
Booking, Exh. 1054, Page 1

US008595186B1

a2) United States Patent (10) Patent No.: US 8,595,186 B1
Mandyametal. (45) Date of Patent: Nov. 26, 2013

(54) SYSTEM AND METHOD FOR BUILDING AND 8,185,507 B1* 5/2012 Kaminski, Jr. 0.0.0... 707/698
DELIVERING MOBILE WIDGETS 8,261,258 BL* 9/2012 Jianuetal. w TITAT4

2001/0047363 AL* 11/2001 Peng 707/104.1
. ee . 2003/0208595 Al* 11/2003 Gouge etal. 709/225

(75) Inventors: Srinivas Mandyam,San Jose, CA (US): 2005/0058108 Al* 3/2005 Ekbergetal. 370/338
Krishna Vedati, Sunnyvale, CA (US), 2005/0154759 Al* 7/2005 Hofmeister etal. 707/104.1
Kelvin Voon-Kit Chong, San Jose, CA 2005/0172231 AL* 8/2005 Myers wc 715/716
(US) 2006/0143622 Al* 6/2006 Prabandham et al. .. 719/3282006/0149630 Al* 7/2006 Elliottet al. ww. 705/14

: . 2006/0165105 Al* 7/2006 Shenfield etal. ... 370/401
(73) Assignee: Plusmo LLC,Glendale, CA (US) 2007/0033584 AL™ 2/2007 YU cccccccececccccsececsecereeseveee 717/168

(*) Notice: Subject to any disclaimer, the term ofthis (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 1190 days. FOREIGN PATENT DOCUMENTS

Es

(21) Appl. No.: 12/135,089 WO WO 2005053335 Al 6/2005eee H04Q 7/32
OTHER PUBLICATIONS

(22) Filed: Jun. 6, 2008
“Sony Ericsson 7525 White Paper”. Aug. 2006. Sony Ericsson. 64

ages.”
Related U.S. Application Data pee

. (Continued)
(60) Provisional application No. 60/942,406,filed on Jun.

6, 2007. Primary Examiner — James E Richardson
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &

(51) Int. Cl. Stockton LLP
GO6F 7/00 (2006.01)
GO6F 17/00 (2006.01) (57) ABSTRACT

(52) Ceo (2006.01) Systems and methodsare provided for creating, publishing,
se ; ; ; sharing, and delivering mobile software applications called

USPC vereeteeess : 7071632; 707/733; 707/912; 717/178 “mobile widgets” onto mobile devices. A system may include
(58) Field of Classification Search functionality to render a declaratory component ofa widget,

USPC. oe 707/617, 623, 628, 632, 633, 731-734, such as HTML,andalso functionality to execute an impera-
oo 707!912, 178 tive componentof a widget, which may or may not be com-

See applicationfile for complete search history. piled and/orin a scripting or functional language. Mecha-

(56) References Cited nisms for providing common access to disparate device
U.S. PATENT DOCUMENTS

7,454,459 B1* 11/2008 Kapooretal. 709/203
7,890,136 BI* 2/2011 Fujisaki... 455/556.1

Content

121 Publisher

Web

122 Service

Portal or

123 Aggregator

Any
124 Website

capabilities APIs are also provided, as are mechanisms for
installing widgets onto mobile devices and managing those
widgets.

62 Claims, 72 Drawing Sheets

Client
141

140

Booking, Exh. 1054, Page 1

Booking, Exh. 1054, Page 2

US 8,595,186 B1

Page 2

(56) References Cited 2009/0077664 Al* 3/2009 Hsuetal. oe 726/24

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

2007/0101291 A1* 5/2007 Forstall etal. oc... 715/805 Tomimori et al. “An Efficient and Flexible Access Control Frame-
2007/0101433 AL* 5/2007 Louchetal. wo. 726/25 work for Java Programs in Mobile Terminals” 2002. Proceedings of

aeOS Seon “i : Qsoos Marfallpo asaho. the 22nd International Conference on Distributed Computing Sys-aminski, Jr. .. fees 7 *

2007/0250643 Al* 10/2007 Pyhalammi etal. 709/245 tems Workshops. 6 pages." ;
2007/0260637 Al* 11/2007 Shenfield etal. 707/104.1 Raento et al. “ContextPhone: A prototypingPlatform for Context-
2007/0275705 Al* 11/2007 Lauetal. 455/414] Aware Mobile Applications” 2005. Pervasive Computing, IEEE,vol.
2008/0167078 A1l* 7/2008 Eibye....... ws 455/566 4, No. 2, pp. 51-59.*
2008/0168382 Al* 7/2008 Louchetal. wee 715/781

2008/0168391 AL* 7/2008 Robbin etal. wc. 715/810 * cited by examiner

Booking, Exh. 1054, Page 2

Booking, Exh. 1054, Page 3

US 8,595,186 B1Sheet 1 of 72Nov.26, 2013U.S. Patent

OvI
[vl

WTO

O€T

(OTDIDwayskSIDAIOS

STISGOAAuyJoyesaIssy40[PYOdgOLASqe.rOyst|gNd

yU9yU07)

velelTcl

Booking, Exh. 1054, Page 3

Booking, Exh. 1054, Page 4

US 8,595,186 B1Sheet 2 of 72Nov.26, 2013U.S. Patent

(Wr5b

Ost

QOTAINGSOTARQ]Areyoudoig
081

QOTAIOSSOLASouisuyqUOUILUO7)uonnoex]Ja1opucy091
It]cl

somnjeay

SOTAQ]0}STTVDoaeroduryAloyere[voqpooFI8TTILTI9T
Booking, Exh. 1054, Page 4

Booking, Exh. 1054, Page 5

U.S. Patent Nov.26, 2013 Sheet 3 of 72 US 8,595,186 B1

240
External Service

and Widgets
Personal Server System

eeBioee =PIMogging/ “Photo|oe]Pict| 1| |
230 ContentPublishin Publishing | aoisan (Email, | |Audio/V:ideo oie]usmng Tools ppl Calendar,||Multi-Media _

|Applications| L_ Notes

Booking, Exh. 1054, Page 5

Booking, Exh. 1054, Page 6

U.S. Patent Nov.26, 2013 Sheet 4 of 72 US 8,595,186 B1

: WARS

. \S a EQN
Vecge® Oe .

WidgetLaunchpad
310

MEY
FIG, 3

Booking, Exh. 1054, Page 6

Booking, Exh. 1054, Page 7

U.S. Patent

400

414

410

FIG. 4a)?

Nov.26, 2013

Sheet 5 of 72 US 8,595,186 B1

Self Serve Web and Mobile Interface

Application &
Resources

Billing Server

Oe
Purchases Costs

Location Engine

Sic
Location Database

Ad Syndication Engine

Widget Creation Tools

Hosted tools

User-installed
tools

Mobile tools

Ad Repository

FIG. Hal

Booking, Exh. 1054, Page 7

Booking, Exh. 1054, Page 8

U.S. Patent Nov.26, 2013 Sheet 6 of 72 US 8,595,186 B1

405

Query Search Adapters
MSN Alexa

Yahoo Google

Search Index

User Vault Content Cache

API Scheduler

, API
Login Adapters

Memory Cache

Passwords

Session Manager

Store

|tives|

Network File Database

System

Livecasting Engine

5 Adapters/Ourees Listeners

Media Sync.
Text/video/audio

FIG. 4a)?

Booking, Exh. 1054, Page 8

Booking, Exh. 1054, Page 9

U.S. Patent Nov.26, 2013 Sheet 7 of 72 US 8,595,186 B1

412 407 408

Mobile Applications Sync Engine

NS Download Request Handler Ccompression

Device Detection Protocol Handler

API

Difference Engine

Signature
Resolution Content

Transformer

CO Prefetch
Processors

Device Application
Database Repository

Content Adapters

Text Data Video Data Others (images,)
Sources Sources audio, etc)

Pull Adapter

Polling Server

> 402ae471

Neto]470

|te a

Transcoder (e.g. video,

411 HTML,audio,etc)

Logging

Push Adapter
417

WebInterface

415

FIG. 4a)3

Booking, Exh. 1054, Page 9

Booking, Exh. 1054, Page 10

US 8,595,186 B1Sheet 8 of 72Nov.26, 2013U.S. Patent

(QtDID

9SbOLT
S[dVstmuo}jeJ

Io}Da][9DoSeqiegWASundogOUT

seg,Aepoy,,OL]

oulsuqspy
SSP

IvISuIoUaIayIC]WsywOQuorsssIdw07)oursuqoUAS
4soHUoreoddy

CSP

O91

ISP

AJousodayJO3PI,

SIOSPIAAHING-21douIsUSULIOpusyjurogAnjuyOSPIM, LSP

Booking, Exh. 1054, Page 10

Booking, Exh. 1054, Page 11

US 8,595,186 B1Sheet 9 of 72Nov.26, 2013U.S. Patent

(Qsbibid,BEYSIDE
Booking, Exh. 1054, Page 11

Booking, Exh. 1054, Page 12

US 8,595,186 B1Sheet 10 of 72Nov.26, 2013U.S. Patent

ELce
WwTes

OES
IPEIPTTTRE

Booking, Exh. 1054, Page 12

Booking, Exh. 1054, Page 13

U.S. Patent Nov.26, 2013 Sheet 11 of 72 US 8,595,186 B1

600

\O

ss

Mt2

seh

Ab

phacbesFe

601

Booking, Exh. 1054, Page 13

Booking, Exh. 1054, Page 14

US 8,595,186 B1Sheet 12 of 72Nov.26, 2013U.S. Patent

HisaepweuspeHeiOnJveuperyBOG3MRURAR

8193p

ANSLOUy

Booking, Exh. 1054, Page 14

Booking, Exh. 1054, Page 15

US 8,595,186 B1Sheet 13 of 72Nov.26, 2013U.S. Patent

-

OOL

Booking, Exh. 1054, Page 15

Booking, Exh. 1054, Page 16

US 8,595,186 B1Sheet 14 of 72Nov.26, 2013U.S. Patent

ninyyAARSOREtieaepSEESOMERSOLYBY
Booking, Exh. 1054, Page 16

Booking, Exh. 1054, Page 17

U.S. Patent Sheet 15 of 72Nov. 26, 2013

c 96 on
oS S S
oo Se ca

g

YaoTn

805 806

804

802 801

US 8,595,186 B1

Booking, Exh. 1054, Page 17

Booking, Exh. 1054, Page 18

U.S. Patent Nov.26, 2013 Sheet 16 of 72 US 8,595,186 B1

FIG.&(6)
Booking, Exh. 1054, Page 18

Booking, Exh. 1054, Page 19

US 8,595,186 B1Sheet 17 of 72Nov.26, 2013U.S. Patent

WikiesWEPesFo

[16

iD)

4Sea

£,208,NG,UACWBAyosolinnyyeagayddyIAA
[06

Booking, Exh. 1054, Page 19

Booking, Exh. 1054, Page 20

US 8,595,186 B1Sheet 18 of 72Nov.26, 2013U.S. Patent

UOISsesLOHEZIUOIOUAS}XSUBY]UOpayeisulpuepEpEqumMapsteBpimnsaqoyypaaymeyau

Meeemee

Booking, Exh. 1054, Page 20

Booking, Exh. 1054, Page 21

U.S. Patent Nov.26, 2013 Sheet 19 of 72 US 8,595,186 B1

Generate CAPTCHA

Show Form
With CAPTCHA

User Enters Data

Validate CAPTCHA

Validate User-
Entered Fields

FIG, 10 1006

Booking, Exh. 1054, Page 21

Booking, Exh. 1054, Page 22

U.S. Patent Nov.26, 2013 Sheet 20 of 72 US 8,595,186 B1

Mobileclient accesses

download page Display Form
(MSISDNis sent)

1108 1100

Userregister on mobilesite oo,
(similar flow to web User Enters Data Application is launched

registration)
1109 1101 1105

withthewr(MSISN User data saved and Client generates
used as unique ID) unique ID generated response code

1110 1102 1106

Create Download Client transmits1 de to
Package w/ Unique ID tetneserver

1103 1107

User downloads package
onto device

1104

FIG. 11

Booking, Exh. 1054, Page 22

Booking, Exh. 1054, Page 23

US 8,595,186 B1Sheet 21 of 72Nov.26, 2013U.S. Patent

ClOID
SOBSUBYOIOAIOSSUIJLIMIOAO“IOAIOS0}sosUeyospudsJUIT7)AyioudsayeyjUST[D

SOLYUAPAAfOSalPUISodA}ByepOy}10FJOAJOSOIPIIO]SI89I98(]

9021

posueyoseyeyepSJUT[OpureJaAIag

sodueyoJwalaSUIPLIMIOAO“JUDTTD0}SOSUBYDSPUSSISASAyuoudsaye}JOAIaS
ssouarajoidJasnJon)yOUfUOSyNBJop9s—)IOAOSOISIATOSAIJOILFUODpesaisigospuno,ypaissisar10}yoo]STI

S0CTvoelJOAIOS0}UAT]07SOSUBYOspudsJOT)SosueyospuosJOAIOg4SO}BlSIJUST]JSO]B]SIIOAIOGJeynusp!eyepJalyTuap!ejepjse]pueQUIPoLIpoUtyseTJOAdoouosjysuresesoredulodJaAlagJoyHUsp!eyepPOATOOSI4SE]SB[JOMSeduwiejsouyaziuorauAs3SE]SPUISURT)JUSITJOAJOSWIMwonezTmomouAsysonbaryUsT[> eqepJOayesseyJaAIOG

Booking, Exh. 1054, Page 23

Booking, Exh. 1054, Page 24

US 8,595,186 B1Sheet 22 of 72Nov.26, 2013U.S. Patent

OcET

6SID

as)

 OLETWI‘Oul
‘Lote

adeI0}¢

>_
OLYOEElpeo919‘WOLV‘SSViv

Ol€l

©)

RepMey

JOZI[BULION

pSOzEl
yasp)

OcelJoo)Azequsuru0dVY1
; OIel

OO)

OPETOCET
Jasso[gIOs()

yodxqTAXJoo}amydeoyusaqVy1
OTel

OO

Booking, Exh. 1054, Page 24

Booking, Exh. 1054, Page 25

U.S. Patent Nov.26, 2013 Sheet 23 of 72 US 8,595,186 B1

Client connects to the
server

1400

Server computes the
server’s current load

1401

Issue commandfuture

Exceeds threshold ? Yes incoming requests to slow
polling interval

1402 1403

Client sets new polling
interval

1404

FIG. 14

Booking, Exh. 1054, Page 25

Booking, Exh. 1054, Page 26

U.S. Patent Nov.26, 2013 Sheet 24 of 72 US 8,595,186 B1

Fetch content through Transcoding
polling or push adapters (with caching)

1501 1505

Detect content type Insertions
1502 1506

Delivery
Store (cache) data (with caching)

1503 1507

Filter data

(with caching)

FIG, 15

Booking, Exh. 1054, Page 26

Booking, Exh. 1054, Page 27

US 8,595,186 B1Sheet 25 of 72Nov.26, 2013U.S. Patent

Bayou)OSplA,0891porapudi-aigSdooptApoaes)I‘bVT.Cisyoeo

-OU{/SUMOJSUBL],OSPLA,CD0691S9910991OL9T
QSBI0}SCOPIA,

=yorqae|dOaplAJoo,SurddrjDcopraorglO€9T

0991

IDATOOSY

JossaiduioD/JoposugqOsplA,ommdes)OsplAJoposag[auuRY)OSprA,ZS
(}

Booking, Exh. 1054, Page 27

Booking, Exh. 1054, Page 28

U.S. Patent Nov.26, 2013 Sheet 26 of 72 US 8,595,186 B1

Mobile client requests a
web page

1705

Store cookies sent by the
website

1710

Server fetches web page
with cookies for the user on

that web site

 Rewrite embedded URLsto

point back to transcoding
server

1730

Cacheresult

1735

Sendto the client
1715

Get rules to apply
Loop
until

finished 1720

Apply rules one-by-one
1725

FIG, 17

1740

Booking, Exh. 1054, Page 28

Booking, Exh. 1054, Page 29

U.S. Patent Nov.26, 2013 Sheet 27 of 72 US 8,595,186 B1

Mobile device connects to
server via mobile

application

Mobile device connects to
server via web browser

Collect device fingerprint

Analysis module queries
device database

Exact match ?

Find next ranked result

Fallback

FIG. 18

Booking, Exh. 1054, Page 29

Booking, Exh. 1054, Page 30

US 8,595,186 B1Sheet 28 of 72Nov.26, 2013U.S. Patent

6lDID
 ayoey)

0961

SIOUDISI']SPI,OS61>Ov6rO8610L61sulsugIo}svopeorgTonezMomMuXg
0z61

SIDAIOSuoljeorday

Of6TOT61s$99INOS1U3}U07) ourdugs[npoy|SUIpOosueL],uoNesaissy90M0g

SOOINOSJUSJUOL)
Booking, Exh. 1054, Page 30

Booking, Exh. 1054, Page 31

U.S. Patent Nov.26, 2013 Sheet 29 of 72 US 8,595,186 B1

FIG,20(6)FIG,20(c)
FIG.20(a)

2010

Booking, Exh. 1054, Page 31

Booking, Exh. 1054, Page 32

U.S. Patent Nov.26, 2013 Sheet 30 of 72 US 8,595,186 B1

FIG,20)

SS)
S
Q

8 Ne

S Lit
o

FIG,20(d)
Booking, Exh. 1054, Page 32

Booking, Exh. 1054, Page 33

U.S. Patent Nov.26, 2013 Sheet 31 of 72 US 8,595,186 B1

FIG,20(h)

FIG,204)
2070

Booking, Exh. 1054, Page 33

Booking, Exh. 1054, Page 34

U.S. Patent Nov.26, 2013 Sheet 32 of 72 US 8,595,186 B1

FIG,21(6)FIG,21/6)
FIG,21/4)

Booking, Exh. 1054, Page 34

Booking, Exh. 1054, Page 35

U.S. Patent Nov.26, 2013 Sheet 33 of 72 US 8,595,186 B1

FIG.21(6)

FIG,21(d)
Booking, Exh. 1054, Page 35

Booking, Exh. 1054, Page 36

U.S. Patent Nov.26, 2013 Sheet 34 of 72 US 8,595,186 B1

Booking, Exh. 1054, Page 36

Booking, Exh. 1054, Page 37

U.S. Patent

Nov. 26, 2013 Sheet 35 of 72 US 8,595,186 B1

eSSs FIG,226)

Sek RR

vs
we

as FIG,22)

FIG,2H)

Booking, Exh. 1054, Page 37

Booking, Exh. 1054, Page 38

U.S. Patent Nov.26, 2013 Sheet 36 of 72 US 8,595,186 B1

bn70

2H(6)
FIG. :SeeeteeTeee)
23(6)
FIG.
23(a)
FIG.

Booking, Exh. 1054, Page 38

Booking, Exh. 1054, Page 39

U.S. Patent Nov.26, 2013 Sheet 37 of 72 US 8,595,186 B1

Ry
yS
QQ

QD
&

wm

nN =
QQ

Dd
&

2360 2320

Booking, Exh. 1054, Page 39

Booking, Exh. 1054, Page 40

U.S. Patent Nov.26, 2013 Sheet 38 of 72 US 8,595,186 B1

FIG,2h)

FIG,23g)

FIG,21)

Booking, Exh. 1054, Page 40

Booking, Exh. 1054, Page 41

U.S. Patent Nov.26, 2013 Sheet 39 of 72 US 8,595,186 B1

: <
or Q

QD
S

: =
S
@D
S

=ret

=
ol

Booking, Exh. 1054, Page 41

Booking, Exh. 1054, Page 42

U.S. Patent Nov.26, 2013 Sheet 40 of 72 US 8,595,186 B1

FIG.246)

FIG,24(d)
2450

 =
N

QD
S

Booking, Exh. 1054, Page 42

Booking, Exh. 1054, Page 43

US 8,595,186 B1Sheet 41 of 72Nov.26, 2013U.S. Patent

BAL

OLS?

 (V<7OID
BeBAGS.

OLS?

(ceDIDOSE

Booking, Exh. 1054, Page 43

Booking, Exh. 1054, Page 44

US 8,595,186 B1Sheet 42 of 72Nov.26, 2013U.S. Patent

&
%

BS

%ntti,SebottOCSd

BedtoiLAL,GkAIC.BEE
Booking, Exh. 1054, Page 44

Booking, Exh. 1054, Page 45

U.S. Patent Nov.26, 2013 Sheet 43 of 72 US 8,595,186 B1

FIG.25g)

FIG.25)
wy
re
m~

Booking, Exh. 1054, Page 45

Booking, Exh. 1054, Page 46

US 8,595,186 B1Sheet 44 of 72Nov.26, 2013U.S. Patent

Zh

O19C

SONSTEono82-1uoSLOIDUCSBunesnppuezey(2_SAYBSOLHYHSBrasOL

340NAMB46ahHIud“uoRor4ysuospeay(eia
Booking, Exh. 1054, Page 46

Booking, Exh. 1054, Page 47

U.S. Patent Nov.26, 2013 Sheet 45 of 72 US 8,595,186 B1

SANiiiAAAAAAZe.

jally ident,ThereisnotmuchtotheChamps r

Roteon FIG,266JonthedayMicolati1
at

.

48

BM
eos

omt Sarkozybecarneoffi
EI Pre

FIG.26(e)

FIG,26(d)

Booking, Exh. 1054, Page 47

Booking, Exh. 1054, Page 48

US 8,595,186 B1Sheet 46 of 72Nov.26, 2013U.S. Patent

$h

iH)DOUTNE
t
-{

Tadalfej+4Ne
HpEpaesSTISucicoudEBOU)StStWa“Obs

yoy

O}ou-days0peySAE)BrieBusFuquasoe
 SEmUUOYSBU)“SDLLOBY]LUDAL7ndhetaALuuofhepisy}yybeuSE]YOOY|Jays&yng[fyuEs

iHCRATESTWOASpamciiog/oyoyd&1ouStsigy“ory
am4

Booking, Exh. 1054, Page 48

Booking, Exh. 1054, Page 49

US 8,595,186 B1Sheet 47 of 72Nov.26, 2013U.S. Patent

OeDID

2002
“LEBeyugguraaaaPaihia

sasehasnoyuaelb40SsuayyuueJ0lusesoupySununonGLJoqessigGugaau&404payes

te[Sou]eaOUOy!3US7°A

Booking, Exh. 1054, Page 49

Booking, Exh. 1054, Page 50

U.S. Patent

Nov.26, 2013 Sheet 48 of 72 US 8,595,186 B1

or

A

McMichaeltotherightfaed FIG,27)AC.Lemonpas
ROQAA

FIG.2716)
oS
wy
te
iN

(aye

 FIG,27d)
Booking, Exh. 1054, Page 50

Booking, Exh. 1054, Page 51

US 8,595,186 B1Sheet 49 of 72Nov.26, 2013U.S. Patent

(ecSID

 aLeuss?SEHu20590JaACD“eeO]paysndseyoyalsOLABLEomeAeaosGogg|OL/€S2NHAizfieOGLPeOLIES

Booking, Exh. 1054, Page 51

Booking, Exh. 1054, Page 52

US 8,595,186 B1Sheet 50 of 72Nov.26, 2013U.S. Patent

Fynibueg
ABINIOSATTIIIPLITIoo.

(alecOIDOLS?

OC8COSLE

(p97DIDy$PQfend,OyLey)O18?

cual

Booking, Exh. 1054, Page 52

Booking, Exh. 1054, Page 53

US 8,595,186 B1Sheet 51 of 72Nov.26, 2013U.S. Patent

 ABADSS

SHUpu-usapeibueg

Booking, Exh. 1054, Page 53

Booking, Exh. 1054, Page 54

U.S. Patent Nov.26, 2013 Sheet 52 of 72 US 8,595,186 B1

s

x%zg

SOE:
Gonstruction

at 880 SB and

101 junction
Booking, Exh. 1054, Page 54

Booking, Exh. 1054, Page 55

U.S. Patent Nov.26, 2013 Sheet 53 of 72 US 8,595,186 B1

3010

+
3

Booking, Exh. 1054, Page 55

Booking, Exh. 1054, Page 56

U.S. Patent Nov. 26, 2013 Sheet 54 of 72 US 8,595,186 B1

Scan local cache for

headlines by
Article Publish Date

Filter headlines by
Unreadarticles

Filter headlines by
weights

Filter out from special
tagged feeds

Addbasic information

including traffic, weather

Include advertisements

from local ad cache

Render Dynamic Info
Display

3110

FIG. 31

Booking, Exh. 1054, Page 56

Booking, Exh. 1054, Page 57

U.S. Patent Nov.26, 2013 Sheet 55 of 72 US 8,595,186 B1

3205 3225

 User | requests widget | a

to be shared User 2 request synchronization

ser specifies other party’s oo,
unique identifier (phone Mobile client connects to

number, name, email, etc) the hroniz for
as well as a messagefor syneironizaion

the other user

‘ Server looks up in the
Request transmitted to the pending add queue and

removesfrom the addlist

Server looks up user and ;
saves the add request in Pending request
the other user's widget/ transmitted to the user
widget data add queue

User accepts add request

Server adds to user 2's
account

FIG. 32 3250

Booking, Exh. 1054, Page 57

Booking, Exh. 1054, Page 58

US 8,595,186 B1Sheet 56 of 72Nov.26, 2013U.S. Patent

aYoe7)1U0.]OLEE

S9ee

(sadeutorpne‘oopta)erpaumnyny]
S314’)

UoIssosduO7)Bye

ceDID

seaue)AeidsiqJOZN9SEY
QUISUGJOIONA,"IWLHX403JosredJOSMOIQOIOI (syuawayayndutwo)syosprasyINg-o1gJOIOPUSYWALHX

suryoe)

TIALLHX405JosredJOSMOIQOIONA(sodegI9AI9gJUST)sodegSAINV

Booking, Exh. 1054, Page 58

Booking, Exh. 1054, Page 59

U.S. Patent Nov.26, 2013 Sheet 57 of 72 US 8,595,186 B1

IH

FIG,34
3420

CoCOMEDSNS SS SEEEEEESSR,WS

oS

—
ey

Booking, Exh. 1054, Page 59

Booking, Exh. 1054, Page 60

U.S. Patent Nov.26, 2013 Sheet 58 of 72 US 8,595,186 B1

 is Geetline

3550

TNakae

 os Basic Babbor

Booking, Exh. 1054, Page 60

Booking, Exh. 1054, Page 61

US 8,595,186 B1Sheet 59 of 72Nov.26, 2013U.S. Patent

9¢DTD
ULONeLdOLE0S9E099¢

I3B10IS

IOJONTIONadequey

deayySldV0206 0e9¢

rs

079¢

ape
Ov9E

Josie

O19¢

Booking, Exh. 1054, Page 61

Booking, Exh. 1054, Page 62

US 8,595,186 B1Sheet 60 of 72Nov.26, 2013U.S. Patent

SCLE

lpamaeyuyMirrrrcccrercrrrrrrrnscsrssssvsssssiiittrrrerrcrmnrirrrrrcrrrrMtttrtrsssssrrrrrrrrrssteHneHTTTIITA:
Booking, Exh. 1054, Page 62

Booking, Exh. 1054, Page 63

US 8,595,186 B1Sheet 61 of 72Nov.26, 2013U.S. Patent

STILE

WeDEDCEsaS

ACES
ag
2a

BRS

Booking, Exh. 1054, Page 63

Booking, Exh. 1054, Page 64

US 8,595,186 B1Sheet 62 of 72Nov.26, 2013U.S. Patent

SOLE

SSLE OOLE

Booking, Exh. 1054, Page 64

Booking, Exh. 1054, Page 65

U.S. Patent Nov.26, 2013 Sheet 63 of 72 US 8,595,186 B1

=
BS

SSH

3810
Booking, Exh. 1054, Page 65

Booking, Exh. 1054, Page 66

U.S. Patent Nov.26, 2013 Sheet 64 of 72 US 8,595,186 B1

3860
3S

N

\
\N
\

3855

3845

3835 3850

andevtenadentereriienstientttiadiadnttetiddens FIG.38(6)
Booking, Exh. 1054, Page 66

