
1 SAMSUNG 1024

oe e+Pics|DeanSioa ae a Wee and Ms « Mn SO dos Wer gk EA Stier Sp Ve

PHP Web 2.0

Mashup Projects
and mixing data fromCreate practical mashups in PHP, grabbing é

Google Maps, Flickr,Amazon, YouTube, MSN Search, Yahoo!,
Last.fm, and 411Sync.com

Shu-Wai Chow

SAMSUNG 1024

2

PHP Web 2.0 MashupProjects

Create practical mashups in PHP, grabbing and
mixing data from Google Maps, Flickr, Amazon,
YouTube, MSN Search, Yahoo!, Last.fm, and
411Sync.com

Shu-Wai Chow

PACKT|
PUBLISHING

BIRMINGHAM - MUMBAI

3

PHP Web 2.0 MashupProjects
Create practical mashupsin PHP, grabbing and mixing data from
Google Maps,Flickr, Amazon, YouTube, MSN Search, Yahoo!,
Last.fm, and 411Sync.com

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced,stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Fvery effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
norits dealers or distributors will be held liable for any damagescausedor alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information aboutall the
companies and products mentioned in this book by the appropriate use ofcapitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September, 2007

Production Reference: 1070907

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847190-88-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak .chirraregmail.com)

4

Preface

A mashupis a web pageor application that combines data from two or more
external online sources into an integrated experience. This book is your entrywayto
the world of mashups and Web2.0. You will create PHP projects that grab data from
one place on the Web, mix it up with relevantinformation from anotherplace on the
Webandpresentit in a single application. All the mashup applicationsused in the
book are built upon free tools and are thoroughly explained. You will findall the
source code used to build the mashupsin the code downloadsection on our website.

This bookis a practical tutorial with five detailed and carefully explained case
studies to build new andeffective mashup applications.

What This Book Covers
You will learn how to write PHP code to remotely consumeservices like Google
Maps,Flickr, Amazon, YouTube, MSN Search, Yahoo!, Last.fm, and the Internet UPC
Database, not to mention the California Highway Patrol Traffic data! You will also
learn aboutthe technologies, data formats, and protocols needed to use these web
services and APIs, and someof the freely-available PHP tools for working with them.

You will understand how these technologies work with each other and see how
to use this information, in combination with your imagination, to build your own
cutting-edge websites.

Chapter 1 provides an overview of mashups: what a mashupis, and why you would
wantone.

In Chapter 2 we create a basic mashup, and go shopping. Wewill simply look up
products on Amazon.com based on the Universal Product Code (UPC). To dothis,
we cover two basic web services to get our feet wet — XML-RPC and REST. The
Internet UPC database is an XML-RPC-based service, while Amazon uses REST.

5

Preface

Wewill create code to call XML-RPC and REST services. Using PHP's SAX function,
wecreate an extensible object-oriented parser for XML. The mashup covered in this
chapter integrates information taken from Amazon's E-commerce Service (ECS) with
the Internet UPC database.

In Chapter 3, we create a custom search engine using the technology of MSN, and
Yahoo! The chapterstarts with an introduction to SOAP, the most complex of the
webservice protocols. SOAP relies heavily on other standards like WSDL and XSD,
which are also covered in readable detail. We take a look at a WSDL documentand

learn how to figure out what webservices are available from it, and what types of
data are passed. Using PHP 5's SoapClient extension, we then interact with SOAP
servers to grab data. We then finally create our mashup, which gathers web search
results sourced from Microsoft Live and Yahoo!

For the mashupin Chapter 4, we use the API from the video repository site YouTube,
and the XMLfeeds from social music site Last.fm. We will take a look at three

different XML-based file formats from those twosites: XSPF for songplaylists, RSS
for publishing frequently updated information, and YouTube's custom XML format.
Wewill create a mashup thattakes the songs in two Last.fm RSS feeds and
queries YouTube to retrieve videos for those songs. Rather than creating our own
XML-based parsers to parse the three formats, we have used parsers from PEAR,
one for each ofthe three formats. Using these PEAR packages, we create an
object-oriented abstraction of these formats, which can be consumed by our
mashup application.

In Chapter 5, we screen-scrape from the California Highway Patrol website. The
CHP maintains a website oftraffic incidents. This site auto-refreshes every minute,
ensuring the user gets live data aboutaccidents throughout thestate of California.
This is very valuable if you are in front of a computer. If you are out and about
running errands, it would be fairly useless. However, our mashupwill use the web
service from 4115ync.com to accept SMS messages from mobile users to deliver these
traffic incidents to users.

We've thrown almost everything into Chapter6! In this chapter, we use RDF
documents, SPARQL, RAP, Google Maps, Flickr, AJAX, and JSON.Wecreate a
geographically-centric way to presentpictures from Flickr on Google Maps. We see
howto read RDF documents and how to extract data from them using SPARQL and
RAP for RDF. This gets us the latitude and longitude of Londontube stations. We
display them on a Google Map,andretrieve pictures of a selected station from Flickr.
Our application needs to communicate with the API servers for which we use
AJAX and JSON, which is emerging as a major data format. The biggestpitfall in
this AJAX application is race conditions, and wewill learn various techniques to
overcomethese.

[2] set

6

Preface

What You Need for This Book
To follow along with the projects and use the example code in this book, you will
need a web server running PHP 5.0 or higher and Apache 1.3.

All of the examples assume you are running the web server on yourlocal work
station, and all developmentis donelocally.

Additionally, two projects have special requirements. In Chapter 5, you will need
access to a webserver that can be reached externally from the Internet. In Chapter
6, you will need a MySQLserver. Again, we assume you are running the MySQL
serverlocally andit is properly configured.

To quickly install PHP, Apache, and MySQL, check out XAMPP
(http: //www.apachefriends.org/en/xampp.htm1). XAMPPis a one-step
installer for PHP, Apache, and MySQL, amongother things.

XAMPPis available for Windows, Linux, and Mac OS X. However, many standard
Linux distributions already have PHP, Apache, and MySQLinstalled. Check your
distribution's documentation on howto activate them. Mac OS X already has Apache
and PHPinstalled by default. You can turn them on by enabling Web Sharing in
your Sharing Preferences.

MySQLcan be installed as a binary downloaded from MySQL.com
(http: //dev.mysql.com/downloads/mysql/4.1.htm1).

Conventions
In this book, you will find a numberofstyles of text that distinguish between
different kinds of information. Here are some examples ofthese styles, and an
explanation of their meaning.

Thereare three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

<?php

$aDom = new DOMDocument() ;

try {
$aDom- >loadHTMLFile('examplehtml.htm1') ;

} catch (Exception Sex) {
SaDom = false;

}

[3]

7

Preface

When wewishto draw yourattention to a particular part of a code block,the
relevantlines or items will be made bold:

<param>

<value><string>Hello, world!</string></value>
</param>

Any command-line input and outputis written as follows:

Buttercup:~ root# pear list

Buttercup:~ root# is the shell prompt on the author's machine.

Newterms and important words are introduced in a bold-type font. Words that you
see on the screen, in menusor dialog boxes for example, appear in our textlike this:
"In the search box, enter in your keyword and the region code then press Search."

[s ‘s. Important notes appearin a boxlike this.]

Tips and tricks appearlike this.]
Reader Feedback

Feedback from our readers is always welcome. Let us know whatyou think about
this book, whatyouliked or may havedisliked. Reader feedback is importantfor us
to developtitles that you really get the mostoutof.

To send us general feedback, simply drop an email to feedback@packtpub. com,
making sure to mentionthe booktitle in the subject of your message.

If there is a book that you need and wouldlike to see us publish, please send
us a note in the SUGGESTA TITLEform on www. packtpub. com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors,

[4]

8

Preface

Customer Support
Nowthat you are the proud ownerof a Packt book, we have a numberof things to
help youto get the most from your purchase.

Downloading the Example Codefor the Book
Visit http: //www.packtpub.com/support, and select this book from thelist of titles
to download any example codeorextra resources for this book. The files available
for downloadwill then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we havetaken every care to ensure the accuracy of our contents, mistakes
do happen.If you find a mistake in one of our books—maybe a mistakein text or
code—we would be grateful if you would reportthis to us. By doing this you can
saveother readers from frustration, and help to improve subsequentversions of
this book.If you find any errata, report them by visiting http: //www.packtpub.
com/support, selecting your book,clicking on the Submit Errata link, and entering
the details of your errata. Once yourerrata are verified, your submission will be
accepted andthe errata are addedto thelist of existing errata. The existing errata can
be viewed by selecting yourtitle from http: //www.packtpub.com/support.

Questions
You can contact us at quest ions@packtpub.com if you are having a problem with
some aspectof the book, and wewill do our best to addressit.

—— —___—159—_$§_iq_q+qq_wm

9

Introduction to Mashups
Mashups, more specifically called web application hybrids by Wikipedia, have been
an exciting trend in web applications in recent years, Web mashups are exactly what
they sound like — web applications that merge data from one or more sources and
present them in new ways. Very often, the data owners encourageandfacilitate
third parties to use the data. In manycases,this facilitation is made possible by
the data owners providing application programminginterfaces (API) to their data.
These APIs follow standard web service protocols and can be implemented quickly
andeasily in a variety of programming languages, including PHP. New, innovative
mashups, made by individuals that combine data from traditionally unlikely
pairings are popping up every day.

One example is the Wii Seeker site. When the Nintendo Wii launched in November
2006, many knew there would be shortages. The object of the Wii Seekersite is to
help people find Wiis by combining expected initial shipment information to Target
stores and Google Maps. A marker on a Google Map represented a Targetretail
store. If the user clicked on the marker they would see information about the store
such as the address. They would also see the number of Wiis the store was expected
to have on launch day. By representing numerical inventory data on a map, a user
could see Target stores near their location and plan their store visits on launch day to
maximize their chances of actually finding a Wii.

After the Nintendo Wii was launched,thesite reinvented itself by adding auction
information from eBay and product information from Amazon. They also added
additional chain retail stores like Circuit City and Walmart. Instead of seeing
Nintendo Wii inventory information on each store, the site now allowsvisitors to
post notes for each other aboutthe store's inventory.

10

Introduction to Mashu

‘Swillintnearsy:net

Another mashup example is Astrolicio.us, This site queries data feeds from sites like
Digg.com, Google News, and Google Videos and presents it to the user on one page.
By combining data feeds,the site's creator has madea portal of current astronomy
newsfor visitors,

ORCIO.US- 4 conteanais mmatup fur metroectny and spect remeaschers and hobhersts. Gel the latest photos tom the Hobble Space Tetesonpe. the atest astronomy reports kom news sources, ard the most
Stonas hom fhe space calegory ef Ory We alco ket the Lop astronomy wdeos kine Google and key sites tagged with astronomy Wom deLice.vis SawThenPageto¢

Aemeeng Quattey Asomme Laeeron coms,

iebyCoegie

Diggon Space

Srayou Nea af te eaecaaccent,Poleor: nem Fee ee NGtawey OF mamereatoms Like ome ot Giath minim med fen Sours fer Kaeoeseat,

Sa:eaeaera Chaethe Cesmeee
aangSak. ne

So Reewren my Pa raateraRee Sl Sor Wee Wp Clady
‘gm MSGreaferec heSlAteaidacoPheCemMeeTreeaon EresEtaaros aandamaged et mest Gatag Bfclt eben 9 pioneftoere
ramtrsae MerePAEaon te rnane mentaet ind ALLA,Paopens

‘TitlesArdeafTheoniemevee0:ahonoeMore
MOET) ameAstin 2 Linch nkemninaenwrap OF min men OtAOPlecet neAROthy A OeoeApSTP winmyet 2 nigae beming Se amirtAeA ROTanden Sone! CMEmis cad ONengACME oF RINneerines

© Satan,Joereoeee(i, Exetnas, Encieaete® Di onyremybape gerBe“akgsemanasonihe?.
Senety SREATHT:toleotarater a SedCakes Pant hae

FROM MAA olPHOTOORAPH Puneet woth Pee Minor ieSowSten chewge Buse A800 5 2. eo be ateneed ie Lived or
Sette.SacaeeoncelacltiringinceTepermereseaeac

enha Cerawhe yo Lan MARES Hiabee Space Teleco Roce Re Oepeey hen ofIe iy ace Aang Mewof 50,00 galas = 5 mame BAES + SOKO crtRalTeyeeIPED BOSTe Meme’ omee Th BraeienceATA

[8]

10

Astronomy News
7BiaatyAakersBORBanPiPomcrthaetouflies
eeeo
pei be Nenad Cee aeeeyrangy of lank fen HALEY Coe ANTENA, CARRERE, we!mente,

EEetrenin center etmech metonarmy Dee - LameelnteDerereieOF tease

© Retien Sram Esere PRD ip Abmeorecere The Spt,ow Cead Pai) (aareny EeaSPRCetAuThe Shoo amine) UR Aug TS, IU? RanierPrakeonae Cacterrsn (1%) Brnrany Stange Ran hePRGARmMACG PareeY ieeraty cl
9 MESTRON mrFeagrysia searing bac FD i conbvotogy

‘Sirenstpoemcoger
Agkoomenyhe ireecr Tage LK Ag 14 2007 Ane anor eo wnat ionsMt a muneaacOpera, an wale coe ofley Lneetit Inichedediienlideeniantrie teinlientiiate Adicnal_

TefalRavadeae-cevarterScere Say(Ferme tebe)FaitTees deinecechee tects|im Eats Nehaey merePome
‘Tromrom Sealy (yore ean!then! ge Sucher: chameion @onan!ENGaoeod ofantotTTSeTee eer edfoe eaterTeCLAeeePore

11

Chapter 1

Onthe homepage, the user can quickly scan items that mayinterest them. For news,
the user is given bullet points for each news item containing the headline and a
synopsis. For videos, the user is shown a thumbnail. If a user clicks onalink, they
are taken to the sourceof the article or video, This site is clean, simple, and fullof
information. It is also quite easy to make using the APIs of the sources.It probably
did not take the site creator more than an afternoon to go from the start of coding
to launch,

Web 2.0 and Mashups
How,in just a few short years, have mashups suddenly sprung up everywhere? The
story leads back to just a few years ago. After the technology industry's financial
bubble collapsed in 2001, internet firms regrouped and redefined themselves. There
were business lessons to be learned, technologies to be re-evaluated, and people's
perceptions had changed. By the middle of the decade, many trends and differences
becameclear. The term "Web 2.0" started to surface, to draw separation between new
sites and sites that gained popularity in the late Nineties. The term was vague and
seemed suspiciously gimmicky atfirst. However, the differences between old and
new werereal. They were not just historical and chronological. Sites like Google,
YouTube, and Flickr demonstrated new approaches to building a web business.
These sites often had simple interfaces, fully embraced webservices, and returned a
lot of control to the user. Manyof thesesites relied solely on their users for content.
In September 2005, technology publisher Tim O'Reilly wrote an article entitled
What Is Web 2.0 to succinctly declare the traits of Web 2.0 versus 1.0 sites. There were
two characteristics that were directcatalysts for the growth of mashups:

¢ Importance of Data
e User Communities

Importance of Data
The first characteristic is the importance of data. The question of who owned data
and whatthey choose to do with the data becamea big issue. Why in the world
would companies invest millions of dollars to gather their data and their database
systems, but then freely give it away for others to use? The answeris by opening
their systems, mashup developers help increase the reach of the data owners.

O'Reilly used the example of MapQuestto illustrate this. MapQuestwasthe leader
in mapping in the mid to late nineties. However, their system was closed and did not
allow outside parties to do anything with their data. In the early Aughts, mapping
sites started to leverage this weakness. Yahoo! Maps, Microsoft Virtual Earth, and
Google Maps entered the market, and each one had APIs. Despite the huge

[9]

11

12

Introduction to Mashups

early market lead, MapQuest quickly lost to bigger players with open data. There
are many exampleslike this. Amazon opened up their data through the Amazon
Ecommerce Service (ECS). Many mashups have used this web service to create
their own store fronts. Amazon gets the sale and gives a percentage to mashup
developers. This has created many more channels for Amazon to sell their goods
besides www. amazon.com, Contrast this with a site like BarnesAndNoble.com which

does not open their data. The only channelthat they cansell is through the main
website. Not only do theylose sales opportunities, but they lack theaffiliate loyalty
that Amazonhas.

In our earlier examples, Wii Seeker helps the Target by funneling buyersto stores,
Wii Seekerin turn, receives adverting revenue andaffiliate commissions on their
site. Google Videos, Google News, and Digg.com get visitors when a user clicks on
a link from astrolicious.us. Astrolicious.us gets advertising revenue with very little
developmenttime invested.

User Communities
The second characteristic is that user added data is more valuable than we once

thought. User product reviews on ecommercesites are nothing new. Neither are
web forums. However, it is how sites are using this information, and who owns
the data, that is becoming important. Movie rental site Netflix has always allowed
users to rate movies they have watched. Based on these recommendations, Netflix
will suggest other movies you mightlike. Recently, they have added a new social
networking feature called "Friends", where you can see how yourfriends have rated
movies and whatthey are watching. Onefeature of Friends is compatibility ratings.
Comparing both you and yourfriends’ recommendations, Netflix comes up witha
percentage of your shared movie tastes.

