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2.2 BASIC INTERACTION HANDLING 

Now that we know how to draw basic shapes and text, our next step is to learn how 
to write interactive programs that communjcate effectively with the user, via input 
devices such as the keyboard and the mouse. First, we look at general guidelines 
for making effective and pleasant-to-use interactive programs; then we discuss the 
fundamental notion of logical (abstract) input devices . Finally, we look at SRGP's 
mechanisms for dealing with various aspects of interaction handling. 

2.2.1 Human Factors 

The designer of an interactive program must deal with many matters that do not 
arise in a noninteractive, batch progran1. They are the so-called human factors of 
a program, such as its interaction style (often called look and feel) and its case of 
learning and of use, and they are as important as its functional completeness and 
correctness. Techniques for user-computer interaction that exhibit good human 
factors are studied in more detail in Chapter 8. The guidelines discussed there 
include these: 

• Provide simple and consistent interaction sequences. 

• Do not overload the user with too many different options and styles. 

• Show the available options clearly at every stage of the interaction. 

• Give appropriate feedback to the user. 

• Allow the user to recover gracefully from mistakes. 

We attempt to follow these guidelines for good human factors in our sample pro­
grams. For example, we typically use menus to allow the user to indicate which 
function to execute next, by using a mouse to pick a text button in a menu of such 
buttons. Also common are palettes (iconic menus) of basic geometric primitives, 
application-specific symbols, and fill patterns. Menus and palettes satisfy our first 
three guidelines in that their entries prompt the user with a list of avrulable options 
and provide a single, consistent way of choosing among these options. Unavailable 
options may be either deleted temporarily or grayed out by being drawn in a low­
intensity gray-scale pattern rather than a solid color (see Programming Project 
2.14). 

Feedback occurs at every step of a menu operation to satisfy the fourth guide­
line: The application program will highlight the menu choice or object selection­
for example, display it in inverse video or framed in a rectangle- to draw allention 
to it. The package itself may also provide an echo in which an immediate response 
to the manipulation of an input device is given. For example, characters appear 
immediately at the position of the cursor as keyboard input is typed; as the mouse 
is moved on the table or desktop, a cursor echoes the corresponding location on the 
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screen. Graphics packages offer a variety of cursor shapes that can be used by the 
appl ication program to reflect tJ1e stale of the program. ln many display systems, 
the cursor shape can be varied dynamically as a function of the cursor's position on 
the screen. Tn many word-processing programs, for example, the cursor is shown 
as an arrow in menu areas and as a blinking vertical bar in text areas. 

Graceful error recovery, our fifth guideline. is usually provided through cancel 
and undo/redo features. They require the application program to maintain a record 
of operations and their inverse, corrective actions. 

2.2.2 Logical Input Devices 

Device types in SRGP. A major goal in designing graphics packages is device 
independence, which enhances portability of applications. SRGP achieves this 
goal for graphjcs output by providing prin1itives specified in tenns of an abstract 
integer coordinate system , thus shieldjng the application from the need to set the 
inruvidual pixels in the frame buffer. To provide a level of abstraction for graphics 
input, SROP suppons a set of logical input devices that shield the application 
from the details of the physical input devices available. Two logical devices are 
supported by SROP: 

• Locator, a device for specifying screen coordinates and the state of one or 
more associated buttons 

• Keyboard, a device for specifying character string input 

SRGP maps the logical devices onto the physical devices available (e.g., the 
locator could map to a mouse, joystick, tablet, or touch-sensitive screen). This 
mapping of logical to physical is familiar from conventional procedural languages 
and operating systems, in which 1/0 devices such as terminals, disks, and tape 
drives are abstracted to logical data files to achieve both device-independence and 
simplicity of application programming. 

Device handling in other packages. SRGP's input model is essentially a subset 
of the OKS and PHlOS input models. SRGP implementations suppo1t only one 
logical l.ocator and one keyboard device, whereas OKS and PHIGS allow multiple 
devices of each type. Those packages also support additional device types: the 
stroke device (returning a polyline of cursor positions entered with the physical 
locator). Lhe choice device (abstracting a function-key pad and returning a key 
identifier), the valuator (abstracting a slider or control dial and retunung a float­
ing-point number), and the pick device (abstracting a pointing device, such as a 
mouse or data tablet, with an associated bunon to signify a selection, and retuming 
the identification of the logical entity picked). Other packages, such as QuickDraw 
and the X Window System, handle input devices in a more device-dependent way 
that gives the programmer finer control over an individual device's operation, at 
the cost of greater application-program complexity and reduced portability to other 
plarforms. 
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Chapter 8 elaborates funher on the properties of logical devices. Here, we 
briefly summarize modes of interacting with logical devices in general, and then 
examine SRGP's interaction functions in more detail. 

2.2.3 Sampling Versus Event-Driven Processing 

Two fundamental techniques are used to receive information created by user inter­
actions. In sampling (also called polling), the application program queries the cur­
rent value of a logical input device (called the measure of the device) and 
continues execution. The sampling is performed regardless of whether the device's 
measure has changed since the last sampling; indeed, only by continuous sampling 
of the device wil l changes in the device's state be known to the application. This 
mode is costly for interactive applications, because they would spend most of their 
CPU cycles in tight sampling loops waiting for measure changes. 

An alternative to the CPU-intensive polling loop is the interrupt-driven 
interaction; in this techojque, the application enables one or more devices for input 
and then continues normal execution until interrupted by some input event (a 
change in a device's state caused by user action); control then passes asynchro­
nously to an interrupt procedure, which responds to the event. For each input 
device, an event trigger is defined; the event trigger is the user action that causes 
an event to occur. Typically, the trigger is a button push, such as a press of the 
mouse button (mouse down) or a press of a keyboard key. 

To free applications programmers from the tricky and difficult aspects of 
asynchronous transfer of control, many graphics packages, including OKS, 
PHlGS, and SRGP, offer event-driven interaction as a synchronous simulation of 
interrupt-driven interaction. In Lhis technique, an application enables devices and 
then continues execution. ln the background, the package monitors Lhe devices and 
stores information about each event in an event queue (Fig. 2. 11 ). The application, 
at its convenience, checks the event queue and processes the events in temporal 
order. [n effect, the application specifies when it would like to be interrup1ed. 

When an appUcation checks the event queue, it specifies whether it would Like 
to enter a wait state. If the queue contains one or more event reports, the head 
event (representing the event that occurred earliest) is removed, and its informa­
tion is made available to the application. l f the queue is empty and a wait state is 
not desired, the applicaLion is informed that no event is available and that it is free 
to continue execution. If the queue is empty and a wait state is desired, the applica­
tion pauses until the next event occurs or until an application-specified maximum­
wait-tin1e interval passes. In effect, event mode replaces polling of the input 
devices with the much more efficient waiting on the event queue. 

In summary, in sampling mode, the device is polled and an event measure is 
collected, regardless of any user activity. ln event mode, the application either gets 
an event report from a prior user action or waits until a user action (or timeout) 
occltrs. It is this respond only when the user acts behavior of event mode that is the 
essential difference between sampled and event-driven input. Event-driven pro­
gramming may seem more complex than sampling, but you are already familiar 
with a similar technique used with the scanf function in an interactive C program: 



we 
1en 

~r­
ur­
tnd 

i: 
fiis 
teir 

en 
put 
(a 

ro-
pur 
es 
e 

of 
s. 

r 
Basic Interaction Handling 

Application 
program 

Commands: 
setlnputMode 
sel<attribute> 
waitEvent 

sample<device> 
Device 
handler 

Mouse 

39 

Figure 2.11 Sampling versus event-handling using the event queue. 

Program2.4 

Event-driven interaction 
scheme. 

C enables the keyboard, and the application waits in the scanf until the user has 
completed entering a line of text. Some environments allow the scanf statement to 
access characters that were typed and queued before the scanf was issued. 

Simple event-driven programs in SRGP and in similar packages follow the 
reactive pi11g-po11g interaction inlroduced in Section l.4.3 and pseudocoded in 
Prog. 2.4; this interaction can be nicely modeled as a finite-state automaton. More 
complex styles of interaction, allowing simultaneous program and user activity, 
are discussed in Chapter 8. 

initialize, including generating the initial image; 
activate interactive device(s) in event mode; 
do { f main event loop*/ 

} 

wait for user-triggered event on any of several devices; 
switch ( which device caused event) { 

case DEVICE_ 1: collect DEVICE_ 1 event measure data, process, respond; 
case DEVICE_2: collect DEVICE_2 event measure data, process, respond; 

while ( user does not request quit); 

Event-driven applications typically spend most of their time in a wait stale, 
since interaction is dominated by think time during wh ich tl1e user decides what to 
do next; even in fast-paced game applications, the number of events a user can 
generate in a second is a fraction of what the application could handle. Since 
SRGP typically implements event mode using true (hardware) inlem1pts, the wait 
state effectively uses no CPU time. On a multitasking system, the advantage is 
obvious: The event-mode application requires CPU time only for short bursts of 
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activity immediately folJowing user action, thereby freeing the CPU for other 
tasks. 

One other point, about correct use of event mode, should be mentioned. 
Although the queueing mechanism docs allow program and user to operate asyn­
chronously, the user should not be allowed to get too far ahead of the program, 
because each event should result in an echo as well as some feedback from the 
application program. It is true that experienced users have learned to use typea­
head to type in parameters such as file names or even operating-system commands 
while the system is processing earlier requests, especially if at least a character-by­
character echo is provided immediately. In contrast, mouseahead for graphical 
commands is generally not as useful (and is much more dangerous). because the 
user usually needs to see the screen updated to reflect the application model's cur­
rent state before the next graphical interaction. 

2.2.4 Sample Mode 

Activating, deactivating, and setting the mode of a device. The foUowing 
function is used to activate or deactivate a device; taking a device and a mode as 
parameters: 

void SRGP _setlnputMode ( inputDevlce LOCATOR / KEYBOARD, 
inputMode INACTIVE / SAMPLE / EVENT); 

Thus, to set the locator to sample mode, we call 

SRGP _setlnputMode (LOCATOR, SAMPLE); 

lnitiaJJy, both devices are inactive. Placing a device in a mode in no way affects the 
other input devico-both may be active simultaneously and even then need not be 
in the same mode. 

The locator 's m easure. The locator is a logical abstraction of a mouse or data 
tablet, returning the cursor position as a screen (x, y) coordinate pair, the number of 
the button that most recently experienced a transition, and the state of the buttons 
as a chord array (since multiple buttons can be pressed simultaneously). The sec­
ond field lets rhe application know which button caused the trigger for that event. 

typedef struct { 
point position; 
enum { 

UP, DOWN 
} buttonChord!MAX_BUTTON_COUNT]; 
int buttonOfMostRecentTransition; 

} locatorMeasure; 

!'Typically 1-3*/ 

Having activated the locator in sample mode with the SRGP _setlnputMode ftmc­
tion. we can ask its current measure using 

void SRGP _sampleLocator ( locatorMeasure *measure); 
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Let us examine the prototype sampling application shown in Prog. 2.5, a simple 
painting loop involving only button I on the locator. Such painting entails leaving 
a trail of paint where Lhe user has dragged the locator while holding down button l; 
lhe locator is sampled in a loop as lhc user moves it. Pirst, we must detect when the 
user starts painting by sampling the button until it is depressed; then we place the 
paint (a filled rectangle in our simple example) at each sample point until the user 
releases the button. 

set up color/pattern attributes, and brush size in halfBrushHeight and halfBrushWidth 
SRGP _setlnputMode(LOCATOR, SAMPLE); 

r First, sample until the button goes down.*/ 
do { 

SRGP _samplelocator(locMeasure); 
} while (locMeasure.buttonChord[0) == UP); 

/*Perform the painting loop: 
Continuously place brush and then sample, until button is released.*/ 

do { 
rect = SRGP _defRectangle( locMeasure.position.x - halfBrushWidth, 

locMeasure.position.y - halfBrushHeight, 
locMeasure.position.x + halfBrushWidth, 
locMeasure.position.y + halfBrushHeight ); 

SRGP _fillRectangle (rect ); 
SRGP _samplelocator( &!ocMeasure ); 

} while ( !ocMeasure.buttonChord[0] == DOWN ); 

The results of this sequence are crude: The paint rectangles are arbitrarily 
close together or far apart, with the ir density completely dependent on how far the 
locator was moved between consecutive samples. The sampling rate is determined 
essentially by the speed al which the CPU runs the operating system, the package, 
and the application. 

Sample mode is available for both logical devices; however, the keyboard 
device is almost always operated in event mode, so techniques for sampling it are 
not addressed here. 

2.2.5 Event Mode 

Using event mode for initiation of sampling loop. Although the two sampling 
loops of the painting example (one to detect the bunon-down transition, the other 
to paint until the button-up transition) certainly do the job, they put an unnecessary 
load on the CPU. Although overloading may not be a serious concern in a personal 
computer, it is not advisable in a system running multiple tasks, let alone doing 
time-sharing. Although it is certainly necessary to sample the locator repetitively 
for the painting loqp itself (because we need to k.now the position of the locator at 
aJI times while the button is down), we do not need to use a sampling loop to wait 
for the button-down event that initiates the painting interaction. Event mode, 
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discussed next, can be used when there is no need for measure information while 
waiting for an event. 

