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read chunk-data and CRLF

append chunk-data to entity—body
length := length + chunk-size
read chunk-size and CRLF

}

read entity—header
while (entity-header not empty) {

append entity-header to existing header fields
read entity-headez

}
Content-Length := length
Remove "chunked" from Transfer—-Encoding

 
19.4.7 MHTMLandLine Length Limitations

HTTP implementations which share code with MHTML[45] implementations need to be aware of MIMEline length
limitations. Since HTTP does not havethis limitation, HTTP does not fold long lines. MHTML messages being
transported by HTTP follow all conventions of MHTML,including line length limitations and folding,
canonicalization, etc., since HTTP transports all message-bodies as payload (see section 3.7.2) and does not interpret
the content or any MIMEheaderlines that might be contained therein.

19.5 Additional Features

REC 1945 and RFC 2068 document protocol elements used by some existing HTTP implementations, but not
consistently and correctly across most HTTP/1.1 applications. Implementors are advised to be aware of these
features, but cannot rely upon their presencein, or interoperability with, other HTTP/1.1 applications. Someof these
describe proposed experimental features, and some describe features that experimental deployment found lacking
that are nowaddressed in the base HTTP/1.1 specification.

A numberof other headers, such as Content-Disposition and Title, from SMTP and MIMEarealso often
implemented (see RFC 2076 [37]).

19.5.1 Content-Disposition

The Content —Disposition response-header field has been proposed as a meansfor the origin server to suggest
a default filename if the user requests that the content is saved to a file. This usage is derived from the definition of
Content—Disposition in RIC 1806 [35].

 
 

content—disposition = "Content-—Disposition" ":"
disposition-type *( ";" disposition-parm )

disposition-type = “attachment™ | disp-extension-token
disposition-parm = filename-pazm | disp-extension-pazm
=ilename-parm = "filename" "=" quoted-string
disp-extension-token = token

disp-extension-parm = token "=" ( token quoted-string )
 

An exampleis

 
Content—Disposition: attachment, filename="fname.ext"

The receiving user agent SHOULD NOTrespect any directory path information present in the =i lename-parm
parameter, which is the only parameter believed to apply to HTTP implementationsat this time. The filename
SHOULDbetreated as a terminal componentonly.

If this header is used in a response with the application/octet-—stream content-type, the implied suggestion
is that the user agent should not display the response, but directly enter a ‘save responseas...’ dialog.

See section 15.5 for Content. Disposition security issues.
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19.6 Compatibility with Previous Versions

It is beyond the scope of a protocol specification to mandate compliance with previous versions. HTTP/1.1 was
deliberately designed, however, to make supporting previous versions easy.It is worth noting that, at the time of
composing this specification (1996), we would expect commercial HTTP/1.1 servers to:

® recognize the format of the Request-Line for HTTP/0.9, 1.0, and 1.1 requests;

® understand anyvalid request in the format of HTTP/0.9, 1.0, or 1.1;

® respond appropriately with a message in the same major version used bytheclient.

And we would expect HTTP/1.1 clients to:

® recognize the format of the Status-Line for HTTP/1.0 and 1.1 responses;

® understand anyvalid response in the format of HTTP/0.9, 1.0, or 1.1.

For most implementations of HTTP/1.0, each connection is established by the client prior to the request and closed
bythe server after sending the response. Some implementations implement the Keep—A1 ive version ofpersistent
connections described in section 19.7.1 of RFC 2068 [33].

19.6.1 Changes from HTTP/1.0

This section summarizes major differences between versions HTTP/1.0 and HTTP/1.1.

19.6.1.1| Changes to Simplify Multi-homed Web Servers and Conserve IP Addresses

The requirements that clients and servers support the Host request-header, report an error if the Host request-
header(section 14.23) is missing from an HTTP/1.1 request, and accept absolute URIs (section 5.1.2) are among the
most important changes defined by this specification.

Older H'T'TP/1.0 clients assumed a one-to-one relationship of 1P addresses and servers; there was no other
established mechanism for distinguishing the intended server of a request than the IP address to which that request
was directed. The changes outlined above will allow the Internet, once older HTTP clients are no longer common,to
support multiple Web sites from a single IP address, greatly simplifying large operational Web servers, where
allocation of many IP addresses to a single host has created serious problems. The Internet will also be able to
recover the IP addresses that have been allocated for the sole purpose of allowing special-purpose domain names to
be used in root-level HTTP URLs. Given the rate of growth of the Web, and the numberofservers already deployed,
it is extremely important that all implementations of HTTP (including updates to existing HTTP/1.0 applications)
correctly implement these requirements:

® Both clients and servers MUST support the Host request-header.

® Aclient that sends an HTTP/1.1 request MUST send a Host header.

© Servers MUST report a 400 (Bad Request) error if an HTTP/1.1 request does not include a Host. request-
header.

© Servers MUSTaccept absolute URIs.

19.6.2. Compatibility with HTTP/1.0 Persistent Connections

Someclients and servers might wish to be compatible with some previous implementations of persistent connections
in HTTP/1.0 clients and servers. Persistent connections in HTTP/1.0 are explicitly negotiated as they are not the
default behavior. HTTP/1.0 experimental implementations of persistent connections are faulty, and the newfacilities
in HTTP/1.1 are designed to rectify these problems. The problem was that someexisting 1.0 clients maybe sending
Keep-Aliveto a proxy server that doesn’t understand Connection, which would then erroneously forward it to
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the next inbound server, which would establish the Keep-Alive connection and result in a hung HTTP/1.0 proxy

waiting for the close on the response. Theresult is that HTTP/1.0 clients must be prevented from using Keep—
Alive whentalking to proxies.

However, talking to proxies is the most important use of persistent connections, so that prohibitionis clearly
unacceptable. Therefore, we need some other mechanism for indicating a persistent connection is desired, which is
safe to use even whentalking to an old proxy that ignores Connection. Persistent connections are the default for
HTTP/1.1 messages; we introduce a new keyword (Connecticn: close)for declaring non-persistence. See
section 14.10.

 

The original HTTP/1.0 form of persistent connections (the Connection: Keep-Alive and Keep-Aliv
header) is documented in RFC 2068. [33]

19.6.3 Changes from RFC 2068

This specification has been carefully audited to correct and disambiguate key word usage; RFC 2068 had many
problems in respect to the conventionslaid out in RFC 2119 [34].

Clarified which error code should be used for inboundserverfailures (e.g. DNS failures). (Section 10.5.5)
 

CREATEhada race that required an Et.ag be sent when a resourceisfirst created. (Section 10.2.2

ConLlenl—Base wasdeleted fromthe specification: it was not implemented widely, and there is no simple, safe

wayto introduceit without a robust extension mechanism.In addition, it is used in a similar, but not identical fashion
in MHTML[45].

