
Booking, Exh. 1053, Page 1

publishing partner Oy
invent

osta
yee a 7a)

— by David Bunnell
de Magazine, Founder of PC Magazine,

PC World, MacWorld, Pérsonal Computing, and New Media
Personal Computing Pioneer, CEOof Upsi

Booking, Exh. 1053, Page 1

Booking, Exh. 1053, Page 2

Developing Enterprise
Web Services

An Architect's Guide

Sandeep Chatterjee, Ph.D.

James Webber, Ph.D.

www.hp.conv/hpbooks

PEARSON EDUCATION
PRENTICE HALL PROFESSIONAL TECHNICAL REFERENCE

igyyce UPPER SADDLE River, NJ 07458
PTR WWW.PHPTR.COM

Booking, Exh. 1053, Page 2

Booking, Exh. 1053, Page 3

Library of Congress Cataioging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Mary Sudul
Cover design director: Jerry Votta
Cover design: DesignSource
Manufacturing manager: Maura Zaldivar
Acquisitions editor: Jil! Harry
Editorial assistant: Brenda Mulligan
Marketing manager: Dan DePasquale
Publisher, HP Books: Mark Stouse
Manager and Associate Publisher, HP Books: Victoria Brandow

© 2004 Hewlett-Packard Corp.
Published by Prentice Hall PTR

eo Pearson Education, Inc.
PTR Upper Saddle River, New Jersey 07458

This material maybe distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
<hitp://www.opencontent.org/openpub/>).

Prentice Hall books are widely used by corporations and governmentagenciesfor training, marketing,
andresale.

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141;
E-mail: corpsales@prenhall.com
Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

Otherproduct or company names mentioned herein are the trademarksorregistered trademarks oftheir
respective owners.

Printed in the United States of America

2nd Printing

ISBN 0-13-140160-2

Pearson Education LTD.

Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte, Ltd.
Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd.
Pearson Educacién de Mexico, 5.A. de CV.
Pearson Education — Japan
Pearson Education Malaysia, Pte. Ltd.

Booking, Exh. 1053, Page 3

Booking, Exh. 1053, Page 4

FOREWORD

The singing workmen shape and set andjoin
Theirfrail new mansion’s stuccoed cove and quoin
With no apparent sense that years abrade...

—Thomas Hardy, Rome: Building a New Street in the Ancient Quarter, 1887

K, Rome wasn’t built in a day, but once they got the sucker up and running, it was mag-
nificent and, hey, it’s still there and functioning quite nicely. Having first heard about

Web services toward the end ofthe last century, I would have thought by now they would be
ubiquitous. Atthis pointin time, I should be able to replace My Yahoo with a personalized Web
services portal uniquely suited to my quixotic needs and desires. Years ago, I started planning
this portal when I heard Bill Gates waxing poetically about Hurricane-—a.k.a, “My Services”—
which was Microsoft’s vision of creating a suite of personalized Web services for early adopters
like me. Unfortunately, Microsoft abandonedthis effort when critics complainedit was really an
insidious plot to own people’s personal information.

Mostly by pure dumbluck,I’ve beenatthe forefront of technology for most of mylife. As
a young man just out of college, I was working in Albuquerque, New Mexico, at a small com-
pany called MITS which,with a little help from a then 19-year old Bili Gates andhis buddy Paul
Allen, started the personal computing revolution. Taking advantage of this happysituation, J
leveraged my background in media to launch a magazine called Personal Computing. These
experiences led me to found a numberof other magazines including PC Magazine, PC World,
Macworld, Publish, NewMedia, and BioWorld. Most recently I was CEO and Editor of Upside
Media, inc.

Throughout the years, T have been fortunate’to have had a first-band involvementin the
evolution of maay revolutionary new innovations, including the first personal computer (Altair,

xvi

Booking, Exh. 1053, Page 4

Booking, Exh. 1053, Page 5

nnn

xviii Foreword

the first portal computer (Osborne), the first spreadsheet (VisiCalc), the Macintosh Computer,
Multi-Media, the Internet, and even Biotechnology.

To say that I have seen my share of “paradigm shifts” is an understatement. Technology
innovation has been all around me. Who would have thought that a couple of guys in a small
company in Albuquerque would start what would later become the PC revolution? Shouldn'tit
have comeout of IBM or Xerox or someother big technology company? That’s exactly the rub.
Innovative ideas don’t always come from the big companies, sometimes they spring out from the
big guys andat other times they spring out from thelittle guys,
; Basedonall the above, I am completely convinced that Web services will level the playing
field betweenthelittle guy and the big guy as no technology has ever done before. Thanksto this
new revolution, the mom-and-pop company downthe street can market their innovative software

and services to the neighborhood,to the global masses, as well as to the largest companiesin the
world. But, we're not only talking about the new and interesting. Even the most mundane and
boring is supported. The procurement system of the mom-and-pop company can seamlessly
interface with the billing system of a global multinational company and here’s where things get
really interesting. The systemsof the multinational can also interface with the systems of the
mom-and-pop company. The most innovative new systems to the most boring, existing tasks are
all available on an anybody-to-anybody basis. This will ultimately happen but like many great
technologies,it will require a lot of work and patience before the dream is truly realized.

As Sandeep Chatterjee and James Webber so eloquently and clearly explain in this book,
real world Web services and Web services-based applications can’t simply be put together in a
haphazard manner by merely reading through one of the Web services technology specifications.
You need to be familiar with these standards and they are extremely important, but they only
represent the basic building blocks. To “architect” and construct world-class enterprise services,
developers need a much deeper knowledge of a numberof different standards and tools plus
their “inter-relationships” and best practices for use.

Web services are small segments of larger applications and as such, quality-of-service
issues loom large if they are to be truly useful and scalable. When building them, you have to
factor in such considerations as: Availability (how often is the service available for consump-
tion); Accessibility (can it serve a client’s request now); Performance (how long doesit take to
respond); Compliance(is it really “standard”); Security (is it safe to interact with this service);
Energy (suitable for mobile apps); and Reliability (how often doesitfail). Like building Rome,
building Web services gets complicated fast.

So how do you architect an application to be reliable if some of the Web services you are
depending on become unavailable? Can an application be written to seamlessly scale to support
new Web services from an expanding group ofstrategic partners? What about transactional
guarantees or atomic coordination between multiple, independent services? And can you accom-
plish your design goal andstill provide adequate safeguards for corporate and individual infor-
mation and intellectual property?

Tiumagine that the software world would have given up in disgust by now, moved on to some
new paradigm, except for two factors. Thefirst is that all the major software companies are com-

Booking, Exh. 1053, Page 5

Booking, Exh. 1053, Page 6

xix

mitted to Web services to the tune of several billion dollars, and the second is that Web services

are, gosh darn-it, actually revolutionary. They are so revolutionary they represent a whole new
amazing way of doing business, which will transform the software industry forever and change
the very nature of the corporate IT department, thrusting it into the heart of strategic thinking.

Web services buiid on and extend the Web application model by allowing any client appli-
cation to access and useits capabilities. By implementing capabilities that are available to other
applications (or even other Web services) via industry standard network and application inter-
faces and protocols, Web services represent reusable software building blocks that are URL
addressable. We're talking here about a concept called “anybody-to-anybody” communica-
tions—quoting from this book, “a person who implements a Web service can be almost one hun-
dred percentcertain that anybody else can communicate with and use the service.”

Chatterjee and Webber aren’t so concemed, however, about Web services for the masses.
They tackle a much more difficult topic, which is Web services for enterprises. These are ser-
vices that have to be totally reliable, absolutely secure and extremely functional, Referring back
to the “building Rome” analogy, these guys aren’t really talking about building foot paths or
neighborhood streets, rather they are more interested in the avenues, aqueducts, and other major
arteries that seamlessly and safely interconnect the Porticus of Gaius to the Forum of Caesar—
the House of the Vestal Virgins to the Temple of Saturn, and back again. They are talking about

the communication and transportation systems that made Rome the most magnificent function-
ing city of the Ancient World.

In today’s global marketplace, world class enterprises need to interconnect with their cus-
tomers and partners internationally using legacy systems that are mostly incompatible with each
other, and they need to do this relatively fast and as inexpensive as possible. Web services pro-
vide the solution but not without overcoming some fairly difficult obstacles.

In the Web services world, nothing is as simple as it may seem. Take transactions, for
example. Transactions are the bedrock on which B2B interactionsrise or fall, they are a funda-
mental abstraction or requirement for what we sometimes refer to as “fault-tolerant computing.”
In a lucid and detailed styic, the authors point out that the choices fortransactions are scarce
and, in fact, the OASIS Business Transaction Protocol (or simply BYP) is the “only Web ser-
vices transaction protocol with implementation we can use today.” They explain BTP and how to
implementit, but just in case you get in over your head, they also suggest that unless you have
specialist knowledge in this area, you should give “serious consideration” to buying or outsoure-
ingit,

As with transactions, this book goes into great detail to describe the Web services technol-
ogies and standards that can be used in the real world today. These address the most challenging
enterprise requirements including conversations, workflow, security, the challenges inherent in
the development of mobile systems, how io build user-facing portals by aggregating back-end
Web services, and how to manage an ever growing number and type of Web services within the
enterprise. But more than this, the authors tell you in a concluding section filled with source

‘code and a step-by-step guide how to put this together. Youll leam how to actually develop a

Booking, Exh. 1053, Page 6

Booking, Exh. 1053, Page 7

xx Foreword

Web service application and deploy it onto the ‘Tomcat application server and the Axis SOAP
server (both freely available).

The ambitious goal of Developing Enterprise Web Services: An Architect’s Guide is to
give readers a “thoroughunderstanding”of the steps necessary to build and deploy Web services
and client applications that meet enterprise requirements. This is a lofty goal indeed, and you’ll
want fo spend some serious time going through all the clear and concise contentthat the authors

have spent weil over a year developing.I foundit really amazing.
Fortunately, with the publication of this book, the Web services vision is about to take a

giant leap forward. We are building our “Rome” and the endis finally in sight. Chatterjee and
Webber, drawing on their own impressive experiences building Webservices, painstakingly pro-
vide their readers with concise, yet thorough understanding of the most important issues and
their solutions. They uslabashedly recommendbest practices in application architectures, put key
technologies together and show their readers step-by-step how to build world-class, enterprise
Webservices-based e-business applications. And darnit, it’s about time we had a booklike this!

David Bunnell

Berkeley, California

September 2003

Booking, Exh. 1053, Page 7

Booking, Exh. 1053, Page 8

CHAPTER. 1

Introduction

eb services technologies are fundamentally changing the software industry, making theWs. of enterprise IT organizations more strategic, and recasting the software vendor-
consumer relationship. Web services are also being hailed by CEOs, ClOs, and CTOs as the
next-generation vehicle for driving topline growth and controlling bottom lines. But, simply
jumping on the Web services bandwagon won't lead to corporate success. Web services are sim-
ply a platform; how companies implementa solution using this new technology determinestheir
success and ultimately their return on investment (ROI). In this book, we take a no-nonsense,

strategic view of developing enterprise Web services and applications: looking at where the
technologies are, where they are going and how companies needto architect their own Web ser-
vices solutions to not get left behind.

Web services platforms provide the functionality to build and interact with distributed

applications by sending eXtensible Markup Language (XML) messages. Additional technology
layers are constantly emerging, others are being refined, andstill others are being discarded. The
platform is essentially a moving target.

To stay on the leading edge, companies are building and deploying their applications
while work on the underlying platform continues. And, as with any industry standard initia-
tives which require building consensus, the Web services platform will remain a work in
progress for sometime,

Hew can you build any meaningful application, let alone mission-critical enterprise applica-
tions, on such a platform? If you are a developer or an architect.charged with building Web ser-
vices or applications that consume Web services, you have to know where the platform is today,
and where it is going. Otherwise, the endless pit of application rewrite and maintenance overhead
will far outweigh any benefits that can be garnered from this promising new technology.

Booking, Exh. 1053, Page 8

Booking, Exh. 1053, Page 9

2 Chapter 4 » Introduction

Real world, enterprise Web services and applications cannot be developed by simply reading
through the Simple Object Access Protocol (SOAP) or the Web Services Description Language
(WSDL)specifications. Developers must understand a numberof different standards and technolo-
gies, and more importantly,their inter-relationships as well as best practices for their use.

Consider an e-business application that requires interaction between multiple partner Web
services. Understanding SOAP and WSDLgives developers the ability to write Web services
and consume them within their application, But, how must the application be architected to be
reliable in case some Web services become unavailable? How can an application be written to
seamlessly scale and support new Web services from a growinglist ofstrategic pattner compa-
nies? What are the best practices for developing mobile Web service applications, and how can
individual Web services be created to support quality-of-service (QoS)? How can transactional
guarantees or atomic coordination between multiple, independent Web services be supported by
applications? And, how can all of this be done securely so that corporate and individual informa-
tion and intellectual property are safepuarded?

Tn this book, we focus on how to develop Webservices and applications within real world
enterprise environments. We describe not only the vanilla Web services platform consisting of
SOAP, WSDL, and UDDI (Universal Description, Discovery and Integration), but also build on
this to include the other technologies, standards, and emerging standards that provide support for
transactions, security and authentication, mobile and wireless, quality-of-service, conversations,
workflow, interactive applications and portals, as well as systems management.

We discuss the opportunities represented by Web services and, more importantly, describe
best practices and architectural patterns for building enterprise systems that position you and
your organization to most fully leverage those opportunities. We do not summarize any one Web
services standard, but instead provide a sufficiently thorough discussion of all of the critical

technologies and standards, as well as their inter-relationships, that are necessary for building
enterprise Web services and applications. Our focus is on developing enterprise Web services
and applications based on industry standard Web services technologies, not on summarizing
standards.

Let's get started by reviewing what Web services are and why they are important.

What Are Web Services?

Web services represent a new architectural paradigm for applications. Web services implement
capabilities that are available to other applications (or even other Web services) via industry
standard network and application interfaces and protocols. An application can use the capabili-
ties of a Web service by simply invoking it across a network without having to integrate it. As
such, Web services represent reusable software building blocks that are URL addressable. The
architectural differences between monolithic, integrated applications and Web services-based
applications are depicted in Figure 1-1.

Booking, Exh. 1053, Page 9

Booking, Exh. 1053, Page 10

What Are Web Services? 3

Application

Capability A

(a) Monolithic application with integrated capabilities A,B, and C.

| URL Addresses
Capability A

Capability B

Capabllity ¢

(b) Client application Invoking remote Web services for capabilities A, B, and C,

 Client

Application

Figure 1-1 The architectural differences between (a) a monolithic application with integrated
capabilities, and (b) a distributed application using Web services-based capabilities.

The capabilities provided by a Web service can fall into a variety of categories, including:

* Functions, such as a routine for calculating the integral square root of a number.

* Data, such as fetching the quantity of a particular widget a vendor has on hand.

* Business processes, such as accepting an order for a widget, shipping the desired
quantity of widgets and sending an invoice,

Someofthese capabilities are difficult or impractical to integrate within third-party applications.
When these capabilities are exposed as Web services, they can be loosely coupled together,
thereby achieving the benefits of integration without incurring the difficulties thereof.

Web services expose their capabilities to client applications, not their implementations.
This allows Web services to be implemented in any language and on any platform and still be
compatible with all client applications.

Booking, Exh. 1053, Page 10

Booking, Exh. 1053, Page 11

4 Chapter 1 + introduction

Eachbuilding block (Web service)is self-contained. It describes its own capabilities, pub-
lishes its own programmatic interface and implements its own functionality thatis available as a
hosted service. The business logic of the Web service runson a remote machine that is accessi-

ble by other applications through a network. Theclient application simply invokes the function-
ality of a Web service by sending it messages, receives return messages from the Web service
and then uses the results within the application. Since there is no need to integrate the Web ser-
vice within the client application into a single monolithic block, development andtesting times,
maintenance costs, and overall errors are thereby reduced.

Assume you want to build a simple calculator application that determines the appreciation
in stock price for any company given its corporate name and the date the stock was originally
purchased. The application must do the following:

* Determinethe stock ticker symbol for the company based on the company name.
+ Determine the latest price of the stock based on the ticker symbol.

« Determine the historical price of the stock for the given date based on the ticker
symbol.

* Calculate the difference betweenthe two stock prices and presentit to the user.

This seemingly trivial application is in fact enormously complex. Right from the get go
there are problems. We have to build a database with the namesofall the companiesin the coun-
iry and their associated stock ticker symbol. More importantly, we must maintain this database
as companies are newly listed, become delisted, change their names or their ticker symbol, or
merge. To access the real-time price of a stock, we must have a relationship with a financial or
brokerage firm. The legal complexities and hassles in architecting such a relationship is bad
enough,not to mention the IT infrastructure that must also be put into place.

Unless you work for a brokerage firm or are in the business of maintaining stock informa-
tion, the time and costs necessary to build the infrastructure necessary to support the stock
appreciation calculator are enormous and, in most cases, prohibitively so. Until a brokerage firm
itself decided to provide such a caleulator, customers would have to make do withoutit.

Webservices simplify and in many ways eliminate the need to build for yourself the sup-
port infrastructure—bothlegal and technical. The calculator can be developed by simply passing
messages between the calculator application and the appropriate set of Web services, Figure 1-2
graphically depicts the ow of messages, and the fundamental architecture of a Web services-
based stock price appreciation calculator,

Messages are sent between the calculator application and the following three Web services:

* StockTickerNameToSymbolCenverter, which accepts a company’s name and
provides the ticker tape symbol.

*RealTimesS tockQuot eLookup, which providesthe latest price of a stock based on
its ticker tape symbol.

Booking, Exh. 1053, Page 11

Booking, Exh. 1053, Page 12

What Are Web Services? 5

Stock Price Appreciation
Calculator Application

Historical Stock Quote
Look Up Web Service

"Hewlett-Packard"
i Stock Ticker Name

suorn . To Symbol Converter
ee Web Service

“HPQ*

Business Real Time Stock Quote
Logic "47.51" Look Up Web Service

—_—_—_—<

"HPQ", “August 15, 2002"
lp "45,00"

Figure 1-2 Sending and receiving Web service messages to build a stock price appreciation
calcutator.

* Historical stockQuoteLookup, which provides the historical price of a stock
basedon its ticker tape symbol and the desired date.

Since eachof these three Web services is provided, hosted, and managed by another com-
pany, the developerof the calculator application has only to focus on his key insight or contribu-
tion alone. Complex, domain-specific issues such as the fact that Hewlett-Packard’s ticker tape
symbol was HWP and only recently became HPQ are (cr should be) handled by the Web ser-
vices directly. Using these three Web services, the application can easily determine the stock
price appreciation for Hewlett-Packard from August 15, 2002, to be $17.51 - $15.00 = $2.51.
Based onthe data from the Web services, the calculator application can provide further analysis,
such as the percentage appreciation, and presentall of the information in an easy-to-understand,
graphical manner. .

Assuming the required capabilities exist and are available as Web services, developers can
focus on their unique value-added piece and utilize third-party Web services for the remainder of
the functionality. The benefits of using Web services are clear:

* Dramatically cut application development costs by focusing on your own value-added
contribution and using third-party Web services for everythingelse.

Booking, Exh. 1053, Page 12

Booking, Exh. 1053, Page 13

6 Chapter 1 * introduction

* Integrate both data and business processes with market constituents and business
partners that have desired domain expertise or capabilities.

*Reduce or eliminate many errors born out of complex and large monolithic
applications.

* Simplify application maintenance and customization by segmenting an application into
the client application and each of its consumed Web services.

* Significantly reduce time-to-market.

As wetake this idea further, and more and more companies expose someof their internal
capabilities as Web services, the real value of Web services lies in the composition of a set of
Web services. Consider the following two companies, Oneis a traffic service company that mon-
itors automobile traffic on major roads and highways and predicts expected travel times. The
secondis a taxi reservation service company that allows customers to reserve taxis for pickup at
a specified location and time, Each of these companies and their products are compelling in and
of themselves. However, if these companies exposed their capabilities as Web services, these
services can be composed together into a single, more compelling and useful service——cither by
one of these two companies themselves or by a third company.

As an example, consider taking a taxi to the airport before catching a flight for a meeting.
By leveraging the capabilities of both companies through their respective Web services,a trav-
eler can reserve a taxi and rest assured that if an accident or other traffic conditions cause an

unexpected increase in hertravel time, the taxi reservation can be held and analert sent to the

traveler advising her of the updated taxi schedule as well as the traffic situation that caused the
change. By simply andintelligently combining the individual services of the two companies, we
are able to create a more compelling and useful service for travelers. The composition of Web
services from different enterprises is depicted in Figure 1-3. The technologies that form the
foundations of Web services are SOAP, WSDL, and UDDL

SOAP

Simple Object Access Protocol (SOAP) is an XML-based mechanism for exchanging informa-
tion between applications within a distributed environment. This information exchange mecha-
nism can be used te send messages between applications and, more specifically, can be used to
implement remote procedure calls (RPCs). RPCs allow one application to invoke and use a pro-
cedure (or capability) of another, possibly remote, application.

SOAP does not specify any application iraplementation or programming model. Instead,it
provides a mechanism for expressing application semantics that can be understood by applica-
tions no matter how they are implemented. Accordingly, SOAP is application language- and
platform-independent. SOAP is typically used in conjunction with HFTP, which supports easy
traversal of firewalls and is sufficiently lightweight to be used within mobile and wireless envi-
ronments.

Booking, Exh. 1053, Page 13

Booking, Exh. 1053, Page 14

What Are Web Services? 7

 Traffic Company

Taxi Booking

Company

Figure 1-3 Composing together services exposed by multiple corporations to create a separate
service offering.

WSDL

Web Services Description Language (WSDL) is an XML-based language for describing Web
services. Through a WSDL description, a client application can determine the location of the
remote Web service, the functionsit implements, as well as how to access and use each function.
After parsing a WSDL description,a client application can appropriately format a SOAP request
and dispatch it to the location of the Web service.

WSDL descriptions go hand-in-hand with the development of a new Web service and are
created by the producerof the service. WSDLfiles (or pointers thereto) are typically stored in
registries that can be searched by potential users to locate Web service implementations of
desired capabilities.

UDDI

Universal Description, Discovery, and Integration (UDDD is a specification for a registry of
information for Web services. UDDI defines a meansto publish and, more importantly, discover
(or search for) information about Web services, including WSDL. files,

Booking, Exh. 1053, Page 14

Booking, Exh. 1053, Page 15

a Chapter 1 * introduction

WSDL WSDL
UDDI

Publish Discover

Web Service Consuming
Producer Application

\ Invoke /
SOAP

Figure 1-4 The relationships between SOAP, WSDL, and UDDI.

After browsing through an UDDIregistry for information about available Web services,
the WSDLforthe selected service can be parsed, and an appropriate SOAP message can be sent

to the service. Figure 1-4 graphically illustrates the relationships between SOAP, WSDL, and
UDDI.

Now that we have a glimpse into what Web services are and how they can be used to build

interesting applications and systems, we next discuss why this new technology is important.

Why Web Services Are Important
Webservices represent a new paradigm in application architecture and development. The impor-
tance of Web services is not that they are new, but that this new technology addresses the needs
of application development. To understand this new paradigm,let us first look at the application
paradigm that preceded Web services-—Web applications.

The Evolution of Web Applications

Web applications are applications that are available via the World Wide Web (Web) and allow
any user anywhere in the world accessto its capabilities. This is in contrast to older client-server

applications in which only dedicated clients could access the applications residing on the server.
Web applications grew the user base from just a few hundred client machines accessing a client-
server application, to millions of users across the Web accessing a Web application.

The Web openedup the floodgates to Web applications by allowing users to simply spec-
ify a URL within a Web browser. Web applications also increased the difficulty of developing

applications because a Web application client (a PC browser) has no knowledge of the applica-
tion’s communication requirements or underlying systems. Industry standard technologies such

Booking, Exh. 1053, Page 15

Booking, Exh. 1053, Page 16

Why Web Services Are Important a

as HTTP and HTML were usedto bridge this gap between Web application clients and the Web
applications themselves, Application servers and other middleware emerged to reduce the com-
plexities of building Web ‘apps whilestill allowing pervasive access to each Web application.

Webservices build on and extend the Web application model. Web applications allow any
Webbrowserto accessits functionality, with the application user interface presented through the
browser. Web services take this a step further and allow any client application to access and use
its capabilities. ,

A Webapplication allows universal user access to its capabilities by supporting industry
standard interfacesto its user interface. They do not allow extending or adding to their capabili-
ties through programmatic access. To leverage the functionality of a Web application and build
on it, complex and often unreliable techniques, such as screen scraping, must be used. Web ser-
vices address this issue by allowing programmatic access to the Web services’ capabilities using
industry standard interfaces and protocols. The evolution of Web applications to Web servicesis
shown in Figure 1-5.

Proprietary Interfaces & Industry Standard
Custom Development Interfaces

 Web Application End
Business Logic Users

Web Application
—_*

(a) Web application architecture

IndustryStandard Web Application
es User Interface Ney End

- Users
Web Service Standard rr

Business Logic Appilcation

Another Web
Service

(b) Web services architecture

Figure 1-5 Evolution of Web applications to Web services and key architectural differences.

Booking, Exh. 1053, Page 16

Booking, Exh. 1053, Page 17

10 Chapter 1 © introduction

Web services advocate a services-oriented architecture for applications in which a soft-
ware component provides its functionality as a service that can be leveraged by other software
components. Such a service model abstracts away many complexissuesthat arise from software
componentintegration, including platform compatibility, testing, and maintenance,

Since Web service clients do not have information necessary to communicate with a Web
service, a set of standards is necessary to allow any-to-amy communications. Web service stan-
dards build on previous standards for communications and data representation, such as HTTP
and HTML.

The key enabler for Web services is XML. Although HTML and XML are similar in that
both are human-readable markup languages, HTML is for presentation markup while XML is
for semantic markup. This critical attribute of XML supports expressing application and func-
tional semantics in a platform-independent manner that enables any-to-any information
exchange,

Some argue that Web services are nothing new; they are simply the latest incarnation of
distributed computing. In some sense that may be true, but what is it about Web services thatis
driving the incredible buzz? Why are entrepreneurs, CEOs of established companies, and indus-
try analysts excited aboutthis technology? In the next section, we see that Web services are not
just another distributed computing platform.

Not Just Another Distributed Computing Platform

Web services are indeed a technologyfor distributed computing and there is one critical distinc-
tion between Web services and distributed computing technologies that have come before, A
person who implements a Web service can be almost one hundredpercentcertain that anybody
else can communicate with and use the service. The breakthrough of Web services is precisely

the anybody-to-anybody communications that it enables, The confidence level Web services
engender in its developers is similar to that of HTML Web pages. The developer of an HTML
page is certain that anybody with a browser can view the Web page.

Web services grew out of a need for a distributed computing application environmentthat
was not as difficult to deploy to as the Common Object Request Broker Architecture (CORBA)
or Microsoft’s Distributed Component Object Model (OCOM), and also offered greater interop-
erability. Both CORBA and DCOM aimed to provide a distributed computing environment
across heterogeneous environments. Unfortunately, neither supported environments or technolo-
gies that were sufficiently far-reaching to enable heterogeneous communicationsat the anybody-
to-anybody scale.

Ina sense, Web services sacrifice the richness of capabilities that are provided by previous
distributed computing environments, which ave necessary to a small group of all applications,
for a much simpler and more ubiquitous solution that is applicable for the vast majority of appli-
cations. This is not to say that Web services place restrictions on their use. Additional capabili-
ties can be layered on top of the Web services platform to address varying needs.

Booking, Exh. 1053, Page 17

Booking, Exh. 1053, Page 18

Web Services and Enterprises 1

Applications that are exposed as Web services have a large base of other applications (that
are also exposed as Web services) with which to communicate. Since they are based on simple
and open industry standards (or de facto standards), Web services make significant inroads
toward ubiquitous interoperability. Interoperability here is on the scale of the Web orthe Inter-
net, not just a group or organization, .

Based on industry standards and supporting anybody-to-anybody interoperability, Web
services are poised to be the platform that delivers on the needs of e-businesses. All companies
interact with other companies in the course of conducting their businesses, Manufacturing com-
panies interact with componentsuppliers, distributors interact with manufacturing companies,
retailers interact with distributors, and so on.Initially, these interactions were manual, conducted
by mail, phone, and fax.

Web applications allowed companies to interact with one another by exposing some of
their capabilities and business processes to others on the Web, But, most of the time, this still
required a human being interacting with the Web application on the other side. Web services
remove the need for constant human intervention while companies interact by enabling pro-
grammatic conversations between applications.

By removing this barrier to e-business interactions, Web services enable new business

relationships as well as more fluid relationships that can be configured and reconfigured on-the-
fly. Although Web services offer numerous benefits, they also present many challenges andrisks
within traditional enterprise environments, We discuss Web services and how they fit within
enterprises next.

WebServices and Enterprises
Onthe surface, Web services appear to be a risky proposition for enterprises. Why will IT orga-
nizations that have demanded full control over ali aspects of enterprise applications adopta dis-
tributed and shared software architecture that moves administrative control over various parts of
applications outside of the enterprise firewall? The runtime characteristics of Web services-
based applications will have critical dependencies on remotely hosted and remotely managed
external businesses. This is a severe departure from the centrally controlled as well as the guar-
aiteed predictability and reliability that have become the hallmarks of enterprise software and
the IT organizations that manage them.

The reasonsforthis break are clear, Web services enable the flow of data and business pro-
cesses between business pariners—between enterprises as well as between multiple organiza-
tions or groups within an enterprise—to a degree that have not been possible before. Businesses
that could not previously communicate and applications that could not previously interoperate
can now do so.

Web services enable companiesto drive topline growth by integrating together different
services and introduce new revenue-generating services. At the same time, Web services sim-

Booking, Exh. 1053, Page 18

Booking, Exh. 1053, Page 19

12 , Chapter 1 * Introduction

plify integration, reducing time-to-market and costs, as well as support operational efficiencies
that streamline the bottom line.

The potential benefits of Web services are enormous. The risks are equally great, if not
greater. Enterprise IT organizations will findthemselves in the middle, responsible for reconcil-
ing the benefits with the risks of adopting Web services within the enterprise.

IT organizations, in an effort to gain a controlling foothold over risky and potentially
harmful Web services traffic, will insist on controlling which Web services applications interact

with one another. A misbehaving Web service will simply be cut off from interacting with any
enterprise applications; such cut offs may even be preemptiveif there is a history of problems or
a perceptionof a threat.

To accomplish this, IT will take on a more strategic role within organizations and align
itself more closely with individual business units. Critical decisions by business units, such as
the partners from which to source components, will have to be cleared by IT if those partners’
Web services will interact with the applications or Web services of the company.

This will have major ramifications for enterprise application architectures. Enterprise
applications will support dynamic and swappable Web services—hardwired Web service invoca-
tions will no longer suffice. Moreover, [T will use management environments to deploy enter-
prise-wide policies for Web services that will monitor and strictly enforce the Web services that
applications can use,

There is no doubt that the uptake of Web services within the enterprise will require
changes. Many of these changes will be to established procedures and existing policies that have
been supported by years of experience and billions of dollars. Nonetheless, the potential bene-
fits—both financial and strategic—to adopting Web services are sufficiently large to justify such
changes.

Moving Forward

As organizations transition from tesearching Web services technologies and building internal
prototypes to early-adopter deployments, and then eventually to mainstream adoption of Web
services, the key differentiator and requirementis that these applications and systems are appro-
priate for “real world” deployment and usage. Someof the early prototypes built using Web ser-
vices were in many ways toys. All of the Web services and client applications ran on a single
machine, hosted by the same application server, in a fully controlled environment. Manyof these
services and applications that once worked as prototype systems will no doubt break—some
immediately, while others may take more time to break (which is much worse).

The next few years will see Web services and applications become hardened and ready for
“teal world” deployment. The real world is indeed a cold and hard place. Web services run
remotely, sometimes go down and become unavailable, evolve into multiple versions, as well as
encounter variances in network bandwidth and quality. Moreover, politics and competitive

Booking, Exh. 1053, Page 19

Booking, Exh. 1053, Page 20

Summary 13

issues between organizations will result in unexpected outages and behaviors along critical
dependencies within applications.

Already we see many standards bodies that have been convened to address these and other

issues. Some of the technologies that are being developed to address these needs will eventually
be automatic, transparent to developers as existing infrastructure and tools, such as middleware

and IDEs, and incorporate the technologies. Nonetheless, architects and developers will need to
have a keen understanding of these issues and technologies to develop enterprise-class Web ser-
vices and applications.

in this book, we look at the Web services platform--where it is now and where it is
going-—with an eye toward developing robust enterprise Web services and applications. In the
first of the three sectionsofthis book, we begin by describing the core technologies that make up
the Web services platform. These are XML, SOAP, WSDL, and UDDI.This platform provides a
distributed computing environment based on standard interfaces and protocols, but it does not
implementall of the capabilities necessary for implementing enterprise systems.

In the secondpart of this book, we look at some of the standards and emerging technolo-
gies that, once layered on top of the vanilla Web services platform, address someofthecritical
requirements ofenterprise systems. These technologies include support for transactions, security
and authentication, conversations, workflow, quality of service, mobile and wireless, services
and systems management, as well as interactive applications and Web portals.

In the third part of the book, with both the vanilla Web services platform as well as some
of the critical advanced technologies and standards underourbelt, we take an in-depth look and
provide step-by-step instructions for building an enterprise application using Web services,
Addressing one of the biggest pain points in business processes today, we develop an enterprise
procurementapplication that ties together the inventory and ordering Web services of multiple
suppliers and facilitates the procurement process. Wefirst develop the entire application using

_ only the vanilla Web services platform (as described in thefirst part of the book). After identify-
ing the shortcomings of this implementation based only on the vanilla platform, we add to and
expand on the application using the advanced standards and technologies described in the sec-

" ond part of the book,

Weconcludethis book by summarizing andhighlighting some ofthe key points to remem-
ber when developing enterprise Web services and applications.

