## ${ }^{(12)}$ United States Patent Papadopoulos et al.

(10) Patent No.: US 7,374,757 B2
(45) Date of Patent:
*May 20, 2008
(54) MODIFIED CHIMERIC POLYPEPTIDES WITH IMPROVED PHARMACOKINETIC PROPERTIES
(75) Inventors: Nicholas J. Papadopoulos,

Lagrangeville, NY (US); Samuel Davis, New York, NY (US); George D. Yancopoulos, Yorktown Heights, NY (US)
(73) Assignee: Regeneron Pharmaceuticals, Inc. Tarrytown, NY (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 489 days.

This patent is subject to a terminal disclaimer.
(21) Appl. No.: 11/016,097
(22) Filed:

Dec. 17, 2004
(65)

Prior Publication Data
US 2005/0163798 A1 Jul. 28, 2005
Related U.S. Application Data
(62) Division of application No. $10 / 009,852$, filed as application No. PCT/US00/14142 on May 23, 2000, now Pat. No. 7,070,959.
(60) Provisional application No. 60/138,133, filed on Jun. 8, 1999.
(51) Int. Cl.

| A61K 38/18 | $(2006.01)$ |
| :--- | :--- |
| C07K 14/71 | $(2006.01)$ |
| C12N 15/62 | $(2006.01)$ |

(52) U.S. Cl. $\qquad$ 424/134.1; 424/192.1; 514/2; 514/12; 530/350; 536/23.4
(58) Field of Classification Search ..................... None See application file for complete search history.

## References Cited

U.S. PATENT DOCUMENTS

| 5,712,380 | A | 1/1998 | Kendall et al. |
| :---: | :---: | :---: | :---: |
| 6,011,003 | A | 1/2000 | Charnock-Jones et al. |
| 6,100,071 | A* | 8/2000 | Davis-Smyth et al. ..... 435/69.7 |
| 2005/0043236 | $\mathrm{Al}^{*}$ | 2/2005 | Daly et al. .................. 514/12 |
| 2006/0058234 | $\mathrm{Al}^{*}$ | 3/2006 | Daly et al. .................. 514/12 |

FOREIGN PATENT DOCUMENTS
WO

| WO | WO98/13071 | $4 / 1998$ |
| :--- | :--- | :--- |
| WO | WO99/03996 | $1 / 1999$ |

## OTHER PUBLICATIONS

Terman, B. I., et al, "Identification of a new endothelial cell growth factor receptor tyrosine kinase", Oncogene (1991) 6:1677-1683.
Terman, B.I., et al, "Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor", Biochem Biophys Res Comm (1992) 187(3):1579-1586.
Tsutsumi, Y., et al, "PEGylation of interleukin-6 effectively increases its thrombopoietic potency", Thrombosis and Haemostasis (1997) 77(1):168-173.
Dunca, R. and Spreafico, F., "Polymer Conjugates", Drug Delivery Systems (1994) 27(4):290-306.
Hileman, R.E., et al., "Glycosaminoglycan-protein interactions: definitions of consensus sites in glycosaminoglycan binding proteins", BioEssays (1998) 20:156-167.
deVries, Carlie, et al., "The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor", Science (1992) 225:989-991.
Sharifi, J., et al., "Improving monoclonal antibody pharmacokinetics via chemical modification", Quart J Nucl Med (1998) 42:242249.

Jensen-Pippo, K.E., et al., "Enteral bioavailability of human granulocyte colony stimulating factor conjugated with poly(ethylene glycol)", (1996) Pharm Res 13(1):102-107.
Tanaka, K., et al., "Characterization of the extracellular domain in vascular endothelial growth factor receptor-1 (Flt-1 Tyrosine kinase)", (1997) Jpn J Cancer Res 88:867-876.
Yang, J.C., et al., "The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma", (1995) Cancer 76(4): 687694.

Davis-Smyth, T., et al., 1996, "The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade", The EMBO Journal 15(18):4919-4927.

* cited by examiner

Primary Examiner - Christine J Saoud Assistant Examiner - Jon M Lockard
(74) Attorney, Agent, or Firm-Gregg Valeta, Esq.
(57)

ABSTRACT

Modified chimeric polypeptides with improved pharmacokinetics are disclosed. Specifically, modified chimeric Flt1 receptor polypeptides that have been modified in such a way as to improve their pharmacokinetic profile are disclosed. Also disclosed are methods of making and using the modified polypeptides including but not limited to using the modified polypeptides to decrease or inhibit plasma leakage and/or vascular permeability in a mammal.

Fig. 1.


Fig. 2.


Fig. 3.




Fig.6A.


Fig.6B.


Fig. 7


- $\square$ - rTIE-2-Fc
$\ldots-\ldots . . . \cdots \cdots \cdots$ unmodified Flt-1(1-3)-Fc
----O--. acetylated Flt-1(1-3)-Fc (10X)
$\cdots-----$ acetylated FIt-1(1-3)-Fc (20X)
---母--. acetylated Fit-1(1-3)-Fc (30X)

Fig. 8.


Fig.10A.

|  | 10 |  | 20 |  | 30 |  | 40 | 50 |  | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * | * | * | * | * |

atg gic agc tac tgg gac acc gge gic ctg ctg tgc gcg ctg ctc agc tgi CTG CTT CTC tac cag tcg atg acc cig tgg ccc cag gac gac acg coc gac gag tcg aca gac gan gag Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser Cys Leu Leu Leu>

 TGT CCT AGA TCA AGT CCA AGT TTT AAT TTT CTA GGA CTT GAC TCA AAT TTT CCG TGG GTC Thr Gly Ser Ser Ser Gly Ser lys leu lys asp pro Glu Leu Ser leu lys Gly Thr Gln>

| 130 | 140 |  | 150 | 160 | 170 | $*$ | $*$ | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

CAC ATC ATG CAA GCA GGC CAG ACA CTG CAT CTC CAA TGC AGG GGG GAA GCA GCC CAT AAA GIG tag tac git cgi ccg gic tgr gac gia gag git acg tcc ccc cit cgi cog gia trt His Ile met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys>

| 190 | 200 | 210 | 220 | 230 | 240 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

tGG tCT tTG CCT GAA atg gig agt ang gan agc gan agg ctg agc ata act ana tct gcc ACC AGA AAC GGA CTT tac CAC TCA TTC CTT TCG CTT TCC GAC TCG tat tGA tTT AGA CGG Trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala>

tgT gea aga ant ggc ana can tic tgc agt act tia acc tig anc aca gct can gca anc ACA CCT TCT TTA CCG tTT GTt AAG ACG tCA tGA AAT TGG AAC tTG tGT CGA GTT CGT tTG Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Ala gln Ala Asn>

| 310 |
| :---: |
|  |  |

CAC ACT GGC tTC tac agc tac ana tat cta gct gia cct act tca ang ang ang gan aca GTG TGA CCG AAG ATG tCG ACG TTT ATA GAT CGA CAT GGA TGA AGT TTC TTC TTC CTT TGT His Thr Gly Phe tyr Ser Cys lys Tyr Leu Ala val Pro Thr Ser Lys Lys Lys Glu Thry

| 370 | 380 | $*$ | 390 | 400 | 410 | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |$\quad 420$

gad tct gca atc tat ata tit att hgt gat aca get aga cct ttc gta gag atg tac agt CTT AGA CGT tag ata tat ana tai tca cta tgi cca tct gea ang cat ctc tac atg tca Glu Ser Ala Ile Tyr Ile the Ile Ser Asp Thr Gly Arg Pro Phe Val Glu Met Tyr Ser>

|  | 430 | 440 | 450 |  | 460 |  | 470 |  | 480 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * | * | * | * |

gat atc coc gat att ata cac atg act gai gab agg gag ctc gic att ccc tgc cgg git CTT TAG GGG CTT TAA TAT GTG TAC TGA CTT CCT TCC CTC GAG CAG TAA GGG ACG GCC CAA Glu Ile Pro Glu Ile Ile his Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val>


ACG TCA CCT AAC ATC ACT GTT ACT tTA AAA AAG TTT CCA CTT GAC ACT tTG ATC CCT GAT tgi agt gea tig tag tga can tga aft tit ttc ana gat gan ctg tga anc tag gea cta Thr Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro Asp>

| 550 | 560 | 570 | 580 | 590 | 600 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | * |  | * |  |  |

gGa ana cge ata atc tgg gac agt aga ang ggc ttc atc ata tca ant gca acg tac ana CCT tTT GCG tat tag acc ctg tca tct tuc ceg ang tag tat agt tta cgi tge atg tit Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile ser Asn Ala Thr Tyr Lys>

| 610 | 620 | 630 | 640 | 650 | 660 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

gai ata gge ctt ctg acc tgi gan gca aca gic ant gge cat tug tat ang aca anc tat CTt tat ccc gan gac tge aca cti cgt tgi cag tta ccc git anc ata ttc tgi ttg ata Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly His Leu tyr Lys Thr asn Tyr>


CTC ACA CAT CGA CAA ACC AAT ACA atc ata gat gic can ata agc aca cca cgc cca gic gag tgt gia get git tgg tra tgi tag tat cta cag git tat tcg tgt gat gcg gat cag Leu Thr His Arg Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr Pro Arg Pro Val>


AAA tTA CTT AGA GGC CAT ACT CTT GIC CTC AAT TGT ACT GCT ACC ACT CCC TTG AAC ACG TTT AAT GAA TCT CCG GTA TGA GAA CAG GAG TTA ACA TGA CGA TGG TGA GGG AAC TTG TGC Lys Leu Leu Arg Gly His Thr Leu Val Leu Asn Cys Thr Ala Thr Thr Pro Leu Asn Thr>

|  | 800 | 810 | 820 | 830 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

AGA GTT CAA ATG ACC TGG AGT taC CCT GAT GAA AAA AAT AAG AGA GCT tCC GTA AGG CGA TCT CAA GTT TAC TGG ACC TCA ATG GGA CTA CIT TTT TTA TTC TCT CGA AGG CAT TCC GCT Arg Val Gln Met Thr Trp Ser Tyr Pro Asp Glu Lys Asn Lys Arg Ala Ser Val Arg Arg>

| 0 | 860 | 870 | 880 | 890 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

CGA ATT GAC CAA AGC AAT TCC CAT GCC AAC ATA TTC TAC AGT GTT CTT ACT ATT GAC AAA GCT tai ctg git tcg tra agg gTa cge tig tat ang atg tca cai gai tga tai ctg tti Arg Ile Asp Gln Ser Asn Ser His Ala Asn Ile Phe Tyr Ser Val Leu Thr Ile Asp Lys>

| 910 |  | 930 | 940 | 950 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

ATG CAG AAC AAA GAC AAA GGA CTT TAT ACT TGT CGT GTA AGG AGT GGA CCA TCA TTC AAA
 Met Gln Asn Lys Asp Lys Gly Leu Tyr Thr Cys Arg Val Arg Ser Gly Pro Ser Phe Lys>

TCT GTT aAC ACC tCA GTG CAT ATA tat gat ada gCa gec ccg gec gag ccc ana tct tge aga can tig tgg agt cac gia tat ata cta tit CgT CCG gec ccg ctc geg tit aga aca Ser Val Asn Thr Ser Val his Ile Tyr Asp lys Ala Gly Pro Gly Glu pro Lys Ser Cys


GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC CTG TIT TGA GTG TGT ACG GGT GGC ACG GGT CGT GGA CTT GAG GAC CCC CCT GGC AGT CAG Asp lys Thr his Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val>

# Fig.10C. 

| 1090 | 1100 | 1110 | 1120 | 1130 | 1140 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * * | * | * | * | * | * |

TTC CIC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA AAG GAG AAG GGG GGT TTT GGG TTC CTG TGG GAG TAC TAG AGG GCC TGG GGA CTC CAG TGT Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr>

TGC GTG GTG GTG GAC GIG AGC CAC GAA GAC CCT GAG GTC AAG TIC AAC TGG TAC GTG GAC ACG CAC CAC CAC CTG CAC TCG GTG CTT CTG GGA CTC CAG TTC AAG TTG ACC ATG CAC CTG Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp>


GGC GTG GAG GTG CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CCG CAC CTC CAC GTA TTA CGG TTC TGT TTC GGC GCC CTC CTC GTC ATG TTG TCG TGC ATG Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr>


CGT GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG GCA CAC CAG TCG CAG GAG TGG CAG GAC GIG GTC CTG ACC GAC TTA CCG TTC CTC ATG TTC Arg Val Val Ser Val Leu Thr Val Leu His Gin Asp Trp Leu Asn Gly Lys Glu Tyr Lys>


TGC AAG GIC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA ACG TTC CAG AGG TTG TTT CGG GAG GGT CGG GGG TAG CTC TTT TGG TAG AGG TTT CGG TTT Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys>

| 1390 | 1400 | 1410 | 1420 | 1430 | 440 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | * | * |  |  |

GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG CCC GTC GGG GCT CTT GGT GTC CAC ATG TGG GAC GGG GGT AGG GCC CTA CTC GAC TGG TTC Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys>

| 1450 | 1460 | 1470 | 1480 | 1490 | 1500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | $\star$ | * | * |  |

AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC ATC GCC GTG GAG TTG GTC CAG TCG GAC TGG ACG GAC CAG TTT CCG AAG ATA GGG TCG CTG TAG CGG CAC CTC Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu>

| 1510 | 1520 | 1530 | 1540 | 1550 | 1560 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

TGG GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC ACC CTC TCG TTA CCC GTC GGC CTC TTG TIG ATG TTC TGG TGC GGA GGG CAC GAC CTG AGG Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser>

GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC ACC GTG GAC AAG AGC AGG TGG CAG CAG GGG CTG CCG AGG AAG AAG GAG ATG TCG TTC GAG TGG CAC CTG TTC TCG TCC ACC GTC GTC CCC Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly

Fig.10D.
1630 1640 1650 1660 $1670 \quad 1680$ aAC GTC tTC tca tge tcc gtg atg cat gag gct ctg cac anc cac tac acg cag ang agc tTG CAG adg agr acg agg cac tac gTa cti cga gac gig tig gig atg tgc gic tic tcg Asn Val Phe Ser Cys Ser Val Met his Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser>
$1690 \quad * \quad 1700$
$*$
CTC TCC CTG TCT CCG GGT AAA TGA GAG AGG GAC AGA GGC CCA TTT ACT Leu Ser Leu Ser Pro Gly Lys ***>
Fig. 11.

Fig.12A.



## Fig.13A.


atg gic agc tac tge gac acc goc gic ctg CTg tgc gcg ctg CTC agc tgt CTg cit cic tac cag tcg atg acc ctg tgg ccc cag gac gac acc cec gac gac tcg aca gac gai gag Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser Cys Leu Leu Leur


ACA GGA tCT AGT TCA GGT tCA AAA tTA AAA GAT CCT GAA CTG AGT TTA AAA GGC ACC CAG tGT CCT AGA tCA AGT CCA AGT TTT AAT TTT CTA GGA CTT GAC TCA AAT TTT CCG TGG GTC Thr Gly Ser Ser Ser Gly Ser lys Leu lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln>

| 130 |  | 140 |  | 150 |  | 160 |  | 170 |  | 180 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * * | * | * | * | * | * | * | * | * | * |  | CAC ATC atg can gca gec cag aca ctg cat ctc can tcc agg ggg gan gca gcc cat ana GIG tag tac gTt CGT CCG GTC TGT gac gTA gag GTt AcG tcc CCC CTT CGT CGG GTA tTT His Ile Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys>


| 190 | 200 | 210 | 220 | 230 | 240 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * |  |

tgg tot ttg cct gan atg gig agt ang gat agc gan agg ctg agc ata act ana tct gcc
 trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala>

tgt gga aga abt gec ana can ttc tge agt act tta acc tig anc aca gct can gca aac ACA CCT tCT tTA CCG tTT GTT AAG ACG TCA TGA AAT TGG AAC tTG tGT CGA GTT CGT TTG Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Ala Gln Ala Asn>

CAC ACt gGC tTC tac agc tgc ana tat cta gct gTa cct act tca ang ang ang gan aca
 His Thr Gly Phe Tyr Ser Cys lys Tyr Leu Ala Val Pro Thr Ser Lys Lys Lys Glu Thry

| 370 | 380 | 390 | 400 | 410 |  | 420 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * |  |

gan tct gca atc tat ata tut att agt gat aca gat aga cct tic gia gag atg tac agt CTT agA cgt tag ata tat ana tan tca cta tgt cca tct gga ang cat ctc tac atg tca Glu Ser Ala Ile Tyr Ile Phe Ile Ser Asp Thr Gly Arg Pro Phe Val Glu Met Tyr Sera

| 430 |  | 440 |  | 450 | 460 | 470 | $*$ | $*$ | $*$ | $*$ | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

gad atc ccc gan att ata cac atg act gat gga agg gag ctc gTC att ccc tgc cge git CTT tag gGg Ctt tan tat gig tac tga ctt cct tce cic gag cag tan geg acg gcc can Glu Ile pro Glu Ile Ile his Met Thr Glu Gly Arg Glu Leu val Ile pro Cys arg val>

| 490 |  | 500 | 510 |  | 520 |  | 530 |  | 540 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * | * | * |  |

ACG tCA CCT AAC ATC ACT GTT ACT tTA AAA AAG tTT CCA CTT GAC ACT TTG ATC CCT GAT tGC AGT GGA tTG tag tga can tga ant tri tic ana gat gai ctg tga anc tag gga cta Thr Ser Pro Asn Ile Thr Val Thr Leu Lys lys Phe gro Leu Asp Thr Leu Ile Pro Asp>


GGA AAA CGC ATA ATC TGG GAC AGT AGA AAG GGC TTC ATC ATA TCA AAT GCA ACG TAC AAA CCT TIT GCG TAT TAG ACC CTG TCA TCT TTC CCG AAG TAG TAT AGT TTA CGT TGC ATG TTT Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser Asn Ala Thr Tyr Lys>

| 610 | 620 | 630 | 640 | 650 | 660 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

GAA ATA GGG CTT CTG ACC TGT GAA GCA ACA GTC AAT GGG CAT TTG TAT AAG ACA AAC TAT CTT TAT CCC GAA GAC TGG ACA CTH CGT TGT CAG TTA CCC GTA AAC ATA TTC TGT TTG ATA Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly His Leu Tyr Lys Thr Asn Tyr>


CTC ACA CAT CGA CAA ACC AAT ACA ATC ATA GAT GTC CAA ATA AGC ACA CCA CGC CCA GTC GAG TGT GTA GCT GTT TGG THA TGT TAG TAT CTA CAG GTT TAT TCG TGT GGT GCG GGT CAG Leu Thr His Arg Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr Pro Arg Pro Val>

| 730 | 740 | 750 | 760 | 770 | 780 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * |

AAA TTA CTT AGA GGC CAT ACT CTT GTC CTC AAT TGT ACT GCT ACC ACT CCC TTG AAC ACG TTTT AAT GAA TCT CCG GTA TGA GAA CAG GAG TTA ACA TGA CGA TGG TGA GGG AAC TTG TGC Lys Leu Leu Arg Gly His Thr Leu Val Leu Asn Cys Thr Ala Thr Thr Pro Leu Asn Thr>

| 790 | 800 | 810 | 820 | 30 | 840 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

AGA GTT CAA ATG ACC TGG AGT TAC CCT GAT GAA ATT GAC CAA AGC AAT TCC CAT GCC AAC TCT CAA GTT TAC TGG ACC TCA ATG GGA CTA CTT TAA CTG GTT TCG TTA AGG GTA CGG TIG Arg Val Gln Met Thr Trp Ser Tyr Pro Asp Glu Ile Asp Gln Ser Asn Ser His Ala Asn>

| 850 | 860 | 870 | 880 | 890 |  | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * |  |

ATA TTC TAC AGT GTT CTT ACT ATT GAC AAA ATG CAG AAC AAA GAC AAA GGA CTT TAT ACT TAT AAG ATG TCA CAA GAA TGA TAA CTG TTT TAC GTC TTG TTT CTG TTT CCT GAA ATA TGA Ile Phe Tyr Ser Val Leu Thr Ile Asp Lys Met Gln Asn Lys Asp Lys Gly Leu Tyr Thry

| 910 | 920 | 930 | 940 | 950 | 960 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ) | * |  |  |

TGT CGT GTA AGG AGT GGA CCA TCA TTC AAA TCT GTT AAC ACC TCA GTG CAT ATA tAT GAT ACA GCA CAT TCC TCA CCT GGT AGT AAG TTT AGA CAA TTG TGG AGT CAC GTA TAT ATA CTA Cys Arg Val Arg Ser Gly pro Ser Phe Lys Ser Val Asn Thr Ser Val His Ile tyr Asp>

| 970 | 980 | 990 | 1000 | 1010 | 1020 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * |  |

AAA GCA GGC CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA TTT CGT CCG GGC CCG CTC GGG TTT AGA ACA CTG TTT TGA GTG TGT ACG GGT GGC ACG GGT Lys Ala Gly Pro Gly Giu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro>


GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CGT GGA CTT GAG GAC CCC CCT GGC AGT CAG AAG GAG AAG GGG GGT TTT GGG TTC CTG TGG Ala Pro Glu Leu Leu Gly Gly Pro Ser val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr>

| 1090 | 1100 | 1110 | 1120 | 1130 | 1140 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * |  |

CTC ATG ATC TCC CGG ACC CCT GAG GIC ACA TGC GTG GIG GTG GAC GIG AGC CAC GAA GAC gag tac tag agg gcc tGG gga ctc cag tgi acg cac cac cac ctg cac tcg gig ctt ctg Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser his Glu Asp>


CCT GAG GTC AAG tTC AAC tGG tac gTg gac gac gig gag gig cat ant gcc ang aca ang GGA CTC CAG TTC AAG TTG ACC ATG CAC CTG CCG CAC CTC CAC GTA TTA CGG TTC TGT TTC Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala lys Thr Lys>

| 1210 | 1220 | 1230 | 1240 | 1250 | 1260 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  |  |  |  | CCG CGG GAG GAG CAG tac anc agc acg tac CGT gTg gic acc gic ctc acc gic ctg cac GGC GCC CTC CTC GTC ATG TTG TCG TGC ATG GCA CAC CAG TCG CAG GAG TGG CAG GAC GTG Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His>


CAG GAC TGG CTG. AAT GGC AAG GAG tac aAg tGC AAG GTC TCC AAC AAA GCC CTC CCA GCC gic ctg acc gac tia ccg tic ctc atg tic acg tic cag agg tig tit cge gag get cge Gln Asp Trp Leu Asn Gly Lys Glu tye Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala>
 CCC ATC gag ana acc atc tcc ana gcc ana gGg cag ccc cga gan cca cag gig tac acc
 Pro Ile Glu lys Thr Ile Ser Lys Ala lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr>


CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA gac geg gat agg gcc cta cic gac tgg tic tig gic cag tcg gac tge acg gac cag tit Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys>


GGC tTC tat ccc agc gac atc gec gig gag tgg gag agc ant geg cag ccg gag adc aac CCG AAG ATA GGG TCG CTG TAG CGG CAC CTC ACC CTC TCG TTA CCC GTC GGC CTC TTG TTG Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn>


TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC atg tic tgg tgc gga gig cac gac ctg agg ctg ccg agg ang ang gag atg tcg tic gag Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp gly Ser Phe Phe Leu Tyr Ser Lys Leur
 acc gig gac ang agc agg tgg cag cag geg anc gic tic tca tgc tcc gig atg cat gag tGg Cac CTg tic tcg tcc acc gTc gic Ccc tig cag ang agt acg agg cac tac gia ctc Thr Val Asp lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu>

Fig.13D.

GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG GGT AAA TGA CGA GAC GTG TTG GTG ATG TGC GTC TTC TCG GAG AGG GAC AGA GGC CCA TTT ACT Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys ***>

## Fig.14A.



ATG GTC AGC tac tge gac acc ggg gic ctg ctg tcc gcc ctg ctc agc tgt ctg ctt ctc tac cag tcg atg acc ctg tge ccc cag gac gac acg cgc gac gag tcg aca gac gai gag Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser Cys Leu Leu Leus

| 70 | 80 | 90 | 100 | 110 | 120 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * |  |  |  |

aca gga tct agt tcc gga get aga cct ttc gta gag atg tac agt gan atc ccc gan att TGT CCT AGA TCA AGG CCT CCA TCT GGA AAG CAT CTC TAC ATG TCA CTT TAG GGG CTT TAA Thr gly Ser Ser Ser Gly Gly Arg pro Phe Val Glu Met Tyr Ser glu fle Pro Glu Ile>

ata cac atg act gan gea agg gag ctc gic att ccc tgc cgg git acg tca cct anc atc TAT GIG TAC TGA CTT CCT TCC CTC GAG CAG TAA GGG ACG GCC CAA TGC AGT GGA tTG tag Ile His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr Ser Pro Asn Ile>


ACT GIT ACT TTA AAA AAG TTT CCA CTT GAC ACT TTG ATC CCT GAT GGA AAA CGC ATA ATC tGA CAA TGA AAT TTT TTC AAA GGT GAA CTG tGA AAC tag GGA CTA CCT TTT GCG tat tag Thr Val Thr Leu Lys Lys phe Pro Leu Asp Thr Leu Ile Pro Asp Gly lys Arg Ile Ile>

tGg gac agt aga ang gec tic atc ata tca ant gca acg tac ana gan ata gec ctt ctg acc ctg tca tct tic cce adg tag tat agt tia cet tge atg ttt cti tat ccc gaa gac Trp Asp Ser Arg Lys gly the Ile Ile Ser Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu>

acc tgt gai gca aca gic ant ggg cat ttg tat ang aca anc tat ctc aca cat cga can TGG ACA CTT CGT TGT CAG TTA CCC GTA AAC ATA TTC TGT TTG ATA GAG TGT GTA GCT GTT Thr Cys glu Ala Thr Val Asn Gly his Leu Tyr Lys Thr Asn Tyr Leu Thr his Arg Gln>

acc ant aca atc ata gat gic can ata agc aca cca ccc cca gic ana tta CTT aga gec tGg tTA tGT tag tat cta cag git tat tcg tgt gat gcg gat cag tit ant gai tct ccg Thr Asn Thr Ile Ile Asp Val Gin Ile Ser Thr Pro Arg Pro Val lys Leu Leu Arg Gly>

| 430 |
| :---: |
|  |  |

Cat act Ctt gic ctc ant tgt act gct acc act cce tig anc acg aga git can atg acc gTA tga gai cag gag tta aca tga cga tge tga gge anc ttg tgc tct cai git tac tgg His Thr Leu Val Leu Asn Cys Thr Ala Thr Thr Pro Leu Asn Thr Arg Val Gln Met Thr>

|  | 490 | 500 | 510 | 520 | 530 | 540 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * |

tge agt tac cet gat gan att gac can agc aft tcc cat gcc anc ata tac tac agt gtt acc tca atg gga cta cti tan ctg git tcg tta agg git cge ttg tat ang atg tca can Trp Ser Tyr Pro Asp Glu Ile Asp Gln Sex Asn Ser his Ala Asn Ile Phe Tyr Ser Val>

## Fig.14B.

| 550 | 560 | 570 | 580 | 590 | 600 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | * | * |  |  |  |

CTT ACT att gac ana atg cag anc ana gac ana gga ctt tat act tgi cet git agg agt gai tga tan ctg tit tac gic tig pit ctg tit cct gai ata tga aca gca cat tcc tca Leu Thr Ile Asp Lys Met Gln Asn lys Asp Lys gly Leu Tyr Thr Cys Arg Val Arg Ser>

 CCT GGT agt ang ttt aga can ttg tgg agt cac gta tat ata cta tut cgt ccg gec ccg Gly Pro Ser Phe Lys Ser Val Asn Thr Ser Val his Ile Tyr Asp Lys Ala Gly Pro Gly>

| 67 |
| :---: |
|  |  |

GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG CTC GGg trt aga aca ctg tit tga gig tgr acg get gec acg gat cgi gga cti gag gac Glu pro Lys Ser Cys Asp Lys Thr his Thr Cys pro Pro Cys Pro Ala Pro Glu Leu Leu>


GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG CCC CCT GGC agt cag ang gag ang gag get trt gge tic ctg tge gag tac tag agg gcc Gly gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg>

| 790 | 800 | 810 | 820 | 830 | 840 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | * | * | * |  |

ACC CCT gag gTC aca tge gTg gig gig gac gTg agc cac gai gac CCT gag gic ang tic tGg gea ctc cag tgt acg cac cac cac ctg cac tcg gtg ctt ctg gan ctc cag tic ang Thr pro Glu val Thr Cys val val Val Asp Val Ser His Glu Asp fro Glu Val lys Phe>

aAC tge tac gTg gac gec gtg gag gtg cat ant gcc adg aca ang ccg cge gag gag cag tTG acc atg cac ctg ccg cac ctc cac git tta cge tic tgt tic gec gcc cic cic gic Asn Trp Tyr val Asp Gly val Glu Val His Asn Ala lys Thr Lys Pro Arg Glu glu gln>

tac anc agc acg tac cgt gig gic agc gic ctc acc gic ctg cac cag gac tge ctg aat atg ttg tcg tgc atg gca cac cag tcg cag gag tgg cag gac gig gic ctg acc gac tta Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn>

GGC aAg gag tac ang tGC ang gic tcc anc ada gec ctc cca gcc ccc atc gag ana acc CCG tTC CTC atg tic acg tic cag agg tig tti CGg gag get cge ggc tag ctc tti tge Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala pro Ile Glu Lys Thry

| 1030 | 1040 | 1050 | 1060 | 1070 | 1080 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  |  |  |  |

ATC tCC AAA GCC AAA GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG tag agg ttt cge ttt ccc gic geg gct ctt ggt gic cac atg tgg gac geg get agg gec Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg>

## Fig.14C.


gat gag ctg acc ang anc cag gic agc ctg acc tgc cig gic ana gGc ttc tat ccc agc CTA CTC gac tge tic tig gic cag tcg gac tgg acg gac cag tit ccg ang ata geg tcg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val lys Gly Phe Tyr Pro Ser>

| 1150 | 1160 | 1170 | 1180 | 1190 | 1200 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * |  |  |

gac atc gcc gig gag tgg gag agc ant gGg cag ccg gag anc anc tac ang acc acg cct CTG tag cga cac ctc acc cic tcg tTa ccc gic gec ctc tig tig atg tic tgg tcc gea Asp Ile Ala Val Glu trp Glu Ser Asn Gly Gin Pro Glu Asn Asn Tyr Lys Thr Thr Pro>


CCC GTG CTG gac tcc gac gec tcc tic tic ctc tac agc ang ctc acc gig gac ang acc gGG cac gac ctg agg ctg ccg agg ang ang gag atg tcg tic gag tgg cac ctg tic tcg Pro Val Leu Asp Ser Asp gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser>

| 1270 | 1280 | 1290 | 1300 | 1310 | 1320 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  |  |  |  |

agg tgg cag cag gag anc gTc tic tca tgc tcc gig atg cat gag gct ctg cac anc cac TCC ACC GTC GTC CCC tTG CAG AAG AGT ACG AGG CAC TAC GTA CTC CGA GAC GTG TTG GTG Arg Trp Gin Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His>

tac acg cag ang agc ctc tcc ctg tct ccg ggt ana tga ATG TGC GTC TTC TCG GAG AGG GAC AGA GGC CCA TTT ACT Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys ***>

Fig.15A.

atg gic agc tac tgg gac acc gge gic ctg ctg tgc gcg ctg Ctc acc tgt ctg ctt ctc tac cag tcg atg acc ctg tge ccc cag gac gac acc cgc gac gag tcg aca gac gai gag Met Val Ser Tyx Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser Cys Leu Leu Leur

| 70 | 80 | 90 | 100 | 110 | 120 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * |  |  |  |

ACA GGA tCT agt tcc gea ggt aga cct trc git gag atg tac agt gan atc ccc gad att tGT CCT AGA tCA AGG CCT CCA TCT GGA AAG CAT CTC TAC ATG TCA CTT TAG GGG CTT TAA Thr Gly Ser Ser Ser Gly Gly Arg Pro Phe val Glu Met Tyr Ser Glu Ile Pro Glu Ile>

ata cac atg act gat gea agg gag ctc gic att cec tgc cge git acg tca cct anc atc tat gig tac tga cit cct tcc ctc gag cag tan geg acg gcc can tgc agt gai tig tag Ile His Met Thr Glu gly Arg Glu Leu Val Ile pro Cys Arg Val Thr Ser Pro Asn Ile>


ACT GTT ACT tTA AAA AAG tTt CCA CTT GAC ACT tTG ATC CCT GAt GGA AAA CGC ata atc
 Thr Val Thr Leu lys Lys Phe Pro Leu Asp Thr Leu Ile fro Asp Gly Lys Arg Ile Ile>

|  | 250 |  | 260 |  | 270 |  | 280 |  | 290 |  | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * | * | * | * | * | * |

tgg gac agt aga ang gec ttc atc ata tca ant gca acg tac ana gan ata gge ctt ctg acc CTG tca tct tic cce ang tag tat agt tta cgt tgc atg tit cti tat ccc gai gac Trp Asp Ser Arg lys Gly the Ile Ile Ser Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu>

acc tgt gan gca aca gic ant gge cat ttg tat ang aca anc tat ctc aca cat cga can tGg aca cti cgt tgi cag tra ccc gTa anc ata tic tgi tig ata gag tgT gTa gct git Thr Cys Glu Ala Thr Val Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu Thr His Arg Gln>
$370 * 380 * 390 * 400 * 410 * 420$
 tGg tta tgt tag tat cta cag git tat tcg tgt get gcg gat cag ttp ant gai tct ccg Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr Pro Arg Pro Val lys Leu Leu Arg Gly>

cat act ctit gic ctc ant tgt act gct acc act cce tig anc acg aga git can atg acc GTA TGA GAA CAG GAG TTA ACA TGA CGA TGG TGA GGG AAC TTG TGC TCT CAA GTT TAC TGG His Thr Leu Val Leu Asn Cys Thr Ala Thr Thr Pro Leu Asn Thr Arg Val Gln Met Thr>

| 490 | 500 | 510 | 520 | 530 | 540 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

tog agt tac cet gat gad ada ant adg aga get tcc gta agg cga cga att gac can agc ACC TCA ATG GGA CTA CTT TTT TTA TTC TCT CGA AGG CAT TCC GCT GCT TAA CTG GTT TCG Trp Ser Tyr pro Asp Glu lys Asn lys Arg Ala Ser Val Arg Arg Arg Ile Asp Gin Ser>

Fig.15B.

aft tcc cat gcc anc ata ttc tac agt gtt cti act att gac ana atg cag anc ana gac tTA agG gia cog tig tat ang atg tca can gai tga tan ctg tit tac gic tig tit ctg Asn Ser His Ala Asn Ile Phe Tyr Ser Val Leu Thr Ile Asp Lys Met Gln Asn Lys Asp>


AAA GGA CTT tat act tgT CGT GTA agg agt gga cca tca ttc ana tct git anc acc tca tTT CCT gad ata tga aca gca cat tcc tca cct get agt ang tit aga can tig tgg agt lys Gly Leu Tyr Thr Cys Arg Val Arg Ser Gly pro Ser phe lys Ser Val Asn Thr Ser>

gTg cat ata tat gat ada gca gec ccg gec gag ccc ana tct tgi gac ana act cac aca CAC GTA tat ata CTA tTT CGT CCG GGC CCG CTC GGG TTT AGA ACA CTG TTT TGA GTG TGT Val his Ile tyr Asp Lys Ala gly Pro gly Glu pro lys Ser Cys Asp lys Thr his Thr>


TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA COG TCA GTC TTC CTC TTC CCC CCA ACG GGT GGC ACG GGT CGT GGA CTT GAG GAC CCC CCT GGC AGT CAG AAG GAG AAG GGG GGT Cys pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro>

| 790 |  | 800 | 810 | 820 | 830 | $*$ | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC tit geg tic ctg teg gag tac tag agg gac tgg gan ctc cag tgt acg cac cac cac ctg Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp>

GIG AGC CAC GAA GAC CCT GAG GTC AAG TTC AAC tGG tac gTg gac gGc gig gag gig cat CAC TCG GTG CTT CTG GGA CTC CAG TTC AAG TTG ACC ATG CAC CTG CCG CAC CTC CAC GTA Val Ser His Glu Asp Pro Glu Val lys phe Asn trp tyr Val Asp gly Val glu val his>

att gcc ang aca ang ccg cge gag gag cag tac anc agc acg tac cgt gig gic agc gic tTA CGG tTC tGT tTC GGC GCC CTC CTC GTC ATG TTG TCG TGC ATG GCA CAC CAG TCG CAG Asn Ala lys Thr lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg val Val Ser Val>

| 970 | 980 | 990 | 1000 | 1010 | 1020 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * |  |

ctc acc gic ctg cac cag gac tgg ctg ant ggc ang gag tac ang tgc ang gic tcc abc GAG tg cag gac gig gic ctg acc gac tra coc tic ctc atg ttc acg tic cag agg tig Leu Thr Val Leu his Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn>

AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA GAA
 lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser lys Ala lys gly gln Pro Arg Gluz

## Fig.15C.



CCA CAG GTG TAC aCC CNG CCC CCA TCC CGG gat gag ctg acc ang anc CAG gTC acc ctg GGT GTC CAC ATG TGG GAC GGG GGT AGG GOC CTA CTC GAE TGG TTC TTG GTC CAG TOG GAC Pro Gln Val Tyx Thr Leu Pro Fro Ser Arg asp Glu Leu Thr Lys Asn Gln Val Ser Leu>


ACC TGC CTG GTC AAA GGC TTC tat cCC agC gac atc GCC gTg gag tge gag agc ant ggg
 Thr Cys Leu Val Lys Gly Phe tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly


CAG CCG GAG AAC AAC tac AAG ACC ACG CCT CCC GTG CTG GAC tCC GAC GGC TCC tTC tTC GTC GGC CTC tTG TTG RTG TTC TEG TGC GGA GGG CAC GAC CIG AGG CTG CCG aGg abg ang Gln Pro Glu Asn Asn tyr lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe>

| 1270 | 1280 | $*$ | 1290 | 1300 | 1310 | $*$ | $*$ | $*$ | $*$ | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

CTC tac agc afg ctc acc gig gac abg agc agg tgg cag cag geg anc gtc thic tca tac GAG ATG TOG TTC GAG TGG CAC CIG TTC TCG TCC ACC GTC GTC CCC TTG CAG AAG AGT ACG Leu tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gin Gln Gly asn val phe Ser Cys>

|  | 1330 | 1340 | 1350 | 1360 | 1370 | 1380 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * |  |

tCC GTG ATG CAT GAG GCT CTG CAC AAC CAC taC ACG CAG AAG AGC CTC TCC CTG TCT CCG agG cac tac gia ctc cga gac gig tig gig atg tgc gic tic tcc gag agg gac aga gec Ser Val Met His glu Ala Leu His Asn his Tyr Thr Gln lys Ser leu Ser Leu Ser Pro>
*
GGT AAA TGA
CCA TTT ACT
Gly Lys ***>

Fig.16A.
 tac cag tcg atg acc cig tge ccc cag gac gac acg cgc gac gag tcc aca gac gai gag Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser Cys Leu Leu Leur

aca gga tct agt tca ggt tca ana tta ana gat cct gai ctg agt tta ana gec acc cag tGT CCT AGA tCA AGT CCA AGT tTT AAT TTT CTA GGA CTT GAC tCA AAT TTT CCG TGG GTC Thr Gly Ser Ser Ser Gly Ser Lys Leu Lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln>

| 130 | 140 | 150 | 160 | 170 | 180 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | * | * |  |  |  |

CAC ATC ATG CAA GCA gGC CAG ACA CTG CAT CTC CAA TGC AGG GGG gAa GCA GCC CAT AAA GTG tag tac grt cgt ccg gic tgr gac gra gag git acg tcc ccc cti cgi cga gia tit His Ile Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg gly glu Ala Ala his Lys>

tgg tct ttg cct gan atg gig agt ang gat agc gan agg ctg agc ata act ana tct gcc ACC AGA AAC GGA CTT TAC CAC TCA TTC CTT TCG CTT TCC GAC TCG TAT TGA TTT AGA CGG Trp Ser Leu pro Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala>

tgt gga aga ant ggc ana can ttc tgc agt act tta acc ttg anc aca gct can gca anc
 Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Ala Gln Ala Asn>


CAC ACT GGC tTC tac agc tgc ana tat cta gct gta cct act tca ang ang ang gai aca gTg tga ceg afg atg tog acg tit ata gat cga cat gan tga agt tic tic tic cti tat His Thr Gly Phe Tyr Ser Cys lys Tyr Leu Ala Val Pro Thr Ser lys lys lys Glu Thr>

| 370 |  | 380 | 390 | 400 | 410 |  | 420 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * |  |

gan tct gca atc tat ata tit att agt gat aca get aga cct tuc gta gag atg tac agt CTT AGA CGT tag ata tat aba tan tca cta tgt cca tct gga ang cat ctc tac atg tca Glu Ser Ala tle Tyr Ile Phe Ile Ser Asp "Thr Gly Arg Pro Phe val Glu Met Tyr Ser>

| 430 | 440 | 450 | 460 | 470 | 480 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

GAA ATC CCC GAA ATT ata cac atg act gat gga agg gag ctc gTc att ccc tgc cgg git CTT tag geg cti tai tat gig tac tga ctt cct tcc ctc gag cag tas geg acg gcc cai Glu Ile Pro Glu Ile Ile His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val>

acg tca cct anc atc act git act tea ana ang ttt cca ctt gac act ttg atc cct gat tGC agt gga tig tag tga can tga ant trt ttc ana git gan ctg tga anc tag gea cta Thr Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro Asp>

## Fig.16B.


gGA aAa cge ata atc tge gac agt aga ang gec tic atc ata tca ant gca acg tac ana CCT tit geg tat tag acc ctg tca tct tic ceg ang tag tat agt tia cgi tge atg tht Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser Asn Ala Thr Tyr Lys>

gan ata gge ctt ctg acc tgt gan gca aca gic ant gge cat ttg tat abg aca abc tat CTT tat ccc gai gac tgg aca cti cgt tgi cag tta ccc gta anc ata tic tgi ttg ata Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly his Leu Tyr Lys Thr Asn tyr>


CTC ACA CAT CGA CAA ACC AAT ACA ATC ATA GAT GTC CAA ATA AGC ACA CCA CGC CCA GTC gag tgt gia get git tgg tta tgi tag tat cta cag git tat tcg tgi get gcg get cag Leu Thr his Arg Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr Pro Arg Pro Val>

| 730 |  | 740 |  | 750 | 760 | 770 | $*$ | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ |  |  |  |  |

AAA tTA CTT AGA GGC CAT ACT CTT GTC CTC AAT tGT ACT GCT ACC ACT CCC TTG AAC ACG tTT AAT GAA tCT CCG GTA tGA GAA CAG GAG TTA ACA TGA CGA TGG TGA GGG AAC TTG TGC Lys Leu Leu Arg Gly his Thr Leu val Leu Asn Cys Thr Ala Thr Thr Pro Leu Asn Thrl


AgA git can atg acc tgg agt tac cct gat gai ana hat ang adc gct tcc gid agg cga tCT CAA GTT TAC TGG ACC TCA ATG GGA CTA CTT TTT TTA TTC tTG CGA AGG CAT TCC GCT Arg Val Gln Met Thr Trp Ser Tyr Pro Asp Glu Lys Asn Lys Asn Ala Ser Val Arg Arg>

|  | 850 | 860 | 870 | 880 | 890 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * | * | * |

cga att gac can agc ant tcc cat gcc adc ata tic tac agt gtt ctt act att gac aad
 Arg Ile Asp Gln Ser Asn Ser his Ala Asn Ile phe Tyr Ser Val Leu Thr Ile Asp Lys>

atg cag anc ana gac ana gga cti tat hct tgt cge gia agg agt gga cca tca tic ana TAC GTC TTG TTT CTG TTT CCT GAA ATA TGA ACA GCA CAT TCC TCA CCT GGT AGT AAG TTT Met Gln Asn Lys Asp Lys Gly Leu Tyr Thr Cys Arg Val Arg Ser Gly Pro Ser Phe Lys>

| 970 | 980 | 990 | 1000 | 1010 | 1020 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * | * | * |  |

tct git anc acc tca gig cat ata tat gat ana gca gec ccg gec gag ccc ana tct tgt aga can ttg tgg agt cac gia tat ata cta tit cgt ccg gec ccg ctc gig tit aga aca Ser Val Asn Thr Ser Val his Ile tyr Asp lys Ala Gly Pro Gly Glu Pro Lys Ser Cys>

| 1030 | 1040 | 1050 |  | 1060 |  | 1070 |  | 1080 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | * | * * | * | * | * | * | * | * |

GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC CTG TTT TGA GTG TGT ACG GGT GGC ACG GGT CGT GGA CTP GAG GAC CCC CCT GGC AGT CAG Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val>

## Fig.16C.


TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA adg gag ang geg get tit geg tic cig tgg gag tac tag agg gcc tgg gea cic cag tgt Phe Leu Phe Pro Pro lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr>

| 1150 | 1160 | 1170 | 1180 | 1190 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT GAG GTC AAG TTC AAC TGG tac GTG GAC ACG CAC CAC CAC CTG CAC TCG GTG CTT CTG GGA CTC CAG TTC AAG tTG ACC ATG CAC CTG Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp>

gGC gTg gag gig cat ant gcc ang aca ang ccg cgg gag gag cag tac anc agc acg tac CCG CAC CTC CAC GTA TTA CGG TTC TGT TTC GGC GCC CTC CTC GTC ATG TTG TCG TGC ATG Gly Val Glu Val his Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr>


CGT GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG tac AAG GCA CAC CAG TCG CAG GAG TGG CAG GAC GTG GTC CTG ACC GAC TTA CCG TTC CTC ATG TTC Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys>


TGC AAG GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA acg tic cag agg tug tit cge gag get cgg geg tag ctc tit tge tag agg tit cge tut Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala lys>

gGe cag ccc cga gai cca cag gTg tac acc ctg ccc cca tcc cge gat gag ctg acc ang CCC GIC GGG GCT CTT GGT GTC CAC ATG TGG GAC GGG GGT AGG GCC CTA CTC GAC TGG TTC Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp glu Leu Thr Lys>


AAC CAG GTC ASC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC ATC GCC GTG GAG TTG GIC CAG tCG gac tge acg gac cag tit ccg ang ata gGe tcg ctg tag cga cac ctc Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu>


TGG GAg agc ant ggg cag ccg gag adc anc tac ang acc acg Cct CCC gig ctg gac tcc
 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Serz

gac gec tcc tTC tic ctc tac agc ahg ctc acc gig gac ang agc agg tge cag cag ggg CTG CCG agg adg adg gag atg tcg tic gag tgg cac ctg tic tcg tcc acc gic gic ccc Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr val Asp lys Ser Arg Trp Gln Gln Gly>

Fig.16D.


AAC GTC TTC TCA tGC tCC GTG atg CAt gag GCT CTG CAC AAC CAC tac acg CAG aAg agc tTG CAG AAG AGT acg agg cac tac git ctc cga gac gig tig gig atg tcc gic tic tcg Asn Val phe Ser Cys Ser Val met his Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser>
$1690 \quad 1700$

CTC TCC CTG TCT CCG GGT AAA TGA gag agg gac aga ggc cca tri act
Leu Ser Leu Ser Pro Gly Lys ***>

Fig. 17.


Fig. 18.


Fig. 19.



Fig.21A.
1020
30
40


60
70
80
AAGCTTGGGCTGCAGGTCGATCGACTCTAGAGGATCGATCCCCGGGCGAGCTCGAATTCGCAACCACCATGGTCAGCTAC TTCGAACCCGACGTCCAGCTAGCTGAGATCTCCTAGCTAGGGGCCCGCTCGAGCTTAAGCGITGGTGGTACCAGTCGATG
14
$\qquad$
_>


AGAGATGTACAGTGAAATCCCCGAAATTATACACATGACTGAAGGAAGGGAGCTCGTCATTCCCTGCCGGGTTACGTCAC TCTCTACATGTCACTTTAGGGGCTTTAATATGTGTACTGACTICCTTCCCTCGAGCAGTAAGGGACGGCCCAATGCAGTG

$$
\begin{array}{lllllllllllllllllllllllllllll}
\mathrm{E} & \mathrm{M} & \mathrm{Y} & \mathrm{~S} & \mathrm{E} & \mathrm{I} & \mathrm{P} & \mathrm{E} & \mathrm{I} & \mathrm{I} & \mathrm{H} & \mathrm{M} & \mathrm{~T} & \mathrm{E} & \mathrm{G} & \mathrm{R} & \mathrm{E} & \mathrm{~L} & \mathrm{~V} & \mathrm{I} & \mathrm{P} & \mathrm{C} & R & V & T & \mathrm{~S} & \mathrm{C}
\end{array}
$$

HFLT1 D2 $\qquad$ $>$

| 250 | 260 | 270 | 280 | 290 | 300 | 310 | 320 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CTAACATCACTGTTACTTTAAAAAAGTYTCCACTTGACACTTTGATCCCTGATGGAAAACGCATAATCTGGGACAGTAGA GATTGTAGTGACAATGAAATTTTTTTCAAAGGTGAACTGIGAAACTAGGGACTACCTTTTGCGTATTAGACCCTGTCATCT


| 330 | 340 | 350 | 360 | 370 | 380 | 390 | 400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

AAGGGCTTCATCATATCAAATGCAACGTACAAAGAAATAGGGCTTCTGACCTGTGAAGCAACAGTCAATGGGCATTTGTA TTCCCGAAGTAGTATAGTTTACGTTGCATGTTTCTTTATCCCGAAGACTGGACACTHCGITGTCAGITACCCGTAAACAT
 HFLT1 D2 $\qquad$ >

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 410 | 420 | 430 | 440 | 450 | 460 | 470 | 480 |

TAAGACAAACTATCTCACACATCGACAAACCAATACAATCATAGATGTGGTTCTGAGTCCGTCTCATGGAATTGAACTAT ATTCTGTITGATAGAGTGTGTAGCTGTITGGTTATGTTAGTATCTACACCAAGACTCAGGCAGAGTACCTHAACTHGATA
$\begin{array}{lllllllllllllll}K & T & N & Y & L & T & H & R & Q & T & N & T & I & I & D\end{array}$
HFLT1 D2___

Fig.21B.
$\begin{array}{llllllll}490 & 500 & 510 & 520 & 530 & 540 & 550 & 560\end{array}$
CTGTTGGAGAAAAGCTTGTCTTAAATTGTACAGCAAGAACTGAACTAAATGTGGGGATTGACTTCAACTGGGAATACCCT GACAACCTCTTTTCGAACAGAATTTAACATGTCGTTCTTGACTTGATTTACACCCCTAACTGAAGTTGACCCTTATGGGA


HFLK1 D3
$\begin{array}{llllllll}570 & 580 & 590 & 600 & 610 & 620 & 630 & 640\end{array}$ TCTTCGAAGCATCAGCATAAGAAACTTGTAAACCGAGACCTAAAAACCCAGTCTGGGAGTGAGATGAAGAAATTTTTGGAG AGAAGCTTCGTAGTCGTATTCTTTGAACATTTGGCTCTGGATTTTTGGGTCAGACCCTCACTCTACTTCTTTAAAAACTC


| 650 | 660 | 670 | 680 | 690 | 700 | 710 | 720 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CACCTTAACTATAGATGGTGTAACCCGGAGTGACCAAGGATTGTACACCTGTGCAGCATCCAGTGGGCTGATGACCAAGA GIGGAATTGATATCTACCACATTGGGCCTCACTGGTTCCTAACATGTGGACACGTCGTAGGTCACCCGACTACTGGTTCT

| T |
| :---: |
|  |  |

HFLK1 D3


AGAACAGCACATTTGTCAGGGTCCATGAAAAGGSCCCGGGCGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA TCTIGTCGTGTAAACAGTCCCAGGTACTTTTTCCCGGGCCCGCTGTTTTGAGTGTGTACGGGTGGCACGGGTCGTGGACTT


CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC GAGGACCCCCCTGGCAGTCAGAAGGAGAAGGGGSGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTG


FCAC1 (A)

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 890 | 900 | 910 | 920 | 930 | 940 | 950 | 960 |

ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGACGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG TACGCACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTAC
 297

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 970 | 980 | 990 | 1000 | 1010 | 1020 | 1030 | 1040 |

CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG GGITCTGTTTCGGCGCCCTCCTCGTCATGTIGTCGTGCATGGCACACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACC
 GACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTVCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTT

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1130 | 1140 | 1150 | 1160 | 1170 | 1180 | 1190 | 1200 |

AGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT TCCCGTCGGGGCTCITGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGA
 $F C \Delta C 1(A)$

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1210 | 1220 | 1230 | 1240 | 1250 | 1260 | 1270 | 1280 |

GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTHGTTGATGTTCTGG

$\mathrm{FCACl}(\mathrm{A})$ 404
$\qquad$

|  |  |  |  | $\begin{gathered} >T>C \\ \mid \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1300 | 1310 | 1320 | 1330 | 1340 | 1350 | 1360 | ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGIGGACAAGAGCAGGTGGCAGCAGGG TGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATATCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCC

 $F C \Delta C 1(A)$ $\qquad$ >

| 1370 | 1380 | 1390 | 1400 | 1410 | 1420 | 1430 | 1440 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA CTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCAT



FCAC1 (A)
$\square$
>NotI_site

| 1450
AATGAGCGGCCGC
TTACTCGCCGGCG
K *>
458
$\qquad$

Fig.22A.

| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AAGCTTGGGCTGCAGGTCGATCGACTCTAGAGGATCGATCCCCGGGCGAGCTCGAATTCGCAACCACCATGGTCAGCTAC TTCGAACCCGACGTCCAGCTAGCTGAGATCTCCTAGCTAGGGGCCCGCTCGAGCTTAAGCGITGGTGGTACCAGTCGATG


| $M$ | $V$ | $S$ | $Y>$ |
| :---: | :---: | :---: | :---: |
| 1 |  |  | 4 |

90 | >BspEI_bridge |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 110 | 120 | 130 | 140 | 150 | 160 |

TGGGACACCGGGGTCCTGCTGIGCGCGCTGCTCAGCTGTCTGCTTCTCACAGGATCTAGTTCCGGAGGTAGACCTTTCGT ACCCIGTGGCCCCAGGACGACACGCGCGACGAGTCGACAGACGAAGAGTGTCCTAGATCAAGGCCTCCATCTGGAAAGCA
 AGAGATGTACAGTGAAATCCCCGAAATTATACACATGACTGAAGGAAGGGAGCTCGTCATTCCCTGCCGGGTTACGTCAC TCTCTACATGTCACTTMAGGGGCTTTAATATGTGTACTGACTTCCTTCCCTCGAGCAGTAAGGGACGGCCCAATGCAGTG
 FLT1 IG DOMAIN 2

| 250 | 260 | 270 | 280 | 290 | 300 | 310 | 320 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CTAACATCACTGTTACTTTAAAAAAGTTTCCACTTGACACTTTGATCCCTGATGGAAAACGCATAATCTGGGACAGTAGA GATTGTAGTGACAATGAAATHTTTTCAAAGGTGAACTGTGAAACTAGGGACTACCTTTTGCGTATTAGACCCTGTCATCT
 FLTI IG DOMAIN 284

| 330 | 340 | 350 | 360 | 370 | 380 | 390 | 400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

AAGGGCTTCATCATATCAAATGCAACGTACAAAGAAATAGGGCTTCTGACCTGTGAAGCAACAGTCAATGGGCATTTGIA TTCCCGAAGTAGTATAGTTTACGTTGCATGTTTCTTTATCCCGAAGACTGGACACTTCGTTGTCAGTTACCCGTAAACAT
 FLTI IG DOMAIN 2

410 | 420 | 430 | 440 | 450 | 460 | 470 | 480 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TAAGACAAACTATCTCACACATCGACAAACCAATACAATCATAGATATCCAGCTGTTGCCCAGGAAGTCGCTGGAGCTGC ATTCTGTTTGATAGAGTGTGTAGCTGTITGGTTATGTTAGTATCTATAGGTCGACAACGGGTCCTTCAGCGACCTCGACG

$$
\begin{array}{llllllllllllllll}
K & T & N & Y & L & T & H & R & Q & T & N & T & I & I & D
\end{array}
$$ FLII IG DOMAIN 2 $\qquad$

Fig.22B.
$490500 \quad 510 \quad 520 \quad 530 \quad 540 \quad 550 \quad 560$
TGGTAGGGGAGAAGCTGGTCCTCAACTGCACCGIGTGGGCTGAGTTTAACTCAGGTGTCACCTTTGACTGGGACTACCCA ACCATCCCCTCTTCGACCAGGAGTTGACGTGGCACACCCGACTCAAATTGGGTCCACAGTGGAAACTGACCCTGATGGGT
 VEGFR3 (FLT4) IG DOMAIN 3

|  | VEGFR3 | (FLTA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 570 | 580 | 590 | 600 | 610 | 620 | 630 | 640 |

GGGAAGCAGGCAGAGCGGGGTAAGTGGGTGCCCGAGCGACGCTCCCAACAGACCCACACAGAACTCTCCAGCATCCTGAC CCCTTCGTCCGTCTCGCCCCATTCACCCACGGGCTCGCTGCGAGGGTTGTCTGGGTGTGTCTTTGAGAGGTCGTAGGACTG

$\qquad$

|  | VEGFR3 | (FLT4) IG DOMAIN |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 650 | 660 | 670 | 680 | 690 | 700 | 710 | 720 | CATCCACAACGTCAGCCAGCACGACCTGGGCTCGTATGTGTGCAAGGCCAACAACGGCATCCAGCGATTTICGGGAGAGCA GTAGGTGTTGCAGTCGGTCGTGCTGGACCCGAGCATACACACGTTCCGGTTGITGCCGTAGGTCGCTAAAGCCCTCTCGT

 217


CCGAGGTCATTGTGCATGAAAATGGCCCGGGCGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACICCTGGGG GGCTCCAGTAACACGIACTWTTACCGGGCCCGCTGTTTTGAGTGTGTACGGGTGGCACGGGTCGTGGACTTGAGGACCCC $T \quad E \quad V \quad V \quad H \quad E \quad N>$


G P G>
_>
$\begin{array}{llllllllllllllll}D & K & T & H & T & C & P & P & C & P & A & P & E & L & L & G\end{array}$ 244
FCAC1 - A ALLOTYPE $\qquad$ >
$\begin{array}{llllllll}810 & 820 & 830 & 840 & 850 & 860 & 870 & 880\end{array}$
GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT CCTGGCAGTCAGAAGGAGAAGGGGGGTTHTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCA


FCACI - A ALLOTYPE

|  | FCDCI | - A ALLOTYPE |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 890 | 900 | 910 | 920 | 930 | 940 | 950 | 960 |

GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA ССАССTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGTTCTGTT

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

$\qquad$ FCAC1 - A ALLOTYPE
$970 \begin{array}{llllllll}980 & 990 & 1000 & 1010 & 1020 & 1030 & 1040\end{array}$
AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC TCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCACACCAGTCGCAGGAGTGGCAGGACGTGGICCTGACCGACTTACCG
 FCDC1 - A ALLOTYPE

Fig.22C.
$10501060 \quad 1070 \quad 1080 \quad 1090 \quad 1100 \quad 1110 \quad 1120$ AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC TTCCTCATGTTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTMTCCCGTCGG
 FCAC1 - A ALLOTYPE

|  | >A>C_A_allotype |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \| |  |  |  |  |  |  |
|  | >G>T_A_allotype |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1130 | 1140 | 1150 | 1160 | \| 1170 | 1180 | 1190 | 1200 | CCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA GGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGACCAGT


|  | R |
| :---: | :---: |
|  |  |

FCDC1 - A ALLOTYPE
$1210 \quad 1220 \quad 1230 \quad 1240 \quad 1250 \quad 1260 \quad 1270 \quad 1280$ AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC TTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGG



GTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT CACGACCTGAGGCTGCCGAGGAAGAAGGAGATATCGITCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAA
 FCACI - A ALLOTYPE

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1370 | 1380 | 1390 | 1400 | 1410 | 1420 | 1430 | 1440 | CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGCGG GAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCATTTACTCGCC

$\qquad$
_FCAC1 - A ALLOTYPE $\rightarrow$
$\operatorname{CCGC}$ GGCG

Fig. 23.


- Flt1D2Flk1D3.FcdeltaC1(a)
$\triangle$ Flt1D2VEGFR3D3.FcdeltaC1(a)
$\nabla$ TIE2-Fc
- Flt1(1-3)-Fc


## Fig.24A.

| 10 | 20 | 30 | 40 | 50 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ |  |  |  |

atg gic agc tac tgg gac acc gag gic CIg CIg tac gcg CTG CTC AGC TGT CTG CIT CIC tac CAG tCG ATG ACC CTG TGG CCC CAG GAC GAC ACG CGC GAC gAG TCG ACA GAC GAA GAG

aca gga tct agt tcc gea agt gat acc gat aga cct tic gia gag atg tac agt gat atc tGT CCT AgA TCA AGG CCT TCA CTA tGG CCA TCT GGA AAG CAT CIC TAC ATG TCA CIT TAG $T \quad G \quad S \quad S \quad S \quad G>$
21_hFLTI SIGNAL SEQ26>


CCC GAA ATT ATA CAC ATG ACT GAA GGA AGG GAG CTC GTC ATT CCC TGC CGG GIT ACG TCA GGG CIT TAA tat gig tac tga cit cct tcc cic gag cag tan gag acg gcc cai tgc agt


CCT AAC ATC ACT GTT ACT TTA AAA AAG TTT CCA CTT GAC ACT TTG ATC CCT GAT GGA AAA GGA TTG TAG TGA CAA TGA AAT TTT TTC AAA GGT GAA CTG TGA AAC TAG GGA CTA CCT TTT $\begin{array}{llllllllllllllllllll}\text { P } & \mathrm{N} & \mathrm{I} & \mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{L} & \mathrm{K} & \mathrm{K} & \mathrm{F} & \mathrm{P} & \mathrm{L} & \mathrm{D} & \mathrm{T} & \mathrm{L} & \mathrm{I} & \mathrm{P} & \mathrm{D} & \mathrm{G} & \mathrm{K}\end{array}$

cge ata atc tgg gac agt aga ang ggc trc atc ata tca ant gca acg tac ana gan ata gCg tat tag acc cig tca tct tic cog ang tag tat agi tra cgi tgc atg tit cti tat

| R |
| :---: |
|  |  |


| 310 | 320 | 330 | 340 | 350 | 360 |
| ---: | ---: | ---: | ---: | ---: | ---: |

gGg CTt ctg acc tgt gan gca aca gic ant gge cat trg tat adg aca anc tat ctc aca CCC GAA GAC tGG ACA CTT CGT TGT CAG TTA CCC GTA AAC ATA TTC TGT TIG ATA GAG TGT | $G$ | L | L | T | C | E | A | T | V | N | G | H | L | Y | K | T | N | Y | L | TP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101 |  |  |  | 105 |  |  |  | hFLTI | IG | DOMAIN | 2 |  |  |  | 115 |  |  |  |  |

| 370 | 380 | 390 | 400 | 410 | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: |

CAT OGA CAA ACC AAT ACA ATC ATA GAT GIG GIT CTG AGT CCG TCT CAT GGA ATT GAA CTA GTA GCT GIT TGG TTA tGT tag tat CTA CAC CAA GAC TCA GGC AGA GTA CCT TAA CIT GAT $\begin{array}{lllllllll}H & R & Q & T & N & T & I & I & D D\end{array}$ 121 ___ hFLTI IG DOMATN 2 _129_>
$V$
130
430
440
450
460
470
480

TCT GTT GGA GAA AAG CTT GTC TTA AAT TGT ACA GCA AGA ACT GAA CTA AAT GIG GGG ATT AGA CAA CCT CTE TTC GAA CAG AAT TTA ACA TGI CGT TCT TGA CTT GAT TTA CAC CCC TAA $\begin{array}{lllllllllllllllllllll}\text { S } & \text { V } & G & E & K & L & V & L & N & C & \text { I } & A & R & T & E & L & N & V & G & I>\end{array}$

| 490 | 500 | 510 | 520 | 530 | 540 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |

gAC TTC AAC TOG GAA TAC CCT TCT TOG AAG CAT CAG CAT AAG AAA CTT GIA AAC CGA GAC CTG AAG TIG ACC CTI ATG GGA AGA AGC TIC GIA GTC GTA TTC TTT GAA CAT TTG GCT CIG $\begin{array}{llllllllllllllllllllll}D & F & N & W & E & Y & P & S & S & K & H & \mathbf{Q} & \mathrm{H} & \mathrm{K} & \mathrm{K} & \mathrm{L} & \mathrm{V} & \mathrm{N} & \mathrm{R} & \mathrm{D}\end{array}$

550 hFLKI IG DOMAIN 3 $\qquad$ 175 $\qquad$ 180>

| 550 | 560 | 570 | 580 | 590 | 600 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ |  |

CLA AAA ACC CAG TCT GGG AGT GAG ATG AAG AAA TIT TTG AGC ACC ITA ACT ATA CAT GGT GAT ITT TGG GIC AGA CCC TCA CIC TAC TTC TTT AAA AAC TCG TGG AAT TGA TAT CTA CCA
 GIA ACC CGG AGT GAC CAA GGA TTG TAC ACC TGT GCA GCA TCC AGT GGG CIG ATG ACC AAG CAT TGG GCC TCA CIG GIT CCC AAC ATG TGG ACA CGT CGT AGG TCA CCC GAC TAC TGG TTC $\left.\begin{array}{ccccccccccccccccccc}V & T & R & S & D & Q & G & L & Y & T & C & A & A & S & S & G & L & M & T\end{array}\right)$

| 670 | 680 | 690 | 700 | 710 | 720 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |

AAG AAC AGC ACA TIT GIC AGG GIC CAT GAA AAG GAC AAA ACT CAC ACA TGC CCA CCG TGC TIC TTG TCG TGT AAA CAG TCC CAG GIA CTT TIC CIG TIT TGA GIG TGT ACG GGT GGC ACG $\begin{array}{llllllllllll}K & N & S & T & F & V & R & V & H & E & K>\end{array}$
221 231>

$\begin{array}{rrr}730 \\ \star & 740 & 750\end{array}$
760
70
$*$
CCA GCA CCT GAA CIC CIG GGG GGA COG TCA GIC TTC CIC TTC COC CCA AAA COC AAG GAC GGT CGT GGA CIT GAG GAC CCC CCT GGC AGT CAG AAG GAG AAG GGG GGT TTT GGG TTC CIG

$\begin{array}{rrrrrr}790 & 800 & 810 & 820 & 830 & * \\ * & * & * & * & *\end{array}$
ACC CTC ATG ATC TCC OGG ACC OCT GAG GIC ACA TGC GIG GIG GIG GAC GIG AGC CAC GAA TGG GAG TAC TAG AGG GCC TGG GGA CIC CAG TGT AOG CAC CAC CAC CTG CAC TCG GIG CTT $\begin{array}{lllllllllllllllllll}T & L & M & I & S & R & T & P & E & V & T & C & V & V & V & D & V & S & H\end{array}$


GAC CCT GAG GTC AAG TTC AAC TGG-TAC GIG GAC GGC GIG GAG GIG CAT AAT GCC AAG ACA CIG GGA CIC CAG TIC AAG TIG ACC ATG CAC CTG CCG CAC CTC CAC GIA TIA CGG TIC TGT


Fig.24C.

| 910 | 920 | 930 | 940 | 950 | 960 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ |  |

AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC GTC CTC ACC GTC CTG TTC GGC GCC CTC CIC GTC ATG TTG TCG TGC ATG GCA CAC CAG TCG CAG GAG TGG CAG GAC


| 970 | 980 | 990 | 1000 | 1010 | 1020 |
| :--- | :--- | :--- | :--- | :--- | :--- |

CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG GIC TCC AAC AAA GCC CIC CCA GIG GIC CIG ACC GAC TTA CCG TTC CIC ATG TIC ACG TTC CAG AGG TTG TTT CGG GAG GGT


| 1030 | 1040 | 1050 | 1060 | 1070 | 1080 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |

GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA GAA CCA CAG GIG TAC CGG GGG TAG CIC TTT TGG TAG AGG TTIT CGG TIT CCC GIC GGG GCT CIT GGT GIC CAC ATG $\begin{array}{llllllllllllllllllll}A & P & I & E & K & T & I & S & K & A & K & G & Q & P & R & E & p & Q & V & Y\end{array}$ 341 $\qquad$
$\begin{array}{llllll}1090 & 1100 & 1110 & 1120 & 1130 & 1140\end{array}$
ACC CTG CCC CCA TOC CGG GAT GAG CIG ACC AAG AAC CAG GIC AGC CIG ACC TGC CTG GIC TGG GAC GGG GGT AGG GCC CTA CIC GAC TGG TIC TIG GIC CAG TCG GAC TGG ACG GAC CAG


| 1150 | 1160 | 1170 | 1180 | 1190 | 1200 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |

AAA GGC TTC TAT CCC AGC GAC AIC GCC GIG GAG TGG GAG AGC AAT GGG CAG CCG gAG aAC TTT CCG AAG ATA GGG TCG CIG TAG CGG CAC CTC ACC CIC TCG TTA CCC GIC GGC CTC ITG $\begin{array}{lllllllllllllllllllll}K & G & F & Y & P & S & D & I & A & V & E & W & E & S & N & G & Q & P & E & N\end{array}$


AAC TAC AAG ACC ACG CCT COC GIG CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG tIG ATG TTC tGG tGC GGA GGG CAC GAC CTG AGG CTG CCG AGG AAG AAG gag atg tcg tic $\begin{array}{cccccccccccccccccccc}N & \mathrm{Y} & \mathrm{K} & \mathrm{T} & \mathrm{T} & \mathrm{P} & \mathrm{P} & \mathrm{V} & \mathrm{I} & \mathrm{D} & \mathrm{S} & \mathrm{D} & \mathrm{G} & \mathrm{S} & \mathrm{F} & \mathrm{F} & \mathrm{L} & \mathrm{Y} & \mathrm{S} & \mathrm{K}> \\ 401\end{array}$

| 1270 | 1280 | 1290 | 1300 | 1310 | $*$ |
| ---: | ---: | ---: | ---: | ---: | ---: |

CTC ACC GIG gac aAg AgC agg tGg cag cag gGg anc gic tic tca tgc tcc gig atg cat GAG TGG CAC CIG TIC TCG TCC ACC GIC GIC CCC TTG CAG AAG AGT ACG AGG CAC TAC GIA


$1330 \quad 1340 \quad 1350$
13601370
GAG GCT CIG CAC AAC CAC TAC ACG CAG ABG AGC CTC TCC CIG TCT CCG GGT AAA TGA CTC CGA GAC GTG TTG GIG ATG TGC GIC TTC TCG GAG AGG GAC AGA GGC CCA TTT ACT


Fig.25A.


Fig.25B.



Fig.26A.


Fig.26B.
DME - Challenge tCHO-VEGFR1R2.Fc $\Delta \mathrm{C} 1$ (a) sCHO-Flt1D2Flk1D3.FcaC1(a) tCHO-Flt1D2FIk1D3.Fc $\Delta C 1$ (a) VEGF 165 tCHO-VEGFR1R2.Fc $\Delta C 1$ (a) sCHO-FIt1D2FIk1D3.Fc $\Delta$ C1(a) tCHO-Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)


Fig.28.

| Binding Stoichiometry of hVEGF165 to Flt1D2FIk1D3.FcaC1 (a) \& VEGFR1R2-FcaC1(a) |  |  |
| :---: | :---: | :---: |
| hVEGF165 (nM) | VEGF/FIt1D2FIk1D3.FcaC1 (a) | VEGFNEGFR1R2-FcaC1 ${ }^{\text {a }}$ ) |
| 1 | 0.93 | 0.98 |
| 10 | 0.97 | 0.94 |
| 50 | 1 | 0.99 |
|  |  |  |
| Average $\pm$ StDev | $0.96 \pm 0.03$ | $0.97 \pm 0.02$ |

Fig. 29.


Fig. 30.


Fig. 31.


Fig. 32.


Fig. 33.


Fig. 34.


Fig. 35.

Fig.36. $\quad 50$

RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Fig. 37.


Fig. 38.




Fig.42A.


Fig.42B.


## MODIFIED CHIMERIC POLYPEPTIDES WITH IMPROVED PHARMACOKINETIC properties

This application is a divisional of U.S. patent application Ser. No. $10 / 009,852$, filed Dec. 6, 2001, now U.S. Pat. No. $7,070,959$, which is a national stage application of International Application No. PCT/US00/14142, filed May 23, 2000, which claims priority of U.S. Provisional Application No. 60/138,133, filed Jun. 8, 1999. The disclosures of these applications are herein specifically incorporated by reference in their entirety.

## INTRODUCTION

The field of this invention is modified polypeptides with improved pharmacokinetics. Specifically, the field of this invention relates to Flt1 receptor polypeptides that have been modified in such a way as to improve their pharmacokinetic profile. The field of this invention also relates to methods of making and using the modified polypeptides including but not limited to using the modified polypeptides to decrease or inhibit plasma leakage and/or vascular permeability in a mammal.

## BACKGROUND

The ability of polypeptide ligands to bind to cells and thereby elicit a phenotypic response such as cell growth, survival, cell product secretion, or differentiation is often mediated through transmembrane receptors on the cells. The extracellular domain of such receptors (i.e. that portion of the receptor that is displayed on the surface of the cell) is generally the most distinctive portion of the molecule, as it provides the protein with its ligand binding characteristic. Binding of a ligand to the extracellular domain generally results in signal transduction which transmits a biological signal to intracellular targets. Often, this signal transduction acts via a catalytic intracellular domain. The particular array of sequence motifs of this catalytic intracellular domain determines its access to potential kinase substrates (Mohammadi, et al.,1990, Mol. Cell. Biol. 11:5068-5078; Fantl, et al., 1992, Cell 69:413-413). Examples of receptors that transduce signals via catalytic intracellular domains include the receptor tyrosine kinases (RTKs) such as the Trk family of receptors which are generally limited to cells of the nervous system, the cytokine family of receptors including the tripartate CNTF receptor complex (Stahl \& Yancopoulos, 1994, J. Neurobio. 25:1454-1466) which is also generally limited to the cells of the nervous system, G-protein coupled receptors such as the $\beta_{2}$-adrenergic receptor found on, for instance, cardiac muscle cells, and the multimeric IgE high affinity receptor FceRI which is localized, for the most part, on mast cells and basophils (Sutton \& Gould, 1993, Nature 366:421-428).
All receptors identified so far appear to undergo dimerization, multimerization, or some related conformational change following ligand binding (Schlessinger, J., 1988, Trend Biochem. Sci. 13:443-447; Ullrich \& Schlessinger, 1990, Cell 61:203-212; Schlessinger \& Ullrich, 1992, Neuron 9:383-391) and molecular interactions between dimerizing intracellular domains lead to activation of catalytic function. In some instances, such as platelet-derived growth factor (PDGF), the ligand is a dimer that binds two receptor molecules (Hart, et al., 1988, Science, 240:1529-1531; Heldin, 1989, J. Biol. Chem. 264:8905-8912) while, for example, in the case of epidermal growth factor (EGF), the
ligand is a monomer (Weber, et al., 1984, J. Biol. Chem. 259:14631-14636). In the case of the FceRI receptor, the ligand, $\operatorname{IgE}$, exists bound to $\mathrm{Fc} \in \mathrm{RI}$ in a monomeric fashion and only becomes activated when antigen binds to the $\mathrm{IgE} / \mathrm{Fc} \in \mathrm{RI}$ complex and cross-links adjacent IgE molecules (Sutton \& Gould, 1993, Nature 366:421-428).

Often, the tissue distribution of a particular receptor within higher organisms provides insight into the biological function of the receptor.
The RTKs for some growth and differentiation factors, such as fibroblast growth factor (FGF), are widely expressed and therefore appear to play some general role in tissue growth and maintenance. Members of the Trk RTK family (Glass \& Yancopoulos, 1993, Trends in Cell Biol. 3:262-
15 268) of receptors are more generally limited to cells of the nervous system, and the Nerve Growth Factor family consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neu-rotrophin-4/5 (NT-4/5), which bind the Trk RTK family receptors, promote the differentiation of diverse groups of neurons in the brain and periphery (Lindsay, R. M, 1993, in Neurotrophic Factors, S. E. Loughlin \& J. H. Fallon, eds., pp. 257-284, San Diego, Calif., Academic Press). FceRI is localized to a very limited number of types of cells such as mast cells and basophils. Mast cells derive from bone marrow pluripotent hematopoietic stem cell lineage, but complete their maturation in the tissue following migration from the blood stream (See Janeway \& Travers, 1996, in Immunobiology, 2d. Edition, M. Robertson \& E. Lawrence, eds., pp. 1:3-1:4, Current Biology Ltd., London, UK, Publisher) and are involved in the allergic response.
Many studies have demonstrated that the extracellular domain of a receptor provides the specific ligand binding characteristic.
Furthermore, the cellular environment in which a receptor is expressed may influence the biological response exhibited upon binding of a ligand to the receptor. For example, when a neuronal cell expressing a Trk receptor is exposed to a neurotrophin which binds to that receptor, neuronal survival and differentiation results. When the same receptor is expressed by a fibroblast, exposure to the neurotrophin results in proliferation of the fibroblast (Glass, et al., 1991, Cell 66:405-413).

A class of cell-derived dimeric mitogens with selectivity for vascular endothelial cells has been identified and designated vascular endothelial cell growth factor (VEGF). VEGF has been purified from conditioned growth media of rat glioma cells [Conn et al., (1990), Proc. Natl. Acad. Sci. U.S.A., 87. pp 2628-2632]; and conditioned growth media of bovine pituitary follicle stellate cells [Ferrara and Henzel, (1989), Biochem. Biophys. Res. Comm., 161, pp. 851-858; Gozpadorowicz et al., (1989), Proc. Natl. Acad. Sci. U.S.A., 86, pp. 7311-7315] and conditioned growth medium from human U937 cells [Connolly, D. T. et al. (1989), Science, 246, pp. 1309-1312]. VEGF is a dimer with an apparent molecular mass of about 46 kDa with each subunit having an apparent molecular mass of about 23 kDa . VEGF has some structural similarities to platelet derived growth factor (PDGF), which is a mitogen for connective tissue cells but not mitogenic for vascular endothelial cells from large vessels.

