Accurate, Scalable In-Network Identification of P2P Traffic
Using Application Signatures

Subhabrata Sen
AT&T Labs-Research
Florham Park, NJ 07932

sen@research.att.com

ABSTRACT

The ability to accurately identify the network traffic associated with
different P2P applications is important to a broad range of net-
work operations including application-specific traffic engineering,
capacity planning, provisioning, service differentiation, etc. How-
ever, traditional traffic to higher-level application mapping tech-
niques such as default server TCP or UDP network-port based dis-
ambiguation is highly inaccurate for some P2P applications.

In this paper, we provide an efficient approach for identifying
the P2P application traffic through application level signatures. We
first identify the application level signatures by examining some
available documentations, and packet-level traces. We then utilize
the identified signatures to develop online filters that can efficiently
and accurately track the P2P traffic even on high-speed network
links.

We examine the performance of our application-level identifica-
tion approach using five popular P2P protocols. Our measurements
show that our technique achieves less than 5% false positive and
false negative ratios in most cases. We also show that our approach
only requires the examination of the very first few packets (less
than 10 packets) to identify a P2P connection, which makes our
approach highly scalable. Our technique can significantly improve
the P2P traffic volume estimates over what pure network port based
approaches provide. For instance, we were able to identify 3 times
as much traffic for the popular Kazaa P2P protocol, compared to
the traditional port-based approach.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network opera-
tions—~Network management, Network monitoring; D.2.8 [Software
Engineering]: Metrics—Performance measures

General Terms

Measurement, Performance, Design

Keywords

Traffic Analysis, P2P, Application-level Signatures, Online Appli-
cation Classification

1. INTRODUCTION

Peer-to-peer (P2P) file sharing applications have dramatically
grown in popularity over the past few years, and today constitute a
Copyright is held by the author/owner(s).

WWW2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

DOCKET

_ ARM

Oliver Spatscheck
AT&T Labs-Research
Florham Park, NJ 07932

spatsch@research.att.com mei@research.att.com

Dongmei Wang
AT&T Labs-Research
Florham Park, NJ 07932

significant share of the total traffic in many networks. These appli-
cations have proliferated in variety and have become increasingly
sophisticated along a number of dimensions including increased
scalability, more functionality, better search capabilities and down-
load times, etc. In particular the newer generation P2P applications
are incorporating various strategies to avoid detection.

Access networks as well as enterprise networks require the abil-
ity to accurately identify the different P2P applications and their as-
sociated network traffic, for a range of uses, including network op-
erations and management, application-specific traffic engineering,
capacity planning, provisioning, service differentiation and cost re-
duction. For example, enterprises would like to provide a degraded
service (via rate-limiting, service differentiation, blocking) to P2P
traffic to ensure good performance for enterprise critical applica-
tions, and/or enforce corporate rules guiding running of peer-to-
peer. Broadband ISPs would like to limit the P2P traffic to limit
the cost they are charged by upstream ISPs. All these require the
capability to accurately identify P2P network traffic.

Application identification inside IP networks, in general, can be
difficult. In an ideal situation, a network administrator would pos-
sess precise information on the applications running inside the net-
work, along with unambiguous mappings between each application
and its network traffic (e.g., by port numbers used, IP addresses
sourcing and receiving the particular application data, etc.). How-
ever, in general, such information is rarely available, up-to-date or
complete, and identifying either the applications or their associated
traffic is a challenging proposition. In addition, traditional tech-
niques like network port-based classification of applications have
now become problematic. Although the earlier P2P systems mostly
used default network ports for communication, we have found that
substantial P2P traffic nowadays is transmitted over a large number
of non-standard ports, making default port-based classification less
accurate.

In this paper, we report on our exploration of online, in-network
P2P application detection based on application signatures. The fol-
lowing are some key requirements for such an application-level fil-
ter. It must be accurate, have low overheads, and must be robust
to effects like packet losses, asymmetric routing, etc. (details in
Sections 2 and 3) that make it difficult/impossible for a monitor-
ing point to observe all the application-level data in a connection
flowing by.

We designed a real-time classification system which operates on
individual packets in the middle of the network, and developed
application-level signatures for a number of popular P2P applica-
tions. Our signatures can be used directly to monitor and filter P2P
traffic.

