nodes: z is connected to each nodé.of

Since any maximal cligue must include Y', searching a branch may be terminate
should Y'notbe contained in F, since Fcan then contain no maximal cliques.

The association graph may be searched not for cliques, but for /--connecte
components. Arr-connecteccomponent is a set of nodes such that each node i
connected to at least r other nodes of the set. A clique of size n is—aft- n
connected component. Fig. 11.9 shows some examples.

The r-connected components generalize the notion of clique. An r-connecte
component of N nodes in the association graph indicates a match of N pairs
nodes from the input and reference structures, as does an N-cligue. Each match
pair has similar properties, and each pair is compatible with atrlettstr matches
in the component.

Whether or not the r-connected component definition of a match betweel
two structures is useful depends on the semantics of "compatibility." For in-
stance, ifall relations are either compulsory or prohibited, clearly a clique is called
for. If the relations merely give some degree of mutual support, perhaps an
connected component is the better definition of a match.

11.4 MATCHING IN PRACTICE

This section illustrates some principles of matching with examples from the com
puter vision literature.

Fig. 11.9 /--connected components, (a) A 5-clique (which is4-connected). (b) A
3-connected set &nodes, (c) Al-connectedset of5nodes.
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11.4.1 Decision Trees

Hierarchical decision-tree matching with ad hoc metrics is a popular way to identif
input data structures as instances of reference models and thus classify the in|
instances [Nevatia 1974; Ambler etal. 1975; Winston 1975]. Decision trees are ir
dicated when it is predictable that certain features are more reliably extracted thi
others and that certain relations are either easier to sense or more necessary to
success of a match.

Winston and Nevatia both compare matches with a "weighted sums o
difference" metric that reflects cumulative differences between the parameters
corresponding elements and relations in the reference and input data. In additic
Nevatia does parameter fitting; his reference information includes geometrical ir
formation.

Matching Structural Descriptions

Winston is interested in matching such structures as appear in Fi@B11.1
The idea is to recognize instances of structural concepts such as "arch"
"house," which are relational structures of primitive blocks (Fig.11.10A) [Wins-
ton 1975]. An important part of the program learns the concept in the first place
only the matching aspect of the program is discussed here. His system has 1
pleasant property of representational uniqueness: reference and input data str
tures that are identical up to the resolution of the descriptors used by the progre
have identical representations. Matching is easy in this case. Reflections of blo
structures can be recognized because the information available about relatio
(such as LEFT-OF and IN-FRONT-OF) includes their OPPOSITE (i.e., RIGHT-
OF and BEHIND). The program thus can recognize various sorts of symmetry b
replacing all input data structure relations by their relevant opposite, then compa
ing with the reference.

The next most complicated matching task after exact or symmetric matche
is to match structures in isolation. Here the method is sequentially to match the i
put data against the whole reference data catalog of structures and determine wh
match is best (which difference description is most inconsequential). Easily corr
puted scene characteristics can rule out some candidate models immediately.

The models contain arcs such as MUST-BE and MUST-NOT, expressing re
lations mandatory or forbidden relations. A match is not allowed between &
description and a model if one of the strictures is violated. For instance, the prc
gram may reject a "house" immediately as not being a "pedestal," "tent," o
"arch," since the pedestal top must be a parallelepiped, both tent componer
must be wedges, and the house is missing a component to support the top pit
that is needed in the arch. These outright rejections are in a sense easy cases; it
also happen that more than one model matches some scene description. To de
mine the best match in this case, a weighted sum of differences is made to expre
the amount of difference.

The next harder case is to match structures in a complex scene. The iss
here is what to do about evidence that is missing through obscuration. Two heuri
tics help:
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Arch Near miss

a
L?

Near miss Arch

Fig. 11.10 (a) Several arches and non-arches, (b) The computer-generated arch
description to be used for matching.

1. Objects that seem to have been stacked and could be the same type are of
same type.

2. Essential model properties may be hidden in the scene, so the match sho
not be aborted because of missing essential properties (though the presenc
forbidden properties enough to abort a match).

This latter rule is equivalent to Nevatia's rules about connectivity difference an
missing input instance parts (see below). In terms of the general structure met
introduced earlier, neither Winston or Nevatia penalize the match for missing el
ments or relations in the reference data. One result of this is that the best matct
sometimes missed in favor of the first possible match. Winston suggests that col
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plex scenes be analyzed by identifying subscenes and subtracting out the identif
parts,as was done by Roberts.

Winston's program can learn shortcuts in matching strateggelfy it builds
for itself a similarity network relating models whose differences are slight. If a
reference model does not quite fit an input structure, the program can make an
telligent choice of the next model to try. A good choice is a model that has onl
minor differences with the first. This self-organization and cataloging of the model:
according to their mutual differences is a powerful way to use matching work that i
already performed to guide further search for a good match.

Backtrack Search

Nevatia addresses a domain of complex articulated biological-like forms
(hands, horses, dolls, snakes) [Nevatia 1974]. His strategy is to segment the ¢
jects into parts with central axes and "cross section" (not unlike generalize
cylinders, except that they are largely treated in two dimensions). The derive
descriptions of objects contain the connectivity of subparts, and descriptions of tf
shape and joint types of the parts. Matching is needed to compare descriptions ¢
find differences, which can then be explained or used to abort the match. Parti
matches are important (as in most real-world domains) because of occlusior
noise, and so on.

A priori ideas as to the relative importance of different aspects of structure
are used to impose a hierarchical order on the matching decision tree. Nevatia fin
this heuristic approach more appealing than a uniform, domain-independent ot
such as clique finding. His system knows that certain padstoficture are more
important than others, and uses them to index into the reference data catalog c
taining known structures. Thus relevant models for matching may be retrieve
efficiently on the basis of easily-computed functions of the input data. The model
are generated by the machine by the same process that later extracts description
the image for recognition. Several different models are stored for the same view
the same object, because his program has no idea of model equivalence, and ¢
not always extract the same description.

The matching process is basically a depth-first tree search, with initial choice
being constrained by "distinguished pieces." These are important pieces of ima
which first dictate the models to be tried in the match, and then constrain the po
sible other matches of other parts.

There is a topological and a geometrical component to the match. The topc
logical part is based on the connectivity of the "stick figure" that underlies the
representation. The geometrical part matches the more local characteristiis of
vidual pieces. Consider Nevatia's example of matching a doll with stored referenc
descriptions, including those of a doll and a horse.

By a process not concerning us here, the doll image is segmented into piec
as shown in Figl1.11.From this, before any matching is done, a connection graph
of pieces is formed, as shown in Fig. 11.12.

This connection graph is topologically the same as the reference connectic
graph for the doll, which looks as one would expect. In both reference and inpu
"distinguished pieces" are identified by their large size. During reference forma
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Fig. 11.11 A view of a doll, with derived structure.

tion time, the two largest pieces were the head and the trunk, and these are
distinguished pieces in the reference. There are the same pieces pic
as distinguished in the instance to be matched consistent with the hierarchi
decision-tree style, distinguished pieces are matched first.

Because ohoise,connections atjoints may be missed; because of the natui
of the objects, extra joints are hardly ever produced. Thus there is a doma
dependent rule that an input piece with two other pieces connected at a single jc
(a "two-ended piece") cannot match a one-ended reference piece, although
reverse is possible.

On the basis of the distinguished pieces in the input instance, the progre
decides that the instance could be a doll or a horse. Both these possibilities
evaluated carefully; Fig. 11.13 shows a schematic view of the process. Piece-ma
evaluation must be performed at the nodes of the tree to determine which piece
ajoint should be made to correspond.

The final best match between the doll input and the horse reference model
diagrammed in Fig. 11.14. This match is asgood as the match between the doll
input and the doll reference.

A

Fig. 11.12 Connection graph of the
L doll.
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The final choice of matches is made with a version of the general relational
structure matching metric (Eq. 11.3). It takes into account the connectivity rela-
tions, which are the same in this case, and the quality of the individual piece
matches. In the doll-horse match, more reference parts are missing, but this ca
happen if parts are hidden in a view, and do not count against the match. Th
doll-doll match is preferred on the basis of piece matching, but both matches art
considered possible.

In summary, the selection of best match proceeds roughly as follows: unac-
ceptable differences are first sought (not unlike the Winston system). The numbe
of input pieces not matched by the reference is an important number (not vice
versa, because of the possibility of hidden input parts). Only elongated, large part

*A< +0:0 + O A

*AA AV
| K

2' 3'
(no matches
(extra input 2<3 2'( "3 now for
piece matches instance leg)
unmatched (leg matched (head (4): leg (4)
reference arm) despite match very poor)
shadows)

(both branches lead
to correct match)

Fig. 11.13 A pictorial guide to the combinations tried by the matcher establishing the best
correspondence of the doll input with the doll reference. The graphic shapes are purely
pedagogical: the program deals with symbolic connectivity information and geometric meas-
urements. Inferences and discoveries made by the program while matching are given in the
diagram. A:B means that structure A is matched with structure B, with the numbered sub-
structures of A matching their primed counterparts in B.
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n» JL

Fig. 11.14 Thebest matchof the doll input withthehorse reference modeDne

doll arm isunmatched as is thénorse headandtwo legs.
are consideredor this determinationto eliminate small "noise" patcheéEhe
match with fewest unmatched input pieces is chosen.

