
J Grid Computing (2007) 5:235–250
DOI 10.1007/s10723-007-9068-6

Benefits and Drawbacks of Redundant Batch Requests

Henri Casanova

Received: 5 September 2006 / Accepted: 12 January 2007 / Published online: 6 February 2007
© Springer Science + Business Media B.V. 2007

Abstract Most parallel computing platforms are
controlled by batch schedulers that place requests
for computation in a queue until access to com-
pute nodes is granted. Queue waiting times are
notoriously hard to predict, making it difficult for
users not only to estimate when their applications
may start, but also to pick among multiple batch-
scheduled platforms the one that will produce
the shortest turnaround time. As a result, an in-
creasing number of users resort to “redundant
requests”: several requests are simultaneously
submitted to multiple batch schedulers on behalf
of a single job; once one of these requests is
granted access to compute nodes, the others are
canceled. Using simulation as well as experiments
with a production batch scheduler we evaluate
the impact of redundant requests on (1) average
job performance, (2) schedule fairness, (3) sys-
tem load, and (4) system predictability. We find
that some of the popularly held beliefs about
the harmfulness of redundant batch requests are
unfounded. We also find that the two most crit-

This work was supported by the NSF under Award
0546688.

H. Casanova (B)
Department of Information and Computer Sciences,
University of Hawai‘i at Manoa, 1680 East–West Rd.,
Post 317, Honolulu, HI 96822, USA
e-mail: henric@hawaii.edu

ical issues with redundant requests are the ad-
ditional load on current middleware infrastruc-
tures and unfairness towards users who do not
use redundant requests. Using our experimental
results we quantify both impacts in terms of the
number of users who use redundant requests and
of the amount of request redundancy these users
employ.

Key words job scheduling · batch scheduling ·
redundant requests

1 Introduction

Most parallel computing platforms are accessed
via batch schedulers [5] to which users send
requests specifying how many compute nodes
they need for how long. Batch schedulers can
be configured in various ways to implement ad-
hoc resource management policies and may main-
tain multiple queues of pending requests. Most
batch schedulers use “backfilling,” which allows
some requests to jump ahead in a queue to re-
duce queue fragmentation. Backfilling may hap-
pen when a request is submitted, canceled, or
when a job runs for less time than initially re-
quested (which is common). The above makes
queue waiting time difficult to predict. Some batch
schedulers can provide an estimate of queue wait-
ing time based on the current state of the queue.

Data Co Exhibit 1050
Data Co v. Bright Data

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

236 H. Casanova

Unfortunately, these estimates do not take back-
filling into account, which makes them pessimistic.
Conversely, they do not take future submissions
of high priority requests into account either,
which makes them optimistic. Although very re-
cently developed forecasting methods for estimat-
ing lower or upper bounds on queue waiting time
with certain levels of confidence are promising [1],
most users today have at best a fuzzy notion of
what queue waiting times to expect. At the same
time many of these users have access to multiple
batch-scheduled platforms that can be used for
running their applications, possibly at different
institutions. As a result, rather than picking one
target platform based on a poor estimate of queue
waiting time, if any, users can send a request
to each platform; when one of these requests is
granted access to compute nodes the others are
canceled. This can be easily implemented by hav-
ing the application send a callback to the user (or
to the program that submitted the requests) when
it starts executing.
The admittedly brute-force strategy described

above, which we term “redundant requests,” is
gaining popularity because it obviates the need
for difficult platform selection. However, there is a
widespread but not verified notion that if “every-
body were to use redundant requests” then “bad
things would happen.” In this paper we attempt
to determine the effects of redundant requests.
More specifically, we quantify the four following
impacts of redundant batch requests:

1. Impact on average job performance while
redundant requests may intuitively lead to
better load balancing across individual plat-
forms, they may also disrupt the resource
management policies implemented by batch
schedulers and thereby decrease overall job
performance. The question is: by how much
do redundant requests improve or worsen av-
erage job performance?

2. Impact on schedule fairness redundant re-
quests give users who use them an advantage
as they have the luxury to pick the shortest
queue waiting times. The question is: how
much of an advantage do redundant request
provide and how penalized are users who do
not employ them?

