"Wod Wlie|el}a)d0p Je s)Jewldalem JNOYlIM Sjuswindop 14N0d pajedijusyine puld

‘Aluo aAlrensn||l 8q 0} jueaw ale sajdwexa 9sayl "Sjulelisuod Jo 19s e pue (auads ndul
ue) s109[qo Jo ainjonas |euone|dl uaAlb e 01 10adsal yum ,Jewndo, 10 ,‘ludlsisuodul,
LJuaisisuod, Auo are sbuljage ‘sbulage| J1dayy pue (D ‘g ‘v) sauads 8alyl 22T B4

©

Buiiage| siaqe|

au90s
fewndo ua)sISu0D

Page 423 of 539

https://www.docketalarm.com/

plest way to find a consistent labelingafelational structure (we shall often say
"labeling of a scene") is to apply a depth-fitete searctof the labeling possibili-
ties,as in the backtracking algorithm (11.1).

Label an object in accordance with unary constraints.

Iterate until a globally consistent labeling is found:

Given the current labeling, label another object
consistently—in accordance with all constraints.

If the object cannot be labeled consistently, backtrack
and pick a new label fapreviously labeled object.

This labeling algorithm can be computationally inefficient. First, it does not
prune the search tree very effectively. Second, if it is used to generate all cc
sistent labelings, it does not recognize important independences in the labels. T
is, it does not notice that conclusions reached (labels assigned) in part of the t
search are usable in other parts without recomputation.

In a serial relaxation, the labels are changed one object at a time. After ea
such change, the new labeling is used to determine which object to process nt
This technique has proved useful in some applications [Feldman and Yakimovs
1974).

Assign all possible labels to each object in accordance with

unary constraints.

Iterate until a globally consistent labeling is found:
Somehow pick an object to be processed.
Modify its labels to be consistent with the current
labeling.

A parallel iterativealgorithm adjusts all object labels at once; we have set
this approach in several places, notably in the "Waltz filtering algorithr8eof
tion 9.5.

Assign all possible labels to each object in accordance with
unary constraints.
Iterate untilaglobally consistent labeling is found:

In parallel, eliminate from each object's label set
those labels that are inconsistent with the current
labels of the rest of the relational structure.

A less structured version of relaxation occurs when the iteration is replace
with an asynchronous interactioaf labeled objects. Such interaction may be impl
mented with multiple cooperating processes or in a data base with "demons" (A

412 Ch. 12 Inference

D G E [539
A L %& “ Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

pendix 2). This method of relaxation was used in MSYS [Barrow and Tenenbaur
1976]. Here imagine that each object is an active process that knows its own lab
set and also knows about the constraints, so that it knows about its relations wi
other objects. The program of each object might look like this.

If I have just been activated, and my label set is not
consistent with the labels of other objects in the
relational structure, thehchange my label set to be
consistent, elsesuspendnyself.

Whenever change my label set, | activate other objects
whose label set may be affected, thsanspendnyself.

To use such a set of active objects, one can give each one all possible lab
consistent with the unary constraints, establish the constraints so that the obje
know where and when to pass on activity, and activate all objects.

Constraints involving arbitrarily many objects (i.e., constraints of arbitrarily
high order) can efficiently be relaxed by recording acceptable labelings in a grag
structure [Freuder 1978]. Each object to be labeled initially corresponds to a noc
in the graph, which contains all legal labels according to unary constraints. Highe
order constraints involving more and more nodes are incorporated successively
new nodes in the graph. At each step the new node cons$ainpagated;that is,
the graph is checked to see if it is consistent with the new constraint. With the ir
troduction of more constraints, node pairings that were previously consistent me
be found to be inconsistent. As an example consider the following graph colorin
problem: color the graph in Fig. 12.8 so that neighboring nodes have differer
colors. It is solved by building constraints of increasingly higher order and pro-
pagating them. The node constraints are given explicitly as shown in Fig. 12.8i
but the higher-order constraints are given in functional implicit form; prospective
colorings must be tested to see if they satisfy the constraints. After the node co
straints are given, order two constraints are synthesized as follows: (1) make
node for each node pairing; (2) add all labelings that satisfy the constraint. Th
result is shown in Fig. 12.8b. The single constraint of order three is synthesized
the same way, but now the graph is inconsistent: the ma¥€lz!'Red,Green" is
ruled out by the third order legal label set (RGY,GRY). To restore consistency th
constraint is propagated through node (Y,Z) by deleting the inconsistent labeling
This means that the node constraint for node Z is now inconsistent. To remec
this, the constraint is propagated again by deleting the inconsistency, in this ca:
the labeling (Z:G). The change is propagated to node (X,Z) by deleting (X,z
Red,Green) and finally the netwoikconsistent.