Evaluations using large packet traces at different Internet loca-

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

tions show that the individual signature-based classification (i) has
good accuracy properties (low false positives and negatives), even
in situations where not all packets in a connection are observed by
the monitoring point, (ii) can scale to handle large traffic volumes
in the order of several Gbps (GigaBits per second), and (iii) can
significantly improve the P2P traffic volume estimates over what
pure network port based approaches provide. Our filter has been
successfully deployed and is currently running at multiple network
monitoring locations.

A lot of existing research on P2P traffic characterization has only
considered traffic on default network ports (e.g., [11, 18, 17]). Are-
cent work [12] uses application signatures to characterize the work-
load of Kazaa downloads. But they do not provide any evaluation of
accuracy, scalability or robustness features of their signature. Sig-
nature based traffic classification has been mainly performed in the
context of network security such as intrusion and anomaly detec-
tion (e.g. [5, 4, 19, 14]) where one typically seeks to find a signature
for an attack. In contrast our approach identifies P2P traffic for net-
work planning and research purposes. This work, is therefore, more
closely related to [8] which provides a set of heuristics and signa-
tures to identify Internet chat traffic. There is also a large body of
literature on extracting information from packet traces (e.g., [9]);
however, none of these works provides and evaluates application
layer P2P signatures.

The remainder of this paper is organized as follows. Section 2
highlights the issues involved in identifying P2P traffic in real time
inside the network. Section 3 discusses some of the design choices
we made in our approach. Section 4 derives the actual signatures
used for P2P detection, and Section 5 describes our implementa-
tion of an online P2P application classifier using these signatures.
Section 6 presents the evaluation setting, and Section 7 describes
the evaluation results. Finally, Section 8 concludes the paper.

2. PROBLEM STATEMENT

We first outline some key requirements of any mapping tech-
nique for identifying traffic on high speed links inside the network.

Accuracy: The technique should have low false positives (iden-
tifying other traffic as peer-to-peer) and low false negatives
(missing peer-to-peer traffic).

Scalability: The technique must be able to process large traffic
volumes in the order of several hundred thousand to several
million connections at a time, with good accuracy, and yet
not be computationally expensive.

Robustness: Traffic measurement in the middle of the network has
to deal with the effects of asymmetric routing (2 directions
of a connection follow different paths), packet losses and re-
ordering.

The above requirements indicate there are tradeoffs in terms of

the level of accuracy, scalability and robustness that can be achieved.

On one end of this spectrum is the current practice of TCP/UDP
port number based application identification. Port number based
application identification uses known TCP/UDP port numbers to
identify traffic flows in the network. It is highly scalable since only
the UDP/TCP port numbers have to be recorded to identify an ap-
plication. It is also highly robust since a single packet is sufficient
to make an application identification.

Unfortunately port number based application identification is be-
coming increasingly inaccurate in identifying P2P traffic. For ex-
ample, we observed in our traffic traces that a large amount of

DOCKET

_ ARM

Kazaa traffic is not using the default Kazaa port numbers most
likely — we speculate — to avoid detection.

To address this problem we developed and evaluated a set of ap-
plication layer signatures to improve the accuracy of P2P traffic
detection. In particular this approach tries to determine common
signatures in the TCP/UDP payload of P2P applications.

A key challenge in realizing such signatures is the lack of openly
available reliable, complete, uptodate and standard protocol speci-
fications. This is partly due to developmental history and partly a
result of whether the protocols are open or proprietary. First, the
protocols are mostly not standardized and they are evolving. For
some protocols (e.g., Gnutella), there exists some documentation,
but it is not complete, or uptodate. In addition, there are various
different implementations of Gnutella clients which do not comply
with the specifications in the available documentation, raising po-
tential inter-operability issues. For a user, this will manifest itself
in the form of sometimes poor search performance. For an appli-
cation classifier to be accurate, it is important to identify signatures
that span all the variants or at least the dominantly used ones. At
the other end of the spectrum is a protocol like Kazaa, which is
developed by a single organization and therefore exhibits a more
homogeneous protocol deployment, but is a proprietary protocol
with no authoritative protocol description openly available. Finally,
just access to the protocol specification is not sufficient - we need
signatures that conform to the design decisions outlined above.