SRGP waitEvent. At any time after SRGP _setlnputMode has activated a 
device in event mode, the program may inspect Lhe event queue by entering the 
wait slate with 

lnputDevice SRGP _waitEvent ( Int maxWaitTime ); 

The function returns immediately if the queue is not empty; otherwise, the param­
eter specifies the maximum amount of time (measured in 1/oo second) for which the 
function should wait for an event to fill the queue. A negative maxWaitTime (spec­
ified by the symbolic constant 1NDEFIN1TE) causes the function to wait indefi­
nitely, whereas a value of zero causes it to return immediately, regardless of the 
state of the queue. 

The function returns the identity of the device that issued the head event, as 
LOCATOR, KEYBOARD, or NO_DEVICE. The special value NO_DEVJCE is returned 
if no event was available within the specified time limit-that is, if the device 
timed out. The device type can then be tested to detcnnine how the head event's 
measure should be ret1ieved (described later in this section). 

The keyboard device. The trigger event for the keyboard device depends on the 
processing mode i.n which the keyboard device has been placed. EDIT mode is 
used when the application receives strings (e.g., file names, commands) from the 
user, wbo types and edits the string and then presses the Return key to trigger the 
event. In RAW mode, used for interactions in which the keyboard must be moni­
tored closely, every key press triggers an event. The application uses the following 
function to set the processing mode: 

void SRGP _setKeyboardProcessingMode ( keyboardMode EDIT I RAW); 

In EDlT mode, the user can type entire strings, correcting them with the backspace 
key as necessary, and then use the Return (or Enter) key as trigger. This mode is 
used when the user is to type in an entire string, such as a file name or a figure 
label. All control keys except backspace and Return are ignored, and the measure 
is the su-ing as it appears at the time of the trigger. In RAW mode, on the other 
hand, each character typed, including control characters. is a trigger and is returned 
individually as the measure. This mode is used when individual keyboard charac­
ters act as commands-for example, for moving the cursor, for simple editing 
operations, or for video-game actions. RAW mode provides no echo, whereas 
EDlT mode echoes the string on the screen and displays a text cursor (such as an 
underscore or block character) where the next character to be typed will appear. 
Each backspace causes the text cursor to back up and to erase one character. 

When SRGP _waitEvent returns the device code KEYBOARD, the applica­
tion obtains the measure associated wid1 the event by calling 

void SRGP _getKeyboard (char •measure , int buffersize); 
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When the keyboard device is active in RAW mode, its measure is always exactly 
one character in length. 1n this case, the first character of the measure string returns 
the RAW measure. 

The program shown in Prog. 2.6 demonstrates the use of EDIT mode. lt 
receives a list of file names from the user, deleting each file so entered. When lhe 
user enters a null string (by pressing Return without typing any other characters), 
the interaction ends. During the interacti.on, the program waits indefinitely for the 
user to enter the next string. 

Although this code explicitly specifies where the text prompt is to appear, it 
docs not specify where the user's input sLring is typed (and corrected with the 
backspace). The location of this keyboard echo is specified by the programmer, as 
discussed in Section 2.2.7. 

The locator device. The trigger event for the locator device is a press or release 
of a mouse button. When SRGP_waitEvem returns the device code LOCATOR, 
the application obtains the measure associated with tl1e event by calling 

void SRGP _getlocator ( locatorMeasure *measure ); 

Typically, the pos ition field of the measure is used lo determine i.n which area of 
the screen the user designated the point. For example, if the locator cursor is in a 
rectangular region where a menu butcon is displayed, the event should be inter­
preted as a request for some action; if it is in the main drawing area, the point 
mighl be inside a previously drawn object Lo indicate it should be selected, or in an 
empty region to indicate where a new object should be placed. 

#define KEYMEASURE SIZE 80 
SRGP _setlnputMode(KEYBOARD, EVENT); r Assume only keyboard is active*/ 
SRGP _setKeyboardProcessingMode(EDIT); 
pt= SRGP _def Point( 100, 100 ); 
SRGP _text( pt, "Specify one or more files to be deleted; to exit press Return\n" ); 

r main event loop*/ 
do { 

} 

inputDev = SRGP _waitEvent( INDEFINITE); 
SRGP _getKeyboard( measure , KEYMEASURE_SIZE ); 
if (strcoll(measure, '"')) 

DeleteFile(measure); /* DeleteFlle does confirmation, etc.*/ 

while ( strcoll(measure, '"') ); 

The pseuclocode shown in Prog. 2.7 (similar to that shown prev iously for the key­
board) implements another use of Lhe locator, letting the user specify points at 
which markers are to be p laced. The user terminates the marker-placing loop by 
pressing the locator button while the cursor points lo a screen button, a rectangle 
containing the text quit. 

fo this example, only the user's pressing of locator button l is significant; 
releases of the bullon are ignored. Note that the button must be released before the 
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next button-press event can take place- the event is triggered by a transition, not 
by a button state. Furtbennore, to ensure thal events coming from the other buttons 
do not disturb this interaction, the application tells SRGP which buttons are to ITig­
ger a locator event, by calling 

void SRGP _setLocatorButtonMask ( int activeButtons ); 

Values for the button mask are LEFT _BUTION_MASK, MIDDLE_BUTION_­
MASK, and RIGHT_BUTTON_MASK. A composite mask is fo1med by logically 
or'ing individual values. The default locator-button mask is 1, but no matter what 
the mask is, all buttons always have a measure. On implementations that support 
fewer than three butlons, references to any nonexistent buttons are simply ignored 
by SRGP, and these buttons' measures always contain UP. 

The function PickedQuitButton compares the measure position against the 
bounds of the quit button rectangle and returns a Boolean value signjfying whether 
the user picked the quit button. This process is a simple example of pick correla­
tion, as discussed in Section 2.2.6. 

#define QUITO 
create the on-screen Quit button; 
SRGP _setLocatorButtonMask( LEFT_BUTTON_MASK ); 
SRGP _setlnputMode( LOCATOR, EVENT); r Assume only locator is active */ 
r main event loop •t 
terminate: FALSE; 
do { 

inputDev = SRGP _waitEvent( INDEFINITE); 
SRGP_getLocator( &measure ); 

} 

if (measure.buttonChordfQUlTJ =: DOWN ) ( 
if PickedQuitButton( measure.position) terminate =- TRUE; 
else 

SRGP _marker( measure.position ); 

while (!terminate); 

Waiting for multiple events. The code fragments in Progs. 2.6 and 2.7 ilicl not 
illustrate event mode's greatest advantage: the abiljty to wait for more than one 
device at the same time. SRGP queues events of enabled devices in chronological 
order and lets the application program take the first one off lhe queue when 
SRGP _ waitEvent is called. Unlike hardware interrupts, which are processed in 
order of priorities, events are thus processed strictly in temporal order. The 
application examines the retwned device code to detennine which device caused 
the event. 

The function shown in Prog. 2.8 allows the user to place any number of small 
circle markers anywhere within a rectangular drawing area. The user places a 
marker by pointing to the desired position and pressing button I, then requests that 
the interaction be terminated either by pressing button 3 or by typing "q" or "Q". 
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#define PLACE BUTTON 0 
#define QUIT_BUTTON 2 

generate initial screen layout, 
SRGP _setlnputMode( KEYBOARD, EVENT ); 
SRGP _setKeyboardProcessingMode( RAW); 
SRGP _setlnputMode( LOCATOR, EVENT ); 

45 

SRGP _setLocatorButtonMask( LEFT_BUTTON_MASK I RIGHT_BUTTON_MASK ); 
r Ignore 2nd button ·1 

r Main event loop */ 
terminate= FALSE; 
do { 

} 

device = SRGP _waitEvent( INDEFINITE ); 
switch ( device ) { 

case KEYBOARD: 
SRGP _getKeyboard( keyMeasure, lbuf ); 
terminate= (keyMeasure[0] ==- 'q') II (keyMeasure[0] == 'Q'); 
break; 

case LOCATOR: { 
SRGP _getLocator( &locMeasure ); 
switch ( locMeasure.buttonOIMostRecentTransition ) { 

case PLACE_BUTTON: 
if (( locMeasure.buttonChord[PLACE_BUTTON] == DOWN ) 

&& lnDrawingArea( locMeasure.position )) 
SRGP _marker( locMeasure.position ); 

break; 
case QUIT _BUTTON: 

terminate= TRUE; 
break; 

} r button case • I 
} r locator case */ 
r device case • / 

while (!terminate); 

2.2.6 Pick Correlation for Interaction Handling 

A graphics application customarily divides the screen area into regions dedicated 
co specific purpo es. When the user presses the locator button, the application must 
determine exactly what screen button, icon, or other object was selected, if any, so 
that it can respond appropriately. This dete1mination, called pick correlation, is a 
fundamental pan of inLeractive graphics. 

An application program using SRGP performs pick correlation by determin­
ing in which region the cw·sor is located. and then which object within that region, 
if any, the user is selecting. Points in an empty subregion might be ignored (if the 
point is between menu buttons in a menu, for example) or might specify the 
desired position for a new object (if the point lies in the main drawing area). Since 
a great many regions on the screen are upright rectangles, almost all the work for 
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pick corre lation can be done by a simple, frequently used Boolean function that 
checks whether a given point lies in a given rectangle. The GEOM package distrib­
uted with SRGP includes this function (GEOM_ptJnRect) as well as other utilities 
for coordinate arithmetic. (For more information on pick correlation, see Section 
7.11.2.) 

Let us look at a classic example of pick correlation. Consider a painting appli­
cation with a menu bar across the top of the screen. This menu bar contains the 
names of pull-down menus, called menu headers. When the user picks a header 
(by placing the cursor on top of the header's text string and pressing a locator but­
ton), the corresponding menu body is displayed on the screen below the header 
and the header is highlighted. After the user selects an entry on the menu (by 
releasing the locator button), the menu body disappears and the header is unhigh­
lighted. The rest of the screen contains the main drawing area in which the user can 
place and pick objects. The application, in creating each object, assigns it a unique 
positive integer identifier (ID) that is retumed by the pick-co1Telation function for 
further processing of the object. 

void Highl evellnteractionHandler( locatorMeasure measureOflocator ) 
( 

if ( GEOM_pointlnRect( measureOflocator.position, menuBarExtent) { 
t Find out which menu's header, if any, the user selected; 

Then, pull down that menu's body ·1 
menulD = CorrelateMenuBar( rneasureOILocator.position ); 
if ( menulD > 0 ) { 

} 

chosenltemlndex = PerformPulldownMenulnteraction( menulD ); 
if (chosenltemlndex > O) 

PerformActionChosenFromMenu(menulD, chosenltemlndex); 

else /* The user picked within the drawing area; detect what and respond*/ 
{ 

objectlD = CorrelateDrawingArea( measureOflocator.position ); 
If ( objectlD > O) ProcessObject( objectlD ); 

W11en a point is obtained from the locator via a button-down event, the high­
level interaction-handling schema shown in Prog. 2.9 is executed; it is essenlially a 
dispatching procedure tbat uses pick correlation within the menu bar or the main 
drawing area to divide the work among menu- and object-picking functions. First, 
if the cursor was in the menu bar, a subsiruary corTelation procedure determines 
whether the user selected a menu header. If so, a procedure (detailed in Section 
2.3.1) is called to perform the menu interaction; it retums an index specifying 
which item within the menu 's body (if any) was chosen. The menu ID and item 
index together uniquely identify the action that should be taken in response. If the 
cursor was not in the menu bar but rather in the main drawing area, another subsid­
iary correlation procedure is called to determine what object was picked, if any. U 
an object was picked, a processing procedure is called to respond appropriately. 
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The function CorrelateMenuBar perfonns a finer correlation by calling 
GEOM_pointlnRect once for each menu header in the menu bar; it accesses a data 
structure storing the rectangular screen extent of each header. The function Corre­
lateDrawingArea must do more sophisticated c01Telation because, typically, 
objects in the drawing area may overlap and are not necessarily rectangular. 

2.2.7 Setting Device Measure and Attributes 

Each input device has its own set of attributes, and the application can set these 
attributes to custom-tailor the feedback the device presents to the user. (The button 
mask presented earlier is also an attribute; it differs from those presented here in 
that it does not affect feedback.) Like output-primitive attributes, input-device 
attributes are set modally by specific functions. Attributes can be set at any time. 
whether or not the device is active. 

In addition, each input device's measure, normally detenni11ed by the user's 
actions, can also be set by the application. Unlike input-device attributes, an input 
device's measure is reset to a default value when the device is deactivated; thus, 
upon reactivation, devices initially have predictable values, a convenience to the 
programmer and to the user. This automatic resetting can be overridden by explic­
itly setting a device's measure while it is inactive. 