If no deciding structural differences exist, the quatifpiece matches deter-
mines the qualityof the match. These correspotaithe template cost terim Eq.
(11.3).If a "significant" differencein match error existshebetter matchis ex-
clusively selectedjf the difference is not sogreat asthat, the better matchis
merely preferred.

Piece matchings a subprocessof joint matching. The difference in the
numberof pieces attachedtthe endwf the pieceto be matched is theonnectivity
difference.If the object piece has more pieces connetitdtthan the model piece,
the matchisa poor one; since pieces magt bevisible in aview, the conversis
not true. If one match gives fewer excess input piet&sacceptedtthis point.If
not, the goodness of the match is computed as a weighted sum of width differer
length-to-width ratio differenceanddifference in acutenesf thegeneralized
cylinders (Chapter 9) forming the pieces. The weighted sum is thresholded to yie
a final "yesorno" match result. Shadowing phenomena are accommodatald by
lowing theinput pieceto benarrower thanthereference model piece witho
penalty. The error function weights are derived empirically; one would not expe
the viewing angleo affect seriously the widtbf apiece,for example, buit could
affect its length. Piece axis shapes (what sort of space curve they anetased
for domain-dependent reasons, nor are cross section functions (aside from a mi
ure of "acutenessfor cone-like generalized cylinders).

11.4.2 Decision Tree and Subgraph Isomorphism

A robotics progranfor versatile assembly [Ambleztal. 1975] uses matchirtg
identify individual objectson thebasisof their boundariesand tomatch several
individual blobs on a screen with a reference model containing the known locatic
of multiple objectsin thefield of view. In both casethebest subgraph isomor-
phism between input and reference data structures is found when necessey by
cliqgue-finding technique (Algorithm 11.2).
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The input data to the part recognizer consist of silhouettes of parts with out
lines of piecewise linear and circular segments. A typical set of shapes to be reco
nized might be stored in terms of boundary primitives as shown in Fig. 11.15a
with matchable and unmatchable scenes shown in Fig. 11.15b.

Generally, the matching process works on hierarchical structures which cap
ture increasing levels of detail about the objects of interest. The matching works it
way down the hierarchy, from high-level, easily computable properties such as siz
down to difficult properties such as the arrangements of linear segments in a pa
outline. After this decision tree pre-processing, all possible matches are compute
by the clique-finding approach to subgraph isomorphism. A scene can be assigne
a number of interpretations, including those of different views of the same part
The hierarchical organization means that complicated properties of the scene a
not computed unless they are needed by the matcher. Once computed they ¢
never recomputed, since they are stored in accessible places for later retrieval
needed. Each matching level produces multiple interpretations; ambiguity i<
treated with backtracking. The system recognizes rotational and translational in
variance, but must be taught different views of the same object in its different grav
itationally stable states. It treats these different states basically as different objects

11.4.3 Informal Feature Classification

The domain of this work is one small, curved tabletop objects, such as a teacup
(Fig. 11.16) [Barrow and Popplestone 1971]. The primitives in models and image
descriptions are regions which are found by a process irrelevant here. The regiot
have certain properties (such as shape or brightness), and they have certe
parameterized relations with other regions (such as distance, adjacency, "abov
ness").The input and reference data are both relational structures. The propertie
and relations are the following:

Fig. 11.15 A small catalog of part
boundaries (a) and some sample
silhouettes (b). The "heap" will not
match any part very well, while the
square can match the square model in
four different ways, through rotations.
Gross properties such as area may be
used cheaply to reject matches such as
M the square with the axle.

Ch. 11 Matching

Page 387 of 539



Fig. 11.16 An object for recognition
by relational matching.

1. Region Properties

Shapel-Shapeb: the first six root mean square amplitudes of the Fourier com-
ponents of thef> (s) curve [Chapter 8].

2. Relations between RegionsAd B
Bigger: Area (A)/Area (B)

Adjacency: Fraction of A's boundary which also is a boundaBy of

Distance: Distance between centroids divided by the geometric mean of aver
age radii. The average radius is twice the area over the perimeter. Distance
scale, rotation, translation, reflection invariant.

CompactnessTT * area /perimetet

Above, Beside: Vertical and horizontal distance between centroids, normal-
ized by average radius. Not rotation invariant.

The model that might be derived for the cup of Fig. 11.16 is shown in Fig. 11.17.

The program works on objects such as spectacles, pen, cup, or ball. Durin
training, views and their identifications are given to the program, and the program
forms a relational structure with information about the mean and variance of the
values of the relations and properties. After training, the program is presentec
with a scene containing one of the learned objects. A relational structure is built
describing the scene; the problem is then to match this input description with &
reference description from the set of models.

One approximation to the goodness of a match is the number of successe
provided by a region correspondence. A one-region object description has 7 rele
tions to check, a two-region object has 28, a three-region one has 63. Therefort
the "successes" criterion could imply the choice of a terrible three-region in-
terpretation over a perfect one-region match. The solution adapted in the matchin
evaluation is first to grade failures. A failure weight is assigned to a trial match ac-
cording to how many standard deviations a from the model mean the relevan
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Fig. 11.17 Relational model for cups such as th&figf 11.16.

parameter is. From zero to three a imply a success, or a failure we@Hrah

three to six o-, a failure weight of 1; from six to nine a, failure weigl, ehd so

on. Then the measure "trials-cumulative failure weight" is an improvement on
just "successes." On the other hand, simple objects are often found as subparts
complex ones, and one does not want to reject a good interpretation as a comple
object in favor of a less explanatory one as a simple object. The final evaluatior
function adapted is

Cost of Match- ' ~ (tries-failure weight) (n %)
number of relations
, K
number of regions in view description

As in Eg. (11.4), the first term measures the average badness of matche
between properties (unary relations) and relations between regions. The secor
term is inversely proportional to the number of regions that are matched,
effectively increasing the cost of matches that explain less of the input.

11.4.4 A Complex Matcher

A program to match linear structures like those of Fig. 11.18 is described in [Dauvi
1976]. This matcher presents quite a diversity of matching techniques incorporate
into one domain-dependent program.
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The matching metric is very close to the general metric of Eg. (11.3). The
match is characterized by a structural match of reference and input elements ant
geometrical transformation (found by parameter fitting) which accounts for the
spatial relations between reference and input. Davis forms an association graj
between reference and input data. This graph is reduced by parallel-iterative rela
ation (see Section 12.4) using the "spring functions" to determine which node as
sociations are too costly. Eliminating one node-node match may render othel
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Baffin Island Baffin Island

Cape Breton Cape Breton

Fig. 1118 (a) Reference and (b) input
data for a complex shape matching
program.

(b)

more unlikely, so the node-pruning process iterates until no more nodes are elirr
inated. What remains is something like an /--connected component of the grapt
which specifies an approximate match supported by some amount of consistent re
lations between nodes.

After the process of constraint relaxation, there are still in general several lo-
cally consistent interpretations for each component of the input structure. Next
therefore, a tree search is used to establish global consistency and therefore t
best match. The tree search is the familiar "best first" heuristic search through th
partial match space, with pruning taking place between each stage of search age
by using the parallel-iterative relaxation technique.

EXERCISES

11.1 Relational structures A and B are to be matched by the association-graph, cligt
finding method.
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Exercises

11.2

11.3

11.4

115

11.6

11.7

11.8

11.9

Relational structurd: entitiesu, v, w, X, y, z.
relations P{u), Piw), Piy), Riv), Rix), R iz),
Fiu, v), Fiv, w), F(w, x), Fix, y), Fiy, z), F(z, u)

Relational structur®: entitiesa, b, c, d, e, f.
relations P(a), Pib), Pid), Qie), Qif), R ic)
Fib, c), Fie, d), Fid, e), Fie, /), Fif, a).

(&) Construct graph structures corresponding to the structures A and B. Lab
the nodes and arcs.

(b) Construct the association graph of structures A and B.

(c) Visually find the largest maximal cliques in the association graph and thus
the best matches between A and B. (There are three.)

Suppose in a geometric match that two input points on the xy plane are identifie
with two others taken to correspond with two reference points. It is known that the
input data comes about only through rotation and translation of the reference dat
Given the two input points ix\, y\) and,ixi) and the two reference points
ix'\, y'\) and ix'2, y'2), one way to find the transformation from reference to input is
to solve the equation

Z bej- iaxi+by) + )f + Iy, - (&, + ay) + d)f = 0

The resulting values @, b, c, anddrepresent the desired transformation. Solve the
equation analytically to get expressions for a, b, ¢, and d in terms of the referenc
and input coordinates. What happens if the reference and input data are not relat
by simple rotation and translation?

What are the advantages and disadvantagesndbrm method (such as subgraph
isomorphism algorithm approach) to matching as compared to an ad hoc (such as
decision-tree approach with various empirically derived metrics) one?