The membrane-bound tyrosine kinase receptor, known as Flt, was shown to be a VEGF receptor [DeVries, C. et al., (1992), Science, 255, pp.989-991]. The Flt receptor specifically binds VEGF which induces mitogenesis. Another form of the VEGF receptor, designated KDR , is also known to bind VEGF and induce mitogenesis. The partial cDNA
sequence and nearly full length protein sequence of $K D R$ is known as well [Terman, B. I. et al., (1991) Oncogene 6, pp. 1677-1683; Terman, B. I. et al., (1992) Biochem. Biophys. Res. Comm. 187, pp. 1579-1586].
Persistent angiogenesis may cause or exacerbate certain diseases such as psoriasis, rheumatoid arthritis, hemangiomas, angiofibromas, diabetic retinopathy and neovascular glaucoma. An inhibitor of VEGF activity would be useful as a treatment for such diseases and other VEGF-induced pathological angiogenesis and vascular permeability conditions, such as tumor vascularization. The present invention relates to a VEGF inhibitor that is based on the VEGF receptor Flt1.
Plasma leakage, a key component of inflammation, occurs in a distinct subset of microvessels. In particular, in most organs plasma leakage occurs specifically in the venules. Unlike arterioles and capillaries, venules become leaky in response to numerous inflammatory mediators including histamine, bradykinin, and serotonin. One characteristic of inflammation is the plasma leakage that results from intercellular gaps that form in the endothelium of venules. Most experimental models of inflammation indicate that these intercellular gaps occur between the endothelial cells of postcapillary and collecting venules (Baluk, P., et al., Am. J. Pathol. 1998 152:1463-76). It has been shown that certain lectins may be used to reveal features of focal sites of plasma leakage, endothelial gaps, and finger-like processes at endothelial cell borders in inflamed venules (Thurston, G., et al., Am. J. Physiol, 1996, 271: H2547-62). In particular, plant lectins have been used to visualize morphological changes at endothelial cell borders in inflamed venules of, for example, the rat trachea. Lectins, such as conconavalin A and ricin, that bind focally to inflamed venules reveal regions of the subendothelial vessel wall exposed by gaps that correspond to sites of plasma leakage (Thurston, G., et al., Am J Physiol, 1996, 271: H2547-62).
The properties of the microvessels are dynamic. Chronic inflammatory diseases, for example, are associated with microvascular remodeling, including angiogenesis and microvessel enlargement. Microvessels can also remodel by acquiring abnormal phenotypic properties. In a murine model of chronic airway inflammation, airway capillaries acquire properties of venules, including widened vessel diameter, increased immunoreactivity for von Willebrand factor, and increased immunoreactivity for P-selectin. In addition, these remodeled vessels leak in response to inflammatory mediators, whereas vessels in the same position in the airways of normal mice do not.
Certain substances have been shown to decrease or inhibit vascular permeability and/or plasma leakage. For example, mystixins are synthetic polypeptides that have been reported to inhibit plasma leakage without blocking endothelial gap formation (Baluk, P., et al., J. Pharmacol. Exp. Ther., 1998, 284: 693-9). Also, the beta 2 -adrenergic receptor agonist formoterol reduces microvascular leakage by inhibiting endothelial gap formation (Baluk, P. and McDonald, D. M., Am. J.
Physiol., 1994, 266:L461-8).
The angiopoietins and members of the vascular endothelial growth factor (VEGF) family are the only growth factors thought to be largely specific for vascular endothelial cells. Targeted gene inactivation studies in mice have shown that VEGF is necessary for the early stages of vascular development and that Ang-1 is required for later stages of vascular remodeling.
U.S. Pat. No. 6,011,003, issued Jan. 4, 2000, in the name of Metris Therapeutics Limited, discloses an altered, soluble
form of FLT polypeptide being capable of binding to VEGF and thereby exerting an inhibitory effect thereon, the polypeptide comprising five or fewer complete immunoglobulin domains.
U.S. Pat. No. 5,712,380, issued Jan. 27, 1998 and assigned to Merck \& Co., discloses vascular endothelial cell growth factor (VEGF) inhibitors that are naturally occurring or recombinantly engineered soluble forms with or without a C-terminal transmembrane region of the receptor for VEGF.

Also assigned to Merck \& Co. is PCT Publication No. WO 98/13071, published Apr. 2, 1998, which discloses gene therapy methodology for inhibition of primary tumor growth and metastasis by gene transfer of a nucleotide sequence encoding a soluble receptor protein which binds to VEGF.

PCT Publication No. WO 97/44453, published Nov. 27, 1997, in the name of Genentech, Inc., discloses novel chimeric VEGF receptor proteins comprising amino acid sequences derived from the vascular endothelial growth factor (VEGF) receptors Flt1 and KDR, including the murine homologue to the human KDR receptor FLK1, wherein said chimeric VEGF receptor proteins bind to VEGF and antagonize the endothelial cell proliferative and angiogenic activity thereof.
PCT Publication No. WO 97/13787, published Apr. 17, 1997, in the name of Toa Gosei Co., LTD., discloses a low molecular weight VEGF inhibitor usable in the treatment of diseases accompanied by neovascularization such as solid tumors. A polypeptide containing the first immunoglobulinlike domain and the second immunoglobulin-like domain in the extracellular region of a VEGF receptor FLT but not containing the sixth immunoglobulin-like domain and the seventh immunoglobulin-like domain thereof shows a VEGF inhibitory activity.
Sharifi, J. et al., 1998, The Quarterly Jour. of Nucl. Med. 42:242-249, disclose that because monoclonal antibodies (MAbs) are basic, positively charged proteins, and mammalian cells are negatively charged, the electrostatic interactions between the two can create higher levels of background binding resulting in low tumor to normal organ ratios. To overcome this effect, the investigators attempted to improve MAb clearance by using various methods such as secondary agents as well as chemical and charge modifications of the MAb itself.
Jensen-Pippo, et al., 1996, Pharmaceutical Research 13:102-107, disclose that pegylation of a therapeutic protein, recombinant human granulocyte colony stimulating factor (PEG-G-CSF), results in an increase in stability and in retention of in vivo bioactivity when administered by the intraduodenal route.

Tsutsumi, et al., 1997, Thromb Haemost. 77:168-73, disclose experiments wherein the in vivo thrombopoietic activity of polyethylene glycol-modified interleukin-6 (MPEG-IL-6), in which $54 \%$ of the 14 lysine amino groups of IL-6 were coupled with PEG, was compared to that of native IL-6.
Yang, et al., 1995, Cancer 76:687-94, disclose that conjugation of polyethylene glycol to recombinant human inter-leukin-2 (IL-2) results in a compound, polyethylene glycolmodified IL-2 (PEG-IL-2) that retains the in vitro and in vivo activity of IL-2, but exhibits a markedly prolonged circulating half-life.
R. Duncan and F. Spreafico, Clin. Pharmacokinet. 27: 290-306, 296 (1994) review efforts to improve the plasma half-life of asparaginase by conjugating polyethylene glycol.

PCT International Publication No. WO 99/03996 published Jan. 28, 1999 in the name of Regeneron Pharmaceu-
ticals, Inc. and The Regents of The University of California describes modified human noggin polypeptides having deletions of regions of basic amino acids. The modified human noggin polypeptides are described as retaining biological activity while having reduced affinity for heparin and superior pharmacokinetics in animal sera as compared to the unmodified human noggin.

## SUMMARY OF THE INVENTION

The present invention is directed to VEGF antagonists with improved pharmacokinetic properties. A preferred embodiment is an isolated nucleic acid molecule encoding a fusion polypeptide capable of binding a VEGF polypeptide comprising (a) a nucleotide sequence encoding a VEGF receptor component operatively linked to (b) a nucleotide sequence encoding a multimerizing component, wherein the VEGF receptor component is the only VEGF receptor component of the fusion polypeptide and wherein the nucleotide sequence of (a) consists essentially of a nucleotide sequence encoding the amino acid sequence of Ig domain 2 of the extracellular domain of a first VEGF receptor and a nucleotide sequence encoding the amino acid sequence of Ig domain 3 of the extracellular domain of a second VEGF receptor.
In a further embodiment, the isolated nucleic acid of the first VEGF receptor is Flt1.
In a further embodiment, the isolated nucleic acid of the second VEGF receptor is Flk1.
In yet another embodiment, the isolated nucleic acid of the second VEGF receptor is Flt4.
In another preferred embodiment, the nucleotide sequence encoding Ig domain 2 of the extracellular domain of the first VEGF receptor is upstream of the nucleotide sequence encoding Ig domain 3 of the extracellular domain of the second VEGF receptor.
In still another preferred embodiment, the nucleotide sequence encoding Ig domain 2 of the extracellular domain of the first VEGF receptor is downstream of the nucleotide sequence encoding Ig domain 3 of the extracellular domain of the second VEGF receptor.
In a preferred embodiment of the invention, the multimerizing component comprises an immunoglobulin domain.
In another embodiment, the immunoglobulin domain is selected from the group consisting of the Fc domain of $\operatorname{IgG}$, the heavy chain of $\operatorname{IgG}$, and the light chain of $\operatorname{IgG}$.
Preferred embodiments include an isolated nucleic acid molecule comprising a nucleotide sequence encoding a modified Flt1 receptor fusion polypeptide, wherein the coding region of the nucleic acid molecule consists of a nucleotide sequence selected from the group consisting of
(a) the nucleotide sequence set forth in FIG. 13A-13D (SEQ ID NO:3);
(b) the nucleotide sequence set forth in FIG. 14A-14C (SEQ ID NO:5);
(c) the nucleotide sequence set forth in FIG. 15A-15C (SEQ ID NO:7);
(d) the nucleotide sequence set forth in FIG. 16A-16D (SEQ ID NO:9);
(e) the nucleotide sequence set forth in FIG. 21A-21C (SEQ 1D NO:11);
(f) the nucleotide sequence set forth in FlG. 22A-22C (SEQ ID NO:13),
(g) the nucleotide sequence set forth in FIG. 24A-24C (SEQ ID NO:15); and
(h) a nucleotide sequence which, as a result of the degeneracy of the genetic code, differs from the nucle-
otide sequence of (a), (b), (c), (d), (e), (f), or (g) and which encodes a fusion polypeptide molecule having the biological activity of the modified Flt1 receptor fusion polypeptide.
In a further embodiment of the invention, a fusion polypeptide is encoded by the isolated nucleic acid molecules described above.

A preferred embodiment is a composition capable of binding a VEGF molecule to form a nonfunctional complex ${ }^{0}$ comprising a multimer of the fusion polypeptide.

Also preferred is a composition wherein the multimer is a dimer.

In yet another embodiment, the composition is in a carrier.
Another embodiment is a vector which comprises the nucleic acid molecules described above, including an expression vector comprising a the nucleic acid molecules described wherein the nucleic acid molecule is operatively linked to an expression control sequence.

Other included embodiments are a host-vector system for the production of a fusion polypeptide which comprises the expression vector, in a suitable host cell; the host-vector system wherein the suitable host cell is a bacterial cell, yeast cell, insect cell, or mammalian cell; the host-vector system wherein the suitable host cell is $E$. Coli; the host-vector system wherein the suitable host cell is a COS cell; the host-vector system wherein the suitable host cell is a CHO cell.

Another embodiment of the invention is a method of producing a fusion polypeptide which comprises growing cells of the host-vector system under conditions permitting production of the fusion polypeptide and recovering the fusion polypeptide so produced.

Additional embodiments include a fusion polypeptide encoded by the nucleic acid sequence set forth in FIG. 10A-10D (SEQ ID NO:1) or FIG. 24A-24G (SEQ ID NO:15), which has been modified by acetylation or pegylation wherein the acetylation is accomplished with at least about a 100 fold molar excess of acetylation reagent or wherein acetylation is accomplished with a molar excess of acetylation reagent ranging from at least about a 10 fold molar excess to about a 100 fold molar excess or wherein the pegylation is 10 K or 20 K PEG.

A preferred embodiment includes a method of decreasing or inhibiting plasma leakage in a mammal comprising administering to the mammal the fusion polypeptide described above, including embodiments wherein the mammal is a human, the fusion polypeptide is acetylated or the fusion polypeptide is pegylated.

A further embodiments is a fusion polypeptide which specifically binds the VEGF receptor ligand VEGF.

A preferred embodiment of the invention is a method of blocking blood vessel growth in a human comprising administering an effective amount of the fusion polypeptide described above.

Also preferred is a method of inhibiting VEGF receptor ligand activity in a mammal comprising administering to the mammal an effective amount of the fusion polypeptide described above.

Preferred embodiments of these methods are wherein the mammal is a human.

Further embodiments of the methods of the invention include attenuation or prevention of tumor growth in a human; attenuation or prevention of edema in a human, especially wherein the edema is brain edema; attenuation or prevention of ascites formation in a human, especially wherein the ascites is ovarian cancer-associated ascites.

Preferred embodiments of the invention include a fusion polypeptide capable of binding a VEGF polypeptide comprising (a) a VEGF receptor component operatively linked to (b) a multimerizing component, wherein the VEGF receptor component is the only VEGF receptor component in the fusion polypeptide and consists essentially of the amino acid sequence of Ig domain 2 of the extracellular domain of a first VEGF receptor and the amino acid sequence of $\operatorname{Ig}$ domain 3 of the extracellular domain of a second VEGF receptor.

In a further embodiment of the fusion polypeptide, the first VEGF receptor is Flt1.

In yet a further embodiment of the fusion polypeptide, the second VEGF receptor is Flk1.
Still another embodiment of the fusion polypeptide is one in which the second VEGF receptor is Flt4.

Preferred embodiments include a fusion polypeptide wherein amino acid sequence of $\operatorname{Ig}$ domain 2 of the extracellular domain of the first VEGF receptor is upstream of the amino acid sequence of $\operatorname{Ig}$ domain 3 of the extracellular domain of the second VEGF receptor and a fusion polypeptide wherein the amino acid sequence of Ig domain 2 of the extracellular domain of the first VEGF receptor is downstream of the amino acid sequence of Ig domain 3 of the extracellular domain of the second VEGF receptor.

In yet another embodiment, the fusion polypeptide multimerizing component comprises an immunoglobulin domain including an embodiment wherein the immunoglobulin domain is selected from the group consisting of the Fc domain of $\operatorname{IgG}$, the heavy chain of $\operatorname{IgG}$, and the light chain of $\operatorname{IgG}$.

Preferred embodiments include a fusion polypeptide comprising an amino acid sequence of a modified Flt 1 receptor, wherein the amino acid sequence selected from the group consisting of (a) the amino acid sequence set forth in FIG. 13A-13D (SEQ ID NO:4); (b) the amino acid sequence set forth in FIG. 14A-14D (SEQ ID NO:6); (c) the amino acid sequence set forth in FIG. 15A-15C (SEQ ID NO:8); (d) the amino acid sequence set forth in FIG. 16A-16D (SEQ ID NO:10); (e) the amino acid sequence set forth in FIG. 21A-21D (SEQ ID NO:12); (f) the amino acid sequence set forth in FIG. 22A-22C (SEQ ID NO:14); and (g) the amino acid sequence set forth in FIG. 24A-24C (SEQ ID NO:16).

Another preferred embodiment is a method of decreasing or inhibiting plasma leakage in a mammal comprising administering to the mammal the fusion polypeptide described above.
An alternative preferred embodiment is a method of inhibiting VEGF receptor ligand activity in a mammal comprising administering to the mammal an effective amount of the fusion polypeptide described above.

## BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. IEF gel analysis of unmodified and acetylated Flt1(1-3)-Fc proteins. Unmodified Flt1(1-3)-Fc protein is unable to enter the gel due to its $>9.3 \mathrm{pl}$, whereas acetylated Flt $1(1-3)-\mathrm{Fc}$ is able to enter the gel and equilibrate at pl 5.2 .

FIG. 2. Binding of unmodified Flt1(1-3)-Fc and acetylated Flt1(1-3)-Fc proteins to MATRIGEL® coated plates. Unmodified Flt1(1-3)-Fc proteins binds extensive to extracellular matrix components in Matrigel.RTM., whereas acetylated Flt1(1-3)-Fc does not bind.

FIG. 3. Binding of unmodified Flt1(1-3)-Fc, acetylated Flt1(1-3)-Fc, and pegylated Flt1(1-3)-Fc in a BIACORETM_ based assay. Acetylated (columns 13-16), pegylated (columns 17-20), and heparin-treated Flt1(1-3)-Fc (columns 21-24) are each able to completely compete 25 with the

BIACORETM chip-bound Flt1(1-3)-Fc for VEGF binding as compared to control (columns 1-4) and irrelevant protein (columns 5-8). Unmodified Flt1(1-3)-Fc (columns 5-6) appears to only partially compete with BIACORETM chipbound Flt1(1-3)-Fc for VEGF binding. However, washing the bound samples with 0.5 M NaCl (columns $7-8$ ) results in a binding profile similar to the modified forms of Flt1(1-3)Fc , indicating that the unmodified protein is exhibiting non-specific binding to the chip that can be eliminated by the salt wash.

FIG. 4. Binding of unmodified Flt1(1-3)-Fc, acetylated Flt1(1-3)-Fc, and pegylated Flt1(1-3)-Fc to VEGF in an ELISA-based assay. Both pegylated and acetylated Flt1(1-3)-Fc proteins bind to VEGF with affinities approaching that 5 of unmodified Flt1(1-3)-Fc.

FIG. 5. Pharmacokinetic profiles of unmodified Flt1(1-3)-Fc, acetylated Flt1(1-3)-Fc, and pegylated F1t1(1-3)-Fc. $\mathrm{Balb} / \mathrm{c}$ mice ( $23-28 \mathrm{~g}$ ) were injected subcutaneously with 4 $\mathrm{mg} / \mathrm{kg}$ of unmodified, acetylated, or pegylated Flt1(1-3)-Fc. The mice were tail bled at $1,2,4,6,24$ hours, 2 days, and 3 days after injection of protein and the sera were assayed in a standard ELISA-based assay designed to detect Flt1(1-3)Fc protein. The $\mathrm{T}_{\text {max }}$ for all of the Fltl(1-3)-Fc proteins was between the 6 hour and 24 hour time points. The $C_{\max }$ for the different proteins was as follows: Unmodified: $0.06 \mu \mathrm{~g} / \mathrm{ml}-$ $0.15 \mu \mathrm{~g} / \mathrm{ml}$; acetylated: $1.5 \mu \mathrm{~g} / \mathrm{ml}-4.0 \mu \mathrm{~g} / \mathrm{ml}$; and pegylated: approximately $5 \mu \mathrm{~g} / \mathrm{ml}$.

FIG. 6A-6B. IEF gel analysis of unmodified and stepacetylated Flt1(1-3)-Fc proteins. Unmodified Flt1(1-3)-Fc protein is unable to enter the gel due to its $>9.3 \mathrm{pl}$, whereas most of the step-acetylated Flt1(1-3)-Fc samples (30-100 fold excess samples) were able to migrate into the gel and equilibrate at pls ranging between 4.55-8.43, depending on the degree of acetylation.

FIG. 7. Binding of unmodified Flt1(1-3)-Fc and stepacetylated Flt1(1-3)-Fc proteins to MATRIGEL(®) coated plates. As with the irrelevant control protein, rTie2-Fc, step-acetylated Flt1 (1-3)-Fc (20 and 30 fold excess samples) does not exhibit any binding to the Matrigel coated plate, whereas the non-acetylated Flt1(1-3)-Fc protein exhibits significant binding. The 10 fold excess sample shows reduced binding, but the degree of acetylation is not enough to completely block binding to extracellular matrix components.

FIG. 8. Binding of unmodified Flt1(1-3)-Fc and stepacetylated Flt1 (1-3)-Fc in a BIACORETM-based assay. At a sub-stoichiometric ratio $(0.5 \mu \mathrm{~g} / \mathrm{ml}$ of either unmodified Flt1(1-3) or step-acetylated Flt1(1-3)-Fc vs. $0.2 \mu \mathrm{~g} / \mathrm{ml}$ VEGF), there is not enough Flt1(1-3)-Fc (either unmodified or step-acetylated) in the solution to completely bind the VEGF. At $1.0 \mu \mathrm{~g} / \mathrm{ml}$, which approximates a $1: 1$ stoichiometric ratio, the both unmodified and step-acetylated Flt1 (1-3)-Fc are better able to compete for VEGF binding, but there is still insufficient Flt1(1-3)-Fc protein (either unmodified or step-acetylated) to completely saturate the available VEGF. However, at $5.0 \mu \mathrm{~g} / \mathrm{ml}$, which is several times greater than a $1: 1$ stoichiometric ratio, both the Flt1(1-3)-Fc and the step-acetylated Flt1(1-3)-Fc proteins are able to saturate the VEGF, regardless of the degree of acetylation.

FIG. 9. Pharmacokinetic profiles of unmodified Flt1(1-3)-Fc and step-acetylated Flt1(1-3)-Fc. Balb/c mice (23-28 g) were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of unmodified or $10,20,40,60$ and 100 fold excess samples of stepacetylated Flt1(1-3)-Fc ( 3 mice for unmodified, 10, 20 and 40 fold excess samples and 2 mice for 60 and 100 fold excess samples). The mice were tail bled at $1,2,4,6,24$ hours, 2 days and 3 days after injection. The sera were
assayed in an ELISA-based assay designed to detect Flt1 (1-3)-Fc. The $\mathrm{T}_{\text {max }}$ for all of the Flt1(1-3)-Fc proteins tested was at the 6 hour time point but the $\mathrm{C}_{\text {max }}$ was as follows: Unmodified Flt1(1-3)-Fc: $0.06 \mu \mathrm{~g} / \mathrm{ml}$; 10 fold excess sample:- $0.7 \mu \mathrm{~g} / \mathrm{ml}, 20$ fold excess sample- $2 \mu \mathrm{~g} / \mathrm{ml}, 40$ fold excess sample $-4 \mu \mathrm{~g} / \mathrm{ml}$, 60 fold excess sample -2 $\mu \mathrm{g} / \mathrm{ml}, 100$ fold excess sample- $1 \mu \mathrm{~g} / \mathrm{ml}$.

FIG. 10A-10D. Nucleic acid (SEQ ID NO:1) and deduced amino acid sequence (SEQ ID NO:2) of Flt1(1-3)-Fc.

FIG. 11. Schematic diagram of the structure of Flt1.
FIGS. 12A and 12B. Hydrophilicity analysis of the amino acid sequences of $\operatorname{Ig}$ domain 2 and Ig domain 3 of Flt .

FIG. 13A-13D. Nucleic acid (SEQ ID NO:3) and deduced amino acid sequence (SEQ ID NO:4) of Mut1: Flt1(1-3 $\Delta^{B}$ )Fc.

FIG. 14A-14D. Nucleic acid (SEQ ID NO:5) and deduced amino acid sequence (SEQ ID NO:6) of Mut2-Flt1 (2-3 $\left.\Delta_{\Delta^{B}}\right)$ Fc.

FIG. 15A-15C. Nucleic acid (SEQ ID NO:7) and deduced amino acid sequence (SEQ ID NO:8) of Mut3: Flt1 (2-3)-Fc.

FIG. 16A-16D. Nucleic acid (SEQ ID NO:9) and deduced amino acid sequence (SEQ ID NO:10) of Mut4: Flt1 $\left(1-3_{R \rightarrow N}\right)$-Fc.
FIG. 17. Binding of unmodified Flt1(1-3)-Fc, basic region deletion mutant Flt1(1-3)-Fc, and Flt1 $(1-3)_{R \rightarrow N}$ mutant proteins in a BIACORE ${ }^{\text {TM }}$-based assay. At the sub-stoichiometric ratio $(0.25 \mu \mathrm{~g} / \mathrm{ml}$ Flt1(1-3)-Fc of unmodified, acetylated or genetically modified samples vs. $01 . \mu \mathrm{g} / \mathrm{ml}$ VEGF), there is insufficient Flt1(1-3)-Fc protein to block binding of VEGF to the Flt1(1-3)-Fc immobilized on the BIACORE ${ }^{\text {TM }}$ chip. At $0.5 \mu \mathrm{~g} / \mathrm{ml}$ of unmodified, acetylated or genetically modified Flt1(1-3)-Fc proteins, the stoichiometric ratio approximates $1: 1$ and there is an increased ability to block VEGF binding to the BIACORETM chip. At $1.0 \mu \mathrm{~g} / \mathrm{ml}$ of unmodified, acetylated or genetically modified Flt1(1-3)-Fc proteins, which is approximately a $10: 1$ stoichiometric ratio, the Flt1(1-3)-Fc proteins are able to block binding of VEGF to the BIACORETM chip, but they are not equivalent. Unmodified, acetylated, and Mut1: Flt1 $\left(1-3_{\triangle B}\right)$-Fc are essentially equal in their ability to block VEGF binding, whereas Mut4: Flt $1\left(1-3_{R \rightarrow N}\right)$-Fc is somewhat less efficient at blocking binding.

FIG. 18. Binding of unmodified Flt1(1-3)-Fc, Mut1: Flt1 $\left(1-3_{\Delta B}\right)-\mathrm{Fc}$, Mut2: Flt1 $\left(2-3_{\Delta B}\right)$-Fc, and Flt1(2-3) mutant proteins to Matrigel® coated plates. Unmodified Flt1 (1-3)-Fc protein binds avidly to these wells, the Mut3: Flt1(2-3)-Fc protein binds somewhat more weakly, the Mut1: Flt1(1$3_{\Delta B}$ )-Fc protein binds more weakly still, and the Mut2: Flt1 $\left(2-3_{\Delta B}\right)$-Fc protein shows the best profile, binding more weakly than any of the other mutant proteins. The Mut4: Flt1 $\left(1-3_{R \rightarrow N}\right)$-Fc glycosylation mutant protein shows only marginal benefit on the Matrigel assay.

FIG. 19. Binding of unmodified Flt1(1-3)-Fc, Mut1: Flt1 $\left(1-3_{\Delta B}\right)$-Fc, Mut2: Flt1 $\left(2-3_{\Delta B}\right)$-Fc, and Flt1(2-3) mutant proteins in an ELISA-based assay. At the concentrations tested, unmodified Flt1(1-3)-Fc, Mut1: Flt1 (1-3 ${ }_{\Delta B}$ )-Fc, Mut2: Flt1 $\left(2-3_{\Delta B}\right)-\mathrm{Fc}$, and Flt1(2-3) mutant proteins bind VEGF similarly.

FIG. 20. Pharmacokinetic profiles of unmodified Flt1(1-3)-Fc, Mut1: Flt1 $\left(1-3_{\Delta B}\right)$-FC, Mut2: F6ti $\left(2-3_{\Delta B}\right)$-Fc, and Flt1(2-3) mutant proteins. the Cmax for these reagents was as follows: Unmodified Flt1(1-3)-Fc-0.15 $\mu \mathrm{g} / \mathrm{ml} ; 40$ fold molar excess acetylated Flt1(1-3)-Fc-1.5 $\mu \mathrm{g} / \mathrm{ml}$; and Mut1: Flt1 $\left(1-3_{\Delta B}\right)$-Fc- $0.7 \mu \mathrm{~g} / \mathrm{ml}$.

FIG. 21A-21D. Nucleotide (SEQ ID NO:11) and deduced amino acid sequence (SEQ ID NO:12) of the modified Flt1 receptor termed Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a).

FIG. 22A-22C. Nucleotide (SEQ ID NO:13) and deduced amino acid sequence (SEQ ID NO:14) of the modified Flt1 receptor termed F1t1D2.VEGFR3D3.Fc $\Delta C 1$ (a).