Our approach to signature identification has involved combin-
ing information available documentation, with information gleaned
from analysis of packet-level traces to develop potential signatures.
Multiple iterations were used to evaluate the signatures against net-
work traffic data to improve the accuracy and computation over-
heads.

3. DESIGN CHOICES

Our main goal is to derive application layer signatures for P2P
protocols which achieve high accuracy and robustness while being
able to apply them at least at Gigabit Ethernet speeds in real time.
As we will discuss in Section 7 we achieved these goals by making
the following high level design choices.

UDP versus TCP: P2P traffic in principle can flow over UDP and
TCP. Since currently most P2P protocols transmitted their
data via TCP we focus on signatures found within TCP based
P2P traffic. Obviously our signatures could be extended to
UDP if so desired.

Packets versus Streams: The P2P application layer signatures can
be applied to individual TCP segments or to fully reassem-
bled TCP connection data streams. The advantage of apply-
ing them to TCP data streams is that duplicate data has been
removed and that signatures can match data which is trans-
mitted in multiple TCP segments. However, the drawback
of applying the signatures to TCP data streams is that the
TCP segments have to be reassembled in real time on the
monitoring device. In our current design we chose to apply
the signatures to individual TCP segments which allows us
to achieve higher speeds. We therefore focus on developing
signatures that do not span multiple TCP packet boundaries.
As we will demonstrate we still achieve high accuracy for the
5 applications with the signatures that we develop.

Location of Signature: Again to improve performance we focus
on finding signatures which appear in the beginning of the
file downloads. Using this approach allows us to focus our

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

signature evaluation on the first few packets of a TCP con-
nection. We will study how many packets our signatures re-
quired in Section 7.

Robustness to network effects: We also aim to develop signatures

that can independently identify each direction of an application-

level communication. This is to enhance the potential of
identifying connections for which the filter does not observe
one direction of the traffic (due to asymmetric network rout-
ing), or misses some signature-carrying packets in one or
both directions (caused by either router-based load split-
ting [16] or other routing instabilities). Independent iden-
tification of each direction also serves to decrease the po-
tential of misclassification, by either reinforcing the marking
(if both directions identify the same application) or flagging
a potential discord (if the 2 directions are identified with
different applications). Note that for some usages, such as
accounting for total P2P traffic or identifying if some P2P
communication is being used, where it is more important to
identify that some P2P communications is being used, the
last potential (of multiple classifications of the directions) is
not an issue.

Early Discard: For efficiency reasons, we shall consider both sig-
natures that identify an application as well as those that in-
dicate that a connection does not belong to an application.
The latter category of signatures allows us to quickly identify
packets that are not likely application packets, and thereby
frees up resources for examining more promising candidates.

Signaling versus Transport: Since the bulk of P2P traffic is re-
lated to file downloads and not due to file searches (signal-
ing) we chose to concentrate our efforts on identifying signa-
tures for file downloads rather than the signaling part of P2P
protocols.

4. P2P PROTOCOLS AND SIGNATURES

Historically in the client/server model content is stored on the
server and all clients download content from the server. One draw-
back of this model is that if the server is overloaded, the server
becomes the bottleneck. The P2P file sharing model addresses this
problem by allowing peers to exchange content directly. To per-
form these file sharing tasks, all popular P2P protocols allow a ran-
dom host to act as both a client and a server to its peers, even though
some P2P protocols do not treat all hosts equally.

Typically the following two phases are involved if a requester
desires to download content:

Signaling: During the signaling phase a client searches for the
content and determines which peers are able and willing to
provide the desired content. In many protocols this does not
involve any direct communication with the peer which will
eventually provide the content.

Download: In this phase the requester contacts one or multiple
peers directly to download the desired content.

In addition to the two phases described above many P2P proto-
cols also exchange keep-alive messages or synchronize the server
lists between servers.

In the remainder of the paper we focus on the download phase
of the five most popular P2P protocols (Kazaa, Gnutella, eDon-
key, DirectConnect, and BitTorrent). We decided to only track the

DOCKET

_ ARM

download phase since it allows us to capture the majority of P2P
traffic. We will also only classify the first download in a TCP con-
nection. This simplification is reasonable since it is highly unlikely
that two different applications will share a single TCP connection.
In the remainder of this Section we will discuss the signatures we
discovered for these five protocols. Unless otherwise specified, all
the identified signatures are case insensitive.

