
Class-of-Service Mapping for QoS: A Statistical
Signature-based Approach to IP Traffic Classification

Matthew Roughan§ Subhabrata Sen? Oliver Spatscheck? Nick Duffield?

School of Mathematical Sciences, University of Adelaide,SA 5005, Australia§

AT&T Labs – Research, Florham Park, NJ 07932-0971, USA?

matthew.roughan@adelaide.edu.au {sen,spatscheck,duffield}@research.att.com

ABSTRACT
The ability to provide different Quality of Service (QoS) guaran-
tees to traffic from different applications is a highly desired feature
for many IP network operators, particularly for enterprise networks.
Although various mechanisms exist for providing QoS in the net-
work, QoS is yet to be widely deployed. We believe that a key
factor holding back widespread QoS adoption is the absence of suit-
able methodologies/processes for appropriately mapping the traffic
from different applications to different QoS classes. This is a chal-
lenging task, because many enterprise network operators who are
interested in QoS do not know all the applications running on their
network, and furthermore, over recent years port-based application
classification has become problematic. We argue that measurement
based automated Class of Service (CoS) mapping is an important
practical problem that needs to be studied.

In this paper we describe the requirements and associated chal-
lenges, and outline a solution framework for measurement based
classification of traffic for QoS based on statistical application sig-
natures. In our approach the signatures are chosen in such as way
as to make them insensitive to the particular application layer pro-
tocol, but rather to determine the way in which an application is
used – for instance is it used interactively, or for bulk-data trans-
port. The resulting application signature can then be used to derive
the network layer signatures required to determine the CoS class
for individual IP datagrams. Our evaluations using traffic traces
from a variety of network locations, demonstrate the feasibility and
potential of the approach.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—Network Management, Network Monitoring

General Terms
Algorithms, Management, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

Keywords
Statistical Signatures, Traffic Classification, Class of Service (CoS),
Quality of Service (QoS)

1. INTRODUCTION
The past few years have witnessed a dramatic increase in the

number and variety of applications running over the Internet and
over enterprise IP networks. The spectrum includes interactive (e.g.,
telnet, instant messaging, games etc.), bulk data transfer (e.g., ftp,
P2P file downloads), corporate (e.g., Lotus Notes, database trans-
actions), and real-time applications (voice, video streaming, etc.),
to name just a few.

Network operators (particularly in enterprise networks) are ac-
tively seeking the ability to support different levels of Quality of
Service (QoS) for different types of applications. The need is driven
by (i) the inherently different QoS requirements of different types
of applications (e.g., low end-end delay for interactive applications,
high throughput for file transfer applications etc.); (ii) the different
relative importance of different applications to the enterprise: e.g.,
Oracle database transactions may be considered critical and there-
fore high priority, while traffic associated with browsing external
web sites is generally less important; and (iii) the desire to opti-
mize the usage of their existing network infrastructures under finite
capacity and cost constraints, while ensuring good performance for
important applications. In spite of a clear perceived need, and the
fact that various mechanisms (diffserv, traffic prioritization, etc. [8,
17, 7]) have been developed for providing different service quality
guarantees in the network, their adoption has not been widespread.
A pertinent question then is: what ails QoS?

Realization of service differentiation capabilities requires associ-
ation of the traffic with the different applications, determination of
the QoS to be provided to each, and finally, mechanisms in the un-
derlying network for providing the QoS. Based on interactions with
large enterprise network operators, we believe that a key issue be-
hind the slow spread of QoS-use is not the lack of interest or need,
but rather, the absence of suitable mapping techniques that can aid
operators in classifying the network traffic mix among the different
QoS classes. We refer to this as the Class of Service (CoS) mapping
problem, and hypothesize that solving this would go a long way in
making the use of QoS more accessible to operators.

In principle the division into CoS could be done by end-points
— for instance by end-user applications. However, for reasons of
trust, and scalability of administration and management it is typ-

135

Splunk Inc. Exhibit 1034 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ically more practical to do this within the network, for instance
at the router that connects the Local Area Network (LAN) to the
Wide Area Network (WAN). Alternatively there might be appli-
ances which sit near the LAN to WAN transition point performing
packet marking for QoS.