In this example constraint propagation did not occur until constraints of
order three were considered. Normally, some constraint propagation occurs aft
every order greater than one. Of course it may be impossible to find a consiste
graph. This is the case when the labels for bideour example are changed from
(G,Y) to (G,R). Inconsistency is then discovered at order three.

It is quite possible that a discrete labeling algorithm will not yield a unique la-
bel for each object. In this case, a consistent labeling exists using each label for t

Sec. 12.4 Scene Labeling and Constraint Relaxation 413

D G E E 539
A L %& 5"4 Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

S0 PI©

(@)

Fig. 12.8 Coloringagraph by building constraints of increasingly higher order.

object. However, which of an object's multiple labels goes with which of another

object's multiple labels is not determined. The final enumeration of consistent la-
belings usually proceeds by tree search over the reduced set of possibilities remain
ing after the relaxation.

Convergence propertiesf relaxation algorithms are important; convergence
means that in some finite time the labeling will "settle down" to a final value. In
discrete labeling, constraints may often be written so that the label adjustment
phase always reduces the number of labels for an object (inconsistent ones are e
iminated). In this case the algorithm clearly must converge in finite time to a con-
sistent labeling, since for each object the label set must either shrink or stay stable
In schemes where labels are added, or where labels have complex structure (suc
as real number "weights" or "probabilities"), convergence is often not
guaranteed mathematically, though such schemes may still be quite useful. Som
probabilistic labeling schemes (Section 12.4.3) have provably good convergence
properties.

414 Ch.12 Inference

D G E [539
A L %& 6"4 Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

It is possible to use relaxation schemes without really considering the
mathematical convergence properties, their semantics (What is the semantic
weights attached to labels—are they probabilities?), or a clear definition of wt
exactly the relaxation is to achieve (What is a good set of labels?). The fact t
some schemes can be shown to have unpleasant properties (such as assi
nonzero weights to each wfo inconsistent hypotheses, or not always converging
to a solution), does not mean that they cannot be used. It only means that tl
behavior is not formally characterizable or possibly even predictable. As relaxati
computations become more common, the less formalizable, less predictable,
less conceptually elegant forms of relaxation computations will be replaced
better behaved, more thoroughly understood schemes.

12.4.3 A Linear Relaxation Operator and a Line Labeling Example

The Formulation

We now move away from discrete labeling and into the realm of continuot
weightsor supposition valuesn labels. In Sections 12.4.3 and 12AA we foll
closely the development of [Rosenfeld et al. 1976]. Let us require that the sum
label weights for each object be constrained to sum to unity. Then the weights
reminiscent of probabilities, reflecting the "probability that the label is correct.
When the labeling algorithm converges, alabel emerges with a high weight if it c
curs in a probable labeling of the scene. Weights, or supposition values, are in
hard to interpret consistently as probabilities, but they are suggestive of likelihoa
and often can be manipulated like them.

In what follows p refers to probability-like weights (supposition values)
rather than to the value afprobability density function. Let a relational structure
with n objects be given by,ai= 1, ..., n, each with m discrete labels \\, .4, X
The shorthang, (X) denotes the weight, or (with the above caveats) the "probe
bility" that the labelX (actually k for some k) is correct for the object Bhen the
probability axioms lead to the following constraints,

0<AX<1 (12.14)
| A00 =1 (12.15)
A

The labeling process starts with an initial assignment of weights to all labe
for all objects [consistent with Eqgs. (12.14) and (12.15)]. The algorithm is parall
iterative: It transforms all weights at once into a new set conforming to Eq:
(12.14) and (12.15), and repeats this transformation until the weights converge
stable values.

Consider the transformation as the application of an operator to a vector of
bel weights. This operator is based on twenpatibilitiesof labels, which serve as
constraints in this labeling algorithm. A compatibility py looks like a conditional
probability.

Ep, XX)=1 foral /j, X (12.16)

Sec. 12.4 Scene Labeling and Constraint Relaxation 415

D G E7|“{[539
A L %& Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