Transfer-coding and message lengthsall interact in ways that required fixing exactly when chunked encoding is used
(to allowfor transfer encoding that may notbe self delimiting); it was important to straighten out exactly how
message lengths are computed. (Sections 3.6, 4.4, 7.2.2, 13.5.2, 14.13, 14.16)

A content-coding of “identity”was introduced, to solve problems discovered in caching. (Section 3.5)

Quality Values of zero should indicate that “I don’t want something”to allow clients to refuse a representation.
(Section 3.9)

The use and interpretation of HTTP version numbers has been clarified by RFC 2145. Require proxies to upgrade
requests to highest protocol version they support to deal with problems discovered in HIT'P/1.0 implementations
(Section 3.1).

Charset wildcarding is introduced to avoid explosion of character set names in accept headers. (Section 14.2)

A case was missed in the Cache-—Contzol model of HTTP/1.1; s-maxage wasintroducedto add this missing
case. (Sections 13.4, 14.8, 14.9, 14.9.3)

The Cache-Control: max—age directive was not properly defined for responses. (Section 14.9.3)

There are situations where a server (especially a proxy) does not knowthefull length ofa response but is capable of
serving a byterange request. We therefore need a mechanism to allow byteranges with a content-range not indicating
the full length of the message. (Section 14.16)

Range request responses would become very verbose if all meta-data were always returned; by allowing the server to
only send needed headers in a 206 response, this problem can be avoided. (Section 10.2.7, 13.5.3, and 14.27)

Tix problem with unsatisfiable range requests; there are two cases: syntactic problems, and range doesn’t exist in the
document. The 416 status code was needed to resolve this ambiguity needed to indicate an error for a byte range
request that falls outside of the actual contents of a document. (Section 10.4.17, 14.16)

Rewrite of message transmission requirements to make it much harder for implementors to get it wrong, as the
consequencesoferrors here can have significant impact on the Internet, and to deal with the following problems:

1. Changing “HTTP/1.1 or later” to “HTTP/1.1”, in contexts where this was incorrectly placing a requirement
on the behavior of an implementation of a future version of HTTP/1.x
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2. Madeit clear that user-agents should retry requests, not “clients” in general.

3. Converted requirements for clients to ignore unexpected 100 (Continue) responses, and for proxies to
forward 100 responses, into a general requirement for 1xx responses.

4. Modified some TCP-specitic language, to makeit clearer that non-TCP transports are possible for HTTP.

5. Require that the origin server MUST NOTwait for the request body before it sends a required 100
(Continue) response.

6. Allow,rather than require, a server to omit 100 (Continue)if it has already seen someof the request body.

7. Allow servers to defend against denial-of-service attacks and brokenclients.
 

This change adds the Expect header and 417 status code. The message transmission requirements fixes are in
sections 8.2, 10.4.18, 8.1.2.2, 13.11, and 14.20.

Proxies should be able to add Content—Length when appropriate. (Section 13.5.2)

Clean up confusion between 403 and 404 responses. (Section 10.4.4, 10.4.5, and 10.4.11)

Warnings could be cachedincorrectly, or not updated appropriately. (Section 13.1.2, 13.2.4, 13.5.2, 13.5.3, 14.9.3,
and 14.46). Warning also neededto be a general header, as PUT or other methods may have need forit in requests.

‘Transfer-coding had significant problems, particularly with interactions with chunked encoding. ‘The solutionis that
transfer-codings becomeas full fledged as content-codings. This involves adding an IANAregistryfor transfer-
codings (separate from content codings), a new headerfield (TE) and enabling trailer headers in the future. Transfer
encoding is a major performance benefit, so it was worth fixing [39]. TE also solves another, obscure, downward
interoperability problemthat could have occurred due to interactions betweenauthenticationtrailers, chunked
encoding and HTTP/1.0 clients.(Section 3.6, 3.6.1, and 14.39)

 
 

The PATCH, LINK, UNLINK methods were defined but not commonly implemented in previous versions of this
specification. See RFC 2068 [33].

The Alternates, Content—Version, Derived-From, Link, URI, Public and Content-—Base header

fields were defined in previous versionsofthis specification, but not commonly implemented. See RFC 2068 [33].
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20 Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.

This document andtranslations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this paragraph are included onall
such copies and derivative works. However, this documentitself may not be modified in any way, such as by
removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed
for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE INTERNET
SOCIETY AND 'THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

20.1 Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.
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While some care was taken producing this index, there is no guarantee thatall occurrences of an index term have
been entered into the index. Bold faceitalic is used for the definition of a term.

"literal", 11
#rule, 12

(rulel rule2), £7
*rule, 11
; comment, 12
[rule], 27
<">, 12
100, 27, 32, 33, 37, 62, 77, 78
101, 27, 38, 77, 88
1xx Informational Status Codes, 37

200, 27, 34, 36, 37, 38, 39, 41, 57, 61, 71, 76, 77, 81,
82, 86

201, 27, 36, 38, 83
202, 27, 37, 38
203, 27, 39, 57
204, 22, 23, 27, 36, 37, 39
205, 27, 39
206, 27, 39, 40, 57, 59, 61, 76, 82, 85, 86, 101, 106
2xx, 82
2xx Successful Status Codes, 38
300, 27, 40, 47, 57
301, 27, 36, 40, 57, 89
302, 27, 40, 41, 42, 57, 89
303, 27, 36, 41, 89
304, 22, 23, 27, 41, 48, 54, 56, 59, 60, 71, 80, 81, 82,

86

305, 27, 41, 48, 89
306, 41

307, 27, 41, 42, 57
3xx Redirection Status Codes, 40

400, 23, 25, 27, 28, 42, 80, 105
401, 27, 42, 43, 66, 92
402, 27, 42
403, 27, 42, 107
404, 27, 42, 43, 44, 107
405, 24, 27, 43, 66
406, 27, 43, 47, 63, 64
407, 27, 43, 84
408, 27, 43
409, 27, 43
410, 27, 44, 57
411, 23, 27, 44
412, 27, 44, 80, 82, 83
413, 27, 44
414, 14, 27, 44
415, 27, 44, 73
416, 27, 44, 76, 77, 85, 106
417, 27, 45, 78, 107
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4xx Client Error Status Codes, 42
500, 27, 45, 77
501, 18, 24, 27, 36, 45
502, 27, 45
503, 27, 45, 77, 87
504, 27, 45, 71
505, 27, 45
5xx Server Error Status Codes, 45

abs_path, 14, 15, 24, 25
absoluteURI, 14, 24, 25, 74, 83, 86

Accept, 18, 26, 46, 49, 62, 63, 64, 65, 94
acceptable-ranges, 66
Accept-Charset, 26, 46, 64
Accept-Encoding, 16, 17, 26, 46, 47, 64, 65
accept-extension, 62
Accept-Language, 20, 26, 46, 47, 65, 91, 94
accept-params, 62, 87
Accept-Ranges, 28, 66
Access Authentication, 46

Basic and Digest. See [43]
Acknowledgements, 96
age, 9
Age, 28, 51, 52, 66
age-value, 66
Allow, 24, 28, 34, 43, 66
ALPHA, 11, 12
Alternates. See RFC 2068