CoS mapping inside the network is a non-trivial task. Ideally,
a network system administrator would possess precise information
on the applications running inside their network, along with simple,
unambiguous mappings from easily obtained traffic measurements
to applications (e.g. by port numbers, or source and destination IP
addresses). This information is vital not just for the implementa-
tion of CoS (e.g. via diffserv), but also in planning the capacity
required for each class, and balancing tradeoffs between cost and
performance that might occur in choosing class allocations. For in-
stance, one might have an application whose inclusion in a higher
priority class is desirable, but not cost effective (based on traffic
volumes and pricing), and so some difficult choices must be made.
Good data is required for these to be informed choices.

However, in general, the required information is rarely up-to-
date or complete, if it is available at all. The traditional ad-hoc
growth of IP networks, the continuing rapid proliferation of new
applications, the merger of companies with different networks, and
the relative ease with which almost any user can add a new appli-
cation to the traffic mix with no centralized registration are some
factors contributing to this “knowledge gap”. Furthermore, over
recent years it has become harder to identify network applications
within IP traffic. Traditional techniques such as port-based classi-
fication of applications have become much less accurate (details in
Section 2).

This paper presents a signature-based traffic classification frame-
work as a candidate solution for the CoS mapping problem, and
demonstrates the feasibility and potential of the approach using
large traffic traces collected from multiple Internet locations. Our
classification method is based on utilizing the statistics of particu-
lar applications in order to form signatures. By choosing signatures
that are determined by the way in which an application is used (e.g.
is it used interactively, or for bulk data transport), we should ob-
tain signatures that are insensitive to the particular application layer
protocol. We can therefore perform CoS categorization without de-
tailed knowledge of the specific application protocol, or usage case
(some applications may be used for multiple tasks with different
QoS requirements). The method would be used off-line to form a
set of port, or IP address based rules for CoS assignment that would
then be applied on-line in the QoS implementation. Our evaluations
indicate that the technique has relatively low error rates. For exam-
ple, our cross-validation tests using 3-Nearest Neighbor (details in
Section 5) yield classification error of 2.5% and 5.1% respectively
when the traffic is categorized into three and four classes, using two
features. We found that even better results (for instance 0.0% errors
were possible) with three features. The evaluations even showed
relatively low error rates even for fine grain traffic classes. The
last suggests that such statistical classification techniques may be
good candidates for identifying even individual applications. Such
identification of the different applications and their associated net-
work traffic has a number of important usages for network opera-
tions and management (outside of QoS implementation), including
application-specific traffic engineering, capacity planning, provi-
sioning, and security.

The remainder of this paper is organized as follows. Section 2
overviews existing techniques for identifying IP traffic and their
limitations. Section 3 presents a three-phase framework for realiz-
ing CoS mapping. Section 4 presents our techniques for CoS classi-
fication from network traffic. Section 5 presents evaluations of our
techniques using real traffic traces. Finally, Section 6 concludes the
paper.

2. IP TRAFFIC CLASSIFICATION
One approach commonly used for identifying applications on an

IP network is to associate the observed traffic (using flow level data,
or a packet sniffer) with an application based on TCP or UDP port
numbers. We argue here that this method (described below) is in-
adequate.

The TCP/UDP port numbers are divided into three ranges: the
Well Known Ports (0-1023), the Registered Ports (1024-49,151),
and the Dynamic and/or Private ports (49,152-65,535). A typi-
cal TCP connection starts with a SYN/SYN–ACK/ACK handshake
from a client to a server. The client addresses its initial SYN packet
to the well known server port of a particular application. The source
port number of the packet is typically chosen dynamically by the
client. UDP uses ports similarly to TCP, though without connec-
tion semantics. All future packets in either a TCP or UDP session
use the same pair of ports to identify the client and server side of the
session. Therefore, in principle the TCP or UDP server port num-
ber can be used to identify the higher layer application, by simply
identifying which port is the server port and mapping this port to an
application using the IANA (Internet Assigned Numbers Author-
ity) list of registered ports [20]. However, port-based application
classification has limitations. First, the mapping from ports to ap-
plications is not always well defined. For instance,

• Many implementations of TCP use client ports in the registered
port range. This might mistakenly classify the connection as be-
longing to the application associated with this port. Similarly,
some applications (e.g. old bind versions), use port numbers
from the well-known ports to identify the client site of a ses-
sion.