In the worst case, for graphs of n nodes, how many partial solutions total will Algo
rithm 11.1 have to proceed through? Construct "worst case" graphs Jand Y (lak
their nodes 1,. .. ,n, afourse)assuming that nodes of Kare selected in ascending
order at any stage.

Find out something about the state of associative memories in computers. How 1
they work? How are they used? Would anything like this technology be useful for
computer vision? Introspect about familiar phenomena of visual recall, recognition
and memory. Do you have a theory about how human visual memory could poss
bly work?

What graph of A"nodes has the maximum number of maximal cliques? How man
does it have?

Think about reasoning by analogy and find out something about programs that ¢
analogical reasoning. In what sense can analogical process be used for computer
sion, and technically do the matching techniques necessary provide any insight?
Compare Nevada's structure matching with Hinton's relaxation-based puppe
recognition (Chapter 12).

Verify the observation made in Section 11.4.3 about the number of relations the
must be checked between regions (one region, 7; two regions, 28; three regions, €
etc.).
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Inference 12

Classical and Extended Inference

This chapter exploreinference, the process of deducing facts from other
known facts. Inference is useful for belief maintenance and is a cornerstone of ra-
tional thought. We start witpredicatelogic, and then explore extendétference
systems—production systems, relaxation labeling, and active knowledge (pro-
cedures).

Predicate logic(Section 12.1) is a system for expressing propositions and for
deriving consequences of facts. It has evolved over centuries, and many clear ac
counts describe predicate logic in its various forms [Mendelson 1964; Robinson
1965]. It has good formal properties, a nontrivial but automatable inference pro-
cedure, and a history of study in artificial intelligence. There are several "classical"
extensions (modal logics, higher-order logics) which are studied in well-settled
academic disciplines of metamathematics and philosdpkiended inferencéSec-
tion 12.2) is possible in automated systems, and is interesting technically and from
an implementational standpoint.

A production systen(Section 12.3) is a general rewriting system consisting of
a set ofrewriting rules(A — BC could mean "rewrite A as BC') and an executive
program to apply rewrites. More generally, the rules can be considered
"situation-action” pairs ("in situation A, do .fiand C"). Thus production systems
can be used to control computational activities. Production systems, like semantic
nets,embody powerful notions that can be used for extended inference.

Labeling schemg$&ection 12.4) are unlike most inference mechanisms in
that they often involve mathematical optimization in continuous spaces and can be
implemented with parallel computation. Labeling is like inference because it estab-
lishes consistent "probability-like" values for "hypotheses" about the interpreta-
tion of entities.
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Activeknowledge(Section 12.5) is an implementation of inference in which
each chunk of knowledge is a program. This technique goes far in the direction «
"proceduralizing" the implementation of propositions. The design issues for sucl
a system include the vocabulary of system primitives and their actions, mechai
isms for implementing the flow of control, and overall control of the action of the
system.

12.1 FIRST ORDER PREDICATE CALCULUS

384

Predicate logic is in many ways an attractive knowledge representation and infe
ence system. However, despite its historical stature, important technical results
automated inference, and much research on inference techniques, logic has t
dominated all aspects of mechanized inference. Some reasons for this are prese
ed in Sections 12.1.6 and 12.2. The logical system that has received the most stL
is first order predicatelogic. General theorem provers in this calculus are cumbe
some for reasons which we shall explore. Furthermore, there is some controver:
as to whether this logical system is adequate to express the reasoning proces
used by human beings [Hayes 1977; Collins 1978; Winograd 1978; McCarthy an
Hayes 1969]. We briefly describe some aspects of this controversy in Sectio
12.1.6.0ur main purpose is to give the flavor of predicate calculus-based method
by describing briefly how automated inference can proceed with the formulae o
predicate calculus expressed in the convenient cfatrseClause form is appeal-
ing for two reasons. First, it can be represented usefully in relational «-tuple or se
mantic network notation (Section 12.1.5). Second, the predicate calculus claus
and inference system may be easily compared to production systems (Sectic
12.3).

12.1.1 Clause-Form Syntax (Informal)

In this section we describe the syntax of clause-form predicate calculus sentence
In the next, a more standard nonclausal syntax is described, together with
method for assigning meaning to grammatical logical expressions. Next, we sho
briefly how to convert from nonclausal to clausal syntax.

A sentences a set oftlauses.A clause is an ordered pair of sets of atomic for-
mulae, or atomsClauses are written as two (possibly null) sets separated by an a
row, pointing from thehypothesesr conditionsof the clause to itsonclusion.The
null clause,whose hypotheses and conclusion are both iswllsitten 00 For exam-
ple,a clause could appear as

A, A"y, B
where the A's and B's are atoms. An atom is an expression

where Pis a predicate symbol which "expects ./arguments,” each of which must t
a variable, constansymbol,or aterm. A term is an expression
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where /is &function symbolwhich "expects k arguments,” each of which may b
term. It is convenient to treat constant symbols alone as terms.

A careful (formal) treatment of the syntax of logic must deal with technical
issues such as keeping constant and term symbols straight, associating the nurr
of expected arguments with a predicate or function symbol, and assuring ¢
infinite supply of symbols.

For example, the following are sentence®bgic.

—» Obscured(Backface(Blockl))
Visible (Kidney) —e
Road(x), Unpaved(x}¥» Narrow (x)

12.1.2 Nonclausal Syntax and Logic Semantics (Informal)

Nonclausal Syntax

Clause form is a simplified but logically equivalent form of logic expressions
which are perhaps more familiar. A brief review of non-clausal syntax follows.

The concepts of constant symbols, variables, terms, and atoms are still bas
A set oflogical connectiveprovides unary and binary operators to combine aton
to form well-formedformulae (wffs). A and B are atoms, then A is a wff, as is ~A
("not A") A=S>B ("A implies £," or "if Athen 5"), AVB ("fA or£"), AAB
{"A and £"), A <=£> B {"A is equivalent to 5," or "A if and only if 5"). Thus
an example of a wif is

Back (Face) V (Obscured (Face)) =>~ (Visible (Face))

The last concept is that of universal adstentialquantifiers,the use of which
is illustrated as follows.

(VX) (Wff using"*" as a variable).
(3 thing) (wff using "thing" as a variable).

A universal quantifier V is interpreted as a conjunction over all domain ele-
ments, and an existential quantifier 3 as a disjunction over all domain element
Hence their usual interpretation as "for each element . .." and "there exists ¢
element...."

Since a quantified wf is also a wff, quantifiers may be iterated and nested. ¢
quantifier quantifies the "dummy" variable associated with it Gcand thing in the
examples above). The wff within the scope of a quantifier is said to have thi
quantified variable bound by the quantifier. Typically only wffs or clauses all of
whose variables are bound are allowed.

Semantics

How does one assign meaning to grammatical clauses and formulae? The :
mantics of logic formulae (clauses and wifs alike) depends onterpretationand
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on the meaning of connectives and quantifiers. An interpretation specifies the fo
lowing.

1. A domainof individuals
2. Aparticular domain elemelis associated with each constant symbol

3. A function over the domain (mapping k individuals to individuals) is associ-
ated with each function symbol.

4. Arelation over the domain (a set of ordered k-tuples of individuals) is associ
ated with each predicate symbol.

The interpretation establishes a connection between the symbols in th
representation and a domain of discourse (such as the entities one might see in
office or chest x-ray). To establish the truth or falsitaofause or wff, a value of
TRUE or FALSE must be assigned to each atom. This is done by checking in tr
world of the domain to see if the terms in the atom satisfy the relation specified b
the predicate of the atom. db, the atom is TRUE; if not, it is FALSE. (Of course,
the terms, after evaluating their associated functions, ultimately specify individu-
als).For example, the atom

GreaterThan(5,7r)

is true under the obvious interpretation and false with domain assignments suc
that

GreaterThan means "Is the author of
5 means the bootone Withthe Wind
IT means Rin-Tin-Tin.

After determining the truth values afoms,wffs with connectives are given
truth values by using the trutablesof Table 12.1, which specify the semantics of
the logical connectives. The relation of this formal semantics of connectives witt
the usual connectives used in language (especially "implies") is interesting, an
one must be careful when translating natural language statements into predice
calculus.

The semantics of clause form expressions is now easy to explain. A sentent
is theconjunctionof its clauses. A clause

Au...,Ar+By .onsBn
with variables x\,m = % is to be understood

Table 12.1

"A AKB AMB A=>B A<=>B

i e e R
mH4m—= W
mmm-
m——-

——=7m
——m-
T
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V*i, = m m{&F\..\A) =»(5,V...V5,).

The null clause is to be understood as a contradiction. A clause with no conditic
is an assertion that at least one of the conclusions is true. A clause with null con
sion is a denial that the conditions (hypotheses) are true.

12.1.3 Converting Nonclausal Form to Clauses

The conversion of nonclausal to clausal form is done by applying straightforwa
rewriting rules, based on logic identities (ultimately the truth tables). There is o
trick necessary, however, to remove existential quantifekalem functionare
used to replace existentially quantified variables, according to the following re
soning.

Consider the wif

(Vx)(Q y) (Behind  (y.x))).

