US008595186B1

a2 United States Patent (10) Patent No.: US 8,595,186 B1
Mandyam et al. 45) Date of Patent: Nov. 26,2013
(54) SYSTEM AND METHOD FOR BUILDING AND 8,185,507 B1* 5/2012 Kaminski, Jr. 707/698
DELIVERING MOBILE WIDGETS 8,261,258 B1* 9/2012 Jianuetal. 717/174
2001/0047363 Al* 11/2001 Peng 707/104.1
. - . 2003/0208595 Al1* 11/2003 Gouge et al. 709/225
(75) Inventors: Srinivas Mandyam, San Jose, CA (US); 2005/0058108 Al* 3/2005 Ekbergetal. 370/338
Krishna Vedati, Sunnyvale, CA (US); 2005/0154759 Al* 7/2005 Hofmeister et al. 707/104.1
Kelvin Voon-Kit Chong, San Jose, CA 2005/0172231 Al* 82005 MYeErs ...ccoeocvrvevirinrenans 715/716
(US) 2006/0143622 Al* 6/2006 Prabandham et al. .. 719/328
2006/0149630 Al* 7/2006 Elliottetal. 705/14
. . 2006/0165105 Al* 7/2006 Shenfield et al. ... 370/401
(73) Assignee: Plusmo LLC, Glendale, CA (US) 2007/0033584 AL* 2/2007 YU oo, 717/168
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 1190 days. FOREIGN PATENT DOCUMENTS
3k
(21) Appl. No.: 12/135,089 WO WO 2005053335 Al 6/2005 ... H04Q 7/32
OTHER PUBLICATIONS
(22) Filed: Jun. 6,2008
“Sony Ericsson Z525 White Paper”. Aug. 2006. Sony Ericsson. 64
ages.*
Related U.S. Application Data pa
.. " (Continued)
(60) Provisional application No. 60/942,406, filed on Jun.
6,2007. Primary Examiner — James E Richardson
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(51) Int. Cl. Stockton LLP
GO6F 7/00 (2006.01)
GOGF 17/00 (2006.01) (57 ABSTRACT
(52) 50862!:/445 (2006.01) Systems and methods are provided for creating, publishing,
e))) sharing, and delivering mobile software applications called
U.SPC """""" : 707./ 632;707/733; 707/912; 7T17/178 “mobile widgets” onto mobile devices. A system may include
(58) Field of Classification Search functionality to render a declaratory component of a widget,
USPC ... 707/617, 623, 628, 632, 633, 731734, such as HTML, and also functionality to execute an impera-
L 797/ 912,178 tive component of a widget, which may or may not be com-
See application file for complete search history. piled and/or in a scripting or functional language. Mecha-
(56) References Cited nisms for providing common access to disparate device

U.S. PATENT DOCUMENTS

capabilities APIs are also provided, as are mechanisms for
installing widgets onto mobile devices and managing those
widgets.

62 Claims, 72 Drawing Sheets

Server
System

Client
N 141

140

7,454,459 B1* 11/2008 Kapooretal. 709/203
7,890,136 B1* 2/2011 Fujisaki ...cccocevveenne. 455/556.1
Content
1217\ Publisher 1107\
Web
1227\ Scrvice
Portal or
1237\ Aggregator
120
Any
1247\ Website

130

Booking, Exh. 1054, Page 1

US 8,595,186 B1

Page 2
(56) References Cited 2009/0077664 Al* 3/2009 Hsuetal. 726/24
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
2007/0101291 Al* 5/2007 Forstall et al. vvvvevonnn. 715/805 Tomimori et al. “An Efficient and Flexible Access Control Frame-
2007/0101433 Al1* 5/2007 Louchetal. 726/25 work for Java Programs in Mobile Terminals” 2002. Proceedings of
%88;; 85 2325(1) 21 : lg; %gg; I\K/Iar S'halllci S 4575(;‘7‘/11‘5? the 22nd International Conference on Distributed Computing Sys-
aminski, Jr. .. %

2007/0250643 A1* 10/2007 Pyhalammi ctal. ... 709/245 Lems Workshops. 6 pages.* .
2007/0260637 Al* 11/2007 Shenfield etal. 707/104.1 Raento et al. “ContextPhone: A prototyping Platform for Context-
2007/0275705 Al* 11/2007 Lauetal. .. 455/414.1 Aware Mobile Applications” 2005. Pervasive Computing, IEEE, vol.
2008/0167078 Al* 7/2008 Eibye 455/566 4,No. 2, pp. 51-59.*
2008/0168382 Al* 7/2008 Louch et al. ... 715/781
2008/0168391 Al* 7/2008 Robbinetal. 715/810 * cited by examiner

Booking, Exh. 1054, Page 2

US 8,595,186 B1

Sheet 1 of 72

Nov. 26, 2013

U.S. Patent

174 AN

P17\

oococo
oococo
o000

W)

0¢l1

)1 DD

wo)SAS
IDAIDS

290

0c1

swmwa Tl
o |
om‘ﬁmm Tl
Pl

Booking, Exh. 1054, Page 3

US 8,595,186 B1

Sheet 2 of 72

Nov. 26, 2013

U.S. Patent

Q1 Hri

08T—

081—1

901A19§ 90TA(]

S0
Arepoudorg
JO1AIOS 01AIJ surduy
uowo)) uonnosxy BETENIEN |
$OIN)R9 J
J01A”(J 01 STIB)D) dAnerddury Kxorererooq

D 7

|-tV

| — OLT

|—091

|- T¥1

|-Vl

o

)
—

|
—

)
~

Booking, Exh. 1054, Page 4

U.S. Patent Nov. 26, 2013 Sheet 3 of 72 US 8,595,186 B1

201

202
. _240
External Service
and Widgets
203
Network(s) l
1
1200
210
Personal Server System
Web Server or Web OS L2[)4
| i — PIiM |
230 Bé‘;i%;lf/ Photo Web Applications Personal L
peblistino | | Publishing | [, L% 1 (Email, | |Audio/Video Other:I
\saung Tools PP Calendar, | |Multi-Media "'
Applications Notes)

FIG. 2

Booking, Exh. 1054, Page 5

U.S. Patent

Nov. 26, 2013

Sheet 4 of 72

US 8,595,186 B1

.

/
2

o,

.

7

% X7
AN

N\
e s
Widget Launchpad

3G

SN

3607 \r

FIG. 3

Booking, Exh. 1054, Page 6

U.S. Patent Nov. 26, 2013

FIG. 4

FIG. 44

71g. 46)

Sheet 5 of 72 US 8,595,186 B1

400 2

Self Serve Web and Mobile Interface

Apache

AJAX Receivers

>

Application &
Resources

4142

Billing Server

SlS

Purchases Costs

4101

Location Engine

=

Analyzer

Location Database

409 2

Ad Syndication Engine

Delivery

Ad Repository

6. 45

FIG. 4a)1

FIG. 4a)2

FIG. 4(a)3

Widget Creation Tools

Hosted tools

User-installed
tools

Mobile tools

FIG

4a)1

Booking, Exh. 1054, Page 7

U.S. Patent

SRS

Nov. 26,2013 Sheet 6 of 72
40\5\/\
Search
Query Indexer Search Adapters
MSN Alexa
Yahoo Google
Search Index
User Vault Content Cache
API Scheduler
. API
Login Adapters
404
2 Memory Cache
Passwords Indexer
Session Manager
Session API Structured File
Store
Adapters
403

1413

Network File Database 1
System 406
Livecasting Engine
Sources Adapters/
Listeners
Transcoding Broadcast
Media Sync.

Text/video/audio Streams

US 8,595,186 B1

FIG. 4(a)2

Booking, Exh. 1054, Page 8

U.S. Patent Nov. 26, 2013 Sheet 7 of 72 US 8,595,186 B1
412 407 408

\ | \/\

} [Mobile Applications Sync Engine

| Download Request Handler C .

‘ ompression

| L .

} Device Detection Versioning Protocol Handler

| API

} Difference Engine

\ Signature

| Resolution Content

‘ Transformer

\

\ 1

\ Prefetch

- — 1| Processors

| Device Application

} Database Repository

\

\

\ Content Adapters

|

‘ Text Data Video Data Others (images,)

| Sources Sources audio, etc)

\

| Pull Adapter <—|_. Push Adapter

} Polling Server

} - \ 402
arser

| an—>" |

|

| Normalizer

| mo—" |

} Filter

| J

| Transcoder (e.g. video,

\ 41— | HIML, audio, etc)

\

\

\

\ -

| Logging 417

\

‘ API Analysis Web Interface

|

\

| FIG. 4a)3
415

Booking, Exh. 1054, Page 9

US 8,595,186 B1

Sheet 8 of 72

Nov. 26, 2013

U.S. Patent

Q)¢ Hd

vl
9y 0L1 091
.
, |
STV swIone[d J3[Mpayog SeAUR) X
U301§ |, ABPOT,, JUOL] adreiog /i ouks punossyoeq bmwm_wmm?om
10309[0)) I
oeqren WA Sunduog @ Io[pueH [030301 TSMOTH OBIN
swmuny
BurousIagI(] JUSIUO)) s193pIM 1Ing-a1d
uorssaxdwo)) augug Bunepuay
omdug spy R
amSuy dug .Homgs
150 uoneonddy x &
/
1997

(434

[

LSy

Booking, Exh. 1054, Page 10

US 8,595,186 B1

Sheet 9 of 72

Nov. 26, 2013

U.S. Patent

[0S

G OCRRRIGER T UGN YR |

N

Booking, Exh. 1054, Page 11

US 8,595,186 B1

Sheet 10 of 72

Nov. 26, 2013

U.S. Patent

0¢s

a/ ()¢ b1

£es

TES\

R3S

¢

¢

()5 DIp

(A4S

¥4

Booking, Exh. 1054, Page 12

U.S. Patent Nov. 26, 2013 Sheet 11 of 72 US 8,595,186 B1

605

N &\i\.\\

3

600
5 ((/

606)

FIG. 6a)

Booking, Exh. 1054, Page 13

U.S. Patent Nov. 26, 2013 Sheet 12 of 72 US 8,595,186 B1

Ranty Pledis Foouy
Fack o5 Fsothal

K(:iSO

FIG. 676)

\ 652

s e AN BpUTtE

idgets

Y

Mobile W

651

Booking, Exh. 1054, Page 14

US 8,595,186 B1

Sheet 13 of 72

Nov. 26, 2013

U.S. Patent

o 5550 e
R s A RSP AT

00L

Booking, Exh. 1054, Page 15

US 8,595,186 B1

Sheet 14 of 72

Nov. 26, 2013

U.S. Patent

Booking, Exh. 1054, Page 16

U.S. Patent Nov. 26, 2013 Sheet 15 of 72 US 8,595,186 B1

™804

AT A

F1G. 57@) L~-~~809

R By

Booking, Exh. 1054, Page 17

U.S. Patent Nov. 26, 2013 Sheet 16 of 72 US 8,595,186 B1

FIG. §(6)

Booking, Exh. 1054, Page 18

US 8,595,186 B1

Sheet 17 of 72

Nov. 26, 2013

U.S. Patent

1o [16

v s

EADVLNG, WAL WA
uosoioy ey addy g

rio

106

Booking, Exh. 1054, Page 19

US 8,595,186 B1

Sheet 18 of 72

Nov. 26, 2013

U.S. Patent

UOISSBS LOIRZIUOIOUAS
IXaU 8y} Uo pajiejsul pur
pepEOUMap St 180PIM BIYOIN
paag mey el

i

Prrrrees

Booking, Exh. 1054, Page 20

U.S. Patent

Nov. 26, 2013

Sheet 19 of 72

Generate CAPTCHA

l 0

1001

Show Form
With CAPTCHA

l .

1002

User Enters Data

I

FIG. 10

Validate CAPTCHA

I

Validate User-
Entered Fields

l .

1005

Done

1006

US 8,595,186 B1

Booking, Exh. 1054, Page 21

U.S. Patent Nov. 26, 2013 Sheet 20 of 72 US 8,595,186 B1

Mobile client accesses
download page Display Form
(MSISDN is sent)

I Y

User register on mobile site

(similar flow to web User Enters Data —» Application is launched
registration)
l 1109 l 1101 i 1105
Wﬁdhstﬁ]?ll:;s(ﬂgf ggiN User data saved and Client generates

used as unique ID) unique ID generated response code

L11110 l LDoz i LDos

Create Download Client transmits
i response code to
Package w/ Unique ID P

¢ T

User downloads package
onto device

1104

FIG. 11

Booking, Exh. 1054, Page 22

US 8,595,186 B1

Sheet 21 of 72

Nov. 26, 2013

U.S. Patent

AR

oomﬂj mop womHJ
1oA108 0) JUR1[O 03
paduerd sey ejep sogueyo Spuas JUSID) SO3UBYD SPUAS JPAIG
SJUSI]D PUE 10AI0G 18978 ST JUSI])) 18978[SI IDAIOS

1 ﬁmﬁJ 0 ~F
saSueyo JoAIos sa3ueyo JuaId
SUNLIMISAO0 “TOAISS 0} SunLIMISA0 YUl 0}
SOGURYD SPULS JUAI) SOFURYD SPULS IDAIDS
Kyuoud saxe) jusr) Kyuoud soxe) 10A19G
Dm/_ momr
SOLIUS PIA[OSAI PUSS saoua1a)a1d 198N 100
E@J wcmﬁJ
ad4) eyep a1 Joy I9A]0SAI
JIOA[0SI pa19IsISa1 as) JOLFUOD JNeI2p 95(1
T 1
IBA[0SI SIOAJOSAI JOT[JUOD
peiasidarpunog ~— | pexysidar 1oJ Yoo
SIct

A

IoIuop! ByEp
IDTUIP! TIEp 1SE] pue

o) pPAIJIpo JSB[JO
Kdoo umo sy isurede
soredwo9 I9A19G

|

1aynuspl ejep
POAID03I JSE] S [[oM SB
dwejsou aziuosyouks

JSB[SIIWSURI) JUSI[)

1021

-

RETNEN
[HM UOIRZIUOIOUAS
1sonbai yuar)

1

2Jep JO 9Je)S SBY ISAIOG

Booking, Exh. 1054, Page 23

US 8,595,186 B1

Sheet 22 of 72

Nov. 26, 2013

U.S. Patent

11331

a8e101g

0Cel
£ DD =
»sn
0LEl NI Dul nmi H
1 01¢l
ofop 0zel
WL
1a8301g
0Ly
—~ _|<| Po9 910 ‘WOLV ‘SSA H
arep mey 01¢<I
I0ZI[RULION
Wﬁ.vmmﬁ
0s€l
— 198()
ocel [001 AIRjUSUIIIO)))h
IosIed 01€T
(1] 498 0zl
- —
nsn

vodsg TAX [

1003 ammdeod Juoag

%Aofﬁ

Booking, Exh. 1054, Page 24

U.S. Patent Nov. 26, 2013 Sheet 23 of 72 US 8,595,186 B1

Client connects to the
> server

l 0

1400

Server computes the
server’s current load

l .

1401
Issue command future
Exceeds threshold ? |-Yes—p»| incoming requests to slow
polling interval
1402 1403

Client sets new polling
interval

1404

FIG. 14

Booking, Exh. 1054, Page 25

U.S. Patent

Nov. 26, 2013

Sheet 24 of 72

Fetch content through
polling or push adapters

1501

l)

Transcoding
(with caching)

Detect content type

1505

l)

1502

l i,

Insertions

Store (cache) data

1506

l i,

1503

<

Delivery
(with caching)

Filter data
(with caching)

FIG. 15

1507

Booking, Exh. 1054, Page 26

US 8,595,186 B1

US 8,595,186 B1

Sheet 25 of 72

Nov. 26, 2013

U.S. Patent

ayoeB) 03PIA
PoIopURI-a1]

0891

—

0691
a5e10)g 09PIA

ayoeo
-1 J/SULIOJSTURI], O3PIA

sdi[0) 03pIA PaAes

$991

—

0991 0L9T

—

0591

0991 1

YoeqAe|d 03PIA

Joo[, Smddr[D) 0opIA

Jossa1duIo))/19posug 0apIA

0v91

—

0€91

—

amde) 03pIA

19P093(] [SUTLY) OIPIA

0191

JOATOOY

97 ‘HID

P33 09PIA

Booking, Exh. 1054, Page 27

U.S. Patent Nov. 26, 2013 Sheet 26 of 72 US 8,595,186 B1

Mobile client ¢ Rewrite embedded URLs to
obile chent requesis a — | point back to transcoding
web page server

¢ s ¢ o

Store cookies sent by the
web site

Cache result

L o L

1710 1735
Server fetches web page
with cookies for the user on Send to the client

that web site

l 1715 1740
|—> Get rules to apply
Loop
until
finished 1720
L Apply rules one-by-one
1725

FIG. 17

Booking, Exh. 1054, Page 28

U.S. Patent Nov. 26, 2013 Sheet 27 of 72 US 8,595,186 B1

Mobile device connects o Mobile device connects to

server via web browser server via mobile
application
1805 1810

Collect device fingerprint

k_\

v 1815

Analysis module queries
device database

IS

Exact match ?

.

Find next ranked result

I

1835

Fallback

FIG. 18

Booking, Exh. 1054, Page 29

US 8,595,186 B1

Sheet 28 of 72

Nov. 26, 2013

U.S. Patent

0961

—

S10u9)SIT 198pIp

0L61

—

[N

67 OID

i)

0v61

SIOAIDG
uoneoiday

0Z61

S

0561
N 0861 —
aursug
I9)5EOpROIg TOTRZIUOIYIULS
ommJ 01 @J ﬁ
omdug o[npon
Surpoosuer], uonedaIdy somog

$92IN0G JUAUO))

I
0z61 |

.

$00INO JUSIUO.)

Booking, Exh. 1054, Page 30

U.S. Patent Nov. 26, 2013 Sheet 29 of 72 US 8,595,186 B1

20(¢)

FIG.

2020

206)

FIG.

20a)

FIG.

<
o
(g

Booking, Exh. 1054, Page 31

U.S. Patent Nov. 26, 2013 Sheet 30 of 72 US 8,595,186 B1

FIG. 20(0)

N
>
x
OGN
R
<
L)

XN
S
N
o
S

<O <

2 F

3 oy

Booking, Exh. 1054, Page 32

U.S. Patent

Nov. 26, 2013 Sheet 31 of 72

US 8,595,186 B1

FIG. 20(%)

FIG. 20(3)

20704
2080

Booking, Exh. 1054, Page 33

U.S. Patent Nov. 26, 2013 Sheet 32 of 72 US 8,595,186 B1

FIG. 21(8) FIG. 21(c)

FIG. 21(a)

Booking, Exh. 1054, Page 34

U.S. Patent Nov. 26, 2013 Sheet 33 of 72 US 8,595,186 B1

FIG. 21(e)

FIG. 21(d)

Booking, Exh. 1054, Page 35

U.S. Patent Nov. 26, 2013 Sheet 34 of 72 US 8,595,186 B1

FIG. 22(c)

FIG. 22(8)

FIG. 22(a)

Booking, Exh. 1054, Page 36

U.S. Patent

Nov. 26,2013 Sheet 35 of 72

\\3:\\

W

E

US 8,595,186 B1

FIG. 22(e) FIG. 22(0)

FIG. 22(d)

Booking, Exh. 1054, Page 37

U.S. Patent Nov. 26, 2013 Sheet 36 of 72 US 8,595,186 B1

}23 70

23(c)

FIG

The Blog Factory - Episode]
- Steve Hall of Rdrants.com

23(6)

FIG

23(2)

FIG

Booking, Exh. 1054, Page 38

U.S. Patent Nov. 26, 2013 Sheet 37 of 72 US 8,595,186 B1

FIG. 23(2)

2350

FIG. 23(d)

2360
23204

Booking, Exh. 1054, Page 39

U.S. Patent Nov. 26, 2013 Sheet 38 of 72 US 8,595,186 B1

25(%)

FIG

=N
RN
N
N
N
D
R
Oy
N

Booking, Exh. 1054, Page 40

U.S. Patent Nov. 26, 2013 Sheet 39 of 72 US 8,595,186 B1

FIG. 24(6)

FIG. 24(a)

<
—
<t
o

Booking, Exh. 1054, Page 41

US 8,595,186 B1

Sheet 40 of 72

Nov. 26, 2013

U.S. Patent

0S¥

05T

Booking, Exh. 1054, Page 42

U.S. Patent Nov. 26, 2013 Sheet 41 of 72 US 8,595,186 B1

FIG. 25(c)

2510

FIG. 25(6)

2510

FIG. 25(a)

Booking, Exh. 1054, Page 43

US 8,595,186 B1

Sheet 42 of 72

Nov. 26, 2013

U.S. Patent

N

vy
For

e
N
N L

i SN

e

0TST

01T

hihs

L

5 P
Rl

>015T

Booking, Exh. 1054, Page 44

U.S. Patent Nov. 26, 2013 Sheet 43 of 72 US 8,595,186 B1

FIG. 25(3)

FIG. 25())

<
N
L
i

Booking, Exh. 1054, Page 45

US 8,595,186 B1

Sheet 44 of 72

Nov. 26, 2013

U.S. Patent

(9)9¢ ‘D11

019¢

(2)9¢ D1

B

Um&wm&ﬁw.ﬁm@mﬁ%wm

IR TS

£l

H

3 ME0WE T 3E 3

3 U0 UD3MA3SU0 mvmi (£

A%

S

R P |
G

AT AR G 052+ U0
SLEPPUCS BUaiip snopuezey (2

o

M HB0IHYHS

ﬁ.ﬁm,. W% m‘ﬁ U B a._l (L

4657

mﬁaaz *.watow,cc

Aprog T

>0197

Booking, Exh. 1054, Page 46

US 8,595,186 B1

Sheet 45 of 72

Nov. 26, 2013

U.S. Patent

IR
€13 IR J00 51 AR
fyeragjo aedag Rzades
sejnmy fep ey uo sEshg
sduiey) auy uo cgoud sy

R TS

Booking, Exh. 1054, Page 47

US 8,595,186 B1

Sheet 46 of 72

Nov. 26, 2013

U.S. Patent

(1)9¢ ‘HID

(4)9¢ ‘HID

b9z HIp

S SR
SRR T TR 1

TS S S e

L.Fw \.maLu{.; .._.-\.:JM\L L :;.— LRE TS]

1} DO TR LT winyy

| pEm0.LI0g § oougd B 30U St S 0N

03 10U - digs oy pey 580
Jo e & pue Bunys Rigpeaao
SE LLLIDES BU L 82140 B WY
30 Resa i uo [hepd jybo
YEE| NOOG | 30US B g ffuues
] T TR BT Woy

pEkCLLICE | 030ud B 30U St Sy Oy

M

Booking, Exh. 1054, Page 48

US 8,595,186 B1

Sheet 47 of 72

Nov. 26, 2013

U.S. Patent

pah 40 S IByE
M EALIUNGT G
WL D) PR

mmaw
L Be g3 m ,ui‘ awl&mmm

3

| W%Em HAE W e iy

z.
:
A

Dl
,

- .

Booking, Exh. 1054, Page 49

US 8,595,186 B1

Sheet 48 of 72

Nov. 26, 2013

U.S. Patent

A

3

|

Wb By

i

0] PESS

1 0 [BRUPIW|
bdl Lol g

Booking, Exh. 1054, Page 50

US 8,595,186 B1

Sheet 49 of 72

Nov. 26, 2013

U.S. Patent

()87 HID

0C8<

09LT

\

ABA00
03 payshd fRsey o] 3|gLuny

L1008 LHW : BRI LY
. LBRZ2T1S]) WH 20D
e 15 LR g /7 Fie
| onmumpry VR
_. _ WH 2610
/ 0L/E52 NUE 27 TR
m 6%k BN S i
\ ! bd il el .
. zzzm zm.mw_wm
m L
.
7
7

Booking, Exh. 1054, Page 51

US 8,595,186 B1

Sheet 50 of 72

Nov. 26, 2013

U.S. Patent

finbueg

i
A

.

HEATIDE

NI .

i

bues g

baffieg g [om

od

»09L7

-()1 82

Booking, Exh. 1054, Page 52

US 8,595,186 B1

Sheet 51 of 72

Nov. 26, 2013

U.S. Patent

o0 alog 7jan) euleys e e
g " 1=
SR I wmm Lt G ZOpBEAIHID Jeyseg
shutsuy Jayjg o | v 0 Zvs Log ueyy ufius
2 -
1IN I . bl ol Q0D Gk 1| saage
| |ON] iim| dwW o sefel T
O O 256 429 qppusl o zqwoynswial Jewg
O l 306 3084 [EE .
of i glee] o o] Jeeeng | wojou guens g | g moH| ssfield
7 T EaDLS L e SPbIE m (nL/E57)
j i um»m“ﬁﬁcuw H5 ?m_ 1N mvmm m R mw\m. @mau m.
b L% 2 A T M Z : - i
2led) 1 B Bguang EAnpE| . W iz = YsapEpuEd

Booking, Exh. 1054, Page 53

U.S. Patent Nov. 26, 2013 Sheet 52 of 72 US 8,595,186 B1

Gonstruction
at 880 8B and

~27680

Booking, Exh. 1054, Page 54

U.S. Patent Nov. 26, 2013 Sheet 53 of 72 US 8,595,186 B1

3010

Booking, Exh. 1054, Page 55

U.S. Patent Nov. 26, 2013 Sheet 54 of 72 US 8,595,186 B1

Scan local cache for
headlines by
Article Publish Date

l 3101

Filter headlines by
Unread articles

l 3102

Filter headlines by
weights

l 3103

Filter out from special
tagged feeds

.o

Add basic information
including traffic, weather

Y

Include advertisements
from local ad cache

3106

¥ 3100

Render Dynamic Info
Display

3110

FIG. 31

Booking, Exh. 1054, Page 56

U.S. Patent Nov. 26, 2013 Sheet 55 of 72 US 8,595,186 B1

3205 3225

I
User 1 requests widget ot
to be shared User 2 request synchronization

[User specifies other party’s|

unique identifier (phone Mobile client connects to
number, name, email, etc) the Isl‘r"l"’@' 1;91'
as well as a message for Synehronization
the other user
3210 3230
. Server looks up in the
Request trszrgrélgtted to the pending add queue and

removes from the add list

= =

3215 3235
Server looks up user and
saves the add requestin | | Pending request
the other user's widget/ transmitted to the user
widget data add queue
3220 3240

User accepts add request

3245
Server adds to user 2's
account
3250

FIG. 32

Booking, Exh. 1054, Page 57

US 8,595,186 B1

Sheet 56 of 72

Nov. 26, 2013

U.S. Patent

08€E

300D

Hﬁmm

ayoR) U0
seaue)) Ae[dsiq 7 SRAUR)
SLeE
ﬂmvm €
S0 Iozua)sey
ﬂL :ﬁo#m ¢
Oett ($yuswape ndur unoy)
$193p1M 3INg-01g
S9teE (993 //(
- — cmmm/ cece
(so8ewr orpne
‘09pIA) BIpSWMIN SuiBug Jojep 4219pudy TALLHX ERE|
Suigoe)
uorssaxdwo)) e "TALHX 10} "TALHX 10}
: 1081Rd 10SMOIQOIOT | [108TRd 10SM01QOIDIIA
— — Hmmmm
09¢€ 0SEE

(so8e{ 10A19§ JULTID)
soded Ay

ﬂommm

/ro_mm

S0€E

£€ Db

Hoomm

Booking, Exh. 1054, Page 58

US 8,595,186 B1

Sheet 57 of 72

Nov. 26, 2013

U.S. Patent

S

’
7
.
o
.
.