• Ports are not defined with IANA for all applications, e.g. P2P
applications such as Napster and Kazaa.

• An application may use ports other than its well-known ports
to circumvent operating system access control restrictions, e.g.,
non-privileged users often run WWW servers on ports other
than port 80, which is restricted to privileged users on most
operating systems.

• There are some ambiguities in the port registrations, e.g. port
888 is used for CDDBP (CD Database Protocol) and access-
builder.

• In some cases server ports are dynamically allocated as needed.
For example, FTP allows the dynamic negotiation of the server
port used for the data transfer. This server port is negotiated on
an initial TCP connection which is established using the well-
known FTP control port.

• The use of traffic control techniques like firewalls to block unau-
thorized, and/or unknown applications from using a network
has spawned many work-arounds which make port based appli-
cation authentication harder. For example port 80 is being used

136

Splunk Inc. Exhibit 1034 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

by a variety of non-web applications to circumvent firewalls
which do not filter port-80 traffic. In fact available implemen-
tations of IP over HTTP allow the tunneling of all applications
through TCP port 80.

• Trojans and other security (e.g. DoS) attacks generate a large
volume of bogus traffic which should not be associated with the
applications of the port numbers those attacks use.

A second limitation of port-number based classification is that
a port can be used by a single application to transmit traffic with
different QoS requirements. For example, (i) Lotus Notes transmits
both email and database transaction traffic over the same ports, and
(ii) scp (secure copy), a file transfer protocol, runs over ssh (se-
cure shell), which is also used interactively on the same port (TCP
port 22). This use of the same port for traffic requiring different
QoS requirements is quite legitimate, and yet a good classification
must separate different use cases for the same application. In prac-
tice, one use case may dominate on a particular VPN (Virtual Pri-
vate Network), or use cases will have other discriminating factors
such as the servers’ IP addresses. Thus a clean QoS implementa-
tion is still possible through augmenting the classification rules to
include IP address-based disambiguation. Server lists exist in some
networks, but again, in practice these are often incomplete, or a
single server could be used to support a variety of different types of
traffic, so we must combine port and IP address rules.

A possible alternative to port based classification is to use a painstak-
ing process involving installation of packet sniffers and parsing
packets for application-level information to identify the application
class of each individual TCP connection or UDP session. However,
this approach cannot be used with more easily collected flow level
data, and its collection is computationally expensive, limiting its
application to lower bandwidth links. Also this approach requires
precise prior knowledge of applications and their packet formats
– something that may not always be possible. We use it here to
identify Kazaa and Gnutella traffic from their application layer pro-
tocols, but this requires substantial effort for each application, and
in some cases, each application version. Furthermore, the introduc-
tion of payload encryption is increasingly limiting our ability to see
inside packets for this type of information.

In this paper we explore the potential of signatures derived from
measured traffic for CoS categorization. In practice, this approach,
in conjunction with the above techniques and the partial knowledge
available for most corporate networks can be used to bear on the
problem of application identification and traffic classification.

2.1 Related work
Previous related work has examined the variation of flow charac-

teristics according to application. Claffy [10] investigated the joint
distribution of flow duration and number of packets, and its varia-
tion with flow parameters such as inter-packet timeout. Differences
were observed between the support of the distributions of some ap-
plication protocols, although overlap was clearly present between
some applications. Most notably, the support of the distribution of
DNS transactions had almost no overlap with that of other appli-
cations considered. The use of such distributions as a discrimina-
tor between different application types was not considered. There
exists a wealth of other research on characterizing and modeling
workloads for particular applications, e.g., [22, 31, 4, 2, 9, 34]. An

early work in this space, [29], examines the distributions of flow
bytes and packets for a number of different applications. Interflow
and intraflow statistics are another possible dimension along which
application types may be distinguished. [30] found that user initi-
ated events—such as telnet packets within flows or ftp-data
connection arrivals—can be described well by a Poisson process,
whereas other connection arrivals deviate considerably from Pois-
son.

