registration/alignment of subscans, two subscans of the same surface may incorrectly look like two different surfaces.
The near threshold distance may be such as $0.01 \mathrm{~mm}, 0.05 \mathrm{~mm}, 0.09 \mathrm{~mm}$, $0.10 \mathrm{~mm}, 0.15 \mathrm{~mm}, 0.20 \mathrm{~mm}$ etc.

In some embodiments a far threshold distance is defined, which determines a distance from the captured surface, where the volume outside the far threshold distance is not included in the excluded volume of a representation.

Thus the volume outside the far threshold distance is not included in the excluded volume, because in the volume outside the far threshold distance a surface can be present even though no surface is detected by the scanner.

The far threshold distance defines or determines a distance from the captured surface, where the volume or region within the far threshold distance is included in the excluded volume.

Thus if utilizing or applying the far threshold distance, the excluded volume for a representation will be smaller than if not applying the far threshold distance, and therefore less volume can be excluded.

However, the advantage of applying a far threshold distance is that only volumes which can truly be excluded, will be excluded, meaning that the general scan data will have a higher quality.

Thus even though no surface or surface points has/have been detected in a volume or region between the scanner and the tooth surface, the whole region cannot be defined as excluded volume, because the light rays from and to the scanner may travel with inclined angles relative to a normal of the scan head, which means that the scanner can detect a point on the tooth surface even though another part of the tooth is actually placed, at least partly, between the detected tooth surface and the scanner. Therefore a far threshold distance is defined, and no data detected outside this far threshold distance from the tooth surface is used to define the excluded volume of a representation. Only data detected inside the far threshold distance is used to define the excluded volume, because only within this distance can one be certain that the data detected actually corresponds to the real physical situation.

The scanner may detect that no surface is present in the volume or region outside the far threshold distance between the tooth surface and the scanner,
but this data or information cannot be used to define the excluded volume of the representation, because there may actually be a movable object or another part of the tooth surface in this region or volume which the scanner overlooks because of its inclined light rays.

Furthermore, the scanner may overlook a surface part even though the surface part is in the scan volume. This can be caused by that the surface part is outside the focus region of the scanner, for example if the surface part is too close to the opening of the scanner head and/or scanner body, as the focus region may begin some distance from the scanner head and/or scanner body. Alternatively and/or additionally this can be caused by the lightning conditions, which may not be optimal for the given material of the surface, whereby the surface is not properly illuminated and thus can become invisible for the scanner. Thus in any case the scanner may overlook or look through the surface part. Hereby a volume in space may erroneously be excluded, since the scanner detects that no surface is present, and therefore a surface portion captured in this excluded volume in another 3D representation or scan would be disregarded. For avoiding that this happens, which would be unfavorably if the surface part was a true tooth surface, the far threshold distance can be defined, such that the excluded volume becomes smaller, such that only volume which really can be excluded is excluded.

It is an advantage that real surface points of a tooth are not erroneously disregarded, whereby fewer holes, i.e. regions with no scan data, are created in the scans. Thus the excluded volume is reduced by means of the far threshold distance for avoiding that too much surface information is incorrectly disregarded.

The light rays from the scan head of the scanner may spread or scatter or disperse in any directions.

Even if an object, such as a movable object, is arranged between the scan head and the surface of a rigid object, e.g. a tooth, the scanner may still capture a surface point on the tooth surface which is present or hidden "under" the object, because of the angled or inclined light rays. A surface point or area may just have to be visible for one or a small number of light rays from and/or to the scanner in order for that surface point or area to be detected.

Since the far threshold distance determines a distance from the captured surface in a representation, where any acquired data or surface or surface points, which is/are present or located outside the far threshold distance, is not used to define the excluded volume of the representation, any acquired data or surface or surface points in the volume between the far threshold distance and the scan head is not included in the definition of the excluded volume.

The actual distance of the far threshold may depend or be calculated based on the optics of the scanner. The far threshold distance may be a fixed number, such as about $0.5 \mathrm{~mm}, 1 \mathrm{~mm}, 2 \mathrm{~mm}, 3 \mathrm{~mm}, 4 \mathrm{~mm}, 5 \mathrm{~mm}, 6 \mathrm{~mm}, 7$ $\mathrm{mm}, 8 \mathrm{~mm}, 9 \mathrm{~mm}, 10 \mathrm{~mm}, 20 \mathrm{~mm}, 30 \mathrm{~mm}, 40 \mathrm{~mm}, 50 \mathrm{~mm}, 60 \mathrm{~mm}, 70 \mathrm{~mm}$, $80 \mathrm{~mm}, 90 \mathrm{~mm}$, or 100 mm . Alternatively, the far threshold distance may be a percentage or a fraction of the length of the scan volume, such as about $20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, or 50% of the length of the scan volume, or such as $1 / 2,1 / 3,1 / 4,1 / 5$ of the length of the scan volume.

The far threshold distance may be based on a determination of how far a distance from a detected point of the surface it is possible to scan, i.e. how much of the surface around a detected point that is visible for the scanner. If the visible distance in one direction from a surface point is short, then the far threshold distance will be smaller than if the distance in all directions from a surface point is long.

In some embodiments the first representation of at least part of a surface is a first subscan of at least part of the location, and the second representation of
at least part of the surface is a second subscan of at least part of the location.

In some embodiments the first representation of at least part of a surface is a provisional virtual 3D model comprising the subscans of the location acquired already, and the second representation of at least part of the surface is a second subscan of at least part of the location.

In some embodiments acquired subscans of the location are adapted to be added to the provisional virtual 3D model concurrently with the acquisition of the subscans.

In some embodiments the provisional virtual 3D model is termed as the virtual 3D model, when the scanning of the rigid object is finished.

In some embodiments the method comprises:

- providing a third 3D representation of at least part of a surface by scanning at least part of the location;
- determine for the third 3D representation a third excluded volume in space where no surface can be present;
- if a portion of the surface in the first 3D representation is located in space in the third excluded volume, the portion of the surface in the first 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the second 3D representation is located in space in the third excluded volume, the portion of the surface in the second 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the third 3D representation is located in space in the first excluded volume and/or in the second excluded volume, the
portion of the surface in the third 3D representation is disregarded in the generation of the virtual 3D model.

In some embodiments the provisional virtual 3D model comprises the first representation of at least part of the surface and the second representation of at least part of the surface, and where the third representation of at least part of the surface is added to the provisional virtual 3D model.
Thus the timewise first acquired representation, which is not necessarily the first representation, and the timewise second acquired representation, which is not necessarily the second representation, may be combined to create the provisional virtual 3D model, and each time a new representation is acquired or provided, the new representation may be added to the provisional virtual 3D model, whereby the provisional virtual 3D model grows for each added representation.

In some embodiments the virtual 3D model is used for virtually designing a restoration for one or more of the patient's teeth.

Thus the purpose of scanning is to obtain a virtual 3D model of the patient's teeth. If the patient should have a restoration, e.g. a crown, a bridge, a denture, a partial removable etc., the restoration can be digitally or virtually designed on or relative to the 3D virtual model.

In some embodiments the virtual 3D model is used for virtually planning and designing an orthodontic treatment for the patient.

In some embodiments the relative motion of the scanner and the rigid object is determined.

In some embodiments the relative motion of the scanner and the rigid object is determined by means of motion sensors.

If the scanner used for acquiring the sub-scans is a handheld scanner, then the relative position, orientation or motion of scanner and the object which is scanned must be known. The relative position, orientation and motion of the scanner can be determined by means of position, orientation and/or motion sensors. However, if these sensors are not accurate enough for the purpose, the precise relative position of scanner and object can be determined by comparing the obtained 3D surfaces in the sub-scans, such as by means of alignment/registration.
A motion sensor is a device that can perform motion measurement, such as an accelerometer. Furthermore the motion sensor may be defined as a device which works as a position and orientation sensor as well.

A position sensor is a device that permits position measurement. It can be an absolute position sensor or a relative position sensor, also denoted displacement sensor. Position sensors can be linear or angular.
An orientation sensor is a device that can perform orientation measurement, such as a gyrosscope.

In some embodiments the relative motion of the scanner and the rigid object is determined by registering/aligning the first representation and the second representation.

In some embodiments the first representation and the second representation are aligned/registered before the first excluded volume and the second excluded volume are determined.

Thus after the first and the second representation are provided, they may be aligned/registered, and after this, the first and second excluded volume may be determined, and then it is detected whether a portion of the surface in the first 3D representation or in the second 3D representation is located in space in the second excluded volume or in the first excluded volume, respectively, such that such portion of the surface in the representation is disregarded in the generation of the virtual 3D model.

Alignment or registration may comprise bringing the 3D representations or subscans together in a common reference system, and then merging them to create the virtual 3D model or a provisional virtual 3D model. For each representation or subscan which is aligned/registered to the provisional virtual 3D model, the model grows and finally it becomes the virtual 3D model of the object.

In some embodiments the relative motion of the scanner and the rigid object determined by means of the motions sensors is verified and potentially adjusted by registering/aligning the first representation and the second representation.

In some embodiments motion sensors are used for an initial determination of the relative motion of the scanner and the rigid object, and where registering/aligning is used for the final determination of the relative motion of the scanner and the rigid object.
Thus in practice the motion sensors may be used as a first guess for the motion, and based on this the alignment/registration may be used for testing the determined motion and/or determining the precise motion or adjusting the determined motion.

In some embodiments the optical system of the scanner is telecentric. A telecentric system is an optical system that provides imaging in such a way that the chief rays are parallel to the optical axis of said optical system. In a telecentric system out-of-focus points have substantially same magnification as in-focus points. This may provide an advantage in the data processing. A perfectly telecentric optical system may be difficult to achieve, however an optical system which is substantially telecentric or near telecentric may be provided by careful optical design. Thus, when referring to a telecentric optical system it is to be understood that it may be only near telecentric.

As the chief rays in a telecentric optical system are parallel to the optical axis, the scan volume becomes rectangular or cylindrical.

In some embodiments the optical system of the scanner is perspective.

If the optical system is a perspective system, the chief rays are angled relative to the optical axis, and the scan volume thus becomes cone shaped. Note that the scan volume is typically a 3D shape.

In some embodiments a mirror in a scan head of the scanner provides that the light rays from the light source in the scanner are transmitted with an angle relative to the opening of the scan head.

The scan volume may be defined not as rectangular but rather as resembling a parallelogram.

The light reflected back from a point on the surface may be projected as rays forming a cone or as parallel rays.

In some embodiments the 3D scanner is a hand-held scanner.
The 3D scanner may for example be a hand-held intraoral scanner.

In some embodiments the scanner is a pinhole scanner.
A pinhole scanner comprises a pinhole camera having a single small aperture. The size of the aperture may be such as $1 / 100$ or less of the distance between it and the projected image. Furthermore, the pinhole size may be determined by the formula $\mathrm{d}=2 \sqrt{ }(2 f \lambda)$, where d is pinhole diameter, f is focal length, i.e. the distance from pinhole to image plane, and λ is the wavelength of light.

It is an advantage to use the present method for detecting a movable object in a location in a pinhole scanner, since determining the first excluded volume and the second excluded volume is very fast, easy and accurate due to the pinhole setup, where the camera and the light source/projected
pattern, respectively, of the scanner are well-defined points in space relative to the captured surface.

Furthermore, if the scanner is a pinhole scanner, the excluded volume may be bigger, compared to if the scanner is not a pinhole scanner. The reason for this is because no far threshold distance can or should be defined when using a pinhole scanner, since no volume between the scanner and the captured tooth surface may not be included in the excluded volume due to the geometry and optical properties of the scanner. The pinhole scanner cannot overlook a surface or surface points from e.g. a movable object due to its geometry and optical properties.

In some embodiments the scanner comprises an aperture, and the size of the aperture is less than $1 / 100$ of the distance between it and the projected image.

This size of aperture corresponds to a pinhole scanner.

In some embodiments the scanner comprises an aperture, and the size of the aperture is more than $1 / 100$ of the distance between it and the projected image.
This size of aperture corresponds to a scanner which is not a pinhole scanner.

Further aspects

According to another aspect of the invention, disclosed is a method for detecting movable objects in the mouth of a patient, when scanning the patient's set of teeth in the mouth by means of a 3D scanner for generating a virtual 3D model of the set of teeth, wherein the method comprises:

- providing a first 3D representation of at least part of a surface by scanning at least part of the teeth;
- providing a second 3D representation of at least part of the surface by scanning at least part of the teeth;
- determining for the first 3D representation a first excluded volume in space where no surface can be present;
- determining for the second 3D representation a second excluded volume in space where no surface can be present;
- if a portion of the surface in the first 3D representation is located in space in the second excluded volume, the portion of the surface in the first 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the second 3D representation is located in space in the first excluded volume, the portion of the surface in the second 3D representation is disregarded in the generation of the virtual 3D model.

According to another aspect of the invention, disclosed is a method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object, wherein the method comprises:

- providing a first representation of at least part of a surface by scanning the rigid object;
- determining a first scan volume in space related to the first representation of at least part of the surface;
- providing a second representation of at least part of the surface by scanning the rigid object;
- determining a second scan volume in space related to the second representation of at least part of the surface;
- if there is a common scan volume, where the first scan volume and the second scan volume are overlapping, then:
- determine whether there is a volume region in the common scan volume which in at least one of the first representation or the second representation is empty and comprises no surface; and
- if there is a volume region in the common scan volume which in at least one of the first representation or the second representation is empty and comprises no surface, then exclude the volume region by disregarding in the generation of the virtual 3D model any surface portion in the second representation or in the first representation, respectively, which is detected in the excluded volume region, since a surface portion detected in the excluded volume region represents a movable object which is not part of the rigid object.

According to another aspect of the invention, disclosed is a method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object, wherein the method comprises:

- providing a first surface by scanning the rigid object;
- determining a first scan volume related to the first surface;
- providing a second surface by scanning the rigid object;
- determining a second scan volume related to the second surface;
where the first scan volume and the second scan volume are overlapping in an overlapping/common scan volume;
- if at least a portion of the first surface and a portion of the second surface are not coincident in the overlapping/common scan volume, then disregard the portion of either the first surface or the second surface in the overlapping/common scan volume which is closest to the focusing optics of the 3D scanner, as this portion of the first surface or second surface represents a movable object which is not part of the rigid object.

According to another aspect of the invention, disclosed is a method for detecting a movable object in the mouth of the patient, when scanning the patient's set of teeth by means of a 3D scanner for generating a virtual 3D model of the set of teeth, wherein the method comprises:

- providing a first surface by scanning the set of teeth;
- determining a first scan volume related to the first surface;
- providing a second surface by scanning the set of teeth;
- determining a second scan volume related to the second surface;
where the first scan volume and the second scan volume are overlapping in an overlapping/common scan volume;
- if at least a portion of the first surface and a portion of the second surface are not coincident in the overlapping/common scan volume, then disregard the portion of either the first surface or the second surface in the overlapping/common scan volume which is closest to the focusing optics of the 3D scanner, as this portion of the first surface or second surface represents a movable object which is not part of the set of teeth.

According to another aspect of the invention, disclosed is a method for detecting movable objects recorded in subscans, when scanning a set of teeth by means of a scanner for generating a virtual 3D model of the set of teeth, where the virtual 3D model is made up of the already acquired subscans of the surface of the set of teeth, and where new subscans are adapted to be added to the 3D virtual model, when they are acquired, wherein the method comprises:

- acquiring at least a first subscan of at least a first surface of part of the set of teeth, where the at least first subscan is defined as the 3D virtual model;
- acquiring a first subscan of a first surface of part of the set of teeth;
- determining a first scan volume of the first subscan;
- determining a scan volume of the virtual 3D model;
- if the first scan volume of the first subscan and the scan volume of the virtual 3D model are at least partly overlapping in a common scan volume; then:
- calculate whether at least a portion of the first surface lies within the common scan volume;
- calculate whether at least a portion of the surface of the virtual 3D model lies within the common scan volume, and
- determine whether at least a portion of a surface is present in the overlapping volume only in one subscan and not the other subscan/3D virtual model;
- if at least a portion of a surface is present in only one subscan, then disregard the portion of the surface in the overlapping volume which is closest to the focusing optics of the scanner, since the portion of the surface represents a movable object which is not part of the set of teeth, and the portion of the surface is disregarded in the creation of the virtual 3D model of the set of teeth.

According to another aspect of the invention, disclosed is s method for detecting movable objects recorded in subscans, when scanning a set of teeth by means of a scanner for generating a virtual 3D model of the set of teeth, wherein the method comprises:
a) providing a first subscan of a first surface of part of the set of teeth;
b) calculating a first scan volume of the first subscan;
c) providing a second subscan of a second surface of part of the set of teeth;
d) calculating a second scan volume of the second subscan; and
e) if the first scan volume and the second scan volume are at least partly overlapping in a common scan volume; then:
f) calculate whether at least a portion of the first surface lies within the common scan volume;
g) calculate whether at least a portion of the second surface lies within the common scan volume, and
h) if at least a portion of the first surface or at least a portion of the second surface lie within the common scan volume, and the portion of the first surface or the portion of the second surface is located in space between the scanner and at least a portion of the second surface or at least a portion of the first surface, respectively;
then the portion of the surface represents a movable object which is not part of the set of teeth, and the portion of the surface is disregarded in the creation of the virtual 3D model of the set of teeth.

In some embodiments the method above further comprises:

- providing a third subscan of a third surface of part of the set of teeth;
- calculating a third scan volume of the third subscan;
- if the third scan volume is at least partly overlapping with the first scan volume and/or with the second scan volume in a common scan volume; then repeat steps f) - h) for the third subscan with respect to the first subscan and/or the second subscan.

Further embodiments are disclosed in the following sections:

Focus scanning and motion determination

In some embodiments the 3D scanning comprises the steps of:

- generating a probe light,
- transmitting the probe light towards the object thereby illuminating at least a part of the object,
- transmitting light returned from the object to a camera
comprising an array of sensor elements,
- imaging on the camera at least part of the transmitted light
returned from the object to the camera by means of an optical system,
- varying the position of the focus plane on the object by means of
focusing optics,
obtaining at least one image from said array of sensor elements,
- determining the in-focus position(s) of:
- each of a plurality of the sensor elements for a
sequence of focus plane positions, or
- each of a plurality of groups of the sensor elements
for a sequence of focus plane positions.

There may be for example more than 200 focus plane images, such as 225 focus plane images, in a sequence of focus plane images used in generating a 3D surface. The focus plane images are 2D images.

Image sensor(s), photo sensor and the like can be used for acquiring images in the scanner. By scanning is generally meant optical scanning or imaging using laser light, white light etc.

In some embodiments a sequence of focus plane images are depth images captured along the direction of the optical axis.

In some embodiments at least a part of the object is in focus in at least one of the focus plane images in a sequence of focus plane images.

In some embodiments the time period between acquisition of each focus plane image is fixed/predetermined/known.

Each focus plane image may be acquired a certain time period after the previous focus plane image was acquired. The focus optics may move between the acquisition of each image, and thus each focus plane image may be acquired in a different distance from the object than the previous focus plane images.

One cycle of focus plane image capture may be from when the focus optics is in position P until the focus optics is again in position P. This cycle may be denoted a sweep. There may such as 15 sweeps per second.

A number of 3D surfaces or sub-scans may then be combined to create a full scan of the object for generating a 3D model of the object.

In some embodiments determining the relative motion of the scanner during the acquisition of the sequence of focus plane images is performed by analysis of the sequence in itself.

Motion detection by means of hardware

In some embodiments determining the relative motion of the scanner during the acquisition of the sequence of focus plane images is performed by sensors in and/or on the scanner and/or by sensors on the object and/or by sensors in the room where the scanner and the object are located.

The motion sensors may be small sensor such as microelectromechanical systems (MEMS) motion sensors. The motion sensors may measure all motion in 3D, i.e., both translations and rotations for the three principal coordinate axes. The benefits are:

- Motion sensors can detect motion, also vibrations and/or shaking. Scans such affected can e.g. be corrected by use of the compensation techniques described.
- Motion sensors can help with stitching and/or registering partial scans to each other. This advantage is relevant when the field of view of the scanner is smaller than the object to be scanned. In this situation, the scanner is applied for small regions of the object (one at a time) that then are combined to obtain the full scan. In the ideal case, motion sensors can provide the required relative rigid-motion transformation between partial scans' local coordinates, because they measure the relative position of the scanning device in each partial scan. Motion sensors with limited accuracy can still provide a first guess for a software-based stitching/ registration of partial scans based on, e.g., the Iterative Closest Point class of algorithms, resulting in reduced computation time.
Even if it is too inaccurate to sense translational motion, a 3-axis accelerometer can provide the direction of gravity relative to the scanning device. Also a magnetometer can provide directional information relative to the scanning device, in this case from the earth's magnetic field. Therefore, such devices can help with stitching/registration.

In some embodiments the motion is determined by means of a texture image sensor having a depth of focus which is larger than the depth of focus of the focusing optics.

In some embodiments the motion is determined by determining the position and orientation of one or more of the sensors.

In some embodiments the motion is determined by means of one or more physical components arranged in the handheld scanner.

In some embodiments the motion is determined by means of 3D position sensors.

In some embodiments the motion is determined by means of optical tracking.

The optical tracking may comprise LED(s) and camera(s), where the LED(s) may flash and the flashing can be detected by the camera(s).

In some embodiments the motion is determined by means of one or more gyroscopes.
A gyroscope is a device for measuring or maintaining orientation, based on the principles of conservation of angular momentum. A mechanical gyroscope is essentially a spinning wheel or disk whose axle is free to take any orientation. The gyroscopes used to determine the orientation of the sensor may be mechanical gyroscopes, electronic, microchip-packaged MEMS gyroscope devices, solid state ring lasers, fibre optic gyroscopes, quantum gyroscope and/or the like.

In some embodiments the motion is determined by means of one or more accelerometers.

In some embodiments the motion is determined by means of one or more magnetometers.

In some embodiments the motion is determined by means of one or more electromagnetic coils.

In some embodiments the motion is determined by means of a computerized measurement arm.

The measurement arm may for instance be from FARO Technologies. There may be goniometers in the measurement arm for measuring the movements of the arm.

In some embodiments the motion is determined by means of one or more axes on which the sensor is configured to move.
An example of an axes based system is a coordinate measuring machine (CMM), which is a device for measuring the physical geometrical characteristics of an object. This machine may be computer controlled. A typical CMM is composed of three axes, X, Y and Z , and these axes are orthogonal to each other in a typical three dimensional coordinate system. Each axis has a scale system that indicates the location of that axis. Measurements may be defined by a probe attached to the third moving axis of this machine, and the machine will read the input from the touch probe. Probes may be mechanical, optical, laser, or white light, among others.

In some embodiments the axes on which the sensor is configured to move are translational and / or rotational axes.

For each focus plane image that is acquired there is six degrees of freedom of the sensor, e.g. the handheld scanner, since the scanner is a rigid body which can perform motion in a three dimensional space, where the motion can be translation in three perpendicular axes, x, y, z, which is movement forward/backward, up/down, left/right, and this is combined with rotation about the three perpendicular axes. Thus the motion has six degrees of freedom as the movement along each of the three axes is independent of each other and independent of the rotation about any of these axes.

3D modeling

3D modeling is the process of developing a mathematical, wireframe representation of any three-dimensional object, called a 3D model, via specialized software. Models may be created automatically, e.g. 3D models may be created using multiple approaches, such as use of NURBS curves to generate accurate and smooth surface patches, polygonal mesh modeling
which is a manipulation of faceted geometry, or polygonal mesh subdivision which is advanced tessellation of polygons, resulting in smooth surfaces similar to NURBS models.

Obtaining a three dimensional representation of the surface of an object by scanning the object in a 3D scanner can be denoted 3D modeling, which is the process of developing a mathematical representation of the threedimensional surface of the object via specialized software. The product is called a 3D model. A 3D model represents the 3D object using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. The purpose of a 3D scanner is usually to create a point cloud of geometric samples on the surface of the object.

3D scanners collect distance information about surfaces within its field of view. The "picture" produced by a 3D scanner may describe the distance to a surface at each point in the picture.
For most situations, a single a scan or sub-scan will not produce a complete model of the object. Multiple sub-scans, such as $5,10,12,15,20,30,40,50$, $60,70,80,90$ or in some cases even hundreds, from many different directions may be required to obtain information about all sides of the object. These sub-scans are brought in a common reference system, a process that may be called alignment or registration, and then merged to create a complete model.

3D scanners may be fixed or stationary desktop scanners into which for example a dental impression, an ear canal impression or a casted gypsum model of teeth can be placed for scanning. 3D scanners may also be handheld intraoral scanners for scanning a patient directly in the mouth or handheld or fixed ear scanners for scanning a patient directly in the ear.

Thus a 3D scanner may be a handheld scanner where scanner and object are not arranged stationary relative to each other and where the relative motion may be unlimited, a desktop scanner where the object and the
scanning means, e.g. light source and camera, are arranged stationary relative to each other, a stationary scanner where the object for example can move relative to the stationary scanner etc.

A triangulation 3D laser scanner uses laser light to probe the environment or object. A triangulation laser shines a laser on the object and exploits a camera to look for the location of the laser dot. Depending on how far away the laser strikes a surface, the laser dot appears at different places in the camera's field of view. This technique is called triangulation because the laser dot, the camera and the laser emitter form a triangle. A laser stripe, instead of a single laser dot, may be used and is then swept across the object to speed up the acquisition process.
Structured-light 3D scanners project a pattern of light on the object and look at the deformation of the pattern on the object. The pattern may be one dimensional or two dimensional. An example of a one dimensional pattern is a line. The line is projected onto the object using e.g. an LCD projector or a sweeping laser. A camera, offset slightly from the pattern projector, looks at the shape of the line and uses a technique similar to triangulation to calculate the distance of every point on the line. In the case of a single-line pattern, the line is swept across the field of view to gather distance information one strip at a time.

