
48
Graphical User

Interface
Programming

Brad A. Myers
Carnegie Mellon University

48.1 Introduction∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48-1
48.2 Importance of User Interface Tools . . . . . . . . . . . . . . . . . .48-2

Overview of User Interface Software Tools
• Tools for the World Wide Web

48.3 Models of User Interface Software . . . . . . . . . . . . . . . . . . .48-20
48.4 Technology Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48-20
48.5 Research Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48-20

New Programming Languages • Increased Depth
• Increased Breadth • End User Programming
and Customization • Application and User Interface
Separation • Tools for the Tools

48.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48-22

48.1 Introduction∗

Almost as long as there have been user interfaces, there have been special software systems and tools to
help design and implement the user interface software. Many of these tools have demonstrated significant
productivity gains for programmers and have become important commercial products. Others have proved
less successful at supporting the kinds of user interfaces people want to build. Virtually all applications
today are built using some form of user interface tool [Myers 2000].

User interface (UI) software is often large, complex, and difficult to implement, debug, and modify. As
interfaces become easier to use, they become harder to create [Myers 1994]. Today, direct-manipulation
interfaces (also called GUIs for graphical user interfaces) are almost universal. These interfaces require
that the programmer deal with elaborate graphics, multiple ways of giving the same command, multiple
asynchronous input devices (usually a keyboard and a pointing device such as a mouse), a mode-free in-
terface where the user can give any command at virtually any time, and rapid “semantic feedback” where
determining the appropriate response to user actions requires specialized information about the objects
in the program. Interfaces on handheld devices, such as a Palm organizer or a Microsoft PocketPC device,
use similar metaphors and implementation strategies. Tomorrow’s user interfaces will provide speech

∗This chapter is revised from an earlier version: Brad A. Myers. 1995. “User Interface Software Tools,” ACM Trans-
actions on Computer–Human Interaction. 2(1): 64–103.

1-58488-360-X/$0.00+$1.50
© 2004 by CRC Press, LLC 48-1

Align EX1043 
Align v. 3Shape 
IPR2022-00144

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


48-2 Computer Science Handbook

recognition, vision from cameras, 3-D, intelligent agents, and integrated multimedia, and will probably
be even more difficult to create. Furthermore, because user interface design is so difficult, the only reliable
way to get good interfaces is to iteratively redesign (and therefore reimplement) the interfaces after user
testing, which makes the implementation task even harder.

Fortunately, there has been significant progress in software tools to help with creating user interfaces.
Today, virtually all user interface software is created using tools that make the implementation easier.
For example, the MacApp system from Apple, one of the first GUI frameworks, was reported to reduce
development time by a factor of four or five [Wilson 1990]. A study commissioned by NeXT claimed that
the average application programmed using the NeXTStep environment wrote 83% fewer lines of code and
took one-half the time, compared to applications written using less advanced tools, and some applications
were completed in one-tenth the time. Over three million programmers use Microsoft’s Visual Basic tool
because it allows them to create GUIs for Windows significantly more quickly.

This chapter surveys UI software tools and explains the different types and classifications. However, it is
now impossible to discuss all UI tools, because there are so many, and new research tools are reported every
year at conferences such as the annual ACM User Interface Software and Technology Symposium (UIST)
(see http://www.acm.org/uist/) and the ACM SIGCHI conference (see http://www.acm.org/sigchi/). There
are also about three Ph.D. theses on UI tools every year. This article provides an overview of the most
popular approaches, rather than an exhaustive survey. It has been updated from previous versions (e.g.,
[Myers 1995]).

48.2 Importance of User Interface Tools

There are many advantages to using user interface software tools. These can be classified into two main
groups. First, the quality of the resulting user interfaces might be higher, for the following reasons:

Designs can be rapidly prototyped and implemented, possibly even before the application code is
written. This, in turn, enables more rapid prototyping and therefore more iterations of iterative
design, which is a crucial component of achieving high-quality user interfaces[Nielsen 1993b].

The reliability of the user interface will be higher, because the code for the user interface is created
automatically from a higher-level specification.

Different applications are more likely to have consistent user interfaces if they are created using the same
UI tool.

It will be easier for a variety of specialists to be involved in designing the user interface, rather than
having the user interface created entirely by programmers. Graphic artists, cognitive psychologists,
and usability specialists may all be involved. In particular, professional user interface designers,
who may not be programmers, can be in charge of the overall design.

More effort can be expended on the tool than may be practical on any single user interface, because the
tool will be used with many different applications.

Undo, Help, and other features are more likely to be available because the tools might support them.

Second, the UI code might be easier and more economical to create and maintain. This is because of the
following:

Interface specifications can be represented, validated, and evaluated more easily.
There will be less code to write, because much is supplied by the tools.
There will be better modularization, due to the separation of the UI component from the application.