All these studies assume that one can identify the application
traffic unambiguously and then obtain statistics for that applica-
tion. In contrast, we are considering the dual problem of inferring
the application from the traffic statistics. This type of approach has
been suggested in very limited contexts such as identifying chat
traffic [12]. Our work extends this idea while providing a rigor-
ous mathematical framework for performing classification based
on signatures. Signature-based detection techniques have also been
explored in the context of network security, attack and anomaly de-
tection (e.g. [6, 5, 36, 26]) where one typically seeks to find a signa-
ture for an attack. However, we apply our classification techniques
to identify everyday traffic.

3. REALIZING COS MAPPING

The constraints under which CoS mapping must operate are prin-
cipally related to computational complexity. At high speeds, the
rules that can be used for this task are rather limited. Typically, one
can use simple criteria such as port numbers or IP source/destination
addresses, but not details from the higher layer protocols. Our task
is to use statistical signature based classification (trained on prior
networks’ traffic, and applied to traffic measurements from the cur-
rent VPN) to form a set of local rules based on port, or IP addresses,
which would then be applied on-line for CoS assignment.

We propose to realize this type of CoS mapping using a three
stage process.

1. statistics collection,

2. classification,

3. rule creation.

The first stage — statistics collection — involves placing monitors
in the network, and collecting appropriate statistics of the traffic
from certain aggregates. In this case, the aggregates we consider
are the server port Pi, and server IP address1 Ii of a connection i.
One could choose these aggregates in a more flexible manner, with
the proviso that the aggregates used must be easily implementable
as rules (see below). There are a number of techniques available
for efficiently identifying the interesting aggregates, for instance,
see [13]. We then form a vector of statistics S

C(i) for each con-
nection i, and use this to update the statistics of each aggregate that
connection is involved in, for instance statistics S

P (Pi) for port
aggregates, and S

I (Ii) for server aggregates.

1Notice that server address are usually statically allocated, rather
than allocated via DHCP, and so we do not need to worry about
constantly shifting IP addresses, at least on the time scales of mea-
surements considered here.

137

Splunk Inc. Exhibit 1034 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

For statistics collected on TCP connections, the procedure would
be:

foreach packet
if new TCP connection (give it index i++)

determine the aggregates for i

server port Pi = dst port of SYN
server IP address Ii = dst IP of SYN
...

initialize a set of statistics S
C(i)

else if part of existing TCP connection i

update connection statistics S
C(i)

else if end TCP connection i

update connection statistics S
C(i)

update statistics foreach aggregate
by server port: S

P (Pi)

by server IP address: S
I(Ii)

The update procedure for connections depends on the statistic in
question. Ideally, we should choose statistics that can be updated
on-line in a streaming fashion, i.e. recursively. This means that we
do not need to store data per packet, but rather per connection, for
instance, assuming an update algorithm like

SC
k (i)← f(Xi

j , S
C
k (i), φ(i)),

where Xi
j is the measurement for the jth packet in connection i,

and SC
k (i) is the kth statistic for connection i, and φ(i) is some

(small) set of state information (e.g. the packet number j) for con-
nection i, then the memory required to store the state depends on
the number of connections, not number of packets. For example,
for a series of real-valued data Xj , the following statistics may be
easily computed recursively:

1. average:

X̄j+1 =
1

j + 1
Xj+1 +

j

j + 1
X̄j ,

2. variance:

var (Xj+1) =
1

j
Xj+1+

j − 1

j
var (Xj)+

j

j − 1
X̄2

j−
j + 1

j
X̄2

j+1.

where X̄j and var (Xj) are the mean and variance, respectively,
of the first j samples of data. However, even for more difficult
statistics, such as quantiles, there are a number of approximation
algorithms [18] that can be used to approximate the statistic on-line.
The variables Xj could represent packet size, or inter-arrival time,
or other features, and so we can generate a moderately large number
of statistics even with the limitation of on-line computation. Some
statistics need only be computed at the start and end of the TCP
connection — for instance, the duration, which we may compute
by including the start time of connection i in the state variables
φ(i).