With the proper interpretation, this wif might correspond to saying "For any obje
X we consider, there is another object y which is behind x" Since the 3 is witt
the scope of the V, the particular y might depend on the choicelbe Skolem
function trick is to remove the existential quantifier and use a function to make ¢
plicit the dependence on the bound universally quantified variable. The resulti
wif could be

(V x) (Behind(SomethingBehind(x), x))

which might be rendered in English: "Any object x has another object behind
furthermore, some Skolem function we choose to call SomethingBehind det:
mines which object is behind its argument.” This is a notational trick only; the e
istence of the new function is guaranteed by the existential quantification; both r
tations are equally vague as to the entity the function actually produces.

In general, one must replace each occurrence of an existentially quantifi
variable in a wif by a (newly created Skolem) function of all the universally
quantified variables whose scope includes the existential quantifier being eli
inated. If there is no universal quantifier, the result is a new function of no arg
ments, or a new constant.

B x)(Red(x)),

which may be interpreted "Something is red," is rewritten as something like
Red(RedThing)

or
"Something is red, and furthermore let's call it RedThing."

The conversion from nonclausal to clausal form proceeds as follows (fi
more details, see [Nilsson 1971]). Remove all implication signs with the identit
(A =>B) <="> (C A)V B). Use DeMorgan's laws (such-&V B) <==> (("

A) \(~ B)), and the extension to quantifiers, together with cancellation of doub
negations, to force negations to refer only to single predicate letters. Rewrite ve
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ables to give each quantifier its own unique dummy variable. Use Skolem func
tions to remove existential quantifiers. Variables are all now universally quantified
so eliminate the quantifier symbols (which remain implicitly), and rearrange the
expression into conjunctive normal form (a conjunction of disjunctions.) The A's
now connect disjunctive clauses (at last!). Eliminate the A's, obtaining from th
original expression possibly several clauses.

At this point, the original expression has yielded multiple disjunctive clauses
Clauses in this form may be used directly in automatic theorem provers [Nilsso
1971]. The disjunctive clauses are not quite in the clause form as defined earlie
however; to get clauses into the final form, convert them into implications. Groug
negated atoms, reexpanding the scope of negation to include them all and conve
ing theV oP's into & of A's. Reintroduce one implication to go from

5i VB \B\  {{AiAA... AA))
to
A A ..NA-B\IBi...\IBy,

To obtain the final form, replace the connectives (which remain implicitly) with
commas.

12.1.4 Theorem Proving

Good accounts of the basic issues of automated theorem proving are given
[Nilsson 1971; Kowalski 1979; Loveland 1978]. The basic ideas are as follows. A
sentence isnconsistentor unsatisfiable,f it is false in every interpretation. Some
trivially inconsistent sentences are those containing the null clause, or simple cor
tradictions such as the same clause being both unconditionally asserted ar
denied. A sentence that is true in all interpretationgalgd. Validity of individual
clauses may be checked by applying the truth tables unless quantifiers are prese
in which case an infinite humber of formulae are being specified, and the trutt
status of such a clause is not algorithmically decidable. Thus it is said that firs
order predicate calculus isidecidable More accurately, it isemidecidablebecause
any valid wif can be established as such in some (generally unpredictable) finit
time. The validation procedure will run forever on invalid formulae; the rub is that
one can never be sure whether it is running uselessly, or about to terminate in tl
next instant.

The notion of a proag bound up with the notion of logical entailment. A
clause C logically follows from a set of clauses S (we takep®we C)if every in-
terpretation that makes S true also makes C true. A formal proof is a sequence
inferences which establishes that C logically follows from S. In nonclausal predi-
cate logic, inferences are rewritings of axioms and previously established formula
in accordance withules of inferencesuch as

Modus Ponens: From (A) and (A =Bj infer (B)
ModusTollens:From (~B) and (A =>B) infer (A)
Substitution: e.g. From (V*) (Convex Gc)) infer (Convex(Region31))
Syllogisms,
and so forth.
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Automatic clausal theorem provers usually try to establish that a clause
logically follows from the set of clauses S. This is accomplished by showing thi
unsatisfiabilityof S and (C) taken together. This rather backward approach is a te:
nical effect of the way that theorem provers usually work, which is to derive ¢
contradiction.

The fundamental and surprising result that all true theorems are provable
finite time, and an algorithmic (but inefficient) way to find tpeoof, is due to Her-
brand [Herbrand 1930]. The crux of the result is that although the domain of indi
viduals who might participate in an interpretation may be infinite, only a finite
number of interpretations need be investigated to establish unsatisfiab#igebf
of clauses, and in each only a finite number of individuals must be considered.
computationally efficient way to perform automatic inference was discovered by
Robinson [Robinson 1965]. In it, a single rule of inference cadledlution isused.
This single rule preserves tlewmpletenessf the system (all true theorems are
provable) and itsorrectnesgno false theorems are provable).

The rule of resolution is very simple. Resolution involves matching a condi-
tion of one clause A with a conclusion of another clause B. The derived claus
called theresolventconsists of the unmatched conditions and conclusions of A ar
B instantiated by the matching substitution. Matching two atoms amounts t
finding a substitution of terms for variables which if applied to the atoms would
make them identical.

Theorem proving now means resolving clauses with the hope of producin
the empty clause, a contradiction.

As an example, a simple resolution proof goes as follows. Say it is desired t
prove that a particular wastebasket is invisible. We know that the wastebasket
behind Brian's desk and that anything behind something else is invisible (we ha\
a simpleminded view of the world in this litte example). The givens are the
wastebasket location and our naive belief about visibility:

— Behind(WasteBasket, DeskOf(Brian)) (12.2)
Behind (object,obscurer)- Invisible (object) (12.2)

Here Behind and Invisible are predicates, DeskOf is a function, Brian anc
WasteBasket are constants (denote particular specific objects), and object and ¢
scurer are (universally quantified) variables. The negation of the conclusion w
wish to prove is

Invisible (WasteBasket) -» (12.3)

or, "Asserting the wastebasket is invisible is contradictory.” Our task is to show
this set of clauses is inconsistent, so that the invisibility of the wastebasket i
proved. The resolution rule consists of matching clauses on opposite sides of tl
arrow which can be unified by a substitution of terms for variables. A substitution
that works is:

Substitute WasteBasket for object and DeskOf(Brian) for obscurer in (12.2).

Then a cancellation can occur between the right side of (12.1) and the left side
(12.2). Another cancellation can then occur between the right side of (12.2) anc
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the left side of (12.3), deriving the empty clause (a contradiction), Quod Era
Demonstrandum.

Anyone who has ever tried to do a nontrivial logic proof knows that there is
searching involved in finding which inference to apply to make the proof ter-
minate. Usually human beings have an idea of "what they are trying to prove,
and can occasionally call upon some domain semantics to guide which inferenc
make sense. Notice that at no time in a resolution proof or other formal proof ¢
logic is a specific interpretation singled out; the prisabout all possible interpre-
tations. If deductions are made by appealing to intuitive, domain-dependen
semantic considerations (instead of purely syntactic rewritings), the deductio
system isinformal. Almost all of mathematics is informal by this definition, since
normal proofs are not pure rewritings.

Many nonsemantic heuristics are also possible to guide search, such as tryi
to reduce the differences between the current formulae and the goal formula to
proved. People use such heuristics, as does the Logic Theorist, an early nc
clausal, nonresolution theorem prover [Newelle1963].

A basic resolution theorem proveyguaranteed to terminate with a proof if
one exists, but usually resource limitations such as time or memory place an upy
limit on the amount of effort one can afford to let the prover spend. As all the
resolvents are added to the set of clauses from which further conclusions may
derived, the question of selecting which clauses to resolve becomes quite a vi
one. Much research in automatic theorem proving has been devoted to reducir
the search space of derivations for proofs [Nilsson 1980; Loveland 1970]. This h¢
usually been done through heuristics based on formal aspects of the deductic
(such as: make deductions that will not increase drastically the number of acti
clauses). Guidance from domain-dependent knowledge is not only hard to imple
ment, it is directly against the spirit of resolution theorem proving, which attempt:
to do all the work with a uniform inference mechanism working on uninterpreted
symbol strings. A moderation of this view allows the "intent" of a clause to guide
its application in theproof. This can result in substantial savings of effort; an exam-
ple is the treatment of "frame axioms" recommended by Kowalski (Section
13.1.4). Ad hoc, nonformalizable, domain-dependent methods are not usually
welcome in automatic theorem-proving circles; however, such heuristics only
guide the activity ohformal system; they do not render it informal.

12.1.5 Predicate Calculus and Semantic Networks

Predicate calculus theorem proving may be assisted by the addition of more rel
tional structure to the set ofausesThe structure in a semantic net comes from
links which connechodes;nodes are accessed by following links, so the availability
of information in nodes is determined by the link structure. Links can thus help by
providing quick access to relevant information, given that one is "at" a particulal
node.

Although there are several ways of representing predicate calculus formula
in networks, we adopt here that of [Kowalski 1979; Deliyanni and Kowalski 1979].
The steps are simple:
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1. Use a partition to represent the clause.
2. Convert all atoms to binary predicate atoms.
3. Distinguish between conditions and conclusions.