Locator echo attributes. Several types of echoes are useful for the locator. The 
programmer can control both echo type and cursor shape with 

void SRGP _setlocatorEchoType ( echo Type NO_ECHO / CURSOR / 
RUBBER_LINE /RUBBER_RECT ); 

The default is CURSOR, and SRGP implementations supply a cursor table from 
which an application selects a desired cursor shape (see the reference manual). A 
common use of the ability to specify the cursor shape dynamically is to provide 
feedback by changing the cursor shape according to the region in which the cursor 
lies. RUBBER_LINE and RUBBER_RECT echo are commonly used to specify a 
line or box. With these echoes set, SRGP automatically draws a continuously 
updated line or rectangle as the user moves the locator. The line or rectangle is 
defined by two points, the anchor point (another locator attribute) and the current 
locator position. Figure 2.12 illustrates the use of these two modes for user specifi­
cation of a line and a rectangle. 

In Fig. 2.12(a), the echo is a cross-hair cursor, and the user is about to press 
the locator button. The application initiates a rubber echo, anchored at the current 
locator position, in response to the button press. ln parts (b) and (c), the user's 
movement of the locator device is echoed by the rubber prirujtive. The locator 
position in part (c) is returned to the application when the user releases the button, 
and the application responds by drawing a line or rectangle primitive and restoring 
normal cursor echo (see part d). 

The anchor point for nibber echo is set with 

void SRGP _setlocatorEchoRubberAnchor ( point position); 
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Figure 2.12 Rubber-echo scenarios.(a)Button press imitates echo. (b) Rubber primitive echoes locator 
device. (c) Locator position returns to application. (d) Application draws line and restores 
echo. 

An application typically uses the position field of the measure obtained from the 
most recent locator-button- press event as the anchor position, since that button 
press typically initiates the rubber-echo sequence. 

Locator measure control. The position portion of the locator measure is auto­
matically reset to the center of tJ1e screen whenever the locator is deactivated. 
Unless the programmer explicitly resets it, the measure (and feedback position, if 
the echo is active) is initialized to that same position when the device is reacti­
vated. At any time, whether the device is active or inactive, the programmer can 
reset the locator's measure (the position portion, not the fields concem.ing the but­
tons) by using 

void SRGP _setlocatorMeasure ( point position); 

Resetting the measure while the locator is inactive bas no immediate effect on the 
screen, but resetting it while the locator is active changes the echo (if any) accord­
ingly. Thus, if the program wants the cur or to appear initially at a position other 
than the center when the locator is activated, a call to SRGP _setLocatorMcasure 
with that initial position must precede the call to SRGP _setlnputMode. This tech­
nique is commonly used to achieve continuity of cursor position: The last measure 
before the locator was deactivated is stored, and the cursor is returned to that posi­
tion when it is reactivated. 

Keyboard attributes and measure control. Unlike the locator, whose echo is 
positioned to reflect movements of a physical device, there is no obvious screen 
position for a keyboard device's echo. The position is thus an attribute (with an 
implementation-specific default value) of the keyboard device that can be set via 

void SRGP _setKeyboardEchoOrigin ( point origin); 
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The default measure for the keyboard is automatically reset to the null string when 
the keyboard is deactivated. Setting the measure explicitly to a nonnull initial 
value just before activating the keyboard is a convenient way to present a default 
input string (displayed by SRGP as soon as echoing begins) that the user can 
accept as is or modify before pressing the Return key, thereby minimizing typing. 
The keyboard's measure, a character string, is set via 

void SRGP _setKeyboardMeasure ( char •measure ); 

I 2.3 RASTER GRAPHICS FEATURES 
I 

By now, we have introduced most of the features of SRGP. This section discusses 
the remaining facilities that take particular advantage of raster hardware, espe­
cially the ability to save and restore pieces of the screen as they ~u·e overlaid by 
other images, such as windows or temporary menus. Such image manipulations 
arc done under control of window- and menu-manager application programs. We 
also introduce off creen bitmaps for storing windows and menus, and we discuss 
the use of clipping rectangles. 

2.3.1 Canvases 

The best way to make complex icons or menus appear and disappear quickly is to 
create them once in memory and then to copy them onto the screen as needed. Ras­
ter graphics packages do this by generating the primitives in invisible, offscreen 
bitmaps or pixmaps of the requisite size, called canvases in SRGP, and then copy­
ing the canvases to and from display memory. This technique is, in effect, a type of 
buffering. Moving blocks of pixels back and forth is faster, in general , than is 
regenerating the information, given the existence of the fast SRGP _copy Pixel 
operation that we shall discuss soon. 

An SRGP canvas is a data structure that stores an image as a 2D a1Tay of pix­
els. IL also stores some control infonnat ion concerning the size and attributes of the 
image. Each canvas represents its image in itS own Cartesian coordinate system, 
which is identical to that of the screen shown in Fig. 2. l; in fact, the screen is itself 
a canvas. special solely because it is the only canvas that is displayed. To make an 
image stored in an off-screen canvas visible, the application must copy it onto the 
screen canvas. Beforehand, the portion of the screen image on which the new 
image-for example, a menu-will appear can be saved by copying the pixels in 
that region to an offscreen canvas. When the menu selection has taken place, the 
screen image is restored by copying back these pixels. 

At any given time, there is one currently active canvas: the canvas into which 
new primitives are drawn and to which new attribute settings apply. This canvas 
may be the screen canvas (the default we have been using) or an offscreen canvas. 
The coordinates passed to the primitive functions are expressed in terms of the 
local coordinate space of the currently active canvas. Each canvas also has its own 
complete set of SRGP attributes, which affect all drawing on that canvas and are 
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The 3D viewing process is inherently more complex than is the 2D viewing pro­
cess. ln 2D, we simply specify a window on the 2D world and a viewport on the 
2D view surface. Conceptually, objects in the world are clipped against the win­
dow and are then transformed into the viewport for display. The extra complexity 
of 3D viewing is caused in part by the added dimension and in part by the fact that 
display .devices are only 2D. Although 3D viewing may seem overwhelming at 
first, it is less daunting when viewed as a series of easily understood steps, many of 
which we have prepared for in earlier chapters. Thus, we begin with a precis of the 
3D viewing process to help guide you through this chapter. 

6.1 THE SYNTHETIC CAMERA AND STEPS IN 30 VIEWING 

A useful metaphor for creating 3D scenes is the notion of a synthetic camera, a 
concept illustrated in Fig. 6.1. We imagine that we can move our camera to any 
location, orient it in any way we wish, and, with a snap of the shutter, create a 2D 
image of a 3D object-the speedboat, in this case. At our bidding, the camera can 
become a motion-picture camera, enabli11g us to create an an imated sequence that 
shows the object in a variety of orientations and magnifications. The camera, of 
course, is really just a computer program that produces an image on a display 
screen, and the object is a 3D dataset comprising a collection of points, lines, and 
surfaces. Figure 6.1 also shows that the camera and the 3D object each have their 
own coordinate system: 11, v, 11 for the camera, and x, y, z for the object. We shall 
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Figure 6.1 A synthetic camera photographing a 30 object. 

c:Liscuss the significance of these coordinate systems later in this chapter. We note 
here that they provide an important independence of representation. 

While the synthetic camera is a useful concept, there is a bit more to produc­
ing an image than just pushing a button. Creation of ow· "photo" is actually accom­
plished as a series of steps, which are described now. 

• Specification of projection type. We resolve the mismatch between 3D objects 
and 2D displays by introducing projections, which transform 3D objects onto a 
2D projection plane. Much of this chapter is devoted to projections: what they are, 
what their mathematics is, and how they are used in a current graphics subroutine 
package, PHIGS [ANSI88]. We concentrate on the two most important projec­
tions, perspective and parallel orthographic. The use of projections is also dis­
cussed fu1ther in Chapter 7. 

• Specification of viewing parameters. Once a desired type of projection has 
been determined, we must specify the conditions under which we want to view the 
3D real-world dataset, or the scene to be rendered. Given the world coordinates of 
the dataset, this information includes the position of the viewer's eye and the loca­
tion of the viewing plane-the surface where the projection is ultimately dis­
played. We shall use two coordinate systems-that of the scene and another that 
we call the viewing or eye coordinate system. By varying any or all of these 
parameters, we can achieve any representation of the scene we wish, including 
viewing its interior, when that makes sense. 
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• Clipping in three dimensions. Just as we must confine the display of a 2D 
scene to lie within the boundaries of our specified window, so too must we cull out 
portions of a 3D scene that are not candidates for ultimate display. We may, in fact, 
want to ignore parts of the scene that are behind us or are too far distant to be 
clearly visible. This action requires clipping against a view volume- a more com­
plex process than that represented by the algorithms we have studied so far. 
Because of the wide variability of potential view volumes, we shall invest some 
effort in defining a canonical view volume-one against which we can ef_ficiently 
apply a standardized clipping algorithm. 

• Projection and display. Finally, the contents of the projection of the view vol­
ume onto the projection plane, called the window, are transformed (mapped) into 
the viewport for display. 

Figure 6.2 shows the major steps in this conceptual model of the 3D viewing 
process, which is the model presented to the users of numerous 3D graphics sub­
routine packages. Just as with 2D viewing, a variety of strategies can be used to 
implement the viewing process. The strategies do not have to be identical to the 
conceptual model, as long as the results are those defined by the model. A typical 
implementation strategy for wire-frame line drawings is described in Section 6.6. 
For graphics systems that perform visible-surface determination and shading, a 
somewhat different pipeline, discussed in Chapter 14, is used . 

6.2 PROJECTIONS 

In general, projections transform points in a coordinate system of dimension n into 
points in a coordinate system of din1ension less than n. In fact, computer graphics 
has long been used for studying n-dimensional objects by projecting them into 2D 
for viewing [NOLL67]. Here, we shall limit ourselves to the projection from 3D to 
2D. The projection of a 3D object is defined by straight projection rays, called 
projectors, emanating from a center of projection, passing through each point of 
the object.and intersecting a projection plane to form the projection. In general. 
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Figure 6.3 
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Two different projections of the same line. (a) Line AB and its P,erspective projection A' 8'. (b) 
Line AB and its parallel projection A' 8'. Projectors AA' and BB are parallel. 

the center of projection is a finite distance away from Lhc projection plane. For 
some types of projections, however, it is convenient to think in terms of a center of 
projection that tends to be infin itely far away; we shall explore this concept fwther 
in Section 6.2.1. Figure 6.3 hows two different projections of the same line. For­
tunately, the projection of a line is itself a line, o only line endpoints need to be 
projected. 

The class of projections with which we deal here is known as planar geomet­
ric projections, because the projection is onto a plane rather than onto a curved 
surface, and uses straight rather than curved projectors. Many cartographic projec­
tions are either nonplanar or nongeomctric. 

Planar geometric projections, hereafter referred to simply as projections, can 
be divided into two basic classes: perspective and parallel. The distinction lies in 
the relation of the center of projection to the projection plane. If the distance from 
the one to the other is finite, then the projection is perspective; as the center of pro­
jection moves farther and farther away, the projectors passing through any particu­
lar object get closer and closer lo being parallel to each other. Figure 6.3 iJlustTates 
these two cases. The parallel projection is so named because, with the center of 
projection infinitely distant, the projectors are parallel. When we define a perspec­
tive projection, we explicitly specify its center of projection; for a parallel projec­
tion, we give its direction of projection. The center of projection, being a point, 
has homogeneous coordinates of the form (x, y, z. I). Since the direction of projec­
tion is a vector (i.e., a difference between points), we can compute it by subtracting 
two points d = (x, y, z, 1) - (.l, y', z', I)= (a, b, c, 0). Thus, directions and points 
at infinity correspond in a natural way. In the Limit, a perspective projection whose 
center of projection tends to a point at infinity becomes a parallel projection. 

The visual effect of a perspective projection is similar to that of photographic 
systems and of the human visual system, and is known as perspective foreshort­
ening: The size of the perspective projection of an object varies inversely with the 
distance of that object from the center of projection. Thus, although d1e perspec­
tive projection of objects tends to look realistic, it is not particularly useful for 
recording the exact shape and measurements of the objects: distances cannot be taken 
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z-axis vanishing point 

z z 

One-point perspective projections of a cube onto a plane cutting the z axis, showing vanishing 
point of lines perpendicular to projection plane. 

from the projection, angles are preserved on only those faces of the object parallel 
to the projection plane, and parallel lines do not in general project as parallel lines. 

The parallel projection is a Less realistic view because perspective foreshorten­
ing is lacldng, although there can be different constant foreshortenings along each 
axis. The projection can be used for exact measurements, and parallel lines do 
remain parallel. As in the perspective projection, angles are preserved only on 
faces of the object paralle l to the projection plane. 

The different types of perspective and parallel projections are discussed and 
illustrated at length in the comprehensive paper by Carlbom and Paciorek 
lCARL78]. In Sections 6.2.1 and 6.2.2, we summarize the basic definitions and 
characteristics of the more commonly used projections; we then move on, in Sec­
tion 6.3, to understand how lhe projections are specified to PHIGS. 

