Digital Communications Fifth Edition ### John G. Proakis Professor Emeritus, Northeastern University Department of Electrical and Computer Engineering, University of California, San Diego ### Masoud Salehi Department of Electrical and Computer Engineering, Northeastern University Burr Ridge, IL Caracas Dubuque, IA New York San Francisco Kuala Lumpur Lisbon London Madrid Mexico City # Introduction In this book, we present the basic principles that underlie the analysis and design of digital communication systems. The subject of digital communications involves the transmission of information in digital form from a source that generates the information to one or more destinations. Of particular importance in the analysis and design of communication systems are the characteristics of the physical channels through which the information is transmitted. The characteristics of the channel generally affect the design of the basic building blocks of the communication system. Below, we describe the elements of a communication system and their functions. ### 1.1 ## ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM Figure 1.1–1 illustrates the functional diagram and the basic elements of a digital communication system. The source output may be either an analog signal, such as an audio or video signal, or a digital signal, such as the output of a computer, that is discrete in time and has a finite number of output characters. In a digital communication system, the messages produced by the source are converted into a sequence of binary digits. Ideally, we should like to represent the source output (message) by as few binary digits as possible. In other words, we seek an efficient representation of the source output that results in little or no redundancy. The process of efficiently converting the output of either an analog or digital source into a sequence of binary digits is called source encoding or data compression. The sequence of binary digits from the source encoder, which we call the *information sequence*, is passed to the *channel encoder*. The purpose of the channel encoder is to introduce, in a controlled manner, some redundancy in the binary information sequence that can be used at the receiver to overcome the effects of noise and interference encountered in the transmission of the signal through the channel. Thus, the added redundancy serves to increase the reliability of the received data and improves FIGURE 1.1–1 Basic elements of a digital communication system. the fidelity of the received signal. In effect, redundancy in the information sequence aids the receiver in decoding the desired information sequence. For example, a (trivial) form of encoding of the binary information sequence is simply to repeat each binary digit m times, where m is some positive integer. More sophisticated (nontrivial) encoding involves taking k information bits at a time and mapping each k-bit sequence into a unique n-bit sequence, called a *code word*. The amount of redundancy introduced by encoding the data in this manner is measured by the ratio n/k. The reciprocal of this ratio, namely k/n, is called the rate of the code or, simply, the *code rate*. The binary sequence at the output of the channel encoder is passed to the digital modulator, which serves as the interface to the communication channel. Since nearly all the communication channels encountered in practice are capable of transmitting electrical signals (waveforms), the primary purpose of the digital modulator is to map the binary information sequence into signal waveforms. To elaborate on this point, let us suppose that the coded information sequence is to be transmitted one bit at a time at some uniform rate R bits per second (bits/s). The digital modulator may simply map the binary digit 0 into a waveform $s_0(t)$ and the binary digit 1 into a waveform $s_1(t)$. In this manner, each bit from the channel encoder is transmitted separately. We call this binary modulation. Alternatively, the modulator may transmit b coded information bits at a time by using $M = 2^b$ distinct waveforms $s_i(t)$, i = 0, 1, ..., M - 1, one waveform for each of the 2^b possible b-bit sequences. We call this M-ary modulation (M > 2). Note that a new b-bit sequence enters the modulator every b/R seconds. Hence, when the channel bit rate R is fixed, the amount of time available to transmit one of the Mwaveforms corresponding to a b-bit sequence is b times the time period in a system that uses binary modulation. The communication channel is the physical medium that is used to send the signal from the transmitter to the receiver. In wireless transmission, the channel may be the atmosphere (free space). On the other hand, telephone channels usually employ a variety of physical media, including wire lines, optical fiber cables, and wireless (microwave radio). Whatever the physical medium used for transmission of the information, the Chapter One: Introduction variety of possible mechanisms, such as additive thermal noise generated by electronic devices; man-made noise, e.g., automobile ignition noise; and atmospheric noise, e.g., electrical lightning discharges during thunderstorms. At the receiving end of a digital communication system, the *digital demodulator* processes the channel-corrupted transmitted waveform and reduces the waveforms to a sequence of numbers that represent estimates of the transmitted data symbols (binary or *M*-ary). This sequence of numbers is passed to the channel decoder, which attempts to reconstruct the original information sequence from knowledge of the code used by the channel encoder and the redundancy contained in the received data. A measure of how well the demodulator and decoder perform is the frequency with which errors occur in the decoded sequence. More precisely, the average probability of a bit-error at the output of the decoder is a measure of the performance of the demodulator—decoder combination. In general, the probability of error is a function of the code characteristics, the types of waveforms used to transmit the information over the channel, the transmitter power, the characteristics of the channel (i.e., the amount of noise, the nature of the interference), and the method of demodulation and decoding. These items and their effect on performance will be discussed in detail in subsequent chapters. As a final step, when an analog output is desired, the source decoder accepts the output sequence from the channel decoder and, from knowledge of the source encoding method used, attempts to reconstruct the original signal from the source. Because of channel decoding errors and possible distortion introduced by the source encoder, and perhaps, the source decoder, the signal at the output of the source decoder is an approximation to the original source output. The difference or some function of the difference between the original signal and the reconstructed signal is a measure of the distortion introduced by the digital communication system. # ■ 1.2 COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS As indicated in the preceding discussion, the communication channel provides the connection between the transmitter and the receiver. The physical channel may be a pair of wires that carry the electrical signal, or an optical fiber that carries the information on a modulated light beam, or an underwater ocean channel in which the information is transmitted acoustically, or free space over which the information-bearing signal is radiated by use of an antenna. Other media that can be characterized as communication channels are data storage media, such as magnetic tape, magnetic disks, and optical disks. One common problem in signal transmission through any channel is additive noise. In general, additive noise is generated internally by components such as resistors and solid-state devices used to implement the communication system. This is sometimes called *thermal noise*. Other sources of noise and interference may arise externally to the system, such as interference from other users of the channel. When such noise and interference occupy the same frequency band as the desired signal, their effect can be minimized by the proper design of the transmitted signal and its demodulator at # DOCKET # Explore Litigation Insights Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things. ## **Real-Time Litigation Alerts** Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend. Our comprehensive service means we can handle Federal, State, and Administrative courts across the country. ### **Advanced Docket Research** With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place. Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase. ### **Analytics At Your Fingertips** Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours. Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips. #### API Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps. #### **LAW FIRMS** Build custom dashboards for your attorneys and clients with live data direct from the court. Automate many repetitive legal tasks like conflict checks, document management, and marketing. #### **FINANCIAL INSTITUTIONS** Litigation and bankruptcy checks for companies and debtors. ### **E-DISCOVERY AND LEGAL VENDORS** Sync your system to PACER to automate legal marketing.