An example of a two-dimensional pattern is a grid or a line stripe pattern. A camera is used to look at the deformation of the pattern, and an algorithm is used to calculate the distance at each point in the pattern. Algorithms for multistripe laser triangulation may be used.

Confocal scanning or focus scanning may also be used, where in-focus images are acquired at different depth to reconstruct the 3D model.

Iterative Closest Point (ICP) is an algorithm employed to minimize the difference between two clouds of points. ICP can be used to reconstruct 2D or 3D surfaces from different scans or sub-scans. The algorithm is
conceptually simple and is commonly used in real-time. It iteratively revises the transformation, i.e. translation and rotation, needed to minimize the distance between the points of two raw scans or sub-scans. The inputs are: points from two raw scans or sub-scans, initial estimation of the transformation, criteria for stopping the iteration. The output is: refined transformation. Essentially the algorithm steps are:

1. Associate points by the nearest neighbor criteria.
2. Estimate transformation parameters using a mean square cost function.
3. Transform the points using the estimated parameters.
4. Iterate, i.e. re-associate the points and so on.

Aligning/registration

In some embodiments the motion between at least two subsequent 3D surfaces are determined by aligning/registering the at least two subsequent 3D surfaces.

This may be performed by means of the method of iterative closest point (ICP) or similar methods. The method of Iterative Closest Point (ICP) can be used for aligning, and it is employed to minimize the difference between two clouds of points. ICP can be used to reconstruct 2D or 3D surfaces from different scan. ICP iteratively revises the transformation, i.e. translation or rotation, needed to minimize the distance between the points of two raw scans or subscans. The input for ICP may be points from two raw scans or subscans, initial estimation of the transformation, and criteria for stopping the iteration. The output will thus be a refined transformation.

The alignment may be performed in two steps, where the first step is a subscan to subscan alignment, and the second step is a subscan to provisional virtual 3D model (combined model) alignment. The start guess for
the alignment may be determined by using the gyroscopes, estimated speed of the scanner etc.

Additionally and/or alternatively, the method of least squares fit can be used in alignment.

In some embodiments aligning/registering is performed by selecting corresponding points on the at least two 3D surfaces, and minimizing the distance between the at least two 3D surfaces.

Corresponding points may the closest points on two surfaces, or point determined by a normal vector from a point on the other surface etc The distance may be minimized with regards to translation and rotation.

In some embodiments aligning/registration is continued in an iterative process to obtain an improved motion estimation.

In some embodiments the sensor position of each sequence is determined based on the alignment.

In some embodiments aligning comprises aligning the coordinate systems of at least two 3D surfaces.

In some embodiments aligning comprises aligning by means of matching / comparing one or more specific features, such as one or more specific features common to the at least two 3D surfaces, such as the margin line.

In some embodiments aligning comprises aligning by means of matching / comparing one or more peripheral features of the at least two 3D surfaces.

In some embodiments aligning comprises registration of the at least two 3D surfaces.

In some embodiments aligning comprises applying a predefined criterion for maximum allowed error in the registration.

In some embodiments the motion compensation comprises reconstructing a self-consistent surface model and motion and/or rotation of the scanner relative to the object from two or more scans of the object where two successive scans overlap at least partially.

Focus scanning

The 3D scanner may be used for providing a 3D surface registration of objects using light as a non-contact probing agent. The light may be provided in the form of an illumination pattern to provide a light oscillation on the object. The variation / oscillation in the pattern may be spatial, e.g. a static checkerboard pattern, and/or it may be time varying, for example by moving a pattern across the object being scanned. The invention provides for a variation of the focus plane of the pattern over a range of focus plane positions while maintaining a fixed spatial relation of the scanner and the object. It does not mean that the scan must be provided with a fixed spatial relation of the scanner and the object, but merely that the focus plane can be varied (scanned) with a fixed spatial relation of the scanner and the object. This provides for a hand held scanner solution based on the present invention.

In some embodiments the signals from the array of sensor elements are light intensity.

One embodiment of the invention comprises a first optical system, such as an arrangement of lenses, for transmitting the probe light towards the object and a second optical system for imaging light returned from the object to the camera. In the preferred embodiment of the invention only one optical system
images the pattern onto the object and images the object, or at least a part of the object, onto the camera, preferably along the same optical axis, however along opposite optical paths.

In the preferred embodiment of the invention an optical system provides an imaging of the pattern onto the object being probed and from the object being probed to the camera. Preferably, the focus plane is adjusted in such a way that the image of the pattern on the probed object is shifted along the optical axis, preferably in equal steps from one end of the scanning region to the other. The probe light incorporating the pattern provides a pattern of light and darkness on the object. Specifically, when the pattern is varied in time for a fixed focus plane then the in-focus regions on the object will display an oscillating pattern of light and darkness. The out-of-focus regions will display smaller or no contrast in the light oscillations.

Generally we consider the case where the light incident on the object is reflected diffusively and/or specularly from the object's surface. But it is understood that the scanning apparatus and method are not limited to this situation. They are also applicable to e.g. the situation where the incident light penetrates the surface and is reflected and/or scattered and/or gives rise to fluorescence and/or phosphorescence in the object. Inner surfaces in a sufficiently translucent object may also be illuminated by the illumination pattern and be imaged onto the camera. In this case a volumetric scanning is possible. Some planktic organisms are examples of such objects.

When a time varying pattern is applied a single sub-scan can be obtained by collecting a number of 2D images at different positions of the focus plane and at different instances of the pattern. As the focus plane coincides with the scan surface at a single pixel position, the pattern will be projected onto the surface point in-focus and with high contrast, thereby giving rise to a large variation, or amplitude, of the pixel value over time. For each pixel it is thus
possible to identify individual settings of the focusing plane for which each pixel will be in focus. By using knowledge of the optical system used, it is possible to transform the contrast information vs. position of the focus plane into 3D surface information, on an individual pixel basis.

Thus, in one embodiment of the invention the focus position is calculated by determining the light oscillation amplitude for each of a plurality of sensor elements for a range of focus planes.

For a static pattern a single sub-scan can be obtained by collecting a number of 2D images at different positions of the focus plane. As the focus plane coincides with the scan surface, the pattern will be projected onto the surface point in-focus and with high contrast. The high contrast gives rise to a large spatial variation of the static pattern on the surface of the object, thereby providing a large variation, or amplitude, of the pixel values over a group of adjacent pixels. For each group of pixels it is thus possible to identify individual settings of the focusing plane for which each group of pixels will be in focus. By using knowledge of the optical system used, it is possible to transform the contrast information vs. position of the focus plane into 3D surface information, on an individual pixel group basis.

Thus, in one embodiment of the invention the focus position is calculated by determining the light oscillation amplitude for each of a plurality of groups of the sensor elements for a range of focus planes.

The 2D to 3D conversion of the image data can be performed in a number of ways known in the art. I.e. the 3D surface structure of the probed object can be determined by finding the plane corresponding to the maximum light oscillation amplitude for each sensor element, or for each group of sensor elements, in the camera's sensor array when recording the light amplitude for a range of different focus planes. Preferably, the focus plane is adjusted in
equal steps from one end of the scanning region to the other. Preferably the focus plane can be moved in a range large enough to at least coincide with the surface of the object being scanned.

The scanner preferably comprises at least one beam splitter located in the optical path. For example, an image of the object may be formed in the camera by means of a beam splitter. Exemplary uses of beam splitters are illustrated in the figures.

In a preferred embodiment of the invention light is transmitted in an optical system comprising a lens system. This lens system may transmit the pattern towards the object and images light reflected from the object to the camera.

In a telecentric optical system, out-of-focus points have the same magnification as in-focus points. Telecentric projection can therefore significantly ease the data mapping of acquired 2D images to 3D images. Thus, in a preferred embodiment of the invention the optical system is substantially telecentric in the space of the probed object. The optical system may also be telecentric in the space of the pattern and camera.

The present invention relates to different aspects including the method described above and in the following, and corresponding methods, devices, apparatuses, systems, uses and/or product means, each yielding one or more of the benefits and advantages described in connection with the first mentioned aspect, and each having one or more embodiments corresponding to the embodiments described in connection with the first mentioned aspect and/or disclosed in the appended claims.

In particular, disclosed herein is a system for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D
scanner for generating a virtual 3D model of the rigid object, wherein the system comprises:

- means for providing a first 3D representation of at least part of a surface by

Brief description of the drawings

 scanning at least part of the location; surface by scanning at least part of the location; volume in space where no surface can be present; volume in space where no surface can be present; excluded volume, and/or excluded volume. there on the program code means. - means for providing a second 3D representation of at least part of the- means for determining for the first 3D representation a first excluded
- means for determining for the second 3D representation a second excluded
- means for disregarding the portion of the surface in the first 3D representation in the generation of the virtual 3D model, if a portion of the surface in the first 3D representation is located in space in the second
- means for disregarding the portion of the surface in the second 3D representation in the generation of the virtual 3D model, if a portion of the surface in the second $3 D$ representation is located in space in the first

Furthermore, the invention relates to a computer program product comprising program code means for causing a data processing system to perform the method according to any of the embodiments, when said program code means are executed on the data processing system, and a computer program product, comprising a computer-readable medium having stored

The above and/or additional objects, features and advantages of the present invention, will be further elucidated by the following illustrative and nonlimiting detailed description of embodiments of the present invention, with reference to the appended drawings, wherein:

Fig. 1 shows an example of a flowchart of the method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object.

Fig. 2 shows an example of a scan head of an intraoral 3D scanner scanning a set of teeth.

Fig. 3 shows an example of a handheld 3D scanner.

Fig. 4 shows an example of a section of teeth in the mouth which can be covered in a sub-scan.

Fig. 5 shows an example of how the different sub-scans generating 3D surfaces are distributed across a set of teeth.

Fig. 6 shows an example of registering/aligning representations of 3D surfaces and compensating for motion in a 3D surface.

Fig. 7 shows an example of a 3D surface where overlapping sub-scans are indicated.

Fig. 8 shows an example of excluded volume.

Fig. 9 shows an example of scanning a tooth and acquiring a first and a second representation of the surface of the tooth, where no movable object is present.

Fig. 10 shows an example of scanning a tooth and acquiring a first and a second representation of the surface of the tooth, where a movable object is captured in part of the first representation.

Fig. 16 shows an example of a near threshold distance defining how far from the representation possible movable objects are disregarded in the generation of the virtual 3D model.
Fig. 11 shows an example of scanning a tooth and acquiring a first and a second representation of the surface of the tooth, where a movable object is captured in the second representation.

Fig. 12 shows an example of acquiring a first and a second representation of the surface of an object, e.g. a tooth, where a movable object is captured in the first representation.

Fig. 13 shows an example of acquiring a first and a second representation of a surface of an object, where no movable object is present.

Fig. 14 shows an example of acquiring a first and a second representation of a surface of an object, where a movable object of the second representation is present in the excluded volume of the first representation.

Fig. 15 shows an example of acquiring a first and a second representation of a surface of an object, where a possible movable object is present in the second representation, but not in the excluded volume of the first representation.
而

Fig. 17 shows an example of how the excluded volume is determined.

Fig. 18 shows examples of how movable objects can look in subscans.

Fig. 19 shows an example of a pinhole scanner.

Fig. 20 shows examples of the principle of a far threshold distance from the captured surface defining a volume which is not included in the excluded volume of a representation.

Detailed description

In the following description, reference is made to the accompanying figures, which show by way of illustration how the invention may be practiced.

Figure 1 shows an example of a flowchart of the method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object. In step 101 a first 3D representation of at least part of a surface is provided by scanning at least part of the location.
In step 102 a second 3D representation of at least part of the surface is provided by scanning at least part of the location.
In step 103 a first excluded volume in space where no surface can be present is determined for the first 3D representation.

In step 104 a second excluded volume in space where no surface can be present is determined for the second 3D representation.
In step 105 a portion of the surface in the first 3D representation is disregarded in the generation of the virtual 3D model, if the portion of the surface in the first 3D representation is located in space in the second excluded volume, and/or a portion of the surface in the second 3D representation is disregarded in the generation of the virtual 3D model, if the
portion of the surface in the second 3D representation is located in space in the first excluded volume.

Fig. 2 shows an example of a scan head of an intraoral 3D scanner scanning a set of teeth.
An intraoral handheld 3D scanner (not shown) comprising a scan head 207 is scanning a tooth 208. The scanning is performed by transmitting light rays on the tooth 208. The light rays forms a scan volume 211, which is cone shaped in this example.
The length 203 of the scan volume 211, i.e. the distance from the opening 202 of the scan head to the end of the scan volume may be for example about $5 \mathrm{~mm}, 10 \mathrm{~mm}, 15 \mathrm{~mm}, 16 \mathrm{~mm}, 17 \mathrm{~mm}, 18 \mathrm{~mm}, 19 \mathrm{~mm}, 20 \mathrm{~mm}, 25$ $\mathrm{mm}, 30 \mathrm{~mm}$.

The scan volume may be about $20 \mathrm{~mm} \times 20 \mathrm{~mm}$.

Fig. 3 shows an example of a handheld 3D scanner.
The handheld scanner 301 comprises a light source 302 for emitting light, a beam splitter 304, movable focus optic 305, such as lenses, an image sensor 306 , and a tip or probe 307 for scanning an object 308 . In this example the object 308 is teeth in an intra oral cavity.

The scanner comprises a scan head or tip or probe 307 which can be entered into a cavity for scanning an object 308. The light from the light source 302 travels back and forth through the optical system. During this passage the optical system images the object 308 being scanned onto the image sensor 306. The movable focus optics comprises a focusing element which can be adjusted to shift the focal imaging plane on the probed object 308. One way to embody the focusing element is to physically move a single lens element back and forth along the optical axis. The device may include polarization optics and/or folding optics which directs the light out of the device in a direction different to the optical axis of the lens system, e.g. in a
direction perpendicular to the optical axis of the lens system. As a whole, the optical system provides an imaging onto the object being probed and from the object being probed to the image sensor, e.g. camera. One application of the device could be for determining the 3D structure of teeth in the oral cavity. Another application could be for determining the 3D shape of the ear canal and the external part of the ear.

The optical axis in fig. 3 is the axis defined by a straight line through the light source, optics and the lenses in the optical system. This also corresponds to the longitudinal axis of the scanner illustrated in fig. 3. The optical path is the path of the light from the light source to the object and back to the camera. The optical path may change direction, e.g. by means of beam splitter and folding optic.

The focus element is adjusted in such a way that the image on the scanned object is shifted along the optical axis, for example in equal steps from one end of the scanning region to the other. A pattern may be imaged on the object, and when the pattern is varied in time in a periodic fashion for a fixed focus position then the in-focus regions on the object will display a spatially varying pattern. The out-of-focus regions will display smaller or no contrast in the light variation. The 3D surface structure of the probed object may be determined by finding the plane corresponding to an extremum in the correlation measure for each sensor in the image sensor array or each group of sensor in the image sensor array when recording the correlation measure for a range of different focus positions. Preferably one would move the focus position in equal steps from one end of the scanning region to the other. The distance from one end of the scanning region to the other may be such as 5 $\mathrm{mm}, 10 \mathrm{~mm}, 15 \mathrm{~mm}, 16 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}, 30 \mathrm{~mm}$ etc.

Fig. 4 shows an example of a section of teeth in the mouth which can be covered in a sub-scan.

In fig. 4a) the teeth 408 are seen in a top view, and in fig. 4b) the teeth 408 are seen in a perspective view.

An example of the scan volume 411 for one sequence of focus plane images is indicated by the transparent box. The scan volume may be such as $17 \times 15 \times 20 \mathrm{~mm}$, where the 15 mm may be the "height" of the scan volume corresponding to the distance the focus optics can move.

Fig. 5 shows an example of how the different sub-scans generating 3D surfaces is distributed across a set of teeth.

Four sub-scans 512 are indicated on the figure. Each sub-scan provides a 3D surface of the scanned teeth. The 3D surfaces may be partly overlapping, whereby a motion of the scanner performed during the acquisition of the subscans can be determined by comparing the overlapping parts of two or more 3D surfaces.

Fig. 6 shows an example of registering/aligning representations of 3D surfaces and compensating for motion in a 3D surface.
Fig. 6a) shows a 3D surface 616, which for example may be generated from a number of focus plane images.
Fig. 6b) shows another 3D surface 617, which may have been generated in a subsequent sequence of focus plane images.
Fig. 6c) shows the two 3D surface 616, 617 are attempted to be aligned/registered. Since the two 3D surfaces 616, 617 have 3D points which correspond to the same area of a tooth, it is possible to perform the registration/alignment by ICP, by comparing the corresponding points in the two 3D surfaces etc.

Fig. 6d) shows the resulting 3D surface 618 when the two 3D surfaces 616, 617 have been merged together.
Fig 6e) shows that based on the resulting 3D surface 618 the relative motion performed by the scanner during the acquisition of the sub-scans or focus plane images generating 3D surface 616 and 617 can be determined, and
based on this determined motion the resulting 3D surface 618 can be corrected to a final "correct" 3D surface 619.

Fig. 7 shows an example of a 3D surface where overlapping sub-scans are indicated.

A number of 3D representations or sub-scans are indicated by the numbers $1-11$ and the subdivision markers 712 on a 3D surface 713 . The subdivision markers 712 for sub-scans $1,3,5,7,9$, and 11 are with dotted lines, and the subdivision markers for sub-scan $2,4,6,8,10$ are marked with full lines. The sub-scans are all overlapping with the same distance, but the overlapping distance may be different for each pair of subscans. As typically a dentist will hold the scanner and move it across the teeth of the patient, the overlapping distance depends on how fast the dentist moves the scanner and the time frame between the acquisition of each scan, so if the time frame is constant, and the dentist does not move the scanner exactly with a constant speed, the overlapping distance will not be the same for all subscans.

Fig. 8 shows an example of excluded volume.
The excluded volume 821 is the volume in space where no surface can be present. At least a part of the excluded volume 821 may correspond to the scan volume 811 of a 3D representation, since the space between the scan head 807 or the focusing optics of the 3D scanner and the captured surface 816 must be an empty space, unless a transparent object, which is not detectable by the 3D scanner, was located in the scan volume. Furthermore the volume of the scan head 807 and the 3D scanner 801 may be defined as an excluded volume 823, since the scanner and scan head occupies their own volume in space, whereby no surface can be present there. Furthermore, the tooth 808 which is being scanned also occupies a volume in space, but since the surface 816 of the tooth 808 is being captured by the scanner, it is not considered what is "behind" the surface 816.

Fig. 9 shows an example of scanning a tooth and acquiring a first and a second representation of the surface of the tooth, where no movable object is present.

Fig. 9a) shows an example of scanning the tooth 908 using a 3D scanner 901 for acquiring a first 3D representation 916 of the surface of the tooth 908. A first scan volume 911 in space is related to the first representation, and a first excluded volume 921 corresponds to the first scan volume 911.
Fig. 9b) shows an example of scanning the tooth 908 using a 3D scanner 901 for acquiring a second 3D representation 917 of the surface of the tooth 908. A second scan volume 912 in space is related to the second representation, and a second excluded volume 922 corresponds to the second scan volume 912 . The second representation is acquired with a different angle between scanner and tooth than the first representation.

No surface portion of the first representation 916 lies in the second excluded volume 922, and no surface portion of the second representation 917 lies in the first excluded volume 921, so no surface portion(s) are disregarded in the generation of the virtual 3D model in this case.

Fig. 10 shows an example of scanning a tooth and acquiring a first and a second representation of the surface of the tooth, where a movable object is captured in part of the first representation.

Fig. 10a) shows an example of scanning the tooth 1008 using a 3D scanner 1001 for acquiring a first 3D representation 1016 of the surface of the tooth 1008. A movable object 1030 is present, and a part 1016b of the first representation 1016 comprises the surface of the movable object 1030. The part 1016a of the first representation 1016 comprises the surface of the tooth. A first scan volume 1011 in space is related to the first representation, and a first excluded volume 1021 corresponds to the first scan volume 1011.

Fig. 10b) shows an example of scanning the tooth 1008 using a 3D scanner 1001 for acquiring a second 3D representation 1017 of the surface of the tooth 1008. A second scan volume 1012 in space is related to the second
representation, and a second excluded volume 1022 corresponds to the second scan volume 1012. The second representation is acquired with a different angle between scanner and tooth than the first representation. Since the surface portion 1016b of the first representation 1016 lies in the second excluded volume 1022, this surface portion 1016b is disregarded in the generation of the virtual 3D model.

Fig. 11 shows an example of scanning a tooth and acquiring a first and a second representation of the surface of the tooth, where a movable object is captured in the second representation.
Fig. 11a) shows an example of scanning the tooth 1108 using a 3D scanner 1101 for acquiring a first 3D representation 1116 of the surface of the tooth 1108. A first scan volume 1111 in space is related to the first representation, and a first excluded volume 1121 corresponds to the first scan volume 1111.
Fig. 11b) shows an example of scanning the tooth 1108 using a 3D scanner 1101 for acquiring a second 3D representation 1117 of the surface of the tooth 1108. A movable object 1130 is present, and the second representation 1117 comprises the surface of the movable object 1130. A second scan volume 1112 in space is related to the second representation, and a second excluded volume 1122 corresponds to the second scan volume 1112. The second representation is acquired with a different angle between scanner and tooth than the first representation.
Since the surface of the second representation 1117 lies in the first excluded volume 1121, the surface of the second representation 1117 is disregarded in the generation of the virtual 3D model.

The figures in fig. 11 are shown in 2 D , but it is understood that the figures represent 3D figures.

Fig. 12 shows an example of acquiring a first and a second representation of the surface of an object, e.g. a tooth, where a movable object is captured in the first representation.

Fig. 12a) shows a first 3D representation 1216 comprising two parts, part 1216a and part 1216b. The first scan volume 1211 is indicated by the vertical lines. The first excluded volume 1221 corresponds to the first scan volume. Fig. 12b) shows a second 3 D representation 1217 . The second scan volume 1212 is indicated by the vetical lines. The second excluded volume 1222 corresponds to the second scan volume.
The part 1216a of the first representation 1216 corresponds to the first part of the second representation 1217, whereas the part $1216 b$ of the second representation 1216 does not correspond to the second part of the second representation 1217.
The part $1216 b$ of the first representation 1216 lies in the second excluded volume 1222, and the part 1216b is therefore disregarded in the generation of the virtual 3D model

Fig. 12c) shows the resulting 3D representation 1219, which corresponds to the second representation.

The figures in fig. 12 are shown in 2D, but it is understood that the figures represent 3D figures.

Fig. 13 shows an example of acquiring a first and a second representation of a surface of an object, where no movable object is present.
Fig. 13a) shows an example of acquiring a first 3D representation 1316 of a surface of an object (not shown). A first scan volume 1311 in space is related to the first representation. The first scan volume 1311 is indicated by dotted vertical lines. A first excluded volume 1321 corresponds to the first scan volume 1311.

Fig. 13b) shows an example of acquiring a second 3D representation 1317 of a surface of an object (not shown). A second scan volume 1312 in space is related to the second representation. The second scan volume 1312 is indicated by dotted vertical lines. A second excluded volume 1322 corresponds to the second scan volume 1312.

The second representation is acquired with a different angle between scanner and tooth than the first representation. Furthermore, the second representation is displaced in space relative to the first representation, so the first and second representation does not represent the same entire surface part of the object, but parts of the representations are overlapping.
Fig. 13c) shows an example where the first representation 1316 and the second representation 1317 are aligned/registered, such that the corresponding parts of the representations are arranged in the same location. Fig. 13d) shows an example where the overlapping common scan volume 1340 of the first representation 1316 and the second representation 1317 is indicated as a shaded area. If a surface portion of one of the representations is located in the overlapping common scan volume 1340, then this corresponds to that the surface portion is located in the excluded volume of the other representation. However, in this case, no surface portion of the first representation 1316 or of the second representation 1317 lies in the overlapping common scan volume 1340, so no surface portion(s) are disregarded in the generation of the virtual 3D model in this case.
In order to be able to distinguish between the surface of the first and the surface of the second representation, these two surfaces are slightly displaced, but in a real case the surface of the first and the surface of the second representation may be exactly overlapping each other, so that the surface part from the first representation and the surface part from the second representation cannot be distinguished.

Fig. 13e) shows an example of the resulting virtual 3D surface 1319.
The figures in fig. 13 are shown in 2D, but it is understood that the figures represent 3D figures.

Fig. 14 shows an example of acquiring a first and a second representation of a surface of an object, where a movable object of the second representation is present in the excluded volume of the first representation.

Fig. 14a) shows an example of acquiring a first 3D representation 1416 of a surface of an object (not shown). A first scan volume 1411 in space is related to the first representation. The first scan volume 1411 is indicated by dotted vertical lines. A first excluded volume 1421 corresponds to the first scan volume 1411.
Fig. 14b) shows an example of acquiring a second 3D representation 1417 of a surface of an object (not shown). A second scan volume 1412 in space is related to the second representation. The second scan volume 1412 is indicated by dotted vertical lines. A second excluded volume 1422 corresponds to the second scan volume 1412. The second 3D representation 1417 comprises two parts 1417a and 1417b. The part 1417b is located between the part 1417a and the scanner (not shown), which is arranged somewhere at the end of the scan volume.