Recall that in Chapter 10, a patrtition is defined as a set of nodes and arcs in a gr
The internal structure of the partition cannot be determined from outside it. Pat
tioning extends the structure of a semantic net enough to allow unambiguc
representations of all of first order predicate calculus.

The first step in developing the network representation for clauses is to cc
vert each relation to a binary one. We distinguish between conditions and conc
sions by using an additional bit of information for each arc. Diagrammatically, a
arc is drawn with a double line if it is a condition and a single line if it is a conclu
sion. Thus the earlier example S — {(12.1), (12.2), (12.3)} can be transformi
into the network shown in Fig. 12.1.

This figure hints at the advantages of the network embedding for clauses: Ii
an indexing scheme. This scheme does not indicate which clauses to resolve 1
but can help reduce the possibilities enormously. If the most recent resolution
volved a given clause with a given setefms,other clauses which also have those
terms will be represented by explicit arcs nearby in the network (this otk
true if the clauses were represented as a set). Similarly, other clauses involving
same predicate symbols are also nearby being indexed by those symbols. Ag
this would not be true in the set representation. Thus the embedded netw:

Fig. 12.1 Converting clauses to networks.
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representation contains argument indices and predicate indices which can be
tremely helpful in the inference process.

A very simple example illustrates the foregoing points. Suppose that S co
sists of the set of clauses

SouthOf(river2,x), NorthOf (riverl,*}— Between (rived, river2, x)  (12.4)
— SouthOf(w,silo30) (12.5)
— NorthOf (riverl, sik>30) (12.6)

Clause (12.5) might arise when it is determined that "silo30" is south of sorr
feature in the image whose identity is not knoBonttomupinferencederives new
assertions from old ones. Thus in the example above the variable substitutions

u = river2 x = silo30
match assertion (12.5) with the general clause (12.4) and allow the inference

NorthOf (riverl, silo30)

—» Between (riverl, river2, silo30) (12.7)
Consequently, use (12.6) and (12.7) to assert

— Between (rived, river2, silo 30) (12.8)
Suppose that this was not ttesethat is, that

Between (riverl, river2, silo303* (12.9)

and that S = {(12.4)(12.9)}. One could then us®p-downinference which infers
new denials from old ones. In this case

NorthOf(riverl, silo30), SouthOf(river2,silo30) — (12.10)

follows with the variable substitution x = silo30. This can be interpreted as fol
lows: "If Ads really silo30, then it is neither north of riverl or southieér2." Fig-
ure 12.2 shows two examples using the network notation.

Now suppose the goal is to prove that (12.8) logically follows from (12.4)
through (12.6) and the substitutions. The strategy would be to negate (12.8), ¢
it to the data base, and show that the empty clause can be derived. Negating
assertion produces a denial, in this case (12.9), and now the set of axioms (incl
ing the denial) consists of {(12.4), (12.5), (12.@2.9)}. It is easy to repeat the
earlier steps to the point where the set of clauses includes (12.8) and (12.9), wh
resolve to produce the empty clause. Hence the theorem is proved.

12.1.6 Predicate Calculus And Knowledge Representation

Pure predicate calculus has strengths and weaknesses as a knowledge repres
tion system. Some of the seeming weaknesses can be overcome by techn
"tricks." Some are not inherent in the representation but are a property of tt
common interpreters used on it (i.e., on state-of-the-art theorem provers). Sor
problems are relatively basic, and the majority opinion seems to be that first ord
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*~ Between

River 2

River 1 Silo 30 River?

®)

Fig. 12.2 Resolution using networks, (a) Bottom-up inference as a result of substitu-
tions u = river2, x = silo30. (b) Top-down inference as a result of substitutions w = \\ x

= silo30.

predicate logic must be extended in order to become a representation scheme tt
is satisfactorily matched to the power of the deductive methods applied by humal
beings. Opinion is divided on the technical aspects of such enhancements. Prec
cate calculus has several strengths, some of which we list below.

1. Predicate logic is a well-polished gem, having been refined and studied for
several generations. It was designed to represent knowledge and inferenc
One knows what it means. Its model theory and proof theory are explicit and
lucid [Hayes 1977; 1980].
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Predicate logic can be considered a language with a machine-independent :
mantics; the meaning of the language is determined by the ldagigfnot

the actual programming system upon which the logic is "executed."
Predicate calculus clauses with only one conclusion atom (Horn clauses) me
be considered as "procedures," with the single conclusion being the name
the procedure and the conditions being the procedure body, which itself i
made up of procedure calls. This view of logic leads to the development o
predicate logic-based programming languages (such as PROLOG [Warren
al. 1977; McDermott 1980]). These programs exhibit nondeterminism in
several interesting ways; the order of computations is not specified by the
proof procedure (and is not restricted by it, either). Several resolutions are i
general possible for any clause; the combinations determine many computi
tions and several distinguishable forms of nondeterminism [Kowalski 1974].

Predicate logic may be interpreted as a problem-reduction system. Then
(Horn) clause of the form

—B
represents a solved problem. One of the form

Au...,A*
with variable\,... % is a goal statement, or command, which is to find the
x's that solve the problems Ai, . . ..,AFinding the x's solves the goal. A
clause

A ...,.A->B

is a solution method, which reduces the solution tof 8combination of solu-
tions of A's. This interpretation of Horn clauses maps cleanly into a standart
and-or goal tree formulation of problem solving.

Resolutions may be performed on the left or right of clauses, and the resultin
derivation trees correspond, in the problem-solving interpretation of predicate
calculus, to top-down and bottom-up versions of problem solving. This duality
is very important in conceptualizing aspects of problem solving.

There is a uniform proof procedure for logic which is guaranteed to prove in
finite time any true theorem (logic is semidecidable and complete). No false
theorems are provable (logic is correct). These and other good formal prope
ties are important when establishing formally the properties of a knowledge
representation system.

Predicate calculus is not a favorite of everyone, however: some of the (per

ceived) disadvantages are given below, together with ways they might be cour
tered.

1. Sometimes the axioms necessary to implement relatively common con

cepts are not immediately obvious. A standard example is "equality." These
largely technical problems are annoying but not basic.

2. The "first order" in first order predicate calculus means that the system
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does not allow clauses with variables ranging over an infinite number of predicate
functions, assertions and sentences (e.g., "All unary functions are boring" canr
be stated directly). This problem may be ameliorated by a notational trick; the ¢
tuations under which predicates are true are indicated with a Holds predicate. Tt
instead of writing On(blockl, surface, situationl), write Holds (On(bhekir-
face), situationl). This notation allows inferences about many situations with only
one added axiom. The "situational calculus" reappears in S&@i8rl. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms at
different; the actual system can be made to incorporate them implicitly in a wel
defined way. The Diff relation is also used in Sectl@3.1.

3. The frameproblem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solvir
methods including predicate logic. One aspect of this problem is that for technic
reasons, it must be explicitly stated in axioms that describe actions (in a gene
sense avisual test is an action) that almost all assertions were true in aworld s
remaintrue in the new world state after the action is performed. The addition
these new axioms causes a huge increase in the "bureaucratic overhead" ne
sary to maintain the state of the world. Currently, no really satisfactory way of hat
dling this problem has been devised. The most common way to attack this aspec
the frame problem is to use explicit "add lists" and "delete lists" ([Fikes 1977]
Chapter 13) which attempt to specify exactly what changes when an action occu
New true assertions are added and those that are false after an action must be d
ed. This device is useful, but examples demonstrating its inadequacy are reac
constructed. More aspects of the frame problem are given in Chapter 13.

4. There are several sorts of reasoning performed by human beings th
predicate logic does not pretend to address. It does not include the ability
describe its own formulae (a form of "quotation"), the notion of defaults, or e
mechanism for plausible reasoning. Extensions to predicate logic, such as moi
logic, are classically motivated. More recently, work on extensions addressing tt
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hay
1977]. There is still active debate as to whether such extensions can capture me
important aspects of human reasoning and knowledge within the model-theore
system. The contrary view is that in some reasoning, thepvepessof reasoning
itself is an important part of the semantics of the representation. Examples of su
extended inference systems appear in the remainder of this chapter, and the iss
are addressed in more detail in the next section.

12.2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiencyand plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference proces
often sacrifice classical formal properties for gains in control of the inference proc
ess and for flexibility in the sorts of "truth™ which may be inferred.
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Automated inference systems usually have inference methods that achie
efficiency through implementational, computation-based, inference criteria. F
example, truth may be defined as a successful lookup in a data base, falsity as
failure to find a proof with a given allocation of computational resources, and tt
establishment of truth may depend on the order in which deductions are made.