FIG. 23. Extracellular Matrix (ECM) Assay. The results of this assay demonstrate that the Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) proteins are considerably less sticky to the ECM as compared to the Flt1(1-3)-Fc protein.

FIG. 24A-24C. Nucleotide (SEQ ID NO:15) and deduced 0 amino acid sequence (SEQ ID NO:16) of the modified Flt1 receptor termed VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a).

FIG. 25A-25C. Phosphorylation assay. At a 1.5 molar excess of either Flt1(1-3)-Fc, Flt1(1-3)-Fc (A40) or transient Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) there is complete blockage of 15 receptor stimulation by these three modified Flt1 receptors as compared to control media challenge. In contrast, transient Flt1D2VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) does not show significant blockage at this molar excess, as compared with VEGF positive control challenge. Similar results are seen in FIG. 2 25B, where the modified Flt receptors are in a 3-fold molar excess to VEGF 165 ligand. In FIG. 25C, where the modified Flt1 receptors are in a 6-fold molar excess to VEGF165 ligand, transient Flt1D2VEGFR3D3.Fc $\Delta \mathrm{Cl}$ (a) can now be shown to be partially blocking VEGF 165 -induced stimula5 tion of cell-surface receptors.

FIG. 26A-26B. Phosphorylation assay. Detection by Western blot of tyrosine phosphorylated VEGFR2(Flk1) by VEGF165 ligand stimulation shows that cell-surface receptors are not phosphorylated by challenge samples which 30 have VEGF165 preincubated with 1 and 2 fold molar excess (FIG. 26A) or 3 and 4 fold molar excess (FIG. 26B) of either transient Flt1D2Flk1D3.FcAC1(a), stable Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a), or transient VEGFR1R2-Fc $\Delta \mathrm{C} 1$
(a). At all modified Flt1 receptor concentrations tested there is complete binding of VEGF165 ligand during the preincubation, resulting in no detectable stimulation of cellsurface receptors by unbound VEGF165 as compared to control media challenge.

FIG. 27. MG/R2 Cell proliferation assay. The following 0 modified Flt receptors Flt1(1-3)-Fc, Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a), plus an irrelevant receptor termed $\mathrm{Tie} 2-\mathrm{Fc}$ as a negative control, were titrated from 40 nM to 20 pM and incubated on the cells for 1 hr at $37^{\circ} \mathrm{C}$. Human recombinant VEGF165 in defined media was 45 then added to all the wells at a concentration of 1.56 nM . The negative control receptor Tie2-Fc does not block VEGF165induced cell proliferation at any concentration whereas Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) blocks 1.56 nM VEGF1 65 with a half maximal dose of 0.8 nM . Flt1(1-3)-Fc and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) are less effective in blocking VEGF165 in this assay with a half maximal dose of $\sim 2 \mathrm{nM}$. VEGF165 alone gives a reading of 1.2 absorbance units and the background is 0.38 absorbance units.

FIG. 28. BIACORE ${ }^{T M}$ analysis of Binding Stoichiometry. 55 Binding 20 stoichiometry was calculated as a molar ratio of bound VEGF165 to the immobilized F1t1D2Flk1D3.Fc. $\Delta \mathrm{C} 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a), using the conversion factor of 1000 RU equivalent to $1 \mathrm{ng} / \mathrm{ml}$. The results indicated binding stoichiometry of one VEGF165 dimeric molecule 6 per one Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) molecule.

FIG. 29 and FIG. 30. Size Exclusion Chromatography Stoichiometry. Flt1D2Flk1D3.FcyC1(a) or VEGFR1R2$\mathrm{Fc} \Delta \mathrm{C} 1$ (a) at a concentration of 1 nM (estimated to be 1000 times higher than the KD of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1R2-FcAC1(a)/VEGF165 interaction) were mixed with varied concentrations of VEGF165. After incubation,
concentrations of the free Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) in solution were measured. The data shows that the addition of 1 nM VEGF165 into the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) solution completely blocks Flt1D2Flk1D3.FcaC1(a) binding to the VEGF165 surface. This result suggested the binding stoichiometry of one VEGF165 molecule per one Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) molecule.

FIG. 31. Size Exclusion Chromatography (SEC) under native conditions. Peak \#1 represents the Flt1D2Flk1D3.FcdC1(a)/VEGF165 complex and peak \#2 represents unbound VEGF165. Fractions eluted between 1.1 and 1.2 ml were combined and guanidinium hydrochloride ( GuHCl ) was added to a final concentration 4.5 M to dissociate the complex.

FIG. 32. Size Exclusion Chromatography (SEC) under dissociative conditions. To separate the components of the receptor-ligand complex and to determine their molar ratio, $50 . \mathrm{mu} .1$ of dissociated complex was loaded onto a SUPEROSE ${ }^{\text {TM }} 12 \mathrm{PC} 3.2 / 30$ equilibrated in 6 M GuHCl and eluted. Peak\#1 represents Flt1D2F1k1D3.Fc $\Delta C 1$ (a) and peak\#2 represents VEGF165.
FIG. 33, FIG. 34 and FIG. 35. Size Exclusion Chromatography (SEC) With On-Line Light Scattering. Size exclusion chromatography column with a MiniDawn on-line light scattering detector (Wyatt Technology, Santa Barbara, Calif.) and refractive index (RI) detectors (Shimadzu, Kyoto, Japan) was used to determine the molecular weight (MW) of the receptor-ligand complex. As shown in FIG. 33, the elution profile shows two peaks. Peak \#1 represents the receptor-ligand complex and peak \#2 represents the unbound VEGF165. MW was calculated from LS and RI signals. The same procedure was used to determine MW of the individual components of the receptor-ligand complex. The results of these determinations are as follows:
MW of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)NEGF165 complex at the peak position is 157300 (FIG. 33), the MW of VEGF165 at the peak position is 44390 (FIG. 34) and the MW of R1R2 at the peak is 113300 (FIG. 35).

FIG. 36. Peptide mapping and glycosylation analysis. The disulfide structures and glycosylation sites in Flt1D2.Flk1D3.Fc $\Delta \mathrm{Cl}$ (a) (SEQ ID $\mathrm{NO}: 12$ ) were determined by a peptide mapping method. There are a total of ten cysteines in Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a); six of them belong to the Fc region. Cys 27 is disulfide bonded to Cys 76 . Cys 121 is disulfide bonded to Cys 182 . The first two cysteines in the Fc region (Cys211 and Cys214) form an intermolecular disulfide bond with the same two cysteines in another Fc chain. However, it can not be determined whether disulfide bonding is occurring between same cysteines (Cys211 to Cys211, for example) or between Cys211 and Cys211. Cys216 is disulfide bonded to Cys 306 . Cys 352 is disulfide bonded to Cys410.

There are five possible N -linked glycosylation sites in Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) (SEQ ID NO:12) and are found to be glycosylated to varying degrees. Complete glycosylation is observed at Asn33, Asn193, and Asn282. Partial glycosylation is observed on Asn65 and Asn120. Sites of glycosylation are highlighted by underline in the FIG.
FIG. 37. Pharmacokinetics of Flt1(1-3)-Fc (A40), Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1 R2-Fc $\Delta \mathrm{C} 1$ (a). $\mathrm{Balb} / \mathrm{c}$ mice were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of Flt1(1-3)-Fc (A40), CHO transiently expressed Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1(\mathrm{a})$, CHO stably expressed Flt1D2.Flk1D3.FcaCl(a), and CHO transiently expressed VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a). The mice were tail bled at $1,2,4,6$, 24 hrs, 2 days, 3 days and 6 days after injection. The sera were assayed in an ELISA designed to detect Flt1(1-3)-Fc
(A40), Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a). The Tmax for Flt1(1-3)-Fc (A40) was at 6 hrs while the Tmax for the transient and stable Flt1D2.Flk1D3.Fc $\Delta C 1$ (a) and the transient VEGFR1R2-FcAC1(a) was 24 hrs . The Cmax for Flt1(1-3)-Fc (A40) was $8 \mu \mathrm{~g} / \mathrm{ml}$, For both transients (Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a)) the Cmax was $18 \mu \mathrm{~g} / \mathrm{ml}$ and the Cmax for the stable VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) was $30 \mu \mathrm{~g} / \mathrm{ml}$.

FIG. 38. Pharmacokinetics of Flt1(1-3)-Fc (A40), Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a). Balb/c mice were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of Flt1(1-3)-Fc (A40), CHO 5 transiently expressed Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and CHO transiently expressed Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a). The mice were tail bled at 1 , $2,5,6,7,8,12,15$ and 20 days after injection. The sera were assayed in an ELISA designed to detect Flt1(1-3)-Fc, Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a). Flt1(1-3)-Fc (A40) could no longer be detected in the serum after day 5 whereas Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta C 1$ (a) were detectable for 15 days or more.

FIG. 39. The Ability of Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) to Inhibit HT-1080 Fibrosarcoma Tumor Growth In Vivo. Every other day or 2 times per week treatment of SCID mice with Flt1D2.Flk1D3.Fc $\Delta \mathrm{Cl}$ (a) at $25 \mathrm{mg} / \mathrm{Kg}$ significantly decreases the growth of subcutaneous HT-1080 fibrosarcoma tumors.

FIG. 40. The Ability of Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) to Inhibit C6 Glioma Tumor Growth In Vivo. Every other day or 2 times a week treatment of SCID mice with Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) significantly decreases the growth of subcutaneous C6 glioma tumors at doses as low as 2.5 $\mathrm{mg} / \mathrm{Kg}$.

FIG. 41. VEGF-Induced Uterine Hyperpermeability. PMSG injected subcutaneously (5 IU) to induce ovulation in prepubertal female rats results in a surge of estradiol after 2 days which in turn causes an induction of VEGF in the uterus. This induction results in hyperpermeability of the uterus and an increase in uterine wet. Subcutaneous injection of Flt1(1-3)-Fc (A40), Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta C 1$ (a) at $25 \mathrm{mg} / \mathrm{kg}$ at 1 hr after PMSG injection results in about a $50 \%$ inhibition of the increase in uterine wet weight.

FIG. 42A-42B. Assessment of Corpus Luteum Angiogenesis Using Progesterone as a Readout. PMSG was injected subcutaneously ( 5 IU ) to induce ovulation in prepubertal female rats, resulting in a fully functioning corpus luteum containing a dense network of blood vessels that secretes progesterone into the blood stream to prepare the uterus for implantation. The induction of angiogenesis in the corpus luteum requires VEGF. Resting levels of progesterone are about $5 \mathrm{ng} / \mathrm{ml}$ and can be induced to $25-40 \mathrm{ng} / \mathrm{ml}$ after PMSG. Subcutaneous injection of Flt1(1-3)-Fc (A40) or Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) at $25 \mathrm{mg} / \mathrm{kg}$ or $5 \mathrm{mg} / \mathrm{kg}$ at 1 hr . after PMSG injection resulted in a complete inhibition of the progesterone induction on day 4.

## DETAILED DESCRIPTION OF THE INVENTION

It has been a long standing problem in the art to produce a receptor based VEGF antagonist that has a pharmacokinetic profile that is appropriate for consideration of the antagonist as a therapeutic candidate. Applicants describe herein, for the first time, a chimeric polypeptide molecule, capable of antagonizing VEGF activity, that exhibits improved pharmacokinetic properties as compared to other
known receptor-based VEGF antagonists. The chimeric polypeptide molecules described herein thus provide for the first time appropriate molecules for use in therapies in which antagonism of VEGF is a desired result.

The present invention provides for novel chimeric polypeptide molecules formed by fusing a modified extracellular ligand binding domain of the Flt1 receptor to the Fc region of $\operatorname{IgG}$.

The extracellular ligand binding domain is defined as the portion of a receptor that, in its native conformation in the cell membrane, is oriented extracellularly where it can contact with its cognate ligand. The extracellular ligand binding domain does not include the hydrophobic amino acids associated with the receptor's transmembrane domain or any amino acids associated with the receptor's intracellular domain. Generally, the intracellular or cytoplasmic domain of a receptor is usually composed of positively charged or polar amino acids (i.e. lysine, arginine, histidine, glutamic acid, aspartic acid). The preceding 15-30, predominantly hydrophobic or apolar amino acids (i.e. leucine, valine, isoleucine, and phenylalanine) comprise the transmembrane domain. The extracellular domain comprises the amino acids that precede the hydrophobic transmembrane stretch of amino acids. Usually the transmembrane domain is flanked by positively charged or polar amino acids such as lysine or arginine. von Heijne has published detailed rules that are commonly referred to by skilled artisans when determining which amino acids of a given receptor belong to the extracellular, transmembrane, or intracellular domains (See von Heijne, 1995, BioEssays 17:25-30). Alternatively, websites on the Internet have become available to provide protein chemists with information about making predictions about protein domains.

The present invention provides for the construction of nucleic acid molecules encoding chimeric polypeptide molecules that are inserted into a vector that is able to express the chimeric polypeptide molecules when introduced into an appropriate host cell. Appropriate host cells include, but are not limited to, bacterial cells, yeast cells, insect cells, and mammalian cells. Any of the methods known to one skilled in the art for the insertion of DNA fragments into a vector may be used to construct expression vectors encoding the chimeric polypeptide molecules under control of transcriptional/translational control signals. These methods may include in vitro recombinant DNA and synthetic techniques and in vivo recombinations (genetic recombination) (See Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory; Current Protocols in Molecular Biology, Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY).
Expression of nucleic acid molecules encoding the chimeric polypeptide molecules may be regulated by a second nucleic acid sequence so that the chimeric polypeptide molecule is expressed in a host transformed with the recombinant DNA molecule. For example, expression of the chimeric polypeptide molecules described herein may be controlled by any promoter/enhancer element known in the art. Promoters which may be used to control expression of the chimeric polypeptide molecules include, but are not limited to, the long terminal repeat as described in Squinto et al., (1991, Cell 65:1-20); the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290:304-310), the CMV promoter, the M-MuLV 5' terminal repeat the promoter contained in the $3^{\prime}$ long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:144-1445), the regulatory
sequences of the metallothionine gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the $\beta$-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731), or the tac promoter (DeBoer, et al., 1983, Proc. Nat1. Acad. Sci. U.S.A. 80:21-25, see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94); promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADH (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter, and the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985, Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. $1: 268-276$ ), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58); alpha 1 -antitrypsin gene control region which is active in the liver (Kelsey et al, 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94); myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712); myosin light chain-2 gene control region which is active in skeletal muscle (Shani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, Science 234:13721378).

Thus, according to the invention, expression vectors capable of being replicated in a bacterial or eukaryotic host comprising chimeric polypeptide molecule-encoding nucleic acid as described herein, are used to transfect the host and thereby direct expression of such nucleic acids to produce the chimeric polypeptide molecules, which may then be recovered in a biologically active form. As used herein, a biologically active form includes a form capable of binding to VEGF.

Expression vectors containing the chimeric nucleic acid molecules described herein can be identified by three general approaches: (a) DNA-DNA hybridization, (b) presence or absence of "marker" gene functions, and (c) expression of inserted sequences. In the first approach, the presence of a foreign gene inserted in an expression vector can be detected by DNA-DNA hybridization using probes comprising sequences that are homologous to the inserted chimeric polypeptide molecule sequences. In the second approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of foreign genes in the vector. For example, if the chimeric polypeptide molecule DNA sequence is inserted within the marker gene sequence of the vector, recombinants
containing the insert can be identified by the absence of the marker gene function. In the third approach, recombinant expression vectors can be identified by assaying the foreign gene product expressed by the recombinant. Such assays can be based, for example, on the physical or functional properties of the chimeric polypeptide molecules.

Cells of the present invention may transiently or, preferably, constitutively and permanently express the chimeric polypeptide molecules.

The chimeric polypeptide molecules may be purified by any technique which allows for the subsequent formation of a stable, biologically active chimeric polypeptide molecule. For example, and not by way of limitation, the factors may be recovered from cells either as soluble proteins or as inclusion bodies, from which they may be extracted quantitatively by 8 M guanidinium hydrochloride and dialysis (see, for example, Builder, et al., U.S. Pat. No. 5,663,304). In order to further purify the factors, conventional ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography or gel filtration may be used.

In one embodiment of the invention, the nucleotide sequence encoding the first component is upstream of the nucleotide sequence encoding the second component. In another embodiment of the invention, the nucleotide sequence encoding the first component is downstream of the nucleotide sequence encoding the second component. Further embodiments of the invention may be prepared in which the order of the first, second and third fusion polypeptide components are rearranged. For example, if the nucleotide sequence encoding the first component is designated 1 , the nucleotide sequence encoding the second component is designated 2 , and the nucleotide sequence of the third component is designated 3 , then the order of the components in the isolated nucleic acid of the invention as read from $5^{\prime}$ to $3^{\prime}$ may be any of the following six combinations: $1,2,3$; $1,3,2 ; 2,1,3 ; 2,3,1 ; 3,1,2$; or $3,2,1$.

The present invention also has diagnostic and therapeutic utilities. In particular embodiments of the invention, methods of detecting aberrancies in the function or expression of the chimeric polypeptide molecules described herein may be used in the diagnosis of disorders. In other embodiments, manipulation of the chimeric polypeptide molecules or agonists or antagonists which bind the chimeric polypeptide molecules may be used in the treatment of diseases. In further embodiments, the chimeric polypeptide molecule is utilized as an agent to block the binding of a binding agent to its target.

By way of example, but not limitation, the method of the invention may be useful in treating clinical conditions that are characterized by vascular permeability, edema or inflammation such as brain edema associated with injury, stroke or tumor; edema associated with inflammatory disorders such as psoriasis or arthritis, including rheumatoid arthritis; asthma; generalized edema associated with burns; ascites and pleural effusion associated with tumors, inflammation or trauma; chronic airway inflammation; capillary leak syndrome; sepsis; kidney disease associated with increased leakage of protein; and eye disorders such as age related macular degeneration and diabetic retinopathy.

An amino acid sequence analysis of Flt1(1-3)-Fc revealed the presence of an unusually high number (46) of the basic amino acid residue lysine.

An IEF analysis of Flt1(1-3)-Fc showed that this protein has pl greater than 9.3 , confirming the prediction that the protein is very basic. It was hypothesized that the basic nature of $\mathrm{Flt1}(1-3)-\mathrm{Fc}$ protein was causing it to bind to
extracellular matrix components and that this interaction might be the cause of the extremely short detectable circulating serum half-life exhibited by Flt1(1-3)-Fc when injected into mice. In order to test this hypothesis, Flt1(1-3)-Fc protein was acetylated at the lysine residues to reduce the basic charge. Acetylated Flt1(1-3)-Fc was then tested in the assays described infra.

The following examples are offered by way of illustration and not by way of limitation.

## EXAMPLES

## Example 1

## Expression of Flt1(1-3)-Fc Protein in CHO K1 Cells

Using standard molecular biology techniques (see e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY), the gene encoding Flt1(1-3)-Fc was inserted into the expression vector pEE 14.1 (Lonza Biologics, ple) at a multiple cloning site downstream of the CMV promoter. CHO K1 cells were transfected with the pEE14.1/Flt1(1-3)-Fc DNA construct using lipofectamine (Gaithersburg, Md.). The transfected CHO K1 cells were grown in glutamine-free DMEM (JRH, Kansas City, Mo.) containing $25 \mu \mathrm{M}$ methionine sulfoximine (MSX) from Sigma Inc., St. Louis, Mo., and high recombinant protein expressors were obtained by screening the $\mathrm{CHO} \mathrm{K1}$ cell supernatants from over 100 hand-picked colony isolates using a standard immunoassay which captures and detects human Fc . The selected hand-picked clone was amplified in the presence of $100 \mu \mathrm{M}$ MSX followed by a second round of screening of the amplified clones. The highest producing clone had a specific productivity of recombinant Flt1(1-3)Fc protein of $55 \mathrm{pg} / \mathrm{cell} /$ day.

The selected clone was expanded in $225 \mathrm{~cm}^{2}$ T-flasks (Corning, Acton, culture media described supra. Cells were removed from the roller bottles by standard trypsinization and put into 3.5 L of suspension medium. The suspension medium is comprised of glutamine-free ISCHO medium (Irvine Scientific, Santa Ana, Calif.) containing 5\% fetal bovine serum (FBS from Hyclone Labs, Logan, Utah), 100 $\mu \mathrm{M}$ MSX and GS supplement (JRH Scientific, Kansas City, Mo.) in a 5L Celligen bioreactor (New Brunswick Scientific, New Brunswick, N.J.) at a density of $0.3 \times 10^{6}$ cells $/ \mathrm{mL}$. After the cells reached a density of $3.6 \times 10^{6} / \mathrm{mL}$ and were adapted to suspension they were transferred to a 60 L bioreactor (ABEC, Allentown, Pa.) at a density of $0.5 \times 10^{6}$ cells $/ \mathrm{mL}$ in 20 L of ISCHO medium with $5 \%$ fetal bovine serum. After two days an additional 20 L of ISCHO $+5 \%$ fetal bovine serum was added to the bioreactor. The cells were allowed to grow for an additional two days reaching a final density of $3.1 \times 10^{6}$ cells $/ \mathrm{mL}$, and a final Flt1(1-3)-Fc concentration at harvest was $95 \mathrm{mg} / \mathrm{L}$. At harvest the cells were removed by tangential flow filtration using $0.45 \mu \mathrm{~m}$ Prostak Filters (Millipore, Inc., Bedford, Mass.).

## Example 2

## Purification of Flt1(1-3)-Fc Protein Obtained from CHO K1 Cells

Flt1(1-3)-Fc protein was initially purified by affinity chromatography. A Protein A column was used to bind, with high
specificity, the Fc portion of the molecule. This affinitypurified protein was then concentrated and passed over a SEC column. The protein was then eluted into the formulation buffer. The following describes these procedures in detail.

## Materials and Methods

All chemicals were obtained from J. T. Baker, Phillipsburg, N.J. with the exception of PBS, which was obtained as a 10. times. concentrate from Life Technologies, Gaithersburg, Md. Protein A Fast Flow and SUPERDEX ${ }^{\text {тм }} 200$ preparation grade resins were obtained from Pharmacia, Piscataway, N.J. Equipment and membranes for protein concentration were obtained from Millipore, Bedford, Mass.
Approximately 40 L of $0.45 \mu \mathrm{~m}$-filtered CHO conditioned media containing Flt1(1-3)-Fc protein was applied to a 290 mL Protein A Fast Flow column ( 10 cm diameter) that had been equilibrated with PBS. The column was washed with PBS containing 350 mM NaCl and $0.02 \%$ CHAPS and the bound protein was eluted with 20 mM Citric Acid containing $10 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{HPO}_{4}$. The single peak in the elution was collected and its pH was raised to neutrality with 1 M NaOH . The eluate fractions was concentrated to approximately 9 $\mathrm{mg} / \mathrm{mL}$ using 10 K regenerated cellulose membranes by both tangential flow filtration and by stirred cell concentration. To remove aggregates and other contaminants, the concentrated protein was applied to a column packed with Superdex 200 preparation grade resin ( $10 \mathrm{~cm} \times 55 \mathrm{~cm}$ ) and run in PBS containing $5 \%$ glycerol. The main peak fractions were pooled, sterile filtered, aliquoted and stored at $-80^{\circ} \mathrm{C}$.

## Example 3

## Acetylation of Flt1(1-3)-Fc Protein

Two milligrams of Flt1 (1-3)-Fc protein were acetylated as described in the instruction manual provided with the sulfo-NHS-acetate modification kit (Pierce Chemical Co., Rockford, Ill., Cat.\#26777).

## Example 4

## Characterization of Acetylated Flt1(1-3)-Fc Protein

(a)IEF analysis: $\mathrm{Flt1}(1-3)-\mathrm{Fc}$ and acetylated $\mathrm{Flt1}(1-3)-\mathrm{Fc}$ were analyzed by standard IEF analysis. As shown in FIG. 1, Flt1(1-3)-Fc protein is not able to migrate into the gel and therefore must have a pl greater than 9.3 , the highest pi in the standard. However, acetylated $\mathrm{Flt} 1(1-3)-\mathrm{Fc}$ is able to migrate into the gel and equilibrate at a pl of approximately 5.2. This result demonstrates that acetylation reduces the net positive charge of the protein and therefore its pl considerably.
b. Binding to Extracellular Matrix Components

To test for binding to extracellular matrix components, Flt1(1-3)-Fc and acetylated Flt1(1-3)-Fc where tested in an assay designed to mimic the interaction with extracellular matrix components. In this assay, 96 -well tissue culture plates are coated with Matrigel (Biocoat MATRIGEL®® matrix thin layer 96 well plate, Catalog \#40607, Becton Dickinson Labware, Bedford, Mass.). The plates are incubated with varying concentrations of either $\operatorname{Flt1}(1-3)-\mathrm{Fc}$, acetylated Flt1(1-3)-Fc, or rTie2-Fc (an irrelevant control) protein are added to the wells. The plates are incubated for 1-2 hours at either room temperature or $37^{\circ} \mathrm{C}$. degrees and then detection of bound proteins is accomplished by adding a secondary alkaline phosphatase-conjugated anti-human Fc
antibody to the wells. Finally, alkaline phosphatase substrate is added to the wells and optical density is measured. FIG. 2 shows the results of this assay. Like the irrelevant control protein $\mathrm{rTie} 2-\mathrm{Fc}$, acetylated $\mathrm{Flt1}(1-3)$-Fc does not exhibit any binding to the Matrigel coated plate, whereas the non-acetylated Flt1(1-3)-Fc protein exhibits significant binding. This result indicates that acetylation of basic amino acid residues is an effective way to interfere with the charge interactions that exist between positively charged proteins and the negatively charged extracellular matrix components they are exposed to in vivo.

## Example 5

## Pegylation of Flt1(1-3)-Fc Protein

Although pegylation (polyethylene glycol - PEG) of proteins has been shown to increase their in vivo potency by enhancing stability and bioavailability while minimizing immunogenicity (see references cited supra), it is counterintuitive that pegylating molecules that are too large to be filtered by the kidney glomeruli would improve their pharmacokinetic properties. Without being bound by theory, Applicants postulated that pegylation of the Flt1(1-3)-Fc molecules could improve the pharmacokinetic properties, possibly not by altering the positive charge or by decreasing the pi of Flt1(1-3)-Fc, but rather by physically shielding the positive charges from interacting with the extracellular matrix. Applicants decided to attempt to improve the pharmacokinetic properties of Flt1(1-3)-Fc molecules by attaching strands of 20 K PEGs as described infra.

