Patterns for Effective Interaction Design

Designing
2 Interfaces

O,P\E"_LY® < I‘ e, Jenifer Tidwell

EXHIBIT

MemoryWeb Ex. 2018
2018 Samsung v. MemoryWeb — [PR2022-00221
1/73

Designing
Interfaces

Jenifer Tidwell

O’REILLY"

BEIJING » CAMBRIDGE » FARNHAM = KOLN » SEBASTOPOL » TAIPE] o TOKYO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
2/73

Deslgning Interfaces
by Jenifer Tidwell

Copyright © 2006 O'Reilly Media. Inc: All rights
reserved, Printed in the United States of America.

Published by O'Reilly Media, Inc,,
1005 Gravenstein Highway North,
Sebastopol, CA 95472,

O'Reilly books may be purchased for educational,
business, or sales promotional use. Online editions

are also avallable for most titles (safarioreilly.com).

For more information, contact our corporate/
institutional sales department; (800) 998-9938 or
carparate@oreillvcom.

Editors: Andrew Odewahn and Mary O'Brien
Production Editor: Genevieve d'Entremont
Cover Designer; Mike Kohnke

Interior Designer: NOON

Printing History:
Nevember 2005 First Edition.

MNutshell Handboaok, the Nutshell Handbook logo,
and the O'Rellly logo are registered trademarks of
O’Rellly Media, Inc. Designing Interfaces and
reiated trade dress are trademarks of O'Reilly
Media, Inc.

Many of the designations used by manufacturers
and sellers to distinguish their products are
claimed as trademarks. Whare those desianations
appear in this book, and O'Reilly Media, Inc:, was
aware of a trademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the
preparation of this book, the publisher and author
assume no responsibility for errors or omissions,
or for damages resulting from the use of the
information contained herein,

This book uses RepKover, a durable and flexible
lay-flat binding.

ISBN: 978-0-596-00803-

(€3 [9/08]

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
3/73

ABOUT THE AUTHOR

Jenifer Tidwell is an interaction designer and software developer for The
MathWorks, makers of technical computing software. She specializes in
the design and construction of data analysis and visualization tools, and
has been working on new designs for the data tools in MATLAB, which is
used by researchers, students, and engineers worldwide to develop cars,
planes, proteins, and theories about the universe. She has been known to
design web sites, and was an early enthusiast for rich Internet application
(RIA) technology, having helped design and develop Curl in the carly

2000s.

Jenifer received her technical education at
MIT and her design education at the Massa-
chusetts College of Art, but she’s not finished
learning yet. She has been researching user
interface patterns since 1997, Photography
and writing are her creative outlets, and she

spends as much time as she can in the New
England outdoors—on a bike, on a boat, on

foot, on skis, and on belay.

Jenifer’'s personal web site can be found at
http:/jtidwell.net.

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
4/73

COLOPHON

Our look is the result of reader comments,
our own experimentation, and feedback from
distribution channels. Distinctive covers com-
plement our distinctive approach to techni-
cal topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of this book is a
Mandarin duck (Aix galericulata), one of the
most beautiful of the duck species. Origi-
nating in China, these colorful birds can be
found in southeast Russia, northern China,
Japan, southern Engiand, and Siberia.

The males have diverse and colorful plumage,
characterized by an iridescent crown, chest-
nut-colored cheeks, and a white eye stripe
that extends from their red bilis to the back
of their heads. Females are less flamboyant in
appearance and tend to be gray, white, brown,
and greenish brown, with a white threat and
foreneck.

These birds live in woodland areas near
streams and lakes. Being omnivorous, they
tend to have a seasonal diet, eating acorns
and grains in autumn; insects, land snails,
and aqguatic plants in spring; and dew worms,
grasshoppers, frogs, fish, and mollusks during
the summer months.

The mating ritual of Mandarin ducks begins
with an elaborate and complex courtship
dance that involves shaking movements,
mimed drinking gestures, and preening.
Males fight each other to win a female, but
it is ultimately the female who decides her
mate. Mandarin ducklings instinctively follow
their notoriausly protective mothers, who will

feign injury to distract predators such as ot-
ters, raccocn dogs, mink, polecats, eagle owls,
and grass snakes.

Mandarin ducks are not an endangered spe-
cies, but they are considered to be threatened.
Loggers continuously encroach upon their
habitats, and hunters and poachers prize the
males for their plumage. Their meat is con-
sidered unpatatable by humans, and they are
generally not hunted for food.

Genevieve d’Entremont was the production ed-
itor and proofreader for Designing Intetfaces.
Ann Schirmer was the copyeditor. Susan Hon-
eywell was the page compositor. Phil Dangler
and Claire Cloutier provided quality control.
Kelly Talbot and Johnna VanHoose Dinse wrote
the index.

Mike Kohnke designed the cover of this book,
based on a series design by Edie Freedman.
The cover image is from Johnson's Natural
History. Karen Montgomery produced the
cover layout in Adobe InDesign CS, using
Adobe’s ITC Garmond font.

NOON (www.designatnoon.com) designed
the interior layout. This book was converted
by Joe Wizda to Adobe inDesign CS. The
text fonts are Gotham Book and Adohbe Ga-
ramond; the heading fonts are Univers and
Gotham Bold. The illustrations that appear
in the book were produced by Robert Ro-
mano, Jessamyn Read, and lLesley Borash
using Macromedia FreeHand MX and Adobe
Photoshop CS. This colophon was written by
Jansen Fernald.

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
5/73

CONTENTS

x
one-window drilldown 36
O I WHAT USERS DU Show each of the application’s pages within a single
window. As a user drills down through a menu of
A Means to an End 3 options, or into an object's details, replace the
The Basics of User Research 5 window contents completely with the new page.
Users’ Motivation to Learn 7 alternative views 39
Tiia Patterrs 10 l.et the user choese among alternative views that
l are structurally different, not just cosmetically
Safeexplonation L differant, fram the default view.
instant gratification n o 42
setlsficing L Lead the user through the interface step by step,
changes in midstream 12 doing tasks in a prescribed order.
deferred chojces 13 extras on demand 45
incremental construction 14 Show the most impartant content up frent, but hide
habituatian 14 the rest. Let the user reach It via a single, simple
geaesture,
spatial memary 15
intriguing branches 47
prospective memory 16
i = Place links to interesting content in unexpected
streamlined repetition 7 places, and |abel them in a way that attracts the
keyboard only 17 curlous User.
other people's advice 18 multi-level help 49
Use a mixture of lightweight and heavyweight help
technigues to support users with varying needs.
GETTING AROUND:
03 NAVIGATION, SIGNPOSTS.
The Basics of Information Architecture: AND WARFINDING -
Dividing Stuff Up 22
Physical Structure 28 Staying Found 55
The Patterns 30 The Cost of Navigation 56
two-panel selector 31 The Patterns 63
Put two side-by-side panels on the interface. In the 21 clear entry points 64
first, show a set of items that the user can select at Present only a few entry points into the interface:
will; in the other. show the content of the selected make them task-oriented and deseriptive.

item.

canvas plus palette 34

Place an iconic palette next to a blank canvas; the
user clicks on the palette buttons to create objects
on the canvas.

global navigation 66

Using a small section of every page, show a
consistent set of links or buttons that take the user
to key sections of the site or application.

CONTENTS

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
6/73

04

hub and spoke 68

Isolate the sections of the app into mini-applications,
each with one way in (from the main page) and one
way out (back to the main page).

pyramid 71

Link a sequence of pages with Back/Next links.
Combine this sequential presentation with a main
page that links to and from all pages in the
sequence.

modal panel 74

Show only one page, with no other navigation
options, until the user solves the immediate problem.

sequence map 76

On each page In a sequence, shaw a map of all of
the pages in order, including a "You are herg"
indicator.

breadcrumbs 78

On each page in a hierarchy, show a map of all the
parent pages, up to the main page.

annotated scrollbar 80

Make the scrollbar serve double-duty as a map of the
content, or as a "You are here" indicator.

color-coded sections 82

Use color to identify which section of an application
or site that a page belongs to.

animated transition 84

Smooth out a startling or dislocating transition with
an animation that makes it feel natural.

escape hatch 86

On each page that has limited navigation options,
place a button or link that clearly gets the user out
of that page and back to a known place.

ORGANIZING THE PAGE:

LAYOUT OF PAGE ELEMENTS 88
The Basics of Page Layout 89
The Patterns 99
5 visual framework 100

Design each page to use the same basic layout,
colors, and stylistic elements, but give the design
enough flexibility to handle varying page content.

vi

=]
Lnl

38

39

a0

4]

a2

center stage 103

Put the most important part of the Ul into the largest
subsection of the page or window, cluster secondary
tools and comtent around it in smaller panels.

titled sections 107
Define separate saections of cantent by giving each

one a visually strong title, and then laying them all
out on the page together.

card stack 109

Put sections of content onto separate panels or
“eards," and stack them up so only one is visible at a
time; use tabs or other devices to give users access
to them.

closable panels m

Put sections of content anto separate panels, and let
the user open and close each of them separately
from the others.

movable panels n4

Put different toels or sections of content onto
separate panels, and |et the user mave them around
to form a custom layout.

right/left alignment 116

When designing a two-column form or table, right-
align the labels an the left, and left-alian the items
on the right.

diagonal balance ne

Arrange page elements in an asymmetric fashion,
but balance it by putting visual weight into both the
upper-left and lower-right corners.

property sheet 120

Use a twa-column or form-style layout to show the
user that an object's properties are edited on this
page.

responsive disclosure 123

Starting with a very mimimal Ul, guide a user through
a series of steps by showing more of the Ul as he
completes each step.

responsive enabling 125

Starting with a Ul that's mostly disabled, quide a
user through a series of steps by enabling more of
the Ul as each step is done.

CONTENTS

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

7/73

a3

liguid layout 128

As the user resizes the window, resize the page
contents along with it so the page is constantly
“filled."

DOING THINGS:
OS ACTIONS AND COMMANDS 130

Pushing the Boundaries 133
The Patterns 136
44 button groups 137

47

49

CONTENTS

Present related actions as a small cluster of buttons,
alighed either herizontally or vertically. Create several
af them If there are more than three or four actions.

action panel 140

Instead of using menus, present a large group of
related actions on a Ul panel that's richly organized
and always visibile,

prominent “done” button 144

Place the button that finishes a transaction at the end
of the visual flow; make it big and well-labeled.

smart menu items 146

Change menu labels dynamically to show precisely
what they would do when invoked.

preview 147

Show users a preview or summary of what will happen
when they perform an action.

progress indicator 149

Show the user how much progress was made on a
time-consuming operatiorn:

cancelability 151

Provide a way to Instantly cancel a time-censuming
operation, with no side effects.

multi-level undo 153

Provide a way to easlly reverse a serjes of actions
performed by the user.

command history 156

As the user perfarms actions, keep a visible record of
what was done, to what, and when.

macros 158

Macros are single actions composed of other, smaller
actions. Users can create them by putting together
sequences of actions.

The Patterns

(SHOWING COMPLEX DATA ‘
O IREES, TABLES ANDCYTFLL]
INFORX i 1

LN I I R N TN L B

The Basics of Information Graphics 161
173 ‘
overview plus detail 174

Place an overview of the araphic next to a zoomed
“detail view.” As the user drags a viewport around the
overview, show that part of the graphic in the detail |
view.

datatips 176

graphic, put the data values for that point inte a

|

|

As the mouse rolls aver a point of interest on' the |

|

, o |
tooltip or same ather floating window,

dynamic queries 178 ‘

Provide ways to filter the data set immediately and ‘
interactively. Employ easy-to-use standard controls,
such as sliders and checkboxes, to define which parts |
of the data set get shown. As spon as the user adjusts |
those controls, the results appear on the data display.

data brushing 181
Let the user select data iterms In ane view; show the
same data selected simultaneously in another view.

lecal zoaming 184

Show all the data in a single dense page, with small-
scale data items. Wherever the mouse goes, distort

the page to make those data items large and readable.
[

row striping 187

Use two similar shades to alternately color the
backgrounds of the table rows.

sortable table 189

Show the data in a table, and let the user sort the
table rows according to the column values.

jump to item 191

When the user types the name of an item, jump
straight to that item and select it.

new-item row 193

Use the last row in the table to create a new item in
place.

cascading lists 185

Express a hierarchy by showing selectable lists of the
items in each hierarchy level Selection of any item
shows that item's children in the next list.

vl

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
8/73

tree table 197

Put hierarchical data in columns, like a table, but use
an indented outline structure in the first column to
llustrate the tree structure.

multi-y graph 198

Stack multiple graph lines, one above the other, in one
panel; let them all share the same X axis.

small multiples 200

Create many small pictures of the data using two or
three data dimensions, Tile them on the page
dccording to one or two additional data dimensions,
either in a single comic-strip sequence, o ina 2D
mattix.

treemap 203

Express multidimensional and/or hierarchical data as
rectangles of various sizes. You can nest those
rectangles to show the hierarchy, and color or label
them to show additional variables.

The Basics of Form Design 207
Control Choice 209
The Patterns 218

forgiving format 219

Permit users to enter text in a variety of formats and
syntaxes, and make the application interpret it
Intelligently

structured format 220

Instead of using one text field, use a set of text fields
that reflect the structure of the requested data.

fill-in-the-blanks 222

Arrange one or more fields in the form of a prose
sentence or phrase, with the fields as "blanks” to be
filled in by the user.

input hints 224

Baside an empty text field, place a sentence or
example that explains what is required.
input prompt 225

Prefill a text fleld or dropdown with a prompt that tells
the user what to do or type.

autacompletion 227

As the user types into a text field, anticipate the
possible answers and automatically complete the
entry when appropriate.

dropdown chooser 230

Extend the concept of a menu by using a drop-down
or pop-up panel to contain a more complex value-
selection UL

illustrated choices 233

Use pictures instead of words (or in addition to them)
to show available choices.

list builder 235

Show both the "source” and the "destination” lists on
the same page; let the user move items between
them.

good defaults 237

Wherever appropriate, prefill form fields with your
best guesses at the values the user wants.

same-page error messages 239

Place form error messages directly on the page with
the form itself; mark the top of the page with an error
message, and If possible, put indicators next to the
originatina controls.

08 BUILDERS AND EDITORS L) B

The Basics of Editor Design 244
The Patterns 248
o edit-in-place 249

Use a small, dynamic text editor to let the user change
text "in place™ position the editor directly over the
original text, rather than using a separate panel or
dialog box.

smart selection 251
Make the software smart enough to automatically
select a coherent group of items, rather than making
the user do jt.

composite selection 253

Use different gestures—or mouse clicks in different
screen areas, such as the composite's edges versus jts
insides—to determine whether you should select &
composite itself or allow its contained objects to be
selected.

wiil

CONTENTS

MemoryWeb Ex. 2018

Samsung v. MemoryWeb — [PR2022-00221
9/73

one-off mode 255

When a mode is turned on, perfarm the operation
once. Then switch back autematically inte the default
or previous mode.

spring-loaded mode 257

=1e]

corner treatments 297

Instead of using ordinary right angles, use diagonals,
curves, or cutouts for some of the interface’s box
corners. Make these corner treatments consistant
across the interface.

Let the user enter a mode by helding down a key or a L bierders that echo fonts 00
mouse button. When the user releases it, leave the When drawing borders and other lines, use the same
mode and go back to the previous one. color, thickness, and curves used by one of the
4 constrained resize 259 @asIah's, ision o,
Supply resize modes with different behavior, such as 92 hairlines S03
preserving aspect ratio, for use under special Use one-pixel-wide lines in barders, harizontal rules,
circumstances; and textures.
magnetism 26) 93 contrasting font weights 306
Make the objects "magnetic" to the things a user Wse two cantrasting fonts—aone thin and lightweight,
positions them against. When the user drags an and the other heavier and darker—to separate
object very near one of these things, it should stick. different levels of information and add visual interest.
guides 263 94 skins 308
Offer horizontal and vertical reference linas to help Open up the look-and-feel architecture of yvour
users align objects. application so users can design their own graphics
paste variations 266 and styles.
Provide speciallzed paste functienallty in addition to
the standard paste operation. REFERENCES 112
MAKING IT LOOK GOOD: . LR b
09 VISUAL STYLE AND AESTHETICS 1hE |
Same Content, Different Styles 270 !
The Basics of Visual Design 279 l
What This Means for Desktop Applications 287 |
The Patterns 290
88 deep backaround 29 [
|
Place an image or gradient into the page’s back-
ground that visually recedes behind the foreground |
elements '
gy few hues, many values 2494
Choose ane, twa, or at mast three major color hues to
use |n the interface, Creata a color palette by selecting
assorted values (brightnesses) fram within those few
hues.
CONTENTS x

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

10/73

PREFACE

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
11/73

Once upon a time, interface designers worked with a woefully small toolbox.

We had a handful of simple controls: text fields, buttons, menus, tiny icons, and modal dialogs. We care-
fully put them together according to the Windews Style Guide or the Macintosh Human Interface Guide-
lines, and we hoped that users would understand the resulting interface—and too often, they didn't. We
designed for small screens, few colors, slow CPUs, and slow networks (if the user was connected at all).
We made them gray.

Things have changed. If you design interfaces today, you work with a much bigger palette of components
and ideas. You have a choice of many more user interface toolkits than before, such as Java™ Swing, Qt,
HTML and Javascript, Flash, and numerous open-source options. Apple's and Microsoft's native Ul toolkits
are richer and nicer-loocking than they used to be. Display technology is better. Web applications often
look as professionally designed as the web sites they're embedded in, and while desktop-Ul ideas like
drag-and-drop are integrated intec web applications slowly, some of those web sensibilities are migrating
back into desktop applications in the form of blue underlined links, Back/Next buttons, daring fonts and
background images, and nice, non-gray color schemes.

But it's still not easy to design good interfaces. Let's say you're not a trained or self-taught interface de-
signer. If you just use the Ul toolkits the way they should be used, and if vou follow the various style guides
or imitate existing applications, you can probably create a mediocre but passable interface.

Alas, that may not be enough anymore. Users' expectations are higher than they used to be—if your inter-
face isn't easy to use “out of the box,” users will not think well of it. Even if the interface obeys all the
standards, you may have misunderstood users' preferred workflow, used the wrong vocabulary, or made it
too hard to figure out what the software even does. Impatient users often won't give you the benefit of the
doubt. Worse, if you've built an unusable web site or web application, frustrated users can give up and
switch to your competitor with just the click of a button. So the cost of building a mediocre interface is
higher than it used to be, too.

It's even tougher if you design products outside of the desktop and web worlds, because there's very little
good design advice out there. Palmtops, cell phones, car navigation systems, digital TV recorders—design-
ers are still figuring out what works and what doesn't, often from basic principles. (And their users often
tolerate difficult interfaces—but that won't last long.)

Devices like phones, TVs, and car dashboards once were the exclusive domain of industrial designers. But
now those devices have become smart. Increasingly powerful computers drive them, and software-based
features and applications are multiplying in response to market demands. They're here to stay, whether or
not they are easy to use. At this rate, good interface and interaction design may be the only hope for our
collective sanity in 10 years.

SMALL INTEBFACE PIECES, LOOSELY JOINED

As an interface designer trying to make sense of all the technology changes in the last few years, | see two
big effects on the craft of interface design. One is the proliferation of interface idioms: recognizable types
or styles of interfaces, each with its own vocabulary of objects, actions, and visuals. You probably recog-
nize all the ones shown in the figure on the next page, and more are being invented all the time.