N

R e

SRR

11323

Booking, Exh. 1054, Page 59

U.S. Patent Nov. 26, 2013 Sheet 58 of 72 US 8,595,186 B1

< o eretinne

7% Foutier thony

3560 Radk hution

Ragde huthon

i Duthon

LAY

Booking, Exh. 1054, Page 60

US 8,595,186 B1

Sheet 59 of 72

Nov. 26, 2013

U.S. Patent

9¢ DD

/(ooom

ﬂomom

Homom

WIoJIB[d
0L9¢ 059¢
10109[[09 98rqIED) deog SIdV
Jorrg WA
019¢
Ias1B]

Hon

agei0)g

089¢

Booking, Exh. 1054, Page 61

US 8,595,186 B1

()€ DT mw:

0SS e HIp

Sheet 60 of 72

44 g

Bl DHes BRSI0Y Uh

Nov. 26, 2013

U.S. Patent

(
>

SCLE

Booking, Exh. 1054, Page 62

US 8,595,186 B1

Sheet 61 of 72

Nov. 26, 2013

U.S. Patent

SILE

()€ HID

0SLE

VIO HRRN

Booking, Exh. 1054, Page 63

US 8,595,186 B1

Sheet 62 of 72

Nov. 26, 2013

U.S. Patent

SOLE

CCLE

09L¢

Booking, Exh. 1054, Page 64

U.S. Patent Nov. 26, 2013 Sheet 63 of 72 US 8,595,186 B1

3825

RN

FIG. 382)

Booking, Exh. 1054, Page 65

U.S. Patent Nov. 26, 2013 Sheet 64 of 72 US 8,595,186 B1

3860

T

FIG. 38/d)

3845

71G. 38(¢) L_zsso

Booking, Exh. 1054, Page 66

US 8,595,186 B1

Sheet 65 of 72

Nov. 26, 2013

U.S. Patent

0L8E

$O8¢

Booking, Exh. 1054, Page 67

U.S. Patent

Nov. 26, 2013 Sheet 66 of 72 US 8,595,186 B1

3910

Mobile user publishes a
new widget around an
soCcer season

Emily's 2005
sSOCCer Season

She posts new contentto it
periodically from her phone at
gach soccer game

.._\

Users who subscribe
to this widget get
periodic information
updates from this
personal channel

o,

3940 3910

FIG. 39

Booking, Exh. 1054, Page 68

U.S. Patent Nov. 26, 2013 Sheet 67 of 72 US 8,595,186 B1

User selects type of
mobile widget

'

Receive Widget
description

' e

Generate image
choices for widget

'

Present choices for
Widget content

Y

Receive content
details

'

Generate and publish
Mobile Widget

4006

FIG. 40

Booking, Exh. 1054, Page 69

U.S. Patent

Developer creates widget
using wizard or with APIs

4105

Widget archive is uploaded

LW

4110

Analyzer unpacks
validates compiles and
optimizes

4120

4115

Application Repository

Nov. 26, 2013

Sheet 68 of 72

Client requests a widget

4130

Consult cache, If not in

cache, perform application

assembly and save to
cache

Lj

4140

Compile scripts with other
scripts that the widget
references

4145

Optimizer

4150

Indexed for searching | —

H

4125

Delivery

4135

US 8,595,186 B1

Cache of assembled
widgets

4155

FIG. 41

Booking, Exh. 1054, Page 70

US 8,595,186 B1

Sheet 69 of 72

Nov. 26, 2013

U.S. Patent

C RO

e N\W\ v\\
% 7L
\\W§

i

Booking, Exh. 1054, Page 71

US 8,595,186 B1

Sheet 70 of 72

Nov. 26, 2013

U.S. Patent

Oley

Booking, Exh. 1054, Page 72

US 8,595,186 B1

Sheet 71 of 72

Nov. 26, 2013

U.S. Patent

(raz4

TS €

R RO TR e i

Hﬁm.ﬂmﬁ,m

i RTIG] 10 S A S R A
THRT IS TISTITESN | D0 e s5s oty

&

\

01vk

\\\\ L

7
N
\

i
7 2 \\% 7 mmm““““ .
A

\.\\\ \\\
&w\“&\\\{

2

A

2aAE

\\\ \\\\.\\ M\\\ \Mm

2
2 \\\t 7
2 7

Booking, Exh. 1054, Page 73

US 8,595,186 B1

Sheet 72 of 72

Nov. 26, 2013

U.S. Patent

W53 T

B

e

S Ay

\\\\\\ P

LAERS

sabed gam

azposng

B I3] el S0BEGe sl apy

2,

QN PR EAEE SRR L SEDUC o0 sty

Sl

A SHAZIpHY

R LS S 10 LA

20y] 005 BT U033

77
i sy

\mmm\%mm&mmmw \\\\\\\\\

7527777

Booking, Exh. 1054, Page 74

US 8,595,186 B1

1
SYSTEM AND METHOD FOR BUILDING AND
DELIVERING MOBILE WIDGETS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 60/942,406, filed Jun. 6, 2007, the
entire content of which is incorporated herein by reference.

BACKGROUND

1. Field

The present disclosure relates to applications and user
interfaces for mobile computing devices, and particularly to
methods and systems for creating, publishing, sharing, and
delivering mobile software applications.

2. Description of the Related Art

Cell phone data usage is on the rise. Phones may support
the wireless application protocol (WAP), an international
standard for applications that use wireless communication
from mobile phones. Mobile data applications include SMS
and the WAP browser, an Internet browser for accessing
mobile web sites. Interactive and specialized kinds of appli-
cations are also in use.

Mobile usage patterns are different from desktop usage.
Users may be on the move, in a movie line, on public trans-
portation, or in a coffee shop and may have very short atten-
tion spans and may be in situations where it is very hard to
type. Such a user may launch the browser and waits for the
results. By the time the results are delivered to the mobile
device, the user may have moved on to another task.

Further, mobile devices may have diverse non-standard
feature sets and user interfaces. Phone manufacturer has a
different way of presenting the user interface on the mobile
device. Menus may be unique to a particular device, and users
may have to learn where the application modules are and how
to perform device setup. At any given time, there may be
multiple mobile models supported by multiple mobile opera-
tors with diverse physical layouts, including QWERTY key-
boards, keypads, thumb wheels, joy sticks, styluses, roller
balls, etc.

SUMMARY

A system is provided for executing a widget application
installed on a mobile device, including a declaratory markup
language renderer for rendering a declaratory markup lan-
guage component of a widget application on a display of the
mobile device, a compiled programming language execution
engine for executing a compiled programming language
component of a widget application installed on the mobile
device, a mobile device API, adapted to be accessible to a
widget application, and providing access to a device service
API of the mobile device, and a widget manager configured to
automatically download widget applications or descriptions
of' widget applications from a network location to the mobile
device, without receiving user instructions for said widget
applications.

Software is provided which includes a plurality of different
widget-executing engines for executing software widget
applications installed on a plurality of different types of
mobile devices, where each of the mobile device types is
adapted to run software applications written in a program-
ming language that is distinct from programming languages
supported by the other mobile device types, and all of the
widget-executing engines provide a common application pro-

20

25

30

35

40

45

50

55

60

65

2

gramming interface for the widget applications to access a
common device capability of the mobile devices.

A method for executing a widget software application is
provided. The method includes rendering a declaratory
markup language component of the widget application,
executing a compiled programming language component of
the widget application, and automatically downloading wid-
get applications or descriptions of widget applications from a
network location to the mobile device without receiving user
instructions for said widget applications. Executing the com-
piled programming language component includes making
available to the widget application an API to access a device
service of the mobile device.

A software widget application is provided and configured
for installation and execution on a mobile device. The appli-
cation includes code written in a declaratory markup lan-
guage and code written in a programming language, where
the code written in a scripting language contains a call to an
API accessing a device service of the mobile device.

An application is provided including a software widget
configured, when compiled, to be installed and run on a
plurality of different mobile devices, each device having an
operating system that runs software applications written in a
programming language that is different than programming
languages supported by the operating systems of the other
devices, wherein the devices have a common device service,
the devices having different device services APIs for access-
ing the device service, the widget being configured to access
the device service only through a single API distinct from
each of the device services APIs.

A method for creating a mobile software widget applica-
tion is provided. The method includes accessing a first section
of code written in a declaratory markup language, accessing
a second section of code written in a programming language,
compiling the second section of code to produce a compiled
section, packaging the first section of code and the compiled
section to produce a mobile widget application configured to
be installed onto a mobile computing device so that a user of
the device canrepeatedly select, run, and terminate the widget
application.

A widget application distribution system is provided. The
system includes a server adapted to transmit a software wid-
get application to a plurality of mobile devices of different
types for installation thereupon, wherein each mobile device
type includes a distinct API to a mobile device service that is
common to all of the mobile device types, a software widget
application stored on the server, the widget application com-
prising a first component including programming language
code and a second component including declaratory markup
language. The widget application is configured to utilize the
mobile device service without directly accessing any of the
distinct APIs.

A widget application distribution system is provided,
where the system includes a server having gallery of widget
software applications, the server configured to allow users of
mobile computing devices to browse the gallery of widget
applications from the mobile devices, each of the widget
applications configured to be installed onto one of the mobile
devices, the server configured to receive requests for down-
loading selected ones of the widget applications from the
mobile devices, the server configured to respond to a request
to download a widget application by electronically sending
the widget application to be downloaded and installed to the
mobile device that sent the request to the server.

A method for synchronizing information with a mobile
device is provided, including maintaining a first version of the
information on an electronic storage, the information com-

Booking, Exh. 1054, Page 75

US 8,595,186 B1

3

prising one or more of (1) widget software applications con-
figured to be installed onto the mobile device and repeatedly
selected, run, and terminated, (2) network content used by
widget applications, and (3) logged data related to activities
of widget applications, receiving a synchronization request
from a mobile device having a second version of the infor-
mation, the synchronization request including a mobile
timestamp and mobile identifier related to the information,
the mobile timestamp indicating a time at which the second
version of the information was last updated, and comparing
the mobile timestamp to a local timestamp and local identifier
stored in the storage, the local timestamp indicating a time at
which the first version of the information on the storage was
last updated, and determining, based on the timestamps and
identifiers, whether the information has been changed on the
mobile device, the storage, or both since a previous synchro-
nization request.

A system for synchronizing information between a server
and a mobile device is provided. The system includes a server
comprising a server data store and a conflict resolver, the
server data store being configured to store a version of the
information, the information comprising one or more of (1)
widget software applications configured to be installed onto
the mobile device and repeatedly selected, run, and termi-
nated, (2) network content used by widget applications, and
(3) logged data related to activities of widget applications,
and a mobile device comprising a synchronization engine and
amobile data store, the mobile data store being configured to
store a version of the information, the mobile device config-
ured to transmit synchronization requests to the server, each
synchronization request comprising a mobile timestamp
related to the version of the information on the mobile data
store. The server is configured to respond to the synchroni-
zation request by comparing the mobile timestamp to a local
timestamp stored in the server data store, the local timestamp
indicating a time at which the version of the information on
the server data store was last updated, the server further
configured to determine, based on the timestamps, whether
the information has been changed on the mobile data store,
the server data store, or both since a previous synchronization
request by the mobile device.

A mobile device including a memory, a display, and engine
that executes a compiled software widget application
installed on the mobile device is provided. The widget appli-
cation requests network content without receiving a specific
request for said content from a user of the mobile device. The
device is configured to download the network content at the
request of the widget application, without immediately dis-
playing the downloaded content on the display, the device
being configured to store the downloaded network content in
the memory so that it is available for later use by the widget
application in the absence of a network connection.

A mobile device including a widget execution engine and a
software widget application installed on the device and con-
figured to be executed by the widget execution engine is
provided. The widget application is configured to receive a
user instruction to request a first content datum from a net-
work location, the widget application is also configured to
respond to the user instruction by initiating the downloading
of the first content datum from the network location to the
device, and the widget application is further configured to
initiate the downloading of a second content datum from the
network location to the device without receiving a user
instruction to download the second content datum.

A mobile device is provided. The mobile device includes a
location identification module configured to determine a
location of the device, and a software widget application

20

25

30

35

40

45

50

55

60

65

4

installed on the device, the widget application configured to
obtain a location of the device from the location identification
module, the widget application configured to request network
content customized to the location of the device.

A method for providing localized content on a mobile
device is provided. The method includes causing a widget
software application to access a location identification ser-
vice to determine a present location of the mobile device, the
widget software application being installed on the mobile
device and being configured to be repeatedly selected, run,
and terminated by a user of the mobile device, causing the
widget application to select content to be transmitted to the
mobile device based in part upon the present location of the
mobile device, and causing the content to be transmitted to the
mobile device.

A computer-implemented method of receiving a widget
application for a mobile device is provided. The method
includes running a widget execution engine on a mobile
device, causing the widget execution engine to conduct diag-
nostic tests on the device, where the diagnostic tests are
adapted to test for capabilities of the device, sending results of
the diagnostic tests to a server, and receiving a software
widget application from the server where the widget applica-
tion being selected based on the results of the diagnostic tests.

A computer-implemented method of selecting widget
applications for installation and execution on a mobile device
is provided. The method includes receiving results of diag-
nostic tests run on a mobile device by a widget execution
engine running on the device, selecting one or more software
widget applications based on the results, and sending the
selected one or more widget applications to the device for
installation.

A widget execution engine for running widget software
applications on a mobile device is provided. The engine
includes a diagnostic testing module configured to run diag-
nostic tests on the device, the diagnostic tests adapted to test
for capabilities of the device, the engine configured to send
results of the diagnostic tests to a server, the engine config-
ured to install software widget applications received from the
server.

A mobile device included a virtual machine that executes
compiled widgets, wherein a code segment footprint of the
virtual machine is less than 10,000 bytes is provided.

A widget execution engine, adapted to run on a mobile
device and configured to execute compiled widgets, included
a virtual machine with a code segment footprint of less than
10,000 bytes, the virtual machine being represented in com-
puter storage, is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

Many of the advantages and aspects of the present disclo-
sure will become more readily appreciated as the same
become better understood by reference to the following
detailed description, when taken in conjunction with the
accompanying figures illustrating some embodiments of the
disclosure, wherein:

FIG. 1(a) illustrates a schematic diagram of a wireless
system for providing a mobile widget service.

FIG. 1(b) illustrates a mobile device with a widget service
client application installed thereon.

FIG. 2 illustrates a schematic diagram of a personal com-
puting device or personal desktop system providing a mobile
widget service.

FIG. 3 is an illustration of various types of mobile widgets.

FIGS. 4(a) and 4(b) illustrate schematic diagrams of the
widget service and the widget client, respectively.

Booking, Exh. 1054, Page 76

US 8,595,186 B1

5

FIGS. 5(a) through 5(d) show exemplary elements for a
user to register from the Web.

FIG. 6(a) is an exemplary view of the mobile widget gal-
lery provided by a web front-end.

FIG. 6(b) is an exemplary view of the mobile widget search
results provided a web front-end.

FIGS. 7(a) and 7(b) depict exemplary views for managing
mobile widgets from the web front-end.

FIG. 8(a) depicts illustrations of several methods of
importing user profiles from external systems.

FIG. 8(b) shows an exemplary display for users to obtain
the widget service mobile widget bookmarklet and install it
on popular web browsers.

FIGS. 9(a) through 9(d) depict exemplary views for adding
mobile widgets from external affiliate web sites.

FIG. 10 is a flowchart illustrating a method of registering a
user for the access of the widget service according.

FIG. 11 is a flowchart illustrating a method of generating
unique identifiers for users.

FIG. 12 is a flowchart illustrating a method for the synchro-
nization process between the widget service and widget cli-
ent.

FIG. 13 is a schematic block diagram that depicts various
data sources being aggregated by the system for livecasting.

FIG. 14 is a flowchart illustrating the backoft protocol,
which is a method for reducing server loads during livecast-
ing.

FIG. 15 is a flowchart illustrating a process for aggregating
data from a variety of sources.

FIG. 16 is a flowchart illustrating the process by which
video from a video source enters the system and gets
transcoded to the capabilities of various devices.

FIG. 17 is a flowchart illustrating an exemplary process by
which web markup is transcoded to the capabilities of various
devices.

FIG. 18 depicts a process used to detect the type of device
connecting to the widget service.

FIG. 19 is a schematic diagram representing the livecasting
engine.

FIGS. 20(a) through 20(%) are exemplary displays of the
mobile registration process according to embodiments.

FIGS. 21(a) through 21(e) are exemplary displays of a
download idle screen according to embodiments.

FIGS. 22(a) through 22(f) are exemplary displays of wid-
get displays according to embodiments.

FIGS. 23(a) through 23(%) are exemplary displays of wid-
get displays according to embodiments.

FIGS. 24(a) and 24(b) are exemplary displays of a weather
widget according to embodiments.

FIGS. 24(c) through 24(e) are exemplary displays of a
widget showing scrolling images along with text underneath
according to embodiments.

FIGS. 25(a) through 25(e) are exemplary displays of a
comics widget according to embodiments.

FIGS. 25(f) and 25(g) are exemplary displays of a search
widget according to embodiments.

FIGS. 26(a) and 26(b) are exemplary displays of a widget
launchpad according to embodiments.

FIG. 26(c) is an exemplary display of a feed aggregator
widget showing subscribed feeds and the number of unread
articles in each feed according to embodiments.

FIG. 26(d) is an exemplary display of a widget displaying
a list of articles in a subscription according to embodiments.

FIGS. 26(e) and 26(f) are exemplary displays of a news
article according to embodiments.

FIGS. 26(g) and 26(%) are exemplary displays of incremen-
tal resource loading according to embodiments.

20

25

30

35

40

45

50

55

60

65

6

FIG. 26(i) is an exemplary display of read and unread
articles in a list.

FIGS. 27(a) through 27(c) are exemplary displays of the
result of transcoding large web sites for mobile widgets.

FIGS. 27(d) through 27(f) are exemplary displays of sports
widgets.

FIGS. 28(a) through 28(i) are exemplary displays of sports
widgets.

FIG. 29 is an exemplary display showing multiple widgets
used as indicators on a single view.

FIG. 30 is an exemplary display of widgets added to ahome
screen display of a mobile client device.

FIG. 31 is a flowchart illustrating the processes performed
on the client device to increase relevancy of the articles.

FIG. 32 is a flowchart illustrating the processes for sharing
widgets amongst users.

FIG. 33 is a schematic of an execution engine and mobile
widget canvas on the widget client.

FIG. 34 is an illustration of various types of mobile adver-
tisements supported by the widget client.

FIG. 35 is an illustration of various types of interactive
elements supported by the widget client.

FIG. 36 is a schematic block diagram of the scripting
engine on the widget client.

FIGS. 37(a) to 37(f) show exemplary web user interface
displays that a user may be presented with to create a mobile
widget non-programmatically according to embodiments.

FIGS. 38(a) to 38(e) show exemplary web user interface
displays that a content author may be presented with to create
amobile widget non-programmatically according to embodi-
ments.

FIG. 39 depicts an exemplary use case that illustrates the
need for publishing a widget from a phone and sharing it.

FIG. 40 is a flowchart depicting the supporting server-side
process to create a mobile widget.

FIG. 41 is a flowchart depicting the elements performed by
the widget service to create a mobile widget.

FIG. 42 depicts an exemplary web browser with the data
extraction tool installed as a plugin.

FIG. 43 depicts an element in the extraction process where
the user is allowed to highlight and remove various elements
of'a web page.

FIG. 44 depicts a final element in the extraction process
where the user has isolated a specific information source from
the web page for a mobile widget.

FIG. 45 depicts an options panel offered by the extraction
tool where the user can apply different kinds of filters helpful
for data extraction.

In figures showing multiple components, nothing herein is
meant to imply that all of such components are required, and
certain embodiments may include only a subset of the com-
ponents or modules depicted in any one or more figures.
Likewise, with respect to figures showing method elements,
nothing herein is meant to imply that all the elements illus-
trated in any one or more of such figures are required, and
certain embodiments may include only a subset of the ele-
ments shown in any one or more figures.

DETAILED DESCRIPTION

In one embodiment, methods and systems are provided for
creating, publishing, sharing, and delivering mobile software
applications called “mobile widgets” while maintaining
device independence across hundreds of disparate mobile
devices. The term “widget” may be interchangeably used
with other similar terms, such as “module,” “application,” or
“program.”

Booking, Exh. 1054, Page 77

US 8,595,186 B1

7

Overview

Many mobile devices, such as cellular phones and PDAs,
have a browser to browse the Internet. But the end-user expe-
rience may be poor, resulting in single digit mobile adoption
rates even for essential web services like email and weather.
Tasks that may be simple on a desktop computer can turn out
to be complex chores when performed on a mobile phone. For
example, on a desktop machine, getting the weather forecast
for the day may require only for the user to type “new york
weather” on a search engine and see the results. On a mobile
phone, however, users may need to first find the web browser,
which may be hidden in a menu, then users may laboriously
type the URL on a little keypad, wait for the browser to
connect, possibly deal with mal-formatted content pages, and
then try to use the web site. Normal users may not have the
patience or attention span to perform so many steps just to get
the weather or the current sports score.

Mobile widgets can offer an enhanced user experience for
similar web services. The architecture may include server-
side technology, device-agnostic client-side technology, and
publishing technology for widget creation. Some embodi-
ments of the architecture may allow relevant information to
be made available on the mobile terminal for when users
glance at the phone.

The system and techniques presented here may include
server-side architecture for authoring, hosting, and delivering
the widgets and mobile content, a mobile client-side platform
to run the widgets and render content, a framework for devel-
oping and publishing the widgets, and a system for measuring
mobile widget usage.

A mobile terminal may refer to amobile computing device,
including, but not limited to, wirelessly connectible PDAs,
mobile phones, handheld pads, 2-way pagers, voice recogni-
tion terminals, and portable computers with wireless connec-
tion capability. Other similar names used for a mobile termi-
nal include handheld device, client device, cellular phone,
mobile phone, or, more commonly, phone.

A mobile widget may refer to a mobile software applica-
tion that runs on a mobile device and may perform a specific
task. As an example, consider a weather forecast mobile
widget that displays the forecast graphically for a specific
city, or a cartoon reader that formats a cartoon strip so that it
is easily readable on a mobile phone. Of course, widgets may
have more or less functionality and may be adapted to per-
form multiple tasks.

The widget service client software may refer to a software
application that runs on a terminal device and is capable of
hosting and running mobile widgets. Other names used for
this module are client software or, more commonly, client.
The widget service server system may be an embodiment of
the basic server-side architecture configured to author, host
and deliver the mobile widget service.

Illustrative Operating Environment

FIG. 1(a) is a schematic diagram of a wireless system for
providing mobile widgets according to one embodiment. In
other embodiments, not all of the illustrated components may
be required, and variations in the arrangement and type of the
components may be made.

As shown in FIG. 1(a), the environment may include the
widget service server system 110, a first network 120 (e.g.,
the internet), a second network 130 (e.g., a wireless network),
the widget service client 140 and various content sources such
as content publishers 121, web services 122, web portals 123
and other web sites 124.

The client device 140 may include mobile computing
devices capable of sending and receiving data over a network
130. Such devices may include mobile terminals that connect

20

25

30

35

40

45

50

55

60

65

8

via a cellular network, Wi-Fi network, and the like, such as
connected PDAs, cellular phones, smart phones, Blackberry
devices, Windows PocketPC and Smartphone devices, and
wireless gaming devices such as PSP, Nintendo DS, or any
other device that is equipped to communicate over a wireless
communication medium. Mobile devices 140 may include
storage, memory, displays, operating systems, additional
software such as email, calendar, PIM, and phone-specific
features.

Relative to non-mobile devices, the mobile client device
140 may have slower transmission rates, may exhibit a net-
work latency, may have a smaller screen, may have different
or limited user entry mechanisms such as soft keys, key pads,
or thumb wheels, and may not have a full keyboard. Client
devices 140 may be further configured with a built-in browser
application that supports receiving and display of markup
languages such as Wireless Markup Language (WML),
WMLScript, JavaScript, and Hypertext Markup Language
(HTML), to display text, graphics or multimedia. Further,
client devices 140 may run mobile operating systems such as
Symbian OS, Mobile Linux, Windows Mobile, RIM Black-
berry, and Palm OS. The operating systems may provide a
virtual machine such as a Java Virtual machine (JVM) or
BREW. Client devices 140 may further be configured to
support download and installation of new applications and
functionality. Mobile client devices 140 may have several
additional components such as GPS, camera, multiple net-
works, and the like.

The widget service server system 110 may contain one or
more server systems and may be configured to communicate
with client devices 140 and to respond accordingly. The
server system 110 may communicate with a wide area net-
work such as the Internet, a cellular telephone network, or a
local area network. As an example, the widget service client
software running on the client device 140 may communicate
with the widget service server system 110 to receive infor-
mation about the widgets. The widget service server system
110 may also be capable of communicating with various
content sources and services on the Internet such as search
engines, web services, XML repositories, relational data-
bases, structured markup content sites, content-aggregators
(portals), and the like. The widget service server system 110
may also host online tools to develop and deploy widgets. It
may also provide application interfaces to develop and deploy
mobile widgets.

With reference to FIG. 1(4), in some embodiments, the
client device 140 may include a widget service client 141. The
widget service client 141 may be a software program that runs
on the mobile computing device 140 and communicates with
the widget service server system 110 over wireless networks
and wire line networks using standard networking protocols
such as Wireless Application Protocol (WAP), Transmission
Control Protocol/Internet Protocol (TCP/IP), and the like.
The widget service client 141 may be able to run widgets 142
on the client device 140. Users may have a personalized set of
widgets 142 that they choose to install and use on the widget
client 140.

In another embodiment of the operating environment, the
mobile computing device 140 may not support or allow the
download or installation of a software such as the widget
service client 141. In such a case, if the mobile computing
device 140 is equipped with a built-in browser, the widget
service server system 110 may be able to offer widgets via,
e.g., a built-in browser on the mobile device 140.

The widget service server system 110 may provide tools,
programming interfaces, or hosting infrastructure (“wiz-
ards”) for the creation or publishing of mobile widgets. As an

Booking, Exh. 1054, Page 78

US 8,595,186 B1

9

example, the wizards enable non-programmatic ways of cre-
ating device-independent mobile widgets for content publish-
ers. Furthermore, programming interfaces may allow devel-
opers and those skilled in the art to build new kinds of mobile
widgets in a device-independent way.

