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ABSTRACT
The early detection of applications associated with TCP flows is
an essential step for network security and traffic engineering. The
classic way to identify flows, i.e. looking at port numbers, is not
effective anymore. On the other hand, state-of-the-art techniques
cannot determine the application before the end of the TCP flow.
In this editorial, we propose a technique that relies on the obser-
vation of the first five packets of a TCP connection to identify the
application. This result opens a range of new possibilities for online
traffic classification.

Categories and Subject Descriptors
I.2.6 [Learning]: Unsupervised Learning; C.2.3 [Network Moni-
toring]: Network Management

General Terms
Measurement, Algorithms, Management

Keywords
Traffic classification, Applications, Machine Learning

1. INTRODUCTION
Enterprise or campus networks usually impose a set of rules for

users to access the network in order to protect network resources
and enforce institutional policies (for instance, no sharing of mu-
sic files or gaming). This leaves network administrators with the
daunting task of (1) identifying the application associated with a
traffic flow on-the fly and (2) controlling user’s traffic when needed.
Therefore, accurate classification of traffic flows is an essential step
for administrators to detect intrusion or malicious attacks, forbid-
den applications, or simply new applications (which may impact
the future provisioning of network resources).

Previous works have proposed a number of methods to identify
the application associated with a traffic flow. The simplest approach
consists in examining TCP port numbers. Port-based methods are
simple because many well-known applications have specific port
numbers (for instance, HTTP traffic uses port80 and FTP port21).
However, the research community now recognizes that port-based
classification is inadequate [1, 2, 3, 4], mainly because many ap-
plications use dynamic port-negotiation mechanisms to hide from
firewalls and network security tools. An alternative approach is
to inspect the payload of every packet. This technique can be ex-
tremely accurate when the payload is not encrypted, but it is an
unrealistic alternative. First, there are privacy concerns with exam-
ining user data. Second, there is a high storage and computational

cost to study every packet that traverses a link (in particular at very
high-speed links).

Detecting the application associated with a flow is of limited in-
terest once the flow is finished (except for provisioning and maybe
for pricing). To address these challenges, we propose a novel tech-
nique that only uses thesize of the first few data packetsof each
TCP flow to identify the application associated with a TCP flow.
Our method runs at theedgeof the network, i.e., where the net-
work connects to the Internet, and hence is able to capture all pack-
ets associated with a TCP flow in both directions (from sender to
receiver and vice-versa). The accurate classification of flows based
on information contained only in the first few packets opens new
possibilities for online classification (i.e. security, SLAs, etc.). Our
method is in sharp contrast with the current state of the art.

2. STATE OF THE ART
After port-based classification has been debunked and given the

limitations of searching payloads for signatures, there has been a
new trend to classify traffic based on summarized flow information
such as duration, number of packets and mean inter-arrival time [2],
[5], [6], [3]. BLINC [4] introduces a new approach for traffic clas-
sification. It associates Internet hosts with applications. Instead of
studying TCP (or UDP) flows individually, it looks at all the flows
generated by specific hosts. BLINC is able to accurately associate
hosts with the services they provide or use (application server, web
client, etc.). However, it cannot classify a single TCP flow.

All classification techniques that use flow statistics can only iden-
tify the nature of a flow when the flow is finished. BLINC has to
gather information from several flows for each host before it can
decide on the role of a host. These requirements prevent the use
of these methods online. In contrast, our method relies only on the
first few packets of a TCP flow. This early classification is essen-
tial to allow automatic blocking, filtering, or recording of specific
applications. It also limits the amount of memory required to store
information associated with each flow.

3. KEY POINTS
This section discusses our assumptions and the two main insights

of our method: the analysis of only the first few packets of the flow,
and the use of unsupervised clustering to detect a set of flows that
share a common behavior.

3.1 Assumptions
Our goal is to build a classifier that runs online and accurately

identifies the application associated with a TCP flow as early as
possible. Our work relies on the following assumptions:
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e Access to both directions of a TCP connection. Edge net-
works usually connect to the Internet at few locations. The
vast majority in one or two locations. We assumethatthe net-
work administrator monitors both directions ofall the edge
links.

e Offline access to flows of a numberof applications. Our
method only needs packet size information. However, for
training purpose, we need to knowthe application associated
with a sample of flows. There are twoalternative techniques
for collecting this training trace: (i) directly from one of
the monitored links using high-end packet monitoring cards
(we can then analyze the payloads offline to identify the ap-
plication corresponding to a given flow) ; or (ii) generated
in a controlled fashion by explicitly launching instances of
each of the desired applications and collecting all packets
exchanged.

e Online access to header of all packets. We only use the
information on the packet header to do our onlineclassifica-
tion, which is much smaller andoffixed size.

3.2 Intuition behind the method

Our goal is to identify the application associated with a TCP flow
as early as possible. We design a classifier that uses information
available in the header ofthe first P packets ofthe flow to identify
the application associated with a flow. Specifically, we only use
the size of the data packets, not using TCP control packets (SYN,
ACKs,etc.). The size of the first few packets is a good predictor of
the application associated with a flow because it captures the appli-
cation’s negotiation phase, which is usually a pre-defined sequence
ofmessages and distinct amongapplications.