Summary

Web services represent enormous opportunities and challenges. How organizations negotiate
these hurdles will determine the benefits they incur. In this book, we describe the Web services

platform—whereit is and whereit is going-~so that developers building applications are cogni-
zant of the fluid nature of the platform and can address enterprise system requirements within
the coniext of a changing platform.

Booking, Exh. 1053, Page 20

Booking, Exh. 1053, Page 21

14 Chapter 1 « Introduction

Architect’s Note

* Web services are remotely hosted and managed applications whose capabilities can be
accessed programmatically by client applications via an addressable URL.

« The core Web services platform, consisting of SOAP, WSDL, and UDDI, provides the
means for building distributed applications based on industry standard technologies,
interfaces, and protocols.

« The core Web services platform does not provide all of the necessary capabilities on
which to build enterprise systems. Additional technologies are being developed and are
being standardized that can be layered on top of the core platform and provide support

for security and authentication, transactions, mobile and wireless access, quality-of-
service, workflows, conversations, systems and service management, as well as

interactive applications and Web portals.
*Web services are important and different from other distributed computing

environments because they are based on industry standards that are nearly ubiquitous.
This allows unprecedented interoperability between applications as well as companies
and supports anybody-to-anybody applications.

* The adoption of Web services within enterprises wili require fundamental changes to
IT organizations that are responsible for deploying and maintaining enterprise systems.
In an effort io maintain control over enterprise systems within a Web services
environment, IT will take on a more strategic role that is aligned with individual
business units and becomepart of the business decision process,

Booking, Exh. 1053, Page 21

Booking, Exh. 1053, Page 22

PART 4

Basic Web Services
Standards, Technologies,
and Concepts

n this first section of the book, we briefly review the industry standards, technologies andI concepts that underlie Web services. These critical technologies support the development of
Web services as well as applications that use (or consume) Web services, But, be forewarned
that these foundational technologies do not provide everything necessary to build Web services
and applications that meet enterprise requicements. We cover these advanced technologies in
Section Two of this book.

In this section, we describe the following technologies that together make up the basic
Webservices platform:

Chapter 2: XML Fundamentals.In this first of three chapters in Part One, we start with
a discussion of the fundamentals of the eXtensible Markup Language (XML),the basic technol-
ogy on which Web services are based. From network protocols up the stack to back-end data-
bases, XML in all its forms has had a commoditizing effect on enterprise computing systems
and being both platform and language independentis a natural choice for the level of interopera-
bility required of Web services.

Chapter 3: SOAP and WSDL. Here we describe in detail the two technologies that
make up the foundations of Web services: SOAP and WSDL. SOAP (Simple Object Access
Protocol) is an XML-based mechanism for exchanging information between applications
within a distributed environment. This information exchange mechanism can be used to send
messages between applications and, more specifically, can be used to implement remote pro-
cedure calls (RPCs). WSDL (Web Services Description Language) is an XML-based language
for describing Web services. Through a WSDLdescription, a client application can determine

18

Booking, Exh. 1053, Page 22

Booking, Exh. 1053, Page 23

16 Part 1 + Basic Web Services Standards, Technologies, and Concepts

the location of the remote Web service, the functions it implements, as well as how to access
and use each function.

Chapter 4: UDDI, In this chapter, we describe UDDI (Universal Description, Discovery,
and Integration), which is a specification for a registry of information for Web services, UDDI
defines a means to publish and, more importantly, discover (or search for} information, includ-
ing WSDL files, about Web services. We also describe the UBR (UDDI Business Registry),
which is a global implementation of the UDDIspecification.

After reading Section One, you will have a strong understanding of the technologies, stan-
dards and concepts underlying Web services, Refer to Section Three for a detailed, step-by-step
guide and Jots of sample source code to actually develop Web services and client applications.

Booking, Exh. 1053, Page 23

Booking, Exh. 1053, Page 24

CHAPTER 2

XML Fundamentals

he suite of technologies grouped under the KMI, umbreila provides the fundamental
building blocks of the Web services architecture. From network protocols through back

end databases, XML has had an advantageous effect on enterprise computing systems. Reing
platform and language independent is a natural choice for building interoperable systems via
Web services, Given the importance of XML in enterprise computing, and specifically in Web
services, this chapter recaps the fundamentals of XML before embarking on a discussion of
more advanced topics such as namespaces and XML Schema.

XML: The Lingua Franca of Web Services
XML is a standard for data mark-up backed by the World Wide Web Consortium, which has
been branded “the universal format for structured documents and data on the Web,”! The entire

XMLsuite of standards, models, and processing technologies have been under development
since 1998 with the initial XML specification, and has since been augmented by several addi-
tional supporting standards and notes that have brought XMI. to its current rich state. In fact,
though XML is undeniably a richly specified technology, it has retained its simplicity and the
entire XML platform can be profiled as follows:

1. From the W3C Web Site at http://www,w3c.org/XML/
2. These (fewer than 10) points are based on the W3C’s “KML in 10 Points” available from http://

www.w3c.org/XML/1999/KML-in-10-points

Booking, Exh. 1053, Page 24

Booking, Exh. 1053, Page 25

8 Chapter 2 * XML Fundamentals

* XML isfor Structuring Data

Structured data includes things like spreadsheets, address books, configuration
parameters, financial transactions, and technical drawings. XML is a set of rules for

designing text formats that support the developer in creating structured data. Though it

vaguely resembles source code, XML is not a programming language, but it does make
it easy for a computer to generate data, read data, and ensure that the data structure is
unambiguous. XML avoids common pitfails in language design. It is extensible,
platform-independent, supports internationalization and iocalization, and is fully
Unicode-compliant,

* XML Resembies HTML

Like HTML, XML makes use of tags (words surrounded by angle brackets, “<” and
*>”) andattributes (of the form name= “value”). While HTML specifies what each tag
and attribute means and often how the text between them will render in a browser,

XML uses the tags only to delimit pieces of data and leaves the interpretation of the

data completely to the application that readsit.
AML is Human Readable, but Humans Shouldn't Read ft

Programs that produce structured data often store that data on disk, using either a
binary or text format. An advantage of a textual format is that it allows people, if
necessary, to look at the data without the program that produced it, using tools like text
editors. XML files are text files that people shouldn't have to read, but may read as and
when the need arises. Care must be taken when manually editing XML since its rules

are strict. A forgotten tag or an attribute without quotes makes an XML document
unusable, The official XML. specification forbids applications from trying to second-
guess the creator of a broken XML file; if the file is broken, an application has to stop
and report an exror.
AML is Verbose

Since XML is a textual format and uses tags to delimit the data, XML files are nearly
always larger than comparable binary formats. That was a conscious decision by the
designers of XML. The advantages of a text format are evident, and the disadvantages
can usually be compensated at a different level by compression applications. In

addition, the transfer of XML across networks can be hastened by communication
protocols such as those used in modems protocols and HTTP/1.1, which can compress
data on-the-fly, saving bandwidth almost as effectively as a binary format.
XMLis a Suite of Technologies
XML 1.0 is the specification that defines what “tags” and “attributes” are. Beyond that

specification, the XML family is a growing set of modules that offer useful services to
accomplish important and frequently demanded tasks,
XML is Modular

XML allows you to define a new document format by combining and reusing other
formats. Since two formats developed independently may have elements or attributes

Booking, Exh. 1053, Page 25

Booking, Exh. 1053, Page 26

XML. Documents 19

with the same name, care must be taken when combining those formats. To eliminate

name confusion when combining formats, XML provides a namespace mechanism that
is supported in all XML-based technologies,

* XML is License-Free, Platform-Independent, and Well-Supported
By choosing XML as the basis for Web services, we gain accessto a large and growing
community of tools and techniques on which to develop value. Basing Web services on
XMLis similar to basing a database strategy on SQL—yvoiistill have to build your own
database, programs, and procedures that manipulate it, but there are many tools and
commodity components available to help. Furthermore, since XML is license-free,
Web services can be built without incurring royalty payments.

While a full discussion of the subject of XML is beyond the scope of this book, before delving
deeply into developing Web services it is imperative that at least the basics of XML and XML
processing are understood. Although some of the XML detail inherent in developing Web ser-
vices can be abstracted by toolkits, the increasing popularity of XML at the application level
means that any learning at this point will, in addition to accelerating the rate of understanding
Web services technology, be generally valuable in day-to-day development. That said,it’s time
to get acquainted with some fundamental XML concepts.

XML Documents

The purpose of an XML document is to capture structured data, just like an object in an object-
oriented programming language. Documents are structured into a number of elements, delimited
by tags which may or may not be nested within other elements.

Anyone familiar with the syntax of HTML will immediately be comfortable with the look

and feel of XML, although anyone thinking about coding XML like HTML must be wary—
XML is extremely strict in its syntax, where the interpretation of HTML (particularly by brows-
ers) is quite permissive. As we progress through the examples,it is worth remembering the fun-
damental document syntax:

1. All tags must have corresponding end tags unless they are devoid of subelements, in
which case they can be represented as
<element-name .. attributes .. />

2. No element can overlap any other element, although nesting within elements is
allowed.

3. A document can only have a single root element (which excludes the XML declaration
<?xml .. ?>),

4, Attributes of an element must have unique names within the scope ofa single tag.
5. Only element names andattribute name-value pairs may be placed within a tag declara-

tion.

Booking, Exh. 1053, Page 26

Booking, Exh. 1053, Page 27

20 Chapter 2 * XML Fundamentals

The best way to understand XML is by example, and the XML document shownin Figure
2-1 is typical of the structure of most XML documents, thoughit is somewhat shorter than most
we'll be seeing in the Web services world.

<?xml version="1.0" encoding="ut£-8"?7>
<dvd>

<title>The Phantom Menace</title>
<year>2001</year>

</dvd>

Figure 2-1 A simple XML document.

Figure 2-1 shows a simple XML document that contains data about a DVD. The document

(as all XML documents should) begins with the XML Declaration, delimited by <? and ?>.
This declaration provides information for any programsthat are going to process the document,
in this case it informs any processors that the XML document is encoded according to version
1.0 (at the moment 1.0 is the first and only XML version and the 1.1 effort is underway) and the
underlying textual encoding is UTF-8 as opposed to ASCII.

The remainder of the documentis where the actual structured data is held. In this case we
have a root element delimited by the dvd tag, which contains two subelementsdelimited by
the title and year tags. Those subelements contain textual data that we assumerelates to the

name of the film on the disk and the year ofits release (thoughthis is a convention and we could
name elements badly, just as we can poorly name variables when programming),

Wecan take this documentone stage further and makeit a little more useful for those pro-
grams who might wantto derive richer information from it. The document shown in Figure 2-2
embellishes that from Figure 2-1 adding in the DVD regional information as an attribute to the

root element region="2". We have also added a comment to aid human readability thatis
delimited by <!-- and -->.

<?aml version="1.0" encoding="utf-8"?>
<!-- This is the European release of the DVD -->
<dvd region="2">

<title>The Pharitom Menace</title>
<year>2001</year>

</dvd>

Figure 2-2 A simple XML documentwith attributes and comments.

The addition ofthe attribute in Figure 2-2 would, for instance, be of great help to a DVD
cataloging system that could use the region attribute to classify disks by their target geographical
region.

Booking, Exh. 1053, Page 27

Booking, Exh. 1053, Page 28

XML Namespaces 21

XML Namespaces
Namespaces in object-oriented programming languages allow developers to name classes unam-
biguously. Given that different organizations (should) use different namespaces for the software

components, even in the cases where two third-party software components contain a class with
exactly the same name, the fact that those classes are in different namespaces means that they
are easily distinguished from one another.

Unambiguous naming is a requirementthat also permeates the XML world. For example,
it may be the case that several versions of a document with a root element dvd mayexist, but the
structure of each is different. The way we distinguish the document that we want from a number
of available dvd documentsis by its XML namespace.

Unlike popular programming languages where specific scope resolution operators are used
to build namespaces (e.g., MyPackage .MyClass in Java and MyNamespace: :MyClass in

C++) the convention in XML is to use 2 UR! (Universal Resource Identifier} as the namespace
identifier.

In fact, XML namespaces use URIs by convention only. Strictly
speaking, an XML namespaceis just a string. The vaiue in using
URis is that they ensure uniqueness that strings cannot.

The URI is the union of the familiar URL and the not-so-familiar URN (Uniform

Resource Name) schemes as shown in Figure 2-3 and Figure 2-4,

ftp: //sre.doc.ic.ac.uk

gopher: //gopher.dna.affre.go.jp
http: //www.arjuna.com
mailto:some.one@somewhere.com

news :uk.dobs.offered
telnet: //foo.bar.com/

Figure 2-3 Some familiar URI schemes.

The general scheme for the construction of a URI is <scheme>:<scheme-spe-

cific-part>. An absolute URI contains the name of the scheme in use followed by a coion
(2.g., news :), which is followed by a string which is interpreted according to the semantics of
that scheme(i.¢., uk . jobs . offered identifies a particular Usenet newsgroup).

While the URI scheme doesn’t mandate the meaning of the <scheme-specific-part>,

many individual schemes share the same form which most Web users will have experienced with
URLs (Uniform Resource Locator) where the syntax consists of a sequence of four parts:
<scheme>: / /<authority><path>?<query> (for example, http: //search.sun.com/

Booking, Exh. 1053, Page 28

Booking, Exh. 1053, Page 29

22 Chapter 2 + XML Fundamentals

search/suncom/?qt=java) . Depending on the scheme in use, notall of these parts are neces-
sary but given those rales any valid URI can be constructed.

Another good convention to adopt for namespacesis that the UR}
chosen shouid have some meaning. For instance, if a document
has a namespace which is a HTTP URL, then dereferencing that
URL should retrieve the schama which constrains that document.

A URN is intended to be a persistent, location-independent, resource identifier, In typical
situations a URN is used where a nameis intendedto be persistent. The caveatis that once a URN
has beenaffiliated with a particular entity (protocol message, Web service, and so on), it must not
be reused to reference another resource. The URNsin Figure 2-4 are typical of the kinds of iden-
tifiers we find in Web services applications (taken from OASES BTP, see Chapter 7):

urmn:oasis:names:tc:BFP:1.0:core

urm:oasis:names:tc:BTP:1.0:qualifiers

Figure 2-4 An example of the URN scheme.

XML namespaces affiliate the elements and attributes of an XML. document with

namespaces identified by URIs. This process is called qualification and the names ofthe ele-
ments and attributes given a namespace scopeare called qualified names, or simply QNames.

Now that we understand we can qualify our documents with a-namespace, we can extend
the example in Figure 2-2 to include namespace affiliation. Given that it is likely there will be
other DVD cataloging systems and those systems will also use elements with names like dvd
{which will likely have a different structure and content from our own version), the addition of a

namespace into our XML document confers the advantagethat it cannot be mixed up with any
other similar-looking dvd documents from outside of our namespace, Our newly namespaced
documentis shown in Figure 2-5,

<?xml version="1.0" encoding="utf-8"?>
<!-- This is the European release of the DVD -->
<didvd xmlns:d="http: //dvd.example.com" region="2">
<d:title>The Phantom Menace</dstitle>
<d:year>2001</d:year>
</d:dvd>

Figure 2-5 A simple namespaced XML document with attributes and comments.

We have introduced into Figure 2-5 an association between a prefix and a URI (in this case
we've used a URL), using the xminsattribute from the KML Namespace specification. We

Booking, Exh. 1053, Page 29

Booking, Exh. 1053, Page 30

XML Namespaces 23

then used that prefix throughout the document to associate our elements with that namespace,
Any XMLprocessinginfrastracture that reads our documentdoes not see the elements as simply
their element names but de-references the URI to arrive at the form {URI}:<local name>

(ag. fhttp://dvd.example.com}:dvd}) which is unambiguous, unlike the element
name alone (i.¢., just dvd). It is important to rememberthat the syntax {prefix}:<local

name> is not understood by XML processing programs, itis a convention used when describing
qualified elements.

Although any element can contain a namespace declaration, the
style convention in XMLis to declare ali namespaces that a doc-
ument usesin its root element. Although this can make the open-
ing tag of the reat element quite iarge, it does improve overall
documentreadability since we do not then pepper the document
with namespace declarations.

Explicit and Default Namespaces

AML permits two distinct kinds of namespace declarations, The first of these as we have
seen is the explicit form, whereby a prefix is given a namespace association (e.g.,
xmins:d="http: //dvd.example.com"), and then elements and attributes which belong
to that namespace are explicitly adorned with the chosen prefix. The second of these is the
defauit namespace declared as xmlns=<uri> that provides a default namespace affiliation
which applies to any elements without a prefix.

The default namespace can be used to improve the readability of
an XML document. In documents where a particular explicit
namespaceis predominantly used (like the WSDL or SOAP doc-
uments in Chapter 3), declaring a default namespace alleviates
the need to pepper the document with the same prefix all over.
Using this strategy, only those elements outside of the default
namespace will need to be prefixed, which can make documents
significantly easier to understand.

We present a modified version of the XML from Figure 2-5 in Figure 2-6, where the
default namespace declaration implicitly scopes all following elements within the http: //
dvd.example.com namespace, likethis:

<?Ppaml version="1.0" encoding="utf-8"?>
<!-- This is the European release of the DVD -->
<dvd umins="http://dvd.example.com™ region="2">
<title>The Phantom Menace</title>
<year>2001</year>
</dvd>

Figure 2-6 Using default namespaces.

Booking, Exh. 1053, Page 30

Booking, Exh. 1053, Page 31

24 Chapter 2 * XML Fundamentals

Adding a namespaceaffiliation to an XML documentis analogous to placing a Java class
into a specific package. Where the Fava equivalent of in Figure 2-2 (which has no namespace
affiliation) might have been referenced by a declaration such as DVD myDVD, the equivalent
type of reference for the document in Figure 2-5 or Figure 2-6 would be com.exam-
ple.dvd.DVD myDVD, which when reduced to Java terms is clearly unambiguous since only
the owner of the dvd. example. com domain should be using that namespace (andby infer-
ence shouid be the only party using that namespace to name XML documents),

Inheriting Namespaces

Once a default or explicit namespace has been declared,it is “in scope”for all child elements of
the clement where it was declared. The default namespace is therefore propagated to all child
elements implicitly unless they have their own explicit namespace.

This arrangement is common in WSDLfiles (Chapter 3) where
the WSDL namespaceis the default namespace for an interface,
but where the binding elements use their own explicit
namespace. :

The rule of thumb for choosing a defauit or explicit namespace is that if you can’t see at a
glance yourself which namespace an element belongs to, then no one else will be able to and,
therefore, explicit namespaces should be used, If, however, it is obvious which namespace an
element belongs to andthere are lots of such elements in the same namespace, then readability
may be improved with the addition of a default namespace.

And NotInheriting Namespaces

Of course, a child may not necessarily want to inherit the default namespace ofits parent and
may wishto set it to something else or removethe default namespaceentirely. This is not a prob-
lem with explicit namespaces because the child element can just be prefixed with a different
explicit namespace than its parent, as shown in Figure 2-7, where the genre element has a differ-
ent namespace affiliation than the rest of the document (which uses the default namespace),

<?xml version="1.0" encoding="ut£-8"?>
<!i-- This is the European release of the DVD -->
<dvd amins="http://dvd.example.com"™ region="2">

<title>The Phantom Menace</title>
<year>2001</year>

<gigenre xmins:ig="http: //fillm-genre.example.com">
sci-fi

</g:genre>
</dvd>

Figure 2-7 Mixing explicit and default namespaces within a document.

Booking, Exh. 1053, Page 31

Booking, Exh. 1053, Page 32

XML Namespaces 25

It is importantto realize that any children of the genre elementin Figure 2-7 that use the
default namespace will be using the default namespace of the dvd element since the genre ele-

ment only declares an explicit namespaceforits scope. Similarly, with default namespaces, any
element is at liberty to define a namespace foritself and any of its children irrespective of the
namespace affiliations of any of its parent elements. This is shown below in Figure 2-8:

<?xml version="1.90" encoding="uti-8"?>
<!-- This is the Buropean release of the DVD -->
<dvd mmins="http://dvd.example.com" region="2">

<title>The Phantom Menace</title>
<year>2001</year>

<genre umilns ="“http://fllm-genre.cxample.com">
sci-fi

</genre>
</dvd>

Figure 2-8 Mixing default namespaces within a document.

The genre element fromFigure 2-8 declares that the default namespace for itself and its chil-
dren (if any) are, by default, in the namespace http: //film-genre.example.com. This
differs from the example shown in Figure 2-7 since im the absence of any explicit namespace,
children of the genre element belong to the http: //£ilm-genre.example.com and not

to the http: //dvd. example. com namespace as the outer elements do.
Of course it may be the case that an element docs not require a default namespace and that

the parent default namespace is inappropriate. In such cases, we can remove any default
namespace completely, by setting it fo the empty string xmlns="".

For default namespaces, remember that the scoping rules are
based on the famitiar concept of “most local” where the declara-
tion nearest to the use has the highest precedence.

Attributes and Namespaces

So far all of our attention has been focused on the interplay between namespaces and ele-
ments. However, it is equally valid for attributes to be qualified with namespaces through the
same prefix syntax, When namespace-qualifying attributes have a default namespace, different
rules apply compared to elements. Attributes are not affiliated with any default namespace, so if
an attribute is to be namespace qualified, then it must be done so explicitly since any attribute
without a prefix will not be considered namespace qualified—even if declared in the scope of a
valid default namespace.

Booking, Exh. 1053, Page 32

Booking, Exh. 1053, Page 33

26 Chapter 2 » XML Fundamentals

The convention in XML is to associate elements with

namespaces,but to leave attributes unqualified since they reside
within elements with qualified names.

At this point we now understand both basic XML document structure and some more
advanced features like namespaces, These both set the scene for higher-level XML-basedtech-
nologies (including Web services) which weshall continue by looking at XML Schema.

XML Schema

With the exception of the basic XML syntax, XML Schemais without a doubt the single most
important technology in the XML family. In the Web services world, XML Schemais the key
technclogy for enabling interoperation.

XML Schemais a W3C recommendation that provides a type system for XML-based
computing systems. XML Schemais an XML-based language that provides a platform-indepen-
dent system for describing types and interrelations between those types. Another aspect of XML
Schemais to provide structuring for XML documents.

LLTTSSSSSii,

Document Type Definitions (or DTDs) were the precursor to XML
Schema, and are a text- (not XML-) based format designed to
convey information about the structure of a document. Unlike

XML Schema, DTDs do not concern themselves with type sys-
tems, but simply constrain documents based on their structure.
Furthermore, since the DTD language is not XML-based, many
of the XML-friendly toois that we use are incapable of processing
DTDs. Because of these reasons, and the fact that no recent
Webservices protocols have used DTDs, we can consider DTDs
as a deprecated technology in the Web services arena. Instead,
XML Schema has become the dominant metadata language for
Webservices (and indeed for most other application areas by this
time).

In fact, the analogy between XML technologies and object-orientation is clear if we com-
pare XML documents to objects and XML Schematypes to classes. XML documents that con-
form to a schema are known as instance documents, in the same way that objects of a particular
class ate known as instances. Thus we can conceptually match XML Schema schemas with
classes and XML documents with objects, as shown in Figure 2-9.

3, See http://www.w3.org/XML/Schemaidey for links to the XML Schemaspecifications.

Booking, Exh. 1053, Page 33

Booking, Exh. 1053, Page 34

XML Schema 27

Type System

XML Schema Types Class(es)

o wva
ib 2a a= e
£ £a A
tc cee H

Implementation
Figure 2-9 Comparing XML to object-oriented mode!.

The conceptualrelationship between an object model and XML Schemais straightforward
to comprehend. Where object-based systems classes and their interrelationships provide the
blueprint for the creation and manipulation of objects, in the XML arena it is the type model
expressed in XML Schema schemas that constrain documents that confirm to those schemas.

Like object-oriented programming languages, XML Schema provides a number of built-in
types and allows these to be extended in a vatiety of ways to build abstractions appropriate for
particular problem domains. Each XML Schematypeis represented as the set of (textual) values
that instances of that type can take. For instance the booleantype is allowed to take values of
only true and faise, while the short type is allowed to take any value from -32768 to
32767 inclusively. In fact, XML Schema provides 44 different built-in types specified in the
http://Awww.w3.org/2001/XMLSchema namespace. Additionally, XML Schema allows users to

develop their own types, extending and manipulating types to create content models is the very
heart of XML Schema.

XML Schema and Namespaces

As we have seen, the built-in types from XML Schema are qualified with the namespace http://
www.w3.org/2001/KMLSchema. We must not use this namespace when we develop our own
types, in the same way that we would not develop types under the java. lang package in Java or
System namespace in .Net. However,like adding package or namespaceaffiliations in object-ori-
ented programming, affiliating a type with a namespace in XML Schemais straightforward. Add-
ing a targetNamespace declaration to an XML Schemato affiliate it with a namespace is
analogous to adding a packagedeclaration to a Java class, as shown in Figure 2-10.

Booking, Exh. 1053, Page 34

Booking, Exh. 1053, Page 35

28 Chapter 2 * XML Fundamentals

XML Schema _

<schema xmins="http: //wuw.w3.org/2001/XMLSchema" package org.example;
targetNamespace="http://example.org"
xmins:tns=“http://example.org"> class ...

<!+- Schema body here --—>

</schema>
Figure 2-10 Adding namespaceaffiliation to an XML schema.

The skeletal schema shown in Figure 2-10 outlines the basic principle on which all XML
Schema operate: the schema element delimits the namespace (like the keyword package
delimits the package scope for a single Java source file) and the targetNamespace gives the
namespace a name(like the period-separated string that follows the package keyword).

Don’t be conftised by the numberof namespacesthat exist in Figure 2-10, Thereare in fact
only two of them and they play three distinct roles, The default namespace is the XML Schema
namespace because the elements that we use in this document, such as the root element
<schema>, are from the XML Schema namespace, The targetNamespace napaespace is
used to declare the namespace which the types that will be declared in this schema will be affili-
ated with. Finally, the explicit namespace tns (an abbreviation of Target NameSpace) will be
used to allow types and elements within this schema to reference one another and, hence, it
shares the same URI as the targetNamespace element,

A First Schema

Now that we understand the basics of XML Schemaconstruction, we can write a simple schema
with which we can constrain a document, This simple schema example does not explore any of
the type-system features of XML Schema, but instead concentrates on constraining a simple
documentas a first step. Drawing on our experience with DVD documents earlier in this chapter
we will create a schema that can validate a given DVD document. Let’s recap the documentthat
we want to constrain in Figure 2-11:

<?aml version="1.0" encoding="ut£-8"?>
<dvd xmins="http://dvd.example.com" region="2"°>
<title>The Phantom Menace</title>
<year>2001</year>
</dvd>

Figure 2-11 An XML document containing DVD information.

Booking, Exh. 1053, Page 35

Booking, Exh. 1053, Page 36

XML Schema 29

If we analyze the document in Figure 2-11, we see that it contains an element called avd,
which itself contains two elements, title and year, which are all qualified with the

namespace http: //dvd.example.com. From this, we immediately know that the tar-
getNamespace is http: //dvd.example.com. We also know that the schema requires

two nested elements and a globally scoped element, and so we can construct the schema, as

shown in Figure 2-12:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmins="http://www.w3.org/2001/XMLSchema"

targetNamespace="http: //dvd.example.com"
elementFormDefault="qualified"
attributeFrormDefaults"“unqualified” >
<element name="dvd">

<complexType>
<sequence>

<element name="title" type="string"™/>
<element name="year" type="positiveInteger" />

</sequence>
<attribute name="region" type="positiveinteger" />

</complexType>
</element>

</schema>

Figure 2-12 A first DVD schema.

Since the elements in the document in Figure 2-11] have a namespace that matches the
targetNamespace of the schema in Figure 2-12, we can assume that the documentis a valid
instance of the schema.

The schema dictates that the instance document must have an opening element with the
name dvd from the line <element name="dvd"> at the opening line of the schema body.

The conventional style for XML Schema documents is to declare
the opening element with elementFormDefault= ‘"“quali-
fied" and attributeFormPefault="unqualified" to ensure
that elements in instance documents should be namespace quali-
fied by default, while any attributes should lack any namespace
qualification. .

The schema then goes on to declare that there should be a sequence of two nested ele-
ments within that first dvd element, called title and year, respectively. Specifying this is
done with four elements. Thefirst of these is the complexType element which indicates that

the parent dvd element consists of other elements nested within it. Inside the complexType
‘element we sce a sequence element. A sequence element places the constraint on any con-
formant documentthat elements nested within must follow the same sequence as the schema.

Booking, Exh. 1053, Page 36

Booking, Exh. 1053, Page 37

30 Chapter 2 « XML Fundamentals

In this case, since the elements nested within the sequence are the title element followed by
the year clement, conformant documents must also specify title before year. The title
element must contain information in string form because its type attribute is set to the string
type from the XML Schema namespace, Similarly, the year element specifies that its informa-
tion must be encoded as an XML Schema positiveIntegertype,

The final aspect of this schemais to describe that the outer-most dvd element requires an
attribute tc hold region information. This constraint is applied with the <attribute> element
which mandates an attribute called region whose value must beof type positiveInteger,

While we can now begin to create simple schemas to constrain simple documents, scaling
this approach to large schemas and large documents is usually impractical and undesirable.
Instead we need to look beyond the document—which after all is only the serialized, readable
form of XMi.—tothe real power of XML Schema:its type system.

Implementing XML Schema Types

The real beauty of XML Schemais that once a document has been validated against a
schema, it becomes more than just a set of elements and tags—it becomes a set of types and
instances. The elements contained within a document are processed and the type and instance
information from them is exposed to the consuming software agent. After validation, the infor-
mation contained in an XML Pocumentis called a post schema-validation Infoset, or usually an
Infoset. Infosets make it possible to reflect over the logical contents of a document, just like in
some object-oriented programming languages, and so the power ofXML Schemaas a platform-
independenttype system is revealed. To demonstrate,let’s start to build some types and see how
the (logical) type system works with the (physical) document.

Creating Simple Types via Restriction

XML Schema provides a total of 44 simpletypes with which to build content models.
However, unlike simple types in most programming languages, in XML Schema these types can
be used as base types for the creation of specialized subtypes. There is a key difference though
when we define a subtype of a simple type in XML Scherna, in that we do not changethe struc-
ture of the type (as we would do when we inherit from a base class in Java), but instead change
the subset of values that the subtype can handle. For instance we might specify a subtype of the
simple type stxing that can only be used to hold a value that represents a postcode, Similarly
we might restrict the date type to valid dates within a particular century.

We create a subtype of a simple type in XML Schemausing the restriction element.
Within this element, we specify the nameof the simple type whoseset of permissible values we
will be restricting (known as the base type) and how exactly the restriction will be applied.
Restrictions are then specified by constraining facets of the base simple type, where the set of
available facets in XML Schema is shown in Figure 2-13.4

4, Information from Part 2 of the XML Schema Specification at http:/Avww.w3.org/TR/xmlschema-2/

Booking, Exh. 1053, Page 37

Booking, Exh. 1053, Page 38

XML Schema 31

Facet Element Description

length

minbength

TMaxLength

pattern

enumeration

whiteSpace

maxinclusive

maxExclusive

mininclusive

minExclusive

fractionDigits

totalDigits

Specifies the number of characters in a string-based type,the
numberofoctets in a binary-based type, or the number of
items in a list-based type. ‘

For sizing datatypes, miniength is measuredin units of
characters. For hexBinary and base64Binary and datatypes,
minLength is measured in octets of binary data. Foriist-based
datatypes, minLength is measured in numberoflist items.

Porstring datatypes, maxLength is measured in units of
characters. For hexBinary and base64Binary datatypes,
maxLength is measured in octets of binary data. For list-
based datatypes, maxkength is measured in numberoflist
items.

Consirains the value to any value matching a specified
regular expression.

Specifies a fixed value that the type must match.

Sets rules for the normalization of white space in types.

Constrains a type’s value space to values witha specific
inclusive upper bound.

Constrains a type’s value space to values with a specific
exclusive upper bound.

Constrains a type’s value space to values with a specific
inclusive lower bound.

Constrains a type’s value space to values with a specific
exclusive lower bound.

For decimal types, specifies the maximum number of decimal
digits to the right of the decimal point.

For numbertypes, specifies the maximum numberofdigits,

Figure 2-13 XML schemafacets.

Each of the facets shown in Figure 2-13 allows us to constrain simple types m a different

way, For example, to create a simple type that can be used to validate a British postal code, we
would constrain a string type using the pattern facet with a (complicated) regular expression
as shown in Figure 2-14.

Booking, Exh. 1053, Page 38

Booking, Exh. 1053, Page 39

32 Chapter 2 * XML Fundamentals

<simpleType name="Postcodefype">
<restriction base="string">

<xsipattern values"(GIR OAA)|({([A-%] [0-9} [0-917) | ({ 1aA-
Z1 [A-HJ-¥] [0-91 [0-91?)] (€[A-Z] [0-9] [A-Z]) | (la-2] [A-Hog-¥] [0-
9]? [A-Z1)))) £O-9] [A-21{2})"/>

</restriction>

</simpleType>

Figure 2-14 The pattern facet.

The pattern specified in Figure 2-14 allows only values that match the British postal code
standard, such as SWIA 1AA (the Prime Minister’s residence in 10 Downing Street) or WIA
LAE (the American Embassy in London). Formally, these rules are defined by the British Post
Officeas:

1. Thefirst part of the code before the space character (knownas the outward code) can be
2, 3 or 4 alpha-numeric characters followed by a space and the second part of the code
{the inward code), which is 3 characters long and is always 1 digit followed by 2 alpha-
characters. Permitted combinations according to the PostcodeType type are: AN
NAA, ANN NAA, AAN NAA, AANN NAA, ANA NAA, AANA NAA, (where A=alpha
character and N=numeric character}.