Another embodiment of the widget service system is illus-
trated in FIG. 2. In this embodiment, an individual user or
publisher may download a personal version of the widget
service server 210 and install it on a local computer server
200. The personal widget service server 210 and accompany-
ing tools may interface with services on the local computer
server 200 where the user may create personal widgets from
local data sources and share it with friends and family. The
data for these local widgets may come from personal/local
applications 230 such as email, calendar, photos, personal
media, etc., and may be accessed via a personal web server or
operating system 204. Here the data may reside on the user
system 200 instead of public widget service servers 240.
Users who use the personal widget service server 210 may
also be able to syndicate other widgets from the public widget
service 240. A web server or web operating system can be
provided to enable the server 210. It will be understood that
mobile devices 201, 202 can receive widgets from the server
210 via networks 203.

Mobile Widgets

As recited earlier, a mobile widget may include a mobile
software application, which may run on a mobile computing
device 140 and may offer a user experience to perform a task.
FIG. 3 shows an exemplary mobile widget launchpad 310
with several widgets 320 installed. The widgets 320 are rep-
resented by the grid of icons in the center of the figure. As
depicted, each widget 320 may have a completely different
user interface and behavior. As examples, in this diagram we
illustrate a mobile widget that displays the news in pictures
330, another one that displays a chat session 340, another one
that represents a local search query 350, another one for
viewing comic strips in a slider 360, a livecast widget 370 that
displays play-by-play updates with video 380 for a live
cricket game, and a weather widget 390. Many other types of
widgets 320 may be created and delivered in this embodi-
ment. A mobile widget 320 could be an encapsulated version
of'a web site, a portion of a web site, a mobile web (WAP) site,
an HTML page, an RSS feed, an ATOM feed, a webcam feed,
a video or audio feed, or any other data source. The widget
320 may offer a mobile friendly version of the functionality
offered by these original data sources.

In one embodiment, a widget may display a golf leader-
board in a mobile computing device. The widget may offer
the information so that it is well-formatted and easily view-
able on a specific mobile device. Furthermore, the leader-
board may be automatically updated every few minutes with-
out the user having to hit a refresh control. The information
may be pre-fetched so that the user does not have to experi-
ence the network latency typical of mobile data networks. The
widget may automatically display a particular golf shot via
video. The widget may overlay a golf ball’s path over a
picture of a golf hole. These features, when used in conjunc-
tion with each other, improve the end-users’ experience sig-
nificantly because very specific information is available at a
glance.

In another embodiment, a widget may show traffic infor-
mation for a user’s afternoon commute. The mobile widget
could be configured to update every 30 minutes with the latest
traffic information from a specific web data source, person-
alized to the user’s home location and update a status image to
a red light or green light based on whether there is a traffic
incident or not. The user would be able to receive the infor-

20

25

30

35

40

45

50

55

60

65

10

mation at a glance without having to go through tedious steps
to get the traffic information from a mobile web browser. In
this embodiment, the information may be periodically pushed
to the widget, rather than pulled by a user using the web
browser.

In another embodiment, a widget may be a mobile display
of personal media. For example, a user could carry her favor-
ite family photographs in a mobile slideshow widget. Widgets
like these may include simple to-do lists, music playlists with
links to the media, video playlists, person-to-person greet-
ings, and the like. In many cases, may be possible to construct
the widget’s user interface in a unique or simple way so that
it is easy to use by the end-user.

Inanother embodiment, a widget may use special functions
or device services of the mobile computing device, such as a
voice recorder, a camera, or a video recorder. As an example,
a mobile widget may allow a user to record a voice note and
upload it to another user or web site. In another embodiment,
a widget may be related to communication. Widgets may
offer access to Instant Messaging, Voice Over IP (VOIP)
call-bridging, and chat rooms.

The foregoing embodiments provide several examples of
mobile widgets supported by this disclosure. However, other
types and configurations of mobile widgets apparent to those
skilled in the art may also be created, published, and used in
the system of the embodiments described above.

There are many ways in which users may discover mobile
widgets, such as through affiliate sites like web logs (blogs),
online content brands, or aggregators where mobile widgets
are featured. In some instances, users may receive an invita-
tion from a friend or users may hear of the widget service and
access the widget service’s website or mobile sites. In any of
these potential use cases, users may be allowed to preview and
pick various widgets and then register to receive mobile wid-
gets on their mobile phones. After registration, users mobile
phones may be provisioned with the widget service client
software via a text message or email. Users may then manage
their own widget sets from the widget service mobile client
software or from the widget service web front end. Users may
program the widgets as to how often data should be down-
loaded, how much data should be downloaded, and the like.
Users may use search capabilities on the device to add more
widgets or invite other friends to use widgets.

Widgets may include multiple components, some of which
may be executed or rendered on the mobile device. When
executed or rendered, widgets may access a common device
API provided by the client, and may access a feature of the
mobile device, without necessarily accessing any of the dis-
tinct APIs native to the mobile devices.

Widget Installation

Once a widget is created, it may be uploaded to the server
110 for storage and indexing. The server 110 may store the
widget in a database. In one embodiment, the widget’s mani-
fest may also be read to obtain the widget name, description,
tags assigned to the widget, creation time, author, version,
and other attributes. These attributes may be indexed by the
search engine so that the widget can be searched by end-users
to be added to their accounts.

In an embodiment, users may either browse a catalog (gal-
lery) of widgets or they may search for a particular widget.
Once found, the user may add the widget to their account
using the user interface. When a widget is added to a user
account, an entry may be created in the database that refer-
ences a widget and applies to the user account. A user account
may be specified when a user “logs in” to the system via the
web user interface or via the mobile client unique identifier.

Booking, Exh. 1054, Page 79

US 8,595,186 B1

11

By having this entry in the database, the user has effectively
added the widget to their account.

Referring to FIGS. 4(a) and 4(5), the user may synchronize
their mobile client with their online account. The client syn-
chronization engines 452 and/or server synchronization
engine 408 may detect that a new widget has been added. The
widget may be transmitted to the client.

The mobile client 141 may install the widget by unpacking
the widget archive. Installation may be handled by an instal-
lation component of the client 141, where the installation
component is designed to install widgets onto the mobile
device 140. Installation may be permanent, persistent, tem-
porary, or of some other definite or indefinite duration. Instal-
lation may include unpacking the widget components, install-
ing each, some, or a section of some of the components onto
the device. Such installed components may include code,
compiled code, images, text, video, multimedia, and so forth.
Widget installation may also include decompression of the
widget or other processing before installation. The widget
may then be registered into the user’s views. The user can then
interact with the widget. The widget may contain code that
retrieves additional data if required. For example, an RSS
feed widget may have a server counterpart that fetches feeds
and reformats the feeds to the capabilities of the mobile client.
This may include resizing images, transcoding the content to
simplified HTML, transcoding media types such as video,
etc. The widget may then utilize the synchronization engine
on the client 452 and the server 408 to transmit data between
the systems.

Widget Client System Architecture Overview

FIG. 1(b) illustrates one embodiment of the widget client
system 141. The widget client system 141, also referred to as
a client framework and widget-execution engine, may be
located on a mobile device 140. The mobile device 140 may
include an operating system 143. The operating system may
provide a device services API 150. The device services API
150 generally refers to an interface to device features, ser-
vices, and/or capabilities of the mobile device 140. Device
services are provide access specialized features of a phone.
These features may include a speaker, a GPS device, a micro-
phone, a camera, a videorecorder, a homescreen user inter-
face, a touchscreen, an accelerometer, a transceiver, a raw
network connection, a network socket, a software email pro-
gram, a software calendar, a data store, and a software per-
sonal information manager. Device services APIs may also
include, but are not limited to, functionality such as getting
the device’s current location via a device GPS module,
accessing spatial orientation data via the device’s accelerom-
eter, capturing pictures, audio and video, displaying content
on a home screen of the device, interfacing with device appli-
cations such as an address book and calendar to perform
actions such as send mail, accessing SMS, Instant Message,
or phone call or data transmission functionality, accessing
device battery levels, controlling display brightness levels,
vibrating the device, and use the speaker to output sound.
Device services APIs may further include an API for allowing
a software application on a mobile device to send data to
another software application on the mobile device, display
customized content within a mobile device screen saver, dis-
play content on a secondary physical display screen, generate
apopup notification, access a mobile device ID, access and/or
display area maps on a mobile device display, access wireless
signal strength information, and so forth. A device API may
further include an API for monitoring an event (e.g., receipt of
a text message, receipt of an email, receipt of a phone call, or
activation of an alarm) and an API for executing, waking, or
launching a widget application in response to the event.

20

25

30

35

40

45

50

55

60

65

12

So, for example, the operating system 143 may provide a
proprietary API 150 to allow authorized applications running
on the device to access one of the specialized features of the
device. The API may include calls to open the camera shutter,
close the shutter, and save the image to a storage location.
Various mobile devices 140 provide different features, func-
tionality, and services, so the operating systems (which run on
the devices) will provide various device services APIs 150.
Additionally, various operating systems 143 may provide a
different device services APIs for the same feature. Thus, a
program written for one device and operating system may not
be able to run on another device or operating system.

The client widget engine 141 may run on top of the oper-
ating system 143. Alternatively, the widget engine 141 may
be a component or constituent of the operating system 143.
The engine may provide functionality for widgets 142 to be
executed on the mobile device 140. The widget engine 141
may typically provide a renderer 160, an execution engine
170, and a common device services API 180.

In turn, a widget 142 to be executed on the widget engine
141 may contain, among others, a declaratory language com-
ponent 161 (e.g., a declaratory markup language such as
HTML) and an imperative language component 171 (e.g., a
scripting programming language such as JavaScript). The
declaratory language component 161 may be rendered or
otherwise executed by the renderer 160 or the widget engine
141. The imperative language component 171 may be
executed by the execution engine 171. The imperative lan-
guage component 171 may also contain code calls 181 to
device services and features. These calls may be to the com-
mon device services API 180 provided by the widget engine
141.

FIG. 4(b) depicts another embodiment of the widget client
framework 141 comprising additional components. In some
embodiments, the components may run on an application
host. Components and their respective functions may include:

A widget repository 451 may provide storage for widgets

A synchronization engine 452 may synchronize data
between the client and the server.

A rendering engine 160 may include a mobile browser
canvas and/or a vector graphics engine.

An execution engine 170 may execute runnable code. It
may include a virtual machine.

An advertisement engine 455 may provide offline delivery
and display of advertisements

A home screen 456 may provide an idle screen for display-
ing summaries of widgets.

A widget entry point 457 may provide the ability for wid-
gets to be downloaded and installed. Widget discovery
may provide for automatic download of widget applica-
tion or descriptions, and may take place in the absence of
user instruction.

A widget permissions engine may control and monitor the
execution of the widget, or components of the widget,
such as JavaScript, and may preclude a widget from
accessing unauthorized functionality of the device.
Malicious or other widgets may be terminated or other-
wise be caused to cease execution by the widget permis-
sions engine, if, for example, the widget permissions
engine detects that the widget has attempted to access
unauthorized functionality of the device. The permis-
sions engine may also modify the widget, such as by
adding additional permissions restrictions and by utiliz-
ing personalization or marking (such as by adding warn-
ing banners to widget displays). The engine may prompt
the user for instructions.

Booking, Exh. 1054, Page 80

US 8,595,186 B1

13

A data access management component may be configured
to allow a widget application (or other component of the
mobile client) to write data (including program data,
content, prefetched data, and so forth) to a storage loca-
tion. This location may be inaccessible to other widget
applications and software programs installed on the
mobile device. Alternatively, or in addition thereto, the
data access management component may also allow a
widget application to write data to another storage loca-
tion that is accessible to other widget applications and
software programs installed on the mobile device. The
data management component may use any of a variety of
other permissions schemes to control access to data
stores.

The following sections detail components and functional-

ity of some embodiments of the widget engine 141.
The Rendering Engine

The rendering engine 160 may generally parse and execute
a declaratory language. Declaratory languages include
markup languages such as XML, HTML, XHTML, and
SGML. The language need not be declaratory, and may be
functional or imperative. These languages may form compo-
nents of a widget application.

The rendering engine, also known as a microbrowser, 160
may include a mobile browser canvas 3300. FI1G. 33 depicts a
schematic diagram of one embodiment of an execution
engine and mobile browser canvas 3300. FI1G. 33 illustrates,
among other elements, a repository of pre-built widgets 3335
and a font rendering engine 3370. According to one embodi-
ment, the mobile browser canvas 3300 provides a canvas for
application developers to render user interfaces for applica-
tions. This canvas may be a modified XHTML and SVG
rendering engine. The canvas may allow application devel-
opers to display rich user interfaces. User interfaces may
include formatted text and bitmap graphics as well as vector
graphics. Embodiments may implement caching 3305 of, for
example, rendered elements, a second canvas 3315 for, for
example, pre-rendering a second frame for display while
keeping a first canvas 3345 active on the display, and active
client server pages 3320.

Mobile Browser Canvas Widgets

The following are widgets that application developers may
use to display user interfaces. These widgets may be stored in
a pre-built widgets repository (FIG. 4(b), 451). These widgets
may be accessible to widgets executing on the widget engine
141.

Display Widgets

These types of widgets may display information. In some
embodiments, users do not interact with these widgets.

Some widgets may display or render bitmap images. The
mobile client may have two different versions of an
image renderer. The first may be used when a mobile
client has more resources. In such a case, there can be
simple image manipulation such as bitmap scaling. In
more resource constrained devices, image manipulation
can be done on the server and sent to the mobile client for
display.

Some widgets may display text, possibly with formatting
and word wrap. Formatting includes font type (e.g. pro-
portional, fixed width), font style (e.g. bold, italics,
underlined), color, size, etc. Text flows on a document
with word wrap and may be modified through various
formatting commands to flow differently (e.g. center,
right justified, flow around images, etc).

Some widgets add a break to separate two objects on two
different lines. These widgets may also be rendered as a
graphical line on the page (a horizontal rule).

15

20

25

30

35

40

45

50

55

60

65

14

Some widgets may act as a container for any object. This
may be a logical container that bounds the text, images,
and other objects. An example is a table cell where
contents fit within a defined boundary.

Some widgets may display enumerated or bulleted lists.
Lists may be indented to show hierarchy.

Some widgets provide for a 2-dimensional table to be
displayed in rows and columns.

Some widgets provide a cell within a table that contains
any object.

Some widgets provide a reference element that may be in
conjunction with hyperlinks to allow for a hyperlink to
be traversed to various parts of the same page rather than
on different pages.

Interaction Elements

Interaction elements may allow users to interact with the
mobile widgets. Interaction may be accomplished by select-
ing the widget by directional cursor movements, mouse
pointer movements, stylus clicks, voice commands, etc. For
the mobile client implementation, the system may use well-
defined input mechanisms available on mobile devices such
as directional cursor movements and stylus pen inputs.

A four-way directional cursor pad may be used to move a
selection “cursor” up, down, left, or right (as per cursor pad)
to select the elements on a document. In one embodiment, if
there are no selectable elements on a page, the document may
scroll up or down (depending on the direction the user has
selected) until a selectable widget is visible. The system may
then select the widget and change its visual indicator to indi-
cate that the user has selected the widget and that this widget
can perform some further action based on further user input.

For the user interaction elements, there may be a hidden
form widget comprising form-specific elements. In one
embodiment, all form-specific elements may have a name
assigned to them as well as a value. When the form widget is
“submitted”, the data contained in the form may be collected,
encoded, and sent to a specified URL for further processing.
These name and value pairs may then be considered the data.

Appendix F lists sample user interaction elements accord-
ing to an embodiment. FIG. 35 illustrates example interaction
elements according to one embodiment (3510-3590), includ-
ing, for example, hyperlinks (3510), text fields (3520 and
3540), controls (3530), checkboxes (3550), radio controls
(3560), list boxes (3570), drop-downs (3580), and file upload
controls (3590).

Meta Information Descriptors for Visual Elements on
Mobile Client

The elements described above that accept user input can
also have optional attributes to provide additional context to
the system to apply additional actions that the user can per-
form. These optional attributes may be specified in the same
manner as other attributes on the elements.

According to one embodiment, one such usage of the meta
descriptor is the use of automatic form filling with last entry
history. A naming convention is used for describe some of the
entry fields. For example, “email” is used to describe a user’s
email address, or “phone-mobile” can be used to describe a
user’s mobile phone number. When the page renderer
encounters such entry fields, it may optionally changes the
visual indicator of the element so that the end-user knows the
automatic form filling can apply to the fields. The form may
then be filled manually by the user (in which case the entries
are saved into a storage mechanism which exists locally and/
or remotely on the server). Alternatively, the renderer may
display special user interface features when users select the
input element. For example, in a text entry field where a meta
descriptor is specified, the background color might change to

Booking, Exh. 1054, Page 81

US 8,595,186 B1

15

yellow, indicating that this field can be auto-filled. The user
selects this field at some point. A popup can then appear,
presenting the user with items that the user can choose using
any input mechanism. After filling, the result is saved into a
history stack so that whenever the renderer encounters the
element again, it can present to the user the entered items
again.

In addition to the history stack, the meta descriptor values
can come from external sources. According to one embodi-
ment, the user may register on the web site. They enter their
personal information such as name, address, phone number,
etc. This information is transmitted to the client at some point
using the synchronization module. The mobile client can then
use this data to fill form elements conforming to the naming
conventions and implementing the meta descriptor attributes.

The mobile client 141 may contain a parser for languages.
Two such parser are described below, but the client 141 may
generally parse any programming or rendering language,
including XML, XHTML, SVG, other declaratory markup
languages in general, as well other languages such as the
imperative languages C and Java and the functional language
Scheme.

XML Parser

With reference to FIG. 33, the following is one example of
an XML-based parser 3325 to render HTML. XML is a
text-based document that conforms to certain rules to make
machine parsing easier. The parser in this example may be a
non-strict version to handle some instances where user-en-
tered XML code might not be compliant (as might be the case
with HTML documents). There are several ways to handle
non-XML compliant documents. One is to have a relaxed
parser. Another is to tidy up the document to be XML com-
pliant before parsing. Both methods are compatible with the
present disclosure, but only the first method will be described
below.

According to one embodiment, the first element may be
lexical analysis whereupon the document is broken up to get
the characters. The XML parser may choose not to validate
the XML for correctness. For example, when the parser
encounters a tag that does not close, it may be closed auto-
matically rather than generate an error. To do this, the engine
may provide two stages: A generic XML parsing stage and a
semantic information processing stage.

In the generic XML parsing element, the parser parses the
input to determine what the next item is. The item may be a
tag, end tag (that closes the opening tag), text (exists between
the start and end tag), or end of file so that it is known when to
stop calling the function. The function may return a constant
to specify what the next retrieved type is (e.g. TAG, END_
TAG, TEXT, or EOF) so that other functions may be called as
appropriate. Appendix E contains pseudocode for some
embodiments of the first element of parsing.

The second stage of the parser may grab the XML elements
and match against HTML tags. [t may keep a stack of tags that
are to be closed in a stack. So, for a start tag, it waits for an end
tag matching that name to arrive. When we encounter a start
tag, we place it on the stack. When we encounter an end tag,
we’ll match against the start tag at the top of the stack. If it’s
the same, we’ll pop that one off. If it’s not the same, we’ll
keep popping the tags off the stack until we find the matching
start tag or until the stack is empty. Similarly, we can handle
the following case. A start tag is placed on the stack. Then,
another start tag begins that is the same as the start tag on the
top of the stack. This should not occur in HTML. So, we pop
off the tag on the stack and close both tags.

20

25

30

35

40

45

50

55

60

65

16

Parser for XHTML and SVG

The user interface of a widget may be specified using a
declarative syntax such as XHTML. It may be provided as a
declaratory markup language component of the widget.
According to one embodiment, widgets may be based upon
XHTML and SVG standards derived from XML documents
(seethese docs as ref). In this embodiment, the first element is
to prepare the user interface for display is to parse the user
interface. As mobile devices can be resource constrained, it
sometimes may not be possible to parse the user interface on
the device due to resource limitations. Hence, some embodi-
ments support several methods to parse and render the user
interfaces.

1. Mobile client parses the document. The mobile client
contains a parser (for XHTML 3325 and/or SVG 3350)
to extract document elements from the source. This may
be available for mobile devices that have more resources
to run through computationally intensive parsing steps.

2. Server parses the document. Ifthe client does not contain
enough CPU/resources to parse and compute, computa-
tions may be done on the server. The client may make a
request through a special server proxy. The client engine
may transmit capabilities (e.g. display sizes, font sizes,
client type). The server may compute X and Y coordi-
nates and dimensions of elements and transmit to the
client in a compact format that is simpler to parse. The
client may rebuild the data structures and render the
data.

3. Server modifies the document for the capabilities of the
client (also known as transcoding). The client may con-
tain a simplified parser. For certain widget user inter-
faces, the transcoding service on the server may break
down the user interface into simpler elements that the
client can parse. For example, HTML tables can be
pre-computed into X and Y coordinates as well as
bounds to transmit to the client while text formatting can
be parsed on the client. CSS (reference to CSS) can also
be applied on the server.

To support more scalable clients, an AP] may be made
available for capabilities discovery. Examples include ability
to do bitmap image scaling, supported multimedia objects
3365, supported input events, multiple screens, etc.

Vector Graphics

In some embodiments, within the renderer or mobile
browser canvas 3300, application developers may specify a
block of the canvas 3300 to display vector based graphics. A
component of the mobile client 141, or the renderer 3330,
may include a vector graphics display unit or engine 3355.
According to one embodiment, this is demarcated by the
<svg> tag. Attributes it can take are width and height of the
vector graphics area.

Various objects can be placed into the canvas. These may
include the following objects:

Rectangle—Includes and upper left x-y coordinate and a

width and height.

Circle—Includes an x-y coordinate for the center of the
circle and a radius.

Ellipse—Includes an x-y coordinate for the center and a
horizontal radius and vertical radius.

Line—Draws a line between two coordinates.

Polyline—Draws a series of lines between points.

Polygon—Draws a polygon between points and closes the
lines.

Path—Draws a complex path with the following com-
mands.

M-—move to an X-y coordinate
L—line to an x-y coordinate

Booking, Exh. 1054, Page 82

US 8,595,186 B1

17

C—cubic Bezier specified by 4 control points
Q—quadratic Bezier specified by 3 control points
Z——<lose the path

Text—Draws text using a vector-based font 3370 at a

specified x-y coordinate. The font may be stored in a font
cache 3375.

Images—Draws raster images.

The objects can take on various attributes to affect render-
ing. Some attributes include: color, fill color, font family, font
size, font style.

Transformations

Transformations may be applied to the objects. These may
include translation, rotation, and scaling, and skewing. In
some embodiments, only the first three, or some other subset,
of'the transformations may be implemented. The transforma-
tions may use matrix notion of linear algebra as follows:
Translation and Scaling Matrix:

[scale 0 translateX 1
[0 scale translateY 1
[0 0 1]
2D Rotation Matrix:
[cos(angle) -sin(angle) 0]
[sin(angle) cos(angle) 0]
[o 0 1]
Rendering

The renderer and/or mobile browser canvas 3300 may ren-
der the object primitives on a raster graphics display unit
3340. A mobile device may expose APIs to allocate and use a
block of memory to represent the graphics display. This block
of memory can represent screen pixels by the following equa-
tion:

mem_offset=x+y*screen width

Lines and curves that are represented by geometric equations
may be optimized for rendering on a pixel-by-pixel case
according to the following equations.

Lines

Lines may be rendered on a raster graphics display canvas
using J. E. Bresenham’s line drawing algorithm (“Algorithm
for Computer Control of a Digital Plotter”). It describes an
method of line drawing by using an error value that is accu-
mulated as lines are traversed.

Circles and Ellipses

Circles and ellipses can be rendered on a raster canvas
using a variant of Bresenham’s line drawing algorithm as
described by J. R. Van Aken “An Efficient Ellipse Drawing
Algorithm”.

Bezier Curves

The quadratic Bezier curve is described by the following
parametric equation. Given points PO, P1, and P2:

B()=(1-0)2P0+2t(1-H)P1+12P2, 1e[0,1]

The cubic Bezier curve is described by the following para-
metric equation. Given points PO, P1, P2, and P3:

B(1)=PO(1-)3+3P11(1-1)2+3P22(1-D)+P313, 1€/0,1]

An approximation to a raster canvas may be made by
breaking up the curve into several line segments (e.g. 16
segments). These line segments can be rendered individually
using the Bresenham algorithm for line raster rendering.

20

25

30

35

40

45

50

55

60

65

18

Computation for the points on the segments can also be made
by breaking down the equations. For example, one can solve
for (1-t) in the equations above. One can also assume that at
the beginning of the curve t=0 and at the end of the curve t=1.
The Execution Engine

Widgets may contain sections or components of general
programming language code. Such code may increase the
expressive power available to widget designers relative to
widgets containing declarative (e.g. HTML) code alone. The
execution engine 170 (FIG. 1(b)) may execute code that has
been compiled. In some embodiments, the widget execution
engine 141 may be unable to compile code. Alternatively, the
execution engine may contain a compiler or interpreter, or
make use of a compiler or interpreter on the mobile device
140. The execution engine 170 may execute (and therefore
widgets may contain) scripting programming language code,
such as JavaScript, and the script may be compiled, such as
bytecode or object code. The execution engine 170 may
include a facility for executing code written in another pro-
gramming language, and APIs that the code may access to
interface to device services 150.

FIG. 36 illustrates additional modules that may be included
in an execution engine 170 on the widget client, according to
one embodiment. The parser 3610 may be made to be an
optional component. If omitted, the server 110 may parse into
bytecode before sending. If included, it can have dynamic
script creation. Also included is a representation of the under-
lying hardware platform 3660 exposed by to widgets and/or
client or execution engine components. The platform 3660
may include hardware descriptions, handles, operating sys-
tem hooks and calls, APIs to device services and capabilities,
an SDK, and so forth. The native platform may be exposed, or
the execution engine may expose a modified, translated, or
protected platform 3660 representation to widgets or other
components.

A virtual machine 3620 may execute the bytecode and
interact with the user through APIs 3630. Bytecode may be in
the form of an octet stream (8-bits=1-byte). The virtual
machine may have an instruction pointer that points to alist of
instructions (bytecodes). After each instruction that gets
executed, the instruction pointer may be incremented (except
for branch instructions). Appendix D illustrates sample
1-byte opcodes of the instructions that may be implemented.

Virtual Machine Architecture

A generic virtual machine may support many languages.
However, adopting a simple version of JavaScript may lower
the learning curve to create applications. A compact, reduced
version of JavaScript may accommodate low resource mobile
devices. Operations may include:

Binary operators
Unary operators

+, -, %, /, etc
-

Assignment operators =, +=, efc
Object operators L (), [, ete
Access operators .

Declarations var

Execution function calls
Branches return, if, switch

Comparison operators ==, 1=, <, >, etc

A modified BNF of a JavaScript language subset is provided
in Appendix A. The code segment of such a virtual machine,
or the execution engine as a whole, may be less than 10,000
bytes, 7,000 bytes, or even smaller.