SMALL INTERFACE PIECES. LOOSELY [QINED xi

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

12/73

| spen with Home Page

e !Ble Edt _;w Inssrt Fomak Took 7
| dome page | Rt)| Pl s o id VR |5
| Net to Current Fage lie E ' i | z ?‘fi‘.
‘ I s 15 Oomntaady __?: Meanwhile, other rechnclogical and ¢ : T:

i Ik vmeres . Mareally :
I
& open e sy _;J: ,'
s EVIEN
Graphic editors
A

' 1.54

5 | 3BEOE
5 | 2i6ED7
7| 112E0s
8

Browsers

welop @ Space

1 Igant 100 fimes

£ has flown man inio
gnimzantly mera than

8 acrobahcs dunng
In Baid Monday's

B bul he was
Jsues

jolved nese and we
[the roils fomormow.*

+Blog: CHIvY Mkl
+ Galiery: Spacashig
*Interactive: Spaceq

X PrizeEe

QUICKVOTE

s TR T PO e (TR FRE
[P ——

2 LY
lr“\._,,, "‘x i
| v ;

Index Lasr Chg
* [l 1012% 40

| * NASD 1538 52 ~,
& S&P SO0 1130,65

Information graphics

D et o 4, 29004 " |
1t st Frinking SBGu| fow 111 ware in @ B | wovld]
Talkow £ wim @ Je® Biackliy Aang hana. Nce going B

|
3 Pt s 15, 3904 3 47 -

| Wasert B origesal by Tom Waits? |
1Wka Mis cover, DUt | mees e rmugh sdges

[o T

iy Srvnts 500G K SOME AT Now | |

Web pages

Social spaces

L= Ty Ty

Immersive games

$17.46
Quantdy | 1

Subtotal: $35.14
Edit shopping cart

{© Frocend to Checkout j

E-commerce sites |

A samptler of interface idioms

PREFACI

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
13/73

The second effect is a loosening of the rules for putting together interfaces from these idi-
oms. It no longer surprises anyone to see several of these idioms mixed up in one interface,
for instance, or to see parts of some controls mixed up with parts of other controls. Online
help pages, which have long been formatted in hypertext anyway, might now have interac-
tive applets in them, animations, or links to a web-based bulletin board. Interfaces them-
selves might have help texts on them, interleaved with forms or editors; this used to be rare.
Combo boxes' dropdown menus might have funky layouts, like color grids or sliders, in-
stead of the standard column of text items. You might see web applications that look like
document-centered paint programs, but have no menu bars, and save the finished work
only to a database somewhere.

The freeform-ness of web pages seems to have taught users to relax their expectations
with respect to graphics and interactivity. It's okay now to break the old Windows style-
guide strictures, as long as users can figure out what you're doing.

And that's the hard part. Some applications, devices, and web applications are easy to use.
Many aren't. Following style guides never guaranteed usability anyhow, but now designers
have even more choices than before (which, paradoxically, can make design a /ot harder).
What characterizes interfaces that are easy to use?

One could say, "The applications that are easy to use are designed to be intuitive.” Well, yes.
That's almost a tautology.

Except that the word “intuitive” is a little bit deceptive. Jef Raskin once pointed out that
when we say "intuitive” in the context of software, we really mean “familiar.” Computer mice
aren't intuitive to someone who's never seen one (though a growling grizzly bear would
be). There's nothing innate or instinctive in the human brain to account for it. But once
you've taken 10 seconds to learn to use a mouse, it's familiar, and you'll never forget it. Same
for blue underlined text, play/pause buttons, and so on.

Rephrased: “The applications that are easy to use are designed to be familiar."

Now we're getting somewhere. “Familiar” doesn't necessarily mean that everything about
a given application is identical to some genre-defining product (e.g., Word, Photoshop, Mac
0OS, or a Walkman). People are smarter than that. As long as the parts are recognizable
enough, and the relationships among the parts are clear, then people can apply their previ-
ous knowledge to a novel interface and figure it out.

That's where patterns come in. This book catalogs many of those familiar parts, in ways you
can reuse in many different contexts. Patterns capture a common structure—usually a very
“local"” one, like funky layouts on a combo box—without being too concrete on the details,
which gives you flexibility to be creative.

If you know what users expect of your application, and if you choose carefully from your
toolbox of idioms (large-scale), controls (small-scale), and patterns (covering the range),
then you can put together something which “feels familiar" while remaining original.

And that gets you the best of both worlds.

SMALL INTERFAGE MIECHES, LOOGSELY JOINED il

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
14/73

ABOUT PATTERNS IN GENERAL

In essence, patterns are structural and behavioral features that improve the “habitability" of
something—a user interface, a web site, an object-oriented pragram, or even a building.
They make things easier to understand or more beautiful; they make tools more useful and
usable,

As such, patterns can be a description of best practices within a given design domain. They
capture commeon solutions to design tensions (usually called "forces” in pattern literature)
and thus, by definition, are not novel. They aren't off-the-shelf components; each imple-
mentation of a pattern differs a little from every other. They aren't simple rules or heuristics
either. And they won't walk you through an entire set of design decisions—if you're looking
for a complete step-by-step description of how to design an interface, a pattern catalog
isn't the place!

This book describes patterns literally as solutions to design problems because part of their
value lies in the way they resolve tensions in various design contexts. For instance, an inter-
face designer who needs to pack a lot of stuff into a too-small space can use a Card Stack.
What remains for the designer is information architecture—how to split up the content into
pieces, what to name them, etc.—and what exactly the Card Stack will look like when it's
done. Tabs? A lefthand-side list or tree? That's up to the designer’'s judgment.

Some very complete sets of patterns make up a “pattern language.” These patterns re-
semble visual languages, in that they cover the entire vocabulary of elements used in a
design (though pattern languages are more abstract and behavioral; visual languages talk
about shapes, icons, colors, fonts, etc.). This set isn't nearly so complete, and it contains
techniques that don't qualify as traditional patterns. But it's concise enough to be manage-
able and useful.

OTHER PATTERN COLLECTIONS

The text that started it all dealt with physical buildings, not software. Christopher Alexan-
der's A Pattern Language, and its companion book, The Timeless Way of Building (both
Oxford University Press), established the concept of patterns and described a 250-pattern
multilayered pattern language. It is often considered the gold standard for a pattern lan-
guage because of its completeness, its rich interconnectedness, and its grounding in the
human response to our built world.

In the mid-1990s, the publication of Design Patterns, (Addison-Wesley) by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides profoundly changed the practice of com-
mercial software architecture. This book is a collection of patterns describing object-
oriented “micro-architectures.” If you have a background in software engineering, this is the
book that probably introduced you to the idea of patterns. Many other authors have written
books about software patterns since Design Patterns. Software patterns such as these do
make software more habitable—for those whao write the software, not those who use it!

xiv

FREFACE

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

15/73

The first substantial set of user-interface patterns was the predecessor of this patterns col-
lection, “Common Ground." Many other collections and languages followed, notably Mar-
tijn van Welie's “Interaction Design Patterns," and Jan Borchers's book A Pattern Approach
to Interaction Design (Wiley). More recently, a full-fledged web site pattern language was
published, called The Design of Sites (Addison-Wesley). | highly recommend it, especially if
you're desianing traditional web sites. If you're building web or desktop applications, or if
you're pushing the boundaries in either domain, look at all of these publications; you might
find inspiration in any of them.

ABOUT THE PATTERNS IN THIS BOOK

So there's nothing really new in here. If you've done any web or Ul design, or even thought
much about it, you should say, "Oh, right, | know what that is" to most of these patterns. But
a few of them might be new to you, and some of the familiar ones may not be part of your
usual design repertoire.

These patterns work for both desktop and web-based applications. Many patterns also ap-
ply to such digital devices as palmtops, cell phones, and TV-based devices like digital re-
corders. Ordinary web sites might also benefit, but I'll talk more about that topic in the next
section.

Though this book won't exhaustively describe all the interface idiorns mentioned earlier,
they organize part of the book. Three chapters focus on the more common idioms: forms,
information graphics, and WYSIWYG editors (like those used for text and graphics), Other
chapters address subjects that are useful across many idioms, such as organization, naviga-
tion, actions, and visual style.

This book is intended to be read by people who have some knowledge of such interface
design concepts and terminology such as dialog boxes, selection, comhbo boxes, navigation
bars, and white space. It does not identify many widely accepted techniques, such as copy-
and-paste, since you already know what they are. But, at the risk of belaboring the obvious,
this book describes some common technigques to encourage their use in other contexts—
for instance, many desktop applications could better use Global Navigation—or to discuss
them alongside alternative solutions.

This book does not present a complete process for constructing an interface design, When
doing design, a sound process is critical. You need to have certain elements in a design
process:
= Field research, to find out what the intended users are like and what they already do
» Goal and task analysis, to describe and clarify what users will do with what you're
building
« Design models, such as personas (models of users), scenarios (models of comman
tasks and situations), and prototypes (models of the interface itself)

1. httpifwwwaenitedu/~ticwell/comimon_grotnd, htm!

2. httpwwwoweliecamy/patterns

ABOUT THE PATTERNS IN THIS BOOK

XV

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

16/73

« Empirical testing of the design at various points during development, like usability
testing and /n situ observations of the design used by real users

« Enough time to iterate over several versions of the design, because you won't get it
right the first time

The topic of design process transcends the scope of this book, and plenty of other books
and workshops out there cover it well. Read them; they're good.

But there's a deeper reason why this book won't give you a recipe for designing an inter-
face. Good design can't be reduced to a recipe. It's a creative process, and one that chang-
es under you as you work—in any given project, for instance, you won't understand some
design issues until you've designed your way into a dead end, I've personally done that
many times.

And design isn't linear. Most chapters in this book are arranged more or less by scale, and
therefore by their approximate order in the design progression: large decisions about con-
tent and scope are made first, followed by navigation, page design, and, eventually, the
details of interactions with forms and canvases and such. But you'll often find yourself mov-
ing back and forth through this progression. Maybe you'll know very early in a project how
a certain screen should look, and that's a “fixed point”; you may have to work backward
from there to figure out the right navigational structure, (No, it's not ideal, but things like
this do happen in real life.)

That said, here are some ways you can use these patterns:

Learning
If you don’t have years of design experience already, a set of patterns may serve as
a learning tool. You may want to read over it to get ideas, or refer back to specific
patterns as the need arises. Just as expanding your vocabulary helps you express
ideas in language, expanding your interface design “vocabulary” helps you create
more expressive designs.

Examples
Each pattern in this book has at least one example. Some have many: they might be
useful to you as a sourcebook. You may find wisdom in the examples that is missing
in the text of the pattern.

Terminology
If you talk to users, engineers, or managers about interface design, or if you write
specifications, then you could use the pattern names as a way of communicating and
discussing ideas. This is another well-known benefit of pattern languages. (The terms
“singleton" and “factory,” for instance, were originally pattern names, but they're now
in common usage among software engineers.)

fnspiration
Each pattern description tries to capture the reasons why the pattern works to make
an interface easier or more fun. If you get it, but want to do something a little differ-
ent from the examples, you can be creative with your "eyes open.”

xvi

PREFACE

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

17/73

One more waord of caution: a catalog of patterns is not a checklist. You cannot measure the
quality of a thing by counting the patterns in it. Each design project has a unigue context,
and even if you need to solve a common design problem (such as how to fit too much con-
tent onto a page), a given pattern might be a poor solution within that context. No refer-
ence can substitute for good desian judgment. Nor can it substitute for a good design
process, which helps you find and recover fram design mistakes.

Ultimately, you should be able to leave a reference like this behind. As you become an ex-
perienced designer, you will have internalized these ideas to the point at which you don't
notice you use them anymore; the patterns become second nature. They're part of your
toolbox from then on.

AUDIENCE

If you design user interfaces in any capacity, you might find this book useful. It's intended
for people who work on:

« Desktop applications

» Web applications or “rich internet applications" (RIAs)

» Highly interactive web sites

» Software for handhelds, cell phones, or other consumer electronics

* Turnkey systems, such as kiosks

« Operating systems
The list might also include traditional web sites such as corporate home pages, but | delib-
erately did not focus on web sites. They are amply covered by the existing literature, and
talking more about them here seems redundant. Also, most of them don't have the degree

of interactivity taken for granted in many patterns; there's a qualitative difference between
a “read-only" site and one that actually interacts with its users.

Of course, profound differences exist among all these design platforms. However, | believe
they have more in common than we generally think. You'll see examples from many differ-
ent platforms in these patterns, and that's deliberate—they often use the same patterns to
achieve the same ends.

This book isn't Design 107; it's more like Design 225. As mentioned earlier, it's expected that
you already know the basics of Ul design, such as available toolkits and control sets, con-
cepts like drag-and-drop and focus, and the importance of usability testing and user feed-
back. If you don’t, some excellent books listed in the references can get you started with
the essentials.

Specifically, this book targets the following audiences:

« Software developers who need to design the Uls that they build.

« Web page designers who are now asked to design web apps or sites with more
interactivity.

= New interface designers and usability specialists.

AUDILENCE

xvii

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

18/73

+ More experienced designers who want to see how other designs solve certain
problems: the examples can serve as a sourcebook for ideas.

- Professionals in adjacent fields, such as technical writing, product design, and
information architecture.

« Managers who want to understand what's involved in good interface design.

» Open-source developers and enthusiasts. This isn't quite "open-source design.” but
the idea here is to open up interface design best practices for everyone’s benefit.

These patterns are grouped into thematic chapters, and each chapter has an introduction
that briefly covers the concepts those patterns are built upon. | want to emphasize briefly.
Some of these concepts could have entire books written about them. But the introductions
will give you some cantext; if vou already know this stuff, they'll be review material, and if
not, thay'll tell you what topics you might want to learn more about.

The first set of chapters are applicable to almost any interface you might design, whether
it's a desktop application, web application, web site, hardware device, or whatever you can
think of:

« Chapter 1, What Users Do. talks about common behavier and usage patterns
supported well by good interfaces.

+ Chapter 2, Organizing the Content, discusses information architecture as it applies
to highly interactive interfaces. It deals with different organizational models, the
amount of content a user sees at one time, and the best way to use windows,
panels, and pages.

« Chapter 3, Getting Around, discusses navigation. It describes patterns for moving
around an interface—between pages, among windows, and within large virtual
spaces.

« Chapter 4. Organizing the Page, describes patterns for the layout and placement of
page elements. It talks about how to communicate meaning simply by putting
things in the right places.

« Chapter 5, Doing Things, talks about how to present actions and commands: use
these patterns to handle the “verbs” of an interface.

Next comes a set of chapters that deal with specific idioms. It's fine to read them all, but
real-life projects probably won't use all of them. Chapters 6 and 7 are the most broadly ap-
plicable, since most modern interfaces use trees, tables, or forms in some fashion.

- Chapter 6, Showing Complex Data, contains patterns for trees, tables, charts, and
information graphics in general. It discusses the cognitive aspects of data presenta-
tion, and how to use them to communicate knowledge and meaning.

« Chapter 7, Getting input from Users, deals with forms and controls. Along with the

patterns, this chapter has a table that maps data types to various controls that can
represent them.

ettt PREFACE

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
19/73

« Chapter 8, Builders and Editors, discusses technigues and patterns often used in
WYSIWYG graphic editors and text editors.

Finally, the last chapter comes at the end of the design progression, but it too applies to
almost anything you design.

» Chapter 9, Making |t Look Good, deals with aesthetics and fit-and-finish. It uses
graphic-design principles and patterns to show how (and why) to polish the loak-
and-feel of an interface, once its behavior is established.

| chose this book's examples based on many factors. The most important factor is how well
an example demonstrates a given pattern or concept, of course, but other considerations
include general design fitness, printability, platform variety—desktop applications. web
sites, devices, etc.—and how well-known and accessible these applications might be to
readers. As such, the examplas are weighted heavily toward Microsoft and Apple software,
certain web sites, and easily-found consumer software and devices. This is not to say that
they are always paragons of good design. They're not, and | do not mean to slight the excel-
lent work done by countless designers on less well-known applications. If you know of ex-
amples that might meet these criteria, please suggest them to me.

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(B00) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional infor-
mation. You can access this page at:

http./www.oreilly.com/catalog/designinterfaces

Visit http./designinginterfaces.com for more information,

To comment or ask technical questions about this book, send email to:
bookquestions a oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http.//www.areilly.com

AURNEOW LEDGMENTS

Xix

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

20/73

ACKNOWLEDGMENTS

First, my deepest thanks to the technical reviewers of this book: Eric Freeman, Peter Mor-
ville, William Wake, Robert Reimann, Jeff Johnson, Martijn van Welie, and Ron Jeffries. Your
suggestions unguestionably made this book better.

Other readers, reviewers, and suggestion-makers include Andrea Midtmoen Fease, Jan
Stetson, Helen Rennie, Rhon Porter, Geoff Dutton, Steve Eddins, Lynn Cherny, Tom Lane,
Joe Conti, Will Schroeder, Janice Kutz, Tim Wright, Ben Bederson, Robert Nero, and Mi-
chael Del Gaudio. You all offered your time and energy to help with this project—thank you.
And extra thanks to my other colleagues at The MathWaorks, especially Chris Wood, for all
your patience while | was so busy writing this.

Thanks to the really early reviewers, Ralph Johnson and the Software Architecture Group at
the University of lllinois at Urbana-Champaign: Tankut Baris Aktemur, John Bordan, John
Brant, Nicholas Bray, Danny Dig, Christos Evaggelou, Alejandra Garrido, Brian Foote, Mu-
nawar Hafiz, Thuc Si Mau Ho, Pablo Montesinos, Jeff Qverbey, Weerasak Witthawaskul,
Spiros Xanthos, and Joseph Yoder. (I'm sure | missed some of you because your names on
the recordings were so faint!)

Doug Hull, Tom Lane, Gerard Torenvliet, Alex Conn, Amy Groden-Marrison, Susan Fowler,
and Robert Nero all supplied material and links that I've included as key examples—thank
you all for those screenshots and suggestions, and | hope the text does them credit.

At O'Reilly, thanks to Nat Torkington, who “found” the original web site and contacted me;
Mike Hendrickson, for guiding me through the early stages of the book and coming up with
some terrific ideas for it; and Andrew Odewahn and Mary O'Brien, my helpful and kind edi-
tors during the |ater stages of writing the draft.

The thousands of anonymous visitors to my Ul patterns web site are the reason why this

book exists. Without your log records, I'd never have known how heavily used the site actu-
ally is. And thanks to those of you who took the time to write and tell me you liked it. | hope
this book meets your expectations!

Many. many thanks to my family and friends, especially Rich. You all encouraged me to turn
the web site into a book, and supported me wholeheartedly throughout the writing pro-
CesS:

Finally, | want to thank our local champions: the 2003 and 2004 New England Patriots and
the 2004 Boston Red Sox. You all helped us believe that anything—anythingl—can be pos-
sible if we try hard enough.

Even writing a book.

XX

PREFACE

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

21/73

WHAT USERS DO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
22/73

This book is almost entirely about the look and behavior of applications,
web applications, and interactive devices. But this first chapter will be
the exception to the rule. No screenshots here; no layouts, no navigation,
no diagrams, and no visuals at all.

Why not? After all, that's why you may have picked up this book in the first place.

It's because good interface design doesn't start with pictures. It starts with an understanding of people;
what they're like, why they use a given piece of software, and how they might interact with it. The more
you know about them, and the more you empathize with them, the more effectively you can design for
them. Software, after all, is merely a means to an end for the people who use it. The better you satisfy
those ends, the happier those users will be.

Each time someone uses an application, or any digital product, they carry on a conversation with the ma-
chine. It may be literal, as with a command line or phone menu, or tacit, like the “conversation” an artist
has with her paints and canvas—the give and take between the craftsperson and the thing being built.
With social software, it rnay even be a conversation by proxy. Whatever the case, the user interface medi-
ates that conversation, helping the user achieve whatever ends he or she had in mind.

As the user interface designer, then, you get to script that conversation, or at least define its terms. And if
you're going to script a conversation, you should understand the human's side as well as possible. What
are the user's motives and intentions? What “vocabulary” of words, icons, and gestures does the user ex-
pect to use? How can the application set expectations appropriately for the user? How do the user and the
machine finally end up cammunicating meaning to each other?

There's a maxim in the field of interface design: "Know thy users, for they are not you!”

So this chapter will talk about people. It covers a few fundamental ideas briefly in this introduction, and
then discusses the patterns themselves. These patterns differ from those in the rest of the book. They
describe human behaviors—as opposed to system behaviors—that the software you design may need to
support. Software that supports these human behaviors help users achieve their goals.

A MEANS TO AN END
Everyone who uses a tool, software or otherwise, has a reason to use it. For instance:

Finding some fact or object
Learning something

Performing a transaction

Controlling or monitoring something
Creating something

Conversing with other people

Being entertained

A MEANS TOOAN END - 3

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

23/73

Well-known idioms, user behaviors, and design patterns can support each of these abstract
goals. Interaction designers have learned, for example, how to help people search through
vast amounts of online information for specific facts. They've learned how to present tasks
so that it's easy to walk through them. They are learning ways to support the building of
documents, illustrations, and code.

The first step in designing an interface is figuring out what its users are really trying to ac-
complish. Filling out a form, for example, almost never is a goal in and of itself—people only
do it because they're trying to buy something online, get their driver’s license renewed, or
install a networked printer! They're performing some kind of transaction.