The second representation is acquired with a different angle between scanner and tooth than the first representation. Furthermore, the second representation is displaced in space relative to the first representation, so the first and second representation does not represent the same entire surface part of the object, but parts of the representations are overlapping.
Fig. 14c) shows an example where the first representation 1416 and the second representation 1417 are aligned/registered, such that the corresponding parts of the representations are arranged in the same location. Some of the part 1417a of the second representation is aligned/registered with the first representation. The part 1417b cannot be aligned/registered with the first representation 1416, since there is no corresponding surface portions between the surface 1416 and the surface 1417b.

Fig. 14d) shows an example where the overlapping common scan volume 1440 of the first representation 1416 and the second representation 1417 is indicated as a shaded area. The surface portion 1417b of the second representation is located in the overlapping common scan volume 1440, and the surface portion 1417b of the second representation 1417 is therefore located in the excluded volume 1421 of the first representation 1416, and
part 1417b must therefore be a movable object, which is only present in the second representation.

In order to be able to distinguish between the surface of the first and the surface of the second representation, these two surfaces are slightly displaced, but in a real case the surface of the first and the surface of the second representation may be exactly overlapping each other, so that the surface part from the first representation and the surface part from the second representation cannot be distinguished.
Fig. 14e) shows an example of the resulting virtual 3D surface 1419 , where the surface portion 1417b is disregarded in the generation of the virtual 3D model, so the virtual 3D model comprises the first representation 1416 and the part 1417a of the second representation 1417.

The figures in fig. 14 are shown in 2D, but it is understood that the figures represent 3D figures.

Fig. 15 shows an example of acquiring a first and a second representation of a surface of an object, where a possible movable object is present in the second representation, but not in the excluded volume of the first representation.
Fig. 15a) shows an example of acquiring a first 3D representation 1516 of a surface of an object (not shown). A first scan volume 1511 in space is related to the first representation. The first scan volume 1511 is indicated by dotted vertical lines. A first excluded volume 1521 corresponds to the first scan volume 1511.

Fig. 15b) shows an example of acquiring a second 3D representation 1517 of a surface of an object (not shown). A second scan volume 1512 in space is related to the second representation. The second scan volume 1512 is indicated by dotted vertical lines. A second excluded volume 1522 corresponds to the second scan volume 1512. The second 3D representation 1517 comprises two parts 1517 a and 1517 b . The part 1517 b is located
between the part 1517a and the scanner (not shown), which is arranged somewhere at the end of the scan volume.

The second representation 1517 is acquired with a different angle between scanner and tooth than the first representation 1516. Furthermore, the second representation is displaced in space relative to the first representation, so the first and second representation does not represent the same entire surface part of the object, but parts of the representations are overlapping.
Fig. 15c) shows an example where the first representation 1516 and the second representation 1517 are aligned/registered, such that the corresponding parts of the representations are arranged in the same location. Some of the part 1517a of the second representation is aligned/registered with the first representation 1516. The part 1517b cannot be aligned/registered with the first representation 1516, since there is no corresponding surface portions between the surface 1516 and the surface 1517b.

Fig. 15d) shows an example where the overlapping common scan volume 1540 of the first representation 1516 and the second representation 1517 is indicated as a shaded area. The surface portion 1517 b of the second representation is not located in the overlapping common scan volume 1540, and the surface portion 1517 b of the second representation 1517 is therefore not located in the excluded volume 1521 of the first representation 1516.

In order to be able to distinguish between the surface of the first and the surface of the second representation, these two surfaces are slightly displaced, but in a real case the surface of the first and the surface of the second representation may be exactly overlapping each other, so that the surface part from the first representation and the surface part from the second representation cannot be distinguished.
Fig. 15e) shows an example of the resulting virtual 3D surface 1519, where the surface portion 1517 b is not disregarded in the generation of the virtual

3D model, so the virtual 3D model comprises the first representation 1516 and both parts, 1517a and 1517b, of the second representation 1517.

Even though the surface portion 1517b probably is the representation of a movable object, at least this would be assumed if the object in this case is a tooth, since a tooth is unlikely to have a protrusion like the part 1517b of the representation shows, the surface portion 1517b cannot be disregarded yet, because the surface portion 1517b is not found to be located in any excluded volume from any representation yet. But when the scanning of the object's surface continues, there will probably be acquired a third representation which has an overlapping common scan volume with the second representation, and if the surface portion 1517 b is located in the excluded volume of the third representation, then the surface portion 1517b can be disregarded from the virtual 3D model.

The figures in fig. 15 are shown in 2D, but it is understood that the figures represent 3D figures.

Fig. 16 shows an example of a threshold distance defining how far from the representation or captured surface possible movable objects are disregarded in the generation of the virtual 3D model.
A near threshold distance 1650 is defined, which determines a distance from the captured surface 1616 in a first representation, where a surface portion in the second representation (not shown) which is located within the near threshold distance 1650 from the captured surface 1616 and which is located in space in the first excluded volume 1611 is not disregarded in the generation of the virtual 3D model.

The near threshold distance is defined for avoiding that too much of a representation of a surface is incorrectly disregarded, since there may be noise in the representation and since the registration/alignment between representations or sub-scans may not be completely accurate.
Reference numeral 1607 is the scan head of the scanner 1601, and reference numeral 1608 is the volume of the tooth.

The fig. 20 is shown in 2D, but it is understood that the figure represents 3D figures.

Fig. 17 shows an example of how the excluded volume is determined.

The space may be quantized in a 3D volume grid 1760. The distance 1762 between the corners 1761 in the 3D grid 1760 may be equidistant. The single cells 1763 in the grid each comprises eight corners 1761, and when each of the eight corners 1761 has been covered by a representation, then this cell 1763 is marked as seen. Thus if all eight corners 1761 of a cell 1763 is in the scan volume of a representation, then this cell 1763 may be marked as excluded volume. There may be such as ten, hundred, thousands or millions of cells in the space of a representation.

Fig. 18 shows examples of how movable objects can look in subscans.
Fig. 18a) shows a subscan where the tip of a finger 1870 has been captured in the subscan.
Fig. 18b) shows an example where a dental instrument 1871 has been captured in the subscan.

Fig. 19 shows an example of a pinhole scanner.
The pinhole scanner 1980 comprises a camera 1982 and a light source 1981, e.g. comprising a pattern (not shown). The light source 1981 transmits light rays 1983 to the surface 1916 from a small aperture, i.e. all the light rays 1983 transmitted to the surface 1961 are transmitted from a point. Light rays 1984 are reflected back from the surface 1961 and received by the camera 1982 through a small aperture.

Due to the pinhole setup, the point of light transmitted to the surface from the light source is well defined and the point of received light from the surface is also well defined.

Thus the excluded volume for a representation of the surface is defined by the volume in space that the light rays 1983 and 1984 span, and this volume is well defined due to the pinhole setup.

Fig. 20 shows examples of the principle of a far threshold distance from the captured surface defining a volume which is not included in the excluded volume of a representation.
The light rays 2052 (shown in dotted lines) from the scan head 2007 of the scanner 2001 may spread or scatter or disperse in any directions as seen in fig. 20a), where a number of the light rays are illustrated. It is understood that only some of all the light rays are shown here. The surface area on the tooth surface where the light rays impinge has reference numeral 2016.
In fig. 20b) it is shown that even if an object 2072, such as a movable object, is arranged between the scan head 2007 and the surface 2016 of a tooth, the scanner 2001 may still capture a surface point 2053 on the tooth surface 2016 which is present or hidden "under" the object 2072, because of the angled or inclined light rays 2052. A surface point 2053 needs just be visible for one light ray from the scanner in order for that surface point to be detected.

Fig. 20c) shows an example of the far threshold distance 2051, which determines a distance from the captured surface 2016 in a representation, where any acquired data or surface or surface points, which is/are present or located outside the far threshold distance 2051, is not included in the excluded volume for the representation. Thus any acquired data or surface or surface points in the volume 2054 between the far threshold distance 2051 and the scan head 2007 is not used in defining the excluded volume of the representation.

Fig. 20d) shows an example where defining the far threshold distance is an advantage for avoiding that real tooth surface parts are erroneously disregarded.

The scanner 2001 should in principle capture all surface parts, 2016 and 2017, present in the scan volume, but in some cases the scanner cannot capture all surface parts in the scan volume. This may happen for example because the surface part is present outside the focus region of the scanner 2001 or of the scan head 2007 or because of poor lightning conditions for the surface part. In such cases the surface part 2017 may not be captured and registered, and an excluded volume would be determined in the space region where the surface part 2017 of the tooth surface is actually present. By defining the far threshold distance 2051 less of the scan volume is excluded, and thereby it can be avoided that a real surface part 2017 is erroneously disregarded.

The actual distance of the threshold may depend or be calculated based on the optics of the scanner. The far threshold distance may be a fixed number, such as about $0.5 \mathrm{~mm}, 1 \mathrm{~mm}, 2 \mathrm{~mm}, 3 \mathrm{~mm}, 4 \mathrm{~mm}, 5 \mathrm{~mm}, 6 \mathrm{~mm}, 7 \mathrm{~mm}, 8$ $\mathrm{mm}, 9 \mathrm{~mm}, 10 \mathrm{~mm}, 20 \mathrm{~mm}, 30 \mathrm{~mm}, 40 \mathrm{~mm}, 50 \mathrm{~mm}, 60 \mathrm{~mm}, 70 \mathrm{~mm}, 80 \mathrm{~mm}$, 90 mm , or 100 mm . Alternatively, the far threshold distance may be a percentage or a fraction of the length of the scan volume, such as about $20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%$, or 50% of the length of the scan volume, or such as $1 / 2,1 / 3,1 / 4,1 / 5$ of the length of the scan volume.
The far threshold distance may be based on a determination of how far a distance from a detected point of the surface it is possible to scan, i.e. how much of the surface around a detected point that is visible for the scanner. If the visible distance in one direction from a surface point is short, then the far threshold distance will be smaller than if the distance in all directions from a surface point is long.

The figures in fig. 20 are shown in 2 D , but it is understood that the figures represent 3D figures.

Although some embodiments have been described and shown in detail, the invention is not restricted to them, but may also be embodied in other ways within the scope of the subject matter defined in the following claims. In
particular, it is to be understood that other embodiments may be utilised and structural and functional modifications may be made without departing from the scope of the present invention.

In device claims enumerating several means, several of these means can be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims or described in different embodiments does not indicate that a combination of these measures cannot be used to advantage.

A claim may refer to any of the preceding claims, and "any" is understood to mean "any one or more" of the preceding claims.

It should be emphasized that the term "comprises/comprising" when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

The features of the method described above and in the following may be implemented in software and carried out on a data processing system or other processing means caused by the execution of computer-executable instructions. The instructions may be program code means loaded in a memory, such as a RAM, from a storage medium or from another computer via a computer network. Alternatively, the described features may be implemented by hardwired circuitry instead of software or in combination with software.

Claims:

1. A method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object, wherein the method comprises:

- providing a first 3D representation of at least part of a surface by scanning at least part of the location;
- providing a second 3D representation of at least part of the surface by scanning at least part of the location;
- determining for the first 3D representation a first excluded volume in space where no surface can be present;
- determining for the second 3D representation a second excluded volume in space where no surface can be present;
- if a portion of the surface in the first 3D representation is located in space in the second excluded volume, the portion of the surface in the first 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the second 3D representation is located in space in the first excluded volume, the portion of the surface in the second 3D representation is disregarded in the generation of the virtual 3D model.

2. The method according to any one or more of the preceding claims, wherein the rigid object is a patient's set of teeth, and the location is the mouth of the patient.
3. The method according to any one or more of the preceding claims, wherein the movable object is a soft tissue part of the patient's mouth, such as the inside of a cheek, the tongue, lips, gums and/or loose gingival.
4. The method according to any one or more of the preceding claims, wherein the movable object is a dentist's instrument or remedy which is temporarily present in the patient's mouth, such as a dental suction device, cotton rolls, and/or cotton pads.

10 6. The method according to any one or more of the preceding claims, wherein the 3D scanner is a scanner configured for acquiring scans of an object's surface for generating a virtual 3D model of the object.
7. The method according to any one or more of the preceding claims, wherein at least part of the surface captured in the first representation and at least part of the surface captured in the second representation are overlapping the same surface part on the rigid object.
8. The method according to any one or more of the preceding claims, wherein the first representation of at least part of the surface is defined as the first representation of at least a first part of the surface, and the second representation of at least part of the surface is defined as the second representation of at least a second part of the surface.
9. The method according to any one or more of the preceding claims, wherein the first part of the surface and the second part of the surface are at least partially overlapping.
10. The method according to any one or more of the preceding claims,
5. The method according to any one or more of the preceding claims, wherein the movable object is a finger, such as the dentist's finger or the dental assistant's finger. wherein the surface is a surface in the location.
11. The method according to any one or more of the preceding claims, wherein the surface is at least part of the surface of the rigid object and/or at least part of the surface of the movable object.
12. The method according to any one or more of the preceding claims, wherein the method comprises determining a first scan volume in space related to the first representation of at least part of the surface, and determining a second scan volume in space related to the second representation of at least part of the surface.
13. The method according to any one or more of the preceding claims, wherein the scan volume is defined by the focusing optics in the 3D scanner and the distance to the surface which is captured.
14. The method according to any one or more of the preceding claims, wherein the first scan volume related to the first representation of at least part of the surface is the volume in space between the focusing optics of the 3D scanner and the surface captured in the first representation; and the second scan volume related to the second representation of at least part of the surface is the volume in space between the focusing optics of the 3D scanner and the surface captured in the second representation.
15. The method according to any one or more of the preceding claims, wherein if no surface is captured in at least part of the first or second representation, then the first or second scan volume is the volume in space between the focusing optics of the 3D scanner and the longitudinally extent of the scan volume.
16. The method according to any one or more of the preceding claims, wherein the first excluded volume and second excluded volume in space
where no surface can be present corresponds to the first scan volume and the second scan volume, respectively.
17. The method according to any one or more of the preceding claims, wherein the volume of the 3D scanner itself is defined as an excluded volume.
18. The method according to any one or more of the preceding claims, wherein the volume of the 3D scanner itself is comprised in the first excluded volume and in the second excluded volume.
19. The method according to any one or more of the preceding claims, wherein a near threshold distance is defined, which determines a distance from the captured surface in the first representation and the second representation, where a surface portion in the second representation or the first representation, respectively, which is located within the near threshold distance from the captured surface and which is located in space in the first excluded volume or in the second excluded volume, respectively, is not disregarded in the generation of the virtual 3D model.
20. The method according to any one or more of the preceding claims, wherein a far threshold distance is defined, which determines a distance from the captured surface, where the volume outside the far threshold distance is not included in the excluded volume of a representation.
21. The method according to any one or more of the preceding claims, wherein the first representation of at least part of a surface is a first subscan of at least part of the location, and the second representation of at least part of the surface is a second subscan of at least part of the location.
22. The method according to any one or more of the preceding claims, wherein the first representation of at least part of a surface is a provisional virtual 3D model comprising the subscans of the location acquired already, and the second representation of at least part of the surface is a second subscan of at least part of the location.
23. The method according to any one or more of the preceding claims, wherein acquired subscans of the location are adapted to be added to the provisional virtual 3D model concurrently with the acquisition of the subscans.
24. The method according to any one or more of the preceding claims, wherein the provisional virtual 3D model is termed as the virtual 3D model, when the scanning of the rigid object is finished.
25. The method according to any one or more of the preceding claims, wherein the method comprises:

- providing a third 3D representation of at least part of a surface by scanning at least part of the location;
- determine for the third 3D representation a third excluded volume in space where no surface can be present;
- if a portion of the surface in the first 3D representation is located in space in the third excluded volume, the portion of the surface in the first 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the second 3D representation is located in space in the third excluded volume, the portion of the surface in the second 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the third 3D representation is located in space in the first excluded volume and/or in the second excluded volume, the
portion of the surface in the third 3D representation is disregarded in the generation of the virtual 3D model.

26. The method according to any one or more of the preceding claims, wherein the provisional virtual 3D model comprises the first representation of at least part of the surface and the second representation of at least part of the surface, and where the third representation of at least part of the surface is added to the provisional virtual 3D model.
27. The method according to any one or more of the preceding claims, wherein the virtual 3D model is used for virtually designing a restoration for one or more of the patient's teeth.
28. The method according to any one or more of the preceding claims, wherein the virtual 3D model is used for virtually planning and designing an orthodontic treatment for the patient.
29. The method according to any one or more of the preceding claims, wherein the relative motion of the scanner and the rigid object is determined.
30. The method according to any one or more of the preceding claims, wherein the relative motion of the scanner and the rigid object is determined by means of motion sensors.
31. The method according to any one or more of the preceding claims, wherein the relative motion of the scanner and the rigid object is determined by registering/aligning the first representation and the second representation.
32. The method according to any one or more of the preceding claims, wherein the first representation and the second representation are
aligned/registered before the first excluded volume and the second excluded volume are determined.
33. The method according to any one or more of the preceding claims, wherein the relative motion of the scanner and the rigid object determined by means of the motions sensors is verified and potentially adjusted by registering/aligning the first representation and the second representation.
34. The method according to any one or more of the preceding claims, wherein motion sensors are used for an initial determination of the relative motion of the scanner and the rigid object, and where registering/aligning is used for the final determination of the relative motion of the scanner and the rigid object.
35. The method according to any one or more of the preceding claims, wherein the optical system of the scanner is telecentric.
36. The method according to any one or more of the preceding claims, wherein the optical system of the scanner is perspective.
37. The method according to any one or more of the preceding claims, wherein a mirror in a scan head of the scanner provides that the light rays from the light source in the scanner are transmitted with an angle relative to the opening of the scan head.
38. The method according to any one or more of the preceding claims, wherein the 3D scanner is a hand-held scanner.
39. The method according to any one or more of the preceding claims, wherein the scanner is a pinhole scanner.
40. The method according to any one or more of the preceding claims, wherein the scanner comprises an aperture, and where the size of the aperture is less than $1 / 100$ of the distance between it and the projected image.
41. The method according to any one or more of the preceding claims, wherein the scanner comprises an aperture, and where the size of the aperture is more than $1 / 100$ of the distance between it and the projected image.
42. A method for detecting movable objects in the mouth of a patient, when scanning the patient's set of teeth in the mouth by means of a 3D scanner for generating a virtual 3D model of the set of teeth, wherein the method comprises:

- providing a first 3D representation of at least part of a surface by scanning at least part of the teeth;
- providing a second 3D representation of at least part of the surface by scanning at least part of the teeth;
- determining for the first 3D representation a first excluded volume in space where no surface can be present;
- determining for the second 3D representation a second excluded volume in space where no surface can be present;
- if a portion of the surface in the first 3D representation is located in space in the second excluded volume, the portion of the surface in the first 3D representation is disregarded in the generation of the virtual 3D model, and/or
- if a portion of the surface in the second 3D representation is located in space in the first excluded volume, the portion of the surface in the second 3D representation is disregarded in the generation of the virtual 3D model.

43. A method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object, wherein the method comprises:

- providing a first representation of at least part of a surface by scanning the rigid object;
- determining a first scan volume in space related to the first representation of at least part of the surface;
- providing a second representation of at least part of the surface by scanning the rigid object;
- determining a second scan volume in space related to the second representation of at least part of the surface;
- if there is a common scan volume, where the first scan volume and the second scan volume are overlapping, then:
- determine whether there is a volume region in the common scan volume which in at least one of the first representation or the second representation is empty and comprises no surface; and
- if there is a volume region in the common scan volume which in at least one of the first representation or the second representation is empty and comprises no surface, then exclude the volume region by disregarding in the generation of the virtual 3D model any surface portion in the second representation or in the first representation, respectively, which is detected in the excluded volume region, since a surface portion detected in the excluded volume region represents a movable object which is not part of the rigid object.

44. A method for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object, wherein the method comprises:

- providing a first surface by scanning the rigid object;
- determining a first scan volume related to the first surface;
- providing a second surface by scanning the rigid object; represents a movable object which is not part of the set of teeth.

46. A method for detecting movable objects recorded in subscans, when scanning a set of teeth by means of a scanner for generating a virtual 3D model of the set of teeth, where the virtual 3D model is made up of the already acquired subscans of the surface of the set of teeth, and where new subscans are adapted to be added to the 3D virtual model, when they are acquired, wherein the method comprises:

- acquiring at least a first subscan of at least a first surface of part of the set of teeth, where the at least first subscan is defined as the 3D virtual model;
- acquiring a first subscan of a first surface of part of the set of teeth;
- determining a first scan volume of the first subscan;
- determining a scan volume of the virtual 3D model;
- if the first scan volume of the first subscan and the scan volume of the virtual 3D model are at least partly overlapping in a common scan volume; then:
- calculate whether at least a portion of the first surface lies within the common scan volume;
- calculate whether at least a portion of the surface of the virtual 3D model lies within the common scan volume, and - determine whether at least a portion of a surface is present in the overlapping volume only in one subscan and not the other subscan/3D virtual model;
- if at least a portion of a surface is present in only one subscan, then disregard the portion of the surface in the overlapping volume which is closest to the focusing optics of the scanner, since the portion of the surface represents a movable object which is not part of the set of teeth, and the portion of the surface is disregarded in the creation of the virtual 3D model of the set of teeth.

47. A method for detecting movable objects recorded in subscans, when scanning a set of teeth by means of a scanner for generating a virtual 3D model of the set of teeth, wherein the method comprises:
a) providing a first subscan of a first surface of part of the set of teeth;
b) calculating a first scan volume of the first subscan;
c) providing a second subscan of a second surface of part of the set of teeth;
d) calculating a second scan volume of the second subscan; and
e) if the first scan volume and the second scan volume are at least partly overlapping in a common scan volume; then:
f) calculate whether at least a portion of the first surface lies within the common scan volume;
g) calculate whether at least a portion of the second surface lies within the common scan volume, and
h) if at least a portion of the first surface or at least a portion of the second surface lie within the common scan volume, and the portion of the first surface or the portion of the second surface is located in space between the scanner and at least a portion of the second surface or at least a portion of the first surface, respectively;
then the portion of the surface represents a movable object which is not part of the set of teeth, and the portion of the surface is disregarded in the creation of the virtual 3D model of the set of teeth.
48. The method according to the previous claims, wherein the method further comprises:

- providing a third subscan of a third surface of part of the set of teeth;
- calculating a third scan volume of the third subscan;
- if the third scan volume is at least partly overlapping with the first scan volume and/or with the second scan volume in a common scan volume; then
repeat steps f) - h) for the third subscan with respect to the first subscan and/or the second subscan.

49. A computer program product comprising program code means for causing a data processing system to perform the method of any one or more of the preceding claims, when said program code means are executed on the data processing system.
50. A computer program product according to the previous claim, comprising a computer-readable medium having stored there on the program code means.
51. A system for detecting a movable object in a location, when scanning a rigid object in the location by means of a 3D scanner for generating a virtual 3D model of the rigid object, wherein the system comprises:

- means for providing a first 3D representation of at least part of a surface by scanning at least part of the location;
- means for providing a second 3D representation of at least part of the surface by scanning at least part of the location;
- means for determining for the first 3D representation a first excluded volume in space where no surface can be present;
- means for determining for the second 3D representation a second excluded volume in space where no surface can be present;
- means for disregarding the portion of the surface in the first 3D representation in the generation of the virtual 3D model, if a portion of the surface in the first 3D representation is located in space in the second excluded volume, and/or
- means for disregarding the portion of the surface in the second 3D representation in the generation of the virtual 3D model, if a portion of the
surface in the second 3D representation is located in space in the first excluded volume.