## Materials and Methods

Purified Flt1(1-3)-Fc derived from CHO cells (see supra) was used in the following pegylation experiments. Functionalized PEGs were obtained from Shearwater Polymers, Huntsville, Ala.; Bicine from Sigma, St Louis, Mo.; Superose 6 column from Pharmacia, Piscataway, N.I.; PBS as a $10 \times$ concentrate from Life Technologies, Gaithersburg, Md.; Glycerol from J. T. Baker, Phillipsburg, N.J.; and Bis-Tris precast gels from Novex, Calif.

20K PEG strands functionalized with amine-specific terminal moieties were used in small-scale reaction studies that were set-up to evaluate different reaction conditions in which the PEG:protein stoichiometry was varied. Based on these reactions and the analyses of samples on standard SDS-PAGE, Flt1(1-3)-Fc at a concentration of $1.5 \mathrm{mg} / \mathrm{mL}$ was reacted at pH 8.1 with 20K SPA-PEG (PEG succinimidyl propionate) molecules at a PEG-to-Flt1(1-3)-Fc monomer molar ratio of 1:6. The reaction was allowed to proceed at $8^{\circ} \mathrm{C}$. overnight. For initial purification, the reaction products were applied to a $10 \mathrm{~mm} \times 30 \mathrm{~cm}$ Superose 6 column equilibrated with PBS containing $5 \%$ Glycerol. The column appeared to separate pegylated $\mathrm{Flt1}(1-3)$ - Fc molecules based on the extent of pegylation. Fractions corresponding to what appeared to be primarily mono-pegylated and di-pegylated dimeric Flt1(1-3)-Fc, as judged by banding patterns on reducing and non-reducing SDS-PAGE gels were pooled. The protein concentration was determined by measuring absorbance at 280 nm . The pegylated Flt1(1-3)Fc protein was sterile filtered, aliquoted and stored at $-40^{\circ}$ C.

## Binding of Unmodified, Acetylated, and Pegylated Flt1(1-3)-Fc in a BIACORE ${ }^{\text {TM }}$-Based Assay

Unmodified, acetylated, and pegylated Flt1(1-3)-Fc proteins were tested in a BIACORE TM-based assay to evaluate their ability to bind to the Flt1 ligand, VEGF. In this assay, unmodified Flt1(1-3)-Fc protein was immobilized on the surface of a BIACORE ${ }^{\mathrm{TM}}$ chip (see BIACORE ${ }^{\mathrm{TM}}$ Instruction Manual, Pharmacia, Inc., Piscataway, N.J., for standard procedures) and a sample containing $0.2 \mu \mathrm{~g} / \mathrm{ml}$ VEGF and either unmodified Flt1(1-3)-Fc, acetylated Flt1(1-3)-Fc or pegylated Flt1(1-3)-Fc (each at $25 \mu \mathrm{~g} / \mathrm{ml}$ ) was passed over the Flt1(1-3)-Fc-coated chip. To minimize the effects of non-specific binding, the bound samples were washed with a 0.5 M NaCl wash. In one sample, unmodified F1t1(1-3)-Fc was mixed with heparin. Heparin is a negatively charged molecule and the Flt1(1-3)-Fc protein is a positively charged molecule, so when the two molecules are mixed together, they should interact through their respective charges. This essentially neutralizes Flt1(1-3)-Fc's inherent positive charge making the molecule behave as if it has been chemically or genetically modified so as to reduce its charge and its tendency to bind via charge interactions. As shown in FIG. 3, acetylated (columns 13-16), pegylated (columns 17-20), and heparin-treated Flt1(1-3)-Fc (columns 21-24) are each able to completely compete with the BIACORETM chip-bound Flt1(1-3)-Fc for VEGF binding as compared to control (columns 1-4) and irrelevant protein (columns 5-8). Unmodified Flt1(1-3)-Fc (columns 5-6) appeared to only partially compete with BIACORE ${ }^{\text {TM }}$ chip-bound Flt1(1-3)Fc for VEGF binding. However, washing the bound samples with 0.5 M NaCl (columns $7-8$ ) resulted in a binding profile similar to the modified forms of Flt1(1-3)-Fc, indicating that the unmodified protein was exhibiting non-specific binding to the chip that could be eliminated by the salt wash.

## Example 7

Binding of Unmodified, Acetylated, and Pegylated
Flt $1(1-3)-\mathrm{Fc}$ in an ELISA-Based Assay

Unmodified, acetylated, and pegylated Flt1(1-3)-Fc proteins were tested in a standard ELISA-based assay to evaluate their ability to bind the Flt1 receptor ligand VEGF. As shown in FIG. 4, both pegylated and acetylated F1t1(1-3)-Fc proteins are capable of binding to VEGF, demonstrating that modifying the protein either by pegylation or acetylation does not destroy its ability to bind its ligand.

## Example 8

## Pharmacokinetic Analysis of Unmodified Flt1(1-3)Fc, Acetylated Flt1(1-3)-Fc, and Pegylated Flt1(1-3)-Fc

In vivo experiments were designed to assess the pharmacokinetic profiles of unmodified Flt1(1-3)-Fc, acetylated Flt1(1-3)-Fc, and pegylated Flt1(1-3)-Fc protein. Balb/c mice ( $23-28 \mathrm{~g} ; 3$ mice/group) were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of unmodified, acetylated, or pegylated Flt1 (1-3)-Fc. The mice were tail bled at 1, 2, 4, 6, 24 hours, 2 days, and 3 days after injection of protein. The sera were assayed in a standard ELISA-based assay designed to detect Flt1(1-3)-Fc protein. Briefly, the assay involves coating an ELISA plate with VEGF, binding the unmodified, acety-
lated, or pegylated Flt1(1-3)-Fc-containing sera, and reporting with an anti-Fc antibody linked to alkaline phosphatase. As shown in FIG. 5, the Tmax for all of the Flt1 $(1-3)$-Fc proteins was between the 6 hour and 24 hour time points.
The Cmax for the different proteins was as follows: Unmodified: $0.06 \mu / \mathrm{ml}-0.15 \mu \mathrm{~g} / \mathrm{ml}$; acetylated: $1.5 \mu \mathrm{~g} / \mathrm{ml}-4.0 \mu \mathrm{~g} / \mathrm{ml}$; and pegylated: approximately $5 \mu \mathrm{~g} / \mathrm{ml}$.

## Example 9

Step-Acetylation of Flt1(1-3)-Fc

To determine what minimal amount of acetylation is necessary to eliminate binding to extracellular matrix components, an experiment was designed that acetylated the Flt1(1-3)-Fc protein in a step-wise fashion by using increasing amounts of molar excess of acetylation reagent in the acetylation reaction mixture. The range of molar excess was as follows: $0,10,20,30,40,50,60,70,80,90$, and 100 moles of acetylation reagent per 1 mole of Flt1(1-3)-Fc monomer. The reactions were performed as detailed in the instruction manual provided with the sulfo-NHS-Acetate modification kit (Pierce Chemical Co., Rockford, Ill, Cat.\#26777).

## Example 10

## Characterization of Step-Acetylated Flt1(1-3)-Fc

(a IEF analysis Unmodified Flt1(1-3)-Fc and step-acetylated Flt1(1-3)-Fc proteins were analyzed by standard IEF analysis. As shown in FIG. 6A-6B, unmodified Flt1(1-3)-Fc protein was not able to migrate into the gel due to its extremely high pl (greater than 9.3). However, most of the step-acetylated Flt1(1-3)-Fc samples ( $30-100$ fold molar excess samples) were able to migrate into the gel and equilibrate at pls ranging between 4.55-8.43, depending on the degree of acetylation of the protein. This result demonstrates that acetylation can change the positive charge of the protein in a dose-dependent manner and that reduction of the pl can be controlled by controlling the degree of acetylation.
(b.) Binding of Step-Acetylated Flt1(1-3)-Fc to Extracellular Matrix Components

To test for binding to extracellular matrix components, Flt1(1-3)-Fc and step-acetylated Flt1(1-3)-Fc where tested in the above-described assay designed to mimic the interaction with extracellular matrix components. Varying concentrations of either unmodified Flt1(1-3)-Fc, step-acetylated Flt1(1-3)-Fc (10, 20, and 30 fold molar excess samples), or rTie2-Fc (an irrelevant control) protein were added to the wells. The plates were incubated for 1-2 hours at room temperature or $37^{\circ} \mathrm{C}$. and then detection of bound proteins-was accomplished by adding a secondary alkaline phosphatase-conjugated anti-human Fc antibody to the wells. Alkaline phosphatase substrate was subsequently added to the wells and optical density measured. FIG. 7 shows the results of this assay. Like the irrelevant control protein rTie2-Fc, step-acetylated Flt1(1-3)-Fc (20 and 30 fold molar excess samples) did not exhibit any significant binding to the Matrigel coated plate, whereas the nonacetylated Flt1(1-3)-Fc protein exhibited significant binding. The binding is saturable, indicating that the Flt1(1-3)-Fc protein may be binding to specific sites, rather than a more general charge-mediated interaction that might not be saturable. The 10 fold molar excess sample showed reduced binding, but the degree of acetylation was not enough to
completely block binding to extracellular matrix components. The 20 fold molar excess and higher samples displayed no detectable binding, despite the fact that by IEF analysis (FIGS. 6A and 6B) the lower molar excess samples still had a large net positive charge. This result demonstrates that it is not necessary to completely acetylate all available basic amino acids in order to eliminate binding to extracellular matrix components.
(c.) Binding of Step-Acetylated $\mathrm{Ft} 11(1-3)-\mathrm{Fc}$ in a BIA-CORETM-Based Assay

Unmodified and step-acetylated Flt1(1-3)-Fc proteins where tested in a BIACORE ${ }^{\text {TM }}$-based assay to evaluate their ability to bind to the Flt1 ligand, VEGF. In this assay, unmodified Flt1(1-3)-Fc protein ( $0.5,1.0$, or $5.0 \mu \mathrm{~g} / \mathrm{ml}$ ) was immobilized on the surface of a BIACORE ${ }^{\text {TM }}$ chip (see BIACORETM Instruction Manual, Pharmacia, Inc., Piscataway, N.J., for standard procedures) and a solution containing $0.2 \mu \mathrm{~g} / \mathrm{ml}$ VEGF and either unmodified Flt1(1-3)-Fc (at either $0.5,1.0$, or $5.0 \mu \mathrm{~g} / \mathrm{ml}$ ) or 10 different step-acetylated Flt1(1-3)-Fc samples (at $0.5,1.0$, or $5.0 \mu \mathrm{~g} / \mathrm{ml}$ each) were passed over the Flt1(1-3)-Fc-coated chip. As shown in FIG. 8, at a sub-stoichiometric ratio $(0.5 \mu \mathrm{~g} / \mathrm{ml}$ of either unmodified Flt1(1-3) or step-acetylated Flt1(1-3)-Fc vs. $0.21 \mu \mathrm{~g} / \mathrm{ml}$ VEGF), there is not enough Flt1(1-3)-Fc (either unmodified or step-acetylated) in the solution to completely bind the VEGF. At $1.0 \mu \mathrm{~g} / \mathrm{ml}$, which approximates a $1: 1$ stoichiometric ratio, both unmodified and step-acetylated Flt1(1-3)Fc are better able to compete for VEGF binding, but there is still insufficient Flt1(1-3)-Fc protein (either unmodified or step-acetylated) to completely bind the available VEGF. However, at $5.0 \mu \mathrm{~g} / \mathrm{ml}$, which is several times greater than a $1: 1$ stoichiometric ratio, both the $\mathrm{Flt} 1(1-3)-\mathrm{Fc}$ and the step-acetylated Flt1(1-3)-Fc proteins are able to bind the VEGF, regardless of the degree of acetylation. This clearly demonstrates that acetylation does not alter Flt1(1-3)-Fc's ability to bind VEGF.
(d.) Pharmacokinetic Analysis of Step-Acetylated Flt1(1-3)Fc

In vivo experiments were designed to assess the pharmacokinetic profiles of unmodified Flt1(1-3)-Fc and stepacetylated Flt1(1-3)-Fc protein. Balb/c mice ( $23-28 \mathrm{~g}$ ) were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of unmodified or 10 , $20,40,60$ and 100 fold molar excess samples of stepacetylated Flt1 (1-3)-Fc (3 mice for unmodified, 10, 20 and 40 fold molar excess samples and 2 mice for 60 and 100 fold molar excess samples). The mice were tail bled at $1,2,4,6$, 24 hours, 2 days and 3 days after injection. The sera were assayed in an ELISA-based assay designed to detect Flt1 (1-3)-Fc (described supra). FIG. 9 details the results of this study. The Tmax for all of the Flt1(1-3)-Fc proteins tested was at the 6 hour time point but the Cmax was as follows: Unmodified Flt1(1-3)-Fc: $0.06 \mu \mathrm{~g} / \mathrm{ml}$; 10 fold molar excess sample: $-0.71 \mu \mathrm{~g} / \mathrm{ml}, 20$ fold molar excess sample -2 $\mu \mathrm{g} / \mathrm{ml}, 40$ fold molar excess sample- $4 \mu \mathrm{~g} / \mathrm{ml}, 60$ fold molar excess sample - $2 \mu \mathrm{~g} / \mathrm{ml}, 100$ fold molar excess sample-1 $\mu \mathrm{g} / \mathrm{ml}$. This results demonstrates that acetylation or pegylation of Flt1(1-3)-Fc significantly improves its pharmacokinetic profile.

## Example 11

Construction of Flt1(1-3)-Fc Basic Region Deletion
Mutant Designated Mut1: Flt1 $\left(1-3_{\Delta B}\right)$-Fc
Based on the observation that acetylated Flt1(1-3)-Fc, which has a pl below 6 , has much better pharmacokinetics
al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene PubI. Assoc., Wiley-Interscience, N.Y.) in the mammalian expression vector pMT21, (Genetics Institute, Inc., Cambridge, Mass.), is referred to as Mut1: Flt1 $\left(1-3_{\Delta B}\right)$-Fc. The Mut1: Flt1 $\left(1-3_{A B}\right)$-Fc constructwas derived from Flt1(1-3)-Fc by deletion of nucleotides 814-843 (set forth in FIG. 10A-10D), which deletes the highly basic 10 -amino acid residue sequence Lys-Asn-Lys-Arg-Ala-Ser-Val-Arg-Arg-Arg from Flt1 Ig domain 3.
The final DNA construct was sequence-verified using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, Calif.). The sequence of Mut1: $\operatorname{Flt1}\left(1-3_{\Delta B}\right)$-Fc is set forth in FIG. 13A-13D.

## Example 12

## Construction of Flt1(1-3)-Fc Basic region Deletion Mutant Designated Mut2: Flt1 $\left(2-3_{\Delta B)-F c}\right.$

A second deletion mutant construct, designated Mut2: Flt1 $\left(2-3_{\Delta B}\right)$-Fc, was derived from the Mut1: $\operatorname{Flt1}\left(1-3_{\Delta B}\right)-\mathrm{Fc}$ construct by deletion of Flt1 Ig domain 1 encoded by nucleotides 79-393 (see FIG. 10A-10D); for convenience, nucleotides 73-78 (TCA GGT) were changed to TCC GGA. This introduced a restriction site (BspE1) without altering the associated amino acid sequence, Ser-Gly. This DNA construct, which was constructed using standard molecular biology techniques (see e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY) in the mammalian expression vector pMT 21 (Genetics Institute, Inc., Cambridge, Mass.), was also sequence-verified using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, Calif.). The sequence of Mut2: $\operatorname{Flt1}\left(2-3_{\Delta B}\right)$ Fc is set forth in FIG. 14A-14C.

## Example 13

## Construction of Flt1(1-3)-Fc Deletion Mutant

 Designated Mut3: Flt1(2-3)-FcA third deletion mutate construct, designated Mut3: Flt1 (2-3)-Fc, was constructed the same way as the Mut2: Flt1 $\left(2-3_{\Delta B}\right)$-Fc construct, except that Flt1 Ig domain 3 was left intact (the basic region amino acids were not deleted). The construct was constructed using standard molecular biology techniques and the final construct was sequence-verified verified as described supra. The sequence of Mut3: Flt1(2-3)-Fc is set forth in FIG. 15A-15C.

## Example 14

Construction of Flt(1-3)-Fc Basic Region N-Glycosylation Mutant Designated Mut4: $\operatorname{Fltt}\left(1-3_{R \rightarrow N}\right)-\mathrm{Fc}$

A final construct was made in which a N -glycosylation site was introduced into the middle of the basic region of Flt1 Ig domain 3. This construct was designated Mut4: Flt $\left(1-3_{R \rightarrow N}\right)$ Fc and was made by changing nucleotides 824-825 from GA to AC , consequently changing the coded Arg residue (AGA) into an Asn residue (AAC) (see FIG. $10 \mathrm{~A}-10$ ). The resulting amino acid sequence is therefore changed from Arg-Ala-Ser to Asn-Ala-Ser, which matches
the canonical signal (Asn-Xxx-Ser/Thr) for the addition of a N -glycosylation site at the Asn residue. The sequence of Mut4: Flt1 $\left(1-3_{R \rightarrow N}\right)$-Fc is set forth in FIG. 16A-16D.

## Example 15

Characterization of Acetylated Flt1(1-3)-Fc, Mut1: Flt1 $\left(1-3_{\Delta B}\right)-\mathrm{Fc}$, and $\mathrm{Mut4}: \operatorname{Flt1}\left(1-3_{R \rightarrow N}\right)$-Fc Mutants
(a.) Binding to Extracellular Matrix Components

To determine whether the three modified proteins were more or less likely to have improved pharmacokinetic properties, Matrigel coated 96 -well dishes (as described supra) were incubated with varying concentrations of the mutant proteins and detected with anti-human Fc/alkalinephosphatase conjugated antibodies. As shown in FIG. 18, this experiment showed that while the unmodified Flt1(1-3)-Fc protein could bind avidly to these wells, the Mut3: Flt1(2-3)-Fc protein bound somewhat more weakly, the Mut1: $\operatorname{Flt} 1\left(1-3_{\Delta B}\right)$-Fc protein bound more weakly still, and the Mut2: $\operatorname{Flt1}\left(2-3_{\Delta B}\right)$-Fc protein showed the best profile, binding more weakly than any of the other mutant proteins. The Mut4: Flt1 $\left(1-3_{R \rightarrow N}\right)$-Fc glycosylation mutant protein showed only marginal benefit on the Matrigel assay. These results confirm the hypothesis that a linear sequence of positive amino acids can be deleted from the primary sequence resulting in a decrease in charge interaction with extracellular matrix components.
(b.) Binding of Mut1: $\operatorname{Flt1}\left(1-3_{\Delta B}\right)$-Fc and Mut4: Flt1(1$3_{R \rightarrow N}$ ) Fc in a BIACORE ${ }^{\mathrm{TM}}$-Based Assay.

Unmodified and acetylated Flt1 (1-3)-Fc and genetically modified Mut1; Flt1(1-3 $\left.\mathbf{\Delta B}_{\Delta B}\right)$-Fc and Mut4: Flt1 $\left(1-3_{R \rightarrow N}\right)$-Fc proteins where tested in a BIACORE ${ }^{\text {TM }}$-based assay to evaluate their ability to bind to the Flt1 ligand, VEGF. In this assay, unmodified Flt1(1-3)-Fc protein ( $0.25,0.5$, or 1.0 $\mu \mathrm{g} / \mathrm{ml}$ ) was immobilized on the surface of a BIACORE ${ }^{\text {TM }}$ chip (see BIACORE ${ }^{\text {TM }}$ Instruction Manual, Pharmacia, Inc., Piscataway, N.J., for standard procedures) and a solution containing $0.1 \mu \mathrm{~g} / \mathrm{ml}$ VEGF and either purified or COS cell supernatant containing unmodified $\operatorname{Flt1}(1-3)$-Fc (at approximately ( $0.25,0.5$, or $1.0 \mu \mathrm{~g} / \mathrm{ml}$ ), purified acetylated Flt1(13 )-Fc (at ( $0.25,0.5$, or $1.0 \mu \mathrm{~g} / \mathrm{ml}$ ), COS cell supernatant containing Mut1: Flt1 ( $1-3_{\Delta B}$ ) -Fc. (at approximately ( 0.25 , 0.5 , or $1.0 \mu \mathrm{~g} / \mathrm{ml}$ ), or COS cell supernatant containing Mut4: Flt1( $1-3_{R \rightarrow N}$ ) -Fc (at approximately ( $0.25,0.5$, or $1.0 \mu \mathrm{~g} / \mathrm{ml}$ ) were passed over the Flt1(1-3)-Fc-coated chip. As shown in FIG. 17, at the sub-stoichiometric ratio $(0.25 \mu \mathrm{~g} / \mathrm{ml}$ Flt1(1-3)- Fc of unmodified, acetylated or genetically modified samples vs. $01 . \mu \mathrm{g} / \mathrm{ml}$ VEGF), there is insufficient Flt1(1-3)-Fc protein to block binding of VEGF to the Flt1(1-3)-Fc immobilized on the BIACORE ${ }^{\text {TM }}$ chip. At $0.5 \mu \mathrm{~g} / \mathrm{ml}$ of unmodified acetylated or genetically modified FIt1(1-3)-Fc proteins, the stoichiometric ratio approximates 1:1 and there is an increased ability to block VEGF binding to the BIACORE ${ }^{\text {TM }}$ chip At $1.0 \mu \mathrm{~g} / \mathrm{ml}$ of unmodified, acetylated or genetically modified $\mathrm{Flt1}(1-3)-\mathrm{Fc}$ proteins, which is approximately a $10: 1$ stoichiometric ratio, the Flt1(1-3)-Fc proteins are able to block binding of VEGF to the BIACORE ${ }^{\text {TM }}$ chip, but they are not equivalent. Unmodified, acetylated, and Mut1: $\operatorname{Flt1}\left(1-3_{\Delta B}\right)$-Fc are essentially equal in their ability to block VEGF binding, whereas Mut4: Flt1(1$\left.3_{R \rightarrow N}\right)-\mathrm{Fc}$ is somewhat less efficient at blocking binding. These results confirm the hypothesis that it is possible to reduce the non-specific binding of a positively charged
molecule by genetically removing a linear sequence of predominantly negatively charged amino acids.
(c.) Binding of Mut1: Flt1 $\left(1-3_{\triangle B}\right)$-Fc, Mut2: Flt1 $\left(2-3_{\triangle B}\right)-\mathrm{Fc}$, Mut3: Flt1(2-3)-Fc, and in an ELISA-Based Assay.

To determine whether the three mutant proteins could bind the Flt1 ligand VEGF, binding experiments were done in which 96 -well plates coated with VEGF were incubated with varying concentrations of the respective mutant protein, and after washing, the amount bound was detected by incubating with an alkaline phosphatase conjugated antihuman Fc antibody and quantitated colorimetrically by the addition of an appropriate alkaline phosphatase substrate. As shown in FIG. 19, this experiment showed that all the mutant proteins could bind VEGF similarly, at the concentrations tested.

## Example 16

Pharmacokinetic Analysis of Acetylated Flt1(1-3)Fc, Mut1: Flt1 (1-3 $3_{\Delta B}$ )-Fc, and Unmodified Flt1(1-3)- Fc

In vivo experiments were designed to assess the pharmacokinetic profiles of unmodified Flt1(1-3)-Fc, Mut1: Flt1(1$\left.3_{\Delta B}\right)-\mathrm{Fc}$, and 40 fold molar excess acetylated $\mathrm{Flt1}(1-3)-\mathrm{Fc}$ protein. Balb/c mice ( $25-30 \mathrm{~g}$ ) were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of unmodified Flt1(1-3)-Fc, 40 fold molar excess acetylated Flt1(1-3)-Fc, and Mut1: Flt1 $\left(1-3_{\Delta B}\right)$-Fc proteins ( 4 mice each). These mice were tail bled at $1,2,4$, 6,24 hours, 2 days, 3 days, and 5 days after injection. The sera were assayed in an ELISA designed to detect Flt1(1-3)-Fc protein which involves coating an ELISA plate with VEGF, binding the Flt1(1-3)-Fc and reporting with an anti-Fc antibody linked to alkaline phosphatase. As shown in FIG. 20, the Cmax for these reagents was as follows: Unmodified Flt1(1-3)-Fc- $0.15 \mu \mathrm{~g} / \mathrm{ml} ; 40$ fold molar excess acetylated Flt1(1-3)-Fc- $1.5 \mu \mathrm{~g} / \mathrm{ml}$; and Mut1: Flt1(1-3 ${ }_{\Delta B}$ )-$\mathrm{Fc}-0.7 \mu \mathrm{~g} / \mathrm{ml}$.

## Example 17

Modified Flt1 Receptor Vector Construction
The rationale for constructing modified versions of the Flt1 receptor (also known as VEGFR1) was based on the observation that the protein sequence of Flt1 was highly basic, and was therefore likely to stick to extracellular matrix (ECM). The highly basic nature of Flt1 probably explains why unmodified Flt1(1-3)-Fc (described supra) has poor pharmacokinetics that make it difficult to use as a therapeutic agent. As described supra, the chemically modified form of 40 fold molar excess acetylated Flt1(1-3)-Fc, hereinafter termed A40, exhibited a greatly improved pharmacokinetic (PK) profile over the non-acetylated Flt1(1-3)Fc . Therefore, attempts were made to engineer DNA molecules that could be used to recombinantly express modified forms of a Flt1 receptor molecule that would possess the improved PK profile exhibited by A40 and still maintain the ability to bind tightly to VEGF.