Asking the right questions can help you connect user goals to the design process, Users and
clients typically speak to you in terms of desired features and solutions, not of needs and
problems. When a user or client tells you he wants a certain feature, ask why he wants it—
determine his immediate goal. Then, to the answer of this question, ask “why" again. And
again. Keep asking until you move well beyond the boundaries of the immediate design
problem.”

Why should you ask these questions if you have clear requirements? Because if you love
designing things, it's easy to get caught up in an interesting interface-design problem. May-
be you're good at building forms that ask for just the right information, with the right con-
trols, all laid out nicely. But the real art of interface design lies in solving the right problem.

So don't get too fond of designing that form. If there's any way to finish the transaction
without making the user go through that form at all, get rid of it altogether. That gets the
user closer to his goal, with less time and effort spent on his part. (And maybe vours, too.)

Let's use the "why" approach to dig a little deeper into some typical design scenarios.

Why does a mid-level manager use an email client? Yes, of course—"to read email.”
Why does she read and send email in the first place? To converse with other peaple.
Of course, other means might achieve the same ends: the phone, a hallway conver-
sation, a formal document. But apparently email fills some needs that the other
methods don't. What are they, and why are they important to her? Privacy? The
ability to archive a conversation? Social convention? What else?

« A father goes to an online travel agent, types in the city where his family will take a
summer vacation, and tries to find plane ticket prices on various dates. He's learning
from what he finds, but his goal isn't just browsing and exploring different options.
Ask why. His goal is actually a transaction: buying plane tickets. Again, he could have
done that at many different web sites, or over the phone with a live travel agent.
How is this site better than those other options? Is it faster? Friendlier? More likely
to find a better deal?

1. See Eric Raymond's essay, "The Luxury of lgnorance: An Open-Source Horror Story” about his travails with a Linux print
utllity at http,/www.catb.org/~esy/writings/cups-horrar.htmi.

2. This is the same grinciple that underlies a well-known technigue called "root cause analysis" However, root cause analysis
is a tool for fixing organizational failures: here, you use its "five whys" {mare or less) ta understand everyday user behaviors
and feature requests.

WHAT USERS Dy

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

24/73

A cell phone user wants a way to search through his phone list more quickly. You, as
the designer, can come up with some clever ideas to save keystrokes while search-
ing. But why did he want it? It turns out that he makes a lot of calls while driving,
and he doesn't want to take his eyes off the road more than he has to—he wants to
make calls while staying safe (to the extent that that's possible). The ideal case is
that he doesn't have to look at the phone at all! A better solution is voice dialing: all
he has to do is speak the name, and the phone makes the call for him.

Sometimes goal analysis really isn't straightforward at all. A snowboarding site
might provide information (for learning), an online store (transactions), and a set of
Flash movies (entertainment). Let's say someone visits the site for a purchase, but
she gets sidetracked into the information on snowboarding tricks—she switched
goals from accomplishing a transaction to browsing and learning. Maybe she'll go
back to purchasing something, maybe not. And does the entertainment part of the
site successfully entertain both the twelve-year-old and the thirty-five-year-old? Will
the thirty-five-year-old go elsewhere to buy his new board if he doesn't feel at home
there, or does he not care?

It's deceptively easy to model users as a single faceless entity—"The User”"—walking through
a set of simple use cases, with one task-oriented goal in mind. But that won't necessarily
reflect your users’ reality.

To do design well, you need to take many "softer” factors into account: gut reactions, prefer-
ences, social context, beliefs, and values. All of these factors could affect the design of an
application or site. Among these “softer” factors, you may find the critical feature or design
factor that makes vour application more appealing and successful.

So be curious. Specialize in it. Find out what your users are really like, and what they really
think and feel.

THE BASICS OF USER RESEARCH

Empirical discovery is the only really good way to obtain this information. To get a design
started, you'll need to characterize the kinds of people who will use whatever you design
(including the “softer” categories just mentioned), and the best way to do that is to go out
and meet them.

Each user group is unique, of course. The target audience for, say, a new cell phone will dif-
fer dramatically from that for a piece of scientific software. Even if the same person uses
both, his expectations for each are different—a researcher using scientific software might
tolerate a less-polished interface in exchange for high functionality, whereas that same per-
son may trade in his new phone if he finds its Ul to be too hard to use after a few days.

Every user is unique, too. What one person finds difficult, the next one won't. The trick is to
figure out what's generally true about your users, which means learning about enough indi-
vidual users to separate the quirks from the common behavior patterns.

THE BASICS OF USER HESHARCH

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

25/73

Specifically, you'll want to learn:

» Their goals in using the software you design
The specific tasks they undertake in pursuit of those goals
The language and words they use to describe what they're doing
Their skill at using software similar to what you're designing

Their attitudes toward the kind of thing you're designing, and how different designs
might affect those attitudes

| can't tell you what your particular target audience Is like. You need to find out what they
might do with the software you design, and how it fits into the broader context of their lives.
Difficult though it may be, try to describe your potential audience in terms of how and why
they might use your software. You might get several distinct answers, representing distinct
user groups: that's okay. You might be tempted to throw up your hands and say, "l don't
know who the users are,” or, “Everyone is a potential user.” That doesn't help you focus your
design at all—without a concrete and honest description of those people, your design will
proceed with no grounding in reality.

Unfortunately, this user-discovery phase will consume serious time early in the design cycle.
It's expensive, but always worth it, because you stand a better chance at solving the right
problem—you'll build the right thing in the first place.

Fortunately, lots of books, courses, and methodologies now exist to help you. Although this
book does not address user research, here are some methods and topics to consider.

Interviews and on-site user visits put you directly into the user's world. You can ask
users about what their goals are and what tasks they typically do. Usually done
“on location,” where users would actually use the software (e.g.. In a workplace or
at home), interviews can be structured—with a predefined set of questions—or
unstructured, in which you might probe whatever subject comes up. Interviews give
you a lot of flexibility; you can do many or a few, long or short, formal or informal, on
the phone or in person. These are great opportunities to learn what you don't know.
Ask why. Ask it again.

Case studies give you deep, detailed views into a few representative users or groups of
users. You can sometimes use them to explore "extreme” users that push the bound-
aries of what the software can do, especially when the goal is a redesign of existing
software, You also can use them as longitudinal studies—exploring the context of use
over weeks, months, or even years. Finally, if you design custom software for a single
user or site, you'll want to learn as much as possible about the actual context of use.

Written surveys can collect information from many users. You can actually get statis-
tically significant numbers of respondents with these. Since there's no direct human
contact, yvou will miss a lot of extra information—whatever you don't ask about, you
won't learn about—but you can get a very clear picture of certain aspects of your target

(5

WHAT USERS DO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

26/73

audience. Careful survey design is essential. If you want reliable numbers instead of
a qualitative "feel” for the target audience, you absolutely must write the questions
correctly, pick the survey recipients correctly, and analyze the answers correctly—
and that's a science,

Personas aren't a data-gathering method, but they do help you figure out what to do
with that data once you've got it. This is a design technigue that “models” the target
audiences. For each major user group, you create a fictional person that captures
the most important aspects of the users in that group: what tasks they're trying to
accomplish, their ultimate goals, and their experience levels in the subject domain
and with computers in general. They help you stay focused. As your design proceeds,
you can ask yourself questions like, “Would this fictional person really do X? What
would she do instead?"

And there's more. You might notice that some of these methods and topics, like interviews
and surveys, sound suspiciously like marketing activities. That's exactly what they are. Fo-
cus groups can be useful too (though not se much as the others), and the concept of mar-
ket segmentation resembles the definition of target audiences we've used here. In both
cases, the whole point is to understand the audience as best you can.

The difference is that as a designer, you're trying to understand the people who use the
software. A marketing professional tries to understand those who buy it.

It's not easy to understand the real issues that underlie users' interaction with a system. Us-
ers don't always have the language or introspective skill to explain what they really need to
accomplish their goals, and it takes a lot of work on your part to ferret out useful design
concepts from what they can tell you—self-reported observations usually are biased in
subtle ways.

Some of these techniques are very formal, and some aren't. Formal and quantitative methods
are valuable because they're good science. When applied correctly, they help vou see the
world as it actually is, not how you think it is. If you do user research haphazardly, without
accounting for biases like the self-selection of users, you may end up with data that doesn’t
reflect your actual target audience—and that can only hurt your design in the long run.

But if you don't have time for formal methods, it's better to just meet a few users infor-
mally than to not do any discovery at all. Talking with users is good for the soul. If you're
able to empathize with users and imagine those individuals actually using your design,
you'll produce something much better.

USERS" MOTIVATION TO LEARN

Before you start the design process, consider your overall approach. Think about how you
might design its overall interaction style—its personality, if you will,

When you carry on a conversation with someone about a given subject, you adjust what
you say according to your understanding of the other person. You might consider how
much he cares about the subject, how much he already knows about it, how receptive he is

LSERS MOTINATION TO LEARN

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

27/73

to learning from you, and whether he's even interested in the conversation in the first place.
If you get any of that wrong, then bad things happen—he might feel patronized, uninter-
ested, impatient, or utterly baffled.

This analogy leads to some obvious design advice. The subject-specific vocabulary you use
in your interface, for instance, should match your users’ level of knowledge; if some users
won't know that vocabulary, give them a way to learn the unfamiliar terms. If they don’t
know computers very well, don't make them use sophisticated widgetry or uncommon
interface-design conventions. If their level of interest might be low, respect that, and don't
ask for too much effort for too little reward.

Some of these concerns permeate the whole interface design in subtle ways. For example,
do vour users expect a short, tightly focused exchange about something very specific, or do
they look for a conversation that's more of a free-ranging exploration? In other words, how
much openness is there in the interface? Too little, and your users feel trapped and unsatis-
fied: too much, and they stand there paralyzed, not knowing what to do next, unprepared for
that level of interaction.

Therefore, you need to choose how much freedom your users have to act arbitrarily. At one
end of the scale might be a software installation wizard: the user is carried through it with
no opportunity to use anything other than Next, Previous, or Cancel. It's tightly focused and
specific, but quite efficient—and satisfying, to the extent that it works and is quick. At the
other end might be an application like Excel, an "open floor plan” interface that exposes a
huge number of features in one place. At any given time, the user has about 872 things that
she can do next, but that's considerad good because self-directed, skilled users can do a lot
with that interface. Again, it's satisfying, but for entirely different reasons.

Here's an even more fundamental question: how much effort are your users willing to spend
to learn your interface?

It's easy to overestimate. Maybe they use it every day on the job—clearly they'd be moti-
vated to learn it well in that case, but that's rare. Maybe they use it sometimes, and learn it
only well enough to get by. Maybe they'll only see it once, for 30 seconds. Be honest: can you
expect most users to become intermediate-to-expert users, or will most users remain per-
petual beginners?

Software designed for intermediate-to-expert users include:
Photoshop
Dreamweaver
- Emacs
- Code development environments
System-administration tools for web servers
In contrast, here are some things designed for occasional users:
+ Kiosks in tourist centers or museums

Windows or Mac QS controls for setting desktop backgrounds
+ Purchase pages for online stores

WIAT USERS ho

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
28/73

Installation wizards

Automated teller machines

The differences between the two groups are dramatic. Assumptions about users' tool knowl-
edge permeate these interfaces, showing up in their screen-space usage, labeling, widget
sophistication, and the places where help is (or isn't) offered.

The applications in the first group have lots of complex functionality, but they don't gener-
ally walk the user through tasks step-by-step. They assume users already know what to do,
and they optimize for efficient operation, not learnability; they tend to be document-
centered or list-driven (with a few being command-line applications). They often have entire
books and courses written about them. Their learning curves are steep.

The applications in the second group are the opposite: restrained in functionality but helpful
about explaining it along the way. They present simplified interfaces, assuming no prior
knowledge of document- or list-centered application styles (e.g., menu bars, multiple selec-
tion, etc.). Wizards frequently show up, removing attention-focusing responsibility from the
user, The key is that users aren't motivated to work hard at learning these interfaces—it's
usually just not worth it!

Now that you've seen the extremes, look at the applications in the middle of the continuum:

Microsoft Office

Email clients

Web browsers

Cell phone applications
= PalmOSs

The truth is. most applications fall into this middle ground. They need to serve people on
both ends adequately—to help new users learn the tool (and satisfy their need for instant
gratification), while enabling frequent-user intermediates to get their work done smoothly.
Their designers probably knew that people weouldn't take a three-day course to learn an
email client. Yet the interfaces hold up under repeated usage. People quickly learn the ba-
sics, reach a proficiency level that satisfies them, and don't bother learning more until they
are motivated to do so for specific purposes.

Alan Cooper coined the terms “sovereign posture” and “transient posture” to discuss these
approaches. Sovereign-posture applications work with users as partners; users spend time
in them, give them their full attention, learn them well, and expand them to full-screen size.
Transient-posture programs are brought up briefly, used, and dismissed. These roughly cor-
respond to the two extremes | posited, but not entirely. See the book About Face 2.0: The
Essentials of Interaction Design for a more nuanced explanation of postures.

Someday you will find yourself in tension between the two ends of this spectrum. Naturally
you want people to be able to use your application “out of the box,” but you also might want
to support freguent or expert users as much as possible. Find a balance that works for vour
situation. Organizational patterns in Chapter 2 such as Multi-Level Help, Intriguing Branch-
es, and Extras on Demand can help you serve both constituencies.

ESERS" MGTIVATION T LEARN

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

29/73

THE PATTERNS

Even though individuals are unigue, people behave predictably. Designers have been doing site visits and
user observations for years; cognitive scientists and other researchers have spent many hundreds of hours
watching how people do things and how they think about what they do.

So when you observe people using your software, or performing whatever activity you want to support
with new software, you can expect them to do certain things. The behavioral patterns listed below often
are seen in user observations. Odds are good that you'll see them too, especially if you look for them.

A note for patterns enthusiasts: These patterns aren't like the others in this book. They describe human
behaviors, not interface elements, and they're not prescriptive like the patterns in other chapters. Instead
of being structured like the other patterns, these are presented as small essays.

Again, an interface that supports these patterns well will help users achieve their goals far more effectively
than interfaces that don't support them, And the patterns are not just about the interface, either. Sometimes
the entire package—interface, underlying architecture, feature choice, and documentation—neeads to be con-
sidered in light of these behaviors. But as the interface designer or interaction designer, you should think
about these as much as anyone on your team. You may be in the best position to advocate for the users.

1 Safe Exploration 7 Habituation

2 Instant Gratification 8 Spatial Memory

3 Satisficing 9 Prospective Memory

4 Changes in Midstream 10 Streamlined Repetition
5 Deferred Choices 11 Keyboard Only

6 Incremental Construction 12 Other People’s Advice

14 WHAT USERS [

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
30/73

1 safe exploration

“Let me explore without getting lost or getting into
trouble.”

When someone feels like she can explore an inter-
face and not suffer dire conseguences, she's likely
to learn more—and feel more positive about it—
than someone who doesn’t explore. Good software
allows people to try something unfamiliar, back
out, and try something else, all without stress.

Those "dire consequences” don't even have to be
very bad. Mere annoyance can be enough to deter
someone from trying things out voluntarily. Click-
ing away popup windows, re-entering data mistak-
enly erased, suddenly muting the volume on one's
laptop when a web site unexpectedly plays loud
music—all can be discouraging. When you design
almost any kind of software interface, make many
avenues of exploration available for users to exper-
iment with, without costing the user anything.

Here are some examples:

* A photographer tries out a few imaae filters
in an image-processing application, He
then decides he doesn't like the results and
hits “Undo” a few times to get back to
where he was. Then he tries another filter,
and another—each time being able to back
out of what he did. (The pattern named
Multi-Level Undo, in Chapter 5, describes
how this works.)

= A new visitor to a company's home page
clicks various links just to see what's there,
trusting that the Back button will always get
her back to the main page. No extra win-
dows or popups open, and the Back button
keeps working predictably. You can imagine
that if a web application does samething
different in response to the Back button—or
if an application offers a button that seems
like a Back button, but doesn't behave quite
like it—then confusion might ensue. The user
can get disoriented while navigating, and
may abandon the application altogether.

« A cell phone user wants to try out some
intriguing new online functionality, like
getting sports scores for the World Series in
real time. But he's hesitant to try it because
the last time he used an online service, he
was charged an exorbitant amount of
money just for experimenting with it for a
few minutes.

2 jinstant gratification
“I want to accomplish something now, not later.”

People like to see immediate results from the ac-
tions they take—it’s human nature. If someone
starts using an application and gets a “success ex-
perience” within the first few seconds, that's grati-
fying! He'll be more likely to keep using it, even if it
gets harder later. He will feel more confident in the
application, and more confident in himself, than if it
had taken a while to figure things out.

The need to support instant gratification has many
design ramifications. For instance, if you can pre-
dict the first thing a new user is likely to do, then
you should design the Ul to make that first thing
stunningly easy. If the user’'s goal is to create some-
thing, for instance, then show a new canvas and
put a palette next to it. If the user's goal is to ac-
complish some task, point the way toward a typical
starting point.

It also means that you shouldn't hide introductory
functionality behind anything that needs to be read
or waited for, such as registrations, long sets of in-
structions, slow-to-load screens, or advertise-
ments, These are discouraging because they block
users from finishing that first task quickly.

3 satisficing
“This is good enough. | don't want to spend more

time learning to do it better.”

When people lock at a new interface, they don't
read every piece of it methodically and then de-
cide, "Hmmm, | think this butten has the best

SATISFICING

MemoryWeb Ex.

2018

Samsung v. MemoryWeb — [PR2022-00221

31/73

chance of getting me what | want.” Instead, a user
will rapidly scan the interface, pick whatever he
sees first that might get him what he wants, and try
it—even if it might be wrong.

The term “satisficing” is a combination of “satisfy-
ing" and “sufficing.” It was devised in 1957 by the
social scientist Herbert Simon, who used it to de-
scribe the behavior of people in all kinds of eco-
nomic and social situations. People are willing to
accept “good enough” instead of "best" if learning
all the alternatives might cost time or effort.

Satisficing is actually a very rational behavior, once
you appreciate the mental work necessary to
“parse” a complicated interface. As Steve Krug
points out in his book Don't Make Me Think, (New
Riders) people don't like to think any more than
they have to—it's work! But if the interface pres-
ents an obvious option or two that the user sees
immediately, he'll try it. Chances are good that it
will be the right choice, and if not, there’s little cost
in backing out and trying something else (assum-
ing that the interface supports Safe Exploration).

This means several things for designers:

» Make labels short, plainly worded, and quick
to read. (This includes menu items, buttons,
links, and anything else identified by text.)
They'll be scanned and guessed about; write
them so that a user's first guess about
meaning is correct. If he guesses wrong
several times, he'll be frustrated and you're
both off to a bad start.

« Use the layout of the interface to communi-
cate meaning. Chapter 4, Layout, explains
how to do so in detail. Users "parse” color
and form on sight, and they follow these
cues more efficiently than labels that must
be read.

= Make it easy to move around the interface,
especially for going back to where a wrong
choice might have been made hastily.
Provide “escape hatches” (see Chapter 3).
On typical web sites, using the Back button

is easy, so designing easy forward/back-
ward navigation is especially important for
web applications, but it's also important for
installed applications and devices.

« Keep in mind that a complicated interface
imposes a large cognitive cost on new
users. Visual complexity will often tempt
nonexperts to satisfice: they look for the
first thing that may work.

Satisficing is why many users end up with odd hab-
its after they've been using a system for a while.
Long ago, a user may have learned Path A to do
something, and even though a later version of the
system offers Path B as a better alternative (or was
there all along), he sees no benefit in learning it—
that takes effort, after all—and he keeps using the
less-efficient Path A. It's not necessarily an irratio-
nal choice. Breaking old habits and learning some-
thing new takes energy, and a small improvement
may not be worth the cost to the user.

4 changes in midstream
“I changed my mind about what | was doing.”

Occasionally, people change what they're doing in
the middle of doing it. Someone may walk into a
room with the intent of finding a key she had left
there, but while she's there, she finds a newspaper
and starts reading it. Or she may visit Amazon to
read product reviews, but ends up buying a book
instead. Maybe she’s just sidetracked; maybe the
change is deliberate. Either way, the user's goal
changes while she's using the interface you
designed.

What this means for designers is that you should
provide opportunities for people to do that. Make
choices available. Don't lock users into a choice-
poor environment with no global navigation, or no
connections to other pages or functionality, unless
there's a good reason to do so. Those reasons do
exist. See the patterns called Wizard (Chapter 2),
Hub and Spoke (Chapter 3), and Modal Panel
(Chapter 3) for examples.