Booking, Exh. 1054, Page 67

US 8,595,186 B1Sheet 65 of 72Nov.26, 2013U.S. Patent

Booking, Exh. 1054, Page 67

Booking, Exh. 1054, Page 68

U.S. Patent Nov.26, 2013 Sheet 66 of 72 US 8,595,186 B1

3910

a——s So,

°
f

: Mobile user publishes a é ‘: . c

new widget around an ee):

i soccer seasong q 2 :
: Emily's 2005
: soccer season
\ 2

a’"NaegggnyNOSANNANAAINNENNRONSNNNNAHNNRANIRNNONRANNNOSSAAAANNSAINANONIAAASNHEAAIONADDSAHSANNEARANRAIAINIANNASIAN

3920

 She posts new content to it
periodically from her phone at
each soccer game }

4dFa?

cececerereseereesesreesnlUsers who subscribe

to this widget get
periodic information
updates from this
personal channel Ceprensrriecerreccerreserereee:

*s,sy,
3940 3910

FIG. 39

Booking, Exh. 1054, Page 68

Booking, Exh. 1054, Page 69

U.S. Patent Nov.26, 2013 Sheet 67 of 72 US 8,595,186 B1

Userselects type of
mobile widget

Receive Widget
description

Generate image
choices for widget

Present choices for

Widget content

Receive content

details

Generate and publish
Mobile Widget

4006

FIG, 40

Booking, Exh. 1054, Page 69

Booking, Exh. 1054, Page 70

U.S. Patent

Developercreates widget
using wizard or with APIs

Widget archive is uploaded

Analyzer unpacks
validates compiles and

optimizes

Application Repository

Indexedfor searching
4125

Nov.26, 2013

Client requests a widget

Consult cache, If not in
cache, perform application

assembly and save to
cache

Compile scripts with other
scripts that the widget

references
4150

Delivery

4155

FIG. 41

Sheet 68 of 72 US 8,595,186 B1

4135

Cache of assembled
widgets

Booking, Exh. 1054, Page 70

Booking, Exh. 1054, Page 71

US 8,595,186 B1Sheet 69 of 72

Booking, Exh. 1054, Page 71

Nov.26, 2013U.S. Patent

deaMEIeyVEL,
es

Yi LeWEyyYY,
pe%)_

YZELLEyetuleUMWMLEE__

Booking, Exh. 1054, Page 72

US 8,595,186 B1Sheet 70 of 72Nov.26, 2013U.S. Patent

YYvOEE
LLYNawoepo)oo

OEP

Booking, Exh. 1054, Page 72

Booking, Exh. 1054, Page 73

US 8,595,186 B1Sheet 71 of 72Nov.26, 2013U.S. Patent

OCbY

BRSCTSeTESSBSTS03aaReh,UNEATENCSFBGOfMMMifasOATES]LadleggODHE4SHEAGDAYERCEESECESTEDSUNTAGAHYPRRLR,ots,SEUESTTCYaTTSdBELRANTSTSOSCHRESALIDGaleGyor“5TapWieSYSGARBPEMAATSOESIGHSTSATAGWgBeSEPADAAHECSTIEDSLIGOMOLSESlayADEBEESATAESSSS“SG

INV

WN

te

BEDBR

FOeUREDySUA2?palsapas|
Haasbahayraathyed

72,LOeeREAEONHEMEPOLEEESsayER23éCORaLE6i4.EEZiabdbseesohare%jeeLPTSereneeLATEDLeSiiSeeeEeeeseeseesOEOEEeeesesOEOEE
Booking, Exh. 1054, Page 73

Booking, Exh. 1054, Page 74

US 8,595,186 B1Sheet 72 of 72Nov.26, 2013U.S. Patent

 BiotSHEL|BOOTORWie
8SERREPARPBS

Binge:

Bigeysut

SMTA

“yhoo:ae

 NeYSIS

BUOYDURAALUyf

OO]BLrie“tos:AngQIQENRUEFae“Wompureue.sanudyooqarpcuucs. SayColdSassenlge

-ChitTy

SS VS

 onsh)Sigbushueyer

marnewebhey£ieG7Vy““

FageMscedUNa

 SBAIEHAUGHOURHpiBg

SABASAS.PDLATTELUCASSBE

 SRRI

sobpdqanazuoyeryAULA

SHURAES

SgENEHEeH

 < :SEG
SS

isaLe,Lo

A

NS.
&

<

i
8

Booking, Exh. 1054, Page 74

Booking, Exh. 1054, Page 75

US 8,595,186 B1
1

SYSTEM AND METHODFOR BUILDING AND
DELIVERING MOBILE WIDGETS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 60/942,406, filed Jun. 6, 2007, the
entire content of which is incorporated herein by reference.

BACKGROUND

1. Field

The present disclosure relates to applications and user
interfaces for mobile computing devices, and particularly to
methods and systems for creating, publishing, sharing, and
delivering mobile software applications.

2. Description of the Related Art
Cell phone data usage is on the rise. Phones may support

the wireless application protocol (WAP), an international
standard for applications that use wireless communication
from mobile phones. Mobile data applications include SMS
and the WAP browser, an Internet browser for accessing
mobile websites. Interactive and specialized kinds of appli-
cations are also in use.

Mobile usage patterns are different from desktop usage.
Users may be on the move, in a movieline, on public trans-
portation, or in a coffee shop and may havevery short atten-
tion spans and may bein situations where it is very hard to
type. Such a user may launch the browser and waits for the
results. By the time the results are delivered to the mobile
device, the user may have movedonto anothertask.

Further, mobile devices may have diverse non-standard
feature sets and user interfaces. Phone manufacturer has a

different way of presenting the user interface on the mobile
device. Menus maybe uniqueto a particular device, and users
mayhaveto learn where the application modules are and how
to perform device setup. At any given time, there may be
multiple mobile models supported by multiple mobile opera-
tors with diverse physical layouts, including QWERTYkey-
boards, keypads, thumb wheels, joy sticks, styluses, roller
balls, etc.

SUMMARY

A system is provided for executing a widget application
installed on a mobile device, including a declaratory markup
language renderer for rendering a declaratory markup lan-
guage componentof a widget application on a display of the
mobile device, a compiled programming language execution
engine for executing a compiled programming language
component of a widget application installed on the mobile
device, a mobile device API, adapted to be accessible to a
widget application, and providing access to a device service
API ofthe mobile device, and a widget managerconfigured to
automatically download widget applications or descriptions
ofwidget applications from a network location to the mobile
device, without receiving user instructions for said widget
applications.

Software is provided which includesa plurality ofdifferent
widget-executing engines for executing software widget
applications installed on a plurality of different types of
mobile devices, where each of the mobile device types is
adapted to run software applications written in a program-
ming languagethatis distinct from programming languages
supported by the other mobile device types, and all of the
widget-executing engines provide a commonapplication pro-

20

25

30

35

40

45

50

55

60

65

2

gramming interface for the widget applications to access a
common device capability of the mobile devices.

A methodfor executing a widget software application is
provided. The method includes rendering a declaratory
markup language component of the widget application,
executing a compiled programming language componentof
the widget application, and automatically downloading wid-
get applications or descriptions ofwidget applications from a
network location to the mobile device without receiving user
instructions for said widget applications. Executing the com-
piled programming language component includes making
available to the widget application an API to access a device
service of the mobile device.

A software widget application is provided and configured
for installation and execution on a mobile device. The appli-
cation includes code written in a declaratory markup lan-
guage and code written in a programming language, where
the code written in a scripting language containsa call to an
APIaccessing a device service of the mobile device.

An application is provided including a software widget
configured, when compiled, to be installed and run on a
plurality of different mobile devices, each device having an
operating system that runs software applications written in a
programming language that is different than programming
languages supported by the operating systems of the other
devices, wherein the devices have a commondeviceservice,
the devices having different device services APIs for access-
ing the device service, the widget being configured to access
the device service only through a single API distinct from
each of the device services APIs.

A method for creating a mobile software widget applica-
tion is provided. The methodincludes accessingafirst section
of code written in a declaratory markup language, accessing
a secondsection of code written in a programming language,
compiling the second section of code to produce a compiled
section, packagingthefirst section of code and the compiled
section to produce a mobile widget application configured to
be installed onto a mobile computing device so that a user of
the device can repeatedly select, run, and terminate the widget
application.

A widget application distribution system is provided. The
system includesa server adapted to transmit a software wid-
get application to a plurality of mobile devices of different
types forinstallation thereupon, wherein each mobile device
type includesa distinct API to a mobile device servicethatis
commonto all of the mobile device types, a software widget
application stored on the server, the widget application com-
prising a first component including programming language
code and a second componentincluding declaratory markup
language. The widget application is configured to utilize the
mobile device service without directly accessing any of the
distinct APIs.

A widget application distribution system is provided,
where the system includes a server having gallery of widget
software applications, the server configured to allow users of
mobile computing devices to browse the gallery of widget
applications from the mobile devices, each of the widget
applications configured to be installed onto one ofthe mobile
devices, the server configured to receive requests for down-
loading selected ones of the widget applications from the
mobile devices, the server configured to respond to a request
to download a widget application by electronically sending
the widget application to be downloadedandinstalled to the
mobile device that sent the request to the server.

A method for synchronizing information with a mobile
device is provided, including maintaininga first version ofthe
information on an electronic storage, the information com-

Booking, Exh. 1054, Page 75

Booking, Exh. 1054, Page 76

US 8,595,186 B1
3

prising one or more of (1) widget software applications con-
figured to be installed onto the mobile device and repeatedly
selected, run, and terminated, (2) network content used by
widget applications, and (3) logged datarelatedto activities
of widget applications, receiving a synchronization request
from a mobile device having a second version ofthe infor-
mation, the synchronization request including a mobile
timestamp and mobile identifier related to the information,
the mobile timestamp indicating a time at which the second
version of the information was last updated, and comparing
the mobile timestampto a local timestampandlocal identifier
stored in the storage, the local timestamp indicating a time at
whichthefirst version of the information on the storage was
last updated, and determining, based on the timestamps and
identifiers, whether the information has been changed on the
mobile device, the storage, or both since a previous synchro-
nization request.

A system for synchronizing information between a server
and a mobile device is provided. ‘lhe system includesa server
comprising a server data store and a conflict resolver, the
server data store being configured to store a version of the
information, the information comprising one or moreof(1)
widget software applications configured to be installed onto
the mobile device and repeatedly selected, run, and termi-
nated, (2) network content used by widget applications, and
(3) logged data related to activities of widget applications,
and a mobile device comprising a synchronization engine and
a mobile data store, the mobile data store being configured to
store a version of the information, the mobile device config-
ured to transmit synchronization requests to the server, each
synchronization request comprising a mobile timestamp
related to the version of the information on the mobile data

store. The server is configured to respond to the synchroni-
zation request by comparing the mobile timestampto a local
timestampstoredin the server datastore, the local timestamp
indicating a time at which the version of the information on
the server data store was last updated, the server further
configured to determine, based on the timestamps, whether
the information has been changed on the mobile data store,
the server data store, or both since a previous synchronization
request by the mobile device.

A mobile device including a memory,a display, and engine
that executes a compiled software widget application
installed on the mobile device is provided. The widget appli-
cation requests network content without receiving a specific
request for said content from a user ofthe mobile device. The
device is configured to download the network content at the
request of the widget application, without immediately dis-
playing the downloaded content on the display, the device
being configured to store the downloaded network content in
the memory sothat it is available for later use by the widget
application in the absence of a network connection.

A mobile device including a widget execution engine and a
software widget application installed on the device and con-
figured to be executed by the widget execution engine is
provided. The widget application is configured to receive a
user instruction to request a first content datum from a net-
work location, the widget application is also configured to
respondto the user instruction by initiating the downloading
of the first content datum from the network location to the

device, and the widget application is further configured to
initiate the downloading of a second content datum from the
network location to the device without receiving a user
instruction to download the second content datum.

A mobile device is provided. The mobile device includes a
location identification module configured to determine a
location of the device, and a software widget application

20

25

30

35

40

45

50

55

60

65

4

installed on the device, the widget application configured to
obtain a location ofthe device from the locationidentification

module, the widget application configured to request network
content customizedto the location ofthe device.

A method for providing localized content on a mobile
device is provided. The method includes causing a widget
software application to access a location identification ser-
vice to determinea present location of the mobile device, the
widget software application being installed on the mobile
device and being configured to be repeatedly selected, run,
and terminated by a user of the mobile device, causing the
widget application to select content to be transmitted to the
mobile device based in part upon the present location of the
mobile device, and causing the contentto be transmittedto the
mobile device.

A computer-implemented method of receiving a widget
application for a mobile device is provided. The method
includes running a widget execution engine on a mobile
device, causing the widget execution engine to conduct diag-
nostic tests on the device, where the diagnostic tests are
adapted to test for capabilities ofthe device, sending results of
the diagnostic tests to a server, and receiving a software
widget application from the server where the widget applica-
tion being selected basedonthe results ofthe diagnostic tests.

A computer-implemented method of selecting widget
applicationsfor installation and execution on a mobile device
is provided. The method includes receiving results of diag-
nostic tests run on a mobile device by a widget execution
engine running on the device, selecting one or more software
widget applications based on the results, and sending the
selected one or more widget applications to the device for
installation.

A widget execution engine for running widget software
applications on a mobile device is provided. The engine
includes a diagnostic testing module configured to run diag-
nostic tests on the device, the diagnostic tests adapted to test
for capabilities of the device, the engine configured to send
results of the diagnostic tests to a server, the engine config-
ured to install software widget applications received from theserver.

A mobile device included a virtual machine that executes

compiled widgets, wherein a code segment footprint of the
virtual machineis less than 10,000 bytes is provided.

A widget execution engine, adapted to run on a mobile
device and configured to execute compiled widgets, included
a virtual machine with a code segment footprint of less than
10,000 bytes, the virtual machine being represented in com-
puter storage, is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

Manyof the advantages and aspectsof the present disclo-
sure will become more readily appreciated as the same
become better understood by reference to the following
detailed description, when taken in conjunction with the
accompanyingfigures illustrating some embodiments of the
disclosure, wherein:

FIG. 1(a) illustrates a schematic diagram of a wireless
system for providing a mobile widget service.

FIG. 1(6) illustrates a mobile device with a widget service
client application installed thereon.

FIG.2 illustrates a schematic diagram of a personal com-
puting device or personal desktop system providing a mobile
widget service.

FIG.3 is an illustration ofvarious types ofmobile widgets.
FIGS. 4(a) and 4(8) illustrate schematic diagrams of the

widget service and the widgetclient, respectively.

Booking, Exh. 1054, Page 76

Booking, Exh. 1054, Page 77

US 8,595,186 B1
5

FIGS. 5(a) through 5(¢) show exemplary elements for a
user to register from the Web.

FIG.6(a) is an exemplary view of the mobile widget gal-
lery provided by a web front-end.

FIG.6(6)is an exemplary view ofthe mobile widget search
results provided a web front-end.

FIGS. 7(a) and 7(6) depict exemplary views for managing
mobile widgets from the web front-end.

FIG. 8(a) depicts illustrations of several methods of
importing user profiles from external systems.

FIG. 8(4) shows an exemplary display for users to obtain
the widget service mobile widget bookmarklet and install it
on popular web browsers.

FIGS. 9(a) through 9(¢) depict exemplary viewsfor adding
mobile widgets from externalaffiliate web sites.

FIG. 10 is a flowchart illustrating a methodofregistering a
user for the access of the widget service according.

FIG. 11 is a flowchart illustrating a method of generating
unique identifiers for users.

FIG. 12 is a flowchart illustrating a methodfor the synchro-
nization process between the widget service and widget cli-
ent.

FIG. 13 is a schematic block diagram that depicts various
data sources being aggregated by the system for livecasting.

FIG. 14 is a flowchart illustrating the backoff protocol,
which is a method for reducing server loads during livecast-
ing.

FIG. 15 is a flowchart illustrating a process for aggregating
data from a variety of sources.

FIG. 16 is a flowchart illustrating the process by which
video from a video source enters the system and gets
transcodedto the capabilities of various devices.

FIG.17 is a flowchart illustrating an exemplary process by
which web markupis transcodedto the capabilities ofvarious
devices.

FIG. 18 depicts a process used to detect the type of device
connecting to the widget service.

FIG. 19 is aschematic diagram representingthe livecasting
engine.

FIGS. 20(a) through 20(2) are exemplary displays of the
mobile registration process according to embodiments.

FIGS. 21(a) through 21(e) are exemplary displays of a
download idle screen according to embodiments.

FIGS. 22(a) through 22(f) are exemplary displays of wid-
get displays according to embodiments.

FIGS. 23(a) through 23(/) are exemplary displays of wid-
get displays according to embodiments.

FIGS. 24(a) and 24(5) are exemplary displays ofa weather
widget according to embodiments.

FIGS. 24(c) through 24(e) are exemplary displays of a
widget showing scrolling images along with text underneath
according to embodiments.

FIGS. 25(a) through 25(e) are exemplary displays of a
comics widget according to embodiments.

FIGS. 25(f) and 25(g) are exemplary displays of a search
widget according to embodiments.

FIGS. 26(a) and 26(4) are exemplary displays of a widget
launchpad according to embodiments.

FIG. 26(c) is an exemplary display of a feed aggregator
widget showing subscribed feeds and the number of unread
articles in each feed according to embodiments.

FIG. 26(d) is an exemplary display of a widget displaying
a list of articles in a subscription according to embodiments.

FIGS. 26(e) and 26(f) are exemplary displays of a news
article according to embodiments.

FIGS. 26(g) and 26(/) are exemplary displays of incremen-
tal resource loading according to embodiments.

20

25

30

35

40

45

50

55

60

65

6

FIG. 26(/) is an exemplary display of read and unread
articles in a list.

FIGS. 27(a) through 27(c) are exemplary displays of the
result of transcoding large web sites for mobile widgets.

FIGS. 27(@) through 27(/) are exemplary displays of sports
widgets.

FIGS. 28(a) through 28(/) are exemplary displays of sports
widgets.

FIG.29 is an exemplary display showing multiple widgets
used as indicators on a single view.

FIG. 30 is an exemplary display ofwidgets added to ahome
screen display of a mobile client device.

FIG.31is a flowchart illustrating the processes performed
on the client device to increase relevancy ofthearticles.

FIG.32 is a flowchart illustrating the processes for sharing
widgets amongst users.

FIG. 33 is a schematic of an execution engine and mobile
widget canvas on the widgetclient.

FIG.34is an illustration of various types of mobile adver-
tisements supported by the widgetclient.

FIG. 35 is an illustration of various types of interactive
elements supported by the widget client.

FIG. 36 is a schematic block diagram of the scripting
engine on the widgetclient.

FIGS. 37(a) to 37(f) show exemplary web user interface
displays that a user may be presented with to create a mobile
widget non-programmatically according to embodiments.

FIGS.38(a) to 38(e) show exemplary web userinterface
displays that a content author may be presented with to create
a mobile widget non-programmatically according to embodi-
ments.

FIG. 39 depicts an exemplary use case that illustrates the
need for publishing a widget from a phoneandsharing it.

FIG.40 is a flowchart depicting the supporting server-side
process to create a mobile widget.

FIG.41 is a flowchart depicting the elements performed by
the widget service to create a mobile widget.

FIG. 42 depicts an exemplary web browser with the data
extraction tool installed as a plugin.

FIG. 43 depicts an elementin the extraction process where
the user is allowedto highlight and remove various elements
of a web page.

FIG. 44 depicts a final element in the extraction process
wherethe userhasisolated a specific information source from
the web page for a mobile widget.

FIG. 45 depicts an options panel offered by the extraction
tool where the user can apply different kindsoffilters helpful
for data extraction.

In figures showing multiple components, nothing herein is
meantto imply that all of such components are required, and
certain embodiments may include only a subset of the com-
ponents or modules depicted in any one or more figures.
Likewise, with respect to figures showing method elements,
nothing herein is meant to imply that all the elements illus-
trated in any one or more of such figures are required, and
certain embodiments may include only a subset of the ele-
ments shown in any one or morefigures.

DETAILED DESCRIPTION

In one embodiment, methods and systemsare provided for
creating, publishing, sharing, and delivering mobile software
applications called “mobile widgets” while maintaining
device independence across hundreds of disparate mobile
devices. The term “widget” may be interchangeably used
with other similar terms, such as “module,” “application,”or
“program.”

Booking, Exh. 1054, Page 77

Booking, Exh. 1054, Page 78

US 8,595,186 B1
7

Overview

Many mobile devices, such as cellular phones and PDAs,
have a browserto browsethe Internet. But the end-user expe-
rience maybepoor, resulting in single digit mobile adoption
rates even for essential web services like email and weather.

Tasks that may be simple on a desktop computer can turn out
to be complex chores when performed ona mobile phone. For
example, on a desktop machine, getting the weather forecast
for the day may require only for the user to type “new york
weather” on a search engine and see the results. On a mobile
phone, however, users may needtofirst find the web browser,
which may be hidden in a menu, then users may laboriously
type the URL onalittle keypad, wait for the browser to
connect, possibly deal with mal-formatted content pages, and
then try to use the web site. Normal users may not have the
patienceor attention span to perform so manysteps justto get
the weatheror the current sports score.

Mobile widgets can offer an enhanceduser experience for
similar web services. ‘he architecture may include server-
side technology, device-agnostic client-side technology, and
publishing technology for widget creation. Some embodi-
ments of the architecture may allow relevant information to
be made available on the mobile terminal for when users

glance at the phone.
The system and techniques presented here may include

server-side architecture for authoring, hosting, and delivering
the widgets and mobile content, a mobile client-side platform
to run the widgets and render content, a framework for devel-
oping and publishing the widgets, and a system for measuring
mobile widget usage.

A mobile terminal mayrefer to amobile computing device,
including, but not limited to, wirelessly connectible PDAs,
mobile phones, handheld pads, 2-way pagers, voice recogni-
tion terminals, and portable computers with wireless connec-
tion capability. Other similar names used for a mobile termi-
nal include handheld device, client device, cellular phone,
mobile phone, or, more commonly, phone.

A mobile widget may refer to a mobile software applica-
tion that runs on a mobile device and may perform a specific
task. As an example, consider a weather forecast mobile
widget that displays the forecast graphically for a specific
city, or a cartoon reader that formats a cartoonstrip so that it
is easily readable on a mobile phone. Of course, widgets may
have more or less functionality and may be adapted to per-
form multiple tasks.

The widget service client software mayrefer to a software
application that runs on a terminal device and is capable of
hosting and running mobile widgets. Other names used for
this module are client software or, more commonly,client.
The widget service server system may be an embodiment of
the basic server-side architecture configured to author, host
and deliver the mobile widget service.
Illustrative Operating Environment

FIG. 1(a) is a schematic diagram of a wireless system for
providing mobile widgets according to one embodiment. In
other embodiments, notall ofthe illustrated components may
be required, and variations in the arrangementandtype ofthe
components may be made.

As shownin FIG. 1(a), the environment may include the
widget service server system 110, a first network 120 (e.g.,
the internet), a second network 130 (e.g., a wireless network),
the widget service client 140 and various content sources such
as content publishers 121, web services 122, web portals 123
and other web sites 124.

The client device 140 may include mobile computing
devices capable of sending and receiving data over a network
130. Such devices may include mobile terminals that connect

20

25

30

35

40

45

50

55

60

65

8

via a cellular network, Wi-Fi network, and the like, such as
connected PDAs, cellular phones, smart phones, Blackberry
devices, Windows PocketPC and Smartphone devices, and
wireless gaming devices such as PSP, Nintendo DS,or any
other device that is equipped to communicate over a wireless
communication medium. Mobile devices 140 may include
storage, memory, displays, operating systems, additional
software such as email, calendar, PIM, and phone-specific
features.

Relative to non-mobile devices, the mobile client device
140 may have slowertransmission rates, may exhibit a net-
worklatency, may have a smaller screen, may have different
or limited user entry mechanismssuchassoft keys, key pads,
or thumb wheels, and may not have a full keyboard. Client
devices 140 maybe further configured with a built-in browser
application that supports receiving and display of markup
languages such as Wireless Markup Language (WML),
WMLScript, JavaScript, and Hypertext Markup Language
(HTML), to display text, graphics or multimedia. Further,
client devices 140 may run mobile operating systems such as
Symbian OS, Mobile Linux, Windows Mobile, RIM Black-
berry, and Palm OS. The operating systems may provide a
virtual machine such as a Java Virtual machine (JVM) or
BREW.Client devices 140 may further be configured to
support download andinstallation of new applications and
functionality. Mobile client devices 140 may have several
additional components such as GPS, camera, multiple net-
works, andthe like.

The widget service server system 110 may contain one or
moreserver systems and may be configured to communicate
with client devices 140 and to respond accordingly. The
server system 110 may communicate with a wide area net-
worksuch as the Internet, a cellular telephone network, or a
local area network. As an example, the widget service client
software running on the client device 140 may communicate
with the widget service server system 110 to receive infor-
mation about the widgets. The widget service server system
110 may also be capable of communicating with various
content sources and services on the Internet such as search

engines, web services, XML repositories, relational data-
bases, structured markup content sites, content-aggregators
(portals), and the like. The widget service server system 110
mayalso host online tools to develop and deploy widgets.It
mayalso provide application interfaces to develop and deploy
mobile widgets.

With reference to FIG. 1(6), in some embodiments, the
client device 140 mayinclude a widget service client 141. The
widget service client 141 may bea software program that runs
on the mobile computing device 140 and communicates with
the widgetservice server system 110 over wireless networks
and wire line networks using standard networking protocols
such as Wireless Application Protocol (WAP), Transmission
Control Protocol/Internet Protocol (TCP/IP), and the like.
The widgetservice client 141 maybeable to run widgets 142
on the client device 140. Users may have a personalizedset of
widgets 142 that they chooseto install and use on the widget
client 140.

In another embodiment of the operating environment, the
mobile computing device 140 may not support or allow the
downloador installation of a software such as the widget
service client 141. In such a case, if the mobile computing
device 140 is equipped with a built-in browser, the widget
service server system 110 may beable to offer widgets via,
e.g., a built-in browser on the mobile device 140.

The widget service server system 110 may provide tools,
programming interfaces, or hosting infrastructure (“wiz-
ards”) for the creation or publishing ofmobile widgets. As an

Booking, Exh. 1054, Page 78

Booking, Exh. 1054, Page 79

US 8,595,186 B1
9

example, the wizards enable non-programmatic waysof cre-
ating device-independent mobile widgets for content publish-
ers. Furthermore, programming interfaces may allow devel-
opers and those skilled in the art to build new kinds ofmobile
widgets in a device-independent way.

Another embodimentofthe widget service system isillus-
trated in FIG. 2. In this embodiment, an individual user or
publisher may download a personal version of the widget
service server 210 and install it on a local computer server
200. The personal widget service server 210 and accompany-
ing tools may interface with services on the local computer
server 200 where the user may create personal widgets from
local data sources and share it with friends and family. The
data for these local widgets may come from personal/local
applications 230 such as email, calendar, photos, personal
media, etc., and may be accessed via a personal web server or
operating system 204. Here the data may reside on the user
system 200 instead of public widget service servers 240.
Users who use the personal widget service server 210 may
also be able to syndicate other widgets from the public widget
service 240. A web server or web operating system can be
provided to enable the server 210. It will be understood that
mobile devices 201, 202 can receive widgets from the server
210 via networks 203.