Likewise, it is appealing to be able to update the statistics of each
aggregate recursively, but this is not necessary, as it is much easier
to store one set of statistics per connection than per packet. If the
statistics for each connection are stored, then we could alternatively
compute the statistics per aggregate off-line, after the data collec-
tion.

We may also finalize any extant TCP connections at the end of
data collection in one of two ways: by including them in our statis-
tics, or excluding them. Either approach biases the results — for
instance, if we exclude the connections we naturally exclude any
connections longer than our measurement interval, but if we include
them we underestimate the duration of the connections. These edge
effects will be minimized by having a longer data collection inter-
val, so in this work we propose using one day worth of data, though
it may be practical to use longer data sets. Ideally, the collection
intervals for training data should be the same as those for test data,
so that both data sets are subject to the same biases.

After statistics collection, unsurprisingly, one has a collection of
statistics indexed by aggregate (in our case server port, and server
IP address). The next step is to classify the traffic on each ag-
gregate. We do so using the classification algorithms described in
Section 4 (or alternative algorithms if these are shown to be more
accurate), in conjunction with a pre-existing set of training data,
carefully collected on well understood networks of the type under
study.

Once we have completed classification we will have associated
each aggregate with a class. Assuming the classes map directly to
CoS we can immediately construct the rules required in the QoS
implementation. That is, assume that aggregate Ai has been deter-
mined to belong to class Cj , which requires QoS Qk. We now have
a mapping

Ai → Cj → Qk,

which can be instantiated as a rule. For instance, if Ai ≡ Pi corre-
sponds to a particular server port Pi, our rule is
place traffic to/from port Pi in class Qk.
One can obviously create a large set of such rules, and in gen-

eral it might be non-trivial to reduce the size of this rule set to
something manageable. However, in practice, differential pricing
between classes means that only traffic specifically requiring high
priority should go into high priority classes, and so the majority
of application will most likely be placed in a lower priority class.
Hence there are typically only a few classes, and the majority of
aggregates will go into a default class, so few rules will be needed.

Once a set of rules has been created, these would then be imple-
mented on (for example) the access router, which would use them
to mark the packets appropriately, and place them in appropriate
queues for forwarding. Thus the classification process described so
far is an off-line process, to be applied before the fact to create a set
of simple rules that would be used in the actual on-line QoS imple-
mentation. Note that the error rate of the classification algorithm is
in forming these rules, not in classification of packets in the actual
QoS implementation. This is an important distinction: the error rate
does result in packets being placed in suboptimal classes, however,
these packets only pay for the class in which they are placed. This
is not the same, for example, as paying a business class airfare and
being bumped to economy. It is simply a case of an administrator
occasionally booking the wrong class of ticket because he has in-
correctly categorized the importance of some of his administratees.

Furthermore, the above process (as described) is automated. How-
ever, it is desirable for a human to “double-check” the assignment
rules. The method described here cannot be made 100% foolproof
simply because a particular network operator may have specific re-
quirements which deviate from the norm. A human would be able

138

Splunk Inc. Exhibit 1034 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

to map the classes/rules to known traffic and servers, and ensure
that the known policy based rules were enforced in priority to those
derived above. Think of this as our disgruntled business class pas-
senger updating his administrator’s list of important people, so that
he receives the air transport he deserves in the future. In essence,
the technique above is intended to fill in the unknown gaps in the
best possible way.

A side benefit of the above approach is that the collected statis-
tics can be used in other ways. For instance, the traffic volume per
aggregate could be useful in planning the required capacity for each
QoS class, or the network in general. In fact, given a set of prices
per class, the measured volumes, and a set of utilities per applica-
tion class, one could create the mapping from the application class
Cj to QoS class Qk through an optimization process using traffic
data, rather than as a set of fixed rules.