ANSI X3.4-1986, 12, 98
asctime-date, 15
attribute, 17

authority, 14, 24, 25
Authorization, 26, 42, 57, 66, 67, 68, 85
Backus-Naur Form, 11
Basic Authentication. See [43]
BCP 18, 99
BCP 9, 99

byte-content-range-spec, 75, 76
byte-range, 55
byte-range-resp-spec, 75, 76
byte-range-set, 85
byte-range-spec, 44, 76, 85
byte-ranges-specifier, 85
bytes, 66
bytes-unit, 27
cachable, 9
cache, 9
Cache

cachability of responses, 57
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calculating the age of a response, 51
combining byte ranges, 59
combining headers, 59
combining negotiated responses, 60
constructing responses, 57
correctness, 48

disambiguating expiration values, 53
disambiguating multiple responses, 53
entity tags used as cache validators, 54
entry validation, 53
errors or incomplete responses, 61
expiration calculation, 52
explicit expiration time, 50
GET and HEADcannotaffect caching, 61
heuristic expiration, 51
history list behavior, 62
invalidation cannot be complete, 61
Last-Modified values used as validators, 54
mechanisms, 49

replacement of cached responses, 62
shared and non-shared, 60

Warnings, 49
weak and strong cache validators, 54
write-through mandatory, 61

Cache-Control, 23, 36, 39, 40, 41, 42, 49, 50, 51, 52,
53, 54, 57, 58, 61, 67, 68, 69, 70, 73, 79, 84
cache-extension, 67
extensions, 72

max-age, 51, 52, 53, 57, 67, 68, 69, 70, 71, 79, 106
max-stale, 49, 67, 70, 71

min-fresh, 67, 70
must-revalidate, 67, 70, 71

no-cache,48, 53, 67, 68, 69, 70, 71, 84
no-store, 48, 67, 69

no-transform, 67, 72, 73

only-if-cached, 67, 7Z
Private, 57, 67, 68, 69, 72
proxy-revalidate, 57, 67, 71
public, 49, 57, 67, 68, 69, 71
s-maxage, 53, 57, 67, 68, 69, 106

cache-directive, 67, 72, 84

cache-request-directive, 48, 67
Changes from HTTP/1.0. See RFC 1945 and RFC

2068

Host requirement, 105
CHAR,12
charset, 16, 64
chunk, 78
chunk-data, 18

chunked, 87, 88

Chunked-Body, 78
chunk-extension, 18

chunk-ext-name, 18
chunk-ext-val, 18
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chunk-size, 18
client, 8

codings, 64
comment, 23, 89, 90

Compatibility
missing charset, 16
multipart/x-byteranges, 102

Compatibility with previous HTTP versions, 105
CONNECT,24, 25. See [44].
connection, 8
Connection, 23, 30, 31, 58, 72, 73, 87, 89, 105, 106

close, 30, 73, 106

Keep-Alive, 106. See RFC 2068
connection-token, 72, 73

Content Codings
compress, 17
deflate, 17

gzip, 17
identity, 77

content negotiation, 8
Content Negotiation, 46
Content-Base, 106. See RFC 2068

content-cncoding, 73
content-coding, 16, 17, 18, 19, 46, 64, 65, 73, 88, 92,

107

identity, 106
newtokens SHOULDberegistered with IANA,17
qvalues used with, 65

content-disposition, 104
Content-Disposition, 95, 98, 104
Content-Encoding, 16, 17, 28, 29, 58, 73, 75, 92, 103
Content-Language, 20, 28, 73, 74, 91
Content-Length, 22, 23, 28, 32, 34, 35, 39, 44, 59,

61, 74, 76, 88, 104, 107
Content-Location, 28, 39, 41, 58, 60, 61, 74, 83, 95
Content-MD5, 28, 35, 58, 75, 98

Content-Range, 39, 40, 57, 75
content-range-spec, 75
Content-Transfer-Encoding, 17, 75, 103
Content-Type, 16, 18, 28, 29, 34, 37, 38, 39, 40, 43,

58, 73, 76, 77, 92, 101, 103
Content-Version. See RFC 2068

CR, 12, 19, 24, 26, 27, 102, 103

CRLE’, 11, 72, 13, 18, 19, 21, 24, 26, 75, 102, 103
ctext, 13

CTL, 12
Date, 23, 39, 41, 51, 53, 55, 57, 60, 62, 69, 77, 79,

83, 92, 103
date1, 15
date2, 15
date3, 15

DELETE,24, 34, 36, 61
delta-seconds, 16, 87
Derived-From. See RFC 2068
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Differences between MIME and HTTP, 102
canonical form, 103

Content-Encoding, 103
Content-Transfer-Encoding, 103
date formats, 103
MIME-Version, 102

Transfer-Encoding, 103
Digest Authentication, 58. See [43]
DIGIT, 11, 12, 13, 15, 20, 84, 102

disp-extension-token, 104
disposition-parm, 104
disposition-type, 104
DNS,94, 95, 106

HTTP applications MUSTobey TTL information,
94

downstream, 10
End-to-end headers, 58

entity, 8
Entity, 28
Entity body, 29
Entity Tags, 20, 54
entity-body, 29
entity-header, 24, 26, 28
Entity-header fields, 28
entity-length, 29, 59
entity-tag, 27, 81, 82
Etag, 106

ETag, 20, 28, 35, 38, 39, 41, 54, 58, 59, 60, 78, 82
Expect, 26, 32, 33, 37, 45, 78, 107
expectation, 78
expectation-extension, 78
expect-params, 78
Expires, 28, 36, 39, 40, 41, 42, 51, 52, 53, 57, 58, 69,

70, 71, 78, 79, 102

explicit expiration time, 9
extension-code, 27
extension-header, 28

extension-pragma, 84
field-content, 22
field-name, 22
field-value, 22

filename-parm, 104
first-byte-pos, 44, 76, 85
first-hand, 9
fresh, 9
freshness lifetime, 9
freshness_lifetime, 53

From, 26, 31, 79, 93

gateway, 9
General HeaderFields, 23

general-header, 23, 24, 26
generic-message, 21
GET, 14, 24, 25, 34, 35, 38, 39, 40, 41, 42, 44, 54,

55, 56, 61, 66, 74, 77, 80, 81, 82, 86, 93
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HEAD,22, 23, 24, 34, 35, 38, 40, 41, 42, 43, 45, 61,
66, 74, 77, 82

Headers

end-to-end, 58, 59, 73, 78

hop-by-hop, 10, 58
non-modifiable headers, 58

Henrik Frystyk Nielsen, 100
heuristic expiration time, 9
HEX,13, 15, 18

Hop-by-hop headers, 58
host, 74, 90, 91
Host, 25, 26, 33, 79, 80, 105
HT, 11, 22, 13, 22, 102

http_URL, 24
HTTP-date, 15,77, 79, 80, 82, 83, 87, 91

HTTP-message, 27
HTTP-Version, £3, 24, 26
IANA,16, 77, 19, 20, 63, 100

identity, 17, 64, 65, 73, 106
If-Match, 20, 26, 35, 56, 80, 81, 82, 86
If-Modified-Since, 26, 35, 55, 56, 80, 81, 82, 83, 86
If-None-Match, 20, 26, 35, 56, 60, 80, 87, 82, 83, 86