Othersites are completely dependent on user-added data. YouTube and Flickr
provide video andpicture hosting, respectively, for free. Their widespread adoption,
though, is not simply from hosting. Before Flickr, there were manysites that hosted
images for free. That was nothing new, Thedifference, again, is what both sites do
with user-added data. Both sites provide social networking features. You can leave
your ratings and comments on a hosted item and you can subscribe to a person's
profile. Anytime that person uploads something, you will be notified of the new
content. Both sites also allow folksonomic tagging, which basically lets uploaders
describe the content with their own keywords. Visitors can use these keywordsto
search whenthey are looking for content. Tagging has proven to be an incredible aid
for search algorithms.

[10]

12

13

Chapter 1

Thus, it is these two characteristics of newsites that have allowed small web
developers to appear much bigger. Backed with data from large internet presences,
mashup developers create usage channels that data owners could not have foreseen,
or been restricted by businessrules.

How WeWill Create Mashups
Technologically, the mashup phenomenoncould not have happened without
website owners making a clean separation between thedata that is used on their
sites, and the actual presentationofthe data. This has always been a goalin
computer application development, andtherefore, it is no surprise that website
and web application architecture have progressed towards this stage ever since the
World Wide Web wascreated. This separation is quickly turning the World Wide
Web into whatis known asthe semantic web—a philosophy where webcontentis
presented not only for humansto read, but also in a way that can be easily processed
by software and machines. We have moved from static pages to database-driven
sites, from presentational ont tags to cascading style sheets. It is perhaps inevitable
that the web has becomean environmentthat fosters mashup development.

Data sources of mashupsare varied. Often, data owners provide mashup developers
access to their data throughofficial application programminginterfaces. As we are
talking about web applications, these APIs utilize web services, which come in a
variety of protocols. Really Simple Syndication (RSS), a family of formats to present
data, is another common data source that has helped spur the mashup adoption.
Whenofficial methods are unavailable, developers becomereally creative in getting
data. Screen scraping is a method that has always been around. Regardlessof the
method, mashupsalso deal with a variety of data formats. While mashups can be
simple to create, a mashup developer must be flexible and well-rounded in the
knowledgeof their tools.

Open-source software is particularly well-suited in this mashup environment. The
Apache and PHP combination makes for fast development. Being open source,
developersare constantly and quickly adding new features to keep up with the web
service world.

This book will take a look at how to use common data sources with PHP. Most

official APIs are based on the big three web service protocols—XML-RPC, REST, and
SOAP.Wewill of course look at these protocols. APIs and raw web service requests
by hand,of course, are not the only wayto retrieve data. Wewill look at using
third-party libraries to interface with some popularsites. Feeds are also an important
data source which wewill use. By giving you a broad overviewofthe tools
used in the mashup world, you should be able to start developing your own
mashupsquickly.

{11}

13

14

Introduction to Mashups

More Mashups
For more examples and inspirations, check out these popular mashups:

Popurls (popurls .com)—Collects URLs from popularsites.

Housingmaps.com (www. housingmaps .com)— Plots housinglistings from
Craigslist on to a map.

Keegy (us. keegy.com)—Asite that aggregates news from different sources
and personalizesit for the reader.

Alkemis (local .alkemis .com)— Aggregates and mapsall sorts of data, for
example, pictures and live web cams,in selectedcities.

Gametripping.com (www.gametripping.com)—A collectionof satellite and
Flickr photos of baseball stadiums.

[12]

14

15

London Tube Photos

Project Overview

What Plot London Tube station locations on Google Maps. When a
station's iconis clicked, search Flickr for photos of the station
and display them on the map.

Protocols Used REST

Data Formats XML, RDF, JSON

Tools Featured SPARQL, RDF API for PHP, XMLHttpRequest Object (AJAX)

APis Used Google Maps, Flickr Services

Wehaveused a lot of techniques and APIs in our projects. For the mostpart, things
have mashed up togetherfairly easily with minimal issues. Oneof the reasons for
this is that we have relied on PHP to create the presentation for our mashups. This
simplifies the architecture of our mashup and gives us a lot of control. Many APIs,
though, are JavaScript-based, and hence, any mashupwill rely heavily on JavaScript
for the presentation. This introduces a lot of other issues that we will have to deal
with. In this mashup, we will encounter someofthose issues, and look at ways to
work around them. PHP will remain an important part of our mashup,but take a
smaller role than it has played so far.

In this mashup, we will present a geographically-centric way to present pictures
from the photo-sharingsite, Flickr. When a user loads our application, they will
be presented with a Google map of London. A pull-down menuofall the London
Tube lines will be available. The user will select a line, and the application will load
all of the Tube stations onto the map and display them with markers.If the user
clicks on a marker, the nameofthe station will appear as a popup on the map.In the
background,a search query againstFlickr will be initiated, and any pictures of the
station will appearin the popup as a thumbnail. Clicking on the photo will take the
user to the photo's page on Flickr.

15

16

London Tube Photos

JavaScript is not the only new tool that we will integrate into our toolbox. Before we
can work on the user interface, we will need to populate data into our application.
Weneedto find out which Tube stations belong to which line, and where those
stations are located. Many websites have one of those things or the other, but not
both.If we used them, not only are we dealing with two data sources, but we'd
haveto resort to screen scraping again. Fortunately, there is one place that has both
pieces of information. This source is in Resource Description Format, an XML format
that we glanced at, earlier in Chapter 3. In this mashup, we will take a much closer
look at RDF, and how to extract data from it using a young query languagecalled
SPARQL (SPARQLProtocol and RDF Query Language).

Preliminary Planning
Note that it would not have been wise to pre-plan mashups, butthis application will
be much more complex, and will definitely require some forethought. Previously,
our APIs have worked in the background delivering data. We use PHP to retrieve
data from an API, receive it in whatever formatit gives us, format the response into
either HTML outputto the user, or another formatto retrieve data from another API.
PHP gives us a lotofflexibility in the way our applicationis designed.

This time, one API, Google Maps, is a JavaScript API. Another, Flickr Services,is still
server based. The two cannottalk directly to each other, and we are going to have to
play within the rules set by each one. More than ever, we are going to have to take a
close look at everything before we attempt to write a single line of code.

At this point, this is what we know:

1. We needto find a data source for the Tube stations. We need to find the

names of the stations in eachline, and somepiece of information we can use
to geographically identify it on a map. The latter will be dictated more by the
capability of the tool on the receiving end. In other words, as we are going
to use Google Maps, we are going to have to see how Google Mapsplaces
markers on its map, and we will have to massage the source data to Google
Map's liking.

2. We will use the Google Maps API solely for presentation. JavaScript cannot
call PHP functions or server side code directly, nor can PHPcall JavaScript
functions. However, we can use PHP to write JavaScript code on the fly,
and we do havethe JavaScript XMLHttpRequest object available. The
XMLHttpRequest object cancall server resources by sending a GET or POST
request withoutthe page reloading. We can then dynamically update the
pagein frontof the user. This process is popularly known as AJAX, or
Asynchronous JavaScript and XML.

[204]

17

 Chapter 6

Lookingat the Flickr Service's documentation page at
http://www.flickr.com/services/api/, we find we have an
incredible variety of formats and protocols to choose from. All of our

SS major request protocols, REST, XML-RPC, and SOAParethere. In> addition to these, we can have our choice of JSON orserialized PHP for
the response format, Thereis also a hugelist of languagekits already
built. You can use these kits to call Flickr directly from PHP, ColdFusion,
Java, etc. Unfortunately, JavaScript is not on thatlist.

Finding Tube Information
Our biggest problem is finding the initial Tube data. Withoutthisfirst step, we
cannot create our mashup.Thefirst logical step is to look atthe official Tube site at
http://www.tfl.gov.uk/tube/. Poking around, weseealot of colorful mapsof the
lines, but nothing machine readable—no feeds and not even a pull-down menu with
stations.It looks like the official site will be a poor choice as a source of data.

Weshould look at the Google Maps APIto see whatit can even accept.
The documentation homepageis at http: //www.google.com/apis/maps/
documentat ion/. This site has many examplesas well as class, methods, and
properties references. Looking around, wesee that a Google Map markeris
represented by a class called GMarker. There are many examples on howto create a
markerlike so:

marker = new GMarker (point);

map.addOverlay (marker);

That's wonderful, but whatis a point that is passed to the GMarker class? Looking at
the documentation reference, wefind that it is a GLatLng object, which is an object
that has two simple properties — the longitude of the marker andthelatitude of the
marker.It looks like the most direct wayto create a marker is through latitude and
longitude coordinates.

Ruling out the official Tube site, we still need to find longitude andlatitude
informationfor sites. With somesearching, I stumbled upon Jo Walsh'ssite,
frot .org. Ms. Walsh has donea lot of work with open geographical data, andis
currently an officer in the Open Source Geospatial Foundation (http: //www.osgeo.
org/). On hersite, she talks about mudlondon, an IRC botshe created.As part ofthis
bot, she compiled an RDFfile of all London Tube stations. Thefile is located at
http: //space.frot.org/rd£f/tube_model2.rdf. Thefirst half of this file is
information abouteachstation, includinglatitude and longitude positions. The
secondhalf of this file maps out eachline and their station. These two pieces of
information are exactly what we need. After contacting her, she was gracious enough
to allow usto use this file for our mashup.

[205]

17

18

London Tube Photos

Being an XML-basedfile, we can create our own parserlike we did before.
However, some more searching reveals an RDF parser for PHP. This should save
us someeffort.

There is one problem with this approach. The RDFfile itself is over 500 kilobytes in
size. It would be perfectly reasonable to treat this RDFfile like an RSS 1.1 feed and
load and parseit at run time. However,this file is not a blog's stream. Tube stations
do not change very often. To save bandwidth for Ms. Walsh, and dramatically speed
up our application, we shouldeliminate this load and parse. One solution is to save
this file directly onto ourfile system. This will give us a great speed boost. Another
speed boost can be gained if we retrieved the data from a database insteadof parsing
the file every time. XML parsers are a fairly new addition into the PHPfeature set.
They are not as mature as the database extensions. The nature of XMLparsing also
has an overhead to it compared to just retrieving data from a database.It would
appear that we should use RDF parsing to populate a database atfirst, and then in
our application, load the data dynamically from a database.

Integrating Google Maps andFlickr
Services
Nowthat we havethe data and know generally how to create markers with that
data, we need to look at howto bridge a JavaScriptcall in Google Mapsto a server
call in Flickr Services. Flickr Services has a REST-based endpoint available. This
means that all we would needto dois send a GET or PosT requestto the endpoint,
supplying our parameters, and we wouldget data back. Moreover, one return option
is JavaScript Object Notation, JSON. Theoretically, we can use the XMLHttpRequest
object in JavaScript to send a GET request, and get JavaScript directly back from the
server. We canthen use this JavaScript to dynamically change our page. This would
really make things easy.

The main obstacle to this is that we cannot make the XMLHttpRequest GET/POST
requestdirectly againstFlickr Services. This is because cross-scripting attacks are a
security problem. To counterthis, all web browsers preventa site from sending an
XMLHttpRequest againstanothersite. An XMLHttpRequest can only gobackto the
server from where the page was served.

To get aroundthis, we can set up our own RESTservicethatsits on our server. When
the user clicks on a marker, the xMLHttpRequest goes back against our RESTservice.
Our RESTservice then calls Flickr Service, and we merely pass the Flickr response
back to the client.

18

19

ler

Application Sequence
Wenowhavea plan ofattack and a preliminary architecture for our application. We
can create a Unified Modeling Language sequencing diagram to illustrate whatwill
happen whena visitor uses our mashup.

If you do not know UML,do not worry. This diagram keeps the UML notation
simplified and is easy to understand. This is basically a fancy way of summarizing
the steps that a user goes through to loada setof pictures from Flickr. While there
are just three things a user must do, this diagram shows sequentially what happens
behind the scenes,

This diagram gives us a good idea of what weare dealing with in terms of
technology. Let's take a look at some of the new formats we will encounter.

Resource Description Framework (RDF)
Recall from Chapter 3, we described RSS 1.1 as being RDF-based. Whatexactly is
RDF? Manycall RDF "metadata about data" and then go on to describe howit has
evolved beyond that. While RDF andits usage has certainly evolved, it is important
to not to forget the "metadata about data" aspect because it captures the essence of
what RDFis.

[207]

19

20

London Tube Photos

The purpose of RDFis to describe a web resource,thatis, to describe something on
the Internet. For example,if a shopping website lists the price of something, what
exactly is a price? Is it in American Dollars? Mexican Pesos? Russian Rubles? For a
website, what exactly is a timestamp? Should a machineparser treat a timestamp
in 12-hour notation different from a timestampin 24-hour notation? XML, at a very
high level, was supposed to allow groups to standardize on a transaction format.
Implementation details were left to the parties of interests because XMLis just a
language. RDFis the next evolutionof that original goal.It gives us a framework
for that implementation. By defining whata timestampis, any machine or human
that encounters that RDF documentwill know, without any ambiguity, what that
timestampis, what it means, and whatformatit should be in,

The basic concepts and syntax of RDFis fairly simple andstraightforward. RDF
groups things in whatit calls triples. A triple basically says, "A something has a
property whose value is something". Triples use the grammar concepts of subject,
predicate, and object. In the sentence, "The page hasa size of 21 kilobytes", the
page is the subject. The predicate is the property,in this case, size. The objectis the
value of that property, 21 kilobytes. Typically in RDF, the subject is represented by
an aboutattribute of a parent element. The property and value are represented by
element and value pairs underthat parent element. The page size sentence could be
represented as follows in XML notation:

<rdf :RDF

Xmins:rdf="http: //www.w3.org/1999/02/22-rdf-syntax-ns#"
Xmins="http: //www.example.org/pageProperties"

>

<rdiDescription rdf:about="http: //www.shuchow.com/thecats.html">
<Ccreators>Shu Chow</creator>

«titlesMy Cats</titles

<lastMod>01/24/22007</lastMod>

<Sizé@>21 kilobytes</size>
</rdf:Description>

</rdf:RDF>

In RDF, every element must be namespaced. The rdf namespaceis required, and
must point to http: //www.w3.org/1999/02/22-rd£-syntax-ns.This gives us
access to the core RDF elements that structure this document as an RDF document.
In this short document, we access the RDF elements three times—once as the root

elementof the document, once more to identify a resource using the Description
element, and once more to identify the specific resource with the about attribute. In
human language form,thetitle can be stated as, "A web resource at http://www.
shuchow. com/thecats. html, has a title property, whose value is 'My Cats". Even
more casually, we can say, "The page's title is 'My Cats".

[208]

20

21

Chapter 6

Breaking it down into subject, predicate, and object:

e The subject is http: //www.shuchow. com/thecats. html.

e The predicate is title. This may also be expressed as a URI.

e The object is "My Cats".

In RDF, subject and predicates must be URIs. However, like in the preceding
example, predicates can be namespaced. Values can be either URIs, or, more
commonly, literals. Literals are string values within the predicate elements.

There is another RDF elementthat we will encounter in our mashup. In the previous
example, it was obvious from context that the web resource was an HTML page.
The RDF Schemaspecification has a type element resourceattribute that classifies
subjects as programming objects (as opposed to triples objects), like PHP or
Java objects.

«rdf: RDF

xmins:rdf="http: //www.w3 .org/1999/02/22-rdf-syntax-ns#"

xmins="http://www.example.org/pageProperties"
>

<rdfDescription rdf:about=“http://www.shuchow.com/thecats.html ">
<creator>Shu Chow</creator>

<titlesMy Cate</title>

<lastMod>01/24/22007</lastMod>

<Size>21 kilobytes</size>

«rdf:type rdf:resource=

"http: //www.example.org/objects#An_HTMLPage" />

</rdf:Description>

</rdf:RDF>

The resourceattribute is always a URI. Combined with the type element,
they tell us that in order to find out whatexactly this resource is, we should visit
the value of the resourceattribute.In this example, the resource is described at
http: //www.example.org/objects#An_HTMLPage, which presumably describes
an HTML page.

Knowingjust the simple nature of triples can get us started with RDF. Within the
core RDF specification, there are a few more elements that pertain to grouping of
collections. However,as the specification is designed to be scaled and expanded,
there are not many more elements beyond that. Namespacing of extensions is the
source of RDF's power. For our mashup, we will encounter a few more extensions,
and we will examine them closer when we encounter them. For now, we have the

basic skills to read and use our latitude/longitude data source.

[209]

21

22

London Tube Photos

Common extensions to RDF and their applications can turn RDFinto a very
g~# deep subject. To learn more about RDF, the W3C has created an excellent
Go primer located at http: //www.w3.org/TR/rdf-primer/. Be warned

that onecan get easily wrapped up in the philosophical underpinnings of
RDF —theofficial specification is actually six separate documents.

SPARQL
RDFis designed to be a data store,It follows that as soon as RDF cameout, people
wanted a way to query,like a traditional database. SPARQLis a new RDF query
language that has recently become a W3C recommendation. You can think of
SPARQLaswriting a query, loosely akin to SQL for databases, to parse an XMLfile,
specifically an RDFfile. The results returned to you are row and column tablesjust
like in SQL.

Most people learned SQL with the aid of a commandline client that queried a
database. This allowed us to experiment and play with query structures. Fortunately
for SPARQL,there is something similar; SPARQLer,located at http://www.
spargl.org/sparq1. html,is an interactive web tool that allows you to specify an
RDF documenton the web as an input and write SPARQLqueries againstit. It will
display the query results to us muchlike the results from a database client. As we
go through ourinitial discussion of SPAROL, we will use this query tool and an
example document RDF documentat http://www. shuchow.com/mashups/ché6/
pets. rdf. This RDF documentisa list of all the animals that my pay check feeds.