2. The letters I and Z are not used in the second alpha position (except GIR OAA whichis
an historical anomaly in the British postal system).

3. The second half of the code never uses the letters C, I, K, M,O, and V.

Any divergence from this form will mean that the element is not a valid PostcodeType
instance.

Similarly, we might want to create an enumeration where only specific values are allowed
within a type, such as those for currencies. An example of this is shown in Figure 2-15, where
the XML Schema stringtypeis restricted to allow only certain values that represent 4 number _
of world currencies:

<xs:isimpleType name=*CurrencyType'">
<xS:restriction base="xs:string">

<xsS:enumeration value="GBP"/>
<uS:ienumeration value="AUD® />
<xs:enumeration value="USb" />
<xke:enumeration value="CAD" />
<xsrenumeration value="ZUR" />
<x renumeration value="YEN" />

</xs:restriction>

</xs:sSimpleType>

Figure 2-15 The pattern facet.

5. http://www.govtalk.gov-ul/gdsc/schemaHiml/BS7666-v 1 -xsd-PostCodeType.htm

Booking, Exh. 1053, Page 39

Booking, Exh. 1053, Page 40

XML Schema 33

The CurrencyType declared in Figure 2-15 would validate elements such as <my~
currency>GBP</my-currency>, but would not validate <your-currency>DM</
your-currency> since the string DM is notpart of this simpleTyperestriction (nor for
that matter are Deutsch Marks any longer legal tender).

Continuing in a monetary theme, we can create StockPriceTypetype where we spec-
ify that the numberof digits after the decimal point is at the most 2. In Figure 2-16 we restrict
the XML Schema decimal type such that the maximum numberof digits after the decimal point
in a stock price is 2, This type can then be used to validate elements that have the form
<msft>25.52</msft> and<sunw>3.7</sunw>:

<xs:isimpleType name="StockPriceType">
<xs:irestriction base="xs:decimal ">

<us:EractionDigits values"2"/>
</xs:restriction>

</xs:simpleType>

Figure 2-16 ThefractionDigits facet.

To specify sizes of allowed values, we use the Length, maxLength and minLength
facets. For instance, a sensible precaution to take when creating computer passwords is to man-
date a minimum length for security and a maximum length for ease of use (and thus indirectly
for security). In XML Schema, we can use maxLength, and minLength facets to create a
PasswordType as shown in Figure 2-17:

<xs:simpleType name="PasswordType">
<xsirestriction bases"xststring">

<usiminLength value="6"/>
<xs:maxLength value="10"/>

</xs:restriction>

</xsisimpleType>

Figure 2-17 maxLength and minLength facets.

When applied to an element in a document, the PasswordType in Figure 2-17 allows

values like <password>katherine</password>, but does not allow for values such as
<password>carol</password> based on the numberof characters contained in the ele-

ment. Of course if a particularly overbearing system administration policy was put into place,
we could end up having passwords ofa long,fixed length using the length facet instead of
minLength and maxLength.

In much the same way that we set the maximum and minimum number of characters with
the maxLength, minLength and length facets, we can also specify the maximum and
minimum values. Specifying a range of values is achieved with the maxInclusive, minIn-

Booking, Exh. 1053, Page 40

Booking, Exh. 1053, Page 41

34 Chapter 2 * XML Fundamentals

clusive, minExclusive and maxExclusive facets. For instance, we may wish to define

the range of seconds in a minute for timing purposes. A simpleType called SecondsType
is shown in Figure 2-18, where the int type from XML Schema is constrained to accept the
values from 0 (inclusive) to 59 (60 exclusive):

<xs:simpleType name=*SecondsType">
<“e:restriction hbase="xsrint">

<xsiminInclusive values"0"/>
<xs:maxExclusive value="60" />

</xs:restriction>
</xs:sinpleType>

Figure 2-18 mininclusive and maxExciusive facets.

Similarly we might want to define the years in a particular century, as we see in Figure 2-
19, where the years that are part of the 20th century are captured as being positive integers
(which have the range from 1 upward) from 1901 (1900 exclusive} through to 2000 (inclusive):

<xs:simpleType name="TwentiethCenturyType'">
<xs:restriction base="xa:positiveinteger'">

<xstminExclusive value="1900"/>
<usimaxInclusive value="2600" />

</xsirestriction>

</xs:simpleType>

Figure 2-19 minExclusive and maxinclusive facets.

The totalDigits facet puts an upper limit on the numberof digits that a number-based

type can contain, For example a year number, for around the next 8000 years, contains a total of
four digits. Thus, we can create a simple year type using the totalDigits facet to constrain
the numberofdigits to four, as shown in Figure 2-20 where the positivelInteger type from

XML Schemais restricted to those positive integers which have at most 4 digits:

<xs:simpleType name="YearType'>
<xs:restriction base="xs:positiveInteger">

<xs:totalDigits value="4"/>
</xs:restriction>

</xs:simpleType>

Figure 2-20 The totalDigit facet.

Booking, Exh. 1053, Page 41

Booking, Exh. 1053, Page 42

AML Schema 35

The final facet for restricting the value space cf simple types is whiteSpace. This facet
allows a simple type implementer to specify how any white spaces (tabs, spaces, carriage
returns, and so on) are handied when they appear inside elements, There are three options for the
whiteSpace facet which are: preserve (the XML processor will not remove any white
space characters), replace (the XML. processor will replace all white space with spaces), and
collapse (same as replace, with ali preceding and trailing white space removed).

Often the whiteSpacefacet is applied along with other facets to deal with extraneous
white space. Forinstance if we add a whiteSpacefacet to the YearType from Figure 2-20,
the XML processor that processes instances of this type can deal with any unimportant white
space in it. This is shown in Figure 2-21, where the whiteSpacefacetis set to collapse,
which effectively rids the value of any unwanted white space after it has been processed:

<xe:simpleType name="YearType">
<xs:restriction base="xs:positiveinteger">

<xs:totalDigits value="4*/>
<ua:whiteSpace value="collapse"/>

</xarrestriction>

</xs:simpleType>

Figure 2-21 The whiteSpacefacet.

So, if the XML processorreceives an element cf type YearType such as:
<moon-Landing>

1969 ,

</moon-landing>, the whiteSpace collapsefacetwill effectively reduceit to
<moon-Landing>1969</moon-landing>.

The built-in simple type NormalizedString will automatically
strip line feeds, carriage returns or tabs from any white spaced
text.

Simple Type: List and Union

Thoughrestriction is one means of creating new simple types,it is not the only way. XML
Schema supports two additional mechanisms for creating new simple types: union and List.

Both union and list are aggregation mechanisms, and so
there is no type hierarchy. Therefore we cannot “cast” between
base type and union orlist type as we can with types derived
through restriction,

The list mechanism is the simpler of the two to understand. In short, simple types cre-
ated via the List mechanism are a white space-delimitedlist of values from the base type. For

Booking, Exh. 1053, Page 42

Booking, Exh. 1053, Page 43

a6 Chapter 2 ¢ XML Fundamentals

example, we can create a list of instances of YearType from Figure 2-20 to create the
YearsType as shown in Figure 2-22:

<xs:simpleType name="YearType">
<xs:irestriction base="xs:positiveInteger">

«<xsiwhiteSpace value="collapse"/>
<xs:totalDigits value="4"/>

</xS:restriction>
</xs:simpleType>

<xs:simpleType name=“YearsType">
<xsilist itemType="Yeartype" />

</xs:simpleType>

Figure 2-22 Creating new simple types with list.

The YearsTypetype defined in Figure 2-22 can then be used to validate instances of the
YearsType such as the years element in Figure 2-23.

<WWIT> 1939 1940 1941 1942 1943 1944 1945 1946</WWII>

Figure 2-23 An instance of the YearsType type.

The union mechanism is slightly more subtle than the List. It allows the aggregation of
the value spaces of two. types to be combined into the value space of a new single simple type.
For instance, imagine we have two simple types that represent fruits and vegetables, respec-
tively, as shown in Figure 2-24: ,

<xs:isimpleType name="FruitType'">
<xs:restriction base="xs:string">

<xs:enumeration value="ORANGE" />
<xSrenumeration value="APPLE* />
<xs:enumeration value="BANANA" />
<xs:enumeration value="KIWEI" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="VegetableType'">
<xs:restriction base="xs:string">

<xs:enumeration value="POTATO" /> \
<xs:enumeration value= "CABBAGE" />
<xs:enumeration value="TURNIP" />
<xs:renumeration value="LEEK" />

</xs:restriction>

</xs:simpleType>

Figure 2-24 FruitType and VegetableType simple types.

Booking, Exh. 1053, Page 43

Booking, Exh. 1053, Page 44

intitt

XML Schema a7

We can use the FruitType and VegetableTypetypes in Figure 2-24 to create a
FruitandVegetableType via a union as shown here in Figure 2-25:

<xs:simpleType name="Fruitandvegetabletype">
<xstunion memberTypes="FruittTyne VegetableType"/>

</xs:simpleType>

Figure 2-25 Creating a new simple type via a union,

The resulting FruitandVegetableType type can be used to validate elements such
as <organically-grown>BANANA</organicaliy-grown> and <menu-item>
POTATO</menu-item> because both BANANA and POTATO are valid values for the
FruitandVegetableTypetype.

Simple Type Support in Programming Languages
The XML Schema support for simple user-defined types that allow custom valve and lexi-

cal spaces is a powerful aspect of the technology. However, since most programminglanguages
do not support this feature, typically programmers have had to produce properties/accessors/
mutators that constrain the value space by manually checking values and throwing exceptions
where constraints have been invalidated. For example, take the Java equivalent of the
YearTypetype (from Figure 2-20) shown in Figure 2-26:

public class Year
{

public int getValue(}
{

return _value;
}

public void setValue(int value}
throws InvalidValueException

{

if(value >= 1000 && value <= 9999)
(

_value = value;
}
else
{

// Invalid year
throw new InvalidValueException(};

}

}

private int _value;
}

Figure 2-26 Value and Lexical handling with Java's primitive types.

Booking, Exh. 1053, Page 44

Booking, Exh. 1053, Page 45

38 Chapter 2 + XML Fundamentals

The Year class in Figure 2-26 is somewhat lengthier than the equivalent XML, Schema

simple type since it has to handle the value space imperatively rather than declaratively. To deal
with the lexical space of year instances, we need to manually check the possible values and
report back to the user when an invalid value is encountered as exemplified in the Year. set-
Value (int) method.

Writing these kinds of classes by hand is long-winded and proneto error. Of course we
could provide tool support to deal with these issues (like the xsd. exe tool from the .Net plat-
form toolkit), but if we are dealing with schematized XML documents, it happens that we don’t

necessarily need to, Consider the diagram in Figure 2-27 of a typical XML-enabled software
agent (which could be a standalone application, a database, or more likely a Web service) that
communicates with its environment through schematized XML documents.

Theability to define custom value/lexical spacesthatfit our precise needs meansthatit is
possible to delegate constraint checking of values in an XML document to the XML processor.
Once the XML processor has produced an Infoset for the program to consume, the XMIL docu-
ment that the Infoset was created from must have passed validation by its schema, and so the
value and lexical constraints placed on the documents must be satisfied. Knowingthis, the devel-

Program |

— (Post-Schema
“Validated) Infoset

Instance

Documents ;

Figure 2-27 Delegating Vatue/Lexicai space error handling to the XML processor.

Booking, Exh. 1053, Page 45

Booking, Exh. 1053, Page 46

XML Schema 39

oper of the consuming program no longer has to write lengthy constraint checking code since
‘this would be a replication of work that the XML processor already undertakes. Thus using sche-
mas can remove some of the burden of manually checking values in our code, thoughit is not a
substitute for failing to program defensively!

Complex Types

As well as creating specialized versions of the XML Schema simple types, we can also create
new complex types by aggregating existing types into a structure. XML Schemasupports three
means of aggregating types with three different complex type compositors: sequence,
choice, and al] whose semantics are outlined in Figure 2-28.

Compositor Description ,

sequence Specifies that the contents of the complex type must appear
as an orderedlist,

choice — Allows a choice of any of the contents of the complex type.

ail Specifies that the contents of the complex type appear as a
unordered Hst.

Figure 2-28 complexType compositors.

While the semantics of the compositors vary, the syntax of each is quite similar. To use
any of the compositors, we simply declare a new complex type with a compositor as its child
element, as shown here in Figure 2-29:

<xs:complexType name="AddressiType*>
<me tsequence>

<xs:element name="number" type="xs:string"/>
<xs:element name="street" type="xs:string"/>
<xs:element names"city" types"xs:string’/>
<xs:element name="state" type="xs:string" />
<xs:element name="post-code" type="xs:string®/>

</x8 i sequence>

<xs:attribute name="business-address" type="xs:boolean"/>
</xs:complexType>

Figure 2-29 Declaring a new complexType using the sequence compositor.

Booking, Exh. 1053, Page 46

Booking, Exh. 1053, Page 47

40 Chapter 2 * XML Fundamentals

In Figure 2-29 we create a new complexType called AddresstType by aggregating
five elements of type string which represent a mailing address, and a single attribute of type
boolean whichis used to indicate whether this address is business or residential.

In the scope of a sequence compositor, each contained ele-
ment must appear exactly once by default. If more flexibility is
needed, then we can add the minOccurs and maxOccurs
attributes to each contained element. The minOccursattribute is

set to a value greater than or equal to 0 which then specifies the
minimum number of occurrences for its element within the com-

positor. The maxOccurs attribute specifies the maximum number
of elaments that should appear in the compositor from 1 to the
special value unbounded (whichis logically an infinite number of
times).

With the AddressType in Figure 2-29, we can now validate elements such as the

addregs elementin Figure 2-30:

<address>
<nunmber>22 1b< /number>
<street>Baker Street</street>

<city>London</city>
<state>N/A</state>
<post-code>NWL 6XE</post~code>

</address>

Figure 2-30 A valid instance of the AddressType type.

The ali compositor is similar to the sequence compositor except that ordering con-
straint is relaxed. Therefore while the elements contained within an all compositor must be
present, the order in which they appear is unimportant from the point of view of the XML pro-
cessor,

The minOccurs and maxOccursattributes do not make sense In

the scope of an all compositor since (for example)it is impossi-
ble to specify that an instance document should contain all the
instances of a maxOQccurs="unbounded" element! Instead, omit-
ting these attributes gives us the default semantics of exactly one
element per compositor. The only exception here is that minoc-
curs="0" can be used to specify optional elernents.

An example of the all compositor is shown in Figure 2-31, where the PurchaseOr~
derType type is presented, The PurchaseOrderType uses the all compositor to create

Booking, Exh. 1053, Page 47

Booking, Exh. 1053, Page 48

inrrnngn,

XML Schema : 41

an aggregate structure containing mandatory order-number and item elements, and an
optional description element(specified by the minOccurs="0" attribute):

<xs:complexType name=“PurchaseOrderType'"><xsrall>

<xs:element name="order-number®

types "xs :positivelInteger" />
<xs:element namé="{tem" type="xsistring" />
<xs:element name="deseription" type="xs:string"

minOccurs="0"/>
</xstall>

</xs:complexType>

Figure 2-31 Usingthe all compositor.

The PurchaseOrderTypetype from Figure 2-31 can be usedto validate the instances
shown in Figure 2-32, where we see instances both wherethe description elementis missing and
where it is present:

<purchase-order>
sorder-number>1002</order-number>
<item>11025-32098</item>
<description>Personal MP3 Player</description>

</purchase-order>

<purchase-order>
<item>44045-23112</item>
<order -number>5290</order-number>

</purchase-order>

Figure 2-32 Valid PurchaseOrder'Type instances.

Using the choice compositor, we can force the contents of part of a documentto be one
of a numberof possible options. For example, in Figure 2-33 we see the Usertdentifier-—
Type, which allows a user to supply either a login identifier or Microsoft Passport-style single-
signon credentials to log in to a system (this type of arrangement is typical in e-commerce
sites),6

6, Note that this is a hypothetical example that has been deliberately shortened for clarity, and the types
used are not representative of the actual Passport API.

Booking, Exh. 1053, Page 48

Booking, Exh. 1053, Page 49

42 Chapter 2 * XML Fundamentals

<xs:complexType name="UseridentifierType">
<xs :choice>

<xs:element name="login-id" type="xs:string" />
<xs:element name="passport” type="xs:anyURI" />

</aerchoice>
</xs:complexType>

Figure 2-33 Using the choice compositor.

The UseridentifierType can be used to validate elements that contain either a

login-id, or apassport element, but not both. Therefore both the elements shown in Fig-
ure 2-34 can be validated against the UserIdentifierTypa:

<logon>
<login-id>chewbacca@wookie.org</login-id>

</logon>

<lLogon>
<passport>

http: //passport.example. org/uid/2235:112e:77fa:9699:aadi
</passport>

</logon>

Figure 2-34 Valid UserldentifierType elements.

The minOccurs and maxOccurs attributes can be used within choice compositor.
They allow us to expand the basic exclusive OR operation that choice provides, to support
selection based on quantity as well as content, as exemplified in Figure 2-35:

<xs:complexType name="DrinksMenuType">
<xs:choice>

<xs:element name="beer" type="b:BeerType" minOccurs="0"
maxOcours="2" />

<xs:element name="wine" type="w:WineType" minOccurs="0"
maxOccurs="1"/>

</xs:choice>

</xs:complexType>

Figure 2-35 Choosing elements based on cardinality.

Using the DrinksMenuTypetype, we can specify using the minOccurs and max0e¢-
curs attributes that our choice can be either two beers or one drink of wine, as shown in Figure

- 2-36.

Booking, Exh. 1053, Page 49

Booking, Exh. 1053, Page 50

itrte

XML Schema 43

<!-- Either two beers... -->
<drinks> :

<b:beer type="bitter" />
<b:beer typex="lager" />

</drinks>

<l-- .. Or a single drink of wine ~->
<drinks>

<wiwine country="France" grape="Pinot Noir’ year="1998"/>
</drinks>

Figure 2-36 Instance documents constrained by choice.

Equally, we could select based on quantity of a single item, For example we could envi-
sion a choice where beer can be sold in four, six and twelve packs by simply setting the
minOccurs and maxOccursattributes to 4, 6 and 12, respectively, as shown in Figure 2-37;

<xs:complexType name="DrinksMenuType'">
<es:ichoice> :

<xs:element name="heer" type="xs:istring” minOccurs="4"
maxOccurs="4"/>

<xs:element name="beer" type="xs;string" minOccurs="6"
maxOccurs="§"/>

<xs:element name="beer" type="xs:string" minOcours="12"
maxOccurs=“12"/>

</xs:choice>

</xs:complexType>

Figure 2-37 Choice based on cardinality.

With choice, we have drawn to a close our discussion on compositors. We have seen
how we can aggregate existing types into new types in a variety of ways (sequence, choice,
all) and some of the variations on those themes (like choice-by-cardinality). However, we can
also create new types not only by aggregating existing types, but by aggregating existing types
and textual content, For instance, we might wish to mix textual information and structured data
to create a letter? as shown in Figure 2-38.

7. This example adapted from the W3 Schools example at:
http:/Awww.w3schools.com/schema/schema_complex_mixed.asp

Booking, Exh. 1053, Page 50

Booking, Exh. 1053, Page 51

44 Chapter 2 * XML Fundamentals

<lLetter>

Dear Professor <name>Einstein</name>,
Your shipment (order: <orderid>1032</orderid>)
will be shipped on <shipdate>2003-06-14</shindate>.
<f/letter>

Figure 2-38 Mixed textual and element content.

In order to mix elements and text, we must create a type that allows such mixtures (and by
default types do not), Thus we create a schema such as that shown here in Figure 2-39:

<xs:element name="Letter">

<xe:complexType mixed="true">
<xS : Sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="orderid" type="xs:positiveinteger"/>
<xs:e€lement name="“shipdate" type="xs:date"/>

</xsS:sequence> .
</xs:complexType>

</xs:element>

Figure 2-39 Schema supporting mixed textual and element content,

The way that we support mixed textual and elemental content is to create a complex-
Type with mixed content. Thus when the mixed attribute is set to true (in its absence the
default is false), the resulting type can mix elements andtext as shownin the letter examplein
Figure 2-38.

The any Element

By default, all complex types that we create have closed content models. This means that
only the elements that are specified when the type is declared can appear in instances, Whilethis
certainly encourages strong typing, it can also be a problem. How do we handle elements within
a document that we cannotpredict ahead of time? Indeed manyof the Web services protocols
that we will encounter in later chapters have this requirement, where the content model of sche-
mas for particular protocols has to be extended on a per application basis (in fact, we discuss
how WS-Transaction extends WS-Coordination in this way in Chapter 7). Fortunately this kind
of extensibility is supported in XML Schema through the any element, which allows us to
develop an open content model for a type through the use of wildcards.

Using any within a complex type means that any element can appear at that location, so
that it becomes a placeholder for future content that we cannot predict while building the type.
For attributes, there is the anyAttribute which defines placeholders for future attribute
extensions.

Booking, Exh. 1053, Page 51

Booking, Exh. 1053, Page 52

XML Schema 45

Of course, we might not want to allow completely arbitrary content to be embedded, and
s0 any can be constrained in a number of ways, but don't worry, it will still be generic even after
the constraints. The first constraint that we can place on any is how the contents that are substi-
tuted will be treated by the XML processor. The processContentsattribute has a number of
options that can be chosen to set the level of validation of elements specified by an any element.
These are:

*strict-—This is the default value in the absence of any processContents
attribute. The XML processor must have access to the schema for the namespaces of
the substituted elements and fully validate those elements against that scherna.

* lax—This is similar to strict, with the exception that if no schema can be located for
substituted elements, then the XML parser simply checks for well-formed XML.

* skip—tThisis the least taxing validation method, which instructs the XML processor
not to validate any elements from the specified namespaces.

The namespaces against which the contents may be validated are specified by a second
optional atiribute for the any element called namespace. This attribute specifies the
namespace of the elements that it is valid to substitute for an any element within a document,
and has a number of possible settings;

* ##any—This is the default setting for the namespace attribute which implies that
elements from any namespace are allowed to exist in the placeholder specified by the
any element.

* #other—-Specifying this value for the namespace attribute allows elements from any
namespace except the namespace of the parent element (ie, not the

targetNamespaceofthe parent),

* ##10cal—Thesubstituted elements must come from no namespace.
*#targetNamespace—Only elements from the namespace of the parent element

can be contained.

Finally we are allowed to combine some of the above options to make the available
namespaces more configurable, That is, we are allowed to specify a space-separated list of valid
namespace URIs (instead of ##any and ##other), plus optionally ##targetNamespace
and ##local. Thus we can restrict the namespaces for whichit is valid to substitute any ele-
ment to a list of (one or more) specific namespaces if necessary.

An example of how the any element is used is presented in Figure 2-40,

Booking, Exh. 1053, Page 52

Booking, Exh. 1053, Page 53

46 . Chapter 2 + XML Fundamentals

<xsd:complexType name="Notification'’>
<xsd:isequence>

<xsd:element name="TargetProtocolService"
type="wsu: PortReferencetype" />

<xsd:element name="SourceProtecolService"

type="wsu:PortReferencetType" />
<xsd:any namespace="#fother" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence> :
<xedranyAttribute namespace="#Hother"

processContents="lax"™ />
</xsd:complexType>

Figure 2-40 WS-Transaction messages are extensible via any and anyAtiribute.

Figure 2-40 shows the Notification type from the WS-Transaction protocol schema.
A Notification in WS-Transaction is a message that is transmitted between actors in the
protocol. However, since WS-Transaction is designed to allow different back end transaction

systems to operate on the Internet, the messages it exchanges have to be extensible enough to
express the semantics of each back end system. This, of course, calls for an open content model
to allow third parties to extend the protocol to suit their own systems.

The protocol supports wildcard elements and attributes via the xsd:any and

xsd:anyAttribute elements. In both cases, the wildcard element namespaces must come
from any namespace other than the WS-Transaction namespace as its namespace attribute is
setto ##other. This is exemplified in Figure 2-4] where we see a SOAP message (see Chapter
3 for a full explanation of SOAP) from one vendor’s WS-Transaetion implementation (see
Chapter 7 for details on Web services transactions) using the wildcard elements to propagate
information pertinent to their implementation.®

Although the Dialogidentifier clement from the SOAP message in Figure 2-41
wasn’t specified by the schema,it is still a valid message- because it matches the constraints of
the <xsd:any namespace="##other" processContents="lax" minOc-
curs="0" maxOccurs="unbounded"/> element from the schema. It matches the

##other constraintsince it comes from the namespacehttp://schemas.arjuna.com/ws/2003/0L/

wsarjix which is valid since the WS-Transaction namespace is http://schemas.xmlsoap.org/ws/
2002/08/wstx. Since the schema maintains that processing of these elements is lax, it means that
the XML. processorthat receives this message will validate the well-formed XML of the Dia-
logident.ifier element. Thus the message conforms to the schema even though the origina-
tors of the schema had no idea about the organization that ultimately created the conformant
message, let alone the message itself,

8. This SOAP message is from Arjuna Technologies’ XTS 1.0 implementation of the WS-Transaction
protocol.

Booking, Exh. 1053, Page 53

Booking, Exh. 1053, Page 54

XML Schema a7

<?xml version="1.0" encoding="UTF-84 ?>
<soapenv: Envelope xmlns:soapenv="http: //schemas .xmlsoap.org/soap/
envelope/" xmins:xsd="http: //www.w3.org/2001/2MLSchema"
xmlns:xsi=“http: //www.w3.org/2001/XMLSchema—instance'">

<soapeny : Body>
<wstx:OnePhaseCommit xmins:wstx="http://schemas.xmlsoap.org/ws/

2002/08/wstx">

<wetx:TargetProtocolService xmlns:wstx="http://
schemas .xmlsoap.org/ws/2002/08/wstx'>

<wsu:Address xmilns:wsu="http://schemas.xmlsoap,org/wse/2002/
o7f/utility">

http: //localhost:5555/jboss-net/services/TwoPCParticipantMsG
</wsu:Address>

</wetx: TargetProtocolService>
<wstx;: SourceProtocolService xmins:wstx="http://

schemas .xsnlsoap, org/ws/2002/08/wstx">
<wsu:Address xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/

OT /utility’>
http: //localhost/jboss-net/services /TwoPCCoordinator

</wsu: Address>
</wstx:SourceProtocolService>

<waarjts:Dialogidentifier umlns:wsarjtxs
"http: //schemas .arjuna.com/ws/2003/01/wsarjtx">
123456

</woarjbtu:Dialogidentifier>
</wetx:OnePhaseCommit>

</soapenv: Body>
</soapenyv: Envelope>

Figure 2-41 Using Wildcard element to extend a WS-Transaction message.

In addition to the any and anyAttribute elements, XML
Schema also provides two specia! types called anyType and
anySimpleType which can be used instead of a specific named
type where we need our schemas to be more generic.

The anyTypetype is the most generic of the two being substi-
tutable for any type in the whole XML Schema type system,
including user-derived types. The anySimpleType is more con-
strained and supports only types that are frorn the set of farty-
four XML. Schema simple types or types derived from them.

These special types provide the same kind of generality when
creating type-based content models as the any element provides
for document structure. It is not unusual to see attributes fike

type="xs:anyType" or type="xs:anySimpleType" In ele-
ment declarations where the type of such elements is expected
to be determined by the application that consumes the schema,
and not by the schema developer.

Booking, Exh. 1053, Page 54

Booking, Exh. 1053, Page 55

48 Chapter 2 » XML Fundamentals

Inheritance

While the ability to constrain instance documentsis essential for interoperability, harnessing the
type system exploits the real power of XML Schema. The inheritance features in XML Schema
allow us to create type hierarchies that capture the data models of the underlying software sys-
tems that XML is designed to support. ,

In fact, we have already seen one form of inheritance when we used the restriction

feature to create new simple types with differently constrained value and lexical spaces, How-
ever, XML Schemaalso supports a mechanism called extension that allows us to augment
(rather than constrain) the capabilities of an existing type. Using this facility we can begin to cre-
ate hierarchies of complex types just as we can in object-oriented programming languages,

When using complex type extension, we have two options for creating subtypes. We can
create subtypes that contain only simple content (text and attributes only), or subtypes that con-
tain complex content (other elements as well as text and attributes).

An example of extending a complex type with additional simple content is shown in Fig-
ure 2-42; :

<xs:complexType name="MonitorType">
<“s :simplecontent>

<xs:axtension base#"xs:string">
<xs:attribute name="flatsereen" type="xs:boolean" />

</xe:rextension>

</xs:simpleContent>
</xs:compLlexType>

Figure 2-42 Complex Type extension with simpleContent.

The MonitorType complex type in Figure 2-42 uses the simpleContent elementto
add a single attribute to its content, which is defined as being the string built-in type. The
base type of the MonitorType (string) is specified by the baseattribute in the exten-
sion element. The additional simple content is specified as the only child of this extension
element. The new subtype we have defined can now be usedto validate elements such as <mon-
itor flatscreen="true">HP P4831D</monitor>.

Figure 2-43 shows an example of how we can use the extension mechanism to create

subtypes with additional elements using the complexContent construct.

Booking, Exh. 1053, Page 55

Booking, Exh. 1053, Page 56

XML Schema 49

<xs:complexType name="PersonType">
<xS!sequence>

<xs:element name="forename" type="xs:string"/>
<xs:element name="surname” type="xs:string" />

</xs: Sequence>
</xs:complexType>

<xs:complexType name="FootballerType">
<xs1complexContent>

<xa:extension base="PersonType">
<Ns:5equence>

<xs:element name="team" type="xa: string" />
<xgrelement name="goals" types"xs:int" />

</xa18equence>
</xsrextension>

</xa:complexContent>
</xs:complexType>

Figure 2-43 Complex Type extension with complexContent.

The PersonType type in Figure 2-43 can be used to validate instances such as that
shown here in Figure 2-44:

<person>
<forename>Alan</forename>
<surname>Turing</surname>

</person>

Figure 2-44 An Instance of the PersonType Type.

The Footbal lerTypein Figure 2-43 has complexContent,allowing the elements
and attributes to appear within the body of the type. It capitalizes on that fact by adding the
team and goals elements fo extend on the base PersonTypeto allow the validation of such
elements as shown in Figure 2-45:

<footballer>
<forename>Alan</forename>
<surname>Shearer</surname>
<team>Newcastle United</team>

<goals>145</goais>
</footballer>

Figure 2-45 A Footbal lerType TypeInstance.

Booking, Exh. 1053, Page 56

Booking, Exh. 1053, Page 57

50 Chapter 2 * XML Fundamentals

AS wesee in Figure 2-45, instances of the Footbal lerTypetype have a similar struc-
ture to instances of the PersonType type, because the FootballertType subtype inherits
the forename and surname elements from the PersonType, but adds the elements team and
goals.

From this exampie, we can see that it is possible to use the extension mechanism to
build type hierarchies in XML Schema, just as we can in object-oriented programming lan-
guages. However, to be able to exploit such hierarchies (e.g. to “cast” between types) we need to
use another XML Schema mechanism:substitution groups.

Substitution Groups

Substitution groups are a feature that allows us to declare that an element can be substi-
tuted for other elements in an instance document. We achieve this by assigning an clementto a
special group—a substitution group—that is substitutable for the element at the Aead of that
group,effectively creating an equivalencerelation between document elements ofthe same type
(or subtype).

Elements in a substitution group must have the same type as the
head element, or 4 type that has been derived from the head ele-
ment’s type.

While this isn’t exactly like polymorphic behavior in object-oriented programming lan-
guages since the base-type/derived typerelationship isn't implicit, this feature is immensely use-
2ul for creating extensible schemas with open content models,

To illustrate this point, consider the schema shown in Figure 2-46, This schema demon-
strates how to use substitution groups to deal with element-level substitutions—-a kind of poly-
morphic behavior for instance documents. The substitution group consists of the elements
cast-member and crew-member declaring themselves to be substitutable for a person ele-
ment through the substitutionGroup="person”attribute declaration, Note that this is a

valid substation group because both cast-member and crew-member are types derived
from the PersonTypetype.

The definition of the cast-and-crew element references the person element from
within a sequence,setting the maxOccursattributes to allow any number of person ele-
ments to exist within an instance. However, since person is an abstract element(and thus cannot
appear as an element in its own right), this schema actually supports the substitution of person
elements for any other element declared to be in the same substitution group. Therefore, this
schemawill validate instance documents such as that shown in Figure 2-47,

Booking, Exh. 1053, Page 57

Booking, Exh. 1053, Page 58

XML Schema 51

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema ">

<xsicomplerlType name="PersonType">
<xS5;sequence>

<xs:element namea="firstname” type="xs:string"
minOocurs="0"/>

<xs:element name="surname" type="xs:istring"/>
</xsS : Sequence>

</x8:compLlaxType>
<xe:compLexType name="CastMemberType">

<xS i complexContent>
¢«xs:extension base="Parsontype">

<xs : Sequence>

<xs:element name="character" type="xs:string"/>
</xX5:sequence>

</xs:extension>

</xe:complexContent>
</xa:complexType>
<xs:complexType name="CrewlemberType" >

<xs :complexContent>
<xe:extension base="ParsonType" >

<xS : sequence>

<xs:element name="function" type="xs:string" />
</xsS1sequence>

</xs:extension>

</xs:complexContent>
</xs:complexType>
<!-- Declare substitution group and head element ~-->
<xs:element name="person" type="PersonType"

abstract="true"/>

<xprelement name="cast-member" type="CastMembartType"
substitutionGroup="person" />

<us:GéLlement nane="crew-member"® type="CrewMemberType"

substitutionGroup="person" />
<i-- Now define the actual document ~-->
<xs:element name="cast~and-crew'>

<xs:complexType>
<xS : Sequence>

<xs:element ref="person" maxOccurs="unbounded!"/>
</xs: Sequence>

</xs8;complexType>
</xs:element>

</xe:schema>

Figure 2-46 Using substitution groups.