6.2.1 Perspective Projections 

The perspective projections of any set of parallel lines that are not parallel to the 
projection plane converge to a vanishing point. In 3D, the parallel lines meet only 
at infinity, so the vanishing point can be thought of as the projection of a point at 
infinity. There is, of course, an infinity of vanishing points, one for each of the 
infinity of directions in which a line can be oriented. 

lf the set of lines is parallel to one of the three principal axes, the vanishing 
point is called an axis vanishing point. There arc at most three such points, corre­
sponding to the number of p1incipal axes cm by the projection plane. For example, 
if the projection plane cuts only the; axis (and is therefore normal to it), on ly the z 
axis has a principal vanishing point, because lines parallel to either the y or x axes 
are also parallel to the projection plane and have no vanishing point. 

Perspective projections are categorized by their number of principal vanishing 
points and therefore by the nwnber of axes the projection plane cuts. Figure 6.4 
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Figure 6.5 
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Construction of one-point perspective projection of cube onto plane cutting the z axis. The 
projection-plane normal is parallel to z axis. (Adapted from [CARL78), Association for 
Computing Machinery, Inc.; used by permission.) 

shows two different one-point perspective projections of a cube. ft is clear that 
they are one-point projections because lines parallel to the x and y axes do not con­
verge; only lines paralJel to the z axis do so. Figure 6.5 shows the construction of a 
one-point perspective with some of the projectors and with the projection plane 
cutting only the z axis. 

Figw-e 6.6 shows the construction of a two-poi:nt perspective. Notice that lines 
parallel to the y a.xis do not converge in the projection. Two-point perspective is 
commonly used in architectural, engineering, industrial design, and advertising 
drawings. Three-point perspectives are used less frequently, since they add little 
realism beyond that afforded by the two-point perspective. 

6.2.2 Parallel Projections 

Parallel projections are categorized into two types, depending on the relation 
between the direction of projection and the normal to the projection plane. In 
orthographic parallel projections, these directions are the same (or are the reverse 
of each other), so the direction of projection is normal to the projection plane. For 
the oblique parallel projection, they are not. 

The most common types of orthographic projections are the front-elevation, 
top-elevation or plan-elevation, and side-elevation projections. In aJl these, the 
projection plane is perpendicular to a principal axis, which is therefore the direc­
tion of projection. Figure 6.7 shows the construction of these three projections; 
they are often used in engineering drawings to depict machine parts, assemblies, 
and buildings, because distances and angles can be measured from them. Since 
each projection depicts only one face of an object, however, the 3D nature of the 
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Projection plane 

\ 
x-axis vanishing point 

/ 
z-axis vanishing point 

Figure 6.6 Two-point perspective projection of a cube. The projection plane cuts the x and z axes. 

projected object can be difficult to deduce, even if several projections of the same 
object are studied simultaneously. 

Axonometric orthographic projections use projection planes that are not 
no1mal to a principal axis and therefore show several faces of an object at once. 

Figure 6.7 Construction of three orthographic projections. 
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Viewing in 30 
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Construction of an isometric projection of a unit cube. (Adapted from (CARL78), Association 
for Computing Machinery, Inc.; used by permission.) 

They resemble the perspective projection in this way, but differ in that the fore­
shortening is uniform, rather than being related to the distance from the center 01 

projection. Parallelism of lines is preserved, but angles are not, and distances CaL 

be measured along each principal axis (in general, with different scale factors). 
The isometric projection is a commonly used axonometric projection. The 

projection-plane nonnal (and therefore the direction of projection) makes equal 
angles with each principal axis. If the projection-plane normal is (d,P dy, dz), then 
we require that Id.~ = ldyl = ld=I or ±dx = ±dy = ±d:. There are just eight directiofu 
(one in each octant) that satisfy this condition. Figure 6.8 shows the construction 
of an isometric projection along one such direction. (1, - 1, -I ). 

The isometric projection has the useful property that all three principal axes 
are equally foreshortened, aUowing measurements along the axes to be made to the 
san1e scale (hence the name: iso for equal, metric for measure). In addition , the 
projections of the principal axes make equal angles of 120° with one another. 

Oblique projections, lhe second class of parallel projections, differ from 
orthographic projections in that the projection-plane normaJ and the direction o: 

x projection differ. Oblique projections combine properties of the front, top, and side 
orthographic projections with those of the axonometric projection: the projection 
plane is nom1al to a principal axis, so the projection of the face of the object paral­
lel to this plane allows measurement of angles and distances. Other faces of the 
object project also, allowing distances along principal axes, but not angles, to be 
measured. Oblique projections are widely, although not exclusively, used in this 
text because of these properties and because they are easy to draw. Figure 6.9 
shows the construction of an oblique projection. Notice that the projection-plane 
nonnal and the direction of projection are not the same. Several types of oblique 
projections are described in IFOLE90). 

Figw-e 6.10 shows the logical relationships among the various types of projec­
tions. The common thread uniting all the projections is that they involve a projec­
tion plane and either a center of projection for the perspective projection, or 2 
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Construction of an isometric projection of a unit cube. (Adapted from [CARL78], Association 
for Computing Machinery, Inc.; used by permission.) 

They resemble the perspective projection in this way, but differ in that the fore­
shortening is uniform, rather than being related to the distance from the center of 
projection. Parallelism of lines is preserved, but angles are not, and distances cac 
be measured along each principal axis (in general, with differer1t scale factors). 

The isometric projection is a commonly used axonometric projection. The 
projection-plane nonnal (and therefore the direction of projection) makes equal 
angles with each principal axis. lf the projection-plane normal is (dx, dy, dz), then 
we require that ld.d = ld>,I = ld=I or ±dx = ±dy = ±d:. There are just eight directiofu 
(one in each octant) that satisfy th is conclition. Figure 6.8 shows the constmctioa 
of an isometric projection along one such direction. ( l , -1, -1). 

The isometric projection has the useful property that all three principal axes 
are equally foreshortened, allowing measurements along the axes to be made to the 
same scale (hence the name: iso for equal, metric for measure). ln addition, the 
projections of the principal axes make equal angles of 120° with one another. 

O blique proj ections, the second class of parallel projections, d iffer from 
orthographic projections in that the projection-plane normal and the direction o; 

x projection differ. Oblique projections combine properties of the front, top, and side 
orthographic projections with those of the axonometric projection: the projectior; 
plane is nonnal to a principal axis. so the projection of the face of the object paral­
lel to this plane allows measurement of angles and distances . Other faces of the 
object project also, allowing distances along principal axes, but not angles, to be 
measured. Oblique projections are widely, althougb not exclusively, used in thb 
text because of these properties and because they are easy to draw. Figure 6.9 
shows the construction of an oblique projection. Notice that the projection-plane 
normal and the direction of projection are not the same. Several types of oblique 
projections are described in lFOLE90]. 

Figure 6. JO shows the logical relationships among the various types of projec­
tions. The common thread uniting all the projections is that they involve a projec­
tion plane and either a center of projection for the perspective projection, or a 
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Figure 6.10 The subclasses of planar geometric projections. Plan view is another term for a top view. 
Front and side are often used without the term elevation. 

direction of projection for the paralle l projection. We can unify the parallel and 
perspective cases further by thinking of the center of projection as defined by the 
direction to the center of projection from some reference point, and the distance to 
the reference point. When this distance increases to infinity, the projection 
becomes a parallel projection. Hence, we can also say that the common thread 
uniting these projections is that they involve a projection plane, a direction to the 
center of projection, and a distance to the center of projection. In Section 6.3 , wc 
consider how to integrate some of these types of projections into the 3D viewing 
process. 

6.3 SPECIFICATION OF AN ARBITRARY 30 VIEW 

As suggested by Fig. 6.2, 3D viewing involves nor just a projection, but also a 
view volume against which the 3D world is c lipped. The projection and view vol­
ume together provide aJl the information that we need to clip and project into 2D 
space. Then, the 2D transformation into physical device coordinates is straightfor­
ward. We now build on the concepts of planar-geometric projection introduced in 
Section 6.2 to show how to specify a view volume. The viewing approach and ter­
minology presented here is that used in PHIGS. 

The projection plane, henceforth called the view plane to be consistent with 
the graphics literature, is defined by a point on the plane called rhe view reference 
point (VRP) and a nom,al to the plane cal led the view-plane normal (VPN). The 
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V 

u 

Figure 6.11 The view plane is defined by VPN and VRP; the v axis is defined by the projection of YUP 
along VPN onto the view plane. The u axis forms the right-handed VRC system with VPN and 
V. 

Figure 6.12 

view plane may be anywhere with respecL ro the world objects to be projected: II 
may be in front of, cut through, or be behind the objects. 

Given the view plane, a window on the view plane is needed. The window's 
role is similar to that of a 2D window: Its contents are mapped into the viewport. 
and any part of the 3D world that projects onto the view plane outside of the win­
dow is not displayed. We shall see that the window also plays an important role in 
defining the view volume. 

To define a window on the view plane, we need a means of specifying mini­
mum and maximum window coordinates and the two orthogonal axes in the vie" 
plane along which to measure these coordinates. These axes are part of the 3D 
viewing-reference coordinate (VRC) system. The origin of the YRC system is 
the VRP. One axis of the YRC is VPN; this axis is called then axis. A second axi 
of the YRC is found from the view-up vector (VUP), wh ich determines the v-axis 
direction on the view plane. TI1e II axis is defined such 1hat the projection of YUP 
parallel to VPN onto the view plane is coincident with the v axis. The u-axis direc­
tion is defined such that u, v, and n form a right-handed coordinate system, as in 
Fig. 6.11. The VRP and the two direction vectors VPN and YUP are specified in 
the right-handed world-coordinate system. (Some graphics packages use tbe y axis 
as YUP, but this convention is too restrictive and fails if VPN is parallel to the .r 
axis, in which case YUP is undefined.) 

The viewing-reference coordinate system (VRC) is a right-handed system made up of the u, v, 
and n axes. The n axis is always the VPN. CW is the center of the window. 
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With the YRC system defined, the window's minimum and maximum u and v 
coordinates can be defined, as in Fig. 6..12. This figure illustrates that the window 
does not have to be symmetrical about the VRP, and exp)jcitly shows the center of 
the window, CW. 

The center of projection and direction of projection (DOP) are defined by a 
projection reference point (PRP) and an indicator of the projection type. If the 
projection type is perspective, then PRP is the center of projection. If the projec­
J:ion type is parallel, then the DOP is from the PRP to CW. The CW is in general 
not the VRP, which does not need even to be within the window bounds. 

The PRP is specified in the YRC system, not in the world-coordinate system; 
thus, the position of the PRP relative to the VRP does not change as VUP or VRP 
is moved. The advantage of this scheme is that the programmer can specify the 
direction of projection required and then change VPN and VUP (hence changing 
YRC), without having to recalculate the PRP needed Lo maintain the desired pro­
jection. On the other hand, moving the PRP about to get different views of an 
object may be more difficult. 

The view volume bounds that portion of the world that is to be clipped out 
and projected onto the view plane. For a perspective projection, the view volume is 
the semi-infinite pyramid with apex at the PRP and edges passing through the cor­
ners of the window. Figure 6.13 shows a perspective-projection view volume. 

Positions behind the center of projection are not included in the view volume 
and thus are not projected. In reali.ty, of course, our eyes see an irregularly shaped 
conelike view volume. However, a pyramidal view volume is mathematically 
more tractable, and is consistent with the concept of a rectangular viewport. 

For parallel projections, the view volume is an infinite parallelepiped with 
sides parallel to the direction of projection, which is the direction from the PRP to 
the center of the window. Figure 6.14 shows a parallel-projection view volume and 
its relation to the view plane, window, and PRP. 

n 

Center of 
projection 
(PAP) 

Figure 6.13 Semi-infinite pyramid view volume for perspective projection. CW is the center of the window. 
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Figure 6.14 Infinite parallelepiped view volume of parallel orthographic projection. The VPN and directiO'" 
of projection (DOP) are parallel. DOP is the vector from PAP to CW, and is parallel to the 
VPN. 

At times, we might want the view volume to be fin ite, in order to limit th.. 
number of output primitives projected onto the view plane. Figures 6.15 and 6. Ir­
show how the view volume is made finite with a front clipping plane and bacl 
clipping plane. These planes, sometimes called the hit her and yon planes, are 
parallel to the view plane; their normal is the VPN. The planes are specified by the 
signed quantities front distance (F) and back distance (B) relative to the VRP a!k. 
along the VPN, with posilive distances in the direction of the VPN. For the viev 
volume to be nonempty, the front distance must be algebraically greater than tlk 
back distance. 

Limiting the view volume in this way can be useful to eliminate extraneou, 
objects and to allow the user to concentrate on a particular portion of the world 
Dynamic modification of either the front or rear distances can give the viewer .. 