We illustrate our approach with SMTP and Edonkey flows cap-
tured at the edge of a large university network to shed light on
the behaviors of applications. Figure 1 presents the size of the
first packet versus the size of the second (negative values repre-
sents packets sent from the TCP server to the client and positive
from client to server) for every TCP flow ofthese two applications.
Edonkey clients initialize request for files, hence the positive sign
for the size of the first packet, whereas the SMTP server initiates
negotiation. This simple example illustrates the expressiveness of
this two-dimensionalrepresentation ofTCP flowsto distinguish the
application associated with each flow. In fact, the traces we study
consist of ten major applications and we found that 5 packets were
enough to distinguish their behaviors.

3.3. Unsupervised clustering
To extract groups offlowsthat share a common communication

behavior, we borrow techniques from machine learning. We use
unsupervised clustering as it relies on unlabeled data samples (in
our case, the size of the first few packets of a TCP flow) to find
natural groups (or clusters) in a dataset, whereas supervised clus-
tering uses a pre-labeled set of samples to construct a model for
each cluster.

Although thetraffic classification mechanism presented in [3]
uses Naive Bayes Classifiers, an example of supervised clustering,
unsupervised learning is more appropriatefor traffic classification
because it doesnotrely on pre-defined classes. A single application
can have multiple behaviors which should be modeled separately.
For example, Figure 2 presents the size ofthe first packet versus the
size ofthe second ofa set ofFTP flows. This figure shows that FTP
has three very distinct behaviors: (i) command flows correspond
to a control flow, in which a data connection is negotiated and in
which clients ask for data; (ii) download flows corresponds to files
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Figure 1: SMTP versus Edonkey flows.

transfer from client to server: and(iii) upload flows are file transfers
from server to client.

SizeofPacket#2   
Figure 2: Example of a multi-modal application: FTP.

FTP is an example of a multi-modal application, and we found
many other applications with several behaviors in our data. Unsu-
pervised learning finds groups of flows that share the same behav-
ior, which are easier to model.

4. METHODOLOGY

Basedon the observations from the previous section, we propose
a traffic classification mechanism that works in two phases: an of-
fline learning phase and an online traffic classification phase.First,
the learning phase usesa set of training data to cluster TCP flows
that share a commonbehavior. Then, thetraffic classification phase
uses these classes to determine the application associated with each
TCP flow. To verify that the behaviors of applications do not vary
with time, we use one data set for the learning phase and another
for the evaluation of the derived classification method. These two

traces were collected several month apart on the samelink.
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4.1 Learning phase
The learning phase is performed offline and consists in detect-

ing common behaviors in a set of flows. It takes as input a short
packet trace with TCP flows from a mix ofapplications. Our study
uses a one-hour trace collected at the edge ofa university network.
This trace also includes packet payloads. We apply a packet trace
analyzer to this data set to extract TCP flows. First, to group flows
into clusters, we need to evaluate the similarity between them. We
associate each flow with a spatial representation based onthe sizes
ofits first P packets. The representation we use is quite simple:
flows are represented by points in a P-dimensional space where
each packet is associated to a dimension. The coordinate on the
dimensionpis the size of packet p in the flow. In order to differ-
entiate packets sent by the TCP-server and the TCP-client, packets
sent by the server have a negative coordinate. The similarity be-
tween flowsis then evaluated with a simple metric: the Euclidean
distance between their associated spatial representation.

Tn order to extract common behaviors in such a space we rely on
the well-known K-Means algorithm [7]. Once we have found nat-
ural clusters in the training set, we model and analyze eachcluster.
The modeling step consists in defining a heuristic to associate a
new flow to a cluster. We use a simple heuristic: we compute the
euclidean distance between the new flow andthe center ofeach pre-
defined cluster, and then choose the cluster for which this distance

is minimum. Theanalysis step consists in examining the composi-
tion of each cluster. We processthe training flows with a payload
analysis tool [8] that is a able to accurately determine the applica-
tion associated with each flow. This step allows us to decide how
to label a flow onceit has be assigned to a cluster.

Westudied different numbers ofpackets and found that the best
separation ofapplications amongclusters was observed with 5 pack-
ets. We also tried different numbers of clusters for the K-Means

algorithm and found that, for 5 packets, 50 clusters was the best
trade-offbetween behavior separation and complexity.

The learning phase outputs two sets: one with the description of
each cluster (or the center of the cluster) and the other with their
composition (or the set of applications represented in the cluster).
Weuse both these sets to classify flows online.

4.2. Online classification

Figure 3 presents the structure of the online classifier. This clas-
sifier can run either at a managementhost that has online access
to packet headers or in a network processorat the router. We as-
sume that the network administrators deploy a monitoring card that
is able to process the header of all packets traversing the link [9].
This process is very light since it only involves retrieving informa-
tion from the IP and TCP headers (the size of the packet and the
flow id).