This should allow the user interface to change without affecting the application, and a large class of
changes to the application (such as changing the internal algorithms) should be possible without
affecting the user interface.

The level of programming expertise of the interface designers and implementers can be lower, because
the tools hide much of the complexity of the underlying system.

It will be easier to port an application to different hardware and software environments because the
device dependencies are isolated in the UI tool.

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Graphical User Interface Programming 48-3

Operating System

Windowing System

Toolkit

Higher Level Tools

Application

FIGURE 48.1 The components of user interface software.

48.2.1 Overview of User Interface Software Tools

Because user interface software is so difficult to create, it is not surprising that people have been working
for a long time to create tools to help with it. Today, many of these tools and ideas have progressed from
research into commercial systems, and their effectiveness has been amply demonstrated. Research systems
also continue to evolve quickly, and the models that were popular five years ago have been made obsolete
by more effective tools, changes in the computer market, and the emergence of new styles of user interfaces,
such as handheld computing and multimedia.

48.2.1.1 Components of User Interface Software

As shown in Figure 48.1, UI software may be divided into various layers: the windowing system, the
toolkit, and higher-level tools. Of course, many practical systems span multiple layers.

The windowing system supports the separation of the screen into different (usually rectangular) regions,
called windows. The X system [Scheifler 1986] divides window functionality into two layers: the window
system, which is the functional or programming interface, and the window manager, which is the user
interface. Thus, the window system provides procedures that allow the application to draw pictures on the
screen and get input from the user; the window manager allows the end user to move windows around
and is responsible for displaying the title lines, borders, and icons around the windows. However, many
people and systems use the name “window manager” to refer to both layers, because systems such as the
Macintosh and Microsoft Windows do not separate them. This article will use the X terminology, and use
the term windowing system to refer to both layers.

Note that Microsoft confusingly calls its entire system Windows (for example, Windows 98 or Windows
XP). This includes many different functions that here are differentiated into the operating system part
(which supports memory management, file access, networking, etc.), the windowing system, and higher-
level tools.

On top of the windowing system is the toolkit, which contains many commonly used widgets (also
called controls) such as menus, buttons, scroll bars, and text input fields. On top of the toolkit might be
higher-level tools, which help the designer to use the toolkit widgets. The following sections discuss each
of these components in more detail.

48.2.1.2 Windowing Systems

A windowing system is a software package that helps the user monitor and control different contexts by
separating them physically onto different parts of one or more display screens [Myers 1988b]. Although
most of today’s systems provide toolkits on top of the windowing systems, as will be explained later, toolkits
generally only address the drawing of widgets such as buttons, menus, and scroll bars. Thus, when the
programmer wants to draw application-specific parts of the interface and allow the user to manipulate
these, the window system interface must be used directly. Therefore, the windowing system’s programming
interface has significant impact on most user interface programmers.

The first windowing systems were implemented as part of a single program or system. For example,
the EMACs text editor [Stallman 1979], and the Smalltalk [Tesler 1981], and DLISP [Teitelman 1979]
programming environments had their own windowing systems. Later systems implemented the windowing

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


48-4 Computer Science Handbook

Presentation Commands

Output Model Input Model

User Interface Layer

Base Layer

Window Manager

Window System

FIGURE 48.2 The windowing system can be divided into two layers, called the base (or window system) layer and
the user interface (or window manager) layer. Each of these can be divided into parts that handle output and input.

system as an integral part of the operating system, such as Sapphire for PERQs [Myers 1984], SunView
for Suns, and the Macintosh and Microsoft Windows systems. In order to allow different windowing
systems to operate on the same operating system, some windowing systems, such as X and Sun’s NeWS
[Gosling 1986], operate as a separate process and use the operating system’s interprocess communication
mechanism to connect to application programs.

48.2.1.2.1 Structure of Windowing Systems
A windowing system can be logically divided into two layers, each of which has two parts (see Figure 48.2).
The window system, or base layer, implements the basic functionality of the windowing system. The two
parts of this layer handle the display of graphics in windows (the output model) and the access to the
various input devices (the input model), which usually includes a keyboard and a pointing device such
as a mouse. The primary interface of the base layer is procedural and is called the windowing system’s
application programmer interface (API).

The other layer of windowing system is the window manager or user interface. This includes all aspects
that are visible to the user. The two parts of the user interface layer are the presentation, which comprises
the pictures that the window manager displays, and the commands, which are how the user manipulates
the windows and their contents.

48.2.1.2.2 Base Layer
The base layer is the procedural interface to the windowing system. In the 1970s and early 1980s, there were
a large number of different windowing systems, each with a different procedural interface (at least one for
each hardware platform). People writing software found this to be unacceptable because they wanted to
be able to run their software on different platforms, but they would have to rewrite significant amounts
of code to convert from one window system to another. The X windowing system [Scheifler 1986] was
created to solve this problem by providing a hardware-independent interface to windowing. X has been
quite successful at this, and it drove all other windowing systems out of the workstation hardware market.
X continues to be popular as the windowing system for Linux and all other UNIX implementations. In
the rest of the computer market, most machines use some version of Microsoft Windows, with the Apple
Macintosh computers having their own windowing system.