It is known in the literature that the first Ig domain of Flt1 (which has a net charge of +5 at neutral pH ) is not essential for tight binding to VEGF, so this domain was deleted. The third Ig domain (having a net charge of +11 ) is not essential for binding, but confers higher affinity for VEGF than the second Ig domain, so instead of deleting it entirely, it was replaced with the equivalent domains of the Flt 1 receptor
relatives Flk1 (also known as VEGFR2) and Flt4 (also known as VEGFR3). These chimeric molecules (denoted R1R2 (Flt1.D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) and R1R3 (Flt1D2.VEGFR3D3-Fc 4 C 1 (a) and VEGFR ${ }_{1} \mathrm{R} 3-\mathrm{Fc} \Delta \mathrm{C} 1$ (a) respectively, wherein R 1 and Flt1D2 $=$ Ig domain 2 of Flt1 (VEGFR1); R2 and Flk1D3 $=\mathrm{Ig}$ domain 3 of Flk1 (VEGFR2); and R3 and VEGFR3D3=Ig domain 3 of Flt4 (VEGFR3)) were much less sticky to ECM, as judged by an in vitro ECM binding assay as described infra, had greatly improved PK as described infra. In addition, these molecules were able to bind VEGF tightly as described infra and block phosphorylation of the native Flk1 receptor expressed in endothelial cells as described infra.
(a) Construction of the Expression Plasmid pFlt1D2.Flk1D3.FcaC1(a)

Expression plasmids pMT21.Flt1(1-3).Fc (6519 bp) and pMT21.Flk-1 (1-3).Fc (5230 bp) are plasmids that encode ampicillin resistance and Fc -tagged versions of Ig domains 1-3 of human Flt1 and human Flk1, respectively. These plasmids were used to construct a DNA fragment consisting of a fusion of $\operatorname{Ig}$ domain 2 of Flt1 with Ig domain 3 of Flk1, using PCR amplification of the respective Ig domains followed by further rounds of PCR to achieve fusion of the two domains into a single fragment. For Ig domain 2 of Flt1, the $5^{\prime}$ and $3^{\prime}$ amplification primers were as follows:

```
5': bsp/flt1D2
(5'-GACTAGCAGTCCGGAGGTAGACCTTTCGTAGAGATG-3')
': Flt1D2-Flk1D3.as
(5'-CGGACTCAGAACCACATCTATGATTGTATTGGT-3')
```

The $5^{\prime}$ amplification primer encodes a BspE1 restriction enzyme site upstream of Ig domain 2 of Flt1, defined by the amino acid sequence GRPFVEM (corresponding to amino acids 27-33 of FIG. 21A-21C). The 3 ' primer encodes the reverse complement of the $3^{\prime}$ end of Flt1 Ig domain 2 fused directly to the $5^{\prime}$ beginning of Flk1 Ig domain 3, with the fusion point defined as TIID of Flt1 (corresponding to amino acids 123-126 of FIG. 21A-21C) and continuing into VVLS (corresponding to amino acids 127-130 of FIG. 21A-21C) of Flk1.

For Ig domain 3 of Flk1, the $5^{\prime}$ and $3^{\prime}$ amplification primers were as follows:

```
5': Flt1D2-Flk1D3.s
(5'-ACAATCATAGATGTGGTTCTGAGTCCGTCTCATGG-3')
3': Flk1D3/apa/srf.as
(5'-GATAATGCCCGGGCCCTTTTCATGGACCCTGACAAATG-3')
```

The $5^{\prime}$ amplification primer encodes the end of Flt1 Ig domain 2 fused directly to the beginning of F1k1 Ig domain 3 , as described above. The $3^{\prime}$ amplification primer encodes the end of Flk1 Ig domain 3, defined by the amino acids VRVHEK (corresponding-to amino acids 223-228 of FIG. $21 \mathrm{~A}-21 \mathrm{C}$ ), followed by a bridging sequence that includes a recognition sequence for the restriction enzyme SrfI, and encodes the amino acids GPG. The bridging sequence corresponds to amino acids 229-231 of FIG. 21A-21C.

After a round of PCR amplification to produce the individual domains, the products were combined in a tube and subjected to a further round of PCR with the primers $\mathrm{bsp} / \mathrm{flt} 1 \mathrm{D} 2$ and Flk1D3/apa/srf.as (described supra) to produce the fusion product. This PCR product was subsequently digested with the restriction enzymes BspEI and SmaI and the resulting 614 bp fragment was subcloned into the BspEI
to SrfI restriction sites of the vector $\mathrm{pMT} 21 / \Delta \mathrm{B} 2 . \mathrm{Fc}$, to create the plasmid pMT21/Flt1D2.Flk1D3.Fc. The nucleotide sequence of the Flt1D2-Flk1D3 gene fusion insert was verified by standard sequence analysis. This plasmid was then digested with the restriction enzymes EcoRI and SrfI and the resulting 702 bp fragment was transferred into the EcoRI to Srfl restriction sites of the plasmid $\mathrm{pFlt1}(1-3) \mathrm{B} 2-$ $\mathrm{Fc} \Delta \mathrm{C} 1$ (a) to produce the plasmid $\mathrm{pFlt1D} 2$. $\mathrm{Flk} 1 \mathrm{D} 3 . \mathrm{Fc} \Delta \mathrm{C} 1$ (a). The complete DNA and deduced amino acid sequences of the Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) chimeric molecule is set forth in FIG. 21A-21C.
(b) Construction of the Expression Plasmid pFlt1D2VEGFR3D3FcaC1(a)
The expression plasmid pMT21.Flt1(1-3).Fc ( 6519 bp ) encodes ampicillin resistance and an Fc -tagged version of Ig domains 1-3 of human Flt1 receptor. This plasmid was used to produce a DNA fragment containing Ig domain 2 of Flt 1 by PCR. RNA from the cell line HEL921.7 was used to produce Ig domain 3 of Flk1, using standard RT-PCR methodology. A further round of PCR amplification was used to achieve fusion of the two Ig domains into a single fused fragment. For Ig domain 2 of Flt1, the $5^{\prime}$ and $3^{\prime}$ amplification primers were as follows:

```
5': bsp/flt1D2
(5'-GACTAGCAGTCCGGAGGTAGACCTTTCGTAGAGATG-3')
3': Flt1D2.VEGFR3D3.as
(TTCCTGGGCAACAGCTGGATATCTATGATTGTATTGGT)
```

The $5^{\prime}$ amplification primer encodes a BspEI restriction site upstream of Ig domain 2 of Flt1, defined by the amino acid sequence GRPFVEM (corresponding to amino acids 27-33 of FIG. 22A-22C). The $3^{\prime}$ amplification primer encodes the reverse complement of the end of Flt1 Ig domain 2 fused directly to the beginning of VEGFR3 Ig domain 3, with the fusion point defined as TIID of Flt1 (corresponding to amino acids $123-126$ of FIG. 22A-22C) and continuing into IQLL of VEGFR3 (corresponding to amino acids 127-130 of FIG. 22A-22C)
For Ig domain 3 of VEGFR3, the $5^{\prime}$ and $3^{\prime}$ primers used for RT-PCR were as follows:

```
5': R3D3.s
(ATCCAGCTGTTGCCCAGGAAGTCGCTGGAGCTGCTGGTA)
3': R3D3.as
(ATTTTCATGCACAATGACCTCGGTGCTCTCCCGAAATCG)
```

Both the $5^{\prime}$ and $3^{\prime}$ amplification primers match the sequence of VEGFR3. The 296 bp amplification product of this RT-PCR reaction was isolated by standard techniques and subjected to a second round of PCR to add suitable sequences to allow for fusion of the Flt1D2 with the Flk1D3 domains and fusion of the Flk1D3 and Fc domains via a GPG bridge (see below). The amplification primers were as follows:

```
5': Flt1D2.VEGFR3D3.s
(TCATAGATATCCAGCTGTTGCCCAGGAAGTCGCTGGAG)
3': VEGFR3D3/srf.as
(GATAATGCCCGGGCCATTTTCATGCACAATGACCTCGGT)
```

The $5^{\prime}$ amplification primer encodes the $3^{\prime}$ end of Flt1 Ig domain 2 fused directly to the beginning ( $5^{\prime}$ end) of VEGFR3 $\operatorname{Ig}$ domain 3 , as described above. The $3^{1}$ amplifi-
cation primer encodes the $3^{1}$ end of VEGFR3 Ig domain 3, defined by the amino acids VIVHEN (corresponding to amino acids 221-226 of FIG. 22A-22C), followed by a bridging sequence that includes a recognition sequence for SrfI, and encodes the amino acids GPG. The bridging sequence corresponds to amino acids 227-229 of FIG. 22A-22C.

After one round (for Flt1 Ig domain 2) or two rounds (for Flt4 Ig domain 3) of PCR to produce the individual Ig domains, the PCR products were combined in a tube and subjected to a further round of PCR amplification with the amplification primers bsp/flt1D2 and VEGFR3D3/srf.as described supra, to produce the fusion product. This PCR product was subsequently digested with the restriction enzymes BspEI and SmaI and the resulting 625 bp fragment was subcloned into the BspEI to SrfI restriction sites of the vector $\mathrm{pMT} 21 / \mathrm{Flt1} 1 \Delta \mathrm{~B} 2 . \mathrm{Fc}$ (described supra), to create the plasmid pMT21/Flt1D2.VEGFR3D3.Fc. The sequence of the Flt1D2-VEGFR3D3 gene fusion insert was verified by standard sequence analysis. This plasmid was then digested with the restriction enzymes. EcoRI and SrfI and the resulting 693 bp fragment was subcloned into the EcoRI to SrfI restriction sites of the plasmid $\mathrm{pFlt1}(1-3) \Delta \mathrm{B} 2-\mathrm{Fc} \Delta \mathrm{Cl}$ (a) to produce the plasmid designated pFlt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1(\mathrm{a})$. The complete DNA deduced amino acid sequence of the Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) chimeric molecule is set forth in FIG. 22A-22C.

## Example 18

## Extracellular Matrix Binding (ECM) Binding Assay

ECM-coated plates (Becton Dickinson catalog \#35-4607) were rehydrated with warm DME supplemented with glutamine ( 2 mM ), 100 U penicillin, 100 U streptomycin, and $10 \% \mathrm{BCS}$ for at least 1 hr . before adding samples. The plates were then incubated for 1 hr . at room temperature with varying concentrations of Flt1D2.Flk1D3. $\mathrm{Fc} \Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) starting at 10 nM with subsequent 2 -fold dilutions in PBS plus $10 \%$ BCS. The plates were then washed 3 times with PBS plus $0.1 \%$ Triton- X and incubated with alkaline phosphatase-conjugated anti-human Fc antibody (Promega, 1:4000 in PBS plus $10 \%$ BCS) for 1 hr . at room temperature. The plates were then washed 4 times with PBS 0.1\% Triton-X and alkaline phosphatase buffer/pNPP solution (Sigma) was added for color development. Plates were read at $\mathrm{I}=405-570 \mathrm{~nm}$. The results of this experiment are shown in FIG. 23 and demonstrate that the Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) proteins are considerably less sticky to the ECM as compared to the Flt1(1-3)-Fc protein.

Example 19

## Transient Expression of pFlt1D2.Flk1D3.FcAC1(a) in CHO-K1 (E1A) Cells

A large scale ( 2 L ) culture of $E$. coli DH 1 B cells carrying the pFlt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) plasmid described supra in Example 17(a) was grown overnight in Terrific Broth (TB) plus $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin. The next day, the plasmid DNA was extracted using a QIAgen ENDOFREE ${ }^{\text {TM }}$ Megaprep kit following the manufacturer's protocol. The concentration of the purified plasmid DNA was determined by standard techniques using a UV spectrophotometer and fluorometer. The plasmid DNA was verified by standard restriction
enzyme digestion of aliquots using the restriction enzymes EcoRI plus Notl and Asel. All restriction enzyme digest fragments corresponded to the predicted sizes when analyzed on a $1 \%$ agarose gel.
Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of $4 \times 10^{6}$ cells/plate. Plating media was Gibco Ham's F-12 supplemented with $10 \%$ HYCLONE $^{\text {TM }}$ Fetal Bovine Serum (EBS), 100 U penicillin/ 100 U streptomycin and glutamine ( 2 mM ). The following day each plate of cells was transfected with $6 \mu \mathrm{~g}$ of the pFlt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) plasmid DNA using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after adding the transfection mix to the cells, $12 \mathrm{ml} /$ plate of Optimem supplemented with $10 \%$ FBS was added. Plates were incubated at $37^{\circ} \mathrm{C}$. in a $5 \% \mathrm{CO}_{2}$ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II supplemented with glutamine ( 2 mM ) and 1 mM sodium butyrate) was added. The plates were incubated at $37^{\circ} \mathrm{C}$. for 3 days. After 3 days of incubation, the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was decanted into sterile 1L bottles and purification of the expressed protein was performed as described infra.

## Example 20

## Construction pVEGFR1R2-Fc $\Delta C 1$ (a) Expression Vector

The $\mathrm{pVEGFR} 1 \mathrm{R} 2 . \mathrm{Fc} \Delta \mathrm{C} 1$ (a) expression plasmid was constructed by insertion of DNA encoding amino acids SDT (corresponding to amino acids 27-29 of FIG. 24A-24C) between Flt1d2-Flk1d3-FcdC1 (a) amino acids 26 and 27 of FIG. 21A-21C (GG) and removal of DNA encoding amino acids GPG corresponding to amino acids 229-231 of Figure. The SDT amino acid sequence is native to the Flt1 receptor and was added back in to decrease the likelihood of heterogeneous N-terminal processing. The GPG (bridging sequence) was removed so that the Flt1 and Flk1 Ig domains were fused directly to one another. The complete DNA and deduced amino acid sequences of the $\mathrm{pVEGFR} 1 \mathrm{R} 2 . \mathrm{Fc} \Delta \mathrm{C} 1$ (a) chimeric molecule is set forth in FIG. 24A-24C.

Example 21

## Cell Culture Process Used to Produce Modified Flt1 Receptors

(a) Cell Culture Process Used to Produce
Flt1D2.Flk1D3. $\mathrm{Fc} \Delta \mathrm{Cl}$ (a)

The process for production of Flt1D2.Flk1D3.FcaC1(a) protein using the expression plasmid pFlt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) described supra in Example 1 involves suspension culture of recombinant Chinese hamster ovary (CHO K $1 / \mathrm{E} 1 \mathrm{~A}$ ) cells which constitutively express the protein product. The cells are grown in bioreactors and the protein product is isolated and purified by affinity and size exclusion chromatography. The process is provided in greater detail below.

Cell Expansion
Two confluent $\mathrm{T}-225 \mathrm{~cm}^{2}$ flasks containing the Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) expressing cell line were expanded by passaging cells into eight T- $225 \mathrm{~cm}^{2}$ flasks in medium (GMEM $+10 \%$ serum, GIBCO) and incubated at
$37^{\circ} \mathrm{C}$. and $5 \% \mathrm{CO}_{2}$. When the flasks approached confluence (approximately 3 to 4 days) the cells were detached using trypsin. Fresh medium was added to protect the cells from further exposure to the trypsin. The cells were centrifuged and resuspended in fresh medium then transferred to eight $850 \mathrm{~cm}^{2}$ roller bottles and incubated at $37^{\circ} \mathrm{C}$. and $5 \% \mathrm{CO}_{2}$ until confluent.
Suspension Culture in Bioreactors
Cells grown in roller bottles were trypsinized to detach them from the surface and washed with suspension culture medium. The cells are aseptically transferred to a 5 L bioreactor (New Brunswick Celligen Plus) where the cells are grown in 3.5 L of suspension culture. The suspension culture medium was a glutamine-free low glucose modification of IS-CHO (Irvine Scientific) to which 5\% fetal bovine serum (Hyclone), GS supplement (Life Technologies) and $25 \mu \mathrm{M}$ methionine sulfoximine (Sigma) was added. The pH was controlled at 7.2 by addition of carbon dioxide to the inlet gas or by addition of a liquid solution of sodium carbonate to the bioreactor. Dissolved oxygen level was maintained at $30 \%$ of saturation by addition of oxygen or nitrogen to the inlet gas and temperature controlled at $37^{\circ} \mathrm{C}$. When a density of $4 \times 10^{6}$ cells $/ \mathrm{mL}$ was reached the cells were transferred to a 40L bioreactor containing the same medium and setpoints for controlling the bioreactor. The temperature setpoint was reduced to $34^{\circ} \mathrm{C}$. to slow cell growth and increase the relative rate of protein expression.
(b) Cell Culture Process Used to Produce Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a)
The same methodologies as described supra for Flt1D2.Flk1D3.FcयC1(a) were used to produce Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a).

Example 22
Harvest and Purification of Modified Flt1 Receptors
(a) Harvest and Purification of Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)

The product protein was aseptically harvested from the bioreactor while retaining cells using Millipore Prostak tangential-flow filtration modules and a low-shear mechanical pump (Fristam). Fresh medium was added to the bioreactor to replace that removed during the harvest filtration. Approximately 40 L of harvest filtrate was then loaded onto a 400 mL column containing Protein A SEPHAROSE ${ }^{\text {TM }}$ resin (Amersham Pharmacia). After loading the resin was washed with buffer containing 10 mM sodium phosphate, 500 mM sodium chloride, pH 7.2 to remove any unbound contaminating proteins. Flt1 D2.Flk1D3.FcAC1(a) protein was eluted with a pH 3.0 citrate buffer. The eluted protein was neutralized by addition of Tris base and frozen at $-20^{\circ}$ C.

Several frozen lots of Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) protein from the Protein A step above were thawed, pooled and concentrated using a Millipore 30 kD nominal molecular weight cutoff (NMWCO) tangential flow filtration membrane. The protein was transferred to a stirred cell concentrator (Millipore) and further concentrated to $30 \mathrm{mg} / \mathrm{mL}$ using a 30 kD NMWCO membrane. The concentrated protein was loaded onto a size exclusion column packed with Superdex 200 resin (Amersham Pharmacia) that was equilibrated with phosphate buffered saline plus $5 \%$ glycerol. The same buffer was used to run the column. The fractions corresponding to Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) dimer were pooled, sterile filtered through a 0.22 micron filter, aliquoted and frozen.

The same methodologies as described supra for Flt1D2.Flk1D3. $\mathrm{Fc} \Delta \mathrm{C} 1$ (a) were used to harvest and purify Flt1D2.VEGFR3D3.Fc $\Delta C 1$ (a).

## Example 23

## Phosphorylation Assay for Transiently Expressed VEGFR2

Primary human umbilical vein endothelial cells (HUVECs), passage 4-6, were starved for 2 hrs in serum-free DME high glucose media. Samples containing $40 \mathrm{ng} / \mathrm{ml}$ (1 nM ) human VEGF165, which is a ligand for the VEGF receptors Flt1, Flk1 and Flt4(VEGFR3) were prepared and were preincubated for 1 hr . at room temperature with varying amounts of the modified Flt1 receptors Flt1(1-3)-Fc, Flt1(1-3)-Fc (A40), Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1 D2VEGFR3D3.Fc $\Delta C 1(a)$ in serum-free DME-high glucose media containing $0.1 \% \mathrm{BSA}$. Cells were challenged for minutes with the samples prepared above $\pm$ VEGF165, followed by whole cell lysis using complete lysis buffer. Cell lysates were immunoprecipitated with an antibody directed against the C-terminus of VEGFR2 receptor. The immunoprecipitated lysates were loaded onto $4-12 \%$ SDS-PAGE Novex gel and then transferred to PVDF membrane using standard transfer methodologies. Detection of phosphorylated VEGFR2 was done by immunoblotting with the antiphospho Tyrosine mAb called 4G10 (UBI) and developed using ECL-reagent (Amersham).

FIGS. 25A-25C and 26A-26B show the results of this experiment. FIG. 25A-25C reveals that detection by Western blot of tyrosine phosphorylated VEGFR2(Flk1) by VEGF 165 ligand stimulation shows that cell-surface receptors are phosphorylated to varying levels depending on which modified Flt1 receptor is used during the preincubations with VEGF. As is seen in FIG. 25A, at a 1.5 molar excess of either Flt 1(1-3)-Fc, Flt 1(1-3)-Fc (A40) or transient Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) there is complete blockage of receptor stimulation by these three modified Flt1 receptors as compared to control media challenge. In contrast, transient Flt1D2VEGFR3D3.FcaC1(a) does not show significant blockage at this molar excess, as compared with VEGF positive control challenge. Similar results are seen in FIG. 25B, where the modified Flt receptors are in a 3-fold molar excess to VEGF165 ligand. In FIG. 25C, where the modified Flt1 receptors are in a 6 -fold molar excess to VEGF165 ligand, transient Flt1D2VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) can now be shown to be partially blocking VEGF165-induced stimulation of cell-surface receptors.

In FIG. 26A-26B, detection by Western blot of tyrosine phosphorylated VEGFR2(Flk1) by VEGF165 ligand stimulation shows that cell-surface receptors are not phosphorylated by challenge samples which have VEGF1 65 preincubated with 1 and 2 fold molar excess (FIG. 26A) or 3 and 4 fold molar excess (FIG. 26B) of either transient Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a), stable Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a), or transient VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a). At all modified Flt1 receptor concentrations tested there is complete binding of VEGF165 ligand during the preincubation, resulting in no detectable stimulation of cell surface receptors by unbound VEGF 1-65 as compared to control media challenge.

## Cell Proliferation Bioassay

The test cell population is MG87 cells that have been stably transfected with a expression plasmid that contains a DNA insert encoding the VEGFR2(Flk1) extracellular domain fused to the TrkB intracellular kinase domain, thus producing a chimeric molecule. The reason the TrkB intracellular kinase domain was used rather than the native VEGFR2F1k1) intracellular kinase domain is that the intracellular kinase domain of VEGFR2Flk1) does not cause a strong proliferative response when stimulated by VEGF165 in these cells. It is known that MG87 cells containing full length TrkB receptor give a robust proliferative response when stimulated with BDNF, so the TrkB intracellular kinase domain was engineered to replace the intracellular kinase domain of VEGFR2Flk1) to take advantage of this proliferative response capability.
$5 \times 10^{3}$ cells/well were plated in a 96 well plate and allowed to settle for 2 hrs at $37^{\circ} \mathrm{C}$. The following modified Flt receptors Flt1(1-3)-Fc, Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1 D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a), plus an irrelevant receptor termed Tie2-Fc as a negative control, were titrated from 40 nM to 20 pM and incubated on the cells for 1 hr at $37^{\circ} \mathrm{C}$. Human recombinant VEGF165 in defined media was then added to all the wells at a concentration of 1.56 nM . The plates were incubated for 72 hrs at $37^{\circ} \mathrm{C}$. and then MTS (Owen's reagent, Promega) added and the plates were incubated for an additional for 4 hrs . Finally, the plates were read on a spectrophotometer at $450 / 570 \mathrm{~nm}$. The results of this experiment are shown in FIG. 27. The control receptor Tie2-Fc does not block VEGF165-induced cell proliferation at any concentration whereas F1t1D2.FIk1D3.Fc $\Delta \mathrm{C} 1$ (a) blocks 1.56 nM VEGF 165 with a half maximal dose of 0.8 nM. Flt1(1-3)-Fc and Flt1D2.VEGFR3D3.Fc $\Delta C 1$ (a) are less effective in blocking VEGF165 in this assay with a half maximal dose of $\sim 2 \mathrm{nM}$. VEGF 165 alone gives a reading of 1.2 absorbance units and the background is 0.38 absorbance units.

Example 25
Binding Stoichiometry of Modified Flt Receptors to VEGF165
(a) BIACORETM Analysis

The stoichiometry of Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) interaction with human VEGF165 was determined by measuring either the level of VEGF saturation binding to the Flt1D2Flk1D3.Fc $\Delta C 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) surfaces or measuring concentration of VEGF165 needed to completely prevent binding of Flt1D2F1k1D3.FcC1(a) or VEGFR1R2-Fc $\Delta C 1$ (a) to VEGF BIACORE ${ }^{\text {TM }}$ chip surface.

Modified Flt receptors Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a), were captured with an anti- Fc specific antibody that was first immobilized on a BIACORETM chip using amine-coupling chemistry. A blank antibody surface was used as a negative control. VEGF165 was injected at a concentration of $1 \mathrm{nM}, 10 \mathrm{nM}$, and 50 nM overthe Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) surfaces at $10 \mu 1 / \mathrm{mm}$ for one hour. A real-time binding signal was recorded and saturation binding was achieved at the end of each injection. Binding stoichiometry was calculated as a molar ratio of bound VEGF 165 to the immobilized

Flt1D2Flk1D3. $\mathrm{Fc} \Delta \mathrm{C} 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a), using the conversion factor of 1000 RU equivalent to $1 \mathrm{ng} / \mathrm{ml}$. The results indicated binding stoichiometry of one VEGF165 dimeric molecule per one Flt1 D2F1k1D3.Fc $\Delta C 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) molecule (FIG. 28).

In solution, F1t1D2Flk1D3.Fc $\Delta \mathrm{C} 1(\mathrm{a})$ or VEGFR1R2$\mathrm{Fc} \Delta \mathrm{C} 1$ (a) at a concentration of 1 nM (estimated to be 1000 times higher than the KD of the Flt1 D2Flk1 D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1 R2-FcAC1(a)NEGF165 interaction) were mixed with varied concentrations of VEGF165. After one hour incubation, concentrations of the free Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) in solution were measured as a binding signal to an amine-coupled VEGF165 surface. A calibration curve was used to convert the Flt1D2Flk1D3.FcAC1(a) BIACORETM binding signal to its molar concentration. The data showed that the addition of 1 nM VEGF165 into the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) solution completely blocked Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) binding to the VEGF165 surface. This result suggested the binding stoichiometry of one VEGF165 molecule per one Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) molecule (FIG. 29 and FIG. 30). When the concentration of F1t1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) was plotted as a function of added concentration of VEGF165, the slope of the linear portion was 1.06 for Flt1D2Flk1D3.Fc $\Delta \mathrm{Cl}$ (a) and $-1,07$ for VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a). The magnitude of the slope, very close to negative one, was indicative that one molecule of VEGF165 bound to one molecule of either Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1 $\mathrm{R} 2-\mathrm{Fc} \Delta \mathrm{C} 1(\mathrm{a})$.
(b) Size Exclusion Chromatography

Flt1D2F1k1D3.Fc $\Delta$ C1(a) was mixed with a 3-fold excess of VEGF165 and the receptor-ligand complex was purified using a Pharmacia SUPEROSE ${ }^{\text {TM }} 6$ size exclusion chromatography column. The receptor-ligand complex was then incubated in a buffer containing 6 M guanidine hydrochloride in order to dissociate it into its component proteins. Flt1D2F1k1D3.FcAC1(a) was separated from VEGF165 using SUPEROSE ${ }^{\text {TM }} 6$ size exclusion chromatography column run in 6 M guanidium chloride. In order to determine complex stoichiometry, several injections of Flt1D2Flk1D3.FcAC1(a) and VEGF165 were made and peak height or peak integrated intensity was plotted as a function of the concentration of injected protein. The calibration was done under condition identical to one used in separating components of Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a)VEGF complex. Quantification of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)/ VEGF complex composition was based on the calibration curves. The results of this experiment are set forth in FIG. 28, which shows the ratio of VEGF165 to Flt1D2Flk1D3.Fc $\Delta C 1$ (a) in a complex to be $1: 1$.