If-Range, 20, 26, 35, 39, 44, 56, 76, 82, 86
If-Unmodified-Since, 26, 35, 55, 56, 81, 82, 83, 86
If-Unmodified-Since, 83

implied *LWS, 12
inbound, 20

instance-length, 76
TSO-10646, 99
ISO-2022, 16
ISO-3166, 20
1SO-639, 20
ISO-8859, 98
1SO-8859-1, 13, 16, 19, 64, 91, 102

James Gettys, 99
Jeffrey C. Mogul, 99
Keep-Alive, 31, 58, 105, 106. See RFC 2068
Language Tags, 20
language-range, 65
language-tag, 20, 65
Larry Masinter, 100
last-byte-pos, 76, 85
last-chunk, 18

Last-Modified, 10, 28, 35, 39, 51, 53, 54, 55, 56, 57,
58, 59, 78, 81, 82, 83

LF, 72, 19, 24, 26, 27, 102, 103
lifetime, 9, 51, 52, 53, 66, 70, 92
Link. See RFC 2068
LINK.See REC 2068

LOALPHA, 2
Location, 28, 36, 38, 40, 41, 42, 61, 83, 95
Lws, 11, 72, 13, 22
Max-Forwards, 26, 34, 37, 83, 84

MAY,7
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media type, 12, 16, 19, 23, 29, 38, 40, 43, 46, 63, 72,
73, 74, 77, 100, 101, 102, 103

Media Types, 18
media-range, 62
media-type, £8, 19, 73, 75, 92
message, 8
Message Body, 22
Message Headers, 27
Message Length, 23
Message Transmission Requirements, 31
Message Types, 27
message-body, 21, 22, 24, 26, 29
message-header, 21, 22, 28
Method, 24, 66
Method Definitions, 33
Methods

Idempotent, 34
Safe and Idempotent, 33

MIME,7, 10, 16, 17, 19, 74, 75, 96, 97, 99, 102,
103, 104

multipart, 79
MIME-Version, 102

month, 75

multipart/byteranges, 19, 23, 39, 45, 76, 101
multipart/x-byteranges, 102
MUST, 7
MUST NOT,7
N tule, 12
name, 11
non-shared cache, 60, 68, 72

non-transparent proxy. See proxy: non-transparent
OCTET, 22, 29

opaque-tag, 27
OPTIONAL,7
OPTIONS,24, 25, 34, 83, 84

origin server, 8
other-range-unit, 27
outbound, 20

parameter, 17
PATCH.See RFC 2068

Paul J. Leach, 100
Persistent Connections, 29

Overall Operation, 30
Purpose, 29
Use of Connection Header, 30

Pipelining, 30
port, 14, 90, 91
POST,20, 21, 24, 32, 34, 35, 36, 38, 40, 41, 44, 61,

77, 93

Pragma, 23, 67, 70, 84
no-cache,48, 53, 67, 84

pragma-directive, 84
primary-tag, 20
product, 20, 89
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Product tokens, 20

product-version, 20
protocol-name, 90
protocol-version, 90
proxy, 9

non-transparent, 9, 59, 72, 73
transparent, 9, 29, 58

Proxy-Authenticate, 28, 43, 58, 84, 85
Proxy-Authorization, 26, 43, 58, 85
pseudonym, 90, 91
Public. See RFC 2068

public cache, 46, 47
PUT,24, 32, 34, 36, 43, 61, 66, 77, 80, 82

qdtext, 13
Quality Values, 20
query, 14
quoted-pair, 73
quoted-string, 12, 23, 18, 21, 22, 62, 68, 78, 84, 91,

104

qvalue, 20, 62, 64
Range, 21, 26, 28, 35, 36, 39, 40, 44, 45, 57, 58, 59,

76, 77, 81, 82, 85, 86, 101

Range Units, 27
tanges-specifier, 76, 85, 86
range-unit, 27, 66
Reason-Phrase, 26, 27

teceived-by, 90
received-protocol, 90, 91
RECOMMENDED,7
References, 97
Referer, 26, 86, 93

rel_path, 24, 61
trelativeURI, 14, 74, 86

representation, 8
request, 8
Request, 24
Request headerfields, 26
request-header, 24, 26
Request-Line, 21, 24, 25
Request-URI, 14, 24, 25 3 ;

42, 43, 44, 60, 61, 66, 73, 74, 83, 84, 86, 92, 93,
94

REQUIRED,7

Requirements
compliance, 7
key words, 7

resource, 8

response, 8
Response, 26
Response HeaderFields, 28
tesponse-header, 26, 28
Retry-After, 28, 44, 45, 87
Revalidation

end-to-end, 70
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end-to-end reload, 70

end-to-end specific revalidation, 70
end-to-end unspecific revalidation, 70

RFC 1036, 15, 97
RFC 1123, 15,77, 79, 97
RFC 1305, 98
RFC 1436, 97
RFC 1590, 19, 97
RFC 1630, 97
RFC 1700, 97
RFC 1737, 98
RFC 1738, 14, 97
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Abstract—Networkvirtualization provides a novel approach to
run multiple concurrent virtual networks over a common phys-
ical network infrastructure. From a research perspective, this
enables the networking community to concurrently experiment
with new Internet architectures and protocols. From a market
perspective, on the other hand, this paradigm is appealing as it
enables infrastructure service providers to experiment with new
business models that range from leasing virtual slices of their
infrastructure to host multiple concurrent network services.

In this paper, we present the slice embedding problem and
recent developments in the area. A slice is a set of virtual
instances spanning a set of physical resources. The embedding
problem consists of three main tasks: (1) resource discovery,
which involves monitoring the state of the physical resources,
(2) virtual network mapping, which involves matching users’
requests with the available resources, and (3) allocation, which
involves assigning the resources that match the users’ query.

We also outline how these three tasks are tightly connected,
and how there exists a wide spectrum of solutions that either
solve a particular task, or jointly solve multiple tasks along with
the interactions among them. To dissect the space of solutions, we
introduce three main classification criteria, namely, (1) the type
of constraints imposed by the user, (2) the type of dynamics
considered in the embedding process, and (3) the allocation
strategy adopted. Finally, we conclude with a few interesting
research directions.

T. INTRODUCTION

Weall became familiar with the layered reference model of
ISO OSI as well as the layered TCP/IP architecture [47]. In
these models, a layer is said to provide a service to the layer
immediately above it. For example, the transport layer pro-
vides services (logical end-to-end channels) to the application
layer, and the internetworking layer provides services (packet
delivery across individual networks) to the transport layer.

The notion of distributed service architecture extends this

service paradigm to manyother (large scale) distributed sys-
tems.

Aside from the Internet itself, including its future archi-
tecture design, e.g., NetServ [73] or RINA [23], with the
term distributed service architecture we refer to a large scale
distributed system whose architecture is based on a service
paradigm.