WHAT USERS DO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
32/73

You also can make it easy for someone to start a
process, stop in the middle, and come back to it
later to pick up where he left off—a property often
called “reentrance.” For instance, a lawyer may
start entering information into a form on a PDA,
Then when a client comes into the room, the law-
yer has to turn off the PDA with the intent of com-
ing back to finish the form later. The entered infor-
mation shouldn't be lost.

To support reentrance, you can make dialog boxes
remember values typed previously (see Good De-
faults in Chapter 7), and they don't usually need to
be modal; if they're not modal, a user can drag
them aside on the screen for later use. Builder-
style applications—text editors, code development
environments, and paint programs—can let a user
work on multiple projects at one time, thus letting
the user put any number of projects aside while
she works on another one.

Online surveys hosted by surveymonkey.com
sometimes offer a button on each page of a survey
that says, "I'll finish it later.” This button closes the
browser page, records the choices made up to that
point, and lets the user come back to finish the sur-
vey later.

5 deferred choices
“I don’t want to answer that now; just let me finish!"

This follows from people's desire for instant gratifi-
cation. If you ask a user several seemingly unnec-
essary questions while he's trying to get something
done, he'd often rather skip the questions and
come back to them later.

For example, some web-based bulletin boards have
long and complicated procedures for registering
users. Screen names, email addresses, privacy pref-
erences, avatars, self-descriptions..the list goes on
and on. "But | just wanted to post one little thing,"
says the user plaintively. Why not skip most of the

guestions, answer the bare minimum, and come

back later (if ever) to fill in the rest? Otherwise he

might be there for half an hour answering essay
questions and finding the perfect avatar image.

Another example is creating a new project in
Dreamweaver or other web site editors. There are
some things you do have to decide up front, like
the name of the project, but you can defer other
choices easily—where on the server are you going
to put this when you're done? | don't know yet!

Sometimes it's just a matter of not wanting to an-
swer the questions. At other times, the user may
not have enough information to answer yet. What
if a music-writing software package asked you up
front for the title, key, and tempo of a new song,
before you've even started writing it? (See Apple's
GarageBand for this lovely bit of design.)

The implications for interface design are simple to
understand, though not always easy to imple-
ment:

* Don't accost the user with too many up-
front choices in the first place.

* On the forms that he does have to use,
clearly mark the required fields, and don't
make too many of them required. Let him
move on without answering the optional
ones.

= Sometimes you can separate the few
important guestions or options from others
that are less important. Present the short
list; hide the long list. See the Extras on
Demand pattern in Chapter 2.

+« Use Good Defaults (Chapter 7) wherever
possible, to give users some reasonable
default answers to start with. But keep in
mind that prefilled answers still require the
user to look at them, just in case they need
to be changed. They have a small cost, too.

= Make it possible for users to return to the
deferred fields later, and make them acces-
sible in obvious places. Some dialog boxes
show the user a short statement such as
“You can always change this later by
clicking the Edit Project button.” Some web

DEFERRED CHOICES

13

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

33/73

sites store a user's half-finished form entries
or other persistent data, like shopping carts
with unpurchased items.

« |If registration is required at a web site that
provides useful services, users may be far
more likely to register if they're first allowed
to experience the web site—drawn in and
engaged—and then asked later about who
they are. In fact, TurboTax 2005 allows a
user to work through an entire tax form
before creating a username.

6 incremental construction

“Let me change this. That doesn't look right; let me
change it again. That's better.”

When people create things, they don't usually do it
all at once. Even an expert doesn't start at the be-
ginning, work through the creation process me-
thodically, and come out with something perfect
and finished at the end.

Quite the opposite. Instead, she starts with some
small piece of it, works on it, steps back and looks at
it, tests it (if it's code or some other “runnable” thing),
fixes what's wrong, and starts to build other parts of
it. Or maybe she starts over if she really doesn't like
it. The creative process goes in fits and starts. It
moves backwards as much as forwards sometimes,
and it's often incremental, done in a series of small
changes instead of a few big ones. Sometimes it's
top-down; sometimes it's bottom-up.

Builder-style interfaces need to support that style
of work. Make it easy to build small pieces one at a
time. Keep the interface responsive to quick chang-
es and saves. Feedback is critical: constantly show
the user what the whole thing looks and behaves
like while the user works. If you deal with code,
simulations, or other executable things, make the
“compile” part of the cycle as short as possible so
the operational feedback feels immediate—leave
little or no delay between the user making changes
and seeing the results.

When good tools support creative activities, the
activities can induce a state of “flow" in the user.
This is a state of full absorption in the activity, dur-
ing which time distorts, other distractions fall away.
and the person can remain engaged for hours—the
enjoyment of the activity is its own reward. Artists,

athletes, and programmers all know this state.

Bad tools will keep someone distracted, guaranteed.
If the user has to wait even half a minute to see the
results of the incremental change she just made,
then her concentration is broken; flow is disrupted.

If you want to read more about flow, look at the
books by Mihaly Csikszentmihalyi, who studied it
for years.

7 habituation

“That gesture works everywhere else; why doesn't
it work here, too?”

When one uses an interface repeatedly, some fre-
quently used physical actions become reflexive:
typing Control-S to save a document, clicking the
Back button to leave a web page, pressing Return
to close a modal dialog box, using gestures to show
and hide windows, or even pressing a car's brake
pedal. The user no longer needs to think conscious-
ly about these actions. They've become habitual.

This tendency certainly helps people became ex-
pert users of a tool (and it helps create a sense of
flow, too). Habituation measurably improves effi-
ciency, as you can imagine. But it can also lay traps
for the user. If a gesture becomes a habit and the
user tries to use it in a situation when it doesn’t
work—or, worse, does something destructive—then
the user is caught short. He suddenly must think
about the tool again (What did | just do? How do |
do what | intended?), and he might have to undo
any damage done by the gesture.

For instance, Contral-X, Control-S is the “save this
file" key sequence used by the emacs text editor.

WHAT USERS DO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

34/73

Control-A moves the text-entry cursor to the
beginning of a line. These acts become habitual for
emacs users. When a user types Control-A, Con-
trol-X, Control-S at emacs, it performs a fairly
innocuous pair of operations.

Now what happens when he types that same ha-
bituated sequence in Microsoft Word?

1. Control-A: select all

2. Control-X: cut the selection (the whole
document, in this case)

3. Control-5: save the document (whoops)

This is why consistency across applications is im-
portant!

Just as important, though, is consistency within an
application. Some applications are evil because
they establish an expectation that some gesture
will do Action X, except in one special mode, where
it sucdenly does Action Y. Don't do that. It's a sure
bet that users will make mistakes, and the more
experienced they are—ie, the more habituated
they are—the more likely they are to make that
mistake.

This is also why confirmation dialog boxes often
don't work to protect a user against accidental
changes. When modal dialog boxes pop up, the
user can easily get rid of them just by clicking
"OK" or hitting Return (if the OK button is the de-
fault button). If dialogs pop up all the time when
the user is making intended changes, such as de-
leting files, it becomes a habituated response.
Then when it actually matters, the dialog box
doesn't have any effect, because it slips right un-
der the user’'s consciousness.

I've seen at least one application that sets up the
confirmation dialog box's buttons randomly from
one invocation to another. One actually has to read
the buttons to figure out what to click! This isn't
necessarily the best way to do a confirmation dia-
log box—in fact, it's better to not have them at all
under most circumstances—but at least this design
sidesteps habituation creatively.

8 spatial memory

“I swear that button was here a minute ago. Where
did it go?”

When people manipulate objects and documents,
they often find them again later by remembering
where they are, not what they're named.

Take the Windows, Mac, or Linux desktop. Many
people use the desktop background as a place to
put documents, frequently used applications, and
other such things. It turns out that people tend to
use spatial memory to find things on the desktop,
and it's very effective. People devise their own
groupings, for instance, or recall that “the docu-
ment was at the top right over by such-and-such.”
(Naturally, there are real-world equivalents too.
Many people's desks are “organized chaocs,” an ap-
parent mess in which the office ewner can find
anything instantly. But heaven forbid that some-
one should clean it up for them.)

Many applications put their dialog buttons—0OK,
Cancel, etc.—in predictable places, partly because
spatial memory for them is so strong. In complex
applications, people also may find things by re-
membering where they are relative to other things:
tools on toolbars, objects in hierarchies, and so on.
Therefore, you should use patterns like Responsive
Disclosure (Chapter 4) carefully. Adding some-
thing to an interface doesn't usually cause prob-
lems, but rearranging existing controls can disrupt

spatial memory and make things harder to find. It

depends. Try it out on your users if you're not
sure.

Along with habituation, which is closely related,
spatial memory is another reason why consistency
across and within applications is good. People may
expect to find similar functionality in similar places.

Spatial memory explains why it's good to provide
user-arranged areas for storing documents and
objects, like the aforementioned desktops. Such
things aren't always practical, especially with large
numbers of objects, but it works quite well with

SHATIAL MEMORY

MemoryWeb Ex.

2018

Samsung v. MemoryWeb — [PR2022-00221

35/73

small numbers. When peaople arrange things them-
selves, they're likely to remember where they put
them. (Just don’t rearrange things for them unless
they ask!) The Movable Panels pattern in Chapter
4 describes one way to do this.

Also, this is why changing menus dynamically some-
times backfires. People get used to seeing certain
items on the tops and bottoms of menus. Rearrang-
ing or compacting menu items "helpfully” can work
against habituation and lead to user errors.

Incidentally, the tops and bottoms of lists and
menus are special locations, cognitively speaking.
People notice and remember them more than stuff
in the middle of menus. They are the warst items to
change out from under the user.

9 prospective memory

“'m putting this here to remind myself to deal with
it later.”

Prospective memory is a well-known phenomenon
in psychology that doesn't seem to have gained
much traction yet in interface design. But | think it
should.

We engage in prospective memory when we plan
to do something in the future, and we arrande
some way of reminding ourselves to do it. For ex-
ample, if you need to bring a book to work the next
day, vou might put it on a table beside the front
door the night before. If you need to respond to
someone's email later (just not right now!), you
might leave that email on your screen as a physical
reminder. Or, if you tend to miss meetings, you
might arrange for Qutlook or your Palm to ring an
alarm tone five minutes before each meeting.

Basically, this is something almost everyone does.
It's part of how we cope with our complicated,
highly scheduled, multitasked lives: we use knowl-
edge “in the world" to aid our own imperfect mem-
ories. We need to be able to do it well.

Some software does support prospective remem-
bering. Qutiook and PalmOS, as mentioned above,

implement it directly and actively; they have calen-
dars (as do many other software systems), and
they sound alarms. But what else can you use for
prospective memotry?

« Notes to oneself, like virtual “sticky notes"

« Windows left onscreen

« Annotations put directly into documents
(like “Finish me!™)

« Browser bookmarks, for web sites to be
viewed later

« Documents stored on the desktop, rather
than in the usual places in the filesystem

« Email kept in an inbox (and maybe flagged)
instead of filed away

People use all kinds of artifacts to support passive
prospective remembering. But notice that almost
none of the technigues in the list above were de-
signed with that in mind! What they were designed
for is flexibility—and a laissez-faire attitude toward
how users organize their information. A good email
client lets you create folders with any names you
want, and it doesn't care what you do with mes-
sages in your inbox. Text editors don't care what
you type, or what giant bold magenta text means to
you: code editors don't care that you have a "Finish
this” comment in a method header. Browsers don't
know why you keep certain bookmarks around.

In many cases, that kind of hands-off flexibility is all
you really need. Give people the tools to create
their own reminder systems. Just don't try to de-
sign a system that's too smart for its own good. For
instance, don't assume that just because a win-
dow's been idle for a while, no one's using it and it
should be closed. In general, don't “helpfully” clean
up files or objects that the system may think are
useless; someane may be leaving them around for
a reason. Also, don't erganize or sort things auto-
matically unless the user asks the system to do so.

As a designer, is there anything positive you can do
for prospective memory? If someone leaves a form
half-finished and closes it temporarily, you could
retain the data in it for the next time—it will help

HE

WHAT USERS DO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

36/73

remind the user where she left off. Similarly, many
applications recall the last few objects or docu-
ments they edited. You could offer bookmarks-like
lists of "objects of interest”"—both past and fu-
ture—and make that list easily available for reading
and editing.

Here's a bigger challenge: if the user starts tasks
and leaves them without finishing them, think
about how to leave some artifacts around, other
than open windows, that identify the unfinished
tasks. Another one: how might a user gather re-
minders from different sources (email, documents,
calendars, etc.) into one place? Be creative!

10 streamlined repetition
“I have to repeat this how many times?"

In many kinds of applications, users sometimes
find themselves having to perform the same oper-
ation over and over again. The easier it is for them,
the better. If you can help reduce that operation
down to one keystroke or click per repetition—or,
better, just a few keystrokes or clicks for all repeti-
tions—then you will spare users much tedium.

Find and Replace dialog boxes, often found in text
editors (Word, email composers, etc.), are one
good adaptation to this behavior. In these dialog
boxes, the user types the old phrase and the new
phrase. Then it takes only one "Replace" button
click per occurrence in the whole document. And
that's only if the user wanted to see or veto each
replacement—if they're confident that they really
should replace all occurrences, then they can click
the "Replace All" button. One gesture does the
whole job.

Here's a more general example. Photoshop lets
you record "actions” when you want to perform
some arbitrary sequence of operations with a sin-
gle click. If you want to resize, crop, brighten, and
save 20 images, you can record those four steps as
they're done to the first image, and then click that
action's "Play" button for each of the remaining 19.

See the Macros pattern in Chapter 5 for more in-
formation.

Scripting environments are even more general.
Unix and its variants allow you to script anything
you can type into a shell. You can recall and
execute single commands, even long ones, with a
Control-P and return. You can take any set of com-
mands you issue to the command line, put them in
a for-loop, and execute them by hitting the Return
key once, Or you can put them in a shellscript (or
in a for-loop in a shellscript!) and execute them as
a single command. Scripting is very powerful, and
as it gets more complex, it becomes full-fledged
programming.

Other variants include copy-and-paste capability
(preventing the need to retype the same thing in a
million places), user-defined "shortcuts” to appli-
cations on operating-system desktops (preventing
the need to find those applications' directories in
the filesystem), browser bookmarks (so users don't
have to type URLs), and even keyboard shortcuts.

Direct observation of users can help you find out
just what kinds of repetitive tasks you need to sup-
port. Users won't always tell you outright. They
may not even be aware that they're doing repeti-
tive things that they could streamline with the right
tools—they may have been doing it so long that
they don't even notice anymore. By watching them
work, you may see what they don't see.

In any case, the idea is to offer users ways to
streamline the repetitive tasks that could other-
wise be time consuming, tedious, and error prone.

11 keyboard only
“Please don’t make me use the mouse.”

Some people have real physical trouble using a
mouse. Others prefer not to keep switching be-
tween the mouse and keyboard because that takes
time and effort—they'd rather keep their hands on
the keyboard at all times. Still others can't see the

REYHOARD ONLY

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

37/73

screen, and their assistive technologies often inter-
act with the software using just the keyboard APL

For the sakes of these users, some applications are
designed to be “driven” entirely via the keyboard.
They're usually mouse-driven too, but there is no
operation that must be done with only the mouse—
keyboard-only users aren't shut out of any
functionality.

Several standard techniques exist for keyboard-
only usage:

+ You can define keyboard shortcuts, accel-
erators, and mnemonics for operations
reachable via application menu bars, like
Control-S for Save. See your platform style
guide for the standard ones.

« Selection from lists, even multiple selection,
usually is possible using arrow keys in
combination with modifiers (like the Shift
key), though this depends on which plat-
form you use.

» The Tab key typically moves the keyboard
focus—the control that gets keyboard
entries at the moment—from one control to
the next, and Shift-Tab moves backwards.
This is sometimes called "tab traversal.”
Many users expect it to work on form-style
interfaces.

« Most standard controls, even radio buttons
and combo boxes, let users change their
values from the keyboard by using arrow
keys, the Return key, or the spacebar.

« Dialog boxes and web pages often have a
“default button”"—a button representing an
action that says “I'm done with this task
now.” On web pages, it's often Submit or
Done; on dialog boxes, OK or Cancel. When
users hit the Return key on this page or
dialog box, that's the operation that occurs.
Then it moves the user to the next page or
returns him to the previous window.

There are more technigues. Forms, control panels,
and standard web pages are fairly easy to drive from
the keyboard. Graphic editors, and anything eise
that's mostly spatial, are much harder, though not
impossible. See Spring-Loaded Mode, in Chapter 8,
for one way to use keyboards in graphic editors.

Keyboard-only usage is particularly important for
data-entry applications. In these, speed of data en-
try is critical, and users can't afford to move their
hands off the keyboard to the mouse every time
they want to move from one field to another, or even
from one page to another. {In fact, many of these
forms don't even require users to hit the Tab key to
traverse between controls; it's done automatically.)

12 other people’s advice
“What did everyone else say about this?"

People are social. As strong as our opinions may
sometimes be, what our peers think tends to influ-
ence us.

Witness the spectacular growth of online “user
comments”: Amazon for books, IMDb.com for mov-
ies, photo.net and flickr for photographs, and
countless retailers who offer space for user-
submitted product reviews, Auction sites like eBay
formalize user opinions into actual prices. Blogs of-
fer_unlimited soapbox space for people to opine
about anything they want, from products to pro-
gramming to politics.

The advice of peers, whether direct or indirect, in-
fluences people’s choices when they decide any
number of things. Finding things online, perform-
ing transactions (should | buy this product?), play-
ing games (what have other plavers done here?),
and even building things—people can be more ef-
fective when aided by others. If not, they might at
least be happier with the outcome.

Here's a more subtle example. Programmers use
the MATLAB application to do scientific and math-
ematical tasks. Every few months, the company
that makes MATLAB holds a public programming
contest; for a few days, every contestant writes the

18

WHAT USERS DO

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

38/73

best MATLAB code they can to solve a difficult sci-
ence problem. The fastest, most accurate code
wins. The catch is that every player can see every-
one else’s code—and copying is encouraged! The
"advice" in this case is indirect, taking the form of
shared code, but it's quite influential, In the end, the
winning program is never truly original, but it's un-
doubtedly better code than any single solo effort
would have been. (In many respects, it's a micro-
cosm of open-source software development, which
is driven by a powerful set of social dynamics.)

Not all applications and software systems can ac-
commodate a social component, and not all should
try. But consider whether it might enhance the
user experience to do so. And you could be more
creative than just tacking a web-based bulletin

board onto an ordinary site. How can you persuade

users to take part constructively? How can you in-
tegrate it into the typical user's workflow?

If the task is creative, maybe you can encourage
people to post their creations for the public te
view. If the goal is to find some fact or object, per-
haps you can make it easy for users to see what
other people found in similar searches.

Of the patterns in this book, Multi-Level Help
(Chapter 2), most directly addresses this idea; an
online support community is a valuable part of a
complete help system for some applications.

QTHER PEDPLES ADVICE

19

MemoryWeb Ex.

2018

Samsung v. MemoryWeb — [PR2022-00221

39/73

ORGANIZING THE CONTENT:
INFORMATION ARCHITECTURE AND
APPLICATION STRUCTURE

emory Web Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
40/73

At this point, you may know what your users want out of your applica-
tion. You may know which idiom or interface type to use, such as a
graphic editor, a form, web-like hypertext, or a media player—or an idea
of how to combine several of them. If you're really on the ball, you've
written down some typical scenarios that describe how people might use
high-level elements of the application to accomplish their goals. You
have a clear idea of what value this application adds to people’s lives.

Now what?

You could start making sketches of the interface. Many visual thinkers do that at this stage. If you're the
kind of person who likes to think visually, and needs to play with sketches while working out the broad
strokes of the design, go for it.

But if you're not a visual thinker by nature (and sometimes even if you are), then hold off on the interface

sketches, They might lock your thinking into the first visual designs you manage to put on paper. You need

to stay flexible and creative for a little while, until you work out the overall organization of the application. i
|
|

High-level arganization is a wickedly difficult topic. It helps to think about it from several angles, so this
introduction takes two aspects that I've found useful and discusses them in some depth.

The first, "Dividing Stuff Up,"” encourages you to try separating the content of the application entirely from
its physical presentation. Rather than thinking in terms of windows, tree views, and links, you might think
abstractly about how to organize the actions and objects in your application in the way truest to vour
subject matter. You can postpone the decisions about using specific windows and widgets. Clearly this
separation of concerns is useful when you design multimodal applications (e.g., the same content pre-
sented both on the Web and on a palmtop, with very different physical presentations), but it's also good
for brand new applications or deep redesigns. This approach forces you to think about the right things
first: organization and task flows.