4.1 Gnutella protocol

Gnutella is a completely distributed protocol. In a Gnutella net-
work, every client is a server and vice versa. Therefore the client
and server are implemented in a single system, called servent. A
servent connects to the Gnutella network through establishing a
TCP connection to another servent on the network. Once a servent
has connected successfully to the network, it communicates with
other servents using Gnutella protocol descriptors for searching the
network - this is the signaling phase of the protocol. The actual
file download is achieved using a HTTP-like protocol between the
requesting servent and a servent possessing the requested file.

To develop the Gnutella signature we inspected multiple Gnutella
connections and observed that the request message for Gnutella
TCP connection creation assumes following format:

GNUTELLA CONNECT/<protocol version string>\n\n

And the response message for Gnutella TCP connection creation
assumes:

GNUTELLA OK\n\n

We also observed that there is an initial request-response hand-
shake within each content download. In the download request the
servent uses the following HTTP request headers:

GET /get/<File Index>/<File Name>
/JHTTP/1.0 \r \n

Connection: Keep-Alive\r\n
Range: byte=0-\r\n
User—Agent: <Name>\r\n
\r\n

The reply message contains the following HTTP response head-
ers:

HTTP 200 OK\r\n
Server: <Name>\r\n
Content-type: \r\n
Content-length: \r\n
\r\n

Based on these observations and performance consideration, we
recommend the following signatures for identifying Gnutella data
downloads:

o The first string following the TCP/IP header is ‘GNUTELLA’,
‘GET’, or ‘HTTP".

o If the first string is ‘GET’ or ‘HTTP’, there must be a field
with one of following strings:

User—-Agent: <Name>
UserAgent: <Name>
Server: <Name>

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

where < Name > is one of the following: LimeWire, Bear-
Share, Gnucleus, MorpheusOS, XoloX, MorpheusPE, gtk-
gnutella, Acquisition, Mutella-0.4.1, MyNapster, Mutella-
0.4.1, MyNapster, Mutella-0.4, Qtella, AquaLime, NapShare,
Comeback, Go, PHEX, SwapNut, Mutella-0.4.0, Shareaza,

Mutella-0.3.9b, Morpheus, FreeWire, Openext, Mutella-0.3.3,

Phex.

Generally it is much cheaper to match a string with a fixed off-
set than a string with varying locations. Hence we include ‘GET’
and ‘HTTP’ here to help early discard the packets, which do not
start with ‘GNUTELLA’, and also are non-HTTP packets. For ro-
bustness, we included the signatures for the request and response
header. This way, we can identify Gnutella traffic even if we only
see one direction of the traffic.

4.2 eDonkey protocol

An eDonkey network consists of clients and servers. Each client
is connected to one main server via TCP. During the signaling
phase, it first sends the search request to its main server. (Option-
ally, the client can send the search request directly to other servers
via UDP - this is referred to as extended search in eDonkey.) To
download a file subsequently from other clients, the client estab-
lishes connections to the other clients directly via TCP, then asks
each client for different pieces of the file.

After examining eDonkey packets, we discovered that both sig-
naling and downloading TCP packets have the following common
eDonkey header directly following the TCP header:

12345678123456781234567812345¢678

B e
| Marker |

| packet Length (4 Bytes)

| Message type |
i

where the marker value is always Oxe3 in hex, the packet length
is specified in network byte order and the value is the byte length
of the content of the eDonkey message excluding the marker 1 byte
and the length field 4 bytes.

Utilizing these discoveries, we recommend the following signa-
tures for identifying eDonkey packets:

For TCP signaling or handshaking data packets, we use two steps
to identify eDonkey packets.

o The first byte after the [P+TCP header is the eDonkey marker.

e The number given by the next 4 bytes is equal to the size
of the entire packet after excluding both the IP+TCP header
bytes and 5 extra bytes.

Since the accuracy for identifying the P2P connections is pro-
portional to the length of the signatures, we tend to include as
many fields as we can so long as they do not increase the com-
putational complexity significantly. Here both marker and length
fields have a fixed offset, therefore the computational complexity is
the same (O(1)) for matching one of them or both, but the accuracy
is improved by 232 times compared with matching the marker field
alone.