Some examples are datacenter-based systems [39], Cloud
Computing [36] (ncluding high performance computing sys-
tems such as cluster-on-demand services), where the rentable

resources can scale both up and downas needed, Grid Comput-
ing [45], overlay networks(e.g., content delivery networks[6],

[10]), large scale distributed testbed platforms (e.g., Plan-
etLab [65], Emulab/Nethed [77], VINI [7], GENT [31]), or

Service-oriented Architecture (SoA), where web applications
are the result of the composition of services that need to be
instantiated across a collection of distributed resources [80].

A commoncharacteristic of all the above distributed sys-
tems is that they all provide a service to a set of users or,
recursively, to another service. In this survey, we restrict our
focus on a particular type of service: a slice. We define a
slice to be a set of virtual instances spanning a set of physical
resources.

The lifetime span of a slice ranges from few seconds (in
the case of cluster-on-demand services) to several years (in
case of a virtual network hosting a content distribution service
similar to Akamai, or even a GENI experiment hosting a
novel architecture looking for new adopters to opt-in [34]).
Therefore, the methods to acquire, configure, manipulate and
manage such slices could be different across different service
architectures. In particular, the problem of discovering, map-
ping and allocating physical resources (slice embedding) has
different time constraints in each service architecture.!

In some distributed service architecture applications, e.g.
virtual network testbed, the slice creation and embedding
time is negligible relative to the running time of the service
they are providing. In many other applications, e.g. financial
modeling, anomaly analysis, or heavy image processing, the
time to solution — instant between the user, application or
service requests a slice and the time of task completion — is
dominated by or highly dependent on the slice creation and
embedding time.

Therefore, to be profitable, most of those service architec-
tures require agility—the ability to allocate and deallocate any
physical resource (node orlink) to any service at any time *.
‘Those stringent requirements, combined with the imperfect
design of today’s data center networks [35] and with the lack
of an ideal virtualization technology [78], have recently re-
motivated research on resource allocation [13], [82], [51], [35],
[4], [70].

In this paper, we define the slice embedding problem— a

'By resources we mean processes, storage capacity, and physical links, as
well as computational resources such as processors.

*We extend the definition of agility as “ability to assign any server to
any service” given by Greenberg et al. [35] by including links and, other
resources along with a deallocalion phase.
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subarea of the resource allocation for service architectures—

in Section II, we give a taxonomy (Section II), and we survey
some of the recent solutions for each of its tasks (Sections IV,

V and VI). Then, with the help of optimization theory, we
model the three phases of the slice embedding problem as
well as its tasks’ interactions (Section VID). We point out how
all the proposed approaches —including the related facility
location problems (Section VII)— have considered either cases
where the time to solution is practically equivalent to the
running time of a slice, z.e. they did not consider the slice
creation and embedding timeatall, or they did not model some
of the slice embedding tasks. In Section IX we discuss some
interesting open research directions and finally, in Section X
we conclude our discussion.

II. BACKGROUND AND AREA DEFINITION

A. Network Virtualization

Network virtualization provides a novel approach to running
multiple concurrent virtual networks over a common physical
network infrastructure. A physical network supports virtualiza-
tion if it allows the coexistence of multiple virtual networks.
Each virtual network is a collection of virtual nodes and virtual

links that connect a subset of the underlying physical network
resources. The most important characteristic of such virtual
networks is that they are customizable (7.e., can concurrently
run different protocols or architectures, each tailored to a
particular service or application [75]).

The interest in this technology has recently grown sig-
nificantly because it will help the research community in
the testing of novel protocols and algorithms in pseudo-
real network environments [65], [77], [7], [28], as well as

experimenting with novel Internet architectures as envisioned
in [3]. This paradigm is particularly appealing to providers
as it enables new business models: operators may in fact
benefit from diversifying their infrastructure by leasing virtual
networks to a set of customers [30], or by sharing costs in
deploying a commoninfrastructure [11].

A recent survey on network virtualization can be found
in [18]. The authors compare with a broad perspective, ap-
proaches related to network virtualization, e.g. virtual private
networks and overlay networks. The paper also discusses
economic aspects of service providers, analyzes their design
goals (such as manageability or scalability), and overviews
recent projects that use this technology (e.g. Planetlab [65] and
GENI[31]). We narrow our focus on a more specific subarea
of network virtualization (2.e. slice embedding), introducing a
new taxonomy inspired by optimization theory for the three
phases of the slice embedding problem. We leave ourutility
functions and model constraints as general as possible, so they
can be instantiated, refined or augmented based onpolicies that
would lead to efficient slice embedding solutions.

B. The Slice Embedding Problem

In this paper, we focus on a particular aspect of network
virtualization, namely, the slice embedding problem.

A Slice is defined as a set of virtual instances spanning a
set of physical resources of the network infrastructure. The

tw

slice embedding problem comprises the following three steps:
resource discovery, virtual network mapping, and allocation.

Resource discovery is the process of monitoring the state
of the substrate (physical) resources using sensors and other
measurement processes. The monitored states include proces-
sor loads, memory usage, network performance data, etc. We
discuss the resource discovery problem in Section IV.

Virtual network mapping is the step that matches users’
requests with the available resources, and selects some subset
of the resources that can potentially host the slice. Due to
the combination of node and link constraints, this is by far
the most complex step in the slice embedding problem. In
fact this problem is NP-hard [19]. These constraints include
intra-node (e.g., desired physical location, processor speed,
storage capacity, type of network connectivity), as well as
inter-node constraints (e.g., network topology). We define the
virtual network mapping problemin Section V.

Allocation involves assigning the resources that match the
user’s query to the appropriate slice. The allocation step can
be a single shot process, or it can be repeated periodically to
either reassign or to acquire additional resources for a slice
that has already been embedded.

C. Interactions in the Slice Embedding Problem

Before presenting existing solutions to the tasks encompass-
ing the slice embedding problem,it is important to highlight
the existence of interactions among these tasks, the nature of
these interactions, how they impact performance, as well as
the open issues in addressing these interactions.

In Figure 1, a user is requesting a set of resources. The arrow
(1) going from the “Requests” to the “Discovery” block, rep-
resents user queries that could potentially have multiple levels
of expressiveness and a variety of constraints. The resource
discoverer (2) returns a subset of the available resources (3) to

the principle in charge of running the virtual network mapping
algorithm (4). Subsequently, the slice embedding proceeds
with the allocation task. A list of candidate mappings (5)
are passed to the allocator (6), that decides which physical
resources are going to be assigned to each user. The allocator
then communicates the list of winners (7)—users that won

the allocation—to the discoverer, so that future discovery
operations can take into account resources that have already
been allocated. It is important to note that the slice embedding
problem is essentially a closed feedback system, where the
three tasks are solved repeatedly—the solution in any given
iteration affects the space of feasible solutions in the next
iteration.

D. Solutions to the Slice Embedding Problem

Solutions in the current literature either solve a specific
task of the slice embedding problem, or are hybrids of two
tasks. Some solutions jointly consider resource discovery and
network mapping [41], [1], others only focus on the mapping
phase [81], [54], [21], or on the interaction between virtual net-
work mapping and allocation [79], [52], while others consider
solely the allocation step [5], [9], [49], [33], [20]. Moreover,
there are solutions that assume the virtual network mapping
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Fig. 1. Interactions and data exchanges in the slice embedding problem.

task is solved, and only consider the interaction between the
resource discovery and allocation [68]. We do not discuss
solutions that address the resource discovery task in isolation,
since it is not different from classical resource discovery in
the distributed system literature (see [60] for an excellent
survey on the topic). In addition to considering one [81], [5]
or more [62], [79] tasks, solutions also depend on whether
their objective is to maximize users’ or the providers’ utility.