Second, "Physical Structure” gets into the presentation of the material in pages, windows, and panels. |

In truth, it's very difficult to completely separate presentation from organization of the content; they're ‘

interdependent. The physical forms of devices and web pages can place tight constraints on a design,

and on the desktop, an application’s window structure is 8 major design choice, So it 2arns a place in this ‘

chapter, |
|

ORGANIZING THE CONTENT 21

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
41/73

In the Preface, | talked a bit about interface idioms.! These, you might recall, are interface
types or styles that have become familiar to some user populations. They include text edi-
tors, forms, games, command lines, and spreadsheets. They're useful because they let you
start a design with a set of familiar conventions; you don't have to start from first principles.
And once a first-time user recognizes the idiom being used, she has a head start on under-
standing the interface.

Whatever it is you're building, you've probably decided which idioms to use. But what may
not be so obvious is how to organize the “stuff” you're presenting via these idioms. If your
[application is small enough to fit on one page or physical panel, great—you're off and run-
| ning. But odds are good that you're dealing with a lot of features, tools, or content areas.
| The nature of the high-tech industry is to keep cramming mare stuff into these interfaces,
‘ since features usually are what sell.
|

If vou've done any work on web sites, you may know the term “information architecture.”

That's essentially what you'll be doing first. You need to figure out how to structure all this

content and functionality: how to organize it, label it, and guide a user through the interface
| to get what they came for. Like a real-world architect, you're planning the informational
| "space” where people will dwell.

But applications are different from traditienal web sites. Think about it in terms of “nouns”
versus "“verbs.” In web sites and many other media—books, movies, music, graphic design—
you work with nouns. You arrange them, present them, categorize them, and index them.
Users know what to do with text and images and such, But applications, by definition, exist
so people can get things done: write, draw, perform transactions, interact with others, and
keep track of things. You're manipulating verbs now. You need to structure the interface so
users always know what to do next (or at least have a good idea where to look).

Most applications (and many web sites) are organized according to one or more of the fol-
lowing approaches. Some use nouns, others use verbs:

Lists of objects—e.g., an inbox full of email messages

Lists of actions or tasks—e.g., browse, buy, sell, or register

| Lists of subject categories—e.g., health, science, or technology
Lists of tools—e.g., calendar, address book, or notepad

You should base your choice on several interrelated factors: the nature and domain (subject
matter) of the application, users’ domain knowledge, users' comfort level with computers in
general, and, most of all, how closely your application needs to match the mental models
that users already have of the domain. (Mental models represent what users believe to be
true about something, based on previous experience or understanding: classifications, vo-
cabulary, processes, cause and effect, and so on.)

1. The term "idiom” comes from Scott MeCloud's Understanding Comics, where it's used to describe a genre of work that
has developed its own vocabulary of styles, gestures, and content. Another term might be "type,” as used In Malcalm
MeCullough's Digital Ground to describe architectural forms and conventions.

ORGANIZING THE CONTENT

b
=

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
42/73

You can trace many problems in Ul design to a poor choice here, or worse, a confusing mix-
ture of more than one type of organization—like tools and subject categories mixed into one
navigation bar with ambiguous titles,

On the other hand, sometimes a mixed organization warks fine. Some of the more interest-
ing small-scale Ul innovations have come from mixing nouns with verbs on the same menu,
for instance; its usability depends on context. Also, you can apply these divisions not only
to the top level of the application, but to numerous levels inside them. Different parts of an
interface demand different organizational approaches.

Again, this isn't rocket science; you've seen these concepts before. But sometimes it's easy
to choose one kind of division by default and not think carefully about which might be best.
By calling them out, we make them visible and amenable to discussion. This will be true
about many patterns and organizational models described in this book.

Let’s take a closer look at these four categorizations and see what they're each best for.

Most of the time, it will be pretty obvious when to use this categorization. Collections of
email messages, songs, books, images (see the iIPhoto example in Figure 2-1), search results,
and financial transactions—we cope with them in the software we use every day. From these
lists, we reach various familiar interface idioms: forms to edit things, media players to play
things, and web pages to view things.

w Phota Library
JL.m Impart
ﬁ| Favarites
i[l—qumtmge Pix

ﬁj Lyrnn's Wedding

[Fagsontheas |
4 i|Curmor Hike

[@iiNve 2002

aTmsh

Slideshow Email Order Prints Ocder Book HomePage

Lists of photos in IPhoto. sorted by album and displayed as thumbnails in a table

FHE BASICS OF INFIORMATION ARCHITECTURE: DINVIDING STUHEF LR

MemoryWeb Ex. 2018

Samsung v. MemoryWeb

—IPR2022-00221

You will find these objects in selectable lists, tables, trees, or whatever is appropriate; some
Uls are very creative. At one extreme, cell phone phonebooks may be short and linear, com-
prising only a few entries that you can scan quickly on a tiny screen. But TiVos list their re-
corded TV shows in multilevel hierarchies that you must traverse with several clicks, and the
most sophisticated email clients allow all kinds of complex sorting and filtering, When you
build these kinds of interfaces. make sure the design scales up appropriately, and take care
to match the capabilities and needs of users with the functionality your interface provides.

There's much to be said about organizing and presenting the objects in such an interface.
That's your next task as information architect. These models are most common:

Linear, usually sorted

2D tables, also sorted, which often let the user sort via column headers, or filter
according to various criteria

A hierarchy that groups items into categories (and possibly subcategories)

A hierarchy that reveals relationships: parent/child, containers, etc.

Spatial organizations, such as maps, charts, or desktop-like areas in which users can
place things where they want

In fact, all of these models (except 2D tables) apply to all four approaches to dividing up an
interface: objects, tasks, categories, and tools. Your choice should depend upon what peo-
ple want to do with the application, what best fits their mental models, and what best suits
the natural organization—if any—of the objects in question.

If vou present timetables for city buses, for instance, the natural organization is by bus or
route number. A linear list of routes is a valid way to organize If. But not everyone will know
what bus number they want; a spatial organization, like an interactive city map, may be
more useful. You also might consider a hierarchy of areas, stations in those areas, and routes
leaving those stations.

Chapter 6, Showing Complex Data, covers these organizational models for "nouns” in more
detail. Of the patterns in this chapter, Two-Panel Selector is commonly used to structure
this kind of interface, as is One-Window Drilldown.

Then, once the user has selected some object, what do they do with it? Read on!

This approach is verb- instead of noun-centered. Instead of asking the user, “What do you
want to work on?", these kinds of interfaces ask, "What do you want to do?” Such interfaces
range from TurboTax's high-level decision tree (one screen of which is shown in Figure 2-2)
to long menus of actions to be performed on an edited document or selected object.

What's nice about these is that they're often described in plain English. People can take them
at face value. When yvou understand the application's domain well enough to define the cor-
rect set of tasks, the interface you design becomes quite usable, even to first-time users.

The hard part is dealing with the proliferation of actions that might be available to the user.
Too many actions, more so than too many objects, can make it very hard for users to figure

out what to do.

ORGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

44/73

Welcome to TurboTax for the Web ‘

step. Remember, you can con
finish at.any time and you don't pay until

tart a

@S

new 2003

you're ready to file

tax return

rt your 2003 tax return

‘@ Continue my 2003 tax return

Click here to sign

K In and continde a |
2003 tax return that you've already started

A friendly task-based organization at httpi/turbotax.com, described

in terms of verbs—"Start" and “Continue"—and supplemented by helpful explanations

Desktop applications have menu bars and toolbars available for displayving large numbers of
actions at once; most users understand these familiar conventions, at least superficially. Ap-
plications that use the One-Window Drilldown pattern can present whole-page menus,
provided they're not too leng. And the Canvas Plus Palette pattern talks about one very
typical way to organize creational actions for use in many kinds of visual builders. In fact, all

THE

BASICS

IMNFORNMA

PN

ARCHITEL

of Chapter 5 is devoted to various ways of placing, sort-
ing, and organizing actions on an interface.

But the designers of small device interfaces, such as cell
phones and PDAs, have interesting constraints. All they
can easily do is present single-click choices of a few
functions: three at a time if they're lucky, but usually
only one or two. For them, it's critical to prioritize which
actions are the most frequently chosen at any given
point in the interaction, so they can be assigned to those
one or two “softkeys” or buttons (see Figure 2-3). That
careful prioritization is good discipline, even far web
and desktop applications.

This cell phone contains a linear list of entries in a phone
boolk. At the bottom of the screen, you see a pajr of softkeys—changeable
labels for the hardware buttons underneath them—labeled "Exit" and "View.'
The lefthand butten is almost always Exit for all applications {users thus can
become habituated to that button). However, the righthand button changes
accarding to what you're doing—it's always the most common action,

All ather pessible actions are hidden inside a menu, reachable via the middle
softkey with the T-shaped icon on it. This division of commeon versus nat-so-
cammen |s an example of Extras On Demand, & pattern in this chapter. The
designers had to make a difficult cholce about which action was most
impertant, since showing all of thern at once wasn't an option.

TITRE: DINVIDING S

| %
T}

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

26

Web sites and online references divide up their content by subject category all the time.
They have large amounts of stuff for people to browse through, and it often makes the most
sense to organize it by subject, or by a similar categorization. But the success of a category-
based organization, like that of tasks, depends on how well you've anticipated what users
are looking for when they first see your interface. Again, you need to understand the appli-
cation's domain well enough to match the mental models that vour users already have.

Most applications aren't organized this way. Subject categories are better for sorting out
nouns than verbs, and action-oriented software usually isn't a good fit for it. That said, help
systems—which should be an integral part of an application’s design—often do use it, and if
an application really does combine knowledge lookup with actions (like medical applica-
tions or mapping software), this could come in handy.

Figure 2-4 shows a popular example. The {Tunes Music Store organizes its thousands of
songs by album, artist, and then genre; that's how its users browse the catalog when they're
not using the search facility. What if it were organized by some other means, like the musi-
cians' hair length at the time of the 2004 Grammy Awards? That organization doesn't match
most people’s mental models of the music universe (hopefully). No one could find anything
they were looking for,

AC Reed
APE

Aerasmith
Al Copley & The Fabulous Thund. .
| Children's Music Al Kooper
| Classical Alan Lamax
| Comedy a Alan Price
| Country » Albert Calling
P‘; = -
| song Name Time Artist

The (Tunes Music Store categorizes songs by album, artist, and genre. iTunes
itself adds playlists as a category. This organizational model, combined with the familiar
media-player idiom, really is the heart of the iTunes application.

In any case, organization by subject category might be useful to your application. Related
types of organizations include alphabetical, chronological, geographical, and even audience
type (like frequent users versus first-time users). See the book Information Architecture for
the World Wide Web (O'Reilly) for more information.

ORGANTZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
46/73

Operating systems, palmtops, and cell phones all provide access to a range of tools, or sub-
applications, used within their physical frameworks. Some applications, such as Microsoft
Money, work that way too, and some web sites offer self-contained web applications such
as wizards or games.

Once again, this works best when users have a clear, predictable expectation of what the tools
should be. Calendars and phone lists are pretty recognizable. So are check-balancing pro-
grams and investment interfaces, as one might find in financial applications like MS Money. If
your web site offers some novel and strangely named web apps, and they are mixed in with
subject categories, users generally are not going to “get it” (unless they're very motivated).

For some reason, a tool-based organizational model fails particularly badly when the names
of tools mix with actions, tasks, or objects. Mixing them tends to break people's expecta-
tions of what those items do—whether presented as menu choices, list items, buttons, or
links—especially for new users who don't know what the names of the tools are yet, Users
vou observe often do not articulate this confusion well, so beware. You should watch them
for subtle signs of confusion, but don't ask them about it directly.

On the other hand, if the user's goal isn't to get something important done, but rather to ex-
plore and play, then this strategy might work. Interesting names might attract attention and
cause people to click on them just to see what they are. (See the Intriguing Branches pattern
in this chapter.) But in this case, predictability
isn't necessarily a huge benefit. In most soft-
ware, predictability is quite important.

How can you organize the presentation of a
list of tools? Linear organizations are com-
mon, since there usually aren't many of them
in the first place. PalmOS and many other
small devices use a arid of them (see Figure
2-5), which essentially is a linear list. Usually
they're sorted alphabetically, for ease of
lookup, or by expected frequency of use.
When there are a lot of tools—and users
might add lots more—then you might group
them by category, like the Windows start bar
does. Some systems let the users place tools
wherever they want

In the next chapter, on navigation, there's a
pattern called Hub and Spoke. [t's often used
to structure an application around a tool-
based organizational model.

The PaimOs applications screen is a

simple lingar list of tools.

IHE BASLCS OF NFORMATION ARCHITECTIR] DIVIDING STUERE 151 F

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

Once you've come up with the beginnings of a design, you have to translate it into a physical
structure of windows, pages, and controls. That's one of the first aspects of an application
that people perceive, especially on the desktop, which can host all the types of window ar-
rangements described here.

I've heard this debate many times before: should an application use multiple windows, a
single window with several tiled panes, or one window whose content "swaps out” like a
web page? Should it use some combination thereof? See Figure 2-6.

You may already know by now which to use—the technelogy you're using often will set your
course. Handhelds, cell phones, and most other consumer electronics simply don't give you
the option for multiple windows or multiple panes. Even if you caould, it's a bad idea, simply
because users will find it too hard to navigate without a mouse.

Desktop software and large-screen web applications give you more choices. There aren't
any hard-and-fast rules for determining what's best for any given design, but the sections
that follow provide some guidelines. Before you decide, analyze the kinds of tasks your us-
ers will perform—especially whether they need to work in two or more Ul areas at the same
time. Do they need to refer to panel A while editing something in panel B? Do they need to
compare A and B side-by-side? Do they need to keep panel A in view at all times to monitor
something? Let your understanding of users' tasks drive your decisjons.

Mulitple windows - Tiled panes

One-window paging

Three different physical structures

Multiple windows sometimes are the right choice, but not often. They work best in sophisti-
cated applications when users want to customize the layout of their screen. Infrequent us-
ers, and sometimes frequent users too, may find multiple windows irritating or confusing.

MRGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

48/73

Sometimes users simply lose them if there are too many of them onscreen at once. On the
other hand, if users really need to see two or more windows "in parallel,” you need either this
or the tiled-pane model.

Simple web applications work best with a single-window paging model, which can show
one page at a time. It's how the Web has worked from Day One, after all, and people are very
familiar with that model. Also, because it conserves space so well—there's nothing else on-
screen to compete with the viewed content—it's the best choice for small handhelds and
cell phones. (You couldn't fit tiled or multiple windows, anyhow.) See the One-Window Drill-
down pattern for more; it shows how to fit a hierarchical list-driven or task-centered inter-
face into a one-window model. |

Many applications and web applications use tiled panes on one window. It's great for users
who want to see a lot at once while expending little effort on window management. Count-
less windows and dialog boxes are designed with a two-pane structure, and three is becom-
ing more common, thanks te the prevalence of Outlook and similar applications. People in-
tuitively grasp the idea that you “click in one pane to see something in the other.”

Tiled panes can take up a lot of screen space, however. |I've sometimes had to switch to a
multiple window approach when the number of panes got too high, and users just couldn’t
fit enough of them in the window at once.

The first pattern in this chapter, Two-Panel Selector, describes one situation that depends
upoen tiled panes for its effectiveness. You can structure Canvas Plus Palette with them, too.
Some web sites arrange small modules of interactive content onto otherwise ordinary pag-
es; individually, these modules might behave like single-pane windows, but on the page,
they're tiled,

The tiled and multiple-windows approaches together constitute the "open floor plan” idea

mentioned in Chapter 1, in the discussion of focused versus apen interfaces. Layouts that

use tiled or multiple windows provide access to several things at once, and users take re-

sponsibility for focusing their attention on the various panels or windows at the right times.

Sometimes technology prevents you from using tiled or multiple windows; at other times |
you ought to choose not to indulge in them, but instead use a single window to lead the user

through the interface along carefully predesigned paths.

So it’s all about tradeoffs. Of course, this is always true. In the end, what matters is whether

or not your users—navices, intermediates, and experts—can use what you build and enjoy it. |
Play with the design. Draw pictures and build prototypes. Try them out on yourself, your

colleagues, and, most importantly, the users themselves.

PHYSICAL STRUCTLURE 29

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
49/73

THE PATTERNS

This chapter’s patterns cover both of the approaches to application design just discussed. Some of them
mix content structure with physical structure. They illustrate combinations that are known to work ex-
ceedingly well, such as the first four patterns:

13 Two-Panel Selector

14 canvas Plus Palette

15 One-Window Drilldown

16 Aiternative Views

The next few patterns don't go much into physical presentation, but instead deal with content in the ab-
stract. Wizard talks about “linearizing” a path through a task; it can be implemented as any number of
physical presentations. Extras on Demand and Intriguing Branches describe additional ways to divide up
content.

17 wizard

18 Extras on Demand

19 Intriguing Branches

Many patterns, here and elsewhere in the book, contribute in varying degrees to the learnability of an
interface. Multi-Level Help sets out ways to integrate help directly into the application, thus supporting
learnability for a broad number of users and situations.

20 Multi-Level Help

A0 ORGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

50/73

13 two-panel selector

ece Bulk Mall (2 =
| 35messages

* fram Subject B :
PRI T LY I e 1st IR MIERUODTIY JUULTIET WTED J1iE WHE v =
MIT Alumint Association MIT Alumni eNews July Tech Connection Jul 21, 2004 209 PM
Climb@AlpineAscents.com Alpine Ascents Newsletter and Party in NYC Jul 21, 2004 BI1LPM
AAA Southern New Engla, Test Drive AdAmaps.com Today Aug 2, 2004 908 AM

Aug 11, 2004 5.14 PM

News You Can Use Fram Tiva, Velume 54

Tile = Q4Prius FAQ htm
Apple Drcler Acknawledgement-Orders 7011078336
P i for order # 7011078336
Habirat August Update

Privs-2C Maderator

Apple Emall Processor
Apple Emall Pr
Volunteering at Habirar f

From: Prius-206 Moderator <Prius-2G-ownerilyahoogroups coms
Date: Thu Aug 18, 2004 12:36:55 PM US/Eastem

To: (tichwall

Subject: Weicome 1o Prius-20G

Hello,

to rview Iis message

NOTE: To avoid |ssues with spammers, your first message 1o the list will be

Welcome to the prius-2G group at Yahoo! Groups, a free. easy-io-use emall group service. Please take a moment

Aug 19, 2004
Aug 23, 2004
Aug 24, 2004
Aug 25, 2004

1237 PM
525 PM
12:58 AM
4:42 PM

| Faind

polluling the list.

do |1, inm the quoted lext to the key point you are replying to.

To learn more aboul the prius-2G group, please visit
M Agreunsynen comquuRpius-2G

Mac Mail

[whae

Put two side-by-side panels on the interface. In
the first, show a set of items that the user can select
at will; in the other, show the content of the select-
ed item.

| _use when | -
You're presenting a list of objects, categories, or
even actions. Messages in a mailbox, sections of a
web site, songs or images in a library, database re-
cords, files—all are good candidates. Each item
has interesting content associated with it, such as
the text of an email message or details about a
file's size or date. You want the user to see the
overall structure of the list, but you also want the
user to walk through the items at his own pace, in
an order of his choosing.

Physically, the display you work with Is large enough
to show two separate panels at once. Very small
cell phone displays cannot cope with this pattern,
but a screen such as the Blackberry's can.

approved, you will be fres to post directly in the tuture. This will hopelull stop the “drive-by spammers” fram

PLEASE TRIM YOUR REPLIES - it is bad form la quale a pages of lext lor & cougle ol nes of raply. Please donl

Once that ge is

el

The Two-Panel| Selector is a learned convention,
but an extremely common and powerful one. Peo-
ple quickly learn that they're supposed to select
an item in one panel to see its contents in the oth-
er. They might learn it from their email clients, from
Windows Explorer, or from web sites; whatever the
case, they apply the concept to other applications
that look similar.

When both panels are visible side-by-side, users
can quickly shift their attention back and forth,
looking now at the overall structure of the list
("How many more unread email messages do |
have?"), and now at an object's details ("What
does this email say?"). This tight integration has
several advantages over other physical structures,
such as two separate windows or One-Window
Drilldown:

* |t reduces physical effort. The user's eyes
don't have to travel a long distance be-
tween the panels, and he can change the

Wy PANEL SELEGTOR

3l

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
51/73

selection with a single mouse click or key
press, rather than first navigating between
windows or screens (which can take an
extra mouse click).