Analyzing the Query Subject
In the database world,before youstart writing queries, you need to understand
the schemaa little, either by entity-relationship diagrams(if you had good
documentation) or by simply using SHOW TABLES and EXAMINE SOL commands.
You'll need to do the same thing with SPARQL. Sometimes the host will have
documentation, but often, you will just need to read the RDFfile to get a generalfeel
for the document. Let's start this exercise by opening the RDFfile we will be working
with at http://www. shuchow.com/mashups/ch6/pets. rdf. Your browserwill
either downloadthis file to your hard drive, orit will openit in-window.If it opens
up in-window,it will probably apply a stylesheetto it to pretty up the presentation.
In this case, you will need to view the source of the documentto seeall the tags and
namespaceprefixes.

[210]

22

23

Chapter 6

This RDFfile is very straightforward and simple. Westart off with the root element,
followed by the namespaces:

<rdf:RDF

xmlns:mypets="http://www.shuchow.com/"

xmlns:rdf="http: //www.w3.org/1999/02/22-rdf-syntax-ns#"

xmins:rdfs="http://www.w3.org/2000/01/rdf-schema#"
>

The namespaces rdf and rdfs are tied to w3.org resources, whichtells us that they
are industry standards. mypets, however,is tied to shuchow.com,the file's domain.
This means thatit's probably a proprietary vocabulary created by the shuchow.com
organization to support the information. To find out more, we could visit the site.
Doing so should lead us to some documentation on someof the syntax we
will encounter.

Therestof thefile is basically a list of pets wrapped around Description elements
with some details as child elements. The about attribute in the Description element
points to the exact subjectof this item.

<rdf:Description rdf:about="http://www.shuchow.com/thecats.html#avi">

<mypets :name>sAvi</mypets:name>
«mypets:age>6</mypets:age>

<mypets:gender>F</mypets:gender>

erdfs:type rdf:resource="http://www.shuchow.com/#parrot"/>

</rdf:Descriptions

The name, age, and gender of each pet are the valueof their respective elements.
Each of these elements is namespaced to mypets. The type of the item is a URI
pointing to a location that describes whatthis "thing" is. For thisfile, it is an
imaginary URI used only as a wayto separate the types of animals in my house. In
the real world, this may also not pointto a realfile, or it may have a complex RDF
taxonomydefinition behindit. These Description blocks are repeated for each pet.

Anatomyof a SPARQL Query
If you know SQL,it should be easy to understandthefirst few lines of aSPAROL
query. Let us take a look at a simple SPARQL query to understandits parts. Suppose
we wantto extract one specific piece of information abouta specific pet. Let's say we
wish to extract Saffy's age. We know in the documentthatthe ageis the value of the
mypets :age element. We also know that the nameofthepet, Saffy, is in the mypets:
name element. We need a querythat will extract the value of mypets : age restricted
by the value of mypets :name.

[211]

23

24

London Tube Photos

This SPARQLquery will give us this information:

PREFIX mypets: <http://www.shuchow.com/>

SELECT ?age

FROM <http://www.shuchow.com/mashups/ché/pets.rdf>
WHERE {

?Description mypets:name "Saffy" .

?Description mypets:age ?age

}

There are a couple of syntactical things we need to state before we look at this query.
First, in SPARQL, URIs are surrounded byless than and greater than brackets.
Second, SPARQL queries rely on variables to name values. Variable names are
denoted with a question markat the beginning.

The first line of this query is a PREFIX statement. PREFIX statements are required
for every namespacethat the query will encounter in the RDF document. In
pets.rdé, there are actually three namespace declarations. However, to extract the
age, we touch mypets: name and mypets: age, and they share a common namespace.
Therefore, in our query, we only need to prefix the mypet s namespace. The format
is the PREFIX keyword, followed by the namespace nameas given in the RDF
document, a colon, andfinally the namespace valuealsoas given in the
RDF document.

The next line is the SELECT statement. In the SELECT statement, list the names of
the SPARQLquery variables you wish to extract. In SOL, SELECT statements are
followed by the namesof the table columnsor aliases. In SPARQL,variables are
defined, andtheir valuesset, in the WHERE clause. SELECT statements specify those
variables you wish to pluck. Wewill look at how to define SPARQLvariables very
shortly. To keep things simple, this example uses the nameof the element we are
interested in, age, as the variable name, ?age. However, SELECT ?mangoes would
have also given us the sameresults as long as the second line in the WHERE clause was
changed to ?Description mypets:age ?mangos,If you wishto extract multiple
variables, list each variable out in the SELECT statement, separated by spaces.

The next statementis the FROM statement. In SPARQL,this statement is optional.It is
used to point to the source of the RDF data. In manyparsers, the location of the RDF
documentis made outside of the SPAROL query. For example, someparsers take the
URLof the RDF documentas a constructor argument. The FROM statement, although
not necessary,is like a commentfor the query.It tells us that this query is written for
this specific RDF document. Like programmer comments, although not necessary,
it is good form to include this statement. In SPARQLer, we havethe optionof either
putting the source URL in the query or inaseparatefield.

[212]

ee
24

25

Chapter 6

Writing SPARQL WHEREClauses
Finally, we get to the WHERE clause. In SQL, a WHERE clause narrows down and
refines the data weare looking for. In SPARQL,it does the samething.It also gives a
sense of structure for the query and parser. In a SQL database, a table has a defined,
consistent schema. A RDF documentis a flatfile. From a parser's standpoint, there
really is no guarantee of any sort of structure. A SPARQLWHEREclause gives the
parser an idea of how objects and properties are organized and how theyrelate to
each other.

Basic Principles
Recall the three parts of a RDF triple, and whatthey represent:

« A Subjecttells us the "thing" that this triple is about.
e A Predicate specifies a property of the subject.

¢ An Objectis the value of the predicate.

A triple is simply each part, written out, in one line and separated by a string.

ASPARQLwuer:clause is just a series of triples strung together. Further, each part
of a triple can be substituted with a variable.

For example,let's say there is a cat named Gilbert. He has green eyes.

Ina simple RDF,he can be represented like such:

<raf:Description rdf:about='http://www.example.com/
cats#GilbertTheCat!>

<name>Gilbert</name>

<eyeColor>Green</eyeColor>
</rdt:Description>

In triple form, this can be presented like such:

rdf:Description name "Gilbert"

This isolates the cat who's name valueis "Gilbert." The item we are focusing on is the
subject. This is represented by the rdf : Description element. Name is the property
of the subject, which makesit the predicate. The value of the name, the objectin this
triple, is "Gilbert". To specify theliteral valueofa triple's object, we wrap the value
around with quotes,

In queries, we can replace the subject with a variable.

PeatObject name "Gilbert"

[213]

25

26

London Tube Photos

Now, ?catObject holds a reference to the cat who's nameis Gilbert. We can use this

variable to access other properties of Gilbert the cat. To access Gilbert's eye color, we
could use twotriples strung together:

?eatObject name "Gilbert" ,

PeatObject eyeColor ?eyeColor

To string togethertriples in a SPARQL query, use a period. This acts as a
concatenation operator, much like a period is used in PHP.

In this grouping, the first triple will place the subject, Gilbert The Cat, in the
?catObject variable. The secondtriple's subject is the variable ?catobject. That
means the predicate and object of the second triple will use this subject. This second
triple will place Gilbert's eye color in the ?eyeColor variable. To return the eyeColor
variable in the SPARQLresultset, we need to specify it in the SELECT statement.

In SPARQL WHEREclauses, the key concept to rememberis thatall
variables reference the same thing. The order of the WHERE statements
matters very little. It is what each variable's value is at the end of
execution that matters.

a

A Simple Query
This is the same principle that is applied to our earlier query that extracts Saffy's age
in our pets RDF document.

To seethis in action,let's load up the online XML parser. Bring up SPARQLer
(http://www. sparql.org/spargq].html) ina web browser. You will be presented
with a simple form. The text area is where the SPARQL query you wantto runis
entered. As long as you have a FROM clause in the query, you can leave the Target
gtaph URI field blank. The other options on the form can also be left blank. Enter the
age query into the query text area in the form:

PREFIX mypets: <http://www.shuchow.com/>

SELECT age

FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>

WHERE {

?Description mypets:name "Saffy" .

?Description mypets:age ?age

[214]

26

27

ceeeuthimelieainsnacisies aioe M = ==
XSUTstylesheet (leave blank for none): |/iconorJSON output: 8

Click on the Get Results button. SPARQLer willgooutto retrieve pets. raf,loadit,
and then proceed to parse it.

27

28

London Tube Photos

The result will show that Saffy's age is 10.

Thefirst triple finds the item that has a name (designated by the mypets :name
element) withaliteral value of Saffy. The subject of this item is placed in the
?Description variable. Note thatin the predicate ofboth triples in the WHERE
clause, the namespace is included with the element name. This is another important
thing to remember when writing SPAROL queries —if the element namein the RDF
document has a namespace prefix, you must also include that prefix in the SPARQL
query, along with declaring the namespace in a PREFIX statement.

Not only doesthis first clause zero-in on Saf fy, but it sets the context of our search
and places it into the Description variable. This is extremely importantin
SPARQLbecause every clause requires a subject. Thanksto this clause, we can use
?Description as the subject for other WHERE clauses.

The second statementsays the following:

"The subject of this triple is referenced by ?Description (which we already set in
thefirst triple). The predicate of this subject that I'm interested in ts mypet s: age.
Place the object of this triple into a variable named ?age."

It is wordyto think of the query like this, but necessary. When learning and using
SPARQL,it's very important that we keep in mind the notionoftriples. It’s very
easyto fall back into a SQL mindsetand think, "This clause gets methe station name
based on the element". However, what's really going on is more complicated than
that. The element nameis useless unless the subject is defined throughout
your query.

During the parsing process, the parserfinds that ?age is represented by "10" in
the document. The ?age variable is returned because it is specified in the
SELECT statement.

This example returnedjust one pet by using the pet's name. We can place no
restrictions on the value and return all the results. This would be like a SQL SELECT

query without a WHERE clause (SELECT ColumnName FROM TableName).

PREFIX mypets: <http://www.shuchow.com/>
SELECT ?name

FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>

WHERE {
?Description mypets:name ?name

}

Go back to SPARQLerand enter this query. This WHERE clause will execute and place
all of the mypets: name values into a variable named ?7name. Our SELECT statement
returns this variable back to us.

[216]

28

29

Chapter 6

Your SPARQLerresult set should look like this:
name

"Pim Pim"

"Safty"
"Manfred"

"Lizzie Borden"

"Tera-San"

"Moose"

"Hoser"

"Mathilda"

"Opal"
"Wozniak"

"Dolly"

"Avi"

"Snowball"

Querying for Types
In thefirst query, we usedaliteral value of the namesaffy to find what we were
looking for. Simply searching ona literal value is often nota reliable approach.
Earlier, we noted that the RDF Schemavocabulary allowsusto classify subjects as
programming objects using the type element. This next example will show howto
restrict on this element.

Let's say we wish to grab the namesofall parrots. Our WHEREclause needs to do
the following:

e Find the parrots in the RDF document.
e Extract their names.

The type elementis still the predicate. However, this element does not have a
value we can use asthetriple object. Instead, the resource attribute value is the
object in this triple. resource is a URI thatpoints to a description of whata parrot
is. Rememberthattriple objects can be eithera literal value or a URLAgain, this
particular example URI is only an example toidentify, not a formal vocabulary
definition, which it sometimes can be. This combination says "This subjectis a
parrot". From there, we can extract the name element as wedid before.

J[tT]

29

30

London Tube Photos

Therestriction requirementis similar to what we have been doing.Thetriple
associated with it will use a URI instead of quotedliterals like the previous examples.
Wecan specify this simply by specifying the URIin the query using greater than/
less than signs.

This triple is simply this:

?Description rdfs:type <http://www.shuchow.com/#parrot>

Sometimes, you mayfind this resourceattribute starts with a local anchor, the pound
sign (#) followed by the valuelike so:

<rdis:type rdf:resource="#value"/s

This poundsign is a reference to the documentitself, much like it is used in HTML
anchortags to reference locations within the same document.

Simply the object of "#value" does not qualify as a full URI in SPARQLtriples. As
the pound sign is a redundantreference, we mustalso include the absolute path to
the file we are querying in thetriple. Assuming the page at http: //www.example.
com/this. rdf, to search on these values, you would need to include the full URI
back to the document, along with the valueafter the poundsign:

?Subject ns:ipredicate <http://www.example.com/this.rdf#value>

The complete SPARQLquery looks like this:

PREFIX mypets: <http://www.shuchow.com/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?name

FROM <http://www.shuchow.com/mashups/ch6é/pets.rdf>
WHERE {

?Description rdfs:type <http://www.shuchow.com/#parrot> .
?Description mypets:name ?name

}
ORDER BY ?name

Running the query returns these results:

Name

"Avi"

"Dolly"
"Hoser"

"Moose"

[218]

ii
30

31

Te

Ordering, Limiting, and Offsetting
Note thatin this query, we added an ORDER By clause. SPAROL supports a set of
clauses that follow a WHERE clause, which organizes the returned dataset. In addition
to ORDER BY, we can use LIMIT and OFFSET clauses.

An ORDER BY clause works very similarly to SQL's oRDER By clause. This clause sorts
the returned dataset by the variable that follows the clause. The results returned are
ordered alphabetically if they are strings or ordinal if they are numeric. Ascending
and descending options can be specified by using the Asc and DEsc functions,
respectively.

ORDER BY ASC(?name)
ORDER BY DESC(?name)

The ascending and descending clauses are optional. If they are left out, the default is
ascending order.

SPARQLalso supports the LIMIT and OFFSET keywords muchlike PostgreSQL,
MySQL,and other relational database management systems. Both LIMIT and OFFSET
are followed by integers. LIMIT will limit the numberof results returned to the
integer passed to it. OFFSET will shift the start of the returned results to the position
of the integer, with the first returned result being position zero.

For example, pets.rdf has 13 animalsin thelist. If we wantto get the 7" and 8"
pets, in by alphabetical order, we can use LIMIT and OFFSET in conjunction with
ORDER BY.

PREFIX mypets: <http://www.shuchow.com/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemat#t>

PREFIX rdf: <nhttp://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?name

FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>

WHERE {
?Description mypets:name ?name

}
ORDER BY ?name

LIMIT 2

OFFSET 6

Note that order matters when you use ORDER BY, LIMIT, or OFFSET. These three
clauses must be in that order after the WHERE clause. For example,this will not work:

OFFSET 6

ORDER BY ?name

LIMIT 4

31

32

London Tube Photos

UNION and DISTINCT

The unION keywordjoins multiple WHERE groupings together, much like UNIONin
SQL. The returned results will be a combination of the WHERE groupings. To use a
UNION clause, wrap the individual groupings within curly brackets. Join them with
the UNION keyword.Placeall of this within the regular WHERE curly brackets.

For example, this query will retrieve the names ofall parrots and male pets:

PREFIX mypets: <http://www.shuchow.com/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?name

FROM <http://www.shuchow.com/mashups/ch6é/pets.rdf>
WHERE {

{

?Description rdfs:type <http: //www.shuchow.com/#parrot>
?Description mypets:name ?name

}
UNION

{

?Description mypets:gender "M"

?Description mypets:name ?name

}
ORDER BY ?name

Name

"Avi"

"Dolly"
"Hoser"

"Hoser"

"Manfred"

"Moose"

"Moose"

"Snowball"

"Wozniak"

32

33

Chapter 6

This union does not give us exactly the query we want. Hoser and Moose, male
parrots, are in both thefirst clause and the second. SPARQL supports another SQL
keyword, DISTINCT, that will exclude a row based on a column if it has already been
included in a previousclause,

Simply add the DIsTINcT keyword you wishto insure uniqueness on, and the results
will reflect the change.

SELECT DISTINCT ?name

name

"Avi"

"Dolly"
"Hoser"

"Manfred"

"Moose"

"Snowball"

"Wozniak"

More SPARQLFeatures
The queries we will write later will require more complexity, but the features we
have discussed are more than wewill need for our mashup. SPARQL, however, has
many more advanced features including:

* Querying more than one RDF document(if the parser supports it).

e Theability to filter returned results using special operators and a subsetof
XPATH functions,

The Working Draft documentthatfully outlines all of SPARQL's features can be
found at http: //www.w3.org/TR/rdf-sparql-query/. Although itis still in W3C
draft stage, many parsers give great supportto the language. In future mashups,
if you encounter complex RDFs, it would not hurt to be familiar with SPARQL's
advanced features to see if it is a viable solution to extract data.

RDF API for PHP (RAP)
Now we know a bit about RDF and SPARQL, we need a wayto actually execute
SPARQLqueries in an application. There are not any core PHP functions for RDF,
but there is a very powerful third party library called RDF API for PHP (RAP). RAP
is an open source project, and can do just about anything you require with RDF.
RAP is basically a collection of RDF models. Each modelsuits a specific purpose.

[221]

33

34

Loniion Tube Photos

A model named MemModelis a RDF file stored in memory. Another model named
DbModel, is a used to persist RDF models in a relational database. Each model has
specific methodsthatfit its purpose. DbModel has methods to automatically insert
and retrieve the model into and outof a relational database.