Booking, Exh. 1053, Page 58

Booking, Exh. 1053, Page 59

nrRgrte

52 Chapter 2 « XML Fundamentals

<?xml version="1.0" encoding="UTF-8"?>
<cast-and-crew>

<crew-member>

<firstname>Lucas</firstname>
<surname>George< /surname>
<function>director</function>

</crew-member> :
<cast-member>

<firstname>Ewan</firstname>
<sutname>McGregor</surname>
<character>O0bi Wan Kenobi</character>

</cast-member>
</cast-and-crew>

Figure 2-47 Supporting polymorphic behavior with substitution groups.

The instance document in Figure 2-47 shows how types from the person substitution
group can be used in places where the original schema has specified a PersonType element.
In this case since both cast-member and crew-memberare part of the person substitu-
tion group, the documentis valid.

Like the any and anyAttribute elements, substitution groups
are a useful mechanism for creating schema types which are
exiensibie. Again like the any and anyAttribute elements,
substitution groups are widely found in various Web services
standards. WSDL(see Chapter 3) makes extensive use of substi-
tution groups to allow other protocols (such as BPEL, see Chap-
ter 6) to extend its basic features to more complex problem
domains.

Global and Local Type Declarations

Just like classes in object-oriented programming, we need to create instances of KML
Schema types in order to do real work like moving XML encoded messages between Web ser-
vices. In this section, we examine two meansfor creating instances of types: using global types
and declaring local types.

We have already seen examples of both of global (schema-scoped) and local (element-
scoped) type declarations throughout the previous sections. A global type definition occurs
where we embed a type directly as a child of the <schema> element of a schema, Conversely, a
local type is declared as the child an <element> element, which is a direct child of the
<schema> élement. This is exemplified in Figure 2-48,

Booking, Exh. 1053, Page 59

Booking, Exh. 1053, Page 60

XML Schema

<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlns:xs="http: //www.w3-org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<1-- A Global Type ~->
<xa:compLexType name="CardtType">

<x87 Sequence>
<xs:element name="card-type"’>

<xs:simpleType>
<xsirestriction base="xs:string">

<xs:enumeration value="Visa" />
<xstenumeration value="MasterCard” />

</xs:restriction>
</xs:simpleType>

</xs;element>
<xs:element name="expiry">

<xs:simpleType>
<xs:restriction base="xs:istring">

<xs:pattern values" 0-9] {Z2)-[0-9] {2)*/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xa:element name="mumber'>

<xs:simplerype name="CardNumberType">
<xs:restriction hase="xs:string">

<xs:pattern
value="{0-9}3 {4} [0-91(43 [0-9]{4} [0-9] {4)*/>

</xs:rtestriction>
</xs:simpleType>

</xs:element>
<xs:element name="holder* type="xs:string"/>

</xs:sequence>
</xa:complaxtType>
<1-- A loeal type -->
<xs:element name="debit-card">

<x8 rcomplexTypa>
<xs; complexContent>

<xs:extension base="CardType">
<xsrattribute name="issue"

type="xs :positivernteger" />
</xs:extension>

</xs:complexcontent>
</sse: complextType>

</xsielement>
<in- Another local type -->
<xs:element name="wallet">

<xs:complexType>
<xXS! Sequence>

<xe:element name="credit-card" type="CardTyps"
minOccurs="0" maxOccurse"unbounded" />

<xs:element names"debit-card" ref="debit-aard"
mincccurs="0" maxOccurs= "unbounded" />

</™s;sequence>
</ue:complextType>

</xus:element>
</%sischema>

Figure 2-48 Giobal and Local type declarations.

Booking, Exh

53

. 1053, Page 60

Booking, Exh. 1053, Page 61

54 : Chapter 2 * XML Fundamentals

‘The distinction between the two is important. Global types such as Card@Typein Figure
2-48 are globally visible and so are available within the namespace in which they are declared
and in other namespaces, can be extended and generally behave as we would expectclasses to
behave in an object-oriented programming language. Instances of global types are created by
constructing an element whosetypeattribute refers to that particular global type’s name. This
is shown in Figure 2-48 where we see this element:
<xs:element name="credit-card" type="CardType"
minOccurs="0" maxOccurs="unbounded”"/>

that defines that an instance of the CardTypetype can be present any numberoftimes in a wal-
let element.

On the other hand, local types are declared inline with an element (like debit-card
and wallet in Figure 2-48). While the elementitself is visible to other elements and types,its
implementing type is not and therefore is not extendable by other types-—in fact, the implement-
ing type doesn’t even have a name so that it can be referred to.

When wedeclare local types, they can subsequently be referred to only by their enclosing
element name and their content cannot be extended, In programming terms, this is similar to a
component whose API is known, but whose type is anonymous andinternal structure is a black
box. This is shown in Figure 2-48 where the wallet(itself a local type) is defined as contain-
ing any number of instances of the debit-cardlocal type via the ref attribute, like this:
<xs:element name="debit-card" ref="debit-~-card"

minOccurs="0" maxOccurs="unbounded"/>,

LTcaaerevoeyeeenamannanteNY

instances of local types are specified by the ref attribute, e.g.,
<xs:element name="credit-card" ref="debit-card" w />
instances of global types are specified by type attribute, e.g.,
<xs:element name="credit-card" type="CardType" .. >eeeebeGateUYPEsSaraiypeos

Whether to declare types globally or locally depends on our intended use for those types.
If we intend for those types to form part of a type hierarchy, then they should be declared glo-
bally so they can be extendedat will. If, however, we intend for a type to only support instances
within XML documents, then it should be declared locally.

A good rule of thumb for developing content models is to type hierarchies with global
types, but to create local type declarationsat the leaf nodes of those hierarchies. Thus within the

hierarchy we have the full flexibility supplied by global types, yet the “interface” presented to
users of that hierarchy is a collection of element declarations against which XML documents can
be validated,

Managing Schemas

While mostof the schemas we have seen in this chapter have been short,it is possible for
schemasthat serve particularly complicated problem domains to become long and difficult to

Booking, Exh. 1053, Page 61

Booking, Exh. 1053, Page 62

XML Schema 55

manage, XML Schemahelpsto solve this problem by providing the include mechanism that
allows us to partition a single logical schema(:.e., the set of types from a single targqetNam-
espace) across a number of physical schema documents. For instance, we could chooseto cre-

ate type hierarchies in one physical document and create the document layout in another
physical documentfor ease of management. These two separate physical documents can then be
made into a single logical schema by including the type hierarchy document in the document
structure schema, as shown in Figure 2-49 and Figure 2-50.

<?xml version="1.0" encodings "UTF-8*?>
<xs: schema

targetNamespace="http: //wallet.example.com"
xmins:xs="http: //www.w3.org/2001/XMLSchema"
elementFormDefault=*qualified"
attributeFormDefault="unqualified">

<xs:complexType name="CardType*>
<¥S : Sequence>

<xs:element name="card-type'>
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="Visa"/>
<xsienumeration value="MasterCard" />

</xs:restriction>

</xs:simpleType>
</xs:eLlement>

<xs:element name="expiry">
<xS:isimpleType>

<xs:restriction base="xs:string">
<xgipattern value="{0-9]{2}-[0-91]{2}"/>

</xs:restriction>
</xs:simpleType>

</xg:element>
<xs:element name="number ">

<xs:isimpleType names “CardNumberType">
“<xs:restriction base="xs:string">

<xs: pattern
value="(0-9]{4} [0-9}(4} [0-9] {4} [0-9] {4} "/>

</xs:irestriction>

</xs:simpleType>
</xs:element>

<xs:element name="holder" type="xs:string" />
</xs :sequence>

</xs:complexType>
</xs:schema>

Figure 2-49 The Typehierarchy part of the Wallet schema.

Booking, Exh. 1053, Page 62

Booking, Exh. 1053, Page 63

nee

56 Chapter 2 * XML Fundamentals

<?ami version="1.0" encoding="UTP-8" t>
<xs:schema

targetNamespace="http://wallet.example.com" xmins:tns="http://
wallet.example.com"
amins :xs="http: //www.w3.org/2001/XMLSchema"
elementFormDefault="“qualified"
attributeFormDefault="unqualified">

<xs:include schemalocation="CreditCard. xsd" />
<xs:element name="debit-card'>

<xs:complexType>
<xs:complexContent>

<xs:extension base="tns:CardType">
<xs:attribute name="issue*

type="xs:positivelInteger" />
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>
<xs:element name="wallet*>

<xs :complexType>
<xS : Sequence>

<xs:element name="credit-card" type="tns;:CardType"
minOccurs="0" maxOcecurs="unbounded" />

<xs:element name="tns:debit-card" ref="debit-card"
minOccurs="0" maxOcours="unbounded"/>

</xs:sequence>

</xs:icomplexType>
</xs:element>

</xs:schema>

Figure 2-56 The Document-Structure part of the Wallet schema.

The schema shown in Figure 2-49 effectively becomes the container for all of the types
that might be used in the XML documents that conform to the schema (which at the momentis
only a single type, CardType). The schema in Figure 2-50 uses the include mechanism to cre-
ate a single logical schema containingitself and the included schema from Figure 2-49. This
gives accessto ail of the types defined in the included schema,allowing the wallet to be con-
structed in the same way as it was when the two schemas were physically one (in Figure 2-48),
with the advantage that becausethe individual schemas are smaller, maintaining them is easier.

While the include mechanism is fine for partitioning a single schema across multiple
physical schema documents,it is limited to schema documents which share the same target ~
Namespace.It is casy to see the limitation of this mechanism if we imagine for a moment that
the definition of the CardType had not been developed by the same in-house team that created
the wallet, but had instead been created by an outside consortium of credit card companies. In
this case the targetNamespace will be different from that of the wallet schema and so
inciude will not work. Instead, we use the import mechanism, which allows us to combine
types and elements from different namespacesinto a single schema.

Booking, Exh. 1053, Page 63

Booking, Exh. 1053, Page 64

XML Schema 57

<?xml version="1.0" encoding="UTF-8"?>
<xs: schema

targetNamespace="http: //card.example.com"
xmlns:xs="http: //www.w3.org/2001/2MBSchema"
elementFormDefault="qualified"
attributeFormDefauit="unqualified">

<xs:complexType name="CardType'">
<l-+ Card implementation omitted for brevity -->
</xs:complexType>

</xs i schema>

Figure 2-51 The Credit Card schema.

<?uml version="1.0" encoding="UTF-8" ?>
<xe: schema

targetNamespace="http://wallet.example.com" xmins:tns="http://
wallet.example.com" xmlins:cc="http: //card.example.com"
amlnus:xee"http: //www.w3.org/2001/XMLSchena"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<us:import namespace="http: //card.eaxampla.org"™
schemaLocation="CreditGard.xsd" />

<xs:element name="debit-card">

<xs:complexType>
<xs: complexContent>

<xs:rextension base="co:CardType">
<us:attribute name="issue"

type="xs :positiveInteger" />
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>
<xs:element name="*wallet">

<xs:complexType>
<xs + Sequence>

<xs:element name="credit-card" type="cc:CardType"
minOceurs="0" maxOccurs="unbounded" />

<xs:element name="debit-card" ref="tns:debit-card"
minOccurs="0" maxOccurs="unbounded" />

</xs:1sequence>
</xs:complexType>

</xs:element>
</xs:scheme>

Figure 2-52 The Wallet schema.

Booking, Exh. 1053, Page 64

Booking, Exh. 1053, Page 65

58 Chapter 2 ¢ XML Fundamentals

The schema in Figure 2-51 declares a single type (CardType) in the namespace http://
card.example.com. The schema containing the CardType type is then exposed to the schema
shown in Figure 2-52 via the import mechanism, which involves specifying both the
namespace that is being imported and the location of the schema which js attributed with that
targeiNamespace.

The imported namespaceis given a prefix (so that it can be referenced within the wallet
schema) via the xm1ns:cc attribute in the root elementof the wallet schema document. Now
the components of the credit card schema (including CardType) are accessible to the wallet
schema by referencing its qualified name (QName) via the prefix cc.

Once we have imported a schema, we can freely reference its contents. In the wallet
schema, we use the contents of the credit card schema to create a new type of card (debit-
card) by extending the credit card schema’s CardType. We also create a wallet element
that declares instances of both the global CardTypeandinstances of the local debit-card
type. As we have seen, the import declaration works just like an import declaration in the
Java programming language or using a declaration in C¥#, which simply exposes the types from a
foreign namespace to the current namespace,

Schemas and Instance Documents

Until this point we have largely focused on either XML documents or constructing porta-
ble type systems with XML Schema. However,it is only when these two aspects of XML inter-
sect that we actually have a usable technology for moving structured data between systems. That
is, we need to be able to communicate the abstract nations defined in schemasvia concrete XML
documents and on receipt of an XML document, be ableto translate it back into some form suit-
able for processing within the receiving system—whichis generally an Infoset or native object
model, not a mass of angle brackets and text. The relationship between types, elements and
instance documents is captured in Figure 2-53.

Schema-aware XML. processors (like Apache’s Xerces ‘and the .Net System.XML
classes) use an instance document’s namespace to match against the corresponding namespace
of a schema. However, the XML Schema specification doesn’t mandate how the XML proces-
sor should locate that schema in the first place. Typically, an XML processor will be program~-
matically or administratively configured with the locations of any required schemas before
undertaking any processing. However, this can be restrictive in that the schemas ofall possible
instance documents must be known aheadoftimeif they are to be validated by the XML pro-
cessor.

While the XML Schemaspecification doesn’t provide a means of mandating the location
of a schema,it does provide a meansofhintingatits location by placing and xsi: schemaLo-
cation attribute into the instance document, as shown in Figure 2-54.

Booking, Exh. 1053, Page 65

Booking, Exh. 1053, Page 66

XML. Schema 59

XML Schema

Moreconcrete
Figure 2-53 Relationship between Types, Elements and Documents.

<ptr:iprinter xmins:ps"http: //printer.example.org"
xmins:xsi="*http: //www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http: //printer.example.org

file: /home/local /root/schemas/printer.xsd">
<!-- rest of schema omitted for brevity -->

Figure 2-54 Using the xsi :schemaLocation attribute to locate a schema.

The xsi:schemaLocation attribute specifies a set of space-delimited namespace-
location pairs indicating the location of schemas for particular namespaces. Upon finding the
xsi:schemaLocation attribute, the XML processor may (since it is only a hint) try to
obtain the specified schema from the suggested location. Of course, the processor may nottry to
obtain this information from the xsi: schemaLocation attribute, especially if it already has
the necessary document-schema mappings through other means.

XML SchemaBest Practices

We've now seen a great deal of XML Schema, and over time we have built up a set of
informal best practices based on the notion of defining inaportant global types andtheir interrela-
tions first and documentstructure later. However,it is useful to condense these details down to
their barest bones for quick reference:

1. Always use elementFormDefault="qualified" and attributeFormDe-
fault="unqualified" to ensure that elements are namespaced by default and
attributes are not.

2. Declare all types globally; declare elements (apart from the documentroot) locally.

Booking, Exh. 1053, Page 66

Booking, Exh. 1053, Page 67

Rn

60 Chapter 2 * XML Fundamentals

3. Use types to express content models, use elements to dictate the structure of docu-
menis,

4, Use the XML Schemafeatures that most closely match your object model. Do not map
the object model onto a different model in Schema just because it makes writing sche-
mas easier, ‘

These best practices are intended as guidelines, Over time you will develop your own
practices that more accurately match the kinds of solutions you are working on. However, the
fact remains that no matter whatstyle we ultimately develop for Web services projects, westill
need to use XML to move data around systems.

Processing XML
To round off this discussion on XML technology,it is worth taking a brief look at some of the
means of processing the XML documents and schemas that we have so far examined to see how
wetraverse from the XML levelto the application level. There are a numberof standard, cross-
platform tools available that perform much of the hard work involved in processing XML.In this
section we concentrate on three of the most prevalent KML processing technologies: SAX,
DOM,and XSLT. ,

The examples we have chosento illustrate the technologies are necessarily simple, In each
example we simply harvest the character information from a simple DVD document as shown
Figure 2-55,

With each XML processingtool, we take the KML shown in Figure 2-55 and presentit as
an XML fragmentsuch as:

<d:character xmlns:d="http://dvd.example.org'>
Qui Gon Jin

</d:character>

<d:character xmlns:d=“*http://dvd.example.org"™>
Queen Amidala

</d:character>

<d:character xmlns:d="http: //dvd.example.org">
Obi Wan Kenobi

</dicharacter>

<d:character xmlns:d="http: //dvd.example.org'">
Anakin Skywalker

</d:icharacter>

<d:character xmins:d="htto://dvd.example.org">
Senator Palpatine

</d:character>

which could then be used asthe basis for other processing.

Booking, Exh. 1053, Page 67

Booking, Exh. 1053, Page 68

Processing XML 61

<?xml version="1.0" encoding="uti-8"?>
<d:dvd xming:d="http://dvd.example.org" region="24>

<d:title>The Phantom Menace</d:title>
<d:year>2001</d:year>
<d: language>

<d:audio>English</d:audio>
<d:subtitle>Danish</d:subtitle>

<d:subtitle>Norwegian</d:subtitle>
<d:subtitle>Swedish</d:subtitle>
<d:subtitle>English</d:subtitle>

</d:language>
<d:iactors>

<diactor firstname="Liam" surnames "Neeson">

<d;character>Qui Gon Jin</d: character>
</d:actor>
<d:actor firstname="Natalie" surname="Portman">

<d:character>Queen Amidala</d:character>
</d:actor>
<d:actor firstname="Kwan" surname="MeGregor'">

<@:character>Obi Wan Kenobi</d:character>
</d:actor> :
<diactor firstname="Jake" surnames"Lloyd">

<dicharacter>aAnakin Skywalker</d:character>
</dsactor>
<d:actor fFirstname="Ian" surname="McDiarmid">

<d:character>Senator Palpatine</d:character>
</d:actor>

</d:actors>
<d:directors>

<d:director firstname="George" surname="Lucas">
<d: favorite-film

The Empire Strikes Back
</d:favorite-film>

</didirector>
</d:directors>
<d: barcode>5039036007375</d:barcode>

<d:iprice currency="sterling">19.99</d:price>
</d:dvd>

Figure 2-55 A complex XML document.

SAX: Simple API for XML

The SAX model is based on the notion of a fast, forward-only and low memory footprint

method of processing XML documents, To achieve these goals, the SAX parsers read through an
XML documentfiring events whenever they encountercertain interesting parts of the document
(in addition to having the ability to check documents against schemas). As it happens, those
parts which the SAX parser seeks are wide-ranging and consist of everything from finding the

Booking, Exh. 1053, Page 68

Booking, Exh. 1053, Page 69

etRtte

62 : Chapter 2 + XML Fundamentais

beginning of a document(andits end) through to catching the occurrence of every open and
close tag, and any textual data in betweenthose tags,

To work with SAX, the application code mustregister for events that it is specifically
interested in. For example, we might be particularly interested in extractinig the details of a DVD
from one of our dvd documents in order to store those details in some database,‘To achieve that,
we would needto register the features of the document that we are interested in with the SAX
parser. Then when the SAX parser parses the document, it will then inform us each time one of
those features is encountered and our application code can use thosesignals to build up its own
object model.

To use a SAX implementation within an application, as developers we must write code
that subscribes to SAX events and pieces togethera set of objects (or other structured data) from
the events that the parser generates. The burden on the developeris to create a document handler
capable of listening for the salient events being issued by the SAX parser and write a suitable
object model to encapsulate data exposed by the SAX events,

If the object model developed to deal with the SAX events is lightweight, the SAX-ori-
ented aspects of an application can be madelightning fast since SAX itself is also lightweight,
The downsideis, ofcourse, that the documenthandler might be non-trivial to develop, especially
for complex documents.

To illustrate, let’s write some code to harvest the character information from a @vd docn-
ment using the Java program shown in Figure 2-56. This is an undeniably long piece of code for
essentially stripping out a few elements. Its length is due to the fact that the SAX parser only
deals with creating events and not with the structured data associated with those events. In fact,
the overwhelming size of this document is pared down to handling the various events that the
SAX parser will issue as it parses a dvd document.

The startElement and endElement methodsare called by the SAX parser when an
element is entered or exited, respectively, and we use that event to determine whether we have
found a character element. If we haye found a character element, we simply set the
_characterFoundflag to true, whereas if we have not found a character elementorifwe
are leaving an elementaltogether, then the flag is set to false.

The characters(..) method is called by the SAX parser whenever character data is
encountered. If we are within a character element, ie., the _characterPound flag is true,
then we simply store the character data. All other character data is ignored, The main method
simply sets up the parser and parses the document before pretty-printing the resulting characters
to standard output.

Ona positive note, the SAX approach offers good performancesince wetailor the object
model exactly to our needs(in this caseit’s just a linked list of characters}. On a less positive
note, SAX can be a complex tool to implement with due to the large number of possible events
that we mighthave to write handlers for,

Booking, Exh. 1053, Page 69

Booking, Exh. 1053, Page 70

Processing XML . 63

import java.io.*;
import java.util.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXExample extends DefaultHandler
{

// Constants

private static final string _MY_DVD_NAMESPACEURI =
"http: //dvd.example,com";

private static final String _CHARACTER_ELEMENTNAME =
"character";

// Flag to remember if we are dealing with character
// data while parsing
private boolean _CtharacterFound = false;

// The data we're looking for in the document
private LinkedList _characters = new Linkedbist();

{ke :

* The method called when the start of a new element is
* found.
*/

public void startElement (String namespaceURI,
String localiName,
String qualifiedName,
Attributes attributes}

throws SAXException
{

// TE the element is called "character" and is in the
// namespace "http://dvd.example.com" we'va found one.

_characterFound =
namespaceURt. toLowerCase ()
-equals (_MYDVDNAMESPACEURI} &&
LocalName .toLowerCase (}
-equals (_CHARACTER_ELEMENT_NAME) ;

}

i**
* The method called when the end of an element is found.
*/ .

public void endElement (String namespaceURI,
String localName,
String qualifiedName)})

throws SAXException

_characterFound = false;

Figure 2-56 Creating a SAX-based application in Java.

Booking, Exh. 1053, Page 70

Booking, Exh. 1053, Page 71

64 Chapter 2 * XML Fundamentais

ee

’ * The method called when character data is found.*

public void characters(char[] ch, int start, int length)
throws SAXException

if (_characterFound)}

‘ _characters .add(new String(ch, start, length));
}

/ ae

* A convenience method to pretty-print the characters
* found.
*f

public StringWriter outputCharacters (}
{

StringWriter sw = new StringWriter();
for(int i = 0; i < _characters.size(); i++)
{ ,

sw.write ("<character xmins=\"" +
_MY_DVD_NAMESPACEURI + "\">");

sw.write((String} characters.get(i});
sw, write ({"</character>\n"});

}

return sw;
}

kk

" The starting point of the application.*

public static void main(String[] args) throws Exception
// Check to see that we have a single URI argument
Lif{args.length i= 1)

return;
}

SAXExample saxExample = new SAXExample(};
XMLReader parser = nuil;

// Create parser
try
{

parser = XMLReaderFactory.createXMLReader(

"org. apache .xerces.parsers.SAXParser");

Figure 2-56 Creating a SAX-based application in Java (continued).

Booking, Exh. 1053, Page 71

Booking, Exh. 1053, Page 72

Processing XML 65

// Tell the parser which object will handle
// SAX parsing events
parser .setContentHandler (saxExample};

}
catch (Exception ¢}
{

System.err.println("*Unable to create Xerces SAX
parser ~- check classpath");

}

try
{

// The URL that sources the DVD goes here
//(l.e. perform a GET on some remote Web server).
parser.parse(args[0});

// Dump the character information te screen.
System.out.printin (

saxExample.outputCharacters(}.toString({));
}
catch (Exception e)
{

é.printStackTrace (};
}

}

Figure 2-56 Creating a SAX-based application in Java (continued).

DOM: Document Object Model

DOM goes one step further than SAX and actually provides a simple tree-based object
model on top of the basic XML processing and schema validation capabilities, usually built on
top of an underlying SAX parser. When programming with a DOM parser, cur application code
interacts with an in-memory tree representation of the XML document. As such, DOM parsers
are usually more heavyweight processors than their SAX equivalents since inrespective of the
complexity or length of the XML document being processed, the same type of tree-based hierar-
chy is built.

Though this might not be the best data structure for any given application, the fact that
DOM provides a simple object model “out of the box”is enticing and because ofits simplicity,
DOM has gained popularity. Indeed, we would generaily only use SAX in preference to DOM
where we have stringent performance requirements that role out creating copies of documents
in-memory, or where the tree-like mode of DOM is entirely unsuitable for the actual characteris-
tics of the intended object model, Of course,it is possible to layer our own object model on top
of that provided by DOM, thus providing both a natural fit for our application and leveraging
DOM’s ease-of-use, However, when using DOM as the basis for our own object models, we

Booking, Exh. 1053, Page 72

Booking, Exh. 1053, Page 73

66

Chapter 2 + XML Fundamentals

should be aware that we are consuming memory twice.over—once for our own objects and once
for DOM.

Like SAX, the DOM API is well planned and steaightforward to understand. To show
some of features of DOM, weshall revisit the same DVD example that we previously tackled
with SAX andillustrate the differences between the two approachesvia the C# example shown
in Figure 2-57,

using System;
using System.xmi;

public class DOMExample
{

private string getXMLDocument (string url)
{

}

// Grab the dvd document from its source
System.Net.WebClient we = new System.Net.WebClient();
byte[] webData = wc. Downloadpata (url);

// Get the downloaded data into a form suitable for
// XML processing

char[{] charData = new char [webData.Length];
for(int i = 0; i < charData.Length; i++)
{

charData[i}] = (char)webData[{il];
}

string smlStr = new String(charData);

// Clean wp the document (first "<" and last ">" and’
// everything in between)
int start = xmlStr.Indexof("<", 6,

amistr.Length - 1};
int length = xmlStr.LastindexOf(">"} -— start + 1;

// Return only the XM, document parts
return xmlStr.Substring (start, length);

public static void Main(string[] args)
{

// Check to see that we have a single URI argument
if(args.Length != 1)
{

}
return;

Figure 2-57 Creating a DOM-Based application in C#.

Booking, Exh. 1053, Page 73

Booking, Exh. 1053, Page 74

tteRt

Processing XMi, 67

string url = args[0];
DOMExample domExample = new DOMBxample(};

System. Xml .XmlDocument xmlDoc =
new System.Xml.xXmibocument();

xmlDoc . Loadkm] {domExample.getXMLDocument furl) };

// Search DOM tree for a set of elements with
// particular name and namespace
XmlNodeList xmlNodeList =

xmlDoc .GetElementsByTagName ("character",
"http: //dvd_example.com");

for(int it = 0; i < xmlNodefist.count; i++}
{

// Dump the contents of the elements we've found
// to standard output.
Console.WriteLine (xmiNodeList,Item(i).QuterXm1};

}

}

Figure 2-57 Creating a DOM-Basedapplication in G# (continued).

The simple DOM-based application presented in Figure 2-57 is somewhat shorter than the
previous SAX-based application. This simplicity does not stem from a different programming
language or platform since (even platform zealots must agree) there is little difference between
Java and .Net for simple XML processing. The gain in simplicity stems from the DOM process-
ing model which automatically builds a data-structure to hold the contents of the XML docu-
ment, and provides a simple API for searching and manipulating structure.

In fact the overwhelming majority of this application is spent checking that we have a
clean XML document to deal with before we put it into our XML processing components. Since
we chose to deal with the results of our remote call as an array of bytes returned via HTTP, we
had to convert those bytes to characters and those charactersto string, and then ensurethatstring
did not contain any extraneous characters (such as the HTTP header information).

Once we are satisfied that we have our document in a clean form, we then submitit to the
‘Net DOM infrastructure. Internally, the infrastructure builds the DOM tree for us, and then to
extract the characterdata it is simply a matter of searching for the element name (character)
in the correct namespace (http: //dvd.example.com). This search results in a list of pos-
sible answers, which we then dumpto standard output.

While this is a suitable approachfora trivial example, this DOM-based method mightnot
scale well in production environments. We are paying the price for the ease of use we have
enjoyed in terms of memory and processing overhead, So while working with DOMis ulti-
mately easier than SAX programmatically,it is always helpful to think about performance met-
Tics and worth bearing in mind that SAX maybe a better choice for some problems.

Booking, Exh. 1053, Page 74

Booking, Exh. 1053, Page 75

6a Chapter 2 + XML Fundamentals

Extensible Stylesheet Transformation (XSLT) and XML
Path Language (XPATH)
XSL is the acronym the W3C has assigned to the “Extensible Stylesheet Language.” It

consists of a language for transforming XML documents (XSLT) and an expression language
used to access or reference parts of an XML document (XPath). It also refers to a formatting lan-
guage called XML Formatting Objects (or XML-FO), but when most people talk about XSL

whatthey are really talking about is XSLT and XPath.It is this subset of XSL technology that
we investigate in this section.

The idea behind XSLTis to provide a declarative, rule-based XML scripting language that
can be used to specify transformations on documents—thatis, to turn a documentfrom one form
into another based on some transformation rules. The benefit of this approach is that we can
apply commodity XML processing tools to the processing of XML itself—a recursive and
inventive way of bootstrapping XML with XML. XPath supports XSLT by allowing parts of
decuments undergoing transformations to be referenced. Interestingly enough, XPath is not an
XML-based syntax since its originators saw the value in being able to embed XPath expressions
inside URIs and other non-XML identifiers. The canonical use of XPath is shown in Figure 2-58

where a trivial example of XSLT (with similarly simple XPath expressions) is presented.

XPath 1.0 has become perhaps the most important of the XSL
technologies in the Web services arena and is now heavily used
in other technologies like BPEL (see Chapter 6).

The stylesheet presented in Figure 2-58 is straightforward—mainly because we haven’t

tried to do anything too ambitious-—-andit is far shorter than either the SAX or even DOM ver-
sions of the code. The opening line of the document introduces some namespaces and defines -
what the result of the transformation will be without the prefix d. The subsequent six declara-
tions tell the XSLT processor to de nothing with each of the elements that are named. For exam-
ple, when the XSLT engine encounters a year element as a child of a dvd element,it triggers
the execution of the matching template, which performs no processing. The end result of this
“empty” template is that no output appears for the given element.

The template matching the element expressed in XPath as /d:dvd/d:actors/
d:actor/d: character (ie., the character element under the actor element, con-
tained within the actors and dvd elements) does something slightly more ambitious. We cre-
ate a new element in our outputthat has the same nameas the current element we are examining

(character), which is achieved by assigning the result of the XSLT name () function to the
value held by the name attribute. We also give the newly created element a namespace (which,

again, we borrow from the element currently under scrutiny) by referencing its namespace dec-
laration (namespace-uri ()) and assigning that value to the default namespace attribute for
this element in our output.

Booking, Exh. 1053, Page 75

Booking, Exh. 1053, Page 76

rn

Processing XML 69

<xsl:stylesheet version="1.0"
amilns:ds"htep://dvd.example.com"

xmlns:xsl="http: //www.w3.org/1999/XS5L/Transform"
exclude-result~prefixes="d">

<!-- We are not creating a document, so remove the
document declaration -->

<xsi:output methed="smnl"* omit-xml-declaration="yes"/>

<!-- Do nothing with these elements -->
<xslitemplate match="d:dvd/d:title"/>

<xsl:template match="d:dvd/d:year" />
<xsl:template match="d:dvd/d: language" />
<xsl:template match="d:dvd/d:directors" />
<xsl:template match="d:dvd/d:barcode! />
<xsl:template match="d:dvd/d:price"/>
<l-~ Extract the value held by and character elements

encountered ~->

<xsl:template match=
"d:dvd/d:actors/d:actor/d:character">

<xglielement name="{name()}}*
namespace="{namespace—uri () } ">
<xsl:value-of select="."/>

</xsl:selement>

</xsl:template>
</xsL:istylesheet>

Figure 2-58 A simple XSLT stylesheet,

The value-of elementis then used in combination with the select=". " attribute to

select the value held within the current matching element—wherethe axis “.” is defined as “cur-
rent context” in XPath. The net result of applying this template is to place the character informa-
tion for each character encountered into the output from the XSLT engine and wrap that
character data inside an appropriately namespaced XML element.

Although the example here has been necessarily trivial (since our goals were similarly
trivial), XSLT is a powerful meansof transforming KML documents. However, even this basic
knowledge of what XSLT (and XPath) is and how it can be applied to XML documents will
Stand us in good stead as wefinally venture out into the Web services world.

Booking, Exh. 1053, Page 76

Booking, Exh. 1053, Page 77

70 Chapter 2 * XML Fundamentals

Summary
XML is the fundamental technology that underpins everything else in Web services. Of para-
mount importance to the XML suite of technologies is KML Schema, which provides a meta-
level description of XML content. XML Schemacan, in the simplest sense, be thoughtof as a
means of dictating the format and content of XML documents. However, XML Schema’s real
powerlies in the fact it can be used as a platform independent type description language, where
AMEdocuments are then used to transport data in accordance with those type descriptiors.

XML technology is already well supported in terms of standard tools. In particular, the XML
tools introduced here are widely available across platforms. While the specifics of using most
XML tools may vary from platform-to-platform, the models are consistent which means that any
experience with such tools is widely applicable,
The sum of these technologies means that XML is not only eminently expressive, but platform
independent in the way it is written and processed. As we shail see, this is indeed a rich base on

which to build interoperable systems. This is why Web services are based so heavily on XML.