Figure 6.15 Truncated view volume for an orthographic parallel projection. DOP is the direction of 
projection. 
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VPN 

Truncated view volume for a perspective projection. 

good sense of the spatial relationships between different parts of the object as these 
parts appear and disappear from view (see Chapter 12). For perspective projections 
there is an additional motivation. An object very distant from the center of projec­
tion projects onto the view surface as a "blob" of no distinguishable fonn. In dis­
playing such an object on a ploner, the pen can wear through the paper: on a vector 
display, rhe CRT phosphor can be burned by the electron beam; and on a vector 
film recorder. the high concentration of light causes a fuzzy white area to appear. 
Also, an object very near the center of projection may extend across the window 
like so many disconnected pick-up sticks, with no discernible structure. Specifying 
the view volume appropriately can eliminate such problems. 

How are the contents of the view volwne mapped onto the display surface? 
First, consider the unit cube extending from O to I in each of the three dimensions 
of normalized projection coordinates (NPC). The view volume is transformed 
into the rectangular solid of NPC, whkh extends from Xmin to Xmax along the x 

axis, from Ymin to Ymax along the y axis, and from =min to :zm;u along the z axis. The 
front clipping plane becomes the Zmax plane, and the back c lipping plane becomes 
the zmin plane. Similarly, the umin side of the view volume becomes the Xmin plane, 
and the "max side becomes the Xmax plane. Finally, Lhe vmin side of the view vol­
ume becomes the Ymin plane, and the Vmax side becomes the Ymax plane. This rect­
angular solid portion of NPC, called a 3D viewport, is within the unit cube. 

The z = 1 face of this unj1 cube, in tum, is mapped into the largest square that 
can be inscribed on the display. To create a wire-frame djsplay of the contents of 
the 3D viewport (which are the contents of the view volume), the z-component of 
each output primitive is simply discarded, and the output primitive is displayed. 
We shall see in Chapter 13 that hidden-surface removal simply uses the z-compo­
nent to determine which output primitives are closest to the viewer and hence are 
visible. 

PHlGS uses two 4 x 4 matrices, the view orientation matrix and the view 
mapping matrix, to represent the complete set of viewing specifications. The VRP, 
VPN, and YUP are combined to fonn the view orientation matrix, which trans­
fonns positions represented in world coordinates into positions represented 111 
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VRC. This transfonnation takes lhe u, v, and n axes into thex, y, and z axes, respec­
tively. 

The view-volume specifications, given by PRP, Umin• umax• vmin• vmax, F, and 
B, along with the 3D viewport specification, given by Xmin• Xmax, Ymin• Ymax• zmin· 
and Zmax• are combined to fonn the view mapping matrix, which transfonns 
points in VRC to points in nonnalized projection coordinates. The subroutine calls 
that form the v iew orientation matrix and view m apping matrix are discus ed in 
Section 7.3.4. 

In Section 6.4, wc see how to obtain various views using the concepts intro­
duced in this section. rn Section 6.5, the basic mathematics of planar geometric 
projections is introduced, whereas in Section 6-.6, the mathematics and algorithms 
needed for the entire viewing operation are developed. 

6.4 EXAMPLES OF 30 VIEWING 

Figure 6.17 
Two-point perspective 
projection of a house. 

Figure 6.18 

ln this section, we consider bow we can apply tbe basic viewing concepts intro­
duced in Section 6.3 to create a variety of projections, such as that shown in Fig. 
6. 17. Because the house shown in this figure is used throughout this section, it will 
be helpful to remember its dimensions and position, which are indicated in Fig. 
6.18. For each view discussed, we give a table showing the VRP, VPN, YUP, PRP. 
window, and projection type (perspective or parallel). The 3D vicwport defaul t. 
which is the unit cube in NPC, is assumed throughout this section . The notatior 
(WC) or (YRC) is added to the table as a reminder of the coordinate system in 
which the v iewing paran1eter is given. The fonn of the table is illustrated here for 
the default viewing specification used by PHJGS. The defaults arc shown in Fig 
6.19(a). The view volume corresponding to these defaul ts is shown in Fig. 6. l9(b). 
If the type of projection is perspective rather than parallel, then the view volume i~ 
the pyramid shown in Fig. 6.19(c). 

y 

(0, 10, 54) 

(16, 0, 54) 
z 

This house is used as an example of a world-coordinate dataset throughout this chapter. Its 
coordinates extend from 30 to 54 In z, from o to 16 in x, and from 0 to 16 in y. 



8 Input Devices, Interaction 
Techniques, and Interaction Tasks 

High-quality user interfaces are in many ways the las, froniier in providing com­
puting to a wide variety of users, since hardware and software costs are now low 
enough to bring significant computing capability to our offices and homes. Just as 
software engineering has recently given stmcrw-c to an activity that once was 
totally ad hoc, so too the new area of user-interface engineering is generating user­
interface principles and design methodologies. 

The quality of the user interface often determines whether users enjoy or 
despise a system, whether rhe designers of tJ,e system are praised or danrned, 
whether a system succeeds or fails in the market. The designer of an interactive 
graphics application must be sensitive to users' desire for easy-to-learn yet power­
ful interfaces. 

The desktop user-inte1face metaphor, with its windows, icons, and pull-down 
menus, all making heavy use of raster grapl1ics, is popular because it is easy to 
learn and requires little typing skill. Most users of such systems are not computer 
programmers and have little sympathy for the old style, hard-to-learn, keyboard­
oriented command-language interfaces that many programmers take for granted. 
The process of designing, testing, and implementing a user interface is complex: 
see [FOLE90; SHNE86; MAYH90] for guidelines and methodologies. 

We focus in this chapter on input devices, interaction technologies, and inter­
action tasks. These are the basic building blocks from which user interfaces are 
constructed. fnput devices are the pieces of hardware by which a user enters infor­
mation into a computer system. We have a lready discussed many such devices in 
Chapter 4. ln this chapter, we introduce additional devices, and discuss reasons for 
preferring one device over another. ln Section 8.1.6, we describe input devices 
oriented specifically toward 3D interaction. We continue to use the logical device 
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categories oflocator, keyboard, choice, valuator, and pick used by SRGP, SP}ITGS, 
and other device-independent graphics subroutine packages. We also discuss basic 
elements of user interfaces: interaction techniques and interaction tasks. Inter­
action techniques are ways to use input devices to enter infonnation into the com­
puter, whereas interaction tasks classify the fundamental types of information 
entered with the interaction techniques. Interaction techniques are the primitive 
building blocks from which a user interface is crafted. 

An interaction task is the entry of a unit of information by the user. The four 
basic interaction tasks are position, text, select, and quantify. The unit of infor­
mation input in a position interaction task is of course a position. Similarly, the text 
task yields a text string; the select task yields an object identification; and the 
quantify task yields a numeric value. Many different interaction techniques can 
be used for a given interaction task. For instance, a selection task can be cauied 
out by using a mouse to select items from a menu, using a keyboard to enter the 
name of the selection, pressing a function key, or using a speech recognizer. Simi­
larly, a single device can be used for different tasks: A mouse is often used for both 
positioning and selecting. 

Interaction tasks are distinct from the logical input devices discussed in earlier 
chapters. Interaction tasks are defined by what the user accomplishes, whereas log­
ical input devices categorize how that task is accomplished by the application pro­
gram and the graphics package. Interaction tasks are user-centered, whereas 
logical input devices are a programmer and graphics-package concept. 

Many of the topics in this chapter are discussed in much greater depth else­
where; see the texts by Baecker and Buxton [BAEC87], Hutchins, Hollan, and 
Nom,an [HUTC86], Mayhew [MAYH90], Nonnan [NORM88], Rubenstein and 
Hersh [RUBE84], Shneiderman [SHNE86J, and [FOLE90]; the reference book by 
Salvendy [SALV87]; ~u,d the sw·vey by Foley, Wallace, and Chan [FOLE84]. 

8.1 INTERACTION HARDWARE 

Here, we introduce some interaction devices not covered in Section 4.5 , elaborate 
on how they work, and discuss the advantages and disadvantages of various 
devices. The presentation is organized around the logical-device categorization of 
Section 4.5, and can be thought of as a more detailed continuation of that section. 

The advantages and disadvantages of various interaction devices can be dis­
cussed on tlu·ee levels: device, task, and dialogue (i.e., sequence of several interac­
tion tasks). The device level centers on the hardware characteristics per se, and 
does not deal with aspects of the device's use controlled by software. At the device 
level, for example, we note that one mouse shape may be more comfortable to hold 
than another, and that a data tablet takes up more space than a joystick. 

At the task levcl, we might compare interaction techniques using different 
devices for the same task. Thus, we might assert that experienced users can often 
enter commands more quickly via function keys or a keyboard than via menu 
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selection, or that users can pick displayed objects more quickly using a mouse than 
they can using a joystick or cursor control keys. 

At the dialogue level, we consider not just individual interaction tasks, buL 
also sequences of such tasks. Hand movements between devices take time: 
Although the positioning task is generally faster with a mouse than with cursor­
control keys, cursor-control keys may be faster than a mouse if the user's hands are 
a lready on the keyboard and will need to be on the keyboard for the next task in 
sequence after the cursor is repositioned. 

Important considerations at the device level, discussed in this section, are the 
device footprints-(the footprint of a piece of equipment is the work area it 
occupies) - operator fatigue, and device resolution. Other important device 
issues-such as cost, reliability, and maintainability-change too quickly with 
technological innovation to be d iscussed here. 

8.1 .1 Locator Devices 

It is useful to classify locator devices according to three independent characteris­
tics: absolute or relative, dfrect or indirect, and discrete or continuous. 

Absolute devices, such as a data tablet or touch panel, have a frame of refer­
ence, or origin , ru1d report positions with respect to tl1at origin. Relative devices­
such as mice, trnckballs, and velocity-control joysticks-have no absolute origin 
and report only changes from their former position. A relative device can be used 
to specify an arbitrarily large change in position: A user can move a mouse along 
the desktop, lift it up and place it back at its initial starting position, and move it 
again. A data tablet can be programmed to behave as a relative device: The first 
(x, y) coordinate position read after the pen goes from far to near state (i.e., close 
to the tablet) is subtracted from alJ subsequently read coordinates to yield only the 
change in x and y, which is added to the previous (x, y) position. This process is 
continued until the pen again goes to far state. 

Relative devices cannot be used readily for digi tizing drawings, whereas abso­
lute devices can be. The advantage of a relative device is that the application pro­
gram can reposition the cursor anywhere on the screen. 

With a direct device-such as a touch screen- the user points dixectly at the 
screen with a finger or surrogate finger; with an indirect device-such as a tablet, 
mouse, or joystick-the user moves a cursor on the screen using a device not on 
the screen. New forms of eye-hand coordination must be learned for the latter; the 
proliferation of computer games in homes and arcades, however, have created an 
environment in which many casual computer users have already learned these 
skills. However, direct pointing can cause rum fatigue , especially among casual 

users. 
A continuous device is one in which a smooth hand motion can create a 

smooth cursor motion. Tablets, joysticks, and mice are all continuous devices, 
whereas cursor-control keys are discrete dev ices. Continuous devices typically 
allow more natural, easier, and faster cursor movement than do discrete devices. 
Most continuous devices also permit easier movement in arbitrary directions than 
do cursor control keys. 
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Speed of cursor positioning with a continuous device is affected by lh­
control-to-display ratio. commonly called the C/D ratio [CHAP721; it is the rat 
between hand movement (the control) and cursor movement (the display). A I~ . 
ratio is good for accurate positioning, but makes rapid movements tedious; a sm­
ratio is good for speed but not for accuracy. Fortunately, for a relative position~ 
device. Lhe ratio need not be constant, but can be changed adaptively as a functio 
of control-movement peed. Rapid movements indicate the user is making a gro, 
hand movement, so a small ratio is u ed; as the speed decreases, the CID ratio 
increased. This variation of CID ratio can be set up so that users can use a mouse· 
po ition a cursor accurately across a 15-inch screen without repositioning the 
wrist! For indirect discrete devices (cursor-control keys), there is a similar tec1-­
nique: The distance the cursor is moved per unit time is increased as a function 
the time the key has been held down. 

Precise positioning is difficult with di rect devices, if the am1 is unsuppon 
and extended toward the screen. Try w1iting your name on a blackboard in , .. 
pose, and compare the result to your no1mal signatuJ"e. This problem can be mi· 
gated if the screen is angled close to horizontal. Indirect devices, on the other han.. 
allow the heel of the hand to rest on a support, so that the fine motor control of i!;.. 
fingers can be used more effectively. Not all continuous indirect devices 
equaJly satisfactory for drawing, however. Try writing your name with a joysticl, 
mouse. and a tablet pen stylus. Using the stylus is fastest, and the result is m 
pleasing. 

8.1.2 Keyboard Devices 
The well-known QWERTY keyboard bas been with us for many years. It is iror. 
that this keyboard was originally designed to slow down typists, so that the type 
writer hammers would not be so likely to jam. Studies have shown that the ne\\e' 
Dvorak keyboard fDYOR43], which place vowels and other high-frequen ... 
characters under the home positions of the fingers, is somewhat faster than is th 
QWERTY design [GREE87]. It has not been widely accepted. Alphabetical. 
organized keyboards are sometimes used when many of the users arc nontypi<,r 
But more and more people are being exposed to QWERTY keyboards, and sever, 
experiments have shown no advantage of alphabetic over QWERTY keyboar, 
[HIRS70; MlCH7 J]. 