The semantics of computer knowledge representations is intimately relat
to the inference process that acts on them. Therefore, it is possible to del
knowledge representations and interpreters in computers whose properties d
fairly radically from those of classical representations and proof procedures, st
as the first-order predicate calculus. For instance, although the systems are de
ministic, they may not be formally consistent (loosely, they may contain contradi
tory information). They may not be complete (they cannot derive all trus
theorems from the givens); it may be possible to prove P from Qbut ~Pfrom Qal
R. The set of provable theorems may not be recursively enumerable [Reiter 197
Efforts are being made to account for the "extended inference" needed
artificial intelligence using more or less classical logic [McCarthy 1978; Reite
1978;Hayes 1977; 1978a; 1978b; Kowalski 1974,1979]. In each case, the classi
view of logic demands that the deductive process and the deducible truths be
dependent. On the other hand, it is reasonable to devote attention to developir
nonclassical semantics of these inference processes; this topic is in the resei
stage at this writing.

Several knowledge representations and inference methods using them
"classical" in the artificial intelligence world; that is, they provide paradigmatic
methods of dealing with the issues of computational inference. They incluc
STRIPS [Fikes and Nilsson 1971], the situational calculus [McCarthy and Hay
1969], PLANNER and CONNIVER [Hewitt 1972; Sussman and McDermott
1972],and semantic net representations [Hendrix 1979; Brachman 1979].

To illustrate the issue of consistency, and to illustrate how various sorts
propositions can be represented in semantic nets, we address the question of
the order of inference can affect the set of provable theorems in a system.

Consider the semantic net of Fig. 12.3. The idea is that in the absence
specific information to the contrary, one should assume that railroad bridges ¢
narrow. There are exceptions, however, such as Bridge02 (which has a highw
bridge above the rail bridge, say). The network is clearly inconsistent, but troub
is avoided if inferences are made "from specific to general." Such ordering implit
that the system is incomplete, but in this case incompleteness is an advantage.

Simple ordering constraints are possible only with simple inferential power
in the system [Winograd 1978]. Further, there is as yet little formal theory on th
effects of ordering rules on computational inference, although this has been an
tive topic [Reiter 1978].

12.3 PRODUCTION SYSTEMS

The last section explored why the process of inference itself could be an importe
part of the semantics afknowledge representation system. This idea is an impor-
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Fig. 12.3 An inconsistent network.

tant part of production systems. Perceived limitations in logic inference mechs
isms and the seductive power of arbitrary algorithmic processes for inference

spawned the development refle-basedsystems which differ from first-order logic

in the following respects:

» Arbitrary additions and deletions to the clausal data base are allowed.

* An interpreter that controls the inference process in special ways is usually
integral part of the system.

Early examples of systems with the first addition are STRIPS [Fikes and Nilss
1971] and PLANNER [Hewitt 1972]. Later examples of systems with both add
tions are given in [Waterman and Hayes-Roth 1978]. The virtues of trying to cc
trol inferences may be appreciated after our brief introduction to clausal autom:
theorem proving, where there are no very good semantic heuristics to guide in
ences.However, the price paid for restricting the inference process is the loss
formal properties of consistency and correctness of the system, which are
guaranteed in rule-based systems. We shall look in some detail at a particular f
of rule-based inference system called production systems.

A production systeraupports a general sort of "inference.” It has in comm
with resolution that matching is needed to identify which inference to make. It
different in that the action upon finding a matching data item is less constrain
Actions of arbitrary complexity are allowed. A production system consists of an e
plicit set of situation-action nodes, which can be applied against a data base of
uations. For example, in a very constrained visual domain the rule

(Green (Region X)}— (Grass (Region”) (12.11)

could infer directly the interpretation of a given region. Segmentation rules ci
also be developed; the following example merges two adjacent green regions in
single region.
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(Green(Region X))A(Green(Region y))A
(Adjacent (Region”), (Region Y))

-* (Green (Region Z)\ ((Region 2): =
(Union (Region X, Region y)))

These examples highlight several points. The first is that basic idea of producti
systems is simple. The rules are easy to "read" by both the programmer and
program and new rules are easily added. Although it is imaginable that "situ
tions" could extend down to the pixel level, and production systems could be ust
(for instance) to find lines, the system overhead would render such an approe
impractical. In the visual domain, the production system usually operates on tl
segmented image (Chapters 4 and 5) or with the high-level internal model. In t
rules above, X and Y are variables that must be bound to specific instances of
gions in a data base. This process of binding variables or matching can become \
complex, and is one of the two central issues of this kind of inference. The other
how to choose rules from a set all of whose situations match the current situati
to some degree.

12.3.1 Production System Details

In its simplest form a production system has three basic components:

1. Adata base
2. Asetof rules
3. Aninterpreter for the rules
The vision data base is usually a set of facts that are known about the visual «

vironment. Often the rules are considered to be themselves a manipulable pari
the data base. Examples of some visual facts may be

(ABOVE (Region 5) (Region 10))
(SIZE (Region 5) 300)
(SKY (Region 5)) (12.12)
(TOP (Region 5) 255)

The data base is the sole storage medium for all state variables of the system
particular, unlike procedurally oriented languages, there is no provision fo
separate storage of control state information—no separate program counter, pu
down stack, and so on [Davis and King 1975].

A rule is an ordered pair gfatternswith a left-hand side and a right-hand
side. A pattern may involve only data base primitives but usually wil have vari-
ables and special forms as subpatterns which are matched against the data bas
the interpreter. For example, applying the following rule to a data base which ir
cludes (12.12),
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(TOP (Region X) (GreaterThan200))
— (12.13)
(SKY (Region X))

region 5 can be inferred to be sky. The left-hand side matches a set of data-t
facts and this causes (SKY (Region 5)) to be added to the data base. This exar
shows the kinds of matching that the interpreter rdasf1) the primitive TOP in
the data base fact matches the same symbol in the rule, (2) (Region X) matcl
(Region 5) and Jis bound foas a side effect, and (3) (GreaterThan 200) matche
255. Naturally, the user must design his own interpreter to recognize the meani
of such operational subpatterns.

However, even the form of the rules outlined so far is relatively restrictive
There is no reason why the right-hand side cannot do almost arbitrary things. F
instance, the application afrule may result in various productions being deleted
or added from the set of productions; the data base of productions and asserti
thus can be adaptive [Waterman and Hayes-Roth 1978]. Also, the right-hand s
may specify programs to be run which can result in facts being asserted into 1
data base or actions performed.

Control in a basic production system is relatively simple: Rules are applie
until some condition in the data base is reached. Rules may be applied in two ¢
tinct ways: (Da match on the left-hand sidexofile may result in the addition of
the consequences on the right-hand side to the data base, or (2) a match on
right-hand side may result in the addition of the antecedents in the left-hand si
to the data base. The order of application of rules in the first case is termed forwi
chainingreasoning, where the objective is to see if a set of consequences car
derived from a given set of initial facts. The second case is known as backw
chaining, the objective is to determine a set of facts that could have produced a |
ticular consequence.

12.3.2 Pattern Matching

In the process of matching rules against the data base, several problems occur:

* Many rule situations may match data base facts
* Rules designed for a specific context may not be appropriate for larger contex
» The pattern matching process may become very expensive
* The data base or set of rules may become unmanageably large.
The problem of multiple matches is important. Early systems simply resolved it k
scanning the data base in a linear fashion and choosing the first match, but thi:
an ineffective strategy for large data bases, and has conceptual problems as v
Accordingly, strategies have evolved for dealing with these conflicts. Like mos
inference-controlling heuristics, their effectiveness can be domain-depender
they can introduce incompleteness into the system, and so on.

On the principle ofeastcommitmentywhen there are many chances of errors
one strategy is to apply the most general rule, defined by some metric on the co
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ponents of the pattern. One simple such metric is the number of elements in a
tern. Antithetical to this strategy is the heuristic of applying the spestificpat-
tern. This may be appropriate where the likelihood of making a false inference
small, and where specific actions may be indicated (match (MAD DOG) witt
(MAD DOG), not with (DOG)). Another popular but inelegant technique is to
exercise control over the order pfoduction applicationby using state markers
which are inserted into the data base by right-hand sides and looked for by le
hand sides.

1. A— BA < markerl>.
2. A-+B[\ <marker2>.
3. Bi\ <marker 1> — C.
4. BN\ < marker 2> -* D.

Here if rule 1 is executed, "control goes to rule 3," i.e., 18ls now execut-
able,whereas if rule 2 is applied, "control goes to rule 4." Similarly, such contro
paradigms as subroutining, iteration and co-routining may be implemented wit
production sytems [Rychner 1978].

The use of connectives and special symbols can make matching become ai
trarily complex. Rules might be interpreted as allowing all partial matches in thei
antecedent clauses [Bajcsy and Jd€8]. Thus

(ABC- (D

is interpreted as
(ABC) V (BC) V (AB) V (AC) V (A) V (B) V (C) - (D)

where the leftmost actual match is used to compare the rule to others in the case
conflicts.