48.2.1.2.3 Output Model
The output model is the set of procedures that an application can use to draw pictures on the screen. It
is important that all output be directed through the window system so that the graphics primitives can
be clipped to the window’s borders. For example, if a program draws a line that would extend beyond
a window’s borders, it must be clipped so that the contents of other, independent, windows are not
overwritten. Most computers provide graphics hardware that is optimized to work efficiently with the
window system.

In early windowing systems, such as Smalltalk [Tesler 1981] and Sapphire [Myers 1986], the primary
output operation was BitBlt (also called RasterOp, and now sometimes CopyArea or CopyRectangle). These
early systems primarily supported monochrome screens (each pixel is either black or white). BitBlt takes

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Graphical User Interface Programming 48-5

a rectangle of pixels from one part of the screen and copies it to another part. Various Boolean operations
can be specified for combining the pixel values of the source and destination rectangles. For example, the
source rectangle can simply replace the destination, or it might be XORed with the destination. BitBlt
can be used to draw solid rectangles in either black or white, display text, scroll windows, and perform
many other effects [Tesler 1981]. The only additional drawing operation typically supported by these early
systems was drawing straight lines.

Later windowing systems, such as the Macintosh and X, added a full set of drawing operations, such as
filled and unfilled polygons, text, lines, arcs, etc. These cannot be implemented using the BitBlt operator.
With the growing popularity of color screens and nonrectangular primitives (such as rounded rectangles),
the use of BitBlt has significantly decreased. Now, it is primarily used for scrolling and copying off-screen
pictures onto the screen (e.g., to implement double-buffering).

A few windowing systems allowed the full PostScript imaging model [Adobe Systems Inc. 1985] to
be used to create images on the screen. PostScript provides device-independent coordinate systems and
arbitrary rotations and scaling for all objects, including text. Another advantage of using PostScript for the
screen is that the same language can be used to print the windows on paper (because many printers accept
PostScript). Sun created a version used in the NeWS windowing system, and then Adobe (the creator
of PostScript) came out with an official version called Display PostScript, which was used in the NeXT
windowing system. A similar imaging model is provided by Java 2D [Sun Microsystems 2002], which
works on top of (and hides) the underlying windowing system’s output model.

All of the standard output models only contain drawing operations for two-dimensional objects. Exten-
sions to support 3-D objects include PEX, OpenGL, and Direct3-D. PEX [Gaskins 1992] is an extension
to the X windowing system that incorporates much of the PHIGS graphics standard. OpenGL [Silicon
Graphics Inc. 1993] is based on the GL programming interface that has been used for many years on
Silicon Graphics machines. OpenGL provides some machine independence for 3-D because it is available
for various X and Windows platforms. Microsoft supplies its own 3-D graphics model, called Direct3-D,
as part of Windows.

As shown in Figure 48.3, the earlier windowing systems assumed that a graphics package would be
implemented using the windowing system. See Figure 48.3a. For example, the CORE graphics package was
implemented on top of the SunView windowing system. Next, systems such as the Macintosh, X, NeWS,
NeXT, and Microsoft Windows implemented a sophisticated graphics system as part of the windowing
system. See Figure 48.3b and Figure 48.3c. Now, with Java2D and Java3-D, as well as Web-based graphics
systems such as VRML for 3-D programming on the Web [Web3-D Consortium 1997], we are seeing a
return to a model similar to the one shown in Figure 48.3a, with the graphics on top of the windowing
system. See Figure 48.3-D.

48.2.1.2.4 Input Model
The early graphics standards, such as CORE and PHIGS, provided an input model that does not support
the modern, direct-manipulation style of interfaces. In those standards, the programmer calls a routine to
request the value of a virtual device, such as a locator (pointing device position), string (edited text string),
choice (selection from a menu), or pick (selection of a graphical object). The program would then pause,
waiting for the user to take action. This is clearly at odds with the direct-manipulation mode-free style, in
which the user can decide whether to make a menu choice, select an object, or type something.

With the advent of modern windowing systems, a new model was provided: a stream of event records
is sent to the window that is currently accepting input. The user can select which window is getting events
using various commands, described subsequently. Each event record typically contains the type and value
of the event (e.g., which key was pressed), the window to which the event was directed, a timestamp, and the
x and y coordinates of the mouse. The windowing system queues keyboard events, mouse button events,
and mouse movement events together (along with other special events), and programs must dequeue the
events and process them. It is somewhat surprising that, although there has been substantial progress in
the output model for windowing systems (from BitBlt to complex 2-D primitives to 3-D), input is still

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