« It reduces visual cognitive load. When a
window pops to the top, or when a page's
contents are completely changed (as
happens with One-Window Drilldown), the
user suddenly has to pay more attention to
what he's how looking at; when the window
stays mostly stable, as in a Two-Panel
Selector, the user can focus on the smaller
area that did change.

* |t reduces the user's memory burden. Think
about the email example again: when the
user looks at just the text of an email
message, there's nothing onscreen to
remind him where that message is in the
context of his inbox. If he wants to know, he
has to remember or navigate back to the
list. But if the list is already onscreen, he
merely has to look, not remember. The |ist
thus serves as a "You are here" signpost
(see Chapter 3 for an explanation of
signposts),

how

Place the selectable list on the top or left panel,
and the details panel below it or to its right. This
takes advantage of the visual flow that most users
who read left-to-right languages expect. (Try re-
versing it for right-to-left language speakers.)

When the user selects an item, immediately show
its contents or details in the second panel. Selec-
tion should be done with a single click. But while
you're at it, give the user a way to change selection
from the keyboard, particularly with the arrow
keys—this reduces both the physical effort and the
time required for browsing, and contributes to
keyboard-only usability (see Keyboard Only, in
Chapter 1).

Make the selected item visually obvious. Most GUI
toolkits have a particular way of showing selec-
tion, e.g., reversing the foreground and background
of the selected list item. If that doesn't look good,
or if you're not using a GUI toolkit with this feature,
try to make the selected item a different color and
brightness than the unselected ones—that helps it
stand out.

What should the selectable list |ook like? It de-
pends—on the inherent structure of the content, or
perhaps on the task to be done. For instance, most
filesystem viewers show the directory hierarchy,
since that's how filesystems are structured. Anima-
tion and video-editing software use interactive
timelines. A GUI builder simply may use the layout
canvas itself; selected objects on it then show their
properties in a Property Sheet (Chapter 4) next to
the canvas.

Consider using one of the models described in
the "List of objects” section of this chapter's intro-
duction:

= Linear, usually sorted

= 2D tables, also sorted, which often let the
user sart via column headers or filter
according to various criteria

= A hierarchy that groups items into catego-
ries (and possibly subcategories)

« A hierarchy that reveals relationships:
parent/child, containers, etc.

= Spatial organizations, such as maps, charts,
or desktop-like areas in which users can
place things where they want

ORGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

52/73

You also can use information-presentation pat-
terns such as Sortable Table and Tree-Table (both
found in Chapter 6) in Two-Panel Selectors, along
with simpler components such as lists and trees.
Card Stack (Chapter 4) closely relates to Two-
Panel Selector; so does Overview Plus Detail
(Chapter 6),

When the select-and-show concept extends
through multiple panels, to facilitate navigation
through a hierarchical information architecture, you
get the Cascading Lists pattern (also Chapter 6).

ﬁm--d-fi,-mh Foiders |
Ao | 1 Cisckd 4. bt S |
[Foldoes % [Hamn_- [s | Type | Dot prckbind I
= _J."n&;"u'l';, ,;j‘m = :l s Fhes Eolder | 222002 119 EM
¥ 05 Dosnlodds] Folder [Ef22{2002 7112 M
3| 21 DRIVERS L el Folder LfErfzond 717 PM
L0 1386] Foldar THER2002 7119 P4
3 o T QMm-rrm.rm THEED HTML Document BY30/2002 11113 A4
L8 o Bl abciasses-rframe, il 208 HTML Document; BA0/2002 11413 AM
|] constant-valaes b 200D HTML Document: B/30/2002 11:40 AM
Sabw] depracated-tut bini 1Z9KE HTML Document: B{30/Z002 11:43 Al
.43t & bt himi IBFS 7ML Document B/30/Z002 11:18 Ab
= 2y docs e]ndezh'ml 1B HTML Document B{30/2002 11:13 AM
© @] e ame i 10KE HIML Document 8/30/Z002 11113 AW
= i gk lavervmv-summary. biml 43VE HIML Document Bi30/2002 11113 AM
) gy ﬁuusm%u bk 624K HIML Docament B{I0T002 11113 AM
) reates Hpackagetat I e Af30/Z002 11133 AM
£ 4¢3 tooklocs Elpackages himl LFE HIML Bocanent B/30/7002 11313 AM
) inchade Q]qmnimd-'m hemd TIIKD WML Documant BI3G/I002 L1113 AM
Hare dityleshont oo B CastadngSyls 5., 300002 1103 AM
Dk
% L0 v
o e A X >
3 My Shared Foider = . W, P
The Windows Explorer |s probably one of the most familiar uses of Nortel's Mobile Time Entry
Two-Panel Selector. Its content is arganized hierarchically, using a selectable tree; in application is a rare example of Two-Panel Selector
contrast, the Mac Mail example (Figure 2-7) uses a selectable table, which has a use in'a handheld device. The Blackberry screen
strictly linear organization, In both Uls, the dark backgrounds indicate the selected offers just enough space for two usefully sized
Item. panes; when you select an item in the top pane. its
contents appear on the bottom pane. (Both are
scrollable with the Blackberry's scroll wheel, barely
yisible on the right side.)
In practice, this interface was quite effective. The
lawyers who used this time-billing application
could easily find items that they wanted—the two
views together give enough context, but also
enough datails, to Identify items quickly and
accurately,
WAL PANEL SELECTOR

33

MemoryWeb Ex.

2018

Samsung v. MemoryWeb — [PR2022-00221

53/73

14 canvas plus palette

Doo: STIXLDK

Photoshop

Place an iconic palette next to a blank canvas; the

user clicks on the palette buttons to create objects
on the canvas.

You're designing any kind of graphical editor. A
typical use case invelves creating new objects and
arranging them on some virtual space,

This pair of panels—a palette with which to create
things, and a canvas on which to put them—is so
common that almost every user of desktop soft-
ware has seen it. It's a natural mapping from famil-
iar physical objects to the virtual onscreen world.
And the palette takes advantage of visual recogni-
tion: the most common icons (paintbrush, hand,
magnifying glass, etc.) are reused over and ovar
again in different applications, with the same
meaning each time.

34

ﬂ: Ph h File Edit Image Layer Select Filter View Window Help

-;q | Fsae: | Hormal B Dpsoity: [E3% 18] | Fiow: 70X B ;a |

Present a large, empty area to the user as a canvas.
It might be in its own window, as in Photoshop (in
Figure 2-10), in a tiled panel, or embedded in a
single page with other tools. It works no matter
what physical structure you've chosen, as long as
you can see the canvas side-by-side with the pal-
ette.

The palette itself should be a grid of iconic buttons
or button-like areas. They can have text in them if
the icons are too cryptic; some GUI-builder pal-
ettes list the names of GU| components alongside
their icons. So does Visio, with its palettes of com-
plex visual constructs tailored for specific domains.
But the presence of icons appears necessary for
users to recognize the palette for what it is.

Place the palette to the left or top of the canvas.
(It's likely that speakers of right-to-left languages
might prefer it to the right of the canvas, not the
left; usability-test it if this is an issue for you.) It can
be divided into subgroups, and you may want to
use a Card Stack, such as tabs, to present those
subgroups.

ORGANIZING THE CONTENXT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

54/73

Most palette buttons should create the pictured
object on the canvas. But some builders have
successfully integrated other things, like zoom
mode and lassoing, into the palette. This started
early; MacPaint mixed its modes into its palette
(see Figure 2-12), and people have learned what
the arrow, hand, and other icons do. But be
careful. | recommend not mixing other actions
into a creational palette—it can be very confus-
ing for users.

Mr. /’)e?_ws)c head

ADD TO CANVAS

tacm. Choows 3 catagnry, than drag
an abject anln the camvae

eyes

NOSes ‘.. y \

lips

oars 1 1 ‘

S 3 I

hair

Abstracts

signature

The gestures used to create items on a palette
vary from one application to another. Some use
drag-and-drop only; some use a single click on
the palette and single click on the canvas; and
some use One-off Modes (see Chapter 8),
Spring-Loaded Modes, and other carefully de-
signed gestures. | have always found that
usability testing in this area is particularly im-
portant, since users' expectations vary greatly.

You don't need all the trappings
of a document-centered desktop application to
make Canvas Plus Palette work, This web
= application, Mr. Picassohead, is a whimsical twist
on this famillar pattern, The palette itself is
merely a grid of icons, and it doesn't look like a
set of buttons at all; the palette is subdivided and
"tabbed" by category (a use of Two-Pana|
Selector), When you click on the words "eyes,"”
“noses,” or “lips,” the palette changes to show
those objects. The canvas itself |s neutral, bt not
white. Its purpose is clear ta the first-time user
simply because it's a big open space, framed by a
border. See httpi/mroicasschead.com.

e ek e

& # o f’

[5] SAVE | EMAIL THIS PAINTING [S]START OVER

Diasaingad by Rudir Finn Intvractive. HOME | GALLERY | WELF

% File Edit Goodies Font FoniSize Style

Taking a trip back in time, let’s look at one
of the Interfaces that popularized this pattern: MacPaint,

The pattern hasn't changed much since 1984 —the basic

elerments are all there, in the same spatial configuration

used by contemporary software such as Mr. Picassohead

and Photoshop. Photoshop and other visual builders, in

fact, still use many of MacPaint's icons over 20 years later,

The screenshot Is from hitp/macsi2com.

CANVAS PLUS PALETTE

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
55/73

15 one-window drilldown

Semings

Shuffle Songs
Backlight

Two iPod menus

Show each of the application’s pages within a sin-
gle window. As a user drills down through a menu
of options, or into an object's details, replace the
window contents completely with the new page

Your application consists of many pages or panels
of content for the user to navigate through. They
might be arranged linearly, in an arbitrary hyper-
linked network, or—most commonly—in a menu
hierarchy. Address books, calendars, web-based
email readers, and other familiar applications of-
ten use this pattern.

One or both of these constraints might apply to you:

* You are building for a device with tight
space restrictions, such as a handheld (see
Figure 2-13), a cell phone, or a TV. On these
miniature screens, Two-Panel Selector—and
tiled panes in general—are impractical
because there just isn't enough room to use
them well. Traversing from one panel to
another on a TV screen also is difficult,
since TVs have no mice.

A

Songs

Ganres
Composers
Audiobooks

« Even if you build for a desktop or laptop
screen, you may have a complexity limit.
Your users may not be habitual computer
users—having many application windows
open at once may confuse them, or they
may not deal well with complex screens or
fiddly input devices. Users of information
kiosks fall into this category, as do novice
PC users.

Keep it simple. When everything's on one screen
or window, the options at each stage are clear, and
users know they don't need to focus thejr atten-
tion anywhere else.

Besides, everyone these days knows how to use a
web browser, with its single window and simple
back/forward page model. People expect that
when they click on a link or button, the page they're
looking at will be replaced, and when they click
“Back,” they'll go back to where they were before.

ORGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

56/73

You could use multiple windows to show the dif-
ferent spaces that a user navigates through—a
click in a main window may bring up a second win-
dow, a click in that window brings up a third, etc.
But that can be confusing. Even sophisticated users
can easily lose track of where their windows are
(though they can see several windows side-by-side
and place them where they want).

One-Window Drilldown is an alternative to several of
the higher-density patterns and technigques dis-
cussed here. As pointed out earlier, Two-Panel
Selector may not fit, or it may make the screen lay-
out or interactions too complex for the typical user.
Tiled windows, Closable Panels, Movable Pieces, and
Cascading Lists (the |ast three are patterns in Chap-
ter 4) also have space and complexity issues. They
don't work on miniature screens, and they compli-
cate interfaces intended for novice computer users.

[how |
You are given one window to work with—a minia-
ture screen, a full-sized screen, a browser window,
or an application window that lives on the desktop
alongside other applications. Structure your con-
tent into panels that fit gracefully inte that win-
dow: not too large and not too small.

On these panels, design obvious "doors” into other
Ul spaces, such as underlined links, buttons, or

ONE-WINDOW DRILLIDOWN

clickable table rows. When the user clicks on one of
these, replace the current panel with the new one.

Thus the user “drills down" deeper into the content
of the application (see Figure 2-14),

How does the user go back? If you're designing for
a device with back/forward buttons, that's one solu-
tion. If not, create those buttons and put them in
one permanent place on the window—usually the
upper left, where browsers put them. You should
put "Done” or "Cancel” controls on panels where the
user completes a task or selection; these controls
give the user a sense of closure, of "being done.”

Remember that with no graphic depiction of the
application’s structure, nor of where they are in
that structure, a one-window application forces
the user to rely on a mental picture of how all these
spaces fit together. Simple linear or hierarchical
structures work best (see Figure 2-15). In usability
tests, make sure people can use the thing without
getting lost! Breadcrumbs and Sequence Maps
can help if they do; see Chapter 3, Navigation.

Implementations of Hub and Spoke often use One-
Window Drilldown, especially on the Web and
miniature screens. Again, see Chapter 3,

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

57/73

80

« =A@

System ?f!llﬂl!l:li o

a4 |

Shio Al Displays Sound - Network Startup Disk

Personal
m A £
Desktap Cnesal
IIHWM:'!

’.';\'» a g

4L &

Miternational Loagin ftems My Account Screen EFects ‘

a

o Y -
COs & DVOs ColorSyne Diiplays Energy Kevboard Mouse Sound
Saver
Internet & Network
Inlg:r.nrl Network QuickTirme Sharing
System
i - P
L 9 = @ 4 @
ALcounts Classic Daate a‘ T:m: Saltware Speech Startup Dk Universal
Update ACcess
P ——

80 Dack (e
| Shinw All Duuhn Saund Network Startup Disk
Dock Slze —9—-
Sraa] Large
__ Magnification
Min Mas
Paosition on screen : e =
Left Battam Right
using: Seale Effect @
@ Animate opening applications
Automatically hide and show the Dotk
—

The Mac OS5 X System Breferences utllity keeps everything within ene window. The main panel is on the left; & drilldown

panel (for the Dock) is shown on the right. There's only one level of drilldown panels. The user goes back to the main panel via the “Show All"

button n the upper |eft.

Mac screens often are large, and Mac OS X users are varied in their levels of experience. The System Preferences designers may have chosen a
One-Windew Drilldown approach not because of small screens, but because of the sheer number and diversity of subpanels. That main panel

takes up a |ot of space, and it probably didn't work well in a tiled Two-Panel Selector window

8 Aug 15 Prius-20 Mederator
9 4ug 19 Priuz-26 Moderstor
Aug 23 apple Emal | Processor
23 #pple Emal | Frocessor

&

E
i1

5 trovelfepedio.con
7 Arlington List adwin Da
3 DfptoHesbershiplefoto.c
4 Tival
- 24 Oct 20 Views Frow The Top - Foo
25 fct 25 Bruce Tognazzini
26 Ock 25 Yoluntaering ot Hebitat
Z7 Oct 2 TiVo Security Temm
26 Det 31 Of otoMenbershipdofoto.c
+ 29 Moy 4 MIT Sthool of Englnesri
3B Nov 4 Tival
31 Nov 14 Ofotodenbarship@ofoto.c
32 Nov 17 arkut
33 Hov 27 Dfum-bn:hw@ufotu 3

]
1
42 aug 25 valuntesring of Habitat
13 Sep 1 Tival
+ 14 Sap 9 MIT School of Engingeri
15 Sep 22 TiVol
+ 16 S=p 22 NIT klumni Assooiobion
17 Sep 29 Customer Support - Begi
* 18 Dt 1 Palm 05 Developer Progr
19 0et 2 The HathWorks
=
2l

bR

35 Dt 1 FEreun s&q!stur con

OTHER CDS

Help FldrList Previisg
[Viewiea] Nexthog

(2188} Velcome to Prius-26

(78K} File - ®84Prius Fl.hts

(3785} Apple Order Acknowlsdgensrt-Orderd TOLIATE33E
(4416 Shigment notification for order # TRILBTRIS
(57K Habltat Mt Upsate

(49K) Mews You Con Use From Tivo, Volues 55

(28K Engingering Our World — e-newsletter, Wol. 1,

(526) Meus You Can Use From Tibe, Volune 55

12K) HIT Alumni ehews: Jeptesber 22 Tech Convection
(4311) Officinl Moticz: Information Updote Req'd For
(2555 Thank you for your Palw 05 Developer Profile
(BBE) The MATLAB Digest, 2084, Nutber 5

(44¢) Expedin travel confiraotion - Pittstargh, PA -
(5724} [ariirgton] Arlington list adeinistrotion blég
(150) Your OfotoFocus: Hallovsen i@ here with orints
c’m; News You Ton Lise Fron Tivo, Volue 57
{1119} Hagpy Birthdoy from Views From The Top - Forues
(7916} {onktoglist] New AskTog Movesber Coluwn: The Pr
(62K) Hobitot Monthiy Volunteer Updste - Voluntesr Co
{2574) Update ta TiVo Deskicp

(13K Last Chance for Ofoto Prints os Lov os 48,47
{17¢) Engineering Our World -- s-pewsistter Vol. 1, N
(84K} News You Con Use From Tive, Voluse 58
(14K Shop Ofota by 1117 £ save 5K on hollaay gitt
{2885 orhut wedlo - whot's up ot orkut.coe?
K Lust chmm ta save 15% nn huuuuv gifes ot Ofo

(23K Ibynmi lelcue for vmr !a ld::mssea

PrevFooe Delets Reply
NestPoge Urrde|gte Forwvard

[PRE 4B EsSwE TR foil>Bulk il Heg ot S X]

Darte; Thu, 2 Dec 2984 85:i6149 -BSED
Fron: The Mathiforks <l gestimativorks con
Ter Jtideelidalun.mit . edu

Sybject: Tre MATLAS Digest, 2084, Munber &

[The following tast is in the "windows-1262" charocter ael. |
[Your disploy |z set for the "lso-BESG-1" charocter set.]
[Sone characters oy be ditployed incorrestly.]

News far the HATLAET ond Steuline? uzer community.
—————— TN TR TS5 e
{4} 2004 Annwal MATLAB Ussr Survey

Technionl Articies

{2} Madeling Survival Dota With the Stotistics Toolbow

{3] Mew Features |n MATLAE 7 for Hondling Large Ooto Sets

{4} Lagacy Code Fuection Integrotion Using Reat-Tine Workshop Embedded Coder

User Resturees
{5} Techiical Selution: Mriting o Levai-2 A-File S-function in Stmulink 6.8
(6) MATLAB Centrals Autematicolly Creote PoverPoint Documents From MATLAE ond Staulirk

Troining om Events
{?) Wezinare;
Imogs Processing Using MATLAR
Distributed Conputing uith AATLAS & Simulink
Applicotion Deployeent Using MATLAR
(U7 hovedddes hay en MATLAE 7 (sn Espatol)

Help Regindex Prevhag

PrevPoge Delate] Reply

OTHER CMOS Vievattoh Nexthsg NextPoge Unge fate Forward

The Pine email client is-a lishtweight, text-only user interface driven entirely from the keyboard. The greater-than and less-

than keys navigate the application's hierarchy: the main screen, the list of mallboxes, the list of messages within the selected mailbox (left), the

text of the selected message (right), and the attachments to the message.

Pine thus contains a deep hierarchy of Ul "spaces,” but it works well within one window. Compare this screenshot to that of Mac Mail in the
Two-Panel Selector pattern—both are good interfaces, but they have very different designs. We might guess that twe stringent reguirements
drove Pine's One-Window Drilldewn design: to run in a text-based terminal window, and to be operated with enly the keyboard

38

DRGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

58/73

16 alternative views

7 Bt s 1R TAATECE AR T

Order Bostan Blobe home
delivery a1 50% ofi.
e Bawen b o

faws Tmrlie Gy i Pessh Beatimms

Vogere Feimmie Someos WG Seem i ORbe

Buffale roams into center’s d
Fobruwy 1. B3

BATID T, D = A Sl vl sucapt v 40) ot 2 3 M o
Ehvnire PUra bt Corioe whass § asmid o cactin o biny #lasing 470

130 it amgmd s 4 it b e =
e Miawr, iy rous Hiem

T e gt 0 b el
wlﬂ“ T el Wy 0 dsha

Tia e saes s Binch (4 Clwa
Boftues iy

Mt J Hows | 0401 4 o Bllah) s : R o
e

i iy

Buffalo roams into center’s dressing room
Falirunry 0. 2008

HAPIG GTY. A0 Garvme s
ap

cap
oy o s, shaog b

¢ T T a8 bt e e Blch o ek S b i Sl b, o A o i e i
PRy Y ST BDOTR e gt B M P L Earies Gerers Snage

“te voi bt o st [)

1M o 114 s [Coe St
inis Turing 4 1t oo 4y, OSCATINWY Lo T i Vb A v A o g, T

vy

i il o

o cmw
L V-

v ey R 4y sl Tomc we ISR SATAL I *

T~ Ty e y—

A beston.com article in standard format and in printer-friendly format

Let the user choose among alternative views that
are structurally different, not just cosmettcaily dif-
ferent, from the default view.

use when

You're building a web page, an editor, a map appli-
cation, or anything that displays formatted content
of any kind. People will use it under many condi-
tions. Maybe you already provide some customiz-
ability—font sizes, languages, sort order, zoom level,
etc.—but those lightweight changes don't go far
enough to accommaodate all the things people typi-
cally do with it.

why

Try as you might, you can't always accommodate
all possible usage scenarios in a single design. For
instance, printing is typically problematic for ap-
plications because the information display reqguire-
ments differ—navigation and interactive gizmos

ALTERNATIVE VIEWS

should be removed, for instance, and the remain-
ing content reformatted to fit the printer paper.
See the news article example above (Figure
2-16) for what that can look like.