All models inherit methods from a generic abstract class called Model. These are
generic utility methods that apply to all models. For example, all models need to
load a RDF file to do anything with it. The load() method accomplishesthis. All
models can be represented graphically using the visualize () method, which
creates a graphical representation of the RDF file. Version 0.94 includes a method
named sparqlQuery() that accepts a SPARQL query and executes it against the
model. We will be using this method to create a SPARQLclient.

The project home pageis located at http: //sites.wiwiss.fu-berlin.de/suhi/
bizer/rdfapi/. You can download the latest version from there. Documentationis
also available, and is very extensive. Download the code, and unzip it. It will create
a directory named rdfapi-php. Then, place rdfapi-php in a directory in your
application structure. This directory must be accessible by Apache, and terms of
location and permissions.

Wewill use a few of the previous example SPARQLqueries as examples for RAP. In
the examples code, the file named rapExample. php executes two SPARQLqueries.
Let's take a lookatthis file to see the steps required to use RAP for SPARQL queries.

The file has some preliminary setup PHP codeatthe top,

define("RDFAPI_INCLUDE_DIR", "Absolute/Path/To/rdfapi-php/api/") ;

requireonce(RDFAPIINCLUDE_DIR . "RdfAPI.php");

//Create SPARQL Client

SsparqiClient = ModelFactory: :getDefaultModel () ;

S$spargqlClient->load('http: //www.shuchow.com/mashups/ch6/pets.rdf');

The very first thing we need to do is create a global variable named
RDFAPI_INCLUDE_DIR. Thevalueofthis is the absolute path to the rdfapi-php/api
directory you just installed. We then use this global variable to include the
RGfAPI . phpfile, These two lines are required for every use of the RAPlibrary.

Next, we create a default model object. The default modelis a generic model
that all other models inherit from.It is created in the statementthatcalls

getDefaultModel (). The default model object includes the basic methods we
will need.

The lastline in this block loads the RDFfile using the default model's load ()
method, Here, we load a remote file, but you can also keep a RDFfile locally.

[222]
34

35

Chapter 6

Remember, the FROM clause is not used in a SPARQL query. Thefile you pass hereis
actually the real RDF source. Being able to load remote files obviously means we can
use this library on all RDF-based mashups, and can get RDFdata at run time.

After this, we can create a query and execute it.

Squery = '

PREFIX mypets: <http://www.shuchow.com/>

SELECT Page

FROM <http://www.shuchow.com/mashups/ch6é/pets.rdf>
WHERE {

?Description mypets:name "Saffy" .
?Description mypets:age ?age

bs

$result = $sparqlClient->spargqlQuery ($query);
if (Sresult != false) {

foreach ($result as $cat) {
if ($cat f= "™") {

echo "Age: " . $cat['?age']->getLabel () ;
}

}

In this block, we put our SPARQLquery into a variable named $query. We pass
that to the sparqlQuery method. This methodis in the default model. It accepts a
SPARQL query andexecutesit against the RDFfile in memory.Its return valueis
an array of objects. The key in each arrayis a variable that we addedto the SELECT
clauseof the query, including the question mark. These are Resources objects in the
RAPlibrary. The getLabel () methodin the Resources object returns the value of
the variable.

To grab multiple variables, wejust use the other keys in our foreach loop.

$query = '

PREFIX mypets: <http://www.shuchow.com/>

SELECT ?name ?age

FROM <http://www.shuchow,.com/mashups/ch6é/pets.rdi>

WHERE {
?Description mypets:name ?name

?Description mypets:age Page

}
LIMIT 5

[223]

35

36

London Tube Photos

te'

$result = $sparqlClient->sparqiQuery ($query);

if (Sresult != false) {

foreach (Sresult as $cat) {
if (Scat t= ©") f

echo "Name: " . $cat['?name']->sgetLabel() . ", Age: " .
Scat ['?age']-sgetLabel() . "
";

}

Running this code produces this output on screen:

Name: Snowball, Age: 14
Name: Lizzie Borden, Age: 14
Name: Saffy, Age: 10
Name: Pim Pim, Age: 12

Name: Tera-San, Age: 6

RAPis quite a powerful tool. We only used a small portionofits features.If
RDFis a big part of your applications, it is certainly worthwhile exploring this
extensive library.

XMLHttpRequest Object
The next technologies we will look at depart from the server-oriented tools we
have used. You have probably heard of AJAX, Asynchronous JavaScript and XML
transfer. At the least, you have probably seen it on sites like Google Mail and Yahoo!
Mail. AJAX allows web browsersto interact with a server withoutrefreshing the
page. Combined with dynamic HTML, it has created a new levelof interactivity
between users and websites. With the near instantaneous data changes in front of a
user, web applications have never been more like desktop applications.

Another benefit to AJAX is that it can severely decrease the traffic between web
browser and web server, When wetake a look at the amountof data being passed to
Google Maps, wewill see why constant refreshes would slow down the application
too much.

[224]
36

37

Chapter 6

As we discuss AJAX and xMLHt tpRequest, we'll build a very simple web
application. This application will take inputfrom the user, pass it to a server, the
server will send back an XML documentto the browser, and using JavaScript, we
will change the page dynamically. The client component of this applicationis in the
examples code as ajaxTest . html The corresponding server componentis named
ajaxResponse.php.

The HTML page, withoutthe JavaScript code, is very basic.
<html>

<head>

<script type="text/javascript" language="JavaScript">

</script>

</head>

<body>

«form name=»theForm> action=»#2>

<input type=stext» name=sinputField» size=»10» />

<input type=sbutton» value=»Click Me» />

</form>

<hl>Server Response Area</hi>

Nothing yet

</body>
</html>

This page is simply a form with a paragraph underneath it which will be updated
using JavaScript.

ajaxResponse. php is just as simple. This script will take a query parameter named
field, and pass it back to the requester as a very simple XML document.

<?php

header ("Content-type: text/xml; charsetsUTF-8") ;
?>

<?= ‘<?xml version="1.0" encoding="utf-8" ?3>' ?>
<response>

<textFieldsYou've entered: <?= htmlentities($GET['field'])?>
</textFields>

</response>

The key here is that the page will use a query parameter named field.

[225]

37

38

Londott Tube Photos

XMLHttpRequest Object Overview
The XMLHttpRequest objectis the heart of AJAX. This is an object builtintoall
modern web browsers(version 5.0 and above) to control HTTP requests. This object
is similar to other objects built into web browsers, say the form object to controlall
form elements, or the window object to control the web browser window. All AJAX
really is the technique of using XMLHttpRequest to make an HTTP requestto the
server, triggered by someJavaScript event, after the page has loaded. The server
returns somedata, and the xMLHttpRequestobject passes the server responseto
someJavaScript function on the page. Again, using JavaScript, page stylesheet
information and the web browser Document Object Model (DOM)is changed
dynamically. Let's walk through thelife cycle of a simple xMLHttpRequest.

Using the Object
Thelifecycleis started by a JavaScript event. This can be anything the application
needsit to be—a mouseover, a pageload, a buttonclick, etc. Once triggered, the
steps that take place are:

lL. Create the xMLHttpRequest object.

2. Define the destination server information (URL,path, port, etc.) of the HTTP
requestthat we are going to make.

3. Muchlike the webservices we usedearlier, we need to define the content
that we are going to send in our HTTP request. This may be just a
blank string.

4. Specify the callback function, and build it.

9. Use the object's send() method to sendthe request.

6, In the callback, catch the server responseand use it to changethe page.

Creating the Object
There are two waysto create the XMLHttpRequest object, depending on which
browserthe visitor is using.If the user has a Mozilla browser (Firefox, Camino),
Safari, or Opera, we just create a new XMLHttpRequest() to create an object. If they
are using Internet Explorer 6, we need to use ActiveX to create a Microsoft.XMLETTP
object, which is a clone of XMLHttpRequest. Use these two methodsto place the
returned objects into a global JavaScript variable. We can use JavaScript to detect the
presence of the XMLHttpRequest object or Active X to determine which method we
should use.

[226]

38

39

g_xmlHttp = null;
function createXMLHttpRequest() {

if (window. XMLHttpRequest) {

g_xmlHttp = new XMLHttpRequest()
}
else if (window.ActivexXObject) {

g_xmlHttp = new ActiveXObject ("Microsoft .XMLHTTB") ;
}

}

This function should be called at the start of the request.

Making the HTTP Request
The start of our HTTP Request should be after the user does something. Wewill
trigger the request whenthe user triggers a key release on thetextfield. Thatis,
when the user presses on a key, the web application will call our JavaScript function
that communicates to the server.

<input type="text" namé="inputPField” size="10"
onkeyup="sendRequest ()" />

The function is named sendRequest () here. We now need to write this function.
This function will create the XMLHttpRequest object, define the server parameters,
define callback function that will be executed when a server response is captured,
and then actually send the request.

function sendRequest() {
createXMLHttpRequest();

var url = "/mashups/ch6é/examples/ajaxResponse.php?field=" +
document .theForm. inputField.value;

g_xmlHttp.onreadystatechange = parseResponse;
g_xmlHttp.open("GET", url, true);

g_xmlHttp.send(null);
}

The first statement in this function calls createXMLHt tpRequest(), which creates
the XMLHttpRequest object and places it in the global variable g_xmlxttp. The
second line places the URLto the service in a variable. This is a virtual URL to the
service. You can also make an absolute URL to the service, but we'll discuss later

why an absolute URL is unnecessary. The last part of this statementplaces the value
of the input text box we had into a query parameter named field, which is what our
service is waiting for.

SR

39

40

London Tube Photos

The next three statements use xMLHttpRequest methods and properties.
onreadystatechangeis a property that holdsthe JavaScriptcallback function
for this object. Set this to the name of the function, without opening and closing
parentheses, that will be executed whenthe server responds, You can onlyselect
one callback function. To execute more, you will need to create a facade wrapper
function that executes the others, and set the facade function as the callback.

open gets the object ready to send the request. The first two parameters are required.
The first parameter is the HTTP method to use. The secondis the URL. Thethird
parameter is whetherthe object should be in asynchronous mode.It is optional, but
itis a good ideato setthis to true because the default value is false, and we do
want to be in asynchronous mode. Otherwise, we would be in synchronous mode,
which means that the rest of the JavaScript does not execute until xMLHttpRequest
receives a response from the server.

send actually sends the request. send takes one required parameter, the body of
the request. In this example, we are sending a null because we are just doing a GET
request. The request does not have a body.If we were doing a post, we would
construct the parameters in a separate string andpassit as send's parameter. After
sendis called, the HTTP requestis made andthe callback function executes.

Creating and Using the Callback
There are two main jobs of the callback function. Thefirst is to capture the server
response. The secondis to do something with that response.

Westart off our function with a couple of checks to make sure the data from the
server has indeed arrived. If we didn't do this, the rest of our code will execute

prematurely and withoutall the necessary parts from the server response.

Thefirst if statement checks the readyState property of the XMLHttpRequest
object. As the request executes and processes, this value gets changed. There are five
possible values ofthis property:

readyState value Meaning
0 Uninitialized

Loading
Loaded

Interactive

Completed
aWwNH

[228]

40

41

Chapter 6

Only whenthe valueis 4 is the data completely ready to be parsed and used by the
web application.

The second if statement checks to see XMLHttpRequests' status property. This is the
same codethat reports 404 for missingfile, 500 for internal server error, etc. A 200 is
a successful transaction. We need to make sure the request is executed successfully,
or the data mightbe useless.

function parseResponse() {
if (g_xmlHttp.readyState == 4) {

if (g_xmlHttp.status == 200) {
var response = gxmlHttp.responseXML;
var outputArea = document .getElementByld("ServerResponse") -

firstChild;

var responseElements =

response.getElementsByTagName ("textField"”) ;

outputArea.nodeValue =
responseElements [0] .firstChild.nodeValue;

}

The first line after the nested if statement captures the value in the responseXML
property of the XMLHttpRequest object and placesit in a variable. This property is
where the browser keeps the response from the server. If you were to inspect it, you
would see the direct XML from the server.

The second statementcaptures the node of the HTML page of where weare going to
output the response. We use JavaScript's getElementById() function and traverse
down the DOM.

Wecan use the same DOM functions in JavaScriptto extract the information from
the server response. This is what we do in the third statement. We know what weare
interested in is located in the textField element of the response. We zero in on that
and getthat node.

Each DOM elementkeeps the text it displays in a property called nodeValue. In
the fourth statement, we set the output area's nodeValue to the nodeValueof the
response. This changes the webpage every timeit is executed.

[229]

41

42

London Tube Photos

If you type in the text field of ajaxTest . php, you can see this codein action.

Server Response Area
You've entered: abeedef

In our code, we checked for an HTTPstatus of 200. While this is good
practice, it requires the HTTP network protocol to be present in order

en work. This means you mustload the page in a web browser through
Qe HTTP.If you load the page throughthefile system (i.e, through

file:///ajaxTest .php,instead of http://localhost/.../
ajaxTest .php), status check will fail, and the code will not
execute properly.

This is the standard wayoftriggering an AJAX application, and it works very
nicely. The DOM parsing, however, can get messy. There are two DOMsyou must
parse—the local web page and the server response. Fortunately, you may have some
alternatives to parsing the server response.

First off, responseXML hasa sister property, responseText, that works exactly the
same way. responseText holdsthe server response if it is any text string instead
of XML. You can immediately use the response text instead of traversing through
a DOM to get what you want. If you are merely a front-end developer for a much
larger web development, and the company manifesto is to transfer everything via
XML, this might not be an available option for you. Or, if your web service is used
bythird parties, it may be best to keep it as XML. However,if you are writing a
very simple service to support just your application, know that you do not have to
structure everything in XML. You can just pass a simple text string back and use
responseText on theclient end instead.

If your web service response is too complicated for a simple text string, you may
want to consider formating your text response in JavaScript Object Notation (JSON)
to send this result back to the page.It will still be a text response, so you can use
responseText and skip the parsing. JSON gives you the structure of XML with the
simplicity of a text string, This next section will introduce us to JSON,

[230]

42

43

ra

Chapter 6

Debugging AJAX

Debugging the request and response from the server can be tricky. We
can't use a regular IDE. We need something to watch the HTTP streams.
Luckily, if you are using Firefox, there is a Greasemonkeyscript that will
do just that. Greasemonkeyis a Firefox extension that allows users to
write their own JavaScript and code against a site when they visit it, Itcan

Q be found at https: //addons.mozilla.org/firefox/748/. Once
you havethat install, download the XMLHttpRequest debuggingtip at
http: //blog.monstuff.com/archives/000250-.html. This tool
will watch everything that comes out from the browser, and everything
going in. Other helpful extensions for Firefox include LiveHTTPHeaders,
which show the request and response HTTP headers, and Firebug, a
general JavaScript and CSS debugger. For Internet Explorer, a commercial
tool called HTTPWatchis available to watch HTTP requests.

JavaScript Object Notation (JSON)
JavaScript Object Notationis simply a transfer format, much like SOAP or
XML-RPC. Unlike those two formats, JSON is not XML based.It is JavaScript code
that is loosely based on a C-style definitions and formats. Although called JavaScript
Object Notation, many server side languages have built parsers to interpret JSON
format. Given this andits lightweight nature, it has become a popularalternative to
XML when communicating between a web browseranda client. JSON's home page
is at http: //www.json.org.

JavaScript Objects Review
Let's quickly review JavaScript objects first. To define a class in JavaScript, you
simply treatit as if it was a function. To give the class properties, use the keyword
this, followed by a dot, followed by the nameof the property. To give the class
methods, also use this, followed by a dot, the nameof the function, an equalsign,
the keyword function and then the function definition. For example, this could be a
cat object in JavaScript:

function Cat (name) {
this.name = name;

this.gender;
this.age;
this.eat = function() {

alert ("Yum");

}
this.sleep = function!) {

[231]

43

44

London Tube Photos

alert ("zzzz..");

}
}

This class definition requires a nameas a constructor because it is the only required
parameter in the class definition. Cats can be instantiated like so:

aCat = new Cat ("Quincy");

anotherCat = new Cat ("Buddy");

JavaScript objects are pretty basic. There are no accessor keywords. Everythingis
public. You can access or set properties simply by using dot notation on the object.

aCat.gender = "F"; //Quincy is now a female

anotherCat.name = "Gilbert"; //Buddy just got a name change.

Note the dot notation weuse to access the object properties. We use the same dot
notation when we access JSON properties.

JSON Structure
To delimit object definitions, the object is named followed by an equals sign. The
properties of the object are then enclosed in curly brackets. JSON properties are
name/value pairs separated by a colon.