Fig. 1

Fig. 4

Fig. 5

Fig. 7

Fig. 8

8/19

Fig. 10a)

Fig. 11a)

Fig. 11b)

Fig. 12

Fig. 13

e)

\qquad
e)

14/19

\qquad
e)

Fig. 16

Fig. 17

16/19
Fig. 18a)

Fig. 18b)

Fig. 19

18/19

Fig. 20a)

Fig. 20b)

19/19
Fig. 20c)

Fig. 20d)

A. CLASSIFICATION OF SUBJECT MATTER INV. G06T7/00			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)G06T G06K A61B A61C			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the	elevant passages	Relevant to claim No.
A	MEHL A ET AL: "Accuracy test intraoral 3D camera", INTERNATIONAL JOURNAL OF COMP DENTISTRY, QUINTESSENCE, NEW vol. 12, no. 1, 1 January 2009 (2009-01-01), XP009162619, ISSN: 1463-4201 the whole document	of a new ERIZED DEN, GB, ges 11-28, -/--	1-51
X Further documents are listed in the continuation of Box C . $\quad \square$ See patent family annex.			
" Special categories of cited documents :"A" document defining the general state of the art which is not consideredto be of particular relevance \quad" T " later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
Date of the actual completion of the international search 13 September 2012		Date of mailing of the intemational search report$21 / 09 / 2012$	
Name and	mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. ($+31-70$) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Borotschnig, Hermann	

C(Continu). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indiaction, where appropriate, of the relevant passages	Relevant to claim No.
A	ZHIGANG ZHU ET AL: "Content-Based 3D Mosaic Representation for Video of Dynamic 3D Scenes", APPLIED IMAGERY AND PATTERN RECOGNITION WORKSHOP, 2005. PROCEEDINGS. 3 4TH WASHINGTON, DC, USA 19-21 OCT. 2005, PISCATAWAY, NJ, USA, IEEE, 19 October 2005 (2005-10-19), pages 198-203, XP010905628, DOI: 10.1109/AIPR. 2005.25 ISBN: 978-0-7695-2479-5 the whole document	1-51
A	THOMAS POLLARD ET AL: "Change Detection in a 3-d World", CVPR '07. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION; 18-23 JUNE 2007; MINNEAPOLIS, MN, USA, IEEE, PISCATAWAY, NJ, USA, 1 June 2007 (2007-06-01), pages 1-6, XP031114330, ISBN: 978-1-4244-1179-5 the whole document	1-51
A	YAMANY S M ET AL: "Free-form surface registration using surface signatures", COMPUTER VISION, 1999. THE PROCEEDINGS OF THE SEVENTH IEEE INTERNATION AL CONFERENCE ON KERKYRA, GREECE 20-27 SEPT. 1999, LOS ALAMITOS, CA, USA, IEEE COMPUT. SOC, US, vol. 2, 20 September 1999 (1999-09-20), pages 1098-1104, XP010350539, ISBN: 978-0-7695-0164-2 the whole document	1-51
T	Silvia Logozzo ET AL: "A Comparative Analysis Of Intraoral 3d Digital Scanners For Restorative Dentistry", The Internet Journal of Medical Technology, 1 January 2011 (2011-01-01), pages 1-12, XP55037945, DOI: 10.5580/1b90 Retrieved from the Internet: URL:http://www.ispub.com/journal/the-inter net-journal-of-medical-technology/volume-5 -number-1/a-comparative-analysis-of-intrao ral-3d-digital-scanners-for-restorative-de ntistry. htm 1 [retrieved on 2012-09-12] the whole document	1-51

Espacenes
Bibliographic datax CN101513350(A) $=2009-08-26$

Device and method for displaying medical image and imaging system

Inventor(s):	ROBERT KAGERMEIER [DE]; EIKE RIETZEL [DE]; STEFFEN SCHROETER [DE]: DIETMAR SIERK [DE] \pm (KAGERMEIER ROBERT, ; RIETZEL EIKE, ; SCHROETER STEFFEN ; SIERK DIETMAR)
Applicant(s):	SIEMENS AG [DE] \pm (SIEMENS AG)
Classification:	- international:A61B5/055; A61B6/03; A61B8/13; G06F3/033; G06F3/0346; G06F3/048; G06F3/0484; G09F9/00 - cooperative: A61B6/548 (EP); G06F3/0346 (EP); G06F3/04845 (EP)
Application number:	CN2009100757220090223

Priority number DE2008101071720080222
(s):

Also published DE102008010717 (A1) US2009217207 (A1)
as:

Abstract of CN101E133S0(A)

The invention relates to a device (1) tor displaying three-dimensional medical image infomation (B3). The device includes a processing unt (2), a display (3), a remote contro (10), a communcation intertace, and a sotware module (7). The processing unit (2) is operable to process the medical image information. The display (3) is operable to display the medical mage intomation (B3). The remote control (10) is opercble to register a user movement (B) by at least one motion-senstive sensor (1 , 12). The communication interface is operable to transfer the user movement (B) to the processing unit (2). The sotware module (7) is associated with the processing unt (2). The software module (7) is operable to reconcle the user movement (B) with the
medical image infomation ($B 3$) so thet the user movement (3) is reproduced as a virual movement of the displayed medicalimege infomation (33)
［19］中华人吴焦和国国家知识产权局

［12］发明专利申请公布说明书

［21］䦔讋兵 200910007572.1
［51］ $\mathrm{mm} . \mathrm{Cl}$ ．
A61B6003（0006．01） A61B \＆ 13 （2006．01） A6185 5／055（2006．01） 009F9／00（2006．01）
［43］公开日 2009年8月26日
［11］公开号 CN 101513350 A
［22］臽清日 2009．2．23
［21］取湾照200930007572．3．
［30］优主袮
［32］2008．2．22［33］DE［31］102008010717．4
［71］本请人 舄门子公可

伐理人 懒 强

1．一种用于显示三维医学恩像信息（B3）的装置（1），包括：

- 用于处理图像信息（B3）的处理单元（2），
- 用于显示图像信息（B3）的显示元件（3），
- 用于借助至少一个运动敏感的传感器（11，12）采集使用者移动（B）的遥控器（10），
- 将使用者移动（B）传输到处理单元（2）的通信接口，以及
- 所述处理装置（2）配备的，用于与图像信息（B3）一起如下计算使用者移动（B）的软件模坱（7）：将所述使用者移动（B）理解为所显示的图像信息（B3（PI））的虚拟运动。

2．根据权利要求 1 所述的装置（1），其中，所述医学图像信息是三维图像信息（B3）。

3．根据权利要求1或2所述的装置（1），其中，所述传感器是具有一个或多个测量轴线的加速度传感器（11）。

4．根据权利要求 1 至 3 中任一项所述的装置（1），其中，所述传感器是具有一个或多个测量轴线的转动率传感器（12）。

5．根据权利要求 1 至 4 中任一项所述的装置（1），其中，所述遥控器（10）具有至少一个加速度传感器（11）和至少一个转动率传感器（12）。

6．根据权利要求 1 至 5 中任一项所述的装置（1），其中，作为所述通信接口（16）设置了无线龟选接。

7．根据权剂要求 1 至 6 中任一项所达的装置（1），其中，所述遥控器（10）具有若干用于选择各个显示模式的显示选择转换开兴（14），并且其中，根据所选择的显示模式将所述使用者移动（B）转换为虚拟运动。

8．根据祃利要求7所速的装置（1），其中，所达遥㨲器（10）至少具有—个用于医学诊断或治疗设备（4）的遥控器的操作选择转换开关（15）。

9．浪据权利要求1至8中任一项所述的装置（1），其中，在静止位置设置用于容纳所述遥控器（10）的容纳装置（17）。

10．根据双利受求 9 所述的装置（1），其中，所述容纳装置（17）具有弹性支座（18）。

11．一种用于显示三维医学图像信息（B3）的方法，其中，
－利用借助至少一个运动敏感的传感器（11，12）的遥控器（10）采集使用者移动（B），
－将所述像用者移动（B）理解为所显示的图像信息（B3（PI））的虚拟运动。

12．根据叔利要求 11 所述的方法，其中，借助单轴的或多轴的加速度传感器（11）测量所述使用者移动（B）。

13．浪据权利要求 11 或 12 所述的方法，其中，借助单轴的或多轴的转动率传感器（12）测量所述使用者移动（B）。

14．根据权利要求 11 至 13 中任一项所述的方法，其中，借助至少一个加速度传感器（11）和至少一个转动率传感器（12）测量所述使用者移动（B）。

15．根据权利要求 11 至 14 中任一项所述的方法，其中，经过无线电连接进行数据的传喻。

16．根据权利要求 11 至 15 中任一项所述的方法，其中，选择显示模式，并且其中，根据所选择的显示模式将所述使用者移动（B）转换为所述虚拟运动。

17．根据权刺要求 16 所述的方法，其中，显示模式提供了，选择和在至少一个空间方向上移动放大的图像片段。

18．根据权利要求 16 或 17 所述的方法，其中，显示模式提供了，围绕至少一个空间轴转动所显示的图像信息（B3（PI））。

19．根据权利要求 16 至 18 中任一项所述的方法，其中，显示模式提供了，改变所显示的图像信息（B3（PI））的比例。

20．根据权利要求 16 至 19 中任一项所述的方法，其中，显示模式提供了，改变所显示的图像信息（B3（PI））的对比度。

21．根据权利要求 16 至 20 中任一项所述的方法，其中，显示模式共同地考虑利用加速度传感器（11）和利用转动率传感器（12）的测量，用于改变所显示的图像信息（B3（PI））。

22．根据柇利要求 16 至 21 中任一项所述的方法，其中，显示模式借助按照计算机鼠标（9）方式的使用者移动（B），允许操作作为工作位计算机运行的处理单元（2）。

23．根据权利要求 16 至 22 中任一项所述的方法，其中，在预定的时间间

隔上重复地采集所述使用者移动（B）。
24．根据权利要求 16 至 23 中任一项所述的方法，其中，只有在所述使用者移动（B）超过预定的闾值时，才进行所述虚拟运动。

用于显示医学图像信息的装置和方法以及成像系统

技术领域
本发明涉改一种用于显示医学图像信息的装置和方法以及一种具有这样的装置的成像系统。

背景技术

对于医学图像信息的产生来说存在不同的成像系统。在此，例如是计算机断层成像（CT），正电子发射断层成像（PET），单光子发射计算机断层成像 （SPECT）或者磁共振断层成像（MRT）。借助成像系统可以确定人的身体区域的图像信息。以下将医学图像信息理解为可以用成像系统采集的图像信息。这里通常是二维的（2D），三维的（3D）或四维的（4D）图像信息。二维的图像信息包括两个空间维。三维的图像信息包括三个空间维或者两个空间维和时间。四维的图像信息包括三个空间维和时间。只有在不同的时刻采集身体区域时，时间作为维才是有意义的。在心脏学中通常是在检查患者的心脏时关于可能的缺陷功能在不同的心跳阶段采集图像信息，对这些心跳阶段的检查具有时间推。

图像信息在显示单元上，通常是在监视器上被显示。借助所显示的图像信息可以建立医生对相应的身体区域的检查结果。此外，通过在进行医学干预期间在不同的时间用成像系统测量图像信息并接着由医生进行检查，所显示的图像信息使得可以监控医学的干预。

图像信息的准备（Aufbereitung）和显示通过成像系统配备的，通常被构造为计算机系统的处理单元来进行。借助操作元件，如计算机键盘或计算机鼠标，可以改变在显示元件上显示的图像信息。为此，设置了软件模块，该软件模块可以通过计算机键盘或计算机鼠标选择不同的功能，如图像信息的局部放大，图像信息的旋转等等。因此，借助计算祅键盘的光标键或借助计算机鼠呩的滚动按钮来进行显示的实际修改。对于计算机键盘或对于计算机鼠标需要桌面等作为支撑垫。由此不可能将计算机键盘或计算机鼠标安置在患者支撑装置（如

患者卧楬，其上安置了用于医学检查或干预的患者）的直接的附属区。特别是在执行医学干预时医生由此必须不断地在患者支撑装置和计算机键盘或计算机鼠标的位置之间变换位罿，以便可以仔细查看医学干预的进程。

发明内容
由此本发明要解决的技术问题是，提供一种用于显示三维医学图像信息的装置，借助该装置可以按照用户友好的简单方式修改所显示的图像信息。

按照本发明，上述技术问题的解决是通过一种用于显示三维医学图像信息的装置实现的。为此设置了用于处理图像信息的处理单元和用于显示图像信息的显示元件。在此，处理单元特别地被构造为计算机系统，为该计算机系统配备有被构造为监视器的显示元件。此外，还设置了用于借助至少一个运动敏感的传感器采集使用者移动的遥控器。另外设置了将使用者移动传输到处理单元的通信接口。为处理单元配备有用于与图像信息—起计算使用者移动的软件模块。如下进行该计算：将使用者移动理解为在显示元件上所显示的图像信息的虚拟运动。以这种方式将使用者移动按照直观方式转换为在显示元件上的图像信息的类似运动。遥控器的支撑垫（如桌面等）不再是必须的。由此医生可以随身携带遥控器并且从成像系统周围的每个位置对所显示的图像信息进行改变。尤其是在显示元件的足够大尺寸的前提条件下，医生在进行医学干预的情况下不再必须不断地改变其位置，以便根据图像信息评价医学干预的进程。这样明显更快地并且由此对患者来说更体贴地进行医学干预。

在一种优选变形中，传感器是具有一个或多个测量轴线的加速度传感器。这样的加速度传感器例如在US5540095中被描述过。借助加速度传感器采集遥控器的平移运动作为使用者移动。如果是具有三个测量轴线的加速度传感器，则可以在三个空间方向上的每一个上采集遥控器的运动。使用者移动被转换为在显示元件上的图像信息的相应的平移运动。

在另一种优选变形中传感器是具有一个或多个测量轴线的转动率传感器 （Drehratensensor），按照专业术语也称为陀螺仪（Gyroskop），例如在 US 6505511 B 1 中被描述过。借助转动率传感器可以采集遥控器的转动或旋转运动作为使用者移动，其被理解为所显示的图像信息的转动运动或旋转。如果转动率传感器是三轴的转动率传感器，则可以用它采集遥控器的任意转动作为使用者移动并且将其理解为所显示的图像信息的虚拟运动。

在一种具有优势的扩展中，遥控器具有至少一个加速度传感器和至少一个转动率传感器。如果这两个传感器都是三轴的传感器，则借助其可以采集遥控器在空间的任意运动作为使用者移动并且将其理解为所显示的图像信息的虚拟运动。按照这种方式可以完全直观地改变在显示元件上豆示的图像信息。

在一种优选扩展中，作为通信接口设置了无线电连接。由此可以将使用者移动无线传输到处理单元。换言之，检查的医生的运动自由不受任何在遥控器和处理单元之间作为通信连接的电缆连接的情况下的限制。

在一种合适的扩展中，遥控器具有若干用于选择各个显示模式的显示选择转换开关。根据所选择的显示模式将使用者移动转换为图像信息的虚拟运动。换言之，当事先操控了相应的显示选择转换开关时，才将使用者移动转换为所显示的图像信息的运动。由此可靠地避免了通过无意的遥控器运动和作为使用者移动的对运动的不期望的配准（Registrierung）引起的所显示的图像信息的错误调整。

在一种优选扩展中，遥控器至少具有一个用于医学诊断或治疗设备的遥控器的操作选择转换开关。换言之，可以借助摇控器来触发医学诊断或治疗设备的功能。例如，可以在医学信息的范围内触发对更新的图像信息的记录，以便将医学干预的进程作为图像信息变得可视。例如，在 X 射线治疗设备中，为了有针对地照射患者，可以开启或关闭治疗用的射线例如 X 射线或粒子射线。此外具有优勢的是，借助遥控器来触发医学干预。在此，例如可以是注射对比剂或触发热的或电的治疗技术。可以借助遥控器来进行植入物例如近距离治疗 （Brachytherapie）中的种子（Seed），或者在对心脏的干预中的支架的放置。

在一种合适的变形中，在静止位置设置用于容纳遥控器的容纳装置。该容纳装置例如被设置在被构造为患者卧楬的患者支撑装置的扶手上。该容纳装置容纳遥控器，使得医生双手都可以自由地进行干预。因为容纳装置被设置在患者支撑装置上或者在其紧邻处，所以遥控器始终处于医生可到达的范围。

容纳装置优选地具有弹性支座。换言之，还可以（可能受限制地）移动由容纳装置容纳的遥控器。由此对于进行简单的移动不必额外地将遥控器从其容纳装置中取出。医生在进行移动之后可以立即使其双手解放，以便继续进行医学干预。

此外，本发明的技术问题还通过一种用于显示三维医学图像信息的方法解决。为此，用遥控器借助至少一个运动敏感的传感器采集使用者移动。接着借

助通信接口将使用者移动传输到处理单元。使用者被移动理解为所显示的图像信息的虚拟运动。在此，针对用于显示三维的医学图像信息的装置的变形及其优选实施方式可以被对应地转移到所述方法。

优选地，显示模式提供了选择和在至少一个空间方向上移动图像信息的放大的图像片段。为此，合适地借助加速度传感器仅仅采集遥控器的平移运动。在此，例如借助被构造为按键的显示选择转换开关来进行显示模式的选择。在此，在激活显示模式的情况下首先放大地显示图像片段，优选地在显示元件上所显示的图像信息的中间图像片段。接着借助使用者移动可以移动该图像片段，直到图像片段中感兴趣的图像信息以放大的形式被显示。此外合适地的是，连续多次操控相应的显示选择转换开关可以逐渐地改变图像片段和逐渐放大所显示的图像信息。

此外，还可以优选地互相组合不同的功能。在二维的（2D）图像信息情况下遥控器在平面中的运动可以被理解为图像片段的改变，并且从平面出发的向上或向下运动被理解为所显示的图像信息的放大或者缩小。

合适地，显示模式提供了围绕至少一个空间轴转动所显示的图像信息。为此，合适地借助转动率传感器仅采集遥控器的旋转运动。按照这种方式可以将所显示的图像信息一直转动，直到在显示元件上感兴趣的图像信息可以被良好地看清并且由此可以检查。

优选地，显示模式提供了改变所显示的图像信息的比例，换言之，所显示的图像信息通过遥控器的平移运动或通过旋转运动被无级地放大或缩小地显示。

合适地，显示模式提供了改变所显示的图像信息的对比度。换言之，对比度通过遥控器的平移运动或通过遥控器的旋转运动被无级地增大或减小。在以灰度图表示的图像信息中无级地变换通常由 255 个灰度值组成的灰度级。以这种方式可以按照简单的方式对检查呈现最好可能的对比度。

在一种优选变形中，显示模式共同地考虑用加速度传感器和用转动率传感器的测量，用于改变所显示的图像信息。由此产生用于直观地改变图像信息的多种可能性。

在三维（3D）图像信息的情况下，在平移运动时可以移动所显示的图像片段，㣢且在遥控器转动时进行所显示的图像信息的放大或缩小。由此，例如遥控器的左族可以导致所显示的图像的放大以及遥控器的右旋导致所显示的图像

信息的缩小。
如界呈现一个序列的四维（4D）图像信息，则例如又可以将平移运动转换为所显示的图像片段的改变。遥控器的旋转运动可以根据旋转方向而导致选择前面的或后面的图像信息。

在一种优选变形中，显示模式借助按照计算机鼠标方式的使用者移动，使得可以操作作为工作位计算机（Arbeitsplatzrechner）运行的处理单元。为此，合适地在遥控器上附加设置一个或多个操作按键。在操控这样的按键时，特别地仿真计算机鼠标的左键或右键的操控。通过两次直接连续操控操作键模仿如通常双击鼠标左键以开始程序等等那样的双击。换言之，借助遥控器可以遥控工作位计算机，而无需为此改变其位置。

优选地，如下构造在遥控器和计算机系统之间的通信接口：使得该通信接口关于传输到计算机系统上的控制信号与计算机鼠标的标准接口相应。以这种方式可以按照通常的方式按照完全的功能范围使用在计算机系统的操作系统上安装的软件模块。由此，不需要与相应的编程成本相关的软件模块的匹配或者程序改编。

因为为显示图像信息而设置的软件模块通常是为借助计算机鼠标的操作而设置，所以优选也可以用遥控器进行软件模块的完全的操作。由此，用户通过按照计算机鼠标的方式使用遥控器，例如可以选择图像片段。接着可以用已经描述的显示模式例如通过遥控器的平移运动或通过旋转运动进行所显示的图像信息的改变。换言之，在显示元件上显示的图像信息也可以通过多个显示模式的连续切换而被改变。

合适地，在预定的时间间隔上重复地采集使用者移动并且在该时间间隔上求平均。以这种方式缓和了遥控器的突然的和剧烈的运动。

优选地，只有在使用者移动超过预定的閾值时，才将其转换为虚拟的运动。以这种方式避免了在遥控器仅仅微小偏转的情况下就立即进行所显示的图像信息的改变。

此外，本发明的技术问题还通过具有用于显示三维图像信息的装置的医学诊断或治疗设备解决。在此，针对用于显示三维的图像信息的装置的变形及其优选实施方式可以被对应地转移到所述医学诊断或治疗设备。

附图说明

下面结合附图更详细描述本发明的实施例。在附图中：
图1示出了用于显示三维医学图像信息的装置的示意图，
图2示出了所述装犆的第一运行模式，
图 3 示出了所述装置的第二运行模式，以及
图4示出了所述装置的第三运行模式。

具体实施方式

图1 示出了用于显示三维医学图像信息1的装置，具有被构诰为计算机系统的处理单元2和连接到处理单元上的并且被构造为监视器的显示元件3。装置1与医学成像系统4相关联，后者例如被构造为计算机断层成像（CT），正电子发射断层成像（PET），单光子发射计算机断层成像（SPECT）或者磁共振断层成像（MRT）。借助医学成像系统4测量原始数据 R ，该原始数据 R 由处理单元2所配备的计算单元5计算。在此，生成三维医学图像信息B3并且在显示元件 3 上显示。在计算机断层成像中作为原始数据 R 测量投影图像，该原始数据 R 由被构造为重建计算机的计算单元 5 转换为三维医学图像信息 B3。软件模块 7 用于准备图像信息B3。计算机键盘 8 和计算机鼠标 9 作为操作元件分别借助接口 $8^{\prime}, ~ 9^{\prime}$ 达接到处理单元2。借助操作元件8，9通过控制信号 St 访问软件模块 7 并且借助用户界面准备图像信息 B3。按照这种方式可以改变在显示器 6 上显示的图像信息B3。因此，可以放大图像信息B3的一个片段并且借助计算机键盘 8 的光标键或借助计算机鼠标的滚动按钫移动该片段。以类似的方式可以旋转或倾斜（Verkippen）所显示的图像信息B3。

此外，为装置 1 配备了遥控器 10 。遥控器 10 包括三轴的加速度传感器 11和三轴的转动率传感器 12 。借助这两个传感器 11 ， 12 可以采集遥控器 10 的任意的使用者移动 B 。为此，由加速度传感器测量位禃信息 PII 并且由转动率传感器 12 测量位置信息PI2，并且传输到处理单元13。此外设置了多个显示选择转换开关 14 ，其开关状态 S 1 被传输到处理单元 13 。另外设置了多个操作选择转换开关 15 ，其开关状态 S2同样被传输到处理单元13。根据显示选择转换开关 14 的开关状态 S 1 ，处理单元 13 准备由传感器 11 ， 12 测量的位置信息 PII， PI2 并且借脸通信接口 16 将其作为位置信息PI传输到处理单元 2 。位置信息 PI与图像信息B3—起由软件模块7如下计算：将使用者移动B理解为所显示的图像信息 B3（PI）的虚拟运动。换言之，裉据所显示的图像信息 B3（PI）理

解遥控器 10 的任意的使用者移动 B 。这可以非常直观地改变所显示的图像信息 B3（PI）。

操作选择转换开关 15 的开关状态 S 2 借助处理单元 13 经过通信接口 16 被传输到处理单元 2 并且从那里被传输到医学成像系统4。根据医学成像系统4的不同的实现，借助遥控器 10 可以远程控制设备功能。例如，借助遥控器 10在计算机断层成像中可以触发用于产生新的原始数据 R 以及间此产生新的三维医学图像信息 B3 的扫描。如果医学成像系统是医学治疗装置的部分，则可以借助操作选择转换开关 15 开启或者关闭用于放射疗法的微粒辐射。

医学成像系统 4 配备有用于遥控器 10 的容纳装置 17 。容纳装置 17 具有弹性支座 18 ，例如弹簧臂（Federarm）等等，遥控器 10 借助该支座被固定在成像系统 4 的组件上。在此，例如是在图 1 中末示出的患者卧榻的扶手。

总之，主治医生相应地从任意的位置既可以触发成像系统 4 的坊能，也可以对所显示的图像信息B3（PI）进行改变。由此，主治医生不必赶到处理单元 2 处并且借助计算机键盘 8 或计算机鼠标 9 在那里来触发功能。而是他可以集中精神于其医生的任务例如进行医学的干预。根据需要可以触发借助医学成像系统4用于产生新的图像信息B3的新的测量，以便监控医学于预的进程。借助遥控器修改在显示器 6 上所显示的图像信息B3（PI），以便可得到最住的检查结果。接着根据该检查结果继续进行医学的干预。

如果不需要遥控器 10 ，则将其置于容纳装置 17 中。借助容纳装置 17 的弹性支座18，主治医生可以进行使用者移动 B，其被转换成图像信息B3（PI）的虚该运动，即使也许是受限的移动可能性。

图2示出了显示元件 3 的显示器 6 ，在该显示器 6 上示出了用户界面19。该用户界面19具有菜单列表20和若干按键21，借助其可以访问软件模块7的功能。在显示元件 3 的位置上的用户界面 19 的操作借助计算机键盘 8 或计算机鼠标9，通过访问菜单列表20或按键21来进行。由此可以从计算机键盘 8 或计算机鼠标 9 的位置改变所显示的图像信息。

借助遥控器 10 进行对软件模块 7 的访问。遥控器 10 具有用于显示目前选择的运行模式的指示区域22。通过操控显示选择转换开关 14 a 可以选择第一显示模式并且在显示器 6 上显示图像信息B3的片段23。此时，借助遥控器 10 的使用者移动B一直移动片段，直到所显示的图像信意B3（PI）显示期望的片段 23。换言之，第一显示模式具有如下功能：仅仅分析借助加速度传感器 11 所测

量的遥控器 10 在所有三个空间方向 $\mathrm{x}, ~ \mathrm{y}, ~ \mathrm{z}$ 上的平移运动并且将其转换为片段 23 在所有三个空间方向 $\mathrm{x}, ~ \mathrm{y}, ~ \mathrm{z}$ 上的移动以显示图像信息B3（PI）。如果多次连续操纵了显示选择转换开关 14 a ，则片段 23 被逐步地放大。借助另一个显示选择转换开关 $14 b$ 又可以建立最初显示的图像信息 B3 并且再次退出第一显示模式。

图 3 如图2那样示出了显示元件 3 的显示器 6 和作为所显示的三维图像信息 B3 的心脏。借助遥控器 10 的显示选择转换开关 146 可以选择遥控器 10 的第二显示模式。在所选择的第二显示模式中，仅仅分析遥控器 10 的旋转运动以及由此作为使用者移动 B 的遥控器 10 的转动率传感器 12 的测量信号，并且将其转换为所显示的图像信息 $\mathrm{B} 3(\mathrm{PI})$ 的转动或者说旋转。以这种方式，可以作为使用者移动 B 采集围绕空间轴 $\mathrm{x}, ~ \mathrm{y}, ~ \mathrm{z}$ 的任意的转动或者说旋转。换言之，随着遥控器 10 在所有三个空间方向上的转动，图像信息 B3－直转动，直到用户感兴趣的图像信息B3（PI）在显示器 6 上被显示。通过操控显示选择转换开关 14 c 又可以显示最初的图像信息 B3 并且退出遥控器 10 的第二运行模式。

图4示出了处在通过操控显示选择转换开关 14 d 所诜择的第三显示模式之下的显示器 6 。现在，在显示器 6 上不再看得见图像信息 B 3 。而是此时显示鼠标光标 24 ，借助该鼠标光标可以通过遥控器 10 在用户界面 19 上选择任意的程序功能。换言之，该第三显示模式对应于按照计算机鼠标 9 的方式操作用户界面19。为此，如下处理利用加速度传感器 11 所测量的位置信息PII：仅仅分析作为使用者移动 B 的在两个空间轴 $\mathrm{x}, ~ \mathrm{y}$ 的方向上的运动并且将其转换为位置信息PI。而对鼠标光标 24 的运动不考虑第三空间方向。在所示出的情况下所显示的图像信息 B3（PI）的虚拟运动对应于鼠标光标 24 的运动。此外，设置了两个操作按键 25 ，其在功能上对应于鼠标左键以及右键。由此遥控器 10 可以模仿计算机鼠标的所有功能。

通过再次操控显示选择转换开关 14 d 可以再次退出第三显示模式。

PATENT COOPERATION TREATY PCT

INTERNATIONAL SEARCH REPORT
(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference P2635PC00	FOR FURTHER ACTION	
International application No.	International filing date (day/month/year) PCT/DK2011/050461	(Earliest) Priority Date (day/monthyear) $05 / 12 / 2011$

Applicant 3SHAPE AS

This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This international search report consists of a total of 6 sheets.
It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report

a. With regard to the language, the international search was carried out on the basis of:

the international application in the language in which it was filed.
\square a translation of the international application into \qquad which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)).
b.This international search report has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Rule 91 (Rule 43.6 bis(a)).
c.With regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. I.
2. Certain claims were found unsearchable (see Box No. II).
3. Unity of invention is lacking (see Box No. III).
4. With regard to the title,

X the text is approved as submitted by the applicant.
\square the text has been established by this Authority to read as follows:
5. With regard to the abstract,
\square the text is approved as submitted by the applicant.
the text has been established, according to Rule 38.2, by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. With regard to the drawings,
a. the figure of the drawings to be published with the abstract is Figure No. \qquad $2 a$
as suggested by the applicant.
\square as selected by this Authority, because the applicant failed to suggest a figure.
\square as selected by this Authority, because this figure better characterizes the invention.
b. \square none of the figures is to be published with the abstract.