## Example 26

Determination of the Binding Stoichiometry of Flt1D2Flk1D3.Fc $\Delta$ C1(a)/VEGF165 Complex by Size Exclusion Chromatography

F1t1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)/VEGF165 Complex Preparation
VEGF165 (concentration $=3.61 \mathrm{mg} / \mathrm{ml}$ ) was mixed with CHO cell transiently expressed Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) (concentration $=0.9 \mathrm{mg} / \mathrm{ml}$ ) in molar ratio of $3: 1$ (VEGF165: Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a)) and incubated overnight at $4^{\circ} \mathrm{C}$.
(a) Size Exclusion Chromatography (SEC) Under Native Conditions

To separate the complex from excess of unbound VEGF 165, $50 \mu \mathrm{l}$ of the complex was loaded on a Pharmacia
follows: MW of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)/VEGF-165

SUPEROSE ${ }^{\text {TM }} 12$ PC $3.2 / 30$ which was equilibrated in PBS buffer. The sample was eluted with the same buffer at flow rate $40 \mu 1 / \mathrm{min}$. at room temperature. The results of this SEC are shown in FlG. 31. Peak \#1 represents the complex and peak \#2 represents unbound VEGF165. Fractions eluted between 1.1 and 1.2 ml were combined and guanidinium hydrochloride ( GuHCl ) was added to a final concentration 4.5 M to dissociate the complex.
(b) Size Exclusion Chromatography (SEC) Under Dissociative Conditions

To separate the components of the receptor-ligand complex and to determine their molar ratio, $50 \mu 1$ of dissociated complex as described supra was loaded onto a SUPEROSETM $12 \mathrm{PC} 3.2 / 30$ equilibrated in 6 M GuHCl and eluted with the same solution at a flow rate $40 \mu 1 / \mathrm{min}$. at room temperature. The results of this SEC are shown in FIG. 32.
(c ) Calculation of F1t1D2Flk1D3.Fc $\Delta C 1(a): V E G F 165$ Complex Stoichiometry

The stoichiometry of the receptorligand complex was determined from the peak area or the peak height of the components. Concentrations of VEGF165 and Flt1D2Flk1D3.Fc $\Delta C 1$ (a) corresponding to the peak height or peak area, respectively, were obtained from the standard curves for VEGF165 and Flt1D2Flk1D3.Fc $\Delta C 1$ (a). To obtain a standard curve, four different concentrations (0.04 $\mathrm{mg} / \mathrm{ml}-0.3 \mathrm{mg} / \mathrm{ml}$ ) of either component were injected onto a Pharmacia SEPHAROSE ${ }^{\text {TM }} 12$ PC 3.2/30 column equilibrated in 6 M guanidinium chloride and eluted with the same solution at flow rate $40 \mu 1 / \mathrm{min}$. at room temperature. The standard curve was obtained by plotting peak area or peak height vs protein concentration. The molar ratio of VEGF165:F1t1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) determined from the peak area of the components was 1.16 . The molar ratio of VEGF165:Flt1D2F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) determined from the peak height of the components was 1.10 .

Example 27
Determination of the Stoichiometry of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)/VEGF165 Complex by Size Exclusion Chromatography with On-Line Light Scattering

## Complex Preparation

VEGF 165 was mixed with CHO transiently expressed Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) protein in molar ratio of $3: 1$ (VEGF165:Flt1D2F1k1D3.Fc $\Delta \mathrm{Cl} 1(\mathrm{a})$ ) and incubated overnight at $4^{\circ} \mathrm{C}$.
(a) Size Exclusion Chromatography (SEC) with On-Line Light Scattering

Size exclusion chromatography column with a MiniDawn on-line light scattering detector (Wyatt Technology, Santa 5 Barbara, Calif.) and refractive index (RI) detectors (Shimadzu, Kyoto, Japan) was used to determine the molecular weight (MW) of the receptor-ligand complex. Samples were injected onto a SUPEROSE ${ }^{\text {TM }} 12 \mathrm{HR} 10 / 30$ column (Pharmacia) equilibrated in PBS buffer and eluted with the same buffer at flow rate $0.5 \mathrm{ml} / \mathrm{mm}$. at room temperature. As shown in FIG. 33, the elution profile shows two peaks. Peak \#1 represents the receptor-ligand complex and peak \#2 represents the unbound VEGF165. MW was calculated from LS and RI signals. The same procedure was used to determine MW of the individual components of the receptorfollows: MW of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)/VEGF-165
complex at the peak position is 157300 (FIG. 33), the MW of VEGF165 at the peak position is 44390 (FIG. 34) and the MW of R1R2 at the peak is 113300 (FIG. 35).

These data indicated that the stoichiometry of the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)NEGF complex is $1: 1$ as its corresponds to the sum of molecular weights for Flt1D2F1k1D3.FcAC1(a) and VEGF165. Importantly, this method conclusively proved that the Flt1D2Flk1D3.Fc $\Delta \mathrm{C} 1$ (a)/VEGF165 complex was indeed composed of only one molecule of VEGF165 ligand and only one molecule of the Flt1D2FIk1D3.Fc $\Delta \mathrm{C} 1$ (a).

## Example 28

## Peptide Mapping of Flt1D2.Flk1D3.Fc $\Delta$ C1(a)

The disulfide structures and glycosylation sites in Flt1D2.Flk1D3.Fc $\Delta \mathrm{Cl}$ (a) were determined by a peptide mapping method. In this method, the protein was first cleaved with trypsin. Tryptic fragments were analyzed and identified by HPLC coupled with mass spectrometry, in addition to an N -terminal sequencing technique. Reduction of the tryptic digest was employed to help identify disulfide-bond-containing fragments. Treatment of the tryptic digest with PNGase F (Glyko, Novato, Calif.) was employed to help identify fragments with N -linked glycosylation sites. The results are summarized in the accompanying FIG. 36.

There are a total of ten cysteines in Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a); six of them belong to-the Fc region. Cys 127 has been confirmed to be disulfide bonded to Cys76. Cys121 is confirmed to be disulfide bonded to Cys 182. The first two cysteines in the Fc region (Cys211 and Cys214) form an intermolecular disulfide bond with the same two cysteines in another Fc chain. However, because these two cysteines can not be separated enzymatically from each other, it can not be determined whether disulfide bonding is occurring between same cysteines (Cys211 to Cys211, for example) or between Cys211 and Cys214. Cys216 is confirmed to be disulfide bonded to Cys306. Cys 352 is confirmed to be disulfide bonded to Cys410.

There are five possible N -linked glycosylation sites in Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a). All five of them are found to be glycosylated to varying degrees. Complete glycosylation was observed at Asn33 (amino acid sequence NIT), Asn193 (amino acid sequence NST), and $\operatorname{Asn} 282$ (amino acid sequence NST). In addition, partial glycosylation is observed on Asn65 and Asn120. Sites of glycosylation are highlighted by underline in the FIG. 36.

Example 29
Pharmacokinetic Analysis of Modified Flt
Receptors
(a) Pharmacokinetic Analysis of Flt1(1-3)-Fc (A40), Flt1D2.Flk1D3.Fc $\Delta \mathrm{Cl}$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a)

Balb/c mice (25-30 g) were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of Flt1(1-3)-Fc (A40), CHO transiently expressed Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1(\mathrm{a}), \quad \mathrm{CHO}$ stably expressed 60 Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a), and CHO transiently expressed VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a). The mice were tail bled at $1,2,4,6$, $24 \mathrm{hrs}, 2$ days, 3 days and 6 days after injection. The sera were assayed in an ELISA designed to detect Flt1(1-3)-Fc (A40), Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a). The ELISA involves coating an ELISA plate with VEGF165, binding the detect Flt1(1-3)-Fc (A40),

Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) or VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) and reporting with an anti-Fc antibody linked to horse radish peroxidase. The results of this experiments are shown in FIG. 37. The $\mathrm{T}_{\text {max }}$ for Flt1 (1-3)-Fc (A40) was at 6 hrs while the $\mathrm{T}_{\text {max }}$ for the transient and stable F1t1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and the transient VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a) was 24 hrs . The $\mathrm{C}_{\text {max }}$ for Flt1(1-3)-Fc (A40) was $8 \mu \mathrm{~g} / \mathrm{ml}$. For both transients (Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and VEGFR1R2-Fc $\Delta \mathrm{C} 1$ (a)) the $\mathrm{C}_{\text {max }}$ was $18 \mu \mathrm{~g} / \mathrm{ml}$ and the $\mathrm{C}_{\text {max }}$ for the stable VEGFR1R2( $\mathrm{Fc} \Delta \mathrm{C} 1$ (a) was $30 \mu \mathrm{~g} / \mathrm{ml}$.
(b) Pharmacokinetic Analysis of Flt1(1-3)-Fc (A40), Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1 D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a)
$\mathrm{Balb} / \mathrm{c}$ mice $(25-30 \mathrm{~g}$ ) were injected subcutaneously with $4 \mathrm{mg} / \mathrm{kg}$ of Flt1(1-3)-Fc (A40), CHO transiently expressed Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and CHO transiently expressed Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a). The mice were tail bled at 1 , $2,5,6,7,8,12,15$ and 20 days after injection. The sera were assayed in an ELISA designed to detect Flt1 $(1-3)-\mathrm{Fc}$, Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) and Flt1 D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a). The ELISA involves coating an ELISA plate with 165, binding the Flt1(1-3)-Fc, Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) or Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) and reporting with an anti-Fc antibody linked to horse radish peroxidase. Flt1(1-3)-Fc (A40) could no longer be detected in the serum after day 5 whereas Flt1D2.F1k1D3.FcAC1(a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) were detectable for 15 days or more. The results of this experiment are shown in FIG. 38.

Example 30
Evaluation of the Ability of
Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) to Inhibit Tumor Growth In Vivo

To evaluate the ability of F1t1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) to inhibit tumor growth in vivo a model in which tumor cell suspensions are implanted subcutaneously on the right flank of male severe combined immunodeficiency (SCID) mice was employed. Two cell lines, the human HT-1080 fibrosarcoma cell line (ATCC accession no. CCL-121) and the rat C6 glioma cell line (ATCC accession no. CCL-107), each of which exhibit distinctly different morphologies and growth characteristics, were used in the assay. The first dose of Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) (at $25 \mathrm{mg} / \mathrm{Kg}$ or as indicated in FIGS. 39 and 40 ) was given on the day of tumor implantation. Animals subsequently received subcutaneous injections of Flt1(1-3)-Fc (A40), Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) or vehicle either every other day (EOD) or two times per week ( $2 \times /$ wk) for a period of 2 weeks. After 2 weeks, animals were perfused with fixative, tumors were removed and samples were blinded. Tumor volume was determined by measuring the length and width of visible subcutaneous tumors. Both of Flt1(1-3)-Fc (A40) and Flt1D2.F1k1D3.Fc $\Delta \mathrm{C} 1$ (a) significantly reduced the growth of tumors formed by HT-1080 and C6 cells. The results of these experiments are shown in FIG. 39 and FIG. 40.

Example 31
The Effect of VEGF165 and Modified Flt Receptors in Female Reproductive System

The stereotypic pattern of vascular remodeling which occur in the uterus and ovary over the course of the reproductive cycle has been well characterized, making
these tissues particularly well suited to the study of mechanisms which regulate angiogenesis, vascular remodeling and vascular regression. Indeed, in situ hybridization studies in the reproductive tissues provided the first clear evidence that VEGF acts as a mediator of physiological angiogenesis in mature rodents, as well as humans and non-human primates (Phillips et al, 1990; Ravindranath et al, 1992; Shweiki et al, 1993; Kamat et al, 1995). As cyclic angiogenesis and vascular remodeling are prominent features of the normal ovary and uterus, it is not surprising that abnormal blood vessel growth and/or vascular dysfunction have been found to characterize many pathological conditions which affect these organs. Furthermore, these pathogenic vascular abnormalities are thought to be caused or perpetuated by the dysregulated expression of one or more angiogenic or antiangiogenic factors, most prominently VEGF.
For example, abnormal angiogenesis is characteristic of polycystic ovary disease, endometriosis and endometrial carcinoma, and in each case VEGF is over expressed in the affected tissue (Kamat et al, 1995; Shifren et al, 1996; Guidi et al, 1996; Donnez et al, 1998). Overexpression of VEGF is also thought to play a pathogenic role in the establishment of systemic vascular hyperpermeability in ovarian hyperstimulation syndrome (McClure et al, 1994; Levin, et al, 1998) and preeclampsia (Baker et al, 1995; Sharkey et al, 1996). In addition, VEGF has been implicated as the permeability factor responsible for the production of ascites associated with ovarian carcinoma and other tumors (Senger et al, 1983; Boocock et al, 1995). Agents which effectively neutralize the biological actions of VEGF can reasonably be anticipated to be of therapeutic benefit in the above and related conditions.
Angiogenesis and vascular remodeling are also hallmarks of blastocyst implantation and placental development (Findlay, 1986). VEGF is strongly expressed both in the maternal decidua and in embryonic trophoblasts, where it is thought to first stimulate expansion and hyperpermeability of the uterine vasculature during the peri-implantation period and subsequently mediate formation of both the maternal and embryonic components of the placental vasculature (Shweiki et al, 1993; Cullinan-Bove and Koos, 1993; Chakraborty et al, 1995; Das et al, 1997). VEGF is also required for luteal angiogenesis and associated progesterone secretion necessary to prepare the uterus for implantation (Ferrara et al, 1998). Thus, agents which inhibit the biological actions of VEGF may prove to be useful as contraceptive agents (by preventing implantation), or as an abortifacients in the early stages of gestation. The latter application might find particular use as a non-surgical intervention for the termination of ectopic pregnancies.

While the expression of VEGF receptors is largely confined to the vascular endothelium in normal reproductive tissues, Flt1 is also expressed by trophoblasts in the placenta in both humans and animals (Clark et al, 1996; He et al, 1999) where it has been proposed to play a role in trophoblast invasion. Interestingly, both Flt1 and KDR Flk1) are expressed by choriocarcinoma cell line BeWo (CharnockJones et al, 1994), and VEGF has been shown to promote DNA synthesis and tyrosine phosphorylation of MAP kinase in these cells. Furthermore, primary and metastatic ovarian carcinomas not only to express high levels of VEGF, but - in addition to the vascular endothelium-the tumor cells themselves express KDR and/or Flt1 (Boocock et al, 1995). These findings suggest that VEGF may not only be critically involved in the generation and maintenance of tumor vasculature, but that at least in some tumors of reproductive origin VEGF may subserve an autocrine role, directly sup-
porting the survival and proliferation of the tumor cells. Thus agents which block the actions of VEGF may have particularly beneficial applications to the treatment of tumors of reproductive origin.
Methods and Results
(a) Assessment of VEGF-Induced Uterine Hyperpermeability

Pregnant mare'serum gonadotrophin (PMSG) was injected subcutaneously ( 5 IU ) to induce ovulation in prepubertal female rats. This results in a surge of estradiol after 2 days which in turn causes an induction of VEGF in the uterus. It is reported that this induction results in hyperpermeability of the uterus and an increase in uterine wet weight 6 hrs. later and, therefore, could potentially be blocked by the modified Flt receptors Flt1(1-3)-Fc (A40), Flt1D2.Flk1D3.FcaC1(a) and Flt1D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a). In this in vivo model, the normal weight of the rat uterus is about 50 mg and this can be induced to $300-350 \mathrm{mg}$ by PMSG. Desiccation of the tissue reveals that this is all water weight. Subcutaneous injection of $\operatorname{Flt1}(1-3)-\mathrm{Fc}$ (A40), Flt1D2.Flk1D3.FcaC1(a) and Flt1 D2.VEGFR3D3.Fc $\Delta \mathrm{C} 1$ (a) at $25 \mathrm{mg} / \mathrm{kg}$ at 1 hr . after PMSG injection results in about a $50 \%$ inhibition of the increase in uterine wet weight. Increasing the dose of modified Flt receptor does not further reduce the increase in wet weight suggesting that there is a VEGF-independent component to this model. The results of this experiment are shown in FIG. 41.
(a) Assessment of Corpus Luteum Angiogenesis Using Progesterone as a Readout

Pregnant mare's serum gonadotrophin (PMSG) is injected subcutaneously ( 5 IU ) to induce ovulation in prepubertal female rats. This results in a fully functioning corpus luteum containing a dense network of blood vessels after 4 days that allows for the secretion of progesterone into the blood stream in order to prepare the uterus for implantation. The induction of angiogenesis in the corpus luteum requires VEGF; therefore, blocking VEGF would result in a lack of new blood vessels and thus a lack of progesterone secreted into the blood stream. In this in vivo model, resting levels of progesterone are about $5 \mathrm{ng} / \mathrm{ml}$ and this can be induced to a level of $25-40 \mathrm{ng} / \mathrm{ml}$ after PMSG. Subcutaneous injection of Flt1(1-3)-Fc (A40) or Flt1D2.Flk1D3.Fc $\Delta \mathrm{C} 1$ (a) at $25 \mathrm{mg} / \mathrm{kg}$ or $5 \mathrm{mg} / \mathrm{kg}$ at 1 hr . after PMSG injection results in a complete inhibition of the progesterone induction on day 4. The results of this experiment are shown in FIG. 42A-42B.

## Example 33

Pharmacokinetic Analysis of Flt1(1-3)-Fc (A40) and Pegylated Flt1(1-3)-Fc

Flt1(1-3)-Fc was PEGylated with either 10 kD PEG or 20 kD PEG and tested in balb/c mice for their pharmacokinetic profile. Both PEGylated forms of Flt1(1-3)-Fc were found to have much better PK profiles than Flt1(1-3)-Fc (A40), with the Tmax occurring at 24 hrs. for the PEGylated molecules as opposed to 6 hrs . for Flt1(1-3)-Fc (A40).

## Example 34

## VEGF165 ELISA to Test Affinity of Modified Flt1 Receptor Variants

10 pM of VEGF 165 was incubated overnight at room temperature with modified Flt1 receptor variants ranging
from 160 pM to 0.1 pM . The modified Flt1 receptor variants used in this experiment were $\operatorname{Flt1}(1-3)-\mathrm{Fc}, \operatorname{Flt1}(1-3)-\mathrm{Fc}$ (A40), transiently expressed Flt1D2Flk1D3.FcaC1 (a), transiently expressed Flt1D2VEFGFR3D3-Fc $\triangle$ C1(a), Flt1-( $\left.1^{-3}{ }_{N A S}\right)$-Fc, Flt1 $\left(1-3_{R \rightarrow C}\right)$-Fc and Tie2-Fc. Flt1(1$\left.3_{\text {NAS }}\right)-\mathrm{Fc}$ is a modified version of $\mathrm{Flt1}(1-3)-\mathrm{Fc}$ in which the highly basic amino acid sequence KNKRASVRRR is replaced by NASVNGSR, resulting in the incorporation of two new glycosylation sites and a net reduction of five positive charges, both with the purpose of reducing the unfavorable effects of this sequence on PK . Flt1 $\left(1-3_{R \rightarrow C}\right)$-Fc is a modification in which a single arginine ( R ) residue within the same basic amino acid sequence is changed to a amount of free VEGF165 was then determined using an antibody to report free VEGF165. This showed that the modified Flt1 receptor variant with the highest affinity for VEGF165 (determined as the lowest amount of free 10 VEGF165) was Flt1D2FIk1D3.FcaC1(a), followed by Flt1 (1-3)-Fc and Flt1(1-3)-Fc (A40) and then by Flt1 ( $1-3_{R \rightarrow C}$ )Fc, Flt1(1-3 $\left.{ }_{\text {NAS }}\right)$ - Fc and Flt1D2VEFGFR3D3-Fc $\Delta \mathrm{C} 1(\mathrm{a})$. Tie2Fc has no affinity for VEGF165.

## SEQUENCE LISTING





$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 1674
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (1)...(1671)
$<400>$ SEQUENCE: 3









```
<210> SEQ ID NO 7
<211> LENGTH: 1389
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)...(1386)
<400> SEQUENCE: 7
```


-continued




$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 567
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 10


Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

530
$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 1453
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (69) ... (1442)
$<400>$ SEQUENCE: 11
aagcttgggc tgcaggtcga tcgactctag aggatcgatc cccgggcgag ctcgaattcg 60
caaccacc atg gtc agc tac tgg gac acc ggg gtc ctg ctg tge geg ctg 110 Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu $1 \begin{array}{lll}1 & 5 & 10\end{array}$
ctc agc tgt ctg ctt ctc aca gga tct agt tcc gga ggt aga cct ttc
Leu Ser Cys Leu Leu Leu Thr Gly Ser Ser Ser Gly Gly Arg Pro Phe

| 15 |  | 25 30 |  |
| :---: | :---: | :---: | :---: |
|  | 20 |  |  |

gta gag atg tac agt gaa atc ccc gaa att ata cac atg act gaa gga 206 Val Glu Met TYr Ser Glu Ile Pro Glu Ile Ile His Met Thr Glu Gly 3540445

$$
\text { agg gag ctc gtc att ccc tgc cgg gtt acg tca cct aac atc act gtt } 254
$$ Arg Glu Leu Val Ile Pro Cys Arg Val Thr Ser Pro Asn Ile Thr Val

Arg Glu Leu Val Ile Pro Cys Arg Val Thr Ser Pro Asn Ile Thr Val
act tta aaa aag tet cca ctt gac act ttg atc cct gat gga aaa cgc
Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro Asp Gly Lys Arg
65
70
ata atc tgg gac agt aga aag ggc ttc atc ata tca aat gca acg tac $\quad 350$
Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser Asn Ala Thr Tyr
Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser Asn Ala Thr Tyr
80
aaa gaa ata $g g g$ ctt ctg acc tgt gaa gca aca gtc aat ggg cat ttg ..... 398$\begin{array}{rl}\text { Lys Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly His Leu } \\ 95 & 100 \\ 105 & 110\end{array}$tat aag aca aac tat ctc aca cat cga caa acc aat aca atc ata gatTyr Lys Thr Asn Tyr Leu Thr His Arg Gln Thr Asn Thr Ile Ile Asp115120125gtg gtt ctg agt cog tct cat gga att gaa cta tct gtt gga gaa aagVal Val Leu Ser Pro Ser His Gly Ile Glu Leu ser Val Gly Glu Lys130135140ctt gtc tta aat tgt aca gca aga act gaa cta aat gtg ggg att gacLeu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile Asp145150155
tc aac tgg gaa tac cet tct teg aag cat cag cat aag aaa ctt gta ..... 590
160 165 His
aac cga gac cta aaa acc cag tet ggg agt gag atg aag aaa ttt ttg Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe Leuagc acc tta act ata gat ggt gta acc cgg agt gac caa gga ttg tacSer Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu Tyr$195 \quad 200 \begin{array}{ll}205\end{array}$acc tgt gca gca tcc agt ggg ctg atg acc aag aag aac agc aca tttThr Cys Ala Ala ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr Phe210215220gtc agg gtc cat gaa aag ggc ccg ggc gac aaa act cac aca tgc cca350494542686734

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 458
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 12


<211> LENGTH: 1444
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (69) ... (1433)
$<400>$ SEQUENCE: 13

-continued




$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 458
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 16


$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 430
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 17
Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu Ile Ile His


Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Pro Gly Lys
420

```
<210> SEQ ID NO 18
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 18
```

```
<210> SEQ ID NO 19
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: primer
```

<400> SEQUENCE: 19

```
cggactcaga accacatcta tgattgtatt ggt
<210> SEQ ID NO 20
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 20
Gly Arg Pro Phe Val Glu Met
    1 5
<210> SEQ ID NO 21
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 21
acaatcatag atgtggttct gagtccgtct catgg
<210> SEQ ID NO 22
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE,
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 22
gataatgccc gggccetttt catggaccet gacaaatg
<210> SEQ ID NO 23
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 23
Val Arg Val His Glu Lys
<210> SEQ ID NO 24
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 24
gactagcagt ccggaggtag acctttcgta gagatg
<210> SEQ ID NO 25
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 25
ttcctgggca acagctggat atctatgatt gtattggt
<210> SEQ ID NO 26
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
```

<400> SEQUENCE: 26

```
Ile Gln Leu Leu
1
<210> SEQ ID NO 27
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 27
```

atccagctgt tgcccaggaa gtcgctggag ctgctggta
<210> SEQ ID NO 28
<211> LENGTH: 39
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 28
atttcatgc acaatgacet cggtgetctc cegaaatcg 39
$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 38
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: primer
$<400>$ SEQUENCE: 29
tcatagatat ccagctgttg cccaggaagt cgctggag 38
$<210>$ SEQ ID NO 30
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 30
gataatgcec gggccatttt catgcacaat gacctcggt 39
$<210>$ SEQ ID NO 31
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 31
Val Ile Val His Glu Asn
1 Hal
$<210>$ SEQ ID NO 32
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: modified Flt1 receptor
<400> SEQUENCE: 32
$\begin{array}{ccc}\text { Lys Asn Lys Arg Ala Ser Val Arg Arg Arg } \\ 1 & 5 & 10\end{array}$

```
<210> SEQ ID NO 33
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: modified Flt1 receptor
<400> SEQUENCE: 33
Asn Ala Ser Val Asn Gly Ser Arg
1 5
<210> SEQ ID NO 34
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: modified Flt1 receptor
<400> SEQUENCE: 34
Lys Asn Lys Cys Ala Ser Val Arg Arg Arg
<10> SEQ ID NO 35
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 35
Ser Lys Leu Lys
1
<210> SEQ ID NO 36
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 36
Lys Asn Lys Arg Ala Ser Val Arg Arg
<210> SEQ ID NO 37
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 37
Thr Ile Ile Asp
1
<210> SEQ ID NO 38
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 38
Val Val Leu Ser
1
```

We claim:

1. A fusion protein, consisting of
(a) a vascular endothelial growth factor (VEGF) receptor component having immunoglobulin-like (Ig) domains consisting of an Ig domain 2 of a first VEGF receptor human Fltt and Ig domain 3 of a second VEGF receptor human Flk1; and
(b) a multimerizing component, wherein the fusion protein binds VEGF.
2. The fusion protein of claim 1, wherein the first VEGF receptor component is upstream of the second VEGF receptor component.
3. The fusion protein of claim 1, wherein the first VEGF receptor component is downstream of the second VEGF receptor component.
4. The fusion protein of claim 1 , wherein the multimerizing component comprises an immunoglobulin domain.
5. The fusion protein of claim 4, wherein the immunoglobulin domain is selected from the group consisting of the Fc domain of $\operatorname{IgG}$, and the heavy chain of $\operatorname{IgG}$.
6. A fusion protein encoded by a nucleic acid sequence 5 selected from:
(a) SEQ ID NO:15; and
(b) nucleic acid sequences which, as a result of the degeneracy of the genetic code, differ from the nucleic acid sequence of SEQ ID NO:15.
7. A fusion protein consisting of immunoglobulin-like (Ig) domain 2 of a first vascular endothelial growth factor (VEGF) receptor upstream of Ig domain 3 of a second VEGF receptor and a multimerizing component, wherein the fusion protein comprises the amino acid sequence SEQ ID $15 \mathrm{NO}: 16$.