Mobile Widgets
Asrecited earlier, a mobile widget may include a mobile

software application, which may run on a mobile computing
device 140 and mayoffer a user experience to performatask.
FIG. 3 shows an exemplary mobile widget launchpad 310
with several widgets 320 installed. The widgets 320 are rep-
resented by the grid of icons in the center of the figure. As
depicted, each widget 320 may have a completely different
user interface and behavior. As examples, in this diagram we
illustrate a mobile widget that displays the newsin pictures
330, another onethat displays a chat session 340, another one
that represents a local search query 350, another one for
viewing comicstrips in a slider 360, a livecast widget 370 that
displays play-by-play updates with video 380 for a live
cricket game, and a weather widget 390. Manyother types of
widgets 320 may be created and delivered in this embodi-
ment. A mobile widget 320 could be an encapsulated version
ofa website, a portion ofa website, amobile web (WAP)site,
an HTMLpage, an RSS feed, anATOM feed, a webcam feed,
a video or audio feed, or any other data source. The widget
320 may offer a mobile friendly version of the functionality
offered by these original data sources.

In one embodiment, a widget may display a golf leader-
board in a mobile computing device. The widget may offer
the information so that it is well-formatted and easily view-
able on a specific mobile device. Furthermore, the leader-
board may be automatically updated every few minutes with-
out the user having to hit a refresh control. The information
may be pre-fetched so that the user does not have to experi-
ence the networklatency typical ofmobile data networks. The
widget may automatically display a particular golf shot via
video. The widget may overlay a golf ball’s path over a
picture of a golf hole. These features, when used in conjunc-
tion with each other, improve the end-users’ experiencesig-
nificantly because very specific information is available at a
glance.

In another embodiment, a widget may showtraffic infor-
mation for a user’s afternoon commute. The mobile widget
could be configured to update every 30 minutes with thelatest
traffic information from a specific web data source, person-
alized to the user’s homelocation and update a status image to
a red light or green light based on whetherthereis a traffic
incident or not. The user would be able to receive the infor-

20

25

30

35

40

45

50

55

60

65

10

mation at a glance without having to go throughtedious steps
to get the traffic information from a mobile web browser. In
this embodiment,the information maybeperiodically pushed
to the widget, rather than pulled by a user using the web
browser.

In another embodiment, a widget may be a mobile display
ofpersonal media. For example, a user could carry her favor-
ite family photographs ina mobile slideshow widget. Widgets
like these may include simple to-do lists, music playlists with
links to the media, video playlists, person-to-person greet-
ings, andthe like. In many cases, may be possible to construct
the widget’s user interface in a unique or simple way so that
it is easy to use by the end-user.

In another embodiment, a widget may use special functions
or device services of the mobile computing device, such as a
voice recorder, a camera, or a video recorder. As an example,
a mobile widget mayallow a user to record a voice note and
upload it to another user or website. In another embodiment,
a widget may berelated to communication. Widgets may
offer access to Instant Messaging, Voice Over IP (VOIP)
call-bridging, and chat rooms.

The foregoing embodiments provide several examples of
mobile widgets supported by this disclosure. However, other
types and configurations of mobile widgets apparent to those
skilled in the art may also be created, published, and used in
the system of the embodiments described above.

There are many waysin which users may discover mobile
widgets, such as throughaffiliate sites like web lags (blogs),
online content brands, or aggregators where mobile widgets
are featured. In some instances, users may receive an invita-
tion from a friend or users may hear ofthe widget service and
access the widget service’s website or mobilesites. In any of
these potential use cases, users may be allowed to preview and
pick various widgets and then register to receive mobile wid-
gets on their mobile phones. After registration, users mobile
phones may be provisioned with the widget service client
software via a text message or email. Users may then manage
their own widget sets from the widget service mobile client
software or from the widget service web front end. Users may
program the widgets as to how often data should be down-
loaded, how much data should be downloaded, and thelike.
Users mayuse search capabilities on the device to add more
widgets or invite other friends to use widgets.

Widgets may include multiple components, some ofwhich
may be executed or rendered on the mobile device. When
executed or rendered, widgets may access a commondevice
API provided by the client, and may access a feature of the
mobile device, without necessarily accessing any of the dis-
tinct APIs native to the mobile devices.

WidgetInstallation
Once a widgetis created, it may be uploadedto the server

110 for storage and indexing. The server 110 maystore the
widget in a database. In one embodiment, the widget’s mani-
fest mayalso be read to obtain the widget name,description,
tags assigned to the widget, creation time, author, version,
and otherattributes. These attributes may be indexed by the
search engine so that the widget can be searched by end-users
to be addedto their accounts.

In an embodiment, users mayeither browse a catalog (gal-
lery) of widgets or they may search for a particular widget.
Once found, the user may add the widget to their account
using the user interface. When a widget is added to a user
account, an entry may be created in the databasethat refer-
ences a widget and appliesto the user account. A user account
may be specified when a user “logs in” to the system via the
web user interface or via the mobile client unique identifier.

Booking, Exh. 1054, Page 79

Booking, Exh. 1054, Page 80

US 8,595,186 B1
11

Byhavingthis entry in the database, the user has effectively
added the widget to their account.

Referring to FIGS. 4(a) and 4(6), the user may synchronize
their mobile client with their online account. The client syn-
chronization engines 452 and/or server synchronization
engine 408 maydetect that a new widget has been added. The
widget may be transmittedto the client.

The mobile client 141 mayinstall the widget by unpacking
the widget archive. Installation may be handled byan instal-
lation component of the client 141, where the installation
component is designed to install widgets onto the mobile
device 140. Installation may be permanent, persistent, tem-
porary, or of someotherdefinite or indefinite duration. Instal-
lation may include unpacking the widget components,install-
ing each, some,or a section of someofthe components onto
the device. Such installed components may include code,
compiled code, images, text, video, multimedia, and so forth.
Widget installation may also include decompression of the
widget or other processing before installation. ‘he widget
maythenbe registered into the user’s views. The user canthen
interact with the widget. The widget may contain code that
retrieves additional data if required. For example, an RSS
feed widget may have a server counterpart that fetches feeds
and reformatsthe feeds to the capabilities ofthe mobile client.
This may includeresizing images, transcoding the contentto
simplified HTML, transcoding media types such as video,
etc. The widget may then utilize the synchronization engine
on the client 452 andthe server 408to transmit data between

the systems.
Widget Client System Architecture Overview

FIG. 1(6) illustrates one embodimentof the widget client
system 141. The widget client system 141, also referred to as
a client framework and widget-execution engine, may be
located on a mobile device 140. The mobile device 140 may
include an operating system 143. The operating system may
provide a device services API 150. The device services API
150 generally refers to an interface to device features, ser-
vices, and/or capabilities of the mobile device 140. Device
services are provide access specialized features of a phone.
These features may include a speaker, a GPS device, a micro-
phone, a camera, a videorecorder, a homescreen userinter-
face, a touchscreen, an accelerometer, a transceiver, a raw
network connection, a network socket, a software email pro-
gram, a software calendar, a data store, and a software per-
sonal information manager. Device services APIs may also
include, but are not limited to, functionality such as getting
the device’s current location via a device GPS module,
accessing spatial orientation data via the device’s accelerom-
eter, capturing pictures, audio and video, displaying content
on ahomescreen ofthe device, interfacing with device appli-
cations such as an address book and calendar to perform
actions such as send mail, accessing SMS,Instant Message,
or phone call or data transmission functionality, accessing
device battery levels, controlling display brightness levels,
vibrating the device, and use the speaker to output sound.
Device services APIs may further include anAPIfor allowing
a software application on a mobile device to send data to
another software application on the mobile device, display
customized content within a mobile device screen saver, dis-
play content ona secondary physical display screen, generate
a popupnotification, access a mobile device ID, access and/or
display area maps on a mobile device display, access wireless
signal strength information, and so forth. A device API may
further include anAPI for monitoring an event(e.g., receipt of
a text message, receipt of an email, receipt of a phonecall, or
activation of an alarm) and an API for executing, waking, or
launching a widget application in responseto the event.

20

25

30

35

40

45

50

55

60

65

12

So, for example, the operating system 143 may provide a
proprietary API 150 to allow authorized applications running
on the device to access one of the specialized features of the
device. The API mayincludecalls to open the camera shutter,
close the shutter, and save the image to a storage location.
Various mobile devices 140 provide different features, func-
tionality, and services, so the operating systems (which run on
the devices) will provide various device services APIs 150.
Additionally, various operating systems 143 mayprovide a
different device services APIs for the same feature. Thus, a
program written for one device and operating system may not
be able to run on another device or operating system.

The client widget engine 141 may run ontop ofthe oper-
ating system 143. Alternatively, the widget engine 141 may
be a componentor constituent of the operating system 143.
The engine mayprovide functionality for widgets 142 to be
executed on the mobile device 140. The widget engine 141
may typically provide a renderer 160, an execution engine
170, and a commondevice services API 180.

In turn, a widget 142 to be executed on the widget engine
141 may contain, amongothers, a declaratory language com-
ponent 161 (e.g., a declaratory markup language such as
HTML)and an imperative language component 171 (e.g., a
scripting programming language such as JavaScript). The
declaratory language component 161 may be rendered or
otherwise executed bythe renderer 160 or the widget engine
141. The imperative language component 171 may be
executed by the execution engine 171. The imperative lan-
guage component 171 may also contain code calls 181 to
device services and features. These calls may be to the com-
mon device services API 180 provided by the widget engine
141.

FIG. 4(4) depicts another embodimentofthe widgetclient
framework 141 comprising additional components. In some
embodiments, the components may run on an application
host. Components and their respective functions may include:

A widget repository 451 may provide storage for widgets
A synchronization engine 452 may synchronize data

between the client and the server.

A rendering engine 160 may include a mobile browser
canvas and/or a vector graphics engine.

An execution engine 170 may execute runnable code.It
may include a virtual machine.

An advertisement engine 455 mayprovide offline delivery
and display of advertisements

A homescreen 456 may provide an idle screen for display-
ing summaries of widgets.

A widget entry point 457 mayprovide the ability for wid-
gets to be downloadedandinstalled. Widget discovery
may provide for automatic download ofwidgetapplica-
tion or descriptions, and maytake place in the absence of
userinstruction.

A widget permissions engine may control and monitor the
execution of the widget, or components of the widget,
such as JavaScript, and may preclude a widget from
accessing unauthorized functionality of the device.
Malicious or other widgets may be terminated or other-
wise be causedto cease execution by the widget permis-
sions engine, if, for example, the widget permissions
engine detects that the widget has attempted to access
unauthorized functionality of the device. The permis-
sions engine may also modify the widget, such as by
adding additional permissionsrestrictions and by utiliz-
ing personalization or marking (such as by adding warn-
ing banners to widget displays). The engine may prompt
the user for instructions.

Booking, Exh. 1054, Page 80

Booking, Exh. 1054, Page 81

US 8,595,186 B1
13

A data access management component may be configured
to allow a widget application (or other componentofthe
mobile client) to write data (including program data,
content, prefetched data, and so forth) to a storage loca-
tion. This location may be inaccessible to other widget
applications and software programs installed on the
mobile device. Alternatively, or in addition thereto, the
data access management component may also allow a
widget application to write data to another storage loca-
tion that is accessible to other widget applications and
software programsinstalled on the mobile device. The
data management component mayuse any ofa variety of
other permissions schemes to control access to data
stores.

The following sections detail components and functional-
ity of some embodiments of the widget engine 141.
The Rendering Engine

The rendering engine 160 may generally parse and execute
a declaratory language. Declaratory languages include
markup languages such as XML, HTML, XHTML, and
SGML.The language need not be declaratory, and may be
functional or imperative. These languages may form compo-
nents of a widget application.

The rendering engine, also known as a microbrowser, 160
mayinclude a mobile browser canvas 3300. FIG. 33 depicts a
schematic diagram of one embodiment of an execution
engine and mobile browser canvas 3300. FIG. 33illustrates,
among other elements, a repository ofpre-built widgets 3335
and a font rendering engine 3370. According to one embadi-
ment, the mobile browser canvas 3300 provides a canvas for
application developers to render user interfaces for applica-
tions. This canvas may be a modified XHTML and SVG
rendering engine. The canvas may allow application devel-
opers to display rich user interfaces. User interfaces may
include formatted text and bitmap graphics as well as vector
graphics. Embodiments may implement caching 3305of, for
example, rendered elements, a second canvas 3315 for, for
example, pre-rendering a second frame for display while
keeping a first canvas 3345 active on the display, and active
client server pages 3320.

Mobile Browser Canvas Widgets
The following are widgets that application developers may

use to display user interfaces. These widgets may be stored in
a pre-built widgets repository (FIG. 4(5), 451). These widgets
maybeaccessible to widgets executing on the widget engine
141.

Display Widgets
These types of widgets may display information. In some

embodiments, users do not interact with these widgets.
Some widgets may display or render bitmap images. The

mobile client may have two different versions of an
image renderer. The first may be used when a mobile
client has more resources. In such a case, there can be
simple image manipulation such as bitmap scaling. In
more resource constrained devices, image manipulation
can be done ontheserverandsent to the mobile client for

display.
Some widgets may display text, possibly with formatting

and word wrap. Formatting includes font type(e.g. pro-
portional, fixed width), font style (e.g. bold, italics,
underlined), color, size, etc. Text flows on a document
with word wrap and may be modified through various
formatting commands to flow differently (e.g. center,
right justified, flow around images, etc).

Some widgets add a break to separate two objects on two
different lines. These widgets may also be rendered as a
graphical line on the page(a horizontal rule).

15

20

25

30

35

40

45

50

55

60

65

14

Some widgets may act as a container for any object. This
maybe a logical container that boundsthe text, images,
and other objects. An example is a table cell where
contents fit within a defined boundary.

Some widgets may display enumerated or bulletedlists.
Lists may be indented to show hierarchy.

Some widgets provide for a 2-dimensional table to be
displayed in rows and columns.

Some widgets provide a cell within a table that contains
any object.

Some widgets provide a reference element that may be in
conjunction with hyperlinks to allow for a hyperlink to
be traversed to various parts ofthe same pagerather than
on different pages.

Interaction Elements

Interaction elements may allow users to interact with the
mobile widgets. Interaction may be accomplished by select-
ing the widget by directional cursor movements, mouse
pointer movements, stylus clicks, voice commands, etc. For
the mobile client implementation, the system may use well-
defined input mechanismsavailable on mobile devices such
as directional cursor movements andstylus pen inputs.

A four-way directional cursor pad may be used to move a
selection “cursor” up, down,left, or right (as per cursor pad)
to select the elements on a document. In one embodiment,if
there are no selectable elements on a page, the document may
scroll up or down (depending on the direction the user has
selected) until a selectable widgetis visible. The system may
then select the widget and changeits visual indicator to indi-
cate that the user has selected the widget andthat this widget
can perform somefurther action based on further user input.

For the user interaction elements, there may be a hidden
form widget comprising form-specific elements. In one
embodiment, all form-specific elements may have a name
assigned to them as well as a value. When the form widgetis
“submitted”, the data containedin the form maybecollected,
encoded, and sent to a specified URL for further processing.
These name and value pairs may then be consideredthe data.

Appendix F lists sample user interaction elements accord-
ing to an embodiment. FIG.35 illustrates example interaction
elements according to one embodiment (3510-3590), includ-
ing, for example, hyperlinks (3510), text fields (3520 and
3540), controls (3530), checkboxes (3550), radio controls
(3560), list boxes (3570), drop-downs (3580), andfile upload
controls (3590).

Meta Information Descriptors for Visual Elements on
Mobile Client

The elements described above that accept user input can
also have optionalattributes to provide additional context to
the system to apply additional actions that the user can per-
form. These optionalattributes may be specified in the same
manneras otherattributes on the elements.

According to one embodiment, one such usage ofthe meta
descriptor is the use of automatic form filling with last entry
history. A naming convention is used for describe someofthe
entry fields. For example, “email” is used to describe a user’s
email address, or “phone-mobile” can be used to describe a
user’s mobile phone number. When the page renderer
encounters such entryfields, it may optionally changes the
visual indicator of the element so that the end-user knowsthe

automatic form filling can apply to the fields. The form may
thenbe filled manually by the user (in which case the entries
are saved into a storage mechanism whichexists locally and/
or remotely on the server). Alternatively, the renderer may
display special user interface features when users select the
input element. For example,in a text entry field where a meta
descriptor is specified, the background color might change to

Booking, Exh. 1054, Page 81

Booking, Exh. 1054, Page 82

US 8,595,186 B1
15

yellow, indicating that this field can be auto-filled. The user
selects this field at some point. A popup can then appear,
presenting the user with items that the user can choose using
any input mechanism.After filling, the result is saved into a
history stack so that whenever the renderer encounters the
element again, it can present to the user the entered items
again.

In addition to the history stack, the meta descriptor values
can come from external sources. According to one embodi-
ment, the user may register on the web site. They enter their
personal information such as name, address, phone number,
etc. This information is transmitted to the client at some point
using the synchronization module. The mobile client can then
use this datato fill form elements conforming to the naming
conventions and implementing the meta descriptorattributes.

The mobile client 141 may containa parser for languages.
Twosuchparser are described below, but the client 141 may
generally parse any programming or rendering language,
including XML, XHTML, SVG, other declaratory markup
languages in general, as well other languages such as the
imperative languages C and Java andthe functional language
Scheme.

XMLParser

With reference to FIG. 33, the following is one example of
an XML-based parser 3325 to render HTML. XML is a
text-based documentthat conformsto certain rules to make

machine parsing easier. The parser in this example may be a
non-strict version to handle some instances where user-en-

tered XML code might not be compliant (as might be the case
with HTML documents). There are several ways to handle
non-XML compliant documents. One is to have a relaxed
parser. Anotheris to tidy up the document to be XML com-
pliant before parsing. Both methods are compatible with the
present disclosure, but only the first method will be described
below.

According to one embodiment, the first element may be
lexical analysis whereupon the documentis broken up to get
the characters. The XMLparser may choose notto validate
the XML for correctness. For example, when the parser
encounters a tag that does not close, it may be closed auto-
matically rather than generate anerror. To dothis, the engine
mayprovide twostages: A generic XML parsing stage and a
semantic information processing stage.

In the generic XML parsing element, the parser parses the
input to determine whatthe next item is. The item may be a
tag, endtag (that closes the opening tag), text (exists between
the start and endtag), or endoffile so that it is known whento
stop calling the function. The function may return a constant
to specify what the next retrieved type is (e.g. TAG, END_
TAG, TEXT, or EOF) so that other functions may be called as
appropriate. Appendix E contains pseudocode for some
embodiments ofthefirst element of parsing.

The secondstageofthe parser may grab the XML elements
and match against HTMLtags.It may keep a stack oftags that
are to be closed ina stack. So,fora start tag, it waits for an end
tag matching that nameto arrive. When we encountera start
tag, we place it on the stack. When we encounteran endtag,
we'll match againstthestart tag at the top of the stack.If it’s
the same, we'll pop that one off. If it’s not the same, we’ll
keep popping the tags offthe stack until we find the matching
start tag or until the stack is empty. Similarly, we can handle
the following case. A start tag is placed on the stack. Then,
anotherstart tag begins that is the sameasthe start tag on the
top of the stack. This should not occur in HTML.So, we pop
off the tag on the stack and close both tags.

20

25

30

35

40

45

50

55

60

65

16
Parser for XHTML and SVG

The user interface of a widget may be specified using a
declarative syntax such as XHTML.It may be provided as a
declaratory markup language component of the widget.
According to one embodiment, widgets may be based upon
XHTMLand SVGstandards derived from XML documents

(see these docsasref). In this embodiment,thefirst elementis
to prepare the user interface for display is to parse the user
interface. As mobile devices can be resource constrained, it
sometimes may notbe possible to parse the user interface on
the device due to resource limitations. Hence, some embodi-
ments support several methods to parse and render the user
interfaces.

1. Mobile client parses the document. The mobile client
contains a parser (for XHTML 3325 and/or SVG 3350)
to extract document elements from the source. This may
be available for mobile devices that have more resources

to run through computationally intensive parsing steps.
2. Server parses the document. Ifthe client does not contain

enough CPU/resourcesto parse and compute, computa-
tions may be done on the server. The client may make a
request through a special server proxy. The client engine
maytransmit capabilities (e.g. display sizes, font sizes,
client type). The server may compute X and Y coordi-
nates and dimensions of elements and transmit to the

client in a compact formatthat is simpler to parse. The
client may rebuild the data structures and render the
data.

. Server modifies the documentfor the capabilities of the
client (also known as transcoding). The client may con-
tain a simplified parser. For certain widget user inter-
faces, the transcoding service on the server may break
down the user interface into simpler elements that the
client can parse. For example, HTML tables can be
pre-computed into X and Y coordinates as well as
boundsto transmit to the client while text formatting can
be parsed on the client. CSS (reference to CSS) can also
be applied on the server.

To support more scalable clients, an API may be made
available for capabilities discovery. Examples include ability
to do bitmap image scaling, supported multimedia objects
3365, supported input events, multiple screens, etc.

Vector Graphics
In some embodiments, within the renderer or mobile

browser canvas 3300, application developers may specify a
block of the canvas 3300 to display vector based graphics. A
componentof the mobile client 141, or the renderer 3330,
mayinclude a vector graphics display unit or engine 3355.
According to one embodiment, this is demarcated by the
<svg> tag. Attributes it can take are width and height of the
vector graphics area.

Various objects can be placed into the canvas. These may
include the following objects:

Rectangle—Includes and upperleft x-y coordinate and a
width and height.

Circle—Includes an x-y coordinate for the center of the
circle and a radius.

Ellipse—Includes an x-y coordinate for the center and a
horizontal radius and vertical radius.

Line—Drawsa line between two coordinates.

Polyline—Drawsa series of lines between points.
Polygon—Drawsa polygon between points and closes the

lines.

Path—Draws a complex path with the following com-
mands.

M—moveto an x-y coordinate
L—iineto an x-y coordinate

Ww

Booking, Exh. 1054, Page 82

Booking, Exh. 1054, Page 83

US 8,595,186 B1
17

C—cubic Bezier specified by 4 control points
Q—quadratic Bezier specified by 3 control points
Z—closethe path

Text—Draws text using a vector-based font 3370 at a
specified x-y coordinate. The font maybestored in a font
cache 3375.

Images—Drawsraster images.
The objects can take on variousattributes to affect render-

ing. Some attributes include:color,fill color, font family, font
size, font style.

Transformations

Transformations maybe appliedto the objects. These may
include translation, rotation, and scaling, and skewing. In
some embodiments, only thefirst three, or some other subset,
ofthe transformations may be implemented. The transforma-
tions may use matrix notion of linear algebra as follows:
Translation and Scaling Matrix:

[scale 0 translateX]
[o scale translateY]
[o 0 1]

2D Rotation Matrix:

[cos(angle) -sin(angle) 0]
[sin(angle) cos(angle) 0]
[o 0 y

Rendering
The renderer and/or mobile browser canvas 3300 may ren-

der the object primitives on a raster graphics display unit
3340. A mobile device may expose APIs to allocate and use a
block ofmemory to represent the graphics display. This block
ofmemory can represent screen pixels by the following equa-
tion:

mem_offset=v+y*screen width

Lines and curvesthat are represented by geometric equations
may be optimized for rendering on a pixel-by-pixel case
according to the following equations.

Lines

Lines maybe rendered on a raster graphics display canvas
using J. E. Bresenham’s line drawing algorithm (“Algorithm
for Computer Control of a Digital Plotter’). It describes an
methodof line drawing by using an error value that is accu-
mulated as linesare traversed.

Circles and Ellipses
Circles and ellipses can be rendered on a raster canvas

using a variant of Bresenham’s line drawing algorithm as
described by J. R. Van Aken “An Efficient Ellipse Drawing
Algorithm”.

Bezier Curves

The quadratic Bezier curve is described by the following
parametric equation. Given points PO, P1, and P2:

B(t)=(1-1)2P0+21(1-1)P1+12P2, te/0,1]

The cubic Bezier curve is described by the following para-
metric equation. Given points PO, P1, P2, and P3:

B(t)=PO(1-0343P11(1-1)24+3P222(1-1)+P323, te/0,1]

An approximation to a raster canvas may be made by
breaking up the curve into several line segments (e.g. 16
segments). These line segments can be rendered individually
using the Bresenham algorithm for line raster rendering.

20

25

30

35

40

45

50

55

60

65

18

Computation for the points on the segments can also be made
by breaking down the equations. For example, one can solve
for (1-t) in the equations above. One can also assumethat at
the beginning of the curve t=0 andat the end of the curve t=1.
The Execution Engine

Widgets may contain sections or components of general
programming language code. Such code may increase the
expressive power available to widget designers relative to
widgets containing declarative (e.g. HTML) code alone. The
execution engine 170 (FIG. 1(6)) may execute codethat has
been compiled. In some embodiments, the widget execution
engine 141 may be unable to compile code. Alternatively,the
execution engine may contain a compiler or interpreter, or
make use of a compiler or interpreter on the mobile device
140. The execution engine 170 may execute (and therefore
widgets may contain) scripting programming language code,
such as JavaScript, and the script may be compiled, such as
bytecode or object code. The execution engine 170 may
include a facility for executing code written in another pro-
gramming language, and APIs that the code may access to
interface to device services 150.

FIG.36 illustrates additional modules that may be included
in an execution engine 170 on the widgetclient, according to
one embodiment. The parser 3610 may be made to be an
optional component.Ifomitted, the server 110 mayparse into
bytecode before sending. If included, it can have dynamic
script creation. Also included is a representation ofthe under-
lying hardware platform 3660 exposed by to widgets and/or
client or execution engine components. The platform 3660
may include hardware descriptions, handles, operating sys-
tem hooks and calls, APIs to device services and capabilities,
an SDK,and soforth. The native platform may be exposed, or
the execution engine may expose a modified, translated, or
protected platform 3660 representation to widgets or other
components.

A virtual machine 3620 may execute the bytecode and
interactwith the user throughAPIs 3630. Bytecode may be in
the form of an octet stream (8-bits=1-byte). The virtual
machine may havean instruction pointerthat points to a list of
instructions (bytecodes). After each instruction that gets
executed, the instruction pointer may be incremented (except
for branch instructions). Appendix D illustrates sample
1-byte opcodesofthe instructions that may be implemented.

Virtual Machine Architecture

A generic virtual machine may support many languages.
However, adopting a simple version of JavaScript may lower
the learning curve to create applications. A compact, reduced
version ofJavaScript may accommodate low resource mobile
devices. Operations may include:

Binary operators
Unary operators

+,-,*,/, ete
-,+

Assignment operators =, +=, etc
Object operators » Q),[], ete
Access operators .
Declarations var
Execution function calls
Branches return,if, switch
Comparison operators ==, !=, <, >, etc

A modified BNF of a JavaScript language subset is provided
in Appendix A. The code segment of such a virtual machine,
or the execution engine as a whole, may be less than 10,000
bytes, 7,000 bytes, or even smaller.

The virtual machine may bea stack-based architecture or
machine. With continued reference to FIG.36, values that are

Booking, Exh. 1054, Page 83

Booking, Exh. 1054, Page 84

US 8,595,186 B1
19

required by the instructions may be pushed and popped from
the stack 3640 as required. In addition, aheap space 3650 may
be provided where variables of a particular scope get stored.
Whenevera new scopeis created, a space for heap 3650 may
be created and pushed onto the stack. Whenever program
control leaves a scope, the space for the heap 3650 may be
poppedfrom the heap stack and destroyed. In addition to the
local scope, a global scope maybe provided.If references to
variables do notexist on the local scope, the global scope may
be referenced.

Stack

The object stack 3640 may be a temporary storage area that
the virtual machine 3620 may use to perform computations.
The stack 3640 maybea last-in-first-out stack where the last
item pushedinto the stack 3640 maybethefirst item popped
out of the stack 3640. Various computations may be per-
formed using postfix operations on the stack 3640. The stack
may be located on a data storage module 3680.