Beyond different usage scenarios, you should use
Alternative Views for several other reasons:

« Different technologies at the user's end—
one person might view the application on a
desktop, but another person would view it
on a PDA, and a third would use a screen
reader such as JAWS.

» Users' preferences with regard to speed,
visual style, and other factors.

* A need to temporarily view something
differently, in order to gain insight.

[haw]

Choose a few usage scenarios that the applica-
tion's (or page's) normal mode of operation can-
not easily serve. Design specialized views for them,
and present those views as alternatives within the
same window or screen.

39

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

59/73

In these alternative views, some information might
be added, and some might be taken away, but the
primary content should remain more or less the
same. If you need to strip down the interface—for
use by a printer or screen reader, for instance—
then consider removing secondary content, shrink-
ing or eliminating images, and cutting out all navi-
gation but the most basic.

Stuffing content inte a PDA or cell phone screen is
trickier; it could force you to redesign the naviga-
tion itself. Rather than showing a lot of content on
one screen or page, as you could with a desktop
computer ar TV, you might split it up into multiple
pages, each of which fits gracefully onto a smaller
screen.

Put a "switch” for the mode somewhere on the main
interface. It doesn't have to be prominent; Power-
point and Word (as you'll see in Figure 2-19) put
their mode buttons in the lower-left corner, which is
an easily overlooked spot on any interface. Most

Block Party S04 u
=ty sk
W MG 2737006 1075104, 909 Pt B24 KB
T IMC_2TIEIPG 10/5/04, .08 P 56 KB
M MC_2739.JP0 10/5704, 9.08 PW 672 KH
W NL_2740,JPG 10/5/04, 909 PM 528 KB
MG 2L 10/5/04, 310 PM BLE ki
W MG 1742)P 10/5704, 910 P 496 Kik
BB MG _2743 PG 10/5/04, 910 PM 596 KB
W MG, 2744 PG 10/ 5/04, 910 PM 500 K
W MC_2745 PG 1075104, 911 BM B2 M8
W IMGL2T46 PG A/ 5704, S 11 FM S4k K
MG 2747 PG 10/5004, 311 PM 504 K8
0 IMG. 2748 PG 10/5/04, 812 M 4ZB KB
W IMG_ZT49,5PG 10/5/04. 812 M 632 ME
MG 2750, PD T0/5/04, 912 M saius |
| W MGaTS 1R 10/5/04; 9:13 PM 475 K8

W MG_2752JPT
. MG 2753 JP0

10/5704, 213 PR
A0/5504, 313 PM

uj Pattaing * MG 2755JP0 1 W, 514 PN
2 | R MG 2TIE PG W/5704, .14 PM
e (MC_2757.PC A0/SI04, 215 P
I NG.2TSE PG 10/5704, 515 PM 434 KB
B IMC_2759 PG 10/5/04. 915 PM 356 KB
B MG_2 780 PG 10/5/04. 915 M J6AKE L
.G _ITRT PG 10/5704, 915 M 444 %R
M IMG_ 2762 PG 1075704, 916 PM 488 KB .
W IMGC 2764 PG 1075 /04, 8 16 PM 436 K *
—— e

applications represent the alternative views with
iconic buttons. Make sure it's easy to switch back to
the default view, too. As the user switches back and
forth, preserve all of the application's current
state—selections, the user’s location in the docu-
ment, uncommitted changes, Undo/Redo opera-
tions, etc. Losing them will surprise the user.

Applications that “remember"” their users often re-
tain the user's alternative-view choice from one
use to the next. In other words, if a user decides to
switch to an alternative view, the application will
just use that view by default next time. Web sites
can do this with cookies; desktop applications can
keep track of preferences per user; an app on a
digital device like a cell phone can simply remem-
ber what view it used the last time it was invoked.

Web pages may have the option of implementing
Alternative Views as alternative CSS pages. This is
how some sites cope with print-suitable views, for
example.

Blogk Party 2004 :
(o] s %

o i ®m
2 roivhymaia |
IME_ 2701 PG IMG_2702 JPG r
nmmn@
- =
x Applicanons
- IME_2703PG IMG_2704 /PG
r" Documsnts
A
I L1
.
6 Muske
x IMG27050PG MG 27067
| Pcures
3 L
|
\ MG, 2707 JPC IMG_2709.0PC
| MG, 271049 IMG_2711 490 =
e

Both the Windows Explorer and the Mac Einder perrmit several alternative views of the files in a filesystem. This example
shows two views: a sortable multicolumn list (see the Sortable Table pattern in Chapter 6) and a grid of icons.

Each view has pros and cons. The table is terrific for managing lots of information—the user can find things by serting on the columns, for
instarice. But the icons work better If she Is loaking for a particular image that she can recognize on sight. These views address different use
contexts, and a user might go back and forth among them at one sitting.

]

ORGANTZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

60/73

ror Mi { int -

File Fumiat PDFiAdobe Acrobat -

... With & spring-loaded mode. the user has 1o do something activa to
mode. essentiaily eliminating the chance that theyll forget what ...
classes csail mitedu's B3 Vectures/LB.pdl - Similar pages

wor ZustAnde
Flie Format. PDFiAdobe Acrobat - View a8 HTML
“ Zuslanr.l Spring-Loaded Mode™ mit einer physischen Feder gekoppe
des Z Spring-Loaded Mode" Fag
wwwsul't um Imz ac:atl.. Noresungen Mensch-Maschine-
20(PTF YOGZue Pt - Sl iy

PEs Gt Yew juet Fgme Jous Tohe Widaw |k

sysiem bEnsvOTE—(El [he SOMWSEE YOU OSRE MY OR00 1 FUPPON. JOMERE DA
wuppiirte thess buman bshanon do well s alpug ussrs achisvs thew goals

A means to an end

Everyone who upes e toal—sofiware o7 oliesmiae—han s 1ea200 f0 nae sl Fornatance
* Fundmg some fasl ox clypet

.
¢ Faformmg o thmsaction

o Potesllieg srmanitishg samething

* Crestisig sometlung

& Canwemeng wath ather pecgle

* Being andeniasieid

Ench of three dbstract goale can be supported by well knawn siicms, user Behavnory, anid
design palterns Wa've leamad, for example, haw to belp prople semich through vaat

m3wic]
P Nogrmial View Boe © 26 AT né Cel 3

Do S

‘mﬂMMwMTﬂmuﬁ Thoe 2 didhon

m_.g_mun ult !It-J
behaviors-—a oppossd Lo system behaviers—thal e nﬂn‘mymdmg—:w
need to suppon:. Saftwars that supports theas buaman beliwnors da well at

belping users achisvs their gaals

¢ A means Lo an end
Everyons who uses a tool—osoflwese or othersise—hes o peavon louse L Far

Instance

Ferfurming s wemattian

Cantosliag o mondensg semabing

Cpnadang somithing

Crinvaming with olliet padpls

Eiring entartained

Esxrh of (hese shotract goeld can be supported by well knwn idioms, e
behwvory, end Senimn patlerns. We've leemed, for etemgpile, how Lo help peaple
srarth thiough vt amounts of orline mformatian for spasfie facte We'ss
Teamed how 1 present taskes 5o that it s sery to walk thiroogh them W'
Iumﬁ; wiys 1o mpport the busding of detuments, ilustrations, snd code
o= €l

| Page 2 ouireview| b M 2e iné cdd

sAe e N s
CRC R

Engmhils GF

-okg

i il the ey Yol declgn ey peed n Egpen Sobeus
NG B Ieanam hebuion i seell oLhalpig wean st e goek

A means to an end

e o et il o teol—esmte o ebunee —hi o asmts e 1 P e
Todtug e 52 o v

Puirsing & frmation

Dutmig skt vl
Cinrg s mwserg

g Wil iskee e

PR IR

" Eegnus GF

Pogo 3 prreLmoitiiew| 6 M EE ne a3

Teomig

Google's search results can return not just ordinary HTML Web
pages, but PDF, Word, and Powerpoint documents as well. What If you don't have
Ward or Powerpoint on your client machine? That technology problem dictates the
use of an alternative view: the HTML "translation.” What if you really don't want to
download a large Powerpaint slideshow and just want to skim the HTML translation
ina hurry? That's a user preference,

. Of course, we have Word and Powerpoint
themselves. Both full-fledged WYSIWYG editors can
construct fairly complex documents—a Powerpoint
presentation has a sequence, a template, perhaps notes for
some slides, fancy transitions from one slide to anothar, and
even code to support interactivity. A user who's authoring
the slideshow may need to see all that. A user who's just
running the slideshow doesn't. Again, these are different use
contexts.

Ward's views Include the normal view, Intended for most
editing tasks; a "print layout” view, which shows how the
document might appear on printed pages; a "reading” mode
for uncluttered viewing; and an “outling” view, which shows
the structure of the document. Someone might use the
outline view te gain insight—if you loaded a |arge, unfamillar
document, for instance, you might switch to outline mode
just to see a "table of contents” overview of it. Bath
applications put the Alternative Views buttons in the lower
lefthand corner of the document's window.

Note that in these Word examples, the selected text remains
the same as the user switches from one view to another, The
position in the document also stays the same through most
transitions. However, different toolbars come and go, the
zaom level changes, and some kinds of content—notably
footnotes and annotations—are visible anly in the print
layout view.

ALTERNATIVE VIEWS

4l

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

61/73

17 wizard

[l What type of flight do you need?

%) © Roundtrip %) = one way

|3 Are your travel plans flexible?

711 have specific ravel dales

[E! Where and when do you want to travel?

|1 Wha is going on this trip?
Adults: (age 15 to 84) Samors: (age 65+¢) Chideen. (age 010 18)
)] o -] 5 5}

&P Multiple destinations

= My travel dates are flexible {popular US routies oy}

Mevingfom = e
~Select from the lisi- B
Grong o o B -
-Select from the list- +) [Dot woee iho ey yite kabisg for?
Daéparturo month. Trip langin.
2008 5] L- 10 nights 3

e e BTN T T

Flight Wizard from httpfexpediacom

Lead the user through the interface step by step,
doing tasks in a prescribed order.

usa whan

You are designing a Ul for a task that is long or
complicated, and that will be novel for the user—
it's not something that they do often or want much
fine-grained control over. You're reasonably cer-
tain that those of you who desian the Ul will know
more than the user does about how best to get the
task done.

Tasks that seem well-suited for this approach tend
to be either branched or very long and tedious—
they consist of a series of user-made decisions
that affect downstream choices.

The catch is that the user must be willing to sur-
render control over what happens when. In many
contexts, that works out fine, since making deci-
sions is an unwelcome burden for people doing
certain things: "Don’'t make me think, just tell me
what to do next.” Think about moving through an
unfamiliar airport—it's often easier to follow a se-
ries of signs than it is to figure out the airport’s

overall structure. You don't get to learn much
about haw the airport is designed, but you don't
care about that.

But in other contexts, it backfires. Expert users of-
ten find Wizards frustratingly rigid and limiting.
This is particularly true for software that supports
creative processes—writing, art, or coding. It's also
true for users who actually do want to learn the
software; wizards don't show users what their ac-
tioris really do, nor what application state is
changed as choices are made. That can be infuri-
ating to some people. Know your users welll

Divide and conguer. By splitting up the task into a
sequence of chunks, each of which the user can
deal with in a discrete “mental space,” you effec-
tively simplify the task. You have put together a
preplanned road map through the task, thus spar-
ing the user the effort of figuring out the task’s
structure—all they need to do is address each step
in turn, trusting that if they follow the instructions,
things will turn cut OK.

ORGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

62/73

[how [

Break up the operations constituting the task into
a series of chunks, or groups of operations. You
may need to present these groups in a strict se-
guence, or not; there is value in breaking up a task
into Steps 1, 2, 3, and 4 just for convenience.

A thematic breakdown for an online purchase may
include screens for product selection, payment in-
formation, a billing address, and a shipping ad-
dress. The presentation order doesn't much matter,
because later choices don't depend on earlier
choices. Putting related choices together just sim-
plifies things for peaple filling out those forms.

You may decide to split up the task at decision
points so that choices made by the user can
change the downstream steps dynamically. In a
software installation wizard, for example, the user
may choose to install optional packages that re-
quire yet more choices; if they choose not to do a
custom installation, those steps are skipped. Dy-
namic Uls are good at presenting branched tasks
such as this because the user never has to see
what is irrelevant to the choices she made.

In either case, the hard part of designing this kind
of Ul is striking a balance between the sizes of the
chunks and the number of them. It's silly to have a
two-step wizard, and a fifteen-step wizard is te-
dious. On the other hand, each chunk shouldn’t be
overwhelmingly large, or you've lost some benefits
of this pattern.

Wizards that present each step in a separate page,
navigated with Back and Next buttons, are the
most obvious and well-known implementation of
this pattern. They're not always the right choice,
though, because now each step is an isolated Ul
space that shows no context—the user can't see
what went before or what comes next. But an ad-
vantage of such wizards is that they can devote

an entire page to each step, including illustrations
and explanations.

If you do this, allow the user to move back and
forth at will through the task sequence. There's
nothing more frustrating than having to start a
task over just because the software won't let you
change your mind about a previous decision. Back
buttons are, of course, standard equipment on
separate-page wizards, use them, and make sure
the underlying software supports stepping back-
wards. Additionally, many Uls show a selectable
map or overview of all the steps, getting some of
the benefits of Two-Panel Selector. (In contrast to
that pattern, Wizard implies a prescribed order—
even if it's merely suggested—as opposed to com-
pletely random access.)

If you choose to keep all the steps on one page, you
could use one of several patterns from Chapter 4:

= Titled Sections, with prominent numbers in
the titles. This is most useful for tasks that
aren’'t heavily branched, since all steps can
be visible at once.

= Responsive Enabling, in which all the steps
are present on the page, but each remains
disabled until the user has finished the
previous step.

» Responsive Disclosure, in which you wait
to show a step on the Ul until the user
finishes the previous one. Personally, | think
this is the most elegant way to implement a
short wizard. It's dynamic, compact, and
easy to use.

Good Defaults (from Chapter 7) are useful ne matter
how you arrange the steps. If the user is willing to
turn over control of the process to you, then odds are
good he's also willing to let you pick reasonable de-
faults for choices he may not care much about, such
as the location of a software installation.

(The Design of Sites discusses this concept under
the pattern name “Process Funnel.” Their pattern
aims more at web sites, for tasks such as web
shopping, but the concepts generalize well,)

WIZARD

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
63/73

Your W-2 Information Other Income

|
? st Bait By Firgulds Intaves O LLE. Tre
b Bddayar 45 ae Mava & question’ Intteesat Paitt B gl Nk " 1
o= Emipuyes's . o
A lryealrel G T8 |
tame ——
[WITERA
[BE TR 2

et e » Mial {rmd ibeenl
finft P

3 o o e i
b = st b
Tan Wi « Wl Aokl e it ST NS Py
e itonrimin u &
4 - Ser Set. Tar WiH oo W3 13 ingpermt? {nnsten*
5 1 - Maihicarn Tan Wit fihat g ine codes * Libllad s
#0cd aimeni in b e e
Soc fiec. Tipa W - Wcaten T = | 5oy BT
U - Bvarce EIC 10 Deperdare Care » Py sy nes) |

oTax |s'a web application that presents several steps in a wizard-like
and the pages have "Back” and "Con

Turk

fashion. Each major step is on a different page,

ue” (or “Done") links at the ends of the pages, as traditional wizards do. (They're not visible on these
screenshots, but trust me, they're there.) A Sequence Map at the top shows where you are in the steps at all times. Good Defaults generally
sren't used here. That may be because sensitive information—personal financial data—is involved, but many users will find themselves

entering “0" for a lot of fields

TICKETS

Number
Number of Yout

Number of Children
Fer parsonalized o

placua ol
SELECT YOUR CLASS OF SERVICE
LODGING INFORMATION
ADD A MOTORCOACH RIM TOUR

The Expedia example showed a wizard structured with Titled Sections
(Chapter 4); the TurboTax example uses a paged model, replacing the cantents of the
browser window with each successive step. This example uses a Card Stack {(also Chapter

4) to fit all steps into a very limited space. When the user selects a date from this calendar

and clicks "Next Step,” panel 2 opens up. When that step is done, the user moves on to
Panel 3. The user can go back to previous steps anytime by clicking on the yellow titlebars

Also note the use of a Preview (Chapter 5) on the righthand pane of the window, entit/ed
"Your Itinerary.” This tracks the user's choices (no pun intended) and shows a summary of
those choices

his is convenient because only one wizard page is visible at a time; the
user can't see all their choices at once, See http./thetraincom

14 DRGANTZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
64/73

18 extras on demand

Baaic colors: it Golore

ErEErEmEE ErEEEE

ErEEFEEE HMEE NN

BrEEREFEF III-I

ENFEEEEEE | f=f § 0§ |

EEEEEEEN EEEEER

EEEEEET EEEEET

Custom colore Custom colore:

T | 1 I T Hw[— P

I =g EEE su-.r" aen[iE

-1

Defie Custom Cakars > D Gustom Colors » | Cooid | w[Em BusfiEE

[k] ceme | | | Add to Custom Colors |

The color dialog box in Windows 2000

Show the most important content up front, but
hide the rest. Let the user reach it via a single, sim-
ple gesture.

use whean

There's too much stuff to be shown on the page,
but some of it isn't very important. You'd rather
have a simpler Ul, but you have to put all this con-
tent somewhere.

A simple Ul is often better than a complex one,
especially for new users, or users who don't need
all the functionality you can provide. Let the user
choose when to see the entire Ul in its full glory—
they're a better judge of that than you are.

If your design makes 80 percent of the use cases
easy, and the remaining 20 percent are at least
possible (with a little work on the user's part), your
design is doing as well as can be expected!

When done correctly, Extras On Demand can save
a lot of space on your interface.

EXTRAS GON DVEMAND

Egbow 2 i}

Ruthlessly prune the Ul down to its most commonly
used, most important items. Put the remainder into
their own page or section. Hide that section by de-
fault; on the newly simplified Ul, put a clearly marked
button or link to the remainder, such as “More Op-
tions.” Many Uls use arrows or chevrons, ">>", as
part of the link or button label. Others use "..", es-
pecially if the button launches a new window or
page.

That section should have another button or other
affordance to let the user close it again. Remem-
ber, most users won't need it most of the time. Just
make sure the entrance to and exit from this "ex-
tras" page are obvious.

In some interfaces, the window literally expands to
accommodate the details section, and then shrinks
down again when the user puts it away. See the
Closable Panels pattern (Chapter 4) for one way
to do this. Various desktop Uls provide another
mechanism: a dropdown for fill color, for instance,
contains a "More Fill Colors...” item that brings up
a separate dialog box.

MemoryWeb Ex. 2018

Samsung v. MemoryWeb — [PR2022-00221
65/73

Experts warn of possible
Web attack

Seeling a rise in hacker activity that could be a
prelude to & broad Internel attack, security
experts urged computer users 1o protect their
machines by Installing a free pateh. Intemet
security firms issued similar warnings, saying
they've seen Increased chatter in hackar
discussion groups and chat rooms. “We are
expecting something sooner rather than later,”
sald Dan Ingevaldson, engineering director at
Internet Security Systems in Atlants.