JSON properties support the following data types:

Type Format Examples

Number Integer,float, or real. The actual number. 1, 2.8217

String Double quoted value, "A Value", "Another Value"

Boolean True/false, no quotation marks. true, false

Array Square bracket delimited list. [34, 498, 12]

Object Curly Brackets, { property one: value one}
Null Null. Null

The JavaScript cat structure above can be represented and expanded in JSONlikeso:

var cat = {
name: "Quincy",

gender: "F",

age: 4,

spayed: true,

[232]

44

45

Chapter 6

collar: {
charm: "bell",

color: "green"

}
}

If this cat was represented using XML, it would be a bit more cumbersome and
definitely eat more bytes:

<cat>

<name>Quincy</name>

<«gender>F</gender>

<age>4</age>

<spayed>true</spayed
<collar>

<charm>bell</charm>

<color>green</green>

</collar>

</cat>

Accessing JSON Properties
In the above example, the properties of thecat can be easily accessed through dot
notation with cat as the parent object. Her nameis found by using the variable cat .
name,her age is at cat . age, etc. The example file j sonExample. html shows how
dot notation is used to access a property of a JSON objectthatis in the response. You
simply drill down further with the nameof the object as a dot notation level. The
code displays Quincy's collar color using the variable cat.collar.color.

function getColor() {
alert ("Quincy's Collar Color: " + cat.collar.color) ;

}

JavaScriptis a typeless language (meaning you do nothaveto specify which data
type a variable is), so we can use properties directly through dotnotation. The only
thing that may need a conversion oralteration step are JSON arrays. For example,
let's insert an array of fur colors into the above example.

age: 4,

furcolor: ["white", “orange"],

spayed: true,

[233]

45

46

1

London Tube Photos

The furcoloris still accessible through dotnotation, but there will be sometwists.
If you access the array directly, you will get a string of the array elements separated
by commas. cat . furcolorwill be "white, orange". To access individual elements,
attach the element numberin brackets after the array name,like you would a normal
JavaScript array. cat .furcolor [0] will have a value of "white". cat. furcolor [1]
will have a value of "orange." You can also check the length of the array by accessing
. length after the array namein dot notation. cat . furcolor. length will have a
value of2.

Serializing the JSON Response
As givenin the example,the catis already a serialized JavaScript object. The curly
brackets that immediately enclose the properties give this away. This means that we
can workdirectly with the data through dot notation.

Very frequently, though, youwill receive a string representation of a JSONobject.
One suchsituationis if the JSON object is stored in a XMLHttpRequestobject's
responseText property. Sure, structurally the object is in JSON. However,the data
is cast as a string.

To turn the JSONstring into a JavaScript object, passit through the JavaScript
eval () method.

var cat = '{"name": "Quincy", "gender"; "F", "age": 4, "spayed": true,
"color"; ["white", “orange"], "collar": { "charm": "bell", "color":
"green" }}!;
var quincyObj = eval('"(' + cat + ")"');

function getColor() {

alert («Quincy's Collar Color: « + quincy0bj.collar.color) ;
}

The eval () method executes whateveris passed to it. As we are passingin
somethingthat is formatted as an object, it will return an object. This unserialized to
serialized exampleis in a file named jsonTest .html.

Note thatin the call to eval (), we have to wrap thestring within literalstring
parentheses. This is because while the code looks like a JavaScript object, eval()
treats the openingcurly bracketin the string as a generic block opening, and not as
the start of an object. Placing it within parentheses will put the parser into expression
parsing mode, which correctly will parseit as a JavaScript object.

[234]

46

47

—_—i.<«™—
Chapter 6

1 Be careful with eval ()

Be careful when you use eval (). It blindly executes any code passed to
it, so make sure you fully trust the source of the input.

Finally, we get to our APIs. We only have two we needto look at—the Google Maps
API and Flickr Web Services.

Google Maps API
The Google Maps APIallowsthird party developersto use the features of Google
Mapson their own sites. Anything you can doas a user of Google Maps can be done
using the Google Maps API. The Google Maps documentation home pageis located
at http://www. google. com/apis/maps/documentation/. The documentationis
quite extensive. We will take a look at how the API basically works, and concentrate
on the features we will use in our mashup. Just knowing how the APIis organized
is the key step in searching for information and using the Google Maps API in
future projects.

The Google Maps API requires an API key. You can registerforit for free at
http://www.google.com/apis/maps/signup.html. This key is used when
including the Google Maps APIin yourpage. Before you do anything with Google
Maps, you will need to get this API key and putthis source tag and in top of your
page's head tag.

escript src="http://maps.google,com/maps?file=apisamp; v=2& key=Your
Google API Key" type="text/javascript"></script>

The APIis a JavaScript API based heavily on objects. The central object is the Google
Mapthat yousee. Everything that you see on Google Mapsincluding mapcontrols,
icons, lines, and the white information window box, are just JavaScript objects added
to the map. As wego through the examplesin this section, we will build the same
page thatis in the examples named googleMapTest . php.

Creating a Map
The Mapis created by instantiating the cmap? class. The only required parameterin
the GMap2's constructor is an HTML containerto place the map. Typically,this is an
empty div tag. The Google Map will be displayed in the space occupied bythis tag.
This places a lot of importance on this container. You can use CSS to position the
mapon the page, andthesize of the container determinesthe size of the map.

[235]

47

48

London Tube Photos

Let's take a look at a simple example:
<html>

<head>

<titlesGoogle Maps Scratch</titles

<script src="http://maps.qoogle.com/maps?file=-api&v=2&
key=YOUR_GOOGLE_API_KEY" type="text/javascript"></script>

<script type="text/javascript">
var g_map;

function load() {

if (GBrowserIsCompatible()) {
g_map = new GMap2 (document .getElementById("map")) ;

}
}
</script>

«</head>

<body onload="load()"s

<div id="map" style="width: 800px; height: 600px"></div>
</body>
</html>

This simple page would create a Google Map. Wedeclare a global variable
named g_map to hold the Google Map. The load function is run when the onload
eventis triggered.In the load function, a Google JavaScript functionis called,
GBrowserIsCompat ible, to check for browser compatibility.If it passes, we create
the map by instantiating GMap2. We pass the container using the JavaScript DOM
function getElementById to the GMap2 constructor. As the size of the div elementis
800 by 600 pixels, this map will also be 800 by 600 pixels.

If you actually ran this code, you would find thatit's pretty useless. You would
just get a blank, grey map. The problem is that the map doesn't know where to
initially centeritself. You must specify this by using the map's setCenter () method.
setCenter() can actually be called at any time, andcan be triggered by any event.It
accepts a GLatLng objectas its parameter.

Geocoding
As you work with Google Maps,youwill find thatit relies heavily on latitude and
longitude coordinates to do anything on the map. The problem is that in every day
communication, we use addresses more often than latitude/longitude coordinates.
Theprocess of translating from an addressto a latitude/longitude coordinate is
known as geocoding. To make using Google Mapsa loteasier, the API provides an
object named GClientGeocoder to geocodefor us.

[236]
48

49

Chapter 6

To create a geocoder,first instantiate the GClientGeocoderobject. This object has a
method named getLatLng(), which takes two parameters. The first parameter is a
string of the address you wish to look up. The secondis a callback functionthat is
called after the server returns the results.

Google's servers pass a GLatLng object to the callback function. A GLat Lng object
simply holdslatitude and longitude coordinates as properties. If you need to
create a GLatLng object, there are two parameters you must pass —the latitude and
longitude. These properties can be accessed again by using this object's lat () and
long() methods.

A small inconvenience in using getLatLng () is that this method doesn't actually
return a GLatLng object to the caller. However, because one is passed to the callback
function, you haveto create a callback function in order to use the geocodingresults.
Going back to our code, we can make a small modification to the JavaScript to make
it center on an address,

<script type="text/javascript">
var g_map;

function load() {
if (GBrowserIsCompatible()) {

var geocoder = new GClientGeocoder();

g_Map = new GMap2 (document .getElementByid ("map")) ;
geocoder .getLatLng (

"780 Arastradero Road, Palo Alto, CA 94306 USA",

centerMapCallback);

}
}
function centerMapCallback (returnedPoint) {

g_map.setCenter(returnedPoint, 14);
}

</script>

In this modified script, we create a GClientGeocoderin the load function. Wecreate
the maplike before. After that, we call getLatLng (), passing an address, and the
callback function, centerMapCallback.

(237 J-—$@$@?NAAMMASS

49

50

London Tube Photos

In centerMapCallback (), we catch the GhatLng object in the parameter and passit
to the map's setCenter() method to do the actualcentering. The second parameter,
whose valueis 14, isthezoom level. When the API calls for a zoom level, you can
supply an integer from zero to seventeen. The higher the number, thecloser the
zoom will be.

Wewill not be doing any geocoding in this mashup, but you should still familiarize
yourselfwith GClientGeocoder. Wewill be using GLatLng quite a bit, Both objects
are very important to the Google Maps API. You will find that a mashup often needs
both of these objects.

[238]

50

51

Chapter 6

Markers
One frequent use of GLat Lng is that they are parameters for markers. Markers are the
pointers Google Maps use to identify a specific place on the map. Each marker is an
instance of the GMarkerclass.

To create a basic marker on the map, you only need to do two things: 1) Create the
GMarker object, and 2) Addit to the map.

In our example, we can add a marker to the address simply by adding two extra lines
to do those tasks in our callback function.

function centerMapCallback (returnedPoint) {
var marker = new GMarker(returnedPoint);

g_map.setCenter(returnedPoint, 14);
g_map.addOverlay (marker);

}

The first line instantiates the GMarker and places it in a local variable named marker.
The second line zooms to the map center as before. The third line adds marker to the
Google Map.

GMarker can take a second parameter, a GMarkerOpt ions object. This is an object
whose sole purpose is to tweak the marker. Usingit, you can do things like add your
own customericons or make the marker draggable. All you haveto dois set the
properties of the GMarkerOptionsobject.

< http: //www.google.com/apis/maps/documentation/
~ reference. html#GMarkerOpt ionsfor everything you can do

Consult the GMarkerOpt ions documentation at

to markers.

[239]

51

52

London Tube Photos

Events
In the Google Maps API Class References documentation, notice that some objects
have events associated with them. These objects are things the user sees and can
interact with, like the mapitself, lines, and markers. This allows you to fire off
JavaScript functions whenever the user does something.

Events are managed by the GEvent namespace. To register an event, you must addit
to the GEvent object using the addListener() method. addListener() takes three
parameters. First, it takes the object that you wantthe eventto be active. Second,
it takes the kind of event(click, drag, etc.) that is available on the object. Finally, it
takes a handler function thatfires when the eventis triggered.

Let's add an event to our marker. Adding a few morelines to our callback function,
we can add an alert box that pops up when our markeris clicked.

function centerMapCallback (returnedPoint){
var marker = new GMarker(returnedPoint) ;

g_map.setCenter(returnedPoint, 14);
g_map.addOverlay (marker) ;

GEvent -addListener (marker, "click", funetion() {
alert ("Marker clicked!");

boa

}

GEvent is not an object that we create, so we do not needto instantiate it. It is
automatically instantiated when weload the Google Maps API. Whentheclick event
is triggered on marker, the handler functionis executed.

InfoWindow Box
An alert box is pretty bland. What's more useful is the white popup box that
often appears when using Google Maps. These popup boxes look like comic book
speech balloons. They point to a specific location on the map, and contain helpful
information aboutthat location. In the Google Maps API, these boxes are known as
InfoWindows.

InfoWindows are represented in the API by the GInfoWindow class. The most
important thing to know about InfoWindowsis that for each Google map,there
is one and only one InfoWindow. This has two implications to us. First, when the
InfoWindow comes and goes from the user's view, all that is happeningis that
visibility of InfoWindow is being toggled. This is done either through built-in
events of the APIlike, like clicking on the InfoWindow's close window button, or
programmatically by the developer, like calling the InfoWindow's show () or
hide () functions.

[240]

52

53

aaaaa

Second, events just share and update the same InfoWindow. When you see an
InfoWindow take on new content, like what happens when you switch from one
marker to another in Google Maps, the InfoWindow's content is being changed
through JavaScript DOM methods. Wewill have to do the same when weuse
InfoWindow boxes in our mashup.

Let's modify our example script further. Instead of getting a JavaScriptalert box,let's
display an InfoWindow box when the user clicks on the marker.

Remember, every map already has an InfoWindow box associated with it when you
instantiate the map. Therefore, there is no need to create a GInfowWindow object. All
wehaveto do is orderit to appear in the exact place that we want.

You can set an InfoWindow box over a specific point by passing a GLatLng object
over the point to the GInfoWindow's reset () method, then make it appear using
the object's show () method. However, there is a quicker way to do this. Making the
InfoWindow box appear over a markeris one of the most common things to do in
Google Maps.It's so common, the Google Maps API Team created methods on the
GMarker object that does just this. The beauty is that the method is on the marker,
so it will appear over the marker automatically. You do not have to track down the
latitude/longitude of the marker.

We can simply modify the event handler to show the InfoWindow insteadof an alert.

GEvent .addListener(marker, "click", function() {
marker .openInfoWindowHtml ("<div><bsMy Marker!</div>") ;

bd;

[241]

53

54

London Tube Photos

InfoWindow's size is the width and height of the largest HTML container inside.
Therefore, you can control the size by adding a height and/or width CSS properties
to the enclosing container, For example, you can make a roughly 200 pixels by 300
pixels InfoWindow by putting a div tag that is 200 pixels by 300 pixels like so:

.openInfoWindowHtml ("<div style=\"width:220px; height:250px;\">
Some HTML</div>") ;

Version 2.5 and above of the API also has added supportfor tabs in the InfoWindow.
To turn an InfoWindow into tabs, create a GInfoWindowTabfor each tab. This class's

constructor takes two parameters. The first is the label of the tab, the secondis the
content. Place all of these GInfowWindowTab objects in a JavaScript array. The GMarker
class also has support for a method named openinfoWindowTabs(). This method
takes an array of GInfoWindowTab objects. Calling it will open an InfoWindow, but
the window will be ina tab interface, with the objects as the content.

Ourcallback function can be tweakeda bit to use tabs in the InfoWindow:

function centerMapCallback (returnedPoint) {

var tabsArray = new Array();

tabsArray[0] = new GInfoWindowTab("One", "<p>Content for Tab 1</p>");

tabsArray[1] = new GInfoWindowTab("Two", "<p>Content for Tab 2</p>");

var marker = new GMarker (returnedPoint) ;

g_map.setCenter(returnedPoint, 14);
g_map.addOverlay (marker) ;

GEvent .addListener (marker, "click", funcotion() {
marker .openInfoWindowTabs (tabsArray) ;

+ 09
}

[242]

54

55

ter €

This concludes the basic features of Google Maps. There are plenty of other features
available. Some of the powerful features include:

¢ Theability to draw lines on the map, similar to when Google Maps
gives directions.

e AREST interface for the service returning XML, allowing you to use the
Google Mapsdatabase on server-side applications.

¢ A Marker Managerto handle large amounts of markers atdifferent
zoom levels.

e Override the maptiles from Google Maps using the GMapTiles object.

If you use Google Maps API heavily in mashups, you should also be aware of the
many options objects available to you. They give you the flexibility to go beyond
many other mashupsthat use the API. For example, with the GMarkerOptions
object, you can create custom markers on your map.

Even without these advanced features, you will be able to do a lot with Google
Maps. Wecertainly have more than enough to create our mashup.

Flickr Services API
Flickr, focusing on photo sharing, is one of the oldest community-driven sites out
there. They were also an early adopter of web APIs for third party developers.
These things have given them a large user base and a very rich API. Flickr Services
is probably the mostflexible web AP] we have seen. The AP] homepageis located
at http://www. flickr.com/services/api/. You will need a free developer key
to use this API. As Flickr! is a subsidiary of Yahoo!, you will also need a free Yahoo!
account. You will be prompted for both at http://www. flickr .com/services/
api/keys/. From there, you can also sign up for both.

Like the other APIs from social-sharing sites we have seen, Flickr Services' API
focuses not only on their subject matter, but also has many methodsthat deal with
community features. There are an abundant group of methods that allow you to
query information aboutFlickr's community. Assuming someonehasallowedit
on their privacy settings, you can get a person's blog entries and favourite photos,
among other things. There is also an API dealing with Flickr Group's information.
They allow you to find photos and information from people with a similar interest.

Certainly, the two largest groups of methods have to do with photos and photosets.
A user can arrange their photos into photosets for organizational purposes.
Flickr, like Last.fm and YouTube, relies heavily on user tags. Their photo searchis
influenced by whatis tagged by people.

[243]

55

56

London Tube Photos

Probably the mostimpressive thing aboutFlickr Services is the choices you have in
request and response formats. For request, you can use any of the three most popular
formats —REST, SOAP, and XML-RPC.For responses, you can chooseFlickr's own
XML schema, SOAP, XML-RPC, JSON,or even serialized PHP objects. Regardless
of the format you choose for request and responses, Flickr Services has a consistent
method of doing things. All requests take the same parameters and return the same
data. You just need to format and parse differently for each one.

Executing a Search
Because Flickr Servicesis so consistent, the best way to get an overviewofit is to
walk through an example. In our mashup, we will need to concentrate on the group
of photo methods.In particular, we need one to search photos based on user tags.
Let's try and execute a search like we will be doing for our mashup.

For our request and response, we'll look to keep things simple. Wewill send the
service request using REST. Our web application is PHP driven, so a serialized PHP
response would be intriguing. However, as JavaScript will be doinga lot of the
work, we will use JSON. The straight XML response from a RESTcall would also be
acceptable, but it would be nice to avoid the DOM parsing that would be required
withit.

The method namesarefairly self-explanatory and give us a lot of clues on whatthe
method does. Looking at the documentation for the method flickr.photos.search
at http: //www.flickr.com/services/api/flickr.photos.search, html, we see
it is exactly what we need to search photos.

The URLfor all Flickr REST requests is http: //api.flickr.com/services/rest/.
Following this URL are the parameters of the method in a GeT request format, There
are two required parameters for all REST requests—method and api_key. The value
of method is the nameof the method that you wish to call. The value of api_key is
your Flickr API Key.To call £1ickr.photos.search, our complete URL would be:

http://api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=YOUR_FLICKR_APIKEY

A methods documentation pagelists all the parameters the method can take.
flickr.photos.searchs' available parameters are quite extensive. This gives us a
lot ofability to tweak our search. According to the documentation, the only required
parameteris api_key. However,this is sort of misleading because wealso need to
supply a search term. Wecan search tags using the tags parameter, or a free text
search using the text parameter. Even though both are optional parameters, we
need to include oneor the other. Otherwise, Flickr will return a message saying that
empty searches are not supported.