Heap
The object heap 3650 maybe used by the virtual machine

to save the valuesofvariables. In the example above(section
on “stack” 3640), the variables “x”, “y”’, and “z” may be used.
These variables are stored in the object heap 3650.

The object heap 3650 may be garbage collected as
describedin the “garbage collection” section below. Garbage
collection may clean up andfree up space in the heap 3650 so
that more objects can be put into the heap 3650 without the
developer having to concern themselves about managing the
heap 3650. Cleanup may be needed whenobjects in the heap
3650 are no longer referenced by widgets. The heap may be
located on a data storage module 3680.

Garbage Collection
A garbage collector 3670 may be provided for freeing

unused memory. For simplicity, a simple mark-and-sweep
algorithm can be used. It can be invokedat strategic moments
(e.g. after 1000 instructions, after 60 seconds,after idle, etc.).
An alternative is the store and copy approach. This approach
avoids fragmentation at the cost of using double the memory
required. Yet another alternative is the mark and compact
approach which combines features of both. Pseudocode
descriptions of some embodimentsofthe algorithmsare pro-
vided in Appendix B. The garbage collector may be opti-
mized for the particular languages to be executed by the
execution engine. For example, an engine which executed
compiled JavaScript may implement a version of the mark-
and-sweep or mark-and-compact algorithms described
above.

Execution Engine APIs
In some embodiments, code executing on the virtual

machine mayinteract with the system resources and with the
user. Application Programming Interfaces (APIs) 3630 are
interfaces exposed to the virtual machine to display user
interface and get user input. These APIs include but are not
limitedto:

File input/output (e.g. basic file I/O and abstractions like
databases)

Network operations (e.g. HTTP, sockets)
Graphics display (e.g. browser API and graphics canvas)
User input
Text parsing (e.g. XML)
Mathematical operations and functions

A further list of APIs and operations according to some
embodiments is provided in appendix C.

The operating system 143 (FIG. 1(4)) typically exposes
APIs to device features such as a camera. These APIs may be
called device services APIs 150. Different operating systems
143 on different devices may provide different APIs to the

20

25

30

35

40

45

50

55

60

65

20

same feature. So, for example, while many phonesfrom dif-
ferent manufacturers may have cameras, the operating sys-
tems 143 on these phones may expose different APIS:
TakePicture() versus OpenShutter() for example. The API
may be includedin the execution engine or may be separate
from it.

Depending on the underlying function they provide access
to, these APIs may or may not be exposed by the operating
system 143 to a given application.

The client widget engine 141 may provide a common
device services API 180 that may be accessed by executable
code 171 that includes calls 181 to devices features. The

common device services API 180 allows widgets 142 to be
made more independentfrom the underlying device 140 type
and operating system 150. Widgets may makeacall to a
function included in the common device services API 180

withlittle regard to the underlying proprietary device services
API 150. As such, multiple engines may be installed on mul-
tiple different types of mobile devices, such as by different
manufacturers, where each of the devices utilizes different

APIs, programming languages, operating systems, OS ver-
sions, and other features, from other devices. Despite running
on different hardware/platforms,all of the engines may pro-
vide a common API for widgets to access common device
services of the mobile devices.

Widget Repository
With reference to FIGS. 1(5) and 4(4), in one embodiment,

widgets may be stored in a widget repository 451 on the
mobile engine 141. According to this embodiment, when a
widget 142 is installed, it may be unpacked. The resources
contained within it may be stored in the repository along with
some meta information about the widget 142. One of
attributes in the meta data may be a widget’s version. If
widget authors deploy newerversions of a widget, the widget
142 may be upgraded. This may work similarly to the client
auto update as described below. The widget version may be
comparedagainst the version onthe server.Ifthere is a newer
version, this data may be transmitted to the client. The user
mayeitherbe prompted with a mandatory widget update or an
optional update (depending on what the widget author has
specified). Ifapplicable,the new version ofthe widget may be
downloaded.Ifthe downloadfails, the download may resume
the next time the application initiates a widget synchroniza-
tion. After a successful download, the old widget may be
removed and the new widget may be unpackedandregistered
with the mobile client.

Synchronization Engine
With reference to FIGS. 1(4) and 4(), the synchronization

engine 452 on the mobile client 141 may be used to ensure
that the data is the same betweenthe server andthe client. The

synchronization engine may work in conjunction with a
server-side synchronization engine described below.

Mobile Prefetch

Page requests take a finite time to load and render. Each
element within a page may makeseparate requests to various
servers to load resources (e.g., images). As such, a user may
wait for data to come over the network and the widget 142
(FIG. 1(6)) may be rendered before the user can begin to view
and interact with some content. Alternatively, the widget may
not be rendered until all or a portion of the data is received.
Some embodiments allow downloadingorprefetching ofdata
in the background, thus allowing the user to interact with
other, non-blocking widgets or with the data-requesting wid-
get as described below. Mobile prefetch maybeinitiated by a
widget, controlled by a widget, or operated autonomously by
the widget client engine 141.

Booking, Exh. 1054, Page 84

Booking, Exh. 1054, Page 85

US 8,595,186 B1
21

Mobile prefetching works by downloadingat least some of
the content neededbefore the user begins to interact with the
widget. Once the content is downloaded, users can interact
with the widget without having to make network connections
again. According to one embodiment, the process begins
when the widget is requested. The widget may begin down-
loading in the background. The user can then chooseto per-
form other application tasks or wait for the download to
complete. Once the download is complete, the widget may
contain the resources necessary for the widget to function
without having to access the network.

Mobile prefetch can also be configured to download con-
tent in the background and havethe result appearat a later
time. For example, a large video clip may take, for example,
5 minutes to download. The user may prefer to perform other
activities while the download occurs. According to one
embodiment, the widget may call the mobile download or
prefetch module to fetch the specified resource in the back-
ground andto put the resource into a “mailbox”that users can
later visit to pick up the content. The download proceedsand,
eventually, the download completes. In some embodiments,
an unobtrusive notification appears (either audioor visual) to
indicate that the download has completed. The user can then
open the mailboxto retrieve the content andplayit.

Anotherapplication of the mobile prefetch is to enable use
ofthe mobile client by mobile devices with extremely limited
storage. Although the mobile client can prefetch the data for
all ofthe widgets before usage, storage-limited mobile clients
may choose a delayed on-demandfetch instead of prefetch.
The user may select the content they wish to prefetch and
contentthat they wish to only fetch on demand. One example
is the display ofarticles on a website. The user may chooseto
prefetch the article titles first and then retrieve the article
content only whenthey wish to view the article. Notethat this
is slightly different from the above where content is down-
loadedinto a “mailbox”. In this case, the download may occur
on-demandso that the user can view the result as soon as the

downloadis complete.
In some embodiments, widgets may query anAPI provided

by the engine 141 in these two modes to render themselves
differently. For example, in a grid view mode where the
widgets may be “minimized”, a widget might renderitself as
“grayed-out” when there is no data. Then it may change to a
flashing indicator to indicate when there is new data or can
changeto a static image oncethe user has viewedthe data for
that widget.

Engine Auto Version Update
Mobile client engines 141 that are downloadedforinstal-

lation on a mobile device 140 may have versions associated
with them. When a newer version of a mobile client 141 is

available, the older mobile client 141 may need to be updated.
There may be two types of version updates. Thefirst is a
mandatory update in which the old mobile client must be
updated in orderto further use the services of the server. The
second is an optional upgrade where an older mobile client is
not required to be updated in order to function. For example,
new features might have been introduced but the samebasic
functionality is preserved, and hence does not require an
update.

Mobile clients may be notified of new updates. According
to one embodiment, when a new update is available, the
update is marked onthe server. The server may then maintain
a list of versions that it keeps track of and may keep the
current version that has been deployed. When a new version
becomes available that is not the current version, mobile
clients may be notified. This may occur when the mobile
client connects to the server as follows: As part of a hand-

20

25

30

35

40

45

50

55

60

65

22

shake, the mobile clients send their current version. The
server responds with whetherthere is a new version ornot and
whether or not it is a mandatory update. The mobile client
then acts appropriately. If a new update is to be downloaded
(user accepts the upgrade), the mobile client may connect to
the server at a URL that either has been transmitted to the

mobile client during handshake or to a default URL embed-
ded with each mobile client. The URL may be a download
page that allows users to download a new version of the
mobile client, replacing or superseding the old version.

Widget Service System Architecture:
Referring to FIG. 4(a), the widget service server system

110 may include one or more modules. The modules may be
split on different physical machines. There may be additional
components in an embodiment. The server system may
include one or moreofthe following illustrated components:

A web and mobile front end 400 mayprovide a userinter-
face on the desktop using a web browser, WAP browser,
or mobileclient.

Content adapters 402 may provide plug-in points for exter-
nal data sourcesto enter the server. Some content adapt-
ers include video feeds, RSS feeds, web services, rela-
tional data bases, HTML pages, email, calendaring data,
instant messaging channels,etc.

A content caching module 403 may cache external data so
that an external fetch to satisfy a request from a mobile
device may not always be needed.

A uservault 404 may store user passwordsfor the server as
well as for external services requiring, passwords(e.g.
external email accounts).

A search module 405 may index andsearch the content on
the server. The search module 405 may makethe content
on the server available to external search engines.

A session manager 406 may manage web and mobile ses-
sions and sessions between the web and mobile.

A mobile application module 407 may host widgets. This
module may be include a device detection module 412
and a widget application repository.

A synchronization engine 408 may synchronize data
between the server and the mobile client and the data

maybe used by a widget. For example, specified widget
application maybe sentby the server to the device dur-
ing synchronization.

An ad syndication Engine 409 mayserve ads at specific
frequencies,for different demographics,in different for-
mats.

A location engine 410 may determine a user’s location and
may allow widgets to be served based on location.

A transcoder 411 may convert a resource from one format
to another format. For example, it can simplify HTML of
complex sites into simpler HTML that may be more
easily parsed. Some transcoders may transcode one
video format to another for device suitability

A device detection module 412 may detect the device type
and deliver the correct experience to the user.

A livecasting engine 413 may provide a streaming inter-
face to mobile clients.

A billing server 414 may handle billing requests and exter-
nal billing servers.

A logging module 415 may handle logging errors and
actions for statistics.

Widget creation and publishing tools 416 may include
various hosted and offline tools for creating and publish-
ing mobile widgets.

A connection to external widget creators, such as by a web
services API, such that 3’” parties may have a level of
access to the server.

Booking, Exh. 1054, Page 85

Booking, Exh. 1054, Page 86

US 8,595,186 B1
23

The following sections detail some of the components of
the Widget Service Server system depicted in FIG. 4(a).

Content Adapters
The content adapters 417 mayserve to determine what type

of content can be processed. Content adapters 417 may then
process the raw data into a structured format that is usable in
the server system 110. In the system 110, there may be a
registry ofadapters 417. Each adapter mayregister the type of
data that it accepts and the location of the adapter.

Raw data may come into the system through channels.
Data can go through a directed channel where it is known
whattype of data needsto be transformed. Alternatively, data
can go through a global channel where the system determines
the appropriate adapter that can handle thedata. In the case of
a directed channel, the system need not process whattype of
data is coming and can let the adapter handle the data. Accord-
ing to one embodiment, for a global channel, a stream is
obtained from the data source. The raw data may flow through
this stream. The system may pass this stream to each of the
registered adapters. Each adapter 417 may determine from
the stream whether it can handle the stream or not. If it can

handle the stream,it notifies the registry that it can handle the
data and mayproceedto process the data.

In the eventthat there is more than one adapter 417 than can
handle the stream, a priority-based system maybein effect.
As an example, an RSS feed data source can be handled by an
RSSparser, a web service by web services adaptor, and an
XML document by an XML parser. The system 110 may
provide a methodof registering priorities of adapters in an
adapter registry such that a specific kind of adapter 417 such
as an RSS feed adapter may havethe highest priority while a
plain text document parser may have the lowestpriority.

The raw data may be then processed for fast access and
optimal delivery to mobile clients. It is up to the adapter 417
to determine how bestto optimize the raw data. According to
one embodiment, this may be done as follows: The raw data
mayget processed as appropriate for its data type. For RSS
feeds, data may pass through an RSSfeed parser. The data
maybe represented as objects while parsed. The data may
then get normalized into a common data formatso that other
types of feeds (such as ATOM)can be stored in the normal-
ized data structure. The normalized data may then be merged
as appropriate with the data that is already in the data store. In
the case of RSS or ATOM feeds, each feed may have many
articles. After normalization, the articles may be taken and
then compared against whatis already in the data store. If it
doesn’t exist, it can be added. Otherwise, it can be ignored.
The result is one unified feed that may contain all of the
unique articles. The data can be filtered some more based on
user preferences. For example, a search string could be speci-
fied such that a user receives only articles matching the
search. Finally, the data may be transcoded to match the
capabilities of the mobile device and the mobile application.
The resulting transcoded data can be cached for fast access
when multiple users with the same feed requirements access
that data.

Text Data Sources

Textual data may comefrom a variety of data sources. One
example is from RSS feeds that web sites can publish.
Another source could bea relational database. Another could

bea via humanentered sportscasting tool. Still another could
be from an IM (instant messaging) platform or a chat system.
FIG. 13 describes a system by which textual data enters the
system for delivery, according to one embodiment:

1) Various text sources have people 1310 entering text.
2) Respective capture tools 1320 transform humanentered

content into computer structured format. Examples:
a) Event data (such as events that happened on a ball)

such as direction, speed, number of points for the
event, etc., may be captured

5

20

25

30

35

40

45

50

55

65

24

b) Commentary data (human readable text about the
event)

c) RSS-type feeds that might contain articles, pictures,
etc

d) IRC data
e) Others such as web content

3) Data may be saved onto disk 1330.
4) XMLexport 1340 for transfer to an encoding serverthat

merges feeds together to form a single coherent channel
for each feed type(e.g. one channel for each game, news
site, traffic data, etc)

5) Parser 1350 receives XML data and transformsback to
structured binarydata for further processing.

6) Normalizer 470 (FIG. 13) converts the various XML
data formats into a meta structure for consumption.E.g.
ATOM,RSS, CDF formatvariants are normalized into a
data structure that encompasses the attributes of each
format.

7) If data is sent in chunks, the merge module 1370 takes
the chunk and combinesit with an existing channel.

8) Final result is saved to disk 1330.
In this application, methods as described immediately above
do not necessarily include all of the listed elements.

Pull Adapter
The content adapters 417 may have pushandorpull inter-

faces. The pull interface may implementa polling policy that
has certain parameters to influence polling characteristics.
For example, over HTTP, the source server could transmit
HTTP headers to control the cache content of the feed (e.g.
when the feed expires so that we can fetch again). The fre-
quencyofthe polling mayalso be influenced by the numberof
subscribers to the feed and the usage patterns (whenthe feed
gets accessed). These policies may affect the frequency ofthe
polling, thereby improving the speed at which the end-user
receives the feed. The system may not need to fetch the feed
every time a user makes a request for the feed. Furthermore,
since the feed may be cached, many different users could
share the cached content without havingto refetch over a slow
network.

For sources that need timely updates, the source may be
prefetched as appropriate using the above described fre-
quencyfetching policy. This policy may ensure that the server
is not overloaded by unnecessarily fetching and may also
allow for timely updates to mobile devices. The policy can
also be overridden to update on a fixed schedule. This might
be done with sources used for demonstration purposes, for
example, where users might not necessarily subscribe to the
source, but the source content needsto be fresh.

Polling Server for Prefetching
To optimize on server bandwidth, the following algorithm

may be used to determine when to pull content from a feed
source (if the feed source requires polling):

1. Obtain a list of all feed sources that need to be polled.
2. Obtain the frequency of access for each of the feedsources.

3. Fetch content from the feed source according to a fre-
quency schedule.

4. Save the content in a caching server.
When a userperformsan actionthat requires accessing a feed,
the following algorithm may be used:

1. Mark the last accessed time for the feed.

2. Ifaccess time interval is lower than previousinterval, set
the new interval.

3. Reset intervals to a default after a set numberofdays.
Push Adapter
A push mechanism may also be used, where a content

publisher can push updates to the server when somedata has

Booking, Exh. 1054, Page 86

Booking, Exh. 1054, Page 87

US 8,595,186 B1
25

changed.Polling policies need not apply here. When new data
arrives, it may be normalized and transformedas appropriate.
For example, sports data is usually pushedsince the clients
need to be updated in a timely fashion. After the data is
received, the clients may then be notified as appropriate.

Parsing/Content Transformation
Whenraw data enters the system, it may be sent through a

parser 3310 (FIG. 33). The parser 471 reads the raw data and
converts it into data structures.

Server Content Fetching and Transform
Data may enter the server 110 through polling or push

adapters as described above. A method by which data enters
the system, according to one embodiment, is shown in FIG.
15 and described below.

1. Fetch content either through polling or push receiver
(1501).

2. A contentparser detects the type of content received and
parses and normalizes into common data structure
(1502).

3. Data is stored on disk (1503).
4. A content filter looks at the raw data in the disk, finds the

feeds, and either removesor transforms the data appro-
priate for the target (1504). Examples:

5. User wantsto filter out adult content
6. Searchto find relevant content

7. Filter items that haven’t been viewed yet
8. A transcoder transforms the content into a format that

various clients can understand (1505).
9. An insertion module allows for advertisementinsertions

(1506).
10. A delivery module delivers content to the client using

various methods (1507).
11. A cache module caches the transformed content from

elements 4, 5, 6. Each user may have their own cache
blocks. The cache module pre-fetches and pre-trans-
formsthe data to go into cache. Whenthe user requests
data, a fetch is made from the cache.If not existent in
cache, the module may perform transformation imme-
diately (1507).

Livecasting Engine
A mobile livecast widget mayreferto a specialized mobile

widget that delivers an interactive personalized information
stream about an event. Such information may include, with-
out limitation, a combination of a user-personalized event
status, event-specific graphical illustrations that depict vari-
ousstates ofthe event, relevant summaries ofthe event, edited
media clips including video clips, photos and commentary,
play by play event descriptions, event based notifications,
related statistics, and charts. Multiple end-users may be able
to simultaneously consumethe information stream from their
terminals. Further, the information stream may bepersonal-
ized based on the end-users’ preferences and the terminal
capabilities.

A livecast channel mayrefer to a specific mobile livecast.
Alternatively, there may be many channels being delivered to
different sets of users. Users may beable to select and “tune
in” to a specific mobile livecast. An exemplary livecast widget
for the game of cricket is depicted in FIG. 34. Another
example of a livecast widget could be streaming video of a
live concert or streaming text and picture updates fromalive
event such as a competition, conference, or media reporting.

FIG. 19 illustrates one embodimentofa livecasting engine.
According to this embodiment, the engineis a real-time sys-
tem by which clients access information that is guaranteed to
arrive within a certain period of time. The livecasting engine
may be used for serving up videos, sports scores, instant
messages, stock quotes, or any other informationthat requires

20

25

30

35

40

45

50

55

60

65

26

timely delivery. Each collection of related data is called a
stream. A stream could be a sports match, for example, or a
stock feed. Streams could further be categorized into groups
(e.g. the gamesinaseries correspondto streams in a group).
Within each stream is a collection of channels. Example
channels are videos, audio, text commentary, scores, adver-
tisements, etc. Each stream is assigned a unique identifier.
This is used, for example, in conjunction with the billing
server to identify the streams that a user has purchased for
receiving.

The livecasting server may include multiple subsystems.
The first is a data source aggregation module 1910 where
various content sources 1920 enter the system through adapt-
ers (as described by pull adapters above). Sources 1920 can be
automated (RSS feeds) or manual (video clipping). In the
case ofvideo clipping, tools may be available to clip the video
and then assign timestamp information for synchronizing the
video stream with other streams later in the pipeline (as
described below).

Content can be transcoded so that the media can by ren-
dered by the various connecting device types. This is done
through a transcoding engine 1930 thatis specific to different
media types (described in the transcoding section above).

The various streams of information may be then synchro-
nized by the media synchronization engine 1940. This engine
maytake the different media types and match them to form a
coherent stream of data including the different channels. An
example is video, audio, and text commentary streams that
cometogetherso that the streams matchtheir time signatures
with one another. This may be done by marking each stream
as they enter the adapters with timestamp information. This
timestamp information provides a reference for the time at
which the content enters the system. The timestamp may be
provided by the system or provided externally. In one
embodiment, a sportscasting widget may contain several
streams of information. The first stream that mayarrive is a
text stream containing text commentary of what happenedat
a particular time. In the meantime, video may be processed
externally (clipped, edited, etc) and then sent to the server.
Before the video is sent, it may be marked with a timestamp
for the time at which the video is pertinent. So, after the
stream enters the system, the video stream can match with the
text stream based on the timestamps.

A broadcast module 1950 maythen sendthe data stream to
the connected clients 1960. The broadcast module may also
send data to replication servers 1970 to distribute high server
loads. According to one embodiment, the replication server
may contain a registry of listeners 1960. For each listener,
there may bea channel by which data can be pushed through.
There mayalso be a cache 1980 that temporarily stores data
for transmission. This data is in a pre-rendered form for the
various devices (as created through the transcoding engine
1930). For example, a video stream would have been rendered
into WMV, 3GPP, MPEG2, MPEG4, QuickTimeandinto 3
differentbitrates (for different network speeds). There may be
a provision for the broadcast module 1950 to request the
transcoding engine 1930 to transcode to a new format on
demand. This might happen in the case when a requested
format does not exist in the cache 1980. In this case, the data
maybe transcoded on demandandthen stored in cache 1980.
Asdata is to be broadcast, the broadcast module 1950 may
pick up data from the cache 1980 and sendto the connected
clients 1960 (it may be unaware whetherthe connected client
is an end-user mobile device or a replication server 1970).
However, the adapters to which the listeners 1960 connect
may determine whatto send to the respective end points. For

Booking, Exh. 1054, Page 87

Booking, Exh. 1054, Page 88

US 8,595,186 B1
27

example, a replication server adapter 1970 may broadcast
other metadata about the streams (such as author, stream
sources, creation times, etc).

Onthe client 141 (FIG, 1()), widgets 142 can be created to
listen for the streams. They can request different channels in
the stream to be transmitted based on user requests and device
capabilities. As an example embodiment, a livecast stream
may contain several channels, video, audio, text, advertise-
ments. On a device with limited network bandwidth, the
client can request only text and image based channels in the
stream (text and advertisements). Clients can later request
download of the omitted video and audio stream separate
from the originalreal-time stream. Users can delay the stream
due to bandwidth constraints. In an example embodiment, a
stream may contain video, audio, text, and advertisements
channels. The user may choose, for example, only text and
advertisements channels. So the text and advertisements are

sent to the client in real-time. The streaming widget 142 on
the client then displays an indicator to indicate that additional
data is available on a different stream. Then, the end-user can
initiate a separate download when he chooses to view this
additional channel. The download might take longer; how-
ever, the user maybeable to view the channel. Thelivecasting
engine may support a backoff protocol, described below, to
support large numbers of mobile widget clients connecting
for updates frequently.

Location Engine
A location engine 410 (FIG. 4a) maygenerally act to store,

transmit, and make use of location information provided by
and to a mobile device. A mobile device mayitself contain a
location identification module, implementing part of, all of,
or more than the functionality of the server-based location
engine 410, and the engine and module may work comple-
mentarily. The location identification module may be
designed to determine the location of the device, as, for
example, by GPSorcell tower location. The location identi-
fication module may communicate with the mobileclient, or
a componentthereof, e.g., the download manager, to localize
content(such as widgets and data) downloadedto the device.
As such, widget applications installed on the device may
request network content customized to the location of the
device. Similarly, the server-based location module may
transmit information customizedto the location ofthe device

to the device. The device may transmit its location informa-
tion to the server. The mobile device, the server, or a network
resource may contain a location identification service which
maybe accessedbythe device,the server, or another network
resource. Information provided by the location identification
service may be usedto differentially serve content (including
data and widgets) to a mobile device or a user.

User Vault

Theuser vault 404 (FIG. 4(a)) may be used to store authen-
tication credentials for the system and external systems. Cre-
dentials may include a login usernameanda login password.
In the case of the system, it may store username, password,
and other user preferences. Such preferences include a users
phone number, their location, topic interests, address books,
search history, favorite locations, etc. User vault data may be
used to simplify and eliminate user inputs on the mobile
device when necessary by prompting or auto-filling
responses inside mobile widget inputs. These credentials may
be used for a user to identify himself or herself and allow
accessto his or her account in the system.

In addition, external credentials may be stored. These
might include usernames and passwords for external email
accounts, instant messaging systems, chat servers. These cre-
dentials may be associated with the user’s primary system

5

20

25

30

35

40

50

55

60

65

28

account. So, when the user needs to access an external email
through the system, they need not login again. Instead, the
system mayprovide the credentials to the external system to
grant access.

Search

There maypotentially be vast amounts of information in
the system cache and data stores 403 (FIG. 4(a)). A search
facility may be provided for users to access specific informa-
tion in the system. According to one embodiment, search
index is handled through an external pluggable search engine
such as Lucene. The pertinent text fields may be passed
through the indexerto build a searchable index of keywords.
When users enter the keywords, the associated document
results may be returned.

The search maybesplit between public versusprivate data
versus shared data. Public data includesdata that any user can
access. Private data includes data specific only to a particular
user. Example public data includes RSS feeds from a news
syndicate. An example of private data might be the user’s
bank records. A shared data poolrefers to data that is shared
amongst a set ofusers. Separate search indices may be created
for different public/private/shared pools.

The search module can also have plugins for external
search engines. This way, if there is content that a user wants
to access that doesn’t exist in the system, the external search
can be invokedto return results.

In addition, the system search results may be externalized
so that external search engines canfind data within the system
110. This is done by building adapters 417 to the external
search enginesto provide them with documentsto be indexed.
An example adapter might be a web page that is publicly
accessible on the website. This web page maylist the docu-
ments as hyperlinks to other documents that are to be indexed.
This way, search engines can use web “crawlers”to find this
page andtraverse the hyperlinks to the documentsthat are to
be indexed.

Session Manager
The session manager 406 (IG. 4(a@)) mayserve to provide

a state that follows the user between stateless modes. For

example, web browsers and the HTMLprotocolare typically
request-response based and may not provide inter-request
context to other requests. Clients can send someidentifying
information about the user. This might be in the form of some
unique server-generated identifier that gets sent as a browser
cookie. In one embodiment, this cookie saves the generated
identifier and sendsit back to the user between requeststo the
server. The server may look up the current state based on this
uniqueidentifier, thus the session state is maintained. Simi-
larly, a mobile client 141 can have some similar mechanism to
save the user’s current state as a unique identifier. This way,
the session can be kept across requests.

The server may generate unique session identifiers. One
type ofidentifier is a persistent identifier that may stay with
the user regardless of whether they have contacted the server
or not. The secondtypeis a transient identifier that exists only
for the lifetime of a login-logout event. Using the persistent
identifier, a user’s state can span across multiple devices. For
example, a userstarts a persistent session on the web. The user
then has to step away from the desktop. The user can continue
the session on a mobile device. This may be donebyrefer-
encing the samepersistent identifier. The server can associate
the same data because the sameidentifier is referenced.

Billing Server
The system may handlebilling integration with third party

vendors as well as custom internalbilling. The billing system

Booking, Exh. 1054, Page 88

Booking, Exh. 1054, Page 89

US 8,595,186 B1
29

414 (FIG. 4(@)) may include a database containingthe events
that are to be billed and another database including the cost
per event orseries of events.

Acatalog mayexist that contains an item to be sold and the
price per unit. This catalog maybe referenced by a widget as
appropriate (e.g. auserinterface to display a catalog of sports
gamesavailable for viewing). According to one embodiment,
an end-user who wishes to purchase an item makes the
request throughthe user interface. This request is transmitted
to the server. For example, the mobile client contains infor-
mation about the user (unique user ID as per “Unique ID
Generation” above). On the server, the user has registered
some information about billing details. For example, this
could be credit card information or the user’s mobile phone
account number(for charges to appear on their mobile phone
bill). A confirmation is presented to the user.