E. The novelty of the slice embedding problem

‘The slice embedding problem, or more specifically its
constituent tasks, and networkvirtualization in general, may
seem identical to problems in classical distributed systems.
Network virtualization, however, is different in several ways,
namely: (a) it enables novel business models, (b) it enables
novel coexisting network approaches, and (c) it creates new
embedding challenges that must be addressed.

Business models: network virtualization lays the foundations
for new business models [22]. Network resources are now
considered commodities to be leased on demand. The leaser

could be an infrastructure or service provider, and the lessee
could be another service provider, an enterprise, or a single
user (e.g. a researcher in the case of virtual network testbed
as in [31], [7]. [38], [65], [28]). In those cases where

the infrastructure is a public virtualizable network testbed
(e.g. GENI [31]), the physical resources may not have any
Significant market value, since they are made available at
almost no cost to research institutions.

Coexisting network approaches: the concept of multiple
coexisting logical networks appeared in the networking
literature several times in the past. The most closely related
attempts are virtual private networks and overlay networks.
A virtual private network (VPN) is a dedicated network
connecting multiple sites using private and secured tunnels
over a shared communication network. Most of the time,

VPNs are used to connect geographically distributed sites
of a single enterprise: each VPN site contains one or more
customer edge devices attached to one or more provider edge
routers [66].

An overlay network, on the other hand,is a logical network
built on top of one or more existing physical networks. One
substantial difference between overlays and network virtual-
ization is that overlays in the existing Internet are typically
implemented at the application layer, and therefore they may
have limited applicability.

lor example, they falter as a deployment path for radical
architectural innovations in at least two ways: first, overlays
have largely been in use as means to deploy narrow fixes
to specific problems without any holistic view; second, most
overlays have been designed in the application layer on top
of the IP protocol, hence, they cannot go beyond the inherent
limitations of the existing Internet [3].

In the case of VPNs, the virtualization level is limited

to the physical network layer while in the case of
overlays, virtualization is limited to the end hosts. Network
virtualization introduces the ability to access, manage and
control each layer of the current Internet architecture in the
end hosts, as well as providing dedicated virtual networks.

Embedding challenges: although the research community
has explored the embedding of VPNs in a shared provider
topology, e.g., [26], usually VPNs have standard topologies,
such as a full mesh. A virtual network in the slice embedding
problem, however, may represent any topology. Moreover,
resource constraints in a VPN or overlays are limited to
either bandwidth requirements or node constraints, while in
network virtualization, both link and node constraints may
need to be present simultaneously. Thus, the slice embedding
problem differs from the standard VPN embedding because
it must deal with both node and link constraints for arbitrary
topologies.

Ill. TAXONOMY

To dissect the space of existing solutions spanning the slice
embedding tasks, as well as interactions among them, we
consider three dimensions as shown in Figure 2: the type of
constraint, the type of dynamics, and the resource allocation
approach.

A. Constraint type

Users need to express their queries efficiently. Some con-
straints are on the nodes and/or links (e.g., minimum CPU
requirement, average bandwidth, maximum allowed latency)
while others consider inter-group [1] or geo-location con-
straints [17].

Based on this dimension, research work in this area assumes

no constraints [81], considers constraints on nodes only [65],
links only [55], [67], [37], or on both nodes and links [5],
[79]. In addition, the order in which the constraints are

satisfied is important as pointed out in [52]: satisfy the node
constraints and then the link constraints [81], [79], or satisfy
both constraints simultaneously [54], [52].

B. Dynamics

Each task in the slice embedding problem may differ in
terms of its dynamics. In the resource discovery task, the
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Fig. 2. Overview of the slice embedding taxonomy with classification of
representative references.

status updates of each physical resource may be collected
periodically [41], or on demand [1].

In the virtual network mapping task, virtual resources may
be statically mapped to each physical resource [81], or they
can move (e.g., using path migrations [79] or by re-running
the mapping algorithm [29]) to maximize some notion of
utility [37]. Also, the mapping can focus only on one single
phase at a time where each phase considers only nodes or
links [81], [40], or simultaneously both nodes and links [52],
[17].

Finally, the allocation task may be dynamic as well: users
may be swapped in or out to achieve some Quality of Ser-
vice (QoS) or Service Level Agreement (SLA) performance
guarantees, or they can statically remain assigned to the same
slice. An example of static assignment of a slice may be an
infrastructure hosting a content distribution service similar to
Akamai, whereas an example of dynamic reallocation could
be a researcher’s experiment being swapped out from/into the
Emulab testbed [77].

C. Admission Control

As the substrate—physical infrastructure—resources are
limited, some requests must be rejected or postponed to avoid
violating the resource guarantees for existing virtual networks,
or to maximize profit of the leased network resources. Some
research work, however, does not consider any resource allo-
cation [41], [54], [21], [81], [55], [52]. Others consider the
resource allocation task, with [33] or without [49], [5], [79]

guarantees to the user, z.e., the resource allocation mechanism
enforces admission to the users, or it only implements a
tentative admission, respectively. An example of tentative
admission is a system that issues tickets, without guarantee that
those tickets can be exchanged with a resource later in time.
The literature defines those tentative admission mechanisms

that do not provide hard guarantees as soft reservation [33].

IV. RESOURCE DISCOVERY

Although researchers have developed, and in some cases
deployed a number of resource discovery solutions for wide-

area distributed systems, the research in this area still has
many open problems. Someofthe existing distributed systems
provide resource discovery through a centralized architecture,
see, e.g., Condor [53], Assign [67], or Network Sensitive
Service Discovery (NSSD) [41]; others use a hierarchical
architecture such as Ganglia [58], while XenoSearch [72],
SWORD [62] and iPlane Nano [57] employ a decentralized
architecture.

All of these systems allow users to find nodes that meet per-
node constraints, except iPlane Nano that considers path met-
rics, while NSSD, SWORD,and Assign also consider network
topologies. Unfortunately, none of these solutions analyze the
resource discovery problem whenthe queried resources belong
to multiple infrastructure or service providers. To obtain an
efficient slice embedding, such cases would in fact require
some level of cooperation (e.g., by sharing some state), and
such incentives to cooperate may be scarce.

As mentioned previously, we do not discuss solutions that
address the resource discovery task in isolation, since it is not
different from classical resource discovery in the distributed
systemsliterature. Instead, we considerthe resource discovery
problem in combination with either the allocation or the
network mapping task.

A. Discovery + allocation

We first discuss the interaction between discovery and
allocation described in Network Sensitive Service Discovery
(NSSD) [41]. The goal is to discover a service that meets a
set of network properties specified by the user, and allocate it
to the user.