[244]

56

57

Chapter 6

To use tags, supply a comma delimited list of terms you wish to search. A text search
is just a free text string. Either way, when using REST, remember to URL encode
yourterms.

http: //api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=YOUR FLICKR_API_KEY&text=fender%20stratocaster

If you use XML-RPC or SOAP,use the exact same parameters aslisted in the
documentation and format the parameters and values as required by the respective
format. For SOAP,the endpointis at http: //api.flickr.com/services/soap/.
For XML-RPC,the service endpointis at http://api.flickr.com/services/
xmlrpe/.

interpreting Service Results
If you hit the above URL in a web browser, after adding your API key, the search
will execute and you will receive a live response from the server.

<?xml version="1.0" encoding="utf-8" ?>

<rsp stat="ok">

<photos page=s1l» pages=»20» perpage=>100» total=»1904»>

<photo id="412962278" owner="43203076@N00" secret="63e7e2e1f0"
server="183" farm="1" title="Doin' Studio Time" ispublic="1"
isfriend="0" isfamily="0" />

<photo id="412463850" owner="63895350@N00" secret="26b97edbb5"
server="172" farm="1" title="Norby with his Fender Stratocaster”
ispublic="1" isfriend="0" isfamily="0" />

«photo id="411598583" owner="75859527@N00" secret="657ebs06c8"
server="172" farm="1" title="Hocus Pocus" ispublic="1"
isfriend="0" isfamily="0" />

</photos>

</rsp>

The returned formatis in a standard format returned by Flickr wheneverit returns
photos. By default, a call returns 100 results per "page". The photos element groups
individual photo elements in a "page". Each photo elementrepresents a photo
returned in the search results. You can change the page you are on by passing a
page parameterto thecall. Alternatively, you can also change the numberof photos
returned in a page with the per_page parameterin thecall.

57

58

London Tube Photos—aes

Each photo elementis basically a collection of attributes about the photo. These
attributes are very important. We need to know them in orderto load the photo.

Attribute Description

Id UniqueID of the photo.

Owner OwnerID ofthe person that owns this picture.
Secret A secondary identifier used to help identify the photo.
Server The server on which this photois stored.
Farm The server farm on which this photo is stored.
Title Thetitle of the picture.

isPublic Boolean indicating whether the owneris publicly sharing the photo.
isFriend Booleanindicating whether the owneris on yourlist of friends.
isFamily Boolean indicating whether the owneris on yourlist of family members.

Thelast three booleans take either a 1 or 0 value. They also require the service caller
to be authenticated in using the authentication methods in the API.

This is what we want, butit is in the wrong format. We wantthe results back in
JSON. Togetresults in JSON, weneed to pass a format parameterto theservicecall.
In this case, the value of that parameter is j son.

http://api.flickr,com/services/rest/?method=flickr.photos. searché&api_
key=YOUR FLICKR_API_KEY&text=fendert20stratocaster&format=json

Adding the parameter will give us this response from the server.

jsonFlickrApi({

“phates: of

"page":1,

"pages":20,

"perpage":100,

“cotai™ "1904",

"photo": |

{«id»: 412962278», «owner»:»43203076@N00»,
«secret»: »63e7eZelf0», «server»:»183», «farm»:1,
«title»:»Doin\u2019 Studio Time»; «ispublic»:1, «isfriend»:0,
«isfamily»:0},

{«id»>:>»412463850», «owner»:»63895350@N00»,
«secret»: »26b97edbb5», «server»:»172», «farm»il, «title»:
»Norby with his Fender Stratocaster», «ispublic»:1,
«isfriend»:0, «isfamily»:0},

[246]

58

59

eeee

{«id»>:»411598523~, «owner»: »75859527@N00»,

«secrets :»65/7ebs06c8», «servern:»l72», «farm»:1, «title»:»Hocus

Pocus», «ispublic»:1, «isfriend»:0, «isfamily»:0},

]
}

})

Each method's documentation page documents the returned XML formatof the call,
From there, it is easy to take an educated guess at the JSON equivalent. Generally,
elementattributes in the XML documentare object properties in the JOON document.
Nested elements are translated into nested objects. The subject of search results,
whetherthey are things like blog entries, users in a group, or like in this case, photos,
are returned as JSON arrays. If you have trouble estimating the exact translation of
a method, you can always manually make the request in your browserlike we
did here.

Note that the JSON results are encapsulated in a call to j sonFlickrapi. By default,
the API assumes that you wantto pass the JSONresults toa JavaScript callback
function. If you have a function named j sonFlickrApi in your application, the
JavaScript engine will pass the JSON object to that function when it receives the
response. The engine will then automatically execute the function. This can be a
controller in your JavaScript for the service's return value. However, you do need to
create a function named jsonFlickrApi, and it must be set-upto act on the returned
JSON code. If you choose not to use this, you can turn this automatic callback off by
sending a true (1) value to the noj soncal1back parameter in your call. This will give
the exact sametext string without the jsonFlickrApi().

http://api.flickr,com/services/rest/?method=flickr.photos.search&api_
key=YOUR_FLICKR_API_KEY&text =fender%20stratocaster&format=json&nojson
callback=1

Retrieving a Photo or a Photo's Page
Nowthat we have the results, we can use the data to retrieve photos from Flickr.
Image URLs in Flickr have the following format:

http://farm{FARM-ID}.static.flickr.com/{SERVER-ID}/{ID}_
{SECRET}{SIZE}.jpq

With the exception of the size, all the other variables can be extracted directly from
flickr.photos. search's webservice call response.

[247]

59

60

London Tube Photos

The FaARM- 1D is the farm attribute. seRVER-ID is the serverattribute. ID is the id

attribute. SECRETis the secret attribute in the xML. $12is the size of the photo you
want. It is an underscore followed by onecharacter. The character can take on anyof
the followingletters:

Suffix Meaning Max Pixels on Side

_o Original size *
_b Large 1024
None Medium 500

_m Small 240

Jf Thumbnail 100

A SmallSquare 75 pxx 75 px

Oneof the first photo's XMLis returnedas:

<photo id="411598583" owner="75859527@N00" secret="657ebs06ce8"
server="172" farm="1" title="Hocus Pocus" ispublic="1" isfriend="0"
isfamily="0" />

Wecan use this information to construct a URL to a small version of the photo:

http: //farml.static.flickr. com/172/411598583657eb806c8m.jpg

Original size worksa little differently. They have their own secret code in an
attribute named originalsecret and you mustincludethefile type extension,
which you can getfrom anotherattribute named originalformat. To get these
attributes, you need to request them in youroriginal request in the extras parameter.
This parameter takes a comma-delimitedlist of attributes that may not be included
in the default response,

http://api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=YOUR_FLICKR_APIKEY&text=fendert20stratocaster&form
at=json&nojsoncallback=1&ext ras=originalsecret,originalformat

Consult a method's documentation to see if any extra parameters are available.

A URLto the photo's web page works in a similar way. The URL takes the
following format:

http://www. flickr.com/photos/{USER-ID}/{PHOTO-ID}

The documentation outlines several different things that you can link to, for example,
you can construct URLs to a photosetor a user's profile.

[248]

61

Chapter 6

Mashing Up
Wehavetoured a lot of technologies for this mashup. Someofthese are pretty
cutting-edge, but necessary to incorporate a relatively new specification. Not
surprisingly, your data sources are not always going to be from web APIs. Staying
flexible and searching for new technologies to use in your applications is important.
Atlast, we have the knowledgeto start building the application.

The database is a good place to begin. Recall from our sequence diagram that a
visitor directly and indirectly interacts with several different components of our
application at any one time. Many of the components rely on the Google Mapto be
built first, but the map relies on the database as a source for marker locations.

Building and Populating the Database
Our mashup needsthree things: Tube stations, lines of the Tube system, and which
stations belong to which line. We also need to keep in mindthata station can belong
to more than oneline. As our source of data is from the Tube Station RDF document,
let's take a close look at the documentto see what's available to us.

Examining the File
Thefirst half of the page consists of stations. A typical station lookslike this:

<rdf:Description rdf:about="http://london.openguides.org/index.
ogi?id=Acton_Town_Station;format=rdf#obj">
<08:y>179613</os:y>

<dc: subject>Tube</dc:subject>
<name>Acton Town Station</name>

<de:title>Acton Town Station</de:titles

<rdfs:type rdf;:resource="http://www.w3.org/2003/01/geo/wgse4 __
pos#SpatialThing"/>

<geo: long>-0.280009</qeo: long>

<space:connects rdf:resource="http://london.openguides.org/index.
egi?id=Turnham_GreenStation; format=rdf#obj"/>
<08:x>519478</os:x>

<rdfs:seeAlso rdf:resource=shttp: //london.openauides.org/index.
cegi?id=Acton_Town_Station;format=rdf#obj»/>

<geo:lat>51.502833</geo:lat>

«</rdf:Description>

[249]

61

62

London Tube Photos

Weneedatleast a nameanda latitude/longitude pair for Google Maps. The name,
geo: long, and geo: 1at elements appear to give this to us. We will definitely need
to extract these. Putting this "thing" in a subject/predicate/object context, the rdf :
about attribute would give us the subject. Should the need arise, we can use that as
a uniqueidentifier. We also see there is a type/ resource elementthat may identify
this item as a tube station; this may also be useful.

Nowhere in this document do wefind an actual list of lines. However, the last half
of this documentis interesting. Theyare a collection of blocks, but smaller than a
station block.

<rdf:Description rdf:about="http://space.frot.org/a_space/id5276761">
<rdfs:type rdf :resource="http://space.frot.org/rdf/space.owl#Tube_
Line" />

<rdfi:predicate rdf:resource="http://frot .org/space/0.1/connects"/>
<rdf:subject rdf: resource="http: //london.openguides.org/index.
cgi?id=NorthEalingStation; format=rdfFtobj"/s
<dc:title>Piccadilly Line</de:title>

<rdf:object rdf:resource="http://london,openguides.org/index.
cegi?id=BalingCommonStation; format=rdf#obj"/>
</rdf:Description>

They appearto bealist of spatial relationships described in a triple format. The rdfs/
resource pairtells us it is a tube line. However, there are manyofthese in eachline.
Whatgives this away are the rdf : predicate, rdf: subject, and rdf :object tags.
These items tells us thatin this line, the subject, which directly correlates to the raf:
aboutattributes of the stations, connects (according to rdf :predicate) to the object,
whichalso directly correlates to the rdf: about attributes, Basically, these itemstell
us that the subject station connects to the object station in a certain line. They are
drawing the line map for us using a triple.

Therefore, we can simply pick these outto get the line stations. As rdf: subject
elements are the start of the connection chain, we can just pick out the rdf: subject
and filter by de: title to getall of the stations inaline.

This is the only hintof the presence of Tube lines, However,all wereally need to do
is extract the nameof the line and the stations to which they belong.

Creating Our Database Schema
A line has manystations andastation can belong to more than one line. This sounds
like a job for a join table. We'll keep things simple andjust extract the name,latitude,
and longitudefor the stations, and just the line nameforthe line.

[250]

62

63

Our database schema will look like this:

|PK|StationiDND |

h|StationName (VARCHAR(50)) |__| LineName (VARCHAR(5O))Latitude (VARCHAR(50))
Longitude (VARCHAR(50))

StationID (INT)
LinelD (INT)

Wehaveincluded an SQLfile in the examples code named londontube. sql. This
file will create a database with foreign key constraints. You can run this file directly
in an SQL importtool, like the MySQL commandline, or phpMyAdmin, to create
this database. For all other RDMS setups, create a database named londontube and
mimic the schema.

‘ Don't forget to give at least SELECT and INSERT permissions for a user

~~— on this database, and a password!

Building SPARQL Queries
To populate these tables from RDF, we will need a SPARQL query for each one.
First, we will need to populate all stations. Second, we will need a SPARQL queryto
populate all the lines. After we insert lines and stations, we need to use the SQL IDs
that were generated andinsert them into the stationtoline junction table.

As we create these, we can double check our work back at SPARQLer. Be sure to
change the Data URL field to the London Tube RDFat http: //space.frot .org/
rdf/tube_model2.rdf.

SSeSa

63

64

1

London Tube Photos

Stations Query
Ourstations query mustextract the name,latitude, and longitude from the RDF
document. Wecan do this with the following query:

PREFIX : <http://xmlns.com/foaf/0.1/>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX rdf: <http://www.w3-org/1999/02/22-rdf-syntax-nsi#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?stationName ?lat ?long
FROM <tube_model2.rdf>
WHERE {

Ptype rdfis:type

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThings .
?type :name ?stationName .

?type geo:lat ?lat .

?type geo:long ?long

}
ORDER BY ?stationName

In the top, we define the prefixes we will need. Note the very first prefix. The name
of the stationis in the name element, which does not have a prefix.It falls into the
default namespace. You have to declare default namespaceprefixes if they are used
in SPARQL.To do this, create the PREFIX statementas you normally would, but the
namespace portion is just an empty colon.

The SELECT statementtells the parser to grab three variables, ?stationName, ? lat,
and ? long. The WHEREclauserefines the search andsets those variables.

Thefirst triple narrowsthe search to stations. Remember when welooked atstations
in the RDF document, it had a type/ resourcepair that identifies it as a station?
The type wasin the rdfs namespace, but its resourceattribute wasin the rdf
namespace. Even though wedonotexplicitly use the rdf namespacein thisfirst
WHERE Clause, the valueis in that namespace, so therefore we also needto giveit
a PREFTX declaration. This statementsets the subject for our other clauses in the
variable named ?type.

The three othertriples set the variables we asked for in the SELECT statement. They
essentially work the same way. They use the subject in 2typeto find the predicate,
which are the elements we want. The objectof these triples is placed into the
?stationName, ?lat,and ?long variables.

——_——252J
64

65

Chapter 6

Lines Query
This one is easier than it may first appear. Our lines query must getall of the lines in
the system. However, the RDFfile does not have a section ofjustlines. It does have
the section where it describesall of the connections in a line, though. We can simply
grab all of these connection items and use the Distinct keyword onthe line name to
make sure we only get one of each,

PREFIX dc: <http://purl.ora/dc/elements/1.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

FROM <tube_model2.rdf>
SELECT DISTINCT ?lineName

WHERE {
?type rdfs:type <http://space.frot.org/rdf/space.owl#TubeLine> .
Ptype de:title ?lineName

}
ORDER BY ?lineName' ;

The WHEREclause by itself, gets all of the line names from the dc: title element
based on a type/ resource combination like the previous query. However, the
DISTINCT keywordfilters outall the repeat instances.

Lines to Stations Query
Rememberpreviously that RDF items do not haverelationships like SOL does per se.
We can work aroundthis by using queries to find the subject of the child object. We
will have to do this to map the relationship between lines andstations.

PREFIX : <http://xmlns.com/foaf/0.1/>

PREFIX de: <http://purl.org/dc/elements/1.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?lineName ?stationName

FROM <tubemodel2.rdf>
WHERE {

Pline rdfs:type <http://space.frot.org/rdf/space.owl#Tube_Line> .
?line de:title ?lineName .

?line rdf:subject ?infourl .
?infourl de:title ?stationName

}
ORDER BY ?lineName ?stationName';

[253]

65

66

London Tube Photos

This query is asking fora line nameand a station namepairing. All stations that
belong to a line should be included with thatline.If a line has twelvestations, there
should be twelve entries with thatline in the result set, with each station having on
entry in that pair.

Thefirst line in the WHERE clause is simple enough.It sets the subjectof all Tube lines
in the ?1ine variable. The secondline sets the ?1ineName variable, which we want
to extract, by makingit the object of the dc: title predicate. It gets interesting in the
third line.

In the RDF document, these connection items have a subject element.

<rdf:subject rdf:resource="http: //london. openguides.org/index.
egirid=WappingStation; format=rdf#tobj"/>

These subject elements tell us that subject of this connection item is the resource
attribute value. Thethirdline in the WHERE clause, then, sets the rdf: resource value
in a variable named ? infourl. Rememberearlier when we lookedatthe stations we
noted the rdf: about attribute in the Description elements of the stations could be
used as a unique identifier for those stations? This is where it comes in handy. These
identifiers are used in rdf : resource in these connection items.

In the fourth line, we usethis station identifier URL as the subject to grab the
station name. This fourth line looks for all subjects with the unique station URL and
operates on those items. In other words, it looks back at the station itemsin thefirst
half of the page.

Finally, back in the SELECT statement, we add a DISTINCT keyword to 71 ineName.
This is because a connection between twostationsis actually represented twice in
our document. You'll find a statementthat says, "Station A is connected to Station B",
andlater on in the document, you'll find "Station B connects to Station A". This is
no accident, but will cause each connection to be listed twice. DISTINCT will
eliminate that.

Wehavesuccessfully worked aroundtheissue of relationships. Though yourclassic
foreign key constraints in SOLare not available, we do haveidentifiersin this file
that we can play with. Fortunately, we have a well designed document, but this may
not always be the case. You may have to query more than one document, or you may
have to get extra complicated with your SPARQL wHere clauses.

Database Population Script
Now that we have our SPARQL queries,it's time to actually use them to populate
our database. We will write a proceduralscript that uses RDF API for PHP to do
just that.