Other keyboard-oriented considerations, involving 1101 hardware but softwa 
design, are arranging for a user to enter frequently used punctuation or correctic 
characters without needing to press the control or shift keys simultaneously, ru 
a. signing dangerous actions (such as delete) to keys that are distant from other fr 
quemly used key . 

8.1.3 Valuator Devices 

Some valuators are bounded. like the volume control on a radio- the dial can 
turned only so far before a stop is reached that prevents further turning. A bounc 
valuator inputs an absolute quantity. A continuous-tum potentiometer, on the otJ 
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band, can be turned an unbounded number of times in either direction. Given an 
initial value, the unbounded potentiometer can be used to return absolute values; 
otherwise. the returned values are treated as relative values. The provision of some 
son of echo enables the user to detennine what relative or absolute value is cur­
rently being specified. The issue of C/D ratio, discussed in the context of position­
ing devices, also arises in the use of sl ide and rotary potentiometers to iJ1put values. 

8.1.4 Choice Devices 

Function keys are a common choice device. Their placement affects their usability: 
Keys mounted on the CRT bezel are harder to use than are keys mounted in the 
keyboard or in a nearby separate unit A foot switch can be used in applications in 
which the user 's hands are engaged yet a single switch closure must be frequently 
made. 

8.1 .5 Other Devices 

Here we discuss some of the less common, and in some cases experimental, 2D 
interaction devices. Voice recognizers, which are useful because they free the 
user's hands for other uses, apply a panem-recognltion approach to the wavefonns 
created when we speak a word. The wavefonn is typically separated into a number 
of different frequency bands, and the variation over time of the magnitude of the 
wavefonn in each band forms the basis for the panem matching. However, mis­
takes can occur in the pattern matching, so it is especially important that an appli­
cation using a recognizer provide convenient correction capabilities. 

Vo ice recognizers differ in whether they must be trained to recognize the 
wavefonns of a particular speaker, and whether they can recognize connected 
speech as opposed to single words or phrases. Speaker-independent recognizers 
have vocabuJaries that include the digits and up to 1000 words. 

The data tablet bas been extended in several ways. Many years ago, Herot and 
Negroponre used an experimental pressure-sensitive stylus [HER076J: High pres­
sure and a slow drawing speed implied that the user was drawing a line with delib­
eration, in which case the line was recorded exactly as drawn; low pressure and 
fast speed implied that the line wa<; being drawn quickly, in which case a straight 
line connecting the endpoints was recorded. A more recent commercially available 
tablet IWAC093] incorporates uch a pressure-sensitive stylus. The resulting three 
degrees of freedom reported by the tablet can be used in various creative ways. 

8.1.6 30 Interaction Devices 

Some of the 2D interaction devices are readi ly extended to 3D. Joysticks can have 
a shaft that twists for a third dimension (see Fig. 4.15). Trackballs can be made to 
sense rotation about the vertical axis in addition to that about the two horizontal 
axes. In both cases, however, there is no direct relationship between hand move­
ments with the device and the corresponding movement in 3-space. 
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Figure 8.1 
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A number of devices can record 3D hand movements. For example, the 
Polhemus 3SPACE 3D position and orientation sensor uses electromagnetic cou­
pling between three transmitter antennas and three receiver antennas. The trans­
mitter antenna coils, which are at right angles to one another to form a Cartesian 
coordinate system, are pulsed in turn. The receiver has three similarly arranged 
receiver antennas; each time a transmitter coil is pulsed, a cun-ent is induced ir 
each of the receiver coils. The strength of the current depends both on the distanet­
between the receiver and transmitter and on the 1-clative orientation of the transmi1-
ter and receiver coils. The combination of the nine current values induced by the 
three successive pulses is used to calculate the 3D position and orientation of Ul\. 
receiver. Figure 8. 1 shows th is device in use for one of its common purposes: digi­
tizing a 3D object. 

The DataGlove records hand position and orientation as well as finger mO\ " 
ments. As shown in Fig. 8.2, it is a glove covered with small, lightweight senso~ 
Each sensor is a short length of fiberoptic cable, with a light-emitting diode (LED 
at one end and a phototransistor al the other end. The surface of the cable is roug. 
cned in the area where it is to be sensitive to bending. When the cable is flexa.. 
some of the LED 's light is lost, so less light is received by the phototransistor. : 
addition, a Polhemus position and orientation sensor records hand movemen 
Wearing the DataGlove, a user can grasp objects, move and rotate them, and tll:.. 
release them, thus providing very natural interaction in 3D [ZTMM87]. Color Pl ... 
6 i llustratcs this concept. 

Considerable effort has been directed toward creating what are often call .. 
artificial realities or virtual realities; these are completely computer-genera: .. 
environments with realistic appearance, behavior, and interaction lechniqt... 

(a) {b) 

(a) The Polhemus 3D position sensor being used to digitize a 3D object. (b) A wireframe 
display of the result. (3Space digitizer courtesy of Polhemus, Inc., Colchester, VT.) 
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The VPL DataGlove, showing the fiberoptic cables that are used to sense finger movements, 
and the Polhemus position and orientation sensor. (From J. Foley, Interfaces for Advanced 
Computing, Copyright@ 1987 by Scientific American, Inc. Al l rights reserved.) 

[FOLE87]. In one version, the user wears a head-mounted stereo display to show 
proper left- and right-eye views, a Polhemus sensor on the head allows changes in 
head position and orientation to cause changes to the stereo display, a DataGlove 
permits 30 interaction, and a microphone is used for issuing voice commands. 
Color Plate 7 shows this combination of equipment. 

Several other technologies can be used to record 3D positions. In one, using 
optical sensors, LEDs are mounted on the user (either al a single point, such as the 
fingertip, or all over the body, to measure body movements). Light sensors are 
mounted high in the comers of a small, semidarkened room in which the user 
works, and each LED is intensified in tum. The sensors can determine the plane in 
which the LED lies, and the location of the LED is thus at the intersection of three 
planes. (A fourth sensor is normally used, in case one of the sensors cannot see the 
LED.) Small reflectors on the fingertips and other points of interest can replace the 
LEDs; sensors pick up reflected light rather than the LED's emitted light. 

Krueger [KRUE83] has developed a sensor for recording hand and finger 
movements in 2D. A television camera records hand movements; image-process­
ing techniques of contrast-enhancement and edge detection are used to find the 
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outline of the hand and fi nger . Different finger positions can be interpreted as 
commands, and the user can grasp and manipulate objects, as in Color Plate 8. This 
technique could be extended to 3D through use of multiple cameras. 

8.2 BASIC INTERACTION TASKS 

With a basic interaction task, the user of an interactive system enters a unit 01 

information that is meaningful in the context of the application. How large or small 
is such a unit? For instance, does moving a positioning device a small distance 
enter a unit of infotmation? Yes, if the new position is put to some application pur­
pose, such as repositioning an object or specifying the endpoint of a line. No, if the 
repositioning is just one of a sequence of repositionings as the user moves the cur­
sor to place it on top of a menu item: Here, it is the menu choice that is the unit 
info1mation. 

Basic interaction tasks (BITs) are indivisible; that is, if they were decom­
posed into smaller units of information, the smaller units would not in themsel\'e­
be meaningful to the application. BITs are discussed in this section. In Secti 
8.3, we treat composite interaction tasks (CITs), which are aggregates of the ba, , 
interaction tasks described here. lf one thinks of BITs as atoms, then CITs a:: . 
molecules. 

A complete set of BITs for interactive graphics is positioning, selecting, emer­
ing text, and entering numeric quantities. Each BIT is described in this section, ru: 
some of the many interaction techniques for each are discussed. However, the­
are far too many interaction techniques for us to give an exhaustive list. and 
cannot anticipate the development of new techniques. Where possible, the pros a:. 
cons of each technique are discussed; remember that a specific interaction tee -
nique may be good in some situations and poor in others. 

8.2.1 The Position Interaction Task 

The positioning task involve specifying an (x, y) or (x, y, z) position to the appli ... 
lion program. The customary interaction techniques for can-ying out this r 
involve either moving a screen cursor to the desired location and then pushin.,, 
button, or typing the desired position's coordinates on either a real or a simula·~ 
keyboard. The positioning device can be direct or indirect, continuous or discre 
ab elute or relative. ln addition, cursor-movement commands can be typed exp 
itly on a keyboard, as Up, Left, and so on, or the same commands can be spokeP 
a voice-recognition unit. Furthermore, techniques can be used together-a mo.. 
controlling a cursor can be used for approximate positioning, and arrow keys~ 
be used to move the cursor a single screen unit at a time for precise positioning. 

There ::u-e two types of positioning tasks, spatial and linguistic. In a span 
positioning task, the user knows where the intended position is, in spatfal relat 
to nearby elements, as in drawing a line between two rectangles or centering 
object between two others. In a linguistic positioning task. the use r knows 
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numeric values of the (x. y) coordinates of the position. In the former case, Lhe user 
wants feedback showing the actual position on the screen; in the latrcr case, the 
coordinates of the position are needed. lf the wrong form of feedback is provided, 
the user must mentally convert from one fonn ro the other. Both fonns of feedback 
can be provided by displaying both the cursor and its numeric coordinates, as in 
Fig. 8.3. 

8.2.2 The Select Interaction Task-Variable-Sized Set of Choices 

T 
1.00 __ l 

- 1.1s ---1 

Figure 8.3 
'lumeric feedback 
regarding size of an object 
oeing constructed. The 
neight and width are 
cnanged as the cursor (+)ls 
'Tloved, so the user can 
arljust the object to the 
JeSired size. 

The selection task is 1hat of choosing an element from a choice set. Typical choice 
sets are commands. attribute values, object classe . and object instances. For 
example, the line-style menu in a typical paint program is a set of attribute values, 
and the object-type (Une, circle, rectangle, text, etc.) menu in such programs is a 
set of object classes. Some interaction techniques can be used to select from any of 
tbese four types of choice sets; others are less general. For example, pointing at a 
visual representation of a set element can serve to select it, no mailer what the set 
type. On the other hand, ald10ugh function keys often work quite well for selecting 
from a command, object class, or attribute set, it is difficult to assign a separate 
function key to each object instance in a drawing, since the size of the choice set is 
variable. often is large (larger than the number of available function keys), and 
changes quite rapidly as the user creates and deletes objects. 

We use the terms (relatively) fixed-sized choice set and va,ying-sized choice 
set. The first term characterizes command, attribute, and object--class choice se1s; 
the second, object-instance choice sets. The modifier relatively recognizes that any 
of these sets can change as new commands, attributes, or object c lasses (such as 
symbols in a drafting system) are defined. But the set s ize does not change fre­
quently. and usuaUy does not change much. Varying-sized choice sets, on the other 
hand. can become quite large, and can change frequently. 

In this section, we discuss techniques that are particularly well suited to poten­
tially large varying-sized choice sets; these include naming and pointing. In Sec­
tion 8.2.3, we discuss selection techniques particularly well suited to (relatively) 
fixed-s ized choice sets. These seLs tend to be small, except for Lhe large (but rela­
tively fixed-sized) command sets found in complex applications. The techniques 
d iscussed include typing or speaking the name, abbreviation, or other code that 
represents the set element; pressing a function key associated with 1hc set element 
(this can be seen as identical to typing a single character on the keyboard): point­
ing at a visual representation (textual or graphical) of the set element in a menu; 
cycling through the set until the desirnd element is displayed; and making a dis­
tinctive motion with a continuous positioning device. 

Selecting objects by naming. The user can type the choice's name. The idea is 
simple , blll what if the user docs not !mow the object's name, as could easily hap­
pen if hundreds of objects are being displayed, or if the user has no reason to know 
names? Nevertheless, this technique is useful in several situations. First, if the user 
is likely 10 know the names of various objects , as a fleet commander would know 
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the names of Lhe fleeL's ships, then referring to them by name is reasonable, ru:-: 
can be faster than pointing, especially if the user mighl need to scroll through tr, 
display to bring the desired object into view. Second, if the display is so cluuere 
that picking by pointing is difficult and if zooming is 001 feasible (perhaps becau 
the graphics hardware does nol suppoJ1 zooming and software zoom is too slov 
then naming may be a choice of last resort. If clutter is a problem, then a commar 
to tum object names on and off would be useful. 

Typing allows us to make multiple selections through wild-card or don't-c ..... 
characters, if the choice set elements are named in a meaningful way. Selec1ion 
naming is most appropriat.e for experienced, regular users, rather than for cru t.... 
infrequent users. 