The virtual machine may be a stack-based architecture or
machine. With continued reference to FIG. 36, values that are

Booking, Exh. 1054, Page 83

US 8,595,186 B1

19

required by the instructions may be pushed and popped from
the stack 3640 as required. In addition, a heap space 3650 may
be provided where variables of a particular scope get stored.
Whenever a new scope is created, a space for heap 3650 may
be created and pushed onto the stack. Whenever program
control leaves a scope, the space for the heap 3650 may be
popped from the heap stack and destroyed. In addition to the
local scope, a global scope may be provided. If references to
variables do not exist on the local scope, the global scope may
be referenced.

Stack

The object stack 3640 may be a temporary storage area that
the virtual machine 3620 may use to perform computations.
The stack 3640 may be a last-in-first-out stack where the last
item pushed into the stack 3640 may be the first item popped
out of the stack 3640. Various computations may be per-
formed using postfix operations on the stack 3640. The stack
may be located on a data storage module 3680.

Heap

The object heap 3650 may be used by the virtual machine
to save the values of variables. In the example above (section
on “‘stack” 3640), the variables “x”, “y”, and “z”” may be used.
These variables are stored in the object heap 3650.

The object heap 3650 may be garbage collected as
described in the “garbage collection” section below. Garbage
collection may clean up and free up space in the heap 3650 so
that more objects can be put into the heap 3650 without the
developer having to concern themselves about managing the
heap 3650. Cleanup may be needed when objects in the heap
3650 are no longer referenced by widgets. The heap may be
located on a data storage module 3680.

Garbage Collection

A garbage collector 3670 may be provided for freeing
unused memory. For simplicity, a simple mark-and-sweep
algorithm can be used. It can be invoked at strategic moments
(e.g. after 1000 instructions, after 60 seconds, after idle, etc.).
An alternative is the store and copy approach. This approach
avoids fragmentation at the cost of using double the memory
required. Yet another alternative is the mark and compact
approach which combines features of both. Pseudocode
descriptions of some embodiments of the algorithms are pro-
vided in Appendix B. The garbage collector may be opti-
mized for the particular languages to be executed by the
execution engine. For example, an engine which executed
compiled JavaScript may implement a version of the mark-
and-sweep or mark-and-compact algorithms described
above.

Execution Engine APIs

In some embodiments, code executing on the virtual
machine may interact with the system resources and with the
user. Application Programming Interfaces (APIs) 3630 are
interfaces exposed to the virtual machine to display user
interface and get user input. These APIs include but are not
limited to:

File input/output (e.g. basic file I/O and abstractions like

databases)

Network operations (e.g. HTTP, sockets)

Graphics display (e.g. browser API and graphics canvas)

User input

Text parsing (e.g. XML)

Mathematical operations and functions
A further list of APIs and operations according to some
embodiments is provided in appendix C.

The operating system 143 (FIG. 1(b)) typically exposes
APIs to device features such as a camera. These APIs may be
called device services APIs 150. Different operating systems
143 on different devices may provide different APIs to the

20

25

30

35

40

45

50

55

60

65

20

same feature. So, for example, while many phones from dif-
ferent manufacturers may have cameras, the operating sys-
tems 143 on these phones may expose different APIS:
TakePicture() versus OpenShutter() for example. The API
may be included in the execution engine or may be separate
from it.

Depending on the underlying function they provide access
to, these APIs may or may not be exposed by the operating
system 143 to a given application.

The client widget engine 141 may provide a common
device services API 180 that may be accessed by executable
code 171 that includes calls 181 to devices features. The
common device services API 180 allows widgets 142 to be
made more independent from the underlying device 140 type
and operating system 150. Widgets may make a call to a
function included in the common device services API 180
with little regard to the underlying proprietary device services
API 150. As such, multiple engines may be installed on mul-
tiple different types of mobile devices, such as by different
manufacturers, where each of the devices utilizes different
APIs, programming languages, operating systems, OS ver-
sions, and other features, from other devices. Despite running
on different hardware/platforms, all of the engines may pro-
vide a common API for widgets to access common device
services of the mobile devices.

Widget Repository

With reference to FIGS. 1(5) and 4(5), in one embodiment,
widgets may be stored in a widget repository 451 on the
mobile engine 141. According to this embodiment, when a
widget 142 is installed, it may be unpacked. The resources
contained within it may be stored in the repository along with
some meta information about the widget 142. One of
attributes in the meta data may be a widget’s version. If
widget authors deploy newer versions of a widget, the widget
142 may be upgraded. This may work similarly to the client
auto update as described below. The widget version may be
compared against the version on the server. If there is a newer
version, this data may be transmitted to the client. The user
may either be prompted with a mandatory widget update or an
optional update (depending on what the widget author has
specified). If applicable, the new version of the widget may be
downloaded. If the download fails, the download may resume
the next time the application initiates a widget synchroniza-
tion. After a successful download, the old widget may be
removed and the new widget may be unpacked and registered
with the mobile client.

Synchronization Engine

With reference to FIGS. 1(5) and 4(b), the synchronization
engine 452 on the mobile client 141 may be used to ensure
that the data is the same between the server and the client. The
synchronization engine may work in conjunction with a
server-side synchronization engine described below.

Mobile Prefetch

Page requests take a finite time to load and render. Each
element within a page may make separate requests to various
servers to load resources (e.g., images). As such, a user may
wait for data to come over the network and the widget 142
(FIG. 1(b)) may be rendered before the user can begin to view
and interact with some content. Alternatively, the widget may
not be rendered until all or a portion of the data is received.
Some embodiments allow downloading or prefetching of data
in the background, thus allowing the user to interact with
other, non-blocking widgets or with the data-requesting wid-
get as described below. Mobile prefetch may be initiated by a
widget, controlled by a widget, or operated autonomously by
the widget client engine 141.

Booking, Exh. 1054, Page 84

US 8,595,186 B1

21

Mobile prefetching works by downloading at least some of
the content needed before the user begins to interact with the
widget. Once the content is downloaded, users can interact
with the widget without having to make network connections
again. According to one embodiment, the process begins
when the widget is requested. The widget may begin down-
loading in the background. The user can then choose to per-
form other application tasks or wait for the download to
complete. Once the download is complete, the widget may
contain the resources necessary for the widget to function
without having to access the network.

Mobile prefetch can also be configured to download con-
tent in the background and have the result appear at a later
time. For example, a large video clip may take, for example,
5 minutes to download. The user may prefer to perform other
activities while the download occurs. According to one
embodiment, the widget may call the mobile download or
prefetch module to fetch the specified resource in the back-
ground and to put the resource into a “mailbox” that users can
later visit to pick up the content. The download proceeds and,
eventually, the download completes. In some embodiments,
an unobtrusive notification appears (either audio or visual) to
indicate that the download has completed. The user can then
open the mailbox to retrieve the content and play it.

Another application of the mobile prefetch is to enable use
of'the mobile client by mobile devices with extremely limited
storage. Although the mobile client can prefetch the data for
all of the widgets before usage, storage-limited mobile clients
may choose a delayed on-demand fetch instead of prefetch.
The user may select the content they wish to prefetch and
content that they wish to only fetch on demand. One example
is the display of articles on a web site. The user may choose to
prefetch the article titles first and then retrieve the article
content only when they wish to view the article. Note that this
is slightly different from the above where content is down-
loaded into a “mailbox”. In this case, the download may occur
on-demand so that the user can view the result as soon as the
download is complete.

In some embodiments, widgets may query an API provided
by the engine 141 in these two modes to render themselves
differently. For example, in a grid view mode where the
widgets may be “minimized”, a widget might render itself as
“grayed-out” when there is no data. Then it may change to a
flashing indicator to indicate when there is new data or can
change to a static image once the user has viewed the data for
that widget.

Engine Auto Version Update

Mobile client engines 141 that are downloaded for instal-
lation on a mobile device 140 may have versions associated
with them. When a newer version of a mobile client 141 is
available, the older mobile client 141 may need to be updated.
There may be two types of version updates. The first is a
mandatory update in which the old mobile client must be
updated in order to further use the services of the server. The
second is an optional upgrade where an older mobile client is
not required to be updated in order to function. For example,
new features might have been introduced but the same basic
functionality is preserved, and hence does not require an
update.

Mobile clients may be notified of new updates. According
to one embodiment, when a new update is available, the
update is marked on the server. The server may then maintain
a list of versions that it keeps track of and may keep the
current version that has been deployed. When a new version
becomes available that is not the current version, mobile
clients may be notified. This may occur when the mobile
client connects to the server as follows: As part of a hand-

20

25

30

35

40

45

50

55

60

65

22

shake, the mobile clients send their current version. The
server responds with whether there is a new version ornotand
whether or not it is a mandatory update. The mobile client
then acts appropriately. If a new update is to be downloaded
(user accepts the upgrade), the mobile client may connect to
the server at a URL that either has been transmitted to the
mobile client during handshake or to a default URL embed-
ded with each mobile client. The URL may be a download
page that allows users to download a new version of the
mobile client, replacing or superseding the old version.

Widget Service System Architecture:

Referring to FIG. 4(a), the widget service server system
110 may include one or more modules. The modules may be
split on different physical machines. There may be additional
components in an embodiment. The server system may
include one or more of the following illustrated components:

A web and mobile front end 400 may provide a user inter-
face on the desktop using a web browser, WAP browser,
or mobile client.

Content adapters 402 may provide plug-in points for exter-
nal data sources to enter the server. Some content adapt-
ers include video feeds, RSS feeds, web services, rela-
tional data bases, HTML pages, email, calendaring data,
instant messaging channels, etc.

A content caching module 403 may cache external data so
that an external fetch to satisfy a request from a mobile
device may not always be needed.

A user vault 404 may store user passwords for the server as
well as for external services requiring passwords (e.g.
external email accounts).

A search module 405 may index and search the content on
the server. The search module 405 may make the content
on the server available to external search engines.

A session manager 406 may manage web and mobile ses-
sions and sessions between the web and mobile.

A mobile application module 407 may host widgets. This
module may be include a device detection module 412
and a widget application repository.

A synchronization engine 408 may synchronize data
between the server and the mobile client and the data
may be used by a widget. For example, specified widget
application may be sent by the server to the device dur-
ing synchronization.

An ad syndication Engine 409 may serve ads at specific
frequencies, for different demographics, in different for-
mats.

A location engine 410 may determine a user’s location and
may allow widgets to be served based on location.

A transcoder 411 may convert a resource from one format
to another format. For example, it can simplify HTML of
complex sites into simpler HTML that may be more
easily parsed. Some transcoders may transcode one
video format to another for device suitability

A device detection module 412 may detect the device type
and deliver the correct experience to the user.

A livecasting engine 413 may provide a streaming inter-
face to mobile clients.

A billing server 414 may handle billing requests and exter-
nal billing servers.

A logging module 415 may handle logging errors and
actions for statistics.

Widget creation and publishing tools 416 may include
various hosted and offline tools for creating and publish-
ing mobile widgets.

A connection to external widget creators, such as by a web
services API, such that 3’7 parties may have a level of
access to the server.

Booking, Exh. 1054, Page 85

US 8,595,186 B1

23

The following sections detail some of the components of
the Widget Service Server system depicted in FIG. 4(a).

Content Adapters

The content adapters 417 may serve to determine what type
of content can be processed. Content adapters 417 may then
process the raw data into a structured format that is usable in
the server system 110. In the system 110, there may be a
registry of adapters 417. Each adapter may register the type of
data that it accepts and the location of the adapter.

Raw data may come into the system through channels.
Data can go through a directed channel where it is known
what type of data needs to be transformed. Alternatively, data
can go through a global channel where the system determines
the appropriate adapter that can handle the data. In the case of
a directed channel, the system need not process what type of
data is coming and can let the adapter handle the data. Accord-
ing to one embodiment, for a global channel, a stream is
obtained from the data source. The raw data may flow through
this stream. The system may pass this stream to each of the
registered adapters. Each adapter 417 may determine from
the stream whether it can handle the stream or not. If it can
handle the stream, it notifies the registry that it can handle the
data and may proceed to process the data.

In the event that there is more than one adapter 417 than can
handle the stream, a priority-based system may be in effect.
As an example, an RSS feed data source can be handled by an
RSS parser, a web service by web services adaptor, and an
XML document by an XML parser. The system 110 may
provide a method of registering priorities of adapters in an
adapter registry such that a specific kind of adapter 417 such
as an RSS feed adapter may have the highest priority while a
plain text document parser may have the lowest priority.

The raw data may be then processed for fast access and
optimal delivery to mobile clients. It is up to the adapter 417
to determine how best to optimize the raw data. According to
one embodiment, this may be done as follows: The raw data
may get processed as appropriate for its data type. For RSS
feeds, data may pass through an RSS feed parser. The data
may be represented as objects while parsed. The data may
then get normalized into a common data format so that other
types of feeds (such as ATOM) can be stored in the normal-
ized data structure. The normalized data may then be merged
as appropriate with the data that is already in the data store. In
the case of RSS or ATOM feeds, each feed may have many
articles. After normalization, the articles may be taken and
then compared against what is already in the data store. If it
doesn’t exist, it can be added. Otherwise, it can be ignored.
The result is one unified feed that may contain all of the
unique articles. The data can be filtered some more based on
user preferences. For example, a search string could be speci-
fied such that a user receives only articles matching the
search. Finally, the data may be transcoded to match the
capabilities of the mobile device and the mobile application.
The resulting transcoded data can be cached for fast access
when multiple users with the same feed requirements access
that data.

Text Data Sources

Textual data may come from a variety of data sources. One
example is from RSS feeds that web sites can publish.
Another source could be a relational database. Another could
be a via human entered sportscasting tool. Still another could
be from an IM (instant messaging) platform or a chat system.
FIG. 13 describes a system by which textual data enters the
system for delivery, according to one embodiment:

1) Various text sources have people 1310 entering text.

2) Respective capture tools 1320 transform human entered

content into computer structured format. Examples:

a) Event data (such as events that happened on a ball)
such as direction, speed, number of points for the
event, etc., may be captured

5

20

25

30

35

40

45

50

55

65

24

b) Commentary data (human readable text about the
event)

¢) RSS-type feeds that might contain articles, pictures,
etc

d) IRC data

e) Others such as web content

3) Data may be saved onto disk 1330.

4) XML export 1340 for transfer to an encoding server that
merges feeds together to form a single coherent channel
for each feed type (e.g. one channel for each game, news
site, traffic data, etc)

5) Parser 1350 receives XML data and transforms back to
structured binary data for further processing.

6) Normalizer 470 (FIG. 13) converts the various XML
data formats into a meta structure for consumption. E.g.
ATOM, RSS, CDF format variants are normalized into a
data structure that encompasses the attributes of each
format.

7) If data is sent in chunks, the merge module 1370 takes
the chunk and combines it with an existing channel.

8) Final result is saved to disk 1330.

In this application, methods as described immediately above
do not necessarily include all of the listed elements.

Pull Adapter

The content adapters 417 may have push and or pull inter-
faces. The pull interface may implement a polling policy that
has certain parameters to influence polling characteristics.
For example, over HTTP, the source server could transmit
HTTP headers to control the cache content of the feed (e.g.
when the feed expires so that we can fetch again). The fre-
quency of the polling may also be influenced by the number of
subscribers to the feed and the usage patterns (when the feed
gets accessed). These policies may affect the frequency of the
polling, thereby improving the speed at which the end-user
receives the feed. The system may not need to fetch the feed
every time a user makes a request for the feed. Furthermore,
since the feed may be cached, many different users could
share the cached content without having to refetch over a slow
network.

For sources that need timely updates, the source may be
prefetched as appropriate using the above described fre-
quency fetching policy. This policy may ensure that the server
is not overloaded by unnecessarily fetching and may also
allow for timely updates to mobile devices. The policy can
also be overridden to update on a fixed schedule. This might
be done with sources used for demonstration purposes, for
example, where users might not necessarily subscribe to the
source, but the source content needs to be fresh.

Polling Server for Prefetching

To optimize on server bandwidth, the following algorithm
may be used to determine when to pull content from a feed
source (if the feed source requires polling):

1. Obtain a list of all feed sources that need to be polled.

2. Obtain the frequency of access for each of the feed
sources.

3. Fetch content from the feed source according to a fre-
quency schedule.

4. Save the content in a caching server.

‘When a user performs an action that requires accessing a feed,
the following algorithm may be used:

1. Mark the last accessed time for the feed.

2. Ifaccess time interval is lower than previous interval, set
the new interval.

3. Reset intervals to a default after a set number of days.

Push Adapter

A push mechanism may also be used, where a content
publisher can push updates to the server when some data has

Booking, Exh. 1054, Page 86

US 8,595,186 B1

25

changed. Polling policies need not apply here. When new data
arrives, it may be normalized and transformed as appropriate.
For example, sports data is usually pushed since the clients
need to be updated in a timely fashion. After the data is
received, the clients may then be notified as appropriate.

Parsing/Content Transformation

When raw data enters the system, it may be sent through a
parser 3310 (FIG. 33). The parser 471 reads the raw data and
converts it into data structures.

Server Content Fetching and Transform

Data may enter the server 110 through polling or push
adapters as described above. A method by which data enters
the system, according to one embodiment, is shown in FIG.
15 and described below.

1. Fetch content either through polling or push receiver

(1501).

2. A content parser detects the type of content received and
parses and normalizes into common data structure
(1502).

3. Data is stored on disk (1503).

4. A content filter looks at the raw data in the disk, finds the
feeds, and either removes or transforms the data appro-
priate for the target (1504). Examples:

5. User wants to filter out adult content

6. Search to find relevant content

7. Filter items that haven’t been viewed yet

8. A transcoder transforms the content into a format that
various clients can understand (1505).

9. An insertion module allows for advertisement insertions
(1506).

10. A delivery module delivers content to the client using
various methods (1507).

11. A cache module caches the transformed content from
elements 4, 5, 6. Each user may have their own cache
blocks. The cache module pre-fetches and pre-trans-
forms the data to go into cache. When the user requests
data, a fetch is made from the cache. If not existent in
cache, the module may perform transformation imme-
diately (1507).

Livecasting Engine

A mobile livecast widget may refer to a specialized mobile
widget that delivers an interactive personalized information
stream about an event. Such information may include, with-
out limitation, a combination of a user-personalized event
status, event-specific graphical illustrations that depict vari-
ous states of the event, relevant summaries of the event, edited
media clips including video clips, photos and commentary,
play by play event descriptions, event based notifications,
related statistics, and charts. Multiple end-users may be able
to simultaneously consume the information stream from their
terminals. Further, the information stream may be personal-
ized based on the end-users’ preferences and the terminal
capabilities.

A livecast channel may refer to a specific mobile livecast.
Alternatively, there may be many channels being delivered to
different sets of users. Users may be able to select and “tune
in” to a specific mobile livecast. An exemplary livecast widget
for the game of cricket is depicted in FIG. 34. Another
example of a livecast widget could be streaming video of a
live concert or streaming text and picture updates from a live
event such as a competition, conference, or media reporting.

FIG. 19 illustrates one embodiment of a livecasting engine.
According to this embodiment, the engine is a real-time sys-
tem by which clients access information that is guaranteed to
arrive within a certain period of time. The livecasting engine
may be used for serving up videos, sports scores, instant
messages, stock quotes, or any other information that requires

20

25

30

35

40

45

50

55

60

65

26

timely delivery. Each collection of related data is called a
stream. A stream could be a sports match, for example, or a
stock feed. Streams could further be categorized into groups
(e.g. the games in a series correspond to streams in a group).
Within each stream is a collection of channels. Example
channels are videos, audio, text commentary, scores, adver-
tisements, etc. Each stream is assigned a unique identifier.
This is used, for example, in conjunction with the billing
server to identify the streams that a user has purchased for
receiving.

The livecasting server may include multiple subsystems.
The first is a data source aggregation module 1910 where
various content sources 1920 enter the system through adapt-
ers (as described by pull adapters above). Sources 1920 can be
automated (RSS feeds) or manual (video clipping). In the
case of video clipping, tools may be available to clip the video
and then assign timestamp information for synchronizing the
video stream with other streams later in the pipeline (as
described below).

Content can be transcoded so that the media can by ren-
dered by the various connecting device types. This is done
through a transcoding engine 1930 that is specific to different
media types (described in the transcoding section above).

The various streams of information may be then synchro-
nized by the media synchronization engine 1940. This engine
may take the different media types and match them to form a
coherent stream of data including the different channels. An
example is video, audio, and text commentary streams that
come together so that the streams match their time signatures
with one another. This may be done by marking each stream
as they enter the adapters with timestamp information. This
timestamp information provides a reference for the time at
which the content enters the system. The timestamp may be
provided by the system or provided externally. In one
embodiment, a sportscasting widget may contain several
streams of information. The first stream that may arrive is a
text stream containing text commentary of what happened at
a particular time. In the meantime, video may be processed
externally (clipped, edited, etc) and then sent to the server.
Before the video is sent, it may be marked with a timestamp
for the time at which the video is pertinent. So, after the
stream enters the system, the video stream can match with the
text stream based on the timestamps.

A broadcast module 1950 may then send the data stream to
the connected clients 1960. The broadcast module may also
send data to replication servers 1970 to distribute high server
loads. According to one embodiment, the replication server
may contain a registry of listeners 1960. For each listener,
there may be a channel by which data can be pushed through.
There may also be a cache 1980 that temporarily stores data
for transmission. This data is in a pre-rendered form for the
various devices (as created through the transcoding engine
1930). For example, a video stream would have been rendered
into WMV, 3GPP, MPEG2, MPEG4, QuickTime and into 3
different bitrates (for different network speeds). There may be
a provision for the broadcast module 1950 to request the
transcoding engine 1930 to transcode to a new format on
demand. This might happen in the case when a requested
format does not exist in the cache 1980. In this case, the data
may be transcoded on demand and then stored in cache 1980.
As data is to be broadcast, the broadcast module 1950 may
pick up data from the cache 1980 and send to the connected
clients 1960 (it may be unaware whether the connected client
is an end-user mobile device or a replication server 1970).
However, the adapters to which the listeners 1960 connect
may determine what to send to the respective end points. For

Booking, Exh. 1054, Page 87

US 8,595,186 B1

27

example, a replication server adapter 1970 may broadcast
other metadata about the streams (such as author, stream
sources, creation times, etc).

Onthe client 141 (FIG. 1(5)), widgets 142 can be created to
listen for the streams. They can request different channels in
the stream to be transmitted based on user requests and device
capabilities. As an example embodiment, a livecast stream
may contain several channels, video, audio, text, advertise-
ments. On a device with limited network bandwidth, the
client can request only text and image based channels in the
stream (text and advertisements). Clients can later request
download of the omitted video and audio stream separate
from the original real-time stream. Users can delay the stream
due to bandwidth constraints. In an example embodiment, a
stream may contain video, audio, text, and advertisements
channels. The user may choose, for example, only text and
advertisements channels. So the text and advertisements are
sent to the client in real-time. The streaming widget 142 on
the client then displays an indicator to indicate that additional
data is available on a different stream. Then, the end-user can
initiate a separate download when he chooses to view this
additional channel. The download might take longer; how-
ever, the user may be able to view the channel. The livecasting
engine may support a backoff protocol, described below, to
support large numbers of mobile widget clients connecting
for updates frequently.

Location Engine

A location engine 410 (FIG. 4a) may generally act to store,
transmit, and make use of location information provided by
and to a mobile device. A mobile device may itself contain a
location identification module, implementing part of, all of,
or more than the functionality of the server-based location
engine 410, and the engine and module may work comple-
mentarily. The location identification module may be
designed to determine the location of the device, as, for
example, by GPS or cell tower location. The location identi-
fication module may communicate with the mobile client, or
a component thereof, e.g., the download manager, to localize
content (such as widgets and data) downloaded to the device.
As such, widget applications installed on the device may
request network content customized to the location of the
device. Similarly, the server-based location module may
transmit information customized to the location of the device
to the device. The device may transmit its location informa-
tion to the server. The mobile device, the server, or a network
resource may contain a location identification service which
may be accessed by the device, the server, or another network
resource. Information provided by the location identification
service may be used to differentially serve content (including
data and widgets) to a mobile device or a user.

User Vault

The user vault 404 (FIG. 4(a)) may be used to store authen-
tication credentials for the system and external systems. Cre-
dentials may include a login username and a login password.
In the case of the system, it may store username, password,
and other user preferences. Such preferences include a users
phone number, their location, topic interests, address books,
search history, favorite locations, etc. User vault data may be
used to simplify and eliminate user inputs on the mobile
device when necessary by prompting or auto-filling
responses inside mobile widget inputs. These credentials may
be used for a user to identify himself or herself and allow
access to his or her account in the system.

In addition, external credentials may be stored. These
might include usernames and passwords for external email
accounts, instant messaging systems, chat servers. These cre-
dentials may be associated with the user’s primary system

5

20

25

30

35

40

50

55

60

65

28

account. So, when the user needs to access an external email
through the system, they need not login again. Instead, the
system may provide the credentials to the external system to
grant access.

Search

There may potentially be vast amounts of information in
the system cache and data stores 403 (FIG. 4(a)). A search
facility may be provided for users to access specific informa-
tion in the system. According to one embodiment, search
index is handled through an external pluggable search engine
such as Lucene. The pertinent text fields may be passed
through the indexer to build a searchable index of keywords.
When users enter the keywords, the associated document
results may be returned.

The search may be split between public versus private data
versus shared data. Public data includes data that any user can
access. Private data includes data specific only to a particular
user. Example public data includes RSS feeds from a news
syndicate. An example of private data might be the user’s
bank records. A shared data pool refers to data that is shared
amongst a set of users. Separate search indices may be created
for different public/private/shared pools.

The search module can also have plugins for external
search engines. This way, if there is content that a user wants
to access that doesn’t exist in the system, the external search
can be invoked to return results.

In addition, the system search results may be externalized
so that external search engines can find data within the system
110. This is done by building adapters 417 to the external
search engines to provide them with documents to be indexed.
An example adapter might be a web page that is publicly
accessible on the web site. This web page may list the docu-
ments as hyperlinks to other documents that are to be indexed.
This way, search engines can use web “crawlers” to find this
page and traverse the hyperlinks to the documents that are to
be indexed.

Session Manager

The session manager 406 (FIG. 4(a)) may serve to provide
a state that follows the user between stateless modes. For
example, web browsers and the HTML protocol are typically
request-response based and may not provide inter-request
context to other requests. Clients can send some identifying
information about the user. This might be in the form of some
unique server-generated identifier that gets sent as a browser
cookie. In one embodiment, this cookie saves the generated
identifier and sends it back to the user between requests to the
server. The server may look up the current state based on this
unique identifier, thus the session state is maintained. Simi-
larly, a mobile client 141 can have some similar mechanism to
save the user’s current state as a unique identifier. This way,
the session can be kept across requests.

The server may generate unique session identifiers. One
type of identifier is a persistent identifier that may stay with
the user regardless of whether they have contacted the server
or not. The second type is a transient identifier that exists only
for the lifetime of a login-logout event. Using the persistent
identifier, a user’s state can span across multiple devices. For
example, a user starts a persistent session on the web. The user
then has to step away from the desktop. The user can continue
the session on a mobile device. This may be done by refer-
encing the same persistent identifier. The server can associate
the same data because the same identifier is referenced.