This work emphasizes the importance of the interaction
between discovery of network resources and their allocation
to the users. The resource discovery task infers the network’s
performance metrics during its search and retums the best
match with respect to some user criteria. In general, once
a user’s query is received, in existing systems either the
provider (pure provider-side allocation) or the users (pure user-
side allocation) execute the allocation task. If the allocation

is done by the provider, users do not have to worry about
anything after they submit a query, but may not knowthe
quality of service they are going to get (in systems like
PlanetLab for example, there are no service level agreements
that the provider needs to meet). On the other hand, whenthe
allocation is done by the user, each user needs to obtain a long
list of candidates, as well as collect the status information of

each candidate. Thus, the overhead of the discovery task is
higher if users need to have the ability to choose the best set
of resources. When the provider does the allocation instead,
there may be no need to look at the complete set of resources
as some heuristic (e.g. first fit) can be applied. Moreover,
by showing the most available physical resources they own,
providers could (indirectly) have to release information about
their states, e.g., information about which customer is hosted
on a physical machine could be inferred [69].

To the best of our knowledge, NSSDis the first system that
integrates the discovery and allocation tasks while enabling
users to query static and dynamic network properties. Com-
pared with pure provider-side allocation, NSSD allowsusers to
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control the selection criteria by returning a list of candidates.
Compared with pure user-side allocation, NSSD has lower
overhead in the discovery task, as only a small number of
candidates are returned. In this work, the resources to allocate

are single servers, hence there is no virtual network mapping
phase.

B. Discovery + virtual network mapping

We present SWORD [1], a system that considers the inter-
action between the resource discoveryand the virtual network
mapping tasks. SWORDis a resource discovery infrastructure
for shared wide-area platforms such as PlanetLab [65]. We
choose to describe SWORD as it is a well known network

discovery system whose source code is available [74]. The
system has been running on PlanetLab for several years.
Some of the functionalities described in the original paper,
however, are currently disabled. For example, the current
implementation of SWORD runs in centralized mode, and
inter-node and group requirements (2.e., constraints on links
and set of nodes, respectively), are not supported because no
latency or bandwidth estimates are available.

Users wishing to find nodes for their application submit
a resource request expressed as a topology of interconnected
groups. A group is an equivalence class of nodes with the
same per-node requirements (e.g., free physical memory) and
the sameinter-node requirements (e.g., inter-node latency) that
is within each group. Supported topological constraints within
and among groups include the required bandwidth and latency.

In addition to specifying absolute requirements, users can
supply SWORDwith per-attribute penalty functions, that map
the value of an attribute (feature of a resource, such as load

or delay) within the required range but outside an ideal range,
to an abstract penalty value. This capability allows SWORD
to rank the quality of the configurations that meet the ap-
plications’ requirements, according to the relative importance
of each attribute. Notice that these penalty values would be
passed to the allocation together with the list of candidates.

Architecturally, SWORD consists of a distributed query
processor and an optimizer which can be viewed as a virtual
network mapper. The distributed query processor uses multi-
attribute range search built on top of a peer-to-peer network
to retrieve the names and attribute values of the nodes that

meet the requirements specified in the user’s query. SWORD’s
optimizer then attempts to find the lowest-penalty assignment
of platform nodes (that were retrieved by the distributed
query processor) to groups in the user’s query—that is, the
lowest-penalty embedding of the requested topology in the
PlanetLab node topology, where the penalty of an embedding
is defined as the sum of the per-node, inter-node, and inter-
group penalties associated with that selection of nodes.

Dueto the interaction between the distributed query proces-
sor (resource discovery task) and the optimizer (mapping task),
SWORDis more than a pure resource discoverer. SWORD
provides resource discovery, solves the network mapping task,
but does not provide resource allocation. In particular, since
PlanetLab does not currently support resource guarantees, a
set of resources that SWORDreturns to a user may no longer

meet the resource request at some future point in time. In light
of this fact, SWORD supports a continuous query mechanism
where a user’s resource request is continually re-matched to
the characteristics of the available resources, and in turn a
new set of nodes are returned to the user. The user can then

choose to migrate one or more instances of their application.
This process isall part of the general feedback system outlined
in Figure 1.

V. VIRTUAL NETWORK MAPPING

The virtual network mappingis the central phase of the slice
embedding problem. In this section we define the problem of
virtual network mapping, then we surveysolutions that focus
only on this phase, as well as solutions that cover interactions
with the other two tasks of the slice embedding problem.

A. Problem definition

The virtual network mapping problem is defined as
follows [52]:

Definition
undirected

of nodes,

1 (Network): A Network is defined as an

graph G — (N,L,C) where Nis a set
i is a set of links, and each node or link

e € N UL is associated with a set of constraints

Cle) = {Crle),...,Cm(e)}. A physical network will
be denoted as G? = (N”, L?,C?), while a virtual network
will be denoted as GY = (NV, LY,CY).

Definition 2 (Virtual Network Mapping): Given a virtual
network GY = (NY, LY, CY) and a physical network G? =
(N?,L?,C?), a virtual network mappingis a mapping of GY
to a subset of G”, such that each virtual node is mapped onto
exactly one physical node, and each virtual link is mapped
onto a loop-free path p in the physical network. The mapping
is called valid if all the constraints C'(c) of the virtual network
are satisfied and do not violate the constraints of the physical
network. More formally, the mapping is a function

M:GY +(NP,P) qd)

where P denotes the set of all loop-free paths in G?.
Mis called a valid mapping if all constraints? of GY are
satisfied, and for each 1° — (s¥,iY) ¢ LY, Ja path
p:(sP,...,t?) © P where s” is mapped to s” and t”is
mapped to t”.

 

Due to the combination of node and link constraints, the

virtual network mapping problem is NP-hard. For example,
assigning virtual nodes to the substrate (physical) network
without violating link bandwidth constraints can be reduced
to the multiway separator problem which is NP-hard [2].

To reduce the overall complexity, several heuristics were
introduced, including backtracking algorithms [54], [52], sim-
ulated annealing as in Emulab [67], as well as heuristics that
solve the node and link mapping independently.