[254]

66

67

a

As RAP is objected oriented, we'll use a model-centric approach for this script. In
the example chapter code,this section will go over the codein the script named
populateDB. php. In the classes/models directory, there are twofiles, clsLine.
php and clsStation.php. They representthe line table in the database and the
station table. They are just containers. Each column in the database is represented
by properties in the class, and each property has a public getter and setter method to
access it.

The clsline. phpfile looks like this:

<?php

class Line {

private $lineld;

private $SlineName;

public function getLineId() { return $this->lineId; }

public function getLineName() { return $this->lineName; }
public function setLineId($i) { $this->lineId = $i; }
public function setLineName($n) { $this->lineName = $n; }

}
?>

elsStation. php looks like this:

<?php

class Station {

private SstationId;

private $stationName;
private Slat;

private Slong;

public function getStationId(} { return S$this->stationId; }
public function getStationName() { return $this-sstationName; }
public function getLat() { return $this->lat; }
public function getLong() { return $this->long; }
public function setStationId($i) { $this->stationId = $i; }
public function setStationName($n) { $this->stationName = $n; }
public function setLat($1) { $this-slat = $1; }
public function setLong($1) { $this-slong = $1; }

?>

[255]

67

68

London Tube Photos

These "plain old PHP objects" are generic enough to reuse later in our application,

Based on our database schema, our populateDB . php needs to take the
following steps:

1. Get all lines from the RDFfile.

Insert all the lines into the table.

Rememberthe table primary key that was generated by the insert.
Getall stations from the RDFfile.

Insert all stations into the table.

Remember the table primary key that was generated by the insert.
Getall stations in a line from the RDFfile.

Use the primary keys there were generated from the inserts and insert them
correctly into the stations-to-line junction table based on the query from the
RDFfile.

Ourscript starts off with the standard initialization and preparation code that RAP
requires. In addition, we include the two modelobject definitions.

O°a!SyTeaei
define("RDFAPI_INCLUDEDIR", "Absolute/Path/To/rdfapi-php/api/") ;
require_once (RDFAPI_INCLUDE_DIR . "RdfAPI.php");
require_once ('classes/models/clsLine.php");
requireonce('classes/models/clsStation.php') ;

Next, the SPARQLclient is created. We pass the URLto the tube documentinto the
load () method.

//Create SPARQL Client

S$sparqiClient = ModelFactory: :getDefaultModel ();

SsparqlClient->load('http://space.frot.org/rdf/tubemodel2.rdf') ;

Weneed to create a database connection. Modify this section as necessary if you are
not using MySQL, and customize it to the user.

//Create MySQL Client

SmySQLConn = @mysql_connect ("127.0.0.1", "DB USER NAME", "DB USER
PASSWORD") or die("Couldn't connect to the MySQL server.");

$db = mysql_select_db("londontube", $mySQLConn) or die("Couldn't
connect to the londontube database.") ;

Nowit's time to create some functions that will query the RDF document.

[256]

68

69

i

The first is the getAllstations () function. This function will query the RDF
documentand return an array of station objects.

function getAllStations(&$sparqlClient) {

$returnArray = array();
Squery = '

PREFIX : <http://xmlns.com/foaf/0.1/>

PREFIX geo: <http://www.w3.org/2003/01/geo/wqs84_posi#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rd£-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?stationName ?lat ?long

FROM <tube_model2.rdf>
WHERE {

?type rdfs:type

<http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> .
?Ptype :nmame ?stationName .

Ptype geo:lat Plat .

?type geo:long ?long

}
ORDER BY ?stationName' ;

Sresult = $sparqlClient->sparqlouery ($query) ;

if ($result != "false") {

foreach ($result as $station) {
if (S$station != "") {

§stationObj = new Station();

SstationObj-ssetStationName ($station['?stationName'] -
>getLabel ());

$stationObj->setLat ($station['?lat']-sgetLabel ());

$stationObj->setLong(Sstation['?long'] -sgetLabel {));

S$returnArray [$station[!?stationName']->getLabel()] =
$stationObj;

}
}
return $returnArray;

}

This function starts off with the SPARQL query that webuiltearlier and uses
the SPARQLclient passed to it to execute it against the loaded RDF document.
Rememberthat the query gets the name,latitude, and longitude. Theresults set
comprises a row for each station. The foreach loops through this results set. It

[257]

69

70

London Tube Photos

places each results object into a RAP resource object named $station. For each
station in the results set, a new station is instantiated. Using the setter methods, the
results in $stat ion populate each station object's name, latitude, and longitude. It
then places this object into the array to be returned, with the nameofthe station as
the key. Without any integer identifiers in RDF, we are going to have to use the next
best thing. The names ofthe stations and lines are going to have to be the keys.

The sameprinciple applies to getAllLines (), which grabs all of the station lines in
the RDF document.

function getAllLines(&$sparqiClient) {

}

$returmArray = array();

$query = '

PREFIX de: <http://purl.org/dc/elements/1.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

FROM <tube_model2.rdf>
SELECT DISTINCT ?lineName

WHERE {
?type rdfs:type

<http://space.frot.org/rdf/space.owl#Tube_Line> .
?type dc:title ?lineName

}
ORDER BY ?lineName' ;

Sresult = SsparqlClient->sparqlQuery ($query) ;

if ($result != "false") {
foreach ($result as $line) {

if (Sline t= "") {
$lineObj = new Line();

$lineObj->setLineName (Sline['?lineName'] -sgetLabel ()) ;

SreturnArray [$line['?lineName']->getLabel()] = $lineObj;

}
}
return $returnArray;

The same principle applies to getAl1Lines (), which grabs all of the station lines in
the RDF document. Again,the line nameis the key in this array.

[258]

70

71

pnee

Lastly, we create a function thatfinds the station-to-line relationships.

function getLinesAndStations(s$sparqlClient) {
$SreturnArray = array ();

Si = 0;

$query = '

PREFIX : <http://xmins.com/foaf/0.1/>
PREFIX de: <http://purl.org/dc/elements/1.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-nse>
PREFIX rdfs: <http://www.w3 .org/2000/01/rdf-schema#>

SELECT DISTINCT ?lineName ?stationName

FROM <tube_model2.rdf>
WHERE {

?line rdfs:type <http://space.frot.org/rdf/space.owlsTube_Line>
Pline de:title ?lineName .

?line rdf:subject ?Pinfourl
Pinfourl de:title ?stationName

}
ORDER BY ?lineName ?stationName';

Sresult = $sparqlClient->sparqlQuery (Squery);
if ($result != "false") {

foreach ($result as $relationship) {

if (Srelationship != "") {
$returnArray [$i] ['line'] = $relationship['?lineName '] -
>getLabel() ;

$returnArray [$i] ['station'] = $relationship|[
'?stationName’]->qgetLabel () ;

$i++;

}
}

}
return S$returnArray;

}

This array starts off, like the other two, by using SPARQL to query the loaded RDF
document. However, the returned array is different from the other two. We did not
create any modelobjects to hold relationships, so nothing like that is used. Instead,
we return a multi-dimensional array. An integeris the index, and each valueis
an associative array inside it. The associative array has the line and station name
grouping together.

[259]

71

72

London Tube Photos

Now wehavethree functions that return three arrays. Let's call them and start
working on the arrays.

SlinesArr = getAllLines(SspargqlClient) ;
$stationsArr = getAllStations ($sparqlClient);
$joinArr = getLinesAndStations (S$sparglClient) ;

This block will store the arrays in $linesArr, $stationsArr, and $joinArr.First,
wewill operate on the $linesArrarray.

foreach ($linesArr as $line) {
$sql = 'INSERT INTO line (LineName) VALUES (\'' . addslashes/(

$line-sgetLineName()) . '\')';

Se = mysql_query($sql, $SmySQLConn);
$line->setLineld(mysql_insert_id($mySQLConn)) ;

This foreach loop will insert each Line object in the $1inesArr array into the
database. The last statementin the code will get the new ID numberfrom the insert
and store it in the object property. Another foreach loop does the same thing with
the stations.

foreach ($stationsArr as $station) {

$sql = 'INSERT INTO station (StationName, Latitude, Longitude)
VALUES (\'' . addslashes($station-sgetStationName()) . '\', \''
. addslashes($station-sgethat()) . "\', \'' . addslashes ($station-
sgetLong()) . '\')';

$e = mysql_query ($sql, $mySQLConn) ;
$Sstation->setStationid(mysqlinsert_id($mySQLConn)) ;

}

After this is done, we still have ourarrays of lines and stations. Now, however, each
object's ID property is set with the primary key numberassigned from the database.
Weneed to use this property when we populate the join table.

foreach (S$joinArr as $key => $value) {
$sql = 'INSERT INTO stationtoline (LineID, StationID) VALUES ('
Slines[Svalue['line']]->getLineId() . ', * . $stations[Svalue[
*station']]->getStationId() . *')';

Se = mysqlquery ($sql, SmySQLConn);
}

Remember that $join is a multivariable array, and 'line' is the key in the
associative array that has the line name, and 'station' is the key with thestation
name. Weuse these keys to grab the object in $linesArr and $stationsArr. Once

[260]

72

73

a

we havethese objects, it's just a matter of using the ID getter method to grab the
database primary key ID forthat station or line. These are used in the SQL statement
for the insert.

Run this file once in your web browser and you will have a fully populated database
full of London Tube station information.It's time to create the web front end to

our mashup.

The TubeSource DatabaseInterface Class
This mashup will always have a pull-down menuofall stations. Once the user
selects a line, the page will refresh itself and the line's stations will be marked with
markers. This implies two things:

1. We need a function to pull the names of the Tube lines from the database.

2. We need a function to pull the station names from the database based
on lines.

We'll create a database interfaceclass for this. It will be the source of all Tube

information from the database. In the examples, this file is in the classes directory
and named clsTubeSource. php. Anything that interfaces with the database will
occurin this class.

class TubeSource {
private S$dbConn;

public function getAllLines() {
$returnArray = array ();

$sql = 'SELECT LineID, LineName FROM line';

Se = mysql_query($sql, $this->dbConn) ;

while ($row = mysql_fetch_array($e)) {
SlineObj = new Line();

SlineObj->setLinelId(Srow['LineID']);

SlineObj->setLineName ($row['LineName']) ;

array_push($returnArray, $lineObj);

}
return SreturnArray;

}
public function getStationsByLine($lineid) {

SreturnArray = array();

$sql = 'SELECT S.StationName, S.Latitude, S.Longitude FROM
stationtoline AS SL

[261]

73

74

London Tube Photos

INNER JOIN station AS §

ON SL.StationID S.StationID

WHERE SL.LineID = ' . Slineid;

$e = mysql_query($sql, $this->dbConn) ;
while ($row = mysql.fetch_array($e)) {

SstationObj = new Station();

$stationObj->setStationName (Srow['StationName']);
$stationObj->setLat (Srow['Latitude']);

$stationOb]->setLong($row['Longitude']);
array_push($returnArray, $stationOb}) ;

it

}

return $returnArray;
}

public function construct (&$dbConn) {
Sthis->dbConn = $dbConn;

}
}
7S

This class takes a database connection object in its constructor. Its two methods,
getAllLines() and getAllstationsByLine(), return arrays of Line objects and
Station objects, respectively. They work with and populate the modelclasses in a
similar fashion as the SPARQLqueries did. getallstationsByLine() takes the
primary key ID ofthe line as a parameter, and usesit in the WHERE clause.

The Main UserInterface
At this point, we can create the main user interface page to see how our mashup
is progressing. Let's create the functionality to draw a Google Map and draw the
markers whenauserselects a line. This page needs to do the following:

Create and display Google Map.

Contain the JavaScript to display the station markers.
Call the TubeSource database class.I
Present the user with a pull-down menuofstations populated with data
from TubeSource.

[262]

74

75

Chapter 6

This basic form of the home page is named index-Basic.php. We'll walk through
the portions of the page that handleall of the listed functionality. Later, we will
modify the page to addtheFlickr calls to get the photos.

<?php

SgoogleKey = 'YOUR GOOGLE API KEY';

require_once('classes/models/clsLine.php') ;
require_once ('classes/models/clsStation.php');
requireonce('classes/clsTubeSource,php') ;

This page starts with somepreliminary initialization. The Google API key is set ina
variable. All of our modelclasses are included as well as the TubeSource class.

//Create MySQL Client

$mySQLConn = @mysql_connect ("127.0.0.1", "“tubeapp", “tubular") or
die("Couldn't connect to the MySOL server.");

$db = mysql_select_db("londontube", $mySQLConn) or die("Couldn't
connect to the londontube database.") ;

//Create a DB abstrction object

StubeSourceObj = new TubeSource |SmySQLConn);

Weneedto create the database code. Here, the database client is created and
TubeSource is instantiated with theclient.

SlinesArr = S$tubeSource0bj->sgetAllLines () ;

if ($_GET[’line')) {
$stationsArr = $tubeSourceObj->getStationsByLine($GET['line']);

}
?>

The next few lines end the preliminary PHP code. The first makes a call to
TubeSource's getAllLines() to get all the lines. The returned array of Line objects,
in $linesArr, will be used to created the pull-down menu.

If a GET parameter was passed to this page, we'll makeacall to TubeSource's other
method, getStat ionsByLine (). This will get us the Station objects of a line stored in
an array.

Next, we start our HTML andJavaScript.

<html>

<head>

<title>London Tube Stations</title>

[263]

75

76

London Tube Photes

<script src="http://maps.google.com/maps?file=api&v=2&
key=<?= SgoogleKey ?>"

type="text /javascript"></script>

<script type="text/javascript">

var g_map;

The JavaScriptstarts off with a declaration of a few global variables to hold
information throughoutthe application.

function load() {
if (GBrowserIsCompatible()) {

Var point = null;

gmap = new GMap2(document.getElementById("map"));

The load function will be executed by the body onload event. The purpose ofthis
functionis to create the Google Map and draw any markers if needed. This loads the
mapinto the g_map global variable.

g_map.addControl (new GSmallMapControl ());
g_map.addControl (new GMapTypeControl ());

g_map.setCenter (new GLatLng(51.5099983215,
-0.134690001607), 11);

These three lines operate on our map. The first two add somecontrols. There are a
wholeseries of controls you can add to a Google Map.Thefirst line adds a small
version of the pan and zoom commands you see on Google Maps. The secondline
adds Map Type Control buttons to the upper right corner of the map. These buttons
control whether the mapis a typical street map, a satellite map, or a hybrid.

The third line centres the mapto a location. Throughresearch, trial, and error, I
found thelatitude and longitude of downtown London. We pass the coordinates to
a GLatLng object, set a nice zoom level of 11 to most of London,and pass thatto the
setCenter() method.

<?php if ($_GET['line') && count (SstationsArr) > 0) {
foreach ($stationsArr as S$station) { ?>

point = new GLatLng(<?= $station->getLat() ?>,
<?= $station-sgetLong() ?>);

g_map.addOverlay (createMarker (point,
'e?= addslashes (S$station-sqetStationName()) ?>'));

<?php } } ?>

}

[264]

76

77

Chapter 6

This section creates the markers. We use PHPto help us,If a line GeT parameter was
passed to the page and the arrayofstations is not empty, then we needto create
a markerfor eachstation. Still in PHP, we loop through using a foreach loop. A
GLat Lng object, represented by point, is created with the PHP object's latitude and
longitude properties. If we just use this point and passit to the map's addOverlay
method, we would create a marker on the map. However, we wantto doalittle extra
with it, like create an event.

Weusethis point and passit to another function, createMarker (). This function
creates a marker, adds an eventlistener to it, then returns the same marker.

// Creates a marker at the given point with the given number label

function createMarker(point, stationName) {

var marker = new GMarker (point);

GEvent.addListener(marker, "click", function() {

marker .openInfoWindowHtml ("<div style=\"width:220px;
height:250px;\">"_ + stationName + "</div=>");

#23
return marker;

}

A markeris created in thefirst line of the function. Rememberthat the Gevent

objectis created when youcall the Google Map.Its job is to watch for events on
all Google Map objects. Wetell it to listen for a click on this marker through the
addListener() method.

In the callback function parameter, we define what's going to happen when
the markeris clicked. Here, we tell the map to open the InfoWindow using
openInfoWindowHtml (). We provide HTMLas the parameter using the station
name. When opened, the InfoWindow will appear over the marker. The nameofthe
station will be the only contentin the window.

</script>
</head>

<body onload="load{)" onunload="GUnload()">

In our body tag, we initiate map creation by calling load(). We also addacall to
GUnload() when the pageis exited. GUnload() is part of the Google Maps API.
Its job is to close up any memory leaks.It is always a good ideato call this at an
onunload page event whenever you are using Google Maps.

<form name="selectionForm" action="index-Basic.php" method="get">
<select name="line">

<option value="">Select a Line</option>

[265]

77

78

London Tube Photos

<?php foreach($linesArr as $lines) { ?>
<option values"<?= S$lines-sgetLineId() ?>" <?= §GET['line'] ==
Slines->getLineId() ? "selected=\"selected\"" : "" ?s><?= $lines-
>getLineName() ?></options

<?php } ?>
</select>

<input type="submit" value="Go!" /s
</form>

This code block drawsthe form object that we use forline selection. The PHP
foreachloop loopsthrough thearray of Tube lines to grab eachline object.