Billing Server

The system may handle billing integration with third party
vendors as well as custom internal billing. The billing system

Booking, Exh. 1054, Page 88

US 8,595,186 B1

29

414 (FIG. 4(a)) may include a database containing the events
that are to be billed and another database including the cost
per event or series of events.

A catalog may exist that contains an item to be sold and the
price per unit. This catalog may be referenced by a widget as
appropriate (e.g. a user interface to display a catalog of sports
games available for viewing). According to one embodiment,
an end-user who wishes to purchase an item makes the
request through the user interface. This request is transmitted
to the server. For example, the mobile client contains infor-
mation about the user (unique user ID as per “Unique ID
Generation” above). On the server, the user has registered
some information about billing details. For example, this
could be credit card information or the user’s mobile phone
account number (for charges to appear on their mobile phone
bill). A confirmation is presented to the user.

At this point, the system may make an entry in the database
that indicates the user wishes to purchase n units of an item.
The purchase is not finalized yet. Requests are then made to
the necessary systems to bill the user. This might include a
third party payment service such as PayPal or CyberSource.
Or, this might be an operator or an intermediary that handles
payment. These requests may occur through adapters to each
type of billing services. Once billing is confirmed by the
billing service, the respective adapter 417 may receive the
request. It may then mark a particular item as having been
purchased. The widget can then access the item as desired.

Transcoding

Before the mobile client 141 (FIG. 1(b)) receives data, the
data can be further transformed to optimize for a particular
device. Example transformations including image size scal-
ing and format transformations. Another might include
transcoding HTML into simplified HTML for mobile client
browser. The results of the transcoding can be further cached
so that subsequent requests to the same data from the same or
different mobile client can be fetched from cache rather than
recomputed. Another example is the transformation of video
and audio for mobile devices. The source format of video
might be AVI while the mobile version might require a 3GP
format. So, a transformation can occur. In this case, caching
can be done ahead of time since the transformation takes a
noticeable amount of time.

Video Capture and Transcoding

FIG. 16 describes a process, according to one embodiment,
by which video from a video source enters the system and gets
transcoded to the capabilities of various devices.

1. Receiver 1610 gets video feed from feed source 1620

(such as satellite)

2.Video channel decoder 1630 decodes the raw stream into
a standard video stream such as NTSC to be fed into
video capture card 1640.

3. Video capture card 1640 decodes video signals into
digital data.

4. Video encoder 1650 encodes and compresses the digital
data into standard digital encoding format such as Win-
dows Media Video.

5. Compressed video is stored on a storage subsystem
1660.

6. When video is to be clipped, the user may access the
video and playback 1665. The user may be viewing
either the live stream or the user may be allowed to
rewind back in time or go forward up until the time of the
live stream.

7. The user clips the video with a video clipping tool 1670
by marking start and end points of the video.

8. The clipped video start/end points are stored on a storage
subsystem 1660 for further processing.

5

20

25

30

35

40

45

50

55

60

65

30

9. A video transformer 1680 takes the clips and transforms
them to desired output formats (such as Windows Media
Video, 3GPP, MPEG4, MPEG2, etc) that can be
accepted by mobile video players.
10. Pre-rendered video may be sent to a cache 1690 so that
no further processing is required when video gets
accessed.
Mobile Text Transcoding
For certain types of widgets such as RSS feed viewers, each
article may often contain a link that allows the user to read the
actual source of the article. This link may point to a web site
that might render well for desktop computers but not as well
for mobile devices. In these cases, the mobile client can run
the content through a transcoding proxy on the system first.
The transcoding proxy can simplify the page by applying
heuristics to strip out unnecessary formatting, ads, naviga-
tional elements, etc., reformat images (resize and recom-
press), paginate large pages, strip out scripting elements,
handle complex rendering elements such as forms and
frames, and handle cookies 3380.

A result of transcoding is shown in FIGS. 27(a) through
27(c).

HTML Transcoding Server

For each page, the full HTML that a site outputs may be
transcoded to a simplified version that can render well on
mobile devices. One embodiment of such a transcoder is
described below. It is a regular-expression based system. One
embodiment of the process is illustrated in FIG. 17, which
includes a request for a page (1705, optional storage of cook-
ies (1710), a server fetch (1715), a rules application loop
(1720 and 1725), url rewriting (1730), caching of results
(1735), and outputting of results (1740). In the parsed state,
content can be filtered. For example, objectionable material
can be filtered out. Images larger or smaller than a certain size
can be omitted.

Normalizer

With reference to FIGS. 1 and 4(a), the system 110 may

include a cache 403. The content in the data structures can be
normalized into a global format that gets stored in the system.
An example is RSS versus ATOM feeds: Both may be char-
acterized basically as representations of individual articles.
Each feed may have a title and description; each article has a
title and summary, etc. The two different formats may be
parsed into data structures. The data structures may then be
converted into a common format and stored in the system.

Another example is with sports data. The various content

sources may each have their own data formats for transmitting
game data. Sometimes, however, the elements of the same
game remain the same. The content may be parsed into data
structures. The data structures may then converted into a
common format and stored in the system.

Caching

The system 110 may include a cache 403. To implement the

cache, the data sources’ locations may be specified by a URL
(uniform resource locator). Using the URL, the content can
be indexed. In one embodiment, an MD5 (message digest 5)
hash may be used which generates a 128-bit hash value (or
32-character hexadecimal string). A hash is a one-way func-
tion that can be used to “fingerprint” a string. MDS5 can be
used in a security context. However, an implementation can
use it as an index for a resource using the following elements:
(1) Perform an MDS5 on the URL string. This becomes the
index string. (2) Generate a filename with the index string. (3)
Store the contents of the data into this file. (4) Then, take the
first n characters of the filename to generate a directory in
which to store the file, as shown below.

URL: http://plusmo.com/blog

Index: f016£c75785862248ed8bad4fb12de89

Directory: 10

Full path: f0/f016£c75785862248ed8bad4fb12de89.dat

Booking, Exh. 1054, Page 89

US 8,595,186 B1

31

The above example used n=2. The number of characters to
use for the directory name depends on the number of files in
a directory to ensure quick access in a typical UNIX filesys-
tem. For example, if a system is to include 100000 data
sources and the maximum number of files to be in a directory
to ensure speedy access is 100, then n should be round_up(log
16(100000/100)) is 3.

In the unlikely event that there is a collision for the MD5
hash (same hash for two different URLs), we may append a
numeric counter at the end of the filename part of the path. In
the above example, if there is another URL that has a hash
fingerprint of “f016£c75785862248ed8bad4tb12de89”, we’ll
append “-0” to the filename to form
“f016£c75785862248ed8bad41b12de89-0”. We’ll continue
with “-17, «“-2”, etc for further collisions. To determine if we
have a collision, we may also store the URL as part of the data
for the file.

Inanother embodiment, we can utilize a relational database
to index the URLs. In such a scenario, we would create a
database table that could have two fields. The first is for the
URL. The second is a unique numeric identifier associated
with that URL. When a URL is requested, we look up in the
database to determine the unique identifier associated with
that URL. That unique identifier can form the basis of a
filename that we can use to store the contents into. Alterna-
tively, we can also choose to store the data into the database
using the BLOB (binary large object) data type.

Logging Module

According to one embodiment, the logging module 415
(FIG. 4(a)) provides a fast method for other subsystems to
write messages such as error message and access logs. It uses
a buffered write mechanism where logging requests are buff-
ered into fast memory. When the time is appropriate (for
example, when the buffer fills up or the system is idle), the
logs may be written to disk.

Data Synchronization

Synchronization may be used to ensure that the data is the
same between the server and the client, i.e. that a first version
or content and a second version of content are the same or may
be updated. Because the client does not necessarily have the
same storage space as on the server, the client may receive
smaller chunks of information. Additional information may
be retrieved as requested. In addition, the user might request
bandwidth metering, which limits the amount of data that is
transferred (to avoid costly monthly billing).

According to one embodiment, the server synchronization
engine 408 (FIG. 4(a)) may operate as follows (see FIG. 12):
The server maintains a state of all the data for items of interest
(1200) in storage. For example, the server state may contain
data about a user’s subscription to widgets, the widget con-
tents (like RSS feeds), other information known about a user
or widget applications, etc. The items of data may have
unique identifiers associated with them as well as a timestamp
representing when the data was modified or updated. The
unique identifiers increment such that given an ID “n”, the
next ID may be “n+1”.

On the mobile client 141, the client may compare the copy
of'the data that it has with what the server 110 has. This can be
done through the timestamp. At block 1201, the client may
then request synchronization with the server. The client’s
timestamp and last seen identifier is transmitted to the server
(1202). If the timestamp is different, we may know that the
data has been modified and can begin the synchronization
process. The next element is to determine what data was
modified. This may be done through the unique identifier that
is marked for each item of data. The comparison may be done
against the unique identifier that is transmitted with the times-

20

25

30

35

40

45

50

55

60

65

32

tamp (1203). A server identifier that is greater in value than
the client identifier may indicate that server data was modified
(1204). This may indicate that the server is to send the new
data (from the last seen client ID on until the last server ID) to
the client. A client identifier value that is greater than the
identifier on the server may indicate that the client data was
modified (1205). In this case, the client sends the new data
from the last seen server ID to the last client ID to the server.
Timestamps may be updated appropriately.

If data was modified or removed, the following can occur:
(1) The old data entry may be removed, and/or (2), in the case
of modified or updated data, a new data entry may be created
with a new identifier. This new data entry may contain the
modified data. The old data entry may not exist any longer and
its unique identifier might not re-used.

Conlflict resolution may take place when both the server
and the client have modified data (1206). The system will
check for registered conflict resolvers (1207). If none are
found, default handlers may be in place to resolve conflicts
(1208). These default handlers can assume several modes.
The mode used may depend on user preferences, which may
be fetched (1209). In a first mode the server changes take
precedence over client changes (1210). A second mode
makes client changes take precedence over server changes
(1211). A third mode is that the data is merged by appending
data entries from the server and client together (and maybe
renumbering the identifiers to be sequential). As mentioned,
these behaviors may be configured by the user. Sometimes,
however, this is not desired by widget developers. Widgets
might want to define their own policies regarding data conflict
resolution. In such cases, there may be a registration module
where widgets can register their own conflict resolution mod-
ules with the system. Then, when the widget data is to be
synchronized, this module may get invoked, whereby a reg-
istered resolver is found (1215), the resolver is applied to the
data type (1216), and the resolved entries are sent (1217).

Data may be compressed between the server and client.
Compression may occur in a compression module 3360.
Example compression formats include but are not limited to
gzip and deflate (which are standard web compression for-
mats). In addition, data can be encrypted for additional secu-
rity.

Data synchronization may be used to synchronize any con-
tent on the device, including content acquisition settings,
which may include how often to retrieve content and what
type of content to retrieve. Reconciliation of conflicts may
take place according to the preferences of a user.

Selective Incremental Resource Loading

In one embodiment, the mobile client can download and
cache important data as well as simplified meta data about an
item. Some of the resources that take a long time to download
can be downloaded at a later time. For example, see FIGS.
26(g) and 26(%). FIG. 26(g) shows an article where the text
has already been downloaded and cached. The image is not
downloaded yet because it might take too long to download
initially and the image might not be important for the article.
Users can configure when to download the image. In this
example, the user has configured to download on demand.
FIG. 26(g) shows a “clock™ icon in place of the image
to indicate that the image is currently being loaded. A “Load-
ing . .. ” text in the upper right corner of Figure a46 tells the
user that elements on the page are being downloaded. When
complete, the view looks like FIG. 26(h).

Booking, Exh. 1054, Page 90

US 8,595,186 B1

33

Widget Data Sources

For widgets that require data sources, the system may
provide a mechanism to synchronize the data and handle
transcoding for the client. This mechanism may perform con-
tent fetching and aggregation.

Several data sources may be encountered by the system.
Examples include RSS feeds, databases, web services, email,
calendaring systems, web pages, IRC or IM chat sessions,
application programmable interfaces, etc. Each type of input
may be handled by various adapters. For example, with sports
commentary data, an operator could be sitting at a terminal,
entering comments for a particular sports play. The terminal
could host a tool to capture user input and convert into an
XML file for transmission to the system. Another type of data
could be an RSS feed that is hosted on a site. The system
might have an adapter that fetches updates from that RSS feed
to be updated on the system.

The system may filter the data into individual types. The
raw data may then enter the system and be stored in either a
permanent or temporary store. For example, RSS feeds may
be stored into permanent storage, whereas chat session data
may be stored temporarily for forwarding. This may be the
role of the content adapter 417.

Backoff Protocol

It may be desirable to ensure server availability. Many
clients polling a server for updates may cause many requests
to come in at the same time, causing server load to hit a
ceiling. This may affect the quality of service for all clients
that connect to the server. One solution is to implement a
backoft protocol. FIG. 14 illustrates one embodiment of the
backoff protocol, described below.

1. Clients connect to the server (1400).

2. The server determines its current load (1401) and checks

to see if the load exceeds a threshold (1402).

3. If server load exceeds a threshold, it starts issuing a
control command to future clients that connect, com-
manding them to decrease their polling interval (1403).

4. If server load still exceeds a threshold (1402) after a
certain amount of time, the server issues a control com-
mand to further reduce the client polling interval (1403).
This may continue until the server is below a load thresh-
old.

In the meantime, clients 141 may receive the control com-
mand and adjust their polling interval accordingly. Over time,
the mobile clients 141 may gradually shorten their polling
interval until they reach the minimum polling interval or until
the server issues another control command to increase the
polling interval (1404).

Widget Browsing and Management

Web and Mobile Front-End

FIGS. 5(a) through 5(d) show exemplary elements for a
user to register from the Web and create user profiles accord-
ing to one embodiment. A user may get started with mobile
widgets by registering on a website provided by the widget
service server system 110. The user may use any ordinary
web browser such as Microsoft Internet Explorer or Firefox to
connect to the widget service web front end. As in FIG. 5(a),
the user may click on a “Get Started” control 501. The widget
service server system may recognize the user’s Internet Pro-
tocol (IP) address and automatically look up the user’s physi-
cal location. FIG. 5(b) shows an exemplary display for the
user to select his preferences according to one embodiment.
On this screen, the user may change the location 511 and set
up interests such as entertainment 512, local 513, fun 514,
sports 515, technology 516, and news 517. Though not
shown, several other detailed choices may be provided to
further personalize the users’ widget experience. Based on

20

25

30

35

40

45

50

55

60

65

34

the user’s selections in FIG. 5(b) the system may recommend
an initial set of mobile widgets for the user. These may be
location specific and based on his preferences. As an example,
a user from Paris, France interested in sports and entertain-
ment may get different widgets from another user who con-
nects from Atlanta, Ga. and is interested in fashion and celeb-
rity gossip. The system may otherwise cause selected widgets
to be transmitted to a mobile device (or previewed by a user)
based on an associated user profile.

FIG. 5(c) shows an exemplary display of the system’s
initial recommendation of widgets according to one embodi-
ment. The user may choose to remove some of the system’s
widget recommendations 521 or add other widgets. The user
may also be provided with a convenient preview of the widget
522 in a mobile phone emulator 523, which may include live
data from the data sources used by the mobile widget. When
the user is satisfied with his widget choices, he may then
proceed by clicking on the “Add to my phone” control 524 or
a similarly named control.

FIG. 5(d) shows an exemplary registration screen 530
according to one embodiment. The registration screen may
request the user’s personal information and include fields
such as email address 531, password 532, telephone number
533, and telephone provider 534. Using these details, a new
personal account may be created for the user. Then an email or
SMS message may be sent to the user’s mobile phone with an
embedded link facilitating installation of the widget service
client software on his phone.

When the user receives and reads the message on his
mobile device, he may select the embedded link to install
widget service client software on the device. The widget
service client software may be installed on the mobile device,
and on initial launch, the software may synchronize with the
widget service website and download all the mobile widgets
that the user has chosen. In certain embodiments, the user’s
registration can be conducted on a traditional home computer.
However, in some embodiments the registration can be con-
ducted on a mobile device.

Web Registration

FIG. 10 depicts the elements taken in one embodiment of
user registration (1001-1006). The registration system may
require a user to enter data (box 1003) such as an email
address (which may serve as a unique user name), a password
to associate with the account, and a duplicate password to
confirm that the password was entered correctly. The system
may validate the username and password (box 1005).

In addition, the registration system may prompt for a
CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart). This may be a raster image
with some garbled text displayed such that humans can read
the text while computers have a difficult time reading the text.
The server may generate the CAPTCHA (box 1001), display
the CAPTCHA (box 1002), and validate that the user identi-
fied the garbled text correctly (box 1004) and/or that the user
entered valid fields (1005). This test is often used to keep
automated programs from registering dummy users.

Once registration is successful (box 1006), the user may be
prompted for a phone number or additional email address to
send installation instructions to. In the phone number case,
the system may send an SMS containing a download link for
users to download the mobile client. The download may pro-
ceed when the user selects a link in the message that appears
on their mobile device. The mobile client can optionally be
embedded with a unique identifier for user identification. This
way, the mobile client can download content from the user’s
account without having to enter login information.

Booking, Exh. 1054, Page 91

US 8,595,186 B1

35

Unique ID Generation

The ability to track individual users may be helpful. Some-
times, it is desirable to be able to track unique users as they
access the server system from various mobile devices. Ide-
ally, a device may transmit its own unique identifier to the
system. Such a system exists for some mobile devices. One
such tracking mechanism is called an MSISDN (mobile sub-
scriber ISDN number). There could be a unique identifier that
is embedded on the device or the user’s phone number of the
device. However, such tracking information is sometimes
filtered by carriers. Therefore, the system may assign unique
identifiers to the users when they first initialize the applica-
tion.

Online Mobile Widget Gallery

FIG. 6(a) illustrates a gallery 600 of mobile widgets 601
according to one embodiment. Users who visit the web or
mobile front end may browse through the gallery and select
the ones they want on their mobile device. The gallery 600
may offer categories, tags, and groupings by location and
preferences. Users may thereby browse and select mobile
widgets 601 to install on their mobile device. A widget-
execution engine may be configured to request a download
from the gallery. The user may also be provided with a pre-
view 605 of the mobile experience using a mobile phone
emulator 606.

The gallery may also be searchable. FIG. 6() illustrates an
exemplary search result display 650 according to one
embodiment. Users may select mobile widgets 651 by search-
ing for information such as “New York Giants” or “Tiger
Woods”. The system may search through all available mobile
widgets in the system and provide results. In addition, the user
may be provided with links 652 to results generated from
popular external search engines such as Google Search or
Yahoo Search. As an example, a mobile widget may be gen-
erated for Google search results on “New York Giants”. Then
the user may be able to add this widget to his mobile device by
selecting it. Additionally, search results may include external
web site results which match “New York Giants”. If the user
selects these results, anew mobile widget may be created with
the selected web site as the data source.

Users may gather all the widgets they need by browsing or
searching through the gallery, and all their selections may be
saved in the session. When ready, a user may click the “Add to
my phone” control 653 to add the selected mobile widgets to
his account. At this point all these widgets may be added to his
account and become available on the mobile device the next
time the device performs a synchronization session (see sec-
tion “Sync Engine”) with the server. If the user is not regis-
tered, the user may be presented with the registration element
previously shown in FIG. 5(d) to create an account, and may
further receive an SMS or email on his mobile device to install
the widget service client for the first time.

A server may provide a gallery of software widget appli-
cations. Users of mobile computing devices may browse the
gallery of widget applications from the mobile devices. The
server may receive requests from the mobile devices for
downloading widgets and the server may respond electroni-
cally sending a widget application to be downloaded and
causing it to be installed. The mobile device itself may pro-
vide a gallery that provides such functionality, where the
objects and information in the gallery may in whole or in part
be downloaded in the absence of a request by a user. Thus, a
mobile device gallery may download widget information, the
user may subsequently (e.g., a week later) review the widget
information and may mark a widget for download, and the
mobile device gallery may subsequently (e.g. at the next
network connection or at a time of cheaper data or bandwidth

20

25

30

35

40

45

50

55

60

65

36

costs) download and/or install that widget. Both a device-
based and server-based gallery may use user profiles to deter-
mine which widgets to install or recommend.

Managing Mobile Widgets from the Web

The web front end may also provide an interface for the
user to manage his mobile widgets from the web. FIG. 7(a)
shows an exemplary mobile widget management display 700
where the user may be provided with all his currently active
widgets. Here the user may delete a widget by simply clicking
onthe “X” 701 on a widget icon 702. Then the widget may be
removed from his account. He may also add any widget from
the gallery 600 (FIG. 6(a)) to his account. All changes may
appear on the mobile device after the next synchronization
session. Further, as in FIG. 7(b), the user may preview all his
mobile widgets on the web. Though this exemplary preview
screen 750 displays the widgets in a horizontal scroller 751,
note that they may also be displayed just as they would appear
on the mobile client device. For example, a mobile preview
screen 752 may replicate how the widgets will actually appear
on the mobile device. The mobile preview screen 752 may
have the exact screen dimensions, resolutions and appearance
as the user’s specific mobile device.

In some embodiments, users may also manage their wid-
gets directly from the mobile device. Many users worldwide
may never have access to a desktop computer. Such users may
perform all actions including registration, login, browse the
gallery, search and add mobile widgets, remove mobile wid-
gets, preview the widgets, and the like right from their mobile
device from the embedded mobile browser and from the
widget service client software installed on the device.

Mobile Widget Recommendations Based on Collaborative
Filtering

Since many mobile widgets may be added to the widget
service’s mobile widget repository, it is desirable to make it
easy for users to pick and choose the widgets they may like.
According to one embodiment, a built-in recommendation
system uses users’ preferences, such as interests, reading
patterns, and location, and recommends other mobile widgets
that the user may be interested in. This may be achieved
through integration with a standard available collaborative
filtering system such as Taste, CoFI, or Consensus.

According to one embodiment, the recommendation sys-
tem may suggest other widgets that a user may like. As an
example, consider a user from [London in United Kingdom. If
she has widgets such as Tube Delays, Local TV guide, and
BBC news, based on the interests of other users in the same
location with the same widgets, the recommendation system
may suggest a set of widgets for her to add. The recommen-
dations may be made both in the web front end and in the
widget service client software.

Widget Management

In one embodiment, users can manage their widgets on the
mobile client. Users can reorder widgets and remove widgets
from their mobile client without needing server connectivity.
These requests may be queued on the client and rendered
appropriately to the user. When the user connects back to the
server, these queued requests may be transmitted to the server
for the server to process and reconfigure the server-side image
of the widget.

In another embodiment, the mobile client 141 may have an
offline gallery of applications that the user can browse to add
additional widgets. This gallery may be periodically down-
loaded by the server against the server. Users can browse this
gallery to add new widgets without connecting to the server.
Then, when the widget is to be added, a server connection is
created and the widget is downloaded and subsequently
installed.

Booking, Exh. 1054, Page 92

US 8,595,186 B1

37

The mobile device or mobile client 141 may contain a
widget-adding component which may be designed to view
and/or obtain widgets for testing or installation on the device.
The widget-adding component may access the server 110 or
the offline gallery.

In one embodiment, installation of new widgets occurs as
follows: A user adds the widget to their account. This may be
done either through web/WAP site or through another mecha-
nism that has a real-time connection to the system. The sys-
tem can perform the request as follows: First, the appropriate
widget may be located. Then, an entry may be created in the
database that marks the widget as “installed” for a user. The
widget may then be transmitted to the mobile client when the
client 141 connects to the server. Widgets may have server-
side and client-side portions of each package. The client-side
portion is transmitted to the client 141. The client 141 accepts
the package, which is then unpacked by the client. The widget
may then be stored in the widget storage with meta informa-
tion describing the widget. Then, as the client runs, it may
pick up the widget for display when appropriate.

The mobile client may include a widget discovery manager
component. The discovery manager may contain a pointer or
other reference to an online gallery of widgets, or other
repository or network location of data. The discovery man-
ager may, from time to time, download widgets, information,
or other references to or descriptions about widgets, from the
repository. The discovery manager may store the widgets,
information, or other references on the mobile device for
offline access and availability to the user. Such widgets or
information may be displayed or previewed for the user. The
discovery manager may perform such a download in the
absence of a request by a user, and the manager may preempt,
interrupt, or otherwise notify the user of downloaded (or
to-be-downloaded) content, including widgets and refer-
ences. The discovery manager may provide for any down-
loaded widgets to be installed, either automatically or pursu-
ant to authorization by a user. The discovery manager may
further provide for deletion, uninstallation, or reset/reinstal-
lation of widgets or information, either automatically or at the
request of a user or transmission, of preferences or other
information to a server (and thus perhaps changing the types
of information to be downloaded in the future). Installation
may include placing a widget (or other data) in a memory or
store of a device such that the widget may be accessed, dis-
played, selected, or terminated repeatedly Widget discovery
or download may make use of user profiles associated with
the user or mobile device.

The discovery manager may generally access any network
or interactive resource as a location for widgets, including an
online gallery. The discovery manager may generally search
or crawl a network resource, may browse a collection of
resources, or may visit a URL. The gallery may display wid-
gets, or crawl for widgets, based on a query by the user. The
query may be handled by the discovery manager or the net-
work resource or gallery. Query results may be presented to
the user on a display. The discovery manager, or another
component, may also personalize widgets, such as by causing
them (or creating them) to display specific data representative
of a user, user attribute, or user interest or content.

Widget Sharing

In one embodiment, the widget meta-data may be stored on
the server 110 as a database entry. Widgets and widget data
can be forwarded to others regardless of the accepting party’s
mobile operator or device. FIG. 32 depicts one embodiment
of this process. In this embodiment, the originating party
makes arequest to send a widget to another party (3205). This
can be by specifying the widget and the other party’s identi-

20

25

30

35

40

45

50

55

60

65

38
fier (3210). The identifier could be an email address, phone
number, or any other unique property of the user’s account. A
connection may then be made to the server, and the request is
transmitted (3215). The server accepts the request and then
makes an entry in the database in the other party’s account
with the widget and a message from the originator (e.g.
“Hello friend, try this widget.””) (3220). Then, when the other
party connects to the server, they may receive this message
along with an option to install the widget (3225-3240).
Installing the widget may include the client connecting to the
server (3230), the server checking a pending add queue and
add list (3235), transmitting the request to the user (3240). If
the user accepts the installation (3245), the widget may be
installed as described above (3250). Otherwise, if the user
refuses installation, the widget is removed from the database
queue.
Mobile Registration—All Handset Experience
Users can also download the mobile client directly without
having to register on the web site first. In this case, the system
can create an account for the user from the mobile device.
FIG. 20 illustrates one embodiment of the post-download
user interface. According to this embodiment, the mobile
device connects to the system after download. A login wel-
come screen may appear (FIG. 20(a)). If the user has already
registered on the web site, he may enter his login information
in a form field 2010. On successful login, FIG. 20(5) may
appear.
Otherwise, users can select to create a new account. They
enter an email address in a form field 2020 (FIG. 20(c)). The
email address is checked to ensure uniqueness. If not unique,
a message 2030 (FIG. 20(d)) may appear and a prompt 2040
to enter another email address appears. If the entered email is
available (unique in the system), the user can optionally have
the system generate a password (to avoid more typing on a
mobile device) or to enter the password in a form field 2050
(FIG. 20(e)).
Users can then select some categories 2060 that contain
predefined widgets for the user (FIG. 20(f)). This may be a
quick way to get started on the mobile device without having
to browse or search for widgets to add.
Further personalization of the user’s account is also pos-
sible. In FIG. 20(g), the user is prompted for their location.
Here, the user’s location may be approximated by determin-
ing the connecting IP (internet protocol) address from which
the mobile device is connecting from. Based on this address,
the system can map an IP address to a physical real world
address via a lookup table of IP addresses to physical
addresses. The system may present the computed location
2070. If the automated determination is incorrect, users can
enter their location on the form field 2080.
On successful registration, a finish screen may appear
(FIG. 20(R)).
Provisioning from Website
In some embodiments, unique provisioning allows track-
ing of users so that users do not have to re-enter login infor-
mation from the client 141. It may be easier for users to enter
their user information on a PC accessing a web site rather than
entering the information from the device. An exemplary
method of provisioning from a website according to one
embodiment is shown in FIG. 11 and described below:
1. User logs on to a website (1100).
2. User enters registration information such as real name,
login name, password, phone number, etc. (1101).