3. Impact on system load redundant requests
cause higher load on the batch schedulers, on
the network, and on the middleware infra-
structure used to access remote platforms. The
question is: do redundant requests cause any
of the system’s component to become a bot-
tleneck, and if so, which one?

4. Impact on predictability submissions and can-
cellations of redundant requests cause churn
in batch queues, which likely makes them less
predictable. The question is: what is the de-
crease in queue waiting time prediction accu-
racy when redundant requests are used?

To answer the above questions we use simu-
lations, real-world experiments, and analysis of
results obtained by others. We find that several
popularly held beliefs regarding the negative ef-
fects of redundant batch requests are unfounded.
For instance, our experiments show that a batch
scheduler, even when running on a mere 1 GHz
Pentium III processor, can most likely handle
large amounts of request redundancy without be-
coming a bottleneck. In fact, we find that the two
main issues with redundant requests are: (1) ad-
ditional load on the middleware; and (2) fairness
towards users who do not use redundant requests.
This paper is organized as follows. Section 2

presents background on redundant requests and
discusses related work. Sections 3, 4, 5, and 6 focus
on the four questions above. Section 7 concludes
the paper with a summary of our findings and with
perspectives on future work.

2 Background and Related Work

Redundant requests can be sent to:

(1) Individual batch queues on multiple
platforms;

(2) Multiple batch queues of multiple platforms;
(3) Multiple batch queues of a single platform;

or
(4) A single batch queue of a single platform.

In (1), (2), and (3), the goal is to avoid selecting
a batch queue a priori but instead to use the batch
queue on which the shortest queue waiting time is
experienced. When using multiple platforms, as in
(1) and (2), a difficulty may be the heterogeneity

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Benefits and drawbacks of redundant batch requests 237

among these platforms. The computation times
requested by each redundant request could be
scaled to reflect platform heterogeneity and differ-
ent numbers of compute nodes could be requested
on different platforms. Sophisticated users could
thus attempt to tailor their requests to achieve the
best response times on each candidate platform.
(Note that typical users are not sophisticated,
request computation times that are gross over-
estimations of needed computation times [21],
and may not even have a good understanding
of the scaling properties of their applications).
More importantly, the platform with the shortest
queue waiting time could also be a platform with
slow compute nodes, meaning that the shortest
queue waiting time may not lead to the shortest
turnaround time (i.e., queue waiting time plus
execution time). Users then face a conundrum:
should one wait possibly a long time for a faster
platform? Another conundrum arises when using
(3) above. Different queues typically correspond
to higher service unit costs. The question is then
whether one should wait possibly a long time
for a cheaper platform. Option (4) above can be
useful for “moldable” jobs that can accommodate
various numbers of compute nodes. Moldable jobs
are common but requesting the optimal number
of nodes is known to be difficult [18]. Typically, a
larger number of nodes will lead to a longer queue
waiting time and to a shorter execution time, while
a smaller number of nodes will lead to a shorter
queue waiting time and to a longer execution
time. One approach is then to send redundant
requests for different numbers of nodes. With this
approach, one is faced again with a conundrum
similar to the one for option (2): should one wait
possibly a long time for a larger number of nodes?
Note that option (4) can be combined with the
other three.
There is no one-size-fits-all answer to these

conundrums as the solution strongly depends both
on the expected application execution times and
on the system load, forcing users to use heuristics.
These heuristics could be ad hoc, could use queue
waiting time statistics and/or forecasting [1], or
could use real-time status information from the
batch schedulers that gives a sense of the request’s
place in the queue (unfortunately many currently
deployed schedulers do not provide such informa-

tion). Finally, note that the number of redundant
requests that can be used for (2), (3) and (4)
can be bounded by each batch scheduler. Indeed,
batch schedulers can typically be configured so
that each user can only have a limited number
of pending requests in the batch queue(s). In this
paper we study option (1), use a simple model for
generating redundant requests in a heterogeneous
environment, and leave options (2), (3), and (4)
for future work.
Previous works have explored the use of redun-