We have also identified the signatures for UDP handshaking mes-
sages. However, since UDP is only used for extended searching,
and is rare compared with TCP communications, we do not report
it in this study.

4.3 DirectConnect Protocol

The DirectConnect network is composed of hubs, clients, and a
single superhub with multiple servers. All of them listen on TCP

DOCKET

_ ARM

port 411 to connect and exchange commands such as search re-
quest. Clients (peers) store files and respond to search requests for
those files. The single superhub acts as a name service for all the
hubs. All hubs register with the superhub and clients discover hubs
by asking the superhub. Each of the clients has a username (a.k.a.
nick). Normally the clients listen at port 412 for client connections.
If the port 412 is already in use, clients will use ports 413, 414
and so on. DirectConnect uses TCP for client to server and client
to client communication, while UDP is used for communication
between servers. The TCP/UDP data is a series of commands or a
public chat message. In this study, we focus on the TCP commands.
The TCP commands are identified with following form:

Scommand_type fieldl field2 ...|

which starts with character ‘$’, and ends with character ‘|’. The
list of valid command types for TCP communications are: MyN-
ick, Lock, Key, Direction, GetListLen, ListLen, MaxedOut, Error,
Send, Get, FileLength, Canceled, HubName, ValidateNick, Vali-
dateDenide, GetPass, Mypass, BadPass, Version, Hello, Logedin,
MyINFO, GetINFO, GetNickList, NickList, OpList, To, Connect-
ToMe, MultiConnectToMe, RevConnectToMe, Search, MultiSearch,
SR, Kick, OpForceMove, ForceMove, Quit.

To improve the evaluation performance we evaluate this signa-
ture in the following two steps:

1. The first byte after the IP+TCP header is ‘$’, and the last byte
of the packet is ‘|’

2. Following the ‘$’, the string terminated by a space is one of
the valid TCP commands listed above.

Although we are matching a list of strings which can be an ex-
pensive operation, we shall only perform the string match on pack-
ets which pass the first test.

4.4 BitTorrent Protocol

The BitTorrent network consists of clients and a centralized server.
Clients connect to each other directly to send and receive portions
of a single file. The central server (called a tracker) only coordi-
nates the action of the clients, and manages connections. Unlike the
protocols discussed above, the BitTorrent server is not responsible
for locating the searching files for the clients, instead the BitTorrent
network client locates a torrent file through the Web, and initiates
the downloading by clicking on the hyperlink. Hence there is no
signaling communication for searching in the BitTorrent network.
To identify BitTorrent traffic, we focus on the downloading data
packets between clients only since the communication between the
client and server is negligible.

The communication between the clients starts with a handshake
followed by a never-ending stream of length-prefixed messages.
We discovered that the BitTorrent header of the handshake mes-
sages assumes following format:

<a character(l byte)><a string(l9 byte)>

The first byte is a fixed character with value ‘19’, and the string
value is ‘BitTorrent protocol’. Based on this common header, we
use following signatures for identifying BitTorrent traffic:

e The first byte in the TCP payload is the character 19 (0x13).
e The next 19 bytes match the string ‘BitTorrent protocol’.

The signatures identified here are 20 bytes long with fixed loca-
tions, therefore they are very accurate and cost-effective.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4.5 Kazaa protocol

The Kazaa network is a distributed self-organized network. In
a Kazaa network, clients with powerful connections, and with fast
computers are automatically selected as Supernodes. Supernodes
are local search hubs. Normal clients connect to their neighboring
Supernodes to upload information about files that they share, and
to perform searches. In turn Supernodes query each other to fulfill
the search.

The request message in a Kazaa download contains the following
HTTP request headers:

GET /.files HTTP/1.1\r\n
Host: IP address/port\r\n
UserAgent: KazaaClient\r\n
X-Kazaa-Username: \r\n
X-Kazaa-Network: KaZaA\r\n
X-Kazaa-IP: \r\n
X-Kazaa—-SupernodeIP: \r\n

The Kazaa response contains the following HTTP response head-
ers:

HTTP/1.1 200 OK\r\n
Content-Length: \r\n
Server: KazaaClient\r\n
X-Kazaa-Username: \r\n
X-Kazaa—-Network: \r\n
X-Kazaa—-IP: \r\n
X-Kazaa—-SupernodeIP: \r\n
Content-Type: \r\n

For higher Kazaa version (v1.5 or higher), a peer may send an
encrypted short message before it sends back above response. Note
that both messages include a field called X-Kazaa-SupernodelP.
This field specifies the IP address of the supernode to which the
peer is connected including the TCP/UDP supernode service port.
This information could be used to identify signaling using flow
records of all communication.