Form PCT/ISA/210 (first sheet) (July 2009)

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. \square Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2.

Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. \square

Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item $\mathbf{3}$ of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
See extra sheet
1.

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. \square As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3.As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. Σ

No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-34, 38-52

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
\square fee was not paid within the time limit specified in the invitation.
No protest accompanied the payment of additional search fees.
Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

Box No. IV Text of the abstract (Continuation of item 5 of the lirst sheet)

Disclosed is a system comprising a handheld device (100) and at least one display (101), where the handheld device (100) is adapted for performing at least one action in a physical 3D environment. The actions include measuring, modifying, manipulating, recording, touching, sensing, scanning, moving, transforming, cutting, welding, chemically treating, cleaning. The display (101) is adapted for visually representing the physical 3D environment, and where the handheld device (100) is adapted for remotely controlling the view with which the 3D environment is represented on the display (101).

[^0]| international search report | | | International application No. PCT/DK2011/050461 |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { A. CLASSIFICATION OF SUBJECT MATTER } \\ & \text { G01B } 11 / 24(2006.01) \text {, A61C } 13 / 00(2006.01) \end{aligned}$ | | | |
| B. FIELDS SEARCHED | | | |
| Minimum documentation searched (classification system followed by classification symbols) IPC/EC: G06F, G01B, A61C; ICO: K63F; FT:4C061/CC | | | |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched DK, SE, FI, NO (IPC classes as above) | | | |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPODOC, WPI, TXTE | | | |
| C. DOCUMENTS CONSIDERED TO BE RELEVANT | | | |
| Category* | Citation of document, with indication, where app | ppropriate, of the relevant passages | Relevant to claim No . |
| X; | US 2009/0217207 A1 (KAGERMEIER application, in particular sections [0007], -[0020], [0023], [0035]-[0039], fig. 1-4 | et al) 2009.08.27, entire], [0009], [0012]-[0013], [0019] | $\begin{aligned} & \hline 1-33,38-48, \\ & 50-52 ; \\ & 34,49 \end{aligned}$ |
| X; | WO 2004/066615 A1 (NOKIA CORPOR line 16 to page 4 , line 2 , page 25 , line 1 | RATION) 2004.08.05, page 3 , 2 , to page 26 , line 5 . | $\begin{aligned} & 1,3-14,16-33, \\ & 38-48,50-52 ; \\ & 2,15,34,49 \end{aligned}$ |
| X; | US 2003/0158482 A1 (POLAND et al) 2 [0034], figs 6, 8. | 2003.08.21, sections [0032], | $\begin{aligned} & 1-11,15-17,26-3 \\ & 3,38-39,46,48, \\ & 50-52 ; \\ & 12-14,18-25,34, \\ & 40,41-45,47 \end{aligned}$ |
| A | US 2009/0061381 A1 (DURBIN et al) 2 sections [0018]-[0019], [0024] | 009.03.05, | 1-33, 38-52 |
| \square Further documents are listed in the continuation of Box C . XSee patent fannily annex. | | | |
| | | | |
| Vateof the actual completion of the international search | | Date of mailing of the international search report 22/02/2012 | |
| Noape apd minitingiddress of the ISA/ Helgeshaj Alle 81, DK-2630 Taastrup, Denmark. Facsimile No. +45 43508008 | | Authorized officer
 Lennart Bitsch
 Telephone No. +45 43508244 | |

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT Information on patent family members			International application No.
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US2009217207 A1 20090827		CN101513350 A 20090826 DE102008010717 A1 20090827	
WO2004066615 A1 20040805		US2006146009 A1 20060706 EP1588552 A1 20051026 AU2003303787 A1 20040813	
US2003158482 A1 20	821	JP200551751 WO03071306 EP1488253 A EP1488253 B DE60308495 CN1636151 A CN100340867 AU200324747 AT340365T T US7141020 B	20050616 20030828 041222 060920 20070606 20706 2003003 61015 0061128
US2009061381 A1 2009	305	WO200903310 KR2010006653 JP2010538302 EP2185891 A1 CA2698525 A	$\begin{aligned} & 120090312 \\ & 20100617 \\ & 0101209 \\ & 100519 \\ & 090312 \end{aligned}$

Continuation of Box no. III

This International Searching Authority found multible inventions.
US 2009/0217207 A1 (KAGERMEIER et al) 2009.08.27 describes a system comprising a handheld device (10) and at least one display $(3,22)$, where the handheld device is adapted for switching between
-performing at least one action in a physical 3D environment, where the at least one display is adapted for visually representing the physical 3D environment ([0013], [0037]), and -remotely controlling the view with which the 3D environment is represented on the display ([0007], [0036], [0039])

The general concept described in the independent claim 1 is known from US 2009/0217207, and the application does therefore describe 4 inventions

A: Claims 2-34, 38-52 describe modifications of a system, a method, and a computer program product comprising a handheld device for performing at least one action, and for remotely controlling the view, and wherein the handheld device is an intra-oral 3D scanner
B: Claim 35 describes a system wherein the handheld device of claim 1 is a surgical instrument C: Claim 36 describes a system wherein the handheld device of claim 1 is a mechanical tool D: Claim 37 describes a system wherein the handheld device of claim 1 is an in-ear 3D scanner

There is no Single General Inventive Concept among the inventions A, B, C and D, and there is, therefore, not a technical relationship to link the invention as defined in Rules 13.1 and 13.2 PCT.

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:	Total in USD (\$)	500		

Payment information:

Submitted with Payment	yes
Payment Type	CARD
Payment was successfully received in RAM	$\$ 500$
RAM confirmation Number	E20190RG37193919
Deposit Account	024800
Authorized User	Ebony Jennings
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 37 CFR 1.21 (Miscellaneous fees and charges)	

File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		20191028_Second_Preliminary _Amendment.pdf	205602	yes	15
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Preliminary Amendment		1	1	
	Claims		2	11	
	Applicant Arguments/Remarks Made in an Amendment		12	15	
Warnings:					
Information:					
2		20191028_First_IDS.pdf	177283	yes	5
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Transmittal Letter		1	1	
	Information Disclosure Statement (IDS) Form (SB08)		2	5	
Warnings:					
Information:					
3	Foreign Reference	40_WO2010064156A1.pdf	201693	no	26
Warnings:					
Information:					

4	Foreign Reference	41_EP2200332A1.pdf	709649	no	12
			7fch1075b575f144c106e393d5f50a232f27 832c		
Warnings:					
Information:					
5	Foreign Reference	42_WO2000008415A1.pdf	1144345	no	29
			085bac9c44ea0ba5f95740980917c64945c b7427		
Warnings:					
Information:					
	Foreign Reference	43_WO2010145669A1.pdf	1696576	no	97
6					
Warnings:					
Information:					
	Foreign Reference	44_WO2011120526A1.pdf	3376124	no	80
7			2b79bf3ca484218e8632d17dfa5318b88aa $09 a d 7$		
Warnings:					
Information:					
	Foreign Reference	45_WO2004066615A1.pdf	2328477	no	54
8					
Warnings:					
Information:					
	Foreign Reference	47_WO2009089126A1.pdf	403936	no	48
9			32914dc998beabe82eb9b06b435363204b 6ea84e		
Warnings:					
Information:					
	Foreign Reference	48_WO2001011193A1.pdf	752869	no	16
10					
Warnings:					
Information:					

11	Foreign Reference	49_WO2007084727A1.pdf	938036	no	138
Warnings:					
Information:					
12	Foreign Reference	50_WO2013010910A1.pdf	8074931	no	93
			61daab36f53f956837e4d98492ce5c4ed4c8 cfc1		
Warnings:					
Information:					
	Foreign Reference	46_CN101513350A.pdf	17832409	no	18
13			f98b77540a5d0103e756381b4d1dfdebc81 d7db4		
Warnings:					
Information:					
	Non Patent Literature	51_IPR_Petition.pdf	743365	no	67
14			a21756d43f566eb9ab8bb02b7bae2e 5889 bf12e		
Warnings:					
Information:					
	Non Patent Literature	52_Patent_Owner_Preliminary _Response_IPR2018-00197.pdf	378772	no	66
15			$\underset{784}{19 f 134 b 7 e a 4 b 2063150922 b e 2 e 2 d 05455 a 1}$		
Warnings:					
Information:					
	Non Patent Literature	$\begin{gathered} \text { 53_Institution_Decision_IPR20 } \\ 18-00197 . p d f \end{gathered}$	812355	no	32
16			c346bc8df456ef1a800e3e009cc748df4e50 b3ea		
Warnings:					
Information:					
	Non Patent Literature	54_Patent_Owner_Response_। PR2018-00197.pdf	527853	no	57
17			b4b5babddd $3 c 87 a 0 c 5 \mathrm{db} 31038 \mathrm{~b} 91 \mathrm{e} 9840 \mathrm{c}$ 5 a 48 c 5		
Warnings:					
Information:					

18	Non Patent Literature	55_Petitioners_Reply.pdf	820229	no	35
			${ }^{144655 a 011 I I b 7 a 7272 e 2750492 e 598868340}$ esef		
Warnings:					
Information:					
			12564970		
19	Non Patent Literatu	.pdf		no	30
Warnings:					
Information:					
			5767006		
20	Non Patent Literature	_of_Demonstratives_for_Oral_ Argument.pdf		no	42
Warnings:					
Information:					
			1071431		
21	Non Patent Literatu	198.pdf		no	77
Warnings:					
Information:					
			465927		
22	Non Patent Literature	59_Patent_Owner_Preliminary _Response_IPR2018-00198.pdf	410a702047b19f577d64f2669d42fc4b4545 7 cce	no	66
Warnings:					
Information:					
			539473		
23	Non Patent Literature	60_Decision_Denying_Instituti on_IPR2018-00198.pdf	$\begin{gathered} 9 \mathrm{~b} 01 \mathrm{f} 21 \mathrm{fcc} 12309 \mathrm{~d} 35 \mathrm{fad} 350 \text { bbab3edb769 } \\ \mathrm{dfa} 42 \end{gathered}$	no	15
Warnings:					
Information:					
			362339		
24	Non Patent Literature	61_Petitioners_Rehearing_Req uest_IPR2018-00198.pdf	6 cbe $488955318 d 370142535328 \mathrm{fc} 5975628$	no	14
Warnings:					
Information:					

25	Non Patent Literature	62_Decision_Denying_Reheari ng_Request_IPR2018-00198. pdf	179534	no	8
Warnings:					
Information:					
26	Non Patent Literature	64_Exhibit_1003_Bajaj_Declara tion_IPR2018_00197.pdf	2108871	no	127
			$\underset{\substack{\text { Bbcc6d6628c } 224 \text { basaffifffc60308775c5e4 } \\ 7 \mathrm{c}}}{ }$		
Warnings:					
Information:					
	Non Patent Literature	65_Exhibit_1003_Bajaj_Declara tion_IPR2018-00198.pdf	2202507	no	123
Warnings:					
Information:					
	Non Patent Literature	66_Exhibit_1004_Bajaj_CV.pdf	641527	no	49
28					
Warnings:					
Information:					
	Non Patent Literature	67_Exhibit_1016_Karatas_and_Toy.pdf	816079	no	9
29			cd0347b06483d6bb3615d9e98b20792a79 $1 \mathrm{f9711}$		
Warnings:					
Information:					
	Non Patent Literature	68_Exhibit_1017_Broadbent. pd	4293193	no	22
30			204329549901 14debiz2499881 156660ards		
Warnings:					
Information:					
	Non Patent Literature	69_Exhibit_1018_Birnbaum_an d_Aaronson.pdf	248922	no	16
31			840 b 5 a 89195 b 7 b 4 a 62787 e 84906 f 24 b 934 f 64 f 32		
Warnings:					
Information:					

32	Non Patent Literature	70_Exhibit_1022_Ireland_et_al.pdf	324666	no	6
			6 db 93 b 4127 f 4 a 2 c 5 d 71 d 1887 dbb 8850066 579015		
Warnings:					
Information:					
33	Non Patent Literature	71_Exhibit_1023_Hajeer.pdf	1413403	no	9
			$\underset{\substack{\text { Sdf568ee8b218c4de7d24e291d32266c } 16 \mathrm{C} \\ 734 \mathrm{do}}}{ }$		
Warnings:					
Information:					
	Non Patent Literature	72_Exhibit_1029_Bornik_et_al.pdf	977825	no	8
34			$\underset{\text { 8asf }}{\text { 242a4bldfde865275e } 56 d 14 a 5 d b 0171160}$		
Warnings:					
Information:					
	Non Patent Literature	73_Exhibit_1036_Giammanco_-et_al.pdf	1189130	no	8
35					
Warnings:					
Information:					
	Non Patent Literature	74_Exhibit_1038_Bowman_Excerpt.pdf	6201392	no	9
36					
Warnings:					
Information:					
		76_Exhibit_2002_IPR2018-00197.pdf	7114650	no	6
37	Non Patent Literature		dbaec 732 df9a4cc5f52079700dc6595f6f713 931		
Warnings:					
Information:					
		77_Exhibit_2003_IPR2018-00197.pdf	1142836	no	9
38	Non Patent Literature		128dda99f109948fe146c3791d7724c015ae 0166		
Warnings:					
Information:					

39	Non Patent Literature	78_Exhibit_2004_IPR2018-00197.pdf	894645	no	9
			beb8b450fa9d3c5f93e0edf27c0ec.199d338 097e		
Warnings:					
Information:					
40	Non Patent Literature	80_Exhibit_2006_SonoDEX_Ser ra_publication.pdf	392942	no	6
			${ }^{\text {ofi } 10 \text { cr2294597e }}{ }_{3}$		
Warnings:					
Information:					
		81_Exhibit_2008_Bajaj_depo_t ranscript_7-25-18_with_errata. pdf	2102793	no	142
41	Non Patent Literature		a2fd9cd88d32e5e7d1d60f4a1379a8c4966 b941d		
Warnings:					
Information:					
	Non Patent Literature	82_Exhibit_2009_Mackinlay. pdf	1086322	no	46
42					
Warnings:					
Information:					
	Non Patent Literature	83_Exhibit_2010_Buxton_2009.$p d f$	275837	no	16
43			ebc13c018c858cba410ae150440991e6384 bac6d		
Warnings:					
Information:					
	Non Patent Literature	84_Exhibit_2011_Balakrishnan _Declaration.pdf	542906	no	55
44			5861e42a0aan0839654af4b8ed1caf28999		
Warnings:					
Information:					
	Non Patent Literature	85_Exhibit_2012_Ravin_Balakri shnan_CV.pdf	387878	no	30
45			$7 f f f 2 b 2 e 06 c d 0 e 8 e 2 d 5 c 000478944 a 774 b 7 b$ 6458		
Warnings:					
Information:					

46	Non Patent Literature	86_Exhibit_2013_3D_User_Interfaces.pdf	10261869	no	20
			6227715732910fadfe46eef8f64659b51dbe c749		
Warnings:					
Information:					
47	Non Patent Literature	88_WO2012076013-PCTDK2011050461-ISR-20120222.pdf	234856	no	6
			91c8c88bc31403d58f5946c2be474189af13 $3 a 19$		
Warnings:					
Information:					
48	Non Patent Literature	87_Exhibit_2014_VR_Book.pdf	331227	no	4
			4 bdd8b316d0801dc8e76908f9fa6078c2bff $33 f f$		
Warnings:					
Information:					
49	Non Patent Literature	89_C_Graetzel_et_al.pdf	22788648	no	19
Warning					
Informat					
50	Non Patent Literature	90_S_Vogt_et_al.pdf	905196	no	7
			$\operatorname{4786a1~}^{499 e c 934 d d b 4 d 52 e 7223 f d 0688374 f}$		
Warnings:					
Information:					
51	Non Patent Literature	91_Xia_et_al.pdf	1673026	no	11
			$\underbrace{}_{\substack{\text { 36997899596f12c2865020a36479b41866 } \\ \text { e006 }}}$		
Warnings:					
Information:					
52	Non Patent Literature	92_CN201 1800669566_First_Of fice_Action.pdf		no	13
Warnings:					
Information:					

53	Non Patent Literature	93_CN2011800669566_Second _Office_Action.pdf	1361538	no	27
Warnings:					
Information:					
54	Non Patent Literature	94_Exhibit_1037_Balakrishnan _Depo_Transcript.pdf	308682	no	101
			1064509184e745509bd5f9d6aed66abd1af 7984		
Warnings:					
Information:					
	Non Patent Literature	$\begin{gathered} \text { 95_Hearing_Transcript_IPR201 } \\ \text { 8-00197.pdf } \end{gathered}$	323533	no	67
55					
Warnings:					
Information:					
	Non Patent Literature	96_Final_Written_DecisionTermination_Decision_Docum ent_IPR2018-00197.pdf	1309431	no	64
56					
Warnings:					
Information:					
		75_Exhibit_1038_EP2649409_\& ile_History_IPR2018-00198.pdf	17204749	no	180
57	Non Patent Literature		1a6c9cd7cbaef5cd8c5b806dedd6́a4484ee		
Warnings:					
Information:					
58	Fee Worksheet (SB06)	fee-info.pdf	30651	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			153712248		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of $\mathbf{3 5}$ U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Electronic Acknowledgement Receipt	
EFS ID:	37582196
Application Number:	16526281
International Application Number:	
Confirmation Number:	9657
Title of Invention:	SYSTEM WITH 3D USER INTERFACE INTEGRATION
First Named Inventor/Applicant Name:	Henrik ÖJELUND
Customer Number:	21839
Filer:	Stephany Gale Small/Ebony Jennings
Filer Authorized By:	Stephany Gale Small
Attorney Docket Number:	0079124-000266
Receipt Date:	28-OCT-2019
Filing Date:	30-JUL-2019
Time Stamp:	17:05:59
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
			6730545		
1	Non Patent Literature	story.pdf -		no	156
Warnings:					

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Date Mailed: 08/20/2019

Receipt is acknowledged of this reissue patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF FIRST INVENTOR, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.

Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a corrected Filing Receipt, including a properly marked-up ADS showing the changes with strike-through for deletions and underlining for additions. If you received a "Notice to File Missing Parts" or other Notice requiring a response for this application, please submit any request for correction to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections provided that the request is grantable.

Inventor(s)

Applicant(s)

Henrik ÖJELUND, Lyngby, DENMARK;
David FISCHER, Stenløse, DENMARK;
Karl-Josef HOLLENBECK, København Ø, DENMARK;
3Shape A/S, Copenhagen K, DENMARK, Assignee (with 37 CFR 1.172 Interest)
Assignment For Published Patent Application
3Shape A/S, Copenhagen K, DK
Power of Attorney: The patent practitioners associated with Customer Number $\underline{21839}$
Domestic Priority data as claimed by applicant
This application is a REI of 13/991,513 06/04/2013 PAT 9329675
which is a 371 of PCT/DK2011/050461 12/05/2011
which claims benefit of 61/420,138 12/06/2010
Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the USPTO. Please see http://www.uspto.gov for more information.)
DENMARK PA 201001104 12/06/2010 No Access Code Provided

Permission to Access Application via Priority Document Exchange: Yes
Permission to Access Search Results: Yes

Applicant may provide or rescind an authorization for access using Form $\mathrm{PTO} / \mathrm{SB} / 39$ or Form $\mathrm{PTO} / \mathrm{SB} / 69$ as appropriate.

If Required, Foreign Filing License Granted: 08/14/2019

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 16/526,281
Projected Publication Date: None, application is not eligible for pre-grant publication
Non-Publication Request: No
Early Publication Request: No
Title
SYSTEM WITH 3D USER INTERFACE INTEGRATION
Preliminary Class
345
Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications: No PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4258).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15 (b).

SelectUSA

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The U.S. offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to promote and facilitate business investment. SelectUSA provides information assistance to the international investor community; serves as an ombudsman for existing and potential investors; advocates on behalf of U.S. cities, states, and regions competing for global investment; and counsels U.S. economic development organizations on investment attraction best practices. To learn more about why the United States is the best country in the world to develop
technology, manufacture products, deliver services, and grow your business, visit http://www. SelectUSA.gov or call +1-202-482-6800.

Date Mailed: 08/15/2019

Receipt is acknowledged of this reissue patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF FIRST INVENTOR, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.

Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a corrected Filing Receipt, including a properly marked-up ADS showing the changes with strike-through for deletions and underlining for additions. If you received a "Notice to File Missing Parts" or other Notice requiring a response for this application, please submit any request for correction to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections provided that the request is grantable.

Inventor(s)

Applicant(s)

Henrik ÖJELUND, Lyngby, DENMARK;
David FISCHER, Stenløse, DENMARK;
Karl-Josef HOLLENBECK, København Ø, DENMARK;
3Shape A/S, Residence Not Provided, Assignee (with 37 CFR 1.172 Interest);
Assignment For Published Patent Application
3Shape A/S, Copenhagen K, DK
Power of Attorney: The patent practitioners associated with Customer Number $\underline{21839}$
Domestic Priority data as claimed by applicant
This application is a REI of 13/991,513 06/04/2013 PAT 9329675
which is a 371 of PCT/DK2011/050461 12/05/2011
which claims benefit of 61/420,138 12/06/2010
Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the USPTO. Please see http://www.uspto.gov for more information.)
DENMARK PA 201001104 12/06/2010 No Access Code Provided

Permission to Access Application via Priority Document Exchange: Yes
Permission to Access Search Results: Yes

Applicant may provide or rescind an authorization for access using Form $\mathrm{PTO} / \mathrm{SB} / 39$ or Form $\mathrm{PTO} / \mathrm{SB} / 69$ as appropriate.

If Required, Foreign Filing License Granted: 08/14/2019

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 16/526,281
Projected Publication Date: None, application is not eligible for pre-grant publication
Non-Publication Request: No
Early Publication Request: No
Title
SYSTEM WITH 3D USER INTERFACE INTEGRATION
Preliminary Class
345
Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications: No PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4258).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15 (b).

SelectUSA

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The U.S. offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to promote and facilitate business investment. SelectUSA provides information assistance to the international investor community; serves as an ombudsman for existing and potential investors; advocates on behalf of U.S. cities, states, and regions competing for global investment; and counsels U.S. economic development organizations on investment attraction best practices. To learn more about why the United States is the best country in the world to develop
technology, manufacture products, deliver services, and grow your business, visit http://www. SelectUSA.gov or call +1-202-482-6800.

 TO: Mabl Step Reissue, commissioner for fatents, po, Box 1450 , Alexandria, yA 22333-2450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	
The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76. This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the document may be printed and included in a paper filed application.		

Secrecy Order 37 CFR 5.2:

Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to 37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

Inventor Information:

Mailing Address of Inventor:

Mailing Address of Inventor:

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	

Mailing Address of Inventor:

Address 1		Ribegade 12 3.th		
Address 2				
City	¢øbenhavn \varnothing	State/Province		
Postal Code		Country	DK	
All Inventors Must Be Listed - Additional Inventor Information blocks may be generated within this form by selecting the Add button.				Add

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below. For further information see 37 CFR 1.33(a).