Architect’s Note

* XML is the single fundamental technology in Web services on which everything else is
predicated. A good working knowledge ofit will help you in the long run—wheretools
and toolkits fall short, you will be able to jump into the breach,

* Everything in the Web services architecture is govermed by schemas. Every self-
respecting architect and developer should understand XML Schemas,at least to the
level presented here,

* XML Schemas are best used to describe type systems first and document layout
second,

« When using XML within your own applications, make it a natural part of development
to write schemas to accompany the documents, A good rule of thumb is: A documentis
useless without its schema.

« XML processing technologies ate a commodity—don’t reinvent the wheel unless you
specifically cannot achieve your goals with off-the-shelf components.

Booking, Exh. 1053, Page 77

Booking, Exh. 1053, Page 78

CHAPTER 3

SOAP and WSDL

eb services are software components that expose their functionality to the network, ToVVvroici that functionality, Web service consumers must be abie to bind to a service and
invoke its operations via its interface. To support this, we have two protocols that are the funda-
mental building blocks on which all else in the Web services arena is predicated: SOAP! and
WSDL2. SOAPis the protocol via which Web services communicate, while WSDLis the tech-
nology that enables services to publish their interfaces to the network, In this chapter we cover
both SOAP and WSDLin some depth and show bow they can be used together with rudimentary
tool support to form the basis of Web services-based applications.

The SOAP Model

Web services are an instance of the service-oriented architecture pattern that use SOAP as the
(logical) transport mechanism for moving messages between services described by WSDLinter-
faces. This is a conceptually simple architecture, as shown in Figure 3-1, where SOAP messages
are propagated via some underlying transport protocol between Webservices.

1, In this chapter, unless otherwise explicitly stated, all references to SOAP and the SOAP Specification
pertain to the SOAP 1.2 recommendation. .

2. In this chapter, unless otherwise explicitly stated, all references to WSDL and the WSDL specification
pertain to WSDL 1,1; see hitp://www.w3.org/TR/wsdl. The W3C’s WSDLeffort is less advanced than
the latest SOAP work, though where possible we highlight new techniques from the WSDL 1.2 work-
ing drafts.

Tt

Booking, Exh. 1053, Page 78

Booking, Exh. 1053, Page 79

f2 Chapter 3 * SOAP and WSDL

Web Service Web Service

_ WSDLInterface

SOAP Messages | a

__Wransport/(ransterProtocol(eg. HTTP,SMTP,MO)
Oe -TCPIIP: Stack. | oe

Figure 3-1 The logical Web services network.

A SOAP message is an KML document whose root elementis called the envelope. Within

the envelope, there are two child elements called the header and the body. Application payloads
are carried in the body, while the information held in the header blocks usually contains data

from the various Web services protocols that augment the basic SOAP infrastructure (and which
is the primary subjectof this book). The structure of a SOAP message is shown im Figure 3-2.

The SOAP message shown in Figure 3-2 provides the conceptual basis on which the whole
SOAP model is based. Application payload travels in the body of the message and additional
protocol messages travel in header blocks (which are optional, and may not be present if only
application data is being transported). This permits a separation of concerns at the SOAP pro-
cessing level between application-level messages and higher-level Web services protocols (e.g.,
transactions, security) whose payload travels in the SOAP headerspace.

The split between application and protocol data within SOAP messages allows the SOAP
processing model to be a little more sophisticated than was suggested by the simple architecture
shown in Figure 3-1. SOAP’s distributed processing model outlines the fundamentals of the Web
services architecture.It states (abstractly) how SOAP messages—including both the header and

body elements—are processed as they are transmitted between Web services. In SOAP terms,
wesee that an application is comprised of nodes that exchange messages, The nodes are free to
communicate in any manner they see fit, ncluding any message-exchange pattern from one-way
transmission through bilateral conversations. Furthermore,it is assumed in SOAP that messages
may pass through any numberof intermediate nodes between the sender andfinalrecipient.

More interestingly however, the SOAP specification proposes a number of roles to
describe the behavior of nodes under certain circumstances, which are shown in Figure 3-3. Asa
message progresses from node to node through a SOAP-based network,it encounters nodes that

play the correct role for that message. Inside message elements, we may find role declarations
that match these roles (or indeed other roles produced by third parties), and where we find a
node and message part that match, the node executes its logic against the message. For example,

Booking, Exh. 1053, Page 79

Booking, Exh. 1053, Page 80

The SOAP Model wa

~SOAP Envelope

_.__SOAPHeader”.

Figure 3-2 The structure of a SOAP message.

 WebSeivice. ~
 utimateRecelver. Sender

Figure 3-3 SOAP noderoles.

where a node receives a message that specifies a role ofnext (and every node except the sender
is always implicitly next), the node must perform the processing expected of that role or fault.
In Figure 3-3, we see that the nodes labeled “intermediate”all play the role next, The Web ser-
vice that finally consumesthe message plays the role ult imateReceiver, and so each pro-
cesses only the parts of the SOAP message whichare (either implicitly or explicitly) marked as
being for thatrole.

Booking, Exh. 1053, Page 80

Booking, Exh. 1053, Page 81

74 Chapter 3 + SOAP and WSDL

The processing model shown in Figure 3-3 is supported in software by SOAP servers. A
SOAP serveris a piece of middleware that mediates between SOAP traffic and application com-
ponents, dealing with the message and processing model of the SOAP specification on a Web
service’s behalf. Therefore, to build Web services, it is important to understand how a SOAP

server implements the SOAP model.
While it is impossible to cover every SOAP server platform here, we will examine the

architecture of a generalized SOAP server (whose characteristics are actually derived from pop-
ular implementations such as Apache Axis and Microsoft ASP.Net} so that we have a menial
model onto which we can hang various aspects of SOAP processing. An idealized view of a
SOAP server is presented in Figure 3-4. This shows a generic SOAP server architecture.
Inbound messages arrive via the physical network and are translated from the network protocol
into the textual SOAP message. This SOAP message passes up the SOAP request stack where
information stored in SOAP headers (typically context information for other Web services proto-
cols like security, transactions and so forth) are processed by handlers that have been registered
with the Web service. Such handlers are considered to be intermediate nodes in SOAP terms.

<env:body ...

<enviheader .. b) “y <envcheader...

wef 2 aa teh wa

:-} Senwheader... z 2} <enviheader..,

wae S| fs = wl

<env:envelopa <envienvelope
senv:header ... <enviheader...
wil a
<env:body... <envibody..,
sl ail

“Ep lenvienvelopa>—||</envienvelope>

Network

Figure 3-4 The architecture of a generalized SOAP server.

Booking, Exh. 1053, Page 81

Booking, Exh. 1053, Page 82

soap 75

The handlers that operate on the headers are not generally part
of the SOAPserver by default, but are usually third-party compo-
nents registered with the server to augmentits capabilities. This
means that SOAP servers are themselves extensible and can be

upgraded to include additional protocol support overtheir lifetime
as Web services’ needs evolve,

At somelater point, provided the header processing has not caused the service invocation
to fail, the application payload of the message (carried in the SOAP body) reaches a dispatch
mechanism whereit causes some computation to occur within the back-end service implementa-
tion. The application logic then performs some computation before returning data to the dis-
patcher, which then propagates a SOAP message back down the SOAP responsestack, Like the
requeststack, the response stack may have handlers registered with it which operate on the out-
going message, inserting headers into messages as they flow outward to be consumed by other
Web services. Again, these handiers are considered to be nodes in SOAPterms.

Eventually, the outgoing message reaches the network level whereit is marshaled into the
appropriate network protocol and duly passes on to other SOAP nodes on the network, to be
consurned by other SOAP nodes.

SOAP

Having understood the SOAP model and seen how this model is supported by SOAPservers, we
can now begin to discuss the details of SOAPitself. SOAP is the oldest, most mature, and the
single most important protocol in the Web services world. The SOAP specification defines this
protocol as “[an] XML-based protocol that consists of three parts: an envelope that defines a
framework for describing whatis in a message and howto processit, a set of encoding rules for
expressing instances of application-defined datatypes, and a convention for representing remote
procedure calls and responses.”3

In its earlier incarnations, the acronym SOAP used to stand for
“Simple Object Access Protocol," though that meaning has ceased
fo exist in the SOAP 1.2 specification. This is undoubtedly a good
thing since SOAP isn’t especially simpie, its not exclusively
designed for object access and it is more a packaging mechanism
than a protocol per se.

In the following sections, we examine SOAP in some depth-—-from its basic use pattern
and XML documentstructure, encoding schemes, RPC convention, binding SOAP messages,
transport protocols, to using it as the basis for Web services communication.

3, ttp-/Awww.w3.org/TR/SOAP/

Booking, Exh. 1053, Page 82

Booking, Exh. 1053, Page 83

76 Chapter 3 » SOAP and WSDL

SOAP Messages
We have already seen the overall structure of a SOAP message, as defined by the SOAP Enve-
lope, in Figure 3-4. All SOAP messages, no matter how lengthy or complex, ultimately con-
form to this structure. The only caveat is there must be at least one body block within the SOAP
body element in a message and there does not necessarily have to be a SOAP header or any
SOAP header blocks. There is no upper limit on the numberof header or body blocks, however.
A sample SOAP message is presented here in Figure 3-5:

<?xml version="1.0" encoding="UTF-§" ?>
<eanv: Envelope

xmins:env="http: //www.w3.org/2002/06/soap-envelope" >
<env : Header>

<tx:transaction-id

xmins:tx="http: //transaction.example.org"
env: encodingStyle="http: //transaction.example.org/enc"

envy: role=

"http: //www.w3.org/2002/06/soap-envelope/role/ultimateReceiver"
env: mustUnderstand="true">

decd7 461-4ef2138d-7b52e370-fed8a006-calzeai?
</tx:transaction-id>

</envy:Header>
<env:Body xmins:bank="http: //bank.exampla.org">

<bank:credit-account env:encodingStyle=
"http: //www.w3.org/2002/66/soap-encoding">

<bank: account>12345678</bank:account>
<bank: sort>10-11-12</bank: sort>
<bankramount currency="usd">123 .45</bank:amount>

</bank: credit-account>
<bank: debit-account>

<bank: account>87654321</bank:account>
<bank: sort>12-11-10</bank:sort>
<bank:amount currency="usd">123.45</bank:amount>

</bank: debit-account>
</env: Body>

</fenv:rEnveLlope>

Figure 3-5 A simple SOAP message.

The structure of all SOAP messages Gncluding that shown in Figure 3-5) maps directly
onto the abstract model shown in Figure 3-2. Figure 3-5 contains a typical SOAP message with a
single header biock (which presumably has something to do with managing transactional integ-
rity), and a body containing two elements (which presumably instructs the recipient of the mes-
sage to perform an operation on two bank accounts). Both the Header and Body elements are
contained within the outer Envelope element, which acts solely as a container. ,

Booking, Exh. 1053, Page 83

Booking, Exh. 1053, Page 84

SOAP Messages v7

SOAP Envelope

The SOAP Envelopeis the container structure for the SOAP message and is associated
with the namespace http: / /www.w3-org/2002/06/soap-envelope. An example is
shown in Figure 3-6 where the namespaceis associated with the prefix env:

<?xml version="1.0" encoding="UTF~8"?>
<anv: Envelope

milns:env="http: //www.w3 .org/2002/06/soap-envelope™ >
<!+- Optional header blocks -->
<eny :Header>

</env:Header>
<!+- Single mandatory body element -->
<env: Body xmins:bank="http: //bank.example.org">

</feny: Body>
<fenviEnvelope>

Figure 3-6 The SOAP envelope element.

The Envelope contains up to two child elements, the Header and the Body (where the

Body element is mandatory), Aside from acting as a parent to the Header and the Bodyele-
ments, the Envelope may alse hold namespace declarations that are used within the message.

SOAP Header

The Header element provides a mechanism for extending the content of a SOAP mes-
sage with out-of-band information designed to assist {in some arbitrary and extensible way) the
passage of the application content in the Body section content through a Web services-based
application. ,

The SOAP header space is where much of the value in Web ser-
vices resides, since it is here that aspects like security, transac-
tions, routing, and so on are expressed. Every Web services
standard has staked its claim on some part of the SOAP header
territory, but in a mutually compatible way. The fact that SOAP
headers are extensible enough fo support such. diverse stan-
dards is a major win, since it supports flexible protocol composi-
tion tailored to suit specific application domains.

Booking, Exh. 1053, Page 84

Booking, Exh. 1053, Page 85

78 Chapter 3 * SOAP and WSDL

A SOAP header has the local name Header associated with the http: //
www.w3.org/2002/06/soap-envelope namespace. It may also contain any number of
namespace qualified attributes and any number of child elements, known as header blocks. In
the absence of any such header blocks, the Header elementitself may be omitted from the
Envelope. A sample header block is shown in Figure 3-7.

<?xml version="1.0" encoding="UTF-8"?>
<env: Envelope

mmins:env="http: //www.w3.org/2002/06/soap-envelope" >
<I-- Optional header blocks ~+«>
<eny:Header>

<tu:transaction-id

amins:tx="http://transaction.example.org®"
env: encodingStyle="http: //transaction.example.org/enc"

env: roles

"http: //www.w3 .org/2002/06/soap-envelope/role/ultimateReceiver"
envy:mustUnderstand="true">

decd7461~4e£2138d-7b52e370-fed8a006-ca7eal7
</tx:itransaction-id>

</anv:Header>

<!-- Single mandatory body element -->
<env:Body xmlns:bank="http://bank.example.org">

</eny :Body>
</env:Envelope>

Figure 3-7 A SOAP header element.

If present, cach header block must be namespace qualified (according to the rules set out
in the SOAP schema), may specify how it has been encoded (i.e., which schema constrains it)
through the encodingStyleattribute, may specify its consumer through the role attribute,
and may demand that it is understood by SOAP infrastructure that encounters its message
through the mustUnderstandattribute. The SOAP specification stipulates thatit is illegal for
the role and maustUnderstand attributes to appear anywhere other than in header block

| declarations.

The sender of a SOAP message should not place them anywhere else, and a receiver of
such a malformed message must ignore theseattributes if they are out of place. These attributes
are of fundamental importance to SOAP processing (and thus Web services) and warrant further
discussion, The vehicle for this discussion is the example SOAP message shown in Figure 3-5
where we see a header block called transaction-id that provides the necessary out-of-
band information for the application payload to be processed within a transaction (using a hypo-
thetical transaction processing protocol).

Booking, Exh. 1053, Page 85

Booking, Exh. 1053, Page 86

SOAP Messages 73

The role Attribute

The role attribute controls the targeting of header blocks to particular SOAP nodes
(where a SOAP node is an entity that is SOAP-aware). The role attribute contains a URI that
identifies the role being played by the intended recipient of its header block. The SOAP node

receiving the message containing the header block must check through the headers to see if any
of the declared roles are applicable. if there are any matches, the header blocks must be pro-
cessed or appropriate faults generated.

' Although any URI is valid as a role for a SOAP node to assume, the SOAP specification
provides three commonroles thatfit into the canonical SOAP processing model as part of the
standard:

*http: //www.w3.org/2002/06/scoap-enveliope/role/none: No SOAP

processor should attempt to process this header block, although other header blocks may
reference it and its contents, allowing data to be shared between header blocks (and thus
save bandwidth in transmission).

*http: //www.w3.org/2002/06/soap-envelope/roie/next: Every node
must be willing to assumethis role since it dictates that header block content is meant for

the next SOAP node in the message chain. If a node knows in advance that a subsequent
node does not need a header block marked with the “next” role, then it is at liberty to
remove that block from the header.

* http: //www.w3.org/2002/06/soap-envelope/role/ultimateReceiver:

The ultimate receiver is the final node in the message chain. Header blocks referencing
this roleattribute (or equivalently referencing no role attribute) should be delivered
to this last node, It always implicitly plays the rele of “next” given that the last node
always comes after some other node—even in the simplest case where the last node
comes immediately after the initiator.

Figure 3-8 highlights the role attribute from our example SOAP message in Figure 3-5:

<env:Header>
<tx:transgaction-id

xmins:txs"http://transaction.example,org"
env encodingStyle="http: //transaction.example.org/enc"

env: role=

"http: //www.w3.org/2002/06/soap-envelope/rele/ultimateReceiver"
env: mustUnderstand="true">

decd7461-46£2138d-7b52e370-fed8a006-ca7eal7
</tx:transaction~id>

</env:Header>

Figure 3-8 The role attribute,

Booking, Exh. 1053, Page 86

Booking, Exh. 1053, Page 87

-80 Chapter 3 ¢ SOAP and WSDL

The role atiribute in Figure 3-8 has the value http: / /www.w3.org/2002/06/
soap-envelope/role/ultimateReceiver, which means the contents of the header

block are intended for the final SOAP processing nodein this interaction (Le., the recipient Web
service). According to the SOAP processing model, this Web service must be capable of pro-
cessing the application payload (in the SOAP body)in accordance with the transaction process-
ing specification in the header block.

The mustUnderstand Attribute

if the mustUnderstandattribute is set to true, it implies that any SOAP infrastructure
that receives the message containing that header block must be able to process it correctly or
issue an appropriate fault message. Those header blocks that coniain the mustUnder-

stand="true"attribute are known as mandatory header blocks since they must be processed
by any nodes playing the matching roles. Header blocks missing their mastUnderstand
attribute should still be examined by nodes that play the appropriate role. If a failure to act on a
role occurs, it is not deemed to be critical and further processing may occur since by missing the
mustUnderstand attribute they are not considered mandatory, as shown in Figure 3-9,

<env: Header>
<tx:transaction-id

xmlns:tx=“http://transaction.example. org"
env: encodingStyle="http://transaction.example.org/enc"

env:role="http://www.w3,.org/2002/06/soap-envelope/role/
ultimateReceiver"

env:mustUnderstand="true">
decd?7461-4ef213 8d-7b52e370-fed8a006-caveal7

</tx:transaction-id>
</env:Header>

Figure 3-9 The mustUnderstandattribute.

The SOAP specification states that SOAP senders should not
generate, but SOAP receivers must accept the SOAP mus-—
CUnderstandattribute inforrnation item with a vatue of "false" or

"OQ", That is, a SOAP message should contain theliteral values
“true” and “false” in mustUnderstanéattributes, not the charac-
ters “1” and “O”.

In our example shown in Figure 3-9, the mustUnderstandattribute is set to true
becauseit is imperative that the processing node must perform the account debit-credit within a
transaction, If it cannot support transactional processing, then we would preferthat it leaves the
accounts well alone—particularly if it is our money being transferred.

Booking, Exh. 1053, Page 87

Booking, Exh. 1053, Page 88

SOAP Messages 81

The encodingStyle Attribute

The encodingStyle attribute is used to declare how the contents of a header block

were created. Knowing this information allows a recipient of the header to decode the informa-
tion it contains. SOAP allows many encoding schemes and provides one of its own as an

optional part of the spec. However, we will not dwell on such matters since this attribute is used
not only in header blocks but in the body as well, and is covered in much more depth later in this
chapter.

SOAP Body

In contrast to the intricacies of the SOAP header space, the body section of a SOAP enve-
lope is straightforward, being simply a container for XML application payload. In fact the SOAP
specification states “[T]his specification mandates no particular structure or interpretation of
these elements, and provides no standard means for specifying the processing to be done.” In our
example in Figure 3-5, the application content housed by the SOAP Body consists of twoele-
ments that are interpreted as commands to debit and credit 4 bank account, which collectively
amount to a funds transfer. The only constraints the SOAP specification places on the SOAP
body are that it is implicitly targeted at the ultimateRecipient of the application content
and that the ultimate recipient nust understand its contents.

SOAP Faults

By contrast to its standard role as the simple carrier of application payload, the SOAP
Bodyalso acts in a far more interesting way as the conduit for propagating exceptions between
the parties in a Web services application. The SOAP Fault is a reserved element predefined by
the SOAPspecification whose purpose is to provide an extensible mechanism for transporting
structured and unstructured information about problems that have arisen during the processing
of SOAP messages or subsequent application execution. Since the fault mechanism is predefined
by the SOAP specification, SOAP toolkits are able to use this mechanism as a standard mecha-

nism for distributed exception handling,
The SOAP Fault element belongs to the same namespace as the SOAP Envelope and

contains two mandatory child elements: Code and Reason, and three optional elements:
Node, Role, and Detail. An example of a SOAP Fault is shown in Figure 3-10 below, The

fault is generated in response to the message shown in Figure 3-5 where the message conveyed
information on a bank account cash transfer. To understand precisely what has caused the fault,
we must understand each of the elements of which it is composed.

The first child element of the Fault is the Code element, which contains two subele-

ments: a mandatory element called Value and an optional element calied Subcode. The
Value element can contain any of a small number of fault codes as qualified names (some-

Booking, Exh. 1053, Page 88

Booking, Exh. 1053, Page 89

aeS

82 Chapter 3 + SOAP and WSDL

<?xml version="1.0" ?>

<env: Envelope
xmlns:env=“http: //www.w3 .org/2002/06/soap-envelope"
xmlns:bank="http://bank. example.org">

<env : Body>
<env: Fault>

<env:Coda>

<env: Value>env:Recelver</env:Value>
<env: Subcode>

<env: Value>bank: bad-account</env:Valua>
</env: Subcode>

</env:Code>

<env:Reason lang="en-UK">
The specified account does exist at this branch

</env:Reason>
<anv:Detail>

<err:myfaultdetails
xmlns:err= “http: //bank.example. org/fault">

<err:invalid-account-sortcode>
<bank: sortcode>

10-11-12
</bank:sortcode>
<bank:account>

12345678
</bank:account>

</ferr:invalid-account-sortcode >
</err:myfaultdetails>

</fenv:Detail>
<fenv:Fault>

</env:Body>
</env: Envelope>

Figure 3-10 An example SOAPfault.

times abbreviated to QName) from the http: //www.w3.org/2002/06/soap-enve-
lope namespace, as per Figure 3-11, where each QNameidentifies a reason why the fault was
generated.

In Figure 3-10 the contents of the env: Valueelement is env: Receiver (shown in
Figure 3-12), which tells us that it was the SOAP node at the end of the message path (the
receiver) that generated the fault and not an intermediate node dealing with the transaction
headerblock. ,

As shown in Figure 3-13, the Subcode element contains a Value elementthat gives
application-specific information on the fault through the qualified name bank:bad-
account. This QName has significance only within the scope of the application that issuedit,
and as such the Subcode mechanism provides the means for propagating finely targeted appli-
cation-level exception messages.

Booking, Exh. 1053, Page 89

Booking, Exh. 1053, Page 90

83

SOAP Messages

Fault Code Description

VersionMismatch Occurs when SOAP infrastructure has detected mutually
incompatible implementations based on different versions
of the SOAP specification.

MustUnderstand Issued in the case where a SOAP node has received a

DataEncodingtinknown

Sender

Receiver

Figure 3-11 SOAPfault codes.

<env:Fault>
<env:Code>

header block has with its muastUnderstandattribute

set to true, but does not have the capability to correctly
process that header block — thatis, it does not understand
the protocol with which that header block is associated.

Arises when the content of either a header or body block
is encoded according to a schemathat the SOAP node
reporting the fault does not understand.

Occurs when the sender propagated a malformed
message, including messages with insufficient data to
enable the recipient to process it. It is an indication that
the message is not to be resent without change.

Generated when the recipient of the SOAP message could
not process the message content because of some
application failure. Assuming the failure is transient,
resending the message later may successfully invoke
processing.

<env: Value>env: Receiver</env:Value>

Figure 3-12 Identifying the faulting SOAP node.

<env : Subcode>
<env:Value>bank:bad-account</env:Valua>

</env: Subcode>

Figure 3-13 Application-specific fault information.

Booking, Exh. 1053, Page 90

Booking, Exh. 1053, Page 91

84 Chapter 3 + SOAP and WSDL

Thoughit isn’t used in this fault, the Subcode element also makes the SOAP fault mech-

anism extensible, Like the Code element, the Subcode elementalso contains a mandatory
Value child element and an optional Subcode element, which may contain further nested
Subcode elements. The Value element of any Subcode contains a qualified name that con-
sists of a prefix and a local namethat references a particular QName within the application-level
XML messageset. ,

The Reason elementassociated with a Codeis used to provide a human readable expla-
nation of the fault, which in Figure 3-10 tells us that “The specified account does
mot exist at this branch”, SOAPtoolkits often use the contents of the Reason ele-
ment when throwing exceptions or logging failures to make debugging easier. However, the
Reason elementis strictly meant for human consumption andit is considered bad practice to
use its content for further processing.

The optional Node elementprovides information on which node in the SOAP message’s path
caused the fault. The content of the Node elementis simply the URI of the node where the problem
arose. In Figure 3-10 we do net have a Node element becauseit is the ultimate recipient of the mes-
sage that caused the fault, and clearly the sender of the message already knows the URI ofthe recip-
ient. Howeverif, for example, an intermediate node dealing with the transactional aspects of the
transfer failed, then we would expectthat theNode element would be used to inform usoftheinter-
mediary’s failure (and as we shall see, we would not expect a Det.ail element).

The Node element is complemented by the also optional Role element that provides
information pertaining to what the failing node was doing at the point at which it failed. The
Role elementcarries a URI that identifies the operation (usually some Web services standard)
and that the party resolving the fault can use to determine what part of the application went
wrong. Thus, the combination of Node and Role provides valuable feedback oni exactly what
went wrong and where.

The SOAP Detail element, as recapped in Figure 3-14, provides in-depth feedback on
the fault if that fault was caused as a by-product of processing the SOAP Body.

<eny:Detail>

<err:myfaultdetails

xmlns:err= "http://bank.example.org/fauit">
<err:invalid-account-sortcode>

<bank: sortcode>
10-113+12

</bank: sortcode>
<bank:account>

42345678
</bank:account>

</err:invalid-account-sortcode >
<ferr:myfaultdetails>

</env:Detail>

Figure 3-14 Fault detail in an application-specific form.

Booking, Exh. 1053, Page 91

Booking, Exh. 1053, Page 92

SOAP Encoding 85

The presence of the Detail element provides information on faults arising from the
application payload {i.e., the Body elementhad beenatleast partially processed by the ultimate
recipient), whereas its absence indicates that the fault arose because of out-of-band information
carried in header blocks. Thus we would expectthat if a Detail block is present, as itis in Fig-
ure 3-10 and Figure 3-11, the Node and Role elements will be absent and vice versa,

The contents of the Detail element are known as detail entries and are application-spe-
cific and consist of any numberofchild elements. In Fault detail in an application-specific form.
we see the invalid-account-sortecode element which describes the fault is some appli-

cation specific fashion.

SOAPEncoding
The encodingSty1e attribute appears in both header blocks and the body elementof a SOAP
message. As its name suggests, the attribute conveys information about how the contents of a

particular element are encoded. Atfirst this might seem a little odd since the SOAP messageis
expressed in XML. However, the SOAP specification is distinctly hands-off in specifying how
header and body elements (aside from the SOAP Fault element) are composed, and defines
only the overall structure of the message. Furthermore, XML is expressive and dees not con-
strain the form of documenta great deal and, therefore, we could imagine a numberof different
and mutually uninteroperable ways of encoding the same data, for example:
<account>

<baiance>

123.45

</balance>

</account>

and<account balance="123.45"/>

might both be informally interpreted in the same way by a human reader but would not be con-
sidered equivalent by XML processing software. Ironically, this is one of the downfalls of
XML-—it is so expressive that, given the chance, we would all express ourselves in completely
different ways. To solve this problem, the encodingStyleattribute allows the form of the
content to be constrained according to some schema shared between the sender and recipient.

One potential drawback is that senders and receivers ofmessages may not share sche-
mas—indeed the senders and receivers may be applications that do not deal with XML at all—

and thus the best intentions of a SOAP-based architecture may be laid to waste. To avoid such

problems, the SOAP specification has its own schema and rules for converting application-level
data into a form suitable for embedding into SOAP messages. This is known as SOAP Encoding,
and is associated with the namespace env: encodingStyle=“http: //www.w3.org/
2002/06/soap-encoding".

Booking, Exh. 1053, Page 92

Booking, Exh. 1053, Page 93

in

a6 Chapter 3 * SOAP and WSDL

The rules for encoding application data as SOAP messages are captured in the SOAP spec-
ification as the SOAP Data Model. Thisis a straightforward and concise part of the specification
that describes how to reduce data structures to a directed, labeled graph. While it is outside of
the scope ofthis book to detail the SOAP Data Model, the general technique is shown in Figure
3-15. This SOAP encoding example, highlights the fact that there are two aspects to the encod-
ing. Thefirst of these is to transform a data structure from an application into a form suitable for
expressing in XML via the rules specified in the SOAP Data Model. The other aspect is to
ensure thatall the data in the subsequent XML documentis properly constrained by the SOAP
schema.It is worth noting that SOAP provides low entry point through SOAP encoding since a
SOAP toolkit will support the serialization and deserialization of arbitrary graphs of objects via
this model, with minimal effort required of the developer. In fact, coupled with the fact that
SOAP has a packaging mechanism for managing message content, and a means (though SOAP
encoding) ofeasily creating message content weare close to having an XML-based Remote Pro-
cedure Call mechanism.

SOAP Encoded Payload

 <soap:Body>
<nsliobj .>

 </soap:Body>

 SOAPSchema

SOAP Scherma

 <xsd:ischema ..>

</xsdischema>
Figure 3-15 SOAP encoding application-level objects.

Booking, Exh. 1053, Page 93

Booking, Exh. 1053, Page 94

SOAP RPC 87

SOAP RPC

As it happens, the SOAP specification is useful straight “out of the box.” Thefact that it provides
both a message format and marshalling naturally supports RPC, and indeed millions of develop-
ers worldwide will by now have seen how easy it is to nm SOAP RPC-based Web services on a

myriad of platforms. It’s probably net the case that SOAP RPC will be the dominant paradigm
for SOAPin the long term, butit is easy to achieve resulis with SOAP RPC quickly because all

the major toolkits support it and RPC is a pattern many developers are familiar with.

Note that although SOAP RPC has enjoyed some prominencein
older Web services toolkits, there is a majority consensus of
opinion in the Web services community that more coarse-
grained, document-oriented interactions should be the norm
when using SOAP,

SOAP RPC provides toolkits with a convention for packaging SOAP-encoded messages
so they can be easily mapped onto procedurecalls in programming languages. To illustrate,let’s
return to our banking scenario and see how SOAP RPC might be used to expose account man-

agement facilities to users. Bear in mind throughoutthis simple example that it is an utterly inse-
cure instance whose purpose is to demonstrate SOAP RPC only.

Figure 3-16 shows a simple interaction between a Web service thatoffers the facility to
open bank accounts and a client that consumes this functionality on behalf of a user. The Web
service supports an operation called openAccount{...) which it exposes through a SOAP
server and advertises as being accessible via SOAP RPC (SOAP doesnot itself provide a means
of describing interfaces, but as we shall see later in the chapter, WSDL does). The client inter-

Cent es Be .RPC- Reg DEUS ney Barking h Application c= Response | Web Service

// Client implementation // Service implementation
Bank b = new Bank(}); Glass Bank
String account = {
b. openAccout (title, public String openAccout (title,

surname, ; surname,
firstname, firstname,
postcode, postcode,
telephone} ; telephone}

ff Some account processing
return accoutNumber;

}
}

Figure 3-16 interacting with a banking service via SOAP RPC.

Booking, Exh. 1053, Page 94

Booking, Exh. 1053, Page 95

rtge

BB Chapter 3 * SOAP and WSDL

acts with this service through a stub or proxy class called Bank which is toolkit-generated
{though masochists are free to generate their own stubs) and deals with the marshalling and un-
marshalling of local variables into SOAP RPC messages.

In this simple use case, the SOAP on the wire between the client and Web service is simi-

larly straightforward. Figure 3-17 shows the SOAP RPC request sent from the client to the Web
service:

<?xml version="1.0" encoding="UTF-8"?>
<env: Envelope

xmins:env="http: //www.w3.org/2002/06/soap-envelope">
<env: Body>

<bank:openAccount env:encodingStyle=
"http: //www.w3 .org/2002/06/soap-encoding"
xmins:bank="http: //bank.example.org/account"
xmlns:xs="http: //www.w3.org/2001/XMLSchema”
xmlns:xsi="http: //www.w3.org/2001/XMLSchema—instance’>

sbank: title xsi: type="xs:string">
Mr

</bank:title>

<bank: surname xsi:type="xe:string">
Bond

</bank: surname>

<bank: firstname xsi:type="xs:string">
James

</bank: firstname>

<bank: postcode xsi:type="xs:string'>
Sl 3AzZ

</bank:postcode>
<bank:telephone xsi:type="xs:string">

09876 123456

</bank: telephone>
</bank: openAccount>

<f/env: Body>
<fenv: Envelope>

Figure 3-17 A SOAP RPC request.

There is nothing particularly surprising about the RPC request presented in Figure 3-17.
Asper the RPC specification, the contentis held entirely within the SOAP body (SOAP RPC
does not preclude the use of header blocks, but they are unnecessary forthis example), and the
nameof the element (openAccount) matches the name ofthe method to be called on the Web
service. The contents of the bank: openAccount correspond to the parameters of the open-
Account method shown in Figure 3-16, with the addition of the xsi: type attribute to help
recipients of the message to convert the contents of each parameter elementto the correct kind
of variable in specific programming languages. The response to the original request follows a
slightly moreintricate set of rules and conventions as shown in Figure 3-18.