Atthis point, the system may makeanentry in the database
that indicates the user wishes to purchase n units of an item.
‘The purchaseis not finalized yet. Requests are then made to
the necessary systems to bill the user. This might include a
third party payment service such as PayPal or CyberSource.
Or, this might be an operator or an intermediary that handles
payment. These requests may occur through adapters to each
type of billing services. Once billing is confirmed bythe
billing service, the respective adapter 417 may receive the
request. It may then mark a particular item as having been
purchased. The widget can then accessthe item as desired.

Transcoding
Before the mobile client 141 (FIG. 1(4)) receives data, the

data can be further transformed to optimize for a particular
device. Example transformations including imagesize scal-
ing and format transformations. Another might include
transcoding HTML into simplified HTML for mobileclient
browser. The results of the transcoding can be further cached
so that subsequent requests to the same data from the same or
different mobile client can be fetched from cacherather than

recomputed. Another exampleis the transformation of video
and audio for mobile devices. The source format of video

might be AVI while the mobile version might require a 3GP
format. So, a transformation can occur. In this case, caching
can be done aheadoftime since the transformation takes a
noticeable amountoftime.

Video Capture and Transcoding
FIG. 16 describes a process, according to one embodiment,

by which video from a video sourceenters the system andgets
transcodedto the capabilities of various devices.

1. Receiver 1610 gets video feed from feed source 1620
(suchassatellite)

2. Video channel decoder 1630 decodesthe raw stream into
a standard video stream such as NTSC to be fed into

video capture card 1640.
3. Video capture card 1640 decodes video signals into

digital data.
4. Video encoder 1650 encodes and compressesthe digital

data into standard digital encoding format such as Win-
dows Media Video.

5. Compressed video is stored on a storage subsystem
1660.

6. When video is to be clipped, the user may access the
video and playback 1665. The user may be viewing
either the live stream or the user may be allowed to
rewind back in time or go forward up until the time ofthe
live stream.

7. The userclips the video with a video clipping tool 1670
by marking start and end points of the video.

8. The clipped video start/end pointsare stored on a storage
subsystem 1660 for further processing.

5

20

25

30

35

40

45

50

55

60

65

30

9. A video transformer 1680 takes the clips and transforms
them to desired output formats (such as Windows Media
Video, 3GPP, MPEG4, MPEG2, etc) that can be
accepted by mobile video players.

10. Pre-rendered video may besent to a cache 1690 so that
no further processing is required when video gets
accessed.

Mobile Text Transcoding
For certain types ofwidgets such as RSS feed viewers, each

article may often contain a link that allowsthe userto read the
actual source ofthearticle. This link may point to a web site
that might render well for desktop computers but not as well
for mobile devices. In these cases, the mobile client can run
the content through a transcoding proxy on the system first.
The transcoding proxy can simplify the page by applying
heuristics to strip out unnecessary formatting, ads, naviga-
tional elements, etc., reformat images (resize and recom-
press), paginate large pages, strip out scripting elements,
handle complex rendering elements such as forms and
frames, and handle cookies 3380.

A result of transcoding is shown in FIGS. 27(a) through
27(c).

HTMLTranscoding Server
For each page, the full HTML that a site outputs may be

transcoded to a simplified version that can render well on
mobile devices. One embodiment of such a transcoder is

described below.It is a regular-expression based system. One
embodimentof the process is illustrated in FIG. 17, which
includes a requestfor a page (1705, optional storage of cook-
ies (1710), a server fetch (1715), a rules application loop
(1720 and 1725), url rewriting (1730), caching of results
(1735), and outputting of results (1740). In the parsedstate,
content can befiltered. For example, objectionable material
can be filtered out. Imageslarger or smaller than a certain size
can be omitted.

Normalizer

With reference to FIGS. 1 and 4(a), the system 110 may
include a cache 403. The content in the data structures can be

normalizedinto a global formatthat gets stored in the system.
An example is RSS versus ATOM feeds: Both may be char-
acterized basically as representations of individualarticles.
Each feed may havea title and description; each article has a
title and summary, etc. The two different formats may be
parsed into data structures. The data structures may then be
converted into a common formatand stored in the system.

Another example is with sports data. The various content
sources may each havetheir own data formats for transmitting
game data. Sometimes, however, the elements of the same
game remain the same. The content may be parsed into data
structures. The data structures may then converted into a
common format and stored in the system.

Caching
The system 110 may include a cache 403. To implement the

cache,the data sources’ locations maybe specified by a URL
(uniform resource locator). Using the URL, the content can
be indexed. In one embodiment, an MD5 (messagedigest 5)
hash may be used which generates a 128-bit hash value (or
32-character hexadecimalstring). A hash is a one-way func-
tion that can be used to “fingerprint” a string. MD5 can be
used in a security context. However, an implementation can
use it as an index for a resource using the following elements:
(1) Perform an MD5 on the URLstring. This becomes the
index string. (2) Generate a filenamewith the indexstring. (3)
Store the contents of the data intothis file. (4) Then, take the
first n characters of the filename to generate a directory in
whichto store the file, as shown below.
URL:http://plusmo.com/blog
Index: f016f¢75785862248ed8bad4fb12de89

Directory: f0
Full path: f0/f01 6f¢75785862248ed8bad4fb12de89.dat

Booking, Exh. 1054, Page 89

Booking, Exh. 1054, Page 90

US 8,595,186 B1
31

The above example used n=2. The numberofcharacters to
use for the directory name depends on the numberoffiles in
a directory to ensure quick access in a typical UNIXfilesys-
tem. For example, if a system is to include 100000 data
sources and the maximum numberoffiles to be in a directory
to ensure speedy accessis 100, then n should be round_up(log
16(100000/100)) is 3.

In the unlikely event that there is a collision for the MD5
hash (same hash for two different URLs), we may append a
numeric counterat the end of the filenamepart of the path. In
the above example, if there is another URL that has a hash
fingerprint of“f01 6f¢75785862248ed8bad4fb1 2de89”, we’ ll
append “0” to the filename to form
“f01 6£¢75785862248ed8bad4fb12de89-0”. We'll continue

with “-1”, “-2”, etc for further collisions. To determine if we
have a collision, we mayalso store the URL aspart ofthe data
for thefile.

In another embodiment, we can utilize a relational database
to index the URLs. In such a scenario, we would create a
database table that could have twofields. Thefirst is for the

URL. The second is a unique numeric identifier associated
with that URL. When a URLis requested, we look up in the
database to determine the unique identifier associated with
that URL. That unique identifier can form the basis of a
filename that we can use to store the contents into. Alterna-

tively, we can also choose to store the data into the database
using the BLOB(binary large object) data type.

Logging Module
According to one embodiment, the logging module 415

(FIG. 4(a)) provides a fast method for other subsystems to
write messages such as error message and access logs. It uses
a buffered write mechanism where logging requests are buff-
ered into fast memory. When the time is appropriate (for
example, when the buffer fills up or the system is idle), the
logs may be written to disk.
Data Synchronization

Synchronization may be usedto ensure that the data is the
same between the serverandtheclient, i.e. that a first version
or content anda secondversion ofcontentare the same ormay
be updated. Becausethe client does not necessarily have the
same storage space as on the server, the client may receive
smaller chunks of information. Additional information may
be retrieved as requested. In addition, the user might request
bandwidth metering, which limits the amountofdata thatis
transferred (to avoid costly monthly billing).

According to one embodiment, the server synchronization
engine 408 (FIG. 4(a)) may operate as follows (see FIG. 12):
The server maintainsa state ofall the data for items of interest

(1200) in storage. For example, the server state may contain
data about a user’s subscription to widgets, the widget con-
tents (like RSS feeds), other information known about a user
or widget applications, etc. The items of data may have
unique identifiers associated with them as well as a timestamp
representing when the data was modified or updated. The
unique identifiers increment such that given an ID “‘n”, the
next ID may be “n+1”.

On the mobileclient 141, the client may compare the copy
ofthe data that it has with whatthe server 110 has. This can be

done through the timestamp. At block 1201, the client may
then request synchronization with the server. The client’s
timestampandlast seen identifier is transmitted to the server
(1202). If the timestampis different, we may know that the
data has been modified and can begin the synchronization
process. The next element is to determine what data was
modified. This may be done through the unique identifier that
is marked for each item ofdata. The comparison may be done
against the uniqueidentifier that is transmitted with the times-

20

25

30

35

40

45

50

55

60

65

32

tamp (1203). A server identifier that is greater in value than
the client identifier may indicate that server data was modified
(1204). This may indicate that the server is to send the new
data (from the last seen client ID on until the last server ID) to
the client. A client identifier value that is greater than the
identifier on the server may indicate that the client data was
modified (1205). In this case, the client sends the new data
from the last seen serverID to thelast client ID to the server.

Timestamps may be updated appropriately.

If data was modified or removed, the following can occur:
(1) The old data entry may be removed, and/or(2), in the case
ofmodified or updated data, a new data entry may be created
with a new identifier. This new data entry may contain the
modified data. The old data entry maynot exist any longer and
its unique identifier might not re-used.

Conflict resolution may take place when both the server
and the client have modified data (1206). The system will
check for registered conflict resolvers (1207). If none are
found, default handlers may be in place to resolve conflicts
(1208). These default handlers can assume several modes.
The mode used may depend on user preferences, which may
be fetched (1209). In a first mode the server changes take
precedence over client changes (1210). A second mode
makes client changes take precedence over server changes
(1211). A third modeis that the data is merged by appending
data entries from the server and client together (and maybe
renumbering the identifiers to be sequential). As mentioned,
these behaviors may be configured by the user. Sometimes,
however, this is not desired by widget developers. Widgets
might wantto define their own policies regarding data conflict
resolution. In such cases, there may be a registration module
where widgets can register their own conflict resolution mod-
ules with the system. Then, when the widget data is to be
synchronized, this module may get invoked, wherebya reg-
istered resolver is found (1215), the resolveris applied to the
data type (1216), and the resolved entries are sent (1217).

Data may be compressed between the server and client.
Compression may occur in a compression module 3360.
Example compression formats include but are not limited to
gzip and deflate (which are standard web compression for-
mats). In addition, data can be encrypted for additional secu-
rity.

Data synchronization may be used to synchronize any con-
tent on the device, including content acquisition settings,
which may include how often to retrieve content and what
type of content to retrieve. Reconciliation of conflicts may
take place according to the preferences of a user.

Selective Incremental Resource Loading

In one embodiment, the mobile client can download and
cache important data as well as simplified meta data about an
item. Someofthe resources that take a long time to download
can be downloadedat a later time. For example, see FIGS.
26(g) and 26(/). FIG. 26(g) shows an article where the text
has already been downloaded and cached. The imageis not
downloaded yet because it might take too long to download
initially and the image might not be importantforthearticle.
Users can configure when to download the image. In this
example, the user has configured to download on demand.
FIG. 26(g) shows a “clock” icon in place of the image
to indicate that the imageis currently being loaded. A “Load-
ing...” text in the upperright commer of Figure a46 tells the
user that elements on the page are being downloaded. When
complete, the view looks like FIG. 26(/).

Booking, Exh. 1054, Page 90

Booking, Exh. 1054, Page 91

US 8,595,186 B1
33

Widget Data Sources
For widgets that require data sources, the system may

provide a mechanism to synchronize the data and handle
transcodingfor the client. This mechanism may perform con-
tent fetching and aggregation.

Several data sources may be encountered by the system.
Examples include RSSfeeds, databases, web services, email,
calendaring systems, web pages, IRC or IM chat sessions,
application programmable interfaces, etc. Each type of input
maybehandled by various adapters. For example, with sports
commentary data, an operator could besitting at a terminal,
entering comments for a particular sports play. The terminal
could host a tool to capture user input and convert into an
XMLfile for transmission to the system. Anothertype ofdata
could be an RSS feed that is hosted on a site. The system
might have an adapterthat fetches updates from that RSS feed
to be updated on the system.

The system mayfilter the data into individual types. The
raw data may then enter the system and be stored in either a
permanentor temporary store. For example, RSS feeds may
be stored into permanent storage, whereas chat session data
maybe stored temporarily for forwarding. This may be the
role of the content adapter 417.

Backoff Protocol

Tt may be desirable to ensure server availability. Many
clients polling a server for updates may cause many requests
to comein at the same time, causing server load to hit a
ceiling. This may affect the quality of service for all clients
that connect to the server. One solution is to implement a
backoff protocol. FIG. 14 illustrates one embodimentof the
backoff protocol, described below.

1. Clients connect to the server (1400).
2. The server determinesits current load (1401) and checks

to see if the load exceeds a threshold (1402).
3. If server load exceeds a threshold, it starts issuing a

control commandto future clients that connect, com-
manding them to decrease their polling interval (1403).

4. If server load still exceeds a threshold (1402) after a
certain amountoftime, the server issues a control com-
mandto further reducethe client polling interval (1403).
This may continue until the server is below a load thresh-
old.

In the meantime, clients 141 may receive the control com-
mand and adjust their polling interval accordingly. Overtime,
the mobile clients 141 may gradually shorten their polling
interval until they reach the minimum polling interval or until
the server issues another control commandto increase the

polling interval (1404).
Widget Browsing and Management

Web and Mobile Front-End

FIGS. 5(a) through 5(¢) show exemplary elements for a
userto register from the Web andcreate userprofiles accord-
ing to one embodiment. A user mayget started with mobile
widgets by registering on a website provided by the widget
service server system 110. The user may use any ordinary
webbrowsersuch as Microsoft Internet ExplorerorFirefox to
connect to the widget service web front end. As in FIG.5(a),
the user mayclick on a “Get Started” control 501. The widget
service server system may recognize the user’s Internet Pro-
tocol (IP) address and automatically look up the user’s physi-
cal location. FIG. 5(6) shows an exemplary display for the
user to select his preferences according to one embodiment.
Onthis screen, the user may changethe location 511 and set
up interests such as entertainment 512, local 513, fun 514,
sports 515, technology 516, and news 517. Though not
shown, several other detailed choices may be provided to
further personalize the users’ widget experience. Based on

20

25

30

35

40

45

50

55

60

65

34

the user’s selections in FIG. 5(4) the system may recommend
an initial set of mobile widgets for the user. These may be
location specific and based on his preferences. As an example,
a user from Paris, France interested in sports and entertain-
ment may get different widgets from another user who con-
nects from Atlanta, Ga. andis interested in fashion and celeb-

rity gossip. The system may otherwise cause selected widgets
to be transmitted to a mobile device (or previewed by a user)
based on an associated userprofile.

FIG. 5(c) shows an exemplary display of the system’s
initial recommendation ofwidgets according to one embodi-
ment. The user may choose to remove some of the system’s
widget recommendations 521 or add other widgets. The user
mayalso be provided with a convenient preview ofthe widget
522 in a mobile phone emulator 523, which mayinclude live
data from the data sources used by the mobile widget. When
the user is satisfied with his widget choices, he may then
proceedby clicking on the “Add to my phone”control 524 or
a similarly named control.

FIG. 5(d@) shows an exemplary registration screen 530
according to one embodiment. Theregistration screen may
request the user’s personal information and include fields
such as email address 531, password 532, telephone number
533, and telephone provider 534. Using these details, a new
personal account maybe created forthe user. Then an email or
SMSmessage maybesent to the user’s mobile phonewith an
embeddedlink facilitating installation of the widget service
client software on his phone.

When the user receives and reads the message on his
mobile device, he may select the embedded link to install
widget service client software on the device. The widget
service client software maybeinstalled on the mobile device,
and on initial launch, the software may synchronize with the
widget service website and downloadall the mobile widgets
that the user has chosen. In certain embodiments, the user’s
registration can be conductedon a traditional home computer.
However, in some embodiments the registration can be con-
ducted on a mobile device.

Web Registration
FIG. 10 depicts the elements taken in one embodiment of

user registration (1001-1006). The registration system may
require a user to enter data (box 1003) such as an email
address (which mayserve as a unique user name), a password
to associate with the account, and a duplicate password to
confirm that the password wasentered correctly. The system
may validate the username and password (box 1005).

In addition, the registration system may prompt for a
CAPTCHA(CompletelyAutomated Public Turingtestto tell
Computers and Humans Apart). This may be a raster image
with some garbled text displayed such that humans can read
the text while computers have a difficult time readingthe text.
The server may generate the CAPTCHA(box 1001),display
the CAPTCHA(box 1002), and validate that the user identi-
fied the garbled text correctly (box 1004) and/orthat the user
entered valid fields (1005). This test is often used to keep
automated programs from registering dummyusers.

Onceregistration is successful (box 1006), the user may be
prompted for a phone numberor additional email address to
send installation instructions to. In the phone numbercase,
the system may send an SMScontaining a downloadlink for
users to download the mobile client. The download maypro-
ceed whenthe userselects a link in the message that appears
on their mobile device. The mobile client can optionally be
embedded with a unique identifier for user identification. This
way, the mobile client can download content from the user’s
account without having to enter login information.

Booking, Exh. 1054, Page 91

Booking, Exh. 1054, Page 92

US 8,595,186 B1
35

Unique ID Generation
Theability to track individual users may be helpful. Some-

times, it is desirable to be able to track unique users as they
access the server system from various mobile devices. Ide-
ally, a device may transmit its own unique identifier to the
system. Such a system exists for some mobile devices. One
such tracking mechanism is called an MSISDN (mobile sub-
scriber ISDN number). There could be a uniqueidentifier that
is embeddedon the device or the user’s phone numberofthe
device. However, such tracking information is sometimes
filtered by carriers. Therefore, the system may assign unique
identifiers to the users when theyfirst initialize the applica-
tion.

Online Mobile Widget Gallery
FIG.6(qa)illustrates a gallery 600 of mobile widgets 601

according to one embodiment. Users who visit the web or
mobile front end may browse throughthe gallery and select
the ones they want on their mobile device. The gallery 600
may offer categories, tags, and groupings by location and
preferences. Users may thereby browse and select mobile
widgets 601 to install on their mobile device. A widget-
execution engine may be configured to request a download
from the gallery. The user may also be provided with a pre-
view 605 of the mobile experience using a mobile phone
emulator 606.

The gallery mayalso be searchable. FIG.6(4) illustrates an
exemplary search result display 650 according to one
embodiment. Users mayselect mobile widgets 651 by search-
ing for information such as “New York Giants” or “Tiger
Woods”. The system maysearch throughall available mobile
widgets in the system and provideresults. In addition, the user
may be provided with links 652 to results generated from
popular external search engines such as Google Search or
Yahoo Search. As an example, a mobile widget may be gen-
erated for Google search results on “New York Giants”. Then
the user may be able to add this widget to his mobile device by
selecting it. Additionally, search results may include external
website results which match “New York Giants”. If the user

selects these results, anew mobile widget may be created with
the selected website as the data source.

Users may gather all the widgets they need by browsing or
searching through thegallery, and all their selections may be
saved in the session. Whenready, a user mayclick the “Add to
my phone”control 653 to add the selected mobile widgets to
his account. At this pointall these widgets may be addedto his
account and becomeavailable on the mobile device the next

time the device performs a synchronization session (see sec-
tion “Syne Engine”) with the server. If the user is not regis-
tered, the user may be presented with theregistration element
previously shown in FIG.5(d) to create an account, and may
further receive an SMSor email on his mobile deviceto install

the widget service client for the first time.
A server may provide a gallery of software widget appli-

cations. Users of mobile computing devices may browse the
gallery of widget applications from the mobile devices. The
server may receive requests from the mobile devices for
downloading widgets and the server may respondelectroni-
cally sending a widget application to be downloaded and
causing it to be installed. The mobile device itself may pro-
vide a gallery that provides such functionality, where the
objects and informationin the gallery may in wholeor in part
be downloaded in the absence of a request by a user. Thus, a
mobile device gallery may download widget information, the
user may subsequently (e.g., a week later) review the widget
information and may mark a widget for download, and the
mobile device gallery may subsequently (e.g. at the next
network connection or ata time of cheaper data or bandwidth

20

25

30

35

40

45

50

55

60

65

36

costs) download and/orinstall that widget. Both a device-
based andserver-based gallery may useuserprofiles to deter-
mine which widgetsto install or recommend.

Managing Mobile Widgets from the Web
The web front end may also provide an interface for the

user to manage his mobile widgets from the web. FIG. 7(a)
shows an exemplary mobile widget managementdisplay 700
wherethe user may be provided with all his currently active
widgets. Here the user maydelete a widget by simply clicking
on the “X” 701 on a widget icon 702. Then the widget may be
removed from his account. He mayalso add any widget from
the gallery 600 (FIG. 6(a)) to his account. All changes may
appear on the mobile device after the next synchronization
session. Further, as in FIG. 7(5), the user may previewall his
mobile widgets on the web. Though this exemplary preview
screen 750 displays the widgets in a horizontal scroller 751,
note that they mayalso be displayedjust as they would appear
on the mobile client device. For example, a mobile preview
screen 752 mayreplicate how the widgets will actually appear
on the mobile device. The mobile preview screen 752 may
have the exact screen dimensions, resolutions and appearance
as the user’s specific mobile device.

In some embodiments, users may also managetheir wid-
gets directly from the mobile device. Many users worldwide
mayneverhave access to a desktop computer. Such users may
perform all actions including registration, login, browse the
gallery, search and add mobile widgets, remove mobile wid-
gets, preview the widgets,andthelike right from their mobile
device from the embedded mobile browser and. from the

widget service client software installed on the device.
Mobile Widget Recommendations Based on Collaborative

Filtering
Since many mobile widgets may be added to the widget

service’s mobile widget repository, it is desirable to makeit
easy for users to pick and choose the widgets they maylike.
According to one embodiment, a built-in recommendation
system uses users’ preferences, such as interests, reading
patterns, and location, and recommendsother mobile widgets
that the user may be interested in. This may be achieved
through integration with a standard available collaborative
filtering system such as Taste, CoFI, or Consensus.

According to one embodiment, the recommendation sys-
tem may suggest other widgets that a user may like. As an
example, consider a user from London in United Kingdom.If
she has widgets such as Tube Delays, Local TV guide, and
BBC news,based on the interests of other users in the same
location with the same widgets, the recommendation system
may suggest a set of widgets for her to add. The recommen-
dations may be made both in the web front end and in the
widget service client software.

Widget Management
In one embodiment, users can manage their widgets on the

mobile client. Users can reorder widgets and remove widgets
from their mobile client without needing server connectivity.
These requests may be queued on the client and rendered
appropriately to the user. When the user connects back to the
server, these queued requests may be transmitted to the server
for the server to process and reconfigure the server-side image
of the widget.

In another embodiment, the mobile client 141 may have an
offline gallery of applications that the user can browse to add
additional widgets. This gallery may be periodically down-
loadedbythe server against the server. Users can browsethis
gallery to add new widgets without connecting to the server.
Then, when the widget is to be added, a server connection is
created and the widget is downloaded and subsequently
installed.

Booking, Exh. 1054, Page 92

Booking, Exh. 1054, Page 93

US 8,595,186 B1
37

The mobile device or mobile client 141 may contain a
widget-adding component which may be designed to view
and/or obtain widgetsfortesting or installation on the device.
The widget-adding component mayaccessthe server 110 or
the offline gallery.

In one embodiment,installation of new widgets occurs as
follows: A user adds the widgetto their account. This may be
doneeither through web/WAPsite or through another mecha-
nism that has a real-time connection to the system. The sys-
tem can perform the request as follows: First, the appropriate
widget may be located. Then, an entry may be created in the
database that marks the widgetas “installed” for a user. The
widget may then be transmitted to the mobile client whenthe
client 141 connects to the server. Widgets may haveserver-
side andclient-side portions of each package. The client-side
portion is transmitted to the client 141. The client 141 accepts
the package, which is then unpackedbythe client. The widget
maythen be stored in the widget storage with meta informa-
tion describing the widget. ‘hen, as the client runs, it may
pick up the widget for display when appropriate.

The mobileclient may include a widget discovery manager
component. The discovery manager may contain a pointer or
other reference to an online gallery of widgets, or other
repository or network location of data. The discovery man-
ager may, from timeto time, download widgets, information,
or other references to or descriptions about widgets, from the
repository. The discovery manager maystore the widgets,
information, or other references on the mobile device for
offline access and availability to the user. Such widgets or
information maybe displayed or previewedfor the user. The
discovery manager may perform such a download in the
absence ofa request by auser, and the manager may preempt,
interrupt, or otherwise notify the user of downloaded (or
to-be-downloaded) content, including widgets and refer-
ences. The discovery manager may provide for any down-
loaded widgetsto be installed, either automatically or pursu-
ant to authorization by a user. The discovery manager may
further provide for deletion, uninstallation, or reset/reinstal-
lation ofwidgets or information, either automatically orat the
request of a user or transmission, of preferences or other
information to a server (and thus perhaps changingthe types
of information to be downloaded in the future). Installation
may include placing a widget(or other data) in a memory or
store of a device such that the widget may be accessed, dis-
played, selected, or terminated repeatedly Widget discovery
or download may make use of user profiles associated with
the user or mobile device.

The discovery manager may generally access any network
or interactive resource as a location for widgets, including an
online gallery. The discovery manager may generally search
or crawl a network resource, may browse a collection of
resources, or may visit a URL. The gallery may display wid-
gets, or crawl for widgets, based on a query by the user. The
query may be handled by the discovery manageror the net-
workresource or gallery. Query results may be presented to
the user on a display. The discovery manager, or another
component, mayalso personalize widgets, such as by causing
them (or creating them) to display specific data representative
ofa user, user attribute, or user interest or content.

Widget Sharing
In one embodiment, the widget meta-data may be stored on

the server 110 as a database entry. Widgets and widget data
can be forwardedto others regardless of the accepting party’s
mobile operator or device. FIG. 32 depicts one embodiment
of this process. In this embodiment, the originating party
makesa request to send a widgetto anotherparty (3205). This
can be by specifying the widget and the other party’s identi-

20

25

30

35

40

45

50

55

60

65

38

fier (3210). The identifier could be an email address, phone
number, or any other unique property of the user’s account. A
connection may then be madeto the server, and the requestis
transmitted (3215). The server accepts the request and then
makes an entry in the database in the other party’s account
with the widget and a message from the originator (e.g.
“Hello friend, try this widget.”) (3220). Then, when the other
party connects to the server, they may receive this message
along with an option to install the widget (3225-3240).
Installing the widget may includethe client connecting to the
server (3230), the server checking a pending add queue and
add list (3235), transmitting the requestto the user (3240). If
the user accepts the installation (3245), the widget may be
installed as described above (3250). Otherwise, if the user
refuses installation, the widget is removed from the database
queue.

Mobile Registration—All Handset Experience
Users can also download the mobile client directly without

havingto register on the website first. In this case, the system
can create an accountfor the user from the mobile device.

FIG.20 illustrates one embodimentof the post-download
user interface. According to this embodiment, the mobile
device connects to the system after download. A login wel-
come screen may appear (FIG. 20(a)). Ifthe user has already
registered on the website, he may enter his login information
in a form field 2010. On successful login, FIG. 20(6) may
appear.

Otherwise, users can select to create a new account. They
enter an email address in a form field 2020 (FIG. 20(c)). The
email address is checked to ensure uniqueness. Ifnot unique,
a message 2030 (FIG. 20(d)) may appear and a prompt 2040
to enter another email address appears. If the entered emailis
available (unique in the system), the user can optionally have
the system generate a password (to avoid more typing on a
mobile device) or to enter the passwordin a form field 2050
(FIG. 20(e)).

Users can then select some categories 2060 that contain
predefined widgets for the user (FIG. 20(/)). This may be a
quick wayto get started on the mobile device without having
to browseor search for widgets to add.

Further personalization of the user’s account is also pos-
sible. In FIG. 20(g), the user is prompted for their location.
Here, the user’s location may be approximated by determin-
ing the connecting IP (internet protocol) address from which
the mobile device is connecting from. Based on this address,
the system can map an IP address to a physical real world
address via a lookup table of IP addresses to physical
addresses. The system may present the computed location
2070. If the automated determination is incorrect, users can
enter their location on the form field 2080.

On successful registration, a finish screen may appear
(FIG. 20(A)).

Provisioning from Website
In some embodiments, unique provisioning allows track-

ing of users so that users do not haveto re-enter login infor-
mation from the client 141. It may beeasier for users to enter
their user information on aPC accessing a website rather than
entering the information from the device. An exemplary
method of provisioning from a website according to one
embodiment is shown in FIG. 11 and described below:

1. User logs on to a website (1100).
2. Userenters registration information such as real name,

login name, password, phone number, etc. (1101).
3. Registration information gets validated and saved

(1102).
4. A unique key is generated for the user (1102).

Booking, Exh. 1054, Page 93

Booking, Exh. 1054, Page 94

US 8,595,186 B1
39

5. A download packageis created with the embedded key
(1103).

6. The user downloads this package onto their device
(1104).

7, Whenthe application is launched (1105), a response key
is generated on the client (1106). The response key may
be hashed against some unique identifier on the device
(if possible). This response key along with the key
embeddedin the package gets sent to the server (1107).

8. The server responds with user account information if
valid.

9. Response key gets saved on the device, locking that
device to the account.

a. If the application is copied to another device, the
application will not work because it is locked to the
previous device.

b. User can reset the locking from the website to allow
installation on another device. Previously working
application becomes locked on the old device.

Provisioning on Mobile
According to another embodiment, provisioning may

occur from a mobile device as follows:

1. Mobile user accesses download page. Optional
MSISDN (unique identifier for a mobile user) is trans-
mitted to the server (1108).

2. Userenters registration information (ifrequired) (1109).
MSISDNis associated with the user (if there was one)
(1110).

3. Elements 3-9 above in “Provisioning from Website”
apply.

Widget Creation
Mobile Widget Creation
A widget or application archive can contain code,

resources, data, and meta information. Code includes the
application instructions to execute. Resources include media
such as images, sounds,etc. Data is bundled data. Meta infor-
mation describes the application. FIG. 41 is a flowchart
depicting the elements performed by the widget service
according to one embodiment, which are:

1. The developer creates a widget using the wizard or with
APIs (4105)

2. The widget is uploadedto the server(or fetched from the
server) (4110).

3. An analyzer unpacksthe archive and accesses and ana-
lyzes its content (4115).
a. Content may include multiple sections of declaratory

or markup code(orother code), other sections ofcode
(such as a scripting language, JavaScript or C or Perl
or a proprietary or hybrid language), and other
resources such as video, text, and/or images.

b. Compiles someorall of the code into executable byte
code, checking for valid syntax and resource usage.

c. Validates images and transforms as appropriate for
different device capabilities.

d. Validates application size for limits on various
devices.

4. Oncevalidated, contents are extracted and stored into an
application repository 4120. This repository 4120 is
indexed so that applications are searchable by various
attributes (4125). Resources are also indexed so that
resources are shareable across applications if desired.
This can becomepublic libraries of code that get pulled
in by other applications as desired. The repository 4120
contains application descriptors that point to the
resources required.It also has versioning ofapplications
wherecorrect versions get pulled out.

20

25

30

35

40

45

50

55

60

65

40

5. A request comesin for an application (4130). The cache
4135is first consulted (4140). If not in cache 4135 yet,
the assembler builds the application archive given the
version and required resources (4140).

6. The script compiler and aggregator combines the
resources and code into an archive (4145).

7. The optimizer 4150 makes a small package ofat least
someof the resources for delivery. This includes com-
pression, unreferenced resource elimination, etc.

. Results are cached.

9. Delivers to the user using a download method (4155),
whereafter the package may beinstalled on the mobile
device.

The server may transmit a given widget to a plurality of
mobile devices ofdifferent types and different APIs, and may
change or not change the widget or the package as necessary
to for execution of the widget on the device.

Web-Based Tool for Extracting Data Sourced from Web
Pages

The system mayinclude a tool that can beinstalled on an
end-user’s web browser that allows for extracting specific
areas from a web page and creating a mobile widget using that
information as a widget data source. One embodimentofthis
tool is a plugin for browsers such as Microsoft’s Internet
Explorer product or a Mozilla Organization Firefox applica-
tion. According to one embodiment, the tool installs as a
plugin that users interact with (see FIG. 42). As a plugin, the
tool accesses various browser APIs to determinethe pagethat
the user is currently viewing, the elements on the page,etc.

Because this tool is able to access information about the

page, it can provide features that allow users to select various
portionsofa page to represent a source ofdatathat the server
can consumeand hence allow the mobile clients to download.

FIG.43 displays one embodimentofthis functionality. In this
figure, users use their pointing device (e.g. computer mouse)
to highlight areas of a web page, as shownat 4310.Afloating
window 4320 may display the various actions, commands,
and status that users can useto refine the data selection. FIG.

44 displays the completed data selection 4410 whosestarting
point was from FIG.43. In this example, the user has omitted
the surrounding extraneous images and text and chose to
obtain only theentries for “Top Stories”. The floating window
4420 maydisplay the various actions that the user took to
filter the contentin order to obtain the refined data.

FIG. 45 displays an options panel 4510 where users can
further configure the tool commands according to one
embodiment. Ontheright ofthe panel is a section 4520 for the
user to select how to apply the changesthat the user has made.
The panel may expose configuration information to filter out
websites to apply the changes to. Thesefilters may be speci-
fied using standard regular expressions (regex). So, in the
example above, suppose there are two web pagesthat follow
the same pagelayout and the user wants to apply the changes
to both ofthe pages.To do this, the user may specify the URLs
that the changes apply to in this configuration panel.

The various actions as summarized in the floating window
4420 maybethen sent to the server once the user has com-
pleted the user interface portion of the data definition. When
the widget 142 on the mobile browser needs data from this
data source, the server 110 mayfirst fetch the web pagejustas
an end-user would do on a web browser. The server 110 may
then take the commandsand apply them in the same manner
as the user did using the tool. Because the dataset is now ina
simpler format, the server may take the resulting data and
format it for consumption by the widget 142.

Alternatively, this functionality can be applied on the
user’s web browser without sendingto the server. This case is

ioe)

Booking, Exh. 1054, Page 94

Booking, Exh. 1054, Page 95

US 8,595,186 B1
41

useful for when users want to formata particular website to
the waythat they want the web site to appear. For example,
FIG. 42 mightbe too cluttered for a user’s liking. Instead, the
user can apply thetool to render the view as FIG. 44 such that
whenever the user visits this web site, FIG. 44 displays
instead of FIG. 42.

Some embodiments may access the Document Object
Model (DOM) elements on a web page. These DOM ele-
ments may be manipulatedto trim, add, and removeentries on
the page. The web browser may take care of rendering the
result to the user. The tool manipulates the data through the
DOMelements. The tool may also trap information about
mouse cursor positions, key presses, etc so that users can
interact with the tool. Ifthe tool has access to the elements on

the page that the user is viewing, this tool can also contain
other functionality, such as advertisementfilters, search term
highlighters, hide animations, etc. FIGS. 43, 44, and 45 show
other example functions for which the tool can be in addition
to web datafiltering.

Mobile Widget API for Building Custom Widgets
Publishers may also create mobile widgets programmati-

cally. A framework for generating mobile wizards may be
provided so that developers may create different types of
mobile widgets that are not supported by the wizards such as
those depicted in FIGS. 37 and 38.

OPMLImport from RSS Readers
Manywebusers may have accounts on several RSSreader,

portals and other aggregator sites such as My Yahoo,
Bloglines or Google Reader. The web front end mayoffer a
process for a user who has an account on one of those web
sites to import their preferences into the widget service web-
site. Several methods of import may be supported as depicted
in FIG. 8(a). In one embodiment, a user mayenter his login
information in an import field 801 andselect a control for an
external reader suite such as Yahoo 802, Google 803, or
Bloglines 804. A second exemplary methodis for the user to
provide a list ofhis subscriptions via OPML (Outline Proces-
sor Markup Language), a standard XML formatfor outlines.

There are many possible methods for importing an OPML
file to the web front end. For example, the user may paste the
OPMLfile, uploadit, or provide a web URLtothefile. In one
embodiment, the user may select a control labeled Import
805, Paste 806, Upload 807, or Enter URL 808. The system
may parse the OPMLfile and add equivalent mobile widgets
to the user’s widget service account whenheselects an “OK”
control 809.

As an example, if the user had a Bloglines account where
he had CNN News, CNET News and BBC Newsas subscrip-
tions, the widget service server may searchfor similar mobile
widgets in the widget service gallery and addit to the user’s
widget service account. If a particular data source is not
available as a mobile widget on the widget service website, a
new mobile widget may be created with that specific data
source and then addedto the system.

Bookmarklet Tool to Add Mobile Widgets while Browsing
the Web

Bookmarklets may include lengths of code, such as Java-
Script, that users may add to their browser bookmarks. This
code may perform someaction, either directly or by execut-
ing other code which performsan action. As an example, the
system may containa series ofbookmarkletsto help users add
RSSfeeds as data sources into various widgets. The user may
visit a site containing an RSS feed to add. The user may then
execute a bookmarklet which instructs the widget server to
add the feed as a widget. Bookmarklets may be saved and

20

25

30

35

40

45

50

55

60

65

42

used as normal bookmarks. When used as such, they are
simple “one-click” tools which add functionality to the
browser.

FIG. 8(6) shows an exemplary display 850 for users to
obtain the widget service mobile widget bookmarklet and
install it on popular web browsers such as Microsoft Internet
Exploreror Firefox. Users that have the bookmarklet may be
able to gather mobile widgets to their mobile device while
browsing the web from their desktop. The bookmarklet may
appear in the web browser as an “Add to Widget Service”
bookmarklink.

As an example, a user with the bookmarklet installed,
visiting the web site www.about.com, may simply click on a
bookmarklet link while the web browser is pointed to
www.about.com. The bookmarklet may then add a mobile
widget that represents this selected web site to the user’s
account on the widget service website. If a widget does not
exist, a new mobile widget may be created for the selected
web site. Note that even in this case, if the user does not have
a widget service account, he may be presented with the ele-
ments to register and get the widget service software on his
mobile device. After he downloads and installs the widget
service software client on his mobile device, he may then able
to usethe specific widgets added by him via the bookmarklet
on his mobile device.

In one embodiment, bookmarklets work as follows: The
bookmarklet may contain JavaScript code that may be saved
in the user’s web browser bookmarks entry. When the user
selects the bookmark to execute while the user is viewing a
web page, the script may run. Thescript may get the website
URLthat the user is currently viewing. It then passes this
URLto the server 110. The server 110 mayreceive this URL.
Tt may then process the URL by grabbing the page that the
user was viewing. From that, it may collect information about
the page to be referenced and may even create a new mobile
widget ifone doesn’t already existfor that page. Once the data
is in the system, the user may proceed to browsing to other
sites with his browser. This mobile widget maybe available in
the user’s account while using the widget client on his mobile
device.

Adding a Mobile Widget from an Affiliate Web Site
FIG. 9(a) depicts an exemplary website “The Raw Feed”.

The publisher ofthis website has generated a blog control 901
and has displayed it prominently on his web site. The ele-
ments for generating the blog control are described below in
“Creating a Blog widget” and depicted in FIG. 38. A website
visitor who visits the “Raw Feed” web site mayclick on this
blog control to obtain the “Raw Feed” mobile widget.

According to one embodiment, when the visitor clicks on
this control, he mayberedirected to preview pageofthat blog
widget (see FIG. 9(5)), where the user can see a live preview
ofthe blog widget in various mobile phone emulators 911. In
this exemplary preview, users may be able to experience the
mobile widget 912 right on the computer. The emulator 911
may display the widget in several popular devices from ven-
dors such as Sony Ericsson, Motorola, Nokia, and Black-
Berry. Users may beable to use the emulator controls 913 to
view a simulated experience of the Raw feed as a picture
slideshow. Oncethe user decides that he wants the widget on
his mobile device, he may register and add this mobile widget
to his phone.If the user is registered on the widget service
server system, he may login at this element. If he is not
registered, he may be asked to register first with a form as
depicted by the exemplary form in FIG.9(c). Ifhe is already
registered and logged in, he may havethe option of directly
adding the mobile widget to his phone by clicking the “Add”
control 914. Text may be presentedtotheuser, e.g., “Click on

Booking, Exh. 1054, Page 95

Booking, Exh. 1054, Page 96

US 8,595,186 B1
43

the ‘add’ control to add the blog to yourlist of mobile widget
feeds. The next time you synchronize, this blog will appear on
your mobile phone!” or similar. Additional text may say,
“Bloggers, you may instantly mobilize your blog into a cool
mobile slideshow.. . Click here to send to someone’s mobile

phone!”or similar.
In one embodiment, if the user has created an accountfor

the very first time, and registered for the mobile widgetser-
vice this way, the user may get an email or SMS message on
his mobile deviceto install the widget serviceclient software,
and, once installed, this mobile widget may then be down-
loaded onto his mobile client. Ifhe already has an account, he
may automatically receive the widget on the next synchroni-
zation session with the server system. FIG. 9(d) shows a view
of an exemplary user account with the widget service client
software running on a Blackberry device 931, where the
exemplary “Raw Feed” widget is downloaded and displayed
as an icon 932.

‘Thus, it is possible for web users to directly add mobile
widgets from publishers’ websites as they browsetheir favor-
ite sites on the Internet. Note that while this example
describes a use case from a web log publisher, similar ele-
ments may be used by any content publisher including web
portals, aggregators, web services, web video sites, and the
like.

Metrics and Analytics
Upload/Download Metrics
The client and server may maintain countersfor data usage.

This data usage may be usedto limit the amount of content a
user is allowed to send and receive. This is helpful when auser
wishesto limit their bandwidth usage to save on mobile data
costs, for example. These metrics are also useful in collecting
usage information. This information may in turn be used to
optimize server performanceby allocating more resources for
certain types of content that requires more bandwidth.

The user interface may contain configuration parameters
that end-users can specify to limit their bandwidth usage.
When the server determines that the client has received the

limit on the amountof information, it may stop sending data
to the client. Similarly, the client may also store size limits
locally so that ifit recetves more data than the threshold set on
the device, it can stop receiving more data. This limit may be
parameterizedto reset at certain times(e.g. once a monthafter
a billing period).

Analytics and Measuring Usage
Information ofwidget usage by end-users may be gathered

for analytics, learning user behavior and for recommending
other mobile widgets based on a user’s tastes. Here we
describe the kinds of information gathered by the system and
howthe information is gathered by the analysis subsystem.
The UniqueID method described earlier allows uniquely
identifying a specific user. Since widget service client soft-
ware 141 (FIG. 1(5)) enables mobile widget usage in an
offline mode even while not connectingto the server, such as
on an airplane or whenthere is no wireless connectivity,it is
desirable to gather analytics even when the users are not
connected. Thus, each time the application is used by an
end-user to view a mobile widget, the client may gather
information on, for example, when the application was
launched, which widgets were used by the user, and for how
long the user stayed on each widget. This data may be saved
locally on the mobile device 140 and then postedto the server
110 during synchronization.

The server 110 can gather and allow processing of this
information to learn both macrolevel patterns and individual
patterns using standard businessintelligence software such as
Cognos or BRIO. Examples of macro level usage patterns

20

25

30

35

40

45

50

55

60

65

44

include being able to answer questions such as: “what are the
reading patterns andinterests ofmale users ages 18-25 in the
Continental United States?” or “How popular is the weather
widget during winter in Canada?”. Examples of individual
patterns would be “Whoareall the active subscribers to the
NFL and College Football mobile Widgets?”. The system 110
may be able to perform various kinds ofanalytics on the usage
of mobile widgets based on the data gathered by the system.

Some embodiments of the system can also usethis data for
recommendations to other users by providing some usage
data. An example is the numberof subscribers to a widget or
the numberof times a widget is accessed or by user rankings
of widgets.

Ad Syndication Engine
Some embodimentsof the server 110 include an ad syndi-

cation engine 409 (FIG.4(a)). The ad syndication engine 409
may store and determine whenand howto deliver advertise-
ments to users. Advertisement delivery can be based on user
demographics, capable devices, certain events, etc. Adver-
tisements may bepresentedin real-time,offline, online, and/
or contextually.

Location Engine
Even without the benefit of specific location-detecting

mechanisms on mobile devices (such as GPS), the location of
a device may be determined by using the connecting IP
address. Each mobile device 140 that connects to the server

maysend an addressto send a response back to. According to
one embodiment, the server 110 may use this response
address to approximate the user’s location. The server may
perform a mapping to a physical real world address via a
lookup table of IP addresses to physical addresses. The map-
ping may occurin a database that contains the IP addresses to
physical address mappings. The structure ofthe database may
contain IP address ranges (from and to addresses) and a
real-world physical address for each entry. A comparison of
an IP address against the IP address range may determine a
match.

Widget [losting in the Application Repository
Along with the client-side components of a widget 142

(FIG. 1()) that the mobile client 141 can download, server-
side components can also exist. According to one embodi-
ment, widgets exist in packages that contain a manifest. The
manifest may describe the package contents as well as addi-
tional external resources that are required.

A widget package can contain resources that the client
keeps (and hence does not need to access the server for
functionality). Examples include images, HTML pagesnip-
pets, scripting code, etc. Further examples include widget-
specific data such as currencyrates, audio andvideofiles, svg
files, text files, general data files. The manifest may describe
the resources, the nameofthe application, version, external
resources (that need to be downloaded), etc.

The server 110 can host resources that are required but not
downloadedby the client. Examples include database queries
whereit may be infeasible to download an entire database to
amobile client and each ofthe exampleslisted above. Instead,
the server 110 can host a component that makes database
requests and relays results to the mobileclient.

Device Detection

FIG.18 illustrates a device detection process according to
one embodiment. This process maybe usedto detect the type
of device connecting to the server so that the server can
determine the best experienceto deliver to the end-user. This
subsystem may include a device database, a device “finger-
print”collector, and an analysis module.

Booking, Exh. 1054, Page 96

Booking, Exh. 1054, Page 97

US 8,595,186 B1
45

The device fingerprint collector may gather clues as to the
type of device connecting to the server. This may be accom-
plished via device HTTP browserheaders that are transmitted
by the mobile browser and optionally the mobile gateway
through which mobile browsers could connect. These headers
may include someidentifying information about the device
browser, version, make, acceptable media types, etc. This
information, however, may not be standardized and it may be
up to individual device manufacturers to decide how much or
howlittle information to provide through the headers.

Assuch, a device database on the server 110 mayfill in the
gap. According to one embodiment, the device database con-
tains full information about a device’s characteristics such as

screen size, available memory, color depth,etc., that usually
are nottransmitted when the mobile device connects.In addi-

tion, the device database may have fallback mapping such
that if a specific model of a device does not exist in the
database, a mappingis available to get to a generic version of
the device characteristics. For example, a fingerprint might
identify a device as a “Nokia 6030 version 2.3”. The database
might not have an entry for that particular model of device.
However, it might have characteristics for a “Nokia 6030”
device and would hencereturn that result, and so on, compar-
ing manufacturers and phone models. The analysis module
described below maysift through the data in the database to
return a correct result.

A second method of collecting a device fingerprint is
through downloadable software that may be also included in
the mobile client. It may be possible for the client engine 141
to determine device class (e.g. a Java-based device or a Win-
dows PDA device). From that, the client engine 141 can load
some additional detection code or diagnostic tests that get
sent to the client. When run, this detection code and tests may
use the device’s platformAPIs to determine more information
about the device and send that information backto theserver.

Theresults ofthe diagnostic tests and code may be used as the
basis for determining what types of contentto transcode for a
mobile device and how to transcode the content. The results

of the diagnostic tests may be sentto a server, andthe results
may beusedto select which widget applications, versions of
the mobile client engine, or other data to send to a mobile
client. The diagnostic tests may be usedaspart of aninstal-
lation method.

With reference to FIG. 18, according to one embodiment,
when a device connectsto the server (either via web browser
1805 or via mobile application 1810), the analysis module
may collect all information from the fingerprinting system
(1815) and query the device database (1820). It mayfirst look
for specific matches on the fingerprint (e.g. model, make,
firmware version, supported media types, etc). Weights may
be assignedto different identifying marks. For example, the
model number might have the most weight while supported
media types have the least weight. From this, a query is
performed on the database. If an exact match is found,that
match may be used (1825). Otherwise, the system may return
alist ofpossible matches, the highest ranked ofwhich may be
used (1830). Alternatively, ifno matchesare found,a fallback
mechanism may used (1835). For example, a firmware ver-
sion may not match exactly. If device characteristics of an
earlier firmware version are defined, that may be used. If a
phone modelis specified, that may be used. And if nothing
other than manufactureris defined, that can be used,etc.
Widget Tools

Various tools may be provided to allow developers and
users to create additional widgets that can be uploadedto the
widget service. Tools may exist in hosted form, as user-
installed tools, and as mobile tools.

20

25

30

35

40

45

50

55

60

65

46
Download Idle Screen

FIG.21 illustrates one embodiment of the download pro-
cess ofdownloading widgets. According to this embodiment,
the data is downloaded as quickly as possible. Once data is
downloaded, the user may not have to connectto the network
again since the experienceis on the handset only using cached
data.

However, the mobile client can choose to show the current
progress of the download. A screen may appear (FIG. 21(a))
with a progress bar 2110 to indicate the current download
progress. Whilethe user waits, the mobile client can begin to
show a preview 2120 of the items that have already been
downloaded (FIG. 21(6)). The items may automatically rotate
at a predeterminedinterval. Users can also interact with the
screen (FIGS. 21(c-e) to view other downloaded items and to
scroll down the item to show moretext.

In another mode, the mobile client may be configured to
download in the background andallow users to begin inter-
acting with the widgets as they are downloaded. A network
content download manager, as a component of the widget
client 141, may receive requests from widget applications to
download network content. The download manager may
manage the downloading ofrequested content while the wid-
get is running,or alternatively, when the widget is not run-
ning, is terminated, or is blocking. The download manager
mayresume, restart, callback, or launch the widgetat certain
points in the downloador after the download is complete. The
download manager may store the downloaded content per-
manently or ephemerally. The download manager (or the
widget) may, from time to time, cause the deletion of stored
network content.

In some embodiments, the device or client engine may be
configured to download network content at the request of a
widget, without requiring the user to request the content and
without necessarily immediately displaying the network con-
tent. Rather, the downloaded content may be stored in a
memory ofthe device for later sue and consumption by the
widget, especially in the later absence of a network connec-
tion. Content may, of course, be transcoded into a form more
suitable for use or display on the device before being down-
loaded. For example, content may have its volume lowered or
increased, dynamic range changed, color palate changed,
width or size adjusted, images scaled or compressed, and so
forth.

In some embodiments, a software widget may receive a
first request for data from a user. The widget mayinitiate a
downloaded of the content (perhaps via the download man-
ager described above). The widget (or the download manager
or client software) may thereafter initiate requests for other,
additional network content that has not been specifically
requested or instructed by the user. The identity ofwhich data
to prefetching may be determinedby heuristics located on the
server or the client device and may beprivate to a widget.

Widget Launchpad
After download is complete, the user can enter a widget

launchpadscreen, FIG. 22 illustrates one embodimentof the
widget launchpadscreen.In this embodiment, the launchpad
displays the set of widgets that the user has chosen andper-
sonalized based on his preferences. A user may select any
widget icon 2210 to launch it and see more detail. The user
can use a multi-directional selection key on a cellular tele-
phone to move around the screen. Other input mechanisms
suchasa stylus or voice input may be used as appropriate. The
illustrated widgeticons are displayed ina grid. They mayalso
be displayed in other layouts such as a list or a dynamic
homepagecanvas (FIG. 26(a@)) as appropriate. For example,
widgets may also be displayed in a carousel format, where

Booking, Exh. 1054, Page 97

Booking, Exh. 1054, Page 98

US 8,595,186 B1
47

selecting or hovering over a widget may cause more informa-
tion to be displayed, possibly above the widget, and where
widgets mayslide horizontally orvertically in a manner akin
to a CD carousel.

There may also be a dynamic information display 2220
whichrotates information from the widgets. As one example,
a few of the widgets installed include CNN News, Local
Traffic, Local Weather and news from the POPSugar weblog.
The dynamic information display 2220 mayrotate headlines
or status messages from these widgets every few seconds. The
user mayclick on the information display 2220 to view more
detail such as an article summary ora traffic incidentdetail or
weather for a certain day. (See top of FIGS. 22(a-d).)

Types of Widgets
Whena userselects a specific widget, the maximized (de-

tail) view of the widget may be displayed. FIG.23 illustrates
detailed views of an example widget according to one
embodiment. In this embodiment, the user has added an RSS

widget that shows headlines from various sources. FIGS.
23(a), 23(b), and 23(c) showthree different RSS feedsthat the
user has configured for the RSS widget. The feed title 2310 as
well as a random sampleofarticles 2320 in the feed is dis-
played. Links appear for the user to show morearticles in a
particularfeed (the “Show More”link 2330) or to remove the
feed from the RSS widget(the “Delete”link 2340). Users can
also choosea different view in which the feed icon appears to
the left and just the feed title appears along with the number
of unread. articles in a particular feed. Users can configure
different display representations by configuring parameters
of the RSS widget.

FIG. 23(d@) is a sample of what appears when users select
the “Show More”link 2330 in FIG. 23(a). The view depicted
by FIG. 23(d@) showsthe articles 2320 that appearin that feed.
Users can choose to personalize the feed (the “Personalize”
link 2350) or to update (the “Update” link 2360). Personal-
ization may include changingfiltering parameters, changing
userlocations, etc that affect the results ofcertain feeds. In the
example in FIG. 23(d), the feed has been configured to accept
location as a user preference. Therefore, the user may receive
only newspertinentto that user’s location. As users read the
articles, they become marked in a block 2370 of different
font/colorso that the user knowsthey havereadthatparticular
article (see FIG. 23(c)). In addition, once the user has read all
of the articles on the device, they may choose to download
more articles from the server via a link 2380 (FIG. 23(e)).
Eacharticle may have shortcut navigations that can be hidden
or displayed. There may be numbersnextto thearticles cor-
respond to the mobile device keyboard keys. When users
press the character corresponding to the article, they may
immediately jump into that article without having to use the
directional navigation keys to navigate and then select the
item link.

FIG. 23(/) shows one embodimentofan article that con-
tains a media attachment. The system presents a selectable
icon 2390 depicting that there is a media attachment. Users
can select the iconto start downloading the media. The media
could be an image,video, audio, etc. Because ofclient restric-
tions and different device capabilities, the system may auto-
matically transcode the media into an appropriate format for
the client. FIGS. 23(g) and 23(/) show that there is more text
to the article. Users can scroll down to see more text. In

addition, the mobile client can support pagination by which
large documents are broken up into multiple pages.

FIGS. 24(a-b) depict one embodiment of a widget for
displaying the current weather and the weather forecast.
Users can use the mobile device’s left and right keys to move

20

25

30

35

40

45

50

55

60

65

48

to the next or previous day’s forecast. A text summary 2410
may appear at the bottom of the display for the particular
selected item 2420.

FIGS. 24(c-e) depict one embodimentof a widgetfor dis-
playing images 2430 along with scrollable text 2450. Users
can quicklysee all ofthe images 2430 in the source along with
the text descriptions 2450 at the same time. Users can use the
directional keys on the mobile device to move to the next or
previous image 2430. Users can also use a stylus or mouseto
drag the scroll left or right. When usersselect the image 2430,
they can view additional information aboutthearticle.

FIGS. 25(a-e) depict one embodiment of a widget for
displaying comic strips 2510. Users may usethe directional
keys on a mobile device to slide the comic 2510 around the
viewport 2520. Because comicstrips 2510 are usually wide or
long, this widget may display the comics in a 2-dimensional
scrollable view. This ensures that the comic 2510is of suffi-

cient size to be viewable on a mobile device display. This type
ofwidget can also be used to display large images. lhe widget
mayalso employ someanimation with motion acceleration to
indicate to the user the direction that the imageis scrolling.
The images can also be zoomed and panned while scrolling.

FIGS. 25(g) depict one embodiment of a search widget.
Users can interact with the widget by entering search terms
2530. The example in FIG. 25(/) is a local search widget that
takes user input, the user preferences(their current location),
and performsa search. For example, a search of“pizza” might
yield pizza restaurants around the user’s location (FIG.
25(g)).

FIGS. 27(d-f) and 28(a-h) depict one embodiment of a
sports widget. This mayallow usersto receive real-time game
scores. The depicted example embodiment shows cricket
games. FIGS. 27(d), 27(e), 28(6), and 28(e) show full-screen
alerts 2750 of major events. Users can scroll around text
information 2760 (FIGS. 27(/), 28(c), 28(d), and 28(f)). The
top banner 2810 mayrotate between the team scores, player
scores, ads, etc. The bottom ticker 2820 can show news events
(See FIGS. 28(5) through 28(/)). In this particular widget,
users can also interact with the widget beyondscrolling up
and down.For example, ifthere is a video clip associated with
a particular event, users can select that event to display the
video clip. The video clip may get displayed on the mobile
device as per the media transcoding description in the system
description.

Widget Homepage
FIGS. 26(a), 26(5), and 29 depict embodiments of widget

homepages 2610. End-users can configure and customize this
homepageto add and removedifferent views ofwidgets. The
user may configure a background image to display on the
page. In one example, the user has configured a weather
widget to display on the page. This may be the same weather
widget as in FIGS. 24(a) and 24(6). Widgets may have dif-
ferent views and modesby which they can render themselves.

A widgetcan presentitself in multiple formats, depending
on the mode,screen size, and capabilities ofthe mobileclient.
Some of these modes may include a minimizedstate, a full
screen view, and a summary screen view. In a minimized
state, one embodimentof this application can be a grid of
icons 2210 (FIG. 22(a)). Each icon 2210 represents a “mini-
mized”view of the application. When users select the icon
2210, a full screen view of the widget may be displayed
(FIGS. 24(a), 24(6)). In the summary view, a screen 2220 of
important (user defined to appear) widgets can be displayed
(FIG. 22(a)-(d)).

For the “minimized” view, the icon can bestatic, or it can
showa state ofthe application. For example, a weather widget
maydisplay a cloudy iconif it’s currently cloudy. A traffic

Booking, Exh. 1054, Page 98

Booking, Exh. 1054, Page 99

US 8,595,186 B1
49

widget might show a stop sign if there is traffic on a pre-
defined route. A clock widget might show the current time.

In the summary view, a larger space may beallocated for
display of some status information. For example, a weather
widget might show a five-day forecast as five icons that rep-
resent the weather for each day. A stock widget might show a
scrolling ticker of stock symbols and current prices. A clock
widget might show the current time as well as the current date.

In the full screen view, the widget may have the entire
screen of the mobile device to renderon.In addition, the full
input capabilities may be available forthe user to interact with
the user interface. For example, there may be more space for
text inputfields.

Mobile Client HomeScreen Integration
In addition to being available in the mobile client as maxi-

mized, minimized, or summarized views, widgets 142 can
preferably be hosted on native “home” screens on mobile
clients. Certain mobile devices have the capability to display
application information on a homescreen. Examples include
a Windows Mobile PDA. The homescreen of a PDA may
contain the time 3010, signal strength, upcoming appoint-
ments 3020, etc. (see FIG. 30).

In some embodiments, the mobile client may contain a
plugin on supported platforms. These plugin hosts widgets
that are otherwise displayed in the mobile client. The plugin
mayberegistered withthe native “home”screen. The mobile
widget may be displayed on a native display canvas on the
native “home”screen.

Advertising
Types of Mobile Advertisements:
FIG. 34 depicts several embodiments of mobile advertise-

ments. The client may support several types of advertisement
rendering formats all capable of being displayed offline.
Somepossible advertisement types are described below:

Full Screen Transitional 3410: This advertisement may
appear for a few seconds encompassingthe full screen of
the mobile device and disappear if ignored. If the user
clicks the advertisement an associated action is per-
formed.

Popup Bubble Alert 3420: This may be a small popup that
appears on the screen of the mobile device and may not
encompassthe whole screen.

InPlay Advertisement 3430: This may be an advertisement
that is embeddedin the content. For example during a
play-by-play session this may be displayed between
each play.

Advertisements may also be animations andhavetransi-
tion effects such as the following:

Fading: The advertisement fades in, stays on for a few
seconds and fades out.

Sliding: The advertisementslides from a side ofthe phone,
stays on for a few secondsandslides out.

Advertisement Actions:

The following are examples of system/widget responses to
userselections of advertisements:

None: If there is no action associated with an advertise-

ment, it’s only an impression with no click through
defined.

Click to Call—A telephone number or a Voice Over IP
(VoIP) call detail is associated with this advertisement.
Whena userclicks, a voice call is made to connect the
userto the advertised service.

Microsite: This is a link to modedetail about the advertise-

ment. This may launch the WAPbrowseron the device.
Alternatively, the user maystay in the current context of
the widget service application and the microsite is dis-

20

25

30

35

40

45

50

55

60

65

50

played. If the user is watching a gameora live eventvia
the widget service, the experience might not be inter-
rupted.

URL:This is a link to an external web site. The URL may
be launched in the mobile device’s browser.

Media: This is a link to media such as a ringtone, podcast or
video clip. The widget service website downloadsthis
clip in the backgroundandplaysit.

On the client 141, there may exist an advertisement (ads)
store 455 (FIG. 4(5)) where ads are stored and queuedin.
When the mobile client receives commandsto display these
ads, the mobileclient can pick up the appropriate ad from the
ads store 455to display. Also, the mobile client can determine
whento pick up the ad from the store and display it. In some
embodiments, the mobileclient does not need to be connected
to the server in orderfor the ads to be rendered. The ads may
get displayed even if there is no connectionto theserver. Ifa
user interacts with an ad, such as by clickingit, the ad or client
may be configured to perform an additional action, such as
accessing a URL,initiating a telephone call to a service or
company, show additional information(e.g., popups) relevant
to an ad, or play audio or video relevant to the ad.

Asthe adsare displayed, information may be logged about
the displayed ads andthe user interaction with the ads. This
mayinclude the numberof times the ad has been shown,in
which context, whether the user “clicked” on the ad, whether
the user initiated a voice call based on the ad, the times these
events occurred, etc. All this information may bestored
locally on the mobile client so that a network connection need
not be created. Then, when the mobile client establishes a
network connection, this information may be transmitted
back to the server.

A server may contain a repository of adveristement to be
displayed on mobile devices and in association with widget
applications, where the server may select advertisements
based on user actions (such as downloading history) and/or
userprofiles.

Bandwidth Optimized Advertisement Delivery:
The client may support a mechanism to cache mobile

advertisements. The widget service server may support a
technique wherein advertisement commandsare sent once to
the client and the client caches the advertisements and dis-

plays them whenrequired.
The advertisement server component may maintaina list of

advertisements in the current campaign andthe total impres-
sions required overa period of time. Whena client connects
to the server 110, one or more delayed advertisements,
referred to herein as AdCommands, maybesentto the client.
An AdCommand may contain someorall of the following
details:

Advertisement identifier: A number to uniquely identify
the advertisement on theclient

Weight: A fraction between 0 and 1 that is used to control
the frequency of appearance of the advertisement.

Advertisement Content: An advertisement, possibly for-
matted in a declaratory markup language such as
HTML,that mayinclude a graphic.

Action: None, Click to Call, Microsite, URL, Media, as
described above.

Action Detail: Contains details of the landing page. For
example, details could include a phone number for a
click-to-call advertisement, an embedded WAP micro-
site or an external WAP or WEBsite link; or embedded
or downloadable media such as a ringtone or mobile
video preview.

In some embodiments, one or more AdCommands can be
sent to the client 141. The client 141 may maintain a round

Booking, Exh. 1054, Page 99

Booking, Exh. 1054, Page 100

US 8,595,186 B1
51

robin queueofthese advertisement commandsandrender the
advertisements whenever the user uses a widget. The user
mayuse the widget application in a disconnected mode and
these commands may execute and display the advertisements
even when the user is not connected over a mobile data

network. In some embodiments, the advertisements need

only be downloaded onceto the client. The weight may be
used to control the frequency of the advertisements. Higher
weights may represent advertisements that are displayed
more often.

The client may maintain a log of all the advertisements
displayed and these metrics may be collected and posted back
to the server each timethe client 141 performs a synchroni-
zation session with the server 110. In some embodiments,

new AdCommands maybesentto the client at any time to
augmentthe currentset or reset the advertisement queue.

Techniquesto Increase Relevance ofDynamic Information
Display

Asdescribedearlier, the client software may be capable of
displaying a dynamic information display such as a ticker or
a dynamically formatted homepage. According to one
embodiment, when headlines are rotated on suchaticker,
users can glanceat these articles and may click on headlines
that they are interested in. It may be desirableto increase the
relevanceofthearticles to the user so that they click more on
these articles. Here we describe techniques and methods to
increase the relevancy of the information displayed based on
a variety of factors. FIG. 31 illustrates these techniques
according to one embodiment.

Box 3100 shows processes performed on the client device
to increase relevancyofthe articles. Initially in Box 3101, a
list of articles is scanned from the local storage on the mobile
device. The dynamic information ticker may be functional
even when the mobile clientis not connected to the wireless

network.Initially, the most recent articles from all the widgets
that have a dynamic content source associated with them may
be addedto the information ticker display and maybe rotated
at an intervalin a circular queue. Elements described in Boxes
3102, 3103, 3104, 3105, 3106 may be performedto increase
the relevancyofthe information to the user. Box 3102 repre-
sents filtering by unreadarticles so that there is no repetition
ofarticles. Box 3103 represents prioritizing the articles based
on weights. Initially a weight of 1.0 may be assignedto all
widgets. As users use the widgets, possibly based in part on
the numberoftimesa particular widget is used and based on
whetherthe users click on a headline pertaining to a widget,
the weights are modified. Thus, as the user uses the widget
service client 141 software, the system 110 maydeliver head-
lines more in line with what the userclicks. In addition, the
weights may be manipulated by external factors. As an
example, it is possible to use standard user ratings and col-
laborativefiltering systems to identify “hot topics”and auto-
matically offer them as headlines even thoughthe user has not
subscribed to those widgets, and therefore may be missing
important updates.

The next element (3104) mayfilter out specially tagged
feeds such as graphics-only feeds (e.g. comic strips that
require a big display for them to be effective), search results
from search engine widgets, or static widgets (ifdesired) such
as to-do lists. The next element (3105) may add any updates
ofdesirable essential widgets such as weatherandlocaltraffic
periodically if there is an event. As an example, if there is a
change intraffic conditions, a headline could be added from
traffic. Otherwise, no traffic information is addedin the ticker.
The next element (3106) may add advertisements from the
local cache based on the advertisementcache. Ifthere are any

20

25

30

35

40

45

50

55

60

65

52

advertisements that need to be includedin the ticker, they may
be inserted based on the rotation frequency specified by the
AdCommand.

Finally (box 3110), this filtered list of headlines may be
rendered periodically in the information display. At the end of
each cycle, a scan may be madeto see if new articles have
arrived on to the local store of the client software. If so,
elements described in box 3100 maybe repeated.

Itis possible to further improvethe relevance ofthearticles
by using other parameters such as local time, current weather,
and semantic knowledge ofcurrent headlines. As an example,
if there is a winter storm in the local area, the system may
include more weather headlines. If it is closer to the after-

noon, the system may show thetraffic updates more often.
Therefore, though not mentioned here, anyone skilled in the
art may be able to add suchrulesto increasearticle relevance
for the dynamic information ticker.
Creating Mobile Widgets

A ‘topical Mashup Mobile Widget
FIG. 37 showsvarious embodiments ofweb userinterface

displays that a user may be presented with to create a mobile
widget. In some embodiments, an end-useris not required to
do any programming that generates the mobile widget. As
such, anyone capable of using a web browserandfilling web
forms can use such a user interface to publish a mobile wid-
get. As an example, a topical expert, a blogger, a website
owneror a content publisher can use this user interface to
publish a mobile widget. Though not mentioned, the same
user interface may also be presented via mobile web browser
so that mobile users mayalso create and publish new mobile
widgets and share them with others.

Referring to FIG. 37, according to one embodiment, a user
may create a “topical mash-up” mobile widget. In this
example, the user creates a widget on the topic of “Arabian
Horses”. A “topical mash-up”is a type ofmobile widget that
may continually aggregate information from several content
sources and present it as one mobile information stream. A
user who adds this widget onto their mobile device may
receive regular information updates about the topic “Arabian
Horses”on her mobile device.

As in FIG. 37(a), the widget publisher may be asked to
enter a few keywords on the topic on which he wantsto create
a widget. Text may be presentedto the user, such as “Usethis
wizard to publish your own mobile widget. At this time, you
may create a mash-up widget which aggregates content
around a topic from several content sources. Star by entering
a few keywords. Once you publish the widget, you can get it
on your mobile phone, share it with friends. We will auto-
matically update your mobile widget with new content as and
whenit becomes available!” The user mayenter the informa-
tion in a text box 3705 and submit it by selecting the “Start”
key 3710 or an equivalent. The query may be transmitted back
to a central server and parsed. A next control 3750 can be
providedto enter the inputted data and proceedto the screen
of FIG. 27(c). In FIG. 37(6) the user selects an image 3715
that visually represents the widget, providesa title 3720, and
enters optional descriptive information such as description
3725 and tags 3730. FIG. 37(c) shows an exemplary method
of selecting images 3715, in which the user picks the image
3715 by clicking on a particular image 3715. This informa-
tion may be associated with the widget and used later to
categorize the widgets in a repository. Another next control
3750 may be provided.

The display in FIG. 37(d) allows the widget publisher to
pick information sources 3735 to aggregate into his widget.
The user can select one or more sources to add to the widget.
Several information source choices 3735 maybepresented to

Booking, Exh. 1054, Page 100

Booking, Exh. 1054, Page 101

US 8,595,186 B1
53

the publisher. Oneset ofinformation sources represent search
engine resources on the web such as Google search, yahoo
search, Google News search, Yahoo Image Search, Flickr
Image search, Upcoming.org event search, MySpace Blog
search, eBay product search, and the like. An information
source maybethe result of running the query on any of these
search engines. The publisher canselect this by selecting the
checkboxnext to any of these provided choices. The sources
mayalso include data repositories, news sites, and so forth.

Another information source 3735 in FIG. 37(d) may be
already-available content sources on “Arabian horses” that
other widget service users have addedpreviously thus far into
the system. Another information source 3735 is similar con-
tent sources derived from running the query “Arabian horses”
on external search engines. Further the user may know a
specific web site, and he may also be ableto enter that spe-
cifically as a URL in a text box 3740. FIG. 37(d) illustrates an
emulator preview 3745 that enables the user to click on any
information source 3735 on the page any preview portions of
the widget on a mobile emulator. Once the user is satisfied
with his selections to include in the mash-up widget, he may
submit the information by selecting a “Next” key 3750 or
equivalent.

FIG. 37(e) is an exemplary confirmation element where the
user may makefinal modifications to the content sources. The
user may publish the channel by logging into the system or
anonymously without logging in. Once published, the mobile
widget on “Arabian Horses” may be generated and may be
published into the directory of Widgets. FIG. 37(/) shows an
exemplary search by any user on the keyword “racing” 3755.
Oneofthe search results 3760 displays the newly published
“Arabian Horses” widget 3765, that this user may select to
add to his or her mobile device.

Weblog Mobile Widget
Yet another widget type is a blog widget that encapsulates

a weblog, commonlyreferred to as blog. An exemplary set of
elements, according to one embodiment, for creating a web
log widget non-programmatically is disclosed in FIG. 38. A
blogger whois the publisher of a weblog mayuse this pub-
lishing wizard tool to generate a mobile widget. In FIG. 38(a),
an exemplary elementis provided where the blogger chooses
one of various kinds of graphical controls 3805. These con-
trols 3805, also referred to as “blog controls” may be standard
widget service controls 3810 or personalized controls 3815.
Some bloggers prefer to personalize these controls. The
exemplary display in FIG. 38(4) showsthe control personal-
ization element. Here the blogger may select a background
graphic 3820 presented by the system and also upload a
graphic 3825 that represents his or her blog. A new person-
alized blog control is then generated for blogger. The blogger
may further try out variations by loading different graphics,
cropping the imagesuntil satisfied. Then he clicks the “Next”
control 3830 or equivalent to proceed to the next element.

An exemplary display representing this next elementis
shown in FIG. 38(c). The blogger may enter a title for the
widget 3835, a short description 3840 and a few keywords
3845thatrelate to the blog. All of these fields may be used to
search and categorize the blog widget in the gallery. The
blogger clicks the “Next” control 3850 to complete genera-
tion of the mobile blog widget representing his blog. As in
FIG. 38(d), he may be presented with a short snippet of
HTML,JavaScript, or other code 3855 with instructions to
use it. In this display the code may be emailed to him for
convenience.

In addition to the generated blog control 3860, a mobile
widget with the same graphic may also be generated. The
mobile widget may be added to the gallery on the widget

20

25

30

35

40

45

50

55

60

65

54

service for other users to use and share. The blog control may
be used by the blogger to put on his website to advertise the
fact that his blogis now available as a mobile widget. The blog
controls may be standard “Send to Phone”controls, or per-
sonalized picture controls or also dynamic slideshowsthat
show the entire preview of the mobile widget experience
itself. In addition to bloggers, though not shownin this figure,
in some embodiments, any user with a web home page on
social sites such as MySpace, Facebookor any web site owner
can create a mobile widget and an associated blog control
using the Wizard. When a reader of that blog clicks on that
control on the blog site, he or she may beredirected to the
widget service web front end and maybeallowedto register
to widget service and add that specific blog widget on to his
widget service client software 141.

Further as shownin FIG. 38(e), in some embodiments, the
blogger may preview the mobile widget 3865 on the web.
Current information may be fetched from his web log and
maybe rendered as a live preview in the exemplary mobile
emulator 3870. Here the blogger mayfully navigate through
the widget 3865 and view the blog widget 3865 that he just
created.

Example of a Widget Published from the Phone
Anotherset ofwidget publishing wizards maybeoffered to

mobile users. These mobile widget publishing wizards may
be available on a client device via a mobile web browser on a

client device, or as a widget itself. Similar to the webinter-
face, the mobile user may be presented with a series of ele-
ments to create and publish a new widget.

The example of FIG. 39 illustrates a parent creating a
mobile widget 3910 for her daughter’s soccer season. She
periodically takes pictures 3920 from a cameraofher mobile
phone 3930 during every game and posts it to that widget
3910. Grandparents and other family members 3940 that may
subscribe to this widget 3910 to periodically receive a photo
stream as and when newpictures are uploaded. This whole
use case may not require a desktop computer since the widget
3910 is both created and subscribed to from a mobile client
device.

Other Types of Mobile Widgets
Though not shown, it is possible to present the user with

several such wizards to publish various kinds of mobile wid-
gets. Other examples include a mobile widget that shows a
picture slideshow ofpersonal pictures, music or videos. In
this case the user maybe asked to input URLs to upload the
specific media and a mobile widget may be generated with the
associated media. Yet another widget could be a personalized
weather widget where the user specifies a location and a
weather mobile widget would be generated for him.

FIG. 40 showsthe supporting server-side process to create
a mobile widget according to one embodiment. The first
element in box 4001 is to present the publisher with widget
type choices to select the types of widget. The system sup-
ports several types of widgets that may be created non-pro-
grammatically using these “wizards”. More such wizards
may be added as desired for convenience. Mobile widgets
preferably have an icon associated with them.In box 4002 the
userentersa title, keywords, and description for the widget.In
box 4003, the system performs a keywordsearch based on the
widget description, title and keywords andpresents the pub-
lisher with image choices to represent the mobile widget.
These images may besearch results from an external image
search engine such as Yahooor from aninternal repository of
images in the system.

As described in the previous example in FIG. 37(d), the
system may then present the user with one or more choices
wherethe user selects the type of information to be added in

Booking, Exh. 1054, Page 101

Booking, Exh. 1054, Page 102

US 8,595,186 B1
55

the mobile widget (box 4004). For a weather widget this may
be the zip code or location, for a mashup-widget, this may be
alist ofcontent sources, for a photo album widget this may be
a list of image URLs. The user may then add the content
details and submits these choices to the system (box 4005).
The widget service server system may then generate the
mobile widget in a element depicted by box 4006. The details
of process 4006 are depicted in FIG. 41 and described in the
section named “Mobile Widget Creation”

CONCLUSION

In the embodiments described above, each flowchart is
shownforthe illustrative purposes. Someblocks in the flow-
charts can be omitted or combined with one anotherin other
embodiments.

Althoughthis invention has been disclosedin the context of
certain preferred embodiments and examples, it will be
understood by those skilled in the art that the present inven-
tion extends beyondthe specifically disclosed embodiments
to other alternative embodiments and/oruses of the invention

and obvious modifications thereof. Thus, it is intended that
the scope ofthe present invention herein disclosed should not
be limited by the particular disclosed embodiments described
above.

APPENDIX A

BNF

CompilationUnit:
(Statement|FunctionDecl)*

Expression:
Assignment
|ConditionalExpression
[FunctionExpression

Assignment:
PrimaryExpression AssignmentOperator Expression

AssignmentOperator:
6?oO97|/7|OH|EP|
aallelcllll

ConditionalExpression:
ConditionalOrExpression [“?” Expression “:” Condition-

alExpression|]
ConditionalOrExpression:

ConditionalAndExpression (“|)’ ConditionalAndExpres-
sion)*

ConditionalAndExpression:
InclusiveOrExpression (“&&” InclusiveOrExpression)*

InclusiveOrExpression:
ExclusiveOrExpression (

ExclusiveOrExpression:
AndExpression (““” AndExpression)*

AndExpression:
EqualityExpression (“&” EqualityExpression)*

EqualityExpression:
RelationalExpression (

“==” RelationalExpression
“t=” RelationalExpression
y*

liad ExclusiveOrExpression)*

Relational Expression:
ShiftExpression (

“<” ShiftExpression
“>” ShiftExpression
“<=” ShiftExpression
“>=” ShiftExpression
y*

5

20

25

30

35

40

45

50

60

65

56

ShiftExpression:
AdditiveExpression(

“<<” AdditiveExpression
[>>AdditiveExpression
[>>>AdditiveExpression
y*

AdditiveExpression:
MultiplicativeExpression (

“+” MultiplicativeExpression
|“—” MultiplicativeExpression
y*

MultiplicativeExpression:
UnaryExpression (

“? UnaryExpression
\“/? UnaryExpression
|“%” UnaryExpression
y*

UnaryExpression:
“+” UnaryExpression
|“—” UnaryExpression
|PreIncrementExpression
|PreDecrementExpression
|UnaryExpressionNotPlusMinus

PreIncrementExpression:
“44° PrimaryExpression

PreDecrementExpression:
“__” PrimaryExpression

UnaryExpressionNotPlusMinus:
“—” naryExpression
It!” UnaryExpression
|PostfixExpression

PostfixExpression:
PrimaryExpression [“++7|“——-”]

PrimaryExpression:
PrimaryPrefix (PrimarySuffix)*

PrimaryPrefix:
Literal
Name
“this”

“(? Expression “)”
AllocationExpression

PrimarySuffix:
“[? Expression “|”
“”<IDENTIFIER>

Arguments
Literal:

<INTEGER_LITERAL>
<STRING_LITERAL>
“true”
“false”
“null”
“undefined”

Arguments:
“@[ArgumentList] “)”

ArgumentList:
Expression (“,”

Name:
<IDENTIFIER>

AllocationExpression:
“new” Name Arguments

FunctionExpression:
“function” “(’ FunctionParameters “)” Block

FunctionDecl:

“function”<IDENTIFIER>“(’ FunctionParameters
Block

FunctionParameters:

[<IDENTIFIER>(“,’<IDENTIFIER>)*]

Booking, Exh. 1054, Page 102

Expression)*

“

Booking, Exh. 1054, Page 103

US 8,595,186 B1

57 58

Statement: FinallyBlock:
Block “finally” Block
EmptyStatement ThrowBlock

StatementExpression “;” “throw” Expression “;”
VarStatement 5

SwitchStatement APPENDIX B
IfStatement
WhileStatement
DoStatement
ForStatement 10

BreakStatement Mark and Sweep:
ContinueStatement heck gol) { ;or each rootvariable obj {
ReturnStatement mark(obj):
TryStatement
ThrowStatement 15 sweep();

Block: we ee function mark(obj) {
{” (Statement)* “} if obj.marked){

EmptyStatement: obj.marked = true;
“7 for each property referenced by obj {

StatementExpression: 20 mark(property);
PreIncrementExpression }
|PreDecrementExpression

[Assignment Function sweet)i
|PostfixExpression if(obj. masheat {

VarStatement: 25 obj marked = false;
“var” VariableDeclarator (“,” VariableDeclarator)* “;” Velse {

VariableDeclarator: telease(obj);

<IDENTIFIER>[“=”VariableInitializer]| 1
Variablelnitializer: }

Expression 30 Store and Copy:
ef” function ge() {

[HashInitializer (“.” HashInitializer())*] for each root variable obj {cls ? tef = copy(obj, inactiveHeap);

HashInitializer: swap(activeHeap, inactiveHeap);
(<IDENTIFIER>|<STRING_LITERAL>) “:” Expression 35 ; ; —

SwitchStatement: function copy(obj, destinationHeap) {. . . if (obj==null
“switch” “<? Expression “yr “f Chia {

(SwitchLabel (Statement)*)* }
se] if (obj.forward==null) {

SwitchLabel: 40 tef'= destinationHeap newInstance(obj -class);«x 3 . <c.99 obj.forward = ref;
case” Expression “: for each field fin obj {

\“default” “‘:” if (fis a primitive) {
: ref.f= obj.f;

IfStatement: veke {665 £97 66799 : oye? 66 2 else

Whuk a Expression)” Statement[“else” Statement] reff = copy(obj f, destinationEeap);ileStatement: 45

“while” “(’ Expression “)” Statement
DoStatement: tref.forward = null;

“do” Statement“while” “(’ Expression “‘)” “;” }
ForStatement: Mark and Compact:

“for” “(? [ForInit] “;” [Expression] “;” [ForUpdate] “‘)’ so function ge() {

Statement for etivariable obj {ForInit: MATKOOLs

StatementExpressionList compact();
StatementExpressionList:

StatementExpression (“,’ StatementExpression)* 55 nlwrleloait { ed) {. UW (:Nandle} oo] |.mMarKes
ForUpdate: . . handle[obj].marked = true;

StatementExpressionList for each object q referenced by obj {
BreakStatement: mark(q);

“break’’ “7

ContinueStatement: 60 } }
“continue”“;” function compact) {

ReturnStatement: long offset = 0;
“return” [Expression] 7? for each object obj in heap {

TrvStatement: if (nandle[obj].marked) {
ty i . . handle[obj].object = heap.move(obj, offset);

try” Block [CatchBlock] [FinallyBlock] 65 handle[obj].marked = false;
CatchBlock:

“catch” “(’ <IDENTIFIER> “)” Block

offset += sizeof(obj);

Booking, Exh. 1054, Page 103

Booking, Exh. 1054, Page 104

US 8,595,186 B1
59

-continued

APPENDIX C

APIs: Platform APIs to the system.
File input/output:
array=File.getRoots()
File.mkdir(path)
File.delete(path)
array=File.list(path)
boolean=File.exists(path)
fileObj=File.open(path)
buffer=fileObj.read(numBytes)
fileObj.write(bufter)
fileObj.close()
Database:

DB.delete(path)
boolean=DB.exists(path)
db=DB.open(path)
db.removeltem(id)
db.setItem(hash)
hash=db.getItem(id)
hash=db.getFirstItem()
hash=db.getFirstItem(function)
hash=db.getNextlItem()
db.close()
Network operations (e.g. HTTP, sockets):
sock=Socket.open(url)
sock.read(numBytes)
sock.write(buffer)
sock.registerCallback(function)
sock.close()
HTTP:

conn=HTTP.open(url, headers)
conn.write(buffer)
buffer=conn.read(numBytes)
integer=conn.getResponse()
string=conn.getHeader(name)
conn.registerCallback(function)
conn.close()
Graphics display (e.g. browser API and graphics canvas)
User input
Text parsing (e.g. XML)
DOMelements

Node->children (array)
Node->attributes (hash)
Node->text

Node->type (1=node, 2=text)
Mathematical operations and functions
Math.random()
Math.sin()
Math.cos()
Math.sqrt()
Math.PI
PIM API

For contact, calendar, tasks:
list=open(type)
list.close()
list.getField()
list.enumerateFields()
data=list.create()
data.setField()

20

25

30

35

40

45

50

55

60

65

60

list.add(data)
Time

seconds=Time.getCurrentTime()
Time.wait(milliseconds)
String
str2int

charAt()
indexOf()
lastIndexOfv)
substr()
length()

APPENDIX D

OP_NOP

No operation. Performs no operation and movesto the next
instruction.