The problem of large data bases is usually overcome by structuring them
some way so that the interpreter applies the rules only to a subset of the data b
or uses a subset of the rules. This structuring undermines a basic principle of pt
rule-based systems: Control should be dependent on the contents of the data k
alone. Nevertheless, many systems divide the data base into two parts: an act
smaller part which functions like the original data base but is restricted in size, ar
a larger data base which is inaccessible to the rule set in the active smaller p:
"Meta-rules" have actions that move situation-action rules and facts from th
smaller data base to the larger one and vice versa. The incoming set of rules ¢
facts is presumably that which is applicable in the context indicated by the situatic
triggering the meta-rule. This two-level organization of rules is used in "black-
board" systems, such as Hearsay for speech-understanding [Erman and Les
1975]. The meta-rules seem to capture our idea of "mental set," or "context," c
"frame" (Section10.3.1, [Minsky 1975]). The two data bases are sometimes re-
ferred to as short-term memory and long term memory, in analogy with certail
models of human memory.
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12.3.3 An Example

We shall follow theactionsof a production systerfor vision [Sloan 1977; Sloan
and Bajcsy 1979]. The intent heretdsavoid adescriptionof all thedetails (which
may befound in theReferences)andconcentrateon theperformanceof the sys-
tem asreflected byasampleof its output. The program usegproduction system
architecturein thedomain of outdoor scenesThegoal is to determine basic
featuresof the scene, particularftheseparation between sky and ground. e
terpreteristermed the "observer" and the memory has a two-tiered stru¢tyre:
short term memory (STMand (2)long term memory (LTM)adata basef all
facts ever knowror established, structurei prefer accesso themost recently
used facts. The image beanalyzedis shownin Fig. 12.4,and theaction maybe
followed inFig. 12.5.The analysis starts with the initialization command

*(look 100000 100 nil)

This command directtheObserverto investigateall regions that falin thesize
range 100 to 100000, in decreasing ordesizé. The LTM is initialized to NIL.

our first look at (region 11)

X y rg yb w-b size top bottom left right
35 2 24 29 6 2132 35 97 2 127

This reportis produced by animage-processing procedure that produces
assertions about (region 11). This region is shown highlighted in Fig. 12.5c.

Progress Report

regions on this branch:
(11)
context stack:

Fig. 12.4 Outdoor scen¢o beanalyzed with production system.
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Fig. 12.5 Images corresponding to steps in production system analysis, (a) Tex-
ture in the scene, (b) Regidd outlined, (c) Sky-Ground separation, (d) Skyline.

nil

contents of short term memory:

((far-left (region 11)) (far-right (region 11))
(right (region 11) 127) (left (region 11) 2)
(bottom (region 11) 97) (top (region 11) 35)
(w-b (region 11) minus) (y-b (region 11) zero)
(r-g (region 11) zero) (size (region 11) 2132))

end of progress report

Note that gray-level information is represented as a vector in opponent color spac
(Chapter 2), where the components axes are WHITE-BLA@Kb), RED-
GREEN (r-g), and YELLOW-BLUE (y-b). Three values (plus, zero, minus) are
used for each component. The display above is generated once after every iter.
tion of the Observer. The report shows that (REGION 11) is being investigated;
there is no known context for this investigation; the information about (REGION
11) created by the image-processing apparatus has been placed in STM. The cc
text stack is for information only, and shows a trace of activated setiesf
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i think that (far-left (region 11))

i think that (far-right (region 11))

i think that (right (region 11) 127)

i think that (left (region 11)2)

i think that (bottom (region 11) 97)
i think that (top (region 11) 35)

i think that (size (region 11) 2132)

This portion of the trace shows assertions moving from STM to LTM. They
are reported because this is the first time they have been REMEMBERed (a spec
procedure in the Observer).

Progress Report

regions on this branch:

(11)

context stack:

nil

contents of short term memory:
((color (region 11) black))

end of progress report

The assertions created from the region data structure have been digest

and lead only to the conclusion that (REGION 11) is BLACK, based on a produc
tion that looks like:

(w-b (region x) minus) A (r-w (region x) zero)
A (b-w (region x) zero}» (color (region x) black)

Progress Report

regions on this branch:

(11)

context stack:

nil

contents of short term memory:

((ground (region 11)) (shadow (region 11)))

end of progress report

The observer knows that things that are black are GROUND and SHADOW
The facts it deduces about region 11 are again stored in the LTM.

Having discovered a piece of ground, the Observer has activated th
GROUND-RULES, and changed context. It now investigates the neighbors o
(REGION 11).

our first look at (region 16)

X y rrg vyb w-b size top bottom left right
58 2 23 30 3 1833 57 119 2 127
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(REGION 16) is a neighbor of (REGION 11), and the observer is trying to deter-
mine whether or not they are sufficiently similar, in both color and textujes-to
tify merging them.

Progress Report

regions on this branch:

(1611)

context stack:

(ground)

contents of short term memory:
((texture-difference (region 16) (region 11)))
(color-similar (region 16) (region 11))

(distance (region 16) near) (ground (region 16))
(color (region 16 black))

end of progress report

The Observer decides that (REGION 16) is ground because it is at the bot
tom of the picture.

The ground-growing process continues, until finally one of the neighbors of a
ground region is a piece sky. The Observer will not immediately recognize this
region as sky, but wil see that a depth discontinuity exists and that the bordel
between these two regions represents a section of three dimensional skyline.

our first look at (region 8)

X y rg yb wb size top bottom left right
27 2 13 13 33 394 15 38 2 57

Progress Report

regions on this branch:

(81316 11)

context stack:

(ground ground ground)

contents of short term memory:

((new-neighbor (region 800) (far-left (region 8))

(right (region 8) 57) (left (region 8) 2) (bottom (region 8) 38)
(top (region 8) 15) (w-b (region 8) zero) (y-b (region 8) minus)
(r-g (region 8) minus) (size (region 8) 394))

end of progress report
texture descriptors for (region 8) are (54 50)
texture descriptors for (region 13) are (44 51)
Texture measurement is appropriate in the context of ground areas.
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Progress Report
regions on this branch:
(813 1611)
context stack:
(ground ground ground)
contents of short term memory:
((texture-similar (region 8) (region 13)) (color-difference
(region 8) (region 13)) (color (region 8) blue-green))

end of progress report

(REGION 8) passes the texture similarity test, but fails the color match.
Progress Report

regions on this branch:

(8 131611)

context stack:

(ground ground ground)

contents of short term memory:

((darker (region 13) (region 8)) (brighter (region 8) (region
13))

(yellower (region 13) (region 8)) (bluer (region 8) (region 13))
(redder (region 13) 13)

(below (region 13) (region 8)) (above (region 8) (region 13)))

end of progress report
checking the border between (region 13) and (region 8)

Progress Report
regions on this branch:
(813 16 11)
context stack:
(skyline ground ground ground)
contents of short term memory:
((segments built) (skyline-segment ((117 42)) (region 13)
(region 8)) (skyline-segment ((14 40) (13 40)) (region 13)
(region 8)))

end of progress report

Progress Report

regions on this branch:

(813 1611)

context stack:

(skyline ground ground ground)
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contents of short term memory:
((peak (14 40)) (peak (17 42)))

end of progress report

Two local maxima have been discovered in the skyline. On the basis of a
depth judgment, these peaks are correctly identified as treetops.

The analysis continues until all the major regions have been analyzed. The
sky-ground separation is shown in Fig. 12.5a and skyline in Fig. 12.5e.

In most cases, complete analysis of the image follows from the context esta-
blished by the first (largest) region. This implies that initial scanning of such
scenes can be quite coarse, and very simple ideas about gross context are enou
to get started. Once started, inferences about local surroundings lead the
Observer's attention over the entire scene, often returning many times to the sam
part of the image, each time with a bit more knowledge.

12.3.4 Production System Pros and Cons

In their pure form, the productions of production systems are completely "modu-
lar," and are themselves independent of the control process. The data base ¢
facts, or situations, is unordered set accessed in undetermined order to find one
matching some rule. The rule is applied, and the system reports the search for .
matching situation and situation-action pair (rule). This completely unstructured
organization of knowledge could be a model for the human learning of "facts"
which become available for use by some associative mechanism that finds relevan
facts in our memories. The hope for pure production systems is that performance
will degrade noncatastrophically from the deletion of rules or facts, and that the
rules can interact in synergistic and surprisivays.A learning curve may be simu-
lated by the addition of productions. Thus one is encouraged to experiment with
how knowledge may best be broken up into disjoint fragments that interact to pro-
duce intelligent behavior.

Together with the modularity of productions in a simple system, there is a
corresponding simplicity in the overall control program. The pure controller sim-
ply looks at the data base and somehow finds a matching situation (left-hand side)
among the productions, applies the rule, and cycles. This simple structure remain:
constant no matter how the rules change, so any nondeterminism in the perfor-
mance arises from the matcher, which may find different left hand side matches for
sets of assertions in the data base.

The productions usually have a syntax that is machine-readable. Their se-
mantics is similarly constrained, and so it begins to seem hopeful that a program
(perhaps fired up by a production) could reason about the rules themselves, adc
them, modify them, or delete them. This is in contrast to the situation with pro-
cedurally embedded knowled@@ection 10.1.3), because it is difficult or impossible
for programs to answer general questions about other programs. Thus the claim i
that a production system can more easily reason about itself than can many othe
knowledge representation systems.
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Productions often interact in ways that are not foreseen. This can be an ¢
vantage or a drawback, depending on the behavior desired. The pattern-match
control structure allows knowledge to be used whenever it is relevant, not on
when the original designer thought that it might be. Symbiotic interaction ol
knowledge may also produce unforeseen insights. Production systems are a |
mary tool ofknowledgeengineering,an enterprise that attempts to encode and u
expert knowledge at such tasks as medical diagnosis and interpretation of mi
spectrograms [Lindsay et al. 1980; Buchanan and Mitchell 1978; Buchanan ai
Feigenbaum 1978; Shortliffe 1976; Aikins 1980].