Booking, Exh. 1053, Page 95

Booking, Exh. 1053, Page 96

SOAP RPC 89

<?xml version="1.0" encoding="UPF-8" ?>
<env: Envelope

xmins:env="http: //www.w3.org/2002/06/soap-envelope">
<env : Body>

<bank:openAccountResponse env:encodingStyle=
"http: //www.w3 .org/2002/06/soap~enceding" xmlns:rpc=
"http: //www.w3.org/2002/06/soeap-rpc" xmins:bank=
"http: //bank.example.org/account* xmilns:xs=
"http: //www.w3.org/Z001/XMLSchema" xmlns:xsix
"http: //www.w3.org/2001/XMLSchema-instance'">

<rpc:result>bank: accountNo</rpc:result>
<bank:accountNo xsi:type="xsd:int">

10000014
</bank: accountNo>

</bank : openAccountResponse>
</env: Body>

<fenv:Envelope>

Figure 3-18 A SOAP RPC response.

The SOAP RPC response is slightly more complex and interesting than the request, and
there are two noteworthy aspects of the SOAP RPC response. Thefirst is that by convention the
name of the response elementis the same as the request element with Response appended (and
toolkits make use of this convention so it’s practically standard now).

‘The second interesting aspect is that the response is capable of matching the procedure
call semantics of many languages since it supports in, out, and in/out parameters as well as
return values where an “in” parameter sources a variable to the procedure call; an “out” parame-
ter sources nothing to the procedure but is populated with data at the end of the procedurecall.
An “in/out” parameter does both, while a return value is similar to an out parameter with the
exceptionthat its data may be ignored bythe caller.

In this example, we havefive “in” parameters (title, surname, first name, post code, and
telephone number) which we saw in the SOAP request and expect a single return vaiue (account
number) which we see in the SOAP response. The return value is also interesting because, due to
its importance in most programming languages, it is separated from out and in/out parameters by
the addition of the rpc:result element that contains a QName that references the element
which holds the return value. Other elements which are not referenced are simply treated as out
or in/out parameters. This behavioris different from previous versions of SOAP where the return
value was distinguished by being first among the child elements of the response. This wasrecti-
fied for SOAP 1.2 becauseofthe inevitable ambiguity that such a contrivance incurs—what hap-
peus when there is no return value?

Of course in a textbook example like this, everything has worked correctly and no prob-
lems were encountered, Indeed, you would be hard pressed to find a reader who would enjoy a

book where the examples were a set of abject failures. However, like paying taxes and dying,
computing systems failures seem inevitable. To cover those cases where things go wrong, SOAP

Booking, Exh. 1053, Page 96

Booking, Exh. 1053, Page 97

teteey

90 Chapter 3 * SOAP and WSDL

RPC takes advantage of the SOAP fault mechanism with a set of additional fault codes (whose
namespace is http: //www.w3. org/2002/06/scap-rpc), which are used in preference
to the standard SOAP fault codes in RPC-based messages shown in Figure 3-19, in decreasing
order of precedence.

Fault SOAP Encoding for Fault

‘Transient fault at receiver (e.g. Fault with value of env:Receiver should be
out of memory error). generated.
Receiver does not understand —-_ A fault with a Value of

data encoding(e.g, encoding env: DataEncodingUnknown for Code
mechanism substantially should be generated.
different at sender and

receiver)

The service being invoked does A fault with a Value of env: Senderfor
not expose a method matching code anda Value of
the name of the RPC element. rpc: ProcedureNotPresent for Subcode

may be generated.

The receiver cannot parse the —A fault with a Value of env: Senderfor
arguments sent. There may be Code and a Value of rp¢ : BadArgquments
foo many or too few for Subcode must be generated,
arguments, or there may be
type mismatches.age

Figure 3-19 SOAP RPCfauits.

Finally, in Figure 3-20 we see a SOAP RPC faultin action where a poorly constructed cli-
ent application has tried to invoke an operation on the bank Web service, but has populated its
request message with nonsense.In this figure, the bank Web service responds with a SOAP RPC
fault that identifies the faulting actor (the sender) as part of the Code element. It alsa describes
whatthe faulting actor did wrong(sent bad arguments) by specified theName rpc: BadAr—
guments as part of the subccede element. It also contains some human-readable information
to aid debugging (missing surname parameter), in the Reason element.

Booking, Exh. 1053, Page 97

Booking, Exh. 1053, Page 98

reerreirtetetrteneroerHAREneemnnnatmtttteuiintumannnnenmenmrmetmre

Using Alternative SOAP Encodings 91

<?xml version="1.0"7>
<env: Envelope

xmins:env="http: //www.w3.org/2002/06/soap-envelope”
amings :rpe="http: / /wow.w3.org/2002/06/soap-rpc">

<env: Body>
<env:Fault>

<env:Code>
<env:Value>env:Sender</env:Value>
<env: Subcode>

<env: Value>rpc : BadArguments</env: Value>
</env:Subcode>

</env:Code>
<env : Reason>

Missing surname parameter
<fenv:Reason>

<fenv:Fault>
</env:Body>

¢/env: Envelope>

Figure 3-20 A SOAP RPCfait,

Using Alternative SOAP Encodings
Of course some applications already deal with XML natively, and there are currently XML-
based vocabularies in use today supporting a plethora of B2B applications. SOAP-based mes-
saging can take advantageof the pre-existence of schemas to craft message exchanges that com-
plimentexisting systems using so-called document-style SOAP.

The way in which alternative SOAP encodings are handled is straightforward. Instead of
encoding header or body content according to the SOAP Data Model, we simply encode accord-
ing to the rules and constraints of our data model and schema. In essence, we can just slide our
own XML documents into a SOAP message, providing we remember toe specify the encod-
ingStyleattribute (and of course ensuring that the intended recipients of the message can
understand it). This style of SOAP encoding is known as literal style and naturally suits the
interchange ofbusiness-level documents based on their existing schemas.

This is a definite boon to SOAP use and by ourestimation, the future dominant paradigm
for SOAPuse.Its plus points include not only the ability to re-use existing schemas, but by dint
of the fact that we are now dealing with message exchanges and net remote procedure calls, we
are encouraged to design Web service interactions with much coarser granularity. In essence, we
are changing from a fine-grained model that RPC encourages (you senda little bit of data, get a
little bit back and make furthercalls until your business is completed), to a much coarser-grained
mode! where you send all the data necessary to get seme business process done at the recipient
end, and expect that the recipient may take some time before he gets back to you with a com-

- plete answer.

Booking, Exh. 1053, Page 98

Booking, Exh. 1053, Page 99

el

92 Chapter 3 * SOAP and WSDL

One particularly apt view of the fine- versus coarse-grained view
of Web servicesinteractions is that of a phone call versus a fac-
simile transmission.4 Where we interact with a business over the
phone there is a great deal of back-and-forth between ourselves
and the agent of the business to whom we are talking. We both
have to establish contexts and roles for each other, and then
enter into a:‘socially and linguistically complex conversation to get
business transacted, Small units of data are exchanged like
‘color’ and “arnount” that are meaningless without the context, -
and if the cail is lost we have to start over. This is fine-grained
interaction.

While we would not seek to undermine the value of good oid
human-to-human communication, sometimes we just don’t have
time forthis.It's even worse for our computing systems to have to
communicate this way since they don't get any of the social plea-
sures oftalking to each other. A better solution is often to obtain a
catalog or brochure for the business that we want to trade with.
When we have the catalog, we can spend time pouring over the
contents to see what goods or services we require. Once we are
certain of what we want, we can justfill in and fax the order form
to the company and soon our products arrive via postal mail.

: This system is eminently preferable for business processes
based on Web services. For a start, complex and meaningful
data was exchanged that does not rely on context. A catalog and
an order form are descriptive enough to be universally under-
Stood and the frequency of data exchange was low, which pre-
sents Jess opportunity for things to go astray. This system is also
loosely coupled when the systems are not directly communicat-
ing (which only happens twice: once for catalog delivery and
once while the orderis being faxed). They are notaffected by one
another and do not tie up one another's resources——quite the
contrary to the telephone-based system.

Ofcourse, we don’t necessarily get something for nothing. The price that we must pay as
developers is that we must write the code to deal with the encoding schemes we choose, In the
SOAP RPC domain where the encodingis fixed and the serialization from application-level data
structure to XML is governed by the SOAP Data Model, toolkits could take care of much ofthis
work, Unfortunately, when we are working with our own schemas, we cannot expect SOAPtool-
kits to be able to second-guessits semantics and, thus, we have to develop our own handler code
to deal with it, as shown in Figure 3-21.

4 See “The 7 Principles of Web Services Business Process Management”at hitp://www.iona,com/white-
papers/Principles-of-Web-Services-and-BPM.pdf

Booking, Exh. 1053, Page 99

Booking, Exh. 1053, Page 100

Using Alternative SOAP Encodings 93

pocent seepnine eemreecomarenmencenenes

L Service Implementation 1} fo ackend System i",
SOAP Schema

{ user-Derinea Scheme |N. i i I

: __—_| N i 5 oe . |
<xsdisohema > pa chame : . ridra<xsd: schema >|ts . Tae |
</xsd:schema> “| i</xed: schema> |

 eral reb} —»i

i THovag thuttge
&

Figure 3-21 Document-oriented SOAP processing.

The user-defined handler in Figure 3-21 is one of potentially many handlers deployed onto
the SOAP server to provide the functionality to deal with SOAP messages encoded with arbi-
trary schemas. Where the SOAP RPC handier simply dispatches the contents of the SOAP RPC
messages it receives fo appropriate methodcalls, there are no such constraints on a Web service
which uses document-style SOAP. One valid method would be to simply pick out the important
values from the incoming documentand use them to call a method, just like the SOAP RPC han-
dler, However, a8 more enterprises become focused on XML as a standard means for
transporting data within the enterprise boundary,it is more likely that the contents of the SOAP
body will flow directly onto the intranet. Once delivered to the intranet, the messages may be
transformed into proprietary XML formats for inclusion with in-house applications, or may be
used to trigger business processes without the need to perform the kind of marshalling/unmar-
shalling required for SOAP RPC.
enema

Note that irrespective of whether the application payload in
SOAP messages is SOAP-encoded, or encoded according to a
third-party schema, the way that header blocks are used to con-
vey out-of-band information to support advanced Web services
protocols is unaffected. Headers are an orthogonal issue to the
application-level content.

Booking, Exh. 1053, Page 100

Booking, Exh. 1053, Page 101

o4 Chapter 3 ¢ SOAP and WSDL

Document, RPC,Literal, Encoded
Much ofthe confusion in understanding SOAP comesfrom thefact that several of the key terms
are overloaded, For example, both SOAP RPC (meaning the convention for performing remote
procedure calls via SOAP) and RPCstyle are both valid pieces of SOAP terminology. In this
section we clarify the meaning of each of these terms so they do not cause further confusion as
we begin discussing WSDL.

Document

Document-style SOAPrefers to the way in which the application payload is hosted within
the SOAP Body element. When we use document style, it means the document is placed
directly as a child of the Body element, as shown ontheleft in Figure 3-22, where the applica-
tion contentis a direct child of the <soap:Body> element.

Document APC

 <soap :Body> <soap: Body>
L <inviinvoice ...> <m:purchase>
i <inviorderNo ... <inviinvoice ...>
t </inv: invoice> <inv:orderNo ...
r| */S0ap: Body> </inv:invoice>
a </m:purchase>

I </soap:Body>

<soap: Body> <soap : Body>
E <nsil:invoice> <m:purchase>
a <nsi:orderNo... <nel:invoice>

</nsl;invoice> <nsi:orderNo...
q| </s80ap: Body> </nsl:invoice>
e </m:purchase>

d </scap:Body>

Figure 3-22 Document, RPC,Literal, and Encoded SOAP messages.

RPC

RPC-style SOAP wraps the application content inside an element whose name can be used
to indicate the name of a methodto dispatch the content to. This is shown on the right-hand side
of Figure 3-22, where we see the application content wrapped <m: purchase> element,

Booking, Exh. 1053, Page 101

Booking, Exh. 1053, Page 102

SOAP, Web Services, and the REST Architecture 95

Literal

Literal SOAP messages use arbitrary schemas io provide the meta-level description {and
constraints) of the SOAP payload. Thus when using literal SOAP, we see that it is akin to taking
an instance documentof a particular schema and embedding it dizectly into the SOAP message,
as shown at the top of Figure 3-22.

Encoded

SOAP-encoded messages are created by transforming application-level data structures via
the SOAP Data Model into a XML format that conforms to the SOAP Schema. Thus, encoded

messages tend to look machine-produced and may not generally resemble the same message
expressed as a literal. Encoded messages are shown at the bottom ofFigure 3-22,

SOAP RPC and SOAP Document-Literal

The SOAP specification provides four ways in which we could package SOAP messages,
as shown in Figure 3-22. However, in Web services we tend to use only two of them: SOAP
encoded-rpe (when combined with a request-response protocol becomes the SOAP RPC con-
vention) and SOAP document-literal,

Document-literal is the preferred means of exchanging SOAP messages sinceit just pack-
ages application-level XML documents into the SOAP Body for transport without placing any
semantics on the content.

As we have previously seen, with SOAP RPC the implied semanticsare that the first child
of the SOAP Body element names a method to which the content should be dispatched.

The remaining two options, document-encoded andrpc-literal, are seldom used since they
mix styles to no great effect. Encoding documents is pointless if we already have schemasthat
describe them. Similarly, wrapping a document within a named elementis futile unless we are
going to use that convention as a remote procedure call mechanism. Since we already have
SOAP RPC,this is simply a waste of effort.

SOAP, WebServices, and the REST
Architecture

The World Wide Web (WWW) is unquestionably the largest and, by implication, the most scal-
able distributed system ever built. Thoughits original goal of simple content delivery was mod-
est, the way that the Web has scaled is nothing short of miraculous.

Given the success of the Web, there is a body of opinion involved in designing the funda-
mental Web services architecture (that includes the SOAP specification) for which the meansto

Booking, Exh. 1053, Page 102

Booking, Exh. 1053, Page 103

ieee

96 Chapter 3 * SOAP and WSDL

achieving the same level of application scalability through Web services mirrors that of content
scalability in the WWW,

The members of this group are proponents of the REST (REpresentational State Transfer)
architecture, which it is claimed is “Web-Friendly.” The REST architecture sees a distributed
system as a collection of named resources (named with URIs) that support a small set of com-
mon verbs (GET, PUT, POST, DELETE) in common with the WWW.
aiileneraSEhcrekde

The RESTidea of defining global methodsis similar to the UNIX
concept of pipelining programs. UNIX programs ail have three
simple interfaces defined (STDIN, STDOUT, STDERR) for every
program, which allows any two arbitrary programs to interact.
The simplicity of REST as compared to custorn network inter-
faces is analogousto the simplicity of UNIX pipelines vs. writing a
custom application to achieve the same functionality. REST
embraces simplicity and gains scalability as a result. The Web is
a REST system, and the generic interfaces in question are com-
pletely described by the semantics of HTTPS

Whatthis means to the SOAP developeris that certain operations involving the retrieval of
data without changing thestate of a Web resource should be performed in a mannerthatis har-
monious with the Web. For example, imagine that we wantto retrieve the balance of our account
from our bank Web service. Ordinarily we might have thought that somethinglike that shown in
Figure 3-23 would be ideal. If this message was sent as part of a HTTP POST,thenit would be
delivered to the SOAP server, which would then extract the parameters and deliver the results
via the getBalanceResponse message,

<?xml version="1.0" ?>

<env: Envelope
smins:env=*http://www.w3.org/2002/06/soap-envelope” >

<env : Body>
<bank: getBalance

env; encodingStyles"http: //www.w3.org/2002/06/scap-encoding"
xmins:bank="http://bank.example.org/">

<bank :accountNo>
12345678

</bank:accountNo>

</bank: getBalance>
</env:Body>

</env: Envelope>

Figure 3-23 A “Web-Unfriendiy" message.

5. See RESTwiki, ittp-/Antemnet.conveyor.com/RESTwiki/moin.cgi/FrontPage

Booking, Exh. 1053, Page 103

Booking, Exh. 1053, Page 104

Looking Back to SOAP 1.1 97

However, this is now discouraged by the SOAP specification and instead we are encour-

aged to usé HTTPdirectly to retrieve the information, rather than “tunneling” SOAP through
HTTP to get the information. A “Web-friendly” equivalent of Figure 3-23 is shown in Figure
3-24 where the HTTP request directly identifies the information to be retrieved and informs
the Web service that it wants the returned information delivered in SOAP format.

GET faccount?no=12345678 HTTP/1.1
Host: bank, example.org
Accept: application/soap+xml

Figure 3-24 A "Web-Friendly" message.

Figure 3-24is certainly Web friendly since it uses the Web’s application protocol (HTTP).
However, there are a number of obstacles that have not yet been overcomeat the time of writing

that may prove detrimental to this approach:

1. A service may be exposed over other protocols than HTTP (e.g., SMTP that does not
support the GETverb).

2. This scheme cannot be used if there are intermediate nodes that process SOAP header
blocks.

3. There is no guidance yet provided by the SOAP specification authors on how to tum an
RPC definition into its Web-friendly format.

4, Too much choice for little gain since we have to support the “Web-Unfriendly”
approach anyway for those interactions that require the exchange of structured data.

While these techniques may yet cometo fruition, it may be a long time before resolution is
reached, When architecting applications today, the best compromise that we can offer is to be
aware of those situations where you are engaged in pure information retrieval, and ensure that
your architecture is extensible enough to change to a Web-friendly mechanism for those interac-
tions tomorrow. Make sure the code that deals with Web services interactions is modular enough

to be easily replaced by Web-friendly modules when the W3C architectural recommendations
become more specific.

Looking Back to SOAP1.1
While Web services will migrate toward SOAP 1.2 in the near future, the most prevalent Web
services technology today is the now deprecated SOAP 1.1. Although there isn’t a great deal that

-has changed between the tworevisions, there are some caveats we must be aware of when deal-
ing with SOAP 1.1-based systems. To ensure that the work we've invested in understanding

Booking, Exh. 1053, Page 104

Booking, Exh. 1053, Page 105

98 Chapter 3 « SOAP and WSDL

SOAP 1.2 isn’t lost on SOAP 1.1 systems, we shall finish our coverage of SOAP with a set of
notes that should make our SOAP 1.2 knowledge backwardly compatible with SOAP 1.1.6

Syntactic Differences between SOAP 1.2 and SOAP1.1

* SOAP 1.2 does not permit any element after the body. The SOAP 1.1 schema definition
allowed for such a possibility, but the textual description is silent about it. However, the
Web Services Interoperability Organization (WS-I) has recently disallowed this
practice in its basic profile and as such we should now considerthat no elements are
allowed after the SOAP body, since any other interpretation will hamper
interoperability,

* SOAP 1.2 does not allow the encodingStyle attribute to appear on the SOAP
Envelope, while SOAP 1.1 allows it 10 appear on any element.

*SOAP 1.2 defines the new Misunderstood header element for conveying
information on a mandatory header block that could not be processed, as indicated by
the presence of a mustUnderstandfault code. SOAP 1.1 provided the fault code,
but no details on its use,

* In the SOAP 1.2 infoset-based description, the mustUnderstandattribute in header
elements takes the (logical) value true or false while in SOAP 1.1 they are the

' literal value 1 or 0, respectively.
* SOAP 1.2 provides a new fault code DataFncodingUnknown.
* The various namespaces defined by the two protocols are different.
*SOAP 1.2 replaces the attribute actor with role but with essentially the same

semantics.

* SOAP 1.2 defines two new roles, none and ultimateReceiver,together with a
more detailed processing model on how these behave.

* SOAP 1.2 has removed the dot notation for fault codes, which are now simply of the
form env :name, where env is the SOAP envelope namespace.

* SOAP 1.2 replaces client and server fault codes with Sender and Receiver.

* SOAP 1.2 uses the element names Code and Reason,respectively, for whatis called
faultcode and faultstring in SOAP 1.1.

* SOAP 1.2 provides a hierarchical structure for the mandatory SOAP Code element,
and introduces two new optional subelements, Node andRole.

6. These notes are abridged from the SOAP 1,2, Primer document which can be found at: http://
www.w3.ore/TR/2002/WD-soap12-part0-20020626/

Booking, Exh. 1053, Page 105

Booking, Exh. 1053, Page 106

Looking Back to SOAP 1.4 9

Changes to SOAP-RPC

Though there was some feeling in the SOAP community that SOAP RPC has hadits day
and should be dropped in favor of a purely document-oriented protocol, the widespread accep-
tance of SOAP RPC has meantthatit persists in SOAP 1.2, but with a few notable differences:

* SOAP 1.2 provides a rpc: result element accessor for RPCs,
* SOAP 1.2 provides several additional fault codes in the RPC namespace.
* SOAP 1.2 allows RPC requests and responses to be modeled as both structs as well as

arrays. SOAP 1.1 allowed only the former construct.

*SOAP 1.2 offers guidance on a Web-friendly approach to defining RPCs where the
method’s purpose is purely a “safe”informationalretrieval.

SOAP Encoding

Given the fact that SOAP RPCis still supported in SOAP 1.2 and that there have been
some changes to the RPC mechanism, some portions of the SOAP encoding part of the specifi-
cation have been updated to either better reflect the changes made to SOAP RPCin SOAP1.2,

or to provide performance enhancements comparedto their SOAP 1.1 equivalents.

* An abstract data model based on a directed edge-labeled graph has been formulated for
SOAP 1.2. The SOAP 1.2 encodings are dependenton this data model. The SOAP RPC
conventions are dependent on this data modei, but have no dependencies on the SOAP
encoding. Support of the SOAP 1.2 encodings and SOAP 1.2 RPC conventions are
optional.

* The syntax for the serialization of an array has been changed in SOAP 1.2 from that in
SOAPL.1.

* The support provided in SOAP 1.1 for partially transmitted and sparse arrays is not
available in SOAP 1.2.

* SOAP1.2 allowsthe inline serialization of multi-ref vaiues.

* The hrefattribute in SOAP 1.1 of type anyURT,is called ref in SOAP L.2 and is of
type IDREF.

* In SOAP 1.2, omitted accessors of compound types are made equal to NILs.
* SOAP 1.2 provides several fault subcodes for indicating encoding errors.
* Types on nodes are made optional in SOAP 1.2.

While most of these issues are aimed at the developers of SOAP-infrastucture,it is often
useful to bear these features in mind for debugging purposes, especially while we are in the
changeover period before SOAP 1.2 becomes the dominant SOAP version.

Booking, Exh. 1053, Page 106

Booking, Exh. 1053, Page 107

100 Chapter 3 * SOAP and WSDL

WSDL

Having a means of transporting data between Web services is only half the story. Withoutinter-

face descriptions for our Web services, they are about as useful as any other undocumented
‘API—very little! While in theory we could simply examine the message schemas for a Web ser-
vice and figure out for ourselves how to interoperate with it, this is a difficult and error-prone
process and one which could be safely automated if Web services had recognizable interfaces.
Fortunately, WSDL provides this capability and more for Web services.

The Web Service Description Language or WSDL-~pronounced “Whiz Duil”—is the
equivalent of an XML-based IDL from CORBA or COM,and is used to describe a Web ser-

vice’s endpoints to other software agents with which it will interact. WSDL can be used to spec-
ify the interfaces of Web services bound to a number of protocols including HTTP GET and.
POST, but we are only interested in WSDL’s SOAP support here, since it is SOAP which we

consider to support the (logical) Web services network. In the remainder of this chapter we
explore WSDL and show how we can build sich interfaces for Web services that enable truly
dynamic discovery and binding, and show how WSDL can be used as the basis of other proto-
cols and extended to other domains outside of interface description.

WSDLStructure

A WSDLinterface logically consists of two parts: the abstract parts that describe the operations
the Web service supports and the types of messages that parameterize those operations; and the
concrete parts that describe how those operations are tied to a physical network endpoint and
how messages are mapped onto specific carrier protocols which that network endpoint supports.
‘The general structure of a WSDL documentis shown in Figure 3-25.

The foundation of any WSDL interface is the set of messages that the service behind the
interface expects to send and receive. A message is normally defined using XML Schema
types (though WSDL allows other schema languages to be used) and is partitioned into a aum-
ber oflogical parts to ease access to its contents.

Messages themselves are grouped into WSDL operation elements that have similar
semantics to function signatures in an imperative programming language. Like a function signa-
ture, an operation has input, output, and fault messages where WSDL supports at most a single
input and output message, but permits the declaration of an arbitrary numberoffaults.

The portType is where what we think of as a Web service begins to take shape. A
portTypeis a collection of operations that we consider to be a Web service. However, at this
point the operations are still defined in abstract terms, simply grouping sets of message
exchanges into operations.

The binding section of a WSDLinterface describes how to map the abstractly defined
messages and operations onto a physical carrier protocol. Each operation from each port ~
Typethat is to be boundto a specific protocol(and thus ultimately be made availiableto the net-

Booking, Exh. 1053, Page 107

Booking, Exh. 1053, Page 108

WSDL. 101

XML Schema
Types

i..N 1...N

1...N

Message Part | | Messageee Message Part
of

Input Message Mestage | | Fault Message |
8...4

|

0...1 Operation 0.,.N

1.N

PortType

Composed
From

| References
(__) Abstract

Concrete

Figure 3-25 WSDLstructure.

work) is augmented with binding information from the ‘binding part of the WSDL
specification—WSDL supports SOAP, HTTP GET and POST, and MIME-~-to provide a proto-
col-specific version of the original port'Type declaration.

Finally, a port. is declared that references a particular binding, and along with address-
ing information is wrapped together into a service elementto form the final physical, net-
work addressable Webservice.

Booking, Exh. 1053, Page 108

Booking, Exh. 1053, Page 109

102 Chapter 3 * SOAP and WSDL

As we saw in Figure 3-25, the abstract components of a WSDL description are the
types, message, and portType elements, while the concrete elements are binding and
service.

The split between abstract and concrete is useful, because it allows us to design interfaces
in isolation from eventual deployment environments, using only the abstract definitions in
WSDL. Once we are happy with the abstract aspects of the Web service interface, we can then
write the concrete parts to tle the service down to a specific location, accessible over a specific
protocol,

The Stock Quote WSDLInterface

Having seen WSDL from a theoretical perspective, we can concretize that theory by con-
sidering a specific example. The classic Web services application is the stock ticker example
where a Web service provides stock quotes on request, Throughout the remainderof this discus-
sion, we shall use a simple Web service which supports a single operation that has an equivalent
signature to the following C# code:

double GetStockQuote(string symbol);

We examine WSDL stage by stage and show how we can turn this simple method signa-
ture into a true Webservice interface.

Definitions

The opening element cf any WSDL document is definitions, whichis the parent for
all other elements in the WSDL document. As well as acting as a container, the definitions
elementis also the place where global namespace declarations are placed.

<wsdl:definitions

targetNamespace="http: //stock. example.org/wsdl"
xnlns:tns="http://stock.example.org/wsdl"
xiilns :stockQ="http: //stock, example.org/schema"
xmlns:wsdl="http: //www.w3.org/2003/02/wsdi">
<l-- Remainder of WSDL Gescription omitted -->

</wsdl1:definitions>

Figure 3-26 The WSDL definitions element.

A typical WSDL definitions elementtakes the form shown in Figure 3-26, where the
element declares the target namespace of the document, a corresponding prefix for that
namespace, and a namespace prefix for the WSDL namespace (oralternatively it is also com-
mon to use the WSDL namespace as the default namespace for the whole document), Other

Booking, Exh. 1053, Page 109

Booking, Exh. 1053, Page 110

WSDL 403

namespaces may also be declaredat this scope, or may be declared locally to their use within the
rest of the document. Good practice for declaring namespaces to WSDL documents is to ensure
the namespaces that are required for the abstract parts of the document are declared at this level,
while namespaces required for the concrete parts of a WSDL document(like the bindings sec-
tion) are declared locally to make factoring and management of WSDL documents easier,

The Types Element

‘The types clement is where types used in the interface description are defined, usually in
XML Schema types, since XML Schemais the recommended schema language for WSDL. For
instance in our simple stock quote Web service, we define types that represent traded stocks and
advertise those types as part of its WSDLinterface asillustrated in Figure 3-27.

<wsdl:definitions .. >

<wsdl:import namespace="http://stock, example. org/schema"
location="http://stock.example.org/schema" />

<wedl:types xmins:xs="http: //www.w3.org/2001/¥MLSchema">
<xs:element name="stock-quote">

<xs:complexType>
<xXS 1 sequence>

<xs:element name="symbol" ref="stockO:symbol"/>
<xs:element names"lastPrice" ref="stockO:price"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<!~- Other schema type definitions ~-~->
<wsedl :types>

</wsdl:definitions>

Figure 3-27 Defining types in a WSDLinterface,

Before writing the types section, we first import some types declared by an external
schema that make the types within that schema available to this WSDL document to build on,
Those schema types (symbol and price) are used to create a new complex type (stock-
price) which the WSDL interface will use to advertise its associated Web service,

The orthodox view is to use XML Schemato provide constraints and type information in
Web services-based applications. Howeverit is not necessarily the case that XML Schemais the
right choice for every application domain, particularly those domains that have already chosen a
different schema -language on which to base their interoperability infrastructure, Recognizing
this requirement, WSDL 1.2 supports the notion of other schema languages being used in place
of the recommended XML Schema, Although the WSDL 1.2 specification does not provide as
wide coverage for other schema languages,it does allow for their use within WSDLinterfaces.

Booking, Exh. 1053, Page 110

Booking, Exh. 1053, Page 111

104 Chapter 3 * SOAP and WSDL

Message Elements

Once we have our types, we can move on {o the business of specifying exactly how con-
sumers can interact with the Web service. The message declarations compose the types that we
have defined (and those that we are borrowing from other schemas) into the expected input, out-

put and fault messages that the Web service will consume and produce. If we take our simple
stock ticker Web service as an example, we can imagine a number of messages the Web service
would be expected to exchange as shown in Figure 3-28,

<wsdlimessage name="StockPriceRequestMessage">
<wsdl:part name="symbol" element="stockQ: symbol" />

</wsdl :message>
<wsdl:message name="StockPriceRespnseMessage">

<wsdl:part name=“price* element="stockQ:StockPriceType" />
</wsdl :message>
<wsdl:message name="StockSymbolNotFoundMessage">

<wsdl:part name="symbol" element="stockQ: symbol" />
</wsdl :message>

Figure 3-28 The message elements.

AS We see in Figure 3-28, a WSDL messagedeclaration describes the (abstract) form of
a message that a Web service sends or receives, Each message is constructed from a number of

(AML Schema) typed part elements—which can come from the types part of the description
or an external schema that has been imported into the same WSDL document—and each

part is given a nameto ease the insertion and extraction of particular information from 4 mes-
sage. The name given to apart is unconstrained by WSDL butit is good practice to make the
part name descriptive as one would when naming programming language variables.

Tn this example we have three possible messages: StockPriceRequestMessage,
StockPriceResponseMessage, and StockSymbolNotFoundMessage, each of

which carries someinformation having to do with stock prices and, becauseitis good practice to
do so, whose name is indicative of its eventual use in the Web service.

PortType Elements
A portType defines a collection of operations within the WSDL document. Each

operation within a port'Type combines input, output, and fault messages taken from a
set of messageslike those defined in Figure 3-28.

In the example shown in Figure 3-29, the StockBrokerQueryPortTypedeclares an
operation calied GetStockPrice which is designed to allow users’ systems to ask for the
price of a particular equity.

The input to this operation is provided by a StockPriceRequestMessage message.
The contents of this message are understood by the implementing Web service, which formu-

Booking, Exh. 1053, Page 111

Booking, Exh. 1053, Page 112

WSDL 105

<wsdl:portType name="StockBrokerQueryPortType">
<wsdl;operation name="GetStockPrice'>

<wsdl:input message="tns:StockPriceRequestMessage"/>
<wsdl:output message="tns:StockPriceResponseMessage"/>
<wsdl;: fault name="UnknownSymbolFault"

message="tns:StockSymbolNotFoundMessage" />
</wsdl:portType>

Figure 3-29 Defining portType elements.

jates 2 response in an output StockPriceRequestMessage message that contains the
details of the stock price for the equity requested,

Any exceptional behavior is returned to the caller through a fault called UnkmownSym-
bolFault which is comprised from a StockSymbolNotFoundMessage message. Note
that portTypefault declarations have an additional nameattribute compared to input and out-
put messages, which is used to distinguish the individual faults from the set of possible faults
that an operation can support.

Of course notall operations are so orthodox with a single input, output, and fault message,
and so we have a variety of possible message exchange patterns described by the operation
declarations within a portType,as follows:

* Input-Output: When the input messageis sent to the service, either the output message
is generated or one of the fault messages listed is generated instead.

* Input only: When a message is sentto the service, the service consumes it but does not

produce any output message or fault. As such no output message or fault declarations
are permitted in an operation ofthis type.

* Output-Input: The service generates the output message and in return the input message
or one of the fault messages must be sent back.

+ Output-only: The service will generate an output message, but does not expect anything
in return, Fault messages are not allowed in this case.

Note that WSDL 1.2 changes the syntax of the port'Type declaration, renaming it
intex face.It also supports a useful new feature in the form ofthe extendsattribute, which
allows multiple interface declarations to be aggregated together and further extended to
produce a completely new interface. For example, consider the situation where our simple
stock Web service needs to evolve to support basic trading activities in addition to providing
stock quotes. Using the extends mechanism, a new interface can be created which pos-
sesses all of the operations from each interface that it extends, plus any additional opera-
tions the developer chooses to add to it as exemplified in Figure 3-30.