3. Registration information gets validated and saved
(1102).

4. A unique key is generated for the user (1102).

Booking, Exh. 1054, Page 93

US 8,595,186 B1

39

5. A download package is created with the embedded key
(1103).

6. The user downloads this package onto their device
(1104).

7. When the application is launched (1105), a response key
is generated on the client (1106). The response key may
be hashed against some unique identifier on the device
(if possible). This response key along with the key
embedded in the package gets sent to the server (1107).

8. The server responds with user account information if
valid.

9. Response key gets saved on the device, locking that
device to the account.

a. If the application is copied to another device, the
application will not work because it is locked to the
previous device.

b. User can reset the locking from the web site to allow
installation on another device. Previously working
application becomes locked on the old device.

Provisioning on Mobile

According to another embodiment, provisioning may

occur from a mobile device as follows:

1. Mobile user accesses download page. Optional
MSISDN (unique identifier for a mobile user) is trans-
mitted to the server (1108).

2. User enters registration information (if required) (1109).
MSISDN is associated with the user (if there was one)
(1110).

3. Elements 3-9 above in “Provisioning from Website”
apply.

Widget Creation

Mobile Widget Creation

A widget or application archive can contain code,
resources, data, and meta information. Code includes the
application instructions to execute. Resources include media
such as images, sounds, etc. Data is bundled data. Meta infor-
mation describes the application. FIG. 41 is a flowchart
depicting the elements performed by the widget service
according to one embodiment, which are:

1. The developer creates a widget using the wizard or with
APIs (4105)

2. The widget is uploaded to the server (or fetched from the
server) (4110).

3. An analyzer unpacks the archive and accesses and ana-
lyzes its content (4115).

a. Content may include multiple sections of declaratory
or markup code (or other code), other sections of code
(such as a scripting language, JavaScript or C or Perl
or a proprietary or hybrid language), and other
resources such as video, text, and/or images.

b. Compiles some or all of the code into executable byte
code, checking for valid syntax and resource usage.

c. Validates images and transforms as appropriate for
different device capabilities.

d. Validates application size for limits on various
devices.

4. Once validated, contents are extracted and stored into an
application repository 4120. This repository 4120 is
indexed so that applications are searchable by various
attributes (4125). Resources are also indexed so that
resources are shareable across applications if desired.
This can become public libraries of code that get pulled
in by other applications as desired. The repository 4120
contains application descriptors that point to the
resources required. It also has versioning of applications
where correct versions get pulled out.

20

25

30

35

40

45

50

55

60

65

40

5. A request comes in for an application (4130). The cache

4135 is first consulted (4140). If not in cache 4135 yet,

the assembler builds the application archive given the

version and required resources (4140).

6. The script compiler and aggregator combines the

resources and code into an archive (4145).

7. The optimizer 4150 makes a small package of at least
some of the resources for delivery. This includes com-
pression, unreferenced resource elimination, etc.

. Results are cached.

9. Delivers to the user using a download method (4155),
whereafter the package may be installed on the mobile
device.

The server may transmit a given widget to a plurality of
mobile devices of different types and different APIs, and may
change or not change the widget or the package as necessary
to for execution of the widget on the device.

Web-Based Tool for Extracting Data Sourced from Web
Pages

The system may include a tool that can be installed on an
end-user’s web browser that allows for extracting specific
areas from a web page and creating a mobile widget using that
information as a widget data source. One embodiment of this
tool is a plugin for browsers such as Microsoft’s Internet
Explorer product or a Mozilla Organization Firefox applica-
tion. According to one embodiment, the tool installs as a
plugin that users interact with (see FIG. 42). As a plugin, the
tool accesses various browser APIs to determine the page that
the user is currently viewing, the elements on the page, etc.

Because this tool is able to access information about the
page, it can provide features that allow users to select various
portions of a page to represent a source of data that the server
can consume and hence allow the mobile clients to download.
FIG. 43 displays one embodiment of this functionality. In this
figure, users use their pointing device (e.g. computer mouse)
to highlight areas of a web page, as shown at 4310. A floating
window 4320 may display the various actions, commands,
and status that users can use to refine the data selection. FIG.
44 displays the completed data selection 4410 whose starting
point was from FIG. 43. In this example, the user has omitted
the surrounding extraneous images and text and chose to
obtain only the entries for “Top Stories”. The floating window
4420 may display the various actions that the user took to
filter the content in order to obtain the refined data.

FIG. 45 displays an options panel 4510 where users can
further configure the tool commands according to one
embodiment. On the right of the panel is a section 4520 for the
user to select how to apply the changes that the user has made.
The panel may expose configuration information to filter out
web sites to apply the changes to. These filters may be speci-
fied using standard regular expressions (regex). So, in the
example above, suppose there are two web pages that follow
the same page layout and the user wants to apply the changes
to both ofthe pages. To do this, the user may specify the URLs
that the changes apply to in this configuration panel.

The various actions as summarized in the floating window
4420 may be then sent to the server once the user has com-
pleted the user interface portion of the data definition. When
the widget 142 on the mobile browser needs data from this
data source, the server 110 may first fetch the web page just as
an end-user would do on a web browser. The server 110 may
then take the commands and apply them in the same manner
as the user did using the tool. Because the dataset is now in a
simpler format, the server may take the resulting data and
format it for consumption by the widget 142.

Alternatively, this functionality can be applied on the
user’s web browser without sending to the server. This case is

co

Booking, Exh. 1054, Page 94

US 8,595,186 B1

41

useful for when users want to format a particular web site to
the way that they want the web site to appear. For example,
FIG. 42 might be too cluttered for a user’s liking. Instead, the
user can apply the tool to render the view as FIG. 44 such that
whenever the user visits this web site, FIG. 44 displays
instead of FIG. 42.

Some embodiments may access the Document Object
Model (DOM) elements on a web page. These DOM ele-
ments may be manipulated to trim, add, and remove entries on
the page. The web browser may take care of rendering the
result to the user. The tool manipulates the data through the
DOM elements. The tool may also trap information about
mouse cursor positions, key presses, etc so that users can
interact with the tool. If the tool has access to the elements on
the page that the user is viewing, this tool can also contain
other functionality, such as advertisement filters, search term
highlighters, hide animations, etc. FIGS. 43, 44, and 45 show
other example functions for which the tool can be in addition
to web data filtering.

Mobile Widget API for Building Custom Widgets

Publishers may also create mobile widgets programmati-
cally. A framework for generating mobile wizards may be
provided so that developers may create different types of
mobile widgets that are not supported by the wizards such as
those depicted in FIGS. 37 and 38.

OPML Import from RSS Readers

Many web users may have accounts on several RSS reader,
portals and other aggregator sites such as My Yahoo,
Bloglines or Google Reader. The web front end may offer a
process for a user who has an account on one of those web
sites to import their preferences into the widget service web-
site. Several methods of import may be supported as depicted
in FIG. 8(a). In one embodiment, a user may enter his login
information in an import field 801 and select a control for an
external reader suite such as Yahoo 802, Google 803, or
Bloglines 804. A second exemplary method is for the user to
provide a list of his subscriptions via OPML (Outline Proces-
sor Markup Language), a standard XML format for outlines.

There are many possible methods for importing an OPML
file to the web front end. For example, the user may paste the
OPML file, upload it, or provide a web URL to the file. In one
embodiment, the user may select a control labeled Import
805, Paste 806, Upload 807, or Enter URL 808. The system
may parse the OPML file and add equivalent mobile widgets
to the user’s widget service account when he selects an “OK”
control 809.

As an example, if the user had a Bloglines account where
he had CNN News, CNET News and BBC News as subscrip-
tions, the widget service server may search for similar mobile
widgets in the widget service gallery and add it to the user’s
widget service account. If a particular data source is not
available as a mobile widget on the widget service website, a
new mobile widget may be created with that specific data
source and then added to the system.

Bookmarklet Tool to Add Mobile Widgets while Browsing
the Web

Bookmarklets may include lengths of code, such as Java-
Script, that users may add to their browser bookmarks. This
code may perform some action, either directly or by execut-
ing other code which performs an action. As an example, the
system may contain a series of bookmarklets to help users add
RSS feeds as data sources into various widgets. The user may
visit a site containing an RSS feed to add. The user may then
execute a bookmarklet which instructs the widget server to
add the feed as a widget. Bookmarklets may be saved and

20

25

30

35

40

45

50

55

60

65

42

used as normal bookmarks. When used as such, they are
simple “one-click” tools which add functionality to the
browser.

FIG. 8(b) shows an exemplary display 850 for users to
obtain the widget service mobile widget bookmarklet and
install it on popular web browsers such as Microsoft Internet
Explorer or Firefox. Users that have the bookmarklet may be
able to gather mobile widgets to their mobile device while
browsing the web from their desktop. The bookmarklet may
appear in the web browser as an “Add to Widget Service”
bookmark link.

As an example, a user with the bookmarklet installed,
visiting the web site www.about.com, may simply click on a
bookmarklet link while the web browser is pointed to
www.about.com. The bookmarklet may then add a mobile
widget that represents this selected web site to the user’s
account on the widget service website. If a widget does not
exist, a new mobile widget may be created for the selected
web site. Note that even in this case, if the user does not have
a widget service account, he may be presented with the ele-
ments to register and get the widget service software on his
mobile device. After he downloads and installs the widget
service software client on his mobile device, he may then able
to use the specific widgets added by him via the bookmarklet
on his mobile device.

In one embodiment, bookmarklets work as follows: The
bookmarklet may contain JavaScript code that may be saved
in the user’s web browser bookmarks entry. When the user
selects the bookmark to execute while the user is viewing a
web page, the script may run. The script may get the web site
URL that the user is currently viewing. It then passes this
URL to the server 110. The server 110 may receive this URL.
It may then process the URL by grabbing the page that the
user was viewing. From that, it may collect information about
the page to be referenced and may even create a new mobile
widget if one doesn’t already exist for that page. Once the data
is in the system, the user may proceed to browsing to other
sites with his browser. This mobile widget may be available in
the user’s account while using the widget client on his mobile
device.

Adding a Mobile Widget from an Affiliate Web Site

FIG. 9(a) depicts an exemplary web site “The Raw Feed”.
The publisher of this website has generated a blog control 901
and has displayed it prominently on his web site. The ele-
ments for generating the blog control are described below in
“Creating a Blog widget” and depicted in FIG. 38. A web site
visitor who visits the “Raw Feed” web site may click on this
blog control to obtain the “Raw Feed” mobile widget.

According to one embodiment, when the visitor clicks on
this control, he may be redirected to preview page of that blog
widget (see FIG. 9(b)), where the user can see a live preview
of'the blog widget in various mobile phone emulators 911. In
this exemplary preview, users may be able to experience the
mobile widget 912 right on the computer. The emulator 911
may display the widget in several popular devices from ven-
dors such as Sony Ericsson, Motorola, Nokia, and Black-
Berry. Users may be able to use the emulator controls 913 to
view a simulated experience of the Raw feed as a picture
slideshow. Once the user decides that he wants the widget on
his mobile device, he may register and add this mobile widget
to his phone. If the user is registered on the widget service
server system, he may login at this element. If he is not
registered, he may be asked to register first with a form as
depicted by the exemplary form in FIG. 9(c). If he is already
registered and logged in, he may have the option of directly
adding the mobile widget to his phone by clicking the “Add”
control 914. Text may be presented to the user, e.g., “Click on

Booking, Exh. 1054, Page 95

US 8,595,186 B1

43

the ‘add’ control to add the blog to your list of mobile widget
feeds. The next time you synchronize, this blog will appear on
your mobile phone!” or similar. Additional text may say,
“Bloggers, you may instantly mobilize your blog into a cool
mobile slideshow . . . Click here to send to someone’s mobile
phone!” or similar.

In one embodiment, if the user has created an account for
the very first time, and registered for the mobile widget ser-
vice this way, the user may get an email or SMS message on
his mobile device to install the widget service client software,
and, once installed, this mobile widget may then be down-
loaded onto his mobile client. If he already has an account, he
may automatically receive the widget on the next synchroni-
zation session with the server system. FIG. 9(d) shows a view
of an exemplary user account with the widget service client
software running on a Blackberry device 931, where the
exemplary “Raw Feed” widget is downloaded and displayed
as an icon 932.

Thus, it is possible for web users to directly add mobile
widgets from publishers’ web sites as they browse their favor-
ite sites on the Internet. Note that while this example
describes a use case from a web log publisher, similar ele-
ments may be used by any content publisher including web
portals, aggregators, web services, web video sites, and the
like.

Metrics and Analytics

Upload/Download Metrics

The client and server may maintain counters for data usage.
This data usage may be used to limit the amount of content a
user is allowed to send and receive. This is helpful when a user
wishes to limit their bandwidth usage to save on mobile data
costs, for example. These metrics are also useful in collecting
usage information. This information may in turn be used to
optimize server performance by allocating more resources for
certain types of content that requires more bandwidth.

The user interface may contain configuration parameters
that end-users can specify to limit their bandwidth usage.
When the server determines that the client has received the
limit on the amount of information, it may stop sending data
to the client. Similarly, the client may also store size limits
locally so that if it receives more data than the threshold set on
the device, it can stop receiving more data. This limit may be
parameterized to reset at certain times (e.g. once a month after
a billing period).

Analytics and Measuring Usage

Information of widget usage by end-users may be gathered
for analytics, learning user behavior and for recommending
other mobile widgets based on a user’s tastes. Here we
describe the kinds of information gathered by the system and
how the information is gathered by the analysis subsystem.
The UniquelD method described earlier allows uniquely
identifying a specific user. Since widget service client soft-
ware 141 (FIG. 1(b)) enables mobile widget usage in an
offline mode even while not connecting to the server, such as
on an airplane or when there is no wireless connectivity, it is
desirable to gather analytics even when the users are not
connected. Thus, each time the application is used by an
end-user to view a mobile widget, the client may gather
information on, for example, when the application was
launched, which widgets were used by the user, and for how
long the user stayed on each widget. This data may be saved
locally on the mobile device 140 and then posted to the server
110 during synchronization.

The server 110 can gather and allow processing of this
information to learn both macro level patterns and individual
patterns using standard business intelligence software such as
Cognos or BRIO. Examples of macro level usage patterns

20

25

30

35

40

45

50

55

60

65

44

include being able to answer questions such as: “what are the
reading patterns and interests of male users ages 18-25 in the
Continental United States?”” or “How popular is the weather
widget during winter in Canada?”. Examples of individual
patterns would be “Who are all the active subscribers to the
NFL and College Football mobile Widgets?”. The system 110
may be able to perform various kinds of analytics on the usage
of mobile widgets based on the data gathered by the system.

Some embodiments of the system can also use this data for
recommendations to other users by providing some usage
data. An example is the number of subscribers to a widget or
the number of times a widget is accessed or by user rankings
of widgets.

Ad Syndication Engine

Some embodiments of the server 110 include an ad syndi-
cation engine 409 (FIG. 4(a)). The ad syndication engine 409
may store and determine when and how to deliver advertise-
ments to users. Advertisement delivery can be based on user
demographics, capable devices, certain events, etc. Adver-
tisements may be presented in real-time, offline, online, and/
or contextually.

Location Engine

Even without the benefit of specific location-detecting
mechanisms on mobile devices (such as GPS), the location of
a device may be determined by using the connecting IP
address. Each mobile device 140 that connects to the server
may send an address to send a response back to. According to
one embodiment, the server 110 may use this response
address to approximate the user’s location. The server may
perform a mapping to a physical real world address via a
lookup table of IP addresses to physical addresses. The map-
ping may occur in a database that contains the IP addresses to
physical address mappings. The structure of the database may
contain [P address ranges (from and to addresses) and a
real-world physical address for each entry. A comparison of
an IP address against the IP address range may determine a
match.

Widget Hosting in the Application Repository

Along with the client-side components of a widget 142
(FIG. 1(b)) that the mobile client 141 can download, server-
side components can also exist. According to one embodi-
ment, widgets exist in packages that contain a manifest. The
manifest may describe the package contents as well as addi-
tional external resources that are required.

A widget package can contain resources that the client
keeps (and hence does not need to access the server for
functionality). Examples include images, HTML page snip-
pets, scripting code, etc. Further examples include widget-
specific data such as currency rates, audio and video files, svg
files, text files, general data files. The manifest may describe
the resources, the name of the application, version, external
resources (that need to be downloaded), etc.

The server 110 can host resources that are required but not
downloaded by the client. Examples include database queries
where it may be infeasible to download an entire database to
amobile client and each of the examples listed above. Instead,
the server 110 can host a component that makes database
requests and relays results to the mobile client.

Device Detection

FIG. 18 illustrates a device detection process according to
one embodiment. This process may be used to detect the type
of device connecting to the server so that the server can
determine the best experience to deliver to the end-user. This
subsystem may include a device database, a device “finger-
print” collector, and an analysis module.

Booking, Exh. 1054, Page 96

US 8,595,186 B1

45

The device fingerprint collector may gather clues as to the
type of device connecting to the server. This may be accom-
plished via device HT TP browser headers that are transmitted
by the mobile browser and optionally the mobile gateway
through which mobile browsers could connect. These headers
may include some identifying information about the device
browser, version, make, acceptable media types, etc. This
information, however, may not be standardized and it may be
up to individual device manufacturers to decide how much or
how little information to provide through the headers.

As such, a device database on the server 110 may fill in the
gap. According to one embodiment, the device database con-
tains full information about a device’s characteristics such as
screen size, available memory, color depth, etc., that usually
are not transmitted when the mobile device connects. In addi-
tion, the device database may have fallback mapping such
that if a specific model of a device does not exist in the
database, a mapping is available to get to a generic version of
the device characteristics. For example, a fingerprint might
identify a device as a “Nokia 6030 version 2.3”. The database
might not have an entry for that particular model of device.
However, it might have characteristics for a “Nokia 6030”
device and would hence return that result, and so on, compar-
ing manufacturers and phone models. The analysis module
described below may sift through the data in the database to
return a correct result.

A second method of collecting a device fingerprint is
through downloadable software that may be also included in
the mobile client. It may be possible for the client engine 141
to determine device class (e.g. a Java-based device or a Win-
dows PDA device). From that, the client engine 141 can load
some additional detection code or diagnostic tests that get
sent to the client. When run, this detection code and tests may
use the device’s platform APIs to determine more information
about the device and send that information back to the server.
The results of the diagnostic tests and code may be used as the
basis for determining what types of content to transcode for a
mobile device and how to transcode the content. The results
of the diagnostic tests may be sent to a server, and the results
may be used to select which widget applications, versions of
the mobile client engine, or other data to send to a mobile
client. The diagnostic tests may be used as part of an instal-
lation method.

With reference to FIG. 18, according to one embodiment,
when a device connects to the server (either via web browser
1805 or via mobile application 1810), the analysis module
may collect all information from the fingerprinting system
(1815) and query the device database (1820). It may first look
for specific matches on the fingerprint (e.g. model, make,
firmware version, supported media types, etc). Weights may
be assigned to different identifying marks. For example, the
model number might have the most weight while supported
media types have the least weight. From this, a query is
performed on the database. If an exact match is found, that
match may be used (1825). Otherwise, the system may return
alist of possible matches, the highest ranked of which may be
used (1830). Alternatively, if no matches are found, a fallback
mechanism may used (1835). For example, a firmware ver-
sion may not match exactly. If device characteristics of an
earlier firmware version are defined, that may be used. If a
phone model is specified, that may be used. And if nothing
other than manufacturer is defined, that can be used, etc.
Widget Tools

Various tools may be provided to allow developers and
users to create additional widgets that can be uploaded to the
widget service. Tools may exist in hosted form, as user-
installed tools, and as mobile tools.

20

25

30

35

40

45

50

55

60

65

46

Download Idle Screen

FIG. 21 illustrates one embodiment of the download pro-
cess of downloading widgets. According to this embodiment,
the data is downloaded as quickly as possible. Once data is
downloaded, the user may not have to connect to the network
again since the experience is on the handset only using cached
data.

However, the mobile client can choose to show the current
progress of the download. A screen may appear (FIG. 21(a))
with a progress bar 2110 to indicate the current download
progress. While the user waits, the mobile client can begin to
show a preview 2120 of the items that have already been
downloaded (FIG. 21(5)). The items may automatically rotate
at a predetermined interval. Users can also interact with the
screen (FIGS. 21(c-e) to view other downloaded items and to
scroll down the item to show more text.

In another mode, the mobile client may be configured to
download in the background and allow users to begin inter-
acting with the widgets as they are downloaded. A network
content download manager, as a component of the widget
client 141, may receive requests from widget applications to
download network content. The download manager may
manage the downloading of requested content while the wid-
get is running, or alternatively, when the widget is not run-
ning, is terminated, or is blocking. The download manager
may resume, restart, callback, or launch the widget at certain
points in the download or after the download is complete. The
download manager may store the downloaded content per-
manently or ephemerally. The download manager (or the
widget) may, from time to time, cause the deletion of stored
network content.

In some embodiments, the device or client engine may be
configured to download network content at the request of a
widget, without requiring the user to request the content and
without necessarily immediately displaying the network con-
tent. Rather, the downloaded content may be stored in a
memory of the device for later sue and consumption by the
widget, especially in the later absence of a network connec-
tion. Content may, of course, be transcoded into a form more
suitable for use or display on the device before being down-
loaded. For example, content may have its volume lowered or
increased, dynamic range changed, color palate changed,
width or size adjusted, images scaled or compressed, and so
forth.

In some embodiments, a software widget may receive a
first request for data from a user. The widget may initiate a
downloaded of the content (perhaps via the download man-
ager described above). The widget (or the download manager
or client software) may thereafter initiate requests for other,
additional network content that has not been specifically
requested or instructed by the user. The identity of which data
to prefetching may be determined by heuristics located on the
server or the client device and may be private to a widget.

Widget Launchpad

After download is complete, the user can enter a widget
launchpad screen, FIG. 22 illustrates one embodiment of the
widget launchpad screen. In this embodiment, the launchpad
displays the set of widgets that the user has chosen and per-
sonalized based on his preferences. A user may select any
widget icon 2210 to launch it and see more detail. The user
can use a multi-directional selection key on a cellular tele-
phone to move around the screen. Other input mechanisms
such as a stylus or voice input may be used as appropriate. The
illustrated widget icons are displayed in a grid. They may also
be displayed in other layouts such as a list or a dynamic
homepage canvas (FIG. 26(a)) as appropriate. For example,
widgets may also be displayed in a carousel format, where

Booking, Exh. 1054, Page 97

US 8,595,186 B1

47

selecting or hovering over a widget may cause more informa-
tion to be displayed, possibly above the widget, and where
widgets may slide horizontally or vertically in a manner akin
to a CD carousel.

There may also be a dynamic information display 2220
which rotates information from the widgets. As one example,
a few of the widgets installed include CNN News, Local
Traffic, Local Weather and news from the POPSugar weblog.
The dynamic information display 2220 may rotate headlines
or status messages from these widgets every few seconds. The
user may click on the information display 2220 to view more
detail such as an article summary or a traffic incident detail or
weather for a certain day. (See top of FIGS. 22(a-d).)

Types of Widgets

When a user selects a specific widget, the maximized (de-
tail) view of the widget may be displayed. FIG. 23 illustrates
detailed views of an example widget according to one
embodiment. In this embodiment, the user has added an RSS
widget that shows headlines from various sources. FIGS.
23(a), 23(b), and 23(c) show three different RSS feeds that the
user has configured for the RSS widget. The feed title 2310 as
well as a random sample of articles 2320 in the feed is dis-
played. Links appear for the user to show more articles in a
particular feed (the “Show More” link 2330) or to remove the
feed from the RSS widget (the “Delete” link 2340). Users can
also choose a different view in which the feed icon appears to
the left and just the feed title appears along with the number
of unread articles in a particular feed. Users can configure
different display representations by configuring parameters
of the RSS widget.

FIG. 23(d) is a sample of what appears when users select
the “Show More” link 2330 in FIG. 23(a). The view depicted
by FIG. 23(d) shows the articles 2320 that appear in that feed.
Users can choose to personalize the feed (the “Personalize”
link 2350) or to update (the “Update” link 2360). Personal-
ization may include changing filtering parameters, changing
user locations, etc that affect the results of certain feeds. In the
example in FIG. 23(d), the feed has been configured to accept
location as a user preference. Therefore, the user may receive
only news pertinent to that user’s location. As users read the
articles, they become marked in a block 2370 of different
font/color so that the user knows they have read that particular
article (see FI1G. 23(c)). In addition, once the user has read all
of the articles on the device, they may choose to download
more articles from the server via a link 2380 (FIG. 23(e)).
Each article may have shortcut navigations that can be hidden
or displayed. There may be numbers next to the articles cor-
respond to the mobile device keyboard keys. When users
press the character corresponding to the article, they may
immediately jump into that article without having to use the
directional navigation keys to navigate and then select the
item link.

FIG. 23(f) shows one embodiment of an article that con-
tains a media attachment. The system presents a selectable
icon 2390 depicting that there is a media attachment. Users
can select the icon to start downloading the media. The media
could be an image, video, audio, etc. Because of client restric-
tions and different device capabilities, the system may auto-
matically transcode the media into an appropriate format for
the client. FIGS. 23(g) and 23(%) show that there is more text
to the article. Users can scroll down to see more text. In
addition, the mobile client can support pagination by which
large documents are broken up into multiple pages.

FIGS. 24(a-b) depict one embodiment of a widget for
displaying the current weather and the weather forecast.
Users can use the mobile device’s left and right keys to move

20

25

30

35

40

45

50

55

60

65

48

to the next or previous day’s forecast. A text summary 2410
may appear at the bottom of the display for the particular
selected item 2420.

FIGS. 24(c-e) depict one embodiment of a widget for dis-
playing images 2430 along with scrollable text 2450. Users
can quickly see all of the images 2430 in the source along with
the text descriptions 2450 at the same time. Users can use the
directional keys on the mobile device to move to the next or
previous image 2430. Users can also use a stylus or mouse to
drag the scroll left or right. When users select the image 2430,
they can view additional information about the article.

FIGS. 25(a-¢) depict one embodiment of a widget for
displaying comic strips 2510. Users may use the directional
keys on a mobile device to slide the comic 2510 around the
viewport 2520. Because comic strips 2510 are usually wide or
long, this widget may display the comics in a 2-dimensional
scrollable view. This ensures that the comic 2510 is of suffi-
cient size to be viewable on a mobile device display. This type
of widget can also be used to display large images. The widget
may also employ some animation with motion acceleration to
indicate to the user the direction that the image is scrolling.
The images can also be zoomed and panned while scrolling.

FIGS. 25(f-g) depict one embodiment of a search widget.
Users can interact with the widget by entering search terms
2530. The example in FIG. 25(f) is a local search widget that
takes user input, the user preferences (their current location),
and performs a search. For example, a search of “pizza” might
yield pizza restaurants around the user’s location (FIG.
25(2))-

FIGS. 27(d-f) and 28(a-h) depict one embodiment of a
sports widget. This may allow users to receive real-time game
scores. The depicted example embodiment shows cricket
games. FIGS. 27(d), 27(e), 28(b), and 28(e) show full-screen
alerts 2750 of major events. Users can scroll around text
information 2760 (FIGS. 27(f), 28(c), 28(d), and 28(f)). The
top banner 2810 may rotate between the team scores, player
scores, ads, etc. The bottom ticker 2820 can show news events
(See FIGS. 28(b) through 28(f)). In this particular widget,
users can also interact with the widget beyond scrolling up
and down. For example, if there is a video clip associated with
a particular event, users can select that event to display the
video clip. The video clip may get displayed on the mobile
device as per the media transcoding description in the system
description.

Widget Homepage

FIGS. 26(a), 26(b), and 29 depict embodiments of widget
homepages 2610. End-users can configure and customize this
homepage to add and remove different views of widgets. The
user may configure a background image to display on the
page. In one example, the user has configured a weather
widget to display on the page. This may be the same weather
widget as in FIGS. 24(a) and 24(b). Widgets may have dif-
ferent views and modes by which they can render themselves.

A widget can present itself in multiple formats, depending
on the mode, screen size, and capabilities of the mobile client.
Some of these modes may include a minimized state, a full
screen view, and a summary screen view. In a minimized
state, one embodiment of this application can be a grid of
icons 2210 (FIG. 22(a)). Each icon 2210 represents a “mini-
mized” view of the application. When users select the icon
2210, a full screen view of the widget may be displayed
(FIGS. 24(a), 24(b)). In the summary view, a screen 2220 of
important (user defined to appear) widgets can be displayed
(FIG. 22(a)-(d)).

For the “minimized” view, the icon can be static, or it can
show a state of the application. For example, a weather widget
may display a cloudy icon if it’s currently cloudy. A traffic

Booking, Exh. 1054, Page 98

US 8,595,186 B1

49

widget might show a stop sign if there is traffic on a pre-
defined route. A clock widget might show the current time.

In the summary view, a larger space may be allocated for
display of some status information. For example, a weather
widget might show a five-day forecast as five icons that rep-
resent the weather for each day. A stock widget might show a
scrolling ticker of stock symbols and current prices. A clock
widget might show the current time as well as the current date.

In the full screen view, the widget may have the entire
screen of the mobile device to render on. In addition, the full
input capabilities may be available for the user to interact with
the user interface. For example, there may be more space for
text input fields.

Mobile Client Home Screen Integration

In addition to being available in the mobile client as maxi-
mized, minimized, or summarized views, widgets 142 can
preferably be hosted on native “home” screens on mobile
clients. Certain mobile devices have the capability to display
application information on a home screen. Examples include
a Windows Mobile PDA. The home screen of a PDA may
contain the time 3010, signal strength, upcoming appoint-
ments 3020, etc. (see FIG. 30).

In some embodiments, the mobile client may contain a
plugin on supported platforms. These plugin hosts widgets
that are otherwise displayed in the mobile client. The plugin
may be registered with the native “home” screen. The mobile
widget may be displayed on a native display canvas on the
native “home” screen.

Advertising

Types of Mobile Advertisements:

FIG. 34 depicts several embodiments of mobile advertise-
ments. The client may support several types of advertisement
rendering formats all capable of being displayed offline.
Some possible advertisement types are described below:

Full Screen Transitional 3410: This advertisement may
appear for a few seconds encompassing the full screen of
the mobile device and disappear if ignored. If the user
clicks the advertisement an associated action is per-
formed.

Popup Bubble Alert 3420: This may be a small popup that
appears on the screen of the mobile device and may not
encompass the whole screen.

InPlay Advertisement 3430: This may be an advertisement
that is embedded in the content. For example during a
play-by-play session this may be displayed between
each play.

Advertisements may also be animations and have transi-
tion effects such as the following:

Fading: The advertisement fades in, stays on for a few
seconds and fades out.

Sliding: The advertisement slides from a side of the phone,
stays on for a few seconds and slides out.

Advertisement Actions:

The following are examples of system/widget responses to
user selections of advertisements:

None: If there is no action associated with an advertise-
ment, it’s only an impression with no click through
defined.

Click to Call—A telephone number or a Voice Over IP
(VoIP) call detail is associated with this advertisement.
When a user clicks, a voice call is made to connect the
user to the advertised service.

Microsite: This is a link to mode detail about the advertise-
ment. This may launch the WAP browser on the device.
Alternatively, the user may stay in the current context of
the widget service application and the microsite is dis-

20

25

30

35

40

45

50

55

60

65

50

played. If the user is watching a game or a live event via
the widget service, the experience might not be inter-
rupted.

URL: This is a link to an external web site. The URL may
be launched in the mobile device’s browser.

Media: This is a link to media such as a ringtone, podcast or
video clip. The widget service website downloads this
clip in the background and plays it.

On the client 141, there may exist an advertisement (ads)
store 455 (FIG. 4(b)) where ads are stored and queued in.
When the mobile client receives commands to display these
ads, the mobile client can pick up the appropriate ad from the
ads store 455 to display. Also, the mobile client can determine
when to pick up the ad from the store and display it. In some
embodiments, the mobile client does not need to be connected
to the server in order for the ads to be rendered. The ads may
get displayed even if there is no connection to the server. If a
user interacts with an ad, such as by clicking it, the ad or client
may be configured to perform an additional action, such as
accessing a URL, initiating a telephone call to a service or
company, show additional information (e.g., popups) relevant
to an ad, or play audio or video relevant to the ad.

As the ads are displayed, information may be logged about
the displayed ads and the user interaction with the ads. This
may include the number of times the ad has been shown, in
which context, whether the user “clicked” on the ad, whether
the user initiated a voice call based on the ad, the times these
events occurred, etc. All this information may be stored
locally on the mobile client so that a network connection need
not be created. Then, when the mobile client establishes a
network connection, this information may be transmitted
back to the server.

A server may contain a repository of adveristement to be
displayed on mobile devices and in association with widget
applications, where the server may select advertisements
based on user actions (such as downloading history) and/or
user profiles.

Bandwidth Optimized Advertisement Delivery:

The client may support a mechanism to cache mobile
advertisements. The widget service server may support a
technique wherein advertisement commands are sent once to
the client and the client caches the advertisements and dis-
plays them when required.

The advertisement server component may maintain a list of
advertisements in the current campaign and the total impres-
sions required over a period of time. When a client connects
to the server 110, one or more delayed advertisements,
referred to herein as AdCommands, may be sent to the client.
An AdCommand may contain some or all of the following
details:

Advertisement identifier: A number to uniquely identify

the advertisement on the client

Weight: A fraction between 0 and 1 that is used to control
the frequency of appearance of the advertisement.

Advertisement Content: An advertisement, possibly for-
matted in a declaratory markup language such as
HTML, that may include a graphic.

Action: None, Click to Call, Microsite, URL, Media, as
described above.

Action Detail: Contains details of the landing page. For
example, details could include a phone number for a
click-to-call advertisement, an embedded WAP micro-
site or an external WAP or WEB site link; or embedded
or downloadable media such as a ringtone or mobile
video preview.

In some embodiments, one or more AdCommands can be

sent to the client 141. The client 141 may maintain a round

Booking, Exh. 1054, Page 99

US 8,595,186 B1

51

robin queue of these advertisement commands and render the
advertisements whenever the user uses a widget. The user
may use the widget application in a disconnected mode and
these commands may execute and display the advertisements
even when the user is not connected over a mobile data
network. In some embodiments, the advertisements need
only be downloaded once to the client. The weight may be
used to control the frequency of the advertisements. Higher
weights may represent advertisements that are displayed
more often.

The client may maintain a log of all the advertisements
displayed and these metrics may be collected and posted back
to the server each time the client 141 performs a synchroni-
zation session with the server 110. In some embodiments,
new AdCommands may be sent to the client at any time to
augment the current set or reset the advertisement queue.

Techniques to Increase Relevance of Dynamic Information
Display

As described earlier, the client software may be capable of
displaying a dynamic information display such as a ticker or
a dynamically formatted homepage. According to one
embodiment, when headlines are rotated on such a ticker,
users can glance at these articles and may click on headlines
that they are interested in. It may be desirable to increase the
relevance of the articles to the user so that they click more on
these articles. Here we describe techniques and methods to
increase the relevancy of the information displayed based on
a variety of factors. FIG. 31 illustrates these techniques
according to one embodiment.

Box 3100 shows processes performed on the client device
to increase relevancy of the articles. Initially in Box 3101, a
list of articles is scanned from the local storage on the mobile
device. The dynamic information ticker may be functional
even when the mobile client is not connected to the wireless
network. Initially, the most recent articles from all the widgets
that have a dynamic content source associated with them may
be added to the information ticker display and may be rotated
ataninterval in a circular queue. Elements described in Boxes
3102, 3103, 3104, 3105, 3106 may be performed to increase
the relevancy of the information to the user. Box 3102 repre-
sents filtering by unread articles so that there is no repetition
of articles. Box 3103 represents prioritizing the articles based
on weights. Initially a weight of 1.0 may be assigned to all
widgets. As users use the widgets, possibly based in part on
the number of times a particular widget is used and based on
whether the users click on a headline pertaining to a widget,
the weights are modified. Thus, as the user uses the widget
service client 141 software, the system 110 may deliver head-
lines more in line with what the user clicks. In addition, the
weights may be manipulated by external factors. As an
example, it is possible to use standard user ratings and col-
laborative filtering systems to identify “hot topics™ and auto-
matically offer them as headlines even though the user has not
subscribed to those widgets, and therefore may be missing
important updates.

The next element (3104) may filter out specially tagged
feeds such as graphics-only feeds (e.g. comic strips that
require a big display for them to be effective), search results
from search engine widgets, or static widgets (if desired) such
as to-do lists. The next element (3105) may add any updates
of'desirable essential widgets such as weather and local traffic
periodically if there is an event. As an example, if there is a
change in traffic conditions, a headline could be added from
traffic. Otherwise, no traffic information is added in the ticker.
The next element (3106) may add advertisements from the
local cache based on the advertisement cache. If there are any

20

25

30

35

40

45

50

55

60

65

52

advertisements that need to be included in the ticker, they may
be inserted based on the rotation frequency specified by the
AdCommand.

Finally (box 3110), this filtered list of headlines may be
rendered periodically in the information display. At the end of
each cycle, a scan may be made to see if new articles have
arrived on to the local store of the client software. If so,
elements described in box 3100 may be repeated.

Itis possible to further improve the relevance of the articles
by using other parameters such as local time, current weather,
and semantic knowledge of current headlines. As an example,
if there is a winter storm in the local area, the system may
include more weather headlines. If it is closer to the after-
noon, the system may show the traffic updates more often.
Therefore, though not mentioned here, anyone skilled in the
art may be able to add such rules to increase article relevance
for the dynamic information ticker.

Creating Mobile Widgets

A Topical Mashup Mobile Widget

FIG. 37 shows various embodiments of web user interface
displays that a user may be presented with to create a mobile
widget. In some embodiments, an end-user is not required to
do any programming that generates the mobile widget. As
such, anyone capable of using a web browser and filling web
forms can use such a user interface to publish a mobile wid-
get. As an example, a topical expert, a blogger, a website
owner or a content publisher can use this user interface to
publish a mobile widget. Though not mentioned, the same
user interface may also be presented via mobile web browser
so that mobile users may also create and publish new mobile
widgets and share them with others.

Referring to FIG. 37, according to one embodiment, a user
may create a “topical mash-up” mobile widget. In this
example, the user creates a widget on the topic of “Arabian
Horses”. A “topical mash-up” is a type of mobile widget that
may continually aggregate information from several content
sources and present it as one mobile information stream. A
user who adds this widget onto their mobile device may
receive regular information updates about the topic “Arabian
Horses™ on her mobile device.

As in FIG. 37(a), the widget publisher may be asked to
enter a few keywords on the topic on which he wants to create
a widget. Text may be presented to the user, such as “Use this
wizard to publish your own mobile widget. At this time, you
may create a mash-up widget which aggregates content
around a topic from several content sources. Star by entering
a few keywords. Once you publish the widget, you can get it
on your mobile phone, share it with friends. We will auto-
matically update your mobile widget with new content as and
when it becomes available!” The user may enter the informa-
tion in a text box 3705 and submit it by selecting the “Start”
key 3710 or an equivalent. The query may be transmitted back
to a central server and parsed. A next control 3750 can be
provided to enter the inputted data and proceed to the screen
of FIG. 27(c). In FIG. 37(b) the user selects an image 3715
that visually represents the widget, provides a title 3720, and
enters optional descriptive information such as description
3725 and tags 3730. FIG. 37(c) shows an exemplary method
of selecting images 3715, in which the user picks the image
3715 by clicking on a particular image 3715. This informa-
tion may be associated with the widget and used later to
categorize the widgets in a repository. Another next control
3750 may be provided.

The display in FIG. 37(d) allows the widget publisher to
pick information sources 3735 to aggregate into his widget.
The user can select one or more sources to add to the widget.
Several information source choices 3735 may be presented to

Booking, Exh. 1054, Page 100

US 8,595,186 B1

53

the publisher. One set of information sources represent search
engine resources on the web such as Google search, yahoo
search, Google News search, Yahoo Image Search, Flickr
Image search, Upcoming.org event search, MySpace Blog
search, eBay product search, and the like. An information
source may be the result of running the query on any of these
search engines. The publisher can select this by selecting the
checkbox next to any of these provided choices. The sources
may also include data repositories, news sites, and so forth.

Another information source 3735 in FIG. 37(d) may be
already-available content sources on “Arabian horses” that
other widget service users have added previously thus far into
the system. Another information source 3735 is similar con-
tent sources derived from running the query “Arabian horses”
on external search engines. Further the user may know a
specific web site, and he may also be able to enter that spe-
cifically as a URL in a text box 3740. FI1G. 37(d) illustrates an
emulator preview 3745 that enables the user to click on any
information source 3735 on the page any preview portions of
the widget on a mobile emulator. Once the user is satisfied
with his selections to include in the mash-up widget, he may
submit the information by selecting a “Next” key 3750 or
equivalent.

FIG. 37(e) is an exemplary confirmation element where the
user may make final modifications to the content sources. The
user may publish the channel by logging into the system or
anonymously without logging in. Once published, the mobile
widget on “Arabian Horses” may be generated and may be
published into the directory of Widgets. FIG. 37(f) shows an
exemplary search by any user on the keyword “racing” 3755.
One of the search results 3760 displays the newly published
“Arabian Horses” widget 3765, that this user may select to
add to his or her mobile device.

Weblog Mobile Widget

Yet another widget type is a blog widget that encapsulates
aweb log, commonly referred to as blog. An exemplary set of
elements, according to one embodiment, for creating a web
log widget non-programmatically is disclosed in FIG. 38. A
blogger who is the publisher of a weblog may use this pub-
lishing wizard tool to generate a mobile widget. In FIG. 38(a),
an exemplary element is provided where the blogger chooses
one of various kinds of graphical controls 3805. These con-
trols 3805, also referred to as “blog controls” may be standard
widget service controls 3810 or personalized controls 3815.
Some bloggers prefer to personalize these controls. The
exemplary display in FIG. 38(5) shows the control personal-
ization element. Here the blogger may select a background
graphic 3820 presented by the system and also upload a
graphic 3825 that represents his or her blog. A new person-
alized blog control is then generated for blogger. The blogger
may further try out variations by loading different graphics,
cropping the images until satisfied. Then he clicks the “Next”
control 3830 or equivalent to proceed to the next element.

An exemplary display representing this next element is
shown in FIG. 38(c). The blogger may enter a title for the
widget 3835, a short description 3840 and a few keywords
3845 that relate to the blog. All of these fields may be used to
search and categorize the blog widget in the gallery. The
blogger clicks the “Next” control 3850 to complete genera-
tion of the mobile blog widget representing his blog. As in
FIG. 38(d), he may be presented with a short snippet of
HTML, JavaScript, or other code 3855 with instructions to
use it. In this display the code may be emailed to him for
convenience.

In addition to the generated blog control 3860, a mobile
widget with the same graphic may also be generated. The
mobile widget may be added to the gallery on the widget

20

25

30

35

40

45

50

55

60

65

54

service for other users to use and share. The blog control may
be used by the blogger to put on his website to advertise the
factthat his blog is now available as a mobile widget. The blog
controls may be standard “Send to Phone” controls, or per-
sonalized picture controls or also dynamic slideshows that
show the entire preview of the mobile widget experience
itself. In addition to bloggers, though not shown in this figure,
in some embodiments, any user with a web home page on
social sites such as MySpace, Facebook or any web site owner
can create a mobile widget and an associated blog control
using the Wizard. When a reader of that blog clicks on that
control on the blog site, he or she may be redirected to the
widget service web front end and may be allowed to register
to widget service and add that specific blog widget on to his
widget service client software 141.

Further as shown in FIG. 38(e), in some embodiments, the
blogger may preview the mobile widget 3865 on the web.
Current information may be fetched from his web log and
may be rendered as a live preview in the exemplary mobile
emulator 3870. Here the blogger may fully navigate through
the widget 3865 and view the blog widget 3865 that he just
created.

Example of a Widget Published from the Phone

Another set of widget publishing wizards may be offered to
mobile users. These mobile widget publishing wizards may
be available on a client device via a mobile web browser on a
client device, or as a widget itself. Similar to the web inter-
face, the mobile user may be presented with a series of ele-
ments to create and publish a new widget.

The example of FIG. 39 illustrates a parent creating a
mobile widget 3910 for her daughter’s soccer season. She
periodically takes pictures 3920 from a camera of her mobile
phone 3930 during every game and posts it to that widget
3910. Grandparents and other family members 3940 that may
subscribe to this widget 3910 to periodically receive a photo
stream as and when new pictures are uploaded. This whole
use case may not require a desktop computer since the widget
3910 is both created and subscribed to from a mobile client
device.

Other Types of Mobile Widgets

Though not shown, it is possible to present the user with
several such wizards to publish various kinds of mobile wid-
gets. Other examples include a mobile widget that shows a
picture slideshow of personal pictures, music or videos. In
this case the user may be asked to input URLSs to upload the
specific media and a mobile widget may be generated with the
associated media. Yet another widget could be a personalized
weather widget where the user specifies a location and a
weather mobile widget would be generated for him.

FIG. 40 shows the supporting server-side process to create
a mobile widget according to one embodiment. The first
element in box 4001 is to present the publisher with widget
type choices to select the types of widget. The system sup-
ports several types of widgets that may be created non-pro-
grammatically using these “wizards”. More such wizards
may be added as desired for convenience. Mobile widgets
preferably have an icon associated with them. In box 4002 the
user enters a title, keywords, and description for the widget. In
box 4003, the system performs a keyword search based on the
widget description, title and keywords and presents the pub-
lisher with image choices to represent the mobile widget.
These images may be search results from an external image
search engine such as Yahoo or from an internal repository of
images in the system.

As described in the previous example in FIG. 37(d), the
system may then present the user with one or more choices
where the user selects the type of information to be added in

Booking, Exh. 1054, Page 101

US 8,595,186 B1

55

the mobile widget (box 4004). For a weather widget this may
be the zip code or location, for a mashup-widget, this may be
alist of content sources, for a photo album widget this may be
a list of image URLs. The user may then add the content
details and submits these choices to the system (box 4005).
The widget service server system may then generate the
mobile widget in a element depicted by box 4006. The details
of process 4006 are depicted in FIG. 41 and described in the
section named “Mobile Widget Creation”

CONCLUSION

In the embodiments described above, each flowchart is
shown for the illustrative purposes. Some blocks in the flow-
charts can be omitted or combined with one another in other
embodiments.

Although this invention has been disclosed in the context of
certain preferred embodiments and examples, it will be
understood by those skilled in the art that the present inven-
tion extends beyond the specifically disclosed embodiments
to other alternative embodiments and/or uses of the invention
and obvious modifications thereof. Thus, it is intended that
the scope of the present invention herein disclosed should not
be limited by the particular disclosed embodiments described
above.

APPENDIX A

BNF

CompilationUnit:
(Statement|FunctionDecl)*
Expression:
Assignment
|ConditionalExpression
[FunctionExpression
Assignment:
PrimaryExpression AssignmentOperator Expression
AssignmentOperator:
CPRD = Y= ==
LSS ===
ConditionalExpression:
ConditionalOrExpression [“?”” Expression “:” Condition-
alExpression]
ConditionalOrExpression:
Conditional AndExpression (“||” Conditional AndExpres-
sion)*
Conditional AndExpression:
InclusiveOrExpression (“&&” InclusiveOrExpression)*
InclusiveOrExpression:
ExclusiveOrExpression (
ExclusiveOrExpression:
AndExpression (“°” AndExpression)*
AndExpression:
EqualityExpression (“&” EqualityExpression)*
EqualityExpression:
RelationalExpression (
“==" Relational Expression

[“t=" RelationalExpression
£

“ln

ExclusiveOrExpression)*

Relational Expression:
ShiftExpression (
“<” ShiftExpression
[“> ShiftExpression
|“<=" ShiftExpression
[“>=" ShiftExpression

)*

5

20

25

30

35

40

45

50

60

65

56

ShiftExpression:
AdditiveExpression (

“<<”” AdditiveExpression
[“>>” AdditiveExpression
[“>>>" AdditiveExpression
)*

AdditiveExpression:
MultiplicativeExpression (

“+” MultiplicativeExpression
|“~ MultiplicativeExpression
)*

MultiplicativeExpression:
UnaryExpression (
«*» UnaryExpression
1“/”” UnaryExpression
1“%” UnaryExpression
)*
UnaryExpression:

“+” UnaryExpression

[“~” UnaryExpression

|PrelncrementExpression

IPreDecrementExpression

[UnaryExpressionNotPlusMinus
PrelncrementExpression:

“++” PrimaryExpression
PreDecrementExpression:

“—-" PrimaryExpression
UnaryExpressionNotPlusMinus:

“~” UnaryExpression

[“t” UnaryExpression

|PostfixExpression
PostfixExpression:

PrimaryExpression [“++71“~="]
PrimaryExpression:

PrimaryPrefix (PrimarySuffix)*
PrimaryPrefix:

Literal

Name

[“this™

|“(” Expression *)”

| AllocationExpression
PrimarySuffix:

“I”” Expression “]”

|“”<IDENTIFIER>

|Arguments
Literal:

<INTEGER_LITERAL>

[<STRING_LITERAL>

[“true”

|“false”

[“null”

[“undefined”
Arguments:

“(’ [ArgumentList] “)”
ArgumentList:

Expression (“,”
Name:

<IDENTIFIER>
AllocationExpression:

“new” Name Arguments
FunctionExpression:

“function” “(”” FunctionParameters “)” Block
FunctionDecl:

“function”<IDENTIFIER>“(" FunctionParameters *)”

Block

FunctionParameters:
[<IDENTIFIER>(*,"<IDENTIFIER>)*]

Booking, Exh. 1054, Page 102

Expression)*

US 8,595,186 B1

57
Statement:
Block
IEmptyStatement
|StatementExpression “;”
|VarStatement
|SwitchStatement
|IfStatement
|WhileStatement
|DoStatement
|ForStatement
|BreakStatement
|ContinueStatement
|ReturnStatement
ITryStatement
|ThrowStatement
Block:
“{” (Statement)* “}”
EmptyStatement:
b
StatementExpression:
PrelncrementExpression
IPreDecrementExpression
|Assignment
|PostfixExpression
VarStatement:

“var” VariableDeclarator (““,” VariableDeclarator)* «;”

VariableDeclarator:
<IDENTIFIER>[“=" Variablelnitializer|
Variablelnitializer:
Expression
|¢<{”
[Hashlnitializer (“,” HashlInitializer())*]

w2

HashlInitializer:

(<IDENTIFIER>I<STRING_LITERAL>) *“:” Expression

SwitchStatement:

“switch” “(” Expression «)” “{”

(SwitchLabel (Statement)*)*

SwitchLabel:

“case” Expression “:”

[“default” «:”
IfStatement:

“if” “(” Expression “)” Statement [“else” Statement]
WhileStatement:

“while” “(” Expression “)” Statement
DoStatement:

“do” Statement “while” “(” Expression)" «;”
ForStatement:

“for” “(” [Forlnit] “;” [Expression] “;” [ForUpdate] «)”

Statement

Forlnit:

StatementExpressionList
StatementExpressionList:

StatementExpression (“,” StatementExpression)*
ForUpdate:

StatementExpressionlist
BreakStatement:

“break” «“;”
ContinueStatement:

“continue” ;"
ReturnStatement:

“return” [Expression] “;”
TryStatement:

“try” Block [CatchBlock] [FinallyBlock]
CatchBlock:

“catch” “(” <IDENTIFIER> “)” Block

20

25

30

40

45

60

65

58
FinallyBlock:
“finally” Block
ThrowBlock
“throw” Expression “;”
APPENDIX B

Mark and Sweep:

function ge() {

for each root variable obj {
mark(obj);

sweep();

function mark(obj) {
if (fobj.marked) {

obj.marked = true;

for each property referenced by obj {
mark(property);

}

function sweep() {
for each obj in heap {
if (obj.marked) {
obj.marked = false;
}else {

release(obj);

}

Store and Copy:
function ge() {
for each root variable obj {
ref = copy(obj, inactiveHeap);

swap(activeHeap, inactiveHeap);

function copy(obj, destinationHeap) {
if (obj==null) {
return null;

}
if (obj.forward==null) {
ref = destinationHeap.newInstance(obj.class);
obj.forward = ref;
for each field fin obj {
if (fis a primitive) {
ref.f= obj.f;
}else {

ref.f = copy(obj.f, destinationHeap);

ref.forward = null;

}

Mark and Compact:
function ge() {
for each root variable obj {
mark(obj);

compact();

function mark(obj) {
if (thandle[obj].marked) {
handle[obj].marked = true;
for each object q referenced by obj {
mark(q);

}
}
function compact() {
long offset = 0;
for each object obj in heap {
if (handle[obj].marked) {
handle[obj].object = heap.move(obj, offset);
handle[obj].marked = false;
offset += sizeof{obj);

Booking, Exh. 1054, Page 103

59

-continued

US 8,595,186 B1

APPENDIX C

APIs: Platform APIs to the system.
File input/output:
array=File.getRoots()
File.mkdir(path)
File.delete(path)
array=File.list(path)
boolean=File.exists(path)
fileObj=File.open(path)
buffer=fileObj.read(numBytes)
fileObj.write(buffer)
fileObj.close()

Database:

DB.delete(path)
boolean=DB.exists(path)
db=DB.open(path)
db.removeltem(id)
db.setltem(hash)
hash=db.getItem(id)
hash=db.getFirstltem()
hash=db.getFirstltem(function)
hash=db.getNextltem()
db.close()

Network operations (e.g. HTTP, sockets):

sock=Socket.open(url)
sock.read(numBytes)
sock.write(bufter)
sock.registerCallback(function)
sock.close()

HTTP:

conn=HTTP.open(url, headers)
conn.write(buffer)
buffer=conn.read(numBytes)
integer=conn.getResponse()
string=conn.getHeader(name)
conn.registerCallback(function)
conn.close()

20

25

30

35

40

45

Graphics display (e.g. browser API and graphics canvas)

User input

Text parsing (e.g. XML)
DOM elements
Node->children (array)
Node->attributes (hash)
Node->text

Node->type (1=node, 2=text)
Mathematical operations and functions
Math.random()

Math.sin()

Math.cos()

Math.sqrt()

Math.PI

PIM API

For contact, calendar, tasks:
list=open(type)

list.close()

list.getField()
list.enumerateFields()
data=list.create()
data.setField()

50

55

60

65

60

list.add(data)

Time
seconds=Time.getCurrentTime()
Time.wait(milliseconds)

String

str2int

charAt()

indexOf()

lastIndexOf()

substr()

length()
APPENDIX D

OP_NOP

No operation. Performs no operation and moves to the next
instruction.