dant requests. Most notably, Subramani et al. [19]
and Sabin et al. [16] have studied them as a way to
perform job scheduling in aGrid platform. In their
works, the redundant requests are not initiated
by the users but by a metascheduler [2, 7, 15, 17]
to potentially offload work to remote platforms.
A metascheduler serves as a (centralized or dis-
tributed) resource broker and thus controls to
some extent how a set of individual platforms
are shared and used by a community of users.
These works show that using redundant requests
can lead to better overall performance, and more
so in systems containing clusters with different
numbers of nodes. Although related, our work
studies redundant requests generated by users
without the knowledge of the scheduler(s).
This has two important implications. First, a
metascheduler can choose remote clusters based
on some global knowledge about the system (e.g.,
queue sizes) in order to let redundant requests
“play nice” with each other. Note that as of today,
no widely accepted metascheduler is deployed but
users may resort to redundant requests directly.
By contrast, we study user-driven redundant re-
quests that may negatively disrupt the schedule at
remote clusters. Second, in our study we consider
that only some users may be using redundant
requests and thus obtain an unfair advantage over
users who do not use redundant requests. By con-
trast, in [16, 19] all users benefit from the same
benefits from redundant requests. We argue that
in real systems today this is not the case, partly
due to the lack of a metaschedulers, but also due
to the fact that not all users are created equal:
some may not have accounts on multiple plat-
forms, some may not be sufficiently sophisticated
to use redundant requests. Another difference
between our work and these previous works is

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

238 H. Casanova

that we study the impact of redundant requests on
the load on the batch scheduler, on the load on
the middleware, and on the predictability of the
system. Other relevant related work includes the
“placeholder scheduling” technique [13], which
allows for a late binding of the application to
the resources allocated by a batch scheduler. It
provides a simple way to implement redundant
requests since a callback is sent to the user when
the application is ready to execute. At that time
the request submitter (the user or, more likely, a
program) may cancel redundant requests.

3 Impact on Average Job Performance

In this section we investigate whether redundant
requests negatively impact job scheduling in terms
of average job performance. Before presenting
our results we detail our experimental methodol-
ogy and define our metric for job performance.

3.1 Experimental Methodology

3.1.1 Simulation Model

We use simulation because experiments on pro-
duction systems would be prohibitive both in
terms of time and money (i.e., service unit al-
locations on batch-scheduled platforms), because
they would be limited to a specific configuration,
and because they would hardly be repeatable. We
have implemented a simulator using the SimGrid
[9] toolkit which provides the needed abstrac-
tions and realistic models for the simulation of
processes interacting over a network. We simu-
late a platform that consists of a number of sites,
where each site holds a parallel platform, say, a
cluster. Each cluster is managed by its batch sched-
uler. We also simulate a stream of jobs at each clus-
ter. Each job requires some number of compute
nodes for some duration, sends a request to the
local cluster, and may send redundant requests to
other clusters. We detail below the components of
our simulation model.

Clusters and Batch Schedulers We simulate a
set of N clusters, C1, . . . , CN . Cluster Ci con-
tains ni identical compute nodes. Different node

speeds could be accounted for by scaling re-
quested compute times and numbers of nodes (as
discussed in Section 2), but this is not straight-
forward to model. Instead, we limit heterogeneity
to the number of nodes in each cluster and to
potentially different workloads at these clusters
(i.e., more or fewer requests per second). Each
cluster is managed by a batch-scheduler, which
can use one of three job scheduling algorithms:
EASY [10], Conservative Backfilling (CBF) [12],
or First Come First Serve (FCFS). The EASY
algorithm enables backfilling and is representative
of algorithms running in deployed batch sched-
ulers today. Although widely studied, the more
complex CBF algorithm is, to the best of our
knowledge, only implemented in the OAR batch
scheduler [3]. This is also the case for FCFS, but
it is a simple algorithm that is commonly used
as a base-line comparator. We model each batch
scheduler as managing a single queue and we do
not consider request priorities.