Using the special HTTP headers found in the Kazaa data down-
load we recommend the following two steps to identify Kazaa down-
loads:

1. The string following the TCP/IP head is one of following:
‘GET’, and ‘HTTP".

2. There must be a field with string: X-Kazaa.

Similar to our Gnutella signatures we include ‘GET’ and ‘HTTP’
to early discard non-HTTP packets, so that we can avoid searching
through the whole packet to match ‘X-Kazaa’ if the packet has a
low probability to contain HTTP request or response headers.

S. SIGNATURE IMPLEMENTATION

As stated earlier we concentrate on P2P application detection in
TCP traffic. In particular we decomposed our P2P signatures into
fixed pattern matches at fixed offsets within a TCP payload and
variable pattern matches with variable offset within a TCP payload.
The fixed offset operation can be implemented cheaply whereas
variable pattern matches are substantially more expensive.

To be able to execute the decomposed signatures on real network
traffic we implemented them in the context of the Gigascope [7]
high speed traffic monitor. In this section we will first discuss the
issues involved in evaluating fixed and variable offset signatures
and then discuss how we implement them in the context of Gigas-
cope.

DOCKET

_ ARM

5.1 Fixed Offset Match

Implementing a fixed pattern match at a fixed offset within a TCP
payload is rather trivial. The complexity of this operation in the
worst case is the size of the pattern matched. Despite this simplicity
it is useful to provide multiple library functions which perform this
operation using slightly different parameters to allow for the easy
implementation of diverse signatures. For example, in the context
of P2P signatures the offset could be specified from the beginning
or end of the TCP payload and the pattern matches could be a byte,
a word in little endian byte order, a word in big endian byte order,
or a string. Therefore, we implemented a library which provides
the following functions:

byte_match_offset: returns true if a byte matches the byte in the
TCP payload on a given offset. If the offset is negative it is
calculated from the end of the TCP payload.

word_match_offset: similar to byte match offset, except that a word
is compared. This function takes as additional argument a
flag indicating the byte order of the data in the TCP payload.

string_match_offset: similar to byte match offset, except that a
fixed length sequence of bytes (string) is compared.

5.2 Variable Offset Match

There are multiple ways to implement matches at variable offsets
in an input stream that involve variable length strings. As discussed
in Section 3 we decided to perform the matches on a per packet ba-
sis, trading off higher performance against matching strings which
span multiple packets.

Using this approach all variable matches we need to perform can
be expressed as a regular expression match over TCP payloads. For
example, the Gnutella data download signature can be expressed as:

" (Server: |User-Agent:) [\t]* (LimeWire|
BearShare|Gnucleus |Morpheus|XoloX]|
gtk-gnutella|Mutella|MyNapster|Qtella]
Aqualime |NapShare|Comback | PHEX | SwapNut |
FreeWire|Openext | Toadnode)’

Due to the fact that it is expensive to perform full regular ex-
pression matches over all TCP payloads we exploit the fact that the
required regular expression matches are of a limited variety. In par-
ticular all of the signatures we need to evaluate can be expressed as
stringset1.*stringset2 where stringset1 and stringset2 contain a list
of possible strings. This allows us to use the following algorithms
for our signatures:

e Standard regex (SR): This is the regular expression match
function found in the standard c library on FreeBSD 4.7.

o AST regex (AR): Part of the AST library [10], this code is
based on the Boyer Moore string search algorithm [6] ex-
tended to handle alternation of fixed strings. To search for
an m character long string in a n > m character sequence,
the Boyer-Moore algorithm has worst case time complex-
ity O(m + m), but often runs in O(n/m)-time on natural-
language text for small values of m.

e Karp-Rabin (KR): This is a probabilistic string matching tech-
nique [13] that compares the hash value of the pattern against
the hash value of the sub text of a given search text. The
worst case complexity of Karp-Rabin is O(mn), but for many
situations is often O(m + n).

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