FULL STORY

Marratives frequently use Extras On Demand to separate the gist of an article
from its full text, A reader can scan the |eader, such as this ene from CNN, and decide whether or
not to read the rest of the article (by clicking "Full Stary," or the headline itself). If they don’t go to
the jump page, that's fine—they've already read the most impoertant part

|% Search for Files and Folders

Saarch for files or folders named:

9 Search tor Files and Folders

Search for fles ar lolders named:

|‘.|ava I‘ ava

Cantainng test: Contaming lext
I;w PlotSgnature |new PlatSignature
Logk irc Lok i

|_'l [vwork\AmiBetaZ\matlabhjavaherch _j

chthI Stop Searcr I

Sesch (ptions >

[Z3 pvwerksamBataymatiabjavatsrch x|

Search Now Stip Semch

T —

™ Dae

I~ Tipe

T~ Size

™ Advanced Dptions
¥ Seaich Subleidets

T Casesensitive

™ Search sdow files
Indeding Service |5 cunently disabled

This is the file search facility in Windows 2000, Clicking
“Search Options” opens a box of extra options. Likewlse, clicking the
titlebar of the Search Optlons box, with its "<<" chevron, closes the box,
Mot shown is another level of Extras on Demand: when the user unchecks
"Advanced Options,” the indented checkiboxes below it disappear. This
makes it similar to Responsive Disclosure (Chapter 4), which talks about
cantent that comes and goes as a side effect of the choices the user
makes, as opposed to Extras on Demand, which requires an intentional

act ta open or close content.

O OROGANTZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
66/73

19 intriguing branches

= A political earthquake in the land of
earthquakes (News) 3
8y aphrsel L —d
Fri Jul 25th, 2003 a1 09:08:32 PM EST
While the rest of the world focuses on the deaths of the Srothers
Hussein, the rumblings of 2 political earthquake are threatening to
bring Californig government to its knees. On Thursday, Lieutenant
Governor Cruz Bustamante, prampted by 3 petition signed by more
than 1.600,000 people, called a snap election Lo recall the state's
unpapular Democratic Governor, Gray Davis. It is the first recall of &
Governor |n the United States since J921.

Full Stary (185 commenis, 2611 words in-story)

From htto/#kuraShinarg

EETTE

Place links to interesting content in unexpected
places, and label them in a way that attracts the
curious user.

use when

The user moves along a linear path—a text narra-
tive, a well-defined task, a slideshow, a Flash mavie,
etc. You want to present additional content that's
not the main focus of attention, however. It might
be information tangential to a story, as in Figure
2-26. It might be supporting text—examples,
explanations of concepts. definitions of terms—or
full-fledged help text. Or it could be hidden func-
tionality, like an "Easter egg.”

In any case, you want a graceful way of presenting
the content so it's ignorable by users trying to get
something done quickly, but still available to users
for whom it's appropriate.

why

People are curious. If they see something that
looks interesting, and they have the time and ini-
tiative to check it out, they will. Web surfing would
never have become popular without this natural
curiosity and willingness to follow links into the
unknown. Skillful and playful use of Intriguing
Branches can make your interface more fun,

INTRIGEING BRANCIHLS

A tradition of creating Intriguing Branches as in-
line links (also known as "embedded links™) already
is well-established on the Web. But functional ap-
plications might provide a more interesting use of
it. It’s well-known that users tend to ignore what is
labeled specifically as "Help." But what if you put
help-like content behind links (or butteons, or icons)
that were labeled in some other way, like "Learn
more..."? You can exploit users' natural curiosity to
get them into a place where they can learn what
they need.

Start with a deep understanding of your users.
What might interest them? Where in the interface
are they likely to take time to explore something
further, and where do they just need to get some-
thing done?

Create "doors” into the supplemental content that
would appeal to users, These doors might be un-
derlined links (even in desktop applications), head-
lines, buttons, menu items, icons, or clickable im-
age regions—it's up to you to figure out how to
label them in a way that inspires curiosity. There's
an art to it. When in doubt, usability-test it with a
representative sample of your user base.

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

67/73

With particularly obscure affordances, like icons or
images, you might want to add tooltips or some
other kind of short description to inform the user
where they might go when they click on it. (With
an Easter egg, though, its very non-obviousness is
part of the fun.)

Mail Settings
Gensral Labels Filters Account Settings »

Name: & lse my nama in Google Accounts (Jenifer Tidwell)

i‘:‘ SR Ol Use 2 businges name or nickname:

Reply-to

address: @ jenifer.tidwell@gmail.com

(a teply to mall you Q

aand wiil go s this

addins)

Maxi I o

;i:.: mum page Show &0 ﬂ canversations per page

Keyboard .

ki :) Keyhoard shortcuts off
Leam mare (* Keyboard shortcuts on

O'Rellly Radar (Pool)

This phete alse belongs 1o

¥

Tags

Also, provide an obvious way for the user to get
back to their original workflow, The idea is to per-
suade users to read the branch content, and then
go back to what they were originally doing; don't
get them stranded in a backwater! Pop-up win-
dows should provide "Close" buttons, and new
pages in a browser-like Ul should provide "Back”
links or buttons.

Gmall's settings page offers
links that are clearly help-related, but are
phrased as suggestions, not as "help." Here, a
“Learn more” link is under the Keyboard
Shortcuts caption, This is akin to other forms
of context-sensitive help, llke pop-up menus,
help buttens, and function keys. "Learn more"
is ar active phrase, unlike "Help." though, and
it's clearly visible on the page, unllke menus
and function keys. One can assume that it
‘opens yet another web page. so its operation
is entirely predictable.

Browsing photas in Flickr is often an exercise in following various
intriguing branches—it offers “side trips” into other photostreams, image sets, and
groups of Images with commaon tags. The result |s a thoroughly engaging (and very
popular) user experience,

A not-so-great examiple ligs in Adobe’s PDF reader for Windows. The
plnk butten, "Create an Adaobe PDF from your desktop,” takes you to @ page on Adobe's
weh site that explains how to use a different product to achieve that task. The button's
color and content actually changes every few minutes; it shows a different teaser each
tirme. This is an unusual case of such a link belng present in an application—most don't take
up valuable taolbar space with something like this.

But these buttons are samewhat self-serving on Adobe's part, since they encourage you to
look at other Adobe products and services. Unfortunately, it looks like an advertising
device. [t would be interesting to know how effective they are, both at cross-selling and at
helping users figure out how to do things they need to do anyway.

ORGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
68/73

20 multi-level help

Traditional Help menu

Input prompt
AT s —— - z —=
(=] Mic rosoft Excel - Start.up expensest i 1
Enter your company name here
b B c B 3] F
>
a7
5 [
Content-specific |.E [lictes on Preparation _ :) aanh worbhock
help "-'-*meymmnmh o da s reference later To |) From mvisting skl .
|7 tianis, cick the border of this 12t box and then press : Templates
.8 5§ - [0 CIPLETE iy Search online for:
19_0) Nearly svaryone who has ever starled a business has undsrestmated the.
B costs, and then faced the danger of running wih ; %Yy Templates on Offcs Ordne Online
HLiLM - reserves. The key (o avoiding fhis is to adopt & rigorous approach to ==
Mzl % = o J::m m‘_ o L] o0 oy comerit.. resources
13 Cuir Startup Experises workshest wil lead you through the process 198 Ot iy Welrshes...
A4 Recently used templates
15 § : |EXPENSES - Beqin by sstmating expenses. VWhat will R cost youto get Dt eepencs
6 | . oLy business Lp and running? The hety fo acouracy here |s attertion o
17 | N detall. For esch category of expense, draw up a list of everything you wil
BT nnedlusu:hue This will Include both tangible azzets {far exemple,
B wmmtww remodeling, insurance).
£ § = Then wvhre you might 0ds Of SBrVEes:
20 |Ressarch more then one vender, |a- comparisan shop. Do not iook at
21| pries siore, teimis of payiment, delivery, reisiifty, and service are also
2] . b
FEi g CIES - g i reserve Tor condingencies. Be sure o explain i
24 | 3 R mmwmm«.wmm-;mmm
-%— m‘wn&-wmﬂwwmmmmm.vw o
W« 4 v W\Star EW“M‘:&%;_ £ idigmen i Bl
NUM SERL

Use a mixture of lightweight and heavyweight help
technigues to support users with varying needs,

)

Your application is complex. Some users are likely to
need a full-fledged help system, but you know most
users won't take the time to use it. You want to sup-
port the impatient and/or occasional users too, to
the extent you can, In particular, your software may
be intended for intermediate-to-expert users—how
will you help beginners become experts?

Users of almost any software artifact need varying
levels of support for the tasks they're trying to

MULM-LEVEL HELR®

Excel's various help technigues, all integrated into the Ul

accomplish. Someone approaching it for the first
time ever (or the first time in a while) needs differ-
ent support than someone who uses it frequently.
Even among first-time users, enormous differences
exist in commitment level and learning styles. Some
people will want to read a tutorial, some won't; most
find tooltips helpful, but a few find them irritating.

Help texts that are provided on many levels at
once—even when they don't look like traditional
"help systems”"— reach everyone who needs them.
Many good help techniques put the help texts
within easy reach, but not directly in the user's
face all the time, so users don't get irritated. How-
ever, the technigues need to be familiar to your us-
ers. If they don't notice or open a Closable Panel,
for instance, they'll never see what's inside it

49

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

69/73

Create help on several levels, including some
techniques (but not necessarily all) from the fol-
lowing list. Think of it as a continuum: each requires
more effort from the user than the previous one,
but can supply more detailed and nuanced infor-
mation.

» Captions and instructions directly on the
page, including patterns like Input Hints
and Input Prompt (both Chapter 7). Be
careful not to go overboard with them. If
done with brevity, frequent users won't
mind them, but don't use entire paragraphs
of text—few users will read them.

* Tooltips. Use them to show brief, one- or
two-line descriptions of interface features
that aren't self-evident. For icon-only
features, tooltips are critical; users can take
even nonsensical icons in stride if a rollover
says what the icon does! (Not that I'd
recommend poor icon design, of course.)
Tooltips' disadvantages are that they hide
whatever’s under them, and that some
users don't like them popping up all the

time. A short time delay for the mouse
hover—e.q,, one or two seconds—removes
the irritation factor for most people.

Slightly longer descriptions that are shown
dynamically as the user selects or rolls over
certain interface elements. Set aside an
area on the page itself for this, rather than
using a tiny tooltip.

Longer help texts contained inside Closable
Panels (see Chapter 4).

Help shown in a separate window, often in
HTML via browsers, but sometimes in
WinHelp or Mac Help. Help is often an
online manual—an entire book—reached via
menu items on a Help menu, or from "Help”
buttons on dialog boxes and HTML pages.
“Live" technical support, usually by email,
the Web, or telephone.

Informal community support, almost always
on the Web. This applies only to the most
heavily used and invested software—the
likes of Photoshop, Linux, Mac OS X, or
MATLAB—but users may consider it a
highly valuable resource.

MATLAB is a complex, multilayered software application. that offers help on all these levels. Each of the

following examples comes from it.

MATLAD

Fle Edk Debug Desitop Window Hsip

o) x| When you start
MATLAB, the command line Immediately

D@ & Mm@ o Wl |] curmomminy [Foporonsms

Srortzate (] Howto Ada (#] Woats New

FIETR] command Window

Cusrart Oractory | Command Hstory |

Workagnes —— e

i

Naros £ | vakse | Cloae

4 | ol | P
[2ee

To get stareed, selsct MATLAR Felp or Dencs from the Help menu.

. [plotcatalog tt ST | | ,
i) promoaty it TiIF File
wigiv oot PHT Fil
[testerrow i TIFFlle
Thumbs db i DB File ~
13

= _;]_I & directs you to help docurnents: “To get

started, select MATLAB Help or Demos
from the Help menu.” You also can see
captioned items on the Shortcuts
toolbar, an which the "How to Add” and
"What's New" buttons bring up help
taxts In separate windows.

DRGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
70/73

Bt SHD -
Wekes = Show Visual Director [Frevme
] plateatalog tif TIE File |
1] plathonls it TiF File
sign.ppt FFT File
] tesctarrow tif TIF File
Thumbs.db DE File r

Ohrent Mrectory - W\ OpenHouseR1d L3 n

[wonspace =

AE B NS n | o]

Mame L IVal.u |ﬂua

Inta small spaces, and tooltips are necessary to learn—or remember—what some of these

Each toolbar button on the main window has a tooltip. Since MATLAS |s an
application designed for Intermediate and expert users, it packs a lot of unusual functionality

buttons do.

Rollover help is used in a few areas. such as the status bars of movable
panels. The sentence shown in this status bar, "Click and drag to move Workspace.. " is a little
too long to view comfortably in a tooltip. More importantly, the status bar is less obtrusive—a

user can ignare it more easily than he can a tooltip.

=loix
Description e
2-0 Line Graph
-0 line graph using linear ases
Veclors creale a tingle ine: mainices creats one line
per golumn
Platted Variables
cortour Piots « Single variable — plot a vector or sach column of
a matrixaz one ling ve, its index
images A || ambog
st « Nvariable pairs —plot mach pair of variables in
Surtaoes: the selacted sequence
Valumstncs
Wector Fieids aemiogy For example. the-sequence varl, var2 vard:
rialitic Blots vard s plotted a5 var2 vi. varl vardvs var3.
etc. Both variables in associatad pairs must
contain the same number of elements
VY
Mare Information
The axes CalorGrdsr prap zthe
o colarof aach line.
Seetheplor reference page for mors intarmation
m e
Eiiirnma
1
MULTI-LEVEL HELE

Elsewhere in the MATLAB
Interface, the selection of an object might |
cause a short description to appear in a
closable panel. In this window, selecting a plot
type causes the "Description” panel to show a
short formatted help page. The help text is
longer than often needed (the user can close
that panel if hie wants), but it's more immedi-
ate—and thus more likely to be used—than
help in a separate window

MemoryWeb Ex. 2018

Samsung v. MemoryWeb — [PR2022-00221

71/73

o) x| In the

Fie Edt Viaw Go Favortes Dasibop Window Heb i - previous window, clicking the
Help Navigatin i underlined word "plot” in "See
Cortarts | x| Semren | Bemos | Tt it (MATLAB Fuctions) =] the plot reference page for
e ge?-n P::: = o o . maore information” brings up a
[aleaze Noter - .
=¥ irptaliation ulxrun Eungiton Fintrenrs Cagc] full-fledged help window. This
';’“GN 5 plot tool gives the user access to
[etting Started] :
g Examples Linear 2Dl the entire MATLAB manual.
¥ Deskinp Tools and Development Emdronment Syntax
L o Mathematics
- Putarimining Phonbd ¥1,...)
=18} Graphizs plot (XE, Y1, LineSpec, ...}
£ 30 Vizualization plot{..,, ' Propart yName® PropertyValue,...|
Craating Graphical Lser Interdaces plot{axes_handle,...

8= pinti...)

- D shinp Taols and Developmenl Envioniment tlines = plot(ivél,. .}

F-Mathematcs
#-Programiming and Data Types Diescription
File 40
#-Graphics

7 3-0 Visualization

B-Cruating Graphical Lisey inferiaces Wosrge
(—IE) Functions —&ighabatical List ploci®l, ¥1,...] olots all lines dafined by Xn versus ¥n pairs. I anly Xn er ¥r it g matiix the
Handle Graphics Propery Browse: wactor it plotted versus the tows or calumms of the matroc depending on whelher he vactor's thw

of calumn dimension matches the matrx

-} Esternal Interfaces

s Extarnal Interfaces Refarance plot(¥l, Y1, LineSpec, ...} plots #ll lines defined by the 3n, i, LineSpec tiples. where
S u] Helears Mol |1 & line specification that deteemines line fype, marker symbaol. and edlos of the plofied
linez. You can mockn, Yo, LineSpec triples with ¥n, Yo pairs
;::;:::‘;j::'x:;;‘"” ety Lot (AL, Y1,32,¥2, LineSpac, X3, 73]
SaoefLink Note See LineSpec for a listof line styls, marker. and color specifisn
MATLAB Buildarfor COM e] . 5|
MAATLAR Builder for Excal
MATLAR Comptlar plotl. .., ' ProportyNene’ , Propestyveluz, ... | 18t properfues to the tpeoified propory
|MATLAE Aeport Ganesator waluss far all =: graphics abjacts crested by plot (See the Exarmples” woction far
IMATLAB Web Server xatples)
Biainfermatics Teolbax plotimies handle, ...} plobs ino the axes with handie axes_hsndle instead of the current
Gammunications Tealbos _'J
| ho= nlnrl.. . wsinms s eobieon yacioent haodles i bsacenss anhics nhincts anm handle ;l

plot¥) plotsthe calumns of Vveraus therindex if ¥ s 2 real number Y i complex ploc(¥)
Ix aquivalent to plot (zeal {F) ,inag(¥) | Inall other uoes ol plot the Imaginany component i1

e Cde Wew Faerem Tk el L

[bk] 12 dovacoe] e v] D e] Gncic s RS Tk

[

LT aliating & Liosesing

e = with Baeyanal Licaras Hasesinrds
(PLPA], Sraubindhiet inetaliakes, franater besnis
atid iy

pruduct Support
[Eay b grocitt |

W14 e Awidadile
[ﬂ- ncfudes i)
produces m the
WETLAR wrid
Stabnb fmiles,
incuding 28 mmajhe

ur rdnr s and neeies, Fenes
rmars maintanasce, apdate products and snntsc
(tarmatian, wan mars

© Lt b L aicall Beisich Gaaful Db

1944200 The Mathiwa,

| = [e e

MATLAB users also get technical support over
the phone and the Web. We've now moved beyond the realm of
software design per se, but this is still product design—user
experience extends beyond the bits installed on their computers. It
includes the interactions they hayve with the company and its web
site

OQRGANIZING THE CONTENT

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221

72/73

oft-sys.matlab - Dutlook Express provided by The Mathweorks, Inc.

| - WView Toos Message Help i - J‘?
q .9 & g ‘ (=1 SIS s R e '-j
Naw Post Reply Group Reply Forward Prink

[12] Contour plotting Chris Meff 1/9/2004 2:46 PM 1k8

A Re: Contour plotting Aurelie T/9/2004 2:56 PM 168

4 pandom Number Generator Nick 7/9/2004 2:58 PM £

[¥ Creating an irregular 30 object Vs 7/9/2004 3:01 PM K8
] { ! ERROR')) returns 1101 Abhishek Shadangl 7/9/2004 319 PM 1KB
E A structure cells olivier 7/9/2004 323 PM 28
[2 exasngla code for using LIt contral - Aies yord F/2i2004 3126 M 1K8
2 rie: exampl code for using Ul contrel - Aues 7/5/200% #:20 BM ke

problem on calling java in matlab 7/9/2004 3:45 PM k8

= __j Pe: displarying rimage within a GLU1 Ti9(2004 3:588M 2¢B
A re: dsplaying r image wikhin a GUT 7(3/2004 3:59 PM 1%

| environment variables setting in Matlab 7,/9/2004 4:05 PM

[Re: measurs computation effart 71912004 4:15PM

[# [Matiab Web Server] W2k & Linux Manuel 7/9/2004 4:26 PM KB

14 problems with mexErrMsgTxt in R14 W. Mark Smith 7/9/2004 4:35 PM £

A signal into db Jason 7/9/2004 4:44 PM 1%8

> suspicious kmeans result Ko Ihara T/9/2004 4:49 PM %8 j
From: Dabrah Meloso To: comp,soft-sps matish J
Subject: measurs computation effort

16T write an m-file defiring a new function, & there any matlab
finction or procedure that can give me some measure of how much
sffort this function dees when applied to a specific value?
Ortherwise, 15 there any way to measure how hard it 15 for matlab to
run a specific m-fle? If you know of any tool on my computer (not
matlab specific) to do ths, that should be enough

Thanks|
D
—_ _ rape. .
110546 message(s), 9864 unread, 38837 ot dowribaded (B Working Onlne (1), Errar 4

Finally, if all ather sources of help are exhausted, a user can turn to the wider user
cammunity for advice. In the case of MATLAB, users ask and answer one another's cuestions on a special-
ized newsgroup. comp.soft-sys.matiab. (Web-based discussions can serve the sarhe purpose.) Community-
building like this happens only for products in which users become deeply invested, perhaps because they
use |t every day at work or home, or because they have some emotional attachment to it, as many people do
with games, Macs, or open source software.

MULTI-LEVEL HELpP

MemoryWeb Ex. 2018
Samsung v. MemoryWeb — [PR2022-00221
73/73