3Examples of node constraints include CPU, memory, physical location,
whereas link constraints may be delay, jiller, or bandwidth.
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Symbol Page Meaning
aq 6 Undirected graph representing a general network
N 6 General set of nodes (or vertices) of a network
L 6 General set of links (or edges) of a network
Cc 6 General set of network constraints

cP (CY) 6 General sct of physical (virtual) network constraints
Cle) = {Ci(e),..., Cm(e)} 6 Set of mconstraints on the element e (node or link) of the network

Gr ( GY) 6 Undirected graph representing a physical (virtual) network
NP (NY) 6 Set of nodes or vertices of a physical (virtual) network
LP LY) 6 Set of links or edges of a physical (virtual) network

6 Set of loop-free physical paths in a physical network GP
Iv = (s¥,t¥) 6 Virtual link starting from virtual node s”, and ending in virtual node t™

p: (sP, see APY EP 6 Physical path starting from physical node s?, and ending in physical node ¢?
M 6 Mapping function: GY > (N?,P)
u 7 Next physical node assigned in node mapping algorithm[81]

Snmaz (Simaa) 7 Maximum node(link) stress in G!” [81]
Sw(v) (Sr(D) 7 Current node (link) stress in G? [81]

I q Index of physical links [81]
v @ Index of physical nodes to map [81]
u 7 index of mapped physical nodes in node mapping algorithm [81]

L(t) 7 Set. oflinks adjacent to physical node « [81]
D(v, u) 7 Distance between physical node v and u [81]
mG) 7 Revenue for allocating virtual network GY [79]

CPU, and bw, 7 CPU and bandwidth required bythe virtual network [79]
CPUs,and bwe q CPU and bandwidth available on a physical nctwork [79]

Q 7 Price normalization factor [79]
H(nP) 7 available resource on physical node n? [81]

Ry (Ry) 8 Physical node (link) stress ratio [79]
URC) 8 Convex objective function run by virtual network k [37]

no 8 Numberof virtual networks to simultaneously map [37]

cl) = Ay 8 Binary matrix of capacity constraints for virtual nctwork & using virtual path 7 on physical link { [37]
yh) 8 virtual link capacities for virtual network k [37]
2(k) 8 Path rate vector for virtual network k [37]
gi®) 8 General convex constraint for virtual network & [37]
D 8 Matrix of physical link capacity

wi) 8 Weight assigned to virtual nctwork k in the slice allocation phase
Wij 9 Weight (or utilization) imposed on resource j byuser #,
P; 9 Price (in dollars) of the resource j [43]
U; 9 Overall utilization of resource 7 [43]
Rj 9 Physical CPU capacity of resource 7 in a Colocation Game [43]

K;(%) 9 Colocation cost for user ¢ when mappedto resource 7
aij 0 binaryvariable representing element ¢ in the j*” set in a Set Packing Problem
Wj 0 Weight assigned to user requesting the set of resources —or objects— jin any allocation (Set Packing Problem)
y; 0 Binary allocation variable for object 7 in a Set Packing Problem

WO) 0 Set of users W(objects O) to be allocated in a Set Packing Problem
Q 0 Collection of subsets of objects in a Set Packing Problem
bi 0 Numberof copies for each object 7 in a Set Packing Problem
Ci 1 Cost of opening a facility at location ¢ in a Facility Location Problem

dij 1 Cost of serving a user 7 from facility ¢
Zi 1 Binary variable showing whether or not the facilily is selected al location ¢
Lj 1 Binary variable that associates user j served by facility ¢ in Facility Location Problem
vy 1 Decision variable for location 7, which is equal to one if the facility is selected

FC), aC), AG) 2 Utility functions for the discovery, virtual network mapping and allocation phase
yyy) 2 Numberofvirtual nodes (requested by user 7)
wb (3) 2 Numberof virtual links (requested by user 7)

my (nf) 2 Decision variable on virtual (physical) node mappable (mapped) to user 7)
Lig (paz) 2 Decision variable on virtual (physical loop-free path) link mappable (mapped) to user j)

Oi; (Pxz) 12 System’s revenue when uscr j gets assigned to virtual node ¢ (virtual link k.)
CP (Ch) 2 Maxvirtual nodes (links) that can be simultaneously hosted on the physical node é (physical path k) 

TABLEI
NOTATIONS USED IN THE PAPER.
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B. Network mapping without constraints

The problem ofstatic assignments of resources to a virtual
network has been investigated in [81]. Since it is NP-hard,
the authors proposed a heuristic to select physical nodes with
lower stress (i.c., with the lower number of virtual nodes

already assigned to a given physical node), in an attempt
to balance the load. The algorithm consists of two separate
phases: node mapping and link mapping. The node map-
ping phase consists of an initialization step —cluster center
localization— and an iterative subroutine —substrate node

selection— that progressively selects the next physical node
u’ to which the next virtual node is mapped, 7.e. the physical
node with the least stress.

In particular, the center cluster is selected as follows:

ul — arg INax [Sree _ Sn(v)] > [Stax _ Sr (0)v
leL(v)

where Snmaz and Simaz are the maximum node and link stress

seen so far in the physical network, respectively. Sy(v) is the
stress on the physical node v, while S,(/) is the stress on
the physical link J. [Sjmnaz — Sn (v)] captures the availability
of node v, while the availability on the links adjacentto v is

captured by )7jcr(y)[Simax — Sr(0))-
The substrate node selection subroutine maps the remaining

virtual nodes by minimizing a potential function proportional
to both node and link stress on the physical network,7.¢.:

-», Div,u
ul = argminweaPO)

v Snmar — Sn(v) +€

where V4 is the set of already selected substrate nodes, 7 is
an index over all physical nodes (so v could be the same as
some 1), € is a small constant to avoid division by zero, and
D is the distance between any two physical nodes v and u
and it is defined as:

. 1

De, ¥) 7 pePuv) le Simax — Si(D) +ePp

where p is an element of all loop-free paths P(u,v) on the
physical network that connects nodes u and v. The node
mapping phase successfully terminates when all the virtual
nodes are mapped.

The link mapping invokes a shortest path algorithm to find
a minimumhop (loop-free) physical path connecting any pair
of virtual nodes.

In the same paper, the authors modify this algorithm by
subdividing the complete topology of a virtual network into
smaller star topologies. These sub-topologies can more readily
fit into regions of low stress in the physical network.

C. Network mapping with constraints

Many of the solutions to the virtual network mapping
problem consider some constraints in the query specification.
Lu and Turner [55] for example, introduce flow constraints in
a mapping of a single virtual network. The NP-hard mapping
problemis solved bygreedily finding a backbone-star topology
of physical nodes (if it exists, otherwise the slice cannot be

embedded), and the choice is refined iteratively by minimizing
a notion of cost associated with the candidate topologies. The
cost metric of a virtual link is proportional to the product
of its capacity and its physical length. No guarantees on the
convergence to an optimal topology mapping are provided,
and only bandwidth constraints are imposed.

A novel outlook on the virtual network mapping problem for
virtual network testbeds is considered in [21]. A topology and
a set of (upper and lower bound) constraints on the physical
resources are given, and a feasible mapping is sought. In
order to reduce the search space of the NP-hard problem, a
depth-first search with pruning as soon as a mapping becomes
infeasible is used.

Another solution that considers embedding with constraints
is presented in [52]. The authors propose a backtracking algo-
rithm based on a subgraph isomorphism search method [48],
that maps nodes and links simultaneously. ‘The advantage of a
single step node-link approach isthat link constraints are taken
into account at each step of the node mapping, therefore when
a bad decision is detected, it can be adjusted by backtracking
to the last valid mapping. With a two-stage approach instead,
the remapping would have to be donefor all the nodes, which
is computationally expensive.

D. Network mapping + allocation

In all the solutions that focus only on the virtual network
mapping task, only a single virtual network is considered (with
or without constraints), abd no resource allocation mechanism

is provided. In case the mapping algorithm is designed for
virtual network testbeds such as Emulab [77] or Planetlab [65],

this may not be an issue except in rare cases, €.g., during
conference deadlines (see e.g., