G
publishing partner (ﬁﬂ]

invant

“...[an] invaluable resource for developers and managers
who want to look past the standard stock quote service.”

—Eric Newcomer, CTO lona

Developing Enterprise

Web Services

An Architect’s Guide

SANDEEP CHATTERJEE, Pn.D.
JAMES-WEBBER, Ph.D.

Foreword by David Bunnell

Personal Computing Pioneer, CEQ of Upside Magazine, Founder of PC Magazine,
PC World, MaclWorld, Personal Computing, and New Media

Booking, Exh. 1053, Page 1

Developing Enterprise
Web Services

An Architect’'s Guide

Sandeep Chatterjee, Ph.D.
James Webber, Ph.D.

www.hp.com/hpbooks

PEARSON EDUCATION
\\ PRENTICE HALL PROFESSIONAL TECHNICAL REFERENCE
p’.iﬁ.mcg UPPER SADDLE RIVER, NJ 07458
PTR WWW.PHPTR.COM

Booking, Exh. 1053, Page 2

Library of Congress Cataloging-in-Publcation Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Mary Sudul

Cover design director: Jerry Vorta

Cover design: DesignSource

Manufacturing manager: Maura Zaldivar

Acquisitions editor: Jill Harry

Editorial assistant: Brenda Mulligan

Marketing manager: Dan DePasquale

Publisher, HE Books: Mark Stouse

Manager and Associate Publisher, HP Books: Victoria Brandow

© 2004 Hewlett-Packard Corp.
Published by Prentice Hall PTR
P&N‘E‘ECE Pearson Education, Inc.
g_’%ﬁ Upper Saddle River, New Jersey 07458
This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
<http:/fwww.opencontent.org/openpub/>),

Prentice Hall books are widely used by corporations and government agencies for training, marketing,
and resale.

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact Corporate Sales Department, Phone; 800-382-3419; FAX: 201-236-7141;

E-mail: corpsales@prenhall.com

Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

Other product or company names mentioned herein are the frademarks or registered trademarks of their
respective OWnGrs.

Printed in the United States of America
2nd Printing

ISBN 0-13-140160-2

Pearson Education LTD.

Pearson Bducation Australia PTY, Limited
Pearson Education Singapore, Pte. Lid,
Pearson Bducation North Asia Ltd.

Pearson Education Canada, Ltd.

Pearson Educacicén de Mexico, S.A. de C.V.
Pearson Education — Japan

Pearson Education Malaysia, Pte. Ltd.

Booking, Exh. 1053, Page 3

FOREWORD

The singing workmen shape and set and join
Thetr frail new mansion’s stuccoed cove and quoin
With no apparent sense that years abrade...
—Thomas Hardy, Rome: Building a New Sireet in the Ancient Quarter, 1887

K, Rome wasn’t built in a day, but once they got the sucker ap and running, it was mag-
nificent and, hey, it's still there and functioning quite nicely. Having first heard about
Web services toward the end of the last century, I would have thought by now they would be
ubiquitous, At this point in time, I should be able to replace My Yahoo with a personalized Web
services portal uniquely suited to my quixotic nceds and desires. Years ago, I started planning
this portal when I heard Bill Gates waxing poetically about Hurricane-—ak.a, “My Services”—
which was Microsoft’s vision of creating a suite of personalized Web services for early adopters
like me. Unfortunately, Microsoft abandoned this effort when critics complained it was really an
insidious plot to own people’s personal information.
Mostly by pure dumb luck, I've been at the forefront of technology for most of my life. As
a young man just out of college, I was working in Albuquerque, New Mexico, at a small com-
pany called MITS which, with a little help from a then 19-year old Bill Gates and his buddy Paul
Allen, started the personal computing revolution. Taking advantage of this happy situation, I
leveraged my background in media to launch a magazine called Personal Computing. These
experiences led me to found a number of other magazines including PC Magazine, PC World,
Macworld, Publish, NewMedia, and BioWorld, Most recently I was CEO and Editor of Upside
Media, Inc. _
Throughout the years, T have been fortunate to have had a first-band involvement in the
evolution of many revolutionary new innovations, including the first personal computer (Altair),

xvii

Booking, Exh. 1053, Page 4

xviii Fareword

the first portal computer (Oshorne), the first spreadsheet (VisiCalc), the Macintosh Computer,
Multi-Media, the Internet, and even Biotechnology.

To say that I have seen my share of “paradigm shifts” is an understatement. Technology

innovation has been all around me. Who would have thought that a couple of guys in a smali
company in Albuguerque would start what would later become the PC revolution? Shouldn't it
have come out of IBM or Xerox or some other big technology company? That’s exactly the rub.
Innovative ideas don’t always come from the big companics, sometimes they spring out from the
big guys and at other times they spring out from the little guys,
) Based on all the above, I am completely convinced that Web services will level the playing
field between the little guy and the big guy as no technology has ever done before. Thanks to this
new revolution, the mom-and-pop company down the street can market their innovative software
and services to the neighborhood, to the global masses, as well as to the largest companies in the
world. But, we’re not only talking about the new and interesting. Even the most mundane and
boring is supported. The procurement system of the mom-and-pop company can seamlessly
interface with the billing system of a global multinational company and here’s where things pet
really interesting. The systems of the multinational can also interface with the systems of the
mom-and-pop company. The most innovative new systems to the most boring, existing tagks are
all available on an anybody-to-anybody basis. This will ultimately happen but like many great
technologies, it will require a lot of work and patience before the dream is truly realized.

As Sandeep Chatierjee and James Webber so eloguently and clearly explain in this book,
real world Web services and Web services-based applications can’t simply be put together in a
haphazard manner by merely reading through one of the Web services technology specifications.
You need to be familiar with these standards and they are extremely important, but they only
represent the basic building blocks. To “architect” and construct world-class enterprise services,
developers need a much deeper knowledge of a number of different standards and tools plus
their “inter-relationships” and best practices for use.

Web services are small segments of larger applications and as such, quality-of-service
issues loom large if they are to be truly useful and scalable. When building them, you have to
factor in such considerations as: Availability (how often is the service available for consump-
tion); Accessibility (can it serve a client’s request now); Performance (how long does it take to
respond); Compliance (is it really “standard™); Security (is it safe to interact with this service);
Energy (suitable for mobile apps); and Reliability (how often does it fail). Like building Rome,
building Web services gets complicated fast.

Sc how do you architect an application to be reliable if some of the Web services you are
depending on become unavailable? Can an application be written to seamlessly scale to support
new Web services from an expanding group of strategic partners? What about transactional
guarantees or atomic coordination between multiple, independent services? And can you accom-
plish your design goal and still provide adequate safeguards for corporate and individual infor-
mation and intellectual property?

Timagine that the software world would have given up in disgust by now, moved on to some
new paradigm, except for two factors. The first is that all the major software companies are com-

Booking, Exh. 1053, Page 5

xix

mitted 0 Web services to the tune of several billion dollars, and the second is that Web services
are, gosh darn-it, actually revolutionary. They are so revolutionary they represent a whole new
amazing way of doing business, which will transform the software industry forever and change
the very nature of the corporate IT department, thrusting it into the heart of strategic thinking.

Web services buiid on and extend the Web application model by allowing any client appli-
cation to access and use its capabilitics. By implementing capabilities that are available to other
applications (or even other Web services) via industry standard network and application inter-
faces and protocols, Web services represent rensable software building blocks that are URL
addressable. We're talking here about a concept called “anybody-to-anybody” communica-
tions—quoting from this book, “a person who implements a Web service can be almost one hun-
dred percent certain that anybody else can communicate with and use the service.”

Chatterjee and Webber aren’t so concerned, however, about Web services for the masses.
They tackle a much more difficult topic, which is Web services for enterprises. These are ser-
vices that have to be totally reliable, absolutely secure and extremely functional, Referring back
to the “building Rome” analogy, these guys aren’t really talking about building foot paths or
neighborhood streets, rather they are more interested in the avenues, aqueducts, and other major
arteries that seamlessly and safely interconnect the Porticus of Gaius to the Forum of Caesar—
the House of the Vestal Virgins to the Temple of Saturn, and back again. They are talking about
the communication and transportation systems that made Rome the most magnificent function-
ing city of the Ancient World.

In today’s global marketplace, world class enterprises need to interconnect with their cus-
tomers and partners internationally using legacy systemns that are mostly incompatible with each
other, and they need to do this relatively fast and as inexpensive as possible. Web services pro-
vide the solation but not without overcoming some fairly difficult obstacles.

In the Web services world, nothing is as simple as it may seem. Take transactions, for
example. Transactions are the bedrock on which B2B interactions rise or fall, they are a funda-
mental abstraction or requirement for what we sometimes refer to as “fault-tolerant computing.”
In a lucid and detailed styie, the authors point out that the choices for trapsactions are scarce
and, in fact, the OASIS Business Transaction Protocol (or simply BEP) is the “only Web ser-
vices transaction protocol with implementation we can use today.” They explain BTP and how to
implement it, but just in case you get in over your head, they also suggest that unless you have
specialist knowledge in this area, you should give “serious consideration” to buying or outsoure-
ing it,

As with transactions, this book goes into great detail to describe the Web services technol-
ogies and standards that can be used in the real world today. These address the most challenging
enterprise requirements including conversations, workflow, security, the challenges inherent in
the development of mobile systems, how to build user-facing portals by aggregating back-end
Web services, and how to manage an ever growing number and type of Web services within the
enterprise. But more than this, the authors telf you in a concluding section filled with source

" code and a step-by-step guide how to put this together. You'll feamn how to actually develop a

Booking, Exh. 1053, Page 6

X% Foreword

Web service application and deploy it onto the ‘Tomeat application server and the Axis SOAP
server (both freely avatlable).

The ambitious goal of Developing Enterprise Web Services; An Architect’s Guide is to
give readers a “thorough understanding” of the steps necessary to build and deploy Web services
and client applications that meet enterprise requirements. This is a lofty goal indeed, and you’ll
want to spend some serious time going through all the clear and concise content that the authors
have spent well over a year developing. 1 found it really amazing.

Fortunately, with the publication of this book, the Web services vision is about to take a
giant leap forward, We are building our “Rome” and the end is finally in sight. Chatterjee and
Webber, drawing on their own impressive experiences building Web services, painstakingly pro-
vide their readers with concise, yet thorough understanding of the most important issnes and
their solutions. They uriabashedly recommend best practices in application architectures, put key
technologies together and show their readers step-by-step how to build world-class, enterprise
Web services-based e-business applications. And darn it, it’s about time we had a book like this!

David Bunnell

Berkeley, California
September 2003

Booking, Exh. 1053, Page 7

CHAPTER 1

Introduction

eb services technologies are fundamentally changing the software industry, making the
Wrole of enterprise IT organizations moze strategic, and recasting the sofiware vendor-
consumer relationship. Web services are also being hailed by CEOs, CIOs, and CTOs as the
next-generation vehicle for driving topline growth and controlling bottom lines. But, simply
jumping on the Web services bandwagon won’t lead to corporate success. Web services are sim-
ply a platform; how companies implement a solution using this new technology determings their
success and ultimately their return on investment (ROI). In this book, we take a no-nonsense,
strategic view of developing eaterprise Web services and applications: looking at where the
technologies are, where they are going and how companies need to architect their own Web ser-
vices solutions to not get left behind.

Web services platforms provide the functionality to build and interact with distributed
applications by sending eXtensible Markup Language (XML) messages. Additional technology
layers are constantly emerging, others are being refined, and still others are being discarded. The
platform is essentially a moving target.

To stay on the leading edge, companies are building and deploying their applications
while work on the underlying platform continues. And, as with any industry standard initia-
tives which require buiiding consensus, the Web services platform will remain a work in
progress for some time,

How can you build any meaningful application, let alone mission-critical enterprise applica-
tions, on such a platform? If you are a developer or an architect.charged with building Web ser-
vices or applications that consume Web services, you have to know where the platform is today,
and where it is going. Otherwise, the endless pit of application rewrite snd maintenance overhead
will far outweigh any benefits that can be garnered from this promising new technology.

Booking, Exh. 1053, Page 8

2 Chapter 1 » Introduction

Real world, enterprise Web services and applications cannot be developed by siraply reading
through the Simple Object Access Protocol (SOAP) or the Web Services Description Language
(WSDL) specifications. Developers must understand a number of different standards and technolo-
gies, and more importantly, their inter-relationships as well as best practices for their use,

Consider an e-business application that requires interaction between multiple partner Web
services. Understanding SOAP and WSDL gives developers the ability to write Web services
and consume them within their application. But, how must the application be architected to be
reliable in case some Web services become unavailable? How can an application be written to
seamlessly scale and support new Web services from a growing list of strategic pattner compa-
nies? What are the best practices for developing mobile Web service applications, and how can
individual Web services be created to support quality-of-service (QoS)? How can transactional
guarantees or atomic coordination between multiple, independent Web services be supported by
applications? And, how can all of this be done securely so that corporate and individual informa-
tion and intellectual property are safepuarded?

In this book, we focus on how to develop Web services and applications within real world
enterprise environments. We describe not only the vanilla Web services platform consisting of
SOAP, WSDL, and UDDI (Universal Description, Discovery and Integration), but also build on
this to include the other technologies, standards, and emerging standards that provide support for
transactions, security and authentication, mobile and wireless, quality-of-service, conversations,
workflow, interactive applications and portals, as well as systems management.

‘We discuss the opportunities represented by Web services and, more importantly, describe
best practices and architectural patterns for building enterprise systems that position you and _
your organization to most fully leverage those opportunities. We do not summmarize any one Web
services standard, but instead provide a sufficiently thorough discussion of all of the critical
technologies and standards, as well as their inter-relationships, that are necessary for building
enterprise Web services and applications. Our focus is on developing enterprise Web services
and applications based on industry standard Web services techuologies, not on summarizing
standards.

Let’s gei started by reviewing what Web services are and why they are important.

What Are Web Services?

Web services represent a new architectural paradigm for applications. Web services implement
capabilities that are available to other applications (or even other Web services) via industry
standard network and application interfaces and protocols. An application can use the capabili-
ties of a Web service by simply invoking it across a network without having to integrate it. As
such, Web services represent reusable software building blocks that are URL addressable. The
architectural differences between monolithic, integrated applications and Web services-based
applications are depicted in Figure 1-1.

Booking, Exh. 1053, Page 9

What Are Web Services? 3

Application

Capability A Capability B Capability €

(&) Monotithic application with integrated capabilities A,B, and C.

i URL Addresses
Capability A
Client
Capability B Application
Capability C

{b) Client application Invoking remote Web services for capabilities A, B, and C,

Figure 1-T The architectural differences between (a) a monolithic application with integrated
capabilittes, and (b} a distributed application using Web services-based capabilities.

The capabilities provided by a Web service can fall into a variety of categories, including:

* Functions, such as a routine for calculating the integral square root of a number.

» Data, such as fetching the quantity of a particular widget a vendor has on hand.

» Business processes, such as accepting an order for a widget, shipping the desired
quantity of widgets and sending an invoice,

Some of these capabilities are difficult or impractical to integrate within third-party applications.
When these capabilities are exposed as Web services, they can be loosely coupled together,
thereby achieving the benefits of integration without incurring the difficulties thereof.

Web services expose their capabilities to client applications, not their implementations,
This allows Web services to be implemented in any language and on any platform and still be
compatible with all client applications.

Booking, Exh. 1053, Page 10

4 Chapter 1 » Introduction

Each building block {Web service) is self-contained. It describes its own capabilities, pub-
lishes its own programmatic interface and implements its own functionality that is available as a
hosted service. The business logic of the Web service runs on a remote machine that is accessi-
ble by other applications through a network. The client application simply invokes the function-
ality of a Web service by sending it messages, receives return messages from the Web service
and then uses the results within the application. Since there is no need fo integrate the Web ser-
vice within the client application into a single monolithic block, development and testing times,
maintenance costs, and overall errors are thereby reduced.

Assume you want to build a simple calculator application that determines the appreciation
in stock price for any company given its corporate name and the date the stock was originally
purchased. The application must do the following:

* Determine the stock ticker symbol for the company based on the company name.

* Determine the latest price of the stock based on the ticker symbol.

* Determine the historical price of the stock for the given date based on the ticker
symbol.

+ Calculate the difference between the two stock prices and present it to the nser.

This seemingly trivial application is in fact enormously complex. Right from the get go
there are problems. We have to build a database with the names of all the companies in the coun-
try and their associated stock ticker symbol. More importantly, we must maintain this database
as companies are newly listed, become delisted, change their names or their ticker symbol, or
merge. To access the real-time price of a stock, we must have a relationship with a financial or
brokerage firm. The legal complexities and hassles in architecting such a relationship is bad
enough, not to mention the IT infrastructure that must also be put into place,

Unless you work for a brokerage firm or are in the business of maintaining stock informa-
tion, the time and costs necessary to build the infrastructure necessary to support the stock
appreciation calculator are enormous and, in most cases, prohibitively so, Until a brokerage firm
itself decided to provide such a caleulator, customers would have to make do without it.

Web services simplify and in many ways eliminate the need to build for yourself the sup-
port infrastructure—both legal and technical. The calculator can be developed by simply passing
messages between the calculator application and the appropriate set of Web services. Figure 1-2
graphically depicts the flow of messages, and the fundamental architecture of a Web services-
based stock price appreciation caleulator,

Messages are sent between the calculator application and the following three Web services:

*+ StockTickerNameToSynbolConverter, which accepts a company’s name and
provides the ticker tape symbol,

* RealTimeS tbckQuot eLookup, which provides the latest price of a stock based on
its ticker tape symbol.

Booking, Exh. 1053, Page 11

What Are Web Services? 3

/
Stock Price Appreciation
Calculator Application
"Hewlett-Packard" o
» Stock Ticker Name
ApAn] Yo Symbol Converter
< HPQY Weh Service
IIHPQH N
User Business 1 Real Time Stock Quote
Interface Lngic P "17,51" Look Up Web Service
}
"HPQ", "August 15, 2002"
"| Historical Stock Quote
*15,00% Look Up Weh Service

Figure 1-2 Sending and receiving Web service messages to build a stock price appreciation
calcutator.

» HistoricalStockQuoteLookup, which provides the historical price of a stock
based on its ticker tape symbol and the desired date.

Since each of these three Web services is provided, hosted, and managed by another com-
pany, the developer of the calculator application has only to focus on his key insight or contribu-
tion alone. Complex, domain-specific issues such as the fact that Hewlett-Packard’s ticker tape
symbol was HWP and only recently became HPQ are (or should be) handled by the Web ser-
vices directly. Using these threc Web services, the application can easily determine the stock
price appreciation for Hewlett-Packard from August 15, 2002, to be $17.51 - $15.00 = $2.51.
Based on the data from the Web services, the calculator application can provide further analysis,
such as the percentage appreciation, and present all of the information in an easy-to-understand,
graphical manner. :

Assuming the required capabilities exist and are available as Web services, developers can
focus on their unique value-added piece and utilize third-party Web services for the remainder of
the functionality. The benefits of using Web services are clear:

* Dramatically cut application development costs by focusing on your own value-added
contribution and using third-party Web services for everything else.

Booking, Exh. 1053, Page 12

6 Chapter 1 » Introduction

» Integrate both data and business processes with market constituents and business
partners that have desired domain expertise or capabilities.

+ Reduce or eliminate many emors born out of complex and large monolithic
applications.

+ Simplify application maintenance and customization by segmenting an application into
the client application and each of its consumed Web services.

= Significantly reduce time-to-market,

As we take this idea further, and more and more companies expose some of their internal
capabilities as Web services, the real value of Web services lies in the composition of a set of
Web services. Consider the following two companies, Cne is a traffic service company that mon-
itors automnobile traffic on major roads and highways and predicts expected travel times. The
second is a taxi reservation service company that allows customers to reserve taxis for pickup at
a specified location and time. Bach of these companies and their products are compelling in and
of themselves. However, if these companies exposed their capabilities as Web services, these
services can be composed together into a single, more compelling and useful service-—either by
one of these two companies themselves or by a third company.

As an example, consider taking a taxi to the airport before catching a flight for a meeting,
By leveraging the capabilities of both companies through their respective Web services, a trav-
eler can reserve a taxi and rest assured that if an accident or other traffic conditions cause an
unexpected increase in her travel time, the taxi reservation can be held and an alert sent to the
traveler advising her of the updated taxi schedule as well as the traffic situation that caused the
change. By simply and intelligently combining the individual services of the two companies, we
are zble to create a more compelling and useful service for travelers. The composition of Web
services from different enterprises is depicted in Figure 1-3. The technologies that form the
foundations of Web services are SOAP, WSDL, and UDDIL

SOAP

Simple Object Access Protocol (SOAP) is an XML-based mechanism for exchanging informa-
tion between appHeations within a distributed environment. This information exchange mecha-
nism can be used tc send messages between applications and, more specifically, can be used to
implement remote procedure calls (RPCs). RPCs allow one application to invoke and use a pro-
cedure (or capability) of another, possibly remote, application.

SOAP does not specify any application iraplementation or programming model. Instead, it
provides a mechanism for expressing application semantics that can be understood by applica-
tions no matter how they are implemented. Accordingly, SOAP is application language- and
platform-independent. SOAP is typically used in conjunction with HTTP, which supporis easy
traversal of firewalls and is sufficiently lightweight fo be used within mobile and wireless envi-
ronments.

Booking, Exh. 1053, Page 13

What Are Web Services? 7

Traffic Company

Taxi Booking
Company

Figure 1-3 Compaosing together services exposed by multiple corporations to create a separate
service offering.

WSDL

Web Services Description Language (WSDL) is an XML-based language for describing Web
services. Through a WSDL description, a client application can determine the location of the
remote Web service, the functions it implements, as well as how to access and use each function.
Atfter parsing a WSDL description, a client application can appropriately format a SOAP request
and dispatch it to the location of the Web service.

WSDL descriptions go hand-in-hand with the development of a new Web service and are
created by the producer of the service, WSDL files (or pointers thereto) are typically stored in
registries that can be searched by potential users to locate Web service implementations of
desired capabilities.

UDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for a registry of
information for Web services. UDDI defines a means to publish and, more importanily, discover
{or search for) information about Web services, including WSDL. files,

Booking, Exh. 1053, Page 14

8 Chapter 1 « Introduction

W3aDL WSDL
UpDI
Publish Discover
Web Service Consuming
Producer Application
k Invoke)
SOAP

Figure 1-4 The retationships between SOAP, WSDL, and UDDI.

After browsing through an UBDDI registry for information about available Web services,
the WSDL for the selected sexvice can be parsed, and an appropriaie SOAP message can be sent
to the service, Figure 1-4 graphically illustrates the relationships between SOAP, WSDL, and
UDDIL

Now that we have a glimpse into what Web services are and how they can be used to build
interesting applications and systems, we next discuss why this new technology is important.

Why Web Services Are Important

Web services represent a new paradigm in application architecture and development, The impor-
tance of Web services is not that they are new, but that this new techuology addresses the needs
of application development. To understand this new paradigm, let us first look at the application
paradigm that preceded Web services—Web applications.

The Evolution of Web Applications

Web applications are applications that are available via the World Wide Web (Web) and allow
any user anywhere in the world access to its capabilities. This is in contrast to older client-server
applications in which only dedicated elients could access the applications residing on the server.
Web applications grew the user base from just a few hundred client machines accessing a client-
server application, to millions of users across the Web accessing a Web application.

The Web opened up the floodgates to Web applications by ailowing users to simply spec-
ify a URL within a Web browser. Web applications also increased the difficulty of developing
applications because a Web application client (a PC browser) has no knowledge of the applica-
tion’s communication requirements or underlying systems. Industry standard technologies such

Booking, Exh. 1053, Page 15

Why Web Services Are Important N

as HTTP and HTML were used to bridge this gap between Web application clients and the Web
applications themselves, Application servers and other middleware emerged to reduce the com-
plexities of building Web ‘apps while still allowing pervasive access to each Web application.

Web services build en and extend the Web application mode]. Web applications allow any
Web browser to access its functionality, with the application user interface presented through the
browser. Web services take this a step further and allow any client application to access and use
its capabilities. :

A Web application allows universal user access to its capabilities by supporting industry
standard interfaces to its user interface. They do not allow extending or adding to their capabili-
ties through programmatic access. To leverage the functionality of a Web application and buijld
on it, complex and often unreliable techniques, such as screen scraping, must be used. Web set-
vices address this issue by allowing programmatic access to the Web services’ capabilities using
industry standard interfaces and protocols. The evolution of Web applications to Web services is
shown in Figure 1-5.

Proprietary Interfaces & Industry Standard
Custom Development Interfaces
Web Application Web Application End
Users

Business Logic ——»| User Interface

{a) Web application architectura

Industry Standard
Interfaces

4

Weh Application
User Interface k‘ End

Users
Standard /’_”

Application

Web Service
Business Logic

Another Web
Service

{b) Web services architecture

Figure 1-5 Evolution of Web applications to Web services and key architeciural differences.

Booking, Exh. 1053, Page 16

10 Chapter 1 = Introduction

Web services advocate a services-oriented architecture for applications in which a soft-
ware component provides its functicnality as a service that can be leveraged by other software
components. Such a service model abstracts away many complex issues that arise from software
component integration, including platform compatibility, testing, and maintenance,

Since Web service clients do not have information necessary to communicale with a Web
service, a set of standards is necessary to allow any-to-any communications. Web service stan-
dards build on previous standards for communications and data representation, such as HTTP
and HTML.

The key enabler for Web services is XML. Although HTML and XML. are similar in that
both are homan-readable markup languages, HTML is for presentation markup while XML is
for semantic markup. This critical attribute of XML supports expressing application and func-
tional semantics in a platform-independent manner that enables amy-to-any information
exchange,

Some argue that Web services are nothing new; they are simply the lafest incamation of
distributed computing. In some sense that may be true, but what is it about Web services that is
driving the incredible buzz? Why are entrepreneurs, CEOs of established companies, and indus-
try analysts excited about this technology? Ir the next section, we see that Web services are not
just another distributed computing platform.

Not Just Another Distributed Computing Platform

Web services are indeed a technology for distributed computing and there is one critical distinc-
tion between Web services and distributed computing technologies that have come before, A
persen who implements a Web service can be almost one hundred percent certain that anybody
else can communicate with and use the service. The breakthrough of Web services is precisely
the anybody-to-anybody communications that it enables, The confidence level Web services
engender in its developers is similar to that of HTML Web pages. The developer of an HTML
page is certain that anybody with a browser can view the Web page.

Web services grew out of a need for a distributed computing application environment that
was not as difficult to deploy to as the Common Object Request Broker Architecture (CORBA)
or Microsoft’s Distributed Component Object Model (DCOM), and also offered greater interop-
erability. Both CORBA and DCOM aimed to provide a distributed computing environment
across heterogeneous environments. Unfortunately, neither supported environments or technolo-
gies that were sufficiently far-reaching to enable heterogeneous communications at the anybody-
to-anybody scale.

In a sense, Web services sacrifice the richness of capabilities that are provided by previous
distributed computing environments, which are necessary to a small group of all applications,
for 2 much simpler and more ubiquitous solution that is applicable for the vast majority of appli-
cations. This is not to say that Web services place restrictions on their use. Additional capabili-
ties can be layered on top of the Web services platform to address varying needs,

Booking, Exh. 1053, Page 17

Web Services and Enterprises EE|

Applications that are exposed as Web services have a large base of other applications (that
are also exposed as Web services) with which to communicate. Since they are based on simple
and open industry standards (or de facto standards), Web services make significant inroads
toward ubiquitous interoperability. Interoperability here is on the scale of the Web or the Inter-
net, not just a group or organization. .

Based on industry standards and supporting anybody-to-anybody interoperability, Web
services are poised to be the platform that delivers on the needs of e-businesses. All companies
interact with other companies in the course of conducting their businesses, Manufacturing com-
panies interact with component suppliers, distributors interact with manufacturing companies,
retailers interact with distributors, and so on. Initiaily, these interactions were manual, conducted
by mail, phone, and fax.

Web applications allowed companies to interact with one another by exposing some of
their capabilities and business processes to others on the Web, But, most of the time, this still
required a human being interacting with the Web application on the other side. Web services
remove the need for constant human intervention while companies interact by enabling pro-
grammatic conversations between applications.

By removing this barrier to e-business inieractions, Web services enable new business
relationships as well as more fluid relationships that can be configured and reconfigured on-the-
fly. Althongh Web services offer numerous benefits, they also present many challenges and risks
within traditional enterprise environments, We discuss Web services and how they fit within
enterprises next.

Web Services and Enterprises

On the surface, Web services appear to be a risky proposition for enterprises. Why will IT orga-
nizations that have demanded full control over all aspects of enterprise applications adopt a dis-
tributed and shared software architecture that moves administrative control over various parts of
applications outside of the enterprise firewall? The runtime characteristics of Web services-
based applications will have critical dependencies on remotely hosted and remotely managed
external businesses. This is a severe departure from the centrally controlled as well as the guar-
anteed predictability and reliability that have become the hallmarks of enterprise software and
the IT organizations that manage them.

The reasons for this break are clear, Web services enable the flow of data and business pro-
cesses between business pariners—between enterprises as well as between multiple organiza-
tiens or groups within an enterprise—to a degree that have not been possible before. Businesses
that could not previously communicate and applications that could not previously interoperate
can now do so.

Web services enable companies to drive topline growth by integrating together different
services and introduce new revenue-generating services. At the same time, Web services gim-

Booking, Exh. 1053, Page 18

12 ' Chapter 1 + Introduction

plify integration, reducing time-to-market and costs, as well as support operational efficiencies
that streamline the bottom line.

The potential benefits of Web services are enormous. The risks are equally great, if not
greater. Enterprise IT organizations will find themselves in the middle, responsible for reconcil-
ing the benefits with the risks of adopting Web services within the enterprise.

IT organizations, in an effort to gain a controlling foothold over risky and potentially
harmful Web services traffic, will insist on controlling which Web services applications interact
with one another. A misbehaving Web service will simply be cut off from interacting with any
enterprise applications; such cut offs may even be preemptive if there is a history of problems or
a perception of a threat.

To accomplish this, IT will take on a more strategic role within organizations and align
itself more closely with individual business units. Critical decisions by business units, such as
the pariners from whick to source components, will have to be cleared by IT if those pariners’
Web services will interact with the applications or Web services of the company.

This will have major ramifications for enterprise application architectures. Enterprise
applications will support dynamic and swappable Web services—hardwired Web service invoca-
tions will no longer suffice. Moreover, [T will use management environments to deploy enter-
prise-wide policies for Web services that will monitor and strictly enforce the Web services that
applications can use,

There is no doubt that the uptake of Web services within the enterprise will require
changes. Many of these changes will be to established procedures and existing policies that have
been supported by years of experience and billions of dollars. Nonetheless, the potential bene-
fits—both financial and strategic—to adopting Web services are sufficiently large to justify such
changes.

Moving Forward

As organizations transition from researching Web services technologies and building internal
prototypes to early-adopter deployments, and then eventually to mainstream adoption of Web
services, the key differentiator and requirement is that these applications and systems are appro-
priate for “real world” deployment and usage. Some of the early prototypes built using Web ser-
vices were in many ways toys. All of the Web services and client applications run on a single
machine, hosted by the same application server, in a fully controlled environment. Many of these
services and applications that once worked as prototype systems will no doubt break—some
immediately, while others may take more time to break (which is much worse}.

The next few years will see Web services and applications become hardened and ready for
“real world” deployment. The real world is indeed a cold and hard place. Web services run
remotely, sometimes go down and become unavailable, evolve into multipte versions, as well as
encounter variances in network bandwidth and quality. Moreover, politics and competitive

Booking, Exh. 1053, Page 19

Summary 13

issues between organizations will resuit in unexpected outages and behaviors along critical
dependencies within applications.

Already we see many standards bodies that have been convened to address these and other
issues. Some of the technolegies that are being developed to address these needs will eventually
be automatic, transparent to developers as existing infrastructore and tools, such as middleware
and IDEs, and incorporate the technologics. Nonetheless, architects and developers will need to
have a keen understanding of these issues and technologies to develop enterprise-class Web ser-
vices and applications.

In this book, we look at the Web services platform---where it is now and where it is
going—with an eye toward developing robust enlerprise Web services and applications. In the
first of the three sections of this book, we begin by describing the core technologies that make up
the Web services platform. These are XML, SOAP, WSDL, and UDDI. This platform provides a
distributed computing environment based on standard interfaces and protocols, but it does not
implement all of the capabilities necessary for implementing enterprise systems.

In the second part of this book, we look at some of the standards and emerging technolo-
gies that, once layered on top of the vanilla Web services platform, address some of the critical
requirements of enterprise systers. These technologies include support for transactions, security
and authentication, conversations, workflow, quality of service, mobile and wireless, services
and systems management, as well as interactive applications and Web portals.

In the third part of the book, with both the vanilla Web services platform as well as some
of the critical advanced technologies and standards under our belt, we take an in-depth look and
provide step-by-step instructions for building an enterprise application using Web services.
Addressing one of the biggest pain points in business processes today, we develop an enterprise
procurement application that ties together the inventory and ordering Web services of multiple
suppliers and facilitates the procurement process. We first develop the entire application using
. only the vanilla Web services platform (as described in the first part of the book). After identify-
ing the shortcomings of this jmplementation based only on the vanilla platform, we add to and
expand on the application using the advanced standards and technologies described in the sec-
~ ond part of the book.

‘We conclude this book by summarizing and highlighting some of the key points to remem-
ber when developing enterprise Web services and applications.

Summary

Web services represent enormous opportunities and challenges. How organizations negotiate
these hurdles will determine the benefits they incur. In this book, we describe the Web services
platform—where it is and where it is going-—so that developers building applications are cogni-
zant of the fluid nature of the platform and can address enterprise system requirements within
the coniext of a changing platform.

Booking, Exh. 1053, Page 20

14 Chapter 1 + Intraduction

Architect’s Note

+ Web services are remotely hosted and managed applications whose capabilities can be
accessed programmatically by client applications via an addressable URL.

* The core Web services platform, consisting of SOAP, WSDL, and UDDY, provides the
means for building distriboted applications based on industry standard technologies,
interfaces, and protocols.

* The core Web services platform does not provide all of the necessary capabilities on
which to build enterprise systems. Additional technologies are being developed and are
being standardized that can be layered on top of the core platform and provide support
for security and authentication, transactions, mobile and wireless access, quatity-of-
service, workflows, conversations, systems and service management, as well as
interactive applications and Web portals.

* Web services are important and different from other distributed computing
environments because they are based on indusiry standards that are nearly ubiquitous.
This allows unprecedented interoperability between applications as well as companies
and supports anybody-to-anybody applications.

* The adoption of Web services within enterprises will reguire fundamental changes fo
IT organizations that are responsible for deploying and maintaining enterprise systems.
In an effort to maintain control over enterprise systems within a Web services
environment, IT will take on a more strategic role that is aligned with individual
business units and become part of the business decision process,

Booking, Exh. 1053, Page 21

PART 1

Basic Web Services
Standards, Technologies,
and Concepts

n this first section of the book, we briefly review the industry standards, technologies and
l concepts that underlie Web services. These critical technologies support the development of
Web services as well as applications that use {(or consume) Web services, But, be forewarned
that these foundational technologies do not provide everything necessary to build Web services
and applications that meet enterprise requirements. We cover these advanced technologies in
Section Two of this book.

In this section, we describe the following technologies that together make up the basic
‘Web services platform:

Chapter 2: XML Fundamentals. In this first of three chapters in Part One, we start with
a discussion of the fundamentals of the eXtensible Markup Language (XML}, the basic technol-
ogy on which Web services are based. From network protocols up the stack to back-end data-
bases, XML in all its forms has had a conumoditizing effect on enterprise computing systems
and being both platform and language independent is a natural choice for the level of interopera-
bility required of Web services.

Chapter 3: SOAY and WSDL. Here we describe in detail the two technologies that
make up the foundations of Web services: SOAP and WSDL, SOAP (Simple Object Access
Protocol) is an XML-based mechanism for exchanging information between applications
within a distributed environment. This information exchange mechanism can be used to send
messages between applications and, more specifically, can be used to implement remote pro-
cedure calls (RPCs). WSDL (Web Services Description Language) is an XML-based language
for describing Web services. Through a WSDL description, a client application can determine

15

Booking, Exh. 1053, Page 22

16 Part 1 = Basic Web Services Standards, Technologies, and Concepts

the location of the remote Web service, the functions it implements, as well as how to access
and use each function.

Chapter 4: UDDI, In this chapter, we describe UDDI (Universal Description, Discovery,
and Integration), which is a specification for a registry of information for Web services, UDDI
defines a means to publish and, more importantly, discover (or search for} information, inelud-
ing WSDL files, about Web services. We also describe the UBR (UDDI Business Registry),
which is a global implementation of the UDPI specification.

After reading Section One, you will have a strong understanding of the technologies, stan-
dards and concepts underlying Web services, Refer to Section Three for a detailed, step-by-step
guide and lots of sample source code to actually develop Web services and client applications.

Booking, Exh. 1053, Page 23

CHAPTER 2

XML Fundamentals

he suite of technologies grouped under the XML umbreila provides the fundamental

building blocks of the Web services architecture. From network protocols through back
end databases, XML has had an advantageous effect on enterprise computing systems. Being
platform and language independent is a natural choice for building interoperable systems via
Web services, Given the importance of XML in enterprise computing, and specifically in Web
services, this chapter recaps the fundamentals of XML before embarking on a discussion of
more advanced topics such as namespaces and XML Schema.

XML.: The Lingua Franca of Web Services

XML is a standard for data mark-up backed by the World Wide Web Coxisortium, which has
been branded “the universal format for structured documents and data on the Web,”! The entire
XML suite of standards, models, and processing technologies have been under development
since 1998 with the initial XML specification, and has since been angmented by several addi-
tional supperting standards and notes that have brought XML to its current rich state. In fact,
though XML is undeniably a richly specified technology, it has retained its simplicity and the
entire XML platform can be profiled as follows:?

1. From the W3C Web Site at http://www,w3c.org/XML/
2. These (fewer than 10) points are based on the W3C’s “XML in 10 Points” available from http://
www.w3c.org/XML/1959XML-in-10-points

17

Booking, Exh. 1053, Page 24

18

Chapter 2 + XML Fundamentals

* XML is for Structuring Data
Structured data includes things like spreadsheets, address books, configuration
parameters, financial transactions, and technical drawings. XML is a set of rules for
designing text formats that support the developer in creating structured data. Though it
vaguely resembles source cade, XML is not a programming language, but it does make
it easy for a computer to generate data, read data, and ensure that the data structure is
unambiguous. XML avoids common pitfalls in langnage design. It is extensible,
platform-independent, supports intemafionalization and localization, and is fully
Unicode-compliant,

* XML Resembles HTML

Like HTML, XML makes use of tags (words surrounded by angle brackets, “<” and

>} and attributes (of the form name=“value”). While HTML specifies what each tag

and attribute means and often how the text between them will render in a browser,

XML, uses the tags only to delimit pieces of data and leaves the interpretation of the

data completely to the application that reads it.

XML is Human Readable, but Humans Shouldn’t Read It

Programs that produce structured data often store that data on disk, using either a

binary or text format. An advantage of a textual format is that it allows people, if

necessary, 1o look at the data without the program that produced it, using tools like fext

editors. XML files are text files that people shouldn’t have to read, but may read as and

when the need arises. Care must be taken when manually editing XML since its rules

are strict. A forgotten tag or an attribute without quotes makes an XML document

unusable. The official XML specification forbids applications from trying to second-

guess the creator of a broken XML file; if the file is broken, an application has to stop

and report an exror.

XML is Verbose

Since XML is a textual format and uses tags to delimit the data, XML files are nearly

always larger than comparable binary formats. That was a conscious decision by the

designers of XML. The advantages of a text format are evident, and the disadvantages

can usually be compensated at a different level by compression applications. In

addition, the transfer of XML across networks can be hastened by comununication

protocols such as those used in modems protocols and HTTP/1.1, which can compress

data on-the-fly, saving bandwidth almost as effectively as a binary format.

XML is a Suite of Technologies

XML 1.0 is the specification that defines what “tags™ and “attributes™ are. Beyond that

specification, the XML family is a growing set of modules that offer useful services to

accomplish important and frequently demanded tasks,

XML is Modular

XML allows you to define a new document format by combining and reusing other

formats. Since two formats developed independently may have elements or attributes

Booking, Exh. 1053, Page 25

XML Documents 19

with the same name, care must be taken when combining those formats. To eliminate
name confusion when combining formats, XML provides a namespace mechanism that
is supported in all XML-based technologies,
* XML is License-Free, Platform-Independent, and Well-Supported

By chooging XML as the basis for Web services, we gain access fo a large and growing
community of tools dand techniques on which to develop value. Basing Web services on
XML is similar to basing a database strategy on SQL—yoi still have to build your own
database, programs, and procedures that manipulate it, but there are many tools and
commodity components available to belp. Furthermore, since XML is license-free,
Web services can be built without incurring royalty payments,

While a full discussion of the subject of XML is beyond the scope of this book, before delving
deeply into developing Web services it is imperative that at least the basics of XML and XML
processing are understood. Although some of the XML detail inherent in developing Web ser-
vices can be abstracted by toolkits, the increasing popularity of XML af the application level
means that any learning at this point will, in addition to accelerating the rate of understanding
Web services technology, be generally valuable in day-to-day development. That said, it’s time
to get acquainted with some fundamental XML concepts.

XML Documents

The purpose of an XML document is to capture structured data, just like an object in an object-
oriented programming language. Documents are structured into a numober of elements, delimited
by tags which may or may not be nested within other elements.

Anyone familtiar with the syntax of HTML will immediately be comfortable with the look
and feel of XML, although anyone thinking about coding XML like HTML must be wary—
XML is extremely strict in ifs syntax, where the interpretation of HTML (particularly by brows-
ers) is quite permissive. As we progress through the examples, it is worth remembering the fun-
damental document syntax:

1. All tags must have corresponding end tags unless they are devoid of subelements, in
which case they can be represented as
<element-name .. attributes .. />

2. No element can overlap any other element, although nesting within elements is

atlowed.
3. A document can only have a single root element (which excludes the XML declaration
<?xml .. 7>},

4. Atfributes of an element must have unique names within the scope of a single tag.
5. Only element names and attribute name-value pairs may be placed within a tag declara-
tion.

Booking, Exh. 1053, Page 26

20 Chapter 2 + XML Fundamentals

The best way to understand XML is by example, and the XML docurent shown in Figure
2-1 is typical of the structure of most XML, documents, though it is somewhat shorter than most
we'll be seeing in the Web services world,

<?xml version="1.0" encoding="utf-8§"7>
<dvd>
<title>The Phaihtom Menace</title>
<year>»2001l</year>
</dvd>

Figure 2-1 A simple XML document.

Figure 2-1 shows a simple XML document that contains data about a DVD. The document
(as all XML documents should) begins with the XML Declaration, delimited by <? and ?>.
This declaration provides information for any programs that are going to process the document,
In this case it informs any processors that the XML document is encoded according to version
1.0 (at the moxmnent 1.0 is the first and only XML version and the 1.1 effort is underway) and the
underlying {extual encoding is UTF-8 as opposed to ASCIL

The remainder of the docurnent is where the actual structured data is held, In this case we
have a root element delimited by the dvd tag, which contains two subelements delimited by
the title and year tags. Those subelements contain textal data that we assume relates to the
name of the film on the disk and the year of its release {though this iz a convention and we could
name elements badly, just as we can poorly name variables when programming),

We can take this document one stage further and make it a little more useful for those pro-
grams who might want to derive richer information from it. The document shown in Figure 2-2
embellishes that from Figure 2-1 adding in the DVD regional information as an attribute to the
root element region="2*". We have also added a comment to aid human readability that is
delimited by <! -~ and -->.

<?xml version="1.0" encoding="utf-8v?>
<!-- This is the European release of the DVD -->
<dvd region="2%:
<title>The Phantom Menace</title>
<year>2001</year>
</dvd>

Figure 2-2 A simple XML document with attributes and comments,

The addition of the attribute in Figure 2-2 would, for instance, be of great help to a DVD
cataloging system that could use the region attribute to classify disks by their target geographical
region.

Booking, Exh. 1053, Page 27

XML Namespaces 21

XML Namespaces

Namespaces in object-oriented programming languages allow developers to name classes unam-
bignously. Given that different organizations (should) ase different namespaces for the software
compenents, even in the cases where two third-party software componenis contain a class with
¢xactly the same name, the fact that those classes are in different namespaces means that they
are easily distinguished from one another.

Unambiguous naming is a requirement that also permeates the XML world. For example,
it may be the case that several versions of a document with a root element dvd may exist, but the
structure of each is different. The way we distinguish the document that we want from a number
of avaitable dvd documents is by its XML namespace.

Unlike popular programming languages where specific scope resolution operators are used
to build namespaces (e.g., MyPackage . MyClagss in Java and MyNamesgspace: :MyClass in
C-++) the convention in XML is to use 2 URI (Universal Resource Identifier) as the namespace
identifier.

In fact, XML namespaces use URIls by convention onily. Strictly
speaking, an XML namespace is just 2 string. The value in using
URIs is that they ensure uniqueness that strings cannot.

The URI is the union of the familiar URL and the not-so-familiar URN (Uniform
Resource Name) schemes as shown in Figure 2-3 and Figure 2-4,

ftp://src.doc.ic.ac.uk

gepher: //gopher.dna.affrc.go.jp
http://www.arjuna.com
mallto:some.one@somewhere. com
news:uk,dobs.offered
telnet://foo.bar.com/

Figure 2-3 Some familiar URI schemes.

The general scheme for the construction of a URI is <scheme>:<scheme-spe-
cific~part>. An absolute URI contains the name of the scheme in use followed by a colon
{e.g., news :), which is followed by a string which is interpreted according to the semantics of
that scheme (i.e., uk . jobs . of fered identifics a particular Usenet newsgroup).

While the URI scheme dogsn’t mandate the meaning of the <scheme-specific-parts,
many individual schemes share the same form which most Web users will have experienced with
URLs {Uniform Resource Locator) where the syntax consists of a sequence of four pars:
-<scheme>: / /<authority><path>?<query> (for example, http://search. sun.com/

Booking, Exh. 1053, Page 28

22 Chapter 2 + XML Fundamentals

search/suncom/?qt=java). Depending on the scheme in nse, not all of these parts are neces-
sary but given those rules any vali¢ URI can be constructed.

Another good convention to adopt for namespaces is that the URJ
chosen shouid have some meaning. For instance, if a document
has a namespace which is a HTTP URL, then dereferencing that
URL should refrieve the schema which constrains that document.

A URN is intended to be a persistent, location-independent, resource identifier, In typical
situations a URN is used where a name is intended to be persistent. The caveat is that once a URN
has been affiliated with a particular entity (protocol message, Web service, and so on), it must not
be reused to reference another resource. The URNs in Figure 2-4 are typical of the kinds of iden-
tifiers we find in Web services applications {taken from OASIS BTP, see Chapter 7):

urn:cagis:names:te:BTP:1.0:core
urn:oasisnmames:te:BIP:1.0:qualifiers

Figure 2-4 An example of the URN scheme.

XML pamespaces affiliaie the elements and attributes of an XMI. document with
namespaces identified by URIs. This process is called qualification and the names of the ele-
ments and attributes given a namespace scope are called qualified names, or simply QNames .

Now that we understand we can qualify our documents with a namespace, we can extend
the example in Figure 2-2 to include namespace affiliation. Given that it is likely there will be
other DVD cataloging systems and those systems will also use elements with names like dvad
{which will likely have a different structure and content from our own version), the addition of a
namespace into our XML document confers the advantage that it cannot be mixed up with any
other similar-looking dvd documents from outside of our namespace, Our newly namespaced
document is shown in Figure 2-5.

<?xml version="1.0" encoding="utf-B%7>

<!~=- Thig is the Eurcpean release of the DVD -->
<d:dvd xmlns:d="http://dvd.example.com” region="2">
<d:title>The Phantom Menace</dstitle>
<d:year>2001</d;year>

</d:dvds>

Figure 2-5 A simple namespaced XML document with atiributes and comments.

We have iniroduced into Figure 2-5 an association between a prefix and a URJ (in this case
we've used a URL), using the xmlns atiribute from the XML Namespace specification. We

Booking, Exh. 1053, Page 29

XML Namespaces 23

then used that prefix throughout the document to associate our elements with that namespace.
Any XML processing infrastracture that reads our document does not see the elements as simply
their element names but de-references the URI to arrive at the form {URI}:<local name>
(e.g, {http://dvd.example.com} :dvd}) which is unambiguous, unlike the element
name alone (i.e., just dwvd). It is important to remember that the syntax {prefix}:<local
name> is not understoed by XML processing programs, it is a convention used when describing
qualified elements.

Although any element can contain a namespace declaration, the
style convention in XML is to declare all namespaces that a doc-
ument uses in its root element. Although this can make the open-
ing tag of the root element quite large, it does improve overall
document readability since we do not then pepper the document
with namespace declarations.

Explicit and Default Namespaces

XML permits two distinct kinds of namespace declarations. The first of these as we have
seen is the explicit form, whereby a prefix is given a namespace association (e.g.,
xmlng:d="http://dvd.example.com"), and then elements and attributes which belong
to that namespace are explicitly adorned with the chosen prefix. The second of these is the
defavit namespace declared as mlns=<uri> that provides a default namespace affiliation
which applies to any elements without a prefix.

The default namespace can be used to improve the readability of
an XML document. in documents where a particular explicit
namespace is predominantly used (like the WSDL or SOAP doc-
uments in Chapter 3), declaring a default namespace alleviates
the need to pepper the document with the same prefix all over.
Using this strategy, only those elements oulside of the default
namespace will need to be prefixed, which can make documenis
significantly easier to understand.

We present a modified version of the XML from Figure 2-5 in Figure 2-6, where the
default namespace declaration implicitly scopes all following elements within the http://
dvd.example.com namespace, like this: '

<?Pxml version="1.0" encoding="utf-8"7>

<!~- This is the European release of the DVD -->
<dvd smlns="http://dvd.example.com™ region="2">
<title>The Phantom Menace</title>
<year>2001</year>

</dva>

Figure 2-6 Using default namespaces.

Booking, Exh. 1053, Page 30

24 Chapter 2 « XML Fundamentals

Adding a namespace affiliation to an XML document is analogous to placing a Java class
into a specific package. Where the Java equivalent of in Figure 2-2 (which has no namespace
affiliation) might have been referenced by a declaration such as DVD myDVD, the equivalent
type of seference for the documeni in Figure 2-5 or Figure 2-6 would be com.exam-
ple.dvd.DVD myDVD, which when reduced to Java terms is clearly nnambiguous since only
the owner of the dvd. example . com domain should be using that namespace (and by infer-
ence shouild be the only party using that namespace to name XML documents),

Inheriting Namespaces

Once a defanlt or explicit namespace has been declared, it is “in scope™ for all child elements of
the clement where it was declared. The defanit namespace is therefore propagated to all child
elements implicitly unless they have their own explicit namespace.

This arrangement is common in WSDL files (Chapter 3) where
the WSDL namespace is the default namespace for an interface,
but where the binding elements use their own explicit
namespace. .

The rule of thurab for choosing a defauit or explicit namespace is that if you can’t see at a
glance yourself which namespace an element belongs to, then no one else will be able to and,
therefore, explicit namespaces should be used, If, however, it is obvious which namespace an
element belongs to and there are lots of such elements in the same namespace, then readability
may be improved with the addition of a default namespace.

And Not Inheriting Namespaces

Of course, a child may not necesszrily want to inherit the default namespace of its parent and
may wish to set it to something else or remove the defauit namespace entirely. This is not a prob-
lem with explicit namespaces because the child element can just be prefixed with a different
explicit namespace than its parent, as shown in Figure 2-7, where the genre element has a differ-
ent namespace affiliation than the rest of the document (which uses the default namespace).

<?xml version="1.0" encoding="utf-8"%>
<i-- This is the European release of the DVD —-->
<dvd smlns="http://dvd.example.com® region="29>
<title>The Phantom Menace</title>
<year>200Ll</year>
<g:genre xmlns:g="http://film-genre.example.com">
sci-fi
</g:genre>
</dvd>

Figure 2-7 Mixing explicit and default namespaces within a decument.

Booking, Exh. 1053, Page 31

XML Namespaces 25

It is importast to realize that any children of the genre element in Figure 2-7 that use the
default namespace will be using the default namespace of the dvd element since the genre ele-
ment only declares an explicit namespace for its scope, Similarly, with default namespaces, any
element is at liberty to define a namespace for itself and any of its children irrespective of the
namespace affiliations of any of its parent elements. This is shown below in Figure 2-8:

<?xml version="1.0" encoding="utf-8"?>
<!-- This is the European release of the DVD -->
<dvd mmilng="http://dvd.example.com” region="2">
<title>The Phantom Menace</title>
<year>2001l</year>
<genre xmlns ="http://film~genre.example.com">
sci-fi
</genre:>
< /dvd>

Figure 2-8 Mixing default namespaces within a document,

The genre element from Figure 2-8 declares that the default namespace for itself and its chil-
dren (if any) are, by default, in the namespace http://film-genre.example. com. This
differs from the example shown in Figure 2-7 since in the absence of any explicit namespace,
children of the genre element belong to the http: //film-genre. example. com and not

to the http: //dvd. example . com namespace as the outer elements do.
Of course it may be the case that an element does not require a default namespace and that

the parent default namespace is inapproprate. In such cases, we can remove any default
namespace completely, by setting it fo the empty string xmlng="".

For default namespaces, remember that the scoping rules are
based on the famitiar concept of “most local” where the declara-
tion nearest to the use has the highest precedence.

Attributes and Namespaces

So far all of our attention has been focused on the interplay between namespaces and ele-
ments. However, it is equally valid for attributes to be qualified with namespaces through the
same prefix syntax, When namespace-qualifying attributes have a defaunlt namespace, different
mles apply compared to elements. Attributes are not affiliated with any default namespace, so if
an attribute is to be namespace qualified, then it must be done so explicitly since any attribute
without a prefix will not be considered namespace qualified—even if declared in the scope of a
valid default namespace.

Booking, Exh. 1053, Page 32

26 Chapter 2 = XML Fundamenials

The convention in XML is to associate elements with
namespaces, but 1o leave atiributes unqualified since they reside
within elements with qualified names,

At this point we now understand both basic XML document structure and some more
advanced features like namespaces, These both set the scene for higher-Tevel XML-based tech-
nologies (including Web services) which we shall continue by looking at XML Schema.

XML Schema

With the exception of the basic XML syntax, XML Schema is without a doubt the single most
important technology in the XML family. In the Web services world, XML Schema is the key
technclogy for enabling interoperation.

XML Schemna is 2 W3C recommendation® that provides a type system for XML-based
computing systems. XML Schema is an XML-based language that provides a platform-indepen-
dent system for describing types and interrelations between those types. Another aspect of XML
Schema is to provide structuring for XML documents.

Document Type Definitions (or DTDs} were the precursor to XML
Schema, and are a text- {(not XML-) based format designed to
convey information about the structure of a document. Unlike
XML Schema, DTDs do not concern themselves with type sys-
tems, but simply constrain documents based on their structure,
Furthermore, since the DTD language is not XML-based, many
of the XML-friendly tools that we use are incapable of processing
DTDs. Because of these reasens, and the fact that no recent
Web services protocols have used DTDs, we can consider DTDs
as a deprecated technology in the Web services arena. Instead,
XML Schema has become the dominant metadata language for
Web services (and indeed for most other application areas by this
time).

In fact, the analogy between XML technologies and object-orientation is clear if we com-
pare XML documents to objects and XML Schema types to classes. XML documents that con-
form to a schema are known as instance documents, in the same way that objects of a particular
class are known as instances. Thus we can conceptualty match XML Schema schemas with
classes and XML documents with objects, as shown in Figure 2-9.

3. See bttp:/fwww.w3.org/XML/Schernaftdev for links to the XML Schema specifications.

Booking, Exh. 1053, Page 33

XML Scheina 27

Type System \.
XML Schema Types Class{es)
2 g /

o {0

S o]

g g

gz N E S

Implementation o / > w|
i
|
) |
i
J

Figure 2-9 Comparing XML to object-oriented model.

The conceptual relationship between an object model and XML Schema is straightforward
to comprehend. Where object-based systems classes and their interrelationships provide the
blueprint for the creation and manipulation of objects, in the XMI, arena it is the type model
expressed in XML Schema schemas that constrain documents that confirm to those schemas.

Like object-oriented programming languages, XML Schema provides a number of built-in
types and allows these to be extended in a variety of ways to build abstractions appropriate for
particular problem domains. Each XML Schema type is represented as the set of (textual) values
that instances of that type can take. For instance the boolean type is allowed (o take values of
only true and falsge, while the short type is allowed to take any value from -32768 to
32767 inclusively. In fact, XML Schema provides 44 different built-in types specified in the
http:/fwww.w3.0rg/2001/XMESchema namespace. Additicnally, XML Schema allows users to
develop their own types, extending and manipulating types to create content models is the very
heart of XML Schema.

XML Schema and Namespaces

As we have seen, the built-in types from XML Schema are qualified with the namespace hitp://
www.w3.0rg/2001/XMLSchema. We must nof use this namespace when we develop our own
types, in the same way that we would not develop types under the java . lang package in Java or
System namespace in .Net. However, like adding package or namespace affiliations in object-ori-
ented programming, affiliating a type with a namespace in XML Schema is straightforward. Add-
ing a targetNamespace declaration to an XML Schema to affiliate it with a namespace is
analogous to adding a package declaration to a Java class, as shown in Figare 2-10.

Booking, Exh. 1053, Page 34

28 Chapter 2 « XML Fundamentals

N N

(XML Schema 1 Java

<schema xmins="htitp://www.w3.o0rg/2001/XMLSchema™ package org.example;

targetNamespace="http://exanple.org"

xmlns:tns="http://exanple.org"> class ...

<i{-=- Schema body here -->

</schema> ‘

. AN

Figure 2-10 Adding namespace affiliation to an XML schema.

The skeletal schema shown in Figure 2-10 outlines the basic principle on which all XML
Schema operate: the schema element delimits the namespace (like the keyword package
delimits the package scope for a single Java source file) and the targetNamespace gives the
namespace a name (like the period-separated string that follows the package keyword).

Don’t be confiised by the number of namespaces that exist in Figure 2-10, There are in fact
only two of them and they play three distinct roles. The defanlt namespace is the XML Schema
namespace because the elements that we use in this document, such as the root element
<schema>, are from the XML Schema namespace. The targetNamespace namespace is
used to declare the namespace which the types that will be declared in this schema will be affili-
ated with. Finally, the explicit namespace tns (an abbreviation of Target NameSpace) will be
used to allow types and elements within this schema to reference one another and, hence, it
shares the same URI as the targetNamespace element,

A First Schema

Now that we understand the basics of XML Schema construction, we can write a simple schema
with which we can constrain a document, This simple schema example does not explore any of
the type-system features of XML Schema, but instead concentrates on constraining a simple
document as a first step. Drawing on our experience with DVD documents earlier in this chapter
we will create a schemia that can validate a given DVD document. Let’s recap the document that
we want to constrain in Figure 2-11:

<?xml version="1.0" encoding=*utf-8"?>

<dvd xmlns="http://dvd.example.com® region="2°>
<title>The Phantom Menace</title>
<year>2001</year>

</dvd>

Figure 211 An XML document contalning DVD information.

Booking, Exh. 1053, Page 35

XML Schema 29

If we analyze the document in Figure 2-11, we see that it contains an element called dvd,
which itself contains two elements, title and year, which are all qualified with the
pamespace http://dvd. example. com From thig, we immediately know that the taxr-
getNamespace is http: //dvd. example. com We also know that the schema requires
two nested elernents and a globally scoped element, and so we can construct the schema, as
shown in Figure 2-12:

<?xml version="1.0" encoding="UTF-8"7>
<schema xmlins="http://www.w3.org/2001/XMLSchena®
targetNamespace="http://dvd.example.com™
elementFormDefault="qualified"
attributeFormbDefault="ungualified® >
<@lement name="dvd":>
<complexType:
<gequence>
<alement name="title"™ type="string"/->
<alement name="vear" type="positiveIntegexr®/>
</sequence>
<attribute name="region" type="positiveInteger®/>
</complexType>
</alement>
</schema>

Figure 2-12 A first DVD schema.

Since the elements in the document in Figure 2-11 have a namespace that matches the
targetNamespace of the schema in Figure 2-12, we can assume that the document is a valid
instance of the schema.

The schema dictates that the instance document must have an opening element with the
name dvd from the line <element name="dvd"*> at the opening line of the schema body.

The conventional style for XML Gchema documents is to declare
the opening element with elementFormDefault= “quali-
fied" and attributeFormDefault="ungqualified" to ensure
that elements in instance documents should be namespace quali-
fied by default, while any atfiributes should lack any namespace
qualification. :

The schema then goes on to declare that there should be a sequence of two nested ele-
ments within that first dvd element, called title and year, respectively. Specifying this is
done with four elements. The first of these is the complexType element which indicates that
the parent dAvd element consists of cther elements nested within it. Inside the complexType
‘element we sce a sequence element. A sequence element places the constraint on any con-
formant document that elements nested within must follow the same sequence as the schema.

Booking, Exh. 1053, Page 36

30 Chapter 2 « XML Fundamentals

In this case, since the elements nested within the sequence are the title element followed by
the yeaxr element, conformant documents must also specify title before year. The title
element must contain information in string form because its type attribute is set to the string
type from the XML Schema namespace, Similarly, the year element specifies that its informa-
tion must be encoded as an XML Schema positiveInteger type,

The final aspect of this schema is to describe that the outer-most dvd element requires an
atiribute to hold region information. This constraint is applied with the <attribute> element
which mandates an attribute called region whose value must beof type positiveInteger.

While we can now begin to create simple schemas to constrain simple documents, scaling
this approach to large schemas and large documents is usually impractical and undesirable.
Instead we need to look beyond the document—which after all is only the serialized, readable
form of XMI—to the 1eal power of XML Schema: its type system.

Implementing XML Schema Types

The real beauty of XML Schema is that once a document has been validated against a
schema, it becornes more than just a set of elements and tags—it becomes a set of types and
instances. The elements contained within a document are processed and the type and instance
information from them is exposed to the consuming software agent. After validation, the infor-
mation contaized in an XML Pocument is called a post schema-validation Infoset, or usually an
Infoset. Infosets make it possible to reflect over the logical contents of a document, just like in
some object-oriented programming languages, and so the power of XML Schema as a platform-
independent type system is revealed. To demonstrate, let’s start to build some types and see how
the (logical) type system works with the (physical) document.

Creating Simple Types via Restriction

XML Schema provides a total of 44 simple types with which to build content models.
However, unlike simple types in most programming languages, in XML Scheina these types can
be used as base types for the creation of specialized subtypes. There is a key difference though
when we define a subtype of a simple type in XML Schema, in that we do not change the struc-
ture of the type (as we would do when we inherit from a base class in Java), but instead change
the subset of values that the subtype can handle, For instance we might specify a subtype of the
simple type stxring that can only be used to hold a value that represents a postcode. Similarly
we might restrict the date type to valid dates within a particular centery.

We create a subtype of a simple type in XML Schema using the restriction element,
Within this element, we specify the name of the simple type whose set of permissible values we
will be restricting (known as the base type) and how exactly the restriction will be applied.
Restrictions are then specified by constraining facets of the base simple type, where the set of
available facets in XML Schema is shown in Figure 2-13.4

4. Information from Part 2 of the XML Schema Specification at http:/fwww.w3.org/TR/xmlschema-2/

Booking, Exh. 1053, Page 37

XML Schema

3t

Facet Element

Description

length

minLength

maxLength

pattern

enumeration
whitefpace

maxInclusive
maxExclusive
minInclusive

minExclusive

fractionDigits

totalDigits

Specifies the number of characters in a string-based type, the
number of octets in a binary-based type, or the number of
items in a list-based type. ’

For string datatypes, minLength is measured in units of
characters. For hexBinary and baset4Binary and datatypes,
minLength is measured in cctets of binary data. Por list-based
datatypes, minLength is measured in number of list items.

For string datatypes, maxLength is measured in units of
characters. For hexBinary and base64Binary datatypes,
maxLength is measared in octets of binary data. For list-
based datatypes, maxLength is measured in number of list
items.

Constraing the value to any value matching a specified
regular expression,

Specifies a fixed value that the type must match.
Sets rules for the normalization of white space in types.

Constrains a type’s vafue space to values with a specific
inclusive upper bound.

Constrains a type’s vatue space to values with a specific
exclusive upper bound.

Constrains a type’s value space to values with a specific
inclusive lower bound.

Constrains a type's value space to values with a specific
exclusive Jower bound,

For decimal types, specifies the maximum number of decimal
digits to the right of the decimal point.

For number types, specifies the maximwm number of digits,

Figure 2-13 XML schema facets.

Each of the facets shown in Figure 2-13 allows us to constrain simple types in a different
way, For example, to create a simple type that can be used to validate a British postal code, we
would constrain a string type using the pattern facet with a (complicated) regular expréssion
as shown in Pigure 2-14.

Booking, Exh. 1053, Page 38

az ' Chapter 2 * XML Fundamentals

<simpleType name="PostcodeFype">
<restriction base="gtring">
<xs:pattern value="(GIR 0AA)| ({([A-Z][0-9}[0-917)| ({IA-
2] [A-HJI-Y1[0-981[0-912} } (([A~2]1[0-9) [A~Z]1) | ({A-Z] [A-HJ-YI [0~
917 [A-Z1)))) L0-91[A-21{2})%/>
</restriction>
</simpleType:>

Figure 2-14 The patiern facet.

The pattern specified in Figure 2-14 allows only values that match the British postal code
standard, such as SWIA 1AA {the Prime Minister’s residence in 10 Downing Street) or W1A
1AE (the American Embassy in London). Formally, these rules are defined by the British Post
Office’ ag:

1. The first part of the code before the space character (known as the outward code) can be
2, 3 or 4 alpha-numeric characters followed by a space and the second part of the code
{the inward code), which is 3 characters long and is always 1 digit followed by 2 alpha-
characters. Permitted combinations according to the PostcodeType type are: AN
NAA, ANN NAA, ARN NAA, AANN NAA, ANA NAA, AANA NAA, (where A=alpha
character and N=numeric character).

2. The letters 1 and Z are not used in the second alpha position (except GIR 0AA which is
an historical anomaly in the British postal system).

3. The second half of the code never uses the letters C, L, K, M, O, and V,

Any divergence from this form will mean that the element is not a valid PostcodeType
instance.

Similarly, we might want to create an enemeration where only specific values are allowed
within a type, such as those for currencies. An example of this is shown in Figure 2-15, whers
the XML Schema string type is restricted to allow only certain values that represent a number
of world currencies:

<xs:simpleType name=*CurrencyType">
<xs:restriction base="xsg:string">
<xg:enumeration value="GBRn/»
<ussenumeration value="AUDP/>
<xg:enumeration value="USD"/>
<xd:enumeration value="CAD"/>
<xg:enumeration value="EUR"/>
<xs:enumeration value=*YEN"/>
</xs:restriction>
</x8:s8impleType>

Figure 2-15 The pattern facet.

5. http/fwwrw. govtalk gov.uld/gdsc/schermaHiml/BS7666-v 1 -xsd-PostCodeType.htm

Booking, Exh. 1053, Page 39

XML Schema 33

The CurrencyType declared in Figure 2-15 would validate elements such as <my-
currency>GRP</my-currency>, but would not validate <your-currencys>DM</
your-currency> since the swing DM is not part of this simpleType restriction (nor for
that matter are Deutsch Marks any longer legal tender).

Continuing in a monetary theme, we can create StockPriceType type where we spec-
ify that the number of digits after the decimal point is at the most 2. In Figure 2-16 we restrict
the XML Schema decimal type such that the maximum number of digits after the decimal point
in a stock price is 2. This type cdn then be used to validate elements that have the form
<msfE>25.52</msft> and <sunw>3 . 7</sunw>:

<xs:simpleType name="StockPriceType":>
<xs:restriction base="xs:decimal >
<xs:fractionDigits value="2n/>
</xs:restriction>
</xs:simpleType>

Figure 2-16 The fractionDigits facet,

To specify sizes of allowed values, we use the Tength, maxLength and mintength
facets. For instance, a sensible precaution to take when creating computer passwords is to man-
date a minimum length for security and a maximum length for ease of use (and thus indirectly
for security). In XML Schema, we can use maxLength, and minLength facets to create a
PasswordType as shown in Figure 2-17:

<xs:simpleType name="PasswordTvpe">
<xs:restriction base="xm:string">
<xs8iminLength valuem"6"/>
<x8:maxLength value="10"/>
</%s:restriction>
</¥sisimpleType>

Figure 2-17 maxlength and minLength facets,

‘When applied o an element in a document, the PasswordType in Figure 2-17 allows
values like <password>katherlne</password:>, but does not allow for values such as
<password>carocl</password> based on the number of characters contained in the ele-
ment. Of course if a particularly overbearing system administration policy was put into place,
we could end up having passwords of a long, fixed length using the 1ength facet instead of
minLength and maxLength.

In much the same way that we set the maximum and minimum number of characters with
the maxLength, minLength and length facets, we can also specify the maximum and
minimum values. Specifying a range of values is achieved with the maxIrnclusive, minIn-

Booking, Exh. 1053, Page 40

34 Chapter 2 « XML Fundamentals

clugsive, minExclusive and maxExclusive facets. For instance, we may wish to define
the range of seconds in a minute for timing purposes. A simpleType called SecondsType
is shown in Figure 2-18, where the int type from XML Schema is constrained to accept the
values from O (inclusive) to 59 (60 exclusive):

<xs:simpleType name=*SecondsType">
<xg:restriction hase="xs:int">
<xg:minTncelusive valuea"0n/>
<xa:maxExclusive wvalue="60"/>
</xs:restriction>
</xs:sinpleType>

Figure 2-18 mininclusive and maxExciusive facets.

Similarly we might want to define the years in a particular century, as we see in Figure 2-
19, where the years that are part of the 20th century are captured as being positive integers
(which have the range from 1 upward) from 1901 (1900 exclusive} through to 2000 (inclusive):

<x8:simpleType name="TwentiethCenturyType'>
<xs:restriction base=txg:positiveIntegext>
<xstminExclusive wvalue="1300%/>
<xs:maxInclusive value="2400%/>
</xs:restriction>
</xa:simpleType>

Figure 2-19 minExclusive and maxinclusive facets.

The totalDigits facet puts an upper limit on the number of digits that a number-based
type can contain, For example a year number, for around the next 8000 years, contains a total of
four digits. Thus, we can create a simple year type using the totalDigits facet to constrain
the number of digits to four, as shown in Figure 2-20 where the positiveInteger type from
XML Schema is restricted to those positive integers which have at most 4 digits:

<xs:s5impleType name="YearType:>
<xg:restriction base="xs:positiveInteger">
<xs:totalDigits value="4"/>
</xs:restriction>
</x8:simpleType>

Figure 2-20 The totalDigit facet.

Booking, Exh. 1053, Page 41

XML Schema 35

The final facet for restricting the value space of simple types is whiteSpace. This facet
allows a simple type implementer to specify how any white spaces (tabs, spaces, carriage
returns, and so on) are handied when they appear inside elements, There are three options for the
whitespace facet which are: preserve (the XML processor will not remove any white
space characters), replace (the XML processor will replace all white space with spaces), and
collapse (same as replace, with all preceding and trailing white space removed).

Often the whiteSpace facet is applied along with other facets to deal with extraneous
white space. Por instance if we add a whiteSpace facet to the YearType from Figure 2-20,
the XML processor that processes instances of this type can deal with any unimportant white
space in it. This is shown in Figure 2-21, where the whiteSpace facet is set to collapse,
which effectively rids the value of any unwanted white space after it has been processed:

<xs:simpleType name="YearType"'>
<xs:restriction base='xs:positivelnteger’>
<xs:totalDigits value="4+*/>
<xsiwhiteSpace value='collapse'/>
</x¥g:restriction>
< /%8 :18impleType>

Figure 2-21 The whiteSpace facet,

So, if the XML processor receives an element of type YearType such as:
<moon-landing>
1969 ‘
</moon-landing>, the whiteSpace collapse facet will effectively reduce it to
<meoon-landing>1969</moon-landing>.

The built-in simple type NormalizedString will automatically
sttip line feeds, carriage returns or tabs from any white spaced
text.

Simple Type: List and Union

Though restriction is one means of creating new simple types, it is not the only way. XML
Schema supports two additional mechanisms for creating new simple types: union and 1ist.

Both union and 1ist are aggregation mechanisms, and so
there is no type hierarchy. Therefore we cannot “cast” between
base type and union or list type as we can with types derived
through restriction,

The 1ist mechanism is the simpler of the two to understand. In short, simple types cre-
ated via the 1ist mechanism are a white space-delimited list of values from the base type. For

Booking, Exh. 1053, Page 42

a8 Chapter 2 * XML Fundamentals

example, we can create a list of instances of YearType from Figure 2-20 to create the
YearsType as shown in Figure 2-22:

<xg:simpleType name="YearType'>
<xs:restriction base="xs:positiveInteger">
«<xg:whiteSpace value="collapse"/>
<xs:totalDigits value="4"/>
</xg:restriction>
</x8:sinpleType>

<zg:8impleType name="YearsType'>
<%s5:1list itemType="YearType"/>
</xs:simpleType>

Figure 2-22 Creating new simple types with list.

The YearsType type defined in Figure 2-22 can then be used to validate instances of the
YearsType such as the years element in Figure 2-23.

<WWIL> 10390 1940 1941 1942 1943 1944 1945 1946</WWII>

Figure 2-23 An instance of the YearsType type.

The union mechanism is slightly more subtle than the 1ist. It allows the aggregation of
the value spaces of two types to be combined into the value space of a new single simple type.
For instance, imagine we have two simple types that represent fruits and vegetables, respec-
tively, as shown in Figure 2-24: ’

<xs:simpleType name="FruitType'>
<xs:restriction base="xs:string">
<xs:enumeration value="ORANGE"/>
<xsrenumeration value="APPLE"/>
<xs:enumeration value="BANANA"/>
<Xs:enumeration value="KIWI*/>
</xs:restriction>
</xs:simpleType>

<x8:simpleType name="VegetableType'>

<xs:restriction bage="xs:string">
<xs:enumeration value="POTATO"/> .
<xs:enumeration value="CABBAGE"/>
<xs:enumeration value="TURNIP"/>
<xs:enumeration value="LEEK"/>

</xs:restriction>

</xs:simpleType>

Figure 2-24 FruitType and VegetableType simple types.

Booking, Exh. 1053, Page 43

XML Schema a7

We can use the FruitType and VegetableType types in Figure 2-24 to create a
FruitaAndVegetableType viaa union as shown here in Figure 2-25:

<xs:simpleType name="FruitAndVegetableType“s
<xs:union memberTypesz"FruitType VegetableType'/>
</xs:simpleTypes>

Figure 2-25 Creating a new simple type via a union,

The resuiting FruitAndVegetableType type can be used to validate elements such
as <organically-grown>BANANA</organically-grown> and <menu-items
POTATO</menu-item> becanse both BANANA and POTATC are valid values for the
FruitandVedgetableType type.

Simple Type Support in Programming Languages

The XML Schema support for simple user-defined types that allow custom valve and lexi-
cal spaces is a powerful aspect of the technology. However, since most programming languages
do not support this feature, typically programmers have had to produce properties/accessors/
mutators that constrain the value space by manuaily checking values and throwing exceptions
where constraints have been invalidated. For example, take the Java equivalent of the
YearType type (from Figure 2-20) shown in Figure 2-26:

public ¢lass Year
{
public int getValue()
{
return _wvalue;

}

public void setvalue(int value)
throws InvalidvalueException

{

if(value >= 1000 && wvalue <= 9999)

(

_value = value;
}
elge

{
// Invalid year
throw new InvalidvalueException(};

}
}

private int _wvalue;
}

Figure 2-26 Value and Lexical handling with Java's primitive types.

Booking, Exh. 1053, Page 44

38 Chapter 2 * XML Fundamentals

The Year class in Figure 2-26 is somewhat Ieogthier than the equivalent XML, Schema
simple type since it has to handle the value space imperatively rather than declaratively. To deal
with the lexical space of year instances, we need fo manually check the possible values and
report back to the user when an invalid value is encountered as exemplified in the Year. set-
Value {int) method.

Writing these kinds of classes by hand is long-winded and prope to error. Of course we
could provide tool support to deal with these issues (like the xsd. exe tool from the Net plat-
form toolkit), but if we are dealing with schematized XML documents, it happens that we don’t
necessarily need to, Consider the diagram in Figure 2-27 of a typical XML-enabled software
agent (which could be a standalone application, a database, or more likely a Web service) that
communicates with its environment through schematized XML documents.

The ability to define custom value/lexical spaces that fit our precise needs means that it is
possible to delegate constraint checking of values in an XML document to the XML processor.
Once the XML processor has produced an Infoset for the praogram to consume, the XML docu-
ment that the Infoset was created from must have passed validation by its schema, and so the
value and lexical constraints placed on the documents must be satisfied. Knowing this, the devel-

T
. Program -
(Post-Schema
“Validated) Infoset

Schema

Instance
Documents

Figure 2-27 Delegating Vatue/Lexical space error handling to the XML processor.

Booking, Exh. 1053, Page 45

XML Schema

39

oper of the consuming program 1o longer has to write lengthy constraint checking code since
‘this would be a replication of work that the XML processor already undertakes. Thus using sche-
mas can remove some of the burden of manuaily checking values in our code, though it is not a
substitute for failing to program defensively!

Complex Types

As well as creating specialized versions of the XML Schema simple types, we can also create
new complex types by aggregating existing types into a stracture, XML Schema supports three
means of aggregating types with three different complex type compositors: sequence,
choice, and 211 whose semantics are outlined in Figure 2-28.

Compositor Description

sequence “Specifies that the contents of the complex type must appear
as an ordered list,

choice Allows a choice of any of the contents of the complex type.

all Specifies that the contents of the complex type appear as a

unordered list.

Figure 2-28 compiexType compositors.

While the semantics of the compositors vary, the syntax of each is quite similar. To use
any of the compositors, we simply declare a new complex type with a compositor as its child
element, as shown here in Figure 2-29:

<x8:complexType
<¥8:seguence>

<X81:
:element
:element
:element
t@lement
< /%8 ; sequence>

<Xz
<X5
<Xs
<ug

element

name="AddresasTypa*>

name="number" type="xs:string®"/>
name="gtreet* type='xs:string*/>
name="city" type=‘xs:string"/>
name=*state" type="xs:string”/>
name="post-code" type="xs:string®/>

<xs:attribute name="business-address" type="xs:boolean"/>
</%s 1 conplexType>

Figure 2-29 Declaring a new complexType using the sequence compositor.

Booking, Exh. 1053, Page 46

40 Chapter 2 « XML Fundamentals

In Figure 2-29 we create a new complexType called AddressType by aggregating
five elements of type string which represent a mailing address, and a single attribute of type
boolean which is used to indicate whether this address is business or residential.

in the scope of a sequence compositor, each coniained ele-
ment must appear exactly once by default. If more flexibility is
needed, then we can add the minOccurs and maxOccurs
attributes to each contained element. The minOccurs attribute is
set t0 a vaiue greater than or equal fo 0 which then specifies the
minimum number of occurrences for its element within the com-
positor. The maxOccurs attribute specifies the maximum number
of elements that should appear in the compositor from 1 to the
special value unbounded (which is logically an infinite humber of
times).

With the AddressType in Figure 2-29, we can now validate elements such as the
address element in Figare 2-30:

<address:>
<number>221b</number>
<street>Baker Street</street>
<city>London</city>
<state>N/A</state>
<post-coderNWl 6XE</post~code>
</address>

Figure 2-30 A valid instance of the AddressType type.

The all compositor is similar to the sequence compositor except that ordering con-
straint is refaxed. Therefore while the elements contained within an a1l compositor must be
present, the order in which they appear is unimportant from the point of view of the XML pro-
CESSOL.

The minOccurs and maxOccurs attributes do net make sense In
the scope of an all compositor since (for example) it is impossi-
ble to specify that an instance document should contain all the
instances of a maxQccurs="unbounded" element! [nstead, omit-
ting these attributes gives us the default semantics of exactly one
element per compositor. The only exception here is that minoe-
curs="0" can be used to specify optional elements.

An example of the all compositor is shown in Figure 2-31, where the PurchaseOr~
derType type is presented. The PurchaseOrderType uses the all compositor to create

Booking, Exh. 1053, Page 47

XML Schema ’ M

an aggregafe structure containing mandatory order-number and item clements, and an
optional description element (specified by the minOccurs="0" atiribute):

<x8:complexType names'PurchaselrderType"s>
<xsralls>
<xs:element name:="order-number"®
type="xs:positivelnteger" />
<xs:element name="item" type="xs:string"/>
<xs:element name="description" type="xs:string"
minQccurs="0"/>
</xstali>
</xs i complexType>

Figure 2-31 Using the all compositor.

The PurchaseOrderType type from Figure 2-31 can be used to validate the instances
shown in Figure 2-32, where we see instances both where the description element is missing and
where it is present:

<purchase-oxrder>
<order-number>1{02</order-number:>
<item>11025-32098</item>
<description>Personal MP3 Player</descriptions
</purchase-order>

<purchase-corder>
<item>44045-23112</item>
<order-number>5290</order-number>

</purchase-order>

Figure 2-32 Valid PurchaseOrderType instances.

Using the choice compositor, we can force the contents of part of a document to be cne
of a number of possible options. For example, in Figure 2-33 we see the UserTdentifier—
Type, which allows a user to suppiy either a login identifier or Microsoft Passport-style single-
signon credentials to log in to a system (this type of arrangement is typical in e-commerce
sites), '

6. Note that this is a hypothetical example that has been deliberately shortened for clarity, and the types
used are not representative of the actual Passport APT,

Booking, Exh. 1053, Page 48

42 Chapter 2 + XML Fundamentals

<xs:complexType name="UserIdentifierType®>
<zxs:choice>
<xs:element name="login-id" type="xs&:string"/>
<xs:element name="passport®” type="xs:anyURI"/>
</xs:choice>
</xs:complexType>

Figure 2-33 Using the choice compositor.

The UserIdentifierType can be used to validate elements that contain either a
login-id, or apassport element, but not both. Therefore both the elements shown in Pig-
ure 2-34 can be validated against the UserIdentifierType:

<logon>
<login-id>chewbacca@wookie.crg</legin-id>
</logon>

<logon>
<passport>
http://passport.example.org/uid/22358:112e:77fa:9659 :aadl

</pagsport>
</logon>

Figure 2-34 Valid UserldentifierType elements.

The minOccurs and maxOccours attributes can be used within choice compositor.
They allow us to expand the basic exclasive OR operation that choice provides, to support
selection based on quantity as well as content, as exemplified in Figure 2-35:

<x¥g:complexType name="DrinksMenuType">
<xs:choices>
<xs:element name="beer" type="b:BeerType" minOccurs=*0"
maxpoocurs="2" />
<xg:element name="wine" type="w:WineType" minOccurs=*0"
maxGocura="1"/>
</xs:choice>
</xs:complexTypea>

Figure 2-35 Choosing slements based on cardinality.

Using the DrinksMenuType type, we can specify using the minOccurs and max0Oco-
curs aftributes that our choice can be either two beers or one drink of wine, as shown in Figure
- 2-36.

Booking, Exh. 1053, Page 49

XML Schema 43

<!-- Either two beers.. -->
<drinks> .
<b:beer type="hitter"/>
<b:beer type="lager"/>

</drinks>
<l-=- .. Or a single drink of wine ~-»
<drinks>
<w:wine country="France" grape="Pinot Noir® year="19%8"/>
</drinks>

Figure 2-36 Instance documents constrained by cholce.

Equally, we could select based on quantity of a single item, For example we could envi-
sion a choice where beer can be sold in four, six and twelve packs by simply setting the
minOccurs and maxOccurs attributes to 4, 6 and 12, respectively, as shown in Figure 2-37;

<xs:complexType names"DrinksMenuTyvpe" >
<xzg:choice> .
<xg:element name="beer' type="xs:string® minOccurs="4"
maxOcours="4"/>
<x5:element name="beer" type="xs:string" minOccurs="6"
maxQccurs="6"/>
<xs:element name="beer" type="xs:string" minOcourg=r12"
maxOceurs=*12" />
</xs:choice>
</xs: complexType>

Figure 2-37 Choice based on cardinality.

With choice, we have drawn to a close our discussion on compositors. We have seen
how we can aggregate existing types into new types in a variety of ways (sequence, choice,
all)and some of the variations on those themes (like choice-by-cardinality). However, we can
also create new types not only by aggregating existing types, but by aggregating existing types
and textual content, For instance, we might wish to mix textual information and structured data
to create a letter’ as shown in Figare 2-38,

7. This example adapted from the W3 Schools example at:
ttp:/fwww.w3schools.com/schema/schema_complex_mixed.asp

Booking, Exh. 1053, Page 50

44 Chapter 2 » XML Fundamentals

<latier>

Dear Professor <name>REinstein</names>,

Your shipment {order: <orderid>1032</orderid>)
will be shipped on <shipdate>2003-06-14</shipdate>.
</letter>

Figure 2-38 Mixed textual and element content,

In order to mix elements and text, we must create a type that allows such mixtures (and by
default types do not), Thus we create a schema such as that shown here in Figure 2-39:

<xgs:element name="letter'>
<xe:complexType mixedo'true®>
<x8:sequence>
<xs:element name="name" type="xs:string*/>
<xs:element names="orderid" type="xs:positiveInteger"/>
<xs:element name="shipdate* type="xs:date"/>
< /s :sequence>
</xs:complexType>
</xs:element>

Figure 2-39 Schema supporting mixed texiual and element content,

The way that we support mixed textual and elemental content is to create a complex-
Type with mixed content. Thus when the mixed attribute is set to true (in its absence the
default is false), the resulting type can mix elements and text as shown in the letter example in
Figure 2-38,

The any Element

By default, 2ll complex types that we create have closed content models. This means that
only the elements that are specified when the type is declared can appear in instances, While this
certainly encourages strong typing, it can also be a problem, How do we handle elements within
a document that we cannot predict ahead of time? Indeed many of the Web services protocols
that we wili encounter in later chapters have this requirement, where the content model of sche-
mas for particular protocols has to be extended on a per application basis (in fact, we discuss
how WS-Transaction extends WS-Coordination in this way in Chapter 7). Fortunately this kind
of extensibility is supported in XML Schema through the any element, which allows us to
develop an open content model for a type through the use of wildcards.

Using any within a complex type means that any element can appear at that location, so
that it becomes a placeholder for future content that we cannot predict while building the type.
For attributes, there is the anyAttribute which defines placeholders for future atiribute
extensions.

Booking, Exh. 1053, Page 51

XML Schema 45

Of course, we might not want to allow completely arbitrary content to be embedded, and
50 any can be constrained in a number of ways, but don't worry, it will still be generic even after
the constraints. The first constraint that we can place on any is how the contents that are substi-
tuted will be treated by the XML processor, The processContents attribute has a number of
options that can be chosen 1o set the level of validation of elements specified by an any element,
These are:

* strict—This is the default value in the absence of any processContents
attribute. The XML processor must have access to the schema for the namespaces of
the substituted elements and fully validate those elements against that schema.

* lax—This is similar to strict, with the exception that if no schema can be located for
substituted elements, then the XML parser simply checks for well-formed XML,

+ skip—This is the least taxing validation method, which instructs the XML processor
not to validate any elements from the specified namespaces.

The namespaces against which the contents may be validated are specified by a second
optional atiribute for the any element called namespace. This attribute specifies the
namespace of the elements that it is valid to substitute for an any element within a document,
and has a number of possible settings;

* ##any—This is the defanlt setting for the namespace attribute which implies that
elements from any namespace are allowed to exist in the placeholder specified by the
any element,

» fffother—Specifying this value for the namespace attribute allows elements from any
namespace except the namespace of the parent element (ie, not the
targetNamespace of the parent),

* ##1local—The substituted elements must come from no namespace.

* ##targetNamespace—Only elements from the namespace of the parent element
can be contained.

Finally we are allowed to combine some of the above options to make the available
namespaces more configurable, That is, we are allowed to specify a space-separated list of valid
nemespace URIs (instead of ##any and ##other), plus optionally #fitargetNamespace
and ##local. Thus we can restrict the namespaces for which it is valid to substitute any ele-
ment o a list of (one or more) specific namespaces if necessary.

An example of how the any element is used is presented in Figure 2-40,

Booking, Exh. 1053, Page 52

46 . Chapter 2 » XML Fundamentais

<xsd:complexType name="Notification”>
<xsd:sequence:>
<xsd:element name="TargetProtocolService”
type="wsu:PortReferenceType’ />
<xsd:element name=*SourceProtocolSexrvice"
type="wsu:PortReferenceTlype" />
<xsd:any namespace="#ffother" processContentg=flax"
minOccurs="0" maxCcours="unbounded" />
</xsd:sequence> -
<xsdranyAttribute namespace="##other"
processContents="lax"/>
</xsd: complexType>

Figure 2-40 WS-Transaction messages are extensible via any and anyAtiribute.

Figure 2-40 shows the Notification type from the WS-Transaction protocol schema,
A Notification in WS-Transaction is a message that is transmitted between actors in the
protocol. However, since WS-Transaction is designed to allow different back end transaction
systems to operate on the Internet, the messages it exchanges have to be extensible enough to
express the semantics of each back end system. This, of course, calls for an open content model
to allow third parties to extend the protocol to suit their own systems.

The protocol supports wildcard elements and attributes via the xsd:any and
xsd:anyAttribute elements. In both cases, the wildcard element namespaces must come
from any namespace other than the WS-Transaction namespace as its namespace aitribute is
set to ##other. This is exemplified in Figure 2-41 where we see a SOAP message (see Chapter
3 for a full explanation of SOAP) from one vendor’s WS-Transzetion implementation (see
Chapter 7 for details on Web services transactions) using the wildcard elements to propagate
information pertinent to their implementation.®

Although the DialogIdentifier clement from the SOAP message in Figure 2-41
wasn’'t specified by the schema, it is still a valid message because it matches the constraints of
the <xsd:any namespace="##other" processContents="lax" minOc-
curs="0" maxOccurss"unbounded"/> element from the schema. It matches the
##other constraint since it comes from the namespace hitp:/schemas.arjuna.com/ws/2003/01/
wsatjtx which is valid since the WS-Transaction namespace is http://schemas.xmlsoap.org/ws/
2002/08/wstx. Since the schema maintains that processing of these elements is lax, it neans that
the XML processor that receives this message will validate the well-formed XML of the Dia-
logTIdentifier element. Thus the message conforms to the schema even though the origina-
tors of the schema had no idea about the organization that ultimately created the conformant
message, let alone the message itself,

8. This SOAP message is from Arjuna Technologies’ XTS 1.0 implementation of the WS-Transaction
protocol,

Booking, Exh. 1053, Page 53

XML Schema 47

<?xml version="1.0" encoding="UTF-8%7?>
<goapenv: Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmins:xsd="http://www.w3.org/2001/XMLSchema®
xmlns::xsi="http://www.w3.0rg/2001/XMLSchema-instance®:
<goapenv:Body>
<wstx:0nePhaseCommit xmins:wstx="http://schemas.xmlsoap.org/ws/
2002/08/wstx">
<wstx:TargetProtocolService xmlns:wstx="http://
schemas.xmlsoap.org/ws/2002/08/wstx">
<wsu:Address xmlns:wsu="http://schemas.xmlsoap,org/ws/2002/
07/utility">
http://localhost:5555/jboss-net/services/TwoPCParticipantMsG
</wsu:Address>
</wstx:TargetProtocolService>
<wstx:SourceProtogolService xmlins:wstx="http://
schemas . .xanlscap . oxrg/ws/2002/08/wstx">
<wsu:Address xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/
07/utility"s
http://Iocalhost/jiboss-net/services/TwoPCCoordinator
</wsu:Address>
</wstx:SourceProtocolServices
<wsarjtx:Dialogldentifier xmlns:wsarjtxs
"http://schemas.arjuna.com/ws/2003/01/wsarjtur>
123456
</waarjtx:DizlogIdentifier>
</wstx;CnePhageCommits>
</ soapenv: Body>
</soapenv:Envelope>

Figure 2-41 Using Wildcard element to exiend a WS-Transaction message.

In addition to the any and anvAttribute elements, XML
Schema also provides two special types called anyType and
anySimpleType which can be used instead of a specific named
type where we need our schemas to be more generic.

The anyType type is the most generic of the two being substi-
tutable for any type in the whole XML Schema type system,
including user-derived types. The anySimpleType is more con-
strained and supports only types that are from the set of forty-
four XML, Schema simple ypes or types derived from them.

These special types provide the same kind of generality when
creating type-based content models as the any element provides
for document structure. It is not unusual to see atiributes like
type="xs:anyType" or type="xg:anySimpleType" in ele-
ment declarations where the type of such elements is expected
to be determined by the application that consumes the schema,
and not by the schema developer.

Booking, Exh. 1053, Page 54

48 Chapter 2 » XML Fundamentals

Inheritance

While the ability to constrain instance documents is essential for interoperability, harnessing the
type system exploits the real power of XML, Schema. The inheritance features in XML Schema
allow us to create type hierarchies that capture the data models of the underlying software sys-
tems that XML is designed to support. '

In fact, we have already seen one form of inheritance when we used the restriction
feature to create new simple types with differently constrained value and lexical spaces, How-
ever, XML Schema also supports a mechanism called extension that allows us to augment
(rather than constrain) the capabilities of an existing type. Using this facility we can begin to cre-
ate hierarchies of complex types just as we can in object-oriented programming languages.

‘When using complex type extension, we have two options for creating subtypes. We can
create subtypes that contain only simple content (text and attributes only), or subtypes that con-
tain complex content (other elements as well as text and attributes).

An example of extending a complex type with additional simple content is shown in Fig-
ure 2-42; '

«<x8:complexType name="MonitorType"s>
<xg:simpleContent>
<xsg:extension base="xz:string">
<xs:attribute name='"flatscreen" type="xs:boolean*/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Figure 2-42 Complex Type extension with gimpleContent.

The MonitorType complex type in Figure 2-42 uses the simpleContent element to
add a single attribute to its content, which is defined as being the string built-in type. The
base type of the MonitorType (string) is specified by the base atiribute in the exten-
sion element. The additional simple content is specified as the only child of this extension
element. The new subtype we have defined can now be used to validate elements such as <mon.~
itor flatscreen="true">HP P4B31D</monitor:.

Figure 2-43 shows an example of how we can use the extension mechanism to create
subtypes with additional elements using the complexContent construct.

Booking, Exh. 1053, Page 55

XML Schema 48

<xg:complexType nane='PersonType”>
<Xg:seguence>
<xs:element neme="forename" type="xs:string"/>
<xs5:element name="gurname® type="xs:string"/>
< /x5 seguence>
< /¥s :complexType:

<xg:complexType name="FootballerType":>
<xgicomplexContent>
<x8:extension bagse="PersonType">
<5 :sequence>
<xs:element name="team" type="xs:string"/>
<xs:element name="goals"™ types"ms:int"/>
</x81sequence>
</xsiextensions
</xsscomplexContent>
</xs:conplexType>

Figure 2-43 Complex Type extension with complexContent.

The PersonType type in Figure 2-43 can be used to validate instances such as that
shown here in Figure 2-44;

<persorn>
<forename>Alan</forename>
<gurname>Turing</surname:
</person>

Figure 2-44 An Instance of the PersonType Type.

The FootballerType in Figure 2-43 has complexContent, allowing the elements
and attributes to appear within the body of the type. It capitalizes on that fact by adding the
team and goals elements fo extend on the base PersonType to allow the validation of such
elements as shown in Figure 2-45:

<footballer>
<forename>Alan</forename:>
<surname>Shearer</surname>
<team>Newcastle United</team>
<goals>145</goals>
</foothallers>

Figure 2-45 A FootballerType Type Instance.

Booking, Exh. 1053, Page 56

50 Chapter 2 « XML Fundamentals

As we see in Figure 2-45, instances of the FootballexType type have a similar struc-
fure to instances of the PersonType type, because the FootballerType subtype inherits
the forename and surname elements from the PersonType, but adds the elements team and
goals.

Prom this example, we can see that it is possible to use the extension mechanism to
build type hierarchies in XML Schema, just as we can in object-oriented programming lan-
guages. However, 1o be able to exploit such hierarchies (e.g. to “cast” between types) we need to
use another XML Schema mechanism: substitution groups.

Substitution Groups

Substitution groups are a feature that allows us to declare that an efernent can be substi-
tuted for other elements in an instance document. We achieve this by assigning an clement to a
special group—a substitution group—that is substitutable for the element at the head of that
group, effectively creating an equivalence relation between docurnent elements of the same type
(or subtype).

Elements in a substitution group must have the same type as the
head element, or a type that has been derived from the head ele-
ment’s type.

While this isn’t exactly like polymorphic behavior in object-oriented programming lan-
guages since the base-type/derived type relationship isn’t implicit, this feature is immensely use-
ful for creating extensible schemas with open content models,

To illustrate this point, consider the schema shown in Figare 2-46, This schema demon-
strates how to use substitution groups to deal with element-level substitutions-—a kind of poly-
morphic behavior for instance documents. The substitution group conmsists of the elements
cast-member and crew-member declaring themselves to be substitutable for a person ele-
ment through the substitutionGroup="person" aitribnte declaration. Note that this is a
valid substation group because both cast-member and crew-member are types derived
from the PersonType type.

The definition of the cast-and-crew element references the person element from
within a sequence, setting the maxOccurs attribufes to allow any number of person ele-
ments to exist within an instance. However, since person is an abstract element (and thus cannot
appear as an element in its own right), this schema actually supports the substitiution of person
elements for any other element declared to be in the same substitution group. Therefore, this
schema will validate jnstance documents such as that shown in Figure 2-47,

Booking, Exh. 1053, Page 57

XBL Schema 51

<?xm]l version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
<x8icomplexType name="PersonTypa">
<X8: sequence’
<xs:element name="firstname® type="xs:string"
minOocurs=*0"/>
<xs:element name="surname" type="xs:string"/>
</x%s:seguence>
< /x5 : complexTypa>
<xe: complexType name="CastMemberType'>
<xg:complexContent>
<xs:extension base="PersonType">
<xX8:sequence>
<xs:element name="character” type="xg:string"/>
</X8:sequence>
</xs:extension>
</%s:complexContent>
</%x8:complexType>
<xs:complexTypa names="CrewMNemberType”>
<xs : complexContent:>
<xgiextension base="ParsonType">
<X35:sequence>
<xs:element name="function' type=*xs:string“/>
</%8:sequence>
</xg:extension>
</xs:complexContent>
</xsicomplexType>
<!-- Declare gubstitution group anéd head element -->
<x8:element name=*person" type="PersonType"
abstract="true"/>
<xg:element name="cast-member" type="CastMemberType~
substitutionGroup="person"/>
<¥g:element name="crew-member® type="CrewMemberType®
gubstitutionGroup="person”/>
<1-- Now define the actual document -->
<xsielement name="cast-and-crew'>
<x5: complexType>
<XS:seguence>
<xs:element ref="person" maxOccurs="unbounded®/>
< /X8 : sequence>
< /x5 ; complexType>
</xs:element>
</u%a : schema>

Figure 2-46 Using substitution groups.

Booking, Exh. 1053, Page 58

52 Chapter 2 « XML Fundamentals

<?xml version="1.0" enceding="UTF-8"7?>
<cast-and-crews
<crew-member>
<firgstname>Lucas</firstname>
<surname>George</surname>
<function>director</function>
< /crew-member> :
<cast-member:>
<firstname>Ewan</firstnames>
<sutrname>McGregor</surname>
<character>0bi Wan Kenobi</characters
</cast-member>
</cast-and-crew>

Figure 2-47 Supporting polymorphic behavior with substitution groups.

The instance document in Figure 2-47 shows how types from the person substitution
group can be used in places where the original schema has specified 2 PersonType element.
In this case since both cast-member and crew-member are part of the person substitu-

tion group, the document is valid.

Like the any and anyAttribute elements, substitution greups
are a useful mechanism for creating schema types which are
extensibie. Again like the any and anyAttribute slements,
substitution groups are widely found in various Web services
standards. WSDL (see Chapter 3) makes extensive use of substi-
tution groups to allow cther protocols {such as BPEL, see Chap-
ter 6) to extend its basic features to more complex problem

domains.

Global and Local Type Declarations

Just like classes in object-oriented programming, we need to create instances of XML
Schema types in order to do real work like moving XML encoded messages between Web ser-
vices. In this section, we examine two means for creating instances of types: using global types

and declaring local types.

We have already seen examples of both of global (schema-scoped) and local {element-
scoped) type declarations throughout the previous sections. A global type definition occurs
where we embed a type directly as a child of the <schema> element of a schema, Conversely, a
local type is declared as the child an <element> element, which is a direct child of the

<schema> ¢lement. This is exemplified in Figure 2-48,

Booking, Exh. 1053, Page 59

XML Schema 53

<?xml version="1.0" encoding=*UrF-8*7>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLEchema”
elementFormDefault="qgualified"
attributeFormDefault="unqualified">
<1-~ A Global Type ~->
<@ :complexType name="CardType">
<S5 1 sequence>
<xs:element name="card-types">
<xs:s5impleType>
<xs:restriction base="xs:string*>
<xg:enumeration value="Visa"/>
<xs:enumeration value='"MasterCard*/>
</xg:restriction>
</%s: simpleType>
</xXs:element>
<x5:element name="expiry“:
<xg:aimpieType>
<xs:restriction base="xs:string">
<xg:pattern value="[0-9]{2)}~[0-91{2)}*/>
</xs:restriction>
</xg:simpleType>
</xs:element>
«xs:element names="number®:>
<xg:simpleType name="CardNumberType>
<xs:restriction hase="xs:string">
<xs:pattern
value="{0-97{4} [0-9]1(4} [0-9]1{4} [0-3}{4)"/>
</xg:restriction>
</xs:simpleType>
</xs:element>
<xg:element name="holder* type="xs:string"/»>
< /X8 sequence>
</xa:complexType>
<l-- A lowal type --3>
<xs:element name="debit-card“>
<x8:conplexTypa>
<x5; complexContent:
<xs:extension base="CardType">
<xs8:attribute name="issue"
type="xs:positiveInteger" />
</xs:extension>
</xs:complexContents>
< /x5 :complexType>
</xs:element>
<1m~ Enother local type -->
<xsrelement names="walleb":
<X8;:complexType>
<XS:sequences>
<xg:element name="credit-card" type="CardType"
minOcours="0" maxOccurs~"unbounded"/>
<xe:element name="debit-card" ref='debit-card”
minceoure="0" maxdccurs="gabounded" />
</x8; gequences
< /%8 :complexType>
R/xs:element’
</xg:schema>

Figure 2-48 Giobal and L.ocal type declarations.

Booking, Exh. 1053, Page 60

54 : Chapter 2 « XML Fundamentals

The distinction between the two is important, Global types such as CardType in Figure
2-48 are globally visible and so are available within the namespace in which they are declared
and in other namespaces, can be extended and generally behave as we would expect classes to
behave in an object-oriented programming language. Instances of global types are created by
constructing an element whose type attribute refers to that particular global type’s name. This
is shown in Figure 2-48 where we see this clement:

<xg:element name='credit-card" type="CardType"
minQccurs="0" maxOccurs="unbounded" />
that defines that an instance of the CardType type can be present any namber of times in a wal-
let element.

On the other hand, local types ate declared inline with an element (like debit-card
and wallet in Figure 2-48). While the element itself is visible to other elements and types, its
implementing type is not and therefore is not extendable by other types-—in fact, the implement-
ing type doesn’t ever have a name so that it can be referred to,

When we declare local types, they can subsequently be referred to only by their enclosing
element name and their content cannot be extended, In programming terms, this is similar to a
component whose APT is known, but whose type is anonymous and internal structure is a black
box. This is shown in Figure 2-48 where the wallet (itself a local type) is defined as contain-
ing any number of instances of the debit-card local type via the ref attribute, like this:
<xsielement name="debit-card" ref='"debit-card"

minQcours="0" maxOccurs="unbounded* />,

Instances of local types are specified by the ref attribute, e.g.,

<xd:element name="credit-card" ref="debit-card" .. />
Instances of global types are specified by type attribute, e.g.,
<xs:element name='credit-card" type='CardType® .. >

Whether to declare types globally or locally depends on our intended use for those types.
If we intend for those types to form part of a type hierarchy, then they should be declared glo-
bally so they can be extended at will, If, however, we intend for a type to only support instances
within XML documents, then it should be declared locally.

A good rule of thumb for developing content models is to type hierarchies with global
types, but to create local type declarations at the leaf nodes of those hierarchies. Thus within the
hierarchy we have the full flexibility supplied by global types, yet the “interface” presented to
users of that hierarchy is a collection of element declarations against which XML docurnents can
be validated,

Managing Schemas

While most of the schemas we have seen in this chapter have been short, it is possible for
schemas that serve particularly complicated problem domains to become long and difficult to

Booking, Exh. 1053, Page 61

XML Schema 55

manage. XML Schema helps to solve this problem by providing the include mechanism that
aflows us to partition a single logical schema (i.e., the set of types from a single targetNam-~
espace) across a number of physical schema documents. For instance, we could choose to cre-
ate type hierarchies in one physical document and create the document layout in another
physica.! document for ease of management. These two separate physical documents can then be
made into a single logical schema by including the type hierarchy document in the document
structure schema, as shown in Figure 2-49 and Figure 2-50.

<?xml wvergsion="1.0" encoding="UTF-8"7>
<Xz schema
rargetNamespace="http://wallet.example.com"
xmins:xs="http://www.w3.0org/2001/XMLSchema"
glementFormbDefault="qualified"
attributeFormDefault="ungualified">
<xg:complexType name="CardType”s>
<xd: gequences
<xg:element name="card-type">
<x8:simpleTypes>
<xs:restriction base="xg:string">
<xs:enumeration value="Visa"/>
<x3:enumeration value="MasterCard"/>
</xs:restrictions>
</xs:simpleType>
</xs:element>
<xg:element name="expiry">
<xs:simpleType>
<xs:restriction base="xs:string">
<xg:pattern value="{0-9]1{2}-[0-81{2}"/>
</xs:restriction>
</xs:simpleType>
</xg:element>
<x&:element name="number':>
<xs:8impleType names"CardiNumberType“>
<xs:restriction base="xs:string">
<xg:pattern
value="[0-9]{4} [0-2}(4} [0-9]{4} [0-3]{4)}"/>
</xs:restriction>
</x%g:simpleType>
</xXs:element>
<xs:element name="holder" type="xs:string®/>
</x8:sequence>
</xs:complexType>
</%s5:schema>

Figure 2-48 The Type hierarchy part of the Wallet schema.

Booking, Exh. 1053, Page 62

56 Chapter 2 » XML Fundamentals

<?xml version="1.0" encoding=*UTF-8"%>
<xs:schema
targetNamespace="http://wallet.example.com” xmlns:tns="http://
wallelt.example.com"
xming rxs="http://www.w3 . org/2001/XMLSchema "
elementFormDefault="qualified"
attributeFormbefault="unqualified">
<xs:include schemalocation="CreditCard.xsd%/s>
<xs:ialement name="debit-~card*>
<xs: complexType:>
<xs:complexContent:>
<xg:extension base="tns:CardType">
<xs:attribute name="issue®
type="xg;:positiveInteger" />
</xs:extension>
</xs:complexContent>
</%8:complexType>
</Xs:element>
<xs:element name="wallet">
<xX&:complexType>
<XS: sequernce>
<xs:element name="credit-card" type="tns:CardType"
minQcours="0" maxOccurs="unbounded" />
<xs5:element name="tns:debit-card’ ref=‘debit-card"”
minOceours="0" maxOcoursg=*unbounded" />
</¥Xs:sequence>
</xs;complexType>
</®s:1element>
</xs:schema>

Figure 2-50 The Document-Structure part of the Wallet schema.

The schema shown in Figure 2-49 effectively becomes the container for all of the types
that might be used in the XML documents that conform to the schema (which at the moment is
only a single type, CardType). The schema in Figure 2-50 uses the include mechanism to cre-
ate a single logical schema containing itself and the included schema from Figure 2-49. This
gives access to all of the types defined in the included scherma, allowing the wallet to be con-
structed in the same way as it was when the two schemas were physically one (in Figure 2-48),
with the advantage that because the individnal schemas are smaller, maintaining them is easier.

While the include mechanism is fine for partitioning a single schema across multiple
physical schema documents, it is limited to schema documents which share the same target-
Namespace. It is casy to see the limitation of this mechanism if we imagine for a moment that
the definition of the CardType had not been developed by the same in-house team that created
the wallet, but had instead been created by an outside consortium of credit card companies. In
this case the targetNamespace will be different from that of the wallet schema and so
include will not work. Instead, we use the import mechanism, which allows us to combine
types and elements from different namespaces into a single schema.

Booking, Exh. 1053, Page 63

XML Schema ' 57

<?xml version="1.0" encoding="UTFr-8"7>
<xs:schema
targetNamespace="http://card.example.comn"
xmlns:xs="http: / /www.w3.oxg/2001/XMLSchema”
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<x8:complexType name="CardType':>
<l-- Card inplementation omitted for brevity --»

</x3:complexType>
</xg:schema>

Figure 2:51 The Credit Card schema.

<?xml version="1l.0" encoding="UTF-8"?>
<xg:schema
targetNamespace="http://wallet.example.com" xmlns:tns="http://
wallet.example.com® xmlns:ce="htip://card.example.con”
smlns:xg«"http: //www.wd.org/2001/MLSchema™
elementFormPefault="qualified"
attributeFormbefault="ungqualified”>
<us:import namegpace="http://card.example.org®
schemalocation="CreditCard.xed" />
<xs:element name="debit-card®>
<xs:complexPype>
<xg:conmplexContent>
<xs:extension base="¢g:Cardlype'>
<xs:attribute name='issue®
type="xs:positiveInteger" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name=“*wallet">
<Xsg:complexType>
<XS:sequence:r
<xs:eiement name="credit-card* type=‘cc:CardType"
minCeours="0" maxOccurs="unbounded" />
<xg:element name="debit-card" ref="tns:debit-card"
minGecurs="0" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexTypes>
</xs:element>
</xs8:schema>

Figure 2-52 The Wallet schema.

Booking, Exh. 1053, Page 64

58 Chapter 2 « XML Fundamentals

The schema in Figure 2-51 declares a single type (CardType) in the namespace http://
card.example.com, The schema containing the CardType type is then exposed to the schema
shown in Figure 2-52 via the import mechanism, which involves specifying both the
namespace that is being imported and the lecation of the schema which is attributed with that
targetNamespace,

The imported namespace is given a prefix (so that it can be referenced within the wallet
schema) via the xmlns: cc atiribute in the root element of the wallet schema document. Now
the components of the credit card schema (including CardType) are accessibie to the wallet
schema by referencing its qualified name (QName) via the prefix cc.

Once we have imported a schema, we can freely reference its contents. In the wallet
schema, we use the contents of the credit card schema to create a new type of card (debit-
card) by extending the credit card schema’s CardType. We also create a wallet element
that declares instances of both the global CardType and instances of the local debit-card
type. As we have seen, the import declaration works just like an import deciaration in the
Java programming language or using a declaration in C#, which simply exposes the types from a
foreign namespace to the current namespace.

Schemas and Instance Documents

Until this point we have largely focused on either XML documents or constructing porta-
ble type systems with XML Schema. However, it is only when these two aspects of XML inter-
sect that we actually have a usable technology for moving structured data between systems, That
is, we need to be able to communicate the abstract notions defined in schemas via concrete XML
documents and on receipt of an XML document, be able to translate it back into some form suit-
able for processing within the receiving system—which is generally an Infoset or native object
model, not a mass of angle brackets and text. The relationship between types, elements and
instance documents is captured in Figure 2-53.

Schema-aware XML processors (like Apache’s Xerces and the Net System.XMIL
classes) use an instance document’s namespace to match against the corresponding namespace
of a schema. However, the XML Schema specification doesn’t mandate how the XML proces-
sor should locate that schema in the first place. Typically, an XML processor will be program-
matically or administratively configured with the locations of any required schemas before
undertaking any processing. However, this can be restrictive in that the schemas of ail possible
instance documents must be known ahead of time if they are to be validated by the XML pro-
CES80L.

While the XML Schema specification doesn’t provide a means of mandating the location
of a schema, it does provide a means of hinting at its location by placing and xsi : schemaLo-
cation attribute into the instance document, as shown in Figure 2-54.

Booking, Exh. 1053, Page 65

XML Schema 59

(XML Schema

More concrete

<

Figure 2-53 Relationship between Types, Elements and Documents.

<ptr:printer xmins:p="http://printer.example.org"
xmlns:xsi=*http://www.w3.oryg/2001l/XMLSchema~-instance"
xsi:schemalocation="http://printex.example.ory

file: /home/local/xont/schemas/printer.xad?>
<!-— rest of schema omitted for brevity -->

Figure 2-54 Using the xs1 : schemaLocation atiribute to locate a schema.

The xsi:schemaLocation atiribute specifies a set of space-delimited namespace-
location pairs indicating the location of schemas for particular namespaces. Upon finding the
xs5i:schemal.ocation attribute, the XML processor may (since it is only a hint) try to
obtain the specified schema from the suggested location. Of course, the processor may not try to
obtain this information from the xs1i : schemaLocat ion attribute, especially if it already has
the necessary document-schema mappings through other means.

XML Schema Best Practices

We've now seen a great deal of XME Schema, and over time we have built up a set of
informal best practices based on the notion of defining important global types and their interrela-
tions first and document structure later. However, it is useful to condense these details down to
their barest bones for quick reference:

1. Always use elementFormDefault="qualified" and attributeFormbDe-
fault="unqualified" to ensure that clements are namespaced by default and
attributes are not.

2, Declare all types globally; declare clements (apart from the document root) locally.

Booking, Exh. 1053, Page 66

&0 Chapter 2 + XML Fundamentals

3. Use types to express content models, use elements to dictate the strocture of docu-
menis,

4. Use the XML Schema features that most closely match your object model. Do not map
the object model onto a different model in Schema just because it makes writing sche-
mas easier, .

These best practices are intended as guidelines, Over time you will develop your own
practices that more accurately match the kinds of solutions you are working on. However, the
fact remains that no matter what style we ultimately develop for Web services projects, we still
need to use XML to move data around systems.

Processing XML

To round off this discussion on XML technology, it is worth taking a brief look at some of the
means of processing the XML documents and schemas that we have so far examined to see how
we traverse from the XML level to the application level, There are a number of standard, cross-
platform tools available that perform much of the hard work involved in processing XML. In this
section we concentrate on three of the most prevalent XML processing technologies: SAX,
DOM, and XSLT. '

The examples we have chosen to illustrate the technologies are necessarily simple, In each
example we simply harvest the character information from a simple DVD document as shown
Figure 2-55,

With each XML processing tool, we take the XML shown in Figure 2-55 and present it as
an XML fragment such as:
<d:character xmlns:d="http://dvd.example.org"s

Qui Gon Jin

</d:character>

<d:character xmlns:d=*http://dvd.example.org">
Queen Amidala

</d:character>

<d:character xmlns:d="http://dvd.example.org">
Obi Wan Kenobi

</d:character>

<d:character xmlns:d="http://dvd.example.org">
Angkin Skywalker

</d:character>

<d:character xmlns:d="http://dvd.example.org">
Senator Palpatine

</d:character>
which could then be used as the basis for other processing.

Booking, Exh. 1053, Page 67

Processing XML 61

<?xml version=%1.0" encoding="utf-8"?>
<d:dvd xming:d="http://dvd.exanple.org" region="2"»
<d:title>The Phantom Menace</d:title>
<d:year>2001</d:year>
<d:language>
<d:audio>English</d:audio>
<d:gubtitle>Danish</d:subtitle>
<d:subtitlerNorwegian</d:subtitle>
<d:subtitle>Swedish</d:subtitle>
<d:subtitle>English</d:subtitle>
</d: language>
<d:actors>
<d:actor firstname="Liam' surname="Neeson">
<d:;character>Qui Gon Jin</d:character>
</d:actor>
<d:actor firstname="Natalie" surname:="Portman":>
<d:character>Queen Amidala</d:character>
</d:actor>
<d:actor firstname="Ewan' surname="McGregor:-
<@:character>0bi Wan Renobi</d:character>
</d:actor> .
<diractor firstname="Jake" surname="Lloyd">
<dicharacter>hnakin Skywalker</d:character>
</d:actor>
<d:actor Ffirgtname=*Ian" surname="McDiarmid":>
<d;character>Senator Palpatine</d:character>
</d:actor>
</d:actors>
<d:directors>
<d:director firstname="George" surname="Lucas">
<d: favorite~film>
The Empire Strikes Back
</d:favorite-£fiim>
</d:director>
</d:directors>
<d:bharcode>5039036007375</d:barcode>
<d:price currency="sterling">1%._99</d:price>
</d:dvd>

Figure 2-55 A somplex XML document.

SAX: Simple API for XML

The SAX model is based on the notion of a fast, forward-only and low memory footprint
method of processing XML documents, To achieve these goals, the SAX parsers read through an
XML document firing events whenever they encounter certain interesting parts of the document
(in addition to having the ability to check documents against schemas). As it happens, those
parts which the SAX parser seeks are wide-ranging and consist of everything from finding the

Booking, Exh. 1053, Page 68

62 i Chapter 2 « XML Fundamentals

beginning of a document (and its end) through to catching the occurrence of every open and
close tag, and any textual data in between those tags,

To work with SAX, the application code must register for events that it is specifically
interested in. For example, we might be particularly interested in extractin g the details of a DVD
from one of our dvd documents in order to store those details in some database, To achieve that,
we would need to register the features of the document that we are interested in with the SAX
parser. Then when the SAX parser parses the document, it will then inform us each time one of
those features is encountered and our application code can use those signals to build up its own
object model.

To use a SAX implementation within an application, as developers we must write code
that subscribes to SAX events and pieces together a set of objects (or other structured data) from
the events that the parser generates. The burden on the developer is to create 2 document handler
capable of listening for the salient events being issued by the SAX parser and write a suitable
object model to encapsulate data exposed by the SAX events,

I the object model developed to deal with the SAX events is lightweight, the SAX-ori-
ented aspects of an application can be made lightning fast since SAX itself is also lightweight,
The downside is, of course, that the document handler might be non-trivial to develop, especially
for complex documents.

To illustrate, let’s write some code to harvest the character information from a dvd docu-
ment using the Java program shown in Figure 2-56. This is an undeniably leng piece of code for
essentially stripping out a few elements. Its length is due to the fact that the SAX parser only
deals with creating events and not with the structured data associated with those events. Tn fact,
the overwhelming size of this document is pared down to handling the various events that the
SAX parser will issue as it parses a dvd document.

The startElement and endElement methods are called by the SAX parser when an
element is entered or exited, respectively, and we use that event to determine whether we have
found a character element. If we have found a character element, we simply set the
_characterFound flag to true, whereas if we have not found a character element or if we
are leaving an element altogether, then the flag is set to false.

The characters (..) method is called by the SAX parser whenever character data is
encountered. If we are within a character element, i.e., the _characterfound flag is true,
then we simply store the character data. All other character data is ignored. The main method
simply sets up the parser and parses the document before pretty-printing the resulting characters
to standard output.

On a positive note, the SAX approach offers good performance since we tailor the object
model exactly to our needs (in this case it’s just a linked list of characters). On a less positive
note, SAX can be a complex tool to implement with due to the large number of posszble events
that we might have o write handlers for.

Booking, Exh. 1053, Page 69

Processing XML : 63

import java.lo.*;

import java.atdil.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class SAXExample extends DefaultHandler
{
// Constants
private static final String _MY_DVD _NAMESPACE _URI =
thttp://dvd. example,com”;
private static final String _CHARACTER_ELEMENT_NAME =
*character”;

// Flag to remember if we are dealing with character
// data while parsing
private boolean _characterFound = false;

// The data we‘re looking for in the document

private LinkedlList _characters = new LinkedList(};
frE .
* The method called when the start of a new element is
* found.
*/

public void startElement {String namespaceURI,
String locallName,
String qualifiedMame,
Attributes attributes)
throws SAXException

{

// If the element is called "character" and is in the
// namespace "http://dvd.example.com” we've found one,

_characterFound =
namespacelRl. tolowerCase()
equals { MY DVD _NAMESPACE _URI} &&
localName. toLowerCase ()
.equals {_ CHARACTER_ELEMENT NAME) ;
}

/**
* The method called when the end of an element ig found.
*/ .
public void endElement (String namespaceURI,
String localName,
String qualifiedName)
throws SAXExXception

_characterFound = false;

Figure 2-56 Creating a SAX-based application in Java,

Booking, Exh. 1053, Page 70

54 Chapter 2 » XML Fundamentais

/ L3
* The method called when character data iz found.
*/
publie void characters(char[] ch, int start, int length)
throws SAXException
{
if (_characterfound)
{ .
_characters.add(new String(ch, start, length)):
}
y -
/ L
* A convenience method to pretty-print the characters
* found.
*f
public StringWriter outputCharacters()
{
StringWriter sw = new StringWriter{);
for{int i = 0; 1 < _characters.size(); i++)
{ .
sw.write{"<character xmlns=\"" +
_MY_DVD_NAMESPACE_URI -+ "\">");
sw.write{(String}_characters.get{i}});
sw,write{"</charvacter>\n"};
}

return sw;

}

* %
/* The starting point of the appiication.
*
puélic static veid main(String[] args) throws Exception
{ // Check to see that we have a single URI argument
if{args.length i= 1)
: return;

}

ShXExample saxExample = new SAXExample();
XMLReader parser = null;

// Create parser
try
{
parser = XMLReaderFactory.createXMLReader (

*org.apache.xerces.pargers.SAXParger") ;

Figure 2-56 Creating a S8AX-based application in Java (continued).

Booking, Exh. 1053, Page 71

Processing XML 65

// Tell the parser which ocbject will handle
// SAX parsing events
parser.setContentHandler {saxExample)} ;
}
catch (Exception e}

{
System.err.println{*Unable to create Xerces SAX
parser - check classpath");

}
try
{
/{ The URL that sources the DVD goes here
//{i.e. perform a GET on some remote Web server).
parser.parse(args[0}};
// Dump the character information te screen.
System.out.printin{
saxExample.outputCharacters () .toString{));
}

catch {Exception e)

{
e.printStackTrace();

}
}

Figure 2-56 Creating a SAX-based application in Java (continued).

DOM: Document Object Model

DOM goes one step further than SAX and actually provides a simple tree-based object
model on top of the basic XML processing and schema validation capabilities, vsually built on
top of an underlying SAX parser. When programming with a DOM parser, our application code
interacts with an in-memory tree representation of the XML document. As such, DOM parsers
are nsually more heavyweight processors than their SAX equivalents since imrespective of the
complexity or length of the XML document being processed, the same type of tree-based hierar-
chy is built,

Though this might not be the best data structure for any given application, the fact that
DOM provides a simple object model “out of the box” is enticing and becanse of its simplicity,
DOM has gained popularity. Indeed, we would generally only use SAX in preference to DOM
where we have stringent performance requirements that rule out creating copies of documents
in-memory, or where the tree-like mode of DOM is entirely unsuitable for the actual characteris-
tics of the intended object model, Of course, it is possible to layer our own object model on top
of that provided by DOM, thus providing both a natural fit for our application and leveraging
DOM'’s ease-of-use. However, when using DOM as the basis for our own object models, we

Booking, Exh. 1053, Page 72

66 Chapter 2 + XML Fundamentals

should be aware that we are consuming memeory twice.over—once for our own objects and once
for DOM.

Like SAX, the DOM APl is well planned and straightforward to understand. To show
some of features of DOM, we shall revisit the same DVD example that we previously tackled
with SAX and illustrate the differences between the two approaches via the C# example shown
in Figure 2-57. '

using System;
using System.X¥ml;

public class DOMExample
{
private string getXMLDocument(string url)
{
// Grab the dvd document from its source
System.Net.WebClient we = new System.Net.WebClient():
byte[] webData = wc,DownloadbData(url);

// Get the downloaded data into a form suitable for
// XML, processing
char{] charData = new char{webData.Length];
for{int 1 = 0; i < charData.Length; i++)
{
charDatali}] = (char)webDatalil;
}

string xmlStr = new String(charData);

// Clean up the document (first "<' and last ">" and '
// everything in between)
int start = xmlStr.IndexOf("<", @,

xSty Length - 1};
int length = sxmlStr.LastIndexOf{">*)} - start + 1;

// Return only the XMI, document parts
return xmlStr.Substring{start, length}:
1

public static veid Main(stringll args)

{

// Check to see that we have a single URI argument
if(args.Length != 1)

{

return;

}

Figure 2-57 Creating 2 DOM-Based application in C#.

Booking, Exh. 1053, Page 73

Processing XM, 67

string url = args[0];
DOMExsmple domExample = new DOMExample();

Systen.Xml.XmlDocument xmlDoc =
new System.Xml.XmlDocument () ;
amlDoc . LoadXml {domExample . getXMLDocument {url) } ;

// Search DOM tree for a set of elements with
// particular name and namespace
XmiNodeList xmlNeodelist =
xmlDoc.GetElementsByTagName ("character®,
‘http://dvd.example.com"} ;

for{int i = 0; 1 < xmlNodeList.Count; i++)

{
// Dump the contents of the elements we've found
// to standard output.
Console.WriteLine (xmlNodeList,Item(i).Quter¥ml);
}

1
Figure 2-57 Creating a DOM-Based application in C# {continued).

The simple DOM-based application presented in Figure 2-57 is somewhat shorter than the
previous SAX-based application. This simplicity does not stem from a different programming
language or platform since (even platform zealots must agree) there is little difference between
Java and Net for simple XML processing. The gain in simplicity stems from the DOM process-
ing model which automatically builds a data-structure to hold the contents of the XML docu-
ment, and provides a simple API for searching and manipulating structure.

In fact the overwhelming majority of this application is spent checking that we have a
clean XML document to deal with before we put it into onr XML processing components. Since
we chose to deal with the results of our remote call as an array of bytes returned via HTTP, we
had to convert those bytes to characters and those characters to string, and then ensure that string
did not contain any extraneous characters (such as the HTTP header information).

Once we ate satisfied that we have our document in a ciean form, we then submit it to the
Net DOM infrastructure. Internally, the infrastructure builds the DOM tree for us, and then to
extract the character data it is simply a matter of searching for the element name (character)
in the correct namespace (http://dvd. example.com). This search results in a list of pos-
sible answers, which we then durnp to standard output.

While this is a suitable approach for a trivial example, this DOM-based method might not
scale well in production environments., We are paying the price for the ease of use we have
enjoyed in terms of memory and processing overhead. So while working with DOM is ulti-
mately easier than SAX programmatically, it is always helpful to think about performance met-
rics and worth bearing in mind that SAX may be a better choice for some problems.

Booking, Exh. 1053, Page 74

868 Chapter 2 * XML Fundamentals

Extensible Stylesheet Transformation (XSLT) and XML
Path Language (XPATH)

XSL is the acronym the W3C has assigned to the “Extensible Stylesheet Language.” It
consists of a language for transforming XML documents (XSLT) and an expression language
used fo access or reference parts of an XML document (XPath). It also refers to a formatting lan-
guage called XMI. Formatting Objects (or XML-FQ), but when most people talk about XS,
what they are really talking about is XSLT and XPath. It is this subset of XSL techrology that
we investigate in this section.

The idea behind XSLT is to provide a declarative, rule-based XML scripting language that
can be used to specify transformations on documents—that is, to turn a document from one form
into another based on some transformation rules. The benefit of this approach is that we can
apply commodity XML processing tools to the processing of XML itself—a recursive and
inventive way of bootstrapping XML with XML, XPath supports XSLT by allowing parts of
documents undergoing transformations to be referenced. Interestingly enough, XPath is not an
XMIL-based syntax since its originators saw the value in being able to embed XPath expressions
inside URIs and other non-XML identifiers. The canonical use of XPath is shown in Figure 2-58
where a trivial example of XSLT (with similarly simpie XPath expressions) is presented.

XPath 1.0 has become perhaps the most important of the XSL
technologies in the Web services arena and is now heavily used
in other technologies like BPEL (see Chapter 6),

The stylesheet presented in Figure 2-58 is straightforward—mainly because we haven't
tried to do anything too ambitious-—and it is far shorter than either the SAX or even DOM ver-
sions of the code. The opening line of the document introduces some namespaces and defines -
what the result of the transformation will be without the prefix d. The subsequent six declara-
tions tell the XSLT processor to do nothing with each of the elements that are named. For exam-
ple, when the XSLT engine encounters a year element as a child of a dvd element, it triggers
the execution of the matching template, which performs no processing. The end result of this
“empty” template is that no output appears for the given element.

The template matching the element expressed in XPath as /d:dvd/d:actors/
dractor/d:character (i.e., the character element under the actor element, con-
tained within the actors and dvd elements) does something slightly more ambitious. We cre-
ate a new element in our output that has the same name as the cumrent element we are examining
{character), which is achieved by assigning the result of the XSLT name () function to the
value held by the name attribute. We also give the newly created element a namespace (which,
again, we borrow from the element currently under scrutiny) by referencing its namespace dec-
laration (namespace-uri {)) and assigning that value to the default namespace attribute for
this element in oor output.

Booking, Exh. 1053, Page 75

Processing XML

69

<xsl:stylesheet version="1.0%
xanlns:dethtep: //dvd. example. com”®
xmlns:xsl="http://www.wd.org/1999/XSL/Transform"
exclude-result-prefixes="d">

<!-- We are not creating a document, sco remove the
document declaration --»
<xsl:output method="xml"* omit-xml-declaration="yes"/>

<!-- Do nothing with these elements -->

<xsl:temnplate
<xsl:template
<xsl:template
<xsl:template
<xsl:template
<xsl:template

match="d:dvd/d:title" />
match="d:dvd/d:year"/>
match="d:dvd/d: language" />
match="d:dvd/d:directors* />
match="d:dvd/d:barcode />
match="d: dvd/d:price" />

<l~~ Extract the value held by and character elements
encountered ~->

<xsl:template

match=

"d:dvd/&:actorg/dractor/d:characters>
<stsl:element name="{name(}}"
namespace="{namespace-uri() }">
<x¥sl:value-of select=".n/>
</xslrelement>
</xsl:template>

<fxsl:stylesheet>

Figure 2-58 A simple XSLT styleshest,

The value-of elementis then used in combination with the select=". * atiribute to
select the value held within the current matching element—where the axis “” is defined as “cur-
rent context” in XPath. The net result of applying this template is to place the character informa-
tion for each character encountered into the output from the XSLT engine and wrap that
character data inside an appropriately namespaced XML element.

Although the example here has been necessarily trivial (since our goals were similarly
trivial), XSLT is a powerful means of transforming XML documents. However, even this basic
knowledge of what XSLT (and XPath) is and how it can be applied to XML documents will
stand us in good stead as we finally venture out into the Web services world.

Booking, Exh. 1053, Page 76

70 Chapter 2 » XML Fundamentals

Summary

XML is the fundamental technology that underpins everything else in Web services. Of para-
mount importance to the XML suite of technologies is XML Schema, which provides a meta-
level description of XML content. XML Schema can, in the simplest sense, be thought of as a
means of dictating the forinat and content of XML documents. However, XML Schema’s real
power lies in the fact it can be used as a platform independent type description language, where
XML documents are then used to transport data in accordance with those type descriptions.

XML technology is already well supported in terms of standard tools. In particular, the XML
tools introduced here are widely available across platforms. While the specifics of using most
XML tools may vary from platform-to-platform, the models are consistent which means that any
experience with such tools is widely applicable,

The sum of these technologies means that XML is not only eminently expressive, but platform
independent in the way it is written and processed. As we shall see, this is indeed a rich base on
which to build interoperable systems. This is why Web services are based so heavily on XML,

Architect’s Note

* XML is the single fundamental technology in Web services on which everything else is
predicated. A good working knowledge of it will help you in the long run—where tools
and toolkits fall short, you will be able to jump into the breach,

* Everything in the Web services architecture is govermned by schemas. Every self-
respecting architect and developer should understand XMI Schemas, at least to the
level presented here,

* XML Schemas are best used to describe type systems first and document layout
second.

+ When using XML within your own. applications, make it a natural part of development
to write schemas to accompany the documents, A goed rule of thumb is: A document is
useless without its schema.

« XML processing technologies are a commodity—don’t reinvent the wheel unless you
specifically cannot achieve your goals with off-the-shelf components.

Booking, Exh. 1053, Page 77

CHAPTER 3

SOAP and WSDL

eb services are software components that expose their functionality to the network, To
Wexploit that functionality, Web service consumers must be able to bind to a service and
invoke ifs operations via its interface. To support this, we have two protocols that are the funda-
mental bailding blocks on which all else in the Web services arepa is predicated: SOAP! and
WSDL2 SOAP is the protocol via which Web services communicate, while WSDL is the tech-
nology that enables services to publish their interfaces to the network. In this chapter we cover
both SOAP and WSDL in some depth and show how they can be used together with rudimentary
tool support to form the basis of Web services-based applications.

The SOAP Model

Web services arc an instance of the service-oriented architecture pattern that use SOAP as the
{logical) transport mechanism for moving messages between services described by WSDL inter-
faces. This is a conceptually simple architecture, as shown in Figure 3-1, where SOAP messages
are propagated via some underlying transport protocol between Web services.

1. In this chapter, nnless otherwise explicitly stated, all references to SOAP and the SOAP Specification
pertain to the SOAP 1.2 recommendation. .

2. In this chapter, unless otherwise explicitly stated, all references to WSDL and the WSDL specification
pertain to WSDL 1.1; see hitp:/fwww.w3.org/TR/wsdl. The W3C’s WSDL effort is less advanced than
the latest SOAP work, though where possible we highlight new techniques from the WSDL 1.2 work-
ing drafis.

7t

Booking, Exh. 1053, Page 78

72 Chapter 3 » SOAP and WSDL

Web Service Web Service

SOAP Messages - S

TransporUTransfer Protocol (eg HTTP SMTP MQ)
i TCPHP Stack o

Figure 3-1 The logical Web services network.

A SOAP message is ann XML document whose root element is called the envelope. Within
the envelope, there are two child elements called the header and the body. Application payloads
are carried in the body, while the information held in the header blocks usually contains data
from the various Web services protocols that augment the basic SOAP infrastructure (and which
is the primary subject of this book). The structure of a SOAP message is shown in Figure 3-2.

The SOAP message shown in Figure 3-2 provides the conceptual basis on which the whole
SOAP model is based. Application payload travels in the body of the message and additional
pratocol messages travel in header blocks (which are optional, and may not be present if only
application data is being transported). This permits a separation of concemns at the SOAP pro-
cessing level between application-level messages and higher-level Web services protocols (e.g.,
transactions, security) whose payload travels in the SOAP header space,

The split between application and protocol data within SOAP messages allows the SOAP
processing model to be a little more sophisticated than was suggested by the simple architecture
shown in Figure 3-1. SOAP’s distributed processing model ontlines the fundamentals of the Web
services architecture. It states {abstractly) how SOAP messages-—including both the header and
body elements—are processed as they are transmitted between Web services. In SOAP terms,
we see that an application is comprised of nodes that exchange messages. The nodes are free to
commugicate in any manner they see fit, including any message-exchange pattern from one-way
transimission through bilateral conversations. Furthermore, it is assumed in SOAP that messages
may pass through any number of intermediate nodes between the sender and final recipient.

More intersstingly however, the SOAP specification proposes a number of roles to
describe the behavior of nodes under certain circumstances, which are shown in Figure 3-3. As a
message pregresses from node to node through a SOAP-based network, it encounters nodes that
play the correct role for that message. Inside message elements, we may find role declarations
that match these roles (or indeed other roles produced by third parties), and where we find a
node and message part that match, the node executes its logic against the message. For example,

Booking, Exh. 1053, Page 79

The SOAP Modei 73

SOAP Envelope
___SOAP Header _

. ‘BodyBlock

" ‘Body Block

i

o BodyBlock < o[

K

Figure 3-2 The structure of a SOAP message.

. Web Seivice
 ultimateRecelver .

Sénder

T T, Messagetow L e

Figure 3-3 SOAF node roles.

where a node receives a message that specifies a role of next (and every node except the sender
is always implicitly next), the node must perform the processing expected of that role or fault.
In Figure 3-3, we see that the nodes labeled “Intermediate” all play the role next, The Web ser-
vice that finally consumes the message plays the role ultimateReceiver, and so each pro-
cesses only the parts of the SOAP message which are (gither implicitly or explicitly) marked as
being for that role.

Booking, Exh. 1053, Page 80

74 Chapter 3 + SOAP and WSDL

The processing model shown in Figure 3-3 is supported in software by SOAP servers. A
SOAP server is a piece of middleware that mediates between SOAP traffic and application com-
ponents, dealing with the message and processing model of the SOAFP specification on a Web
service’s behalf. Therefore, to build Web services, it is important to understand how a SOAP
server implements the SOAP model.

While it is impossible to cover every SOAP server platform here, we will examine the
architecture of a generalized SOAP server {whose characteristics are actually derived from pop-
ular implementations such as Apache Axis and Microsoft ASP.Net) so that we have a mental
model onto which we can hang various aspects of SOAP processing. An idealized view of a
SOAP server is presented in Figure 3-4. This shows a generic SOAP server architecture.
Inbound messages arrive via the physical network and are translated from the network protocol
into the textual SOAP message. This SOAP message passes up the SOAP request stack where
information stored in SOAP headers (typically context information for other Web services proto-
cols like security, transactions and so forth) are processed by handlers that have been registered
with the Web service. Such handlers are considered to be intermediate nodes in SOAP terms.

e . Weh Seivice Appiication Logic [T

<gnv:body ... <env:body ...

i

| <env:header ... {7 2| <env:header ...
Bex) L e
el =t A8l wt>
Ha gl
et |] s
i 4 iR
o Il
; EA 5
1o} <emw:header .. |/ g _':UO’ “ii} <anviheader ..,
il : i o >

<gnv:enveiopa <envienvelope

<gnv:header ... <envheader ...
ol oy
<env:body ... <epvibody ...
> >

.Z;. <Jenvienvelope> <fenv.envelope>

[Network

Flgure 3-4 The architecture of a gensralized SOAP server,

Booking, Exh. 1053, Page 81

SOAP , 75

The handlers that operate on the headers are not generally part
of the SOAP server by default, but are usually third-party compo-
nents registered with the server to augment its capabilities. This
means that SOAP servers are themselves exiensible and can be
upgraded 1o include additional protocol support over their lifetime
as Web services’ needs evolve.

Al some later point, provided the header processing has not cansed the service invocation
to fail, the application payload of the message (carried in the SOAP body) reaches a dispatch
mechanism where it causes some computation to occur within the back-end service implementa-
tion. The application logic then performs some computation before returning data to the dis-
patcher, which then propagates a SOAP message back down the SOAP response stack, Like the
request stack, the response stack may have handlers registered with it which operate on the out-
going message, inserting headers into messages as they flow outward to be consumed by other
Web services. Again, these handlers are considered to be nodes in SOAP terms.

Eventually, the outgoing message reaches the network level where it is marshaled into the
appropriate network protocol and duly passes on to other SOAP nodes on the network, to be
consurned by other SOAP nodes. ‘

SOAP

Having understood the SOAP model and seen how this model is supported by SOAP servers, we
can now begin to discuss the details of SOAP itself. SOAP is the oldest, most mature, and the
single most important protocol in the Web services world. The SOAP specification defines this
protocol as “[an] XML-based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a convention for representing remote
procedure calls and responses.”

In its earlier incarnations, the acronym SOAP used to stand for
“Simple Object Access Protocol,” though that meaning has ceased
o exist in the SOAP 1.2 specification. This is undoubtedly a good
thing sihce SOAP isn't especially simpie, it's not exclusively
designed for object access and it is more a packaging mechanism
than a protocol per se, ‘

In the following sections, we examine SOAP in some depth-—from its basic use pattern
and XML document structure, encoding schemes, RPC convention, binding SOAP messages,
transport protocols, to using it as the basis for Web services communication.

3. htp/lwww.w3.org/TR/SOAP/

Booking, Exh. 1053, Page 82

76 Chapter 3 » SOAP and WSDL

SOAP Messages

We have already seen the overall structure of a SOAP message, as defined by the SOAP Enve-
lope, in Figure 3-4. All SOAP messages, no matter how lengthy or complex, uitimately con-
form to this structure. The only caveat is there must be at least one body block within the SOAP
body elemnent in a message and there does not necessarily have to be a SOAP header or any
SOAP header blocks. There is no upper limit on the number of header or body blocks, however.
A sample SOAP message is presented here in Figure 3-5:

<?xml version="1.0" encoding="UTF-8"7>
<anv:Envelope
xmlng:env="http://www.w3.org/2002/06/s0cap-envelope" >
<env:Header>
<tx:transaction-id
xmlng: tx="http://transaction.example.org”
env:encodingStyvle="http://transaction.example.org/enc®
env:role=
*http://www.w3.0rg/2002/06/soap-envelope/role/ultimateReceiver”
env:mustUnderstand="true">
decd7461-4ef21384-7b52e370-fedB8ali0é-ca7eal’?
</tx:transaction-id>
</env:Header>
<env:Body xmlns:bank="http://bank.exampla.org”:>
<bank:credit-account env:encodingStyle=
*http://www.w3.0rg/2002/06/soap-encoding”s>
<bank:account>12345678</bank:account>
<bank:scort>10-11-12</bank:sort>
<bank:amount currency="usd">123.45</bank:amount>
</bank:credit-account>
<bank:debit-account>
<bank:account>87654321</bank: account>
<pank:sort>12-11-10</bank:sort>
<bank:amount currency="usd">123.45</bank:amount>
</bank:debit-account>
</env:Body>
</enviEnvelope>

Figure 3-5 A simple SOAP massage.

The structure of all SOAP messages (including that shown in Figure 3-5) maps dircetly
onto the abstract model shown in Figure 3-2. Figure 3-5 contains a typical SOAP message with a
single header biock (which presumably has something te do with managing fransactional integ-
rity), and a body containing two elements (which presumably instructs the recipient of the mes-
sage to perform an operation on two bank accounts). Both the Header and Body elements are
contained within the outer Envelope element, which acts solely as a container.)

Booking, Exh. 1053, Page 83

SQAP Messages 77

SOAP Envelope

The SOAP Envelope is the container structure for the SOAP message and is associated
with the namespace http: //www.w3 .org/2002/06/s0ap-envelope. An example is
shown in Figure 3-6 where the namespace is associated with the prefix env:

<?x¥xml version="1.0" encoding="UTF~892>

<anv:Envelope
xmlns:env="http://www.w3d.org/2002/06/so0ap-envelope” >
<!-- Optional header blocks -->

<env:Header:>

</env:Header>
<!~~~ Single mandatory body element -->
<env:Body xmlns:bank="http://bank.example.org”>

</env:Body>
< /enviEnvelope:>
Figure 3-6 The SOAP envelope element.

The Envelope contains up to two child elements, the Header and the Body (where the
Body slement is mandatory). Aside from acting as a parent to the Header and the Body ele-
ments, the Envelope may alse hold namespace declarations that are used within the message.

SOAP Header

The Header element provides a mechanism for extending the content of a SOAP mes-
sage with out-of-band information designed to assist {in some arbitrary and extensible way) the
passage of the application content in the Body section content through a Web services-based
application. '

The SOAP header space is where much of the value in Web ser-
vices resides, since it is here that aspects like security, transac-
tions, routing, and so on are expressed. Every Web services
standard has staked its claiim on some part of the SOAP header
territory, but in a mutually compatible way. The fact that SOAP
headers are extensible enough to support such diverse stan-
dards Is a major win, since it supports flexible protocol composi-
tion tailored to suit specific application domains.

Booking, Exh. 1053, Page 84

78 Chapter 3 » SQAP and WSDL

A SOAP header has the local name Header associated with the http://
www.w3.0xrg/2002/06/soap-envelope namespace. It may also contain any number of
namespace qualified attributes and any number of child elements, known as header blocks. In
the absence of any such header blocks, the Header element itself may be omitted from the
Envelope. A sample header block is shown in Figure 3-7.

<?xml versicn="l.0" encoding="UTF-8"?>
<env:Envelope
xmlng:env="http://www.w3.org/2002/06/so0ap-envelopa" >
<I~- Optional header blocks =~«>
<env:Headexr>
<tx:transaction-id
xmlns:tx="http://transaction.example.org®
enviencodingStyle="http://transaction.example.org/enc®
env:roles
“http://www.w3.org/2002/06/scap-envelope/role/ultimateReceiver"
env:musgtUnderstand="txrue">
decd7461-4e£f21384-7b52e370-fedBad06-caTeal?
</txstransaction-id>
</env:Header>

<t== 8Single mandatory body element -~>
<env:Body xmlns:bank="http://bank.example.org’>

</ él:lv :Body>
</env:Envelope>
Figure 3-7 A SOAP header element,

If present, each header block must be namespace qualified (according to the rules set out
in the SOAP schema), may specify how it has been encoded (i.e., which schema constrains if)
through the encodingStyle atiribute, may specify its consumer through the role attribute,
and may demand that it is understood by SOAP infrastructure that encounters its message
through the mustUndexrstand attribute. The SOAP specification stipulates that it is illegal for
the role and mustUnderstand attributes to appear anywhere other than in header block
+ declarations.

The sender of a SOAP message should not place them anywhere else, and a receiver of
such a malformed message must ignore these attributes if they are out of place. These attributes
are of fundamental importance to SOAP processing {and thus Web services) and warrant further
discussion. The vehicle for this discussion is the example SOAP message shown in Figure 3-5
where we see a header block called transaction-id that provides the necessary out-of-
band information for the application payload to be processed within a transaction (using a hypo-
thetical transaction processing protocol}.

Booking, Exh. 1053, Page 85

SOAP Messages 79

The xrole Attribute

The role attribute controls the targeting of header blocks to particular SOAP nodes
(where a SOAP node is an entity that is SOAP-aware). The role attribute contains a URI that
identifies the role being played by the intended recipient of its header block. The SOAP node
receiving the message containing the header block must check through the headers to see if any
of the declared roles are applicable. If there are any matches, the header blocks must be pro-
cessed or appropriate faults generated.

- Although any URI is valid as a role for a SOAP node to assume, the SOAP specification
provides three common roles that fit into the canonical SOAP processing model as part of the
standard:

*http://www.w3.o0rg/2002/06/scap-~envelope/role/none: No SOAP
processor should atterupt to process this header block, although other header blocks may
reference it and its contents, allowing data to be shared between header blocks (and thus
save bandwidth in transmission).

*http://www.w3.org/2002/06/soap-envelope/role/next: Every node
must be willing to assume this role since it dictates that header block content is meant for
the next SOAP node in the message chain. If a node knows in advance that a subsequent
node does not need a header block marked with the “next” role, then it is at liberty to
remove that block from the header.

s http: //www.w3.org/2002/06/s0ap-envelope/role/ultimateReceiver:
The ultimate receiver is the final node in the message chain, Header blocks referencing
this role attribute (or equivalently referencing no role attribute) should be delivered
to this last node. It always implicitly plays the role of “next” given that the last node
always comes after some other node—even in the simplest case where the last node
comes immediately after the initiator.

Figure 3-8 highlights the role attribute from our example SOAP message in Figure 3-5:

<env:Header>
<txX:transaction-id
xmlnsg:tx="http://transaction.example.org"
env:encodingStyle="http://transaction.example.org/enc"
env:role=
"http://www.w3.org/2002/06/soap-envelope/role/ultimateReceiver”
env:mustUnderstand="true">
decd7461-4e£2138d-7Tb52e370-fed8a006-ca7eal’
</tx:transaction-id>
</env:Header>

Figure 3-8 The role attribute,

Booking, Exh. 1053, Page 86

-80 Chapter 3 « SOAP and WSDL

The role atiribute in Figore 3-8 has the value http://www.w3.org/2002/06/
soap-envelope/role/ultimateReceiver, which means the contents of the header
block are intended for the final SOAP processing node in this interaction (i.e., the recipient Web
service). According fo the SOAP processing model, this Web service must be capable of pro-
cessing the application payload (in the SOAP body) in accordance with the transaction process-
ing specification in the header block.

The mustUnderstand Attribute

If the mustUnderstand attribute is set to true, it implies that any SOAP infrastructare
that receives the message containing that header block must be able to process it correctly or
issne an appropriate fault message. Those header blocks that confain the mustUnder-
stand="true" atiribute are known as mandatory header blocks since they must be processed
by any nodes playing the matching roles. Header blocks missing their mustUnderstand
attribute should still be examined by nodes that play the appropriate role. If a failure to act on a
role oecurs, it is not deemed to be critical and further processing may occur since by missing the
mustUnderstand attribute they are not considered mandatory, as shown in Figure 3-9,

<env:Header>
<tx:trangaction-id
xmlns: tx="http://transaction.example.org"”
env:encodingStyle="http://transaction.example.org/enc®
env:;role="http://www.w3.org/2002/06/scap-envelope/role/
ultimateReceiver"
env:mzstUnderstand="true">
decd7461-4ef213Bd-7Tb52e370-~£edBal06-ca’eal’
</tx:transaction-id>
</env:Header>

Figure 3-8 The mustUnderstand attribute,

The SOAP specification states that SOAP senders should not
generate, but S8OAP receivers must accept the SOAP mus-
tUnderstand attribute information item with a value of "false" or
"0", That is, a SOAP ressage should contain the literal values
“true” and “false” in mustUnderstand attributes, not the charac-
ters “1” and "0".

In our example shown in Figure 3-9, the mustUnderstand attribute is set to true
because it is imperative that the processing node must perform the account debit-credit within a
transaction. If it cannot support transactional processing, then we would prefer that it leaves the
accounts well alone—particularly if it is our money being transferred.

Booking, Exh. 1053, Page 87

SOAP Messages 81

The encodingStyle Attribute

The encodingStyle atiribute is used to declare how the contents of a header block
were created, Knowing this information allows a recipient of the header to decode the informa-
tion it confains, SOAP allows many encoding schemes and provides one of ifs own as an
optional part of the spec. However, we will not dwell on such matters since this attribute is used
not only in header blocks but in the body as well, and is covered in much more depth later in this
chapter.

SOAP Body

In contrast to the intricacies of the SOAP header space, the body section of a SOAP enve-
lope is straightforward, being simply a container for XML application payload. In fact the SOAP
specification states “[T]his specification mandates no particular structure or interpretation of
these elements, and provides no standard means for specifying the processing to be done.” In our
example in Figure 3-5, the application content housed by the SOAP Body consists of two ele-
ments that are interpreted as commands to debit and credit a bank account, which collectively
amount to a funds transfer, The only constraints the SOAP specification places on the SOAP
body are that it is implicitly targeted at the ultimateRecipient of the application content
and that the ultimate recipient must understand its contents.

SOAP Faults

By contrast to its standard role as the simple carrier of application payload, the SOAP
Body also acts in a far more interesting way as the conduit for propagating exceptions between
the parties in a Web services application. The SOAP Fault is a reserved element predefined by
the SOAP specification whose purpose is to provide an extensible mechanism for transporting
structured and unstructured information about problems that have arisen during the processing
of SOAP messages or subsequent application execution. Since the fault mechanism is predefined
by the SOAP specification, SOAP toolkits are able to use this mechanism as a standard mecha-
nism for distributed exception handling,

The SOAP Fault element belongs to the same namespace as the SOAP Envelope and
contains two mandatory child elements: Code and Reason, and three optional elements:
Node, Role, and Detail. An example of a SOAP Fault is shown in Figure 3-10 below. The
fault is generated in response to the message shown in Figure 3-5 where the message conveyed
information on a bank account cash transfer. To understand precisely what has caused the fault,
we must understand each of the elements of which it is composed.

The first child element of the Fault is the Code element, which contains two subele-
ments: a mandatory element called Value and an optional element calied Subcode. The
Value clement can contain any of a small number of fault codes as qualified names (some-

Booking, Exh. 1053, Page 88

82 Chapter 3 « SCAP and WSDL

<?xml version="1.0" 7>
<env:Envelope
xmlns:env="http://www.w3.org/2002/06/soap-envelope"
*mlns:bank="http://bank.example.org">
<env:Body>
<enviFault>
<env:Code>
<env:Value>enviReceliver</env:Value>
<env:Subcode>
<env:Valuerbank:bad-account</env:Valua>
</env:Subcode:
</env:Code>
<env:Reason lang="en-URK":>
The specified account does exist at this branch
</enviReason>
<envi:Detall>
<err:myfaultdetails
xmlns:err= “"http://bank.example.org/fault >
<err:invalid-account-gsortcode>
<bank:gortcode>
10-11-12
</bank:sortcode>
<bank:account>
12345678
</bank:account>
</err:invalid-account-sortcode >
</err:myfaultdetails>
<fenv:Detail>
</fenv:Fault:>
</env:Body>
</env:Envelope>

Figure 3-10 An example SOAP fauit.

times abbreviated to QName) from the http://www.w3.org/2002/06/s0ap-enve~
lope namespace, as per Figure 3-11, where each QName identifies a reason why the fault was
generated.

In Figure 3-10 the contents of the env:Value element is env:Receiver (shown in
Figure 3-12), which tells us that it was the SOAP node at the end of the message path (the
receiver) that generated the fault and not an intermediate node dealing with the transaction
header block. '

As shown in Figure 3-13, the Subcode element contains a Value element that gives
application-specific information on the fault through the qualified name bank:bad-
account. This QName has significance only within the scope of the application that issued it,
and as such the Subcode mechanism provides the means for propagating finely targeted apphi-
cation-level exception messages.

Booking, Exh. 1053, Page 89

SOAP Messages 83

Fault Code Description

VersionMismatch Occurs when SOAP infrastructure has detected mutually
incompatible implementations based on different versions
of the SOAP specification.

MustUnderstand " Issued in the case where a SOAP node has received a

header biock has with its mustUnderstand attribute
set to true, but does not have the capability to correctly
process that header block — that is, it does not understand
the protocol with which that header block is associated.

DataBEncodingUnknownt Arxises when the content of either a header or body block
is encoded according to a schema that the SOAP node
reporting the fault does not understand.

Sender Occurs when the sender propagated a maiformed
message, inclading messages with insufficient data to
enable the recipient to process it. It is an indication that
the message i3 niot to be resent without change.

Receiver Generated when the recipient of the SOAT message could
not process the message content because of some
application failure. Assuming the failure is transient,
resending the message later may successfully invoke
processing.

Figure 3-11 SOAP fault codes.

<env:;Fault>
<env:Code> .
<env:Valuerenv:Receiver</env:Value>

Figure 3-12 ldentifying the faulting SOAP node.

<env:Subcode>
<env:Valuerbank:bad-account</envivValue>
</env:Subcode>

Figure 3-13 Application-specific fault infotmation.

Booking, Exh. 1053, Page 90

84 Chapter 3 » SOAP and WSDL

Though it isn't used in this fault, the Subcode element also makes the SOAP fault mech-
anism extensible, Like the Code element, the Subcode element also contains a mandatory
Value child element and an optional Subcode element, which may contain further nested
Subcode elements, The Value element of any Subcode contains a qualified name that con-
sists of a prefix and a local name that references a particular QName within the application-level
XML message set. '

The Reason element associated with a Code is used to provide 2 human readable expla-
nation of the fault, which in Pigure 3-10 tells us that “The specified account does
not exist at this branch”. SOAP toolkits often use the contents of the Reason ele-
ment when throwing exceptions or logging failures to make debugging easier. However, the
Reason element is strictly meant for human consumption and it is considered bad practice to
use its content for further processing.

The optional Node element provides information on which node in the SOAP message’s path
caused the fault. The content of the Node element is simply the URI of the node where the problem
arose. In Figure 3-10 we do not have a Node element because it is the ultimate recipient of the mes-
sage that caused the fault, and clearly the sender of the message already knows the URI of the recip-
ient. However if, for example, an intermediate node dealing with the transactional aspects of the
fransfer failed, then we would expect that the Node element would be used to inform us of the intex-
mediary’s failure (and as we shall see, we would not expect a Detai.l element),

The Node element is complemented by the also optional Role element that provides
information pertaining to what the failing node was doing at the point at which it failed. The
Role clement carries a URI that identifies the operation (usually some Web services standard)
and that the party resolving the fanlt can use to determine what part of the application went
wrong. Thus, the combination of Node and Role provides valuable feedback on exactly what
went wrong and where.

The SOAP Detail element, as recapped in Figure 3-14, provides in-depth feedback on
the fault if that fault was caused as a by-product of processing the SOAP Body.

<env:Detail>
<ery:myfaultdetails
xmlng:err= "http://bank.example.org/fault >
<err:invalid-account-sorteode>
<bank:sortcode>
10-131-12
</bank: sortcode>
<bank:account>
12345678
</bank:account>
</err:invalid-account-sortcode >
</err:myfaultdetails>
</env:Detail>

Figure 3-14 Fauft detail in an application-specific form,

Booking, Exh. 1053, Page 91

SOAP Encoding ‘ 85

The presence of the Detail element provides information on faults arising from the
application payload (i.e., the Body element had been at least partially processed by the ultimate
recipient), whereas its absence indicates that the fault arose because of out-of-band information
carried in header blocks. Thus we wounld expect that if a Detail block is present, as it is in Fig-
ure 3-10 and Figore 3-11, the Node and Role elements will be absent and vice versa,

The contents of the Detail element are known as detail entries and are application-spe-
cific and consist of any number of child elements. In Fault detail in an application-specific form.
we see the invalid-account-sortcode element which describes the fault is some appli-
cation specific fashion.

SOAP Encoding

The encodingStyle attribute appears in both header blocks and the body element of a SOAP
message. As its name suggests, the attribute conveys information about how the contents of a
particular element are encoded. At first this might seem a little odd since the SOAP message is
expressed in XML. However, the SOAP specification is distinctly hands-off in specifying how
header and body elements (aside from the SOAP Fault element) are composed, and defines
only the overall structure of the message. Furthermore, XML is expressive and does not con-
strain the form of document a great deal and, therefore, we could imagine a number of different
and mutually uninteroperable ways of encoding the same data, for example:
<account>

<balance>

123.45

</balance>
</account>
and <account balance="123.45"/>
might both be informally interpreted in the same way by a human reader but would not be con-
sidered equivalent by XML processing software. Ironically, this is one of the downfalls of
XMI it is so expressive that, given the chance, we would all express ourselves in completely
different ways. To solve this problem, the encodingStyle attribute allows the form of the
content to be constrained according to some schema shared between the sender and recipient.

One potential drawback is that senders and receivers of messages may not share sche-
mas—indeed the senders and receivers may be applications that do not deal with XML at all—
and thas the best intentions of a SOAP-based architecture may be laid to waste. To avoid such
problems, the SOAP specification has its own schema and rules for converting application-level
data into a form suitable for embedding into SOAP messages. This is known as SOAP Encoding,
and is associated with the namespace env:encodingStyle="http://www.w3.0ry/
2002/06/soap-encoding™.

Booking, Exh. 1053, Page 92

86 Chapter 3 » SOAP and WSDL

The rules for encoding application data as SOAP messages are captured in the SOAP spec-
ification as the SOAP Data Model. This is a straightforward and concise part of the specification
that describes how to reduce data structures to a directed, labeled graph. While it is outside of
the scope of this book to detail the SOAP Data Model, the general technique is shown in Figure
3-15. This SOAP encoding example, highlights the fact that there are two aspects to the encod-
ing. The first of these is to transform a data structure from an applicatien into a form suitable for
expressing in XML via the rules specified in the SOAP Data Model. The other aspect is to
ensure that all the data in the subsequent XML document is properly constrained by the SOAP
schema. It is worth noting that SOAP provides low entry point through SOAP encoding since a
SOAP toolkit will support the serialization and deserialization of arbitrary graphs of objects via
this model, with minimal effort required of the developer. In fact, coupled with the fact that
SOAP has a packaging mechanism for managing message content, and a means (though SOAP
encoding) of easily creating message content we are close to having an XML-based Remote Pro-
cedure Call mechanism.

SOAP Encoded Payload

(SOAP Enveiope - - / h

(SOAP Body /

. <soapiBody>
"EOAP Gata Model <nsliobj .>
Rules

[/ </soapiBody>

SOAP Schema

SOAP Scherna

<xsd:schema ..»

</xsd:schema>

Figure 3-15 SOAP encoding application-level objects.

Booking, Exh. 1053, Page 93

SOAP RPC B7

SOAP RPC

As it happens, the SOAP specification is useful straight “out of the box.” The fact that it provides
both a message format and marshalling naturally supports RPC, and indeed millicns of develop-
ers worldwide will by now have seen how easy it is to run SOAP RPC-based Web serviceson a
myriad of platforms. It’s probably net the case that SOAP RPC will be the dominant paradigm
for SOAP in the long term, but it is easy to achieve resulis with SOAP RPC quickly because all
the major toolkits support it and RPC is a pattern many developers are familiar with.

Note that althcugh SOAP RPC has enjoyed some prominence in
older Web services toolkits, there is a majority consensus of
opinion in the Web services community that more coarse-
grained, document-oriented interactions should be the norm
when using SOAP.

SOAP RPC provides toolkits with a convention for packaging SOAP-encoded messages
so they can be easily mapped onto procedure calls in programming languages, To illustrate, let’s
return 1o our banking scenario and see how SOAP RPC might be used to expose account man-
agement facilities to users. Bear in mind throughout this simple example that it is an utterly inse-
cure instance whose purpose is to demonstrate SOAP RPC only.

Figure 3-16 shows a simple interaction between a Web service that offers the facility to
open bank accounts and a client that consumes this functionality on behalf of a user. The Web
service supports an operation called openfccount {..) which it exposes through a SOAP
server and advertises as being accessible via SOAP RPC (SOAP does not itself provide a means
of describing interfaces, but as we shall see later in the chapter, WSDL does). The client inter-

Client antoenin o SOAP RPG Requent oo > j;—ﬁahking)
Application < oA RRE Repeme s Web Service
// Client implementation // Service implementation
Bank b = new Bank(); class Bank
String account = {
b.opendccout (title, public String opentcoout(title,
surname ,) surname;
firstname, firstname,
postcode, postcode,
telephone) ; talephone}

// Some account processing
return accoutNumber;
}
}

Figure 3-16 iInteracting with a banking service via SOAP RPC.

Booking, Exh. 1053, Page 94

88 Chapter 3 + SOAP and WSDL

acts with this service through a stub or proxy class called Bank which is toolkit-generated
{though masochists are free to generate their own stubs) and deals with the marshalling and un-
marshalling of local variables into SOAP RPC messages.

In this simple use case, the SOAP on the wire between the client and Web service is simi-
larly straightforward. Figure 3-17 shows the SOAP RPC request sent from the client to the Web
service:

<?xml versicn='1.0" encoding="UTF-8"%>
<env:Envelope
xmlns:env="http://www.w3.org/2002/06/s0ap—envelope">
<env:Body>
<bank:openAccount env:encodingStyle=
"http://www.w3.org/2002/06/soap~encoding"
xnlng:bank="http://bank.example.org/account®
xmlng ixsz="http: //www.w3.org/2001/XMLSchena
xmlns:xsl="http://www.w3.org/2001/XML.Schema-instance”>
<bank:title xsi;:type="xs:string">
Mr
</bank:title>
<bank:surname xsi:type=‘"xg:string*>
Bond
</bank:surname:>
<bank: firstname xgi:type="xs:string"s>
James
</bank: firstname>
<bank:postcode xsi:type="xs:string's
S1 3AZ
</bank:postcode>
<bank:telephone xgi:type="xs:string">
09876 123456
</bank:telephones>
</bank:openAccount>
</env;Body>
</env:Envelope>

Figure 3-17 A SOAP RPC request.

There is nothing particularly surprising about the RPC request presented in Figure 3-17.
As per the RPC specification, the content is held entirely within the SOAP body (SOAP RPC
does not preclude the use of header blocks, but they are unnecessary for this example), and the
name of the element (cpenAccount) matches the name of the method to be called on the Web
service. The contents of the bank : 6penAccount corespond to the parameters of the open-—
Account method shown in Figare 3-16, with the addition of the xsi : tvpe attributs to help
recipients of the message to convert the contents of each parameter element to the correct kind
of variable in specific programming languages. The response to the original request follows a
slightly more intricate set of rules and conventions as shown in Figure 3-18.

Booking, Exh. 1053, Page 95

SOAP RPC 89

<?xml version="1.0" encoding="UTF-8%7>
<env:EBnvelope
xulns:env="http://www.w3.0rg/2002/06/soap-envelope">
<env:Body>
<bank:openAccountResponse env:encodingStyle=
"http://www.w3.org/2002/06/soap-encoding" xmlns:rpc=
thitp://www.w3.org/2002/06/soap-rpe” zxmlns:bank=
*http: //bank.example.org/account” xmlns:xs=
"hetp://www.w3.org/2001/XMLSchema” xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
<rpc:result>bank:accouniNo</rpe:result>
<bank:accountNo xsi:type=*xsd:int">
10000014
</bank:accountNo>
</bank: openAccountResponse>
</env:Body>
</env:Enveiope>

Figure 3-18 A SOAP RPC response.

The SOAP RPC response is slightly more complex and interesting than the request, and
there are two noteworthy aspects of the SOAP RPC response. The first is that by convention the
name of the response element is the same as the request element with Response appended (and
toolkits make use of this convention so it’s practically standard now).

The second interesting aspect is that the response is capable of matching the procedure
call semantics of many languages since it supports in, out, and infout parameters as well as
return values where an “in” parameter sources a variable to the procedure call; an “out” parame-
ter sources nothing to the procedure but is populated with data at the end of the procedure call.
An “infout” parameter does both, while a return value is similar to an out parameter with the
exception that its data may be ignored by the caller.

In this example, we have five “in” parameters (iitle, surname, first name, post code, and
telephone number) which we saw in the SOAP request and expect a single return value (account
number) which we see in the SOAP response. The return value is also interesting because, due to
its importance in most programming langnages, it is separated from out and infout parameters by
the addition of the rpc:result element that contains a QName that references the element
which holds the return value. Other elements which are not referenced are simply treated as out
or infout parameters. This behavior is different from previous versions of SOAP where the return
value was distinguished by being first among the child elements of the response. This was recti-
fied for SOAP 1.2 because of the inevitable ambiguity that such a contrivance incurs—what hap-
pens when there is no return value?

Of course in a textbook example like this, everything has worked correctly and no prob-
lems were encountered, Indeed, you would be hard pressed to find a reader who would enjoy a

_book where the examples were a set of abject failures. However, like paying taxes and dying,
computing systems failures seem inevitable. To cover those cases where things go wrong, SOAP

Booking, Exh. 1053, Page 96

a0 Chapter 3 « SOAP and WSDL

RPC takes advantage of the SOAP fault mechanism with a set of additional fanlt codes (whose
namespace is http: / /www.w3. org/ 2002/06/scap-xpc), which are nsed in preference
to the standard SOAP fault codes in RPC-based messages shown in Figure 3-19, in decreasing
order of precedence.

Fault

SOAP Encoding for Fault

Transient fault at recetver (e.g.
out of memory error).

Receiver does not understand
data encoding (e.g. encoding
mechanism substantially
different at sendey and
receiver)

The service being invoked does
not expose a method matching
the name of the RPC element.

The receiver cannot parse the
arguments sent. There may be
too many or too few

Fault with value of env: Receiver should be
generated.

- A fault with a Value of

env:DataEncodingUnknown for Code
should be generated.

A fault with a Value of env: Sender for
Cede and a Value of

rpc: ProcedureNotPresent for Subcode
may be generated.

A fanlt with a Value of env: Sender for
Code and a Value of rpe: BadArguments
for Subcode must be generated,

arguments, or there may be
type mismatches.

Figure 3-19 SOAP RPC faulis.

Finally, in Figore 3-20 we see a SOAP RPC fauit in action where a poorly constructed cli-
ent application has fried to invoke an operation on the bank Web service, but has populated its
request message with nonsense. In this figure, the bank Web service responds with a SOAP RPC
fault that identifies the faulting actor (the sender) as part of the Code element. It also describes
what the faulting actor did wrong (sent bad arguments) by specified the OName rpc : BadAr—
gumerts as part of the subcode element. It also contains some human-readable information
to aid debugging (missing surname parameter), in the Reason element.

Booking, Exh. 1053, Page 97

tising Alternative SOAP Encodings 91

<?xml version="1.0"7?>
<env:Envelope
xmlns:env="http://wew.w3.org/2002/06/scap-envelope’
zmlns :rpa="http:/ /www.w3.org/2002/06/socap-rpc>
<env:Body>
<env:Fault>
<env:Code>
<env:Valuer>env:Sender</env:Value>
<env:Subcode>
<env:Value>rpc:BadArguments</env:Value>
</env:Subcode>
</env:Code>
<env:Reason>
Missing surname parameter
</env:Reason>
</env:Fault>
</env:Body>
</anv:Envelope>

Figure 3-20 A SOAP RPC fauit.

Using Alternative SOAP Encodings

Of course some applications already deal with XML natively, and there are currently XML-
based vocabularies in use today supporting a plethora of B2B applications. SOAP-based mes-
saging can take advantage of the pre-existence of schemas to craft message exchanges that com-
pliment existing systems using so-called document-style SOAP.

The way in which alternative SOAP encodings are handled is straightforward. Instead of
encoding header or body content according to the SOAP Data Model, we simply encode accord-
ing to the rules and constraints of our data model and schema. In essence, we can just slide our
own XML documents into a SOAP message, providing we remember to specify the encod-
ingStyle attribute (and of course ensuring that the intended recipients of the message can
understand it). This style of SOAP encoding is known as literal style and naturally suits the
interchange of business-level documents based on their existing schemas,

This is a definite boon to SOAP use and by our estimation, the future dominant paradigm
for SOAP use. Its plus points include not only the ability to re-use existing schemas, but by dint
of the fact that we are now dealing with message exchanges and not remote procedure calls, we
are encouraged to design Web service interactions with much coarser granularity. In essence, we
are changing from a fine-grained model that RPC encourages (you send a little bit of data, geta
little bit back and make further calls until your business is completed), to a much coarser-grained
mode} where you send all the data necessary to get some business process done at the recipient
end, and expect that the recipient may take some time before he gets back to you with a com-

- plete answer.

Booking, Exh. 1053, Page 98

92 Chapter 3 » SOAP and WSDL

One particularly apt view of the fine- versus codarse-grained view
of Web services interactions is that of a phone cail versus a fac-
simile transmission.* Where we interact with a business over the
phone there is a great deal of back-and-forth between ourselves
and the agent of the business to whom we are talking. We both
have to establish contexts and roles for each other, and then
enter into a-socially and linguistically complex conversation to get
business transacted. Small units of data are exchanged like
“color’ and “amount” that are meaningless without the context, -
and if the call is lost we have to start over. This is fine-grained
interaction.

While we would not seek to undermine the value of good old
human-to-human communication, sometimes we just don’t have
time for this. It's even warse for our computing systems to have to
communicate this way since they don't get any of the social piea-
sures of talking to each other. A better solution is often to obtain a
catalog or brochure for the business that we want to trade with.
When we have the catalog, we can spend time pouring over the
contents to see what goods or services we require. Once we are
certain of what we want, we can just fill in and fax the order form
to the company and soon our products arrive via postal mail,

» This system is eminently preferable for business processes
based on Web services. For a start, complex and meanhingful
dala was exchanged that does not rely on context. A catalog and
an order form are descriptive enough to be universally under-
stood and the frequency of data exchange was low, which pre-
sents less opportunity for things to go astray. This system is also
loosely coupled when the systems are not directly communicat-
ing (which only happens twice: once for catalog delivery and
once while the order is being faxed). They are not affected by one
anocther and do not tie up one another's resources-——qite the
contrary 1o the telephone-based system.

Of course, we don’t necessarily get something for nothing. The price that we must pay as
developers is that we must write the code to deal with the encoding schemes we choose. In the
SOAP RPC domain where the encoding is fixed and the serialization from application-level data
structore to XML is governed by the SOAP Data Model, toolkits could take care of much of this
work. Unfortunately, when we are working with our own schemas, we cannot expect SOAP tool-
kits to be able to second-guess its semantics and, thus, we have to develop our own handler code
to deal with it, as shown in Fignre 3-21.

* See “The 7 Principles of Web Services Business Process Management” at hitp:/fwww.iona com/white-
papers/Principles-of-Web-Services-and-BPM.pdf

Booking, Exh. 1053, Page 99

Using Alternative SOAP Encodings 93

AP Schems User-Defaed Schents
™.
. N : 1 .
<xsdischema > “proen RPC Handler <xsd:schema .>

<fxsd:s5chema>

(Service Implementation 1 [
- e

{

</xsd;schema>

Jre—

Goapihiap
‘natrob -»

T
Ei thovasihulipr

&

Figure 3-21 Document-oriented SOAP processing.

The user-defined handler in Figure 3-21 is one of potentially many handlers deployed onto
the SOAP server to provide the functionality to deal with SOAP messages encoded with arbi-
trary schemas. Where the SOAP RPC handler simply dispatches the contents of the SOAP RPC
messages it receives to appropriate method calls, there are no such constraints on a Web service
which uses document-style SOAP. One valid method would be to simply pick out the important
values from the incoming document and use them o call a method, just like the SOAP RPC han-
dler, However, as more enterprises become focused on XML as a standard means for
transporting data within the enterprise boundary, it is more likely that the contents of the SOAP
body will flow directly onto the intranet. Once delivered to the intranet, the messages may be
transformed into proprietary XML formats for inclusion with in-house applications, or may be
used to trigger business processes without the need to perform the kind of marshalling/unmar-
shailing required for SOAP RPC.

Note that irrespective of whether the application payload in
SOAP messages is SOAP-encoded, or encoded according to a
third-party schema, the way that header blocks are used to ¢on-
vey out-of-band information to support advanced Web services
protocols is unaffected. Headers are an orthogonal issue to the
application-level content.

Booking, Exh. 1053, Page 100

a4 Chapter 3 + SOAP and WSDL

Document, RPC, Literal, Encoded

Much of the confusion in understanding SOAP comes from the fact that several of the key terms
are overloaded. For example, both SOAP RPC (meaning the convention for performing remate
procedure calls via SOAP) and RPC style are both valid pieces of SOAP texminology. In this
section we clarify the meaning of each of these terms so they do not cause further confusion as
we begin discussing WSDL.

Document

Document-style SOAP refers to the way in which the application payload is hosted within
the SOAP Body element. When we use document style, it means the document is placed
directly as a child of the Body element, as shown on the Teft in Figure 3-22, where the applica-
tion content is a direct child of the <soap : Body> element.

Document RPC
<goap :Body> <scap:Body>
L <inv:invoice ...> <m:purchase>
i <inv:orderNo ... <inv:inveoice ...»
; </inv:invoice> <inv:orderNo ...
¢ | </s0ap:Body> </inv:inveices>
a </m:purchase>
[</soap:Body>
<soap:Body> <soap: Body>
E <nsl:invoice> <m:purchase>
n <nsi:orderNo. .. <ngl:invoice>
g </nsl:invoice> <nsi:orderNo. . .
d| </s0ap:Body> </nsl:invoices>
e </m:purchase>
d </scap:Body>

Figure 3-22 Document, RPC, Literal, and Encoded SOAP messages.

RPC

RPC-style SOAP wraps the application content inside an element whose name can be used
to indicate the name of a method to dispatch the content to. This is shown on the right-hand side
of Figure 3-22, where we see the application content wrapped <m: purchase> element.

Booking, Exh. 1053, Page 101

SOAP, Web Services, and the REST Architecture 95

Literal

Literal SOAP messages use arbitrary schemas {o provide the meta-level description {and
constraints) of the SOAP payload, Thus when using literal SOAP, we see that it is akin to taking
an instance document of a particular schema and embedding it directly into the SOAP message,
as shown at the top of Figure 3-22.

Encoded

S0AP-encoded messages are created by transforming application-level data structures via
the SOAP Data Model into a XML format that conforms to the SOAP Schema. Thus, encoded
messages tend to look machine-produced and may not generally resemble the same message
expressed as a litezal. Encoded messages are shown at the bottom of Figure 3-22,

SOAP RPC and SOAP Document-Literal

The SOAP specification provides four ways in which we could package SOAP messages,
as shown in Figure 3-22. However, in Web services we tend to use only two of them: SOAP
encoded-rpe (when combined with a request-response protocol becomes the SOAP RPC con-
vention) and SOAFP document-literal.

Document-literal is the preferred means of exchanging SOAP messages since it just pack-
ages application-level XML documents into the SOAP Body for transport without placing any
semantics on the content.

As we have previously seen, with SOAP RPC the implied semantics are that the first child
of the SOAP Body clement names a method to which the content should be dispatched.

The remaining two options, document-encoded and rpc-literal, are seldom used since they
mix styles to no great effect. Encoding documents is pointless if we already have schemas that
describe them. Similarly, wrapping a document within a named element is futile unless we are
going fo use that convention as a remote procedure call mechanism, Since we already have
SOAP RPC, this is simply a waste of effort.

SOAP, Web Services, and the REST
Architecture

The World Wide Web {WWW) is unquestionably the largest and, by implication, the most scal-
able distributed system ever built. Though its original goal of simple content delivery was mod-
est, the way that the Web has scaled is nothing short of miraculous,

Given the success of the Web, there is a body of opinion involved in designing the funda-
mental Web services architecture (that includes the SOAP specification) for which the means to

Booking, Exh. 1053, Page 102

96 Chapter 3 » SOAP and WSDL

achieving the same level of application scalability through Web services mirrors that of content
scalability in the WWW,

The members of this group are proponents of the REST (REpresentational State Transfer)
architecture, which it is claimed is “Web-Friendly.” The REST architecture sees a distributed
system as a collection of named resources (named with URIs) that support a small set of com-
mon verbs (GET, PUT, POST, DELETE) in common with the WWW,

The REST idea of defining global methods is similar to the UNIX
concept of pipelining programs. UNIX programs ail have three
simple interfaces defined (STDIN, STDOUT, STDERR) for every
program, which allows any two arbitrary programs to interact,
The simplicity of REST as compared to custorn network inter-
faces is analogous to the simplicity of UNIX pipelines vs. writing a
custom application to achieve the same functionality REST
embraces simplicity and gains scalability as a result. The Web is
a REST system, and the generic interfaces in question are com-
pletely described by the semantics of HTTR 3

What this means to the SOAP developer is that ceriain operations involving the retrieval of
data without changing the state of a Web resonrce should be performed in a manner that is har-
monious with the Web. For example, imagine that we want to refrieve the balance of our account
from our bank Web service. Ordinarily we might have thought that something like that shown in
Figure 3-23 would be ideal. If this message was sent as part of a HTTP POST, then it would be
delivered to the SOAP server, which would then extract the parameters and deliver the results
via the getBalanceResponse message.

<?xml version="1.0" ?>
<env:Envelope
xmins:env="http://www.w3.org/2002/06/soap-envelope’ >
<env:Body>
<bank:getBalance
env:encodingStyle:"http://www.w3.org/2002/06/soap—encoding“
xmlns:bank="http://bank.example.org/">
<bank:accountNo>
12345678
</bank:accountNo>
</bank:getBalance>
</env:Body>
</env:Envelope>

Figure 3-23 A "Web-Unfriendly" message.

5. See RESTwiki, hetp:ffinternet.conveyor.com/RES Twiki/moin.cgi/FrontPage

Booking, Exh. 1053, Page 103

Looking Back to SOAP 1.1 97

However, this is now discouraged by the SOAP specification and instead we are encour-
aged to use HTTP directly 1o retrieve the information, rather than “tunneling” SOAP through
HITP to get the information. A “Web-friendly” equivalent of Figure 3-23 is shown in Figure
3-24 where the HTTP request directly identifies the information to be retrieved and informs
the Web service that it wants the returned information delivered in SOAP format.

GET /account?no=12345678 HTTP/1.1
Host: bank.example.org
Accept: application/soap+xml

Figure 3-24 A "Web-Friendly" message.

Figure 3-24 is certainly Web friendly since it uses the Web’s application protocol (HITTP).
However, there are a number of obstacles that have not yet been overcome at the time of writing
that may prove detrimestal to this approach:

1. A service may be exposed over other protocols than HTTP (e.g., SMTP that does not
support the GET verb).

2. This scheme cannot be nsed if there are intermediate nodes that process SOAP header
blocks.

3. There is no guidance yet provided by the SOAP specification authors on how to tum an
REC definition into its Web-friendly format,

4. Too much choice for little gain since we have to support the “Web-Unfriendly”
approach anyway for those interactions that require the exchange of structured data.

While these techniques may yet come to fruition, it may be a long time before resolution is
reached. When architecting applications today, the best compromise that we can offer is to be
aware of those situations where you are engaged in pure information retrieval, and ensure that
your architecture is extensible enough o change to a Web-friendly mechanism for those interac-
tions tomorrow. Make sure the code that deals with Web services interactions is modular enough
to be easily replaced by Web-friendly modules when the W3C architectural recommendations
become more specific.

Looking Back to SOAP 1.1

While Web services will migrate toward SOAP 1.2 in the near future, the most prevalent Web
services technology today is the now deprecated SOAP 1.1. Although there isn’t a great deal that
-has changed between the two revisions, there are some caveats we must be aware of when deal-
ing with SOAP 1.1-based systems. To ensure that the work we've invested in understanding

Booking, Exh. 1053, Page 104

98 Chapter 3 = SOAP and WSDL

SOAPF 1.2 isn’t lost on SOAP 1.1 systems, we shall finish our coverage of SOAP with a set of
notes that should make our SOAP 1.2 knowledge backwardly compatible with SOAP 1.1.6

Syntactic Differences between SOAP 1.2 and SOAP 1.1

* SOAP 1.2 does not permit any element after the body. The SOAP 1.1 schema definition
allowed for such a possibility, but the textual description is silent about it. However, the
Web Services Interoperability Organization (WS-I) has recently disallowed this
practice in its basic profile and as such we should now consider that no elements are
allowed after the SOAP body, since amy other interpretation will hamper
interoperability,

* SOAP 1.2 does not allow the encodingStyle attribute to appear on the SOAP
Envelope, while SOAP 1.1 allows it 10 appear on any element.

* SOAP 1.2 defines the new Misunderstood header element for conveying
information on a mandatory header block that could not be processed, as indicated by
the presence of a mustUnderstand fault code. SOAP 1.1 provided the fault code,
but no details on its use,

* In the SOAP 1.2 infoset-based description, the mustUnderstand attribute in header
elements takes the (logical) value true or false while in SOAP 1.1 they are the

* literal value 1 or 0, respectively.

« SOAP 1.2 provides a new fault code DataEncodingUnknown.

* The various namespaces defined by the two protocols are different.

» SOAP 1.2 replaces the attribute actor with role but with essentially the same
semantics.

» SOAP 1.2 defines two new roles, none and ultimateReceiver, together with a
more detailed processing model on how these behave.

» SOAP 1.2 has removed the dot notation for fault codes, which are now simply of the
form env : name, where env is the SOAP envelope namespace.

+ SOAP 1.2 replaces client and sexrver fault codes with Sender and Receiver.

« SOAP 1.2 uses the element names Code and Reason, respectively, for what is called
faultcode and faultstring in SOAP 1.1,

* SOAP 1.2 provides a hierarchical structure for the mandatory SOAP Code element,
and iniroduces two new optional subelements, Node and Role.,

6. These notes are abridged from the SOAP 1.2, Primer document which can be found at: http://
www.w3.org/TR/2002/WD-soapl2-part(-20020626/

Booking, Exh. 1053, Page 105

Looking Back to SOAP 1.1 o9

Changes to SOAP-RPC

Thougls there was some feeling in the SOAP comrnunity that SOAP RPC has had its day
and should be dropped in favor of a purely document-oriented protocol, the widespread accep-
tance of SOAP RPC has meant that it persists in SOAP 1.2, but with a few notable differences:

« SOAP 1.2 provides a rpc: result element accessor for RPCs,

» SOAP 1.2 provides several additional fault cedes in the RPC namespace.

= SOAP 1.2 allows RPC requests and responses to be modeled as both structs as well as
arrays. SOAP 1.1 allowed only the forer construct.

* SOAP 1.2 offers guidance on a Web-friendly approach to defining RPCs where the
method’s purpose is purely a “safe” informational retrieval.

SOAP Encoding

Given the fact that SOAP RPC is still supported in SOAP 1.2 and that there have been
some changes to the RPC mechanism, some portions of the SOAP encoding part of the specifi-
cation have been updated to either better reflect the changes made to SOAP RPC in SOAP 1.2,
or to provide performance enhancements compared to their SOAP 1.1 equivalents.

* An abstract data model based on a directed edge-labeled graph has been formulated for
SOAP 1.2. The SOAP 1.2 encodings are dependent on this data model. The SOAP RPC
conventions are dependent on this data model, but have no dependencies on the SOAP
encoding. Support of the SOAP 1.2 encodings and SOAP 1.2 RPC conventions are
optional.

* The syntax for the serialization of an array has been changed in SOAP 1.2 from that in
SOAP 1.1

* The support provided in SOAP 1.1 for partially transmitted and sparse amays is not
available in SOAP 1.2,

* SOAP 1.2 allows the inline serialization of multi-ref values.

* The href attribute in SOAP 1.1 of type anyURT, is called ref in SOAP 1.2 and is of
type IDREF.

* In SOAP 1.2, omitted accessors of compound types are made equal to NILs.

» SOAP 1.2 provides several fanlt subcodes for indicating encoding errors.

* Types on nodes are made optional in SOAP 1.2.

While most of these issues are aimed at the developers of SOAP infrastucture, it is often

useful to bear these features in mind for debugging purposes, especially while we are in the
changeover period before SOAP 1.2 becomes the dominant SOAP version.

Booking, Exh. 1053, Page 106

100 Chapter 3 « SOAP and WSDL

WSDL

Having a means of fransporting data between Web services is only half the story. Without inter-
face descriptions for our Web services, they are about as useful as any other undocumented
‘APT—very littte! While in theory we could simply examine the message schemas for a Web ser-
vice and figure out for ourselves how to interoperate with it, this is a difficult and error-prone
process and one which could be safely amtomated if Web services had recognizable interfaces.
Fortunatefy, WSDL provides thig capability and more for Web services.

The Web Service Description Language or WSDL——pronounced “Whiz Dull”—is the
equivalent of an XML-based IDL from CORBA or COM, and is used to describe a Web ser-
vice’s endpoints to other software agents with which it will interact. WSDL can be used to spec-
ify the interfaces of Web services bound to a number of protocols including HTTP GET and
POST, but we are only interested in WSDL's SOAP support here, since it is SOAP which we
consider to support the (logical) Web services network. In the remainder of this chapter we
explore WSDL and show how we can build rich interfaces for Web services that enable truly
dynamic discovery and bindirg, and show how WSDL can be used as the basis of other proto-
cols and extended to other domains outside of interface description.

WSDL Structure

A WSDL interface logically consists of two parts: the abstract parts that describe the operations
the Web service supports and the types of messages that parameterize those operations; and the
concrete parts that describe how those operations are tied to a physical network endpoint and
how messages are mapped onto specific carrier protocols which that network endpoint supports.
‘The general structure of a WSDL docurent is shown in Figure 3-25.

The foundation of any WSDL interface is the set of messages that the service behind the
interface expects to send and receive. A message is normally defined wsing XML Schema
types (though WSDL allows other schema languages to be used) and is partitioned into a aum-
ber of logical parts to ease access to its contents.

Messages themselves are grouped into WSDL operation elements that have similar
semantics to function signatures in an imperative programming language. Like a function signa-
ture, an operation has input, output, and fault messages where WSDL supports at most a single
input and output message, but permits the declaration of an arbitrary number of faults.

The portType is where what we think of as a Web service begins to take shape. A
portType is a collection of operations that we consider to be a Web service. However, at this
peint the operations are still defined in abstract terms, simply grouping sets of message
exchanges into operations.

The binding section of a WSDL interface describes how to map the abstractly defined
messages and operations onto a physical carrier protocol. Each operation from each poxrt -
Type that is to be bound to a specific protocol {and thus ultimately be made available to the net-

Booking, Exh. 1053, Page 107

WSDI. 1o

XML Schema
Types
1..N | 1..N
‘ 1..N v—*

™
Message Part ' Mesgsage Part Message Partj
-

x 7 3
0...N 0.%.N 0..I.N
J 1

¢ ™
Output
[Input Message} Message [f:auit MessageJ
i Y .

0.1

i
T

0...1 Operation

B

1..N

—

PortType

Cormnposed
From

I References

(") Abstract
Concrete

Figure 3-25 WSDL structure.

work) is augmented with hinding information from the binding part of the WSDL
specification-—WSDL supports SOAP, HTTP GET and POST, and MIME--to provide a proto-
col-specific version of the original portType declaration.

Finally, a port is declared that references a particular binding, and along with address-
ing information is wrapped together into a service element to form the final physical, net-
wotk addressable Web service.

Booking, Exh. 1053, Page 108

102 Chapter 3 = SOAP and WSDL

As we saw in Figure 3-25, the abstract components of a WSDL description are the
types, message, and portType clements, while the concrete elements are binding and
service,

The split between abstract and concrete is useful, because it allows us to design interfaces
in isolation from eventual deployment environments, using only the abstract definitions in
WSDL. Once we are happy with the abstract aspects of the Web service interface, we can then
write the concrete parts to tie the service down to a specific location, accessible over a specific
protocol.

The Stock Quote WSDL Interface

Having seen WSDL from a theoretical perspective, we can concretize that theory by con-
sidering a specific example. The classic Web services application is the stock ticker example
where a Web service provides steck quotes on request. Throughout the remainder of this discus-
sion, we shall use a simple Web service which supports a single operation that has an equivalent
signature to the following C# code:

double GetStockQuote(string symbol);

‘We examine WSDL stage by stage and show how we can turn this simple method signa-
tare into a true Web service interface.

Definitions

The opening element of any WSDL document is definitions, which is the parent for
all other elements in the WSDL document. As well as acting as a container, the definitions
element is also the place where global namespace declarations are placed.

<wsdl:definitions
targetNamespace="http://stock.example.org/wsdl™"
xmlns: tns="http://stock.exanple.org/wsdl®
uelns :stockQ="http://stock.exanple.org/schema®
xmlng:wsdl="http://www.w3.oxrg/2003/02/wsdi*>
<!l~- Remainder of WSDL description omitted -->
</wsdl:definicions>

Figure 3-26 The WSDL definitions element.

A typical WSDL definitions element takes the form shown in Figure 3-26, where the
element declares the target namespace of the document, a corresponding prefix for that
namespace, and a namespace prefix for the WSDL namespace {or alternatively it is also com-
mon to use the WSDL namespace as the default namespace for the whole document), Other

Booking, Exh. 1053, Page 109

wsDL 103

namespaces may also be declared at this scope, or may be declared locally to their use within the
rest of the document., Good practice for declaring namespaces to WSDL documents is to ensure
the namespaces that are required for the abstract parts of the document are declared at this level,
while namespaces required for the concrete parts of a WSDL docurnent (like the bindings sec-
tion) are declared locally to make factoring and macagement of WSDL documents easier,

The Types Element

The types element is where types used in the interface description are defined, usually in
XML Schema types, since XML Schema is the recommended schema language for WSDL. For
instance in our simple stock quote Web service, we define types that represent traded stocks and
advertise those types as part of its WSDL interface as illustrated in Figure 3-27.

<wsdl:definitions .. >
<wsdl:import namespace="http://stock.example.org/schema”
location="http://stock.example.org/schema”/>
<wadl:types xmlns:xs="http://www.w3.org/2001/XMLSchema”>
<xg:element name="stock-gquote">
<xs:complexType>
<X8:Segquence>
<xs:element name="symbol" ref=*stockQ:symbol"/>
<xs:element name="lastPrice® ref="stockQ:price"/>
</xs:sequence>
</xs:complexType>
</xg:element>
<!l~- Other schema type definitions -->
<wsdl:types>
</wsdl:definitions>

Figure 3-27 Defining types jh a WSDL inferface,

Before writing the types section, we first import some types declared by an external
schema that make the types within that schema available to this WSDL document to build on.
Those schema types (symbol and price) are used to create a new complex type (stock-
priée} which the WSDL interface will use to advertise its associated Web service.

The orthodox view is to use XML Schema to provide constraints and type information in
Web services-based applications. However it is not necessarily the case that XML Schema is the
right choice for every application domain, particulatly those domains that have already chosen a
different schema-language on which to base their interoperability infrastructure, Recognizing
this requirement, WSDL 1.2 supports the notion of other schema languages being used in place
of the recommended XML Schema. Although the WSDL 1.2 specification does not provide as
wide coverage for other schema languages, it does allow for their use within WSDL interfaces.

Booking, Exh. 1053, Page 110

104 Chapter 3 » SOAP and WSDL

Message Elements

Once we have our types, we can move on to the business of specifying exactly how con-
sumers can interact with the Web service. The message declarations compose the types that we
have defined (and those that we are borrowing from other schemas) into the expected input, out-
put and fault messages that the Web service will consume and produce. If we take our simple
stock ticker Web service as an example, we can imagine a number of messages the Web service
would be expected to exchange as shown in Figure 3-28,

<wsdl :imegsage name="StockPriceRequestMessage">
<wzdl:part name="gymbol" element="gtockQ:symbol"/>
</wsdl :message>
<wsdl :message name='StockPriceRespnseMessage™>
<wsdl:part name='price* element="stockQ:StockPriceType* />
</wedl :message>
<wsdl:message name="StockSymbolNotFoundMessage" >
<wgdl :part name="symbol" element="stock(:symbol*/>
</wedl :megsage>

Figure 3-28 The message elements.

As we see in Figure 3-28, a WSDL message declaration describes the (abstract) form of
a message that a Web service sends or receives, Fach message is constructed from a number of
(XML Schema) typed part elements—which can come from the types part of the description
or an external schema that has been imported into the same WSDL docoment—and each
part is given a name to ease the insertion and extraction of particular information from a mes-
sage. The name given to a part is unconstrained by WSDL but it is good practice to male the
part name descriptive as one wounld when naming programming language variables.

In this example we have three possible messages: StockPriceRequestMessage,
StockPriceResponseMessage, and StockSymbolNotFoundMessage, each of
which carries some information having to do with stock prices and, because it is good practice to
do so, whose name is indicative of its eventual use in the Web service,

PortType Elements

A portType defines a collection of operations within the WSDL document. Each
operation within a portType combines input, output, and f£ault messages taken from a
set of messages like those defined in Figare 3-28.

In the example shown in Figure 3-29, the StockBrokerQueryPortType declares an
operation called GetStockPrice which is designed to allow users’ systems to ask for the
price of a particular equity.

The input to this operation is provided by 2 StockPriceReguestMessage message.
The contents of this message are understoed by the implementing Web service, which formu-

Booking, Exh. 1053, Page 111

WSDL 108

<wsdl :portType name='StockBrokerQueryFPortType">
<wsgdl;:operation name="GetStockPrice">
<wsdl:input message="tns:S8tockPriceRequestMessage/>
<wsdl:output message="tns:StockPriceResponseMessage" />
<wgdl; fault name="UnknownSymbolFault"
message="ins:StockSymbolNotFoundiessage" />
</wsdl :portType>

Figure 3-29 Defining portTvpe slements,

jates a response in an output StockPriceReguestMessage message that contains the
detatls of the stock price for the equity requested.

Any exceptional behavior is returned to the caller through a fault called UnknownSym-
bolFault whick is comprised from a StockSymbolNotFoundMessage message. Note
that portType fault declarations have an additional nawme attribute compared to input and out-
put messages, which is used to distinguish the individual faults from the set of possible faults
that an operation can support.

Of course not all operations are so orthodox with a single input, output, and fault message,
and so we have a variety of possible message exchange patterns described by the operation
declarations within a portType, as follows:

* Input-Output: When the input message is sent to the service, either the output message
is generated or one of the fault messages listed is generated instead.

* Input onty: When a message is sent to the service, the service consumes it but does not
produce any output message or fault. As such no output message or fault declarations
are permitted in an operation of this type.

* Output-Input: The service generates the output message and in return the input message
or one of the fault messages must be sent back.

* Qutput-only; The service will generate an output message, but does not expect anything
in return, Fault messages are not allowed in this case.

Note that WSDL 1.2 changes the syntax of the portType declaration, renaming it
interface. It also supports a useful new feature in the form of the extends attribute, which
allows multiple interface declarations to be aggregated together and further extended to
produce a completely new interface. For example, consider the situation where our simple
stock Web service needs to evolve to support basic trading activities in addition to providing
stock quotes, Using the extends mechanism, a new interface can be created which pos-
sesses all of the operations from each interface that it extends, plus any additional opera-
tions the developer chooses to add to it as exemplified in Figure 3-30.

The only potential pitfall when extending an interface is where names clash. For
Instance, an extending intexface should take care not to call its operations by the same name

Booking, Exh. 1053, Page 112

106 Chapter 3 + SOAP and WSDL

<wsdl :message name="BuyStockRequestMessage">
<wgdl:part name="gymbol* element="gtockQ:symbol"/>
<wadl:part name=“"amount" element="xs:positivelnteger"/>
<wsdl:part name="bid" element='"stockQ:StockPriceType"/>
</wsdl :message>
<wadl :message names=*BuyStockResponseMessage’>
<wgdl:part name="gymbol" element="stockQ:symbol"/>
<wsdl:part name="amount* element="xs:positivelntegexr"/>
<wsdl:part name="price" element="stock(:StockPriceType"/>
</wsdl :message>
<wsdl :message name="BidRejectedMessage":>
<wgdl:part name="symbol" element="gtockQ:gsymbocl"/>
<wgdl:part name="amount" element="xs:positiveInteger"/>
<wsdl:part name="bid" element="stockQ:StockPriceType"/>
<wsdl:part name="asking" element="stockQ:StockPriceType"/>
</wadl :message>

<wsdl:interface name="StockBrokerQueryPurchaseinterface"
extends="tns:StockProkerQueryInterface" >
<wgdl:operation name="BuyStock’>
<wsdl:input message="tns:BuyStockRequestMegsage" />
<wsdl:output message="tns:BuyStockRaequestMessage" />
<wsdl:fault name="UnknownSymbolFault"
message="tng: StockSymbolNotFoundMessage" />
<wsdl:fault name=*BidRejectedrault"
nessage="tns:BidRejectedMessage" />

<fwadl:intexrface>

Figure 3-30 Extending inter face definitions.

as operations from any interface that it extends unless the operations are equivalent. Fur-
thermore, the designer of a new interface that extends multiple existing interface decla-
rations must take care to see that there are no name clashes between any of the interface
deciarations as well as with the newly created interface.

Bindings

The bindings element draws together the poxrtType and operat ion elements into
a form suitable for exposing to the network. Bindings contain information that dictates how
the format of the abstract messages is mapped onto the features of a particular network-level
protocol.

‘While WSDL supports bindings for a number of protocols including HTTP GET and
POST, and MIME, we are primarily interested in the SOAP binding for our simple stock quote
portType from Figure 3-28, which is presented in Figure 3-31.

Booking, Exh. 1053, Page 113

wsDL 107

<wgdl :binding name="StockBrokerServiceSOAPBinding®
type="tns: StockBrokerQueryPoxrtType">
<goap:binding styleDefault="document*
transport="http://www.w3.0xrg/2002/12/scap/bindings/HTTP/*
encodingStyleDefault="http://stock.example.oryg/schema” />
<wsdl:operation name="GetStockPrice">
<goap: operation
scapAction=*http://stock.example.org/getStockPricet />
<wadl:input>
<gsocap:body use="literal®/>
</wsdl:input>
<wsdl:outputs>
<goap:body use="literal"/>
</wsdl:output:>
<wsdl: fault>
<goap: fault name="StockSymbolNotFoundMessage® />
</fwsdl: faults>
</wsdl:operation>
</wsdl:binding>

Figure 3-31 A SOAP binding.

The binding shown in Figure 3-31 binds the abstract portType defined in Figure 3-29 to
the SOAP. It states how each of the message components of the operation defined in the
StockBrokerQueryPortType is mapped onto its SOAP equivalent.

Starting from the top, we see a name for the binding (which is later used to tie 4 binding to
a physical network endpoint) and the portType for which this binding is specified.

We then use elements from the WSDL SOAP binding specification to declare a binding
for SOAP document-style exchanges, which is expressed as the defanit mode for this binding
through the stylebefault="document® athibute. The encoding of the documents
exchanged is defined by the stock broker schema encodingStyleDefault="http://
stock.example.org/schema". The fact that the service uses document-style SOAP and
has its own schema means that it is a document-literal Web service.

Finall,y we see that the binding is for SOAP over the HTTP protocol as specified by the
transport="http://www.w3.0rg/2002/12/s0ap/bindings /HMrE/" attribute,
Bach of these options is set as the default for the entire binding though both the style and
encoding can be changed, if necessary, on a per-message basis. ‘

This binding contains a single operation, namely GetStockPrice, which maps each of
the input, output, and fault elements of the Get StockPrice operation from the StockBro-
kerQueryPortType to its SOAP on-the-wire format. The soapAction part of the opera-
tion binding is used to specify the HTTP SOAFAction header, which in turn can be used by
SOAP servers as an indication of the action that should be taken by the receipt of the message at
runtime—which usnally captures the name of a method to invoke in a service implementation,

Booking, Exh. 1053, Page 114

108 Chapter 3 « SOAP and WSDL

The soap:body elements for both the wsdl: input and wsdl:ocutput elements
provide information on how to extract or assemble the different messages inside the SOAP body.
Since we have chosen literal encoding and document style for our messages (via the
use="literal" and styleDefault="document" atiribute), each part of a corre-
sponding message is simply placed as a child of the soap : body element of the SOAP enve-
lope. Had we been using RPC-style SOAP, then the direct child of the soap : body would be an
element with the same name as the operation, with each message part as a child, as per
SOAP RPC style, as contrasted with document style in Figure 3-32.7

<!-- RPC style -->
<goap:body>
<GetStockPrice xmlns:gsp="http://stock.example.org/wsdl"
xmlns:stockQ="*http://stock.example.oryg/schemal:
<stockQ: symbol>MSFT</stock): symbol>
</GetStockPrice>
</s0ap :hody>

<l-= Documsnt style -->
<goap:body>
<stockQ: symbol
xmlns:stockQ="http://stock.example.org/schema ">
MSFT
</stockQrsymbol>
</soap:body>

Figure 3-32 Example SOAP RPC-style "Wrapping” element.

Note that the WS-t basic profile has mandated that only mes-
sages defined with element can be used to create document-
oriented Web services, and messages defined with type cannot.

Of course, the value of SOAP is not only that it provides a platform-neutral messaging for-
mat, but the fact that the mechanism is extensible through headers. To be of nse in describing
SOAP headers, the WSDL SOAP binding has facilities for describing header content and behav-
ior. For example, imagine that the query operation for which we have already designed 2 SOAP
binding in Figure 3-31 evolves such that only registered users can access the service and must
authenticate by providing some credentials in a SOAP header block as part of an invocation, The
WSDL interface for the service obviously needs to advertise this fact to users’ applications or no
one will be able to access the service.

7. Note: this is not SOAP-encoded, just RPC-style (i.e., wrapped in an element that is named indicatively
of the method that the message should be dispatched to).

Booking, Exh. 1053, Page 115

WsbL 109

The WSDL, fragment shown in Figure 3-33 presents a hypothetical scap : header decla-
ration within the wsdl:input element which mandates that a header matching the same
namespace as the userID message (as declared earlier in the document) is present, and will be
consumed by the ultimate receiver of the incoming SOAP message.

<wsdl :message name="UserIbD"
targetNamespace="http://security.example.org/user'>
<wsdl:part name="signature® type="xs:string"/>
<wsdl:part name="session" type="xg:anyURI"/>

</wsdl :message>

<wsdl:input>

<goap:body use="literal"/>

<goap:header use="literal" message=*tns:UserIDMessage’/>
</wedl: input>

<wedl:output

xmlng:gec="http://security.example.org/user’>

<goap:body use="literal"/>

<goap:headerfault message="sec:UserID" part="signature"/>
</wsdl:output>

Figure 3-33 Describing SOAP headers.

Correspondingly, a soap: headerfault element is present in the wsdl ; output ele-
ment o report back on any faults that occurred while processing the incoming header. If a fanlt
does occur while processing the header, this scap:headerfault clement identifies the
user’s signature that caused the problem. This information, which amounts to a “user unknown”
tesponse, can then be used at the client end to perhaps prompt the end user to re-enter a pass
phrase.

Note that an error such as an incorrect signature is propagated back through the header
mechanism and not through the body, since the SOAP specification mandates that errors pertain-
ing to headers must be reported likewise through header blocks,

Services

The services element finally binds the Web service to a specific network-addressable loca-
tion, It takes the bindings declared previously and ties them to a port, which is a physical net-
work endpoint to which clients bind over the specified protocol.

Figure 3-34 shows a service description for our stockbroker example. It declares a service
called StockBrokerService, which it defines in terms of a port called StockBro-
kerServiceSOAPPort. The port is itself defined in terms of the StockBrokerSer-
viceSOAPBinding binding, which we saw in Figure 3-31, and is exposed to the network at
the address http://stock.example.org/ to be made accessible through the endpoint
specified at the soap: address element.

Booking, Exh. 1053, Page 116

110 Chapter 3 « SOAP and WSDI.

<wsdl:gervice name="StockBrokerService¥s>
<wgdl :port name="StockBrokerServiceSOAPPort"
binding="tns:3tockBrokerServiceSOarBinding">
<scap:address
location="http://stock.example.org/"/>
</wsdl:poxrt>
</wsdl:service>

Figure 3-34 A service slement declaration,

Managing WSDL Descriptions

While the service element is the final piece in the puzzle as far as an individual WSDL
document goes, that's not quite the end of the story. For simple one-off Web services, we may
choose to have a single WSDL document that combines both concrete and abstract parts of the
interface. However, for more complex deployments we may choose to split the abstract parts
into a separate file, and join that with a number of different concrete bindings and services to
better suit the access pattern for those services,

For example, it may be the case that a single abstract definition (message, portTvpe,
and operation declarations) might need to be exposed to the network via a number of proto-
cols, not just SOAP. It might also be the case that a single protocol endpoint might need to be
replicated for quality of service reasons or perhaps even several different organizations each
want to expose the same service as part of their Web service offerings. By using the WSDL
import mechanism, the same abstract definition of the service functionality can be used across
all of these Web services irrespective of the underlying protocol or addressing, This is shown in
Figure 3-35 where MIME, HTTP, and SOAP endpoints all share the same abstract fonctionality
yet expose that functionality to the network each in their own way. Additionally, the SOAP pro-
tocel binding has been deployed at multiple endpoints which can be within a single administra-
tive domain or spread around the whole Internet and yet each service, by dint of the fact that they
share the same abstract definitions, is equivalent,

If a WSDL description needs to include features from another WSDL description or an
external XML Schema file, then the impoxt mechanism is used, It behaves in a similar fashion
to the XML Schema include feature where it can be psed to include components from other
WSDL descriptions, We have already seen how the WSDL import mechanism is used in Figure
3-27 where the XML Schema types from the stockbroker schema were exposed to the stock
broking WSDL. description, as follows:

<wgdl:import namespace="http://stock.exanple.org/schema®
location="http://stock.example.org/schema" />

The import feature of WSDL means that a WSDL description can leverage existing XML
infrastructure—previously defined schemas for in-house documents, database schemas, existing Web
services, and the like—without having to reproduce those definitions as part of its own description.

Booking, Exh. 1053, Page 117

wSsDL. 111

(" XML Schema
Types

Quiput
Message

'[I'npu't Messag

Figure 3-35 Including abstract WSDL descriptions for concrete endpoints.

Booking, Exh. 1053, Page 118

112 Chapter 3 » SOAF and WSDL

Extending WSDL#8

As Web services technology has advanced and matured, WSDL has begun to form the basis of
higher-level protocols that leverage the basic building blocks that it provides, to avoid duplica-
tion of effort. Many of the technologies that we are going to examine throughout this bock
extend WSDL via such means to their own purpose. However, where SOAP offers header
blocks as its extensibility mechanism for higher-level protocols to use, WSDL offers extension
elements based on the XML, Schema notion of substitution groups (see Chapter 2).

In the WSDL schema, several (abstract) global element declarations serve as the heads of substi-
tution groups. In addition, the WSDL schema defines a base type for use by extensibility ele-
ments as a helper to ensure that the necessary substitution groups are present in any extensions.
While it is outside the scope of this book to present the WSDL schema in full, there exists in the
schema extensibility elements which user-defined elements can use to place themselves at any
point within a WSDL definiticn. Thete are extensibility elements that allow extensions to
appear at global scope, within a service declaration, before the port declaration, in a mes-
sage clement before any part declarations and any other point in a WSDL description, as
shown in Figure 3-36,

<?xml version="1.0% encoding="utf-§%?>
<definitions>
<types>
</typeg>
<message ... >
</apessage>
ortType ... >
<gperation ... >
input ... />
<output ,.. />
fault ... />
</operation>
portType>
<pinding ... >
soap:ibinding ... />
<pperation ... >
<soap:operation ... />
<input>

Exarnple extensibifity
etement locations

</input>
Loutput>
/output>
</operation>
binding>
ervice ...>
ort ... P

</definitions>

Figure 3-36 WSDL. substitution group heads.

8. This scction based on a draft version of the WSDL 1.2 specification,

Booking, Exh. 1053, Page 119

Using SOAP and WSDL o 113

For example, the soap elements that we have seen throughout the bindings section of our
WDSL description are extensibility elements. In the schema for those elements, they have been
declared as being part of the substitution group bindingExt which allows them to legally
appear as part of the WSDL bindings section. _

Additionally, third-party WSDL, extensions may declare themselves as mandatory with the
inclusion of a wsdl : required atiribute in their definitions. Once a reguired attribute is
set, any and all validation against an extended WSDL document must include the presence of the
corresponding element as a part of the validation,

Extensibility elements are commonly used to specify some tech-
nology-specific binding. They allow innovation in the area of net-
work and message protocols without having to revise the base
WSDL specification. WSDL recommends that specifications
defining such protocols alse define any necessary WSDL exten-
sions used to describe those protocols or formats.®

Using SOAP and WSDL

While many of the more advanced features of the emerging Web services architecture are still
being built into many of the platforms, support for SOAP and WSDL. in most vendors’ Web ser-
vices toolkits is widespread and makes binding to and using Web services straighiforward. In
this section, we investigate how a typical application server and can be used to deploy our simiple
banking example, and how it can be later consumed by a client application. The overall architec-
ture can be seen in Figure 3-37.

The architecture for this sample is typical of Web services applications that routinely com-
bine a variety of platforms. In Figure 3-37, we use Microsoft’'s Net and Internet Information
Server to host the service implementation, but we use the Java platform and the Apache AXIS
Web service toolkit to consume this service and drive the application.

Client font LHoral Radjusst anking

“Application |/ Chis Web Service

Figure 3-37 Cross-platform banking Web service example.

§. From WSDL 1.2 specification, hitp://www.w3.0rg/TR/wadl12/,

Booking, Exh. 1053, Page 120

114 Chapter 3 » SOAP and WSDL

Service Implementation and Deployment

The implementation of our banking service is a straightforward C# class, and is shown in
Figure 3-38.

using System;

using System.Collections;
using System.ComponentModel;
using System.Data;

uging System.Web;

using System.Web.Services;

[WebSexrvice (Namespace="http://bank.example.org”)]
public class BankService : System.Web.Services.WebService
{
[WebMethod]
public string openAccount (string title,
string surpame,
string firstname,
string postcode,
string telephone)

BankEndSystem beg = new BackEndSystem{);

string accountNumber = bes.processapplication(title,
surname,
firstname,
postcode,
telephone) ;

return accountNumber;

}
H

Figure 3-38 A simpie bank Web service implementation.

Most of the work for this service is done by some back-end banking system, to which our
service delegates the workload, Qur service implementation just acts as a kind of gateway
between the Web service network to which it exposes oor back-end business logic, and the back-
end systems themselves to which it delegates work it receives from Web services clients. This
pattern is commonplace when exposing existing systems via Web services, and makes good
architectural sense since the existing system does not have to be altered just to add in Web ser-
vice support.

Booking, Exh. 1053, Page 121

Using SOAP and WSDL 115

The key to building a successful Web service, even one as sim-
ple as our bank account example, is to ensure that the orthogo-
nal issues of service functionality and deployment are kept
separate. That is, do not allow the implementatich of your system
to change purely because you intend to expose its functionality
as a Web service.

It is a useful paradigm to treat your Web services as “user
interfaces” through which users (in most cases other computer
systems) will interact with your business systems. In the same
way that you would not dream of putting business rules or data
inte human user interfaces, then you should not place business
rules or data info your Web service impiementations. Simitarly,
you would not expect that a back-end business system would be
updated simply to accommodate a user interface, and you should
assume that such mission-critical systems should not be altered
to accommodate a Web service deployment.

When deployed into our Web services platform (in this example, Microsoft’s IS with
ASP.Net), the associated WSDL description of the service is generated by inspection of the
implementation’s interface and made available to the Web. The resultant WSDL!® is shown in
Figure 3-39.

It is important to bear in mind, that although the WSDL shown in Figure 3-39 is intricate
and lengthy for a simple service, the effort required to build it is practically zero because of tool
" support. The only issue that this should raise in the developer’s mind is that their chosen plat-
form and tools should handle this kind of work on their behalf. WSDL should only be hand-
crafted where there a specific need to do something intricate and unasual that tool support would
not facilitate.

Binding to and Invoking Web Services

Once the service has been deployed and its endpoint known by consumers, clients can
bind to it by using their client-side Web services toolkits to create proxies. A proxy is a piece of
code that sits between the client application and the network and deals with all of the business of
serializing and deserializing variables from the client’s program inte a form suitable for network
transmissjon and back again. The client application, therefore, never has to be aware of any net-
work activity and is sitnpler to build.

10, The WDSL description generated by ASP.Net is richer than that shown here since it also includes
HTTP GET and HTTP POST bindings. However, we are predominantly interested in SOAP as the
Web services transport, and so the H'TTP bindings have been removed.

Booking, Exh. 1053, Page 122

116 Chapter 3 » SOAP and WSDL

<?xml version="1.0" encoding="utf-8"7>
<definitions
xnilns: soap="http://schemas.xmlsoap.org/wsdl/scap/ "
xmins:xs="http://www.wl.org/2001/XMLSchema®
xmlns:bank="http://bank.example.org"
targetNamespace="http://bank.example.org”
xmlng="http://schemas.xmlsoap.org/wsdl/ >
<types>
<xs:schema elementFormDefault="gualified"
targetNamespace="http://bank.example.org">
<xX8:element name="opendccount">
<X8:complexType>
<X8:gequence>
<xs:element minOccurs='"0" maxOccurs=*1"
name="title" type="xs:string"/>
<xs:element minQccurs="0" maxOccurs="1"
name='gurname” type="xs:string®/>
<xs:element minOccurs=*0" maxOccurg="1"
name="firstname" type="xs:string"/>
<xg:element minOccours="0" maxOccurs="1"
name="postcode" type="xg:string"/>
<xs:element minOccurs="0" maxOccurg="1"
name="telephone" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</x8:element>
<xg:element name="openaAccountResponse®>
<xg:complexType>
<XS:gequence>
<xs:element minOccurs="0" maxOccurs=" 1"
name="openAccountResult" type="xg:string'/>
< /X8 sequence>
</xs:complexType>
</xs:element>
<xs:element name="gstring® nillable="true"
type="xs:string"/>
</xs:schema>
</types>
<message name="openAccountSoapIn®>
<part name="parameters" element="bank:openAccount”/>
</message>)
<mesgage name="openAccountSoapfut >
<part name="parameters"
element="bank:openAccountResponse® />
</megsage>
<portType name="BankServiceSoap">

Figure 3-39 Bank service aito-generated WSDL description.

Booking, Exh. 1053, Page 123

Using SOAP and WSDL 117

<operation name="openAccount">
<input message="bank:opendccountScapiIn"/>
<cutput message="bank:openAccountSoapOut" />
</operation>
</portType>
<binding name="BankServiceSoap"
type="bank:BankServiceSoap">
<soap:binding
transport="http://schemas.xmnlsoap.org/scap/http!
style="document" />
<gperation name="openAccount”>
<goap:operation
soapAction="http://bank.example.ocrg/ocpendAccount”
style="document"” />
<inpuk>
<soap:body use="literal"/>
</input>
<gutput>
<goap:body use="literal"/>
</output>
</operation>
</binding>
<service name="BankService'":>
<port name="BankServiceSoap"
binding="bank:BankServiceSoap">
<goap:address
location="http://localhest/dnws/BankService.asmx" />
</port>
</service>
</definitiong>

Figure 3-39 Bank service auto-generated WSDL description (continued).

In our example, the serialization and deserialization is to SOAF from Java and back again,
and is handled by a proxy generated by the Apache AXIS WSDL2Java tool. This tool parses
WSDL at a given location and generates a proxy class which allows client code to communicate
with that service. For example, the proxy code generated by this tool when it consumed our bank
example service is shown in Figure 3-40.

Booking, Exh. 1053, Page 124

118 Chapter 3 » SOAP and WSDL

/**

* This file was auto-generated from WSDL
* by the Apache Axis WSDL2Java emitter.
®/

package org.example.bank;
import java.lang.String;

public class BankServiceSoapStub
extends org.apache.axis.client.8tub
implements org.example.bank.BankServiceSoap {

// Data members removed for brevity

prublic BankServiceScapStub()
throws org.apache,axis.AxisFault {

this(null);

// Other constructors removed for brevity

private org.apache.axis.client.Call createCall()
throws java.rmi.RemoteException {

// Implementation removed for brevity
return _call;

catch (java,lang.Throwable t) {
throw new org.apache.axis.AxisFault{"Failure trying" +
' to get the Call object", t};

b
}

public String openAccount (String title, String surname,
String firstname,
String postcode,
String telephone)
throws java.rmi.RemoteException {
// Implementation removed for brevity

}
Figure 3-40 Apache AXIS auto-generated proxy for the bank Web service.

The proxy class shown in Figure 3-40 allows the client of the Web service to call its fanctional-
ity with a call as simple as the likes of:

bankAccountService.openkccount ("Mr", "Aneurin®, ‘Bevan",
"ABC 123", "0207 123 4567%)

without having to worry about the fact that on the wire, the proxy has sent a SOAP message that
looks like that shown in Figure 3-41 below:

Booking, Exh. 1053, Page 125

Using SOAP and WSDL 119

<?xml vergion="1l.0" encoding="utf-8" ?>
<goap:Envelope xmlns:soap="http://schemas.xmlsoap.oxrg/scap/
envelope/" xmlns:xsi="http://www.w3.oryg/2001/XML.Schema-
instance” xmlns:xsd="http://www.w3.org/2001/XMLSchema®>
<g0ap : Body>
<openAccount xmlns="http://bank.example.org">
<titlerMr</title>
<surname>Bevan</surname:>
<firstnamerAneurin</firstname:>
<postcode>ABC 123</postcode>
<telephone>0207 123 4567</telephone>
< /openAccount>
</soap:Body>
</soap:Envelope>

Figure 3-41 Proxy generated SOAP message.

At the receiving end, the bank service's SOAP server will retrieve this SOAP from the net-
work and turn it into something meaningful (in our case C# objects) before passing it to the ser-
vice implementation. The service implementation grinds away at its task, producing some result
in its own proprietary format before passing it back to the underlying Web services platform to
serialize its results into the appropriate network format (i.e., a SOAP message) and return it to
the caller. At this point the service invocation has finished and the resources nsed during the exe-
cution of that service can be freed.

Where’s the Hard Work?

For simple interactions, there isn’t any hard work for the developer to do because SOAP:
toolkits are sufficiently advanced enough to automate this, For example, we didn’t have to worry
about the style of SOAP encoding or how the marshalling occurred in any of our bank account
examples, even though we crossed networks, servers, and even languages and platforms.

Though it may seem from these examples that Web services is an automation utopia, it is
not. While it is trae that for the majority of cases, simple interactions can be autornated (though
auto-generation of WSDL from service implementation code and auto-generation of proxies
from WSDL descriptions), this is about as far as toolkits have advanced,

Given that this book extends beyond this third chapter, it is safe to assume that we’re going
to have to roll up our shirt sleeves at some point and patch the gaps that the current set of Web
services toolkits inevitably leaves. It is in these subsequent chapters where we will find the hard
work!

Booking, Exh. 1053, Page 126

120 Chapter 3 » SOAP and WSbDL

Summary

SOAP is the protocol that Web services use to communicate. It is an XML-based protocol that
specifies a container called an Envelope, which stores application payload in a second container,
called the Body, and additional (usually contextual) information inside a third container called
the Header. The SOAP specification describes a processing model where application messages
(and their associated headers) can pass through intermediary processing nodes between the
sender and receiver, where the information stored in the SOAP header blocks can be used by
those intermediaries to provide various quality of service characteristics. For example, the head-
ers may contain routing information, transaction context, security credentials, or any other pro-
tocol information.

WSDL is an interface description language for Web services and like SOAP, WSDL is
currently popularized by its 1.1 version, which is due to be superseded by WSDL 1.2. A WSDL
intexface is composed from a number of elements, each building on the previous, from simple
type and message declarations, culminating in a network addressable entity which uses the
defined types and messages to expose operations onto the Web.

Though SOAP and WSDL are undoubtedly important protocols in their own right, when
drawn together through tool support, their potential is significantly enhanced. Web services tool-
kits can consume the WSDL offered by a service and antomatically generate the code fo deal
with messages in the format that the service expects, while providing a straightforward API to
the developer.

Architect’s Note

* SOAP 1.1 is the most widely adopted version of the SOAP specification. However,
SOAP 1.2 has now reached W3C recommendation status and thus SOAP 1.1 is now
considered deprecated.

* SOAP RPC is quick and easy, but may lead to applications with too tight a level of
coupling. Exchanging larger documents is preferable, even if it means writin g handler
code to deal with them,

* XML-Native applications should not use SOAP-RPC; they should use the XML
vocabularies that they have already developed, and use those vocabularies as the basis
of their communication via document-oriented SOAP.

* Be prepared for a shift in the Web services architecture, and ensure your services can
support “Web-friendly” access where appropriate.

* Do not deploy a Web service without its WSDL description—a service is naked
without it.

* Use tool support—it is wasted effort to do for yourself what a tool can do more easily,
more quickly, and more accurately.

Booking, Exh. 1053, Page 127

CHAPTER: 4

UDDI—Universal
Description,
Discovery, and
Integration

hen UDDI came on the scene, its champions positioned the new technology as the sav-
W ior of e-business. Businesses along a value chain would use UDDI registries to dynam-
jcally and automatically select new business partners, locate the electronic services irplemented
by those partners and start executing e-commerce transactions with them. This would revolu-
tionize how businesses operate: wipe out the need for human interaction in many business tasks,
reduce ovetheads and middleman costs, and fundamentaily enable a dynamic and fluid e-busi-
ness environment.

Today, it is difficult to find companies that are truly using UDDI, and UDDI registries
boast a relatively small namber of entries. Does this mean that UDDI is DOA (dead on arrival)?
By just looking at the list of some of the companies that are backing the UDDI project, one
would conclude probably not.

So, kow will UDDI pan out? What will enterprises do with UDDI? What do enterprise
architects have to know about UDDI? In this chapter, we delve into these issues and take a prac-
tical approach to UDDI and its fit within the enterprise Web services picture. We look at the lat-
est release of the UDDI specification— Version 3—and take a closer look at some of the key
architectural changes.

UDDI at a Glance

The UDDI is a registry and a protocol for publishing and discovering Web services. As Web ser-
vices are a standards-based, open, and platform-independent means of accessing the functional
capabilities of other companies, UDDI is the associated standards-based, open, and platform-

121

Booking, Exh. 1053, Page 128

122 Chapter 4 » UDDI—Universal Description, Discovery, and Integration

independent means of publishing and locating these services. The latest information about
UDDI and the UDDI community can be found at http Jiwww.addi.org.

As more and more companies start driving toward a services-oriented architecture, and
Web services in particular, for their enterprise application infrastructure, the issue of locating
Web services becomes increasingly important. When companies initjally began experimenting
with Web services behind the firewall, there was no question of locating or discoverin g services
as each company controlled everything—both the services and the consuming applications.

As these experimental applications were migrated across the firewall, the services they
consumed were augmented to include Web services from a handful of partner companies. All of
the necessary information about these services was known a priori, and still the need to discover
services was unnecessary.

As these applications were further scaled, there emerged a need to answer questions such
as: Which business partners have this service? What types of services do these partners offer? As
more business partners adopted Web services, the process of obtaining these answers became
difficult, not to mention time consuming, The old methods of jointly agreeing on services and
their interfaces were no longer feasible. Neither was manually calling vp business pariners to get
a list of their latest service offerings.

There emerged a need for a registry where service providers could publish not only a list
of their services but also information necessary to use the services. At the same time, businesses
could search through the registry to discover these service providers and their services. These
are the underpinnings of UDDI.

Analogies with Telephone Directories

UDDI shares some striking similarities with telephone directories (e.g., yellow pages). As
such, the analogy is an effective vehicle for describing the capabilities and usefulness of UDDL

A phone book allows people to search for other people and businesses, get their contact
information, and then directly contact the person or business. Phone books allow various modes
of searching, whether it be an alphabetical listing of people or business names (as in the white
pages) or through categories of businesses.

Anyone can view the listings of a phone directory; in fact, the more people who view and use
the phone book, the more valuable it is. However, only the phone company or its anthorized agent
publishes the phone hook. When adding or updating entries, the requester must validate his or her
identity and provide evidence that he or she has the right to add or change the information,

The importance of phone books grows as the need to locate more people and businesses
increases. When there are just a handful of people and businesses and few new additions, phone
books are not as important. It is easy to keep track of contact information, or gather the informa-
tion when necessary. However, as the base of people and businesses becomes large and there are
continuous changes—both in people and businesses being added or removed from the listings or
their contact information changes—phone books become critical. They provide a centralized
source for contact information.

Booking, Exh. 1053, Page 129

UDD! at a Glance 123

UDDI is quite similar. Instead of a directory of telephone numbers, UDDI is a directory of
Web services that are available from different vendors. UDDI provides a means of adding new
services, removing existing services, and changing the contact (i.e., endpoint) information for
services,

Most UDDI implementations also have some of the same constraints as phone books.
Only authenticated users (e.g., service providers) can add or change their information on the
UDDI registry. Non-authenticated users are pot allowed to change any information on a UDDI
registry, and only authenticated users can change their own information. This policy prevents
maliciously motivated changes to UDDI entries. Any user can access a UDDI registry for read-
only purposes,

Both telephone directories and UDDI registries provide a means to locate a vendor or pro-
vider of a particular service, For telephone directories, contact information is basically a phone
aumber and perhaps may aiso include an address. Contact information in a UDDI registry con-
sists of information about the service provider as well as technical information about the Web
service itself. Conceptually, the information available in an UDDI registry is similar to that in
the white, green, and yellow pages of the phone book. In UDDI, the segmentation of information
that i3 available and searchable can be thought of as follows:

« White Pages: Contact information about the service provider company. This
information includes the business or entity name, address, contact information, other
short descriptive information about the service provider, and unique identifiers with
which to facilitate locating this business,

* Yellow Pages: Categores (taxonomies) under which Web services implementing
functionalities within those categories can be found.

» Green Pages: Technical information about the capabilities and behavioral grouping of
‘Web services.

How are people supposed to use an UDDI registry? First, let’s look at how people use tele-
phone books. When using the phone book to contact a business, the user bas a product or service
in mind. From her past purchases, she may also have a few businesses in mind that sell that prod-
uct. The user looks up these business names to find their contact information. Otherwise, the
user searches through product categories to locate a vendor. Once she has identified a suitable
vendor, she looks up the corresponding phone number and contacts the vendor.

What if there are multiple possible vendors? How does a user determine the winner? The
winning vendor may be chosen based on price. The user may prefer to do business with a partic-
ular vendor if she has done a lot of business with the vendor in the past. The user may shy away
from a vendor because the vendor has been unreliable or has delivered shoddy product.

Using a UDDI registry is similar to using a standard telephone directory. Users will search
through the UDDI registry for an appropriate Web service that meets their needs. The search

. may involve a straightforward name lookup, or may involve searching through the taxonomies
(service provider categories) provided by the UDDI registry. What do you do when there are

Booking, Exh. 1053, Page 130

124 Chapter 4 + UDDI—Universal Description, Discovery, and fntegration

multiple Web services that may potentially meet your needs? You have to pick a winner based
on whatever metrics are important to you. These may be cost, personal preferences, or other
business relationships.

Figure 4-1 depicts the similarities between telephone directory books and UDDI registries.

Although there are strong similarities between these, there are some places where the anal-
ogy breaks down. First, each Web service implements a unique APL Although this is not by
specification, it is statistically unlikely that twe independent programmers will define and imple-
ment the same programmatic interface. Unlike different phone numbers that merely provide
unique identification or routing information for phone calls, different Web service APIs are
more analogous to using a different and vnique phone number for communicating with each per-
son or business,

Second, people will not typically interact directly with UDDI registries as they do with
phone books. This is because the information available on UDDI is not people-friendly. Instead,
portals and software tools facilitate access to UDDI registries. Many of the same middleware
and application development tools that support Web service development allow users to easily
add new services to the UDDI registry. These and other tools also allow browsing through the
services on UDDJ, and many augment the information available on UDDI with their own analy-
sis. This analysis may inclade quality-of-service information and additional information helpful
in using the Web services.

search for Business Name connect with
! —_— Phone Number ——3p business using
businesses Address phone number
(2) Telephone Directory Book
search for Business Name connect with
businessesand — Service Endpoint —————p business using
services Service Description service endpoint
(b) UDDI Registry

Figure 4-1 Similaritios between (a) telephone directory books and {b) UDDI registries.

Booking, Exh. 1053, Page 131

UDDI at a Glance 125

Another key difference is that within organizations, UDDI wil} probably be accessed by
two different groups of people. Unlike phone books, interactions with UDDI require an under-
standing of more issues. For example, which Web service to use for a particular application is
not only based on technical needs and QoS requirements, other strategic and business issues also
come into the mix. There may be existing relationships between two companies that require the
use of a particular company’s Web service over that of another. Or, it may make strategic sense
for a company fo use a particular Web service, even if other technically superior Web services
exist. As such, a unique interaction of business issues together with technical issues comes
together to determine which Web service to use for a particular application. Since most technical
programmers are usually not party to such information, business analysts with an understanding
of strategic business issues typically will select Web services by searching through UDDI regis-
tries and other related information portals. A programmer will then search the UDDI registry for
that particular Web service's API, and implement the commmunications between the application
and that Web service, as depicted in Figure 4-2.

A critical point to remember is that business issues are quite fluid. The dynamics of most
business environments result in rapidly changing relationships. This, in turn, results in continu-
ously changing or at least evolving business-driven requirements. Flexibility in selecting and
consuming Web services is important.

It is a common' misconception that applications can themselves dynamically select and
consume Web services. Although one day software may become sufficiently smart to do this,

Programmer
Technical Requirements
et Binding
Selected Service Information For
Selected Service

Business Analyst
Select Web

Service

Figure 4-2 The typical roles played while interacting with an UDDI registry.

Booking, Exh. 1053, Page 132

126 Chapter 4 « UDDI—Unlversal Deseription, Discovery, and Integration

today selecting and consuming Web services requires some degree of human intervention. Some
simple cases of automation do certainly exist, but automating the process in a general sense is
not available today. Why not? Because each Web service implements a unique APT that requires
programmatic and perhaps architectural changes to the consuming application. Moreover, auto-
mating the process of selecting the appropriate Web service to consurae is difficult and dynamic,
Some newer tools support the use of business rules to automate (at a higher level) the process of
service selection, Nonetheless, some level of human intervention is necessary.

The UDDI Business Registry

The UDDI Business Registry (UBR) is a global implementation of the UDDI specification. The
UBR is a single registry for Web services. A group of companies operate and host UBR nodes,
each of which is an identical copy of all other nodes. New entries or updates are entered into a
single node, but are propagated to all other nodes.

The UBR is a key element of the deployment of Web services and provides the following
capabilities:

* A centralized registration facility at which to publish and make others aware of the Web
services a company makes available,

* A centralized search facility at which companies that require a particular service can
locate businesses that provide that service as well as relevant information about that
service,

A small group of companies operate and manage a set of UBR nodes. In July 2002, the
UBR was updated to support version 2 of the UDDI specification, Initially, IBM, Microsoft, and
SAP comprised the UBR V2, operating 3 UBR nodes. NTT Communications Iater Jaunched an
UBR node to become the fourth UBR V2 node. More than 10,000 businesses are registered with
the initial three UBR nodes, publishing over 7,000 Web services. NTT expects to add another
1,000 businesses within the first operational year of the fourth UBR node. .

Each UBR node provides a Web home page for human-friendly navigation of the registry
as well as information about the use of the registry. Today, most searches for available Web ser-
vices are done through human-friendly means: phone conversations between existing business
partners, the home pages of the UBR, Web service aggregator portals such as
www.xmethods.com, or standard Web search engines such as Google. UBR node home pages
also provide other information pertaining to UDDI or to that particular UBR node. This informa-
tion includes policies on data replication, publishing restrictions, and other administrative or
usage issues,

UBR nodes also implement a simple API for direct electronic {computer-to-computer)
access to the contents of the registry. The two most important and relevant features of the APls
are inquiry and publication.

Booking, Exh. 1053, Page 133

The UDDI Business Registry 127

The inquiry API allows searching through the registry for information about businesses,
the Web services the business makes available, as well as implementation and interface informa-
tion for sach service. '

The publication API allows adding, changing, and deleting business and service informa-
tion within the registry.

Bigure 4-3 depicts some typical means of accessing and interacting with an UDDI registry.

The URL-access endpoint information of the home page, inquiry API, and publication API
of each UBR node is different, and the information for each of the UBR V2 nodes is listed in
Table 4-1. The publication API endpoint requires authentication and uses the HTTPS protocol,
while the inquiry API and home page use standard HTTP.

The UBR operators also provide fully functional test environments where companies can
develop and test their offerings without affecting other users. Some of these test nodes do not
support version 2 of the UDDI specification as yet. Table 4-2 lists the endpoint access informa-
tion for the test nodes of the UBR.

Sarvice Markefplace
Access

Service Aggregator
Access ‘\.

upDI
Regishry
Web Portal /
Access
Direct Programmatic
Access

Figure 4-3 The various means of accessing an UDDI registry.

Booking, Exh. 1053, Page 134

128 ~ Chapter § « UDDI—Universal Description, Discovery, and Integration

Table 4-1 The operator node URLs for the UDDI Business Registry (UBR).

UBR Operator Node URL
IBM Home Page http:/fuddi.ibm.com/
Inquire API http:/fuddi.ibm.com/ubr/inquireapi
Publish API https:/faddi.ibm.com/ubr/publishapi
Microsoft ~ Home Page http://uddi. microsoft.com/
Inquire API http:/fuddi.microsoft.convinguire
Publish AP1 hitps:/fuddi.microsoft.com/publish
SAP Home Page http://uddi.sap.com/
Inquire API http:/fuddi.sap.com/uddi/apifinquiry
Publish API hitps:/fuddi.sap.com/uddi/api/publish
NTTCom Home Page htp:/fwwwantt.com/uddi/
Inquire API http:/fwww.uddi.ne. jp/ubrfinguiryapi
Publish API https:/fwww.nddine jp/ubr/publishapi

Table 4-2 The test node URLSs for the UDDI Business Registry {UBR).

UBR Test Operator Node URL

IBM Home Page hitp:/fuddi.ibm.com/testregistryfregistry.html
Inquire APL httpi/fuddi.ibm.com/testregistry/inquiryapi
Publish API https:/fuddi.ibm.com/testregistry/publishapi

Microsoft Home Page hitp://test.uddi. microsoft.com/
Inquire APT http://testuddimicrosoft.com/inquire
Publish API hitps://testuddi.microsoft.com/publish

SAP Home Page hitp:/fudditest.sap.com/
Inquire API hitp://udditest.sap.com/UDDI/apifinquiry
Publish API hitps://udditest.sap.com/UDDI/api/publish

Later in the chapter we look at how to programmaticaily access the information at these
UBR nodes to locate the latest information about a particular Web service.

Booking, Exh. 1053, Page 135

UDD! Under the Covers . 129

UDDI Under the Covers

In the remainder of this chapter, we discuss how to add entries to a UDDI registry as well as how
to search for available services and build applications that consume those services. We will also
briefly touch on the major sections of the UDDI specification.

The UDDI Specification

Version 3 is the most recent incarnation of the UDDI specification. Version 3 builds on
and expands the foundations laid by versions 1 and 2 of the UDDI specification, and presents a
blueprint for flexible and intercperable Web services registries. Version 3 also includes a rich set
of enhancements as well as additional features, including improved security and new APIs. The
entire UDDI specification can he found at htip://www.uddi.org,

The major documents of the UDDI Version 3 specification are listed in Table 4-3.

Table 4-3 The major documents of the UDD| Specification version 3.

UDDI Version 3 Svnopsis

Speckfication Documents ynop
Features List Brief overview of the key features in version 3.
Specification The actnal specification document.
XML Schemas A set of XML Schema files that formally describe

UDDI data structures.

WSDL Service Interface A set of files that describe the UDDI Version 3
Descriptions WSDL interface definitions,

Unlike in previous versions, UDDI Version 3 consolidates the entire specification into a
single document entitled the UDDI Version 3 Published Specification. This single document
contains everything related to UDDI, and also contains all information necessary for developing
a UDDI node, the Web services that are called by a UDDI node, or a client application that
directly interacts with a UDDI registry,

UDDI Core Data Structures

Information representation within UDDI consists of instances of persistent data structures
that are expressed in XML. It is these data structures that are persistently stored and managed by
UDDI nodes. The UDDI specification refers to these as entities, and defines four core entity
types as listed in Table 4-4.

Booking, Exh. 1053, Page 136

130 Chapter 4 + UDDI—Universal Description, Discovery, and Integration

Tabte 4-4 The different entity types defined by the UDDI information Model.

Entity Type Name Description
businessEntity A business that provides a Web service.
businessService A collection of related services offered by a business.
binding Template Technical information about a particular Web service.
tModel Technical model information aboat a Web service that is
used to determine whether a service is compatible with the
client’s needs.

‘Whether you intend to programmatically connect to a UDDI registry or manually browse
through one, it is necessary to understand these core data structures. Central to the purpose of
UDDI is the representation of information about Web services so they can be easily registered
and classified by publishers as well as searched and consumed by client applications. As such
the data structures wsed by UDDI provide not only technical interface information about a ser-
vice itself, but also information necessary to classify, manage, and locate services. Figure 4-4
depicts the interrelationships between the core UDDI data structures.

The businessEntity entity type represents information about service providers
within UDDL This information includes detailed data about the name of the provider, contact
information, and sotne other short descriptions of the provider. This information may also be

<businessEntity>

<businessService>

A=
A]

[d _'/

<bindingTemplate> | -1
glemplate %i <tModel>]

Figure 4-4 The interrelationship between the UDDI core data structures,

Booking, Exh. 1053, Page 137

UDDI Under the Covers 13

provided in multiple languages. The businessEntity structere does not necessarily have to
refer to a business, but to any type of service provider, such as a department within an organiza-
tion or a group. -

One or more of the businessService entity types are contained within a busines-
sEntity structure and represents information about the services offered by that busines-
gEntity. The businessService entity type does not provide implementation or technical
details, but instead is a logical grouping of Web services and provides information about the
bundled purpose of a set of contained Web services.

One or more of the bindingTemplate entity types are contained within a2 busi-
nessService structure and provides technical information about a particular Web service.

_The bindingTemplate structure directly or indirectly provides descriptive technical infor-
mation about an instance of a Web service, and includes a network location or endpoint of the
service, The network location (access point) is usually a URL, but can be other network access
points such as email addresses. The bindingTemplate structure also includes information
about the type of Web service focated at that access point through references to tModel entities
as well as other parameters,

tModels, which are short for technical models, provide more detailed information about
a Web service. tModels are reusable entities that are referenced from bindingTenplate
structures and denote compliance with a shared concept or design, tModels are not contained
within bindingTempl ates, but instead are referenced, Distinct tModels exist for different
interfaces and contracts that a Web service can comply with including specifications, transports,
protocols, and namespaces. The set of tModels that a bindingTemplate refers to makes
up a Web service’s technical fingesprint. The actual documents and information identified by a
tModel are not located within the UDDI registry itself, but instead the tModel provides
peinters to the location where such documents can be found.

Two more UDDI entity types that are important are subscription and publishexr-
Assertion. The subscription entity type describes the request to keep track of the evolu-
tion or changes to particular entities, The publisherAssertion entity type describes the
relationship between one businessEntity and another businessEntity. There are
many instances where multiple divisions within a large organization or a group of organizations
want to make the relationship between them known in order to facilitate discovery of the ser-
vices they provide. The individual divisions or organizations each have their own busines-
sEntity, and the entity type publisherAssertion describes the relationship between
two businessEntity structures, It is importact 1o note that two organizations must assest the
same relationship through the publisherAssertion for that relationship to be publicly
available. This disallows the situation where one organization claims a relationship with another
where in fact there is none.

Booking, Exh. 1053, Page 138

132 Chapter 4 « UDDI—Universal Description, Discovery, and Integration

Accessing UDDI

UDDI is itself a Web service and as such, applications can communicate with an UDDI registry
by sending and receiving XML messages. This makes the access both Janguage and platform
independent.

Although it’s possible, it is unlikely that programmers will deal with the low-level details
of sending and receiving XML messages. Instead, client-side packages for different languages
and platforms will emerge that facilitate programmatic access to UDDI,

Two such packages are UDDI4J and Microsoft’s UDDI SDK, which are client-side APIs
for communicating with UDDI from Java and .Net programs, respectively. UDDI4Y was origi-
nally developed by IBM and released in early 2001 as an open source initiative. Later, HP joined
and contributed to the initiative, developing much of the version 2 release. With the support of
IBM and HP (as well as others), UDDI4J has become the de facto standard Java package for
communicating with UDDI registries. Mors information about UDDI4J, including the latest
releases and download bundles, can be found at the UDDI4J Project Web site at hitp:/forww-
124 ibm.com/developerworks/ossfuddidi/.

Figure 4-5 shows how UDDI4J facilitates programmatic access to an UDDI registry. With
UDDI4], programmers don’t have to concern themselves with either the UDDI APE or with
forming and parsing XML messages. Instead, a new Java object, UBDIProxy, is instantiated to
act as a proxy and represent the actual UDDI registry. Using setter methods, the proxy object is
configured with the URLSs of the actual registry location, as well as optional transport informa-
tion. Essentially, using UDDI4J and just a few, simple lines of code, a Java application can open
a communications channel to any UDDI registry.

// Create a new UDDIProxy object to connect to a registry
UDDIProxy proxy = new UDDIProxy (};

// 8et the inguiry and publish URLs
proxy.setIngquireURL (INQUIRE _URL);
proxy.setPublishURL (PUBLISH_URL);

Flgure 4-5 Opening a connection to an UDDI ragistry using UDDI4.).

Once we've created the proxy object and set its inquire and publish URLS to the desired
UDDI registry locations, we can use the methods that are defined for the UDDIProxy object to
access and set various elements within the registry. Usually, programmers will use the
find_business, find sexvice, and find_tModel methods to locate service provid-
ers, services, and tModels, respectively, based on search criteria, such as name (including par-
tial names with wildcards) and categories.

Booking, Exh. 1053, Page 139

Accessing UDDI 133

Figure 4-6 shows a complete application using UDDI4J to connect to Microsoft's UDD]
Business Registry (UBR) inquiry node and locale service providers whose name includes the
string “abc™, After an UDDIProxy proxy object for Microsoft’'s UBR inquiry node is set up,
the £ind_business method is invoked to search for available business names that contain the
substring “abc”, The wildcard character ‘%’ is used to specify that the substring may occur any-
where in the business name. Qualifiers, such as case-sensitive string matching, could have been
added to the £ind_business method to further limit the search.

/**

* The AccessUDDI class implements a simple application
* that connects to Microsoft's UBR ingquiry node,
searches for service providers that have the string
"abc" in their name and displays to the standard
output the business name, the business description,
and the names of all services provided by that
business.

/

LR S

import org.uddidi.client.UDDIProxy;
import org.uddid;i.datatype.Name;

import org.uddidij.response.BusinessInfo;
import org.uddidi.response.BusinessList;
import org.uddidi.response.Servicelnfo;
import java.util.Vector:;

public class AccessUDDI

{
public static void main { Stringil args)
{
int i = §;
int § = 0;
UDDIProxy proxy = new UDDIProxy {);
try
{

// Set the inquiryURL
proxy.setInguiryURL
{ "http://uddi.microsoft.com/inquire");

// Look for names that include "abot

Vector names = new Vector ();
names.add { new Name { "%abc%") };

Figure 4-6 Using UDDI4J io access an UDDI Registry to print out 21 providers that include the
string “abc” in their names.

Booking, Exh. 1053, Page 140

134 Chapter 4 « UDDI—Unlversal Description, Discovery, and Integration

// Search the UDDI registry
Businesslist results =
proxy.find business |(

names,

null,

null,

null,

null,

null,

21)

Vector businessiInfoVect = results.getBusinessInfos
() .getBusinessIinfoVector ():

System.out.printlin { "Results are:");

for { 1 = 0 ; i < businessInfoVect.size ()} ; 14+ }
{
BusinessInfo businessInfo = (BusinessInfo)
businesgInfoVect.elementAt { i);

System.out .printin ["\nName: " +
businessInfo.getNameString ()}):
System.out.println (* ... Description: " +

businessInfo.getbDefaultbescriptionString ());

Vector serviceInfoVect =
businessInfo.getServiceInfos ().getS8ervicelnfoVector (};
for (§ = 0 ; 3 < serviceInfoVect.size [} ; J++)

ServiceInfo servInfo = (ServiceInfo }
serviceInfovVect.elementat { j };
System.out.printin (" ... Service Name: " +
servinfo.getNameString ());
}
}
}
catch (Exception e)
{
e.printStackTrace ();
}

}
}

Figure 4-8 Using UDDI4J to access an UDDI Registry to print out 21 providers that include the
string “ab¢” In their names (continued).

Once the results of the search are returned from the UDDI registry, additional method calls
are used to extract the business name, business description, and service names for all matching
businesses. This information is then displayed on the standard output. Figure 4-7 shows a
selected subset of the output of the application shown in Figure 4-6.

Booking, Exh. 1053, Page 141

Accessing UDDI 135

Results are:

Name: abc
Degeription: null

Name: ABC Corporate Services
... Description: A travel services company serving the agent
and hotel segments of the industry.
Service Name: Traveler's Emergency Service System (TESS)
Service Name: Premier Hotel Program (PHP)
Service Name: Global Connect

Name: abc Enterprise
... Description: test object
Sexrvice Name: Deutsche Telekom Productshow
Service Name: Deutsche Telekom Shopping
Service Name: Deutsche Telekom T-Mobil
Service Name: Deutsche Telekom T-Cnline

Name: abc inc
Description: test desc

Name: ABC Insurance
Description: aull

Name: ABC Microsystems
... Description: ?~~ 27 2?7 ?7...77%...
... Service Name: <New Service Name>

Name: ABC Music
Description: null
Service Name: List Instruments

Name: ABC travel agency
Description: travel buses for goa,bombay,delhi.

Name: abcl23
Description: mull
Service Name: bogus service

Name: CompanyARBRC
Description: null

Name: IntesgaBci Sistemi e Servizi

Description: IntesaBcei Sistemi e Servizl co-ordinate all of
Bank IntesaBci‘s operations with regard to the development and
management of IT and telecommunication systems

Service Name: Home Page

Figure 4-7 A subset of the result of running the application shown In Figura 4-8,

Booking, Exh. 1053, Page 142

136 Chapter 4 + UDDi—Universal Description, Discovery, and Integration

Looking at the output of Figure 4-7, we can see some of the positive as well as some of the
negative points of using the UDDI UBR. First, there are many service providers available within
the UBR providing an even larger number of services. These are global providers, and some
only offer their services in certain locations. Many of the fields of service providers or services
are either unfilled or filled inappropriately. Morcover, many of these service providers or ser-
vices are either non-existent or simply test deployments.

The UBR is a powerful resource that brings together thousands of providers and services
in one easy-to-access location. Sifting through this large (and constantly growing) list to weed
out useful providers and services from those that are less than useful (or completely useless) is
the difficult part. Although client-side packages such as UDDI4] make developing programs to
access and interact with UDDI registries easier, the more important difficulty still remains: how
to select the right service and serviee provider for a given task.

How UDDI Is Playing Out

Now that we have an understanding of the need that UDDT aims to fill, some of the core dats
structures of UDDI, as well as the variety of the means of communicating with an UDDI regis-
try, it’s worth taking a step back to see how UDD! is reatly playing out. How UDDI will truly be
used by companies will determine how, when, where, and why businesses will register their Web
services.

Up until now our discussion of UDDI has focused on its analogous behavior with standard
telephone directory books: UDDI provides a listing of businesses and the services each business
offers as well as a means of searching and discovering Web services to use within consuming
applications. Since this usage of UDDI is during the design of applications, it can be referred to
as the design-time use.

But, will people really use the UDD AFIs during design time? Are people using it today?
The answer is not really, and it does not look like it’ll change any time in the foreseeable future.
Most developers don't programmatically search UDDI for Web services to consame.

Will this change in the future? Most likely not, because selecting which service to con-
sume is difficult. It’s not technical issues, but instead business and strategic issues that make the
selection process difficult,

In selecting a Web service to use, there may exist business relationships and legal agree-
ments that have to be honored. This may sometimes involve selecting a technically inferior ser-
vice in order to meet stch obligations. There may be pending customer deals that can be closed
by using a particular vendor’s Web services. A company may attempt to pressure another com-
pany by withhelding patronage of the latter company’s Web services.

Basically business, strategic, and sometimes political issues come into the service selec-
tion process. Replacing human intervention through a programmatic AP is usuaily insufficient,
and oftentimes grossly so. Because of the wide mix of issues that are often involved, technolo-
gists alone will also be insufficient. Accordingly, business analysts, consultants, and other such

Booking, Exh. 1053, Page 143

How UDDI is Playing Out 137

people (possibly in conjunction with technotogists) will usually be responsible for the Web ser-
vices selection process. These business analysts and consultants will not use the direct program-
matic interface of UDDI to search for available services, but instead will use more human-
friendly means. These include Web services portals, the home pages provided by some of the
UBR node operators, and standard search engines. Of course, word-of-mouth and other such
non-technical means will also be prevalent. So, for all intents and purposes, UDDI’s program-
matic APE will probably play a minor role during the design of applications.

If pot in the design of applications, wheze will UDDI play a larger and more prominent
role? Although seldom mentioned and even Jess understood, UDDI has a role larger than just at
design time; UDDI is also useful at run time.

UDDI and Lifecycle Management

To understand the usefulness of UDDI at run time, consider the issues that developers and
companies have to grapple with after they have developed a Web service or an application that
copsumes Web services.

Once a Web service has been developed and deployed, it not only has an interface specifi-
cation but also a network location (usually a URL) associated with it. Over time, the deployment
that had sufficed when the service was new and relatively under used, may require changes. This
could include migration of the service to a new server. Multiple geographical mirror servers may
also be deployed as the need to scale the service increases, or a new server location may be
launched while the original one is taken offline for maintenance, The organization or division
maintaining the Web service may be relocated or sold, thereby necessitating an update to its
access endpoint information. How can these changes be propagated to applications that have
already been designed fo consume the original Web service? Without appropriate dissemination
of such changes, applications consuming the original service can malfunction or produce errone-
ous transactions.

An application that consumes Web services has to contend with similar issues. Once an
application has been written to use a specific Web service for a particolar part of its fanctional-
ity, the application’s capability with respect to that part of its functionality is dependent on the
Web service. If the Web service goes down or is unavailable for some time, that part of the appli-
cation will also not funetion, possibly causing erroneous behavior throughout the application.

Applications based on Web services need a mechanism to stay updated with the latest
access endpoint information, including changes to older endpoints, for a particular Web service.
It is precisely in this need for lifecycle management of applications and Web services where
UDDI can play a critical role, Web services need to disseminate changes to applications that call
them. Applications need to be made aware of these changes. UDDI can play the runtime broker
or middleman in handling and propagating these changes. The steps in this lifecycle manage-
ment scenario proceed as follows:

Booking, Exh. 1053, Page 144

138 Chapter 4 = UDDI—Unlversal Description, Discovery, and Integration

1. Locate a Web service that fulfills the application’s needs using whatever means that are
useful, including portals, service aggregators, or programmatically with an UDDI reg-
istry directly.

2. If the Web service was not initially discovered within an UDDI registry, locate the same
service within an UDDI registry and save (e.g., in a database) the bindingTem-
plate information.

3. Develop the application to consumme the Web service using the information from the
saved bindingTemplate information.

4. If the Web service call fails or exceeds an application-specified time-out, query the
UDDA registry for the latest information on that Web service.

5. In case the original Web service call failed, compare the latest binding information for
that Web service with the saved information. If the latest binding information for the
Web service is different from the saved information, then save the new binding infor-
mation, and reiry the Web service call.

6. In the case that the original Web service call exceeded a time-out, compare the latest
binding information for that Web service with the saved information. If the information
is different or newer access endpoints are available, select another endpoint. The selec-
tion procedure may be manual in which the application allows the user to manually
choose, or it may be automatic.

In this scenario, UDDI plays a critical role in maintaining the reliability and quality-of-
service of both applications and the Web services they consume throughout their lifecycle,

The subset of a simple application that demonstrates the use of UDDI at runtime is shown
in Figure 4-8. This code snippet uses the UDDI4J client-side Java APIL, does not do any error
checking and also assumes a simple binding described by the UDDI registry.

Once a Web sexrvice invocation fails, the application tries to determine whether the binding
information for the service has changed. If it has changed, the new binding information can be
incorporated into the Web service call and the service can be retried. Otherwise, an error has to
be thrown notifying the user that the service is unavailable.

The application begins by retrieving the binding information for the saved binding key by
using the get_bindingDetail method. From the BindingDetail object, the program
extracts the latest access point URL for the Web service. By comparing the latest access point
information stored in newAccessPoint with the original access point information stored in
accessPoint, the program is able to determine whether the cause of the service invocation
failure was due to 4 change in the service’s binding information. If new binding information is
available, the program updates the accessPoint variable with the latest information and sets
the retryService to true indicating that the service call can now be retried. If no new bind-
ing information is available, then the service is unavailable and there is no need to refry the ser-
vice cail. The program sets retrySexrvice to false.

Booking, Exh. 1053, Page 145

How UDD! is Playing Out 139

// The Web service invocation failed, so check to see
// whether new binding information is available. If so,
// retry the Web service call.

BindingDetail bd = proxy.get_bindingDetail (bindingKey);

Vector btvect = bindingDetail.getBindingTemplateVector ();
BindingTemplate bt = (BindingTemplate)

btvect.elementAt (0);
newBEndpoint = bi.getAccessPoint ().getText ();

. if { thisEndpoint.equalsIgnoreCase { newEndpoint))

{
// In this case, the endpoint information has changed

// so we ghould retry the Web service invocation with
// with the new endpeoint

thisEndpoint = newkEndpoink;
retry = true;

)

else

{
// In this case, the endpoint information has not

// changed so there no reason to retry the Web
// service invocation

retry = falge;
1

Figure 4-8 Rétrylng Web service invocations based on dynamic UDDI information.

UDDI and Dynamic Access Point Management

As we've already alluded to, UDDI at runtime can be used not only to get an updated
access point URL, but also to dynamically manage and select the most appropriate access point.
Oftentimes, a Web service will be deployed on multiple machines that have different characteris-
tics, These characteristics can differ by geographical focations and amount of server resources,
including type of network connectivity.

Usually, this variety of service deployments is dynamic, that is, the Web service is initially
deployed on a single server. Later, as the service becomes more popular and demand increases,
. additional access points are deployed. These deployments may be a cluster of servers in close
proximity to each other, a geographically distributed set of servers, or both.

A client application that copsumes the Web service may have been developed before the
additional access points were deployed. Or the best service at the time the application was devel-
oped is no longer the best or the most appropriate. For example, the client application may have
been developed in one country and later used in another country. Hardwiring the service access

Booking, Exh. 1053, Page 146

140 Chupter 4 « UDDI—Universal Description, Discovery, and Integration

point to the one that was selected at design time (in a country other than where the application is
being used) will needlessly increase the latency of the service invocation. Mobile applications
are most vulnerable to this situation as the application may be best suited to a different access
point as the mobile user moves from location to location.

Managing the Web service access points used by a client application becomes increasingly
important. It’s not that the application wilt not work with a hardwired access point (assuming the
access point remains operational for the life of the application), Instead, the application may
potentially work better,

Selecting and managing access points is analogous to downloading files from different
mirror sites. A user can certainly download all her content from a single site. But, by judicious
selection of different mirror sites, the user can achieve improved performance. The selection of
Web service access points can be manual in which the application user is given the ability to
choose the actnal access point, or the application may automaticaily select an access point by
consulting an UDDI registry. Alternately, the user may specify the high-level characteristics and
metrics that are most important to him, with the application using those characteristics as hints
in determining the most appropriate service access points, Refer to Chapter 10 for a more in-
depth discussion of quality-of-service issues and Web services.

The careful reader will have recognized that some of the benefits of UDDI at run time can
also be obtained from alternate means, Using databases, configuration files and other registries
are some obvious alternatives. Although other solutions are possible, using UDDI is preferable
as it is a standards-based solution with tremendous support from the software industry, The most
important benefit of using a standards-based solution with industry-wide support such as UDDI
is that almost all Web services can be used. With non-standard solutions, the Web service vendor
must also publish its information using the same means used by the application vendor. In cases
where a single vendor owns and has administrative control over both the services and the appli-
cations, such a solution is manageable. When the service vendors and application vendors are
different, a standard solution fosters the use of a variety of Web services.

Figure 4-9 summarizes the use of UDDI at both the design time as well as the run time of
Web services-based applications. As the figure depicts, interactions with UDDI at design time
will usually include manual intervention from a variety of sources, such as business analysts,
consultants, strategists, and technologists to determine the most appropriate Web service. It is
Important to note that the “most appropriate” service may not be the highest performance ser-
vice. At run time, however, there is plenty of opportunity to leverage the direct programmatic
access of UDDI to build applications that dynamically select the “best” service deployment
{from the “most appropriate” service that was determined in the design phase).

In this section, we have discussed just a few uses of UDDI at application run time. Many
more uses are possible, In particulay, as UDDI matures and more information is made available
through UDDI registries, additional opportunities to build more robust and flexible applications
will emerge. When developing applications that consume Web services, if developers find them-
selves hardwiring information particular to a specific service into their applications, alarm bells

Booking, Exh. 1053, Page 147

Summary 141

Service Aggregator ¢

Access
Design-time Web Portal ¢
Access to UDDE Access

Direct Programmatic <
Access

UDBI
Registry

Run-time Direct Programmatic
Access to UDDI Access

Figure 4-9 The use of UDDI at both design time and run time.

should immediately sound. They must ask themselves whether it is possible to eliminate the
direct dependency om a particular service with an indirect and flexible “brokered” access
through UDDI,

Summary

UDD1 is an industry standard for a platform-independent and flexible means of Gescribing, dis-
covering and inlegrating services as well as the businesses that provide the services, As we have
seen, UDDI has many similarities to telephone books, and provides users a means to search for
Web services as well ag service provider businesses.

The UBR is a global implementation of the UDDI specification and provides a publicly
accessible registry of Web services. Currently, IBM, Microsoft, SAP, and NTT provide UBR
nodes where users can register their Web services and make them available to a global market,

Althongh the UDDI specification pravides a programmatic API to publish Web services to
a UDDI registry and also to inquire about which services and service providers are available,
most service selection issues at design time will require human intervention, thus reducing the
usefulness of an automatic, programmatic interface. The business, strategic, and sometimes
political issues that come into the service selection process will usually require business analysts

Booking, Exh. 1053, Page 148

142 Chapter 4 « UDDI—Universal Description, Discovery, and Integration

and strategic consultants to play a critical role in the service selection process, Accordingly, dur-
ing the design of an application, more human-friendly means to service selection including
aggregation portals such as XMethods, Internet search engines such as Google, word of mouth,
and UBR home pages, will be critical.

Instead of its much-hyped role at application design time, UDDI plays a more useful tole
at application runtime. Applications based on Web services need a mechanism to stay updated
with the latest access endpoint information for a particular Web service, Conversely, Web ser-
vices need 2 means to broadcast to applications that are already consuming them additional
capabilities and resources. UDDI registries and the global UBR implementation provide such
capabilities, and can play a critical role in the lifecycle of Web services and the applications that
consume them.

UDDI is an important technology with useful capabilities. These capabilities must be
properly positioned within the limitations of businesses and the usual operations of partner inter-
actions. As we have discussed, with the right positioning, UDDI forms a core piece of the enter-
prise Web services platform.

" Architect’s Notes

* Today, most Web services are discovered through non-programmatic means using
manual, human intervention, Similar to the way companies scrutinize potential partner
companies prior to committing to a strategic relationship, selecting services to use
within enterprise applications requires significant due diligence. Manual intervention
by business analysts, consultants, and others familiar with the company’s business and
strategic needs will almost always be required for selecting services. The most common
sources of locating Web services are existing business partners, UBR home pages,
service aggregators such as XMethods, or standard Web search engines such as Google.

* The UDDI Business Registry (UBR) is a distributed, public registry containing
thousands of service providers and even more services. Sifting through this large (and
constantly growing) list to weed out useful providers and services from those that are
less than useful (or completely useless) is the biggest drawback and the major difficulty
of using such public resources.

* Enterprise UDDIs and other such private {or semi-private) UDDIs that support and
facilitate easy access to Web services and other resources within an organization will
provide direct value. Typical use cases for UDDI within organizations will be to
support and manage reuse of programmatic resources throughout an extended
enterprise, as well as to dynamically configwre and customize an application by
changing attributes within the UDDI.

* Using client-side API packages such as UDDI4J and Microsoft’s UDDI SDK facilitate
developing programs that access UDDI registries, and also insulate applications from
specification changes and differences between various registries.

Booking, Exh. 1053, Page 149

Architect's Notes 143

+ UDDI plays a critical and potentiaily larger role during the run time of applications.
Typically, UDDI is seen as a means of discovering services at design time, UDDI also
provides a convenient means to manage the lifecycle of Web services as well as the
applications that consume them. Changes to information about a Web service can be
pushed onto an UDDI registry, and applications that consume that service can be
developed to be more reliable and robust by simply querying the UDDI registry for
changes upon any invocation failures or other unexpected behavior,

Booking, Exh. 1053, Page 150