The only potential pitfall when extending an interface is where names clash. For
instance, an extending intexface should take care notto call its operations by the same name

Booking, Exh. 1053, Page 112

Booking, Exh. 1053, Page 113

106 Chapter 3 + SOAP and WSDL

<wsdl:message name="BuyStockRequestMessage">
<wedl:part name=“*symbol" element="stockQ: symbol" />
<wedl:part name="amount"* element="xs:positivelInteger" />
<wsdl:part name="bid" element="stockO: StockPriceType"/>

</wsdl :message>
<wesdl:message name="BuyStockResponseMessage ">

<wsdl:part name="symbol* element="stockO: symbol" />
<wsdl:part name="amount" element="xs:positivelnteger"/>
<wsdl:part name="price" element="stockQ:StockPriceType" />

</wsdl :message>
<wsdl:message name="BidRejectedMessage">

swedl:part name="symbol" element="stockQ:symbol"/>
<wsdl:part name="amount" element="xs:positiveInteger" />
<wsdl:part name="bid" element="stockd: StockPriceType"/>
<wedl:part name="asking" element="stockQ:StockPriceType" />

</wsdl1:message>

<wsdl:interface name="StockBrokerQueryPurchaseinterface"
extends="tns:StockBrokerQueryinterface" >
<wsdl:operation name="BuyStock">

<wsdl:input message="tns:BuyStockRequestMessage"/>
<wsdl:output message="tns:BuyStockRequestMessage" />
<wsdl:fault name="UnknownSymbolFault"

message="tns:StockSymbolNotFoundMessage" />
<wsdl:fault name="BidRejectedFauit"

message="tns:BidRejectedMessage'" />
</wedl:interface>

Figure 3-30 Extending interface definitions.

as operations from any interface that it extends unless the operations are equivalent. Fur-
thermore, the designer of a new interface that extends multiple existing interface decla-
rations must take care to see that there are no name clashes between any of the interface
declarations as well as with the newly created interface.

Bindings
The bindings element draws together the portType and operation elements into

a form suitable for exposing to the network, Bindings contain information that dictates how
the format of the abstract messages is mapped onto the features of a particular network-level
protecol.

While WSDL supports bindings for a number of protocols including HTTP GET and
POST, and MIME,we are primarily interested in the SOAP binding for our simple stock quote
portTypefrom Figure 3-29, which is presented in Figure 3-31.

Booking, Exh. 1053, Page 113

Booking, Exh. 1053, Page 114

WSDL 107

<wsdl:binding name="StockBrokerServiceSOAPBinding*
type="tns: StockBrokerQueryPortType">

<soap:binding styleDefault="document"
transport="http: //www.w3.org/2002/12/soap/bindings/HTTP/*
encodingStyleDefault="http: //stock.example.org/schema" />
<wsdl:operation name="GetStockPrice'>

<soap: operation
scoapAction="http://stock, example.org/getStockPrice" />

<wsdl:input>
<soap: body use="Literal'"/>

</wsdl:input>
<wsd1:output>

<soap: body use="literal"/>
</wsdl1:output>
<wedl1:fault>

<soap:fault name="StockSymbolNotFoundMessage" />
</wsdl: fault>

</wsdl:operation>
</wedl:binding>

Figure 3-31 A SOAP binding.

The binding shown in Figure 3-31 binds the abstract portType defined in Figure 3-29 to
the SOAP. It states bow each of the message components of the operation defined in the
StockBrokerQueryPortType is mapped onto its SOAP equivalent.

Starting from the top, we see a name for the binding (whichis later used to tie 4 binding to
a physical network endpoint) and the portTypefor which this bindingis specified,

We then use elements from the WSDL SOAP binding specification to declare a binding
for SOAP document-style exchanges, which is expressed as the default mode for this binding
through the styleDefault="document"“ attribute. The encoding of the documents
exchanged is defined by the stcck broker schema encodingStyleDefault="http: //
stock.example.org/schema". The fact that the service uses document-style SOAP and
has its own schema meansthatit is a document-literal Web service.

Finall,y we see that the binding is for SOAP over the HTTP protocol as specified by the
transport="http: //www.w3.org/2002/12/soap/hindings/HTTP/" attribute,
Each of these options is set as the default for the entire binding though both the style and
eficoding can be changed, if necessary, on a per-message basis.

This binding contains a single operation, namely GetStockPrice, which maps each of
the input, output, and fault elements of the GetStockPrice operation from the StockBro-
kerQueryPorttType to its SOAP on-the-wire format. The soapAction part of the opera-
tion binding is used to specify the HTTP SOAPAction header, which in turn can be used by
SOAPservers as an indication of the action that should be taken by the receipt of the message at
runtime—which usually captures the name of a method to invokein a service implementation.

Booking, Exh. 1053, Page 114

Booking, Exh. 1053, Page 115

108 Chapter 3 « SOAP and WSDL

The soap: body elements for both the wsdl: input and wsd1:output elements

provide information on how to extract or assemble the different messages inside the SOAP body.
Since we have chosen Hteral encoding and document style for our messages (via the
use="literal" and styleDefault="document" attribute), each part of a corre-
sponding message is simply placed as a child of the soap: body element of the SOAP enve-
lope. Had we been using RPC-style SOAP,then the direct child of the soap: body would be an
element with the same name as the operation, with each message part as a child, as per
SOAP RPCstyle, as contrasted with documentstyle in Figure 3-32,7

<l-- RPC style -->
<goap : body>

<GetStockPrice umlas:gsp="http://stock.ecxample.org/wsdl"
umlns:stockQ="“http://stock.example.org/schema">
<stockQ: symbol>MSFT</stockQ:symbol>

</GetStockPrice>

</soap:hody>

<!-- Document style -->
<soap:body>

<atockQ: symbol
xmins:stockd="http: //stock.example.org/schema">

MSFT

</stockO:symbol>
</so0ap :body>

Figure 3-32 Example SOAP RPC-style “Wrapping” element.

Noie that the WS-! basic profile has mandated that only mes-
sages defined with element can be used to create document-
oriented Web services, and messages defined with type cannot.

Ofcourse, the value of SOAP is not only that it provides a platform-neutral messaging for-
mat, but the fact that the mechanism is extensible through headers. To be of use in describing
SOAP headers, the WSDL SOAPbinding has facilities for describing header content and behav-
ior. For example, imagine that the query operation for which we have already designed a SOAP
binding in Figure 3-31 evolves such that only registered users can access the service and must
authenticate by providing some credentials in a SOAP headerblock as part of an invocation. The
WSDLinterface for the service obviously needs to advertise this fact to users’ applications or no
one will be able to access the service.

7. Note: this ts not SOAP-encoded,just RPC-style (i.e., wrapped in an elementthat is named indicatively
of the method that the message should be dispatched to).

Booking, Exh. 1053, Page 115

Booking, Exh. 1053, Page 116

WSDL 109

The WSDL fragment shownin Figure 3-33 presents a hypothetical scap: header decla-
ration within the wsd1:input element which mandates that a header matching the same

namespace as the userID message (as declared earlier in the document) is present, and will be
consumed by the ultimate receiver of the incoming SOAP message.

<wsdl:message name="UseriID"
targetNamespace="http://security. example.org/user">
<wsdl:part name="signature"™ type="xs:string"/>
<wsdl:part name="session" type="xs: anyURI" />

</wsdl:message>

<wsd1l:input>
<soap:body use="literal"/>
<soap:header use="literal" message="tns:UserTDMessage" />

</wsdl:input>

<wedl:output
xmlns:sec="http://security.example.org/user">
<soap: body use="literal"/>
<soap:headerfault message="sec:UserID" part="signature"/>

</wsdal:output>

Figure 3-33 Describing SOAP headers.

Correspondingly, a soap: headerfault elementis present in the wsdl: outputele-

mentte report back on any faults that occurred while processing the incoming header. If a fanlt
dees occur while processing the header, this soap:headerfault clement identifies the
user’s signature that caused the problem. This information, which amounts to a “user unknown”
response, can then be used at the client end to perhaps prompt the end user to re-enter a pass

phrase.

Note that an error such as an incorrect signature is propagated back through the header
mechanism and notthrough the body, since the SOAP specification mandatesthat errors pertain-
ing to headers must be reported likewise through header blocks,

Services

The services element finally binds the Web service to a specific network-addressable loca-
tion. It takes the bindings declared previously and ties them to a port, which is a physical net-
work endpoint to which clients bind over the specified protocol.

Figure 3-34 shows a service description for our stockbroker example. It declares a service
called StockBrokerService, which it defines in terms of a port called StockBro-
kerServiceSOAPPort. The port is itself defined in terms of the StockBrokerSer-
viceSOAPBindingbinding, which we saw in Figure 3-31, and is exposed to the network at
the address http: //stock.example.org/ to be made accessible through the endpoint
specified at the soap: address element.

Booking, Exh. 1053, Page 116

Booking, Exh. 1053, Page 117

116 Chapter 3 * SOAP and WSDL.

<wsdl:service name="StockBrokerService">
<wsdl:port name="StockBrokerServiceSOAPPort"
binding="tns:StockBrokerServiceSOAPBinding">
<soap: address

location="http://stock,example.org/"/>
</wsdl:port>

</wsdl:service>

Figure 3-34 A service element declaration.

Managing WSDL Descriptions

While the service elementis the final piece in the puzzle as far as an individual WSDL
document goes, that’s not quite the end ofthe story. For simple one-off Web services, we may
choose to have a single WSDL documentthat combines both concrete and abstract parts of the
interface. However, for more complex deployments we may choose to split the abstract parts
into a separate file, and join that with a numberofdifferent concrete bindings and services to
better suit the access pattern for those services.

For example, it may be the case that a single abstract definition (message, portType,
and operation declarations) might need to be exposed to the network via a numberof proto-
cols, not just SOAP. It might also be the case that a single protocol endpoint might need to be
replicated for quality of service reasons or perhaps even several different organizations each
want to expose the same service as part of their Web service offerings. By using the WSDL
import mechanism, the same abstract definition of the service functionality can be used across
all of these Web services irrespective of the underlying protocol or addressing, ‘This is shown in
Figure 3-35 where MIME, HTTP, and SOAP endpoints all share the same abstract functionality
yet expose that functionality to the network each in their own way. Additionally, the SOAP pro-
tocol binding has beer deployed at multiple endpoints which can be within a single administra-
tive domain or spread around the whole Internet and yet each service, by dintof the fact that they
share the same abstract definitions, is equivalent.

If a WSDLdescription needs to include features from another WSDLdescription or an
extemal XML Schemafile, then the import mechanism is used. It behaves in a similar fashion

to the XME Schema include feature where it can be used to include components from other
WSDLdescriptions, We have already seen how the WSDL import mechanism is used in Figure
3-27 where the XML Schema types from the stockbroker schema were exposed to the stock
broking WSDL description, as follows:

<wsdl:import namespace="http://stock.example.org/schema"
iocation="http: //stock. example. org/schema" />

The import feature of WSDL means that a WSDL description can leverage existing XML
infrastructure—-previously defined schemas for in-house documents, database schemas, existing Web
services, and the like—without having to reproduce those definitions as part of its own description.

Booking, Exh. 1053, Page 117

Booking, Exh. 1053, Page 118

WSDL. 111

Message Part

Output
Message.

Figure 3-35 Including abstract WSDL descriptions for concrete endpoints.

Booking, Exh. 1053, Page 118

Booking, Exh. 1053, Page 119

112 Chapter 3 » SOAP and WSDL

Extending WSDL®

As Webservices technology has advanced and matured, WSDL has begunto form the basis of
higher-level protocols that leverage the basic building blocksthat it provides, to avoid duplica-
fion of effort. Many of the technologies that we are going to examine throughout this book
extend WSDL via such means to their own purpose. However, where SOAP offers header
blocks as its extensibility mechanism for higher-level protocols to use, WSDL offers extension
elements based on the XML. Schema notion of substitution groups (see Chapter 2).
In the WSDL schema, several (abstract) global element declarations serve as the heads of substi-

tution groups. In addition, the WSDL schema defines a base type for use by extensibility ele-
ments as a helper to ensure that the necessary substitution groups are present in any extensions.
While it is outside the scope of this book to present the WSDL schemain full, there exists in the
schema extensibility elements which user-defined elements can use to place themselves at any
point within a WSDL definition. There are extensibility elements that allow extensionsto
appear at global scope, within a service declaration, before the port. declaration, ina mes-
sage element before any part declarations and any other point in a WSDL description, as
shown in Figure 3-36,

<?aml version="1.0" encoding="utf-8"2><definitions>
<types>
</typea>
<message ... >
</pessage>

ortType ... >
<operation ... >

input ... />
Soutput ... />
Fault ... />

</operation>
portType>

<pinding ... >
Soap:binding ... />

<operation ... >
<soaproperation ... />
<inpat>

Exarnple extensibilityelernent locations

</input>
<ontput>

foutput>
</operation>
binding>ervice ...>

OEt 2a. >

</definitions>

Figure 3-36 WSDL. substitution group heads.

8. This section based on a draft version of the WSDL 1.2 specification,

Booking, Exh. 1053, Page 119

Booking, Exh. 1053, Page 120

Using SOAP and WSDL a 443

For example, the soap elements that we have seen throughoutthe bindings section of our
WDSLdescription are extensibility elements. In the schema for those elements, they have been
declared as being part of the substitution group bindingExt which allows them to legally
appear as part of the WSDL bindingssection.

Additionally, third-party WSDL extensions may declare themselves as mandatory with the
inclusion of a wsdl : required attribute in their definitions. Once a required attribute is

set, any and all validation against an extended WSDL document must include the presenceofthe
corresponding element as a part of the validation.

Extensibility elements are commonly used to specify some tech-
nology-specific binding. They allow innovation in the area of net-
work and massage protocols without having to revise the base
WSDL specification. WSDL recommends that specifications
defining such protocols also define any necessary WSDL exten-
sions used to describe those protocols or formats.®

Using SOAP and WSDL
While many of the more advanced features of the emerging Web services architecture are still
being built into many of the platforms, support for SOAP and WSDL in most vendors’ Web ser-
vices toolkits is widespread and makes binding to and using Web services straightforward. In
this section, we investigate how a typical application server and can be used to deploy our simple
banking example, and howit can be later consumed bya client application. The overall architec-
ture can be seen in Figure 3-37.

The architecture for this sample is typical of Web services applications that routinely com-
bine a variety of platforms. In Figure 3-37, we use Microsoft's Net and Internet Information
Server to host the service implementation, but we use the Java platform and the Apache AXIS
Web service toolkit to consumethis service and drive the application.

Client
“Application (71

Figure 3-37 Cross-platform banking Web service example.

§. From WSDL 1.2 specification, http://www.w3.org/TR/wsd]12/,

Booking, Exh. 1053, Page 120

Booking, Exh. 1053, Page 121

114 Chapter 3 * SGAP and WSDL,

Service Implementation and Deployment
The implementation of our banking service is a straightforward C# class, and is shownin

Figure 3-38.

using System;
using System.Collections;
using System. ComponentModel;
using System.Data;
using System.Web;
using System.Web.Services;

[WebService (Namespace="http: //bank.example.org")]
public class BankService : System.Web. Services.WebService
{

EWebMethod]

public string openAccount (string title,
string surname,
string firstname,
string postcode,
string telephone}

BankEndSystem bes = new BackEndSystem{};
string accountNumber = bes.processApplication (title,

surname,

firstname,
postcode,
telephone);

return accountNumber;
}

}

Figure 3-38 A simpie bank Web service implementation.

Most of the work for this service is done by some back-end banking system, to which our
service delegates the workload. Our service implementation just acts as a kind of gateway
between the Web service network to which it exposes our back-end business logic, and the back-
end systems themselves to which it delegates work it receives from Web services clients. This
pattern is commonplace when exposing existing systems via Web services, and makes good
architectural sense since the existing system does not have to be altered just to add in Web ser-
vice support.

Booking, Exh. 1053, Page 121

Booking, Exh. 1053, Page 122

Using SOAP and WSDL 115

The key to building a successful Web service, even one as sim-
ple as our bank account example, is to ensure that the orthoge-
nal issues of service functionality and deployment are kept
separate. That is, do not allow the implementation of your system
to change purely because you intend to exposeits functionality
as a Webservice.

lt is a useful paradigm to treat your Web services as “user
interfaces” through which users (in most cases other computer
systems) will interact with your business systems. In the same
way that you would not dream of putting business rules or data
inte human user interfaces, then you should not place business
rules or data into your Web service implementations. Similarly,
you would not expect that a back-end business system would be
updated simply to accommodate a userinterface, and you should
assume that such mission-critical systems should not be altered
to accommodate a Web service deployment.

When deployed into our Web services platform (in this example, Microsoft’s IS with
ASP.Net), the associated WSDL description of the service is generated by inspection of the
implementation’s interface and made available to the Web. The resultant WSDL? is shown in
Figure 3-39,

It is important to bear in mind, that although the WSDL shownin Figure 3-39is intricate
and lengthy for a simple service, the effort required to build it is practically zero because of tool

’ support. The only issue that this should raise in the developer's mindis that their chosen plat-
form and tools should handle this kind of work on their behalf. WSDL should only be hand-

crafted where there a specific need to do something intricate and unusual that tool support would
notfacilitate.

Binding to and Invoking Web Services
Once the service has been deployed andits endpoint known by consumers,clients can

bind to it by using their client-side Web services toolkits to create proxies. A proxy is a piece of
code that sits between the client application and the network and deals with ail of the businessof
serializing and deserializing variables from the client’s program into a form suitable for network
transmission and back again. The client application, therefore, never has to be aware of any net-
work activity and is simpler to build.

16, The WDSL description generated by ASP.Net is richer than that showa here since it also includes
HTTP GET and HTTP POSTbindings. However, we are predominantly interested in SOAP as the
Web services transport, and so the HTTP bindings have been removed.

Booking, Exh. 1053, Page 122

Booking, Exh. 1053, Page 123

ai

416 Chapter 3 + SOAP and WSDL

<?xml version="1.0" encoding="utf-8" ?>
<definitions

xmilns:soap="http: //schemas.xmlsoap.org/wsdl/soap/*
xmins:xs="http://www.w3 .org/2001/XMLSchema"
xmlns ;-bank="http: //bank.example.org"
targetNamespace=“*http://bank.example.org*
xmins="http: //schemas.xmlsoap. org/wsdl1/ ">
<types>

<xs:schema elementFormDefault="qualified"
targetNamespace="http: //bank. example.org">

<xs:element name="opendAccount ">
<xs :complexType>

<xX8 :! Sequence>
<xs:element minOccurs="0" maxOccurs="i"

name="title" type="xs:string"/>
sxs:element minOccurs="0" maxOccurs="1"

namne="surname" type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1"

name="firstname" type="xs:string"/>
<xs:element minOcecurs="0" maxOccurg="1"

name="npostcode" type="xs:string"/>
<xs:element minOccurs="0" maxOccurs="1"

name="telephone" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="openAccountResponse'">
<xs:complexType>

<xS:sequence>
<xs:element minOccurs="0" maxOccurs="1i"

name="openAccountResult" type="xs:string" />
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="string" nillable="true®
type="xs:istring" />

</xs:schema>

</types>
<message name="openAccountSocapin">

<part name="parameters" element="bank: openAccount" />
</message> ;
<message name="openAccountSoapOut ">

<part name="parameters"
element="bank: openAccountResponse" />

</message>
<portType name="BankServiceSoap">

Figure 3-39 Bank service aiito-generated WSDLdescription.

Booking, Exh. 1053, Page 123

Booking, Exh. 1053, Page 124

Using SOAP and WSDL 117

<operation name="openAccount">
<input message="bank: openAccountSoapin" />
<outpur message="bank:openAccountSoapOut " />

</operation>
</portType>
<binding name="BankServiceSoap"

type= "bank; BankServiceSoap">
<soap: binding

transport="http: //schemas.xmlsoap.org/soap/http"
style="document"/>

<operation name="openAccount ">
<soap:oaperation

soapAction="http://bank.example.org/openAccount"

style="document" />
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="lLiteral"/>
</output>

</operation>
</binding>
<service name="BankService">

<port name="BankServiceSoap*"

binding="bank: BankServiceSoap">
<soap:address

location="http: //localhost/dnws/BankService.asmx" />

</port>
</service>

</definitions>

Figure 3-39 Bank service auto-generated WSDL description (continued).

In our example,the serialization and deserialization is to SOAP from Java and back again,
and is handled by a proxy generated by the Apache AXIS WSDL2Java tool. This tool parses
WSDLat a given location and generates a proxy class which allows client code to communicate

with that service, For example, the proxy code generated by this tool when it consumed our bank
example service is shown in Figure 3-40.

Booking, Exh. 1053, Page 124

Booking, Exh. 1053, Page 125

RRREth

118 Chapter 3 * SOAP and WSDL

fee

* This file was auto-generated from WSDL
* by the Apache Axis WSDL2Java emitter.
*/

package org.example.bank;
import java.lang.String;

public class BankServiceSoapStub
extends org.apache.axis.client.Stub
implements org.example.bank.BankServiceSoap {

// Data members removed for brevity

public BankServiceScapStub(}
throws org.apache.axis.AxisFault {

this (null);

// Other constructors removed for brevity

private org.apache.axis.client.Call createCall()
throws java.rmi.RemoteException {

// Implementation removed for brevity
return _call;

catch (java.lang.Throwable t) {
throw new org.apache.axis.AxisFault ("Failure trying™ +

"to get the Call object", t};
}

}

public String openAccount (String title, String surname,
String firstname,
String postcode,
String telephone)
throws java.rmi.RemoteException {

// Implementation removed for brevity

}

Figure 3-40 Apache AXIS auto-generated proxy for the bank Web service.

The proxy class shown in Figure 3-40 allows the client of the Web serviceto call its fanctional-
ity with a call as simple as the tikes of:

bankAccountService.openAccount ("Mr", "Aneurin", "Bevan",
"ABC 123", "0207 123 4567")

without having to worry aboutthe fact that on the wire, the proxy has sent a SOAP message that
looks like that shown in Figure 3-41 below:

Booking, Exh. 1053, Page 125

Booking, Exh. 1053, Page 126

*
A

Using SOAP and WSDL 119

<?xml version="1.0" encoding="utf-8" ?>
<scap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http: //www.w3 .org/2001/XMLSchema-
instance" xmlns:xsd="http: //www.w3.org/2001/XMLSchema*>

<soap: Body>
<openAccount xmins="http://bank.example.org">

<title>Mr</title>
<surname>Bevans</surname>
<firstname>Aneurin</firstname>
<postcode>ABC 123</postcode>
<telephone>0207 123 4567</telephone>

</openAccount>
</soap: Body>

«</soap:Envelope>

Figure 3-47 Proxy generated SOAP message.

At the receiving end,the bank service’s SOAP server will retrieve this SCAP from the net-
work and turn it into something meaningful (in our case C# objects) before passing it to the ser-
vice implementation. The service implementation grinds away at its task, producing someresult
in its own proprietary format before passing it back to the underlying Web services platform to
serialize its results into the appropriate network format (i.c., a SOAP message) and return it to
the caller. At this point the service invocation has finished and the resources used during the exe-
cution of that service can be freed,

Where’s the Hard Work?

For simple interactions, there isn’t any hard work for the developer to do because SOAP.
toolkits are sufficiently advanced enough to automate this, For example, we didn’t have to worry
aboutthe style of SOAP encoding or how the marshalling occurred in any of our bank account
examples, even though we crossed networks, servers, and even languages and platforms.

Though it may seem from these examples that Web services is an automation utopia,it is
not. While it is true that for the majority of cases, simple interactions can be automated (though
auto-generation of WSDL from service implementation code and auto-generation of proxies
from WSDL descriptions), this is about as far as toolkits have advanced,

Giventhatthis book extends beyond this third chapter, it is safe to assume that we’re going
to have to roll up ourshirt sleeves at some point and patch the gaps that the current set of Web
services toolkits inevitably leaves. It is in these subsequent chapters where we will find the hard
work!

Booking, Exh. 1053, Page 126

Booking, Exh. 1053, Page 127

420 Chapter 3 » SOAP and WSDL

Summary

SOAP is the protocol that Web services use to communicate.It is an XML-based protocol that
specifies a container called an Envelope, whichstores application payload in a second container,
called the Body, and additional (usually contextual) information inside a third container called

the Header. The SOAPspecification describes a processing model where application messages
(and their associated headers} can pass through intermediary processing nodes between the
sender and receiver, where the information stored in the SOAP header blocks can be used by
those intermediaries to provide various quality of service characteristics. For example, the head-
ers may contain routing information, transaction context, security credentials, or any other pro-
tocol information.

WSDLis an interface description language for Web services and like SOAP, WSDL is
currently popularized byits 1.1 version, which is due to be superseded by WSDL 1.2. A WSDL
interface is composed from a numberof elements, each building on the previous, from simple
type and message declarations, culminating in a network addressable entity which uses the
defined types and messages to expose operations onto the Web.

Though SOAP and WSDLare undoubtedly important protocols in their own right, when
drawn together through tool support, their potential is significantly enhanced. Web services tool-
kits can consume the WSDL. offered by a service and automatically generate the code to deal
with messages in the format that the service expects, while providing a straightforward API to
the developer.

Architect’s Note

* SOAP 1.1 is the most widely adopted version of the SOAP specification. However,
SOAP 1.2 has now reached W3C recommendation status and thus SOAP 1.1 is now
considered deprecated,

* SOAP RPCis quick and easy, but may jead to applications with too tight a level of
coupling. Exchanging larger documents is preferable, even if it means writing handler
code to deal with them.

* XML-Native applications should not use SOAP-RPC; they should use the XML
vocabularies that they have already developed, and use those vocabularies as the basis
of their communication via document-oriented SOAP.

* Be prepared for a shift in the Web services architecture, and ensure your services can
support “Web-friendly”access where appropriate.

* Do not deploy a Web service without its WSDL description—a service is naked
withoutit.

* Use tool support—it is wasted effort to do for yourself what a tool can do more easily,
more quickly, and more accurately.

Booking, Exh. 1053, Page 127

Booking, Exh. 1053, Page 128

CHAPTER: 4

UDDI—Universal

Description,
Discovery, and
Integration

hen UDDI cameonthe scene, its champions positioned the new technology as the sav-VW ior ofe-business. Businesses along a value chain would use UDDIregistries to dynam-
ically and automatically select new business partners, locate the electronic services implemented
by those partners and start executing e-commerce transactions with them. This would revols-
tionize how businesses operate: wipe out the need for human interaction in many business tasks,
reduce ovetheads and middleman costs, and fundamentally enable a dynamic and fluid e-busi-
ness environment.

Today, it is difficult to find companies that are truly using UDDI, and UDDIregistries
boast a relatively small number of entries. Does this mean that UDDI is DOA (dead on arrival)?
By just looking at the list of some of the companies that are backing the UDDIproject, one
would conclude probably not.

So, how will UDDI pan out? What will enterprises do with UDDI? What do enterprise
architects have to know about UDDI?In this chapter, we delve into these issues and take a prac-
tical approach to UDDI andits fit within the enterprise Web services picture. We look at the lat-
est release of the UDDI specification—Version 3—-and take a closer look at some of the key
architectural changes.

UDDI at a Glance

The UDDIis a registry and a protocol for publishing and discovering Web services. As Webser-
vices are a standards-based, open, and platform-independent means of accessing the functional
capabilities of other companies, UDDIis the associated standards-based, open, and platform-

121

Booking, Exh. 1053, Page 128

Booking, Exh. 1053, Page 129

rtAttAttnNepee

122 Chapter 4 » UDD!—Universal Description, Discovery, and integration

independent means of publishing and locating these services. The latest information about
UDBDIand the UDDI community can be foundat http déwww.uddi.org.

As more and more companies start driving toward a services-oriented architecture, and
Web services in particular, for their enterprise application infrastructure, the issue of locating
Web services becomesincreasingly important. When companies initially began experimenting
with Web services behind the fitewall, there was no question of locating or discoverinig services
as each company controlled everything—both the services and the consuming applications.

As these experimental applications were migrated across the firewall, the services they
consumed were augmented to include Webservices from a handful of partner companies. All of
the necessary information about these services was known a priori, and still the need to discover
services was unnecessary.

As these applications were further scaled, there emerged a need to answer questions such
as: Which business partners have this service? Whattypes of services do these partners offer? As
more business partners adopted Web services, the process of obtaming these answers became
difficult, not to mention time consuming, The old methods of jointly agreeing on services and
their interfaces were no longer feasible. Neither was maniually calling up business partners to get
a list of their latest service offerings.

There emerged a need for a registry where service providers could publish not only a list
of their services but also information necessary to use the services. At the same time, businesses
could search through the registry to discover these service providers and their services. These
are the underpinnings of UDDI.

Analogies with Telephone Directories
UDDIshares somestriking similarities with telephone directories (e.g., yellow pages). As

such,the analogy is an effective vehicle for describing the capabilities and usefulness ofUDDL
A phonebook allows people to search for other people and businesses, get their contact

information, and then directly contactthe person or business. Phone books allow various modes
of searching, whether it be an alphabeticallisting of people or business names(as in the white
pages) or through categories of businesses.

Anyone can view the listings of a phone directory;in fact, the more people who view and use
the phone book, the more valuable it is. However, only the phone company or its authorized agent
publishes the phone book. When adding or updating entries, the requester must validate his or her
identity and provide evidencethat he or she has the rightto add or change the information.

The importance of phone books grows as the need to locate more people and businesses
increases. When there are just a handful of people and businesses and few new additions, phone
books are not as important.It is easy to keep track of contact information, or gatherthe informa-
tion when necessary. However, as the base of people and businesses becomes large and there are
continuous changes—bothin people and businesses being added or removed from thelistings or
their contact information changes—phone books become critical. They provide a centralized
source for contact information.

Booking, Exh. 1053, Page 129

Booking, Exh. 1053, Page 130

recttt

UDDI at a Glance 123

UDDIis quite similar. Instead of a directory of telephone numbers, UDDIis a directory of
Web services that are available from different vendors. UDDI provides a means of adding new
services, removing existing services, and changing the contact (.e., endpoint) information for
services.

Most UDDI implementations also have some of the same constraints as phone books.
Only authenticated users (e.g., service providers) can add or change their information on the
UDDIregistry. Non-authenticated users are not allowed to change any information on a UDDI
registry, and only authenticated users can change their own information. This policy prevents
maliciously motivated changes to UDDIentries. Any user can access a UDDIregistry for read-
only purposes,

Both telephone directories and UDDI registries provide a means to locate a vendor or pro-
vider of a particular service. For telephone directories, contact information is basically a phone
number and perhaps may also include an address. Contact information in a UDDIregistry con-
sists of information about the service provider as well as technical information about the Web
service itself. Conceptually, the information available in an UDDI registry is similar to that in
the white, green, and yellow pages of the phone book.In UDDI,the segmentation ofinformation
that is available and searchable can be thought of as follows:

«White Pages: Contact information about the service provider company. This
information includes the business or entity name, address, contact information, other
short descriptive information about the service provider, and unique identifiers with
whichto facilitate locating this business,

* Yellow Pages: Categories (taxonomies) under which Web services implementing
functionalities within those categories can be found.

* Green Pages: Technical information about the capabilities and behavioral grouping of
Webservices.

Howare people supposed to use an UDDIregistry? First,let’s look at how people usetele-
phone books. When using the phone book to contacta business, the user bas a productor service
in mind. From herpast purchases, she may also have a few businesses in mind thatsell that prod-
uct. The user looks up these business names to find their contact information. Otherwise, the
user searches through product categories to locate a vendor. Once she has identified a suitable
vendor, she looks up the corresponding phone number and contacts the vendor.

Whatif there are multiple possible vendors? How does a user determine the winner? The
winning vendor may be chosen based on price. The user may prefer to do business with a partic-
ular vendorif she has done a lot of business with the vendorin the past. The user may shy away
from a vendor because the vendor has heen unreliable or has delivered shoddy product.

Using a UDDIregistry is similar to using a standard telephone directory. Users will search
through the UDDIregistry for an appropriate Web service that meets their needs, The search

_may involve a straightforward name lookup, or may involve searching through the taxonomies
(service provider categories) provided by the UDDI registry. What do you do when there are

Booking, Exh. 1053, Page 130

Booking, Exh. 1053, Page 131

titt

124 Chapter 4 * UDDI—Universal Description, Discovery, and Integration

multiple Web services that may potentially meet your needs? You have to pick a winner based
on whatever metrics are important to you. These may be cost, personal preferences, or other
businessrelationships.

Figure 4-1 depicts the similarities between telephone directory books and UDDIregistries.
Although there are strong similarities between these, there are some places where the anal-

ogy breaks down. First, each Web service implements a unique API. Although this is not by
specification,it is statistically unlikely that twe independentprogrammers will define and imple-
ment the same programmatic interface. Unlike different phone numbers that merely provide
unique identification or routing information for phone calis, different Web service APIs are
more analogousto using a different and unique phone number for communicating with cach per-
son or business.

Second, people will not typically interact directly with UDDIregistries as they do with
phone books. This is because the information available on UDDIis not people-friendly. Instead,
portals and software tools facilitate access to UDDIregistries. Many of the same middleware
and application developmenttools that support Web service development allow users to easily
add new services to the UDDIregistry. These and othertools also allow browsing through the
services on UDDI, and many augmentthe information available on UDDIwith their own analy-
sis. This analysis may include quality-of-service information and additional information helpful
in using the Web services.

Business Name connect with
search for Phone Number ————> business using
businesses Address phone number

(@) Telephone Directory Book

search for Business Name connect with
businesses and .—_.__» Service Endpoint ———p business using services Service Description service endpoint

(b) UDDI Registry

Figure 4-1 Similarities between (a) telephone directory books and (b) UDDI registries.

Booking, Exh. 1053, Page 131

Booking, Exh. 1053, Page 132

UDD! at a Glance 125

Another key difference is that within organizations, UDDI will probably be accessed by
two different groups of people. Unlike phone books, interactions with UDDI require an under-
standing of more issues. For example, which Web service to use for a particular application is
not only based on technical needs and QoS requirements, other strategic and business issues also
comeinto the mix. There may be existing relationships between two companies that require the
use of a particular company’s Web service over that of another. Or, it may make strategic sense
for a company to use a particular Web service, even if other technically superior Web services
exist. As such, a unique interaction of business issues together with technical issues comes
together to determine which Web service to use fora particular application. Since most technical
programmers are usually not party to such information, business analysts with an understanding
ofstrategic business issues typically will select Web services by searching through UDDIregis-
tries and otherrelated information portals. A programmerwill then search the UDDIregistry for
that particular Web service's API, and implement the communications between the application
and that Web service, as depicted in Figure 4-2.