OP_PUSH_COPYMakesa copy ofthe valueat the top ofthe
stack and pushesthat value onto the stack.
OP_PUSH_INT <int_value>
Push the following integer constant onto the stack.
OP_PUSH_STRING<index>
Pushthe following string onto the stack. The following value
is an integer index into a constants table with thestring values
indexed bythe integer index.
OP_PUSH_TRUE
Push a “True” value onto the stack.

OP_PUSH_FALSE
Push a “False” value onto the stack.

OP_PUSH_NULL
Push a NULLvalue onto the stack.

OP_PUSH_UNDEFINED
Push an “undefined” value onto the stack.

OP_PUSH_FUNCTION<int_function_ref>
Push a function reference onto the stack.

OP_PUSH_OBJECT

Push a new object onto the stack.
OP_POP

Popsa value off the stack and discards that value.
OP_GET_VARIABLE<index>

Getthe value of the specified variable and pushes that value
onto the stack. First, we’ll check the local scope. If the vari-
able doesn’t exist, we'll look in the global scope.
OP_SET_VARIABLE<index>
Popsa valueoff the stack andstores that value for the speci-
fied variable in the local scope if a variable has already been
defined in a local scope. Otherwise, save into the global
scope.
OP_SET_LOCAL<index>
Popsa value off the stack and stores that value for the speci-
fied variableinthe local scope. Also sets the accumulator with
the value.

OP_GET_PROPERTY <index>
Gets the value ofthe specified property on an object. Pops the
object to retrieve a property from off the stack and then
references the specified property. The value is pushed onto the
stack.

OP_SET_PROPERTY <index>
Sets a property on an object with a specified value. Pops the
value to store and then pops the object to apply. Then the
property is applied on the object with the value.
OP_CALL_FUNCTION<int_function_ref>
Calls the function atthe specified program counter. First pops
the numberof arguments that are going to be passed in. Then
pops the arguments one by onein reverse order. So, the first
argumentpoppedin is the last argument to the function. Next,
we push the program counterof the next instruction onto the

Booking, Exh. 1054, Page 104

Booking, Exh. 1054, Page 105

US 8,595,186 B1
61

stack (so we can return). Finally, we set the program counter
to the function reference pointer to begin execution of the
function.

OP_FUNCTION_RETURN

Specified at the end ofthe functionto return to the instruction
after the function call. First, pops a value from the stack to
return to the caller. Then pops the program counter from the
stack to return to. Then sets the accumulator to the return

value back for consumption after the function call.
OP_DEFINE_FUNCTION

This is to be usedat the start of function definitions to map
arguments passed into a function into the parameter names
that the function declared. The parameter names should have
been pushed in reverse order. The top of the stack should
contain the number of parameter names. Then for each
parameter name, we’ll go through the “arguments”array that
gets passedinto all functions and map the valuesto the vari-
able namesin the stack.

OP_NEW<int_function_ref> (not there)
Calls the constructor function at the specified program
counter and creates an object. First pops the numberof argu-
ments that are going to be passed in. Then popsthe arguments
one by onein reverse order. So, the first argument popped in
is the last argument to the function. Next, we push the pro-
gram counterofthe next instruction onto the stack (so we can
return). Finally, we set the program counter to the function
reference pointer to begin execution of the function. On
return, we discard the return value. Instead, we’ll use the

object “this” to be pushed onto the stack.
OP_JSR <pce>
Pushesthe next instruction pointer onto the stack. Thenjumps
to the specified program counter.
OP_JSR_RETURN

Pops an instruction pointer off the stack and jumpsto that
program counter location.
OP_SUB

Subtracts two values from the stack. Popsthe right value and
then the left value from the stack. Then subtracts the right
value from the left value. The resulting value is pushed back
on the stack.

OP_ADD

Adds two values from the stack. Pops the right value and then
the left value from the stack. Then adds the right value to the
left value. The resulting value is pushed back on the stack.
OP_MUL

Multiplies two values from the stack. Popsthe right value and
then the left value from the stack. Then multiplies the right
value to the left value. The resulting value is pushed back on
the stack.

OP_DIV

Divides two values from the stack. Pops the right value and
thenthe left value from the stack. Then divides the right value
into the left value. The resulting value is pushed back on the
stack.

OP_MOD
Gets the remainderofa division between two values fromthe

stack. Pops the right value and then the left value from the
stack. Then divides the right value into the left value and gets
the remainder. The resulting value is pushed back on the
stack.

OP_NEG

Negates (2’s complement) a value on the stack. Pops a value
from the stack, negate it, and pushes the value back onto the
stack.

20

25

30

35

40

45

50

55

60

65

62

OP_NOT

Inverts (1’s complement) a value on the stack. Pops a value
from the stack, NOT it, and pushes the value back onto the
stack.

OP_AND

Performs a bitwise AND of two values from the stack. Pops
the right value and then the left value from the stack. Then
performs a bitwise AND ofthe right value into theleft value.
The resulting value is pushed back on the stack.
OP_OR

Performsa bitwise OR oftwo values from the stack. Pops the
right value and then the left value from the stack. Then per-
formsa bitwise ORofthe right value into the left value. The
resulting value is pushed back on the stack.
OP_LE

Performsa logical comparison of two values from the stack.
Popsthe right value and then the left value from the stack.
Then compares the left value to the right value. If the left
valueis less than or equalto the right value,a “True” is pushed
onto the stack. Otherwise, a “False”is pushed.
OP_GE

Performsa logical comparison of two values from the stack.
Popsthe right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is greater than or equal to the right value, a “True” is
pushedonto the stack. Otherwise, a “False” is pushed.
OP_EQ
Performs a logical comparison of two values fromthe stack.
Popsthe right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is equal to the right value, a “True” is pushed onto the
stack. Otherwise, a “False” is pushed.
OP_NE

Performsa logical comparison of two values from the stack.
Popsthe right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is not equal to the right value, a “True”is pushed onto
the stack. Otherwise, a “T'alse” is pushed.
OP_LT

Performsa logical comparison of two values from the stack.
Popsthe right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is less than the right value, a “True”is pushed onto the
stack. Otherwise, a “False” is pushed.
OP_GT

Performsa logical comparison of two values from the stack.
Popsthe right value and then the left value from the stack.
Then compares the left value to the right value. If the left
value is greater than the right value, a “True”is pushed onto
the stack. Otherwise, a “False” is pushed.
OP_COND_JUMP_TRUE<int_pe>
Pops a value from the stack. If its boolean equivalent is
“True”, then branch to the specified program counter. Other-
wise, continue to the next instruction.
OP_COND_JUMP_FALSE<int_pe>
Pops a value from the stack. If its boolean equivalent is
“False”, then branch to the specified program counter. Oth-
erwise, continue to the next instruction.
OP_JUMP <int_pe>
Branchto the specified program counter.
OP_LOGICAL_NOT

Performsa logical“not” ona value onthe stack.First pops the
value. Then converts the value into a boolean equivalent.If
the value is “True”, we’ll push “False” onto the stack. If the
value is “False”, we'll push a “True” onto the stack.

Booking, Exh. 1054, Page 105

Booking, Exh. 1054, Page 106

US 8,595,186 B1
63

OP_SHR

Shifts a value to the right by the specified numberofbits,
preserving the sign bit. First pops the numberofbits to shift
by. Then pops the value to shift. Then, shifts the bits as
specified, pushing the resulting value back onto the stack.
OP_USHR

Shifts a value to the right by the specified numberofbits,
ignoring the sign bit. First pops the numberofbits to shift by.
Then popsthe valueto shift. Then, shifts the bits as specified,
pushing the resulting value back onto the stack.
OP_SHL
Shifts a value to the left by the specified numberofbits. First
pops the numberofbits to shift by. Then pops the value to
shift. Then, shifts the bits as specified, pushing the resulting
value back onto the stack.

OP_LOGICAL_AND
Performs a logical AND on twovalues on the stack. Pops the
right value and then the left value from the stack. If the
boolean equivalents of both values are “True”, then push a
“True” onto the stack. Otherwise, a “False” is pushed. Note
that the compiler should generate a short-circuit evaluation of
this operator so that if the first value is “False”, it does not
evaluate the right operand.
OP_LOGICAL_OR
Performs a logical OR on two values on the stack. Pops the
right value and then the left value from the stack. If the
boolean equivalents of either of the two values are “True”,
then push a “True” onto the stack. Otherwise, a “False” is
pushed. Note that the compiler should generate a short-circuit
evaluation of this operator so that if the first value is “True”,
it does not evaluate the right operand.
OP_XOR
Performsa bitwise exclusive OR oftwo values from the stack.

Popsthe right value and then the left value from the stack.
Then performsa bitwise exclusive ORofthe right value into
the left value. The resulting value is pushed back onthe stack.
OP_TRY
Defines a try-catch-finally block. Pops two values off the
stack. Pops the PC ofthe catch block and savesin the handler.
Popsthe PC ofthe finally block and saves in the handler. The
catch block handles the exception if thrown. The codein the
finally block always gets executed whether or not an excep-
tion occurred. If the PC for either value is 0, then the respec-
tive block is disabled. For example,ifthe catch PC valueis 0,
the catch block is not defined and exceptions may not be
handled. Similarly, if the finally PC value is 0, the finally
block is not defined.

OP_END_TRY
Closesthe try-catch-finally block by resetting the handler for
the current stack frame.

OP_THROW
Popsthe value off the stack and throws an exception. Looks
for the current handler. If an exception handleris defined, the
handler may handle the exception. Otherwise, pops off the
current invocation stack frame to the caller frame to see if a
handler exists there. It continues until there is a handler or

until there are no more stack frames. At that point, the mobile
client handles the exception (one implementation could show
the error to the user).
OP_CLEAR_EXCEPTION
Clears the pending exception.

APPENDIX E

ch = getchar()
// Start of a tag?
if (Ch=="<7) {

ch = getchar()
if (ch=="/”) {

25

30

35

45

50

55

60

65

64
-continued

type = END_TAG;
else {

type = START_TAG;

skip_whitespaces();
name = read_text_until_whitespace();
do {

skip_whitespaces();
if (ch is part of a name) {

attr_name = read name();
attr_value = read value();
save_attribute(attr_name, attr_value);

} while (ch not end of tag);
} else {

type = TEXT;
text = read until_start_tag();

After the getNext() is called, the following functions can be
called:

getText()
If the result of the getNext() was a TEXT, then we should call
this function to get the text in betweenthe start and endtags.
getNextAttr()
If the result of the getNext() was a TAG, then wecall get-
NextAttr() ina loopto getall of the attributes of the tag. The
return determines whetherthere are more attributes (TRUE)
or no more (FALSE). After calling getNextAttr() we can call
getAttrName() and getAttrValue() to get the nameand value
of the attribute.

getAttrName()
After calling getNextAttr() use this to get the attribute name.
getAttrValue()
After calling getNextAttr() use this to get the attribute value.

APPENDIX F

Hyperlink—Whena select action is performed, a new page
is rendered givenaspecified target page to render. Appli-
cation developers can set a target page URLthatis used
whenthe select action is performed. In addition, appli-
cation developers can assign custom handlers to handle
the select action so that their own functions can be

executed rather than to jumpto the target page.
Form—Aform is a block that allows for user enterable data

to be filled. Application developers set a target page
URL. Whenthe form data gets submitted, the form data
is encoded andthensentto the specified URL for further
handling. Form “submission”can be doneeithervia user
selection ofa button or can be done programmatically by
the application developer.

Form text input field—Allows users to enter text in the
field. Allows for textual, numeric, or password (hidden
non-echoedtext). It can be renderedas a single line or
multi-line field to allow users to enter textual informa-
tion. Characters that the user enters on the mobile device

keyboard are echoed in the text field (except for pass-
wordfields). In addition, application developers can add
their own handlers to determine what should happen
whenusersenter text into the text field.

Form button—When the user selects the button and per-
formsthe default action, the form data in the encompass-
ing “form” widget gets collected and sentto the handler.
All data in the form elements that are contained in the

form are collected, encoded, and submitted to the
“form” widget URL. An application developer can over-
ride this button behavior by defining their own handler.

Booking, Exh. 1054, Page 106

Booking, Exh. 1054, Page 107

US 8,595,186 B1
65

That way, when the end-user interacts with the button,
the application can perform a different action.

Form checkbox—tThese are elements that have twostates,
on and off. When the default action is performed, the
states are toggled between on and off. An application
developer can override this behavior by defining their
own handler.

Form radio button—These are elements that have two

states, on and off. Radio buttonsare similar to checkbox
elements. However, radio buttons exist in a group such
that only one radio button in the group are on while the
rest are off. When the default action is performed, that
radio button’s state goes to on while the other radio
buttons in the group goto off. An application developer
can override this behavior by defining their own handler.
A radio button can become a memberofa groupby theirname.

Form list selection—Displays a list of elements that the
user can individually select. Selection can be one or
multiple items in the list. When the default action is
performed for a one-selection model, the single item
gets selected while the others are deselected. For the
multi-selection model, the states ofeach individual item
toggles between on andoff.

Form dropdown list selection—This widget is similar to
the list one-selection model, when one item gets
selected, the other items are deselected. However, as
rendered, it shows like a text field and expands when
users are to select items in the list. This also allowsfor an

input mode where the user can type text into the field
(like the text inputfield).

Form file upload—tThis widget allows for submission of
binary data. On a desktop computer, users can specify a
file to “upload”to the server. In the mobile case, we’ll
usethis to invoke special functions on the mobile device
and upload its data. Some examples include image,
audio, video capture. Users select the widget and select
it to launch the specific mobile device capture tool. The
tool runs and capturesthe data. The application can then
retrieve the data and upload in the form on a form sub-
mission.

Form hidden element—This is a non-visible widget that
includes only of a nameandvaluepair. It is useful when
values need to be posted along with the form. Users are
notableto interact with this widget sinceit is not visible.

SVG—Providesa vector-based graphics display canvas on
whichto render graphical elements. See section on vec-
tor graphics for more details.

Active Object—This is an application definable widget
that can do what the developer sees fit. This type of
widgetis useful in the cases whenthe basic elements are
not enoughto renderthe user interface. Some examples
include video players, audio players, scrolling items,
etc.

Whatis claimed is:

1. A mobile device, comprising:
at least one processor;
memory storing instructions, the instructions comprising:

instructions for a declaratory markup language renderer
configured to instruct the at least one processor to
render a declaratory markup language component ofa
widget application on a display of the mobile device;

instructions for a compiled programming language
execution engine configuredto instruct the at least one
processor to execute a compiled programming lan-
guage componentofa widget application installed on
the mobile device;

20

25

30

35

40

45

50

55

60

65

66

instructions for a mobile device API, adapted to be
accessible to a widget application, and providing
access to a device service API of the mobile device;
and

instructions for a widget manager configuredto instruct
the at least one processorto: crawl one or moreremote
network resources accessible via a network for widget
applications; to automatically determine one or more
of the widget applications for download based on a
user profile associated with the mobile device; to
automatically download the one or more widget
applications, from a remote network location to the
mobile device, to constitute a set of downloaded wid-
get applications; andto install the set of downloaded
widget applications, wherein the downloading and
installing are based on the userprofile associated with
the mobile device, without user interaction with the
mobile device;

wherein the set of downloaded widget applications cor-
responds toafirst set of widget applications; and

instructions for the widget manager configured to
instruct the at least one processor to automatically
uninstall one or both ofthe first set of widget appli-
cations and a secondset ofwidget applications on the
mobile device based at least in part on user prefer-
ences, without user interaction with the mobile
device.

2. The mobile device of claim 1, wherein the instructions

for the widget managerare further configured to instruct the
at least one processorto initiate displays of the set of down-
loaded widgetapplicationsor descriptions ofthe set ofdown-
loaded widget applications on the display of the mobile
device.

3. The mobile device of claim 1, wherein the instructions

for the widget managerare further configured to instruct the
at least one processorto automatically download descriptions
ofwidget applications from a network location to the mobile
device based on the user profile associated with the mobile
device.

4. The mobile device of claim 1, wherein the instructions

for the widget managerare further configured to instruct the
at least one processorto delete widget applications from the
mobile device one or both ofthefirst set of widget applica-
tions and a secondset of widget applications on the mobile
device basedat least in part on user preferences, without user
interaction with the mobile device.

5. The mobile device of claim 1, wherein the instructions
for the widget managerare further configured to instruct the
at least one processorto:

receive a search query from a user ofthe mobile device; and
send the query to the network location to initiate a search

for widget applications related to the query.
6. The mobile device of claim 5, wherein the instructions

for the widget managerare further configured to instruct the
at least one processorto:

receive widget applications or descriptions ofwidget appli-
cations in response to the query, from the network loca-
tion or a different network location, the received widget
applications or descriptions being related to the query;
and

display the received widget applications or descriptions of
widget applications on the display of the mobile device.

7. The mobile device of claim 1, wherein the instructions
for the compiled programming language execution engine
provide access to the device service API ofthe mobile device.

Booking, Exh. 1054, Page 107

Booking, Exh. 1054, Page 108

US 8,595,186 B1
67

8. The mobile device of claim 1, wherein the compiled
programming language execution engine is a compiled
scripting language execution engine.

9. The mobile device of claim 8, wherein the instructions
for the compiled scripting language execution engineinstruct
the at least one processor to execute compiled JavaScript.

10. The mobile device of claim 8, wherein the instructions
for the compiled scripting language execution engine instruct
the at least one processor to execute bytecode.

11. The mobile device of claim 8, wherein the instructions
for the compiled scripting language execution engineinstruct
the at least one processor to execute object code.

12. The mobile device of claim 1, further comprising
instructions for an installation component configured to
instruct the at least one processor to permanently install a
widget application onto the mobile device.

13. The mobile device of claim 1, wherein the instructions
for the declaratory markup language renderer are configured
to instruct the at least one processor to render images and/or
video on a mobile device display.

14. The mobile device of claim 1, wherein the device
service API is an API for a camera of the mobile device.

15. The mobile device of claim 1, wherein the device
service API is an API for a video-recorder of the mobile
device.

16. The mobile device of claim 1, wherein the device
service API is an APIfor displaying content in a home screen
of the display of the mobile device.

17. The mobile device of claim 1, wherein the device
service API is an API fora touchscreen of the mobile device.

18. The mobile device of claim 1, wherein the device
service API is an API for a transceiver of the mobile device.

19. The mobile device of claim 1, wherein the device
service API is an API for a raw network connection of the
mobile device.

20. The mobile device of claim 1, wherein the device
service API is an API for a network socket.

21. The mobile device of claim 1, wherein the device
service API is an API for an audio speaker of the mobile
device.

22. The mobile device of claim 1, wherein the device
service API is an API for a global positioning system (GPS)
device of the mobile device.

23. The mobile device of claim 1, wherein the device
service API is an API for a microphoneofthe mobile device.

24. The mobile device of claim 1, wherein the device
service API is an API for using an email software program on
the mobile device.

25. The mobile device of claim 1, wherein the device
service API is an API for using a software calendar of the
mobile device.

26. The mobile device of claim 1, wherein the device
service API is an API for accessing a data storage of the
mobile device.

27. The mobile device of claim 1, wherein the device
service API is an API for using a personal information man-
ager software program.

28. The mobile device of claim 1, wherein the device
service API is an API for an accelerometer of the mobile
device.

29. The mobile device of claim 1, wherein the device
service API is an API for a software program for storing and
managing personal contacts.

30. The mobile device of claim 1, wherein the device
service API is an API for a text messaging service of the
mobile device.

20

25

30

35

40

45

50

55

60

65

68

31. The mobile device of claim 1, wherein the device
service API is an API for an instant messenger and/or chat
service of the mobile device.

32. The mobile device of claim 1, wherein the device
service API is an API for a voice call service of the mobile
device.

33. The mobile device of claim 1, wherein the device
service API is anAPI for a media player of the mobile device,
the media player adapted to play at least one ofaudio data and
video data.

34. The mobile device of claim 1, wherein the device
service API is an API for a battery level determiner of the
mobile device.

35. The mobile device of claim 1, wherein the device
service API is an API for a brightness level control for the
display of the mobile device.

36. The mobile device of claim 1, wherein the device
service API is an APIfor a vibrator of the mobile device.

37. The mobile device of claim 1, wherein the device
service API is an API for allowing a software application on
a mobile device to send data to another software application
on the mobile device.

38. The mobile device of claim 1, wherein the device
service API is an API for displaying customized content
within a screen saver.

39. The mobile device of claim 1, wherein the device
service API is an API for displaying content on a second
display of the mobile device.

40. The mobile device of claim 1, wherein the device
service API is an API for generating a popup notification on
the mobile device display.

41. The mobile device of claim 1, wherein the device
service API is an API for monitoring for an event comprising
one ofa receipt of a text message, receipt of an email, receipt
of a phonecall, or activation of an alarm, the system config-
ured to execute a widget application in responseto the event.

42. The mobile device of claim 1, wherein the device
service API is an API for accessing a mobile device ID.

43. The mobile device of claim 1, wherein the device
service API is an APIfor a wireless signal strength determi-
nation unit.

44. The mobile device of claim 1, further comprising
instructions for a data synchronization engine configured to
instruct the at least one processor to synchronize network
content between a server and the mobile device, the network
content being utilized by the widget application.

45. The mobile device ofclaim 44, wherein the instructions
for the data synchronization engineare further configured to
instruct the at least one processor to prefetch content for a
widget application installed on the mobile device.

46. The mobile device of claim 1, further comprising
instructions for a data access management component con-
figuredto instruct the at least one processorto allow a widget
application to write data to a first storage that is inaccessible
to other widget applications and software programsinstalled
on the mobile device, and to allow a widget application to
write data to a second storage that is accessible to other
widget applications and software programsinstalled on the
mobile device.

47. The mobile device of claim 1, further comprising
instructions for a data synchronization engine configured to
instruct the at least one processor to synchronize widget
applications between a server and the device, such that speci-
fied widget applications are sent by the server to the device
during a synchronization process of the device.

48. The mobile device of claim 1, wherein the mobile
device is further configured to store network content.

Booking, Exh. 1054, Page 108

Booking, Exh. 1054, Page 109

US 8,595,186 B1
69

49. The mobile device of claim 1, where the execution
engine comprises a virtual machine adapted to execute byte-
code.

50. The mobile device of claim 49, wherein the virtual
machine is adapted to execute compiled JavaScript.

51. The mobile device of claim 1, further comprising
instructions for a widget permissions engine configured to
instruct the at least one processorto preclude a widgetappli-
cation from accessing unauthorized functionality of the
device.

52. The mobile device ofclaim 51, wherein the instructions
for the widget permissions engine are further configured to
instruct the at least one processor to cease execution of a
widget application attempting to access unauthorized func-
tionality of the mobile device.

53. The mobile device ofclaim 52, wherein the instructions
the widget permissions engine are further configured to
instruct the at least one processor to add additional permis-
sions restrictions to the widget application attempting to
access unauthorized functionality of the mobile device.

54. The mobile device ofclaim 52, wherein the instructions
for the widget permissions engine are further configured to
instructthe at least one processor to mark a widget application
attempting to access unauthorized functionality ofthe mobile
device with a warning.

55. The mobile device of claim 1, further comprising
instructions for an advertisements engine configured to
instruct the at least one processorto:

receive advertisements from a server;
store the advertisements in a storage of the mobile device;

and

respond to an execution of a widget application on the
mobile device by retrieving at least one of the advertise-
ments from the storage and showing the at least one
advertisement on the display of the mobile device.

56. The mobile device ofclaim 55, wherein the instructions
for the advertisements engine are configuredto instruct the at
least one processor to receive advertisements that define
actionsforthe advertisements engineto initiate ifa userofthe
mobile device selects an advertisement shownon the display.

57. The mobile device ofclaim 56, wherein the instructions
for the advertisements engine are configuredto instruct the at
least one processor to initiate one or more of the following
actions in response to a user’s selection of an advertisement
shown onthe display:

initiate a telephone call to an advertised service or com-
pany;

show, on the display, additional text and/or image content
related to the selected advertisement;

play audio data related to the selected advertisement; and
play video data related to the selected advertisement.
58. The mobile device ofclaim 56, wherein the instructions

for the advertisements engine are further configured to
instruct the at least one processorto:

20

25

30

35

40

45

50

70

log data comprising one or moreof: (1) an amountoftimes
each of the advertisements are displayed on the display,
(2) user selections of advertisements shown onthe dis-
play, and (3) actions initiated by the advertisements
engine in responseto said user selections; and

send said logged data to a server over a network.
59. The mobile device of claim 1, further comprising:
instructionsfor a location module configuredto instruct the

at least one processor to determine a current location of
the mobile device.

60. A method comprising:
rendering, on a mobile device, a declaratory markup lan-

guage component of a widget application;
executing, on the mobile device, a compiled programming

language componentof the widget application;
automatically crawling, by the mobile device, one or more

remote network resources accessible via a network for

widget applications and determining one or moreofthe
widget applications for download based on a userprofile
associated with the mobile device, without user interac-
tion with the mobile device; and

automatically downloading andinstalling, by the mobile
device, the one or more widget applicationsto constitute
a set of downloaded widget applications from a remote
network location to the mobile device, without user
interaction with the mobile device;

wherein the set of downloaded widget applications corre-
sponds toa first set of widget applications; and

automatically uninstalling, by the mobile device, one or
both ofthefirst set of widget applications and a second
set ofwidget applications on the mobile device based at
least in part on user preferences, withoutuser interaction
with the mobile device; and

wherein executing the compiled programming language
component comprises making available to the widget
application an API to access a device service of the
mobile device.

61. The method of claim 60, wherein the compiled pro-
gramming language component comprises a compiled script-
ing language component.

62. The methodofclaim 60, where the device service is one
ofthe group consisting of: a camera, a video-recorder, a user
interface for a homescreen of a display of the mobile device,
a touchscreen, a transceiver, a raw network connection, a
network socket, an audio speaker, a GPS device, a micro-
phone, an email software program, a software calendar, a data
store, a personal information manager software program, an
accelerometer, a software program for storing and managing
personal contacts, a text messaging service, an instant mes-
senger service, a chat service, a voice call service, a media
player, a battery level determiner, a brightness level control
for the mobile device display, and a vibrator.

* * * * *

Booking, Exh. 1054, Page 109