Our classifier takes as input the series ofpacket headers for both
directions of an edge link. A packet analyzer extracts the 5-tuple
(protocol, source IP, destination IP, source port, destination port)
and the packet size. The analyzer filters out control traffic (the
three packets of the TCP handshake and ACKs without payload)
andstores the size ofevery packet in both directions ofthe connec-
tion. When it has the size for the first Ppackets ofthe connection, it
sends this information to the flow conversion module, which maps
the new flow to a spatial representation. Then, the cluster assign-
ment module searches all the cluster descriptions to find the bestfit
for the new flow and the application identification module selects
which application is the most likely for the flow given the set of
applications that compose the cluster. We chose a simple heuristic
to associate an unknown flow with an application: it is labeled with
the application that is the most commonin the cluster.
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Figure 3: Design of online classifier.

5. EARLY EVALUATION RESULTS

This section gives a proof of concept of our flow classification
method. Further work is necessary to conclude in the applicability
of the method. We build a prototype classifier using Matlab. First,
we use a training data set for the learning phase. Based on the
cluster descriptions and cluster compositions found in the learning
phase, we emulate the online classification using a trace collected
six month afterwards on the same link. For validation purposes, we
label this trace using the payload analysis tool used in the learning
phase [8].

Table 1 presents the accuracy of our classifier when it consid-
ers the first five packets of each flow. We measure accuracy by
comparing the application labels given by our classifier to the ones
obtained through payload analysis. We were ableto correctly iden-
tify more than 80% offlows ofalmost all of the applications. The
only exception is POP3. Our classifier labels 86.8% ofPOP3 flows
as NNTP and 12.6% as SMTP, because POP3 flows always belong
to clusters where POP3is not the dominant application. This error
can be easily fixed if we consider extra information. In this ex-
ample, ifwe had used the destination port to label POP3 flows, we
would have achieved over 90% accuracy. We are currently working
on more sophisticated labeling techniques.

Application Accuracy
edonkey 84.2%

fp 87%
http 99%

kazaa 95.24%
nntp 99.6%
pop3 0%
smtp 84.4%
ssh 96.92%

https 81.8%
pop3s 89.8%

Table 1: Accuracy offlow classification.

6. LIMITATIONS AND CHALLENGES
The initial results observed with our method on a small trace are

encouraging. The method is promising as it allows early classifica-
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tion of applications and is quite simple. However, the method has
some limitations that we discuss below. Most of these limitations
are easy to overcome, while others are more fundamental and affect
most classification methods to date.

Multi-homed networks. Large networks often have multiple
connections to the Internet. In this case, we can extend our ap-
proach to monitor all access links and aggregate information on a
machine where the classification will take place.

Packet order. In IP networks, packets may be out of order or
may appear more than once. Out-of-order packets will change the
spatial representation of the flow, which will impact the quality of
our classification. Fortunately, we only need the first five packets
to arrive in order, which is very likely. On the network we studied,
less than 4% of TCP flows had an out-of-order packet within the
first five data packets of the flow.

Sampling. On high speed links, monitors cannot collect all
packets. The accuracy of our method will degrade fairly quickly
under packet sampling. If instead the network adopts flow sam-
pling [10], then our method will work unaltered.

Applications with similar behaviors. If two distinct applica-
tions start by exchanging five packets of approximately the same
size, then we classify both with the same label. To solve this prob-
lem, we are working on more sophisticated labeling heuristics that
take into account other pieces of information available in the first
few packets (such as port numbers and inter-arrival times).

Applications with unknown behaviors. The learning phase
gives a model for the traffic present in the training data. Using this
model on other networks could be inefficient. Although a specific
behavior for an application precisely described on a trace should
not change when observed on another network or at a different
time, a new network can (and most likely will) have different ap-
plication behaviors. We can identify new behaviors using limited
cluster radiuses. Using this limit, we return an accurate application
label for previously-defined behaviors and classify all flows that are
not represented in the training data as “unknown”.

Short flows. It is well known that the traffic is made of a large
majority of short flows and a small number of very large flows. We
need to test our method on these very short flows. In this scenario, if
it is successful, it will not work better than most other techniques.
However, previous classification techniques have not specifically
studied these short flows and they may exhibit some limitations
that have not been observed yet.

False matches. Most classifiers to date are based on heuristics
and may misclassify a flow. This possibility of error, even if small,
prevents the use of traffic classification techniques to automatically
filter or block flows. Network administrators can use our method
to identify suspicious flows early and store all their packets. They
can later audit the stored data.

Evasion. The main challenge to traffic classification techniques
is evasion. For instance, an “attacker” could easily evade our method
by padding packet payloads in order to modify sizes. However, all
classification methods can be evaded: payload analysis tools can-
not classify encrypted packets, port-based methods are deceived by
a simple change of port, and approaches relying on summarized
flow information are sensitive to simple alterations of packet sizes
and inter-arrival times.

To summarize, we now need to analyze our method on a much
broader panel of traces. This is a difficult task as (i) we need the full
trace with full payload for validation purposes (such traces are rare
in the community); and (ii) we need more sophisticated techniques
to label a flow after it has been assigned to a cluster. We are also
working on circumventing the limitations and the weaknesses of
our method.
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