If naming by 1yping is nece sary, a useful fonn of feedback is to dispL 
immediately after each keystroke, the list (or partial list, if the full list is too Ire 
of names in the selection set matching the sequence of characters typed so far. T 
display can trigger memory of how the name is spelled, if the user has recalled 
first few characters. As soon as an unambiguous match has been typed, the com 
name can be automatically highlighted on the list Alremarively, the name can 
automatically completed as soon as an unambiguous match has been typed. T 
technique, called a utocompletio n, is sometimes disconcerting to new user". 
caution is advi able. A separate strategy for name typein is spelling corre~ 
(sometimes called Do What I Mean, or DWIM). If the typed name does not m... 
one known to the system, other names that are close to the typed name can be~ 
scnted to the user as alternatives. Determining closeness can be as simpk 
searching for single-character errors, or can include multiple-character and Ii" 

ing-character errors. 
With a voice recognizer, the user can speak, rather tban type, a name. abbr\. 

aiion, or code. Voice input is a simple way to distinguish commands from u. 

Commands are entered by voice, the data are entered by keyboard or other me 
ln a keyboard environment, this feature eliminates the need for special char-a.: 
o r modes to distinguish data and commands. 

Selecting obj ects by poin ting. Any of the pointing techniques mentioned i~ 
introduction to Section 8.2 can be used to select an object, by first pointin,, 
then indicating (typically via a button-pu!>h) that the desired objec1 is being po< 
at. But what if the object has multiple levels of hierarchy, as did the robot of c~ 
ter 7? If the c ursor is over the robot's hand, it is not clear whether the user is P' 
ing at the hand, the ann, or 1Jie emire robot. Commands like Select_robot 
Select_arm can be used to specify the level of hierarchy. On the 01her hand. 
level at which the user works changes infrequently, the user will be able to 
faster with a separate command, such as Set_selection_level, used to chang~ 
level of hierarchy. 

A different approach is needed if the number of hierarchical levels is unla­
to the system designer and is potentia lly large (as in a drafong system, wher~ 
bols are made up of graphics primitives and other symbols). At least two user, 
mands are required: Up_hierarchy and Down_hierarchy. When the user :,._ 
something, the system highlights the lowest-level object seen. If this is" 
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Figure 8.4 State diagram for an object-selection technique for an arbitrary number of hierarchy levels. Up 
and Down are commands for moving up and down the hierarchy. In the state "Leaf object 
selected," the Down_hierarchy command is not available. The user selects an object by 
pointing at it with a cursor, and pressing and then releasing a button. 

desired, the user can proceed. If not, the user issues the first command: Up_hier­
archy. The entire first-level object of which the detected object is a part is high­
lighted. If this is not what is wanted, the user travels up again and still more of the 
picture is highlighted. If the user travels too far up the hierarchy, direction is 
reversed with the Down_hierarchy command. In addition, a Return_to_low­
est_level command can be useful in deep hierarchies, as can a hierarchy diagram in 
another window, showing where in the hierarchy the cunent selection is located. 
The state diagram of Fig. 8.4 shows one approach to hierarchical selection. Alter­
natively, a single command, say Move_up_bierarchy, can skip back to the origi­
nally selected leaf node after the root node is reached. 
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8.2.3 The Select Interaction Task-Relatively Fixed-Sized Choice Set 

Menu selection is one of the richest techniques for selecting from a relative!~ 
fixed-sized choice set. Here we discuss several key factors in menu design. 

Figure 8.5 

Single-level versus hierarchical design. One of the most fundamental men~ 
design decisions arises if the choice set is too large to display all at once. Such • 
menu can be subclivided into a logically structured hierarchy or presented as a lin­
ear sequence of choices to be paged or scrolled through. A scroll bar of the L}i}­

used in many window managers allows all tbe relevant scrolling and paging com­
mands to be presented in a concise way. A fast keyboard-oriented alternative • 
pointing at the scrolling commands can al o be provided; for instance, the arro­
keys can be used 10 scroll the window, and the shift key can be combined with t:h:c 
arrow keys Lo move the selection within tbe visible window, as shown in Fig. 85 

With a hierarchical menu, tbe user first selects from the choice set at the top 
the hierarchy. which causes a second choice set to be available. The proces 
repeated until a leaf node (j .e., an element of the choice set itself) of tbe hierarct:­
tree is selected. As with hierarchical object selection, navigation mechanisms nee~ 
to be provided so that tbe user can go back up tbe hierarchy if an incorrect subrre._ 
was selected. Visual feedback to give the user some sense of place within the hiei-­
archy is also needed. 

Menu hierarchies can be pre ented in several ways. Of course, successive le- · 
els of the hierarchy can replace one another on the display as further choices 
made, but this does not give the user much sense of position within the hierarc~ 
The cascading hierarchy, as depicted in Fig. 8.6, is more attractive. Enough 
each menu must be revealed that the complete highlighted selection patb is visib 
and some means must be used LO indicate whether a menu item is a leaf node or 
tbe name of a lower-level menu (in the figure, the right-pointing arrow fill s tl­
role). Another arrangement is to show just the name of each selection made th 

shift- i 
to move 
selection up 
using keyboard 

shift - .J, 
to move selection 
down using 
keyboard 

delete 
find 
f ont 
get 
insert 
italic 

justify 
margin 
print 
put 
repeat 
replace 

i lo scroll window 
up using keyboard 

J. to scroll window 
down using keyboard 

A menu within a scrolling window. The user controls scrolling by selecting the up and do.,., ... 
arrows or by dragging the square in the scroll bar. 
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A pop-up hierarchical menu. (a) The first menu appears where the cursor is, in response to a 
button-down action. The cursor can be moved up and down to select the desired typeface. (b) 
The cursor is then moved to the right to bring up the second menu. (c) The process is 
repeated for the third menu. 

far in traversing down the hjerarchy, plus alJ the selections available at the current 
level. 

When we design a hierarchical menu, the issue of depth versus breadth is 
always present. Snowberry et al. [SNOW83] found experimentally that selection 
time and accuracy improve when broader menus with fewer levels of selection are 
used. Similar resultS are reported by Landauer and Nachbar [LAND85] and by 
other researchers. However, these results do not necessarily generalize to menu 
hlerarchies that lack a natural, understandable structure. 

Hicrarchica.l menu selection almost demands an accompanying keyboard or 
function-key accelerator techmque to speed up selection for more experienced (so­
callecl power) users. This is easy if each node of the tree has a unique name, so that 
the user can enter the name directly, and the menu system provides a backup 
should the user's memory fail. lf the names are unique only within each level of 
the hierarchy, the power user must type the complete path name to the desired leaf 
node. 

Menu placement. Menus shown on the display screen can be static and perma­
nently visible, or can appear dynamically on request (tear-off, appearing, pop-up, 
pull-down, and pull-out menus). 

A pop-up menu appears on the screen when a selection is to be made, either in 
response to an explicit user action (typically pressing a mouse or tablet puck but­
ton). or automatkalJy because the next dialogue step requires a menu selec tion. 
The menu normally appears at the cursor location, which is usually the user·s cen­
ter of visual attention, thereby maintaining visual continuity. An attractive feature 
in pop-up menus is the initial hlghlighting of tJ1e most recently made selection 
from the choice set if the most recently selected item is more likely to be selected a 
second time than is another item, positioning the menu so the cursor is on that 
item. 

Pop-up and other appearing menus conserve precious screen space-one of 
the user-interface designer's most valuable commodities. Their use is facilitated by 
a fast RasterOp instruction, as discussed in Chapter 2. 
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A Macintosh pull-down menu. The last menu item is gray rather than black, indicating tha, 
currently not available for selection (the currently selected object, an arc, does not have 
comers to be rounded). The Undo command is also gray, because the previously execute= 
command cannot be undone. Abbreviations are accelerator keys for power users. (Copyr,: 
1988 Claris Corporation. All rights reserved.) 

Unlike pop-up menus, pull-down menus are anchored in a menu bar along 
top of the screen. All the popular graphical user interfaces-the Apple Macint.. 
Microsoft Windows, OPEN LOOK, and Motif-use pull-down menus. Macin, 
menus, shown in Fig. 8.7, also illustrate accelerator keys and context sensitivit; 

Current selection. If a system bas the concept of currently selected elemem 
choice set, menu selection allows this element to be highlighted. In some case$ 
initial default setting is provided by the system and is used unless the user chan:­
it. The currently selected e lement can be shown in various ways. The radio-bun 
interaction technique, patterned after the tuning buttons on car radios, is one 
(Fig. 8.8). Again, some pop-up menus highlight the most recently selected . 
and place it under the cursor, on the assumption that the user is more likely to n. 
lect that item than to select any other entry. 

Size a nd shape of menu items. Pointing accuracy and speed are affected b) 
size of each individual menu item. Larger items arc faster to select, as predictec'. 
Fitts' law [F1Tf54; CARD831; on the other hand, smaJler items take less space 
permit more menu items to be di played in a fixed area, but induce more eIT' 
during selection. Thus, there is a conflict between using small menu items to µ­
serve screen space versus using larger ones to decrease seJection time and 
reduce errors. 

Pattern recognition. In selection techniques involving pattern recognition. 
user makes sequences of movements with a continuous-positioning device, sue. 
a tablet or mouse. The pattern recognizer automatically compares the seque:, 
with a set of defined patterns, each of which corresponds to an element of 
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selection set. Proofreader's marks indicating delete, capitalize, move, and so on are 
atu·active candidates for thjs approach [WOLF87]. 

Recent advances in character recognition algorithms J1ave led to pen-based 
operating systems and notepad computers, such as Apple's Newton. Patterns are 
entered on a tablet, and are recognized and interpreted as commands, numbers, and 
letters. 

Function keys. Elements of the choice set can be associated with function keys. 
(We can think of single-keystroke inputs from a regular keyboard as function 
keys.) Unfo1tunately, there never seem to be enough keys to go around! The keys 
can be used in a hierarchical-selection fashion, and their meanings can be altered 
using chords, say by depressing the keyboard shift and control keys aJong with the 
function key itself. For instance, Microsoft Word on the Macintosh uses "shift­
option->" lo increase point size and the symmetricaJ ·'shift-option-<" to decrease 
point s.ize; "shift-option-I" italicizes plain text and unitaljcizes italicized text, 
whereas "shift-option-U'' treats underlined text similarly. 

8.2.4 The Text Interaction Task 

The text-string input task entai ls entering a character string to which the applica­
tion does not ascribe any special meaning. Thus, typing a command name is not a 
text-entry task. In contrast, typing legends for a graph and typing text into a word 
processor are text input tasks. Clearly, the most common text-input technique is 
use of the QWERTY keyboard. 

8.2.5 The Quantify Interaction Task 

The quantify interaction task involves specifying a numeiic value between some 
mininmm and maximum value. Typical interaction techniques are typing the value, 
selling a dial to the value, and using an up- down counter to select the value. Like 
the positioning task, this task may be either linguistic or spatial. When it is linguis­
tic, the user knows the specific value to be entered; when it is spatial, the user 
seeks to increase or decrease a value by a certain amount, with perhaps an approx­
imate idea of the desired end value. In the fonner case, the interaction techrtique 
clearly must involve numeric feedback of the value being selected (one way to do 
this is to have the user type the actuaJ value); in the latter case, it is more in1portant 
to give a general impression of the approximate setting of the value. This is typi­
cally accomplished with a spatially oriented feedback technique, such as display or 
a dial or gauge on which the cun-ent (and perhaps previous) val ue is shown . 

One means of entering values is the potentiometer. The decision of whether to 
use a rotary or linear potentiometer should take into account whether the visual 
feedback of changing a value is rotary (e.g., a turning clock hand) or linear (e.g .. a 
rising temperature gauge). The current position of one or a group of slide potenti­
ometers is much more easily comprehended at a glance than are those of rotary 
potentiometers, even if the knobs have pointers. On the other hand, rotary potenti­
ometers are easier to adjust. Availability of both linear and rotary potentiometers 



312 

Figure 8.9 

Input Devices, Interaction Techniques, and Interaction Tasks 

0% 

so• 

1so• 

270° 

f 
60% 

3 -
2 -

1 -

0 -

100% 

Several dials that the user can employ to input values by dragging the control pointer. 
Feedback is given by the pointer and, in two cases, by numeric displays. (Vertical sliders 
Apple Computer, Inc.) 

can help users to associate meanings with each device. It is importam to use di: 
tions consistently: Clockwise or upward movements normally increase a value 

With continuous-scale manipulation, the user points at the current-value fr· 
cator on a displayed gauge or scale, presses lhe selection button, drags the incl. 
tor along the scale to the desired value, and then releases the selection buttor. 
pointer is typically used to indicate the value selected on the scale, and a nume 
echo may be given. Figure 8.9 shows several such dials and their associated fee 
back. 

8.2.6 30 Interaction Tasks 

Two of the four interaction tasks described previously for 2D applications beco 
more complicated in 3D: position and select. The first part of this section Ck. 
with a technique for positioning and selecting, which are closely related. In I 

section, we also introduce an additional 3D interaction task: rotate (in the sense 
orienting an object in 3-space). The major reason for the complication is the d 
culty of perceiving 3D depth relationships of a cursor or object relative to 0t 

displayed objects. This contrasts starkly with 2D interaction, where the user 
readily perceive that the cursor is above, next to, or on an object. A secooc 
complication arises because the commonly available interaction devices, sud 
mice and tablets, are only 2D devices, and we need a way to map movemem 
these 2D devices into 3D. 