An Address is being provided for the correspondence Information of this application.

Customer Number	21839		
Email Address		Add Email	Remove Email

Application Information:

Title of the Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION				
Attorney Docket Number	0079124-000266		Small Entity Status Claimed \square		
Application Type	Nonprovisional				
Subject Matter	Utility				
Total Number of Drawing	Sheets (if any)	5	Suggested Fig	ure for Publication (if any)	2 a
Filing By Reference:					
Only complete this section when filing an application by reference under 35 U.S.C. 111 (c) and 37 CFR 1.57(a). Do not complete this section if application papers including a specification and any drawings are being filed. Any domestic benefit or foreign priority information must be provided in the appropriate section(s) below (i.e.,"Domestic Benefit/National Stage Information" and "Foreign Priority Information"). For the purposes of a filing date under 37 CFR 1.53(b), the description and any drawings of the present application are replaced by this reference to the previously filed application, subject to conditions and requirements of 37 CFR 1.57(a).					
Application number of the previously filed application		Filing date (YYYY-MM-DD)		Intellectual Property Authority or	Country

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	

Publication Information:

Request Early Publication (Fee required at time of Request 37 CFR 1.219)

Request Not to Publish. I hereby request that the attached application not be published under 35 U.S.C. 122(b) and certify that the invention disclosed in the attached application has not and will not be the subject of an application filed in another country, or under a multilateral international agreement, that requires publication at eighteen months after filing.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32). Either enter Customer Number or complete the Representative Name section below. If both sections are completed the customer Number will be used for the Representative Information during processing.

Please Select One:	\bullet Customer Number	US Patent Practitioner	Limited Recognition (37 CFR 11.9)	
Customer Number	21839			

Domestic Benefit/National Stage Information:

This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, 365(c), or 386(c) or indicate National Stage entry from a PCT application. Providing benefit claim information in the Application Data Sheet constitutes the specific reference required by 35 U.S.C. 119(e) or 120, and 37 CFR 1.78.
When referring to the current application, please leave the "Application Number" field blank.

Prior Application Status		Patented			Remove		
Application Number	Continuity Type		Prior Application Number	Filing Date (YYYY-MM-DD)	Patent Number		Issue Date (YYYY-MM-DD)
	reissued of		13991513	2013-06-04	9329		2016-05-03
Prior Application Status		Pending		Remove			
Application Number		Continuity Type		Prior Application Number		Filing or 371(c) Date (YYYY-MM-DD)	
13991513		a 371 of intemational		PCT/DK2011/050461		2011-12-05	
Prior Application Status		Expired		Remove			
Application Number		Continuity Type		Prior Application Number		Filing or 371(c) Date (YYYY-MM-DD)	
PCT/DK2011/050461		Claims benefit of provisional		61420138		2010-12-06	
Additional Domestic Benefit/National Stage Data may be generated within this form by selecting the Add button.							

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	

Foreign Priority Information:

This section allows for the applicant to claim priority to a foreign application. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119 (b) and 37 CFR 1.55. When priority is claimed to a foreign application that is eligible for retrieval under the priority document exchange program (PDX) the information will be used by the Office to automatically attempt retrieval pursuant to 37 CFR 1.55 (i)(1) and (2). Under the PDX program, applicant bears the ultimate responsibility for ensuring that a copy of the foreign application is received by the Office from the participating foreign intellectual property office, or a certified copy of the foreign priority application is filed, within the time period specified in 37 CFR 1.55(g)(1).

Application Number	Country ${ }^{\text {i }}$	Filing Date (YYYY-MM-DD)	
PA 201001104	PK	2010-12-06	
Additional Foreign Priority Data may be generated within this form by selecting the Add button.			Add

Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications

This application (1) claims priority to or the benefit of an application filed before March 16, 2013 and (2) also contains, or contained at any time, a claim to a claimed invention that has an effective filing date on or after March 16, 2013.
NOTE: By providing this statement under 37 CFR 1.55 or 1.78 , this application, with a filing date on or after March 16,2013 , will be examined under the first inventor to file provisions of the AIA.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	

Authorization or Opt-Out of Authorization to Permit Access:

When this Application Data Sheet is properly signed and filed with the application, applicant has provided written authority to permit a participating foreign intellectual property (IP) office access to the instant application-as-filed (see paragraph A in subsection 1 below) and the European Patent Office (EPO) access to any search results from the instant application (see paragraph B in subsection 1 below).

Should applicant choose not to provide an authorization identified in subsection 1 below, applicant must opt-out of the authorization by checking the corresponding box A or B or both in subsection 2 below.

NOTE: This section of the Application Data Sheet is ONLY reviewed and processed with the INITIAL filing of an application. After the initial filing of an application, an Application Data Sheet cannot be used to provide or rescind authorization for access by a foreign IP office(s). Instead, Form PTO/SB/39 or PTO/SB/69 must be used as appropriate.

1. Authorization to Permit Access by a Foreign Intellectual Property Office(s)

A. Priority Document Exchange (PDX) - Unless box A in subsection 2 (opt-out of authorization) is checked, the undersigned hereby grants the USPTO authority to provide the European Patent Office (EPO), the Japan Patent Office (JPO), the Korean Intellectual Property Office (KIPO), the State Intellectual Property Office of the People's Republic of China (SIPO), the World Intellectual Property Organization (WIPO), and any other foreign intellectual property office participating with the USPTO in a bilateral or multilateral priority document exchange agreement in which a foreign application claiming priority to the instant patent application is filed, access to: (1) the instant patent application-as-filed and its related bibliographic data, (2) any foreign or domestic application to which priority or benefit is claimed by the instant application and its related bibliographic data, and (3) the date of filing of this Authorization. See 37 CFR 1.14(h) (1).
B. Search Results from U.S. Application to EPO - Unless box B in subsection 2 (opt-out of authorization) is checked, the undersigned hereby grants the USPTO authority to provide the EPO access to the bibliographic data and search results from the instant patent application when a European patent application claiming priority to the instant patent application is filed. See 37 CFR 1.14(h)(2).

The applicant is reminded that the EPO's Rule 141(1) EPC (European Patent Convention) requires applicants to submit a copy of search results from the instant application without delay in a European patent application that claims priority to the instant application.

2. Opt-Out of Authorizations to Permit Access by a Foreign Intellectual Property Office(s)

A. Applicant DOES NOT authorize the USPTO to permit a participating foreign IP office access to the instant application-as-filed. If this box is checked, the USPTO will not be providing a participating foreign IP office with any documents and information identified in subsection 1A above.
B. Applicant DOES NOT authorize the USPTO to transmit to the EPO any search results from the instant patent application. If this box is checked, the USPTO will not be providing the EPO with search results from the instant application.
NOTE: Once the application has published or is otherwise publicly available, the USPTO may provide access to the application in accordance with 37 CFR 1.14.

| Application Data Sheet 37 CFR 1.76 | Attorney Docket Number | $0079124-000266$ |
| :--- | :--- | :--- | :--- |
| | Application Number | |
| Title of Invention | SYSTEM WITH 3D USER INTERFACE INTEGRATION | |

Applicant Information:

Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office.

Applicant	1	Remove

If the applicant is the inventor (or the remaining joint inventor or inventors under 37 CFR 1.45), this section should not be completed. The information to be provided in this section is the name and address of the legal representative who is the applicant under 37 CFR 1.43; or the name and address of the assignee, person to whom the inventor is under an obligation to assign the invention, or person who otherwise shows sufficient proprietary interest in the matter who is the applicant under 37 CFR 1.46. If the applicant is an applicant under 37 CFR 1.46 (assignee, person to whom the inventor is obligated to assign, or person who otherwise shows sufficient proprietary interest) together with one or more joint inventors, then the joint inventor or inventors who are also the applicant should be identified in this section.

| \begin{tabular}{\|c|}
\hline
\end{tabular} Clear		
- Assignee	Legal Representative under 35 U.S.C. 117	Joint Inventor
Person to whom the inventor is obligated to assign.		Person who shows sufficient proprietary interest
If applicant is the legal representative, indicate the authority to file the patent application, the inventor is:		

				\checkmark	
Name of the Deceased or Legally Incapacitated Inventor:					
If the Applicant is an Organization check here. \quad,					
Organizati	n Name	3 Shape AS			
Mailing Address Information For Applicant:					
Address 1		Holmens Kanal 7, 4. sal			
Address 2					
City		Copenhagen K	State/Province		
Country ${ }^{\text {j }}$	DK		Postal Code	DK-1060	
Phone Number			Fax Number		
Email Address					
Additional Applicant Data may be generated within this form by selecting the Add button.					Add

Assignee Information including Non-Applicant Assignee Information:

Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	

Assignee 1		
Complete this section if assignee information, including non-applicant assignee information, is desired to be included on the patent application publication. An assignee-applicant identified in the "Applicant Information" section will appear on the patent application publication as an applicant. For an assignee-applicant, complete this section only if identification as an assignee is also desired on the patent application publication.		
		Remove
If the Assignee or Non-Applicant Assignee is an Organization check here.		区
Organization Name	3Shape A/S	

Mailing Address Information For Assignee including Non-Applicant Assignee:

Address 1	Holmens Kanal 7, 4. sal			
Address 2				
City	Copenhagen K	State/Province		
Country \mathbf{i}	DK		Postal Code	DK-1060
Phone Number		Fax Number		
Email Address				
Additional Assignee or Non-Applicant Assignee Data may be generated within this form by selecting the Add button.	Add			

Signature:

NOTE: This Application Data Sheet must be signed in accordance with 37 CFR 1.33(b). However, if this Application Data Sheet is submitted with the INITIAL filing of the application and either box A or B is not checked in subsection 2 of the "Authorization or Opt-Out of Authorization to Permit Access" section, then this form must also be signed in accordance with 37 CFR 1.14(c).

This Application Data Sheet must be signed by a patent practitioner if one or more of the applicants is a juristic entity (e.g., corporation or association). If the applicant is two or more joint inventors, this form must be signed by a patent practitioner, all joint inventors who are the applicant, or one or more joint inventor-applicants who have been given power of attorney (e.g., see USPTO Form PTO/AIA81) on behalf of all joint inventor-applicants.

See 37 CFR 1.4(d) for the manner of making signatures and certifications.

Signature	Stephany G. Small/			Date (YYYY-MM-DD)	2019-07-30
First Name	Stephany G.	Last Name	Small	Registration Number	69,532
Additional Signature may be generated within this form by selecting the Add button.					Add

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Data Sheet 37 CFR 1.76	Attorney Docket Number	$0079124-000266$
	Application Number	
Title of Invention	SYSTEM WITH 3D USER INTERFACE INTEGRATION	

This collection of information is required by 37 CFR 1.76 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1 The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.

3 A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent CooperationTreaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Fig. 1

Fig. 2a)

Fig. 2b)

Fig. 3

Fig. 4

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
Henrik ÖJELUND, et al.
Reissue of U.S. Patent No. 9,329,675:
Issued: May 3, 2016
For: SYSTEM WITH 3D USER INTERFACE INTEGRATION

GENERAL AUTHORIZATION FOR PETITIONS FOR EXTENSIONS OF TIME AND PAYMENT OF FEES

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In accordance with 37 C.F.R. § 1.136(a)(3), the U.S. Patent and Trademark Office is hereby provided with a general authorization to treat any concurrent or future reply requiring a petition for an extension of time for its timely submission as containing a request therefor for the appropriate length of time.

The Commissioner is hereby authorized to charge any appropriate fees under 37 C.F.R. § 1.17 that may be required by this paper, or any other submissions in this application, and to credit any overpayment, to Deposit Account No. 02-4800.

Respectfully submitted,
Buchanan Ingersoll \& Rooney pc

Date: July 30, 2019

By: /Stephany G. Small/
Stephany G. Small
Registration No. 69,532

Customer No. 21839
7038366620

Buchanan Ingersoll A Rooney PC

 ro; commissianef for Patents, P.O. Box 1450. Alexondris, 24 22313-1450.

TRANSMITTAL FOR POWER OF ATTORNEY TO ONE OR MORE REGISTERED PRACTITIONERS

NOTE: This form is to be submitted with the Power of Attorney by Applicant form (PTO/AIA/82B or equivalent) to identify the application to which the Power of Attorney is directed, in accordance with 37 CFR 1.5. If the Power of Attorney by Applicant form is not accompanied by this transmittal form or an equivalent, the Power of Attorney will not be recognized in the application.

Application Number	Unassigned	
Filing Date	July 30, 2019	
First Named Inventor	Henrik ÖJELUND	
Title	SYSTEM WITH 3D USER INTERFACE INTEGRATION	
Art Unit	Unassigned	
Examiner Name	Unassigned	
Attorney Docket Number	0079124-000266	Date
SignatURE of Applicant or Patent Practitioner	July 30, 2019	
Name	/Stephany G. Small/	Telephone
Registration Number	69,532	Stephany G. Small

NOTE: This form must be signed in accordance with 37 CFR 1.33. See 37 CFR 1.4(d) for signature requirements and certifications.

*Total of forms are submitted.

This collection of information is required by 37 CFR $1.31,1.32$ and 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

POWER OF ATTORNEY BY APPLICANT

 he boxes below.

of
21839

 fetrer or the boxes salowe to:

©

21039
on
Fime
meividuay kans
,

Aocress

3Shape A/S

STONATURE OF Applicams tor sament

Bsysmers	
Name	HETTE CAK 5 TE 0)
Tac	

STATEMENT UNDER 37 CFR $3.73(\mathrm{C})$

ApplicantPatent Owner: 3SHAPE A/S
Application No.patent No. $9,329,675$....................................Fledissue Date: May 3, 2016
Tiled
SYSYEM WTH 30 USER INTERFACE INTEGRATION
3SHAPE A/S a corporation
(Axme of Acsigree)

States that, for the patent appicationpatent identfied above, it is choose one of options $1,2,3$ or 4 below):
3. [. The assignee of the entre nigh, tibe, and interest.
2. \square An assignee of less than the entire right, tite: and interest (check applicable box):

THe extent (by percentage) of its ownership interest is Additional Statements) by the owners holding the balance of the interest must be submited to account for to0\% of the ownership interest.
There are unspecified percentages of ownership. The other parties, inchoding inventors, who together own the entive nigh, Bte and interest are:
,
Additional Statement(s) sy the owneris) hoiding the baiance of the interest must be submitted to account tor the entie ront, tite, and interest.
3. \square The assignee of an undivided interast in the entrety (a complete assignment from one of the loint inventors was made).

The other partes, including inventors, who together own the entire fight, itte, and interest are:

Adoitional Statementis) by the ownet(s) holding the balance of the interest must be submited to account for the entire night, tile, and interest.
4. The recipient, via a cout proceeding or the like (e.g. banknutcy, probate), of an undivded interest in the entrety (a complete transter of ownership interest was made). The certhed documentis) showing the transier is attached.

The interest identifed in option 1,2 or 3 above arot option 4) is evidenced by either (choose one of options A or $日$ below):
A. \triangle I An assignment from the inventosfs of the patent applcationpatent identified above. The assignment was recorded in the United States Patent and Trademark Office at Feel boti Frame 6as? , or for which a copy thereof is attached.
B. \square A ohain of tite from the inventor(s), of the patent applicationipatent iofentited above, to the current assignee as follows:

1. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office al
\qquad Frame \qquad or for which a copy hereot is athached.
2. From: \qquad To: \qquad
The document was yecorded in the United States Patent and Tradematk Office at
Reel \qquad Frame , or for which a copy thereof is atached.

 TO: Commissioner for Patents; P.O. Box 1450, Abexandra, VA $22313-1450$.

If you need assistonce in completing the fom, coll $1-800$ - 9 TO- $9 / 99$ and select option 2.

STATEMENT UNDER 37 CFR $3.73(\mathrm{c})$

3. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at
Feel \qquad Frame \qquad or for which a copy thereol is attached.
4. From: \qquad To: \qquad
The document was reoorded in the United States Patent and Trademark Office at
Reel. \qquad Frame \qquad of for which a copy thereof is attached.
5. From: \qquad To: \qquad The document was recorded in the United States Patem and Trademark Office at Feel. \qquad Frame \qquad of for which a copy thereof is attached.
6. From: \qquad To: \qquad The document was recorded in the United States Patem and Tradenamk Office at Feel \qquad Frame \qquad or for which a copy thereof is attached.Addifonal docoments it the ohain of tite are listed on a supplemental sheet(s).

I- As requited by 37 CFR $3.7310 / 11 / 1$, the documentary evidence of the chain of tite trom the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
WOTE: A separate copy (i.e, a the copy of the orighal assignment documentis) must be submitted to Assignment Division in accordance with 37 CFR Pan 3 , to record the assignment in the records of the USPTO. See NPEP 302.081

The undersigned (whose tite is supplied belowt is authorized to act on behaff of the assignee.
/Stephany G. Small
Signature
Stephany G. Small
Primed or Typed Name

July 30, 2019
Date
69.532

Tille or Registration Number
[Page 2 of 2]

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) recuires that you be given centain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authonty tor the collection of this intomation is 35 U.S.C. $2\{0)(2)$; (2) furnishing of the information solicited is voluntary: and (3) the prinopal purpose tor which the information is used by the U.S. Patent and Trademark Office is to process andor examine your submission related to a patent application or patent. If you do not fumish the requested information, the U.S. Patent and Trademark Office may not be able to process andior examine your submission, which may result in temination of proceedings or abandonment of the application or expiration of the patent.

The informailon provided by you in this form will be subject to the following routhe uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of intormation Act (SU.S.C. 552) and the Privacy Act (SU.S.C 552a). Records from this system of records may be disclosed to the Deparment of Justice to determine whether disclosure of these records is reguired by the Freedom of information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a cour, magistrate, or adminstrative tribuna, inchoing disclosures to opposing counsel in the courss of settlement negotiations.
3. A record in this system of records may be disclosed as a roume use, to a Member of Congress submiting a request invoing an individual, to whom the recors pertans, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a rounne use, to a contractor of the Agency having need tor the information in order to pertorm a contract. Recipients of iniormation shall be required to comply with the reguirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Appication fied under the Patent Cooperation Treaty in this system of scords may be disclosed, as a routne use, to the intemational Buraau of the World intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routhe use, to another federal agency for purposes of National Security review (35U.S.C. 181) and for revew pursuant to the Atomic Energy Act (42 U.S.C. $218(\mathrm{c})$).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or hisher designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authonity of 44 U.S.C. 2904 and 2906 . Such disclosure shall be made in accordanoe with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e. GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuas.
8. A record from this system of records may be discosed, as a routine use, to the pubic after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the himations of 37 CFP 1.14 , as a routhe use, to the pubic if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine usa, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential viblation of law or reguation.

हEESSUE APPLICATION CONSENT OF ASSIGNEE; STATEMENT OF NON-ASSICNMENT	Docker Absmber (Smbionag
$8 \times 2 \times 68 \mathrm{~s}$	Date Patent 1ssumed say 32016

and the assigneers) eonsents bo be acommenyrus apphcation for reisuse.

Sckane as

Bn Gs

fisacy Ber Susmment

 seoprs

 फसम

 iscieso yserent.

 Wokkon of \&w s serymben

组

โE\}SSUE APPuGATION DECLARATION EY THE ASSGNEE

Whase of the Kaskses
3以1mp／A6

 bxucure

mesmemee（by	Ske	Forstry
Aswoy		$8 \times$

Brains Adomes
Kuleverpartenss

Fatere phember 9，329，676

ne spactication：of wimb？

（T）wes 解e m
as \＆ \qquad ．．．

\uparrow＊

 andear matter.

Bementy suywent:

Whblyak:

 that UCFMD

 s,
中m
 GWhat dyabaty

Se3x+2.8

Priacy Act Stakmant

Tha fawney A

 sames

 \&

 iscued yaters.

Legal Name of Additional Joimt Inventor, if any:

(Eg. Ghen Name (first and modle (it any) and Famby Name or Suneme)
David FISCHER

(E.g. Given Name (istst and midtle (f any) and Famy Name or Sumame)

Karl-Josef HOLLENBECK

Inventor's Signaturs			Date (Optionat
Residence: ciy Kobenhavn \varnothing	State	country	

Ribegade 123. th
Wiming Adoress

ciy Kobenhavn \varnothing	State	z 0 OK-2100	counsy

Legal Name of Additional Joint Inventor, if any:

 FORMS TO THS ADORESS SEND TO: Commissioner for Patents, F, O. Sox 14E0, AJexandria, VA 22313-1420.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of	
Henrik ÖJELUND et al	MAIL STOP• REISSUE
Henrik OJELUND et al.	MAIL STOP. REISSUE
Reissue of U.S. Patent No. 9,329,675	
Issued: May 3, 2016	
For: SYSTEM WITH 3D USER INTERFACE INTEGRATION	

PRELIMINARY AMENDMENT

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Commissioner:
Prior to examination of the above-captioned patent application, kindly amend the application as follows:

AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in this application.

LISTING OF CLAIMS:

1. (amended) A scanning system for scanning a 3D environment, the scanning system comprising:
a handheld device including an optical scanner, wherein the 3D environment to be scanned is selected by pointing the optical scanner at the 3D environment; and at least one display remotely connected to the handheld device, wherein the handheld device is adapted for performing at least one scanning action in a physical 3D environment, and the at least one display is adapted for visually representing the physical 3D environment; and the handheld device includes a 3D user interface for remotely controlling the display to adjust the view with which the 3D environment is represented on the display, wherein the handheld device comprises at least one motion sensor, and wherein the at least one motion sensor is a sensor that directly detects motion.
2. (amended) [A] The scanning system according to claim 1, wherein the handheld device is adapted to record the 3D geometry of the 3D environment.
3. (amended) $[A]$ The scanning system according to claim 1, wherein the handheld device includes an actuator [means] for manually switching between performing the at least one scanning action and remotely controlling the view.

Please cancel Claim 4.
5. (amended) The scanning system according to claim [4] 1, wherein the view of the 3D environment represented in the at least one display is at least partly determined by the at least one motion sensor.
6. (amended) The scanning system according to claim [4] 1, wherein functionality of the 3D user interface comprises a use of gestures.
7. (amended) The scanning system according to claim 6, wherein the gestures are detected by the at least one motion sensor.
8. (amended) The scanning system according to claim [4] 1, wherein the [userinterface is other than the at least one motion sensor] handheld device further comprises at least one of an infrared sensor, a range sensor, or a proximity sensor
9. (amended) The scanning system according to claim 1, wherein the handheld device is adapted to change a viewing angle with which the 3D environment is represented on the at least one display.
10. (amended) The scanning system according to claim 1, wherein the handheld device is adapted to change a magnification factor with which the 3D environment is represented on the at least one display.
11. (amended) The scanning system according to claim 1, wherein the handheld device is an intra-oral 3D scanner.
12. (amended) The scanning system according to claim 1, wherein the handheld device includes a surgical instrument.
13. (amended) The scanning system according to claim 1, wherein the handheld device includes a mechanical tool.
14. (amended) The scanning system according to claim 1, wherein the handheld device is an in-ear 3D scanner.
15. (amended) The scanning system according to claim 1, wherein the at least one display is defined as a first display, and where the system further comprises a second display.
16. (amended) The scanning system according to claim 15, wherein the second display indicates where the handheld device is positioned relative to the 3D environment.
17. (amended) The scanning system according to claim 15, wherein the first display and/or the second display provides instructions for the operator.
18. (amended) The scanning system according to claim 1, wherein audible information is provided to the operator.
19. (amended) A system comprising:
a handheld device and at least one display; wherein the handheld device is adapted for switching between performing at least one action in a physical 3D environment, wherein the at least one display is adapted for visually representing the physical 3D environment; and remotely controlling the display to adjust the view with which the 3D environment is represented on the display;
wherein the handheld device is an intra-oral 3D scanner and the at least one action performed in the physical 3D environment is scanning and that the view is remotely controlled by at least one motion sensor arranged in the handheld device, and wherein an actuator provided on the handheld device switches between performing the at least one action and remotely controlling
20. (new) The scanning system according to claim 1, wherein the at least one motion sensor is an accelerometer, gyro, or magnetometer.
21. (new) The scanning system according to claim 1, wherein the at least one motion sensor is adapted for taking the movement of the scanner into account while performing the scanning.
22. (new) The scanning system according to claim 1, wherein the system comprises at least two motion sensors and wherein the at least two motion sensors provide sensor fusion.
23. (new) The scanning system according to claim 1, wherein the at least one motion sensor is the 3D user interface for remotely controlling the display. wherein the view on the display is determined by moving the handheld scanner.
24. (new) The scanning system according to claim 23, wherein moving the handheld scanner to point down causes the view on the display to be a downward viewing angle.
25. (new) The scanning system according to claim 1, wherein the handheld device further comprises a user-interface element
26. (new) The scanning system according to claim 25, wherein the user-interface element comprises a touch-sensitive element, a button, a scroll-wheel, or a proximity sensor.
27. (new) The scanning system according to claim 25, wherein the user-interface element provides more than one user input.
28. (new) The scanning system according to claim 25, wherein the at least one motion sensor and/or the user-interface element are utilized in a workflow.
29. (new) The system according to claim 19, wherein the handheld device is adapted to change a magnification factor of the view represented on the at least one display which is determined by the motion of the operator's hand holding the handheld device, through the use of the at least one motion sensor.
30. (new) The scanning system according to claim 1, wherein the at least one display is arranged on a cart.
31. (new) The scanning system according to claim 1, wherein the at least one display is divided into multiple regions.
32. (new) The system according to claim 19, wherein the handheld device further comprises a user interface element.
wherein switching to remotely controlling the view puts the handheld device into a controller mode. wherein holding the user interface element and/or the actuator on the handheld device in conjunction with moving the handheld device determines the view of the 3D environment on the display in accordance with signals from the motion sensor.
33. (new) A scanning system for scanning a 3D environment, the scanning system comprising:
a handheld device including an optical scanner, wherein the 3D environment to be scanned is selected by pointing the optical scanner at the 3D
environment; and
at least one display remotely connected to the handheld device,
wherein the handheld device is adapted for performing at least one scanning action in a physical 3D environment, and the at least one display is adapted for visually representing the physical 3D environment; and
wherein the handheld device includes at least one motion sensor for remotely controlling the display to adjust the view with which the 3D environment
is represented on the display; and
wherein the at least one motion sensor is an accelerometer, gyro, or magnetometer.
34. (new) The scanning system according to claim 33, wherein the handheld device further comprises at least two user interface elements.
35. (new) The scanning system according to claim 34, wherein the at least two user interface elements comprises at least one button and a touch-sensitive element, and wherein the display is on a cart.
36. (new) The scanning system according to claim 35, wherein the at least one button and the touch-sensitive element provides more than one user input.
37. (new) The scanning system according to claim 36, wherein at least one of the user input provides for manually switching between performing the at least one scanning action and remotely controlling the view.
38. (new) The scanning system according to claim 37, wherein switching to remotely controlling the view puts the handheld device into a controller mode, wherein holding at least one user interface element on the handheld device in conjunction with moving the handheld device determines the view of the 3D environment on the display in accordance with signals from the motion sensor.
39. (new) The scanning system according to claim 37, wherein switching to remotely controling the view puts the handheld device into a controller mode and wherein when in controller mode, moving the handheld device down results in showing the view of the 3D environment from a downward viewing angle on the display.