There are many who are not convinced that production systems really offe
the advantages they initially seem to. They use the following sorts of arguments.

The pure form of production system is almost never seen doing anything us
ful. In particular, the production system is most naturally a forward-chaining infer
ence system, and one must exercise restraints and guidelines on it to keep it fr
running away and deducing lots of irrelevant facts instead of doing useful work. C
course, production systems may be written to do backward chaining by hypothes
ing a RHS and seeing which LHS must be true for the desired RHS to occur (tt
process may be iterated to any depth). In practical systems based on product
systems, there is implicit or explicit ordering of production rules so the matche
tries them in some order. Often the ordering is determined in a rather complex a
dynamic manner, with groups of related rules being more likely to be applied tc
gether, the most recently used rule not allowed to be reapplied immediately, ai
so on. In fact, many production systems's controllers have all the control structu
tricks mentioned above (and more) built into them; the simple and elegant "bag
rules"ideal is inadequate for realistic examples. When the rules are explicitly writ
ten with an idiosyncratic control structure in mind, the system can become unprit
cipled and inexplicable.

On the same lines, notice how difficult it is to specify a time-ordered se-
quence of actions by a completely modular set of rewriting rules. It is unnatural t
force knowledge about processes that may contain iteration, tests, and recurs
into the form of independent situation-action rules. A view that is more easily de
fensible is that knowledge about procedures for perception should be encoded
(embedded in) computer procedures, not assertions or rules. The causal chain 1
dictates that some actions are best performed before others is implicit in t
sequential execution of procedures, and the language constraints, such as itel
and test, test and branch, or subroutine invocation, are all fairly natural ways -
think about solving certain problems. Production systems can in fact be made
perform all these procedural-like functions, but only through an abrogation of th
ideal of modular, unordered, matching-oriented rule invocation which is the pro
duction system ideal. The question turns into one of aesthetics; how to use prodt
tions in a good style, and to work with their philosophy instead of against it.

To summarize the previous two objections: Production-based knowledge sy
tems may in practice be no more robust, easily modified, modular, extensible
understandable, or self-understanding than any other (say, procedural) system |
less great care is taken. After a certain level of complexity is reached, they a
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likely to be as opaque as any other scheme because of the control-structuri
methods that must be imposed on the pure production system form.

12.4 SCENE LABELING AND CONSTRAINT RELAXATION

408

The general computational problem of assigning labels consistently to objects
sometimes called the "labeling problem," and arises in many contexts, such
graph and automata homomorphism, graph coloring, Latin square generation, al
of course, image understanding [Davis and Rosenfeld 1976; Zucker 1976; Haralic
and Shapiro 1979]. "Relaxation labeling," "constraint satisfaction,” and
"cooperative algorithms" are natural implementations for labeling, and their po-
tential parallelism has been a very influential development in computer vision. A:
should any important development, the relaxation paradigm has had an impact
the conceptualization as well as on the implementation of processes.

Cooperating algorithms to solve the labeling problem are useful in low level
vision (e.g., line finding, stereopsis) and in intermediate-level vision (e.g., line-
labeling, semantics-based region growing). They may also be useful for th
highest-level vision programs, those that maintain a consistent set of beliefs abo
the world to guide the vision process.

Section 12.4.1 presents the main concepts in the labeling problem. Sectic
12.4.2 outlines some basic forms that "discrete labeling" algorithms can take. Se
tion 12.4.3 introduces a continuing example, that of labeling lines in a line draw:
ing, and gives a mathematically well-behaved probabilistic "linear operator" label-
ing method. Section 12.4.4 modifies the linear operator to be more in accord wit
our intuitions, and Section 12.4.5 describes relaxation as linear programming ar
optimization, thereby gaining additional mathematical rigor.

12.4.1 Consistent and Optimal Labelings

All labeling problems have the following notions.

1. A set ofobjects.In vision, the objects usually correspond to entities to be la-
beled, or assigned a "meaning."

2. Afinite set ofrelationsbetween objects. These are the sorts of relations we sa\
in Chapter 10; in vision, they are often geometric or topological relations
between segments in a segmented image. Properties of objects are simg
unary relations. An input scene is tharelational structure.

3. Afinite set of labels,or symbols associated with the "meanings" mentioned
above. In the simplest case, each object is to be assigned a single lalbell-A
ing assignsone or more labels to (a subset of) the objects in a relational struc
ture. Labels may be weighted with "probabilities"; a (label, weight) pair can
indicate something like the "probability of an object having that label.”

4. Constraints,which determine what labels may be assigned to an object an
what sets of labels may be assigned to objects in a relational structure.
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A basic labeling problem is then: Given a finite input scene (relational struc-
ture of objects), a set of labels, and a set of constraints, find a "consistent label
ing." That is, assign labels to objects without violating the constraints. We saw this
problem in Chapter 11, where it appeared as a matching problem. Here we sha
start with the discrete labeling of Chapter 11 and proceed to more general labeling
schemes.

As a simple example, consider the indoor scene of Fig. 12.6. The segmentec
office scene is to have its regions labeled as Door, Wall, Ceiling, Floor, and Bin,
with the obvious interpretation of the labels. Here are some possible constraints
informally stated. Note that these particular constraints are in terms of the input
relational structure, not the world from which the structure arose. A more com-
plex (but reasonable) situation arises if scene constraints must be derived fromn
rules about the three dimensional domain of the scene and the imaging proces:
Unary constraints use object properties to constrain labels; n-ary constraints force
sets of label assignments to be compatible.

Unary constraints

1. The Ceiling is the single highest region in the image.
2. The Floor must be checkered.

DBFWC
DBFWC
DBFWC
DB
o DB
Fw

D
A
VW I I y "
©
Fig. 12.6 Astylized "segmented officecene."The regionsare theobjectsto be
assigned label®, B, F, W, C (Door, Bin, Floor, Wall, Ceiling). In (a), eachob-
ject is assignedall labels. In (b)unary constraints have been appligde text). In

(c), relational constraints have beapplied,and aunique labelfor each region
results.
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N-ary constraints

3. AWallis adjacent to the Floor and Ceiling.
4. ADoor is adjacent to the Floor and a Wall.
5. ABin is adjacent to a Floor.

6. ABiIn is smaller than a Door.

Obviously, there are many constraints on the appearance of segments in su
a scene; which ones to use depends on the available sensors, the ease of comp
tion of the relations and their power in constraining the labeling. Here the applica
tion of the constraints (Fig. 12.6) results in a unique labeling. Although the con-
straints of this example are purely for illustration, a system that actually performs
such labeling on real office scenes is described in [Barrow and Tenenbaum 1976].

Labelings may be characterizediasonsistenbr consistentA weaker notion
is that of anoptimallabeling. Each of these adjectives reflects a formalizable pro-
perty of the labeling of a relational structure and the sebwétraints.If the con-
straints admit of only completely compatible or absolutely incompatible labels,
then a labeling is consistent if and only if all its labels are mutually compatible, anc
inconsistent otherwise. One example is the line labels of Section 9.5; line drawing
that could not be consistently labeled were declared "impossible." Such a black
and-white view of the scene interpretation problem is convenient and neat, but iti
sometimes unrealistic. Recall that one of the problems with the line-labeling ap-
proach of Chapter 9 is that it does not cope gracefully with missing lines; strictly,
missing lines often mean "impossible" line drawings. Such an uncompromising
stance can be modified by introducing constraints that allow more degrees of corr
patibility than two (wholly compatible or strictly incompatible). Once this is done,
both consistent and inconsistent labelings may be ranked on compatibility anc
likelihood. It is possible that a formally inconsistent labeling may rank better than a
consistent but unlikely labeling.

Some examples are shown in Fig. 12.7. In 12.7b, the "inconsistent" labels
are not nonsensical, but can only arise from (a very unlikely) accidental alignmen
of convex edges with three of the six vertices béxagonal hole in an occluding
surface. The vertices that arise are not all included in the traditional catalog of lege
vertices, hence the "inconsistent" labeling. The "floating cube" interpretation is
consistent, but the "sitting cube" interpretation may be more likely if support and
gravity are important concepts in the system. In Eigic,the scene with a missing
line cannot be consistent according to the traditional vertex catalog, but the "in-
consistent" labels shown are still the most likely ones. Labelings are only "con-
sistent,” "inconsistent," or "optimal" with respect to a given relational structure
of objects (an input scene) and a set of constraints. These examples are meant
be illustrative only.

12.4.2 Discrete Labeling Algorithms

Let us consider the problem of finding a consistent set of labels, taken from &
discrete finite set. This problem may be placed in an abstract algebraic contex
[Haralick and Kartus 1978; Haralick 1978; Haralick et al. 1978]. Perhaps the sim-
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