<div id="map" style="width: 800px; height: 600px"></div>
</body>
</html>

At this point, the map is functional. You have a mashupthat can draw stations in the
London Tube system. You can navigate around,select lines, and click on markers to
see whatstations you clicked on.

Ee

localhost/mashuns/ch6index-Basicphp?ine=

78

79

Chapter 6

Using Flickr Services with AJAX
With someslight modification, we can adda call to Flickr Services. Generally, the
strategy we wantis to make an HTTP request with the xMLHttpRequest object when
the user clicks on a marker A good place to dothis is in the callback function for the
marker's event listener. We already know the nameof the station, so we can use it as
the basis of a search to Flickr.

This is a very acceptable strategy, but there's a huge problem.In general, browsers
cannot make an HTTP request with XMLHttpRequest to another server. This is
done to prevent cross-site scripting attacks, in which a malicious website runs
code to steal information aboutsensitive information between a user and another

website. In practice, this means that XMLHttpRequest calls can only go back to the
server the page originated from. With this limitation, how are we going to use
XMLHttpRequest to make a call from our website to Flickr Services?

Creating an XMLHttpRequest Proxy
The solution is to create a web service proxy on our server. The web serverwill
execute the Flickr Service call, not the browser. Our XMLHttpRequest action will
execute a GET request on the proxy and passFlickr Services parameters to the proxy.
The proxy will then make a request to Flickr, and pass the response back, unaltered,
to the web browser. The browser doesn't know orcare that the true data source

is from Flickr. In the examples code, in the services directory, the proxy is named
searchFlickr.php. This is a small file whose sole job is to do just that.

<?php

requireonce(',,/classes/RESTParser.php');
SrestParser = new RESTParser();

Wewill use the REST interface from Flickr. In this code, we will use the same REST
parser that we created from Chapter 1 to handle the REST call.

SparamArray = array();

foreach ($GET as $key => $value) [

if (Skey == ‘format' || $key == ‘nojsoncallback' || Skey = 'text')

SparamArray [$key] = $value;

} else {
die("Unallowed Parameter Passed.") ;

}

[267]

79

80

London Tube Photos

Weinitialize an array of Flickr Services parameters. Wewill pass this array to
the REST parser when weactually makethe servicecall. This array is populated
by looping through the cer array and adding the array key and valuesto the
SparamArray. As this page is open to the entire world,it is a good idea to put some
security aroundit. Here, we are allowing only three Flickr parameters to be passed
from thecalling page. Otherwise, the script will die.

//Add the API Key to the Request
$SparamArray['api_key'] = 'YOUR FLICKR SERVICES KEY’;

$paramArray ['method'] = 'flickr.photos.search';
SparamArray['per_page'] = '4';
$paramArray['page'] = '1';

$paramArray['text'] .= ' London tube';

Oneadditional benefit of this approachis that we get to hide our API key on the
server.If it was JavaScript making this call, we would have to expose our key in
front end code, and anyonecanstealit, This isn't as much of a concern with the
Google API Key becausethatkeyis restricted by domain. However, there is no such
restriction for the Flickr Services key. Here, we addit to the parameter array on the
server. The key is passed in server-to-server communication, and the userwill
neversee it,

As an additional security measure, wealso specify the Flickr method here. This
insures that only the flickr .photos. search methodis called from this script.

Weare passing two additional parameters to maketheresults a little more
manageable. per_page will limit the results returned from Flickr to just 4 photos
per page. Wethen tell Flickr to return only one page using the page parameter. The
result is that a maximum of four photoswill be returned by Flickr.

Thefinal line in this block adds "London tube"to our search query terms passed to
Flickr. This is solely for the purposes of narrowing the search.,

echo $restParser->callService($paramArray, ‘api.flickr.com', '/
services/rest/', 'GET');
?>

Finally we pass the array of parameters to the RESTParser's callService() method
along with the Flickr Services server and endpoint information. The method returns
the response from the server, and wejust echoit out to the requester.

[268]

80

81

Chapter 6

Modifying the Main JavaScript
Now wecan modify our mashup's index page. In the examples codefor this chapter,
there is a file named index.php. This is the full, completed homepagefor the
mashup.It is basically index-Sasic.php from earlier, but with the Flickr Services
calls. We will talk about whatis different with this version from the basic version.

The first thing we need to do is add a handful more global variables to track.

var gxmiHttp;
var gstationName;
var gflickrString;
var g_map;

Thefirst, q_xmlHttp, is a container for the XMLHttpRequest object. The next two,
g_stationName and gflickrString, are used to hold information from the Flickr
Service response. We will talk about the need for them as we encounter them.
Finally, g_map is the same Google Map containeras before.

Making the XMLHttpRequest
Before we can make XMLHttpRequest requests, we need a function to create the
XMLHttpRequest object when a requestis about to be made. This is done through the
createXMLHttpRequest() function.

function createXMLHttpRequest () {
if (window. XMLHttpRequest) {

g_xmlHttp = new XMLHttpRequest()
} else if (window.ActivexObject) {

g_xmlHttp = new ActivexXObject ("Microsoft .XMLHTTP") ;
}

}

This code uses the standard browser check to see if the browser can create a native

XMLHttpRequest objector, if it is Internet Explorer, create a Microsoft .XMLHTTP
request object through Activexobject . The object is then placed in g_xmixkttp.

Wecall createxMLHttpReauest() in thefirst line of a modified Event Listener
callback function.

GEvent .addListener (marker, "click", function() {
createXMLHttpRequest (};

g_stationName = stationName;
retrieveFlickrPhotos (stationName) ;

marker .openiInfoWindowHtml ("<div style=\"width:220px; height:250px; \
">" + stationName + "<p style=\"text-align:center;\">
</p></
dive");

he

[269]

81

82

London Tube Photos

Whenthe AJAX response is returned, the browser will have to update the
InfoWindow. At that point, the browserwill not know the nameofthe station that
wasclicked, so westore it in a global variable. This second statementis morefor user
friendliness than application functionality.

Whenever someoneclicks on the marker, the application should make the AJAX
request. Therefore, it needs to be included here in the click event. We will have to
define the request execution in a new function, ret rieveFlickrPhotos (). This
function will actually create the Flickr search parameters, so we need to pass the
nameofthe station to use asthe search term.

function retrieveFlickrPhotos(stationName) {
var url = "“services/searchFlickr.php? format=

json&nojsoncallback=létext=" + escape(stationName);
g_xmlHttp.onreadystatechange = parseFlickrSearch;
g_xmlHttp.open("GET", url, true);

g_xmlHttp.send(null);
}

This function first prepares the URL back to our searchFlickr.php service on our
server. We addthe Flickr Services parameters to this URL. The parameters we pass
are summarized as follows:

Parameter Value Notes

format json We wantthe response to be in JSON.
nojsoncallback 1 Wedonot wantto automatically execute a callback when

the JSON response is received. This functionality will be
handled by the XMLHttpRequest callback.

text The station We need to pass the name through the JavaScript
nameand escape () function to make it URL-friendly. Wealso pass
extra search the terms "London"and "tube" to narrow our search. The
parameters_latter is purely to refine our results.

After that, the call to the service is executed. We define a callback named
parseFlickrSearch() to handle the response.

82

83

Chapter 6

Race Conditions

After this, we should create parseFlickrSearch() and define how weare going to
update the InfoWindow with Flickr photos. Before we do this, though, we need to
talk a little bit about race conditions.

Race conditions are a notion that originated in the electronics design, but has been
adopted by software designers. In simple terms, it is when execution of a code
happens before a prerequisite is met. This is a constantpitfall in multi-threaded
languageslike C, C++, and Java. PHP, being a single threaded language, does not
usually encountera lot of race condition issues. One exceptionto this in PHP and an
example of a race conditionis in file manipulation.

If you copyafile to a location with PHP's copy () function, the operating system
needsto finish copying before you can work on the copy. Otherwise, operations on
the copy will fail. This might not be an issue with 4 kilobyte text files, but imagine
moving a 700 megabyte CD image. Even withafast RAID,this might take a minute
or so to copy, during which time, your script must wait.

In developing with web services, where we have to call other networks, we will need
to be cognizant of race conditions due to network latency. AJAX only adds in more
complexity. An AJAX application, where code execution takes place on the browser,
has no idea whatis going on with the webserver. If multiple asynchronous requests
are madebefore they are fulfilled by the server, AJAX applications may see strange
results, Data retrieved by a request may not match up perfectly to the request that
initiated it. In other words, what you see on screen may have been caused by an
action severalclicks ago. Our code must successfully handle these cases.

Wewill encounter race conditions at several points when we parse code. There are
many strategies we can employ to counter race conditions, and they are usually
much customized to a problem. However, solutions often fall into broader categories.
One way to combata race condition is to pre-cache the data during a time when the
user is not interacting with the system so things like network latency and system
timeouts are not significant. Another solution is to reserve and hold onto a resource
so thatit will be available when you need it. When welook at our race conditions,
we will simply make sure every resource has arrived before we execute code.

[271]

83

84

London Tube Photos

The first time we encountera race condition is when weclick on a marker. Atthis
point, the InfoWindow opens. The AJAX request has beeninitiated, yet it must go
through our proxy, wait for Flickr's response, and then comeback through our
proxy. We face some network latency. Meanwhile, our user sees a blank window.

Is anything happening on theleft? Did the service find any photos? Did the server
time out? The user does not know. This condition is not disastrous, but showsthat
wehave to do something aboutthe timing. A perfectly reasonable wayto handle this
is to tell the user that somethingis definitely happening, and be patient. On the right,
we add a "loading" graphic in the user interfaceto tell the user to wait.

If you weclicked on a marker, would yourather see the blank space on theleft, or
some feedback ofstatus like the one on the right?

To addthis, we can simply add an image tag to the HTMLstringthat is passed when
we open the InfowWindow.

marker .openInfoWindowHtml ("<div style=\"width:220px; height:250px; \
">" + stationName + "<p style=\"text-align:center;\"><img src=\
“images/wait.gif\" style=\"padding-top:50px;\" /></p></div>") ;

[272]

84

85

Chapter 6

Make Your Own Load Graphics

There are many repositories out there with load images for you to

Q download andusefor free. If none of them suit yourtastes, you can
make your own. Fortunately there is a site that can help. Ajaxload.info
(http: //www.ajaxload. info/) offers manybasic load designs and
lets you customize with any color.

Parsing the AJAX Response
Let's continue with our response parsing code. This section will deal with how we
get data outofthe call to Flickr Services and how we update the web page. Thefirst
step is to create parseFlickrSearch(), the callback function that we specified when
we madethe outgoing HTTP request with XMLHttpRequest.

function parseFlickrSearch() {
if (g_xmlHttp.readyState == 4) {

var results = eval('(' + g_xmlHttp-.responseText + ')');
var photo = results.photos.photo;

var totalPhotos = results.photos.total;

var 1flickrString = "";

Westart off by checking thestatusof the request. If the request is complete, we
continue with the execution of our code. Little did we know previously that by
waiting, we were dealing with a race condition.

The first statementafter the if statement places the Flickr response, stored in the
XMLHttpRequest property responseText, in the results variable. This is after the
code has been executed through eval ().

The next line goes straightto thelist of photos returned. Rememberthe first few lines
of a Flickr Service Response:

<?xml version="1.0" encoding="utf-8" ?>

<rsp stat="ok">

<photos page=»l» pages=»20» perpage=»100» total=»1904»>

<photo id="412962278" owner="43203076@N00" secret="63e7e2e1£0"
server="183" farm="1" title="Doin' Studio Time" ispublic="1"
isfriend="0" isfamily="0" />

The service returns one photo element for each photo found. In JSON,this is treated
as an array. Therefore, think of photo as an array of photo objects.

[273]

85

86

London Tube Photos

Weset a variable, total Photos, to managethe total numberof photos returned. We
set onelast local variable, 1_flickrString,to store the local results from Flickr. This
is a local variable that will be appended to the global g_flickrstring.

g_flickrString = "<div>" + gstationName + "
"

The HTML that will be in the InfoWindowis stored in the variable g_flickrString.
Here, westart the string by repeating the nameof the station, which was stored ina
global variable earlier when the marker wasfirst clicked.

if (totalPhotos > 0) {
for (x = 0; x < totalPhotos; x++#) {

1_flickrString = " " +
"<a href='http://www.flickr.com/photos/PHOTOOWNER/
PHOTO_ID! />" +
"<img src='http://farmPHOTOFARM.static.flickr.com" +
"/PHOTO_SERVER/PHOTO_IDPHOTO_SECRET_t.jpg' border='0' /s";
1_flickrString = 1_flickrString.replace(/PHOTO_OWNER/g,
photo [x] .owner) ;

1_flickrString = 1_flickrString.replace(/PHOTOID/g,
photo [x] .id);

1_flickrString = 1_flickrString.replace(/PHOTOFARM/g,
photo [x] ..farm) ;

1_flickrString = 1_flickrString.replace(/PHOTO_SERVER/g,
photo[x] .server) ;

1_flickrString = 1_flickrString.replace(/PHOTO.SECRET/g,
photo[x] .secret) ;

g_flickrString = g_flickrString + 1flickrString;
}

Here is where the population of Flickr data actually takes place. The if clause makes
sure someresults were returned.If there are results returned, we loop through the
photo objects using a for loop andlimited to the frequency of loops to total Photos.
Each loop through creates a string containing the URL to the picture returned and
the anchor tag to the photo's page. This string is stored in the 1_flickrString
variable. For readability, we use a few placeholders for the Flickr values in the string,
then we use the JavaScript replace () method to exchange these placeholders with
the actual values from the photoarray. At the end,. 1_flickrStringis attached to
the global g_flickrstring.

} else {
g_flickrString = gflickrString + "<p>No photos found
for this station.</p>";

[274]

86

87

aai

After this, we close the if-else block. The else statementsays if no results were
found, update g_flickrsString with a messagetelling the user that the search came
up empty. This function's sole job was to create the string of HTML that will be in
InfoWindow.Let's take a look at updating InfowWindow with this string.

The main population happens in update InfoBox {).

function updateInfoBox() {
if (g_flickrString == undefined) {

var timeout = window.setTimeout ("updateInfoBox()", 3000);

} else {

g_map.getInfoWindow(} .getContentContainers() [0] .innerHTML = "<div>"
+ gflickrString + "</div>";

//Cleanup

g_flickrString = null;
g_stationName = null;

}

This function is the last function called by the eventlistener.

GEvent .addListener (marker, "click", function() {
createXMLHttpRequest() ;

g_stationName = stationName;
retrieveFlickrPhotos(stationName) ;

marker .openInfoWindowHtml ("<div style=\"width:220px; height:250px;\
"s" + stationName + "<p style=\"text-align:center;\"><
img src=\"images/wait.gif\" style=\"padding-top:50px;\" /></p></
divs");

updateInfoBox();

});

However, rememberthe service call happens elsewhere. While the information is
being retrieved, the windowis already there. This is another race condition.If we call
g_flickrString before it is set, you will find it is undefined. If g¢_flickrstring is
empty, use the setTimeout () JavaScript function to call itself after three seconds.
This delay in execution is a frequenttactic used in AJAX implementations.

If results were found, we get the DOM nodeof the InfoWindow box. This was done
using the DOM Inspectorin Firefox. After this, we can append g_flickrString into
the node. Finally, we clean up the global variables by setting them to null.

[275]

87

88

London Tube Photos

At long last, our mashup is complete. We can take it out for a testdrive. Load the
web page in your browser andselect a line with the pull-down menu. The markers
for the line will appear.

= Laven?

ey @ bite:|jwarw_shuchow.com/mashups/ché/index.php?iine=5)

>)CaminololaSjNews.(az)MacNewsTabsJC\Gooole(Ca)WebDevelopment. =

[276]

88

89

Click on one of the markers,

aaae a

Saee
ne=S 1{Q- Goog!

a

The InfoWindow will pop up. Through AJAX,our application is already searching
for our station at Flickr. Whenitfinds it, the first four photos are added to the
InfoWindow.

[277]

89

90

Londen Tube Photos

Summary
Wehavecovereda lot of technologies in this chapter. We learned how to read RDF
documents and how to extract data from them using SPAROL and RAP for RDE.
These standardsare fairly new. However, given the desire to put as much as possible
into RSS, these technologies are certainly boundto take off.

When wecreated the front end application, there were more new technologies
including AJAX to communicate from the server to the device. The biggestpitfall
in this AJAX application was race conditions. We examined how to overcomethose
with various techniques.

al

90

91

PHP Web 2.0

Mashup Projects

A mashup is a web page or application that combines
data from two or more external online sources into an

integrated experience. This book is your entryway to the
world of mashups and Web 2.0. Youwill create PHP

projects that grab data from one place on the Web, mix
it up with relevant information from another place on the

Web and presentit in a single application

This book is a practical tutorial with five detailed and

carefully explained real-world PHP projects. Each
project begins with an overview of the technologies and
protocols needed for the project, and then dives straight
into the tools used and details of creating new and
effective mashup applications

Who this bookis written for

lf you feel confident with your PHP programming, familiar
with the basics of HTML and CSS, unafraid of XML, and

interested in mashing things up, this is the book for you!

There are a lot of formats and protocols, web services and

web APIs encountered in this book—you do not need to
knowanything about themor about AJAX: youwill find all
you need in the book

$ 39.99 US ISB N 974

£ 24.99 UK |
-847190-88-8-1L

53999

Orel ieeea
Sbaalciaicti lec)

088

|
PUBLISHING Distilled” pple rae 9 "781847"