REMARKS

This communication is submitted in accordance with 37 C.F.R. § 1.173.

Status of Claims and Support for Claim Changes

This application for a narrowing reissue is being filed with original patent Claims 1-19, of which Claims 1-3, 5-19 are amended and Claim 4 is canceled herein, and new Claims 20-39 are added.

As of the filing of this reissue application, Claims 1-3, 5-39 are pending.
The following table lists the status of the claims as well as non-limiting, exemplary support for the claim amendments and the new claims.

Claim	Pending and Amended. Non-limiting, exemplary support found at original Claims 1 and 4; col. 1, lines 58-60; col. 6, lines 46-50; col. 9, lines 59-60; and col. 10, line 35.
1	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
3	Pending and Amended. Non-limiting, exemplary support found at original Claim 1; and col. 3, lines 28-31.
4	Canceled. Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
5	Pending and Amended. Non-limiting, exemplary support found at original Claims 1 and 4; col. 1, lines 58-60; and col. 5, lines 37-38 and 43-46.
7	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
8	Pending and Amended. Non-limiting, exemplary support found at original Claims 1 and 4; col. 5, lines 43-46; col. 6, lines 51-58; and col. 7, lines 14- 17.
9	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
10	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
11	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
12	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.

13	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
14	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
15	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
16	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
17	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
18	Pending and Amended. Non-limiting, exemplary support found at original Claim 1.
19	Pending and Amended. Non-limiting, exemplary support found at col. 6, lines 46-50; col. 9, lines 59-60; and col. 10, line 35.
20	Pending and New. Non-limiting, exemplary support found at col. 6, lines 4650.
21	Pending and New. Non-limiting, exemplary support found at col. 3, lines 1012.
22	Pending and New. Non-limiting, exemplary support found at col. 6, line 65col. 7, line 3.
23	Pending and New. Non-limiting, exemplary support found at original Claim 19; col. 3 , lines 15-17; and col. 4, lines 6-8.
24	Pending and New. Non-limiting, exemplary support found at Fig. 2a; col. 3, lines 18-19; and col. 11, lines 9-17.
25	Pending and New. Non-limiting, exemplary support found at col. 7, lines 417.
26	Pending and New. Non-limiting, exemplary support found at col. 7, lines 417.
27	Pending and New. Non-limiting, exemplary support found at col. 7, lines 2234.
28	Pending and New. Non-limiting, exemplary support found at col. 7, lines 1834.
29	Pending and New. Non-limiting, exemplary support found at original Claim 10; col. 9, lines 45-60; and col. 13, lines 28-31.
30	Pending and New. Non-limiting, exemplary support found at col. 14, lines 45-47.
31	Pending and New. Non-limiting, exemplary support found at col. 14, lines 19-21.
32	Pending and New. Non-limiting, exemplary support found at original Claim 19: col. 3 , line 66-col. 4, line 8 ; and col. 7 , lines 4-17.
33	Pending and New. Non-limiting, exemplary support found at original Claims 1. 4, 19; col. 6 lines 46-50.
34	Pending and New. Non-limiting, exemplary support found at col. 7, lines 434.
35	Pending and New. Non-limiting, exemplary support found at col. 7, lines 434; and col. 14, lines 45-47.

36	Pending and New. Non-limiting, exemplary support found at col. 7, lines 22- 34.
37	Pending and New. Non-limiting, exemplary support found at original Claims 3 and 19; and col. 3, lines 28-37.
38	Pending and New. Non-limiting, exemplary support found at col. 3, lines 15- $17 ;$ and col. 3, line 66-col. 4, line 8.
39	Pending and New. Non-limiting, exemplary support found at Fig. 2a; col. 3, lines 15-19; col. 3, line 66-col. 4, line 8; and col. 11, lines 9-17.

Early and favorable action concerning this application is respectfully requested.
If there are any questions concerning this Preliminary Amendment Pursuant To
37 C.F.R. § 1.173, or the reissue application in general, the Examiner is respectfully requested to telephone the undersigned attorney so that prosecution of the application may be expedited.

The Director is hereby authorized to charge any appropriate fees under 37 C.F.R. $\S \S 1.16,1.17$ and 1.20 (d) and 1.21 that may be required by this paper, and to credit any overpayment, to Deposit Account No. 02-4800.

Favorable consideration of the application in view of the foregoing amendments is respectfully requested. Should any questions arise in connection with this application, it is respectfully requested that the undersigned be contacted at the number indicated below.

Respectfully submitted,
Buchanan Ingersoll \& Rooney pc

Date July 30, 2019
By: /Stephany G. Small/
Stephany G. Small, Ph.D.
Registration No. 69,532

Customer No. 21839

7038366620

Description	Fee Code	Quantity	Amount
Patent-Appeals-and-Interference:		Sub-Total in USD(\$)	
Post-Allowance-and-Post-Issuance:			
Extension-of-Time:	Total in USD (\$)	4960	
Miscellaneous:			

Electronic Acknowledgement Receipt	
EFS ID:	36730210
Application Number:	16526281
International Application Number:	
Confirmation Number:	9657
Title of Invention:	SYSTEM WITH 3D USER INTERFACE INTEGRATION
First Named Inventor/Applicant Name:	Henrik ÖJELUND
Customer Number:	21839
Filer:	Stephany Gale Small/Sarah Noel
Filer Authorized By:	Stephany Gale Small
Attorney Docket Number:	0079124-000266
Receipt Date:	30-JUL-2019
Filing Date:	
Time Stamp:	15:24:14
Application Type:	Reissue (Utility)

Payment information:

Submitted with Payment	yes
Payment Type	CARD
Payment was successfully received in RAM	$\$ 4960$
RAM confirmation Number	E20197TF24585385
Deposit Account	024800
Authorized User	Sarah Noel
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 37 CFR 1.16 (National application filing, search, and examination fees) 37 CFR 1.17 (Patent application and reexamination processing fees)	

37 CFR 1.19 (Document supply fees)
37 CFR 1.20 (Post Issuance fees)
37 CFR 1.21 (Miscellaneous fees and charges)

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
			506624		
1	Transmittal Reissue Application	Transmittal_NewApp.pdf		no	1
Warnings:					
Information:					
2	Application Data Sheet	ADS.pdf	1822876	no	9
Warnings:					
Information:					
3	Specification	US9329675B2.pdf	5728314	no	15
			f51402e5210c9c996e4c6390181cd4024e3		
Warnings:					
Information:					
4	Drawings-only black and white line drawings	Figures.pdf	2163940	no	5
Warnings:					
Information:					
5	Authorization for Extension of Time all replies	Authorization.pdf	93782	no	1
			$946 a 66368 c 01 c 202 c 3524 d 200 c f 036 b 05 a e$ 26445		
Warnings:					
Information:					
6	Fee Worksheet (SB06)	Fee_Transmittal.pdf	509522	no	1
Warnings:					
Information:					

7	Power of Attorney	POA.pdf	560039	no	2
Warnings:					
Information:					
8		373c_Statement.pdf	1538154	no	3
	CFR 3.73		c7930b7b99f8a5d07158a4e974c8e2c1a52 54 e 17		
Warnings:					
Information:					
9	Consent of Assignee accompanying the declaration	Consent_Assignee.pdf	505763	no	2
Warnings:					
Information:					
10	Reissue dec filed in accordance with MPEP 1414	Declaration.pdf	1278463	no	4
Warnings:					
Information:					
11		Prelim.pdf	121821	yes	13
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Preliminary Amendment		1	1	
	Claims		2	10	
	Applicant Arguments/Remarks Made in an Amendment		11	13	
Warnings:					
Information:					
12	Fee Worksheet (SB06)	fee-info.pdf	37132	no	2
Warning					

Information:
Total Files Size (in bytes)
14866430

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of $\mathbf{3 5}$ U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

(2) United States Patent

Ojetund et al.
(io) Patent No.: US 9,329,675 B2
(45) Date of Patent:

May 3, 2016
 ANTEGRATEN
(7) Breanors Hewrik Ofesuad, lyngby (Dx): Bavid Fischer, Stentese (bKy, Karl-dosef

(7) Asignee: ASFAPT AS, Cmonhemen K (OK)
(*) Notice Subioct to amy diselamme the tem of this perent is extebded or adpusted moder is USS $.154(\mathrm{~b})$ by 249 ckys.
(21) Appl. No,

13/981533
(2) MT EXEd:

Dus. $\mathbf{F} .2011$
(86) PCTNO:

PCTDK20 1/
泉371 (o)
(Q), (4)Date:
, 4 tas. 4.2013
(87) POTPub.No: WO2012076013

ICT Pob There fan. 14, 2012

US 2013025776 A
Ctt. 3, 2013

Related U.S. Apphcation 要ata

(60) Trowisimal apheator No. 61420 , 138 , hacd on Des. $6,2010$.
(30)

Forekge kpplacatex Priority Data
Dee. 6,2010 (DK) \qquad 201001104
(5) mb, Cl.

G06F 3/01 (2006.01)
A616.904 $\quad 2006.01\}$
colb $11 / 24$ (2006.01)
(52) US. Cl.
 G01D 1/24 (2013.01)
(58) Tedd of Cumbibation Seareh

CPC combination aetrs) my
Sce apmbinaton file for complase serrch history.

Refercuces Clited

U.S. PATENT MOCDMENES

6,155961	1020m	Plugath atat	345158
$6957,644 \mathrm{BI}$:	H200s	Kobayash	
7 T , $1020 \mathrm{B2}$	112006	poland ct at	
7,813,591 $12{ }^{*}$	102010	Faky at al	382255
$7 \times 31892 \mathrm{~B} 2^{*}$	H2060	Muaderal.	66424
$8096380{ }^{\circ}$	102011	Kreestise	348419
(Cominned)			

Wo WOMg4606nis At s2004
(Cominutd)
OHLREUBLCATONS
 (Commud)

Primary Examiner … Yan Chess
(74) Ahomes, Agem, of Frm Buckunam Ingersoll \& Romey PC

Abstract

(57)

\section*{ABSTRACT}

Dhelosed is a symem womprising a haribhed device axd at ing at ham one acton in a physiow BD envommex; whewin physteraf 3D emionathent and where the handheld device is mwinnatent is represented on he dishlay.

19 Clatat, 5 Drawitax Sheeds

(50) Nuferexues Citud					OTmPR PGBLKATHNS
US PATENT DOCUMENTS					
2603015×48	82 A	\$2003	Poland et al.		
200462047 s	\% A!	100004	Kogeltama et al.	76m@	
2005005774	45 A	32005	Bonie		
सw6099217	73 A ${ }^{\text {a }}$	5 wec	fomma al	349158	
20060546008	(3) A	7006	Sghte ctal.		
2009006138	8 Al	3 m 009	Duxtin of at.		\%9.397-403.
200962700	¢ A	88099	Sagemerer ctat.		Firs Offe Acton bsued in conesponding hinese bano Applita-
FOREGQE PELENT DOCUMENTS					
WO	20m\%	77	22007		lwhan ¢\% pages
Wo	200908	120	7200%		
WO	20001	108	W201:		* cated by examins

Fig. 1

Fig. 2a)

Fig. 2b)

Fig. 3

Fig. 4

marghato

NHD OF THEMYENTON

 comprisim a bandtold device and in teast one display.

aACKOROUND OF TBE TNVENDON

 predominmat.

 ment on a sceen, the uset thould sencroly be dble so mate the obfer or scenc, suob that many or weferntally all sur-
 stereosoopic on hologephio, were from a get ven the positionaud wit a given vewing angle the wer willonly see
 wht alse wan to zom into deake or goxa oth bor an ore Yeses.
 dienays 3D data thesedences are: 30 mios space balls, wat
 devices reaures physically tomehing them.

Thysimbly fouchmg a mar-interaction derice can be a dis-

 or in induetrial appliwabon in diry emprommenk.

Several montoth aser interices for 30 data vewing in medical appheations have bien describes in the lieraturt.

 camera is memmed on be physidian's head. Gratre of at (2004) deserbe a tombless system that futerrots hand geshures as mone dethons. fo bosed on stereo vison and intendea for ase in mbinaly buasive surgery

If semams a problexa io mpeove systems that requixe aner
 chnical pumases.

SUMMAKY

Dislosed is a systern compristag a handhel device mad at bast ane dishay, where the bandmod sevice is adaphed for performing at leas one achon in a physion SD ambrombent,
 semfug the phystal 3D exvommeat and where he handhed dewice is adapeet for rexpody conmoling the wew who

The syatem may be adhpled for switching between performing the ar least one action in the physical 30 ewhomthent, and remotely combollag the vew whe which the 30 mathonent is represented on the divelay,

The system diselosed here parioms the integration of 30 mas intertace sumbunliy with any other handhatd device Whan other operifing fumbomaty, such that the operator ideally mify wathes this hater acerioe that is meardel to ke whehed, A particular example of such a Bandheb dewice is one that reconds sone 30 geonecty, for example a bandhed 3D scannes.
The kandeld deyise is a mant-pupose device, suoh as a dual-pupase or tworpurpose device le a device bota for performing mathon in the physical 3D envinmonemt, swo as
 fiew of he 3 3 exymomern on the display,

Geometrically, a ves is tacomind by the vimat obsery

 dimensiond, the viey is also betemmed by the tye of
 Eactor

The virwal observer's and the 35 envinument's position
 user experionce in solfwate systems with 3D mpu devices, the usay may feel that for extmple, he she kn moving the 3D Eavomment whe remaning sationsy bimselfosselt, bat
 obserericmera then gives the saxe reswis on the display. Often dexcriptena of 3 D swhware systens we the expres-

 nem of the Bremeroment, and "wom" to maticate a change in magnification fiotor.

Craphically, a des can repesent a 37 emsomanam by mewn of photograples or some kind of vinual representstion sueh as a comphter graphic, or simikt. A coxeputes graphec can be renderes for example wih texture andor shating andor yowal hehe sonces andor tight models her swhas propertes. A compater graphe cataloo be a simphfied represmetaion of he SD emamment, ber example a mesh, an oumbe, or an ohemsise stmphined mpesentation. All or pans of ine 3 b marmuent cunalso be readered wht some degree of transparency, A view may sepresent the WD emironment in total or only pats bhereot.

 bing such wer mathere devise with abo hold what work with amother device that realle is the central dexice in the oweall

It in thos an alyathere of the presert sysum that the 3D net-interface fanctionalty is integrated in he centrat testos. wheh s nace for periorning some kind of action.

In sorne exbodments the handeld divice is mboted for nomoty contolling the mamaification with which be 3D embromath is represeated on the 6isples.
In some comodments the bondhod device iv adapted ber changing ibe mbteriag of the 3 D mpiromment on the dispiay. In some embobments the shew is defined as viowing angle andiss viewing powtion.

In some embodnexs the al lean one setion comamises one or more of the netions of
measaring,
racorting
semaning
manipahmis.
moditying
In wome entodments the 3D emfrommen womprises ons or more 3D objects.

In some embodmens the hardheduevec is adaphed to te hed in one hand by an operatos.

In sume enbedment the display is adapted to represent the 35 enviroment from mainigle vievs.

In some cobodments the dixplay is adapted to mepresent the 3D environment from diterent vewing mytes ander

In some embobinnents the view of the 3D enwimmonsi in the at leas one display is a least patly detemined by the wotion of the aperator's hath hoding side fovice.

In some enowheamts the magnifeation represented in the alleas me display is at least pathy determinad by de motion of the eqerators hand hoting said device.

In some cabodments the handeld device is sdater bo record the 30 peonsty of the 3D erwiromam.

Thus the handheld device may be mo wramal denal scannex, whel retods the 3 D geonetry of a pationt \% teeth. The operaber may move the somare mong the teth of the pationt for captarigg the 3 genmery of he relevan teeth, e.g whll teeh. The semmer noy commbe mothon sensom hor hation the morenem of the sume inb acoont whie ceanng the 3 m model of dhe scasmued heed.
The $3 D$ moter of the teen may be shown on a disphay and the display may for example be a PC sereen andor the the
The taer interbee fundionality nay compuse incosporaing moton sensos in the seanm to provide than the ase com detemme fee vew on the scren by movixy the sommer Ponting the stamer down can provide that the seaned teeth are shown giver a downsard wewhy ayge. Hoblag the scamer in a horizonal position con prowde that the vewing angle is lekewse horiontal.

In some exhotimexas the hathed deyice comprises an least one aser-interface elenent. A aserinterkee wement is
 a formon on the wer mortace of he solvare. Tyicaly the use interface is groherlly presened on the diphay of the system.

The landeld device may firthernore be movitex with an actuatar, which swithes fee kandbed device berween performing the at hast one action and renotly coatrolling the shew. By prowidnes sum a manal swithing furstion that mables the eparator soswhel beween performing the at feas one action wal remoly contrallay the wewt the operator may abily control what is pertwod.
Suchan athetor cantor example be in be formafa butom,
 seasitive surfece or element.
in anoher exbotmonat he sctuator cond be a motion seasor provided in the handided device bat function as the abtum when is registers a spede sye of mowemen, for exwate if the operam shakes the handmed device. Examples of sueh notion sersom will be dexcribed heren
 son skifer in the att will kased mo the disolosuth herem undestand that such abton sembors may also be used as athators as dicerssed.
For example the handrold deviee can in one enbotiment
 sel to be puthming the ation of swamang a dentalarea when the actetor is in one position. When the enenator is natedend inta a second position the handhed is set to contol he view with which the 3D envimoment is reperestedon the display, This wow for example be ther wher the deasim have seamed a pat of or the complete destred trea of an dentan moth he can actwae the anator whin then allows the dewnst to renotey combit the viow of the 3 D reprachation of the semmed area an the dientay by nitug the bandeld device.

For example, the actuator could be a button. When the buton is pressed predy the hasoled device is prepared for scaming, i, it is sef for pertoming at hast one sebon, the seaming proedue, in the physeal 33 enviromen. The seaming is shoped when the butobs is presser eqicky a secom the.
Whate the scaming is perfomer a virual 3D represenswon is visady buit on the display.

The user can now press and hold the buthon. The will pu the handbeld in a controller mode, wher the hanheld device
is aderied for remotely controthog the vien with whin the
 display. Whele hobling the buton pessed the system whll we signals fotw a motion sensor st he hatheld device to devermine how bo prexen the vicw of the vitheal 30 envirnment. Thes, the wer tame orbemise moves the bace that bolds
 on the display will change acoordingly.

Thus, the dendes may ne the same handued deviec for both scmaning sa wrea and subzequenty vertying that he scan has been weowed correcty whhot baving to move awry from the fretien on rouching any other equipmen then akemby present has hands.

 prosent at leask we ablo tumotion as an actuator.

Thesystem nay be ebumeed witha buthon as an aditionat

In an example the bontheld derice is a kemtheh intarat scamber, and the display is a comphter scren The operotor or usermay bev demist, an asstam andor be like. The opention Finetooxhty of the dovee may be so reonv some
 may be to roale, pas, and tomm the semmed data on the comapoter sereen.

In same enbodimens the at least one aser-interface clement is at heast one motion sersor:

Thes the integraion of the aser intertace fanctionaliy in he deviee may be prowded by wothon sensos, which wat be
 the orientatonof the display on the sceen of the 37 model ot
 e.s. to startstop samang, way be provided by a buthon. The betton may be loeated where the opentor"s ar use's motex hager cata reed it comvomutaly.
 or a mowse to detemune the view in the ditwhy. These prot
 dithent to ase, and they can be bobsintebsive and buas
 akays be dimbeeted beiween scoumbuy diferent patients, becase the sctaner is in and may oma in watact wibl the mowt or oher pans of the patom hoing scanmed.
 havds to botd the momon seamer while scambug, awd the sommer may be high exomph add comformble wo heds with past che band for a longer tome while scenming

The terice can ake be held whe one or wo bumk, whe usimg the device a remote bonmel for eg chamghay the view
 futhonality that in chatcal sibutione, heogerator can montam bobl hath cleme ilisinfected, or even sterile.

An advandage of the systen is than it alows am hermbe proces of worsing ban 3 exwivement withont releasing the handeld bevee duthe shat boces for the above interat
 weord some teeth suface geomeny with a humbld device
 recoruing by ueing than same hawheld devies to mowe, ep.
 seren, detect possible gaps or holes in the coverage of the scamedteeth, and then try example amage the seamter in the reghon when the saps sere hocated and sontme recordiag teeth surface geonety there. Per ths catire itemtive cycle,

as required for obtaming a desired scan coverage of the teeth
 out of ha wher hams.
 is exploted in a separate tocoubo than the opestion fometion-
 seanman opention is pertomed in the ow cavity of the panem, whie the user interdee hretionahy is more fexibly exploted when the scanner is ounde the pmonts month. The key chamerisme and ahomaye of the system, aghen, is Ha the deatist con explot the dad mod integreted fonetion-
 ou byite if on of his or her harks.

The abowe ithworal semmeng syem is an exambe of an enbodiment. Other examples for opembon hantionaliy or perfoming wetons wold be delling, welding gublige, wat the, soldering phomanhing, thing meakume execuing some sugecal procedme eto.

The display of the syexen com be a 2 D eomputer sereen, a 3D dispay that projecs stereosopic imene pairs, a vofumet-
 display, stahe volume dispay, s gmalax bamer display, a hologrophe display ete. Even witha 3D display the opertor
 he 3 Demiromment at a bee The opermor can move hisher hed bo assume amother viewing position abder viewing atule physicully, bot generath, is may fue more corvenient so

 postion andor yewing angle represented in the display.
It mone conberbmens the system comarises watiphe dis plays, in one or more wiphers that are deved info regions
 sad dutherent views of the 3D avimanem. The hathed device cata he med to chage the siew ia all of them, of ony some of them.
In whe embodment the wer inferface functonalify commises the use of gextures.

Gesturs made by eg. the opemor can be used womage, shill or togele betwect sub-windows, withe usermartace frmonomity can be finted to an antive sub-whodos ar one of several displays.

In some enbotmants the pestares are atated on be
 atcmatively wader aditionally be delected by range swases or othex sensors thei moxd body monion.

The operator does not have to constantly woteh the at least one display of he sysem. In mary aptucuthos, be opentor
 display and performing another qextion with the handtwh device. Thas it is an armatage that the operator bes nothene of tench ofther user interface devices. However, m somecases it nay no be possible br the operator to fally awid buchang oher hevices, and in these eases it to an achentage that ferser touehestare razuted comprand of a system where a handhed

 sequate from the hamblueld device.

H some embobiments the at heas one disploy is defoned as a hirs diphay sud whe the sysm furher eomprises a second display.
Insone combobment besecond taphay atragedot tha bandied device.

In some cmbextments the second display is arranged or the
 to be viewed by the opsomos, while the operator bs operating the hatdhet devies.

In some enbothents the scoond disp ky imfeates where
 never.

In some embudament the bint display andor he secom 3 display prowdes insmotions for the opertor

The display(s) cim be mramged ift malighe ways. For swaple they can be momed on a well. piaced on some sort of stad or a can placed on a rack or desk, or other
bs some cthbodments mast ore diaplay s monted on

 a close lock at the device ant the vicinty of the 3 Denvinm5 ment it opates in, and his nay bera a hanace at most as lar away as the ogerator's hand. Esecenty in crowdet envom-
 indushal wortpaces it tay be dilleolt to place an extenel display elowely the thevice.

In some enbolments visna infonation is provider to the operatr an on or moxe shans oher than the frot fisplay.

In wone embodiarents whible inhomation to the operatos is provided bo the operator.