Once monitors are installed, there is no reason one could not use
them in an on-going manner. One could continue to make measure-
ments (as above) of the statistics per aggregate, and if something
changes significantly, then one could change the rules used. An
example might be the introduction of a new application with differ-
ent QoS characteristics, requiring a rule update. It is not, however,
envisioned that these updates would occur often.

4. COS CLASSIFICATION
We next present the different components in our classification

approach: identifying different application classes, selecting candi-
date classification features, and finally specific classification meth-
ods.

4.1 Class Definitions
In practice, service differentiation mechanisms like diffserv to-

day only allow a relatively small number of application classes.
For our initial study, we focus on the following 4 broad applica-
tion classes, commonly found in corporate networks.

• Interactive: The interactive class contains traffic which is re-
quired by a user to perform multiple real-time interactions with
a remote system. This class includes such applications as remote
login sessions or an interactive Web interface.

• Bulk data transfer: The bulk data transfer class contains traffic
which is required to transfer large data volumes over the net-
work without any realtime constraints. This class includes ap-
plications such as FTP, software updates, and music or video
downloads (say through an application such as Kazaa).

• Streaming: The streaming class contains multimedia traffic with
realtime constraints. This class includes such applications as
streaming and video conferencing.

• Transactional: The transactional class contains traffic which is
used in a small number of request response pairs which can be
combined to represent a transaction. DNS, and Oracle transac-
tions belong to this class.

The choices were motivated by the need to select a small num-
ber of classes that would be simple, intuitive and still adequately
represent the different QoS requirements of commonly used appli-
cations. We view these 4 classes as a starting point, with the actual
choice of application classes being a topic for research.

To characterize each application class we need a reference data
set for each class from which we can extract a set of representative
features. Acquiring such a reference data set is made difficult by
precisely the problems described in Section 2. Selecting the net-
work traffic based on port numbers may not yield reliable statistics
that are representative of any particular class, however, to classify
them otherwise requires a reference data set. To break this circular
dependency we selected some applications per class, which based
on their typical use, have a low likelihood of being contaminated
by traffic belonging to another application class. In particular we
focus on applications which:

• are clearly within one class (to avoid mixing the statistics
from two classes);

• are widely used, so as to assure we get a good data-set;

• have server ports in the well known port range to reduce the
chance of mis-use of these ports.

These reference applications will then be used to estimate a num-
ber of statistics, from which we will select features for use in CoS
categorization. Based on the criterion established in the previous
section, the reference applications selected for each application class
are:

• Interactive: Telnet,

• Bulk data: FTP-data, Kazaa,

• Streaming: RealMedia streaming,

• Transactional: DNS, HTTPS.

We include HTTPS in the transactional class, because a large
proportion of HTTPS interactions involve users filling out a form,
for instance to conduct secure credit card purchases over the WWW.
In our current study, we do not use web traffic to train the classi-
fication. However we do include WWW traffic statistics (as cap-
tured using port 80) in some plots as an example application, as it
provides some interesting intuition into the results. Also, although
Kazaa does not have registered ports, in particular data sets we have
reliable ways of identifying Kazaa traffic (as describe below).

4.2 Candidate Features
The list of possible features one could consider is very large. We

can broadly classify these into five categories:
1. Simple packet-level features such as mean packet size and

various moments such as variance, RMS (root mean square) size,
etc., are simple to compute, and can be gleaned directly from packet-
level information. They offer a characterization of the application
that is independent of the notion of flows, connections or other
higher level aggregations. Another advantage is that packet-level
sampling, which is widely used in network data collection, has lit-
tle impact on these statistics. Other statistics that can be derived
from simple packet data are time series, from which we could de-
rive a number of features, for instance relating to correlations over
time (e.g. parameters of long-range dependence such as the Hurst
parameter). An example of this type of classification can be seen in
[23], where the authors use time-of-day traffic profiles to categorize
web sites.

2. Flow-level statistics are summary statistics at the grain of net-
work flows. A flow is defined to be an unidirectional sequence

139

Splunk Inc. Exhibit 1034 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