Workload Simulating a stream of jobs can be
done either by using a workload model or by
“replaying” traces collected from the logs of real-
world batch schedulers. The results presented in
this paper were obtained with the former ap-
proach. We use the model by Lublin et al. [11],
which is the latest, most comprehensive, and most
validated batch workload model in the literature.
Accordingly, we model request arrival times using
a Gamma distribution (corresponding to the so-
called “peak hour” model). Note that [11] goes
further by providing a “combined” model that
uses two Gamma distributions: one to model job
inter-arrival times during peak hours, and one to
model the fraction of jobs that arrive during each
of the 48 half-hour periods of the day, so as to re-
flect nocturnal and diurnal trends in the number of
submissions. We conducted simulations with the
combined model, but the results did not change
our conclusions. For simplicity we only present
results obtained with the peak hour model. We
model the requested number of nodes with a
two-stage log-uniform distribution biased towards
powers of two. We model the requested compute
times with a hyper-Gamma distribution whose p
parameter depends on the requested number of
nodes.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Benefits and drawbacks of redundant batch requests 239

Unless specified otherwise, we instantiate the
parameters of all the distributions using the
“model” parameter values derived in [11], to
which we refer the reader for all details. We
conducted some simulations using real-world
traces made available in the Parallel Workloads
Archive [4] but, expectedly, did not observe sig-
nificantly different results. We opted for using
a workload model rather than using traces for
the experiments presented in this paper as it is
straightforward to modify the model’s parameters
to study different scenarios.

3.1.2 Assumptions

To isolate the effects of redundant requests on
scheduling we do not simulate any network traffic.
This includes the cost of sending a request to
a potentially remote cluster, which is arguably
small. More importantly, we also ignore the over-
head for sending application input data, if any,
to a remote cluster. To use a remote cluster, a
user must pre-stage input data on that platform
(unless the application streams or downloads its
input data directly). However, when using redun-
dant requests, users usually do not pre-stage input
data to all remote clusters but wait until nodes
are allocated on a particular cluster. The typical
approach is then to request extra computation
time that will be used to upload application input
data to the cluster. Therefore, the only direct
impact of redundant requests on the specifics of
the workload is that requested computation times
may be higher than when there are no redundant
requests. (Note that the workload model in [11],
which we use in this work, was developed based
on logs of requests that most likely were not
redundant.) However, we performed experiments
in which we increased the requested duration of
redundant requests by 10 and 50% and observed
no difference in our results. This showed that the
results in this paper hold when users request more
compute time to allow late binding of application
data to remote platforms. Note that it is shown
in [19] that the added cost of using redundant
requests when proactively transferring application
data to all candidate platforms does not impact the
effectiveness of using redundant requests.

For the experiments in this section we ignore
all overheads due to the network, the middleware,
and the batch scheduler itself so as to isolate the
effects of redundant request on job performance.
We study these overheads in Section 5.

3.2 Performance Metric

We use a popular metric to assess the average job
performance: the average stretch over all jobs in
the system. The stretch of a job is the job’s turn-
around time, which is its execution time plus its
queue waiting time, divided by the job’s execution
time. The stretch is often called “slowdown” be-
cause it measures by how much the job execution
is slowed down when compared to execution on
a dedicated platform. This metric has been used
previously, both in practical works to evaluate the
performance of batch schedulers and in theoreti-
cal works as objective functions, to be minimized,
for job scheduling algorithms (which are ironically
not used by batch schedulers). In this paper we
often use the average relative stretch, that is the
stretch relative to that when no redundant re-
quests are used, averaged over all jobs. A value
lower than 1 means that the use of redundant
requests is beneficial, while a value higher than
1 means that the use of redundant requests is
harmful.
We do not use the average turnaround time as

a metric because it can be skewed by long jobs.
Furthermore, the stretch makes it possible to eas-
ily compare results obtained with different work-
loads, i.e., different job durations. However, in our
specific simulations, our results were essentially
unchanged when analyzed with the turnaround
time metric.

3.3 Simulation Results

We first simulate an environment that consists
of N identical clusters, for N = 2, 3, 4, 5, 8, 10,

15, 20. Each cluster contains 128 compute nodes
and is managed by a scheduler that uses the EASY
algorithm. Each cluster receives a stream of jobs
generated according to the model described in
Section 3.1.1. We simulate 6 h of job submissions
(around 4,000 jobs given that the mean job inter-
arrival time for the base model in [11] is roughly

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