Display of stereo pairs, corresponding to left- and right-eye views, is he} 
for understanding general depth relationships, but is of limited accuracy as a 
cise locating method. Methods for presenting stereo pairs to the eye are discu 
in Chapter 12, and in lHODG85]. Other ways to show depth relationships are 
cussed in Chapters 12- 14. 
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30 positioning technique using three views of the same scene (a house). The 20 cursor(+) is 
used to select one of the dashed 30 cursor lines. 

Figure 8.10 shows a common way to position in 3D. The 2D cursor. under 
control of, say, a mouse, moves freely among the three views. The user can select 
any one of the 3D cursor's dashed lines and can drag the line using a button-down­
drag- button-up sequence. ff the button-down event is clo e to the intersection of 
two dashed cursor Jjnes, then both are selected and are moved with the mouse . 
Although this method may appear restrictive in forcing the user to work in one or 
two dimensions at a time, it is sometimes advantageous to decompose the 3D 
manipulation task into simpler lower-dimensional tasks. Selecting as well as locat­
ing is facilitated with multiple views: Objects that overlap and hence are difficult 
to distinguish in one view may not overlap in another view. 

As with locating and electing, the issues in 3D rotation are understanding 
depth relationships, mapping 2D interaction devices into 3D, and ensuring 
stimulus-response compatibility (S-R compatibility/. An easily implemented 30 
rotation technique provides slider dials or gauges that control rotation about three 
axes. S-R compatibility suggests that the three axes nom1ally should be in the 
screen-coordinate system- x to the right, y increasing upward, z out of (or into) the 
screen [BRIT78]. Of course, the center of rotation either must be explicitly 
specified as a separate step, or must be implicit (typically the screen-coordinate 
origin, the origin of the object, or the center of the object). Providing rotation about 
the sceen 's x and y axes is especially sin1ple, as suggested in Fig. 8.11 (a). The (x, 
y, z) coordinate system associated with the sliders is rotated as the sliders are 
moved to show the effect of the rotation. The two-axis rotation approach can be 
easily generalized to three axes by addi.ng a dial for z-axis rotation (a dial is 
preferable to a slider for S-R compatibility). Even more S-R compatibility comes 
from the arrangement of dials on the faces of a cube shown in Fig. 8.1 l(b), which 
clearly suggests the axes controlled by each dial. A 3D trackball could be used 
instead of the dials. 

1 The human-fac1ors principle, which states that system responses lo user actions inust be in lhc same 
direction or same orientation, and 1ha1 the magnirude of the responses should be proportional to lhc ac­
tions. 
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Two approaches to 3D rotation. (a) Two slider dials for effecting rotation about the screer s 
and yaxes, and a dial for rotation about the screen's z axis. The coordinate system represe-­
world coordinates and shows how world coordinates relate to screen coordinates. (b) Th-e­
dials to control rotation about three axes. The placement of the dials on the cube provides 
strong stimulus-response compatibility. 

lt is often necessary to combine 3D interaction tasks. Thus, rotation requin. 
select task for the object to be rotated, a position task for the center of rotation. 
an orient task for the actual rotation. Specifying a 3D view can be thought of 
combined positioning (where the eye is), orientation (how the eye is oriented). 
scaling (field of view, or how much of the projection plane is mapped into 
viewport) task. We can create such a task by combining some of the technique, 
have discussed , or by designing a.fly-around capability in which the viewer fl ie, 
imaginary airplane around a 30 world. The controls are typically pitch, rol l. 
yaw, plus velocity to speed up or slow down. With the fly-around concept, the w 

needs an overview, such as a 2D plan view, indicating the imaginary airpl:l!' -
ground position and heading. 

8.3 COMPOSITE INTERACTION TASKS 

Composite interaction tasks (CITs) are built on top of the basic interaction t 

(BITs) described in the previous section, and are actually combinations of B 
integrated into a unit. There arc three major forms of CITs: dialogue boxes, use.. 
specify multiple units of information; construction, used to create objects requit" 
two or more positions; and manipulation, used to reshape existing geom(' 
objects. 
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8.3.1 Dialogue Boxes 

We often need to select multiple elements of a selection set. For instance, text 
attributes, such as italic, bold, underline, hollow. and all caps, are not mutually 
exclusive, and the user may want to select two or more at once. ln addi tion, there 
may be several sets of relevant attributes, such as typeface and font. Some of the 
menu approaches useful in selecting a single clement of a selection set arc not sat­
isfactory for multiple selections. For example, pul l-down and pop-up menus nor­
mally disappear when a election is made, necessitating a second activation 10 

make u second selection. 
This problem can be overcome with dialogue boxes, a form of menu that 

remains visible until explicitly dismissed by the user. ln addition, dialogue boxes 
can permit selection from more than one selection set, and can also include areas 
for entering text and values. Selections made in a dialogue box can be co1Tected 
immediately. When all the information has been entered into the dialogue box, the 
box is typically dismissed explicitly with a command. Attributes and other values 
specified in a dialogue box can be applied immediately, allowing the user to pre­
view the effect of a font or I ine-style change. 

8.3.2 Construction Techniques 

One way to construct a line is to have the user indicate one endpoint and then the 
other; once the second endpoint is specified. a line is drawn between the two 
points. With this technique, however, the user has no easy way to try out different 
line positions before settling on a final one, because the line is not actually drawn 
until the second endpoint is given. With this style of interaction, tbe user must 
invoke a command each time an endpoint is to be repositioned . 

A far superior approach is rubberbanding, discussed in Chapter 2. When the 
user pushes a button (often the tipswitch on a tablet styl us, or a mouse button), the 
s tarting position of the line is established by the cursor (usually but not necessarily 
contTolled by a continuous-positioning device). As the cursor moves, so does the 
endpoint of the line; when the button is relea ed, tbe endpoint is frozen. Figure 
8.12 shows a rubberband line-drawing sequence. The rubberband state is active 
only while a button is held down. lt is in this state that cursor movements cause the 
current tine to change. 

An entire genre of interact.ion techniques is derived from rubberband line 
drawing. The rubber-rectangle technique starts by anchoring one comer of a rect­
angle with a button-down action, after which the opposite i.:omcr is dynamically 
linked to the c ursor until a button-up action occurs. The state diagram for this tech­
nique differ:. from 1hat for rubbcrband line drawing only in the dynamic feedback 
of a rectangle rather than a line. The rubber-circle technique creates a circle that is 
centered at the initial cursor position and that passes through the cun cnt cursor 
position, or that is within the square defined by opposite corners. AJl these tech­
niques have in common the user-action sequence of button-down, move locator 
and sec feedback, button-up. 
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Figure 8.12 Rubberband line drawing. 

Constraints of various types can be applied to the cursor positions in any c 
these techniques. For example, Fig. 8.13 shows a sequence of lines drawn usin= 
the same cursor positions as in Fig. 8.12, but with a horizontal constraint in effe,. 
A vertical line, or a line at some other orientation, can also be drawn in this ma:­
ner. Polylines made entirely of horizontal and vertical lines, as in printed cim.... 
boards, VLSI chips, and some city maps, are readily created; right angles are inrr 
duced either in response to a user command, or automatically as the cursor changc­
direction. The idea can be generalized to any shape, such as a circle, ellipse, or a:­
other curve; the curve is initialized at some position, then cursor movements c 
trol how much of the curve is displayed. In general, the cursor position is used 
input Lo a constraint function whose output is then used to display the appropri ... 
portion of the object. 

8.3.3 Dynamic Manipulation 

It is not sufficient to just create lines, rectangles, and so on. In many situations. 
user must be able to modify previously created geometric entities. 

+ 
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Figure 8.13 Horizontally constrained rubberband line drawing. 
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Position cursor over 
symbol to be moved, 
depress button 

Symbol is highlighted Several intermediate 
to acknowledge cursor movements 
selection 

Release button; 
symbol locks in place 

Figure 8.14 Dragging a symbol into a new position. 

Dragging moves a selected symbol from one position to another under control 
of a cursor, as in Fig. 8.14. A button-down action typically starts the dragging (in 
some cases, the button-down is also used to select the symbol under the cursor to 
be dragged); then, a button-up freezes the symbol in place, so that further 
movements of the cursor have no effect on it. This button-down-drag-button-up 
sequence is often called click-and-drag interaction. 

The concept of handles is useful to provide scaling of an object. Figure 8.J 5 
shows an object with eight handles, which are displayed as small squares at the 
corners and on the sides of the imaginary box swTOtmding the object. The user 
selects one of the handles and drags it to scale the object. If the handle is on a cor­
ner, then the corner diagonally opposite is locked in place. If the handle is in the 
middle of a side, then the opposite side is locked in place. 

When this technique is integrated into a complete user intexface, the handles 
appear only when the object is selected to be operated on. Handles are also a 
unique visual code to indicate that an object is selected, since other visual codings 
(e.g., line thickness, dashed lines, or changed intensity) might also be used as part 
of the drawing itself. 

Selecting rectangle 
with cursor causes 
handles to appear 

Button actions on this 
handle move only 
right side of rectangle 

q 
Button actions on this 
handle move only 
corner of rectangle 

Figure 8.15 Handles used to reshape objects. 
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Polygon has been 
selected for vertex 
modification, handle 
appears on each vertex 

Depress- move-release 
over vertex causes 
vertex to move 

Figure 8.16 Handles used to reposition the vertices of a polygon. 

Polygon no longer 
selected; handles 
have been removed 

Dragging, rotating, and scaling affect an entire object. What if we wish to 
able to move individual points, such as the vertices of a polygon? Vertices could 
named, and the user could enter the name of a vertex and its new (x, y) coordioa... 
But the same point-and-drag strategy used to move an entire object is more am:: 
tive. In this case, the user points to a vertex, selects it, and drags it to a nC\\ p-.; 
tion. The vertices adjacent to the one selected remain connected via rubberk 
lines. To facilitate selecting a vertex, we can make a vertex blink whenever the~­
sor is near, or we can superimpose handles over each vertex, as in Fig. 8.16. S·~ 
larly, the user can move an edge of a polygon by selecting it and dragging, with 
edge maintaining its original slope. For smooth curves and surfaces, handles~ 
also be provided to allow the user to manipulate poi nts that control the shape. 
discussed further in Chapter 9. 

8.4 INTERACTION-TECHNIQUE TOOLKITS 

The look and feel of a user-computer interface is determined largely by the cot.: 
tion of interaction techniques provided for it. Recall that interaction techniq 
implement the hardware binding portion of a user-computer interface des ==­

Designing and implementing a good set of interaction techniques is time con _ 
ing: Interaction-technique toolkits, which are subroutine libraries of interact. 
techniques, arc mechanisms for making a collection of techniques available for .. 
by application programmers. This approach, which helps to ensure a consi -
look and feel among application programs, is clearly a sound software-enginee= 
practice. 

Cnteraction-technique toolkits can be used not only by application progra= 
but also by the resident window manager, whfob is after all just another progr. 
Using the same toolkit across the board is an important and commonly c 
approach to providing a look and feel that unifies both multiple applications 
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the windowing enviJ'Onment itself. For instance, the menu style used to select win­
dow operations should be the same style used within applications. 

A toolkit can be implemented on top of a window-management system 
[FOLE90]. In the absence of a window system, t0olkits can be implemented 
directly on top of a graphics subroutine package; however, because e lements of a 
toolkit include menus, ctialogue boxes, scroll bars, and the like, all of which can 
conveniently be implemented in windows, the window system substrate is nor­
mally used. Widely used toolkits include the Macintosh toolkit [APPL85], OSF/ 
Motif [OPEN89] and lnterViews [LINT89] for use with the X Window System, 
and several toolki ts that implement OPEN LOOK [SUN89]. Color Plate 9 shows 
the OSF/Motif interface. Color Plate 10 shows the OPEN LOOK interface. 

We have presented some of the most important concepts of user inte1faces: input 
devices, interaction techniques, and interaction tasks. There are many more aspects 
of user interface techniques and design, however, that we have not discussed . 
Among these are the pros and cons of various dialogue styles- such as what you 
see is what you get (WYSIWYG), command language, and direct manipulation­
and window-manager issues that affect the user interface. [FOLE90J has a thor­
ough treatment of those topics. 

8. l Examine a user-computer interface with which you are familiar. List each 
interaction task used. Categorize each task into one of the four BITs of Section 8.2. 
If an interaction does not fit this classification scheme, try decomposing it further. 

8.2 Extend the state diagram of Fig. 8.4 to include a "return to lowest level" 
command that takes the selection back to the lowest level of the hierarchy, such 
that whatever was selected fi rst is selected again. 

8.3 lmplement a menu package on a color raster djsplay that has a look-up table 
such that the menu is displayed in a strong, bright but partially transparent color, 
and all the colors underneath the menu are changed to a subdued gray. 

8.4 Implement any of the 3D interaction techniques discussed in this chapter. 

8.5 Draw the state diagram that controls pop-up hierarchical menus. Draw the 
state diagram that controls panel hierarchical menus. 