Thes in some coblodmenis, the systom prowes atdifional mommation to the operater heme cmberdmexts, the sysfom inchates other vistal ches shownon means other frate the display(s), sum as LEDS on the thevice. In some mboriments, the syster jrovides andible informanion to the openfor for exampe by diferent soumds mador by specth.
Said monnation povided to the opentor can conpuse insunthons br ase, Wemitus, and the the.
 manoe ar eperana fuchondily of the device, for exmple by indeabing how well a acthon or operaion is being get-

 focus andres to scon qualfy amory to scan coverage. The informatom cancommereinstratons on how best o pasibot the scauner such sa to thain goot sean quabty axtior sean corerage. The menkethons can be used for panning apoby
 s. Fom of a messomer system to be opertot.
 ity is povided by at least one motion semsor bati inte the deviee. Fxumples of mobou samos are acoelerometens.
 sease whtions, katal mohon, andion combentions thereol. Ther motion setwors use mfreted sensing. For canmpla, at least ane mfareve Nomso can be monsted on the devee and ai
 ol the dewice Comersely, the at kext one mbiter can be of monded on the device, that the at least one seasors in the sumonmangs. Yet mather possiblity is bo use infared tethecbr(s) on the dewte and beth senoms) and emtret (s) on the surmandigs, or againcomersely, Thas motoncon be segsed by a variey ol mincipes.

Though proper signal pacessing, sone semsots can rec-

 funcionality:

In sorne cmbodmenis the bubleld device swaprises at least wo motion sensax protidng senwor fushon. Sensor fismon can be vised to woheve a better motion sigat from for
example raw gyro, acelewmetw, andor magnetometer data.

In some embotimens the bathed devee wharises at least we wes-intertaxe clemont other than the at least one nowtion sensor.

In some exbodmerts the te kas one other wer-intertace element is a touch-sensitive alment.

In sone whortherts be at hast we ohber wer-mineriace ciement is is brivot.
 dement is a scroll-wheel.

 moxibomblements can for example be butcons, scoll whens, fouch-sensitive betcs, proximity sensors midor he隹e.

The abdhona user interface ehments can be expsited or
 the dew ce. The wothow may be implementix in some user sofwame appleation hat may abo combor the dishlay and thus he view repesensed beroon, A given imerace eloment can supply muthte nser inpat to the solhwom. Fer exmmple,
 axmme, a double chek com mean to aheame to a sobsequent step in a wokthow. Fer the oxample of hatamel seanmat three stets whin the watflow con be to setan the kower

 ent effect, cte. Povidne nobltiple user impas form a user

 mae bser bopax.

The motion semons cat chabe bexhited in a wenchow. For examble, lifiag he devke, which can be sensed by an accelemmetcr: con represent some ype of user inmat, for chample to stax some notion fa a deyce that is a sommer it may stat somming, Conversely, wholig the device bod in
 as no becelcration ocem axe some penod of hate, can stop said nction.

If the sction perfonned by the device is some kind of
 the remblts of the meording can aflon be exploited as aser bupus, possiby alone with user inpus from ofber uss interface ehencots. For example, with a 3D seanner with a lomited depthoffed, in may be pasible o debar whether any objects
 spondung to this deph of few by detectrag whether iny 3 F poizts are rownded. Tser mpans can deperd on such detected presence. For axample, a buthon blek on an mbratal scanther can wrovide a differn wer mput depeading on whetber the
 cantly ansty from and onside the mouth. Abs the effect of mothon sams sigmals can be intemreted aiterenty forether Whathat For exambe the wamer moy only chatye the vess repesented on the displey when it is ontside the rometh.

In stone embodiments the hanclewd device is adspted to change a viewing angle whth which the $3 D$ enviromment is represented on the at leam ore displey.

In some smbediments the hachold device is alapted so change anghifeation fretor with whel the 3 Demirmment is remescrut on the at least one display.

In some cmbodmens the handfeld device is atapeat so change a vieving position with whols the 3 D enveroment is repasented on the a least one display.

In some crabodiments the riew of the 3) mavionment
 vieviag positiom.

In some embotiment the viex of he 3D exwmoment - comprises rendecing of bextue andor shading.
 into mudirple regions, exeb whowng the SDemvironment with a ditemen riew.
 comprises changitg the vien with whe the 3D Gwironmeth is displaye Changes in feer con contrise changes is ries-

 the device. kotation is naturelly sensed by he and of gyms 5 andor relacse to gravity sensed by an acelommerer Dommg, ie a chaye in manification, can for exanple be
 What respectively, A hentational change of the vientix posithon, fe, mantirg, wh for exmmpe be acheved by pushing the handhed devee updexn andor sideways.

In somecmbotinens the aser intertace fanetomativeme prises selectug or chonsing iteas on a dieplay or ary whes hnctimetity powided by gmphical war mertuees in computers koown in the and The opertor may performe the selec5 tion. The hava COS scamer matked by 3 H ESHE bus additonal butons on he hanthed device, bat it ta mot possible to mathpalate the wesw by these. Theironly porpose ts to
 scimatig.
In some embodments the user interdee hanctiondity com-

 chate the position or onditatiox of objects in the 3D emvi-

 swifonment in whoh the device outates may not be maniphlated.

In wome exbedments the handmed device is an in mand
 a tip, this tip may be exchanged whareby the scanner com become suitable bor scanding ia be month or in the ean Shce Whe car is a smanler canty than the moth, the tip for fitine

In some enboraments the handheld dovice is a sugioat insmonexk. la some exobodments, he sugical instrmbent comprises at kast one motion senser, wheh is buitr-in in the masmanex.

In some eabobnems the batheld device is a mactanical
 sensor buht in. En oher embedments, other aser-materace denents ace bubl in as well. for example butoms, secoll

In sone extboxthent the 3D geometry of the 3D emvon3 nemt is knowntaprichiot a 30 tepresentation of the envirotment is known a proni, he before the actionts (s) are perFomed For exmple in curgey, a CT som moy here been taken before the surged procehue The kandeld device m this extmple cond be a surgioa mstrmonat that a physicion needs to apply in the proner 3 D pocition. To make sure the maper yosition is reached, is could be bencfictit to ver the
 whout heving to mease the sargical inwmomen.

An alvantage of the sytem, ako in the abowe sugery example is the abitiy of the hawdestdexice wreond the 35 emironmen at least pathaty, typicaty in a 3 D heldof-wiew that is suaher than the velmee spresened m the a-promi
data. The 3D data reconted by the handhed deviee can be registerex in real time with he a-miori dater, such the the position whe encmathon of the dorise can be detecied.

In whe enboriment the 30 peomety compries a 30 swike of be caviromata.
In some entoriments be 30 peomety conmises a 30 whemetric represention of the covinomems.
Thus the 30 envionmen can be displayed as whremic das, or as surfece, or acombination hereof Wolmetric data aretypaty representer by voxels. Yoxels can omprise mantiple scolar yabes Surbee dab are typeally reprewented as mested, swoh as thagulated neshas, im poin chomb.

The comang may be pertmon by mems of LID seatning kee fight sarning white ligh swang, X-wy swor ning: andor T scaming.

The presem havemon rekins to difernt aspect inchodne the system described wove and in be following and cormspondine syteras, methods, dewices, wes, suder product mens, ach yeding one or more of the leweits and adwabuge dercribet in connection with the hrest mentoned ageet,
 the entwiments descriked in comectom wht the fart mentomed aspect andor disblosect in the speonded chains.

In pateelar, diselow herem is a methed of introction betwema bowdeld devicead at leastone display, where the methor compriwe the sters of
Ferboring at least one acton in a physeal 3D amionnent by mems on the band old device,
 al least me daplay and
ternoly controlling he wew of the represented 3 B emimoment en the dieplay by means of he baadheld device.
Forhermore the itwention relates to a computer grogan

 the embobments, when said progrom code means are axecuted on the data pooessing system, wad a computer propramprodect comprisin a computeredable nodium bavby stowd here on the program code heans.

Accorditg to ahother agpect, discheed is a syemem combprising a hadhed devie for operting in a 3D emimmant
 where the display is adegted to represen seld cavimmoent from mathinde permporives.
where sad divice is adapted to be keld in one hand by an opertor, and where the perspective represented in the er leas one display is an least party determined by the notion of the operators ham folding said revict.
Accordity to another apect, disobsed is a symem wonprixing a handhed device for operaing in a 3 D envionment and an least one hypay for yismbing sad enproment. where the display sedmped io represent sad eminoment in mutiple vews.
where sad deyice is maped to be held in one hand by ani operum. wheee the viess represented is the at least one display is al least party determined by the motion of the operafr's hand holing said dewie, and where he device has a least one foreh-sensitve user intertace memen.
The mothon of be operator's hand is ypicaly detemined by a motion sensor mrmed in the handield device.

GRMATHONS

3W gemeny A conswilation of mater or its what repremention in a breedimensional space.
3D enviromxent A constelation of physical obyeets exch havige a 3 D gexnary mathere-limensonal space.

Vicw: The way a 3D emironmen is semenemed on a dsphy. Gemmericsily, a vers is detemined by the virtem observer scamery mosiom axd oreatation If the display is Wo-dimensonal, the wiw is also determined by the ype of profection A view may alvo be determithed by a maghifation Getm. Guphically a wiew con show the 30 envmoment by meaks of photurabs or as some kind of winam represeraition stick as a compher graphic, or simblat. A oxputer graphic can fe rederes for exmmple with rexure andor
 surfoce properies. A compher graphic can aloo be a shmphfind reveremtabs of the 3D myrownent, for examphe a neen, an oume, or motherwise simphifed represention. Allor parts of the $3 D$ enviomont can also be rendered with sone degre of tansparncy, A yiew may represem the 3) emironmen in tobl or ony parts thexeot.

Fumctionalyy: A Papose or hexded Use.
Performing achomis) or operting factionativ: Actions or
 exvronment, steh as meamong, modiying maxipulate rewoing theching, sensing, seanxing, movibg, mastorm-
 tem "operang" is thas and dected to strpical prowdures, but perating may comprise surucal procederes.
User intedace Functoondty: Fusctionaliy for intermon between a human aser and a machine witt a shisplay.

Handeld device An obea that has at lews one bactionality and hat is held by a human oferator"s hand or tom hadds whe performang the at lems one twetombity.
30) samer A device that ablyzes a rab-womb abject or
 appetance.
Cowerage of sean The degree whe haphyseal surbe is represented by reworded deta atter a scaning operation.
Mothor senwor A senoor detecting motion. Mobion can be detected by: sound (acoustic sensors) opacity (opical and
 (asenetic sensers, maghetonveters) reflecton of mansmited enery (infrated heer radar, ulitwonic sensors, mad micre-

 magnetmetes ate examples of motions sensors.

Whathow: a sequane of tashs ingheniented in solware.

BRIEF DESCRETON OF THEDRAWINGS

 tages of the preven invention. will he further elucidated by

 b the spenented drwhas, wherin:

FG 1 shows an example of he system commanimy a handheld device wnd a display:
 the tom of remote controlling ashag the handied device.

MG, 3 hons an exampe of the hathed device.
MG. 4 wows an example of a flow-chart of a nuthod of interection beween a hamed device and a display.

MERADED DEKRETGKN

In the tolowing description, reference is made to the accompanying figeres, which show by way of illustation how the invexbon may fe praeked.

FIG 1 shows an example of the syan compring ahanco hed deve and a display. The handaed davere 100 is in this
example an introral demal scamer, wheh rewods the 30 gemory of the patient's teeth The operator 102 nowes the seamer alotg be teethot thenabex 104 for capturng the 30 gemetry of the refern seeh es. al feeth. The semer comprise motion semors (not visble) for taken the move-
 10 the the samed teeth. The display 10 is in this examplea Pe sereen displaying the dath recorded by the scaner.
Fhg. 2 shors an example of aser interfice fantionality in
 monor semon bor shown in be bandrelo derioe 10 , es. scamer, provide that the user 102 can detomane the view shown on the display t01, ex wreen, by morian be hat hed derice 100 .
Ifle. 2a) shows hat ponting the device 100 down can prowide that the 30 model 105 of the sammed tevth is shown foma downama vewing angle.
Tlo. 26) shows that hodreg the scanter in a borvontal postion can prowde that the verwing angle is bextise barizondelly from the from, such that the SD model tos of the swand teetr is shomb foom the front.

Fh. 3 shows an example of the hambed device.
The havolek device 160 is in this example an inmanal samer with a pisol-grip. The senner comprises a housing 106 comprisixe the pistol-groy par 107 , andatip 100 adapied for mertion in the morth of the eationt. In this exampe the scanare aks is equipped with a buthon 103 whoh is an additions elemear provibs nse-intertace functiondisy.
 comprise a device 100 which is a handeld intromal scamer and a displey 101 when is a compoter serect The operater 102 may be a domis, an assishas thdor the like in an asample the whten performance oroperatisa fuctioswhty of

 101. The stegethon of the user interfee funtonality in the

 detemine the onientition as sem in FOS $2 a \mathrm{ad} 2 b$, of the display on the screan of the 30 model 105 of the teeth
 stax stop scamang, may be provided by the button 103 as seen in fllo. 3. In the example systen, be buton 100 is lowad where the nerts index fager can reach it conveaiendy.

In FIC. I the dentist 102 ases two hands to hoid the
 the scaner 100 can abso be held with one hand whede sem-

 adwrage of the wathess user interwe furchomaty, becanse in may chitical shamions, the opermor 102 show

The 30 use interface fumbonity may be explofed in a senmae location then the operstion fanctonaliv. Fer the aboue matrow scomury systen exmple, the semming opection is periomed in the om cavily of the patient, see Flo. 1 , whide the wer intermase functionalty is nore flexiby arphoited when the scamer is outside the pation"s mowh, we HIGS 2 and 3.
CIC. 4 shows an example of a fow chant of a methoo of hteration herween a bundoed device and a display.
Instep 101 at least one achon in aphysical 30 envimbarst is perbmed by newn of the handreld device. This action may he scamany of teet s shown in Fte. I
 sented by the at lewione display This way be the dispiay of the 3 D nedel of the seamed teeth as seen in FIC. 1 .

In step 103 the view of the repesented 30 enviroment shown ch the display is renotely comrolled on the dispay by xuems of the hatobed thevice. This may be tie contrel of the vewing angle of the WD model as seen in MG. 2.

All we steph of the mothod bay be repored one or more fimes. The order in whith the steps are perforned may he diferent than the wrder described theve, which is indicates by the doted lines in the hare Tone or more of he steps are pertomed mote imes, the order of the stens ravy alio be dixexeni.

Athough some embolments have been described and
 nay also be enbodied in oher ways whin the scope of the
 is to be undersood that other embodiments may he witised and smonval and furchosal medifcotions nay be mode whou depating from the scope of the preme invention.

In devie chims commenting several mans, severt of these means can be conbodiod by we amathe sane tiem of hardware The bere fact blat certan mawares aee rected bis munatly dherem tependea daims or described in diterent embodiments does not kadeste itata a combhamion of these meraras camol bo wed to advmage.

It should be exphasized that the tom "conpriselomprs-
 preseme of whided feabra*, inegers, stepsor compoments but does wot pawhde the premere or molbon of one ar nore ofter feates, integers, steps, components or grops thered.

The fearas of the nemod described above and in the following may be boplemented in sotware and carterow on
 the execotion of compaterexeculable watmetions. The mathetuns nay be progem code mems loaded in wemory,
 compuer wia a computer netwerk. Altematively the described teatmes may be implenented by kardwiwed eitcuity insted of sothane or in combitation with solfare.

GTERAMER

 Healh Care 320 , 2004.
Vogi S. Whameme A. Niemank K, Sater F., An AR system win intume user harface wr manduthon and viswl-
 $2004,98, ~ p 9.397-403$.

MBODIMENTS

The bllawing eabobinems relates in one aspect of the systen as disclosed by the descripton beven.
I. A system whmenstag a hambled device and a least onse disphy, wherene hawhed dewice is adoped forperfoming at leas one achon in apyeical 3D crumbmen, where the at least one donlay is stapted for viswaly representing the physical 3D environmen, wat whe the haxdheld device is abated for remotely controlltig the siew with which the 3) emwionment is reperested on the display.
2. The system according to any one or more of the praceiing embodments, wherin the wew is defred as viewne 5 angle andor viewisk pesition.
3. The systm according to ayy one or mone of the prexding embodinents, wherein the handmed dewee is adapted for
renotely contwhang the magaificaton with whith the 37 envirnument is represented on the display.
4. The system acombun to any meon more of he proced me exthetments, wheren the handheld devec is mathed for changing the rendemg of the 3 embromant on the display.
5. The systan neominhe to cory me or more of the preceding embroments, wherein the at least obs achon comprises me or more of
mesmunime
weombas.
somoting
nampulahegs andion
modityma
6. "he sysem amording to ary one or more of he meceding embohments, wherem the 30 exiroment eomprises one or mone 3 D obects.
7. The systhm accorting to my one more of the preceding enhodiments, wheren the bandted de mee is wamped to be held thone ham by an operator.
8. The systen deordne to ay one or mos of the preced-
 the SD chmomment hom motiphe views.
9. The sytem acorting to thy one or rome of the precelix exhofinent, wherein the viok of the 31) envipomext repsesented in the at heast one display is wheast maty determond by the motion of the operators had holding seid dewice.
10. The systen axwoding to any one or mote of the gre-
铝 he at least one display is at least party detmonzed by the

11. The syatem acomding to any one or more of the pre-

12. The system accordng to aty athe or mome the theक्thye whodinents, whercin the Th geometry of de 30 envinoment is known t-priori.
13. The system weating of thy obe or more of the precoding embociments, wherein be handhelf devise womprises at ledst one uker-intmerace elonemt.
14. The systom acowhang any one or more of the procedixy embotiments: wexw the at least one wer-mteritee clement is allerst one motion semsor.
15. The system accorthe to tay ofter more of the greceding whmanents, wharin the handteld deviec comprises at least twe motion semsors prowitheg sebtor hamok.
16. The systen acording to any me or more of the precedngenbodments, wherem we aser buteroce fonetomaliy comprises the tase of gestures.
17. The systen according way one more of the pres- S ceding entomathents, wherein the gesmares are detected by the at less one mobern sensom.
18. The system acoming to any one or more of the precedng exbochments, wheran hehandhell device oumprises
 tabtion sensor.
10. The symbe acombing to any one or mote of the grecoding embodinexts, wheren the at least one other userinterke element is a fouch-sensitive emement.
20. The syem acoording to any one or more of he prewintg mbondtimets. Wheren the at least one oher base hatertwe element is a butw
21. The systen wcoming to stmy one or more of the precodtre enbodisente, wherch the at least one other nasinterkee clemext is a scroll whed.
22. The sysen accordige to any one or mote of the precedmgembodinems, wheren the han hed device is okdepiod
to change a viswing angle with wheh the $3 D$ emvinnmens in xepresernex ow the at lact one display,
23. The systera acooting to aty of be precefly embodinents. wherein the hamberd device sis adayted to chate a
 nesmed on ber at least sme display.
24. The sysmemeroriry to any me br more of the preceding embodanens, whereh the handheld devies is ataper fo change 3 vewing poxition with which he 1 Denwiromment is reperented on the at lian one bisplay.
25. The sysion accorling to any one or more of the pren codime entwolments, wheme the vies of the 3D emvinoment comprises a wewing anges a magnitcaton fotor, snd or a viewtag position.
26. The system accorling to ay one or thone of the pre-
 men compeses rethering of texpre andor sherbing.
27. The rystern sownting to any one or mone of the preceding embodments, wherein the at lexst one diephay is fivited into multiple reghons, cath showing the 3D envirosment wifh a diffrent view.

28, the sysiem accorting to any one of more of hae preceding enbodiments, whene the 3B seonctry comprises a 3) sufface of the empromment.
29. The system accorling to any abe ar mowe of the precoling emhodments, wherein the 30 geonemy comprises a

30. The systex according to any one or mowe of the peowhermbodments, wherem the hambeh device is matreord 30 scather.
31. The sysiem according to ary one or more of the pre-
 ginal kntwment.
32. The systen accerding to any one ar mowe of the precethus ethbomacts, wherein the hatheld device is a mechamied hool.
33. The systern manding to any one of more of the preceding embotiments, whereb the hendiceld device is an tricar 31) seames.
34. The sysien accorbime to any one ar moxe of the precoding anbothents, wheroin the at teat one dianday is amange sename from the hamhedd device.
35. Tha system Bcerding to axy one or mome of he prechlag mbodinents, wheme the al least one dishay is amamed on a ceat.
36. The system accombe to ary one or more of the peceding entwomentis, wherein the $3 t$ least owe bisplay is detmex as at hret disphy, imd where the system fimher commmeses a secom diaplay.
37. The sysem accoring 10 any one ar moxe of the meceding entomiments, whemen the seond risplay is aranged of the hamtheld derice.

38, The symen secording to any we or mome of the pre-
 on the hanhetd dewter bo a postion who that the akplay is adapted to be verved by the operator, while the operskor is oferting the hatheld bevice.

39, The systan secording to ney one or mone of be preceding anbodments, wherein the scont display indeates
 emwirnment.
40. The symen secerding to any one or nowe sh the preceding embotiments, wheren the brst display andor the second display provides instacthons for the oferator
41. The sysem acooding to any one cr more of the preceding embodiments, wheret viswal infomaton is provided to the eqeater on one or nore mean ober than the fixt display.
42. The system axording to any one or more of the precedng cmbodinems, whercin axdible infomanion to me operator is prowided to the operatot
43. The systen scomding to ay one or mose of the precedna cubodment, wheren the scaming is paramed by

 at leat one display, where the methot conmises the steps of
pertoming a leat one ation in a physical 3D emionmen by means of the handield device;
vabelly reverendeg the physical 3D enviromem by the at leas one dishley and
renotery wortoling the vew of he reprexted 3 D enviroment on de display by means of the bandhed deviee.
45. Acomputer monam poduct comphsing pregrancode meak for coastay a data processing systrm to perform the mehod of eny one or mose of the prececing exabodimens. when sad progran code means are excetted on the data processing system
46. A compater progran prodne wochding to the previons emhodment compring a compater-wadoble nedime hasing stored bere on the progran code meams.

The mephon chamel is:
 seamene systers ompriving:
 he 3 Dexwimment tobe seamed is saleced by phinting the optical scomer at the 30 enwirnment; and
 device.
wherein the bandhed device is adapted for pertoming at lewt one scandag action in a physich 3 Demionmext, and the at least one diaplay is adapted for vimally yepresenting the physiol 30 enviroment: and
the handeh deviee inchedeskuser suterkee for womoty coarolling the doploy to adiges the view with which the 3b cawromeat is reprecnad on be display.
2. A system acooding to clam 1, wherein the hatheld dewice is adapted to revori the the gemetry of the 3D enviremmem.
3. Asstemtacorduag tockim , whesem the user mbersace buendes weans for manally swiching betwen petorming He at teat one scaming ation and remotly contwing the vess.
4. The system according to chan f, wheren the hamethen si device comprises at leasi onk mobion senkor
5. The systen according to cham 4 , wherem the view of the 3D ewmoment tepresented in the al lest one dixplay is st leas parly detemined by the a least one nowon senos.
6. The system seorifug tocham 4, wheren fantwomby Th the we haterace convises and of gentros.
7. The sytem acordine to clabe 6 , wheren the gestures are delected by the as least whe motion sensor.
8. The systen acoudng to claim 4 , wherein the usesinter hace is other than the at leat one motion sexsur.
9. The system neoording to cham 1, wherein the hamble device is suphed to change a yering sugle with whelt the $3 D$ ewniroment is represented on the at leas one display.
17. Whe system according to cham 1, wheran the handred dewce is adaptex to chame a magniformon factorwh whid

11. The system acording to ckim 1, wherem he Hentheh device is mintramal 30 werner:
12. The sysm according to chim 1, wherem the hanthed device includes a surgical insirwhem.
13. The system atcording to ckim 1. whemen the handeh dovec inoluder a mectancal bol.
14. Thesytem according to chan 1, wherw the handoth device is an in-ear $3 D$ scamer.
15. The system scoording to clam 1. wherein the at least one display is dethed as a bry disply and wher the synem further comprises a seomo display.
16. The system according to chim 15, wheren be secona display indedes whexe the baxdeld device is pestiones relative of the 3D enviroment.
17. The system acoonthg to cuim 15, wherein the frst disphy andor the sewnd dispiay provides instractions for the equator.
18. The system acconding to cham 1, wherem andble information is providel to be cecerator.
19. A system composiag:
a hanheld device and th leat one display;
wherem the batheld dewte is adapted for swichus between pertoming at leak one action ina mysical 30 caviromment, wheren the at heast me display is whated fr winaly represeatiag the piysial 30 eamoment axd wemotely comothat the chisplay to adfus the wew with whel the 3D ewiroment is represented on be display:
wheref the handide devies is an butromel 3 D scomer and the at lear one nction portomed in the physical 3D avirommat is somuing and that the view is xenotely combled by a least one notion sensor aranged in the kunfuld device, and wherear an actasior provided on the handheld devierwioher hetween perforning fle at least me action and remonly omfolling the view.

SCORE Placeholder Sheet for IFW Content

Application Number: 16526281
Document Date: 07/30/2019

The presence of this form in the IFW record indicates that the following document type was received in electronic format on the date identified above. This content is stored in the SCORE database.

Since this was an electronic submission, there is no physical artifact folder, no artifact folder is recorded in PALM, and no paper documents or physical media exist. The TIFF images in the IFW record were created from the original documents that are stored in SCORE.

- Drawing

At the time of document entry (noted above):

- USPTO employees may access SCORE content via DAV or via the SCORE web page.
- External customers may access SCORE content via PAIR using the Supplemental Content tab.

[^0]: Form PCT/ISA/210 (continuation of hirst sheet (3)) (July 2009)