OP_PUSH_COPY Makes a copy of the value at the top of the
stack and pushes that value onto the stack.

OP_PUSH_INT <int_value>

Push the following integer constant onto the stack.
OP_PUSH_STRING <index>

Push the following string onto the stack. The following value
is an integer index into a constants table with the string values
indexed by the integer index.

OP_PUSH_TRUE

Push a “True” value onto the stack.

OP_PUSH_FALSE

Push a “False” value onto the stack.

OP_PUSH_NULL

Push a NULL value onto the stack.
OP_PUSH_UNDEFINED

Push an “undefined” value onto the stack.
OP_PUSH_FUNCTION <int_function_ref>

Push a function reference onto the stack.
OP_PUSH_OBIJECT

Push a new object onto the stack.

OP_POP

Pops a value off the stack and discards that value.
OP_GET_VARIABLE <index>

Get the value of the specified variable and pushes that value
onto the stack. First, we’ll check the local scope. If the vari-
able doesn’t exist, we’ll look in the global scope.
OP_SET_VARIABLE <index>

Pops a value off the stack and stores that value for the speci-
fied variable in the local scope if a variable has already been
defined in a local scope. Otherwise, save into the global
scope.

OP_SET_LOCAL <index>

Pops a value off the stack and stores that value for the speci-
fied variable in the local scope. Also sets the accumulator with
the value.

OP_GET_PROPERTY <index>

Gets the value of the specified property on an object. Pops the
object to retrieve a property from off the stack and then
references the specified property. The value is pushed onto the
stack.

OP_SET_PROPERTY <index>

Sets a property on an object with a specified value. Pops the
value to store and then pops the object to apply. Then the
property is applied on the object with the value.
OP_CALL_FUNCTION <int_function_ref>

Calls the function at the specified program counter. First pops
the number of arguments that are going to be passed in. Then
pops the arguments one by one in reverse order. So, the first
argument popped in is the last argument to the function. Next,
we push the program counter of the next instruction onto the

Booking, Exh. 1054, Page 104

US 8,595,186 B1

61

stack (so we can return). Finally, we set the program counter
to the function reference pointer to begin execution of the
function.

OP_FUNCTION_RETURN

Specified at the end of the function to return to the instruction
after the function call. First, pops a value from the stack to
return to the caller. Then pops the program counter from the
stack to return to. Then sets the accumulator to the return
value back for consumption after the function call.
OP_DEFINE_FUNCTION

This is to be used at the start of function definitions to map
arguments passed into a function into the parameter names
that the function declared. The parameter names should have
been pushed in reverse order. The top of the stack should
contain the number of parameter names. Then for each
parameter name, we’ll go through the “arguments” array that
gets passed into all functions and map the values to the vari-
able names in the stack.

OP_NEW <int_function_ref> (not there)

Calls the constructor function at the specified program
counter and creates an object. First pops the number of argu-
ments that are going to be passed in. Then pops the arguments
one by one in reverse order. So, the first argument popped in
is the last argument to the function. Next, we push the pro-
gram counter of the next instruction onto the stack (so we can
return). Finally, we set the program counter to the function
reference pointer to begin execution of the function. On
return, we discard the return value. Instead, we’ll use the
object “this” to be pushed onto the stack.

OP_ISR <pc>

Pushes the next instruction pointer onto the stack. Then jumps
to the specified program counter.

OP_JSR_RETURN

Pops an instruction pointer off the stack and jumps to that
program counter location.

OP_SUB

Subtracts two values from the stack. Pops the right value and
then the left value from the stack. Then subtracts the right
value from the left value. The resulting value is pushed back
on the stack.

OP_ADD

Adds two values from the stack. Pops the right value and then
the left value from the stack. Then adds the right value to the
left value. The resulting value is pushed back on the stack.
OP_MUL

Multiplies two values from the stack. Pops the right value and
then the left value from the stack. Then multiplies the right
value to the left value. The resulting value is pushed back on
the stack.

OP_DIV

Divides two values from the stack. Pops the right value and
then the left value from the stack. Then divides the right value
into the left value. The resulting value is pushed back on the
stack.

OP_MOD

Gets the remainder of a division between two values from the
stack. Pops the right value and then the left value from the
stack. Then divides the right value into the left value and gets
the remainder. The resulting value is pushed back on the
stack.

OP_NEG

Negates (2°s complement) a value on the stack. Pops a value
from the stack, negate it, and pushes the value back onto the
stack.

20

25

30

35

40

45

50

55

60

65

62
OP_NOT
Inverts (1°s complement) a value on the stack. Pops a value
from the stack, NOT it, and pushes the value back onto the
stack.
OP_AND
Performs a bitwise AND of two values from the stack. Pops
the right value and then the left value from the stack. Then
performs a bitwise AND of the right value into the left value.
The resulting value is pushed back on the stack.
OP_OR
Performs a bitwise OR of two values from the stack. Pops the
right value and then the left value from the stack. Then per-
forms a bitwise OR of the right value into the left value. The
resulting value is pushed back on the stack.
OP_LE
Performs a logical comparison of two values from the stack.
Pops the right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is less than or equal to the right value, a “True” is pushed
onto the stack. Otherwise, a “False” is pushed.
OP_GE
Performs a logical comparison of two values from the stack.
Pops the right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is greater than or equal to the right value, a “True” is
pushed onto the stack. Otherwise, a “False” is pushed.
OP_EQ
Performs a logical comparison of two values from the stack.
Pops the right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is equal to the right value, a “True” is pushed onto the
stack. Otherwise, a “False” is pushed.
OP_NE
Performs a logical comparison of two values from the stack.
Pops the right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is not equal to the right value, a “True” is pushed onto
the stack. Otherwise, a “False” is pushed.
OP_LT
Performs a logical comparison of two values from the stack.
Pops the right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is less than the right value, a “True” is pushed onto the
stack. Otherwise, a “False” is pushed.
OP_GT
Performs a logical comparison of two values from the stack.
Pops the right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is greater than the right value, a “True” is pushed onto
the stack. Otherwise, a “False” is pushed.
OP_COND_JUMP_TRUE <int_pc>
Pops a value from the stack. If its boolean equivalent is
“True”, then branch to the specified program counter. Other-
wise, continue to the next instruction.
OP_COND_JUMP_FALSE <int_pc>
Pops a value from the stack. If its boolean equivalent is
“False”, then branch to the specified program counter. Oth-
erwise, continue to the next instruction.
OP_JUMP <int_pc>
Branch to the specified program counter.
OP_LOGICAL_NOT
Performs a logical “not” on a value on the stack. First pops the
value. Then converts the value into a boolean equivalent. If
the value is “True”, we’ll push “False” onto the stack. If the
value is “False”, we’ll push a “True” onto the stack.

Booking, Exh. 1054, Page 105

US 8,595,186 B1

63

OP_SHR

Shifts a value to the right by the specified number of bits,
preserving the sign bit. First pops the number of bits to shift
by. Then pops the value to shift. Then, shifts the bits as
specified, pushing the resulting value back onto the stack.
OP_USHR

Shifts a value to the right by the specified number of bits,
ignoring the sign bit. First pops the number of bits to shift by.
Then pops the value to shift. Then, shifts the bits as specified,
pushing the resulting value back onto the stack.

OP_SHL

Shifts a value to the left by the specified number of bits. First
pops the number of bits to shift by. Then pops the value to
shift. Then, shifts the bits as specified, pushing the resulting
value back onto the stack.

OP_LOGICAL_AND

Performs a logical AND on two values on the stack. Pops the
right value and then the left value from the stack. If the
boolean equivalents of both values are “True”, then push a
“True” onto the stack. Otherwise, a “False” is pushed. Note
that the compiler should generate a short-circuit evaluation of
this operator so that if the first value is “False”, it does not
evaluate the right operand.

OP_LOGICAL_OR

Performs a logical OR on two values on the stack. Pops the
right value and then the left value from the stack. If the
boolean equivalents of either of the two values are “True”,
then push a “True” onto the stack. Otherwise, a “False” is
pushed. Note that the compiler should generate a short-circuit
evaluation of this operator so that if the first value is “True”,
it does not evaluate the right operand.

OP_XOR

Performs a bitwise exclusive OR of two values from the stack.
Pops the right value and then the left value from the stack.
Then performs a bitwise exclusive OR of the right value into
the left value. The resulting value is pushed back on the stack.
OP_TRY

Defines a try-catch-finally block. Pops two values off the
stack. Pops the PC of the catch block and saves in the handler.
Pops the PC of the finally block and saves in the handler. The
catch block handles the exception if thrown. The code in the
finally block always gets executed whether or not an excep-
tion occurred. If the PC for either value is 0, then the respec-
tive block is disabled. For example, if the catch PC value is O,
the catch block is not defined and exceptions may not be
handled. Similarly, if the finally PC value is 0, the finally
block is not defined.

OP_END_TRY

Closes the try-catch-finally block by resetting the handler for
the current stack frame.

OP_THROW

Pops the value off the stack and throws an exception. Looks
for the current handler. If an exception handler is defined, the
handler may handle the exception. Otherwise, pops off the
current invocation stack frame to the caller frame to see if a
handler exists there. It continues until there is a handler or
until there are no more stack frames. At that point, the mobile
client handles the exception (one implementation could show
the error to the user).

OP_CLEAR_EXCEPTION

Clears the pending exception.

APPENDIX E

ch = getchar()

// Start of a tag?

if (ch=="<"){
ch = getchar()
if (ch=="/") {

25

30

35

40

45

50

55

60

65

64

-continued

type = END_TAG;
else {
type = START_TAG;

skip_whitespaces();
name = read_text_until_whitespace();
do {
skip_whitespaces();
if (ch is part of a name) {
attr_name = read name();
attr_value = read value();
save_attribute(attr_name, attr_value);

} while (ch not end of tag);

}else {
type = TEXT;
text = read until_start_tag();

After the getNext() is called, the following functions can be
called:

getText()

If the result of the getNext() was a TEXT, then we should call
this function to get the text in between the start and end tags.
getNextAttr()

If the result of the getNext() was a TAG, then we call get-
NextAttr() in a loop to get all of the attributes of the tag. The
return determines whether there are more attributes (TRUE)
or no more (FALSE). After calling getNextAttr() we can call
getAttrName() and getAttrValue() to get the name and value
of the attribute.

getAttrName()

After calling getNextAttr() use this to get the attribute name.
getAttrValue()

After calling getNextAttr() use this to get the attribute value.

APPENDIX F

Hyperlink—When a select action is performed, a new page
is rendered given a specified target page to render. Appli-
cation developers can set a target page URL that is used
when the select action is performed. In addition, appli-
cation developers can assign custom handlers to handle
the select action so that their own functions can be
executed rather than to jump to the target page.

Form—A form is a block that allows for user enterable data
to be filled. Application developers set a target page
URL. When the form data gets submitted, the form data
is encoded and then sent to the specified URL for further
handling. Form “submission” can be done either via user
selection of a button or can be done programmatically by
the application developer.

Form text input field—Allows users to enter text in the
field. Allows for textual, numeric, or password (hidden
non-echoed text). It can be rendered as a single line or
multi-line field to allow users to enter textual informa-
tion. Characters that the user enters on the mobile device
keyboard are echoed in the text field (except for pass-
word fields). In addition, application developers can add
their own handlers to determine what should happen
when users enter text into the text field.

Form button—When the user selects the button and per-
forms the default action, the form data in the encompass-
ing “form” widget gets collected and sent to the handler.
All data in the form elements that are contained in the
form are collected, encoded, and submitted to the
“form” widget URL. An application developer can over-
ride this button behavior by defining their own handler.

Booking, Exh. 1054, Page 106

US 8,595,186 B1

65

That way, when the end-user interacts with the button,
the application can perform a different action.
Form checkbox—These are elements that have two states,
on and off. When the default action is performed, the
states are toggled between on and off. An application
developer can override this behavior by defining their
own handler.
Form radio button—These are elements that have two
states, on and off. Radio buttons are similar to checkbox
elements. However, radio buttons exist in a group such
that only one radio button in the group are on while the
rest are off. When the default action is performed, that
radio button’s state goes to on while the other radio
buttons in the group go to off. An application developer
can override this behavior by defining their own handler.
A radio button can become a member of a group by their
name.
Form list selection—Displays a list of elements that the
user can individually select. Selection can be one or
multiple items in the list. When the default action is
performed for a one-selection model, the single item
gets selected while the others are deselected. For the
multi-selection model, the states of each individual item
toggles between on and off.
Form dropdown list selection—This widget is similar to
the list one-selection model, when one item gets
selected, the other items are deselected. However, as
rendered, it shows like a text field and expands when
users are to select items in the list. This also allows for an
input mode where the user can type text into the field
(like the text input field).
Form file upload—This widget allows for submission of
binary data. On a desktop computer, users can specify a
file to “upload” to the server. In the mobile case, we’ll
use this to invoke special functions on the mobile device
and upload its data. Some examples include image,
audio, video capture. Users select the widget and select
it to launch the specific mobile device capture tool. The
tool runs and captures the data. The application can then
retrieve the data and upload in the form on a form sub-
mission.
Form hidden element—This is a non-visible widget that
includes only of a name and value pair. It is useful when
values need to be posted along with the form. Users are
not able to interact with this widget since it is not visible.
SVG—Provides a vector-based graphics display canvas on
which to render graphical elements. See section on vec-
tor graphics for more details.
Active Object—This is an application definable widget
that can do what the developer sees fit. This type of
widget is useful in the cases when the basic elements are
not enough to render the user interface. Some examples
include video players, audio players, scrolling items,
etc.
What is claimed is:
1. A mobile device, comprising:
at least one processor;
memory storing instructions, the instructions comprising:
instructions for a declaratory markup language renderer
configured to instruct the at least one processor to
render a declaratory markup language component of a
widget application on a display of the mobile device;

instructions for a compiled programming language
execution engine configured to instruct the at least one
processor to execute a compiled programming lan-
guage component of a widget application installed on
the mobile device;

20

25

30

35

40

45

50

55

60

65

66

instructions for a mobile device API, adapted to be
accessible to a widget application, and providing
access to a device service API of the mobile device;
and

instructions for a widget manager configured to instruct
the at least one processor to: crawl one or more remote
network resources accessible via a network for widget
applications; to automatically determine one or more
of the widget applications for download based on a
user profile associated with the mobile device; to
automatically download the one or more widget
applications, from a remote network location to the
mobile device, to constitute a set of downloaded wid-
get applications; and to install the set of downloaded
widget applications, wherein the downloading and
installing are based on the user profile associated with
the mobile device, without user interaction with the
mobile device;

wherein the set of downloaded widget applications cor-
responds to a first set of widget applications; and

instructions for the widget manager configured to
instruct the at least one processor to automatically
uninstall one or both of the first set of widget appli-
cations and a second set of widget applications on the
mobile device based at least in part on user prefer-
ences, without user interaction with the mobile
device.

2. The mobile device of claim 1, wherein the instructions
for the widget manager are further configured to instruct the
at least one processor to initiate displays of the set of down-
loaded widget applications or descriptions of the set of down-
loaded widget applications on the display of the mobile
device.

3. The mobile device of claim 1, wherein the instructions
for the widget manager are further configured to instruct the
atleast one processor to automatically download descriptions
of' widget applications from a network location to the mobile
device based on the user profile associated with the mobile
device.

4. The mobile device of claim 1, wherein the instructions
for the widget manager are further configured to instruct the
at least one processor to delete widget applications from the
mobile device one or both of the first set of widget applica-
tions and a second set of widget applications on the mobile
device based at least in part on user preferences, without user
interaction with the mobile device.

5. The mobile device of claim 1, wherein the instructions
for the widget manager are further configured to instruct the
at least one processor to:

receive a search query from a user ofthe mobile device; and

send the query to the network location to initiate a search

for widget applications related to the query.

6. The mobile device of claim 5, wherein the instructions
for the widget manager are further configured to instruct the
at least one processor to:

receive widget applications or descriptions of widget appli-

cations in response to the query, from the network loca-
tion or a different network location, the received widget
applications or descriptions being related to the query;
and

display the received widget applications or descriptions of

widget applications on the display of the mobile device.

7. The mobile device of claim 1, wherein the instructions
for the compiled programming language execution engine
provide access to the device service API of the mobile device.

Booking, Exh. 1054, Page 107

US 8,595,186 B1

67

8. The mobile device of claim 1, wherein the compiled
programming language execution engine is a compiled
scripting language execution engine.

9. The mobile device of claim 8, wherein the instructions
for the compiled scripting language execution engine instruct
the at least one processor to execute compiled JavaScript.

10. The mobile device of claim 8, wherein the instructions
for the compiled scripting language execution engine instruct
the at least one processor to execute bytecode.

11. The mobile device of claim 8, wherein the instructions
for the compiled scripting language execution engine instruct
the at least one processor to execute object code.

12. The mobile device of claim 1, further comprising
instructions for an installation component configured to
instruct the at least one processor to permanently install a
widget application onto the mobile device.

13. The mobile device of claim 1, wherein the instructions
for the declaratory markup language renderer are configured
to instruct the at least one processor to render images and/or
video on a mobile device display.

14. The mobile device of claim 1, wherein the device
service API is an API for a camera of the mobile device.

15. The mobile device of claim 1, wherein the device
service API is an API for a video-recorder of the mobile
device.

16. The mobile device of claim 1, wherein the device
service APl is an API for displaying content in a home screen
of the display of the mobile device.

17. The mobile device of claim 1, wherein the device
service API is an API for a touchscreen of the mobile device.

18. The mobile device of claim 1, wherein the device
service API is an API for a transceiver of the mobile device.

19. The mobile device of claim 1, wherein the device
service API is an API for a raw network connection of the
mobile device.

20. The mobile device of claim 1, wherein the device
service API is an API for a network socket.

21. The mobile device of claim 1, wherein the device
service API is an API for an audio speaker of the mobile
device.

22. The mobile device of claim 1, wherein the device
service API is an API for a global positioning system (GPS)
device of the mobile device.

23. The mobile device of claim 1, wherein the device
service API is an API for a microphone of the mobile device.

24. The mobile device of claim 1, wherein the device
service API is an API for using an email software program on
the mobile device.

25. The mobile device of claim 1, wherein the device
service API is an API for using a software calendar of the
mobile device.

26. The mobile device of claim 1, wherein the device
service API is an API for accessing a data storage of the
mobile device.

27. The mobile device of claim 1, wherein the device
service API is an API for using a personal information man-
ager software program.

28. The mobile device of claim 1, wherein the device
service API is an API for an accelerometer of the mobile
device.

29. The mobile device of claim 1, wherein the device
service API is an API for a software program for storing and
managing personal contacts.

30. The mobile device of claim 1, wherein the device
service API is an API for a text messaging service of the
mobile device.

20

25

30

35

40

45

50

55

60

65

68

31. The mobile device of claim 1, wherein the device
service API is an API for an instant messenger and/or chat
service of the mobile device.

32. The mobile device of claim 1, wherein the device
service API is an API for a voice call service of the mobile
device.

33. The mobile device of claim 1, wherein the device
service AP1is an API for a media player of the mobile device,
the media player adapted to play at least one of audio data and
video data.

34. The mobile device of claim 1, wherein the device
service API is an API for a battery level determiner of the
mobile device.

35. The mobile device of claim 1, wherein the device
service API is an API for a brightness level control for the
display of the mobile device.

36. The mobile device of claim 1, wherein the device
service API is an API for a vibrator of the mobile device.

37. The mobile device of claim 1, wherein the device
service API is an API for allowing a software application on
a mobile device to send data to another software application
on the mobile device.

38. The mobile device of claim 1, wherein the device
service API is an API for displaying customized content
within a screen saver.

39. The mobile device of claim 1, wherein the device
service API is an API for displaying content on a second
display of the mobile device.

40. The mobile device of claim 1, wherein the device
service API is an API for generating a popup notification on
the mobile device display.

41. The mobile device of claim 1, wherein the device
service API is an API for monitoring for an event comprising
one of a receipt of a text message, receipt of an email, receipt
of'a phone call, or activation of an alarm, the system config-
ured to execute a widget application in response to the event.

42. The mobile device of claim 1, wherein the device
service API is an API for accessing a mobile device ID.

43. The mobile device of claim 1, wherein the device
service API is an API for a wireless signal strength determi-
nation unit.

44. The mobile device of claim 1, further comprising
instructions for a data synchronization engine configured to
instruct the at least one processor to synchronize network
content between a server and the mobile device, the network
content being utilized by the widget application.

45. The mobile device of claim 44, wherein the instructions
for the data synchronization engine are further configured to
instruct the at least one processor to prefetch content for a
widget application installed on the mobile device.

46. The mobile device of claim 1, further comprising
instructions for a data access management component con-
figured to instruct the at least one processor to allow a widget
application to write data to a first storage that is inaccessible
to other widget applications and software programs installed
on the mobile device, and to allow a widget application to
write data to a second storage that is accessible to other
widget applications and software programs installed on the
mobile device.

47. The mobile device of claim 1, further comprising
instructions for a data synchronization engine configured to
instruct the at least one processor to synchronize widget
applications between a server and the device, such that speci-
fied widget applications are sent by the server to the device
during a synchronization process of the device.

48. The mobile device of claim 1, wherein the mobile
device is further configured to store network content.

Booking, Exh. 1054, Page 108

US 8,595,186 B1

69

49. The mobile device of claim 1, where the execution
engine comprises a virtual machine adapted to execute byte-
code.

50. The mobile device of claim 49, wherein the virtual
machine is adapted to execute compiled JavaScript.

51. The mobile device of claim 1, further comprising
instructions for a widget permissions engine configured to
instruct the at least one processor to preclude a widget appli-
cation from accessing unauthorized functionality of the
device.

52. The mobile device of claim 51, wherein the instructions
for the widget permissions engine are further configured to
instruct the at least one processor to cease execution of a
widget application attempting to access unauthorized func-
tionality of the mobile device.

53. The mobile device of claim 52, wherein the instructions
the widget permissions engine are further configured to
instruct the at least one processor to add additional permis-
sions restrictions to the widget application attempting to
access unauthorized functionality of the mobile device.

54. The mobile device of claim 52, wherein the instructions
for the widget permissions engine are further configured to
instruct the at least one processor to mark a widget application
attempting to access unauthorized functionality of the mobile
device with a warning.

55. The mobile device of claim 1, further comprising
instructions for an advertisements engine configured to
instruct the at least one processor to:

receive advertisements from a server;

store the advertisements in a storage of the mobile device;

and

respond to an execution of a widget application on the

mobile device by retrieving at least one of the advertise-
ments from the storage and showing the at least one
advertisement on the display of the mobile device.

56. The mobile device of claim 55, wherein the instructions
for the advertisements engine are configured to instruct the at
least one processor to receive advertisements that define
actions for the advertisements engine to initiate if a user of the
mobile device selects an advertisement shown on the display.

57. The mobile device of claim 56, wherein the instructions
for the advertisements engine are configured to instruct the at
least one processor to initiate one or more of the following
actions in response to a user’s selection of an advertisement
shown on the display:

initiate a telephone call to an advertised service or com-

pany;

show, on the display, additional text and/or image content

related to the selected advertisement;

play audio data related to the selected advertisement; and

play video data related to the selected advertisement.

58. The mobile device of claim 56, wherein the instructions
for the advertisements engine are further configured to
instruct the at least one processor to:

20

25

30

35

40

45

50

70

log data comprising one or more of: (1) an amount of times
each of the advertisements are displayed on the display,
(2) user selections of advertisements shown on the dis-
play, and (3) actions initiated by the advertisements
engine in response to said user selections; and

send said logged data to a server over a network.

59. The mobile device of claim 1, further comprising:

instructions for a location module configured to instruct the

at least one processor to determine a current location of
the mobile device.

60. A method comprising:

rendering, on a mobile device, a declaratory markup lan-

guage component of a widget application;
executing, on the mobile device, a compiled programming
language component of the widget application;

automatically crawling, by the mobile device, one or more
remote network resources accessible via a network for
widget applications and determining one or more of the
widget applications for download based on a user profile
associated with the mobile device, without user interac-
tion with the mobile device; and
automatically downloading and installing, by the mobile
device, the one or more widget applications to constitute
a set of downloaded widget applications from a remote
network location to the mobile device, without user
interaction with the mobile device;
wherein the set of downloaded widget applications corre-
sponds to a first set of widget applications; and

automatically uninstalling, by the mobile device, one or
both of the first set of widget applications and a second
set of widget applications on the mobile device based at
least in part on user preferences, without user interaction
with the mobile device; and

wherein executing the compiled programming language

component comprises making available to the widget
application an API to access a device service of the
mobile device.

61. The method of claim 60, wherein the compiled pro-
gramming language component comprises a compiled script-
ing language component.

62. The method of claim 60, where the device service is one
of'the group consisting of: a camera, a video-recorder, a user
interface for a home screen of a display of the mobile device,
a touchscreen, a transceiver, a raw network connection, a
network socket, an audio speaker, a GPS device, a micro-
phone, an email software program, a software calendar, a data
store, a personal information manager software program, an
accelerometer, a software program for storing and managing
personal contacts, a text messaging service, an instant mes-
senger service, a chat service, a voice call service, a media
player, a battery level determiner, a brightness level control
for the mobile device display, and a vibrator.

#* #* #* #* #*

Booking, Exh. 1054, Page 109