A critical point to rememberis that business issues are quite fluid. The dynamics of most
business environments result in rapidly changing relationships. This, in turn, results in continu-
ously changing or at least evolving business-driven requirements. Flexibility in selecting and
consuming Web services is important,

it is a commonmisconception that applications can themselves dynamically select and
consume Web services. Although one day software may becomesufficiently smart to dothis,

Programmer

echnicat Requirements

Get Binding
Selected Service Information For

Selected Service

Business Analyst. Select Web
Service

Figure 4-2 The typical roles played while interacting with an UDDIregistry.

Booking, Exh. 1053, Page 132

Booking, Exh. 1053, Page 133

ttttt

126 Chapter 4 + UDDI—Universal Description, Discovery, and Integration

today selecting and consuming Webservices requires some degree of human intervention. Some
simple cases of automation do certainly exist, but automating the process in a general senseis
not available today. Why not? Because each Web service implements a unique APIthat requires
programmatic and perhaps architectural changes to the consuming application. Moreover, auto-
mating the processof selecting the appropriate Web service to consumeis difficult and dynamic.
Some newer tools support the use of business rules to automate (at a higherlevel) the process of
service selection, Nonetheless, some level of human intervention is necessary,

The UDDi Business Registry
The UDDIBusiness Registry (UBR) is a global implementation of the UDDI specification. The
UBRisa single registry for Web services. A group of companies operate and host UBR nodes,
each of which is an identical copy ofall other nodes. New entries or updates are entered into a
single node, but are propagatedto all other nodes.

The UBRis a key elementofthe deploymentof Web services and provides the following
capabilities:

* A centralized registration facility at which to publish and make others aware of the Web
services a company makes available,

* A centralized search facility at which companies that require a particular service can
locate businesses that provide that service as well as relevant information about that
service,

A smail group of companies operate and manage a set of UBR nodes. In July 2002, the
UBR was updated to support version 2 of the UDDIspecification.Initially, IBM, Microsoft, and
SAP comprised the UBR V2,operating 3 UBR nodes. NTT Communicationslater launched an
UBRnode to becomethe fourth UBR V2 node. More than 10,000 businesses are registered with
the initial three UBR nodes, publishing over 7,000 Web services. NTT expects to add another
1,000 businesses within the first operational year of the fourth UBR node..

Each UBR node provides a Web home page for human-friendly navigation of the repistry
as well as information aboutthe use of the registry. Today, most searches for available Web ser-
vices are done through human-friendly means: phone conversations between existing business
partners, the home pages of the UBR, Web service aggregator portals such as
www.xmethods.com, or standard Web search engines such as Google. UBR node home pages
also provide other information pertaining to UDDIorto that particular UBR node. This informa-
tion includes policies on data Teplication, publishing restrictions, and other administrative or
usage issues,

UBR nodes also implement a simple API for direct electronic {computer-to-computer)
access to the contents of the registry. The two most important and relevantfeatures of the APIs
are inquiry and publication.

Booking, Exh. 1053, Page 133

Booking, Exh. 1053, Page 134

The UDD! Business Registry 127

The inquiry API allows searching through the registry for information about businesses,
the Web services the business makes available, as well as implementation and interface informa-
tion for each service.

The publication API allows adding, changing, and deleting business and service informa-
tion within the registry,

Figure 4-3 depicts some typical meansof accessing and interacting with an UDDIregistry.
The URL-access endpoint information of the home page, inquiry APL, and publication API

of each UBR nodeis different, and the information for each of the UBR V2 nodesis listed in
‘fable 4-1. The publication API endpoint requires authentication and uses the HTTPS protocol,
while the inquiry API and home page use standard HTTP.

The UBR operators also provide fully functional test environments where companies can
develop andtest their offerings without affecting other users. Someof these test nodes do not
support version 2 of the UDDI specification as yet. Table 4-2 lists the endpoint access informa-
tion for the test nodes of the UBR.

Service Marketplace
Access

Service Aggregator

Access ——~_}
Web Portal ——

Access

Direct Programmatic
Access

Figure 4-3 The various means of accessing an UDDIregistry.

UDDI

Registry

Booking, Exh. 1053, Page 134

Booking, Exh. 1053, Page 135

aee

128 Chapter 4 * UDDI—Universal Description, Discovery, and Integration

Fable 4-1 The operator node URLsfor the UDDI Business Registry (UBR).

UBR Operator Node

Home Page

Inquire API
Publish API

Microsoft Home Page

Tuquire API
Publish API

Home Page

Inquire API
Publish API

Home Page

Inquire API
Publish API

http:/fuddi.ibm.corm/

http://uddi.ibm.comy/ubr/inquireapi

hittps://nddi.ibro.com/ubr/publishapi

http://uddimicrosoft.com/

http://uddi.microsoft.convinquire
https://uddi.microsoft.com/publish

http://uddi.sap.com/

http:/Arddi.sap.com/uddi/api/inquiry
https://uddi.sap.com/uddi/api/publish

bttp./Awwwantt.com/iddi/

http://www.uddi.ne.jp/ubr/inquiryapi
https://www.uddi_ne.jp/ubr/publishapi

Table 4-2 The test node URLs for the UDD/ Business Registry (UBR).

UBR Test Operator Node

Home Page

Inquire API
Publish API

Microsoft|Home Page

Inquire API
Publish API

Home Page

Inquire API
Publish API

http://uddi.ibm.comtestregistry/registryhtml

http://nddi.ibm.com/testregistry/inquiryapi
https://uddi.ibm.com/testregistry/publishapi

hitp://tes(.uddi_microsoft.com/

http://test.uddi.microsoft.convinquire
https://test.uddi.microseft.com/publish

http://udditest.sap.com/

hitp://udditest.sap.com/UDDV/api/inquiry
hitps://udditest.sap.com/UDDVapi/publish

Later in the chapter we look at how to programmatically access the information at these

UBR nodesto locate the latest information abouta particular Web service.

Booking, Exh. 1053, Page 135

Booking, Exh. 1053, Page 136

UDD! Under the Covers . 129

UDDI Underthe Covers

In the remainderof this chapter, we discuss how to add entries to a UDDIregistry as well as how
to search for available services and build applications that consume those services. We will also
briefly touch on the major sections of the UDDI specification.

The UDDI Specification

Version 3 is the most recent Incarnation of the UDDI specification. Version 3 builds on

and expands the foundations laid by versions 1 and 2 of the UDDIspecification, and presents a
blueprintfor flexible and interoperable Web services registries. Version 3 also includes a rich set
of enhancements as well as additional features, including improved security and new APIs. The
entire UDDIspecification can be found at http://www.uddi.org,

The major documents of the UDDI Version 3 specification are listed in Table 4-3.

Table 4-3 The major documents of the UDD! Specification version 3.

UDDI Version 3 Synopsis
Specification Documents ynop

FeamesList|List Brief overview of the key features in version 3.poets ds actual specification document.
XML Schemas A set of XML Schemafiles that formally describe

UDODIdata structures.

WSDL Service Interface A setof files that describe the UDDI Version 3

Descriptions WSDLinterface definitions.

Unlike in previous versions, UDDI Version 3 consolidates the entire specification into a
single document entitled the UDDI Version 3 Published Specification. This single document
contains everything related to UDDI, and also containsall information necessary for developing
a UDDI node, the Web services that are called by a UDDI node, or a client application that
directly interacts with a UDDIregistry,

UDDI Core Data Structures

Information representation within UDDIconsists of instances of persistent data structures
that are expressed in XML.It is these data structures that are persistently stored and managed by
UDDI nodes. The UDDI specification refers to these as entities, and defines four core entity
types as listed in Table 4-4.

Booking, Exh. 1053, Page 136

Booking, Exh. 1053, Page 137

130 Chapter 4 + UDDI—Universal Description, Discovery, and Integration

Tabie 4-4 Thedifferent entity types defined by the UDDI information Model.

Entity Type Name Description

businessEntity A business that provides'a Web service.

businessService A collection of related services offered by a business.

bindingTemplate Technical information about a particular Web service.

tModel Technical model information about a Web servicethatis

used to determine whethera service is compatible with the
client’s needs.

Whether you intend to programmatically connect to a UDDIregistry or manually browse
through one, it is necessary to understand these core data structures. Central to the purpose of
UDDIis the representation of information about Web services so they can be easily registered
and classified by publishers as well as searched and consumed by client applications. As such
the data structures used by UDDI provide not only technical interface information about a ser-
vice itself, but also information necessary to classify, manage, and locate services. Figure 4-4
depicts the interrelationships between the core UDDI data structures.

The businessEntity entity type represents information about service providers
within UDDI. This information includes detailed data about the name of the provider, contact
information, and some other short descriptions of the provider. This information may also be

 <businessEntity>

<businessService> |
Hit <tMoadel> -

<tModel>

g

,&
Vv

Figure 4-4 Theinterrelationship between the UDDI core data structures,

Booking, Exh. 1053, Page 137

Booking, Exh. 1053, Page 138

UDDI Under the Covers 131

provided in multiple languages. The businessEntitystructure does not necessarily have to
refer to a business, but to any type of service provider, such as a department within an organiza-
tion or a group.

One or more of the businessServiceentity types are contained within a busines-
sEntity structure and represents information about the services offered by that busines-
sEntity. The businessServiceentity type does not provide implementation or technical
details, but instead is a logical grouping of Web services and provides information about the
bundled purpose of a set of contained Web services.

One or more of the bindingTemplate entity types are contained within a busi-
nessService stricture and provides technical information about a particular Web service.

The bindingTemplate structure directly or indirectly provides descriptive technical infor-
mation about an instance of a Web service, and includes a network location or endpoint of the
service, The network location (access point) is usually a URL, but can be other network access
points such as email addresses. The bindingTemplatestructure also includes information
about the type ofWeb service located at that access point through references to tModelentities
as well as other parameters.

tModeis, which are short for technical models, provide more detailed information about
a Web service. tModels are reusable entities that are referenced from bindingTemplate
structures and denote compliance with a shared concept or design, tModels are not contained
within bindingTemp]ates,but instead are referenced. Distinct tModeis exist for different

interfaces and contracts that a Web service can comply with including specifications, transports,
protocols, and namespaces. The set of (Models that a binding'Templaterefers to makes

up a Web service’s technical fingerprint. The actual documents and information identified by a
tModel are not located within the UDDIregistry itself, but instead the tMcdel provides
peinters to the location where such documents can be found,

Two more UDDI entity types that are important are subscription and publisher-
Assertion. The subscription entity type describes the request to keep track of the evolu-
tion or changes to particular entities, The publisherAssertion entity type describes the
relationship between one businessEntity and another businessEntity. There are
many instances where multiple divisions within a large organization or a group of organizations
want to make the relationship between them known in order to facilitate discovery of the ser-
vices they provide. The individual divisions or organizations each have their own busines-
sEntity, and the entity type publisherAssertion describes the relationship between
two businessEntitystructures,It is importantto note that two organizations mustassert the
same relationship through thepublisherAgsertion for that relationship to be publicly
available. This disallowsthe situation where one organization claimsa relationship with another
where in fact there is none.

Booking, Exh. 1053, Page 138

Booking, Exh. 1053, Page 139

132 Chapter 4 » UDDI—Universal Description, Discovery, and Integration

Accessing UDDI

UDDTis itself a Web service and as such, applications can communicate with an UDDIregistry
by sending and receiving XML messages. This makes the access both language and platform
independent.

Although it’s possible,it is unlikely that programmers will deal with the low-level details
of sending and receiving XML messages. Instead, client-side packages for different languages
and platforms wil] emerge thatfacilitate programmatic access to UDDI.

‘Two such packages are UDDI4J and Microsoft's UDDI SDK, which are client-side APIs

for communicating with UDDI from Java and .Net programs, respectively. UDDI4J wasorigi-
nally developed by IBM andreleased in early 2001 as an open sourceinitiative. Later, HP joined
and contributed to the initiative, developing muchofthe version 2 release, With the support of
IBM and HP(as well as others), UDDI4J has become the de facto standard Java package for
communicating with UDDI registries. More information about UDDI4J, includingthe latest

releases and download bundles, can be found at the UDDI4J Project Web site at http://www-
124.ibm.com/developerworks/oss/uddi4j/.

Figure 4-5 shows how UDDI4Jfacilitates programmatic access to an UDDIregistry. With
UDDI4J, programmers don’t have to concern themselves with either the UDDI API or with

forming and parsing XML messages. Instead, a new Java object, UDDIProxy, is instantiated to
act as a proxy and representthe actual UDDIregistry. Using setter methods, the proxy objectis
configured with the URLs of the actual registry location, as well as optional transport informa-
tion. Essentially, using UDDI4J andjust a few, simple lines of code, a Java application can open
a communications channel to any UDDITregistry.

// Create a new UDDIProxy object to connect to a registry
UDDIProxy proxy = new UDDIProxy (};

// Set the inquiry and publish URLs
proxy.setInquireURL (INQUIRE_URL);
proxy.setPublishURL (PUBLISH_URL);

Figure 4-5 Opening a connection to an UDDI registry using UDDI4J.

Once we've created the proxy object and set its inquire and publish URLsto the desired
UDDIregistry locations, we can use the methods that are defined for the UDDIProxy objectto
access and set various elements within the registry. Usually, programmers will use the
find_business, find_sexrvice, and find_tModel methods to locate service provid-
ers, services, and tMode1s,respectively, based on search criteria, such as name (including par-
tial names with wildcards) and categories.

Booking, Exh. 1053, Page 139

Booking, Exh. 1053, Page 140

Accessing UDDI 133

Figure 4-6 shows a complete application using UDDI4J to connect to Microsoft’s UDDI
Business Registry (UBR) inquiry node and locate service providers whose name includes the
string “abe”, After an UDDIProxy proxy object for Microsoft’s UBR inquiry node is set up,
the £ind_business methodis invoked to search for available business namesthat contain the
substring “abe”, The wildcard character ‘%’ is used to specify that the substring may occur any-
where in the business name. Quaiifiers, such as case-sensitive string matching, could have been
added to the find_business methodto furtherlimit the search.

f**
* The AccessUDDI class implements a simple application
* that connects to Microsoft's UBR inquiry node,

eeEeHH
/

import
import
import
import
import
import

searches for service providers that have the string
"abe" in their name and displays to the standard
output the business name, the business description,
and the names of all services provided by that
business.

org. .uddi4}.client.UDDIProxy;
org.uddi4j.datatype.Name;
org .uddi4j.response.Businessinfo;
org.uddi4}.response.BusinessList;
org .uddi4j.response.ServicelInfo;
java.util.Vector;

public class AccessUDDI
{

public static void main (String[i] args)
{

int i = 0;
int j = 0;

UDDIProxy proxy = new UDDIProxy {);
try
{

// Set the inquiryURL
proxy. setInguiryURL

("http://uddi.microsoft.com/inquire");

// Look for names that include "abc*
Vector names = new Vector (); :
names.add { new Name (“%abc%" } 3};

Figure 4-6 Using UDDI4J io access an UDDI Registry to print out 21 providers that include the
string “abc”in their names.

Booking, Exh. 1053, Page 140

Booking, Exh. 1053, Page 141

134 Chapter 4 + UDD}—Universal Description, Discovery, and Integration

// Search the UDDI registry
BusinessList results =

proxy.findbusiness (
names,

null,
null,
null,
null,
null,
al);

Vector businessinfoVect = results.getBusinessInfos
().getBusinessInfoVector ():

System.out.printin (*Resuits are:");

for (i= 0; 4 < businessInfoVect.size (} ; i++ }
{

BusinessInfo businessinfo = (BusinessInfo }
businessInfoVect.elementAt (i J;

System.out.printin ["\nName: " +
businessInfo.getNameString {});

System.out.printin (" ... Description: " +
businessiInfo.getDefaultDescriptionstring (});

Vector serviceInfoVect =

businessInfo.getServiceInfos ().getServiceInfoVector ();
for (j= 0; 4 < serviceInfoVect.size (} ; j++)

ServiceInfo servinfo = ({ ServiceInfo }
serviceInfoVect.elementaAt { 3 };

System.out.printin (* ... Service Name: " +
servinfo.getNameString () };

}
}

}
catch (Exception e)
{

e.printStackTrace ();
}

t
t

Figure 4-6 Using UDDI4J to access an UDDI Registry to print out 21 providers that include the
string “abc” In their names (continued).

Oncethe results of the search are returned from the UDDIregistry, additional method calls

are used to extract the business name, business description, and service names forall matching
businesses. This information is then displayed on the standard output. Figure 4-7 shows a
selected subset of the outputof the application shown in Figure 4-6.

Booking, Exh. 1053, Page 141

Booking, Exh. 1053, Page 142

Accessing UDDI 135

Results: are:

Name: aba

Degeription: null

Name: ABC Corporate Services
..» Description: A travel services company serving the agent

and hotel segments of the industry.
Service Name: Traveler's Emergency Service System (TESS)
Service Name: Premier Hotel Program (PHP)
Service Name: Global Connect

Name: abc Enterprise
..- Description: test object

Service Name: Deutsche Telekom Productshow
Service Name: Deutsche Telekom Shopping
Service Name: Deutsche Telekom T-Mobil
Service Name: Deutsche Telekom T-Online

Name: abc inc

Description: test dese

Name: ABC Insurance

Description: null

Name: ABC Microsystems
-.. Description: Pe~ PP PP PPL..PP PL...
... Service Name: <New Service Name>

Name: ABC Music

Description: null
Service Name: List Instruments

Name: ABC travel agency
Description: travel buses for goa,bombay,delhi.

Name: abe123

Description: mull
Service Name: bogus service

Name: CompanyABC
Description: null

Name: IntesaBei Sistemi e Servizi

Description: IntesaBci Sistemi e Servizi co-ordinate all of
Bank IntesaBci’s operations with regard to the development and
management of IT and telecommunication systems

Service Name: Home Page

Figure 4-7 A subset of the result of running the application shown in Figura 4-6,

Booking, Exh. 1053, Page 142

Booking, Exh. 1053, Page 143

136 Chapter 4 + UDDi—Universal Description, Discovery, and Integration

Looking at the output ofFigure 4-7, we can see someof the positive as well as some of the
negative points of using the UDDI UBR.First, there are many service providers available within
the UBR providing an even larger numberof services. These are global providers, and some
only offer their services in certain locations. Many of the fields of service providers or services
are either unfilled or filled inappropriately. Moreover, many of these service providers or ser-
vices are either non-existent or simply test deployments.

The UBRis a powerful resourcethat brings together thousands of providers and services
in one easy-to-access location. Sifting through this large (and constantly growing) list to weed
out useful providers and services from those that are less than useful (or completely useless) is
the difficult part. Althoughclient-side packages such as UDDI4] make developing programs to
access and interact with UDDIregistries easier, the more important difficulty still remains: how
to select the right service and service provider for a given task.

How UDDIIs Playing Out
Now that we have an understanding of the need that UDDI aims to fill, some of the core data
structures of UDDI,as well as the variety of the means of communicating with an UDDIregis-
try, it’s worth taking a step back to see how UDDIis really playing out. How UDDIwill truly be
used by companies will determine how, when, where, and why businesses will register their Web
services.

Upuntil now our discussion of UDDI has focused onits analogous behavior with standard
telephone directory books: UDDI providesa listing of businesses and the services cach business
offers as well as a means of searching and discovering Web services to use within consuming
applications. Since this usage of UDDIis during the design of applications, it can be referred to
as the desigri-time use.

But, will people realiy use the UDDI APIs during design time? Are people using it today?
The answeris not really, and it does not look likeit'll change any time in the foreseeable future.
Most developers don’t programmatically search UDDI for Web services to consume.

Will this change in the future? Mostlikely not, because selecting which service to con-
sume is difficult. [t’s not technical issues, but instead business and strategic issues that make the
selection process difficult,

In selecting a Web service to use, there may exist business relationships and legal agree-
ments that have to be honored. This may sometimes involveselecting a technically inferior ser-
vice in order to meet such obligations. There may be pending customerdeals that can be closed
by using a particular vendor’s Web services. A company may attempt to pressure another com-
pany by withholding patronage ofthe latter company’s Web services.

Basically business, strategic, and sometimes political issues come into the service selec-
tion process. Replacing human intervention through a programmatic APTis usuaily insufficient,
and oftentimes grossly so. Because of the wide mix of issues that are often involved, technolo-
gists alone will also be insufficient. Accordingly, business analysts, consultants, and other such

Booking, Exh. 1053, Page 143

Booking, Exh. 1053, Page 144

How UDDI is Playing Out 137

people (possibly in conjunction with technologists) wil! usually be responsible for the Web ser-
vices selection process. These business analysts and consultants will not use the direct program-
matic interface of UDDI to search for available services, but instead will use more human-

friendly means. These include Web services portals, the home pages provided by some of the
UBR node operators, and standard search engines. Of course, word-of-mouth and other such

non-technical means will also be prevalent. So, for all intents and purposes, UDDI’s program-
matic APE will probably play a minor role during the design of applications.

If not in the design of applications, whexe will UDDI play a larger and more prominent
role? Although seldom mentioned and even less understood, UDDIhasa role larger than just at
design time; UDDIis also useful at run time.

UDDI and Lifecycle Management

To understand the usefulness of UDDI at run time, consider the issues that developers and
companies have to grapple with after they have developed a Web service or an application that
consumes Webservices.

Once a Webservice has been developed and deployed, it not only has an interface specifi-
cation but also a network location (usually a URL) associated with it. Over time, the deployment
that had sufficed when the service was new andrelatively under used, may require changes. This
could include migration of the service to a new server. Multiple geographical mirror servers may
also be deployed as the need to scale the service increases, or a new server location may be
launched while the original one is taken offline for maintenance. The organization or division
maintaining the Web service may be relocated or sold, thereby necessitating an update to its
access endpoint information, How can these changes be propagated to applications that have
already been designed to consumethe original Web service? Without appropriate dissemination
of such changes, applications consuming the original service can malfunction or produce errone-
ous transactions.

An application that consumes Web services has to contend with similar issues. Once an
application has been written to use a specific Web service for a particular part of its functional-
ity, the application's capability with respect to that part of its functionality is dependent on the
Web service. If the Web service goes down oris unavailable for sometime,that part of the appli-
cation will also not function, possibly causing erroneous behavior throughoutthe application.

Applications based on Web services need a mechanism to stay updated with the latest
access endpoint information, including changes to older endpoints, for a particular Web service.
It is precisely in this need for lifecycle management of applications and Web services where
UDDIcan playa critical role, Web services need to disseminatechangesto applications thatcall
them. Applications need to be made aware of these changes. UDDIcanplay the runtime broker
or middleman in handling and propagating these changes. The steps in this lifecycle manage-
ment scenario proceed as follows:

Booking, Exh. 1053, Page 144

Booking, Exh. 1053, Page 145

138 Chapter 4 » UDDI—Universal Description, Discovery, and Integration

1. Locate a Web service that fulfills the application’s needs using whatever meansthat are
useful, including portals, service aggregators, or programmatically with an UDDIreg-
istry directly.

2, Ifthe Web service was not initially discovered within an UDDI registry, locate the same
service within an UDDI registry and save (e.g., in a database) the bindingTem-
plate information. —

3. Develop the application to consume the Web service using the information from the
saved bindingTemplate information.

4. If the Web service call fails or exceeds an application-specified time-out, query the
UDDiregistry for the latest information on that Web service.

5. In case the original Web servicecall failed, compare the latest binding information for
that Web service with the saved information. If the latest binding information for the
Webservice is different from the saved information, then save the new binding infor-
mation, and retry the Web servicecall.

6. In the case that the original Web service call exceeded a time-out, compare the latest
binding information for that Web service with the saved information.If the information

is different or newer access endpoints are available, select another endpoint. The selec-
tien procedure may be manual in which the application allows the user to manually
choose, or it may be automatic.

In this scenario, UDDIplays a critical role in maintaining the reliability and quality-of-
service of both applications and the Web services they consume throughouttheir lifecycle.

The subset of a simple application that demonstrates the use of UDDI at runtime is shown
in Figure 4-8, This code snippet uses the UDDI4J client-side Java API, does not do any error
checking and also assumes a simple binding described by the UDDIregistry.

Once a Web service invocation fails, the application tries to determine whetherthe binding
information for the service has changed. If it has changed, the new binding information can be
incorporated into the Web service call and the service can be retried. Otherwise, an error has to
be thrown notifying the user that the service is unavailable.

The application begins by retrieving the binding information for the saved binding key by
using the get_bindingDetail method. From the BindingDetail object, the program
extracts the latest access point URL for the Web service. By comparing the latest access point
information stored innewAccessPoint with the original access point information stored in
accessPoint,the program is able to determine whether the cause of the service invocation
failure was due to a change in the service’s binding information. If new binding informationis
available, the program updates the accessPoint variable with the latest information and sets
the retryService to true indicating that the service call can now be retried. If no new bind-
ing information is available, then the service is unavailable and there is no need to retry the ser-
vice cail. The program sets retryServiceto false.

Booking, Exh. 1053, Page 145

Booking, Exh. 1053, Page 146

How UDDI fs Playing Out 439

// The Web service invocation failed, so check to see
// whether new binding information is available. If so,
// wretry the Web service call.

BindingDetail bd = proxy.get_bindingDetail (bindingKey);

Vector btvect = bindingDetail.getBindingTemplateVector ();
BindingTemplate bt = (BindingTemplate }

btvect.elementArt (0);
newEndpoint = bt.getAccessPoint ().getText ();

_i£ (thisEndpoint.equaisIgnoreCase { newEndpoint))
{

// In this case, the endpoint information has changed
/f so we should retry the Web service invocation with
// with the new endpoint

thisEndpoint = newkndpoint;
retry = true;

)
else
{

// In this case, the endpoint information has not
// changed so there no reason to retry the Web
// service invocation

retry = false;
}

Figure 4-8 Retrying Webservice invocations based on dynamic UDDI information.

UDDI and Dynamic Access Point Management
As we've already alluded to, UDDI at runtime can be used not only to get an updated

access point URL,but also to dynamically manageand select the most appropriate access point.
Oftentimes, a Web service will be deployed on multiple machinesthat have different characteris-
tics. These characteristics can differ by geographical locations and amountof server resources,
including type of network connectivity.

Usually, this variety of service deployments is dynamic,thatis, the Web serviceis initially
deployed on a single server. Later, as the service becomes more popular and demandincreases,

_ additional access points are deployed. These deployments may be a cluster of servers in close
proximity to each other, a geographically distributed set of servers, or both.

A client application that consumes the Web service may have been developed before the
additional access points were deployed. Orthe best service at the time the application was devel-
oped is no longer the best or the most appropriate. For example, the client application may have
been developedin one country andlater used in another country. Hardwiring the service access

Booking, Exh. 1053, Page 146

Booking, Exh. 1053, Page 147

140 Chapter 4 + UDDI—Universal Description, Discovery, and Integration

point to the one that wasselected at design time (in a country other than where the applicationis
being used) will needlessly increase the latency of the service invocation. Mobile applications
are most vulnerable to this situation as the application may be best suited to a different access
point as the mobile user moves from location to location.

Managing the Web service access points used by a client application becomes increasingly
important.It’s not that the application will not work with a hardwired access point (assumingthe
access point remains operational for the life of the application). Instead, the application may
potentially work better,

Selecting and managing access points is analogous to downloading files from different
mirror sites, A user can certainly download all her content from a single site. But, by judicious
selection of different mirrorsites, the user can achieve improved performance. The selection of
Web service access points can be manual in which the application user is given the ability to
choose the actual access point, or the application may automatically select an access point by
consulting an UDDIregistry. Alternately, the user may specify the high-level characteristics and
metrics that are most important to him, with the application using those characteristics as hints
in determining the most appropriate service access points. Refer to Chapter 10 for a more in-
depth discussion of quality-of-service issues and Web services.

The careful reader will have recognized that some of the benefits ofUDDI at run time can
also be obtained from alternate means. Using databases, configuration files and other registries
are some obvious alternatives. Although other solutions are possible, using UDDIis preferable
as it is a standards-based solution with tremendous support from the software industry, The most
important benefit of using a standards-based solution with industry-wide support such as UDDI
is that almost all Web services can be used. With non-standardsolutions, the Web service vendor
must also publish its information using the same means used by the application vendor. In cases
where a single vendor owns and has administrative control over both the services and the appli-
cations, such a solution is manageable. When the service vendors and application vendors are
different, a standard solution fosters the use of a variety of Web services.

Figure 4-9 summarizes the use of UDDIat both the design time as well as the run time of
Web services-based applications. As the figure depicts, interactions with UDDIat design time
will usually include manual intervention from a variety of sources, such as business analysts,
consultants, strategists, and technologists to determine the most appropriate Web service.It is
important to note that the “most appropriate” service may not be the highest performance ser-
vice. At ran time, however, there is plenty of opportunity to leverage the dixect programmatic
access of UDDI to build applications that dynamically select the “best” service deployment
{from the “most appropriate” service that was determined in the design phase).

In this section, we have discussed just a few uses of UDDIat application run time. Many
more uses are possible, In particular, as UDDI matures and more information is made available

through UDDIregistries, additional opportunities to build more robust and flexible applications
will emerge. When developing applications that consume Web services, if developers find them-
selves hardwiring information particular to a specific service into their applications, alarm bells

Booking, Exh. 1053, Page 147

Booking, Exh. 1053, Page 148

Summary 144

Service Aggregator
Access

Design-time Web Portal
Access to UDDI Access:

Direct Prograrnmatic
Access

a comcomrsoeermmmesitel UDDI

Registry

Run-time Direct Programmatic
Access to UDDI Access

Figure 4-9 The use of UDDIat both design time and run time.

should immediately sound. They must ask themselves whether it is possible to eliminate the
direct dependency on a particular service with an indirect and flexible “brokered” access
through UDDI.

Summary
UDDIis an industry standard for a platform-independent and flexible means of describing, dis-
covering and integrating services as well as the businesses that provide the services, As we have
seen, UDDI has many similarities to telephone books, and provides users a means to search for
Web services as well as service provider businesses.

The UBRis a global implementation of the UDDIspecification and provides a publicly
accessible registry of Web services. Currently, IBM, Microsoft, SAP, and NTT provide UBR
nodes where users can register their Web services and make them available to a global market,

Although the UDDIspecification provides a programmatic API to publish Web services to
a UDDIregistry and also to inquire about which services and service providers are available,
most service selection issues at design time will require human intervention, thus reducing the
usefulness of an automatic, programmatic interface. The business, strategic, and sometimes
political issues that come into the service selection process will usually require business analysts

Booking, Exh. 1053, Page 148

Booking, Exh. 1053, Page 149

itrm

142 Chapter 4 s UDDI—Universal Description, Discovery, and Integration

and strategic consultantsto playacritical role in the service selection process, Accordingly, dur-
ing the design of an application, more human-friendly means to service selection including
aggregation portals such as XMethods, Internet search engines such as Google, word of mouth,
and UBR homepages, will be critical.

Instead of its much-hypedrole at application design time, UDDI plays a more useful role
at application runtime. Applications based on Web services need a mechanism to stay updated
with the latest access endpoint information for a particular Web service, Conversely, Web ser-
vices need a means to broadcast to applications that are already consuming them additional
capabilities and resources. UDDIregistries and the global UBR implementation provide such
capabilities, and can playa critical role in the lifecycle of Web services and the applications that
consume them.

UDDI is an important technology with useful capabilities, These capabilities must be
properly positioned within the limitations of businesses and the usual operations of partner inter-
actions. As we have discussed, with the right positioning, UDDI formsa core pieceofthe enter-
ptise Web services platform.

-Architect’s Notes

* Today, most Web services are discovered through non-programmatic means using
manual, human intervention, Similar to the way companies scrutinize potential partner
companies prior to committing to a strategic relationship, selecting services to use
within enterprise applications requires significant due diligence. Manual intervention
by business analysts, consultants, and others familiar with the company’s business and
strategic needs will almost always be requiredfor selecting services. The most common
sources of locating Web services are existing business partners, UBR home pages,
service aggregators such as XMethods, or standard Web search engines such as Google.

* The UDDI Business Registry (UBR) is a distributed, public registry containing
thousands of service providers and even more services. Sifting through this large (and
constantly growing) list to weed out useful providers and services from those that are
less than useful (or completely useless)is the biggest drawback and the majordifficulty
of using such peblic resources.

* Enterprise UDDIs and other such private (or semi-private) UDDIs that support and
facilitate easy access to Web services and other resources within an organization will
provide direct value. Typical use cases for UDDI within organizations will be to
support and manage reuse of programmatic resources throughout an extended
enterprise, as well as to dynamically configure and customize an application by
changing attributes within the UDDI.

* Using client-side API packages such as UDDI4J and Microsoft’s UDDI SDK facilitate

developing programs that access UDDIregistries, and also insulate applications from
specification changes and differences between various registries.

Booking, Exh. 1053, Page 149

Booking, Exh. 1053, Page 150

Architect's Notes 443

* UDDI plays a critical and potentially larger role during the run time of applications.
Typically, UDDIis seen as a means of discovering services at design time. UDDIalso
provides a convenient means to manage the lifecycle of Web services as well as the
applications that consume them. Changes to information about a Web service can be
pushed onto an UDDI registry, and applications that consume that service can be
developed to be more reliable and robust by simply querying the UDDIregistry for
changes upon any invocation failures or other unexpected behavior.

Booking, Exh. 1053, Page 150

