US 9,088,868 B2

173

If block 4672 determines the user selected to exit block
4510 processing, then block 4674 cleans up processing thus
far accomplished (e.g. issue a stop using database command),
and block 4676 completes block 4510 processing. If block
4672 determines the user did not select to exit, then process-
ing continues to block 4678 where all other user actions
detected at block 4616 are appropriately handled, and pro-
cessing continues back to block 4616 by way off off-page
connector 4696.

FIGS. 47A through 47B depict flowcharts for describing a
preferred embodiment of MS user interface processing for
actions configuration of block 4514. With reference now to
FIG. 47A, processing starts at block 4702, continues to block
4704 for initialization (e.g. a start using database command),
and then to block 4706 where groups the user is a member of
are accessed. Block 4706 retrieves all GRPDRs 3540 joined
to GADRs 3520 such that the descendant type field 3520c¢ and
descendant ID field 35204 match the user information, and
the ascendant type field 35204 is set to Group and the ascen-
dant ID field 352056 matches the group ID field 3540a. While
there may be different types of groups as defined for the BNF
grammar, the GRPDR 3540 is a derivative embodiment
which happens to not distinguish. Alternate embodiments
may carry a group type field to select appropriate records by
group type. Yet another embodiment may not have a block
4706 with processing at block 4708 for gathering data addi-
tionally by groups the user is a member of. Block 4706
continues to block 4708.

Block 4708 accesses all ADRs (e.g. all rows from a ADR
SQL table) for the user of FIG. 47A matching the owner
information of the ADRs (e.g. user information matches field
37505) to the user and to groups the user is a member of (e.g.
group information matches field 37505 (e.g. owner
type=group, owner id=group ID field 3540a from block
4706). The ADRs are additionally joined (e.g. SQL join) with
DDRs 3600 and TDRs 3640 (e.g. fields 36006 and
36405=Action and by matching ID fields 36004 and 3640a
with field 3750a). Description field 3600c¢ can provide a use-
ful description last saved by the user for the action data. Block
4708 may also retrieve system predefined data records foruse
and/or management. Thereafter, each joined entry returned at
block 4708 is associated at block 4710 with the correspond-
ing data IDs (at least fields 3750a and 3540q) for easy unique
record accesses when the user acts on the data. Block 4710
also initializes a list cursor to point to the first action item to
be presented to the user in the list. Thereafter, block 4712 sets
user interface indication for where the list cursor is currently
set (e.g. set to highlight the entry) and any list scrolling
settings are set (the list is initially not set for being scrolled on
first FIG. 47 A processing encounter to block 4712 from block
4710. Block 4712 continues to block 4714 where the entry list
is presented to the user in accordance with the list cursor and
list scroll settings managed for presentation at block 4712.
Thereafter, block 4716 waits for user action to the presented
list of action data and will continue to block 4718 when a user
action has been detected. Presentation of the scrollable list
preferably presents in an entry format reference-able by the
list cursor. An action entry presented preferably contains
ADR fields including owner information; GRPDR owner
information and group name if applicable; TDR time spec
information; and DDR information. Alternate embodiments
will present less information, or more information (e.g. join
ADR(s) to PARMDR(s) via field(s) 3750g).

If block 4718 determines the user selected to set the list
cursor to a different action entry, then block 4720 sets the list
cursor accordingly and processing continues back to block
4712. Block 4712 always sets for indicating where the list

10

15

20

25

30

35

40

45

50

55

60

65

174

cursor is currently pointed and sets for appropriately scrolling
the list if necessary when subsequently presenting the list at
block 4714. If block 4718 determines the user did not select to
set the list cursor, then processing continues to block 4722. If
block 4722 determines the user selected to add an action, then
block 4724 accesses a maximum number of actions allowed
(perhaps multiple maximum values accessed), and block
4726 checks the maximum(s) with the number of current
actions defined. There are many embodiments for what
deems a maximum (for this user, for a group, for this MS, etc).
If block 4726 determines a maximum number of actions
allowed already exists, then block 4728 provides an error to
the user and processing continues back to block 4712. Block
4728 preferably requires the user to acknowledge the error
before continuing back to block 4712. If block 4726 deter-
mines a maximum was not exceeded, then block 4730 inter-
faces with the user for entering validated action data and
block 4732 adds the data record, appropriately updates the list
with the new entry, and sets the list cursor appropriately for
the next list presentation refresh, before continuing back to
block 4712. If block 4722 determines the user did not want to
add an action, processing continues to block 4734. Block
4732 willadd an ADR, HDR 3620 (to set creator information)
and TDR 3640. The DDR and TDR are optionally added by
the user. Additionally, at block 4730 the user may add new
PARMDR(s) for the action.

If block 4734 determines the user selected to modify an
action, then block 4736 interfaces with the user to modify
action data of the entry pointed to by the list cursor. The user
may change information of the ADR and any associated
records (e.g. DDR, TDR). The user may also add the associ-
ated records at block 4736. Block 4736 waits for a user action
indicating completion. Block 4736 will continue to block
4738 when the action is detected at block 4736. If block 4738
determines the user exited, then processing continues back to
block 4712. If block 4738 determines the user selected to save
changes made at block 4736, then block 4740 updates the data
and the list is appropriately updated before continuing back to
block 4712. Block 4740 may update the ADR and/or any
associated records (e.g. DDR and/or TDR) using the action id
field 3750a (associated to the action item at block 4710).
Block 4740 will update an associated HDR as well. Block
4736 may add a new a DDR and/or TDR as part of the action
change. If block 4734 determines the user did not select to
modify an action, then processing continues to block 4752 by
way of off-page connector 4750.

With reference now to FIG. 47B, if block 4752 determines
the user selected to get more details of the action (e.g. show all
joinable data to the ADR that is not already presented with the
entry), then block 4754 gets additional details (may involve
database queries in an SQL embodiment) for the action
pointed to by the list cursor, and block 4756 appropriately
presents the information to the user. Block 4756 then waits for
a user action that the user is complete reviewing details, in
which case processing continues back to block 4712 by way
of'off-page connector 4798. If block 4752 determines the user
did not select to get more detail, then processing continues to
block 4758.

If block 4758 determines the user selected to delete an
action, then block 4760 determines any data records (e.g.
CDR(s)) that reference the action data record to be deleted.
Preferably, no referencing data records (e.g. CDRs) are join-
able (e.g. field 37004) to the action data record being deleted,
otherwise the user may improperly delete an action from a
configured charter. The user should remove ascending refer-
ences to an action for deletion first. Block 4760 continues to
block 4762. If block 4762 determines there was at least one

APPLE

EXHIBIT 1001 - PAGE 0351

US 9,088,868 B2

175

CDR reference, block 4764 provides an appropriate error
with the reference(s) found so the user can subsequently
reconcile. Block 4764 preferably requires the user to
acknowledge the error before continuing back to block 4712.
If no references were found as determined by block 4762,
then processing continues to block 4766 for deleting the data
record currently pointed to by the list cursor. Block 4766 also
modifies the list for the discarded entry, and sets the list cursor
appropriately for the next list presentation refresh, before
continuing back to block 4712. Block 4766 will use the action
1D field 3750a (associated with the entry at block 4710) to
delete an action. Associated records (e.g. DDR 3600, HDR
3620, and TDR 3640) are also deleted (e.g. preferably with a
cascade delete in a SQL embodiment). If block 4758 deter-
mines the user did not select to delete an action, then process-
ing continues to block 4768.

If block 4768 determines the user selected to exit block
4514 processing, then block 4770 cleans up processing thus
far accomplished (e.g. issue a stop using database command),
and block 4772 completes block 4514 processing. If block
4768 determines the user did not select to exit, then process-
ing continues to block 4774 where all other user actions
detected at block 4716 are appropriately handled, and pro-
cessing continues back to block 4716 by way oft off-page
connector 4796.

FIGS. 48A through 48B depict flowcharts for describing a
preferred embodiment of MS user interface processing for
parameter information configuration of block 4518. With ref-
erence now to FIG. 48A, processing starts at block 4802,
continues to block 4804 for initialization (e.g. a start using
database command), and then to block 4806 where groups the
user is a member of are accessed. Block 4806 retrieves all
GRPDRs 3540 joined to GADRs 3520 such that the descen-
dant type field 3520c¢ and descendant ID field 35204 match
the user information, and the ascendant type field 3520a is set
to Group and the ascendant ID field 35205 matches the group
1D field 35404. While there may be different types of groups
as defined for the BNF grammar, the GRPDR 3540 is a
derivative embodiment which happens to not distinguish.
Alternate embodiments may carry a group type field to select
appropriate records by group type. Yet another embodiment
may not have a block 4806 with processing at block 4808 for
gathering data additionally by groups the user is a member of.
Block 4806 continues to block 4808.

Block 4808 accesses all PARMDRs (e.g. all rows from a
PARMDR SQL table) for the user of FIG. 48 A matching the
owner information of the PARMDRs (e.g. user information
matches field 37755) to the user and to groups the user is a
member of (e.g. group information matches field 37755 (e.g.
owner type=group, owner id=group ID field 3540a from
block 4806). The PARMDRs are additionally joined (e.g.
SQL join) with DDRs 3600 (e.g. field 36006=Parameter and
by matching ID field 3600a with field 37754). Description
field 3600c¢ can provide a useful description last saved by the
user for the parameter data. Block 4808 may also retrieve
system predefined data records for use and/or management.
Thereafter, each joined entry returned at block 4808 is asso-
ciated at block 4810 with the corresponding data IDs (at least
fields 3775a and 3540a) for easy unique record accesses
when the user acts on the data. Block 4810 also initializes a
list cursor to point to the first parameter entry to be presented
to the user in the list. Thereafter, block 4812 sets user inter-
face indication for where the list cursor is currently set (e.g.
set to highlight the entry) and any list scrolling settings are set
(the list is initially not set for being scrolled on first FIG. 48A
processing encounter to block 4812 from block 4810). Block
4812 continues to block 4814 where the entry listis presented

10

15

20

25

30

35

40

45

50

55

60

65

176

to the user in accordance with the list cursor and list scroll
settings managed for presentation at block 4812. Thereafter,
block 4816 waits for user action to the presented list of param-
eter data and will continue to block 4818 when a user action
has been detected. Presentation of the scrollable list prefer-
ably presents in an entry format reference-able by the list
cursor. A parameter entry presented preferably contains fields
for: PARMDR field 3775¢; GRPDR owner information; own-
ing GRPDR owner information and group name if applicable;
and DDR information. Alternate embodiments will present
less information, or more information (e.g. commands and
operands parameters may be used with, parameter descrip-
tions, etc).

If block 4818 determines the user selected to set the list
cursor to a different parameter entry, then block 4820 sets the
list cursor accordingly and processing continues back to
block 4812. Block 4812 always sets for indicating where the
list cursor is currently pointed and sets for appropriately
scrolling the list if necessary when subsequently presenting
the list at block 4814. If block 4818 determines the user did
not select to set the list cursor, then processing continues to
block 4822. If block 4822 determines the user selected to add
a parameter, then block 4824 accesses a maximum number of
parameter entries allowed (perhaps multiple maximum val-
ues accessed), and block 4826 checks the maximum(s) with
the number of current parameter entries defined. There are
many embodiments for what deems a maximum (for this user,
for a group, for this MS, etc). If block 4826 determines a
maximum number of parameter entries allowed already
exists, then block 4828 provides an error to the user and
processing continues back to block 4812. Block 4828 prefer-
ably requires the user to acknowledge the error before con-
tinuing back to block 4812. If block 4826 determines a maxi-
mum was not exceeded, then block 4830 interfaces with the
user for entering validated parameter data, and block 4832
adds the data record, appropriately updates the list with the
new entry, and sets the list cursor appropriately for the next
list presentation refresh, before continuing back to block
4812. If block 4822 determines the user did not want to add a
parameter entry, processing continues to block 4834. Block
4832 will add a PARMDR, DDR 3600 and HDR 3620 (to set
creator information). The DDR is optionally added by the
user.

If block 4834 determines the user selected to modify a
parameter entry, then block 4836 interfaces with the user to
modify parameter data of the entry pointed to by the list
cursor. The user may change information of the PARMDR
and any associated records (e.g. DDR). The user may also add
the associated records at block 4836. Block 4836 waits for a
user action indicating completion. Block 4836 will continue
to block 4838 when the complete action is detected at block
4836. If block 4838 determines the user exited, then process-
ing continues back to block 4812. If block 4838 determines
the user selected to save changes made at block 4836, then
block 4840 updates the data and the list is appropriately
updated before continuing back to block 4812. Block 4840
may update the PARMDR and/or any associated DDR using
the parameter id field 3775a (associated to the parameter
entry at block 4810). Block 4840 will update an associated
HDR as well. Block 4836 may add a new DDR as part of the
parameter entry change. If block 4834 determines the user did
not select to modify a parameter, then processing continues to
block 4852 by way of off-page connector 4850.

With reference now to FIG. 48B, if block 4852 determines
the user selected to get more details of the parameter entry,
then block 4854 gets additional details (may involve database
queries in an SQL embodiment) for the parameter entry

APPLE

EXHIBIT 1001 - PAGE 0352

US 9,088,868 B2

177

pointed to by the list cursor, and block 4856 appropriately
presents the information to the user. Block 4856 then waits for
a user action that the user is complete reviewing details, in
which case processing continues back to block 4812 by way
of off-page connector 4898. If block 4852 determines the user
did not select to get more detail, then processing continues to
block 4858.

If block 4858 determines the user selected to delete a
parameter entry, then block 4860 determines any data records
(e.g. ADR(s)) that reference the parameter data record to be
deleted. Preferably, no referencing data records (e.g. ADRs)
are joinable (e.g. field 3750g) to the parameter data record
being deleted, otherwise the user may improperly delete a
parameter from a configured action. The user should remove
references to a parameter entry for deletion first. Block 4860
continues to block 4862. If block 4862 determines there was
at least one reference, block 4864 provides an appropriate
error with the reference(s) found so the user can subsequently
reconcile. Block 4864 preferably requires the user to
acknowledge the error before continuing back to block 4812.
If no references were found as determined by block 4862,
then processing continues to block 4866 for deleting the data
record currently pointed to by the list cursor, along with any
other related records that can be deleted. Block 4866 also
modifies the list for the discarded entry(s), and sets the list
cursor appropriately for the next list presentation refresh,
before continuing back to block 4812. Block 4866 will use the
parameter ID field 3775a (associated with the entry at block
4810) to delete the parameter entry. Associated records (e.g.
DDR 3600, and HDR 3620) are also deleted (e.g. preferably
with a cascade delete in a SQL embodiment). If block 4858
determines the user did not select to delete a parameter entry,
then processing continues to block 4868.

If block 4868 determines the user selected to exit block
4518 processing, then block 4870 cleans up processing thus
far accomplished (e.g. issue a stop using database command),
and block 4872 completes block 4518 processing. If block
4868 determines the user did not select to exit, then process-
ing continues to block 4874 where all other user actions
detected at block 4816 are appropriately handled, and pro-
cessing continues back to block 4816 by way off off-page
connector 4896.

FIGS.39A,40A,41A,46A,47A and 48 A assume a known
identity of the user for retrieving data records. Alternate
embodiments may provide a user interface option (e.g. at
block 3904/4004/4104/4604/4704/4804) for whether the user
wants to use his own identity, or a different identity (e.g.
impersonate another user, a group, etc). In this embodiment,
processing (e.g. block 3904/4004/4104/4604/4704/4804)
would check permissions/privileges for the user (of FIGS.
39A,40A, 41A, 46A, 47A and/or 48A) for whether or not an
impersonation privilege was granted by the identity the user
wants to act on behalf of. If no such privilege was granted, an
error would be presented to the user. If an impersonation
privilege was granted to the user, then applicable processing
(FIGS. 39A&B, FIGS. 40A&B, FIGS. 41A&B, FIGS.
46A&B, FIGS. 47A&B and/or FIGS. 48A&B) would con-
tinue in context of the permitted impersonated identity. In
another embodiment, an impersonation privilege could exist
from a group to another identity for enforcing who manages
grants for the group (e.g. 3904/4004/4104/4604/4704/4804
considers this privilege for which group identity data can, and
cannot, be managed by the user). One privilege could govern
who can manage particular record data for the group. Another
privilege can manage who can be maintained to a particular
group. Yet another embodiment could have a specific imper-
sonation privilege for each of FIGS. 39A&B, FIGS. 40A&B,

10

15

20

25

30

35

40

45

50

55

60

178

FIGS. 41A&B, FIGS. 46A&B, FIGS. 47A&B and/or FIGS.
48A&B. Yet another embodiment uses Grantor field informa-
tion (e.g. fields 3500¢ and 35004) for matching to the user’s
identity(s) (user and/or group(s)) for processing when the
choice is available (e.g. in a GDR for permissions and/or
charters).

FIGS.39A,40A, 41A, 46 A, 47A and 48A may also utilize
VDRs 3660 if referenced in any data record fields of process-
ing for elaboration to constructs or values that are required at
a processing block. Appropriate variable name referencing
syntax, or variable names referenced in data record fields, will
be used to access VDR information for elaboration to the
value(s) that are actually needed in data record information
when accessed.

FIG. 49A depicts an illustration for preferred permission
data 10 processing in the present disclosure LBX architec-
ture, for example when WDRs are in-process of being main-
tained to queue 22, or being inbound to a MS (referred to
generally as “incoming” in FIG. 49A). Table 4920 depicts
considerations for privilege data (i.e. permission data 10)
resident at the MS of a first identity ID, (grammar ID/ID-
Type), depending on privileges granted in the following sce-
narios:

1) The first identity ID, (Grantor) granting a privilege to a
second identity ID, (Grantee; grammar ID/IDType), as
shown in cell 4924: Privilege data is maintained by ID,
at the ID, MS as is used to govern actions, functionality,
features, and/or behavior for the benefit of ID,, by a)
processing ID; WDR information at the ID, MS (pref-
erably, privileges are communicated to 1D, MS for
enforcing and/or cloning there), b) processing ID, WDR
informationat the ID, MS (privileges locally maintained
to ID,), and ¢) processing ID; WDR information at the
ID, MS (privileges locally maintained to 1D,);

2) The first identity ID, (Grantor) granting a privilege to
himself (Grantee), as shown in cell 4922: Preferably,
privilege data in this case is not necessary, no configu-
ration interface is required for this scenario, and an iden-
tity implicitly has all conceivable privileges assigned to
himself by default; however, alternatively privileges
may be appropriate for activating/deactivating function-
ality;

3) The second identity ID, (Grantor) granting a privilege to
the first identity (Grantee), as shown in cell 4926: Privi-
lege data is used for informing ID, (or enabling ID, to
clone per a privilege) and to govern actions, functional-
ity, features, and/or behavior for the benefit of ID,, by a)
processing ID, WDR information at the ID; MS (pref-
erably, privileges are communicated to 1D, MS for
enforcing and/or cloning there), b) processing ID; WDR
information at the ID, MS (privileges locally maintained
to ID,); and ¢) processing ID, WDR information at the
1D, MS (privileges locally maintained to ID,); and/or

4) The second identity granting a privilege to himself, as
shown in cell 4928: Preferably, privilege data in this case
is not necessary, no communications interface is
required for this scenario, and an identity implicitly has
all conceivable privileges assigned to himself by default;
however, alternatively privileges may be appropriate for
activating/deactivating functionality.

Table 4940 depicts considerations for privilege data (i.e.
permission data 10) resident at the MS of a second identity
1D, (grammar ID/IDType), depending on privileges granted
in the following scenarios:

5) A first identity ID, (Grantor) granting a privilege to the

second identity ID, (Grantee; grammar ID/IDType), as
shown in cell 4944: Privilege data is used for informing

APPLE

EXHIBIT 1001 - PAGE 0353

US 9,088,868 B2

179

ID, (or enabling ID, to clone per a privilege) and to
govern actions, functionality, features, and/or behavior
for the benefit of ID,, by a) processing ID;, WDR infor-
mation at the ID, MS (preferably, privileges are com-
municated to ID; MS for enforcing and/or cloning
there), b) processing 1D, WDR information at the 1D,
MS (privileges locally maintained to ID,), and c¢) pro-
cessing ID; WDR information at the ID, MS (privileges
locally maintained to ID));

6) The first identity ID, (Grantor) granting a privilege to
himself (Grantee), as shown in cell 4942: Preferably,
privilege data in this case is not necessary, no commu-
nications interface is required for this scenario, and an
identity implicitly has all conceivable privileges
assigned to himself by default; however, alternatively
privileges may be appropriate for activating/deactivat-
ing functionality;

7) The second identity ID, (Grantor) granting a privilege to
the first identity (Grantee), as shown in cell 4946: Privi-
lege data is maintained by ID, at the ID, MS as is used to
govern actions, functionality, features, and/or behavior
for the benefit of ID|, by a) processing ID, WDR infor-
mation at the ID; MS (preferably, privileges are com-
municated to ID; MS for enforcing and/or cloning
there), b) processing ID;, WDR information at the ID,
MS (privileges locally maintained to ID,) and ¢) pro-
cessing ID, WDR information at the ID, MS (privileges
locally maintained to ID,); and/or

8) The second identity granting a privilege to himself, as
shown in cell 4948: Preferably, privilege data in this case
is not necessary, no configuration interface is required
for this scenario, and an identity implicitly has all con-
ceivable privileges assigned to himself by default; how-
ever, alternatively privileges may be appropriate for acti-
vating/deactivating functionality.

FIG. 49B depicts an illustration for preferred charter data
12 processing in the present disclosure LBX architecture, for
example when WDRs are in-process of being maintained to
queue 22, or being inbound to a MS (referred to generally as
“incoming” in FIG. 49B). Table 4960 depicts considerations
for charter data resident at the MS of a first identity 1D,
(grammar ID/IDType), depending on privileges granted in
the following scenarios:

1) The first identity ID, (Grantee) owning a charter for use
at the MS of a second identity ID, (Grantor; grammar
ID/IDType), as shown in cell 4964: Charter data is main-
tained by ID, atthe ID, MS for being candidate use at the
1D, MS to cause actions, functionality, features, and/or
behavior, in accordance with configured permission data
10, for the benefit of either ID, or ID, by a) processing
ID, WDR information at the ID, MS (preferably, char-
ters are communicated to ID, MS for use there), and b)
processing ID; WDR information at the ID, MS (pref-
erably, charters are communicated to ID, MS for use
there);

2) The first identity ID, (Grantee) owning a charter for use
at his own MS, as shown in cell 4962: Charter data is
maintained locally for local use to cause actions, func-
tionality, features, and/or behavior, in accordance with
configured permission data 10, for the benefit of either
ID, orID, by a) processing ID; WDR information at the
1D, MS, and b) processing ID, WDR information at the
1D, MS;

3) The second identity ID, (Grantee) owning a charter for
use at the MS of the first identity ID, (Grantor; grammar
ID/IDType), as shown in cell 4966: Charter data is used
at the ID; MS for informing ID, and enforcing cause of

20

35

40

45

50

55

180

actions, functionality, features, and/or behavior, in
accordance with configured permission data 10, for the
benefit of either ID, or ID, by a) processing ID, WDR
information atthe ID; MS (preferably, charters are com-
municated to ID;, MS for use there), and b) processing
ID, WDR information at the ID; MS (preferably, char-
ters are communicated to ID, MS for use there); and/or

4) The second identity ID, (Grantee) owning a charter at
his own MS, as shown in cell 4968: Charter data may be
communicated to the ID; MS for informing 1D, , allow-
ing ID, to browse, or allowing ID, to use as a template
for cloning and then making/maintaining into ID,’s own
charter, wherein each reason for communicating to the
ID, MS (or processing at the ID; MS) has a privilege
grantable from 1D, to ID,.

Table 4980 depicts considerations for charter data resident at
the MS of a second identity ID, (grammar ID/IDType),
depending on privileges granted in the following scenarios:

5) The first identity ID, (Grantee) owning a charter for use
at the MS of the second identity ID, (Grantor), as shown
in cell 4984: Charter data is used at the ID, MS for
informing ID, and enforcing cause of actions, function-
ality, features, and/or behavior, in accordance with con-
figured permission data 10, for the benefit of either ID,
or ID, by a) processing ID, WDR information at the ID,
MS (preferably, charters are communicated to 1D, MS
for use there), and b) processing ID; WDR information
at the ID, MS (preferably, charters are communicated to
ID, MS for use there);

6) The first identity ID, (Grantee) owning a charter for use
at his own MS, as shown in cell 4982: Charter data may
be communicated to the ID, MS for informing ID,,
allowing ID, to browse, or allowing ID, to use as a
template for cloning and then making into ID,’s own
charter, wherein each reason for communicating to the
ID, MS (or processing at the ID; MS) has a privilege
grantable from 1D, to ID,.

7) The second identity ID, (Grantee) owning a charter for
use at the MS of'the first identity ID, (Grantor; grammar
ID/IDType), as shown in cell 4986: Charter data is main-
tained by ID, at the ID, MS for being candidate use at the
ID, MS to cause actions, functionality, features, and/or
behavior, in accordance with configured permission data
10, for the benefit of either ID, or ID, by a) processing
ID, WDR information at the ID; MS (preferably, char-
ters are communicated to ID; MS for use there), and b)
processing ID; WDR information at the ID; MS (pref-
erably, charters are communicated to ID; MS for use
there); and/or

8) The second identity ID, (Grantee) owning a charter at
his own MS, as shown in cell 4988: Charter data is
maintained locally for local use to cause actions, func-
tionality, features, and/or behavior, in accordance with
configured permission data 10, for the benefit of either
ID, or ID, by a) processing ID; WDR information at the
ID, MS, and b) processing ID, WDR information at the
ID, MS.

Various embodiments will implement any reasonable sub-
set of the considerations of FIGS. 49A and 49B, for example
to minimize or eliminate communicating a user’s permissions
10 and/or charters 12 to another MS, or to prevent storing the
same permissions and/or charters data at more than one MS.
FIGS. 49A and 49B are intended to highlight feasible
embodiments wherein FIG. 49B terminology “incoming” is
used generally for referring to WDRs in-process which are a)
being maintained (e.g. “incoming” as being maintained to

APPLE

EXHIBIT 1001 - PAGE 0354

US 9,088,868 B2

181
queue 22); and b) incoming to a particular MS (e.g. “incom-
ing” as being communicated to the MS).

In one subset embodiment, privileges and charters are only
maintained at the MS where they are configured for driving
LBX features and functionality. In another embodiment,
privileges are maintained at the MS where they were config-
ured as well as any MSs which are relevant for those configu-
rations, yet charters are only maintained at the MS where they
are configured. In yet another embodiment, privileges and
charters are maintained at the MS where they were config-
ured, as well as any MSs which are relevant for those con-
figurations. In another embodiment, a MS may not have all
privileges assigned to itself (said to be assigned to the user of
the MS) by default. Privileges may require being enabled as
needed for any users to have the benefits of the associated
LBX features and functionality. Thus, the considerations
highlighted by FIGS. 49A and 49B are to “cover many bases”
with any subset embodiment within the scope of the present
disclosure.

Preferably, statistics are maintained by WITS for counting
occurrences of each variety of the FIGS. 49A and 49B pro-
cessing scenarios. WITS processing should also keep statis-
tics for the count by privilege, and by charter, of each appli-
cable WITS processing event which was affected. Other
embodiments will maintain more detailed statistics by MS
1D, Group ID, or other “labels” for categories of statistics.
Still other embodiments will categorize and maintain statis-
tics by locations, time, applications in use at time of process-
ing scenarios, etc. Applicable statistical data can be initialized
at internalization time to prepare for proper gathering of
useful statistics during WITS processing.

FIGS. 50A through 50C depict an illustration of data pro-
cessing system wireless data transmissions over some wave
spectrum for further explaining FIGS. 13A through 13C,
respectively. Discussions above for FIGS. 13A through 13C
are expanded in explanation for FIGS. 50A through 50C,
respectively. It is well understood that the DLM 200a (FIGS.
13A and 50A), ILM 10004 (FIGS. 13B and 50B) and
service(s) (FIGS. 13C and 50C) can be capable of communi-
cating bidirectionally. Nevertheless, FIGS. 50A through 50C
clarify FIGS. 13 A through 13C, respectively, with a bidirec-
tional arrow showing data flow “in the vicinity” of the DLM
200a, ILM 1000%, and service(s), respectively. All disclosed
descriptions for FIGS. 13 A through 13C are further described
by FIGS. 50A through 50C, respectively.

With reference now to FIG. 50A, “in the vicinity” language
is described in more detail for the MS (e.g. DLM 200q) as
determined by clarified maximum range of transmission
1306. In some embodiments, maximum wireless communi-
cations range (e.g. 1306) is used to determine what is in the
vicinity of the DLM 200q. In other embodiments, a data
processing system 5090 may be communicated to as an inter-
mediary point between the DLM 200a and another data pro-
cessing system 5000 (e.g. MS or service) for increasing the
distance of “in the vicinity” between the data processing
systems to carry out LBX peer to peer data communications.
Data processing system 5090 may further be connected to
another data processing system 5092, by way of a connection
5094, which is in turn connected to a data processing system
5000 by wireless connectivity as disclosed. Data processing
systems 5090 and 5092 may be a MS, service, router, switch,
bridge, or any other intermediary data processing system
(between peer to peer interoperating data processing systems
200a and 5000) capable of communicating data with another
data processing system. Connection 5094 may be of any type
of communications connection, for example any of those
connectivity methods, options and/or systems discussed for

10

15

20

25

30

35

40

45

50

55

60

65

182

FIG. 1E. Connection 5094 may involve other data processing
systems (not shown) for enabling peer to peer communica-
tions between DLM 200qa and data processing system 5000.
FIG. 50A clarifies that “in the vicinity” is conceivably any
distance from the DLLM 2004 as accomplished with commu-
nications well known to those skilled in the art demonstrated
in FIG. 50A. In some embodiments, data processing system
5000 may be connected at some time with a physically con-
nected method to data processing system 5092, or DLM 200a
may be connected at some time with a physically connected
method to data processing system 5090, or DLM 200a and
data processing system 5000 may be connected to the same
intermediary data processing system. Regardless of the many
embodiments for DML 200a to communicate in a LBX peer
to peer manner with data processing system 5000, DLM 200a
and data processing system 5000 preferably interoperate in
context of the LBX peer to peer architecture. In some embodi-
ments, data processing systems between DLM 200a and the
data processing 5000 intercept data for tracking, book-keep-
ing, statistics, and for maintaining data potentially accessed
by service informant code 28, however, the LBX peer to peer
model is preferably not interfered with.

Data processing system 5000 may be a DLM, ILM, or
service being communicated with by DML 2004 as disclosed
in the present disclosure for FIGS. 13A through 13C, or for
FIGS. 50A through 50C. LBX architecture is founded on peer
to peer interaction between MSs without requiring a service
to middleman data, however data processing systems 5090,
5092 and those applicable to connection 5094 can facilitate
the peer to peer interactions. In some embodiments, data
processing systems between DL.M 200a and the data process-
ing 5000 intercept data for tracking, book-keeping, statistics,
and for maintaining data potentially accessed by service
informant code 28, however, the LBX peer to peer model is
preferably not interfered with. Data processing system 5000
generically represents a DLM, ILM or service(s) for analo-
gous FIGS. 13A through 13C processing for sending/broad-
casting data such as a data packet 5002 (like 1302/1312).
When a Communications Key (CK) 5004 (like 1304/1314) is
embedded within data 5002, data 5002 is considered usual
communications data (e.g. protocol, voice, or any other data
over conventional forward channel, reverse channel, voice
data channel, data transmission channel, or any other appro-
priate channel) which has been altered to contain CK 5004.
Data 5002 contains a CK 5004 which can be detected, parsed,
and processed when received by an MS or other data process-
ing system in the vicinity (conceivably any distance depend-
ing on embodiment) of data processing system 5000 as deter-
mined by the maximum range of transmission 5006 (like
1306/1316). CK 5004 permits “piggy-backing” on current
transmissions to accomplish new functionality as disclosed
herein. Transmissions radiate out in all directions in a manner
consistent with the wave spectrum used, and data carried
thereon may or may not be encrypted (e.g. encrypted WDR
information). The radius 5008 (like 1308/1318) represents a
first range of signal reception from data processing system
5000 (e.g. antenna thereof), perhaps by a MS. The radius
5010 (like 1310/1320) represents a second range of signal
reception from data processing system 5000 (e.g. antenna
thereof), perhaps by a MS. The radius 5011 (like 1311/1322)
represents a third range of signal reception from data process-
ing system 5000 (e.g. antenna thereof), perhaps by a MS. The
radius 5006 (like 1306/1316) represents a last and maximum
range of signal reception from data processing system 5000
(e.g. antenna thereof), perhaps by a MS (not shown). The time
of transmission from data processing system 5000 to radius
5008 is less than times of transmission from service to radi-

APPLE

EXHIBIT 1001 - PAGE 0355

US 9,088,868 B2

183

uses 5010, 5011, or 5006. The time of transmission from data
processing system 5000 to radius 5010 is less than times of
transmission to radiuses 5011 or 5006. The time of transmis-
sion from data processing system 5000 to radius 5011 is less
than time of transmission to radius 5006. In another embodi-
ment, data 5002 contains a Communications Key (CK) 5004
because data 5002 is new transmitted data in accordance with
the present disclosure. Data 5002 purpose is for carrying CK
5004 information for being detected, parsed, and processed
when received by another MS or data processing system in
the vicinity (conceivably any distance depending on embodi-
ment) of data processing system 5000 as determined by the
maximum range of transmission.

With reference now to FIG. 50B, “in the vicinity” language
is described in more detail for the MS (e.g. ILM 1000%) as
determined by clarified maximum range of transmission
1306. In some embodiments, maximum wireless communi-
cations range (e.g. 1306) is used to determine what is in the
vicinity of the ILM 1000%. In other embodiments, a data
processing system 5090 may be communicated to as an inter-
mediary point between the ILM 1000% and another data pro-
cessing system 5000 (e.g. MS or service) for increasing the
distance of “in the vicinity” between the data processing
systems to carry out LBX peer to peer data communications.
Data processing system 5090 may further be connected to
another data processing system 5092, by way of a connection
5094, which is in turn connected to a data processing system
5000 by wireless connectivity as disclosed. Data processing
systems 5090 and 5092 may be a MS, service, router, switch,
bridge, or any other intermediary data processing system
(between peer to peer interoperating data processing systems
1000%and 5000) capable of communicating data with another
data processing system. Connection 5094 may be of any type
of communications connection, for example any of those
connectivity methods, options and/or systems discussed for
FIG. 1E. Connection 5094 may involve other data processing
systems (not shown) for enabling peer to peer communica-
tions between ILM 10004 and data processing system 5000.
FIG. 50B clarifies that “in the vicinity” is conceivably any
distance from the ILM 1000% as accomplished with commu-
nications well known to those skilled in the art demonstrated
in FIG. 50B. In some embodiments, data processing system
5000 may be connected at some time with a physically con-
nected method to data processing system 5092, or ILM 1000%
may be connected at some time with a physically connected
method to data processing system 5090, or ILM 1000% and
data processing system 5000 may be connected to the same
intermediary data processing system. Regardless of the many
embodiments for ILM 1000% to communicate in a LBX peer
to peer manner with data processing system 5000, ILM 1000%
and data processing system 5000 preferably interoperate in
context of the LBX peer to peer architecture. In some embodi-
ments, data processing systems between ILM 10004 and the
data processing 5000 intercept data for tracking, book-keep-
ing, statistics, and for maintaining data potentially accessed
by service informant code 28, however, the LBX peer to peer
model is preferably not interfered with.

With reference now to FIG. 50C, “in the vicinity” language
is described in more detail for service(s) as determined by
clarified maximum range of transmission 1316. In some
embodiments, maximum wireless communications range
(e.g. 1316) is used to determine what is in the vicinity of the
service(s). In other embodiments, a data processing system
5090 may be communicated to as an intermediary point
between the service(s) and another data processing system
5000 (e.g. MS) for increasing the distance of “in the vicinity”
between the data processing systems to carry out LBX peer to

20

30

40

45

184

peer datacommunications. Data processing system 5090 may
further be connected to another data processing system 5092,
by way of a connection 5094, which is in turn connected to a
data processing system 5000 by wireless connectivity as dis-
closed. Data processing systems 5090 and 5092 may be a MS,
service, router, switch, bridge, or any other intermediary data
processing system (between peer to peer interoperating data
processing system service(s) and 5000) capable of commu-
nicating data with another data processing system. Connec-
tion 5094 may be of any type of communications connection,
for example any of those connectivity methods, options and/
or systems discussed for FIG. 1E. Connection 5094 may
involve other data processing systems (not shown) for
enabling peer to peer communications between service(s) and
data processing system 5000. FIG. 50C clarifies that “in the
vicinity” is conceivably any distance from the service(s) as
accomplished with communications well known to those
skilled in the art demonstrated in FIG. 50C. In some embodi-
ments, data processing system 5000 may be connected at
some time with a physically connected method to data pro-
cessing system 5092, or service(s) may be connected at some
time with a physically connected method to data processing
system 5090, or service(s) and data processing system 5000
may be connected to the same intermediary data processing
system. Regardless of the many embodiments for service(s)
to communicate in a LBX peer to peer manner with data
processing system 5000, service(s) and data processing sys-
tem 5000 preferably interoperate in context of the LBX peer
to peer architecture. In some embodiments, data processing
systems between service(s) and the data processing 5000
intercept data for tracking, book-keeping, statistics, and for
maintaining data potentially accessed by service informant
code 28, however, the LBX peer to peer model is preferably
not interfered with.

In an LN-expanse, it is important to know whether or not
WDR information is of value for locating the receiving MS,
for example to grow an LN-expanse with newly located MSs.
FIGS. 50A through 50C demonstrate that WDR information
sources may be great distances (over a variety of communi-
cations paths) from a particular MS receiving the WDR infor-
mation. Carrying intermediary system indication is well
known in the art, for example to know the number of hops of
a communications path. The preferred embodiment uses
communications reference field 1100g to maintain whether or
not the WDR encountered any intermediate systems, for
example as identified with hops, network address change(s),
channel extender transmission indications, or any pertinent
datato indicate whether the WDR encountered anything other
than a wireless transmission (e.g. directly between the send-
ing MS and receiving MS). This provides FIG. 26B with a
means to qualify the peek at block 2634 for only those WDRs
which show field 1100g to be over a single wireless connec-
tion from the source to the MS (i.e. block 2634 to read as
“Peek all WDRS from queue 22 for confidence>confidence
floor and most recent in trailing f{WTV) period of time and
field 1100g indicating a wireless connected source over no
intermediary systems”). Field 1100g would be set intelli-
gently for all WDRs received and processed by the MS (e.g.
inserted to queue 22). In another embodiment, fields 1100e
and 11001 are used to indicate that the WDR can be relied
upon for triangulating a new location of the MS (e.g. block
2660 altered to get the next WDR from the REMOTE_MS list
which did not arrive except through a single wireless path). In
other embodiments, the correlation (e.g. field 1100m) can be
used to know whether it involved more than a single wireless
communications path. The requirement is to be able to dis-
tinguish between WDRs that can contribute to locating a MS

APPLE

EXHIBIT 1001 - PAGE 0356

US 9,088,868 B2

185
and WDRs which should not be used to locate the MS. In any
case, WDRs are always useful for peer to peer interactions as
governed by privileges and charters (see WITS filtering dis-
cussed below).

In other embodiments, the WDR fields 1100e and 1100/ 5

information is altered to additionally contain the directly
connected system whereabouts (e.g. intermediary system
5090 whereabouts) so that the MS (e.g. 1000%) can use that
WDR information relevant for locating itself (e.g. triangulat-
ing the MS whereabouts). This ensures that a MS receives all
relevant WDRs from peers and also uses the appropriate
WDR information for determining its own location. FIG. 26B
would distinguish between the data that describes the remote
MS whereabouts from the data useful for locating the receiv-
ing MS. A preferred embodiment always sets an indicator to
at least field 1100e, 1100/, or 1100g for indicating that the
WDR was in transit through one or more intermediary
system(s). This provides the receiving MS with the ability to
know whether or not the WDR was received directly from a
wireless in-range MS versus a MS which can be communi-
cated with so that the receiving MS can judiciously process
the WDR information (see WITS filtering discussed below).

An alternate embodiment supports WDR information
source systems which are not in wireless range for contribut-
ing to location determination of a MS. For example, a system
can transmit WDR information outbound in anticipation of
when it will be received by a MS, given knowledge of the
communication architecture. Outbound date/time informa-
tion is strategically set along with other WDR information to
facilitate making a useful measurement at a receiving MS
(e.g. TDOA). The only requirement is the WDR conform to a
MS interface and be “true” to how fields are set for LBX
interpretation and appropriate processing, for example to
emulate a MS transmitting useful WDR information.

WITS filtering provides a method for filtering out (or in)
WDRs which may be of use for locating the receiving MS, or
are of use for permission and/or charter processing. Support-
ing ranges beyond a range within wireless range to a MS can
cause a massive number of WDRs to be visible at a MS. Thus,
only those WDRs which are of value, or are candidate for
triggering permissions or charter processing, are to be pro-
cessed. WITS filtering can use the source information (e.g.
MS ID) or any other WDR fields, or any combination of WDR
fields to make a determination if the WDR deserves further
processing. The longer range embodiment of FIGS. 50A
through 50C preferably incorporates a send transmission for
directing the WDRs to MSs which have candidate privileges
and/or charters in place, rather than a broadcast for commu-
nicating WDRs. Broadcasting can flood a network and may
inundate MSs with information for WITS filtering, however
the multithreaded LBX architecture may process efficiently
even for broadcast data.

In another embodiment, a configuration can be made (user
or system) wherein FIGS. 13A through 13C are applicable,
and non-wireless range originated WDRs are always ignored.
For example, a WDR Range Configuration (WRC) indicates
how to perform WITS filter processing:

1) Ignore WDRs which are originated from a wirelessly

connected source (e.g. within range 1306);

2) Consider all WDRs regardless of source;

3) Ignore all WDRs regardless of source; and/or

4) Ignore WDRs which are not originated from a wirelessly

connected source.
WDR fields, as described above, are to contain where the
WDR originated and any relevant path it took to arrive. Block
1496 may be modified to include new blocks 14964, 14965,
and 1496c¢ such that:

10

15

20

25

30

35

40

45

50

55

60

65

186

Block 1496a checks to see if the user selected to configure
the WRC—an option for configuration at block 1406
wherein the user action to configure it is detected at
block 1408;

Block 14965 is processed if block 1496a determines the
user did select to configure the WRC. Block 14965 inter-
faces with the user for a WRC setting (e.g. a block
14965-1 to prepare parameters for FIG. 18 processing,
and a block 14965-2 for invoking the Configure value
procedure of FIG. 18 to set the WRC). Processing then
continues to block 1496c¢.

Block 1496c¢ is processed if block 1496a determines the
user did not select to configure the WRC, or as the result
of processing leaving block 14965. Block 1496¢ handles
other user interface actions leaving block 1408 (e.g.
becomes the “catch all” as currently shown in block
1496 of FIG. 14B).

The WRC is then used appropriately by WITS processing for
deciding what to do with the WDR in process. Assuming the
WDR is to be processed further, and the WDR is not of use to
locate the receiving MS, then permissions 10 and charters 12
are still checked for relevance of processing the WDR (e.g.
MS ID matches active configurations, WDR contains poten-
tially useful information for configurations currently in
effect, etc). In an alternative embodiment, WITS filtering is
performed at existing permission and charter processing
blocks so as to avoid redundantly checking permissions and
charters for relevance.

FIG. 51A depicts an example of a source code syntactical
encoding embodiment of permissions, derived from the
grammar of FIGS. 30A through 30E, for example as user
specified, system maintained, system communicated, system
generated, etc. In one embodiment, a user may specify the
source code as a portion of a hosting programming source
code like C, C++, C#, Java, or any other programming lan-
guage. The hosting programming source code compiler or
interpreter shall recognize keywords (e.g. Permissions) to
then uniquely parse and process the source code stream
between associated delimiters (e.g. { . . . }) in a unique way,
for example as handled by new compiler/interpreter code, or
with a processing plug-in appropriately invoked by the com-
piler/interpreter. This allows adapting an existing program-
ming environment to handle the present disclosure with spe-
cific processing for the recognized source code section(s). In
another embodiment, the present disclosure source code is
handled as any other source code of the hosting programming
environment through closely adapting the hosting program-
ming source code syntax, incorporating new keywords and
contextual processing, and maintaining data and variables
like other hosting programming environment variables.

FIG. 51A shows that a Permissions block contains “stuff”
between delimiters ({, }) like C, C++, C#, and the Java pro-
gramming languages (all referred hereinafter as Popular Pro-
gramming Languages (PPLs)), except the reserved keyword
“Permissions” qualifies the block which follows. Statements
within the block are also aligned with syntax of PPLs. Here is
an in-context description of FIG. 51A:

Text(str)="Test Case #106729 (context)”;

The str variable is of type Text (i.e. BNF Grammar “text
string”) and is set with string “Test Case #106729 (context)”.
Below will demonstrate variable string substitution for the
substring “context” when str is instantiated.
Generic(assignPrivs)="G=Family, Work, \vuloc

[T=>20080402000130.24,<20080428; D=*str; H;]”;

The assignPrivs variable is of type Generic and is set with a
long string containing lots of stuff. Generic tells the internal-
izer to treat the assigned value as text string without any

APPLE

EXHIBIT 1001 - PAGE 0357

US 9,088,868 B2

187

variable type validation at this time. The BNF grammar
showed that variables have a type to facilitate validation at
parse time of what has been assigned, however type checking
is really not necessary since validation will occur in contexts
when a variable is instantiated anyway. Another variable type
(VarType) to introduce to the BNF grammar is “Generic”
wherein anything assigned to the variable is to have its type
delayed until after instantiation (i.e. when referenced later).
Note that the str variable is not instantiated at this time (i.e. =
the preferred embodiment, however an alternate embodiment
would instantiate str at this time). Below will demonstrate a
Generic variable instantiation.

Groups {
LBXPHONE__USERS = Austin, Davood, Jane, Kris, Mark, Ravi,
Sam, Tim;
“SW Components” = “SM 1.0, “PIP 1.0”, “PIPGUI 1.0”,
“SMGUI 1.0”, “COMM 1.0,
“KERNEL 1.1%;

Two (2) groups are defined. In this example embodiment,
“Groups” is a reserved keyword identifying a groups defini-
tion block just as “Permissions” did the overall block. The
“LBXPHONE_USERS” group is set to a simplified embodi-
ment of MS IDs Austin, Davood, etc; and the “SW Compo-
nents” group is set to LBX Phone software modules with
current version numbers. Any specification of the BNF Gram-
mar (e.g. group name, group member, etc) with intervening
blanks can be delimited with double quotes to make blanks
significant.

Grants // Can define Grant structure(s) prior to assignment {

In this example embodiment, “Grants” is a reserved keyword
identifying a Grants definition block just as “Permissions”
did the overall block. Statements within the Grants block are
for defining Grants which may be used later for assigning
privileges. “//” starts a comment line like PPLs, and “/*” . . .
“*/” delimits comment lines like PPLs.
Family=\Ibxall|[R=0xFFFFFFFF;]
(context="Family”)];

A grant named “Family” is assigned the privilege “\lbxall”
and is relevant for all MS types (i.e. OxXFFFFFFFF such that
the “R” is a specification for MSRelevance). \lbxall is the all
inclusive privilege for all LBX privileges. \Ibxall maps to a
unique privilege id (e.g. maintained to field 3530a, FIGS. 34F
and 52 “unsigned long priv”, etc). Optional specifications are
made with delimiters “[”” and *]”, which coincidentally were
used in defining the BNF grammar optional specifications.
Each optional specification can have its own delimiters, or all
optional specifications could have been made in a single pair
of delimiters. The “D” specification is a Description specifi-
cation which is set to an instantiation of the str variable using
a string substitution. Thus, the Description is set to the string
“Test Case #106729 (Family)”.

[D=*str

Work = [T=YYYYMMDDO8:YYYYMMDDI17;D=*str(context=
“Work”);H;] {

}

10

15

20

25

30

35

40

45

50

55

60

65

188

A grant named “Work” is assigned as a parent grant to other
grant definitions, in which case a delimited block for further
grant definitions can be assigned. Optional specifications can
be made for the Work grant prior to defining subordinate
grants either before the Work grant block, or after the block
just prior to the block terminating semicolon (*;”). The Work
grant has been assigned an optional “T” specification for a
TimeSpec qualifying the grant to be in effect for every day of
every month of every year for only the times of 8 AM through
5 PM. The Work grant also defined a Description of “Test
Case #106729 (Work)”. The “H” specification tells the inter-
nalizer to generate History information (e.g. FIGS. 36B,33A,
34E HISTRY, etc) for the Work grant.

“Department 232”=\geoar,\geode,\nearar,\nearde;

The grant “Department 232” is subordinate to “Work™ and
has four (4) privileges assigned, and no optional specifica-
tions.

“Department 458" = [D="Davood lyadi’s mgt scope”;] {
“Server Development Team” = ;
“|lbxPhone Development Team” =

“Comm Layer Guys” = \mssys;\msbios;
“QGUI girls” = \msguiload;
“Mark and Tim” = \msapps;
I8
&

The grant “Department 458 is subordinate to “Work™, has an
optional Description specification, and has two (2) subordi-
nate grants defined. The grant “Server Development Team” is
defined, but has no privileges or optional specifications. The
grant “IbxPhone Development Team” is subordinate to
“Work™, has no optional specifications, and has three (3)
subordinate grants defined. The grant “Comm Layer Guys”
has two (2) privileges assigned (\mssys and \msbios), the
grant “GUI girls” has one (1) privilege assigned (\msguiload),
and the grant “Mark and Tim” has one (1) privilege assigned
(\msapps).

“Accounting Department” [H;]=\track;

The grant “Accounting Department” is subordinate to
“Work™, has optional History information to be generated,
and has one (1) privilege assigned.

Parents={Mom=\lbxall; Dad=\Ibxall; };
Michael-Friends=\geoarr;\geode;
Jason-Friends=\nearar;\nearde;

The grant “Parents” is independent of the Work grant (a peer),
has two (2) subordinate grants “Mom” and “Dad”, each with
a single privilege assigned. The grants “Michael-Friends”
and “Jason-Friends” are each independent of other grants,
and each have two (2) privileges assigned. A nested tree
structure of Grants so far compiled which can be used for
privilege assignments are:

Family
Work
Department 232
Department 458
Server Development Team
IbxPhone Development Team
Comm Layer Guys
GUI girls
Mark and Tim
Accounting Department
Parents
Mom
Dad
Michael-Friends
Jason-Friends

APPLE

EXHIBIT 1001 - PAGE 0358

US 9,088,868 B2

189

The nested structure of the source code was intended to high-
light the relationship of grants defined. Note that assigning
the Work grant from one ID to another ID results in assigning
all privileges of all subordinate grants (i.e. \geoar;\geode-
Mearar;\nearde;\mssys;\msbios;\msguiload;\msapps;\track).
Bill: LBXPHONE_USERS [G=\caller;\callee;\trkall;];

The MS ID Bill assigns (i.e. Grant specification “G”) three (3)
privileges to the LBXPHONE_USERS group (i.e. to each
member of the group). Privileges and/or grants can be
granted. The \caller privilege enables LBXPHONE_USERS
member MSs to be able to call the Bill MS. The \callee
privilege enables the Bill MS to call LBXPHONE_USERS
member MSs. The \rkall privilege enables LBXPHO-
NE_USERS members to use the MS local tracking applica-
tion for reporting mobile whereabouts of the Bill MS. The
grants are optional (i.e. “[”” and “]”") because without specific
grants and/or privileges specified, all privileges are granted.
LBXPHONE_USERS: Bill [G=\callee;\caller;];

Each member of the LBXPHONE_USERS group assigns
(i.e. Grant specification “G”) two (2) privileges to the Bill
MS. The \caller privilege enables the Bill MS to be able to call
any of the members of the LBXPHONE_USERS group. The
\callee privilege enables the LBXPHONE_USERS member
MSs to call the Bill MS.

Bill:Sophia;

All system privileges are assigned from Bill to Sophia.
Bill:Brian [*assignPrivs];

The assignPrivs variable is instantiated to “G=Family, Work,
\vuloc [T=>20080402000130.24,<20080428; D=*str; H;]”
as though that configuration were made literally as:
Bill:Brian [G=Family, Work,\vuloc

[T=>20080402000130.24,<20080428; D="Test Case

#106729 (context)”; H;]];

Note the str variable is now instantiated as well. Bill grants
Brian all privileges defined in the Family grant, all privileges
of the Work grant, and the specific \vuloc privilege. The
privilege \vuloc has optional specifications for TimeSpec (i.e.
after 1 minute 30.24 seconds into Apr. 2, 2008 and prior to
Apr. 28, 2008), Description, and History to be generated. The
optional specifications ([. . .]) would have to be outside of the
other optional delimiter specifications (e.g. [G=...][.]) to be
specifications for the Permission.

Bill:George [G=\geoall,\nearall;];

Bill assigns two (2) privileges to George.

Michael: Bill [G=Parents,Michael-Friends;];

Michael assigns to Bill the privileges \lbxall, \geoarr
and \geode.

Jason: Bill [G=Parents,Jason-Friends;];

Jason assigns to Bill the privileges \lbxall, \nearar
and \nearde.

FIG. 51B depicts an example of a source code syntactical
encoding embodiment of charters, derived from the grammar
of FIGS. 30A through 30E, for example as user specified,
system maintained, system communicated, system gener-
ated, etc. In one embodiment, a user may specify the source
code as a portion of a hosting programming source code like
C, C++, C#, Java, or any other programming language. The
hosting programming source code compiler or interpreter
shall recognize keywords (e.g. Charters) to then uniquely
parse and process the source code stream between associated
delimiters (e.g. { . . . }) in a unique way, for example as
handled by new internalization (e.g. compiler/interpreter)
code, or with a processing plug-in appropriately invoked by
the internalizer. This allows adapting an existing program-
ming environment to handle the present disclosure with spe-
cific processing for the recognized source code section(s). In
another embodiment, the present disclosure source code is

10

15

20

25

30

35

40

45

50

55

65

190

handled as any other source code of the hosting programming
environment through closely adapting the hosting program-
ming source code syntax, incorporating new keywords and
contextual processing, and maintaining data and variables
like other hosting programming environment variables.

It is important to understand that WDRs in process (e.g. to
queue 22 (_ref), outbound (_O_ref), and inbound (_I_ref))
cause the recognized trigger of WDR processing to scan
charters for testing expressions, and then performing actions
for those expressions which evaluate to true. Expressions are
evaluated within the context of applicable privileges. Actions
are performed within the context of privileges. Thus, WDRs
in process are the triggering objects for consulting charters at
run time. Depending on the MS hardware and how many
privileged MSs are “in the vicinity”, there may be many (e.g.
dozens) of WDRs in process every second at a MS. Each
WDR in process at a MS is preferably in its own thread of
processing (preferred architecture 1900) so that every WDR
in process has an opportunity to scan charters for conditional
actions.

FIG. 51B shows that a Charters block contains “stuff”
between delimiters ({, }) like PPLs, except the reserved key-
word “Charters” qualifies the block which follows. State-
ments within the block are also aligned with syntax of PPLs.
Here is an in-context description of FIG. 51B:
Condition(cond1)="“(_location @@ \loc_my) [D="Test Case

#104223 (v)™:]7;

The variable cond1 is of type Condition and is set accord-

ingly. Validation of the variable type can occur here since the
type is known. Condi is a Condition specification with an
optional specification for the Description. Since the type
“Generic” can be used, it may convenient to always use that.
“ms group”={*“Jane”, “George”, “Sally”};
This is another method for specifying a group without a
Groups block. The internalizer preferably treats an assign-
ment using block delimiters outside of any special block
definitions as a group declaration. While there has been no
group hierarchies demonstrated, groups within groups can
certainly be accomplished like Grants.

(((_msid = “Michael”) & *cond1(v="Michael”)) |
((_msid = “Jason”) & *cond1(v=*Jason"))):
Invoke App myscript.cmd (“S™), Notify Autodial 214-405-6733;

_msid is a WDRTerm indicating to check the condition of the
WDRs maintained to the local MS (e.g. processed for insert-
ing to queue 22). The condition _msid="“Michael” tests if the
WDR in process has a WDR MS ID field 11004 equal to the
MS ID Michael. “&” is a CondOp. After instantiation of
condl with the string substitution the second condition is
“(Ulocation @@ \loc_my) [D="Test Case #104223 (v)”;]”
which tests the WDR in process (e.g. for insertion to queue
22) for a WDR location field 1100¢ which was at my current
location (Mloc_my is a system defined atomic term for “my
current location” (i.e. the current location of the MS checking
the WDR in process)). @@ is an atomic operator for “was at”.
There is an optional description specified for the condition to
be generated. The expression formed on the left hand side of
the colon (:) not only tests for Michael WDR information, but
also Jason WDR information with the same WDR field tests.
If the WDR in process (contains a MS ID=Michael AND
Michael’s location was at my current location at some time in
the past), OR (i.e. ICondOp) the WDR in process (contains a
MS ID=Jason AND Jason’s location was at my current loca-
tion at some time in the past), then the Actions construct (i.e.
right hand side of colon) is acted upon. The “was at” atomic

APPLE

EXHIBIT 1001 - PAGE 0359

US 9,088,868 B2

191

operator preferably causes access to LBX History 30 after a
fruitless access to queue 22. It may have been better to specify
another condition for Michael and Jason WDRs to narrow the
search, otherwise if LBX history is not well pruned the search
may be timely. For example, the variable may have been
better defined prior to use as:

Condition(cond1)="“(location (2W)$(10F)

[D="“Test Case #104223 (v)”;]”;
for recently in vicinity (i.e. within 10 feet) of my location in
last 2 weeks helps narrow the search.

Parenthesis are used to affect how to evaluate the expres-
sion as is customary for an arithmetic expression, and can be
used to determine which construct the optional specifications
are for. Of course, a suitable precedence of operators is imple-
mented. So, if the Expression evaluates to true, the actions
shall be processed. There can be one or more actions pro-
cessed. The first action performs an Invoke command with an
Application operand and provides the parameter of
“myscript.cmd(“S”)” which happens to be an executable
script invocable on the particular MS. A parameter of “S” is
passed to the script. The script can perform anything sup-
ported in the processable script at the particular MS. The
second action performs a Notify command with an Autodial
operand and provides the parameter of “214-405-6733”.
Notify Autodial will automatically perform a call to the phone
number 214-405-6733 from the MS. So, if the MS of this
configuration is currently at a location where Jason or
Michael (in the vicinity) had been at some time before (as
maintained in LBX History if necessary, or in last 2 weeks in
refined example), then the two actions are processed. LBX
History 30 will be searched for previous WDR information
saved for Michael and Jason to see if the expression evaluates
to true when queue 22 does not contain a matching WDR for
Michael or Jason.

It is interesting to note that the condition “((\locByID_
Michael @@ \loc_my) I (\locByID_Jason @@ \loc_my))”
accomplishes the same expression shown in FIG. 51B
described above. \locRef _is an atomic term for the WDR
location field with the suffix (Ref) referring to the value for
test. \loc*“R e 1 is an acceptable format when there are sig-
nificant blanks in the suffix for testing against the value of the
WDR field. It is also interesting to note that the expression
“(Moc_my @@ \locByID_Michael)” is quite different. The
expression “(\loc_my @@ \locByID_Michael)” tests if my
current location was at Michael’s location in history, again
checking L.BX history. However, the WDR in process only
provided the trigger to check permissions and charters. There
is no field of the in process WDR accessed here.

\loc_my)

((__1_msid = “Brian”) & (__1__location @ \loc__my) [D="multi-
cond text”;H;]):
Invoke App (myscript.cmd (“B”)) [T=20080302;],
Notify Autodial (214-405-5422);

_I_msid is a WDRTerm indicating to check the condition of
the WDRs inbound to the local MS (e.g. deposited to receive
queue 26). The condition _I_msid="Brian” tests if the
inbound WDR has a WDR MS ID field 1100a equal to the MS
ID Brian. “=" is an atomic operator. & is a CondOp. _I_loca-
tion is the contents of the inbound WDR location field 1100c¢,
so that the condition of (_I_location @ \loc_my) tests the
inbound WDR for a WDR location field 1100¢ which is at my
current location. @ is an atomic operator for “is at”. There is
an optional description specified for the condition as well as
history information to be generated. The expression formed
on the left hand side of the colon (:) tests for inbound WDRs

10

15

20

25

30

35

40

50

55

60

65

192

from Brian wherein Brian is at my (i.e. receiving MS) current
location. Assuming the expression evaluates to true, then the
two (2) actions are performed. The actions are similar to the
previous example, except the syntax is demonstrated to show
parentheses may or may not be used for command/operand
parameters. Also, the first action has an optional TimeSpec
specification which mandates that the action only be per-
formed any time during the day of Mar. 2, 2008. Otherwise,
the first action will not be performed. The second action is
always performed.

The _I_fldname syntax is a WDRTerm for inbound WDRs
which makes sense for our expression above. A careless pro-
grammer/user could in fact create expressions that may never
occur. For example, if the user specified _O_instead of _1_,
then outbound rather than inbound WDRs would be tested.
((_O_msid="Brian”) & (_O_location @ \loc_my)) causes
outbound WDRs to be tested (e.g. deposited to send queue 24)
for MS ID=Brian which are at my current location (i.e. cur-
rent location of the MS with the configuration being dis-
cussed). Mixing _, _I_, and _O_prefixes has certain semantic
implications and must be well thought out by the user prior to
making such a configuration. The charter expression is con-
sidered upon an event involving each single WDR and is
preferably not used to compare to a plurality of potentially
ambiguous/unrelated WDRs at the same time. A single WDR
can be both in process locally (e.g. inserted to queue 22) and
inbound to the MS when received from MSs in the vicinity. It
will not be known that the WDR meets both criteria until after
it has been inbound and is then being inserted to queue 22.
Likewise, a single WDR can be both in process locally (e.g.
inserted to queue 22) and outbound from the MS. It will notbe
known that the WDR meets both criteria until after it has been
retrieved from queue 22 and then ready for being sent out-
bound. The programmer/user can create bad configurations
when mixing these syntaxes. It is therefore recommended, but
not required, that users not mix WDR trigger syntax. Know-
ing a WDR is inbound and then in process to queue 22 is
straightforward (e.g. origination other than “this MS”).
Knowing a WDR was on queue 22 and is outbound is also
straightforward (e.g. origination at outbound=“this MS”).
However, a preferred embodiment prevents mixing these syn-
taxes for triggered processing.

(M_sender = ~emailAddrVar [T=<YYYYMMDD18]):
Notify Indicator (M__sender, \thisms) [D="Test Case #104223"; H;];

M_sender is an AppTerm for the registered Mail application
(see FIGS. 53 and 55), specifically the source address of the
last email object received. ~emailAddrVar references a pro-
grammatic variable of the hosting programming environment
(PPLs), namely a string variable to compare against the
source address (e.g. billj@iswtechnologies.com). If the vari-
able type does not match the AppTerm type, then the inter-
nalizer (e.g. compiler/interpreter) should flag it prior to con-
version to an internalized form. Alternate embodiments will
rely on run time for error handling. The Condition also speci-
fies an optional TimeSpec specification wherein the condition
for testing is only active during all seconds of the hour of 6:00
PM every day (just to explain the example). Expressions can
contain both AppTerms and WDRTerms while keeping in
mind that WDRs in process are the triggers for checking
charters. M_sender will contain the most recent email source
address to the MS. This value continually changes as email
objects are received, therefore the window of opportunity for
containing the value is quite unpredictable. Thus, having a
condition solely on an AppTerm without regard for checking

APPLE

EXHIBIT 1001 - PAGE 0360

US 9,088,868 B2

193

a WDR that triggers checking the configuration seems use-
less, however a MS may have many WDRs in process thereby
reasonably causing frequent checks to M_sender. A more
useful charter with an AppTerm will check the AppTerm
against a WDR field or subfield, while keeping in mind that
WDRs in process trigger testing the charter(s). For example:
(_appfld.email.source=M_sender)
or the equivalent of:
(M_sender=_appfld.email.source)
checks each WDR in process for containing an Application
field 11004 from the email section (if available) which
matches an AppTerm. While this again seems unusual since
M_sender dynamically changes according to email objects
received, timeliness of WDRs in process for MSs (e.g. in the
wireless vicinity) can make this useful. Further, the program-
mer/user can specify more criteria for defining how close/far
in the vicinity (e.g. atomic operators of $(range), (spec)$
(range), etc.
((_appfld.email.source=M_sender) &
$(500F) \loc_my))
The WDR in process is checked to see if the originating MS
has a source email address that matches a most recently
received email object and the MS is within 500 feet of my
current location. This configuration can be useful, for
example to automatically place a call to a friend when they
just sent you an email and they are nearby. You can then walk
over to them and converse about the email information. Good
or poor configurations can be made. One embodiment of an
internalizer warns a user when an awkward configuration has
been made.

In looking at actions for this example, the command oper-
and pair is for “Notify Indicator” with two parameters
(M_sender, \thisms). M_sender is what to use for the indica-
tor (the source address matched). Thus, an AppTerm can be
used as a parameter. \thisms is an atomic term for this MS ID.
Ifthe expression evaluates to true, the MS hosting the charter
configuration will be notified with an indicator text string
(e.g. billj@iswtechnologies.com). Notify Indicator displays
the indicator in the currently focused title bar text of a win-
dows oriented interface. In another embodiment, Notify indi-
cator command processing displays notification data in the
focused user interface object at the time of being notified. The
action has optional specifications for Description and History
information to be generated (when internalized).

In general, History information will be updated as the user
changes the associated configuration in the future, either in
syntax (recognized on internalization (e.g. to data struc-
tures)), with FIGS. 38 through 48B, etc.

(_location

10

15

20

25

30

35

40

45

194

otherwise unrelated AppTerms and an invoked function (e.g.
can be dynamically linked as in a Dynamic Link Library
(DLL) or linked through an extern label _fcnTest). B_srch-
Subj contains the most recently specified search criteria string
requested to the MS browser application. WDRTerm(s), App-
Term(s) and atomic terms can be used in conditions, as
parameters, or as portions in any part of a configured charter.

The action demonstrates an interesting format for repre-
senting the optional Host construct (qualifier) of the BNF
grammar for where the action should take place (assuming
privilege to execute there is configured). “ms group”[G]. tells
the internalizer to search for a group definition like an array
and find the first member of the group meeting the subscript
definition. This would be “George” (the G). Any substring of
“George” (or the entire string) could have been used to indi-
cate use George from the “ms group”. This allows a shorthand
reference to the item(s) of the group. Multiple members that
match “G” would all apply for the action. Also, note that the
double quotes are used whenever variables contain significant
blanks. “ms group”[G].Store DBobject tells the internalizer
that the Command Operand pair is to be executed at the
George MS for storing to a database object per parameters. An
equivalent form is George.Store DB-object with the Host
specification explicitly specified as George. The parameters
of (JOESDB.LBXTABS.TEST, “INSERT INTO TABLE-
SAV (“&& \thisMS &&”’, “&& \timestamp &&’”, 9);”,
\thisMS) indicates to insert a row into the table TABLESAV
of'the TEST database at the system “this MS” (the MS hosting
the configuration). The second (query) parameter matches the
number of columns in the table for performing a database row
insert. Like other compilers/interpreters, the “” evaluates to a
single double quote character when double quotes are needed
inside strings. A single quote can also be legal to delimit query
string parameters (as shown). This example shows using
atomic term(s) for a parameter (i.e. elaborates to underlying
value; WDRTerm(s) can also be used for parameters). This
example introduces a concatenation operator (&&) for con-
catenating together multiple values into a result string for one
parameter (e.g. “INSERT INTO TABLESAV (‘Bill’,
€20080421024421.45°, 9);”). Other embodiments will sup-
port other programmatic operators in expressions for param-
eters. Still other embodiments will support any reasonable
programmatic statements, operators, and syntax among char-
ter configuration to facilitate a rich method for defining char-
ters 12.

Note that while we are configuring for the MS George to
execute the action, we are still performing the insert to the MS
hosting the Charter configuration (i.e. target system is
\thisms). We could just as easily have configured:

50
(B__srchSubj) M__subject) & !(__fenTest(B__srchSubyj)) :
“ms group”[G].Store DBobject(JOESDB.LBXTABS.TEST, Store DBobject(JOESDB.LBXTABS.TEST,
“INSERT INTO TABLESAV (“ && \thisMS && ~, “INSERT INTO TABLESAV (*“ && \thisMS && ”, “ &&
“ && \timestamp && 7, 9);”, \thisMS); \timestamp && ”, 9);”);
55

IF (the most recently specified B_srchSubj string is in (i.e.
is a substring of) the most recently received email object
M_subject (i.e. email subject string)), AND if (the invocation
of the function _fenTest() with the parameter of the most
recently specified B_srchSubj string returns false) (i.e. ! the
return code results in true), THEN the configured action after
the colon (@) shall take place assuming there are applicable
privileges configured as well. Again, keep in mind that WDRs
in process (e.g. to queue 22, outbound and/or inbound) pro-
vide the triggers upon which charters are tested, therefore the
fact that no WDR field is specified in the conditions is strange,
but make a good point. The example demonstrates using

60

65

without using George to execute the action, and to default to
the local MS. Privileges will have to be in place for running
the action at the George MS with the original charter of FIG.
51B.

(_1_msid = “Sophia” & \loc_my (30M)$$(25M) _I_ location):
“ms group”.Invoke App (alert.cmd);

_I msid is a WDRTerm indicating to check the condition of
the WDRs inbound to the local MS (e.g. deposited to receive
queue 26). The condition _I_msid="“Sophia™ tests if the

APPLE

EXHIBIT 1001 - PAGE 0361

US 9,088,868 B2

195

inbound WDR has a WDR MS ID field 1100a equal to the MS
ID Sophia. “=" is an atomic operator. & is a CondOp. _I_lo-
cation is the contents of the inbound WDR location field
1100c¢, so that the condition of (\Moc_my 30M$$25M _I_lo-
cation) tests my current location (i.e. receiving MS) for being
within 25 meters, within the last 30 minutes, of'the location of
the WDR received. A group is specified for where to run the
action (i.e. Host specification), yet no member is referenced.
The alert.cmd file is executed at each MS of the group (all
three), provided there is a privilege allowing this MS to run
this action there, and provided the alert.cmd file is found for
execution (e.g. preferably uses PATH environment variable or
similar mechanism; fully qualified path can specify).

(%c:\myprofs\interests.chk > 90):

Send Email (“Howdy ” && _|_msid && “ !"'\n\nOur profiles
matched > 90%.\n\n” && “Call me at ” && \appfld.phone.id && “.
We are ” && (__1__location - \loc__my)F && * feet apart\n”,
\appfld.source.id, “Call Me!”, ,, __1__appfld.email.source);

This example uses an atomic profile match operator (%). A
profile is optionally communicated in Application field 1100%
subfield _appfld.profile.contents. A user specifies which file
represents his current profile and it is sent outbound with
WDRs (see FIG. 78 for profile example). Upon receipt by a
receiving MS, the current profile can be compared to the
profile information in the WDR. (%
c:\myprofs\interests.chk>90) provides a condition for
becoming true when the hosting MS profile interests.chk is
greater than 90% a match when matching to a WDR profile of
field 1100% (preferably matches on a tag basis). The profile
operator here is triggered on in process WDRs. An alternate
embodiment will specify where to check the WDR (e.g. _
1%, _O_% or _%). If the expression evaluates to true, the
Send Email (Command Operand pair) action is invoked with
appropriate parameters. Note that the newline (\n) character
and concatenation operator is used. Also, note the WDRTerm
(_I_location) and atomic term (Mloc_my) were used in an
arithmetic statement to figure out the number of feet in dis-
tance between the location of the inbound WDR and “my
current location”. The result is automatically typecast to a
string for the concatenation like most PPLs. The recipient is
the email source in Application fields 1100%. The default
email attributes are specified (,,).

In sum, there are many embodiments derived from the BNF
grammar of FIG. 30A through 30E. FIGS. 51A and 51B are
simple examples with some interesting syntactical feature
considerations. Some embodiments will support program-
matic statements intermingled with the BNF grammar syntax
derivative used to support looping, arithmetic expressions,
and other useful programmatic functionality integrated into
Privilege and Charter definitions. FIGS. 51A and 51B illus-
trate a WPL for programming how a MS is to behave. WPL is
a unique programming language wherein peer to peer inter-
action events containing whereabouts information (WDRs)
provide the triggers for novel location based processing. Per-
missions and charters provide rules which govern the interop-
erable LBX processing between MSs. While WPL is more
suited for a programmer type of user, the intent of this dis-
closure is to simplify configurations for all types of users.
WPL may suit an advanced user while FIGS. 35A through
37C may suit more prevalent and novice users. Other embodi-
ments may further simplify configurations. Some WPL
embodiments will implement more atomic operators, App-
Term(s), WDRTerm(s) and other configurable terms without
departing from the spirit and scope of this disclosure. It is the

15

20

30

35

40

45

196

intent that less time be spent on documentation and more time
be spent implementing it. Permissions and charters are pref-
erably centralized to the MS, and maintained with their own
user interface, outside of any particular MS application for
supervisory control of all MS LBX applications. See FIG. 1A
for how PIP data 8 is maintained outside of other MS pro-
cessing data and resources for centralized governing of MS
operations.

In alternate embodiments, an action can return a return
code/value, for example to convey success, failure, or some
other value(s) back to the point of performing the action. A
syntactical embodiment:

((__1_msid = “Brian”) & (__l__location @ \loc__my) [D=“multi-cond
text”;H;]):
Notify Autodial (214-405-5422,,,, Invoke App (myscript.cmd (“B”))
[T=20080302;]);

Based on an outcome from Invoke App (myscript . . .), the
returned value is passed back and used as a parameter to
Notify AutoDial. The Notify AutoDial executable spawned
can then use the value at run-time to affect Notify processing.
Invoke App may return a plurality of different values depend-
ing on the time the action is processed, and what the results
are of that processing. Some parameters are specified to use
defaults (ie.,,,).

FIG. 52 depicts another preferred embodiment C program-
ming source code header file contents, derived from the gram-
mar of FIGS. 30A through 30E. FIG. 52 is more efficient for
aninternalized BNF grammar form by removing unnecessary
data. When comparing FIG. 52 with FIGS. 34E through 34G,
FIG. 52 has removed description and history information
since this is not necessary for internalization/processing. A
TIMESPEC is the same as defined at the top of FIG. 34E, but
time specification information has been merged to where it is
needed, rather than keeping it in multiple places as configured
for deducing a merged result later. There are many reasonable
embodiments of a derivative of the BNF grammar of FIGS.
30A through 30E.

FIG. 53 depicts a preferred embodiment of a Prefix Regis-
try Record (PRR) for discussing operations of the present
disclosure. A PRR 5300 is for configuring which prefix is
assigned to which application used in an AppTerm. This helps
to ensure that an AppTerm be properly usable when refer-
enced in a charter. A prefix field 5300qa provides the prefix in
an AppTerm syntax (e.g. M_sender such that “M” is the
prefix). Any string can be used for a prefix (i.e. configured in
field 5300a), but preferably there are a minimal number of
characters to save syntax encoding space. A description field
53005 provides an optional user specified description for a
PRR 5300, but it may include defaulted data available with an
application supporting at least one AppTerm. A service ref-
erences field 5300c¢ identifies, if any, the data processing
system services associated with the application for the App-
Term referenced with the prefix of field 53004. Validation of
such services may occur through an API, or may be specified
by a knowledgeable user, administrator, or system setup.
Field 5300c¢ potentially contains a list of service references.
An application references field 53004 identifies, if any, data
processing system application references (e.g. names) asso-
ciated with the Application for the AppTerm referenced with
the prefix of field 5300a. Validation of such applications
referenced may occur through an API, or may be specified by
a knowledgeable user, administrator, or system setup. Field
53004 potentially contains a list. A process references field
5300e identifies, if any, data processing operating system

APPLE

EXHIBIT 1001 - PAGE 0362

US 9,088,868 B2

197

processes for spawning associated with the Application for
the AppTerm referenced with the prefix of field 5300a. Vali-
dation of such processes may occur through an AP, or may be
specified by a knowledgeable user, administrator, or system
setup. Field 5300e potentially contains a list. A paths field
53001 identifies, if any, data processing system file name
paths to executables (e.g. .exe, .dll, etc) for spawning associ-
ated with the Application for the AppTerm referenced with
the prefix of field 5300a. Validation of such paths may occur
through an API, or may be specified by a knowledgeable user,
administrator, or system setup. Field 5300/ potentially con-
tains a list. A documentary field 5300g documents each
Application data variable (i.e. AppTerm data name without
prefix), and an optional description, for what data is exposed
for the Application which can be used in the AppTerm. Vali-
dation of data in field 5300g data may occur through an API,
or may be specified by a knowledgeable user, administrator,
or system setup. Field 5300g potentially contains a list.
Extension field 5300/ contains other data for how to test for
whether or not the Application of the PRR is up and running
in the MS, additional information for starting the Application,
and additional information for accessing application vitals.
Validation of information may occur through an API, or may
be specified by a knowledgeable user, administrator, or sys-
tem setup. Field 5300/ may be a list, or null.

In one preferred embodiment, PRRs are supplied with a
MS priorto user first MS use, and no administrator or user has
to maintain them. In another embodiment, only a special
administrator can maintain PRRs, which may or may not have
been configured in advance. In another embodiment, a MS
user can maintain PRRs, which may or may not have been
configured in advance.

FIG. 54 depicts an example of an XML syntactical encod-
ing embodiment of permissions and charters, derived from
the BNF grammar of FIGS. 30A through 30E, for example as
user specified, system maintained, system communicated,
system generated, etc. Enough information is provided for
those skilled in the art to define an appropriate XML syntax of
the disclosed BNF grammar in light of disclosure heretofore.
A simple embodiment of variables can be handled with a
familiar Active Service Page (ASP) syntax wherein variables
are defined prior to being instantiated with a special syntax
(e.g. <%=varName %>). Double quotes can be represented
within double quote delimited character strings by the usual
providing of two double quotes for each double quote char-
acter position. Those skilled in the art of XML recognize there
are many embodiments for XML tags, how to support sub-
tags, and tag attributes within a tag’s scope. FIG. 54 provides
a simple reference using a real example. FIG. 54 illustrates a
WPL for less advanced users.

The syntax “_location $(300M)\loc_my” is a condition for
the WDR in process being within 300 Meters of the vicinity of
my current location. Other syntax is identifiable based on
previous discussions.

FIG. 55A depicts a flowchart for describing a preferred
embodiment of MS user interface processing for Prefix Reg-
istry Record (PRR) configuration. Block 5502 may begin as
the result of an authenticated administrator user interface,
authenticated user interface, or as initiated by a user. Block
5502 starts processing and continues to block 5504 where
initialization is performed before continuing to block 5506.
Initialization may include initializing for using an SQL data-
base, or any other data form of PRRs. Processing continues to
block 5506 where a list of current PRRs are presented to the
user. The list is scrollable if necessary. A user preferably has
the ability to perform a number of actions on a selected/
specified PRR from the list presented at block 5506. There-

20

25

30

35

40

45

50

198
after, block 5508 waits for a user action in response to pre-
senting PRRs. Block 5508 continues to block 5510 when a
user action has been detected. If block 5510 determines the
user selected to modify a PRR, then the user configures the
specified PRR atblock 5512 and processing continues back to
block 5506. Block 5512 interfaces with the user for PRR 5300
alterations until the user is satisfied with changes which may
or may not have been made. Block 5512 preferably validates
to the fullest extent possible the data of PRR 5300. If block
5510 determines the user did not select to modify a PRR, then
processing continues to block 5514. If block 5514 determines
the user selected a PRR for delete, then block 5516 deletes the
specified PRR, and processing continues back to block 5506.
Depending on an embodiment, block 5516 may also properly
terminate the application fully described by the PRR 5300. If
block 5514 determines the user did not select to delete a PRR,
then processing continues to block 5518. If block 5518 deter-
mines the user selected to add a PRR, then the user adds a
validated PRR at block 5520 and processing continues back
to block 5506. Block 5520 preferably validates to the fullest
extent possible the data of PRR 5300. Depending on an
embodiment, block 5520 may also properly start the applica-
tion described by the PRR 5300. If block 5518 determines the
user did not select to add a PRR, then processing continues to
block 5522. If block 5522 determines the user selected to
show additional detail of a PRR, then block 5524 displays
specified PRR details including those details not already dis-
played at block 5506 in the list. Processing continues back to
block 5506 when the user is complete browsing details. If
block 5522 determines the user did not want to browse PRR
details, then processing continues to block 5526. If block
5526 determines the user selected to enable/disable (toggle) a
specified PRR, then block 5528 uses PRR 5300 to determine
if the associated application is currently enabled (e.g. run-
ning) or disabled (e.g. not running). Upon determination of
the current state of the application for the specified PRR 5300,
block 5528 uses the PRR 5300 to enable (e.g. start if currently
not running)), or disable (e.g. terminate if currently running),
the application described fully by the specified PRR, before
continuing back to block 5506. Block 5528 should ensure the
Application has been properly started, or terminated, before
continuing back to block 5506. If block 5526 determines the
user did not want to toggle (enable/disable) a PRR described
application, then processing continues to block 5530. If block
5530 determines the user selected to display candidate App-
Term supported applications of the MS, then block 5532
presents a list of MS applications potentially configurable in
PRR form. Block 5532 will interface with the user until
complete browsing the list. One embodiment of block 5532
accesses current PRRs 5300 and displays the applications
described. Another embodiment accesses an authoritative
source of candidate AppTerm supported applications, any of
which can be configured as a PRR. Processing continues back
to block 5506 when the user’s browse is complete. If block
5530 determines the user did not select to display AppTerm
supported applications, then processing continues to block
5534. If block 5534 determines the user selected to use a data
source as a template for automatically populating PRRs 5300,
then block 5536 validates a user specified template, uses the
template to alter PRRs 5300, and processing continues back
to block 5506. PRRs may be optionally altered at block 5536
for replacement, overwrite, adding to, or any other alternation
method in accordance with a user or system preference. In
some embodiments, existing PRRs can be used for
template(s). If block 5534 determines the user did not select
to use a data source for a PRR template, then processing
continues to block 5538. If block 5538 determines the user

APPLE

EXHIBIT 1001 - PAGE 0363

US 9,088,868 B2

199

did not select to exit PRR configuration processing, then
block 5540 handles all other user actions detected at block
5508, and processing continues back to block 5506. If block
5538 determines the user did select to exit, then processing
continues to block 5542 where configuration processing
cleanup is performed before terminating FIG. 55A process-
ing at block 5544. Depending on an embodiment, block 5542
may properly terminate data access initialized at block 5504,
and internalize PRRs for a well performing read-only form
accessed by FIG. 55B. Appropriate semaphore interfaces are
used.

FIG.55A is used to expose those App Term variables which
are of interest. Candidate applications are understood to
maintain data accessible to charter processing. Different
embodiments will utilize global variables (e.g. linked extern),
dynamically linked variables, shared memory variables, or
any other data areas accessible to both the application and
charter processing with proper thread safe synchronized
access.

FIG. 55B depicts a flowchart for describing a preferred
embodiment of Application Term (AppTerm) data modifica-
tion. An application thread performing at least one AppTerm
update uses processing of FIG. 55B. A participating applica-
tion thread starts processing at block 5552 as the result of a
standardized interface, integrated processing, or some other
appropriate processing means. Block 5552 continues to block
5554 where an appropriate semaphore lock is obtained to
ensure synchronous data access between the application and
any other processing threads (e.g. charter processing). Pro-
cessing then continues to block 5556 for accessing the appli-
cation’s associated PRR (if one exists). Thereafter, if block
5558 determines the PRR exists and at least one of the data
item(s) for modification are described by field 5300g, block
5560 updates the applicable data item(s) described by field
5300g appropriately as requested by the application invoking
FIG. 55B processing. Thereafter, block 5562 releases the
semaphore resource locked at block 5554 and processing
terminates at block 5564.

If block 5558 determines the associated PRR was not found
or all data items of the found PRR for modification are not
described by field 5300g, then processing continues directly
to block 5562 for releasing the semaphore lock, thereby per-
forming no updates to an AppTerm. PRRs 5300 control eli-
gibility for modification by applications, as well as which
AppTerm references can be made in charter processing.

An AppTerm is accessed (read) by grammar processing
with the same semaphore lock control used in FIG. 55B.

FIG. 56 depicts a flowchart for appropriately processing an
encoding embodiment of the BNF grammar of FIGS. 30A
through 30E, in context for a variety of parser processing
embodiments. Those skilled in the art may take information
disclosed heretofore to generate table records of FIGS. 35A
through 37C, and/or data of FIGS. 34 A through 34G (and/or
FIG. 52), and/or datastreams of FIG. 33A through 33C, and/
or a suitable syntax or internalized form derivative of FIGS.
30A through 30E. Compiler, interpreter, data receive, or other
data handling processing as disclosed in FIG. 56 is well
known in the art. Text books such as “Algorithms+Data
Structures=Programs” by Nicklaus Wirth are one of many for
guiding compiler/interpreter development. A BNF grammar
of FIGS. 30A through 30E may also be “plugged in” to a Lex
and Yacc environment to isolate processing from parsing in an
optimal manner. Compiler and interpreter development tech-
niques are well known. FIG. 56 can be viewed in context for
adapting Permission and Charter processing to an existing
source code processing environment (e.g. within PPLs). FIG.
56 can be viewed in context for new compiler and interpreter

10

15

20

25

30

35

40

45

50

55

60

65

200

processing of permissions and/or charters (e.g. WPL). FIG.
56 can be viewed in context for receiving Permission and/or
Charter data (e.g. syntax, datastream, or other format) from
some source (e.g. communicated to MS). FIG. 56 can be
viewed in context for plugging in isolated Permission and
Charter processing to any processing point of handling a
derivative encoding of the BNF grammar of FIGS. 30A
through 30E.

Data handling of a source code for compiling/interpreting,
an encoding from a communication connection, or an encod-
ing from some processing source starts at block 5602. At
some point in BNF grammar derived data handling, a block
5632 gets the next (or first) token from the source encoding.
Tokens may be reserved keywords, delimiters, variable
names, expression syntax, or some construct or atomic ele-
ment of an encoding. Thereafter, if block 5634 determines the
token is a reserved key or keyword, block 5636 checks if the
reserved key or keyword is for identifying permissions 10
(e.g. FIG. 51A “Permissions”, FIG. 54 “permission”, FIG.
33B Permissions/Permission, etc), in which case block 5638
sets a string Var pointer to the entire datastream representative
of the permission(s) 10 to be processed, and block 5640
prepares parameters for invoking [.LBX data internalization
processing at block 5642.

If block 5636 determines the reserved key or keyword is
not for permission(s) 10, then processing continues to block
5646. Block 5646 checks if the reserved key or keyword is for
identifying charters 12 (e.g. FIG. 51B “Charters”, FIG. 54
“charter”, FIG. 33C Charters/Charter, etc), in which case
block 5648 sets a stringVar pointer to the entire datastream
representative of the charter(s) 12 to be processed, and block
5650 prepares parameters for invoking [.LBX data internaliza-
tion processing at block 5642.

Blocks 5640 and 5650 preferably have a stringVar set to the
permission/charter data encoding start position, and then set a
length of the permission/charter data for processing by block
5642. Alternatively, the stringVar is a null terminated string
for processing the permission(s)/charter(s) data encoding.
Embodiment requirements are for providing appropriate
parameters for invoking block 5642 for unambiguous pro-
cessing of the entire permission(s)/charter(s) for parsing and
processing. The procedure of block 5642 has already been
described throughout this disclosure (e.g. creating a process-
able internalized form (e.g. database records, programmatic
structure, etc)). Upon return from block 5642 processing,
block 5644 resets the parsing position of the data source
encoding provided at block 5602 for having already pro-
cessed the permission(s)/charter(s) encoding handled by
block 5642. Thereafter, processing continues back to block
5632 for getting the next token from the data encoding source.

If block 5646 determines the reserved key or keyword is
not for charter(s) 12, then processing continues to process the
applicable reserved key or keyword identified in the source
data encoding. If block 5634 determines the token is not a
reserved key or keyword, then processing continues to the
appropriate block for handling the token which is not a
reserved key or keyword. In any case there may be processing
of other source data encoding not specifically for a permis-
sion or charter.

Eventually, processing continues to a block 5692 for
checking if there is more data source to handle/process. If
block 5692 determines there is more data encoding source,
processing continues back to block 5632 for getting the next
token. If block 5692 determines there is no more data encod-
ing source, processing continues to block 5694 for data
encoding source processing completion, and then to block
5696 for termination of FIG. 56 processing.

APPLE

EXHIBIT 1001 - PAGE 0364

US 9,088,868 B2

201

Depending on the embodiment, block 5694 may complete
processing for:

Compiling one of the PPLs (or other programming lan-
guage) with embedded/integrated encodings for permis-
sions 10 and/or charters 12;

Interpreting one of the PPLs (or other programming lan-
guage) with embedded/integrated encodings for permis-
sions 10 and/or charters 12;

Receiving the encoding source data from a communica-
tions channel;

Receiving the encoding source data from a processing
source;

Receiving the encoding source data from a user configured
source;

Receiving the encoding source data from a system config-
ured source; or

Internalizing, compiling, interpreting, or processing an
encoding derived from the disclosed BNF grammar for
Permissions 10 and/or Charter 12.

Blocks 5636 through 5650 may represent plug-in process-
ing for permissions 10 and/or charters 12. Depending on
when and where processing occurs for FIG. 56, appropriate
semaphores may be used to ensure data integrity.

LBX: Permissions and Charters—WDR Processing

As WDR information is transmitted/received between
MSs, privileges and charters are used to govern automated
actions. Thus, privileges and charter govern processing of at
least future whereabouts information to be processed. There
is WDR In-process Triggering Smarts (WITS) in appropriate
executable code processing paths. WITS provides the intelli-
gence of whether or not privilege(s) and/or charter(s)
trigger(s) an action. WITS is the processing at a place where
a WDR is automatically examined against configured privi-
leges and charter to see what actions should automatically
take place. There are three different types of WITS, namely:
maintained WITS (mWITS), inbound WITS (iWITS), and
outbound WITS (oWITS). Each type of WITS is placed in a
strategic processing path so as to recognize the event for when
to process the WDR. Maintained WITS (mWITS) occur at
those processing paths applicable to a WDR in process for
being maintained at an MS (e.g. inserted to queue 22). Other
embodiments may define other maintained varieties of a
WDR in process for configurations (e.g. inbound, outbound,
in-process2Q22, in-process2History (i.e. WDR in
process of being maintained to LBX history 30),
in-process2application(s) (i.e. WDR in process of being
maintained/communicated to an application), etc). Inbound
WITS (iWITS) occur at those processing paths applicable to
a WDR which is inbound to a MS (e.g. communicated to the
MS). Outbound WITS (oWITS) occur at those processing
paths applicable to a WDR which is outbound from a MS (e.g.
sent by an MS). There are various WITS embodiments as
described below. Users should keep in mind that a single
WDR may be processed multiple times (by different WITS)
with configuring charters that refer to different WITS (e.g.
first inbound, then to queue 22). One embodiment supports
only mWITS. Another embodiment supports only iWITS.
Another embodiment supports oWITS. Yet another embodi-
ment supports use of any combination of available WITS.
mWITS:

The preferred embodiment is a new block 273 in FIG. 2F

such that block 272 continues to block 273 and block
273 continues to block 274. This allows mWITS pro-
cessing block 273 to see all WDRs which are candidate
for insertion to queue 22, regardless of the role check at

10

15

20

25

30

35

40

45

50

55

60

202

block 274, confidence check at block 276, and any other
FIG. 2F processing. In some embodiments, block 273
may choose to use enabled roles and/or confidence and/
or any WDR field(s) values and/or permissions and/or
any other processing result to decisively affect whether
or not the WDR should be examined and/or processed
further by FIG. 2. For example, block 273 may result in
processing to continue directly to block 294 or 298
(rather than block 274). For example, upon determining
that the WDR source had not provided any privileges to
the receiving MS, the WDR can be ignored so as to not
use resources of the MS. In another example, a WDR
shows that it arrived completely wirelessly (e.g. field(s)
1100f) and did not go through an intermediary service
(e.g. router). The WDR may provide usefulness in locat-
ing the receiving MS despite the receiving MS not being
privileged by the source MS, in which case block 273
continues to block 274 for WDR processing. It may be
important to filter WDRs so that only those WDRs are
maintained which either a) contribute to locating (per
configurations), or b) are associated with active permis-
sions or charters for applicable processing. The WRC
discussed above may also be used to cause block 273 to
continue to block 294 or 298. Such filtering is referred to
as WITS filtering. WITS filtering may be crucial in a
LBX architecture which supports MSs great distances
from each other since there can be an overloading num-
ber of WDRs to process at any point in time. Charters
and privileges that are configured are used for deciding
which WDRS are to be “seen” (processed) further by
FIG. 2F processing. If there are no privileges and no
charters in effect for the in process WDR, then the WDR
may be ignored. If there is no use for the WDR to help
locate the receiving MS, then the WDR may also be
ignored. If there are privileges and charters in effect for
the in process WDR, then the WDR can be processed
further by FIG. 2F, even if not useful for locating the MS.

One preferred embodiment does make use of the confi-

dence field 11004 to ensure the peer MS has been suffi-
ciently located. Block 273 will compare information of
the WDR with configured privileges to determine which
actions should be performed. When appropriate privi-
leges are in place, block 273 will also compare informa-
tion of the WDR with configured and privileged charters
(e.g. _fldname) to determine applicable configured char-
ter actions to be performed.

Alternate embodiments can move mWITS at multiple pro-

cessing places subsequent to where a WDR is completed
by the MS (e.g. blocks 236, 258, 334,366, 418,534, 618,
648, 750, 828, 874, 958, 2128, 2688, etc).

Another embodiment can support mWITS at processing

places subsequent to processing by blocks 1718 and
1722 to reflect user maintenance.

Yet another embodiment recognizes in mWITS that the

WDR was first inbound to the MS and is now in process
of being maintained (e.g. to queue 22). This can allow
distinguishing between an inbound WDR, maintained
WDR, and inbound AND maintained WDR. In one
embodiment, the WDR (e.g. field 1100g) carries new
bit(s) of information (e.g. set by receive processing
when inserting to queue 26) for indicating the WDR was
inbound to the MS. The new bit(s) are checked by
mWITS for new processing (i.e. inbound AND main-
tained WDR).

65 1WITS:

The preferred embodiment is a new block 2111 in FIG. 21

such that block 2110 continues to block 2111 (i.e. on No

APPLE

EXHIBIT 1001 - PAGE 0365

US 9,088,868 B2

203

condition) and block 2111 continues to block 2112. This
allows iWITS processing block 2111 to see all inbound
WDRs, regardless of the confidence check at block
2114, and any other FIG. 21 processing. In some
embodiments, block 2111 may choose to use confidence
and/or any WDR field(s) and/or permissions and/or any
other processing result to decisively affect whether or
not the WDR should be examined and/or processed fur-
ther by FIG. 21. Block 2111 may result in processing to
continue directly to block 2106 (rather than block 2112).
For example, upon determining that the WDR source
had not provided any privileges to the receiving MS, the
WDR can be ignored so as to not use resources of the
MS. In another example, a WDR shows that it arrived
completely wirelessly (e.g. field(s) 1100f) and did not go
through an intermediary service (e.g. router). The WDR
may provide usefulness in locating the receiving MS
despite the receiving MS not being privileged by the
source MS, in which case block 2111 continues to block
2112 for WDR processing. Similar WITS filtering can
occur here as was described for mWITS processing
above, with the advantage of intercepting WDRs of little
value at the earliest possible time and preventing them
from reaching subsequent LBX processing.

One preferred embodiment does make use of the confi-
dence field 11004 to ensure the peer MS has been suffi-
ciently located. Block 2111 will compare information of
the WDR with configured privileges to determine which
actions should be performed. When appropriate privi-
leges are in place, block 2111 will also compare infor-
mation ofthe WDR with configured and privileged char-
ters (e.g. _I_fldname) to determine applicable
configured charter actions to be performed.

Another embodiment can support iWITS at processing
places associated with receive queue 26, for example
processing up to the insertion of the WDR to queue 26.

oWITS:

The preferred embodiment incorporates a new block 2015
in FIG. 20 such that block 2014 continues to block 2015
and block 2015 continues to block 2016. This allows
oWITS processing block 2015 to see all its outbound
WDRs for FIG. 20 processing. In some embodiments,
block 2015 may choose to use confidence and/or any
WDR field(s) and/or permissions and/or any other pro-
cessing result to decisively affect whether or not the
WDR should be processed further by FIG. 20. Block
2015 may result in processing to continue directly to
block 2018. The WRC discussed may also be used
appropriately here. Similar WITS filtering can occur
here as was described formWITS and iWITS processing
above, with the advantage of intercepting WDRs of little
value to anyone else in the LN-expanse, and preventing
the WDRs from reaching subsequent LBX processing at
remote MSs that will have no use for them.

The preferred embodiment will also incorporate a new
block 2515 in FIG. 25 such that block 2514 continues to
block 2515 and block 2515 continues to block 2516.
This allows oWITS processing block 2515 to see all its
outbound WDRs of FIG. 25 processing. In some
embodiments, block 2515 may choose to use confidence
and/or any WDR field(s) and/or permissions and/or any
other processing result to decisively affect whether or
not the WDR should be examined and/or processed fur-
ther by FIG. 25. Block 2515 may result in processing to
continue directly to block 2506. For example, upon
determining that the WDR is destined for a MS with no
privileges in place, the WDR can be ignored and unproc-

10

15

20

25

30

35

40

45

50

55

60

65

204

essed (i.e. not sent). The WRC discussed may also be
used appropriately here. Similar WITS filtering can
occur here as was described formW ITS,iWITS and oW
ITS processing above, with the advantage of intercept-
ing WDRs of little value to anyone else in the LN-
expanse, and preventing the WDRs from reaching sub-
sequent LBX processing at remote MSs that will have no
use for them.

Blocks 2015 and 2515 will compare information of the
WDR with configured privileges to determine which
actions should be performed. When appropriate privi-
leges are in place, blocks 2015/2515 will also compare
information of the WDR with configured charters (e.g. _
O_fldname) to determine applicable configured and
privileged charter actions to be performed.

Another embodiment can support oWITS at processing
places associated with send queue 24, for example after
the insertion of the WDR to queue 24.

Yet another embodiment recognizes in oWITS that the
WDR was first maintained to the MS and is now in
process of being sent outbound. This can allow distin-
guishing between an outbound WDR, maintained WDR,
and outbound AND maintained WDR. Different
embodiments will use different criteria for what desig-
nates an outbound AND maintained WDR, for example
seeking certain values in maintained WDR field(s),
seeking certain values in outbound WDR field(s), or
both. In one embodiment, the WDR carries new bit(s) of
information (e.g. set by send processing) for indicating
the WDR was outbound from the MS. WDR processing
for a maintained WDR and/or an outbound WDR can
also be made relevant for designating an outbound AND
maintained WDR. Criteria may be important in this
embodiment since an outbound WDR was maintained in
some fashion prior to being candidate as an outbound
WDR.

FIG. 57 depicts a flowchart for describing a preferred
embodiment of WDR In-process Triggering Smarts (WITS)
processing. The term “Triggering Smarts” is used to describe
intelligent processing of WDRs for privileges and/or charters
that may trigger configured processing such as certain
actions. FIG. 57 is presented to cover the different WITS
embodiments discussed above. WITS processing is of PIP
code 6, and starts at block 5700 with an in-process WDR as
the result of the start of new blocks 273, 2111, 2015 and 2515
(as described above). While preferred WITS embodiments
include new blocks 273, 2111, 2015, and 2515, it is to be
understood that alternate embodiments may include FIG. 57
processing at other processing places, for example as
described above. There are similarities between mWITS,
iWITS and oWITS. FIG. 57 is presented in context for each
WITS type. Thus, block 5700 shall be presented as being
invoked for mWITS, iWITS, and oWITS in order to process
a WDR (i.e. in-process WDR) that is being maintained to the
MS of FIG. 57 processing (e.g. to queue 22), is inbound to the
MS of FIG. 57 processing, and/or is outbound from the MS of
FIG. 57 processing. Applicable charter configurations (ref, _
I_ref, _O_ref) and applicable privileges are to be handled
accordingly.

Block 5700 continues to block 5702-a where the WRC and
applicable origination information of the WDR is accessed.
Thereafter, if the WRC and WDR information indicates to
ignore the WDR at block 5702-5, then processing continues
to block 5746, otherwise processing continues to block 5704.
Whenever block 5746 is encountered, the decision is made
(assumed in FIG. 57) to continue processing the WDR or not
continue processing the WDR in processing which includes

APPLE

EXHIBIT 1001 - PAGE 0366

US 9,088,868 B2

205

FIG. 57 (i.e. FIGS. 2F, 20, 21 25) as described above. This
decision depends on how block 5746 was arrived to by FIG.
57 processing.

Block 5704 determines the identity (e.g. originating MS)
ofthe in-process WDR (e.g. check field 1100qa). Thereafter, if
block 5706 determines the identity of the in-process WDR
does not match the identity of the MS of FIG. 57 processing,
processing continues to block 5708. Block 5706 continues to
block 5708 when a) the in-process WDR is from other MSs
and is being maintained at the MS of FIG. 57 processing (i.e.
FIG. 57=mWITS); or b) the in-process WDR is from other
MSs and is inbound to the MS of FIG. 57 processing (i.e. FIG.
57=1WITS). For example, a first MS of FIG. 57 processing
handles a WDR from a second MS starting at block 5708.

With reference now to FIG. 58, depicted is an illustration
for granted data characteristics in the present disclosure LBX
architecture, specifically with respect to granted permission
data and granted charter data as maintained by a particular
MS of FIG. 57 processing (i.e. as maintained by “this MS”).
To facilitate discussion of FIG. 57, permission data 10 can be
viewed as permission data collection 5802 wherein arrows
shown are to be interpreted as “provides privileges to” (i.e.
Left Hand Side (LHS) provides privileges to the Right Hand
Side (RHS)). Any of the permissions representations hereto-
fore described (internalized, datastream, XML, source code,
or any other BNF grammar derivative) can be used to repre-
sent, or encode, data of the collection 5802. Regardless of the
BNF grammar derivative/representation deployed, the mini-
mal requirement of collection 5802 is to define the relation-
ships of privileges granted from one ID to another ID (and
perhaps with associated MSRelevance and/or TimeSpec
qualifier(s)). Whether grants or explicit privileges are
assigned, ultimately there are privileges granted from a
grantor ID to a grantee ID.

Different identity embodiments are supported (e.g. MS ID
or user ID) for the LHS and/or RHS (see BNF grammar for
different embodiments). Permission data collection 5802 is to
be from the perspective of one particular MS, namely the MS
of FIG. 57 processing. Thus, the terminology “this MS ID”
refers to the MS ID of the MS of FIG. 57 processing. The
terminology “WDR MS ID” is the MS ID (field 1100a) of an
in-process WDR of FIG. 57 processing distinguished from all
other MS IDs configured in collection 5802 at the time of
processing the WDR. The terminology “other MS IDs” is
used to distinguish all other MS IDs configured in collection
5802 which are not the same as the MS ID of the terminology
“WDR MS ID” (i.e. MS IDs other than the MS ID (field
1100a) of the in-process WDR of FIG. 57 processing (also
other than the “this MS” MS ID)). Privilege configurations
5810 are privileges provided from an in-process WDR MS ID
(i.e. WDR being processed by FIG. 57 at “this MS”) to the MS
ID of FIG. 57 processing. The groups an ID belongs to can
also provide, or be provided with, privileges so that the uni-
verse of privileges granted should consider groups as well.
Privilege configurations 5820 are privileges provided from
the MS of FIG. 57 processing (this MS) to the MS ID (field
1100a) of the in-process WDR being processed by FIG. 57.
Privilege configurations 5830 are privileges provided from
the MS of FIG. 57 processing (this MS) to MS IDs (field
1100a) configured in collection 5802 other than the MS ID of
the in-process WDR being processed by FIG. 57 (also other
than the “this MS” MS ID). Privilege configurations 5840 are
privileges provided from MS IDs configured in collection
5802 at the MS of FIG. 57 processing (this MS) which are
different than the MS ID of the in-process WDR being pro-
cessed by FIG. 57 (also different than the “this MS” MS ID).

20

25

35

40

45

50

206

Also to facilitate discussion of FIG. 57, charter data 12 can
be viewed as a charter data collection 5852 wherein arrows
shown are to be interpreted as “creates enabled charters for”
(i.e. Left Hand Side (LHS) creates enabled charters for the
Right Hand Side (RHS)). Any of the charter representations
heretofore described (internalized, datastream, XML, source
code, or any other BNF grammar derivative) can be used to
represent, or encode, data of the collection 5852. Regardless
of'the BNF grammar derivative/representation deployed, the
minimal requirement of collection 5852 is to define the char-
ters granted by one ID to another (and perhaps with associated
TimeSpec qualifier(s); TimeSpec may be an aggregate-result
of TimeSpec specified for the charter, charter expression,
charter condition and/or charter term). Preferably, for char-
ters with multiple actions, each action is evaluated on its own
specified TimeSpec merit if applicable. In embodiments that
use a tense qualifier in TimeSpecs: LBX history, appropriate
queue(s), and any other reasonable source of information
shall be utilized appropriately.

Different identity embodiments are supported (e.g. MS ID
or user ID) for the LHS and/or RHS (see BNF grammar for
different embodiments). A privilege preferably grants the
ability to create effective (enabled) charters for one ID from
another ID. However, in some embodiments the granting of a
charter by itself from one ID to another ID can be treated like
the granting of a permission/privilege to use the charter,
thereby preventing special charter activating permission(s) be
putinplace. Charter data collection 5852 is also to be from the
perspective of the MS of FIG. 57 processing. Thus, the ter-
minology “this MS ID” refers to the MS ID of the MS of FIG.
57 processing. The terminology “WDR MS ID” is the MS ID
(field 11004a) of the in-process WDR of FIG. 57 processing
distinguished from all other MS IDs configured in collection
5852 at the time of processing the WDR. The terminology
“other MS IDs” is used to distinguish all other MS IDs con-
figured in collection 5852 which are not the same as the MS
1D of the terminology “WDR MS ID” (i.e. MS IDs other than
the MS ID (field 1100a) of the in-process WDR of FIG. 57
processing (also other than the “this MS” MS ID)). Charter
configurations 5860 are charters created by the MS ID of an
in-process WDR (i.e. WDR being processed by FIG. 57 at
“this MS”) for being effective at the MS of FIG. 57 processing
(this MS ID). The groups an ID belongs to can also provide,
or be provided with, charters so that the universe of charters
granted should consider groups as well. Charter configura-
tions 5870 are charters created by the MS ID of FIG. 57
processing (i.e. this MS) for being effective at the MS of FIG.
57 processing (this MS ID). Charter configurations 5870
include the most common embodiments of creating charters
for yourself at your own MS. Charter configurations 5880 are
charters created by the MS ID of FIG. 57 processing (this MS)
for being effective at MSs with MS IDs configured in collec-
tion 5852 other than the MS ID of the in-process WDR being
processed by FIG. 57. Charter configurations 5890 are char-
ters at the MS of FIG. 57 processing (this MS) which are
created by MS IDs other than the MS ID of the in-process
WDR being processed by FIG. 57 (also other than the “this
MS” MS ID).

Any subset of data collections 5802 and 5852 can be resi-
dent at a MS of FIG. 57 processing, depending on a particular
embodiment of the present disclosure, however preferred and
most common data used is presented in FIG. 57. While FIG.
58 facilitates flowchart descriptions and discussions for in-
process WDR embodiments of being maintained (e.g. to
queue 22), being inbound (e.g. communicated to the MS),
and/or being outbound (e.g. communicated from the MS),
FIGS. 49A and 49B provide relevant discussions for WDR

APPLE

EXHIBIT 1001 - PAGE 0367

US 9,088,868 B2

207

in-process embodiments when considering generally
“incoming” WDRs (i.e. being maintained (e.g. to queue 22)
or being inbound (e.g. communicated to the MS)).

In the preferred embodiment, groups defined local to the
MS are used for validating which data using group IDs of
collections 5802 and 5852 are relevant for processing. In
alternate embodiments, group information of other MSs may
be “visible” to FIG. 57 processing for broader group configu-
ration consideration, either by remote communications, local
maintaining of MS groups which are privileged to have their
groups maintained there (communicated and maintained like
charters), or another reasonable method.

With reference back to FIG. 57, block 5708 forms a
PRIVS2ME list of configurations 5810 and continues to
block 5710 for eliminating duplicates that may be found.
Block 5708 may collapse grant hierarchies to form the list.
Duplicates may occur for privileges which include the dupli-
cated privileges (i.e. subordinate privileges). For
example, \lbxall specifies all LBX privileges and \nearar is
only one LBX privilege already included in \lbxall. Recall
that some privileges can be higher order scoped (subordinate)
privileges for a plurality of more granulated privileges. Block
5710 additionally eliminates duplicates that may exist for
permission embodiments wherein a privilege can enable or
disable a feature. In a present disclosure embodiment wherein
a privilege can enable, and a privilege can disable the same
feature or functionality, there is preferably a tie breaker of
disabling the feature (i.e. disabling wins). In an alternate
embodiment, enabling may break a tie of ambiguity. Block
5710 further eliminates privileges that have a MSRelevance
qualifier indicating the MS of FIG. 57 processing is not sup-
ported for the particular privilege, and also eliminates privi-
leges with a TimeSpec qualifier invalid for the time of FIG. 57
processing (an alternate embodiment can enforce TimeSpec
interpretation at blocks 5734 (i.e. in FIG. 59 processing) and
5736 (i.e. in FIG. 60 processing)). Thereafter, block 5712
forms a PRIVS2WDR list of configurations 5820 and contin-
ues to block 5714 for eliminating duplicates that may be
found in a manner analogous to block 5710 (i.e. subordinate
privileges, enable/disable tie breaker, MSRelevance qualifier,
TimeSpec qualifier). Block 5712 may collapse grant hierar-
chies to form the list. An alternate embodiment can enforce
TimeSpec interpretation at block 5738 (i.e. in FIG. 60 pro-
cessing). Thereafter, block 5716 forms a CHARTERS2ME
list of configurations 5860 and preferably eliminates vari-
ables by instantiating/elaborating at points where they are
referenced. Then, block 5718 eliminates those charters which
are not privileged. In some embodiments, block 5718 is not
necessary (5716 continues to 5720) because un-privileged
charters will not be permitted to be present at the MS of FIG.
57 processing anyway (e.g. eliminated when receiving). Nev-
ertheless, block 5718 removes from the CHARTERS2ME list
all charters which do not have a privilege (e.g. using
PRIVS2WDR) granted by the MS (the MS user) of FIG. 57
processing to the creator of the charter, for permitting the
charter to be “in effect” (activated). In the preferred embodi-
ment, there is a privilege (e.g. \chrtrs) which can be used to
grant the permission of activating any charters of another MS
(or MS user) at the MS of FIG. 57 processing. In the preferred
embodiment, there can be any number of subordinate charter
privileges (i.e. subordinate to \chrtrs) for specifically indicat-
ing which type of charters are permitted. For example, privi-
leges for governing which charters are to be active from a
remote MS include:

mW ITS specifications (allow charters with _fldname);

iWITS specifications (allow charters with _I_fldname);

oWITS specifications (allow charters with _O_fldname);

5

10

15

20

25

30

35

40

45

50

55

60

208

specified atomic terms (e.g. a privilege for each eligible

atomic term use);

specified WDRTerms (e.g. a privilege for each eligible

WDRTerm use);
specified AppTerms (e.g. a privilege for each eligible App-
Term use);

specified operators (e.g. a privilege for each eligible atomic

operator use);

specified conditions;

specified actions;

specified host targets for actions; and/or

any identifiable characteristic of a charter encoding as

defined in the BNF grammar of FIGS. 30 A through 30E.
In any embodiment, block 5718 ensures no charters from
other users are considered active unless appropriately privi-
leged (e.g. using PRIVS2WDR). Thereafter, block 5720
forms a MYCHARTERS list of configurations 5870 and pref-
erably eliminates variables by elaborating at points where
they are referenced, before continuing to block 5732.

Block 5732 checks the PRIVS2ME list to see if there is a
privilege granted from the identity of the in-process WDR to
the MS (or user of MS) of FIG. 57 processing for being able
to “see” the WDR. One main privilege (e.g. \Ibxiop) can
enable or disable whether or not the MS of FIG. 57 processing
should be able to do anything at all with the WDR from the
remote MS. If block 5732 determines this MS can process the
WDR, then processing continues to block 5734. Block 5734
enables local features and functionality in accordance with
privileges of the PRIVS2ME list by invoking the enable fea-
tures and functionality procedure of FIG. 59 with the
PRIVS2ME list, and the in-process WDR as parameters
(preferably passed by pointer/reference).

With reference now to FIG. 59, depicted is a flowchart for
describing a preferred embodiment of a procedure for
enabling LBX features and functionality in accordance with a
certain type (category) of permissions. Blocks 5920, 5924,
5928, 5932, 5936, 5940, 5944, and 5946 enable or disable
LBX features and functionality for semantic privileges. Pro-
cessing of block 5734 starts at block 5900 and continues to
block 5902 where the permission type list parameter passed
(i.e. PRIVS2ME (5810) when invoked from block 5734) is
determined, and the in-process WDR may be accessed. The
list parameter passed provides not only the appropriate list to
FIG. 59 processing, but also which list configuration (5810,
5820, 5830 or 5840) has been passed for processing by FIG.
59. There are potentially thousands of specific privileges that
FIG. 59 can handle. Therefore, FIG. 59 processing is shown
to generically handle different classes (categories) of privi-
leges, namely privilege classes of: privilege-configuration,
charter-configuration, data send, impersonation, WDR pro-
cessing, situational location, monitoring, LBX, L.BS, and any
others as handled by block 5946. Privileges disclosed
throughout the present disclosure fall into one ofthese classes
handled by FIG. 59.

Block 5902 continues to block 5904 where if it is deter-
mined that a privilege-configuration privilege is present in the
list parameter passed to FIG. 59 processing, then block 5906
will remove privileges from the list parameter if appropriate
to do that. For example, a privilege (or absence thereof)
detected in the list parameter for indicating no privileges can
be defined/enabled in context of the list parameter causes
block 5906 to remove all privileges from the list parameter
and also from permissions 10 (i.e. 5810 of collection 5802
when FIG. 59 invoked from block 5734). Similarly, any more
granular privilege-configuration privileges of the list param-
eter causes processing to continue to block 5906 for ensuring
remaining privileges of the list parameter (and of permissions

APPLE

EXHIBIT 1001 - PAGE 0368

US 9,088,868 B2

209

10 configurations) are appropriate. There can be many differ-
ent privilege-configuration privileges for what can, and can’t,
be defined in permissions 10, for example by any character-
istic(s) of permissions data 10 according to the present dis-
closure BNF grammar. Block 5906 continues to block 5908
when all privilege-configuration privileges are reflected in the
list parameter and collection 5802 of permissions 10. If block
5904 determines there are no privilege-configuration privi-
leges to consider in the list parameter passed to FIG. 59
processing, then processing continues to block 5908.

Block 5908 gets the next individual privilege entry (or the
first entry upon first encounter of block 5908 for an invocation
of FIG. 59) from the list parameter and continues to block
5910. Blocks 5908 through 5946 iterate all individual privi-
leges (list entries) associated with the list parameter of per-
missions 10 provided to block 5908. If block 5910 determines
there was an unprocessed privilege entry remaining in the list
parameter (i.e. 5810 of collection 5802 when FIG. 59 invoked
from block 5734), then the entry gets processed starting with
block 5912. If block 5912 determines the entry is a charter-
configuration privilege, then block 5914 will remove charters
from CHARTERS2ME if appropriate to do that. For example,
a privilege (or absence thereof) detected in the list parameter
for indicating no CHARTERS2ME charters can be defined/
enabled in context of the list parameter causes block 5914 to
remove all charters from CHARTERS2ME and also from
charters 12 (i.e. 5860 of collection 5852 when FIG. 59
invoked from block 5734). Similarly, any more granular char-
ter-configuration privileges of the list parameter causes pro-
cessing to continue to block 5914 for ensuring remaining
charters of CHARTERS2ME (and of charters 12 configura-
tions) are appropriate. There can be many different charters-
configuration privileges for what can and can’t be defined in
charters 12, for example by any characteristic(s) of charters
data 12 according to the present disclosure BNF grammar, in
particular for an in-process WDR from another MS. Any
aspect of charters can be privileged (all, certain commands,
certain operands, certain parameters, certain values of any of
those, whether can specify Host for action processing, certain
conditions and/or terms—See BNF grammar). Block 5914
then continues to block 5916. Block 5916 will remove char-
ters from MYCHARTERS if appropriate to do that. For
example, a privilege (or absence thereof) detected in the list
parameter for indicating certain MYCHARTERS charters
(e.g. those that involve the in-process WDR) can/cannot be
defined/enabled in context of the list parameter causes block
5916 to remove charters from MYCHARTERS for subse-
quent FIG. 57 processing. Changes to charters 12 for the
MYCHARTERS list does not occur. This prevents deleting
charters locally at the MS that the user spent time creating at
his MS. Removing from the MYCHARTERS list is enough to
affect subsequent FIG. 57 processing, for example of an in-
process WDR. Block 5914 shown does additionally remove
from charters 12 because the charters are not valid from a
remote user anyway. One preferred embodiment to block
5914 will not alter charters 12 (only CHARTERS2ME) simi-
larly to block 5916 so that subsequent FIG. 57 processing
continues properly while preventing a remote MS user from
resending charters (use of FIGS. 44A and 44B) at a subse-
quent time for reinstatement upon discovering the “this MS”
FIG. 57 processing user had not provided a needed permis-
sion/privilege. Block 5916 continues back to block 5908 for
the next entry. Blocks 5914 and 5916 make use of the privi-
lege entry data from block 5908 (e.g. grantor 1D, grantee ID,
privilege, etc) to properly affect change of CHARTERS2ME
and MYCHARTERS. CHARTERS2ME and MYCHAR-
TERS are shown as global variables accessible from FIG. 57

20

30

35

40

45

210

processing to FIG. 59 processing, but an alternate embodi-
ment will pass these lists as additional parameters determined
at block 5902. If block 5912 determined the currently iterated
privilege is not a charter configuration privilege, then pro-
cessing continues to block 5918.

If block 5918 determines the entry is a data send privilege,
then block 5920 will enable LBX features and functionality
appropriately in context for the list parameter, and processing
continues back to block 5908. A data send privilege may be
one that is used at block 4466 and enforced at block 4470 for
exactly what data can or cannot be received. Any granulation
of permission data 10 or charter data 12 (e.g. by any charac-
teristic(s)) may be supported. A data send privilege may over-
lap with a privilege-configuration privilege or a charter-con-
figuration privilege since either may be used at blocks 4466
and 4470, depending on an embodiment. It may be useful to
control what data can be received by a MS at blocks 4466 and
4470 versus what data actually gets used for FIG. 57 process-
ing as controlled by blocks 5904,5906,5912, 5914, and 5916.
If' block 5918 determines the entry is not a data send privilege,
then processing continues to block 5922. Data send privileges
can control what privilege, charter, and/or group data can and
cannot be sent to a MS (i.e. received by a MS). Data send
privileges can be overall privileges, subordinate privileges,
and/or privileges for any granulation of data based on type,
size, value, age, or any other characteristic(s) available from
a derivative of the BNF grammar of FIGS. 30A through 30E.

If block 5922 determines the entry is an impersonation
privilege, then block 5924 will enable LBX features and
functionality appropriately in context for the list parameter,
and processing continues back to block 5908. An imperson-
ation privilege is one that is used to access certain authenti-
cated user interfaces, some of which were described above.
Any granulation of permission data 10 (e.g. by any charac-
teristic(s)) may be supported, for example for any subset of
MS user interfaces with respect to the present disclosure.
Block 5924 may access security, or certain application inter-
faces accessible to the MS of FIG. 59 processing for read,
modify, add, or otherwise alter certain related data, or cause
the processing of certain related executable code, for example
to manage associated identity impersonation at the MS. If
block 5922 determines the entry is not an impersonation
privilege, then processing continues to block 5926. Imper-
sonation privileges can be overall privileges, subordinate
privileges, and/or privileges for any granulation of identity
data or any other characteristic(s) available from a derivative
of'the BNF grammar of FIGS. 30A through 30E.

Ifblock 5926 determines the entry is a WDR privilege, then
block 5928 will enable LBX features and functionality appro-
priately in context for the list parameter, and processing con-
tinues back to block 5908. A WDR privilege is one that is used
to govern access to certain fields of the in-process WDR. Any
granulation of permission data 10 (e.g. by any
characteristic(s)) may be supported, for example for any sub-
set of available in-process WDR data. Block 5924 may access
any in-process WDR field, subfield(s), or associated in-pro-
cess WDR data to make use of certain application interfaces
accessible to the MS of FIG. 59 processing for read, modify,
add, or otherwise alter certain related data, or cause the pro-
cessing of certain related executable code, for example to
manage appropriate in-process WDR processing. If block
5926 determines the entry is not a WDR privilege, then pro-
cessing continues to block 5930. WDR privileges can be
overall privileges, subordinate privileges, and/or privileges
for any granulation of in-process related WDR data, perhaps
using any characteristic(s) available from a derivative of the
BNF grammar of FIGS. 30A through 30E.

APPLE

EXHIBIT 1001 - PAGE 0369

US 9,088,868 B2

211

Ifblock 5930 determines the entry is a Situational Location
privilege, then block 5932 will enable LBX features and
functionality appropriately in context for the list parameter,
and processing continues back to block 5908. A Situational
Location privilege may overlap with a WDR privilege since
WDR fields are consulted for automated processing, however
it may be useful to distinguish. Any granulation of permission
data 10 (e.g. by any characteristic(s)) may be supported, for
example for any subset of available in-process relevant WDR
data. The term “situational location” is useful for describing
location based conditions (e.g. as disclosed in Service deliv-
ered location dependent content of U.S. Pat. Nos. 6,456,234,
6,731,238;7,187,997 (Johnson)). Block 5926 may access any
in-process WDR field, subfield(s), or associated in-process
WDR data for appropriate LBX processing involving read,
modify, add, or otherwise alter certain related data, or cause
the processing of certain related executable code, for example
to manage appropriate in-process WDR situational location
processing. If block 5930 determines the entry is not a situ-
ational location privilege, then processing continues to block
5934. Situation location privileges can be overall privileges,
subordinate privileges, and/or privileges for any granulation
of in-process related WDR data, perhaps using any charac-
teristic(s) available from a derivative of the BNF grammar of
FIGS. 30A through 30E.

If block 5934 determines the entry is a monitoring privi-
lege, then block 5936 will enable LBX features and function-
ality appropriately in context for the list parameter, and pro-
cessing continues back to block 5908. A monitoring privilege
governs monitoring any data of a MS for any reason (e.g. in
charter conditions). Any granulation of permission data 10
(e.g. by any characteristic(s)) may be supported, for example
for any subset of MS data. Block 5936 may access any MS
data, or associated in-process WDR data for appropriate LBX
processing involving read, modify, add, or otherwise alter
certain related data, or cause the processing of certain related
executable code, for example to manage appropriate in-pro-
cess WDR processing at the MS. If block 5936 determines the
entry is not a monitoring privilege, then processing continues
to block 5938. Monitoring privileges can be overall privi-
leges, subordinate privileges, and/or privileges for any granu-
lation of MS data (MS of FIG. 59 processing or of the in-
process WDR), perhaps using any characteristic(s) available
from a derivative of the BNF grammar of FIGS. 30A through
30E.

If block 5938 determines the entry is a LBX privilege, then
block 5940 will enable LBX features and functionality appro-
priately in context for the list parameter, and processing con-
tinues back to block 5908. A LBX privilege governs LBX
processing behavior at the MS of FIG. 59 processing. Other
privileges so far discussed for FIG. 59 processing may over-
lap with an LBX privilege. Any granulation of permission
data 10 (e.g. by any characteristic(s)) may be supported, for
example for unique LBX processing at the MS of FIG. 59
processing. Block 5938 may access any MS data, or associ-
ated in-process WDR data for appropriate LBX processing
involving read, modify, add, or otherwise alter certain related
data, or cause the processing of certain related executable
code, for example to perform LBX processing at the MS. If
block 5938 determines the entry is not a LBX privilege, then
processing continues to block 5942. LBX privileges can be
overall privileges, subordinate privileges, and/or privileges
for any granulation of MS data (MS of FIG. 59 processing or
of the in-process WDR), perhaps using any characteristic(s)
available from a derivative of the BNF grammar of FIGS. 30A
through 30E.

20

25

30

35

40

45

50

55

65

212

If block 5942 determines the entry is a LBS privilege, then
block 5944 will enable LBS features and functionality appro-
priately in context for the list parameter, and processing con-
tinues back to block 5908. A LBS privilege governs LBS
processing behavior at the MS of FIG. 59 processing. Other
privileges so far discussed for FIG. 59 processing may over-
lap with an LBS privilege. Any granulation of permission data
10 (e.g. by any characteristic(s)) may be supported, for
example for unique LBS processing at the MS of FIG. 59
processing. Block 5944 may access any MS data, or associ-
ated in-process WDR data for appropriate LBS processing
involving read, modify, add, or otherwise alter certain related
data, or cause the processing of certain related executable
code, for example to perform LBS processing at the MS, and
perhaps cause processing at a connected LBS. If block 5942
determines the entry is not a LBS privilege, then processing
continues to block 5946. L.BS privileges can be overall privi-
leges, subordinate privileges, and/or privileges for any granu-
lation of MS data (MS of FIG. 59 processing or of the in-
process WDR), perhaps using any characteristic(s) available
from a derivative of the BNF grammar of FIGS. 30A through
30E, and perhaps using any data or interface of a connected
LBS.

Block 5946 is provided for processing completeness for
handling appropriately (e.g. enable or disable MS processing)
a privilege that some reader may not appreciate falling into
one of the privilege classes of FIG. 59 processing. Block 5946
then continues to block 5908. Referring back to block 5910,
if it is determined there are no more unprocessed entries
remaining in the list parameter (i.e. 5810 of collection 5802
when FIG. 59 invoked from block 5734), then the caller/
invoker is returned to at block 5948.

FIG. 59 may not require blocks 5904 and 5906 since a
block 4466 embodiment may have already enforced what has
been received and integrated at block 4470 to a proper set of
collections 5802 and 5852. In any case, the procedure of FIG.
59 is made complete having blocks 5904 and 5906 for various
caller/invoker embodiments. Similarly, FIG. 59 also may not
require blocks 5912 through 5916 since a block 4466 embodi-
ment may have already enforced what has been received and
integrated at block 4470 to a proper set of collections 5802
and 5852. The procedure of FIG. 59 is made complete by
having blocks 5912 through 5916 for various caller/invoker
embodiments.

In one embodiment, FIG. 59 uses the absence of certain
privileges to enable or disable LBX features and functionality
wherein block 5948-A determines which privileges were not
provided, block 5948-B enables/disables LBX features and
functionality in accordance with the lack of privileges, and
block 5948-C returns to the caller/invoker.

With reference back to FIG. 57, block 5734 continues to
block 5736. Some embodiments of FIG. 57 blocks 5710,
5714 5718, 5742, 5750, 5756, etc may perform sorting for a
best processing order (e.g. as provided to procedures of FIGS.
59 and 60). Block 5736 performs actions in accordance with
privileges of the PRIVS2ME list by invoking the do action
procedure of FIG. 60 with the PRIVS2ME list, and the in-
process WDR as parameters (preferably passed by pointer/
reference).

With reference now to FIG. 60, depicted is a flowchart for
describing a preferred embodiment of a procedure for per-
forming LBX actions in accordance with a certain type of
permissions. Blocks 6012, 6016, 6020, 6024, 6028, 6032,
6036, and 6038 perform actions for semantic privileges. Pro-
cessing of block 5736 starts at block 6002 and continues to
block 6004 where the permission type parameter passed (i.e.
PRIVS2ME (5810) when invoked from block 5736) is deter-

APPLE

EXHIBIT 1001 - PAGE 0370

US 9,088,868 B2

213

mined, and the in-process WDR may be accessed. The list
parameter passed provides not only the appropriate list to
FIG. 60 processing, but also which list configuration (5810,
5820,5830 or 5840) has been passed for proper processing by
FIG. 60. There are potentially thousands of specific privileges
that FIG. 60 can handle. Therefore, FIG. 60 processing is
shown to generically handle different classes (categories) of
privileges, namely privilege classes of: data send, imperson-
ation, WDR processing, situational location, monitoring,
LBX, LBS, and any others as handled by block 6038. Privi-
leges disclosed throughout the present disclosure fall into one
of these classes handled by FIG. 60.

Block 6004 continues to block 6006. Block 6006 gets the
next individual privilege entry (or the first entry upon first
encounter of block 6006 for an invocation of FIG. 60) from
the list parameter and continues to block 6008. Blocks 6006
through 6038 iterate all individual privileges associated with
the list parameter of permissions 10 provided to block 6002.
If block 6008 determines there was an unprocessed privilege
entry remaining in the list parameter (i.e. 5810 of collection
5802 when FIG. 60 invoked from block 5736), then the entry
gets processed starting with block 6010.

If block 6010 determines the entry is a data send privilege,
then block 6012 will perform any LBX actions in context for
the list parameter (if any applicable), and processing contin-
ues back to block 6006. A data send privilege may be one that
is used at block 4466 and enforced at block 4470 for exactly
what data can or cannot be received, or alternatively, block
6012 can perform actions for communicating data between
MSs, or affecting data at MSs, for an appropriate local image
of permissions 10 and/or charters 12. Any granulation of
permission data 10 or charter data 12 (e.g. by any character-
istic(s)) may be supported. If block 6010 determines the list
entry is not a data send privilege, processing continues to
block 6014.

If block 6014 determines the entry is an impersonation
privilege, then block 6016 will perform any LBX actions in
context for the list parameter (if any applicable), and process-
ing continues back to block 6006. Block 6016 may access
security, or certain application interfaces accessible to the MS
of FIG. 60 processing for read, modity, add, or otherwise alter
certain related data, or cause the processing of certain related
executable code, for example to manage associated identity
impersonation at the MS. If block 6014 determines the entry
is not an impersonation privilege, then processing continues
to block 6018.

Ifblock 6018 determines the entry is a WDR privilege, then
block 6020 will perform any LBX actions in context for the
list parameter (if any applicable), and processing continues
back to block 6006. Block 6020 may access any in-process
WDR field, subfield(s), or associated in-process WDR data to
make use of certain application interfaces accessible to the
MS of FIG. 60 processing for read, modify, add, or otherwise
alter certain related data, or cause the processing of certain
related executable code, for example to manage appropriate
in-process WDR processing. If block 6020 determines the
entry is not a WDR privilege, then processing continues to
block 6022.

Ifblock 6022 determines the entry is a Situational Location
privilege, then block 6024 will perform any LBX actions in
context for the list parameter (if any applicable), and process-
ing continues back to block 6006. Block 6024 may access any
in-process WDR field, subfield(s), or associated in-process
WDR data for appropriate LBX processing involving read,
modify, add, or otherwise alter certain related data, or cause
the processing of certain related executable code, for example
to manage appropriate in-process WDR situational location

10

15

20

25

30

35

40

45

50

55

60

65

214

processing. If block 6022 determines the entry is not a situ-
ational location privilege, then processing continues to block
6026

If block 6026 determines the entry is a monitoring privi-
lege, then block 6028 will perform any [.BX actions in con-
text for the list parameter (if any applicable), and processing
continues back to block 6006. Block 6028 may access any
MS data, or associated in-process WDR data for appropriate
LBX processing involving read, modify, add, or otherwise
alter certain related data, or cause the processing of certain
related executable code, for example to manage appropriate
in-process WDR processing at the MS. If block 6026 deter-
mines the entry is not a monitoring privilege, then processing
continues to block 6030.

Ifblock 6030 determines the entry is a LBX privilege, then
block 6032 will perform any LBX actions in context for the
list parameter (if any applicable), and processing continues
back to block 6006. Block 6032 may access any MS data, or
associated in-process WDR data for appropriate LBX pro-
cessing involving read, modify, add, or otherwise alter certain
related data, or cause the processing of certain related execut-
able code, for example to perform LBX processing at the MS.
If block 6030 determines the entry is not a LBX privilege,
then processing continues to block 6034.

Ifblock 6034 determines the entry is a LBS privilege, then
block 6036 will perform any LBS actions in context for the
list parameter, and processing continues back to block 6006.
Block 6036 may access any MS data, or associated in-process
WDR data for appropriate LBS processing involving read,
modify, add, or otherwise alter certain related data, or cause
the processing of certain related executable code, for example
to perform LBS processing at the MS, and perhaps cause
processing at a connected LBS. If block 6034 determines the
entry is not a LBS privilege, then processing continues to
block 6038.

Block 6038 is provided for processing completeness for
handling appropriately (e.g. performing any LBX actions in
context for the list parameter (if any applicable) a privilege
that some reader may not appreciate falling into one of the
privilege classes of FIG. 60 processing. Block 6038 then
continues to block 6006. Referring back to block 6008, ifit is
determined there are no more unprocessed entries remaining
in the list parameter (i.e. 5810 of collection 5802 when FIG.
60 invoked from block 5736), then the caller/invoker is
returned to at block 6040.

In one embodiment, FIG. 60 uses the absence of certain
privileges to perform LBX actions in context for the list
parameter wherein block 6040-A determines which privi-
leges were not provided, block 6040-B performs LBX actions
in context for the lack of privileges, and block 6040-C returns
to the caller/invoker.

FIG. 60 processing causes application types of actions
according to privileges set. Such application types of actions
are preferably caused using APIs, callback functions, or other
interfaces so as to isolate FIG. 60 LBX processing from
applications that are integrated with it. This prevents applica-
tion “know-how” from being part of the LBX processing (e.g.
software) built for MSs. FIG. 60 preferably invokes the
“know-how” through an appropriate interface (software or
hardware). In one preferred embodiment, participating appli-
cations register themselves as processing particular atomic
privileges so that FIG. 60 invokes the interface with the privi-
lege, its setting, and perhaps useful environmental data of
interest. The application itself can then optimally process the
privilege for an appropriate application action. Invocation of
the application interface may be thread oriented so as to not
wait for a return, or may be synchronous for waiting for a

APPLE

EXHIBIT 1001 - PAGE 0371

US 9,088,868 B2

215

return (or return code). In one preferred embodiment, the
PRR 5300 is modified for further containing a privilege join
field 53005 for joining to a new Application Privileges Refer-
ence (APR) table containing all privileges which are relevant
for the application described by the PRR 5300. This provides
the guide of all privileges which are applicable to an applica-
tion, and which are to cause invocation of the interface(s) of
the application. A PRR 5300 is to be extended with new data
in at least one field 53004 which contains interface directions
for how to invoke the application with the privilege for pro-
cessing (e.g. through a Dynamic Link Library (DLL), or
script, interface). Preferably, a single API or invocation is
used for all privileges to a particular application and the
burden of conditional processing paths is put on the applica-
tion in that one interface. An alternate embodiment could
allow multiple interfaces to be plugged in: one for each of a
plurality of classes, or categories, of privileges so that the
burden of unique processing paths, depending on a privilege,
is reduced for one application. In any embodiment, it is pref-
erable to minimize linkage execution time between LBX
processing and an application which is plugged in. Linkage
time can be reduced by:

1) Performing appropriate and directed executable linkage
as indicated by the PRR at initialization time of block
1240,

2) Performing loading into executable memory of needed
dynamically linked executables (e.g. DLL) as indicated
by the PRR at initialization time of block 1240 wherein
the PRR provides link library information for resolving
linkage; and/or

3) Validating presence of, or performing loading of, the
executables/script/etc in an appropriate manner at an
appropriate initialization time.

Note that atomic command processing solves performance
issues by providing a tightly linked executable environment
while providing methods for customized processing. Many
applications may be invoked for the same privilege (i.e.
blocks 6012, 6016, 6020, 6024, 6028, 6032, 6036 and/or
6038 can certainly invoke multiple applications (i.e. cause
multiple actions) for a single privilege), depending on what is
found in the APR table. Of course, integrated application
action processing can be built with LBX software so that the
MS applications are tightly integrated with the LBX process-
ing. Generally, FIG. 60 includes appropriate processing of
applications while FIG. 59 affects data which can be accessed
(e.g. polled) by applications.

With reference back to FIG. 57, block 5736 continues to
block 5738. Block 5738 performs actions in accordance with
privileges of the PRIVS2WDR list by invoking the do action
procedure of FIG. 60 with the PRIVS2WDR list, and the
in-process WDR as parameters (preferably passed by pointer/
reference), and then continues to block 5740. FIG. 60 pro-
cessing is analogously as described above except in context
for the PRIVS2WDR (5820) list and for the in-process WDR
of FIG. 57 processing relative the PRIVS2WDR list. One
embodiment may incorporate a block 5737 (block 5736 con-
tinues to 5737 which continues to block 5738) for invoking
FIG. 59 processing with PRIVS2WDR. Generally, privilege
configurations 5820 involve actions for the benefit of the
WDR originator.

Block 5740 processing merges the MYCHARTERS and
CHARTERS2ME lists into a CHARTERS2DO list, and con-
tinues to block 5742 for eliminating inappropriate charters
that may exist in the CHARTERS2DO list. Block 5742 addi-
tionally eliminates charters with a TimeSpec qualifier invalid
for the time of FIG. 57 processing (an alternate embodiment
can enforce TimeSpec interpretation at block 5744). If all

10

15

20

25

30

35

40

45

50

55

60

65

216

actions, or any condition, term, expression, or entire charter
itself has a TimeSpec outside of the time of FIG. 57 process-
ing, then preferably the entire charter is eliminated. Action(s)
are removed from a charter which remains in effect if
action(s) for a charter have an invalid TimeSpec for the time
of FIG. 57 processing, in which case any remaining actions
with no TimeSpec or a valid TimeSpec are preserved for the
effective charter. If all charter actions are invalid per
TimeSpec, then the charter is completely eliminated. There-
after, block 5744 performs charter actions in accordance with
conditions of charters of the CHARTERS2DO list (see FIG.
61), and processing then terminates at block 5746.

Block 5742 can eliminate charters which are irrelevant for
processing, for example depending upon the type of in-pro-
cess WDR. For a maintained WDR, inappropriate charters
may be those which do not have a maintained condition
specification (i.e. _fldname). For an inbound WDR, inappro-
priate charters may be those which do not have an in-bound
condition specification (i.e. _I_fldname). For an outbound
WDR, inappropriate charters may be those which do not have
an out-bound condition specification (i.e. _I_fldname). The
context of WITS processing (mWITS, iWITS, oWITS) may
be used at block 5742 for eliminating inappropriate charters.

With reference back to block 5732, if it is determined that
this MS should not process (see) the WDR in-process, pro-
cessing continues to block 5746 where FIG. 57 processing is
terminated, and the processing host of FIG. 57 (i.e. FIGS. 2F
20, 21, 25) appropriately ignores the WDR.

With reference back to block 5706, if it is determined that
the WDR identity matches the MS of FIG. 57 processing,
processing continues to block 5748. Block 5706 continues to
block 5748 when a) the in-process WDR is from this MS and
is being maintained at the MS of FI1G. 57 processing (i.e. FIG.
57=mWITS); orb) the in-process WDR is outbound from this
MS (.. FIG. 57=0WITS). Block 5748 forms a
PRIVS20THERS list of configurations 5830 and continues
to block 5750 for eliminating duplicates that may be found.
Block 5748 may collapse grant hierarchies to form the list.
Duplicates may occur for privileges which include the dupli-
cated privileges (i.e. subordinate privileges) as described
above. Block 5750 additionally eliminates duplicates that
may exist for permission embodiments wherein a privilege
can enable or disable a feature. In a present disclosure
embodiment wherein a privilege can enable, and a privilege
can disable the same feature or functionality, there is prefer-
ably atie breaker of disabling the feature (i.e. disabling wins).
In an alternate embodiment, enabling may break a tie of
ambiguity. Block 5750 further eliminates privileges that have
a MSRelevance qualifier indicating the MS of FIG. 57 pro-
cessing is not supported for the particular privilege, and also
eliminates privileges with a TimeSpec qualifier invalid for the
time of FIG. 57 processing (an alternate embodiment can
enforce TimeSpec interpretation at block 5758 (i.e. in FIG. 60
processing)). Thereafter, block 5752 forms a MYCHAR-
TERS list of configurations 5870 and preferably eliminates
variables by instantiating/elaborating at points where they are
referenced. Then, block 5754 forms a CHARTERS2ME list
of configurations 5890 and preferably eliminates variables by
instantiating/elaborating at points where they are referenced.
Then, block 5756 eliminates those charters which are not
privileged. In some embodiments, block 5756 is not neces-
sary (5754 continues to 5758) because un-privileged charters
will not be permitted to be present at the MS of FIG. 57
processing. Nevertheless, block 5756 removes from the
CHARTERS2ME list all charters which do not have a privi-
lege granted by the MS (the MS user) of FIG. 57 processing
to the creator of the charter, for permitting the charter to be

APPLE

EXHIBIT 1001 - PAGE 0372

US 9,088,868 B2

217

enabled (as described above for block 5718). In any embodi-
ments, block 5756 ensures no charters from other users are
considered active unless appropriately privileged. Thereafter,
block 5758 performs actions in accordance with privileges of
the PRIVS20THERS list by invoking the do action procedure
of FIG. 60 with the PRIVS2ME list, and the in-process WDR
as parameters (preferably passed by pointer/reference), and
then continues to block 5740 which has already been
described. FIG. 60 processing is the same as described above
except in context for the PRIVS20THERS (5830) and for the
in-process WDR of FIG. 57 processing relative the PRIV-
SOTHERS list. Of course the context of blocks 5748 through
5758 are processed for in-process WDRs which are: a) main-
tained to the MS of FIG. 57 for the whereabouts of the MS of
FIG. 57 processing; or b) outbound from the MS of FIG. 57
processing (e.g. an outbound WDR describing whereabouts
of the MS of FIG. 57 processing). One embodiment may
incorporate a block 5757 (block 5756 continues to 5757
which continues to block 5758) for invoking FIG. 59 process-
ing with PRIVS20THERS. Generally, privilege configura-
tions 5830 involve actions for the benefit of others (i.e. other
than this MS).

When considering the terminology “incoming” as used for
FIGS. 49A and 49B, a WDR in-process at this MS (the MS of
FIG. 57 processing) which was originated by this MS with an
identity for this MS uses: a) this MS charters (5870 confirmed
by 4962 bullet 2 part 1, 4988 bullet 2 part 1, 4922, 4948); b)
others’ charters per this MS (or this MS user) privileges to
them (5890 confirmed by 4966 bullet 3, 4964 bullet 2, 4986
bullet 3, 4984 bullet 2, 4924, 4946); and ¢) this MS (or this MS
user) privileges to others (5830 confirmed by 4944 bullet 4,
4924 bullet 4, 4946 bullet 4, 4926 bullet 4). An alternate
embodiment additionally uses d) others’ privileges to this MS
(or this MS user) (5840), for example to determine how
nearby they are at outbound WDR time or at the time of
maintaining the MS’s own whereabouts. This alternate
embodiment would cause FIG. 57 to include: a new block
5760 for forming a PRIVS2ME list of privileges 5840; a new
block 5762 for eliminating duplicates, MSRelevance rejects
and invalid TimeSpec entries; a new block 5764 for enabling
features an functionality in accordance with the PRIVS2ME
list of block 5760 by invoking the enable features and func-
tionality procedure of FIG. 59 with PRIVS2ME as a param-
eter (FIG. 59 processing analogous to as described above
except for PRIVS2ME); and a new block 5766 for performing
actions in accordance with PRIVS2ME by invoking the do
action procedure of FIG. 60 with PRIVS2ME as a parameter
(FIG. 60 processing analogous to as described above except
for PRIVS2ME). Such an embodiment would cause block
5758 to continue to block 5760 which continues to block 5762
which continues to block 5764 which continues to block 5766
which then continues to block 5740.

When considering the terminology “incoming™ as used for
FIGS. 49A and 49B, a WDR in-process at this MS (the MS of
FIG. 57 processing) which was originated by a remote MS
with an identity different than this MS uses: e) this MS char-
ters per other’s privileges to this MS (or this MS user) (5870
confirmed by 4962 bullet 2 part 2, 4988 bullet 2 part 2, 4926,
4944, 4924 bullet 2); f) others’ charters per this MS (or this
MS user) privileges to them (5860 confirmed by 4966 bullet
2, 4964 bullet 3, 4986 bullet 2, 4984 bullet 3, 4924, 4946); g)
this MS (or this MS user) privileges to others (5820 confirmed
by 4944 bullet 3, 4924 bullet 3, 4946 bullet 3, 4926 bullet 3);
and h) others’ privileges to this MS (or this MS user) (5810
confirmed by 4926 bullet 2, 4944 bullet 2, 4946 bullet 2, 4924
bullet 2). An alternate embodiment additionally uses i) oth-
ers’ charters per this MS (or this MS user) privileges to them

5

10

15

20

25

30

35

40

45

50

55

60

65

218

(5890); and/or j) this MS (or this MS user) privileges to others
(5830); and/or k) others’ privileges to this MS (or this MS
user) (5840). This alternate embodiment would cause FIG. 57
to alter block 5716 to further include charters 5890, alter
block 5708 to further include privileges 5840, include a new
block 5722 for forming a PRIVS20OTHERS list of privileges
5830, new block 5724 for eliminating duplicates, new block
5726 for enabling features an functionality in accordance
with the PRIVS20OTHERS list of block 5722, new block 5728
for enabling features an functionality in accordance with the
modified PRIVS2ME list of block 5708, and new block 5730
for performing actions in accordance with the modified
PRIVS2ME (i.e. block 5720 continues to block 5722 which
continues to block 5724 which continues to block 5726 which
continues to block 5728 which continues to block 5730 which
then continues to block 5732). Also, blocks 5742 and 5744
would appropriately handle new charters of altered block
5716. Such an embodiment would cause new blocks 5726,
5728 and 5730 to invoke the applicable procedure (FIG. 59 or
FIG. 60) with analogous processing as described above
except in context for the parameter passed.

In some FIG. 57 embodiments, blocks 5708 and/or 5716
and/or 5754 and/or relevant alternate embodiment blocks
discussed are remotely accessed by communicating with the
MS having the identity determined at block 5704 for the
WDR in-process. The preferred embodiment is as disclosed
for maintaining data local to the MS for processing there. In
other embodiments, there are separate flowcharts (e.g. FIGS.
57A, 57B and 57C) for each variety of handling in-process
WDRs (e.g. mWITS, iWITS, oW ITS processing).

Various FIG. 57 embodiments’ processing will invoke the
procedure of FIG. 59 with appropriate parameters (i.e. lists
for 5810 and/or 5820 and/or 5830 and/or 5840) so that any
category subset of the permission data collection 5802 (i.e.
5810 and/or 5820 and/or 5830 and/or 5840) is used to enable
appropriate LBX features and functionality according to the
WDR causing execution of FIG. 57 processing. For example,
privileges between the MS of FIG. 57 processing and an
identity other than the WDR causing FIG. 57 processing may
be used (e.g. relevant MS third party notification, features,
functionality, or processing as defined by related privileges).

Various FIG. 57 embodiments’ processing will invoke the
procedure of FIG. 60 with appropriate parameters (i.e. lists
for 5860 and/or 5870 and/or 5880 and/or 5890) so that any
category subset of the charter data collection 5852 (i.e. 5860
and/or 5870 and/or 5880 and/or 5890) is used to perform LBX
actions according to the WDR causing execution of FIG. 57
processing. For example, charters between the MS of FIG. 57
processing and an identity other than the WDR causing FIG.
57 processing may be used (e.g. relevant MS third party
charters as defined by related privileges).

FIG. 57 determines which privileges and charters are rel-
evant to the WDR in process, regardless of where the WDR
originated. The WDR identity checked at block 5706 can take
on various embodiments so that the BNF grammar of FIGS.
30A through 30E are fully exploited. Preferably, the identities
associated with “this MS” and the WDR in process are usable
as is, however while there are specific embodiments imple-
menting the different identifier varieties, there may also be a
translation or lookup performed at block 5704 to ensure a
proper compare at block 5706. The identities of “this MS” and
the WDR identity (e.g. field 1100a) may be translated prior to
performing a compare. For example, a user identifier main-
tained to the user configurations (permissions/charters) may
be “looked up” using the MS identifiers involved (“this MS”
and WDR MS ID) in order to perform a proper compare at
block 5706. Some embodiments may maintain a separate

APPLE

EXHIBIT 1001 - PAGE 0373

US 9,088,868 B2

219

identifier mapping table local to the MS, accessed from a
remote MS when needed, accessed from a connected service,
or accessed as is appropriate to resolve the source identifiers
with the identifiers for comparing at block 5706. Thus, per-
missions and/or charters can grant from one identity to
another wherein identities of the configuration are associated
directly (i.e. useable as is) or indirectly (i.e. mapped) to the
actual identities of the user(s), the MS(s), the group(s), etc
involved in the configuration.

Preferably, statistics are maintained by WITS processing
for each reasonable data worthy of tracking from standpoints
of user reporting, automated performance fine tuning (e.g.
thread throttling), automated adjusted processing, and moni-
toring of overall system processing. In fact, every processing
block of FIG. 57 can have a plurality of statistics to be main-
tained.

FIG. 61 depicts a flowchart for describing a preferred
embodiment of performing processing in accordance with
configured charters, as described by block 5744. The
CHARTERS2DO list from FIG. 57 is processed by FIG. 61.
FIG. 61 (and/or FIG. 57 (e.g. blocks 5718/5756)) is respon-
sible for processing grammar specification privileges. Block
5744 processing begins at block 6102 and continues to block
6104. Block 6104 gets the next charter (or first charter on first
encounter to block 6104 from block 6102) from the
CHARTERS2DO list and continues to block 6106 to check if
all charters have already been processed from the list. Block
6104 begins an iterative loop (blocks 6104 through 6162) for
processing all charters (if any) from the CHARTERS2DO
list.

Ifblock 6106 determines there is a charter to process, then
processing continues to block 6108 for instantiating any vari-
ables that may be referenced in the charter, and then continues
to block 6110. Charter parts are scanned for referenced vari-
ables and they are instantiated so that the charter is intact
without a variable reference. The charter internalized form
may be modified to accommodate instantiation(s). FIG. 57
may have already instantiated variables for charter elimina-
tion processing. Block 6108 is typically not required since the
variables were likely already instantiated when internalized
to a preferred embodiment CHARTERS2DO processable
form, and also processed by previous blocks of FIG. 57 pro-
cessing. Nevertheless, block 6108 is present to cover other
embodiments, and to handle any instantiations which were
not already necessary. In some embodiments, block 6108 is
not required since variable instantiations can occur as needed
when processing the individual charter parts during subse-
quent blocks of FIG. 61 processing. Block 6106 would con-
tinue to block 6110 when a block 6108 is not required.

Block 6110 begins an iterative loop (blocks 6110 through
6118) for processing all special terms from the current charter
expression. Block 6110 gets the next (or first) special term (if
any) from the charter expression and continues to block 6112.
A special term is a BNF grammar WDRTerm, AppTerm, or
atomic term. If block 6112 determines a special term was
found for processing from the expression, then block 6114
accesses privileges to ensure the special term is privileged for
use. Appropriate permissions 5802 are accessed in this appli-
cable context of FIG. 57 processing. Block 6114 then contin-
ues to block 6116. Blocks 6114 and 6116 may not be required
since unprivileged charters were already eliminated in previ-
ous blocks of FIG. 57 processing (e.g. see blocks 5718 and
5756). Nevertheless, blocks 6114 and 6116 are shown to
cover other embodiments, and to ensure unprivileged charters
are treated ineffective. Depending on an embodiment, blocks
5718 and 5756 may only perform obvious eliminations. In
other embodiments, there may be no blocks 5718 or 5756 so

10

15

20

25

30

35

40

45

50

55

60

65

220

that charter part processing occurs only in one place (i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6114 and 6116 are not required since all charter elimi-
nations based on privileges already occurred at the previous
blocks of FIG. 57 processing. Block 6112 can continue to
block 6118 when blocks 6114 and 6116 are not required.

If block 6116 determines the special term is privileged for
use (e.g. explicit privilege, or lack of a privilege denying use,
depending on privilege deployment embodiments), then
block 6118 appropriately accesses the special term data
source and replaces the expression referenced special term
with the corresponding value. Block 6118 accesses special
term data dynamically so that the terms reflect values at the
time of block 6118 processing. Block 6118 continues back to
block 6110. A WDRTerm is accessed from the in-process
WDR to FIG. 57 processing. An AppTerm is an anticipated
registered application variable accessed by a well known
name, typically with semaphore control since an asynchro-
nous application thread is writing to the variable. An atomic
term will cause access to WDR data at queue 22 or LBX
history 30, application status for applications in use at the MS
of FIG. 57 processing, system date/time, the MS ID of the MS
of FIG. 57 processing, or other appropriate data source.

Referring back to block 6116, if it is determined that the
special term of the charter expression is not privileged, then
block 6120 logs an appropriate error (e.g. to LBX history 30)
and processing continues back to block 6104 for the next
charter. An alternate block 6120 may alert the MS user, and in
some cases require the user to acknowledge the error before
continuing back to block 6104. So, the preferred embodiment
of charter processing eliminates a charter from being pro-
cessed if any single part of the charter expression is not
privileged.

Referring back to block 6112, if it is determined there are
no special terms in the expression remaining to process (or
there were none in the expression), then block 6122 evaluates
the expression to a Boolean True or False result using well
known processing for a stack based parser for expression
evaluation (e.g. See well known compiler/interpreter devel-
opment techniques (e.g. “Algorithms+Data
Structures=Programs” by Nicklaus Wirth published by Pren-
tice-Hall, Inc. 1976)). Block 6122 implements atomic opera-
tors using the WDR queue 22, most recent WDR for this MS,
LBX history 30, or other suitable MS data. Any Invocation is
also invoked for resulting to a True or False wherein a default
is enforced upon no return code, or no suitable return code,
returned. Invocation parameters that had special terms would
have been already been updated by block 6118 to eliminate
special terms prior to invocation. Thereafter, if block 6124
determines the expression evaluated to False, then processing
continues back to block 6104 for the next charter (i.e.
expression=False implies to prevent (not cause) the action(s)
of'the charter). If block 6124 determines the expression evalu-
ated to True, then processing continues to block 6126.

Block 6126 begins an iterative loop (blocks 6126 through
6162) for processing all actions from the current charter.
Block 6126 gets the next (or first) action (if any) from the
charter and continues to block 6128. There should be at least
one action in a charter provided to FIG. 61 processing since
the preferred embodiment of FIG. 57 processing will have
eliminated any placeholder charters without an action speci-
fied (e.g. charters with no actions preferably eliminated at
blocks 5740 as part of the merge process, at block 5742, or as
part of previous FIG. 57 processing to form privileged charter
lists). If block 6128 determines an unprocessed action was
found for processing, then block 6130 initializes a REMOTE

APPLE

EXHIBIT 1001 - PAGE 0374

US 9,088,868 B2

221

variable to No. Thereafter, if it is determined at block 6132
that the action has a BNF grammar Host specification, then
block 6134 accesses privileges and block 6136 checks if the
action is privileged for being executed at the Host specified.
The appropriate permissions 5802 are accessed at block 6134
in this applicable context of F1G. 57 processing. [f block 6136
determines the action is privileged for running at the Host,
then block 6138 sets the REMOTE variable to the Host speci-
fied and processing continues to block 6140. If block 6136
determines the action is not privileged for running at the Host,
then processing continues to block 6120 for error processing
already described above. If block 6132 determines there was
no Host specified for the action, processing continues directly
to block 6140. Blocks 6134 and 6136 may not be required
since unprivileged charters were already eliminated in previ-
ous blocks of FIG. 57 processing (e.g. see blocks 5718 and
5756). Nevertheless, blocks 6134 and 6136 are shown to
cover other embodiments, and to ensure unprivileged charters
are treated ineffective. Depending on an embodiment, blocks
5718 and 5756 may only perform obvious eliminations. In
other embodiments, there may be no blocks 5718 or 5756 so
that charter part processing occurs only in one place (i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6134 and 6136 are not required since all charter elimi-
nations based on privileges already occurred at the previous
blocks of FIG. 57 processing. Block 6132 can continue to
block 6138 when blocks 6134 and 6136 are not required and
a Host was specified with the action.

Block 6140 accesses appropriate permissions 5802 in this
applicable context of FIG. 57 processing for ensuring the
command and operand are appropriately privileged. Thereaf-
ter, if block 6142 determines that the action’s command and
operand are not privileged, then processing continues to
block 6120 for error processing already described. If block
6142 determines the action’s command and operand are to be
effective, then processing continues to block 6144. Blocks
6140 and 6142 may not be required since unprivileged char-
ters were already eliminated in previous blocks of FIG. 57
processing (e.g. see blocks 5718 and 5756). Nevertheless,
blocks 6140 and 6142 are shown to cover other embodiments,
and to ensure unprivileged charters are treated ineffective.
Depending on an embodiment, blocks 5718 and 5756 may
only perform obvious eliminations. In other embodiments,
there may be no blocks 5718 or 5756 so that charter part
processing occurs only in one place (i.e. FIG. 61) to achieve
better MS performance by preventing more than one scan
over charter data. In another embodiment, blocks 6140 and
6142 are not required since all charter eliminations based on
privileges already occurred at the previous blocks of FIG. 57
processing. Block 6138, and the No condition of block 6132,
would continue to block 6144 when blocks 6140 and 6142 are
not required.

Block 6144 begins an iterative loop (blocks 6144 through
6152) for processing all parameter special terms of the cur-
rent charter. Block 6144 gets the next (or first) parameter
special term (if any) and continues to block 6146. A special
term is a BNF grammar WDRTerm, AppTerm, or atomic term
(as described above). If block 6146 determines a special term
was found for processing from the parameter list, then block
6148 accesses privileges to ensure the special term is privi-
leged for use. The appropriate permissions 5802 are accessed
in this applicable context of FIG. 57 processing. Block 6148
then continues to block 6150. Blocks 6148 and 6150 may not
be required since unprivileged charters were already elimi-
nated in previous blocks of FIG. 57 processing (e.g. see
blocks 5718 and 5756). Nevertheless, blocks 6148 and 6150

10

15

25

30

35

40

45

50

55

65

222

are shown to cover other embodiments, and to ensure unprivi-
leged charters are treated ineffective. Depending on an
embodiment, blocks 5718 and 5756 may only perform obvi-
ous eliminations. In other embodiments, there may be no
blocks 5718 or 5756 so that charter part processing occurs
only in one place (i.e. FIG. 61) to achieve better MS perfor-
mance by preventing more than one scan over charter data. In
another embodiment, blocks 6148 and 6150 are not required
since all charter eliminations based on privileges already
occurred at the previous blocks of FIG. 57 processing. Block
6146 can continue to block 6152 when blocks 6148 and 6150
are not required.

If block 6150 determines the special term is privileged for
use (e.g. explicit privilege, or lack of a privilege denying use,
depending on privilege deployment embodiments), then
block 6152 appropriately accesses the special term data
source and replaces the parameter referenced special term
with the corresponding value. Block 6152 accesses special
term data dynamically so that the terms reflect values at the
time of FIG. 61 block 6152 processing. Block 6152 continues
back to block 6144. A WDRTerm, AppTerm, and atomic term
are accessed in a manner analogous to accessing them at
block 6118.

Referring back to block 6150, if it is determined that the
special term of the parameter list is not privileged, then pro-
cessing continues to block 6120 for error processing already
described. Referring back to block 6146, if it is determined
there are no special terms in the parameter list remaining to
process (or there were none), then block 6154 evaluates each
and every parameter expression to a corresponding value
using well known processing for a stack based parser for
expression evaluation (e.g. See well known compiler/inter-
preter development techniques (e.g. “Algorithms+Data
Structures=Programs” by Nicklaus Wirth published by Pren-
tice-Hall, Inc. 1976)). Block 6154 implements the atomic
operators using the WDR queue 22, most recent WDR for this
MS, LBX history 30, or other suitable MS data. Any Invoca-
tion is also invoked for resulting to Data or Value wherein a
default is enforced upon no returned data. Invocation param-
eters that had special terms would have been updated at block
6152 to eliminate special terms prior to invocation. Block
6154 ensures each parameter is in a ready to use form to be
processed with the command and operand. Each parameter
results in embodiments of a data value, a data value resulting
from an expression, a data reference (e.g. pointer), or other
embodiments well known in the art of passing parameters
(arguments) to a function, procedure, or script for processing.
Thereafter, if block 6156 determines the REMOTE variable is
set to No (i.e. “No” equals a value distinguishable from any
Host specification for having the meaning of “No Host Speci-
fication™), then processing continues to block 6158 where the
ExecuteAction procedure of FIG. 62 is invoked with the
command, operand and parameters of the action in process.
Upon return from the procedure of FIG. 62, processing con-
tinues back to block 6126 for any remaining charter actions.
If block 6156 determines the REMOTE variable is set to a
Host for running the action, then processing continues to
block 6160 for preparing send data procedure parameters for
performing a remote action (of the command, operand and
parameters), and then invoking the send data procedure of
FIG. 75A for performing the action at the remote MS (also see
FIG. 75B). Processing then continues back to block 6126. An
alternate embodiment will loop on multiple BNF grammar
Host specifications for multiple invocations of the send data
procedure (i.e. when multiple Host specifications are sup-
ported). Another embodiment to FIG. 61 processing permits
multiple actions with a single Host specification.

APPLE

EXHIBIT 1001 - PAGE 0375

US 9,088,868 B2

223

Referring back to block 6128, if it is determined all current
charter actions are processed, then processing continues to
block 6104 for any next charter to process. Referring back to
block 6106, if it is determined all charters have been pro-
cessed, processing terminates at block 6164.

Depending on various embodiments, there may be obvious
error handling in FIG. 61 charter parsing. Preferably, the
charters were reasonably validated prior to being configured
and/or previously processed/parsed (e.g. FIG. 57 processing).
Also, TimeSpec and/or MSRelevance information may be
used in FIG. 61 so that charter part processing occurs only in
one place (i.e. FIG. 61 rather than FIG. 57) to achieve better
MS performance by preventing more than one scan over
charter data. Some embodiments of FIG. 61 may be the single
place where charters are eliminated based on privileges,
TimeSpecs, MSRelevance, or any other criteria discussed
with FIG. 57 for charter elimination to improve performance
(i.e. asingle charter parse when needed). Third party MSs (i.e.
those that are not represented by the in-process WDR and the
MS of FIG. 57 processing) can be affected by charter actions
(e.g. via Host specification, privileged action, privileged fea-
ture, etc).

Preferably, statistics are maintained throughout FIG. 61
processing for how charters were processed, which charters
became effective, why they became effective, which com-
mands were processed (e.g. invocation of FIG. 62), etc.

With reference now to FIG. 75A, depicted is a flowchart for
describing a preferred embodiment of a procedure for send-
ing data to a remote MS, for example to perform a remote
action as invoked from block 6162. FIG. 75A is preferably of
linkable PIP code 6. The purpose is for the MS of FIG. 75A
processing (e.g. a first, or sending, MS) to transmit data to
other MSs (e.g. at least a second, or receiving, MS), for
example an action (command, operand, and any
parameter(s)), or specific processing for a particular com-
mand (e.g. Send atomic command). Multiple channels for
sending, or broadcasting should be isolated to modular send
processing (feeding from a queue 24). In an alternative
embodiment having multiple transmission channels visible to
processing of FIG. 75A (e.g. block 6162), there can be intel-
ligence to drive each channel for broadcasting on multiple
channels, either by multiple send threads for FIG. 75A pro-
cessing, FIG. 75A loop processing on a channel list, and/or
passing channel information to send processing feeding from
queue 24. If FIG. 75A does not transmit directly over the
channel(s) (i.e. relies on send processing feeding from queue
24), an embodiment may provide means for communicating
the channel for broadcast/send processing when interfacing
to queue 24 (e.g. incorporate a channel qualifier field with
send packet inserted to queue 24).

In any case, see detailed explanations of FIGS. 13A
through 13C, as well as long range exemplifications shown in
FIGS. 50A through 50C, respectively. Processing begins at
block 7502, continues to block 7504 where the caller param-
eter(s) passed to FIG. 75A processing (e.g. action for remote
execution, or command for remote execution) are used for
sending at least one data packet containing properly format-
ted data for sending, and for being properly received and
interpreted. Block 7504 may reformat parameters into a suit-
able data packet(s) format so the receiving MS can process
appropriately (see FIG. 75B). Depending on the present dis-
closure embodiment, any reasonable supported identity (ID/
IDType) is a valid target (e.g. as derived from a recipient or
system parameter). Thereafter, block 7506 waits for an
acknowledgement from the receiving MS if the communica-
tion embodiment in use utilizes that methodology. In one
embodiment, the send data packet is an unreliable datagram

10

15

20

25

30

35

40

45

50

55

60

65

224

that will most likely be received by the target MS. In another
embodiment, the send data packet is reliably transported data
which requires an acknowledgement that it was received in
good order. In any case, block 7506 continues to block 7508.

Block 7504 formats the data for sending in accordance
with the specified delivery method, along with necessary
packet information (e.g. source identity, wrapper data, etc),
and sends data appropriately. For a broadcast send, block
7504 broadcasts the information (using a send interface like
interface 1906) by inserting to queue 24 so that send process-
ing broadcasts data 1302 (e.g. on all available communica-
tions interface(s) 70), for example as far as radius 1306, and
processing continues to block 7506. The broadcast is for
reception by data processing systems (e.g. MSs) in the vicin-
ity of FIGS. 13 A through 13C, as further explained by FIGS.
50A through 50C which includes potentially any distance.
The targeted MS should recognize that the data is meant for it
and receives it. For a targeted send, block 7504 formats the
data intended for recognition by the receiving target. In an
embodiment wherein usual MS communications data 1302 of
the MS is altered to contain CK 1304 for listening MSs in the
vicinity, send processing feeding from queue 24, caused by
block 7504 processing, will place information as CK 1304
embedded in usual data 1302 at the next opportune time of
sending usual data 1302. As the MS conducts its normal
communications, transmitted data 1302 contains new data
CK 1304 to be ignored by receiving MS other character 32
processing, but to be found by listening MSs within the vicin-
ity which anticipate presence of CK 1304. Otherwise, when
LN-Expanse deployments have not introduced CK 1304 to
usual data 1302 communicated on a receivable signal by MSs
in the vicinity, FIG. 75A sends/broadcasts new data 1302.

Block 7506 waits for a synchronous acknowledgement if
applicable to the send of block 7504 until either receiving one
or timing out. Block 7506 will not wait if no ack/response is
anticipated, in which case block 7506 sets status for block
7508 to “got it”. If a broadcast was made, one (1) acknowl-
edgement may be all that is necessary for validation, or all
anticipated targets can be accounted for before deeming a
successful ack. Thereafter, if block 7508 determines an appli-
cable ack/response was received (i.e. data successfully sent/
received), or none was anticipated (i.e. assume got it), then
processing continues to block 7510 for potentially processing
the response. Block 7510 will process the response if it was
anticipated for being received as determined by data sent at
block 7504. Thereafter, block 7512 performs logging for
success (e.g. to LBX History 30). If block 7508 determines an
anticipated ack was not received, then block 7512 logs the
attempt (e.g. to LBX history 30). An alternate embodiment to
block 7514 will log an error and may require a user action to
continue processing so a user is confirmed to have seen the
error. Both blocks 7512 and 7514 continue to block 7516
where the caller (invoker) is returned to for continued pro-
cessing (e.g. back to block 6162).

With reference now to FIG. 75B, depicted is a flowchart for
describing a preferred embodiment of processing for receiv-
ing execution data from another MS, for example action data
for execution, or processing of a particular atomic command
for execution. FIG. 75B processing describes a Receive
Execution Data (RXxED) process worker thread, and is of PIP
code 6. There may be many worker threads for the RxED
process, just as described for a 19xx process. The receive
execution data (RXED) process is to fit identically into the
framework of architecture 1900 as other 19xx processes, with
specific similarity to process 1942 in that there is data
received from receive queue 26, the RXED thread(s) stay
blocked on the receive queue until data is received, and a

APPLE

EXHIBIT 1001 - PAGE 0376

US 9,088,868 B2

225

RxED worker thread sends data as described (e.g. using send
queue 24). Blocks 1220 through 1240, blocks 1436 through
1456 (and applicable invocation of FIG. 18), block 1516,
block 1536, blocks 2804 through 2818, FIG. 29A, FIG. 29B,
and any other applicable architecture 1900 process/thread
framework processing is to adapt for the new RxED process.
For example, the RXED process is initialized as part of the
enumerated set at blocks 1226 (e.g. preferably next to last
member of set) and 2806 (e.g. preferably second member of
set) for similar architecture 1900 processing. Receive pro-
cessing identifies targeted/broadcasted data destined for the
MS of FIG. 75B processing. An appropriate data format is
used, for example using X.409 encoding of FIGS. 33A
through 33C for some subset of data packet(s) received
wherein RxED thread(s) purpose is for the MS of FIG. 75B
processing to respond to incoming data. It is recommended
that validity criteria set at block 1444 for RxED-Max be set as
high as possible (e.g. 10) relative performance considerations
of architecture 1900, to service multiple data receptions
simultaneously. Multiple channels for receiving data fed to
queue 26 are preferably isolated to modular receive process-
ing.

In an alternative embodiment having multiple receiving
transmission channels visible to the RXED process, there can
be a RxED worker thread per channel to handle receiving on
multiple channels simultaneously. If RxED thread(s) do not
receive directly from the channel, the preferred embodiment
of FIG. 75B would not need to convey channel information to
RxED thread(s) waiting on queue 24 anyway. Embodiments
could allow specification/configuration of many RxED
thread(s) per channel.

A RxED thread processing begins at block 7552, continues
to block 7554 where the process worker thread count RxED-
Ctis accessed and incremented by 1 (using appropriate sema-
phore access (e.g. RXED-Sem)), and continues to block 7556
for retrieving from queue 26 sent data (using interface like
interface 1948), perhaps a special termination request entry,
and only continues to block 7558 when a record of data (e.g.
action for remote execution, particular atomic command, or
termination record) is retrieved. In one embodiment, receive
processing deposits data as record(s) to queue 26. In another
embodiment, XML is received and deposited to queue 26, or
some other suitable syntax is received as derived from the
BNF grammar. In another embodiment, receive processing
receives data in one format and deposits a more suitable
format for FIG. 75B processing.

Block 7556 stays blocked on retrieving from queue 26 until
data is retrieved, in which case processing continues to block
7558. If block 7558 determines a special entry indicating to
terminate was not found in queue 26, processing continues to
block 7560. There are various embodiments for RxED
thread(s), RxCD thread(s), thread(s) 1912 and thread(s) 1942
to feed off a queue 26 for different record types, for example,
separate queues 26A, 26B, 26C and 26D, or a thread target
field with different record types found at queue 26 (e.g. like
field 2400a). In another embodiment, there are separate
queues 26D and 26E for separate processing of incoming
remote action and send command data. In another embodi-
ment, thread(s) 1912 are modified with logic of RXxED
thread(s) to handle remote actions and send command data
requests, since thread(s) 1912 are listening for queue 26 data
anyway. In yet another embodiment, there are distinct threads
and/or distinct queues for processing each kind of an atomic
command to FIG. 75B processing (i.e. as processed by blocks
7578 through 7584).

Block 7560 validates incoming data for this targeted MS
before continuing to block 7562. A preferred embodiment of

30

40

45

65

226

receive processing already validated the data is intended for
this MS by having listened specifically for the data, or by
having already validated it is at the intended MS destination
(e.g. block 7558 can continue directly to block 7564 (no block
7560 and block 7562 required)). If block 7562 determines the
data is valid for processing, then block 7564 checks the data
for its purpose (remote action or particular command). If
block 7564 determines the data received is for processing a
remote action, then block 7566 accesses source information,
the command, the operand, and parameters from the data
received. Thereafter, block 7568 accesses privileges for each
of'the remote action parts (command, operand, parameters) to
ensure the source has proper privileges for running the action
at the MS of FIG. 75B processing. Depending on embodi-
ments, block 7568 may include evaluating the action for
elaborating special terms and/or expressions as described for
FIG. 61 (blocks 6140 through 6154), although the preferred
embodiment preferably already did that prior to transmitting
the remote action for execution (e.g. remote action already
underwent detailed privilege assessment). However, in some
embodiments where privileges are only maintained locally,
the action processing of FIG. 61 processing would be
required at block 7568 to check privileges where appropriate
in processing the action. In such embodiments, FIG. 61 would
process local actions as disclosed, but would not process
actions known to be for remote execution (i.e. Host specifi-
cation) since a FIG. 75B embodiment would include FIG. 61
processing for performing privilege check processing to
determine that sufficient privileges are granted. Thus,
depending on the present disclosure embodiment, block 7568
may include little privilege verification, no privilege verifica-
tion, or may include all applicable action privilege verifica-
tion discussed already in FIG. 61.

In yet another embodiment, special terms processing of
FIG. 61 can be delayed until FIG. 75B processing (e.g. block
7566 continues to a new block 7567 which continues to block
7568). It may be advantageous to have new block 7567 elabo-
rate/evaluate special terms at the MS of FIG. 75B processing
in some embodiments. In a further embodiment, a syntax or
qualifier can be used to differentiate where to perform special
term elaboration/evaluation.

Thereafter, if block 7570 determines the action for execu-
tion is acceptable (and perhaps privileged, or privileged per
source, or there was no check necessary), then block 7572
invokes the execute action procedure of FIG. 62 with the
action (command, operand, and any parameter(s)), completes
at block 7574 an acknowledgement to the originating MS of
the data received at block 7556, and block 7576 sends/broad-
casts the acknowledgement (ack), before continuing back to
block 7556 for the next incoming execution request data.
Block 7576 sends/broadcasts the ack (using a send interface
like interface 1946) by inserting to queue 24 so that send
processing transmits data 1302, for example as far as radius
1306. Embodiments will use the different correlation meth-
ods already discussed above, to associate an ack with a send.

If block 7570 determines the data is not acceptable/privi-
leged, then processing continues directly back to block 7556.
For security reasons, it is best not to respond with an error. It
is best to ignore the data entirely. In another embodiment, an
error may be returned to the sender for appropriate error
processing and reporting.

Referring back to block 7564, if it is determined that the
execution data is for processing a particular atomic com-
mand, then processing continues to block 7578. Block 7578
accesses the command (e.g. send), the operand, and param-
eters from the data received. Thereafter, block 7580 accesses
privileges for each of the parts (command, operand, param-

APPLE

EXHIBIT 1001 - PAGE 0377

US 9,088,868 B2

227

eters) to ensure the source has proper privileges for running
the atomic command at the MS of FIG. 75B processing.
Depending on embodiments, block 7580 may include evalu-
ating the command for elaborating special terms and/or
expressions as described for FIG. 61 (blocks 6140 through
6154), although the preferred embodiment preferably already
did that prior to transmitting the command for execution.
However, in some embodiments where privileges are only
maintained locally, the privilege processing of FIG. 61 would
be required at block 7580 to check privileges where appro-
priate in processing the command. In such embodiments,
FIG. 61 would process local actions as disclosed, but would
not process actions known to be for remote execution (i.e.
Host specification) since a FIG. 75B embodiment would
include FIG. 61 processing for performing privilege check
processing to determine that sufficient privileges are granted.
Thus, depending on the present disclosure embodiment,
block 7580 may include little privilege verification, no privi-
lege verification, or may include all applicable action privi-
lege verification discussed already in FIG. 61.

In yet another embodiment, special terms processing of
FIG. 61 can be delayed until FIG. 75B processing (e.g. block
7566 continues to a new block 7567 which continues to block
7568). It may be advantageous to have new block 7567 elabo-
rate/evaluate special terms at the MS of FIG. 75B processing
in some embodiments. In a further embodiment, a syntax or
qualifier can be used to differentiate where to perform special
term elaboration/evaluation.

Thereafter, if block 7582 determines the command (Com-
mand, Operand, Parameters) for execution is acceptable (and
perhaps privileged, or privileged per source, or there was no
check necessary), then block 7584 performs the command
locally at the MS of FIG. 75A processing. Thereafter, block
7586 checks if a response is needed as a result of command
(e.g. Find command) processing at block 7584. If block 7586
determines aresponse is to be sent back to the originating MS,
7574 completes a response to the originating MS of the data
received at block 7556, and block 7576 sends/broadcasts the
response, before continuing back to block 7556 for the next
incoming execution request data. Block 7576 sends/broad-
casts the response containing appropriate command results
(using a send interface like interface 1946) by inserting to
queue 24 so that send processing transmits data 1302, for
example as far as radius 1306. Embodiments will use the
different correlation methods already discussed above, to
associate a response with a send.

If block 7586 determines a response is not to be sent back
to the originating MS, then processing continues directly
back to block 7556. If block 7582 determines the data is not
acceptable/privileged, then processing continues back to
block 7556. For security reasons, it is best not to respond with
an error. It is best to ignore inappropriate (e.g. unprivileged,
unwarranted) data entirely. In another embodiment, an error
may be returned to the sender for appropriate error processing
and reporting.

Blocks 7578 through 7584 are presented generically so that
specific atomic command descriptions below provide appro-
priate interpretation and processing. The actual implementa-
tion may replace blocks 7578 through 7584 with program-
ming case statement conditional execution for each atomic
command supported.

Referring back to block 7562, if it is determined that the
data is not valid for the MS of FIG. 75 processing, processing
continues back to block 7556. Referring back to block 7558,
if a worker thread termination request was found at queue 26,
then block 7586 decrements the RxED worker thread count
by 1 (using appropriate semaphore access (e.g. RkED-Sem)),

10

15

20

25

30

35

40

45

50

55

60

65

228

and RxED thread processing terminates at block 7588. Block
7586 may also check the RxED-Ct value, and signal the
RxED process parent thread that all worker threads are ter-
minated when RxED-Ct equals zero (0).

Block 7576 causes sending/broadcasting data 1302 con-
taining CK 1304, depending on the type of MS, wherein CK
1304 contains ack/response information prepared. In the
embodiment wherein usual MS communications data 1302 of
the MS is altered to contain CK 1304 for listening MSs in the
vicinity, send processing feeding from queue 24, caused by
block 7576 processing, will place ack/response information
as CK 1304 embedded in usual data 1302 at the next oppor-
tune time of sending usual data 1302. As the MS conducts its
normal communications, transmitted data 1302 contains new
data CK 1304 to be ignored by receiving MS other character
32 processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable signal
by MSs in the vicinity, FIG. 75B sends/broadcasts new ack/
response data 1302.

In an alternate embodiment, remote action and/or atomic
command data records contain a sent date/time stamp field of
when the data was sent by a remote MS, and a received
date/time stamp field (like field 2490c¢) is processed at the MS
in FIG. 75B processing. This would enable calculating a
TDOA measurement while receiving data (e.g. actions or
atomic command) that can then be used for location determi-
nation processing as described above.

For other acceptable receive processing, methods are well
known to those skilled in the art for “hooking” customized
processing into application processing of sought data
received, just as discussed with FIG. 44B above (e.g. mail
application, callback function API, etc). Thus, there are well
known methods for processing data in context of this disclo-
sure for receiving remote actions and/or atomic command
data from an originating MS to a receiving MS, for example
when using email. Similarly, as described above, SMS mes-
sages can be used to communicate data, albeit at smaller data
exchange sizes. The sending MS may break up larger portions
of data which can be sent as parse-able text to the receiving
MS. It may take multiple SMS messages to communicate the
data in its entirety.

Regardless of the type of receiving application, those
skilled in the art recognize many clever methods for receiving
data in context of a MS application which communicates in a
peer to peer fashion with another MS (e.g. callback
function(s), API interfaces in an appropriate loop which can
remain blocked until sought data is received for processing,
polling known storage destinations of data received, or other
applicable processing). FIGS. 75A and 75B are an embodi-
ment of MS to MS communications, referred to with the
acronym MS2MS.

FIG. 62 depicts a flowchart for describing a preferred
embodiment of a procedure for performing an action corre-
sponding to a configured command, namely an ExecuteAc-
tion procedure. Only a small number of commands are illus-
trated. The procedure starts at block 6202 and continues to
block 6204 where parameters of the Command, Operand, and
Parameters are accessed (see BNF grammar), depending on
an embodiment (e.g. parameters passed by reference or by
value). Preferably, FIG. 62 procedure processing is passed
parameters by reference (i.e. by address) so they are accessed
as needed by FIG. 62 processing. Block 6204 continues to
block 6206.

If it is determined at block 6206 that the action atomic
command is a send command, then processing continues to

APPLE

EXHIBIT 1001 - PAGE 0378

US 9,088,868 B2

229

block 6208 where the send command action procedure of
FIG. 63A is invoked. The send command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the send command action procedure, block 6208
continues to block 6256. Block 6256 returns to the calling
block of processing (e.g. block 6158) that invoked FIG. 62
processing. If block 6206 determines the action atomic com-
mand is not a send command, then processing continues to
block 6210. If it is determined at block 6210 that the action
atomic command is a notify command, then processing con-
tinues to block 6212 where the notify command action pro-
cedure of FIG. 64A is invoked. The notify command action
procedure is invoked with parameters including the passed
parameters of Operand and Parameters discussed for block
6204. Upon return from the notify command action proce-
dure, block 6212 continues to block 6256. If block 6210
determines the action atomic command is not a notify com-
mand, then processing continues to block 6214. If it is deter-
mined at block 6214 that the action atomic command is a
compose command, then processing continues to block 6216
where the compose command action procedure of FIG. 65A
is invoked. The compose command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the compose command action procedure, block
6216 continues to block 6256. If block 6214 determines the
action atomic command is not a compose command, then
processing continues to block 6218. If it is determined at
block 6218 that the action atomic command is a connect
command, then processing continues to block 6220 where the
connect command action procedure of FIG. 66A is invoked.
The connect command action procedure is invoked with
parameters including the passed parameters of Operand and
Parameters discussed for block 6204. Upon return from the
connect command action procedure, block 6220 continues to
block 6256. If block 6218 determines the action atomic com-
mand is nota connect command, then processing continues to
block 6222. If it is determined at block 6222 that the action
atomic command is a find command, then processing contin-
ues to block 6224 where the find command action procedure
of FIG. 67A is invoked. The find command action procedure
is invoked with parameters including the passed parameters
of Operand and Parameters discussed for block 6204. Upon
return from the find command action procedure, block 6224
continues to block 6256. If block 6222 determines the action
atomic command is not a find command, then processing
continues to block 6226. If it is determined at block 6226 that
the action atomic command is an invoke command, then
processing continues to block 6228 where the invoke com-
mand action procedure of FIG. 68A is invoked. The invoke
command action procedure is invoked with parameters
including the passed parameters of Operand and Parameters
discussed for block 6204. Upon return from the invoke com-
mand action procedure, block 6228 continues to block 6256.
Ifblock 6226 determines the action atomic command is notan
invoke command, then processing continues to block 6230. If
it is determined at block 6230 that the action atomic command
is a copy command, then processing continues to block 6232
where the copy command action procedure of FIG. 69A is
invoked. The copy command action procedure is invoked
with parameters including the passed parameters of Operand
and Parameters discussed for block 6204. Upon return from
the copy command action procedure, block 6232 continues to
block 6256. If block 6230 determines the action atomic com-
mand is not a copy command, then processing continues to
block 6234. If it is determined at block 6234 that the action

10

15

20

25

30

35

40

45

50

55

60

65

230

atomic command is a discard command, then processing
continues to block 6236 where the discard command action
procedure of FIG. 70A is invoked. The discard command
action procedure is invoked with parameters including the
passed parameters of Operand and Parameters discussed for
block 6204. Upon return from the discard command action
procedure, block 6236 continues to block 6256. If block 6234
determines the action atomic command is not a discard com-
mand, then processing continues to block 6238. If it is deter-
mined at block 6238 that the action atomic command is a
move command, then processing continues to block 6240
where the move command action procedure of FIG. 71A is
invoked. The move command action procedure is invoked
with parameters including the passed parameters of Operand
and Parameters discussed for block 6204. Upon return from
the move command action procedure, block 6240 continues
to block 6256. If block 6238 determines the action atomic
command is not a move command, then processing continues
to block 6242. If it is determined at block 6242 that the action
atomic command is a store command, then processing con-
tinues to block 6244 where the store command action proce-
dure of FIG. 72A is invoked. The store command action
procedure is invoked with parameters including the passed
parameters of Operand and Parameters discussed for block
6204. Upon return from the store command action procedure,
block 6244 continues to block 6256. If block 6242 determines
the action atomic command is not a store command, then
processing continues to block 6246. If it is determined at
block 6246 that the action atomic command is an administrate
command, then processing continues to block 6248 where the
administrate command action procedure of FIG. 73A is
invoked. The administrate command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the administrate command action procedure,
block 6248 continues to block 6256. If block 6246 determines
the action atomic command is not an administrate command,
then processing continues to block 6250. If it is determined at
block 6250 that the action atomic command is a change
command, then processing continues to block 6252 where the
change command action procedure of FIG. 74A is invoked.
The change command action procedure is invoked with
parameters including the passed parameters of Operand and
Parameters discussed for block 6204. Upon return from the
change command action procedure, block 6252 continues to
block 6256. If block 6250 determines the action atomic com-
mand is not a change command, then processing continues to
block 6254 for handling other supported action atomic com-
mands on the MS. There are many commands that can be
implemented on a MS. Block 6254 continues to block 6256
for processing as already described. FIGS. 60 through 62
describe action processing for recognized events to process
WDRs.

FIGS. 63 A through 74C document a MS toolbox of useful
actions. FIGS. 63 A through 74C are in no way intended to
limit LBX functionality with a limited set of actions, but
rather to demonstrate a starting list of tools. New atomic
commands and operands can be implemented with contextual
“plug-in” processing code, API plug-in processing code,
command line invoked plug-in processing code, local data
processing system (e.g. MS) processing code, MS2MS plug-
in processing code, or other processing, all of which are
described below. The “know how” of atomic commands is
preferably isolated for a variety of “plug-in” processing. The
charter and privilege platform is designed for isolating the

APPLE

EXHIBIT 1001 - PAGE 0379

US 9,088,868 B2

231

complexities of privileged actions to “plug-in” methods of
new code (e.g. for commands and/or operands) wherever
possible.

Together with processing disclosed above, provided is a
user friendly development platform for quickly building LBX
applications wherein the platform enables conveniently
enabled LBX application interoperability and processing,
including synchronized processing, across a plurality of MSs.
Some commands involve a plurality of MSs and/or data pro-
cessing systems. Others don’t explicitly support a plurality of
MSs and data processing systems, however that is easily
accomplished for every command since a single charter
expression can cause a plurality of actions anyway. For
example, if a command does not support a plurality of MSs in
a single command action, the plurality of MSs is supported
with that command through specifying a plurality of identical
command actions in the charter configuration for each desired
MS. Actions provided in this LBX release enable a rich set of
LBX features and functionality for:

Desired local MS LBX processing;

Desired peer MS LBX processing relative permissions pro-

vided; and

Desired MS LBX processing from a global perspective of
a plurality of MSs. MS operating system resources of
memory, storage, semaphores, and applications and
application data is made accessible to other MSs as
governed by permissions. Thus, a single MS can become
a synchronization point for any plurality of MSs, and
synchronized processing can be achieved across a plu-
rality of independently operating MSs.

There are many different types of actions, commands, oper-
ands, parameters, etc that are envisioned, but embodiments
share at least the following fundamental characteristics:

1) Syntax is governed by the LBX BNF grammar;

2) Command is a verb for performing an action (i.e. atomic
command);

3) Operand is an object which provides what is acted upon
by the Command—e.g. brings context of how to process
Command (i.e. atomic operand); and

4) Parameters are anticipated by a combination of Com-
mand and Operand. Each parameter can be a constant, of
any data type, or a resulting evaluation of any arithmetic
or semantic expression, which may include atomic
terms, WDRTerms, AppTerms, atomic operators, etc
(see BNF grammar). Parameter order, syntax, seman-
tics, and variances of specification(s) are anticipated by
processing code. Obvious error handling is incorporated
in action processing.

Syntax and reasonable validation should be performed at
the time of configuration, although it is preferable to check for
errors at run time of actions as well. Various embodiments
may or may not validate at configuration time, and may or
may not validate at action processing time. Validation should
be performed at least once to prevent run time errors from
occurring. Obvious error handling is assumed present when
processing commands, such error handling preferably includ-
ing the logging of the error to LBX History 30 and/or notify-
ing the user of the error with, or without, request for the user
to acknowledge the reporting of error.

FIGS. 63 A through 74C are organized for presenting three
(3) parts to describing atomic commands (e.g. 63A, 63B (e.g.
63B-1 through 63B-7), 63C):

#A=describes preferred embodiment of command action
processing;

#B=describes LBX command processing for some oper-
ands; and

20

30

40

45

60

65

232

#C=describes one embodiment of command action pro-

cessing.
Some of the #A figures highlight diversity for showing dif-
ferent methods of command processing while highlighting
that some of the methods are interchangeable for commands
(e.g. Copy and Discard processing). Also the terminology
“application” and “executable” are used interchangeably to
represent an entity of processing which can be started, termi-
nated, and have processing results. Applications (i.e.
executables) can be started as a contextual launch, custom
launch through an API or command line, or other launch
method of an executable for processing.

Atomic command descriptions are to be interpreted in the
broadest sense, and some guidelines when reading the
descriptions include:

1) Any action (Command, Operand, Parameters) can
include an additional parameter, or use an existing
parameter if appropriate (e.g. attributes) to warn an
affected user that the action is pending (i.e. about to
occur). The warning provides the user with informative
information about the action and then waits for the user
to optionally accept (confirm) the action for processing,
or cancel it;

2) In alternate embodiments, an email or similar messaging
layer may be used as a transport for conveying and
processing actions between systems. As disclosed
above, characteristic(s) of the transported distribution
will distinguish it from other distributions for processing
uniquely at the receiving system(s);

3) Identities (e.g. sender, recipient, source, system, etc)
which are targeted data processing systems for process-
ing are described as MSs, but can be a data processing
system other than a MS in some contexts provided the
identified system has processing as disclosed;

4) Obvious error handling is assumed and avoided in the
descriptions.

The reader should cross reference/compare operand
descriptions in the #B matrices for each command to appre-
ciate full exploitation of the Operand, options, and intended
embodiments since descriptions assume information found in
other commands is relevant across commands. Some operand
description information may have been omitted from a com-
mand matrix to prevent obvious duplication of information
already described for the same operand in another command.

FIG. 63A depicts a flowchart for describing a preferred
embodiment of a procedure for Send command action pro-
cessing. There are three (3) primary methodologies for car-
rying out send command processing:

1) Using email or similar messaging layer as a transport

layer;

2) Using a MS to MS communications (MS2MS) of FIGS.
75A and 75B; or

3) Processing the send command locally.

In various embodiments, any of the send command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic send command processing
begins at block 6302, continues to block 6304 for accessing
parameters of send command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
then to block 6306 for checking which “Operand” was
passed. If block 6306 determines the “Operand” indicates to
use email as the mechanism for performing the send com-
mand, then block 6308 checks if a sender parameter was
specified. If block 6308 determines a sender was specified,
processing continues to block 6312, otherwise block 6310
defaults one (e.g. valid email address for this MS) and then

APPLE

EXHIBIT 1001 - PAGE 0380

US 9,088,868 B2

233

processing continues to block 6312. Block 6312 checks if a
subject parameter was specified. If block 6312 determines a
subject was specified, processing continues to block 6316,
otherwise block 6314 defaults one (e.g. subject line may be
used to indicate to email receive processing that this is a
special email for performing atomic command (e.g. send
command) processing), and then processing continues to
block 6316. Block 6314 may specify a null email subject line.
Block 6316 checks if an attributes parameter was specified. If
block 6316 determines attributes were specified, processing
continues to block 6320, otherwise block 6318 defaults
attributes (e.g. confirmation of delivery, high priority, any
email Document Interchange Architecture (DIA) attributes or
profile specifications, etc) and then processing continues to
block 6320. Block 6318 may use email attributes to indicate
that this is a special email for send command processing while
using the underlying email transport to handle the delivery of
information. Block 6320 checks if at least one recipient
parameter was specified. [f block 6320 determines at least one
recipient was specified, processing continues to block 6324,
otherwise block 6322 defaults one (e.g. valid email address
for this MS) and then processing continues to block 6324.
Block 6322 may specify a null recipient list so as to cause an
error in later processing (detected at block 6324).

Block 6324 validates “Parameters”, some of which may
have been defaulted in previous blocks (6310, 6314, 6318 and
6322), and continues to block 6326. If bock 6326 determines
there is an error in “Parameters”, then block 6328 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller (invoker) at
block 6334. If block 6326 determines that “Parameters™ are in
good order for using the email transport, then block 6330
updates an email object in context for the send command
“Operand” and “Parameters”, block 6332 uses a send email
interface to send the email, and block 6334 returns to the
caller (e.g. block 6208). Block 6330 can use the attributes
parameter to affecthow “Parameters™ is to be interpreted. The
attributes parameter may be modified, and can be used by any
processes which receive the sent distribution. Those skilled in
the art know well known email send interfaces (e.g. APIs)
depending on a software development environment. The
email interface used at block 6332 will be one suitable for the
underlying operating system and available development envi-
ronments, for example, a standardized SMTP interface. In a
C# environment, an SMTP email interface example is:

é.mtpClient smtpCl = new SmtpClient(SMTP__SERVER_NAME);
.s.r.ntpCl.UseDefaultCredentials = true;

i\./.IailMessage objMsg;

giJstg = new MailMessage(fromAddr, toAddr, subjLn, emailBod);

smtpCl.Send(objMsg);
objMsg.Dispose();

Those skilled in the art recognize other interfaces of similar
messaging capability for carrying out the transport of an
action (e.g. Send command). Email is a preferred embodi-
ment. While there are Send command embodiments that
make using an existing transport layer (e.g. email) more suit-
able than not, even the most customized Send command
Operands can use email (instead of MS2MS) by implement-
ing one or more recognizable signature(s), indication(s), or
the like, of/in the email distribution to be used for informing

35

40

45

50

55

234

a receiving email system to treat the email uniquely for car-
rying out the present disclosure. Depending on the embodi-
ment, integrated processing code is maintained/built as part
of the email system, or processing code is “‘plugged”
(“hooked”) into an existing email system in an isolated third
party manner. Regardless, the email system receiving the
present disclosure email will identify the email as being one
for special processing. Then, email contents is parsed out and
processed according to what has been requested.

In embodiments where Send command Operands are more
attractively implemented using an existing transport layer
(e.g. email), those send commands can also be sent with
MS2MS encoded in data packet(s) that are appropriate for
processing.

Referring back to block 6306, if it is determined that the
“Operand” indicates to not use an email transport (e.g. use a
MS2MS transport for performing the send command, or send
command is to be processed locally), then block 6336 checks
if a sender parameter was specified. If block 6336 determines
a sender was specified, processing continues to block 6340,
otherwise block 6338 defaults one (e.g. valid MS ID) and then
processing continues to block 6340. Block 6340 checks if a
subject message parameter was specified. [f block 6340 deter-
mines a subject message was specified, processing continues
to block 6344, otherwise block 6342 defaults one, and then
processing continues to block 6344. Block 6342 may specify
a null message. Block 6344 checks if an attributes parameter
was specified. If block 6344 determines attributes were speci-
fied, processing continues to block 6348, otherwise block
6346 defaults attributes (e.g. confirmation of delivery, high
priority, etc) and then processing continues to block 6348.
Block 6348 checks if at least one recipient parameter was
specified. If block 6348 determines at least one recipient was
specified, processing continues to block 6352, otherwise
block 6350 defaults one (e.g. valid ID for this MS) and then
processing continues to block 6352. Block 6350 may specify
a null recipient list so as to cause an error in later processing
(detected at block 6352).

Block 6352 validates “Parameters”, some of which may
have been defaulted in previous blocks (6338, 6342, 6346 and
6350), and continues to block 6354. If bock 6354 determines
there is an error in “Parameters”, then block 6356 handles the
error appropriately (e.g. log error to LBX History and/or
notify user) and processing returns to the caller (invoker) at
block 6334. If block 6354 determines that “Parameters” are in
good order, then block 6358 updates a data object in context
for the send command “Operand” and “Parameters”, and
block 6360 begins a loop for delivering the data object to each
recipient. Block 6360 gets the next (or first) recipient from the
recipient list and processing continues to block 6362.

Ifblock 6362 determines that all recipients have been pro-
cessed, then processing returns to the caller at block 6334,
otherwise block 6364 checks the recipient to see if it matches
the ID of the MS of FIG. 63A processing (i.e. this MS). If
block 6364 determines the recipient matches this MS, then
block 6366 (see FIG. 63B discussions) performs the atomic
send command locally and processing continues back to
block 6360 for the next recipient. If block 6364 determines
the recipient is an other MS, block 6368 prepares parameters
for FIG. 75A processing, and block 6370 invokes the proce-
dure of FIG. 75A for sending the data (send command, oper-
and and parameters) to the other MS. Processing then contin-
ues back to block 6360 for the next recipient. Blocks 6366,
6368, and 7584 can use the attributes parameter to affect how
“Parameters” is to be interpreted. The attributes parameter
may be modified, and can be used by any processes which
receive the send result.

APPLE

EXHIBIT 1001 - PAGE 0381

US 9,088,868 B2

235

MS2MS processing is as already described above (see
FIGS. 75A and 75B), except FIG. 75A performs sending data
for the send command to a remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
send command. Block 7584 processes the send command
locally (like block 6366—see FIG. 63B).

InFIG. 63 A, “Parameters” for the atomic send command in
accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 63A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
63A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 63A processing
occurs (e.g. no blocks 6308 through 6328 and/or 6336
through 6356 required). In yet another embodiment, no
defaulting or some defaulting of parameters is implemented.
In some embodiments, any subset of send commands will
utilize email distributions for processing between MSs. In
other embodiments, any subset of send commands will utilize
FIGS. 75A and 75B for processing between MSs. Operations
of the send command can be carried out regardless of the
transport that is actually used to perform the send command.

FIGS. 63B-1 through 63B-7 depicts a matrix describing
how to process some varieties of the Send command (e.g. as
processed at blocks 6366 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Send command processing:

E=Email transport preferably used (blocks 6308 through

6332);

O=0Other processing (MS2MS or local) used (blocks 6336

through 6370).

Any of the Send command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Send processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “101” represents the
parameters applicable for the Send command. The Send com-
mand has the following parameters, all of which are inter-
preted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand,;
sender=The sender of the Send command, typically tied to the

originating identity of the action (e.g. email address or MS

ID). A different sender can be specified if there is an appli-

cable privilege in place, or if impersonation has been

granted;

msg/subj=A message or subject associated with Send com-
mand;

attributes=Indicators for more detailed interpretation of Send
command parameters and/or indicators for attributes to be
interpreted by external (e.g. receiving) processes affected
by the Send command result (e.g. handled appropriately by
block 7584 or receiving email system);

recipient(s)=One or more destination identities for the Send

command (e.g. email address or MS ID).

FIG. 63C depicts a flowchart for describing one embodi-
ment of a procedure for Send command action processing, as

10

15

20

25

30

35

40

45

50

55

60

65

236
derived from the processing of FIG. 63A. All operands are
implemented, and each of blocks S04 through S54 can be
implemented with any one of the methodologies described
with FIG. 63A, or any one of a blend of methodologies
implemented by FIG. 63C.

FIG. 64A depicts a flowchart for describing a preferred
embodiment of a procedure for Notify command action pro-
cessing. The Alert command and Notify command provide
identical processing. There are three (3) primary methodolo-
gies for carrying out notify command processing:

1) Using email or similar messaging layer as a transport

layer;

2) Using a MS to MS communications (MS2MS) of FIGS.

75A and 75B; or

3) Processing the notify command locally.

In various embodiments, any of the notify command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic notify command
processing begins at block 6402, continues to block 6404 for
accessing parameters of notify command “Operand” (BNF
Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 6406 for checking which
“Operand” was passed. If block 6406 determines the “Oper-
and” indicates to use email as the mechanism for performing
the notify command, then block 6408 checks if a sender
parameter was specified. If block 6408 determines a sender
was specified, processing continues to block 6412, otherwise
block 6410 defaults one (e.g. valid email address for this MS)
and then processing continues to block 6412. Block 6412
checks if a subject parameter was specified. If block 6412
determines a subject was specified, processing continues to
block 6416, otherwise block 6414 defaults one (e.g. subject
line may be used to indicate to email receive processing that
this is a special email for performing atomic command (e.g.
notify command) processing), and then processing continues
to block 6416. Block 6414 may specify a null email subject
line. Block 6416 checks if an attributes parameter was speci-
fied. If block 6416 determines attributes were specified, pro-
cessing continues to block 6420, otherwise block 6418
defaults attributes (e.g. confirmation of delivery, high prior-
ity, any email DIA attributes or profile specifications, etc) and
then processing continues to block 6420. Block 6418 may use
email attributes to indicate that this is a special email for
notify command processing while using the underlying email
transport to handle the delivery of information. Block 6420
checks if at least one recipient parameter was specified. If
block 6420 determines at least one recipient was specified,
processing continues to block 6424, otherwise block 6422
defaults one (e.g. valid email address for this MS) and then
processing continues to block 6424. Block 6422 may specify
a null recipient list so as to cause an error in later processing
(detected at block 6424).

Block 6424 validates “Parameters”, some of which may
have been defaulted in previous blocks (6410, 6414, 6418 and
6422), and continues to block 6426. If bock 6426 determines
there is an error in “Parameters”, then block 6428 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller (invoker) at
block 6434. If block 6426 determines that “Parameters™ are in
good order for using the email transport, then block 6430
updates an email object in context for the notify command
“Operand” and “Parameters”, block 6432 uses a send email
interface to notify through email, and block 6434 returns to
the caller (e.g. block 6212). Block 6430 can use the attributes
parameter to affect how “Parameters” is to be interpreted. The
attributes parameter may be modified, and can be used by any

APPLE

EXHIBIT 1001 - PAGE 0382

US 9,088,868 B2

237

processes which receive the notify. The email interface used
atblock 6432 will be one suitable for the underlying operating
system and available development environments, for
example, a standardized SMTP interface, and other messag-
ing capability, as described above for FIG. 63A.

While there are Notify command embodiments that make
using an existing transport layer (e.g. email) more suitable
than not, even the most customized Notify command Oper-
ands can use email (instead of MS2MS) by implementing one
or more recognizable signature(s), indication(s), or the like,
of/in the email distribution to be used for informing a receiv-
ing email system to treat the email uniquely for carrying out
the present disclosure. Depending on the embodiment, inte-
grated processing code is maintained/built as part of the email
system, or processing code is “plugged” (“hooked”) into an
existing email system in an isolated third party manner.
Regardless, the email system receiving the present disclosure
email will identify the email as being one for special process-
ing. Then, email contents is parsed out and processed accord-
ing to what has been requested.

In embodiments where Notify command Operands are
more attractively implemented using an existing transport
layer (e.g. email), those notify commands can also be sent
with MS2MS encoded in data packet(s) that are appropriate
for processing.

Referring back to block 6406, if it is determined that the
“Operand” indicates to not use an email transport (e.g. use a
MS2MS transport for performing the notify command, or
notify command is to be processed locally), then block 6436
checks if a sender parameter was specified. If block 6436
determines a sender was specified, processing continues to
block 6440, otherwise block 6438 defaults one (e.g. valid MS
ID) and then processing continues to block 6440. Block 6440
checks if a subject message parameter was specified. If block
6440 determines a subject message was specified, processing
continues to block 6444, otherwise block 6442 defaults one,
and then processing continues to block 6444. Block 6442 may
specify a null message. Block 6444 checks if an attributes
parameter was specified. If block 6444 determines attributes
were specified, processing continues to block 6448, other-
wise block 6446 defaults attributes (e.g. confirmation of
delivery, high priority, etc) and then processing continues to
block 6448. Block 6448 checks if at least one recipient
parameter was specified. [f block 6448 determines at least one
recipient was specified, processing continues to block 6452,
otherwise block 6450 defaults one (e.g. valid ID for this MS)
and then processing continues to block 6452. Block 6450 may
specify a null recipient list so as to cause an error in later
processing (detected at block 6452).

Block 6452 validates “Parameters”, some of which may
have been defaulted in previous blocks (6438, 6442, 6446 and
6450), and continues to block 6454. If bock 6454 determines
there is an error in “Parameters”, then block 6456 handles the
error appropriately (e.g. log error to LBX History and/or
notify user) and processing returns to the caller (invoker) at
block 6434. If block 6454 determines that “Parameters” are in
good order, then block 6458 updates a data object in context
for the notify command “Operand” and “Parameters”, and
block 6460 begins a loop for delivering the data object to each
recipient. Block 6460 gets the next (or first) recipient from the
recipient list and processing continues to block 6462.

If block 6462 determines that all recipients have been pro-
cessed, then processing returns to the caller at block 6434,
otherwise block 6464 checks the recipient to see if it matches
the ID of the MS of FIG. 64A processing (i.e. this MS). If
block 6464 determines the recipient matches this MS, then
block 6466 (see FIG. 64B discussions) performs the atomic

20

25

35

40

45

238

notify command locally and processing continues back to
block 6460 for the next recipient. If block 6464 determines
the recipient is an other MS, block 6468 prepares parameters
for FIG. 75A processing, and block 6470 invokes the proce-
dure of FIG. 75A for sending the data (notify command,
operand and parameters) to the other MS. Processing then
continues back to block 6460 for the next recipient. Blocks
6466, 6468, and 7584 can use the attributes parameter to
affect how “Parameters” is to be interpreted. The attributes
parameter may be modified, and can be used by any processes
which receive the notify result.

MS2MS processing is as already described above (see
FIGS. 75A and 75B), except FIG. 75A performs sending data
for the notify command to a remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
notify command. Block 7584 processes the notify command
locally (like block 6466—see FI1G. 64B).

In FIG. 64A, “Parameters” for the atomic notify command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 64A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
64A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 64A processing
occurs (e.g. no blocks 6408 through 6428 and/or 6436
through 6456 required). In yet another embodiment, no
defaulting or some defaulting of parameters is implemented.
In some embodiments, any subset of notify commands will
utilize email distributions for processing between MSs. In
other embodiments, any subset of notify commands will uti-
lize FIGS. 75A and 75B for processing between MSs. Opera-
tions of the notify command can be carried out regardless of
the transport that is actually used to perform the notify com-
mand.

FIGS. 64B-1 through 64B-4 depicts a matrix describing
how to process some varieties of the Notify command (e.g. as
processed at blocks 6466 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Notify command processing:
E=Email transport preferably used (blocks 6408 through

6432);

O=Other processing (MS2MS or local) used (blocks 6436

through 6470).

Any of the Notify command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Notify processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “103” represents the
parameters applicable for the Notify command. The Notify
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Notify command, typically tied to

the originating identity of the action (e.g. email address or

APPLE

EXHIBIT 1001 - PAGE 0383

US 9,088,868 B2

239

MS ID). A different sender can be specified if there is an
applicable privilege in place, or if impersonation has been
granted;

msg/subj=A message or subject associated with Notify com-
mand;

attributes=Indicators for more detailed interpretation of

Notify command parameters and/or indicators for

attributes to be interpreted by external (e.g. receiving) pro-

cesses affected by the Notify command result (e.g. handled
appropriately by block 7584 or receiving email system);
recipient(s)=One or more destination identities for the Notify

command (e.g. email address or MS ID).

FIG. 64C depicts a flowchart for describing one embodi-
ment of a procedure for Notify command action processing,
as derived from the processing of FIG. 64A. All operands are
implemented, and each of blocks N04 through N54 can be
implemented with any one of the methodologies described
with FIG. 64A, or any one of a blend of methodologies
implemented by FIG. 64C.

FIG. 65A depicts a flowchart for describing a preferred
embodiment of a procedure for Compose command action
processing. The Make command and Compose command
provide identical processing. There are three (3) primary
methodologies for carrying out compose command process-
ing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram; or

3) Processing the compose command through a MS oper-

ating system interface.

Invarious embodiments, any of the compose command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic compose command
processing begins at block 6502, continues to block 6504 for
accessing parameters of compose command “Operand”
(BNF Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 6506 for checking which
“Operand” was passed. If block 6506 determines the “Oper-
and” indicates to launch with a standard contextual object
type interface, then parameter(s) are validated at block 6508
and block 6510 checks the result. If block 6510 determines
there was at least one error, then block 6512 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6514. If block 6510 determines there were no parameter
errors, then block 6516 interfaces to the MS operating system
for the particular object passed as a parameter. Block 6516
may prepare parameters in preparation for the Operating Sys-
tem (O/S) contextual launch, for example if parameters are
passed to the application which is invoked for composing the
object. Processing leaves block 6516 and returns to the caller
(invoker) at block 6514.

An example of block 6516 is similar to the Microsoft
Windows XP (Microsoft and Windows XP are trademarks of
Microsoft corp.) O/S association of applications to file types
for convenient application launch. For example, a user can
double click a file (e.g. when viewing file system) from Win-
dow Explorer and the appropriate application will be
launched for opening the file, assuming an application has
been properly registered for the file type of the file opened. In
a Windows graphical user interface scenario, registration of
an application to the file type is achieved, for example, from
the user interface with the “File Types” tab of the “Folder
Options” option of the “File Types” pulldown of the Windows
Explorer interface. There, a user can define file types and the

5

10

15

20

25

30

35

40

45

50

55

60

65

240

applications which are to be launched when selecting/invok-
ing (e.g. double clicking) the file type from the file system.
Alternatively, an O/S API or interface may be used to config-
ure an object to associate to a launch-able executable for
handling the object. In this same scheme, the MS will have a
similar mechanism whereby an association of an application
to a type of object (e.g. file type) has been assigned. Block
6516 makes use of the system interface for association which
was set up outside of present disclosure processing (e.g. via
MS O/S).

Referring back to block 6506, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6518. If
block 6518 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6520
and block 6522 checks the result. If block 6522 determines
there was at least one error, then block 6524 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6514. If block 6522 determines there were no parameter
errors, then processing continues to block 6526.

If' block 6526 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable application for composing the object passed as a
parameter, then block 6528 prepares a command string for
launching the particular application, block 6530 invokes the
command string for launching the application, and process-
ing continues to block 6514 for returning to the caller.

If block 6526 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for composing the object passed as a
parameter, then block 6532 prepares any API parameters as
necessary, block 6534 invokes the API for launching the
application, and processing continues to block 6514 for
returning to the caller.

Referring back to block 6518, if it is determined that the
“Operand” indicates to perform the compose command
locally (e.g. use operating system interface (e.g. set sema-
phore, program object, data, signal, etc)), then parameter(s)
are validated at block 6536 and block 6538 checks the result.
If block 6538 determines there was at least one error, then
block 6540 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns to
the caller (invoker) at block 6514. If block 6538 determines
there were no parameter errors, then block 6542 performs the
compose command, and block 6514 returns to the caller.

In FIG. 65A, “Parameters” for the atomic compose com-
mand in accordance with the “Operand” were shown to be
validated for being properly privileged prior to FIG. 65A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 65A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 65A
processing occurs (e.g. no blocks 6510/6512 and/or 6522/
6524 and/or 6538/6540 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 65B-1 through 65B-7 depicts a matrix describing
how to process some varieties of the Compose command (e.g.
as resulting after blocks 6516, 6534 and 6542). Each row in
the matrix describes processing apparatus and/or methods for
carrying out command processing for certain operands (see
FIG. 34D for the Operand which matches the number in the
first column). The second column shows the Preferred Meth-
odology (PM) for carrying out Compose command process-
ing:

APPLE

EXHIBIT 1001 - PAGE 0384

US 9,088,868 B2

241
S=Standard contextual launch used (blocks 6508 through

6516);

C=Custom launch used (blocks 6520 through 6534);
O=0Other processing (O/S interface) used (blocks 6536
through 6542).
Any of the Compose command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Compose processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “105” represents the
parameters applicable for the Compose command. The Com-
pose command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of
the Operand,;
sender=The sender of the Compose command, typically tied
to the originating identity of the action (e.g. email address
or MS ID). A different sender can be specified if there is an
applicable privilege in place, or if impersonation has been
granted;

msg/subj=A message or subject associated with Compose
command;

attributes=Indicators for more detailed interpretation of

Compose command parameters and/or indicators for

attributes to be interpreted by external (e.g. receiving) pro-

cesses affected by the Compose command result;
recipient(s)=One or more destination identities for the Com-

pose command (e.g. email address or MS ID).

Compose command data is preferably maintained to LBX
history, a historical call log (e.g. outgoing when call placed),
or other useful storage for subsequent use (some embodi-
ments may include this processing where appropriate (e.g. as
part of blocks 6516, 6542, etc)).

FIG. 65C depicts a flowchart for describing one embodi-
ment of a procedure for Compose command action process-
ing, as derived from the processing of FIG. 65A. All operands
are implemented, and each of blocks P04 through P54 can be
implemented with any one of the methodologies described
with FIG. 65A, or any one of a blend of methodologies
implemented by FIG. 65C.

FIG. 66A depicts a flowchart for describing a preferred
embodiment of a procedure for Connect command action
processing. The Call command and Connect command pro-
vide identical processing. There are four (4) primary meth-
odologies for carrying out connect command processing:

1) Launching an application, executable, or program with a
standard contextual object type interface;

2) Custom launching of an application, executable, or pro-
gram;

3) Processing the connect command through a MS operating
system interface; or

4) Using a MS to MS communications (MS2MS) of FIGS.
75A and 75B.

In various embodiments, any of the connect command Oper-

ands can be implemented with either one of the methodolo-

gies, although there may be a preference of which methodol-

ogy is used for which Operand. Atomic connect command

processing begins at block 6602, continues to block 6604 for

accessing parameters of connect command “Operand” (BNF

Grammar Operand) and “Parameters” (BNF Grammar

Parameters), and then to block 6606 for checking which

“Operand” was passed. If block 6606 determines the “Oper-

20

25

30

40

45

242

and” indicates to launch with a standard contextual object
type interface, then parameter(s) are validated at block 6608
and block 6610 checks the result. If block 6610 determines
there was at least one error, then block 6612 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6614. If block 6610 determines there were no parameter
errors, then block 6616 interfaces to the MS operating system
for the particular object passed as a parameter. Block 6616
may prepare parameters in preparation for the O/S contextual
launch, for example if parameters are passed to the applica-
tion which is invoked. Processing leaves block 6616 and
returns to the caller (invoker) at block 6614.

An example of block 6616 is similar to the Microsoft
Windows XP O/S association of applications to file types for
convenient application launch, and is the same as processing
of'block 6516 described above. Block 6616 makes use of the
system interface for association which was set up outside of
present disclosure processing (e.g. via MS O/S).

Referring back to block 6606, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6618. If
block 6618 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6620
and block 6622 checks the result. If block 6622 determines
there was at least one error, then block 6624 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6614. If block 6622 determines there were no parameter
errors, then processing continues to block 6626.

If'block 6626 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable application for the object passed as a parameter,
then block 6628 prepares a command string for launching the
particular application, block 6630 invokes the command
string for launching the application, and processing continues
to block 6614 for returning to the caller.

If block 6626 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for the object passed as a parameter,
then block 6632 prepares any API parameters as necessary,
block 6634 invokes the API for launching the application, and
processing continues to block 6614 for returning to the caller.

Referring back to block 6618, if it is determined that the
“Operand” indicates to perform the connect command locally
(e.g. use operating system interface (e.g. set semaphore, pro-
gram object, data, signal, etc)), or to use MS2MS for process-
ing, then parameter(s) are validated at block 6636 and block
6638 checks the result. If block 6638 determines there was at
least one error, then block 6640 handles the error appropri-
ately (e.g. log error to LBX History 30 and/or notify user) and
processing returns to the caller (invoker) at block 6614. If
block 6638 determines there were no parameter errors, then
block 6642 checks the operand for which processing to per-
form. If block 6642 determines that MS2MS processing is
needed to accomplish processing, then block 6644 prepares
parameters for FIG. 75A processing, and block 6646 invokes
the procedure of FIG. 75A for sending the data (connect
command, operand and parameters) for connect processing at
the MS to connect. Processing then continues to block 6614.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data forthe
connect command to the remote MS for processing, and FIG.
75B blocks 7578 through 7584 carry out processing specifi-
cally for the connect command. Block 7584 processes the
connect command for connecting the MSs in context of the
Operand. Referring back to block 6642, if it is determined that

APPLE

EXHIBIT 1001 - PAGE 0385

US 9,088,868 B2

243

MS2MS is not to be used, then block 6648 performs the
connect command, and block 6614 returns to the caller.

In FIG. 66A, “Parameters” for the atomic connect com-
mand in accordance with the “Operand” were shown to be
validated for being properly privileged prior to FIG. 66A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 66A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 66A
processing occurs (e.g. no blocks 6610/6612 and/or 6622/
6624 and/or 6638/6640 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

In the case of automatically dialing a phone number at a
MS, there are known APIs to accomplish this functionality,
depending on the MS software development environment, by
passing at least a phone number to the MS API programmati-
cally at the MS (e.g. see C# phone application APIs,]2ME
phone APIs, etc). In a J2ME embodiment, you can place a call
by calling the MIDP 2.0 platformRequest method inside the
MIDlet class (e.g. platformRequest(“tel://mobileNumber™)
will request the placing call functionality from the applicable
mobile platform).

FIGS. 66B-1 through 66B-2 depicts a matrix describing
how to process some varieties of the Connect command (e.g.
as processed at blocks 6648 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Connect command processing:
S=Standard contextual launch used (blocks 6608 through

6616);

C=Custom launch used (blocks 6620 through 6634);
O=0Other processing (MS2MS or local) used (blocks 6636

through 6648).

Any of the Connect command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Connect processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “119” represents the
parameters applicable for the Connect command. The Con-
nect command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand,;
sender=The sender of the Connect command, typically tied to

the originating identity of the action (e.g. email address or

MS ID). A different sender can be specified if there is an

applicable privilege in place, or if impersonation has been

granted;

msg/subj=A message or subject associated with Connect
command;

attributes=Indicators for more detailed interpretation of Con-
nect command parameters and/or indicators for attributes
to be interpreted by external (e.g. receiving) processes
affected by the Connect command result;

recipient(s)=One or more destination identities for the Con-

nect command (e.g. email address or MS ID).

Connect command data is preferably maintained to LBX
history, a historical call log (e.g. outgoing when call placed),

35

40

45

50

55

65

244

or other useful storage for subsequent use (some embodi-
ments may include this processing where appropriate (e.g. as
part of blocks 6616, 6648, 7584, etc)).

FIG. 66C depicts a flowchart for describing one embodi-
ment of a procedure for Connect command action processing,
as derived from the processing of FIG. 66A. All operands are
implemented, and each of blocks T04 through T54 can be
implemented with any one of the methodologies described
with FIG. 66A, or any one of a blend of methodologies
implemented by FIG. 66C.

FIG. 67A depicts a flowchart for describing a preferred
embodiment of a procedure for Find command action pro-
cessing. The Search command and Find command provide
identical processing. There are four (4) primary methodolo-
gies for carrying out find command processing:

1) Launching an application, executable, or program with a
standard contextual object type interface;
2) Custom launching of an application, executable, or pro-
gram;
3) Processing the find command locally; or
4)Using MS to MS communications (MS2MS) of FIGS. 75A
and 75B for remote finding.
In various embodiments, any of the find command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic find command processing
begins at block 6700, continues to block 6702 for accessing
parameters of find command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
then to block 6704 for getting the next (or first) system param-
eter (block 6704 starts a loop for processing system(s)). At
least one system parameter is required for the find. If at least
one system is not present for being processed by block 6704,
then block 6704 will handle the error and continue to block
6752 for returning to the caller (not shown—considered obvi-
ous error handling, or was already validated at configuration
time). Block 6704 continues to block 6706. If block 6706
determines that an unprocessed system parameter remains,
then processing continues to block 6708. If block 6708 deter-
mines the system is not the MS of FIG. 67A processing, then
MS2MS processing is used to accomplish the remote find
processing, in which case block 6708 continues to block 6710
for preparing parameters for FIG. 75A processing. Thereaf-
ter, block 6712 checks to see if there were any parameter
errors since block 6710 also validates them prior to preparing
them. If block 6712 determines there was at least one param-
eter error, then block 6713 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing continues back to block 6704. If block 6713 deter-
mines there were no errors, then block 6714 invokes the
procedure of FIG. 75A for sending the data (find command,
operand and parameters) for remote find processing at the
remote MS. Processing then continues back to block 6704.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data forthe
find command to the remote MS for finding sought operand
dependent criteria at the remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
find command. Block 7584 processes the find command for
finding sought criteria in context of the Operand at the MS of
FIG. 75B processing. Blocks 7574 and 7576 will return the
results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate find processing. Note
that block 7510 preferably includes application launch pro-
cessing (e.g. like found in FIG. 67A) for invoking the best
application in the appropriate manner with the find results
returned. The application should be enabled for searching

APPLE

EXHIBIT 1001 - PAGE 0386

US 9,088,868 B2

245

remote MSs further if the user chooses to do so. Another
embodiment of block 7510 processes the search results and
displays them to the user and/or logs results to a place the user
can check later and/or logs results to a place a local MS
application can access the results in an optimal manner. In
some embodiments, find processing is spawned at the remote
MS and the interface results are presented to the remote user.
In some embodiments, the find processing results interface is
presented to the user of FIG. 67A processing. In some
embodiments, find processing is passed an additional param-
eter for whether or not to spawn the search interface at the
remote MS for the benefit of the remote MS user (at MS of
FIG. 75 processing), or to spawn locally for the benefit of the
user of the MS of FIG. 67A processing.

In one embodiment, block 6714 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 67A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage, memory,
or operating system resources which is shared by many MSs.

Referring back to block 6708, if it is determined that the
system for processing is the MS of FIG. 67 A processing, then
processing continues to block 6716 for checking which
“Operand” was passed. If block 6716 determines the “Oper-
and” indicates to launch a search application for the sought
operand with a standard contextual object type interface, then
parameter(s) are validated at block 6718 and block 6720
checks the result. If block 6720 determines there was at least
one error, then block 6722 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 6704. If block 6720 deter-
mines there were no parameter errors, then block 6724 inter-
faces to the MS operating system to start the search applica-
tion for the particular object passed as a parameter. Block
6724 may prepare parameters in preparation for the O/S con-
textual launch, for example if parameters are passed to the
application which is invoked for finding the object. Process-
ing leaves block 6724 and returns to block 6704.

An example of block 6724 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 6716, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6726. If
block 6726 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6728
and block 6730 checks the result. If block 6730 determines
there was at least one error, then block 6732 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 6704. If block 6730
determines there were no parameter errors, then processing
continues to block 6734.

If block 6734 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable search application for finding the object passed as
a parameter, then block 6736 prepares a command string for
launching the particular application, block 6738 invokes the
command string for launching the application, and process-
ing continues to block 6704.

If block 6734 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for finding the object passed as a

40

45

246

parameter, then block 6740 prepares any API parameters as
necessary, block 6742 invokes the API for launching the
application, and processing continues back to block 6704.

Referring back to block 6726, if it is determined that the
“Operand” indicates to perform the find command with other
local processing, then parameter(s) are validated at block
6744 and block 6746 checks the result. If block 6746 deter-
mines there was at least one error, then block 6748 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to block 6704. If block
6748 determines there were no parameter errors, then block
6750 checks the operand for which find processing to per-
form, and performs find processing appropriately.

Referring back to block 6704, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 6752.

InFIG. 67 A, “Parameters” for the atomic find command in
accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 67A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
67A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 67A processing
occurs (e.g. no blocks 6720/6722 and/or 6728/6730 and/or
6746/6748 required). In yet another embodiment, some
defaulting of parameters is implemented.

FIGS. 67B-1 through 67B-13 depicts a matrix describing
how to process some varieties of the Find command (e.g. as
processed at blocks 6750 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Find command processing:
S=Standard contextual launch used (blocks 6716 through

6724),

C=Custom launch used (blocks 6726 through 6742);
O=0Other processing (MS2MS or local) used (blocks 6744

through 6750, blocks 6708 through 6714).

Any of the Find command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Find processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “107” represents the
parameters applicable for the Find command. The Find com-
mand has the following parameters, all of which are inter-
preted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
system(s)=One or more destination identities for the Find

command (e.g. MS ID or a data processing system identi-
fier).

FIG. 67C depicts a flowchart for describing one embodi-
ment of a procedure for Find command action processing, as
derived from the processing of FIG. 67A. All operands are
implemented, and each of blocks F04 through F54 can be
implemented with any one of the methodologies described
with FIG. 67A, or any one of a blend of methodologies
implemented by FIG. 67C.

APPLE

EXHIBIT 1001 - PAGE 0387

US 9,088,868 B2

247

Find command processing discussed thus far demonstrates
multithreaded/multiprocessed processing for each system to
search. In one embodiment, the same methodology is used for
each system and each launched find processing saves results
to a common format and destination. In this embodiment,
block 6706 processing continues to a new block 6751 when
all systems are processed. New block 6751 gathers the super-
set of find results saved, and then launches an application
(perhaps the same one that was launched for each find) to
show all results found asynchronously from each other. The
application launched will be launched with the same choice
of schemes as blocks 6716 through 6750. Block 6751 then
continues to block 6752. This design requires all applications
invoked to terminate themselves after saving search results
appropriately for gathering a superset and presenting in one
find results interface. Then, the new block 6751 handles pro-
cessing for a single application to present all search results.

In another embodiment, while an application may be
launched multiple times for each system, the application itself
is relied upon for handling multiple invocations. The appli-
cation itself has intelligence to know it was re-launched
thereby permitting a single resulting interface for multiple
target system searches, regardless of the number of times the
same search application was launched.

In one preferred embodiment, find processing permits mul-
tiple instances of a search application launched wherein Find
processing is treated independently (this is shown in FIG.
67A).

Preferably all find command embodiments provide the
ability to perform other commands (e.g. Copy, Move, Dis-
card, Change, Administrate, etc) wherever possible from the
resulting interface in context for each search result found.

Find command data is preferably maintained to LBX his-
tory, a historical log, or other useful storage for subsequent
use (some embodiments may include this processing where
appropriate). Additional find command parameters can be
provided for how and where to search (e.g. case sensitivity,
get all or first, how to present results, etc).

FIG. 68A depicts a flowchart for describing a preferred
embodiment of a procedure for Invoke command action pro-
cessing. The Spawn command, Do command, and Invoke
command provide identical processing. There are five (5)
primary methodologies for carrying out invoke command
processing:

1) Launching an application, executable, or program with a
standard contextual object type interface;

2) Custom launching of an application, executable, or pro-
gram;

3) Processing the invoke command locally;

4) Using MS to MS communications (MS2MS) of FIGS. 75A
and 75B for remote invocation; or

5) Using email or similar messaging layer as a transport layer
for invoking distributions.

In various embodiments, any of the invoke command Oper-

ands can be implemented with either one of the methodolo-

gies, although there may be a preference of which methodol-

ogy is used for which Operand. Atomic invoke command

processing begins at block 6802, continues to block 6804 for

accessing parameters of invoke command “Operand” (BNF

Grammar Operand) and “Parameters” (BNF Grammar

Parameters), and then to block 6892 for checking if the Oper-

and for invocation indicates to use the email (or similar mes-

saging transport). If block 6892 determines the Operand is for

email/messaging transport use, then block 6894 invokes send

command processing of FIG. 63A with the Operand and

Parameters. Upon return, processing continues to block 6852

for returning to the caller (invoker of FIG. 68 A processing). If

30

35

40

45

248

send processing of FIG. 63 A (via block 6894) is to be used for
Operands with a system(s) parameter, then the system(s)
parameter is equivalent to the recipient(s) parameter and
other parameters are set appropriately.

If block 6892 determines the Operand is not for the email/
messaging transport use, then processing continues to block
6806 for getting the next (or first) system parameter (block
6806 starts an iterative loop for processing system(s)). At
least one system parameter is required for the invoke com-
mand at block 6806. If at least one system is not present for
being processed by block 6806, then block 6806 will handle
the error and continue to block 6852 for returning to the caller
(not shown—considered obvious error handling, or was
already validated at configuration time). Block 6806 contin-
ues to block 6808. If block 6808 determines that an unproc-
essed system parameter remains, then processing continues
to block 6810. If block 6810 determines the system is not the
MS of FIG. 68 A processing, then MS2MS processing is used
to accomplish the remote invoke processing, in which case
block 6810 continues to block 6812 for preparing parameters
for FIG. 75A processing, and block 6814 invokes the proce-
dure of FIG. 75A for sending the data (invoke command,
operand and parameters) for remote invoke processing at the
remote MS. Processing then continues back to block 6806.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data for the
invoke command to the remote MS for an invocation at the
remote MS, and FIG. 75B blocks 7578 through 7584 carry out
processing specifically for the invoke command. Block 7584
processes the invoke command for invocation in context of
the Operand at the MS of FIG. 75 processing (e.g. using
invocation methodologies of FIG. 68A).

In one embodiment, blocks 6812 and 6814 cause process-
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data pro-
cessing system identifier accessible to the MS of FIG. 68A
processing). The remote data processing system may be a
service data processing system, or any other data processing
system capable of similar MS2MS processing as described
for the invoke command, perhaps involving invocation of a
suitable executable in context for the operand.

Referring back to block 6810, if it is determined that the
system for processing is the MS of FIG. 68 A processing, then
processing continues to block 6816 for checking which
“Operand” was passed. If block 6816 determines the “Oper-
and” indicates to invoke (launch) an appropriate application
for the operand with a standard contextual object type inter-
face, then parameter(s) are validated at block 6818 and block
6820 checks the result. If block 6820 determines there was at
least one error, then block 6822 handles the error appropri-
ately (e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 6806. If block 6820 deter-
mines there were no parameter errors, then block 6824 inter-
faces to the MS operating system to start the appropriate
application for the particular object passed as a parameter.
Block 6824 may prepare parameters in preparation for the
O/S contextual launch, for example if parameters are passed
to the application which is invoked. Processing leaves block
6824 and returns to block 6806.

An example of block 6824 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as described above for
block 6616.

Referring back to block 6816, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6826. If

APPLE

EXHIBIT 1001 - PAGE 0388

US 9,088,868 B2

249

block 6826 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6828
and block 6830 checks the result. If block 6830 determines
there was at least one error, then block 6832 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 6806. If block 6830
determines there were no parameter errors, then processing
continues to block 6834.

If block 6834 determines the custom invocation (launch) is
not to use an Application Programming Interface (API) to
invoke the application for the object passed as a parameter,
then block 6836 prepares a command string for invoking the
particular application, block 6838 invokes the command
string for launching the application, and processing continues
to block 6806.

If block 6834 determines the custom invocation (launch) is
to use an Application Programming Interface (API) to invoke
the applicable for the object passed as a parameter, then block
6840 prepares any API parameters as necessary, block 6842
invokes the API for launching the application, and processing
continues back to block 6806.

Referring back to block 6826, if it is determined that the
“Operand” indicates to perform the invoke command with
other local processing, then parameter(s) are validated at
block 6844 and block 6846 checks the result. If block 6846
determines there was at least one error, then block 6848
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 6806. If
block 6848 determines there were no parameter errors, then
block 6850 checks the operand for which invoke processing
to perform, and performs invoke command processing appro-
priately.

Referring back to block 6808, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 6852.

InFIG. 68 A, “Parameters” for the atomic invoke command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 68A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
68A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 68A processing
occurs (e.g. no blocks 6820/6822 and/or 6830/6832 and/or
6846/6848 required). In yet another embodiment, some
defaulting of parameters is implemented.

FIGS. 68B-1 through 68B-5 depicts a matrix describing
how to process some varieties of the Invoke command (e.g. as
processed at blocks 6850 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Invoke command processing:
S=Standard contextual launch used (blocks 6816 through

6824),

C=Custom launch used (blocks 6826 through 6842);
E=Email transport preferably used (blocks 6892 through

6894);

O=0Other processing (MS2MS or local) used (blocks 6844

through 6850, blocks 6812 through 6814).

Any of the Invoke command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the

15

20

30

35

40

45

55

60

250

Invoke processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “109” represents the
parameters applicable for the Invoke command. The Invoke
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of
the Operand;
system(s)=One or more destination identities for the Invoke
command (e.g. MS ID or a data processing system identi-
fier);

sender=The sender of the Invoke command, typically tied to
the originating identity of the action (e.g. email address or

MS ID). A different sender can be specified if there is an

applicable privilege in place, or if impersonation has been

granted;
msg/subj=A message or subject associated with invoke com-

mand;
attributes=Indicators for more detailed interpretation of
invoke command parameters and/or indicators for

attributes to be interpreted by external (e.g. receiving) pro-

cesses affected by the invoke command result;
recipient(s)=One or more destination identities for the Invoke

command (e.g. email address or MS ID).

FIG. 68C depicts a flowchart for describing one embodi-
ment of a procedure for Invoke command action processing,
as derived from the processing of FIG. 68A. All operands are
implemented, and each of blocks J04 through J54 can be
implemented with any one of the methodologies described
with FIG. 68A, or any one of a blend of methodologies
implemented by FIG. 68C.

In some embodiments, the invoke command may be used
as an overall strategy and architecture for performing most, if
not all, actions (e.g. other commands).

FIG. 69A depicts a flowchart for describing a preferred
embodiment of a procedure for Copy command action pro-
cessing. There are four (4) primary methodologies for carry-
ing out copy command search processing:

1) Launching an application, executable, or program with a
standard contextual object type interface, for finding the
source object(s) to copy;

2) Custom launching of an application, executable, or pro-
gram, for finding the source object(s) to copy;

3) Processing the copy command locally, for finding the
source object(s) to copy; or

4)MS to MS communications (MS2MS) of FIGS. 75A and
75B for finding the source object(s) to copy.

The source parameter specifies which system is to be the
source of the copy: the MS of FIG. 69A processing or a
remote data processing system.

There are two (2) primary methodologies for carrying out
copy command copy processing:

1) Using local processing;

2) MS to MS communications (MS2MS) of FIGS. 75A and

75B for remote copying.

In various embodiments, any of the copy command Operands
can be implemented with either of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic copy command processing
begins at block 6900, continues to block 6902 for accessing
parameters of copy command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
continues to block 6904.

If block 6904 determines the source system parameter
(source) is this MS, then processing continues to block 6906.

APPLE

EXHIBIT 1001 - PAGE 0389

US 9,088,868 B2

251

Ifblock 6906 determines the “Operand” indicates to launch a
search application for the sought operand object with a stan-
dard contextual object type interface, then parameter(s) are
validated at block 6908 and block 6910 checks the result. If
block 6910 determines there was at least one error, then block
6912 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller (invoker) at block 6960. If block 6910 determines there
were no parameter errors, then block 6914 interfaces to the
MS operating system to start the search application for the
particular object (for Operand). Block 6914 may prepare
parameters in preparation for the operating system. Process-
ing leaves block 6914 and continues to block 6938 which is
discussed below.

An example of block 6914 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 6906, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6916. If
block 6916 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6918
and block 6920 checks the result. If block 6920 determines
there was at least one error, then block 6912 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller at block 6960. If
block 6920 determines there were no parameter errors, then
processing continues to block 6922.

Ifblock 6922 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
searching application for copying the object, then block 6924
prepares a command string for launching the particular appli-
cation, block 6926 invokes the command string for launching
the application, and processing continues to block 6938 dis-
cussed below.

If block 6922 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for searching, then block 6928 pre-
pares any API parameters as necessary, block 6930 invokes
the API for launching the application, and processing contin-
ues to block 6938.

Referring back to block 6916, if it is determined that the
“Operand” indicates to perform the copy command with local
search processing, then parameter(s) are validated at block
6932 and block 6934 checks the result. If block 6934 deter-
mines there was at least one error, then block 6912 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller at block 6960.
Ifblock 6934 determines there were no parameter errors, then
block 6936 searches for the operand object in context for the
Operand, and processing continues to block 6938.

Referring back to block 6904, if it is determined the source
parameter is not for this MS, then block 6962 prepares param-
eters for FIG. 75A processing. Thereafter, block 6964 checks
to see if there were any parameter errors since block 6962 also
validates them prior to preparing them. If block 6764 deter-
mines there was at least one parameter error, then block 6712
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to the caller at
block 6960. If block 6764 determines there were no errors,
then block 6766 invokes the procedure of FIG. 75A for send-
ing the data (copy command, operand and parameters) for
remote copy search processing at the remote MS. Processing
then continues to block 6938 discussed below. MS2MS pro-
cessing is as already described above (see FIGS. 75A and
75B), except FIG. 75A performs searching for data for the

10

15

20

25

30

35

40

45

50

55

60

65

252

copy command at the remote MS, and FIG. 75B blocks 7578
through 7584 carry out processing specifically for the copy
command search processing. Block 7584 processes the copy
command for finding the object to copy in context of the
Operand. Blocks 7574 and 7576 will return the results to the
requesting MS of FIG. 75A processing, and block 7510 will
complete appropriate copy search processing so that FIG.
69A processing receives the search results. FIG. 75A can
convey the found object(s) for copy by returning from a
function interface (the send procedure being a function),
returning to a file, setting data visible to both processes, etc.
Note that block 7510 may invoke application launch process-
ing (e.g. like found in FIG. 69A) for invoking the best appli-
cation in the appropriate manner for determining copy search
results returned from FIG. 75B processing, or block 7510
may process results itself.

In one embodiment, block 6966 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 67A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage, memory,
or operating system resources which are shared by many
MSs.

By the time processing reaches block 6938 from any pre-
vious FIG. 69A processing, a search result is communicated
to processing and any launched executable (application) for
searching for the copy object(s) has terminated. Search
results can be passed back as a function return, placed to a
well known directory, placed to a file, placed to interfaced
variable(s), or other communications of the result to further
processing. Regardless of the embodiment, search results are
accessed at block 6938. An alternate embodiment is like FIG.
70A wherein the application/processing invoked at blocks
6914, 6926, 6930 and 6936 handles the ack parameter and
ambiguous results appropriately (i.e. no need for blocks 6938
through 6958) to proceed with completing the copy (process-
ing of blocks 6938 through 6958 incorporated). Different
methods are disclosed for similar processing to highlight
methods for carrying out processing for either one of the
commands (Copy or Discard).

Block 6938 checks the results of finding the source object
for copying to ensure there are no ambiguous results (i.e. not
sure what is being copied since the preferred embodiment is
to not copy more than a single operand object at a time). If
block 6938 determines that there was an ambiguous search
result, then processing continues to block 6912 for error
handling as discussed above (e.g. in context for an ambiguous
copy since there were too many things to copy). If block 6938
determines there is no ambiguous entity to copy, block 6940
checks the acknowledgement parameter passed to FIG. 69A
processing. An alternate embodiment assumes that a plurality
ofresults is valid for copying all results to the target system(s)
(i.e. no ambiguous check). In another embodiment, an
ambiguous result relies on user reconciliation to reconcile
whether or not to perform the copy (like FIG. 70A discard
processing).

If block 6940 determines the acknowledgement (ack)
parameter is set to true, then block 6942 provides the search
result which is to be copied. Thereafter, processing waits for
a user action to either a) continue with the copy; or b) cancel
the copy. Once the user action has been detected, processing
continues to block 6944. Block 6942 provides a user recon-
ciliation of whether or not to perform the copy. In another

APPLE

EXHIBIT 1001 - PAGE 0390

US 9,088,868 B2

253

embodiment, there is no ack parameter and multiple results
detected at block 6938 forces processing into the reconcilia-
tion by the MS user. In yet another embodiment, the ack
parameter is still provided, however multiple search results
forces processing into the reconciliation by the MS user any-
way for selecting which individual object shall be copied. In
still other embodiments, all results are copied.

If block 6944 determines the user selected to cancel pro-
cessing, then block 6946 logs the cancellation (e.g. log error
to LBX History 30) and processing returns to the caller at
block 6960. If block 6944 determines the user selected to
proceed with the copy, then processing continues to block
6948 for getting the next (or first) system parameter (block
6948 starts a loop for processing system(s) for the copy
result). Also, if block 6940 determines that the ack parameter
was set to false, then processing continues directly to block
6948. At least one system parameter is required for the copy
as validated by previous parameter validations. Block 6948
continues to block 6950. If block 6950 determines that an
unprocessed system parameter remains, then processing con-
tinues to block 6952. If block 6952 determines the system
(target for copy) is the MS of FIG. 69 A processing, then block
6954 appropriately copies the source object to the system and
processing continues back to block 6948. If block 6952 deter-
mines the system is not the MS of FIG. 69A processing, then
MS2MS processing is used to accomplish the copy process-
ing to the remote data processing system (e.g. MS), in which
case block 6956 prepares parameters for FIG. 75A process-
ing, and block 6958 invokes the procedure of FIG. 75A for
sending the data (copy command, operand, and search result)
for remote copy processing at the remote MS. Processing then
continues back to block 6948. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs sending data for the copy action to the
remote MS for copying sought operand dependent criteria to
the remote MS, and FIG. 75B blocks 7578 through 7584 carry
out processing specifically for the copy processing. Block
7584 processes the copy of the search result from FIG. 69A to
the system of FIG. 75B processing.

In one embodiment, blocks 6956 and 6958 cause process-
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data pro-
cessing system identifier accessible to the MS of FIG. 69A
processing). The remote data processing system may be a
service data processing system, or any other data processing
system capable of similar MS2MS processing as described
for the copy command, perhaps involving storage, memory,
or operating system resources which are shared by many
MSs.

Referring back to block 6950, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 6960.

In FIG. 69A, “Parameters” for the atomic copy command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 69A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
69A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereot) can be under-
stood to be in good order by the time FIG. 69A processing
occurs (e.g. no blocks 6908/6910 and/or 6918/6920 and/or
6932/6934 required). In yet another embodiment, some
defaulting of parameters is implemented.

The first parameter may define a plurality of entities to be
copied when the object inherently contains a plurality (e.g.

10

15

20

25

30

35

40

45

50

55

60

65

254

directory, container). In an alternate embodiment, the search
results for copying can be plural without checking for ambi-
guity at block 6938, in which case all results returned can/will
be copied to the target systems.

FIGS. 69B-1 through 69B-14 depicts a matrix describing
how to process some varieties of the Copy command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Copy com-
mand processing:

S=Standard contextual launch used (blocks 6906 through
6914);
C=Custom launch used (blocks 6916 through 6930);
O=0Other processing used (e.g. block 6936).
Any of the Copy command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Copy processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “111” represents the
parameters applicable for the Copy command. The Copy
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the
Operand;
ack=Boolean for whether or not to prompt user for perform-
ing the
source=A source identity for the Copy command (e.g. MS ID
or a data processing system identifier);

system(s)=One or more destination identities for the Copy
command (e.g. MS ID or a data processing system identi-
fier).

In a preferred embodiment, an additional parameter is pro-
vided for specifying the target destination of the system for
the copy. For example, a directory can be placed to a target
path, an email can be placed to a target folder, etc. Otherwise,
there is an assumed target destination. In another embodi-
ment, a user can select from a plurality of search results which
objects are to be copied.

FIG. 69C depicts a flowchart for describing one embodi-
ment of a procedure for Copy command action processing, as
derived from the processing of FIG. 69A. All operands are
implemented, and each of blocks C04 through C54 can be
implemented with any one of the methodologies described
with FIG. 69A, or any one of a blend of methodologies
implemented by FIG. 69C.

FIG. 70A depicts a flowchart for describing a preferred
embodiment of a procedure for Discard command action
processing. The Delete command, “Throw Away” command,
and Discard command provide identical processing. There
are four (4) primary methodologies for carrying out discard
command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the discard command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote discarding.
In various embodiments, any of the discard command Oper-
ands can be implemented with either one of the methodolo-

APPLE

EXHIBIT 1001 - PAGE 0391

US 9,088,868 B2

255

gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic discard command
processing begins at block 7002, continues to block 7004 for
accessing parameters of discard command “Operand” (BNF
Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 7006 for getting the next (or
first) system parameter (block 7006 starts an iterative loop for
processing system(s)). At least one system parameter is
required for the discard. If at least one system is not present
for being processed by block 7006, then block 7006 will
handle the error and continue to block 7062 for returning to
the caller (not shown—considered obvious error handling, or
was already validated at configuration time). Block 7006
continues to block 7008. If block 7008 determines that an
unprocessed system parameter remains, then processing con-
tinues to block 7010. If block 7010 determines the system is
not the MS of FIG. 70 A processing, then MS2MS processing
is used to accomplish the remote discard processing, in which
case block 7010 continues to block 7012 for preparing param-
eters for FIG. 75A processing. Thereafter, block 7014 checks
to see if there were any parameter errors since block 7012 also
validates them prior to preparing them. If block 7014 deter-
mines there was at least one parameter error, then block 7016
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing continues back to block
7006. If block 7014 determines there were no errors, then
block 7018 invokes the procedure of FIG. 75A for sending the
data (discard command, operand and parameters) for remote
discard processing at the remote MS. Processing then contin-
ues back to block 7006. MS2MS processing is as already
described above (see FIGS. 75A and 75B), except FIG. 75A
performs sending data for the discard command to the remote
MS for discarding sought operand dependent criteria at the
remote MS, and F1G. 75B blocks 7578 through 7584 carry out
processing specifically for the discard command. Block 7584
processes the discard command for discarding sought criteria
in context of the Operand. In a preferred embodiment, the
discard takes place when privileged, and when an ack param-
eter is not provided or is set to false.

Blocks 7574 and 7576 will return the results to the request-
ing MS of FIG. 75A processing when the ack parameter is set
to true, and block 7510 will complete appropriate discard
processing after prompting the user of the MS of FIG. 75A
processing for whether or not to continue (just like blocks
7054 through 7060 discussed below). Note that block 7510
may include invoking the best application in the appropriate
manner (e.g. like found in FIG. 70A) with the discard results
returned when an acknowledgement (ack parameter) has
been specified to true, or block 7510 may process results
appropriately itself. Processing should be enabled for then
continuing with the discard through another invocation of
FIG. 75A (from block 7510 and a following processing of
blocks 7578 through 7584 to do the discard) if the user
chooses to do so. Block 7510 includes significant processing,
all of which has been disclosed in FIG. 70 A anyway and then
included at block 7510 if needed there for ack processing.

In one embodiment, block 7018 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 70A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
discard command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

30

40

45

50

256

Referring back to block 7010, if it is determined that the
system for processing is the MS of FIG. 70A processing, then
processing continues to block 7020 for checking which
“Operand” was passed. If block 7020 determines the “Oper-
and” indicates to launch a search application for the sought
operand with a standard contextual object type interface, then
parameter(s) are validated at block 7022 and block 7024
checks the result. If block 7024 determines there was at least
one error, then block 7016 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 7006. If block 7024 deter-
mines there were no parameter errors, then block 7026 inter-
faces to the MS operating system to start the search applica-
tion for the particular object passed as a parameter and then to
continue with the discard for ack set to false, and to prompt for
doing the discard for the prompt set to true. Block 7026 may
prepare parameters in preparation for the operating system,
for example if parameters are passed to the application which
is invoked for discarding the object. Processing leaves block
7026 and returns to block 7006. An alternate embodiment
processes like FIG. 69A wherein the application launched at
block 7026 produces only a search result prior to continuing
to block 7050. Then, the search result is discarded if there are
no ambiguous results or the ack parameter is set to false, or
there are ambiguous results and the user selects to continue,
or the ack parameter is set to true and the user selects to
continue. FIG. 70A demonstrates processing where the
executable launched is an all inclusive processing. Likewise,
FIG. 69A can be like FIG. 70A wherein the application
launched handles the ack parameter appropriately. Different
methods are disclosed for similar processing to highlight
methods to carrying out processing for either one of the
commands (Copy or Discard).

An example of block 7026 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7020, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7028. If
block 7028 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7030
and block 7032 checks the result. If block 7032 determines
there was at least one error, then block 7016 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 7006. If block 7032
determines there were no parameter errors, then processing
continues to block 7034.

If'block 7034 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable search application for discarding the object passed
as a parameter, then block 7036 prepares a command string
for launching the particular application, block 7038 invokes
the command string for launching the application, and pro-
cessing continues to block 7006. An alternate embodiment
processes like FIG. 69A wherein the application launched at
block 7026 produces only a search result prior to continuing
to block 7050. Then, the search result is discarded if there are
no ambiguous results or the ack parameter is set to false, or
there are ambiguous results and the user selects to continue,
or the ack parameter is set to true and the user selects to
continue. FIG. 70A demonstrates processing where the
executable launched is an all inclusive processing (e.g.
includes processing of blocks 7050 through 7060).

If block 7034 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for discarding the object passed as a

APPLE

EXHIBIT 1001 - PAGE 0392

US 9,088,868 B2

257

parameter, then block 7040 prepares any API parameters as
necessary, block 7042 invokes the API for launching the
application, and processing continues back to block 7006. An
alternate embodiment processes like FIG. 69A wherein the
application launched at block 7042 produces only a search
result prior to continuing to block 7050. Then, the search
result is discarded if there are no ambiguous results or the ack
parameter is set to false, or there are ambiguous results and
the user selects to continue, or the ack parameter is set to true
and the user selects to continue. FIG. 70A demonstrates pro-
cessing where the executable launched is an all inclusive
processing (includes processing of blocks 7050 through
7060).

Referring back to block 7028, if it is determined that the
“Operand” indicates to perform the discard command with
other local processing, then parameter(s) are validated at
block 7044 and block 7046 checks the result. If block 7046
determines there was at least one error, then block 7016
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 7006. If
block 7046 determines there were no parameter errors, then
block 7048 checks the operand for which discard processing
to perform, and performs discard search processing appropri-
ately. Thereafter, block 7050 checks the results.

Block 7050 checks the results of finding the source object
for discard to ensure there are no ambiguous results (i.e. not
sure what is being discarded since the preferred embodiment
is to not discard more than a single operand object at a time).
Ifblock 7050 determines that there was an ambiguous search
result, then processing continues to block 7052. If block 7050
determines there is no ambiguity, then processing continues
to block 7054. If block 7054 determines the ack parameter is
set to true, then processing continues to block 7052, other-
wise processing continues to block 7060. Block 7054 checks
the acknowledgement parameter passed to FIG. 70A process-
ing. An alternate embodiment assumes that a plurality of
results is valid and discards all results at the target system(s)
(i.e. no ambiguous check). In another embodiment, an
ambiguous result causes error handling at block 7014 (like
FIG. 69A copy processing).

Block 7052 causes processing for waiting for a user action
to either a) continue with the discard; or b) cancel the discard.
Once the user action has been detected, processing continues
to block 7056. Block 7052 provides a user reconciliation of
whether or not to perform the discard. In another embodi-
ment, there is no ack parameter and multiple results detected
at block 7048 are handled for the discard.

If block 7056 determines the user selected to cancel pro-
cessing, then block 7058 logs the cancellation (e.g. log error
to LBX History 30) and processing returns to block 7006. If
block 7056 determines the user selected to proceed with the
discard, then processing continues to block 7060. Block 7060
performs the discard of the object(s) found at block 7048.
Thereafter, processing continues back to block 7006.

Referring back to block 7008, if'it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7062.

In FIG. 70A, “Parameters” for the atomic discard com-
mand in accordance with the “Operand” were shown to be
validated for being properly privileged prior to FIG. 70A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 70A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 70A
processing occurs (e.g. no blocks 7022/7024 and/or 7030/

40

45

258

7032 and/or 7044/7046 required). In yet another embodi-

ment, some defaulting of parameters is implemented.

FIGS. 70B-1 through 70B-11 depicts a matrix describing
how to process some varieties of the Discard command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Discard com-
mand processing:

S=Standard contextual launch used (blocks 7020 through
7026);

C=Custom launch used (blocks 7028 through 7042);

O=Other processing (MS2MS or local) used (blocks 7044
through 7060, blocks 7012 through 7018).

Any of the Discard command operand combinations can be

carried out with either of the methodologies. The second

column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the

Discard processing descriptions without departing from the

spirit and scope of the disclosure. Descriptions are self

explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “113” represents the
parameters applicable for the Discard command. The Discard
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the

Operand;
ack=Boolean for whether or not to prompt user for perform-

ing the discard, prior to doing the discard.

system(s)=One or more identities affected for the Discard
command (e.g. MS ID or a data processing system identi-
fier).

Discard command processing discussed thus far demon-
strates multithreaded/multiprocessed processing for each
system to search. In search results processing, for example
when a plurality of results for discard are available, an appli-
cation may be launched multiple times. For each system, the
application itself is relied upon for handling multiple invoca-
tions. The application itself has intelligence to know it was
re-launched thereby permitting a single resulting interface for
multiple target system searches, regardless of the number of
times the same search application was launched. In a pre-
ferred embodiment, discard processing permits multiple
instances of a search application launched. In another
embodiment, a user selects which of a plurality of results are
to be discarded prior to discarding.

FIG. 70C depicts a flowchart for describing one embodi-
ment of a procedure for Discard command action processing,
as derived from the processing of FIG. 70A. All operands are
implemented, and each of blocks D04 through D54 can be
implemented with any one of the methodologies described
with FIG. 70A, or any one of a blend of methodologies
implemented by FIG. 70C.

FIG. 71A depicts a flowchart for describing a preferred
embodiment of a procedure for Move command action pro-
cessing. There are four (4) primary methodologies for carry-
ing out move command search processing:

1) Launching an application, executable, or program with a
standard contextual object type interface, for finding the
source object(s) to move;

2) Custom launching of an application, executable, or pro-
gram, for finding the source object(s) to move;

3) Processing the move command locally, for finding the
source object(s) to move; or

APPLE

EXHIBIT 1001 - PAGE 0393

US 9,088,868 B2

259

4) MS to MS communications (MS2MS) of FIGS. 75A and
75B for finding the source object(s) to move.

The source parameter specifies which system is to be the

source of the move: the MS of FIG. 71A processing or a

remote data processing system.

There are two (2) primary methodologies for carrying out

move command processing:

1) Using local processing;

2) MS to MS communications (MS2MS) of FIGS. 75A and
775B for remote processing.

In various embodiments, any of the move command Oper-

ands can be implemented with either of the methodologies,

although there may be a preference of which methodology is

used for which Operand. Atomic move command processing

begins at block 7100, continues to block 7102 for accessing

parameters of move command “Operand” (BNF Grammar

Operand) and “Parameters” (BNF Grammar Parameters), and

continues to block 7104.

If block 7104 determines the source system parameter
(source) is this MS, then processing continues to block 7106.
If block 7106 determines the “Operand” indicates to launch a
search application for the sought operand object with a stan-
dard contextual object type interface, then parameter(s) are
validated at block 7108 and block 7110 checks the result. If
block 7110 determines there was at least one error, then block
7112 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller (invoker) at block 7160. If block 7110 determines there
were no parameter errors, then block 7114 interfaces to the
MS operating system to start the search application for the
particular object. Block 7114 may prepare parameters in
preparation for the operating system. Processing leaves block
7114 and continues to block 7138 which is discussed below.

An example of block 7114 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7106, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7116. If
block 7116 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7118
and block 7120 checks the result. If block 7120 determines
there was at least one error, then block 7112 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller at block 7160. If
block 7120 determines there were no parameter errors, then
processing continues to block 7122.

Ifblock 7122 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
searching application for moving the object, then block 7124
prepares a command string for launching the particular appli-
cation, block 7126 invokes the command string for launching
the application, and processing continues to block 7138 dis-
cussed below.

If block 7122 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for searching, then block 7128 pre-
pares any API parameters as necessary, block 7130 invokes
the API for launching the application, and processing contin-
ues to block 7138.

Referring back to block 7116, if it is determined that the
“Operand” indicates to perform the move command with
local search processing, then parameter(s) are validated at
block 7132 and block 7134 checks the result. If block 7134
determines there was at least one error, then block 7112
handles the error appropriately (e.g. log error to LBX History

10

15

20

25

30

35

40

45

50

55

60

65

260

30 and/or notify user) and processing returns to the caller at
block 7160. If block 7134 determines there were no param-
eter errors, then block 7136 searches for the operand object in
context for the Operand, and processing continues to block
7138.

Block 7138 checks the results of finding the source object
for moving to ensure there are no ambiguous results (i.e. not
sure what is being moved since the preferred embodiment is
to not move more than a single operand object at a time). If
block 7138 determines there was an ambiguous search result,
then processing continues to block 7112 for error handling as
discussed above (e.g. in context for an ambiguous move since
there were too many things to move). If block 7138 deter-
mines there is no ambiguous entity to move, block 7140
checks the acknowledgement parameter passed to FIG. 71A
processing. An alternate embodiment assumes that a plurality
of results is valid and moves all results to the target system(s)
(i.e. no ambiguous check). In another embodiment, an
ambiguous result relies on user reconciliation to reconcile
whether or not to perform the move (like FIG. 70A discard
processing).

If block 7140 determines the acknowledgement (ack)
parameter is set to true, then block 7142 provides the search
result which is to be moved. Thereafter, processing waits for
auser action to either a) continue with the move; or b) cancel
the move. Once the user action has been detected, processing
continues to block 7144. Block 7142 provides a user recon-
ciliation of whether or not to perform the move. In another
embodiment, there is no ack parameter and multiple results
detected at block 7138 forces processing into the reconcilia-
tion by the user. In yet another embodiment, the ack param-
eter is still provided, however multiple search results forces
processing into the reconciliation by the MS user anyway for
selecting which individual object shall be moved. In still other
embodiments, all results are moved.

If block 7144 determines the user selected to cancel pro-
cessing, then block 7146 logs the cancellation (e.g. log error
to LBX History 30) and processing returns to the caller at
block 7160. If block 7144 determines the user selected to
proceed with the move, then processing continues to block
7148 for getting the next (or first) system parameter (block
7148 starts an iterative loop for processing system(s) for the
move result). Also, if block 7140 determines that the ack
parameter was set to false, then processing continues directly
to block 7148. At least one system parameter is required for
the move as validated by previous parameter validations.
Block 7148 continues to block 7150.

If block 7150 determines that an unprocessed system
parameter remains, then processing continues to block 7152.
If block 7152 determines the system (target for move) is the
MS of FIG. 71A processing, then block 7154 appropriately
moves the source object to the system and processing contin-
ues back to block 7148. If block 7152 determines the system
is not the MS of FIG. 71A processing, then MS2MS process-
ing is used to accomplish the move processing to the remote
data processing system (e.g. MS), in which case block 7156
prepares parameters for FIG. 75 A processing, and block 7158
invokes the procedure of FIG. 75 A for sending the data (move
command, operand, and search result) for remote move pro-
cessing at the remote MS. Processing then continues back to
block 7148. MS2MS processing is as already described above
(see FIGS. 75A and 75B), except FIG. 75 A performs sending
data for the move action to the remote MS for moving sought
operand dependent criteria to the remote MS, and FIG. 75B
blocks 7578 through 7584 carry out processing specifically

APPLE

EXHIBIT 1001 - PAGE 0394

US 9,088,868 B2

261
for the move processing. Block 7584 processes the move of
the search result from FIG. 71A to the system of FIG. 75B
processing.

Referring back to block 7104, if'it is determined the source
parameter is not for this MS, then block 7162 prepares param-
eters for FIG. 75A processing. Thereafter, block 7164 checks
to see if there were any parameter errors since block 7162 also
validates them prior to preparing them. If block 7164 deter-
mines there was at least one parameter error, then block 7112
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to the caller at
block 7160. If block 7164 determines there were no errors,
then block 7166 invokes the procedure of FIG. 75A for send-
ing the data (move command, operand and parameters) for
remote move search processing at the remote MS. Processing
then continues to block 7138 discussed below. In one embodi-
ment, the object(s) to move are discarded from the source
system (via block 7166) in preparation for the move com-
mand processing at blocks 7154 and 7158. In another
embodiment, the object(s) to move will be discarded from the
source system when completing move processing at blocks
7154 or 7158. MS2MS processing via block 7166 is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs searching for data for the move command
at the remote MS, and FIG. 75B blocks 7578 through 7584
carry out processing specifically for at least the move com-
mand search processing for the source system. Block 7584
processes the move command for finding the object to move
in context of the Operand. Blocks 7574 and 7576 will return
the results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate move search process-
ing so that FIG. 71A processing receives the search results.
FIG. 75A can convey the found object(s) for the move by
returning from a function interface (the send procedure being
a function), returning to a file, setting data visible to both
processes, etc. Note that block 7510 may include application
launch processing (e.g. like found in FIG. 71A) for invoking
the best application in the appropriate manner for determin-
ing move search results returned from FIG. 75B processing,
or block 7510 may process returned results itself.

In one embodiment, block 7166 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 71A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage, memory,
or operating system resources which are shared by many
MSs.

By the time processing reaches block 7138 from any pre-
vious FIG. 71A processing, a search result is communicated
to processing and any launched executable (application) for
searching for the move object(s) has terminated. Search
results can be passed back as a function return, placed to a
well known directory, placed to a file, placed to interfaced
variable(s), or other communications of the result to further
processing. Regardless of the embodiment, search results are
accessed at block 7138. An alternate embodiment is like FIG.
70A wherein the application/processing invoked at blocks
7114, 7126, 7130 and 7136 handles the ack parameter and
ambiguous results appropriately (i.e. no need for blocks 7138
through 7158) to proceed with completing the move (process-
ing of blocks 7138 through 7158 incorporated). Different
methods are disclosed for similar processing to highlight

25

40

45

262

methods for carrying out processing for either one of the
commands (Move or Discard).

In one embodiment, blocks 7156 and 7158 cause process-
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data pro-
cessing system identifier accessible to the MS of FIG. 71A
processing). The remote data processing system may be a
service data processing system, or any other data processing
system capable of similar MS2MS processing as described
for the move command, perhaps involving storage, memory,
or operating system resources which are shared by many
MS:s.

Referring back to block 7150, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7160.

In FIG. 71A, “Parameters” for the atomic move command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 71A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
71A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 71A processing
occurs (e.g. no blocks 7108/7110 and/or 7118/7120 and/or
7132/7134 required). In yet another embodiment, some
defaulting of parameters is implemented.

The first parameter may define a plurality of entities to be
moved when the object inherently contains a plurality (e.g.
directory, container). In an alternate embodiment, the search
results for moving can be plural without checking for ambi-
guity at block 7138, in which case all results returned will be
moved to the target systems.

FIGS. 71B-1 through 71B-14 depicts a matrix describing
how to process some varieties of the Move command. The end
result of a move command is identical to “Copy” command
processing except the source is “Discard”-ed as part of pro-
cessing (preferably after the copy). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Move command processing:
S=Standard contextual launch used (blocks 7106 through

7114);

C=Custom launch used (blocks 7116 through 7130);
O=0Other processing used (e.g. block 7136).

Any of the Move command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Move processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “115” represents the
parameters applicable for the Move command. The Move
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the

Operand;
ack=Boolean for whether or not to prompt user for perform-

ing the move, prior to doing the move.
source=A source identity for the Move command (e.g. MS ID

or a data processing system identifier);

APPLE

EXHIBIT 1001 - PAGE 0395

US 9,088,868 B2

263

system(s)=One or more destination identities for the Move
command (e.g. MS ID or a data processing system identi-
fier).

In an alternate embodiment, an additional parameter is
provided for specifying the target destination of the system
for the move. For example, a directory can be placed to a
target path, an email can be placed to a target folder, etc.

FIG. 71C depicts a flowchart for describing one embodi-
ment of a procedure for Move command action processing, as
derived from the processing of FIG. 71A. All operands are
implemented, and each of blocks M04 through MS4 can be
implemented with any one of the methodologies described
with FIG. 71A, or any one of a blend of methodologies
implemented by FIG. 71C.

FIG. 72A depicts a flowchart for describing a preferred
embodiment of a procedure for Store command action pro-
cessing. There are four (4) primary methodologies for carry-
ing out store command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the store command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for storing remotely.

In various embodiments, any of the store command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic store command processing
begins at block 7202, continues to block 7204 for accessing
parameters of store command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
then to block 7206 for getting the next (or first) system param-
eter (block 7206 starts an iterative loop for processing
system(s)). At least one system parameter is required for the
store command. If at least one system is not present for being
processed by block 7206, then block 7206 will handle the
error and continue to block 7250 for returning to the caller
(not shown—considered obvious error handling, or was
already validated at configuration time). Block 7206 contin-
ues to block 7208. If block 7208 determines that an unproc-
essed system parameter remains, then processing continues
to block 7210. If block 7210 determines the system is not the
MS of FIG. 72A processing, then MS2MS processing is
needed to accomplish the remote store processing, in which
caseblock 7210 continues to block 7212 for preparing param-
eters for FIG. 75A processing. Thereafter, block 7214 checks
to see if there were any parameter errors since block 7212 also
validates them prior to preparing them. If block 7214 deter-
mines there was at least one parameter error, then block 7216
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing continues back to block
7206. If block 7214 determines there were no errors, then
block 7218 invokes the procedure of FIG. 75A for sending the
data (store command, operand and parameters) for remote
store processing at the remote MS. Processing then continues
back to block 7206. MS2MS processing is as already
described above (see FIGS. 75A and 75B), except FIG. 75A
performs sending data for the store command to the remote
MS for storing operand dependent criteria at the remote MS,
and FIG. 75B blocks 7578 through 7584 carry out processing
specifically for the store command. Block 7584 processes the
store command for storing in context of the Operand.

In one embodiment, block 7218 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing

10

15

20

25

30

35

40

45

50

55

60

65

264

system identifier accessible to the MS of FIG. 72A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
store command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7208, if it is determined that the
system for processing is the MS of FIG. 72 A processing, then
processing continues to block 7220 for checking which
“Operand” was passed. If block 7220 determines the “Oper-
and” indicates to launch a store application for the sought
operand with a standard contextual object type interface, then
parameter(s) are validated at block 7222 and block 7224
checks the result. If block 7224 determines there was at least
one error, then block 7216 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 7206. If block 7224 deter-
mines there were no parameter errors, then block 7226 inter-
faces to the MS operating system to start the storing applica-
tion for the particular object passed as a parameter. Block
7226 may prepare parameters in preparation for the operating
system, for example if parameters are passed to the applica-
tion which is invoked for storing the object. Processing leaves
block 7226 and returns to block 7206.

An example of block 7226 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7220, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7228. If
block 7228 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7230
and block 7232 checks the result. If block 7232 determines
there was at least one error, then block 7216 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 7206. If block 7232
determines there were no parameter errors, then processing
continues to block 7234.

If'block 7234 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable application for storing the object passed as a
parameter, then block 7236 prepares a command string for
launching the particular application, block 7238 invokes the
command string for launching the application, and process-
ing continues to block 7206.

If block 7234 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for storing the object passed as a
parameter, then block 7240 prepares any API parameters as
necessary, block 7242 invokes the API for launching the
application, and processing continues back to block 7206.

Referring back to block 7228, if it is determined that the
“Operand” indicates to perform the store command with
other local processing, then parameter(s) are validated at
block 7244 and block 7246 checks the result. If block 7246
determines there was at least one error, then block 7216
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 7206. If
block 7246 determines there were no parameter errors, then
block 7248 checks the operand for which store processing to
perform, and performs store processing appropriately.

Referring back to block 7206, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7250.

APPLE

EXHIBIT 1001 - PAGE 0396

US 9,088,868 B2

265

In FIG. 72A, “Parameters” for the atomic store command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 72A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
72A in context of where the ‘“Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 72A processing
occurs (e.g. no blocks 7222/7224 and/or 7230/7232 and/or
7244/7246 required). In yet another embodiment, some
defaulting of parameters is implemented.

FIGS. 72B-1 through 72B-5 depicts a matrix describing
how to process some varieties of the Store command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Store com-
mand processing:

S=Standard contextual launch used (blocks 7220 through

7226),

C=Custom launch used (blocks 7228 through 7242);
O=0Other processing (MS2MS or local) used (blocks 7244

through 7248, blocks 7212 through 7218).

Any of the Store command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Store processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “117” represents the
parameters applicable for the Store command. The Store
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
system(s)=One or more destination identities for the Store

command (e.g. MS ID or a data processing system identi-

fier).
In an alternate embodiment, an ack parameter is provided for
proving a user reconciliation of the store processing (like ack
parameter in other commands) wherein the reconciliation
preferably presents the proposed store operation in an infor-
mative manner so that the user can make an easy decision to
proceed or cancel.

FIG. 72C depicts a flowchart for describing one embodi-
ment of a procedure for Store command action processing, as
derived from the processing of FIG. 72A. All operands are
implemented, and each of blocks R04 through R54 can be
implemented with any one of the methodologies described
with FIG. 72A, or any one of a blend of methodologies
implemented by FIG. 72C.

FIG. 73A depicts a flowchart for describing a preferred
embodiment of a procedure for Administrate command
action processing. There are four (4) primary methodologies
for carrying out administrate command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the administrate command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote administration.

10

15

20

25

30

35

40

45

50

55

60

266

In various embodiments, any of the administrate command
Operands can be implemented with either one of the meth-
odologies, although there may be a preference of which meth-
odology is used for which Operand. Atomic administrate
command processing begins at block 7302, continues to
block 7304 for accessing parameters of administrate com-
mand “Operand” (BNF Grammar Operand) and “Param-
eters” (BNF Grammar Parameters), and then to block 7306
for getting the next (or first) system parameter (block 7306
starts an iterative loop for processing system(s)). At least one
system parameter is required for the administrate command.
If at least one system is not present for being processed by
block 7306, then block 7306 will handle the error and con-
tinue to block 7350 for returning to the caller (not shown—
considered obvious error handling, or was already validated
at configuration time). Block 7306 continues to block 7308. If
block 7308 determines that an unprocessed system parameter
remains, then processing continues to block 7310. If block
7310 determines the system is not the MS of FIG. 73A pro-
cessing, then MS2MS processing is needed to accomplish the
remote administration processing, in which case block 7310
continues to block 7312 for preparing parameters for FIG.
75A processing. Thereafter, block 7314 checks to see if there
were any parameter errors since block 7312 also validates
them prior to preparing them. If block 7314 determines there
was at least one parameter error, then block 7316 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing continues back to block 7306. If
block 7314 determines there were no errors, then block 7318
invokes the procedure of FIG. 75A for sending the data (ad-
ministrate command, operand and parameters) for remote
administrate processing at the remote MS. Processing then
continues back to block 7306. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs sending data for the administrate com-
mand to the remote MS for searching for sought operand
dependent criteria at the remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
administrate command search result. Block 7584 processes
the administrate command for searching for sought criteria in
context of the Operand. Blocks 7574 and 7576 will return the
results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate administrate process-
ing. Note that block 7510 may include application launch
processing (e.g. like found in FIG. 73A) for invoking the best
application in the appropriate manner with the administrate
results returned. The application should be enabled for
searching remote MSs further if the user chooses to do so, and
be enabled to perform the privileged administration. Another
embodiment of block 7510 processes the search results and
displays them to the user for subsequent administration in an
optimal manner. In some embodiments, administrate pro-
cessing is spawned at the remote MS and the interface results
are presented to the remote user. In preferred embodiments,
the administrate processing results interface is presented to
the user of FIG. 73A processing for subsequent administra-
tion. In some embodiments, administrate processing is passed
an additional parameter for whether or not to spawn the
search interface at the remote MS for the benefit of the remote
MS user, or to spawn locally for the benefit of the user of the
MS of FIG. 73 A processing. Block 7510 may process results
itself.

In one embodiment, block 7318 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 73 A process-

APPLE

EXHIBIT 1001 - PAGE 0397

US 9,088,868 B2

267

ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
administrate command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7310, if it is determined that the
system for processing is the MS of FIG. 73 A processing, then
processing continues to block 7320 for checking which
“Operand” was passed. If block 7320 determines the “Oper-
and” indicates to launch the administration application for the
sought operand with a standard contextual object type inter-
face, then parameter(s) are validated at block 7322 and block
7324 checks the result. If block 7324 determines there was at
least one error, then block 7316 handles the error appropri-
ately (e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 7306. If block 7324 deter-
mines there were no parameter errors, then block 7326 inter-
faces to the MS operating system to start the administration
application for the particular object passed as a parameter.
Block 7326 may prepare parameters in preparation for the
operating system, for example if parameters are passed to the
application which is invoked for administration of the object.
Processing leaves block 7326 and returns to block 7306.

An example of block 7326 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7320, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7328. If
block 7328 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7330
and block 7332 checks the result. If block 7332 determines
there was at least one error, then block 7316 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 7306. If block 7332
determines there were no parameter errors, then processing
continues to block 7334.

Ifblock 7334 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable administration application for administration of
the object passed as a parameter, then block 7336 prepares a
command string for launching the particular application,
block 7338 invokes the command string for launching the
application, and processing continues to block 7306.

If block 7334 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for administration of the object passed
as a parameter, then block 7340 prepares any API parameters
as necessary, block 7342 invokes the API for launching the
application, and processing continues back to block 7306.

Referring back to block 7328, if it is determined that the
“Operand” indicates to perform the administrate command
with other local processing, then parameter(s) are validated at
block 7344 and block 7346 checks the result. If block 7346
determines there was at least one error, then block 7316
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 7306. If
block 7346 determines there were no parameter errors, then
block 7348 checks the operand for which administration pro-
cessing to perform, and performs administration processing
appropriately.

Referring back to block 7306, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7350.

10

15

20

25

30

35

40

45

50

55

60

65

268

In FIG. 73A, “Parameters” for the atomic administrate
command in accordance with the “Operand” were shown to
be validated for being properly privileged prior to FIG. 73A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 73 A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 73A
processing occurs (e.g. no blocks 7322/7324 and/or 7330/
7332 and/or 7344/7346 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 73B-1 through 73B-7 depicts a matrix describing
how to process some varieties of the Administrate command.
Each row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Administrate
command processing:

S=Standard contextual launch used (blocks 7320 through

7326);

C=Custom launch used (blocks 7328 through 7342);
O=0Other processing (MS2MS or local) used (blocks 7344

through 7348, blocks 7308 through 7318).

Any ofthe Administrate command operand combinations can
be carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Administrate processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “121” is not shown.
However, it is assumed to be present (. . .). The Administrate
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
system(s)=One or more destination identities for the Admin-

istrate command (e.g. MS ID or a data processing system
identifier).

FIG. 73C depicts a flowchart for describing one embodi-
ment of a procedure for Administrate command action pro-
cessing, as derived from the processing of FIG. 73A. All
operands are implemented, and each of blocks A04 through
A54 can be implemented with any one of the methodologies
described with FIG. 73A, or any one of a blend of method-
ologies implemented by FIG. 73C.

Administrate command processing discussed thus far dem-
onstrates multithreaded/multiprocessed processing for each
system to perform administration. In one embodiment, the
same methodology is used for each system and each launched
administrate processing saves results to acommon format and
destination. In this embodiment, block 7308 processing con-
tinues to a new block 7349 when all systems are processed.
New block 7349 gathers the superset of administrate results
saved, and then launches an application (perhaps the same
one that was launched for each administrate) to show all
results found asynchronously from each other. The applica-
tion launched will be launched with the same choice of
schemes as blocks 7320 through 7350. Block 7349 then con-
tinues to block 7350. This design will want all applications
invoked to terminate themselves after saving search results
appropriately. Then, the new block 7349 starts a single

APPLE

EXHIBIT 1001 - PAGE 0398

US 9,088,868 B2

269

administration application to present all search results for
performing the administration.

In another embodiment, while an application may be
launched multiple times for each system, the application itself
is relied upon for handling multiple invocations. The appli-
cation itself has intelligence to know it was re-launched
thereby permitting a single resulting interface for multiple
target system searches, regardless of the number of times the
same search application was launched.

In one preferred embodiment, administrate processing per-
mits multiple instances of a search application launched.
Administrate processing is treated independently (this is
shown in FIG. 73A).

Preferably all administrate command embodiments pro-
vide the ability to perform other commands (e.g. Copy, Move,
Discard, Change, . . .) wherever possible from the resulting
interface in context for each search result found.

There are many other reasonable commands (and oper-
ands), some of which may intersect processing by other com-
mands. For example, there is a change command. The change
command can be described by operand as the other com-
mands were, except the change command has identical pro-
cessing to other commands for a particular operand. There are
multiple commands duplicated with the change command,
depending on the operand of the change command (like Con-
nect command overlap of functionality). FIG. 74A depicts a
flowchart for describing a preferred embodiment of a proce-
dure for Change command action processing, and FIG. 74C
depicts a flowchart for describing one embodiment of a pro-
cedure for Change command action processing, as derived
from the processing of FIG. 74A.

Charters certainly provide means for a full spectrum of
automated actions from simple predicate based (conditional)
alerts to complex application processing. Actions includes
API invocations, executable script invocations (e.g. from
command line), executable program invocations, O/S contex-
tual launch executions, integrated execution processing (e.g.
part of block processing), or any other processing executions.
As incoming WDRs indicate that a MS (MS user) of interest
is nearby, charters provide the mechanism for the richest
possible executions of many varieties to be automatically
processed. From as simple a use as generating nearby/near-
ness/distantness status to performing a complicated set of
processing based on nearby/nearness/distantness relative a
MS user, there is no limit to the processing that can occur. All
of the processing is handled locally by the MS and no con-
nected service was required.

A first LBX enabled MS with phone capability can have a
charter configuration for automatically placing a call to a
second [.LBX enabled MS user upon determining that the
second MS is close by the first MS user, for example when
both users are coincidentally nearby each other. Perhaps the
users are in a store at the same time, or are attending an event
without knowledge of each other’s attendance. It is “cool” to
be able to cause an automatic phone call for connecting the
users by conversation to then determine that they should
“hook up” since they are nearby. Furthermore, a charter at the
first MS can be configured wherein the first M'S automatically
dials/calls the second MS user, or alternatively a charter at the
first MS can be configured wherein the second MS automati-
cally dials/calls the first MS user, provided appropriate privi-
leges are in place.

FIG. 76 depicts a flowchart for describing a preferred
embodiment of processing a special Term (BNF Grammar
Term: WDRTerm, AppTerm, atomic term, etc) information
paste action at a MS. Special paste action processing begins at
block 7602 upon detection of a user invoked action to perform

5

10

15

20

25

30

35

40

45

50

55

60

65

270

a special paste using Term information. Depending on the
embodiment, FIG. 76 processing is integrated into the MS
user interface processing, either as presentation manager
code, a plug-in, TSR (Terminate and Stay Resident) code, or
other method for detecting applicable user input at the MS
(e.g. keystroke(s), voice command, etc). Unique paste
requests (user actions) cause processing to start at block 7602.
Block 7602 continues to block 7604 where the most recent
Term information for the MS of FIG. 76 processing is
accessed, then to block 7606 to see if the referenced value for
the paste is set. Depending on when a user invokes the special
paste option, the sought Term for pasting may nothave a value
set yet (e.g. AppTerm newly registered). If block 7606 deter-
mines the Term has not yet been set with a value, then block
7608 default the value for paste, otherwise block 7606 con-
tinues to block 7610. Block 7608 may or may not choose to
default with an obvious value for “not set yet”. If block 7610
determines the Term to be pasted is a WDRTerm, then pro-
cessing continues to block 7612 where the WTV is accessed,
and then to block 7614 to see how timely the most recent
WDR accessed at block 7604 is for describing whereabouts
of'the MS. If block 7614 determines the WDR information is
not out of date with respect to the WTV (i.e. whereabouts
information is timely), then block 7616 pastes the WDR
information according to the special paste action causing
execution of FIG. 76. If there is no data entry field in focus at
the MS at the time of FIG. 76 processing, then an error occurs
at block 7616 which is checked for at block 7618. If block
7618 determines the WDR information paste operation was
successful, processing terminates at block 7622, otherwise
block 7620 provides the user with an error that there is no data
entry field in focus applicable for the paste operation. The
error may require a user acknowledgement to clear the error
to ensure the user sees the error. Block 7620 then continues to
block 7622.

Ifatblock 7614 it is determined the user attempted to paste
WDR information from an untimely WDR, then block 7624
provides the user with a warning, preferably including how
stale the WDR information is, and processing waits for a user
action to proceed with the paste, or cancel the paste. There-
after, if block 7626 determines the user selected to cancel the
paste operation, then processing terminates at block 7622,
otherwise processing continues to block 7616.

Referring back to block 7610, if it determined the paste
operation is not for a WDRTerm, then processing continues
directly to block 7616 for pasting the other Term construct
terms being referenced by the paste operation (i.e. atomic
term, AppTerm, etc).

FIG. 76 processes special paste commands for pasting
Term information to data entry fields of the MS user interface
from Term data maintained at the MS. In a preferred embodi-
ment, queue 22 is accessed for the most recent WDR at block
7604 when a WDRTerm (WDR field/subfield) is referenced.
In another embodiment, a single WDR entry for the most
recent WDR information is accessed at block 7604. In a
preferred embodiment, there are a plurality of special paste
commands detected and each command causes pasting the
associated Term information field(s) in an appropriate format
to the currently focused user interface data entry field. There
can be a command (user input) for pasting any Term (e.g.
WDR) field(s) in a particular format to the currently focused
data entry field. In another embodiment, one or more fields
are accessed at block 7616 and then used to determine an
appropriate content for the paste operation to the currently
focused data entry field. For example, there can be a special
keystroke sequence (<Ctrl><Alt><I>) to paste a current loca-
tion (e.g. WDRTerm WDR field 1100c¢) to the currently

APPLE

EXHIBIT 1001 - PAGE 0399

US 9,088,868 B2

271

focused data entry field, a special keystroke sequence
(<Ctrl><Alt><s>)to paste a current situational location to the
currently focused data entry field (e.g. my most recent atomic
term situational location), a special keystroke sequence
(<Ctrl><Alt><i>) to paste the MS ID of the most recently
received WDR, a special keystroke sequence
(<Ctrl><Alt><c>) to paste a confidence (e.g. WDRTerm
WDR field 11004d) to the currently focused data entry field, a
special keystroke sequence (<Ctrl><Alt><e>) to paste a cur-
rent email source address from the WDR application fields
section of the WDR, a special keystroke sequence
(<Ctrl><Alt><F1>) to paste a current email source address
from the WDR application fields section of the WDR, a
special keystroke sequence (<Ctrl><Alt><1>) to paste a cur-
rent statistical atomic term, etc. There can be a user input for
pasting any Term data including from WDRs, atomic terms
(Value construct), Application Terms, most recent Invocation,
etc.

In another embodiment, the keystroke sequence for the
particular paste operation includes a keystroke as defined in a
prefix 5300a, or in a new record field 5300: for an application,
so that particular application field(s) are accessible from
WDR Application fields 1100%. In other embodiments, there
are special paste actions for LBX maintained statistics,
whereabouts information averages, or any other useful cur-
rent or past LBX data, including from LBX History 30. In
another embodiment, there are special paste actions for pre-
dicted data which is based on current and/or passed LBX data,
for example using an automated analysis of a plurality of
WDRs, application terms, atomic terms, statistics, or infor-
mation thereof.

Application Fields 1100%

Application fields 1100% are preferably set ina WDR when
it is completed for queue 22 insertion (for FIG. 2F process-
ing). This ensures WDRs which are in-process to queue 22
contain the information at appropriate times. This also
ensures the WDRs which are to be sent outbound contain the
information at the appropriate time, and ensures the WDRs
which are to be received inbound contain the information at
the appropriate time. Fields 1100k may be set when process-
ing at inbound time as well. Application fields can add a
significant amount of storage to a WDR. Alternate embodi-
ments may not maintain field 11004 to queue 22, but rather
append information, or an appropriate subset thereof, to field
1100% when sending WDRs outbound to minimize storage
WDRs utilize at a MS. This alternate embodiment will enable
appropriate WITS processing for maintained WDRs, inbound
WDRs, and outbound WDRs without an overhead of main-
taining lots of data to queue 22, however application fields
functionality will be limited to application data from an out-
bound originated perspective, rather than application field
setting at the time of an in process WDR regardless of when
it was in process. For example, field 11004 may alternatively
be set at blocks 2014 and 2514 and then stripped after being
processed by receiving MSs prior to any insertion to queue
22. In some embodiments, certain field 1100k data can be
enabled or disabled for being present in WDR information.

Preferably, there are WDRTerms for referencing each rea-
sonable application fields section individually, as a subset, or
as a set. For example, _appfld.appname.dataitem should
resolve to the value of “dataitem” for the application section
“appname” of application fields 1100% (i.e. “_appfld”). The
hierarchy qualification operator (i.e. ““.”) indicates which sub-
ordinate member is being referenced for which organization
is use of field 1100%. The requirement is the organization be

10

15

20

25

30

35

40

45

50

55

60

65

272

consistent in the LN-expanse (e.g. data values for anticipated
application categories). For example, _appfld.email.source
resolves to the email address associated with the email appli-
cation of the MS which originated the WDR. For example, _
appfld.phone.id resolves to the phone number associated with
the phone application of the MS which originated the WDR
(e.g. for embodiments where the MS ID is not the same as the
MS caller id/phone number). If a WDRTerm references an
application field which is not present in a WDR, then prefer-
ably a run time error during WITS processing is logged with
ignoring of the expression and any assigned action, or the
applicable condition defaults to false. Preferably, a user has
control for enabling any application subsets of data in field
1100%

FIG. 77 depicts a flowchart for describing a preferred
embodiment of configuring data to be maintained to WDR
Application Fields 1100%. While there can certainly be privi-
leges put in place to govern whether or not to include certain
data in field 1100%, it may be desirable to differentiate this
because of the potentially large amount of storage required to
carry such data when transmitting and processing WDRs.
Highlighting such consideration and perhaps warning a user
of'its use may be warranted. FIG. 72 processing provides the
differentiation. Depending on present disclosure implemen-
tations, there are privileges which require associated infor-
mation, for example for enabling profile communication
(preferably can define which file is to be used for the profile),
accepting data/database/file control (preferably can define
which data and what to do), etc. An alternate embodiment
may define a specific privilege for every derivation, but this
may overwhelm a user when already configuring many privi-
leges. Also, specific methods may be enforced without allow-
ing user specification (e.g. always use a certain file for the
profile). A preferred embodiment permits certain related
specifications with privileges and also differentiates handling
of certain features which could be accomplished with privi-
leges.

Application fields 1100K specification processing begins
at block 7702 upon a user action for the user interface pro-
cessing of FIG. 77, and continues to block 7704 where the
user is presented with options. Thereafter, block 7706 waits
for a user input/action. The user is able to specify any of a
plurality of application data for enablement or disablement in
at least outbound WDR fields 1100%. Various embodiments
will support enablement/disablement for inbound, outbound,
or any other in-process WDR event executable processing
paths. Field 1100% can be viewed as containing application
sections, each section containing data for a particular type of
MS application, or a particular type of application data as
described above.

Upon detection of a user action at block 7706, block 7708
checks if the user selected to enable a particular application
section of fields 1100%. If block 7708 determines the user
selected to enable a particular application fields 11004 sec-
tion, then block 7710 sets the particular indicator for enabling
that particular application fields 1100% section, and process-
ing continues back to block 7704. If block 7708 determines
the user did not select to enable a particular application fields
1100% section, then processing continues to block 7712. If
block 7712 determines the user selected to disable a particular
application fields 1100% section, then block 7714 sets the
particular indicator for disabling that particular application
fields 1100% section, and processing continues back to block
7704. If block 7712 determines the user did not select to
disable a particular application fields 1100% section, then
processing continues to block 7716. If block 7716 determines
the user selected to disable sending profile information in a

APPLE

EXHIBIT 1001 - PAGE 0400

US 9,088,868 B2

273

application fields 1100% section, then block 7718 sets the
profile participation variable to NULL (i.e. disabled), and
processing continues back to block 7704. If block 7716 deter-
mines the user did not select to disable sending profile infor-
mation, then processing continues to block 7720. If block
7720 determines the user selected to enable sending profile
information in a application fields 1100% section, then block
7722 prompts the user for the file to be used for the profile
(preferably the last used (or best used) file is defaulted in the
interface), and block 7724 interfaces with the user for a vali-
dated file path specification. The user may not be able to
specify a validated profile specification at block 7724 in
which case the user can cancel out of block 7724 processing.
Thereafter, if block 7726 determines the user cancelled out of
block 7724 processing, processing continues back to block
7704. If block 7726 determines the user specified a validated
profile file, then block 7728 sets the profile participation
variable to the fully qualified path name of the profile file, and
processing continues back to block 7704. Block 7724 prefer-
ably parses the profile to ensure it conforms to an LN-expanse
standard format, or error processing is handled which pre-
vents the user from leaving block 7724 with an incorrect
profile.

In an alternate embodiment, block 7728 additionally inter-
nalizes the profile for well performing access (e.g. to a XML
tag tree which can be processed). This alternate internaliza-
tion embodiment for block 7728 would additionally require
performing internalization after every time the user modified
the profile, in which case there could be a special editor used
by the user for creating/maintaining the profile, a special user
post-edit process to cause internalization, or some other
scheme for maintaining a suitable internalization. In an
embodiment which internalizes the profile from a special
editor, the special editor processing can also limit the user to
what may be put in the profile, and validate its contents prior
to internalization. An internalized profile is preferably always
in correct parse-friendly form to facilitate performance when
being accessed. In the embodiment of block 7728 which sets
the fully qualified path name of'the profile file, a special editor
may still be used as described, or any suitable editor may be
used, but validation and obvious error handling may have to
be performed when accessing the profile, if not validated by
block 7724 beyond a correct file path. Some embodiments
may implement a profile in a storage embodiment that is not
part of a file system.

If block 7720 determines the user did not select to enable
profile information to be maintained to field 1100%, then
processing continues to block 7730. If block 7730 determines
the user selected to exit FIG. 77 processing, application fields
1100% specification processing terminates at block 7732. If
block 7730 determines the user did not select to exit, then
processing continues to block 7734 where any other user
actions detected at block 7706 are handled appropriately.
Block 7734 then continues back to block 7704.

There can be many MS application sections of field 1100%
which are enabled or disabled by blocks 7708 through 7714.
In the preferred embodiment of profile processing, the profile
is a human readable text file, and any file of the MS can be
compared to a profile of a WDR so that the user can maintain
many profiles for the purpose of comparisons in expressions.
Alternate embodiments include a binary file, data maintained
to some storage, or any other set of data which can be pro-
cessed in a similar manner as describe for profile processing.
Some embodiments support specification of how to enable/
disable at blocks 7708 through 7714 derivatives for mW ITS,
iWITS and/or oWITS.

40

45

55

274

In the preferred embodiment, a profile text file contains at
least one tagged section, preferably using XML tags. Alter-
natively, Standard Generalized Markup Language (SGML)
or HTML may be used for encoding text in the profile. There
may be no standardized set of XML tags, although this would
make for a universally consistent interoperability. The only
requirement is that tags be used to define text strings which
can be searched and compared. It helps for a plurality of users
to know what tags each other uses so that comparisons can be
made on a tag to tag basis between different profiles. A plu-
rality of MS users should be aware of profile tags in use
between each other so as to provide functionality for doing
comparisons, otherwise profiles that use different tags cannot
be compared.

Indicators disabled or enabled, as well as the profile par-
ticipation variable is to be observed by WDR processing so
that field 1100% is used accordingly. In some embodiments,
certain application field sections cannot be enabled or dis-
abled by users (i.e. a MS system setting). In preferred
embodiments, WITS processing checks these settings to
determine whether or not to perform applicable processing. In
some embodiments, WITS processing checks these settings
to strip out (e.g. for setting(s) disabled) information from a
WDR which is to be in process.

FIG. 78 depicts a simplified example of a preferred XML
syntactical encoding embodiment of a profile for the profile
section of WDR Application Fields 1100%. This is also the
contents of a profile file as specified at block 7724. Any tag
may have any number of subordinate tags and there can be
any number of nested levels of depth of subordinate tags. A
user can define his own tags. Preferably, the user anticipates
what other MS users are using for tags. Individual text ele-
ments for a tag are preferably separated by semicolons.
Blanks are only significant when non-adjacent to a semico-
lon. The text between tags is compared (e.g. text elements
(e.g. Moorestown)), regardless of whether a tag contains sub-
ordinate tags, however subordinate tags are compared for
matching prior to determining a match of contents between
them. Ultimately, the semicolon delimited text elements
between the lowest order tags (leaf node tag sections of tag
tree) are compared for matching. Ascending XML tags and
the lowest level tags hierarchy provide the guide for what to
compare. Thus, tags provide the map of what to compare, and
the stuff being compared is the text elements between the
lowest order tags of a particular tag hierarchy tree. Some
explanations of atomic operator uses in expressions are
described for an in-process WDR:
#d:\myprofs\benchmark. xm1>5
This condition determines if the benchmark.xml file contains
greater than 5 tag section matches in the entire WDR profile
of'the WDR in process. Text elements of the lowest order tag
sections are used to decide the comparison results. A tag
hierarchy, if present, facilitates how to compare. Six (six) or
more matches evaluates to true, otherwise the condition
evaluates to false.

% d:\myprofs\benchmark.xml>=75

This condition determines if the benchmark.xml file contains
greater than or equal to 75% of tag section matches in the
entire WDR profile of the WDR in process. Contents that
occurs between every tag is compared for a match. The num-
ber of matches found divided by the number of tag matches
performed provides the percentage of matches (after multi-
plying the result by 100). The resulting percentage greater
than or equal to 75% evaluates to true, otherwise the condition
evaluates to false.

APPLE

EXHIBIT 1001 - PAGE 0401

US 9,088,868 B2

275

#(interests)d:\myprofs\benchmark.xml>2

In using FIG. 78 as an example, this condition determines if
the benchmark.xml file contains greater than two (2) semico-
lon delimited matches within only the interests tag in the
WDR profile of the WDR in process. If either the bench-
mark.xml file or the WDR profile does not contain the inter-
ests tag, then the condition evaluates to false. If both contain
the interests tag, then the semicolon delimited items which is
interests tag delimited are compared. Three (3) or more semi-
colon delimited interests that match evaluates to true, other-
wise the condition evaluates to false.

% (home,hangouts)d:\myprofs\benchmark.xm1>75

This condition determines if the benchmark.xml file contains
greater than 75% matches when considering the two tags
home and hangouts in the WDR profile of the WDR in pro-
cess. Any number of tags, and any level of ascending tag
hierarchy, can be specified within the (. . .) syntax. If either
the benchmark.xml file or the WDR profile does not contain
the tags for matching, then the condition evaluates to false. If
both contain the sought tags for matching, then the text ele-
ments of the lowest order subordinate tags are treated as the
items for compare. Of course, if the tags have no subordinate
tags, then text elements would be compared that occurs
between those tag delimiters. The number of matches found
divided by the number of comparisons made provides the
percentage of matches (after multiplying the result by 100).
The resulting percentage greater than 75% evaluates to true,
otherwise the condition evaluates to false.

WITS processing preferably uses an internalized form of
FIG. 78 to perform comparisons. The internalized form may
be established ahead of time as discussed above for better
WITS processing performance, or may be manufactured by
WITS processing in real time as needed.

Other Embodiments

As mentioned above, architecture 1900 provides a set of
processes which can be started or terminated for desired
functionality. Thus, architecture 1900 provides a palette from
which to choose desired deployment methods for an LN
expanse.

In some embodiments, all whereabouts information can be
pushed to expand the LN-expanse. In such embodiments, the
palette of processes to choose from includes at least process
1902, process 1912 and process 1952. Additionally, process
1932 would be required in anticipation of LN-expanse par-
ticipating data processing systems having NTP disabled or
unavailable. Additionally, process 1922 could be used for
ensuring whereabouts are timely (e.g. specifically using all
blocks except 2218 through 2224). Depending on DLM capa-
bility of MSs in the LN-expanse, a further subset of processes
1902, 1912, 1952 and 1932 may apply. Thread(s) 1902 bea-
con whereabouts information, regardless of the MS being an
affirmifier or pacifier.

In some embodiments, all whereabouts information can be
pulled to expand the LN-expanse. In such embodiments, the
palette of processes to choose from includes at least process
1922 (e.g. specifically using all blocks except 2226 and
2228), process 1912, process 1952 and process 1942. Addi-
tionally, process 1932 would be required in anticipation of
LN-expanse participating data processing systems having
NTP disabled or unavailable. Depending on DLM capability
of MSs inthe LN-expanse, a further subset of processes 1922,
1912, 1952, 1942 and 1932 may apply.

There are many embodiments derived from architecture
1900. Essential components are disclosed for deployment
varieties. In communications protocols which acknowledge a

10

15

20

25

30

35

40

45

50

55

65

276

transmission, processes 1932 may not be required even in
absence of NTP use. A sending MS appends a sent date/time
stamp (e.g. field 1100z) on its time scale to outbound data
1302 and an acknowledging MS (or service) responds with
the sent date/time stamp so that when the sending MS
receives it (receives data 1302 or 1312), the sending MS (now
a receiving MS) calculates a TDOA measurement by com-
paring when the acknowledgement was received and when it
was originally sent. Appropriate correlation outside of pro-
cess 1932 deployment enables the sending MS to know which
response went with which data 1302 was originally sent. A
MS can make use of 19xx processes as is appropriate for
functionality desired.

In push embodiments disclosed above, useful summary
observations are made. Service(s) associated with antennas
periodically broadcast (beacon) their reference whereabouts
(e.g. WDR information) for being received by MSs in the
vicinity. When such services are NTP enabled, the broadcasts
include a sent date/time stamp (e.g. field 11007). Upon
receipt by a NTP enabled MS in the vicinity, the MS uses the
date/time stamp of MS receipt (e.g. 1100p) with the date/time
stamp of when sent (e.g. field 1100#) to calculate a TDOA
measurement. Known wave spectrum velocity can translate
to a distance. Upon receipt of a plurality of these types of
broadcasts from different reference antennas, the MS can
triangulate itself for determining its whereabouts relative
known whereabouts of the reference antennas. Similarly, ref-
erence antennas are replaced by other NTP enabled MSs
which similarly broadcast their whereabouts. A MS can be
triangulated relative a mixture of reference antennas and
other NTP enabled MSs, or all NTP enabled MSs. Stationary
antenna triangulation is accomplished the same way as trian-
gulating from other MSs. NTP use allows determining MS
whereabouts using triangulation achievable in a single unidi-
rectional broadcast of data (1302 or 1312). Furthermore, ref-
erence antennas (service(s)) need not communicate new data
1312, and MSs need not communicate new data 1302. Usual
communications data 1312 are altered with a CK 1314 as
described above. Usual communications data 1302 are
altered with a CK 1304 as described above. This enables a MS
with not only knowing there are nearby hotspots, but also
where all parties are located (including the MS). Beaconing
hotspots, or other broadcasters, do not need to know who you
are (the MS ID), and you do not need to know who they are in
order to be located. Various bidirectional correlation embodi-
ments can always be used for TDOA measurements.

In pull embodiments disclosed above, data processing sys-
tems wanting to determine their own whereabouts (request-
ors) broadcast their requests (e.g. record 2490). Service(s) or
MSs (responders) in the vicinity respond. When responders
are NTP enabled, the responses include a sent date/time
stamp (e.g. field 1100z) that by itself can be used to calculate
a TDOA measurement if the requestor is NTP enabled. Upon
receipt by a requestor with no NTP, the requestor uses the
date/time stamp of a correlated receipt (e.g. 1100p) with the
date/time stamp of when sent (e.g. fields 1100z or 2450aq) to
calculate a time duration (TDOA) for whereabouts determi-
nation, as described above. New data or usual communica-
tions data applies as described above.

IfNTP is available to a data processing system, it should be
used whenever communicating date/time information (e.g.
NTP bit of field 11005, 11007 or 1100p) so that by chance a
receiving data processing is also NTP enabled, a TDOA mea-
surement can immediately be taken. In cases, where either the
sending (first) data processing system or receiving (second)
data processing system is not NTP enabled, then the calcu-
lating data processing system wanting a TDOA measurement

APPLE

EXHIBIT 1001 - PAGE 0402

US 9,088,868 B2

277

will need to calculate a sent and received time in consistent
time scale terms. This includes a correlated bidirectional
communications data flow to properly determine duration in
time terms of the calculating data processing system. In a
send initiated embodiment, a first (sending) data processing
system incorporates a sent date/time stamp (e.g. fields 11007
or 2450q) and determines when a correlated response is
received to calculate the TDOA measurement (both times in
terms of the first (sending) data processing system). In
another embodiment, a second (receiving) data processing
system receives a sent date/time stamp (e.g. field 1100%) and
then becomes a first (sending) data processing as described in
the send initiated embodiment. Whatever embodiment is
used, it is beneficial in the LN-expanse to minimize commu-
nications traffic.

The NTP bit in date/time stamps enables optimal elegance
in the LN-expanse for taking advantage of NTP when avail-
able, and using correlated transmissions when it is not. ANTP
enabled MS is somewhat of a chameleon in using unidirec-
tional data (1302 or 1312 received) to determine whereabouts
relative NTP enabled MS(s) and/or service(s), and then using
bidirectional data (1302/1302 or 1302/1312) relative MS(s)
and/or service(s) without NTP. A MS is also a chameleon
when considering it may go in and out of a DLM or ILM
identity/role, depending on what whereabouts technology is
available at the time.

The MS ID (or pseudo MS ID) in transmissions is useful
for a receiving data processing system to target a response by
addressing the response back to the MS ID. Targeted trans-
missions target a specific MS ID (or group of MS IDs), while
broadcasting is suited for reaching as many MS IDs as pos-
sible. Alternatively, justa correlation is enough to target a data
source.

In some embodiments where a MS is located relative
another MS, this is applicable to something as simple as
locating one data processing system using the location of
another data processing system. For example, the where-
abouts of a cell phone (first data processing system) is used to
locate an in-range automotive installed (second) data process-
ing system for providing new locational applications to the
second data processing system (or visa-versa). In fact, the
second data processing may be designed for using the nearby
first data processing system for determining its whereabouts.
Thus, as an MS roams, in the know of its own whereabouts,
the MS whereabouts is shared with nearby data processing
systems for new functionality made available to those nearby
data processing systems when they know their own where-
abouts (by associating to the MS whereabouts). Data process-
ing systems incapable of being located are now capable of
being located, for example locating a data processing
equipped shopping cart with the location of an MS, or plural-
ity of MSs.

Architecture 1900 presents a preferred embodiment for
IPC (Interprocess Communications Processing), but there are
other embodiments for starting/terminating threads, signal-
ing between processes, semaphore controls, and carrying out
present disclosure processing without departing from the
spirit and scope of the disclosure. In some embodiments,
threads are automatically throttled up or down (e.g. 1952-
Max) per unique requirements of the MS as determined by
how often threads loop back to find an entry already waiting
in a queue. If thread(s) spend less time blocked on queue, they
can be automatically throttled up. If thread(s) spend more
time blocked on queue, they can be automatically throttled
down. Timers can be associated with queue retrieval to keep
track of time a thread is blocked.

5

10

15

20

25

30

35

40

45

50

55

60

65

278

LBX history 30 preferably maintains history information
of key points in processing where history information may
prove useful at a future time. Some of the useful points of
interest may include:

Interim snapshots of permissions 10 (for documenting who

had what permissions at what time) at block 1478;
Interim snapshots of charters 12 (for documenting charters
in effect at what times) at block 1482;

Interim snapshots of statistics 14 (for documenting useful
statistics worthy of later browse) at block 1486;

Interim snapshots of service propagation data of block
1474;

Interim snapshots of service informant settings of block
1490;

Interim snapshots of LBX history maintenance/configura-
tions of block 1494;

Interim snapshots of a subset of WDR queue 22 using a

configured search criteria;

Interim snapshots of a subset of Send queue 24 using a

configured search criteria;

Interim snapshots of a subset of Receive queue 26 using a

configured search criteria;

Interim snapshots of a subset of PIP data 8;

Interim snapshots of a subset of data 20;

Interim snapshots of a subset of data 36;

Interim snapshots of other resources 38;

Trace, debug, and/or dump of any execution path subset of

processing flowcharts described; and/or

Copies of data at any block of processing in any flowchart

heretofore described.

Entries in LBX history 30 preferably have entry qualifying
information including at least a date/time stamp of when
added to history, and preferably an O/S PID and O/S TID
(Thread Identifier) associated with the logged entry, and
perhaps applicable applications involved (e.g. see fields
1100%). History 30 may also be captured in such a way
there are conditions set up in advance (at block 1494), and
when those conditions are met, applicable data is captured
to history 30. Conditions can include terms that are MS
system wide, and when the conditions are met, the data for
capture is copied to history. In these cases, history 30
entries preferably include the conditions which were met to
copy the entry to history. Depending on what is being kept
to history 30, this can become a large amount of informa-
tion. Therefore, FIG. 27 can include new blocks for prun-
ing history 30 appropriately. In another embodiment, a
separate thread of processing has a sleeper loop which
when awake will prune the history 30 appropriately, either
inits own processing or by invoking new FIG. 27 blocks for
history 30. A parameter passed to processing by block 2704
may include how to prune the history, including what data
to prune, how old of data to prune, and any other criteria
appropriate for maintaining history 30. In fact, any pruning
by FIG. 27 may include any reasonable parameters for how
to prune particular data of the present disclosure.
Location applications can use the WDR queue for retriev-

ing the most recent highest confidence entry, or can access the
single instance WDR maintained (or most recent WDR of
block 289 discussed above). Optimally, applications are pro-
vided with an API that hides what actually occurs in ongoing
product builds, and for ensuring appropriate semaphore
access to multi-threaded accessed data.

Correlation processing does not have to cause a WDR
returned. There are embodiments for minimal exchanges of
correlated sent date/time stamps and/or received date/time
stamps so that exchanges are very efficient using small data
exchanges. Correlation of this disclosure was provided to

APPLE

EXHIBIT 1001 - PAGE 0403

US 9,088,868 B2

279

show at least one solution, with keeping in mind that there are
many embodiments to accomplish relating time scales
between data processing systems.

Architecture 1900 provides not only the foundation for
keeping an MS abreast of its whereabouts, but also the foun-
dation upon which to build LBX nearby functionality. Where-
abouts of MSs in the vicinity are maintained to queue 22.
Permissions 10 and charters 12 can be used for governing
which MSs to maintain to queue 22, how to maintain them,
and what processing should be performed. For example, MS
user Joe wants to alert MS user Sandy when he is in her
vicinity, or user Sandy wants to be alerted when Joe is in her
vicinity. Joe configures permissions enabling Sandy to be
alerted with him being nearby, or Sandy configured permis-
sions for being alerted. Sandy accepts the configuration Joe
made, or Joe accepts the configuration Sandy made. Sandy’s
queue 22 processing will ensure Joe’s WDRs are processed
uniquely for desired functionality.

FIG. 8C was presented in the context of a DLM, however
architecture 1900 should be applied for enabling a user to
manually request to be located with ILM processing if nec-
essary. Blocks 862 through 870 are easily modified to accom-
plish a WDR request (like blocks 2218 through 2224). In
keeping with current block descriptions, block 872 would
become a new series of blocks for handling the case when
DLM functionality was unsuccessful. New block 872-A
would broadcast a WDR request soliciting response (see
blocks 2218 through 2224). Thereafter, a block 872-B would
wait for a brief time, and subsequently a block 872-C would
check if whereabouts have been determined (e.g. check queue
22). Thereafter, if a block 872-D determines whereabouts
were not determined, an error could be provided to the user,
otherwise the MS whereabouts were successfully determined
and processing continues to block 874. Applications that may
need whereabouts can now be used. There are certainly emer-
gency situations where a user may need to rely on other MSs
in the vicinity for being located. In another embodiment,
LBX history can be accessed to at least provide a most recent
location, or most recently traveled set of locations, hopefully
providing enough information for reasonably locating the
user in the event of an emergency, when a current location
cannot be determined.

To maintain modularity in interfaces to queues 24 and 26,
parameters may be passed rather than having the modular
send/receive processing access fields of application records.
When WDRs are “sent”, the WDR will be targeted (e.g. field
1100a), perhaps also with field 1100/ indicating which com-
munications interface to send on (e.g. MS has plurality of
comm. interfaces 70). When WDRs are “broadcast” (e.g. null
MS ID), the WDR is preferably outbound on all available
comm. interfaces 70), unless field 11007 indicates to target a
comm. interface. Analogously, when WDR requests are
“sent”, the request will be targeted (e.g. field 2490a), perhaps
also with field 24904 indicating which communications inter-
face to send on (e.g. MS has plurality of comm. interfaces 70).
When WDR requests are “broadcast” (e.g. null MS ID), the
WDR is preferably outbound on all available comm. inter-
faces 70), unless field 1100/ indicates to target a comm.
interface.

Fields 1100, 11007, 1100p, 24905 and 2490¢ are also of
interest to the transport layer. Any subset, or all, of transport
related fields may be passed as parameters to send processing,
orreceived as parameters from receiving processing to ensure
send and receive processing is adaptable using pluggable
transmission/reception technologies.

An alternate embodiment to the BESTWDR WDR
returned by FIG. 26B processing may be set with useful data

35

40

45

50

65

280

for reuse toward a future FIG. 26B processing thread where-
abouts determination. Field 1100/ (see pg. 168) can be set
with useful data for that WDR to be in turn used at a subse-
quent whereabouts determination of FIG. 26B. This is
referred to as Recursive Whereabouts Determination (RWD)
wherein ILMs determine WDRs for their whereabouts and
use them again for calculating future whereabouts (by popu-
lating useful TDOA, AOA, MPT and/or whereabouts infor-
mation to field 1100f).

An alternate embodiment may store remote MS movement
tolerances (if they use one) to WDR field 1100fso the receiv-
ing MS can determine how stale are other WDRs in queue 22
from the same MS, for example when gathering all useful
WDRs to start with in determining whereabouts of FIG. 26B
processing (e.g. block 2634). Having movement tolerances in
effect may prove useful for maximizing useful WDRs used in
determining a whereabouts (FIG. 26B processing).

Many LBX aspects have been disclosed, some of which are
novel and new in LBS embodiments. While it is recom-
mended that features disclosed herein be implemented in the
context of LBX, it may be apparent to those skilled in the art
how to incorporate features which are also new and novel in
a LBS model, for example by consolidating distributed per-
mission, charters, and associated functionality to a shared
service connected database.

Privileges and/or charters may be stored in a datastream
format (e.g. X.409), syntactical format (e.g. XML, source
code (like FIGS. 51 A and 51B), compiled or linked program-
ming data, database data (e.g. SQL tables), or any other
suitable format. Privileges and/or charters may be communi-
cated between MSs in a datastream format (e.g. X.409), syn-
tactical format (e.g. XML, source code (like FIGS. 51A and
51B), compiled or linked programming data, database data
(e.g. SQL tables), or any other suitable format.

Block 4466 may access an all or none permission (privi-
lege) to receive permission and/or charter data (depending on
what data is being received) from a particular identity (e.g.
user or particular MS). Alternate embodiments implement
more granulated permissions (privileges) on which types,
sets, or individual privileges and/or charters can be received
so that block 4470 will update local data with only those
privileges or charters that are permitted out of all data
received. One embodiment is to receive all privileges and/or
charters from remote systems for local maintaining so that
FIG. 57 processing can later determine what privileges and
charters are enabled. This has the benefit for the receiving
user to know locally what the remote user(s) desire for privi-
leges and charters without them necessarily being effective.
Another embodiment is for FIG. 44B to only receive the
privileged subset of data that can be used (privileged) at the
time, and to check at block 4466 which privileges should be
used to alter existing privileges or charters from the same MS
(e.g. altered at block 4470). This has the potential benefit of
less MS data to maintain and better performance in FIG. 57
processing for dealing only with those privileges and charters
which may be useable. A user may still browse another user’s
configurations with remote data access anyway.

WPL is a unique programming language wherein peer to
peer interaction events containing whereabouts information
(WDRs) provide the triggers for novel location based pro-
cessing, however a LBS embodiment may also be pursued.
Events seen, or collected, by a service may incorporate WPL,
the table record embodiments of FIGS. 35A through 37C, a
suitable programming executable and/or data structures, or
any other BNF grammar derivative to carry out analogous
event based processing. For example, the service would
receive inbound whereabouts information (e.g. WDRS) from

APPLE

EXHIBIT 1001 - PAGE 0404

US 9,088,868 B2

281

participating MSs and then process accordingly. An inbound,
outbound, and in-process methodology may be incorporated
analogously by processing whereabouts information from
MS:s as it arrives to the service (inbound), processing where-
abouts information as it is sent out from the service (out-
bound) to MSs, and processing whereabouts information as it
is being processed by the service (in process) for MSs. In one
embodiment, service informant code 28 is used to keep the
service informed of the LBX network. In another embodi-
ment, a conventional [.BS architecture is deployed for col-
lecting whereabouts of MSs.

An alternate embodiment processes inbound/outbound/
maintained WDRs in process transmitted to a MS from non-
mobile data processing systems, perhaps data processing sys-
tems which are to emulate a MS, or perhaps data processing
systems which are to contribute to LBX processing. Interop-
erability is as disclosed except data processing systems other
than MSs participate in interacting with WDRs. In other
embodiments, the data processing systems contain process-
ing disclosed for MSs to process WDRs from MSs (e.g. all
disclosed processing or any subset of processing (e.g. WITS
processing)).

Communications between MSs and other MSs, or between
MSs and data processing systems, may be compressed,
encrypted, and/or encoded for performance or concealing.
Any protocol, X.409 encodings, datastream encodings, or
other data which is critical for processing shall have integrity
regardless of an encapsulating or embedded encoding that
may be in use. Further, internalizations of the BNF grammar
may also be compressed, encrypted, and/or encoded for per-
formance or concealing. Regardless of an encapsulating or
embedded encoding that may be in use, integrity shall be
maintained for processing. When other encodings are used
(compression, encryption, etc), an appropriate encode and
decode pair of processing is used (compress/decompress,
encrypt/decrypt, etc).

Grammar specification privileges are preferably enforced
in real time when processing charters during WITS process-
ing. For example, charters specified may initially be ineffec-
tive, but can be subsequently enabled with a privilege. It is
preferred that privileges 10 and charters 12 be maintained
independently during configuration time, and through appro-
priate internalization. This allows specifying anything a user
wants for charters, regardless of privileges in effect at the time
of charter configuration, so as to build those charters which
are desired for processing, but not necessarily effective yet.
Privileges can then be used to enable or disable those charters
as required. In an alternate embodiment, privileges can be
used to prevent certain charters from even being created. This
helps provide an error to the user at an appropriate time
(creating an invalid charter), however a valid charter may lose
a privilege later anyway and become invalid. The problem of
a valid charter becoming invalid later has to be dealt with
anyway (rather than automatically deleting the newly invalid
charter). Thus, it is preferable to allow any charters and privi-
leges to be specified, and then candidate for interpreting at
WITS processing time.

Many embodiments are better described by redefining the
“W” in acronyms used throughout this disclosure for the more
generic “Wireless” use, rather than “Whereabouts™ use. Thus,
WDR takes on the definition of Wireless Data Record. In
various embodiments, locational information fields become
less relevant, and in some embodiments mobile location
information is not used at all. As stated above with FIG. 11A,
when a WDR is referenced in this disclosure, it is referenced

35

40

45

282
in a general sense so that the contextually reasonable subset of
the WDR of FIG. 11A is used. This notion is taken steps
further.

A WDR 1100 may be redefined with a core section con-
taining only the MS ID field 1100a. The MS ID field 11004
facilitates routing of the WDR, and addressing a WDR, for
example in a completely wireless transmission of FIGS. 13A
through 13C. In an embodiment with a minimal set of WDR
fields, the WDR may contain only two (2) fields: a MS ID
field 11004 and application fields 1100%. In an embodiment
with minimal changes to the architecture heretofore dis-
closed, all WDR 1100 fields 11005 through 1100p are main-
tained to field 1100%. Disclosure up to this point continues to
incorporate processing heretofore described, except WDR
fields which were peers to application fields 11004 in a WDR
1100 are now subordinate to field 1100k. However, the field
data is still processed the same way as disclosed, albeit with
data being maintained subordinate to field 1100%. Thus, field
1100% may have broader scope for carrying the data, or for
carrying similar data.

In a more extreme embodiment, a WDR (Wireless Data
Record) will contain only two fields: a MS ID field 1100a and
application fields 1100%; wherein a single application (or
certain applications) of data is maintained to field 1100%. For
example, the WDR is emitted from mobile MSs as a beacon
which may or may not be useful to receiving MSs, however
the beaconed data is for one application (other embodiments
can be for a plurality of applications). In this minimal
embodiment, a minimal embodiment of architecture 1900 is
deployed with block changes removing whereabouts/location
processing. The following processes may provide such a
minimal embodiment palette for implementation:

Wireless Broadcast Thread(s) 1902—

FIG. 20 block 2010 would be modified to “Peek WDR
queue for most recent WDR with MS ID=this MS”. Means
would be provided for date/time stamps maintained to queue
22 for differentiating between a plurality of WDRs main-
tained so the more recent can be retrieved. This date/time
stamp may or may not be present in a WDR during transmis-
sion which originated from a remote MS (i.e. in the WDR
transmitted (beaconed)). Regardless, a date/time stamp is
preferably maintained in the WDR of queue 22. Appropriate
and timely queue 22 pruning would be performed for one or
more relevant WDRs at queue 22. FIG. 20 would broadcast at
least the MS ID field 11004 and application data field 11004
for the application.

Wireless Collection Thread(s) 1912—

FIG. 21 would be modified to remove location determina-
tion logic and would collect WDRs received that are relevant
for the receiving MS and deposit them to queue 22, preferably
with a date/time stamp. Relevance can be determined by if
there are permissions or charters in place for the originating
MS ID at the receiving MS (i.e. WITS filtering and process-
ing). The local MS applicable could access WDRs from
queue 22 as it sees fit for processing in accordance with the
application, as well as privileges and charters.

Wireless Supervisor Thread(s) 1922—

FIG. 22 block 2212 would be modified to “Peek WDR
queue for MS ID=this MS, and having a reasonably current
date/time stamp” to ensure there is at least one timely WDR
contained at queue 22 for this MS. If there is not a timely
WDR at the MS, then processing of block 2218 through 2228
would be modified to request helpful WDRs from MSs within
the vicinity, assuming the application applicable warrants
requesting such help, otherwise blocks 2218 through 2228
would be modified to trigger local MS processing for ensur-
ing a timely WDR is deposited to queue 22.

APPLE

EXHIBIT 1001 - PAGE 0405

US 9,088,868 B2

283

Wireless Data Record Request Thread(s) 1942—

FIG. 25 block 2510 would be modified to “Peek WDR
queue for most recent WDR with this MS ID” and then
sending/broadcasting the response to the requesting MS. FIG.
25 would be relevant in an architecture wherein the applica-
tion does in fact rely on MSs within the vicinity for determin-
ing its own WDRs.

One application using such a minimal embodiment may be
the transmission of profile information (see # and % operators
above). As a MS roams, it beacons out its profile information
for other MSs to receive it. The receiving MSs then decide to
process the profile data in fields 11004 according to privileges
and/or charters that are in place. Note that there is no locating
information of interest. Only the profile information is of
interest. Thus, the MSs become wireless beacons of data that
may or may not be processed by receiving MSs within the
wireless vicinity of the originating MS. Consider a singles/
dating application wherein the profile data contains charac-
teristics and interests of the MS user. A privilege or charter at
the receiving MS could then process the profile data when it
is received, assuming the receiving MS user clarified what is
of interest for automated processing through configurations
for WITS processing.

While a completely wireless embodiment is the preferred
embodiment since MS users may be nearby by virtue of a
completely wireless transmission, a longer range transmis-
sion could be facilitated by architectures of FIGS. 50A
through 50C. In an architecture of transmission which is not
completely wireless, the minimal embodiment WDR would
include field(s) indicating a route which was not completely
wireless, perhaps how many hops, etc as disclosed above.
WITS filtering would play an important role to ensure no
outbound transmissions occur unless there are configurations
in place that indicate a receiving MS may process it (i.e. there
are privileges and/or charters in place), and no inbound pro-
cessing occurs unless there are appropriate configurations in
place for the originating MS(s) (i.e. there are privileges and/or
charters in place). Group identities of WDRs can become
more important as a criteria for WITS filtering, in particular
when a group id indicates the type of WDR. The longer range
embodiment of FIG. 50A through 50C preferably incorpo-
rates a send transmission for directing the WDRs to MSs
which have candidate privileges and/or charters in place,
rather than a broadcast for communicating WDRs. Broad-
casting can flood a network and may inundate MSs with
information for WITS filtering.

While various embodiments of the present disclosure have
been described above, it should be understood that they have
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present disclosure should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

What is claimed is:

1. A method, comprising:

accepting user input, from a user of a mobile application

user interface of a user carried mobile data processing
system, for configuring a user specified location based
event configuration to be monitored and triggered by the
mobile data processing system wherein the mobile data
processing system uses the user specified location based
event configuration to perform mobile data processing
system operations comprising:
accessing at least one memory storing a first identifier
and a second identifier and a third identifier wherein
each identifier is determined by the mobile data pro-
cessing system for at least one location based condi-

10

15

20

25

30

35

40

45

50

55

60

65

284

tion monitored by the mobile data processing system
for the mobile data processing system triggering a
location based action, the location based action per-
formed by the mobile data processing system upon
the mobile data processing system determining the at
least one location based condition including whether
identifier data determined by the mobile data process-
ing system for a wireless data record received for
processing by the mobile data processing system
matches the third identifier and at least one of the first
identifier and the second identifier, the wireless data
record corresponding to a beaconed broadcast wire-
less data transmission that is beaconed outbound from
an originating data processing system to a destination
data processing system, the first identifier indicative
of the mobile data processing system of the mobile
application user interface for use by the mobile data
processing system in comparing the first identifier to
the identifier data determined by the mobile data pro-
cessing system for the wireless data record received
for processing by the mobile data processing system,
the second identifier indicative of originating data
processing system identity data of the wireless data
record received for processing for use by the mobile
data processing system in comparing the second iden-
tifier to the identifier data determined by the mobile
data processing system for the wireless data record
received for processing by the mobile data processing
system, the third identifier indicative of the originat-
ing data processing system of the wireless data record
received for processing wherein the third identifier is
monitored by the mobile data processing system for
use by the mobile data processing system in compar-
ing the third identifier to the wireless data record
received for processing by the mobile data processing
system,

receiving for processing the wireless data record corre-
sponding to the beaconed broadcast wireless data
transmission that is beaconed outbound from the
originating data processing system to the destination
data processing system;

determining the identifier data for the wireless data
record received for processing by the mobile data
processing system;

comparing the identifier data for the wireless data record
received for processing by the mobile data processing
system with the third identifier and the at least one of
the first identifier and the second identifier;

determining the at least one location based condition of
the user specified location based event configuration
including whether the identifier data for the wireless
data record received for processing by the mobile data
processing system matches the third identifier and the
at least one of the first identifier and the second iden-
tifier; and

performing, upon the determining the at least one loca-
tion based condition, the location based action in
accordance with the determining the at least one loca-
tion based condition of the user specified location
based event configuration including whether the iden-
tifier data for the wireless data record received for
processing by the mobile data processing system
matches the third identifier and the at least one of the
first identifier and the second identifier.

2. The method of claim 1 wherein the second identifier
grants the location based action to the first identifier.

APPLE

EXHIBIT 1001 - PAGE 0406

US 9,088,868 B2

285

3. The method of claim 2 wherein the identifier data
matches the second identifier and the location based action
provides a location based feature intended for benefiting a
data processing system user or group associated with the
second identifier.
4. The method of claim 2 wherein the identifier data
matches the first identifier and the location based action pro-
vides a location based feature intended for benefiting a data
processing system user or group associated with the second
identifier.
5. The method of claim 2 wherein the identifier data
matches the second identifier and the location based action
provides a location based feature intended for benefiting a
data processing system user or group associated with the first
identifier.
6. The method of claim 1 wherein the first identifier grants
the location based action to the second identifier.
7. The method of claim 6 wherein the identifier data
matches the second identifier and the location based action
provides a location based feature intended for benefiting a
data processing system user or group associated with the
second identifier.
8. The method of claim 6 wherein the identifier data
matches the first identifier and the location based action pro-
vides a location based feature intended for benefiting a data
processing system user or group associated with the second
identifier.
9. The method of claim 6 wherein the identifier data
matches the second identifier and the location based action
provides a location based feature intended for benefiting a
data processing system user or group associated with the first
identifier.
10. The method of claim 1 wherein the first identifier grants
the location based action to the first identifier, and wherein the
identifier data matches the first identifier and the location
based action provides a location based feature intended for
benefiting a data processing system user or group associated
with the first identifier.
11. The method of claim 1 including:
accepting user input, from the user of the mobile data
processing system, for administrating an other user
specified location based event configuration including
the first identifier and the second identifier, wherein the
first identifier grants to the second identifier an other
location based action to be performed by an other mobile
data processing system, the second identifier being asso-
ciated to the other mobile data processing system; and

communicating the other user specified location based
event configuration to the other mobile data processing
system for effectual use at the other mobile data process-
ing system.

12. The method of claim 11 wherein the first identifier is
administrated for matching identifier data associated with a
wireless data record processed by the other mobile data pro-
cessing system and the other location based action provides a
location based feature intended for benefiting a data process-
ing system user or group associated with the second identifier.

13. The method of claim 11 wherein the first identifier is
administrated for matching identifier data associated with a
wireless data record processed by the other mobile data pro-
cessing system and the other location based action provides a
location based feature intended for benefiting a data process-
ing system user or group associated with the first identifier.

14. The method of claim 11 wherein the second identifier is
administrated for matching identifier data associated with a
wireless data record processed by the other mobile data pro-
cessing system and the other location based action provides a

10

15

20

25

30

35

40

45

50

55

60

65

286

location based feature intended for benefiting a data process-
ing system user or group associated with the first identifier.

15. The method of claim 1 wherein the receiving for pro-
cessing the wireless data record includes receiving for pro-
cessing the wireless data record prior to transmitting the
wireless data record outbound from the mobile data process-
ing system.

16. The method of claim 1 wherein the receiving for pro-
cessing the wireless data record includes receiving for pro-
cessing the wireless data record after inbound receipt by the
mobile data processing system of the wireless data record.

17. The method of claim 1 wherein the receiving for pro-
cessing the wireless data record includes receiving for pro-
cessing the wireless data record for insertion to a historical
collection of information, the historical collection of infor-
mation containing information for a plurality of data process-
ing systems detected by the mobile data processing system to
have been in a wireless vicinity of the mobile data processing
system.

18. The method of claim 1 wherein the user specified
location based event configuration includes a time or distance
specification describing how the user specified location based
event configuration is in effect.

19. The method of claim 1 wherein the user specified
location based event configuration can be cloned by a user of
an other mobile data processing system for subsequent use by
the user of the other mobile data processing system.

20. The method of claim 1 wherein the first identifier or the
second identifier or the third identifier or the identifier data
identifies a group.

21. The method of claim 1 wherein a user associated to a
fourth identifier has an impersonation privilege for adminis-
trating the user specified location based event configuration.

22. The method of claim 1 wherein the first identifier and
the second identifier and the third identifier are each matched
by the mobile data processing system to the identifier data.

23. The method of claim 1 wherein the user specified
location based event configuration grants at least one seman-
tic privilege or at least one grammar specification privilege.

24. A user carried mobile data processing system, compris-
ing:

one or more processors; and

memory coupled to the one or more processors, wherein

the memory includes executable instructions which,
when executed by the one or more processors, results in
the mobile data processing system accepting user input,
from a user of a mobile application user interface of the
mobile data processing system, for configuring a user
specified location based event configuration to be moni-
tored and triggered by the mobile data processing sys-
tem wherein the mobile data processing system uses the
user specified location based event configuration to per-
form mobile data processing system operations com-
prising:
accessing at least one memory storing a first identifier
and a second identifier and a third identifier wherein
each identifier is determined by the mobile data pro-
cessing system for at least one location based condi-
tion monitored by the mobile data processing system
for the mobile data processing system triggering a
location based action, the location based action per-
formed by the mobile data processing system upon
the mobile data processing system determining the at
least one location based condition including whether
identifier data determined by the mobile data process-
ing system for a wireless data record received for
processing by the mobile data processing system

APPLE

EXHIBIT 1001 - PAGE 0407

US 9,088,868 B2

287

matches the third identifier and at least one of the first
identifier and the second identifier, the wireless data
record corresponding to a beaconed broadcast wire-
less data transmission that is beaconed outbound from
an originating data processing system to a destination
data processing system, the first identifier indicative
of the mobile data processing system of the mobile
application user interface for use by the mobile data
processing system in comparing the first identifier to
the identifier data determined by the mobile data pro-
cessing system for the wireless data record received
for processing by the mobile data processing system,
the second identifier indicative of originating data
processing system identity data of the wireless data
record received for processing for use by the mobile
data processing system in comparing the second iden-
tifier to the identifier data determined by the mobile
data processing system for the wireless data record
received for processing by the mobile data processing
system, the third identifier indicative of the originat-
ing data processing system of the wireless data record
received for processing wherein the third identifier is
monitored by the mobile data processing system for
use by the mobile data processing system in compar-
ing the third identifier to the wireless data record
received for processing by the mobile data processing
system,

receiving for processing the wireless data record corre-
sponding to the beaconed broadcast wireless data
transmission that is beaconed outbound from the
originating data processing system to the destination
data processing system;

determining the identifier data for the wireless data
record received for processing by the mobile data
processing system;

comparing the identifier data for the wireless data record
received for processing by the mobile data processing
system with the third identifier and the at least one of
the first identifier and the second identifier;

determining the at least one location based condition of
the user specified location based event configuration
including whether the identifier data for the wireless
data record received for processing by the mobile data
processing system matches the third identifier and the
at least one of the first identifier and the second iden-
tifier; and

performing, upon the determining the at least one loca-
tion based condition, the location based action in
accordance with the determining the at least one loca-
tion based condition of the user specified location
based event configuration including whether the iden-
tifier data for the wireless data record received for
processing by the mobile data processing system
matches the third identifier and the at least one of the
first identifier and the second identifier.

25. The user carried mobile data processing system of
claim 24 wherein the second identifier grants the location
based action to the first identifier.

26. The user carried mobile data processing system of
claim 25 wherein the identifier data matches the second iden-
tifier and the location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the second identifier.

27. The user carried mobile data processing system of
claim 25 wherein the identifier data matches the first identifier
and the location based action provides a location based fea-

10

15

20

25

30

35

40

45

50

55

60

65

288

ture intended for benefitting a data processing system user or
group associated with the second identifier.
28. The user carried mobile data processing system of
claim 25 wherein the identifier data matches the second iden-
tifier and the location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the first identifier.
29. The user carried mobile data processing system of
claim 24 wherein the first identifier grants the location based
action to the second identifier.
30. The user carried mobile data processing system of
claim 29 wherein the identifier data matches the second iden-
tifier and the location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the second identifier.
31. The user carried mobile data processing system of
claim 29 wherein the identifier data matches the first identifier
and the location based action provides a location based fea-
ture intended for benefitting a data processing system user or
group associated with the second identifier.
32. The user carried mobile data processing system of
claim 29 wherein the identifier data matches the second iden-
tifier and the location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the first identifier.
33. The user carried mobile data processing system of
claim 24 wherein the first identifier grants the location based
action to the first identifier, and wherein the identifier data
matches the first identifier and the location based action pro-
vides a location based feature intended for benefitting a data
processing system user or group associated with the first
identifier.
34. The user carried mobile data processing system of
claim 24 wherein the operations include:
accepting user input, from the user of the mobile data
processing system, for administrating an other user
specified location based event configuration including
the first identifier and the second identifier, wherein the
first identifier grants to the second identifier an other
location based action to be performed by an other mobile
data processing system, the second identifier being asso-
ciated to the other mobile data processing system; and

communication the other user specified location based
event configuration to the other mobile data processing
system for effectual use at the other mobile data process-
ing syste,

35. The user carried mobile data processing system of
claim 34 wherein the first identifier is administrated for
matching identifier data associated with a wireless data
record processed by the other mobile data processing system
and the other location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the second identifier.

36. The user carried mobile data processing system of
claim 34 wherein the first identifier is administrated for
matching identifier data associated with a wireless data
record processed by the other mobile data processing system
and the other location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the first identifier.

37. The user carried mobile data processing system of
claim 34 wherein the second identifier is administrated for
matching identifier data associated with a wireless data
record processed by the other mobile data processing system
and the other location based action provides a location based
feature intended for benefitting a data processing system user
or group associated with the first identifier.

APPLE

EXHIBIT 1001 - PAGE 0408

US 9,088,868 B2

289

38. The user carried mobile data processing system of
claim 24 wherein the receiving for processing the wireless
data record includes receiving for processing the wireless
data record prior to transmitting the wireless data record
outbound from the mobile data processing system.

39. The user carried mobile data processing system of
claim 24 wherein the receiving for processing the wireless
data record includes receiving for processing the wireless
data record after inbound receipt by the mobile data process-
ing system of the wireless data record.

40. The user carried mobile data processing system of
claim 24 wherein the receiving for processing the wireless
data record includes receiving for processing the wireless
data record for insertion to a historical collection of informa-
tion, the historical collection of information containing infor-
mation for a plurality of data processing system detected by
the mobile data processing system to have been in a wireless
vicinity of the mobile data processing system.

41. The user carried mobile data processing system of
claim 24 wherein the user specified location based event
configuration includes a time or distance specification
describing how the user specified location based event con-
figuration is in effect.

5

10

15

290

42. The user carried mobile data processing system of
claim 24 wherein the user specified location based event
configuration can be cloned by a user of an other mobile data
processing system for subsequent use by the user of the other
mobile data processing system.

43. The user carried mobile data processing system of
claim 24 wherein the first identifier or the second identifier or
the third identifier or the identifier data identifies a group.

44. The user carried mobile data processing system of
claim 24 wherein a user associated to a fourth identifier has an
impersonation privilege for administrating the user specified
location based event configuration.

45. The user carried mobile data processing system of
claim 24 wherein the first identifier and the second identifier
and the third identifier are each matched by the mobile data
processing system to the identifier data.

46. The user carried mobile data processing system of
claim 24 wherein the user specified location based event
configuration grants at least one semantic privilege or at least
one grammar specification privilege.

* #* * #* #*

APPLE

EXHIBIT 1001 - PAGE 0409

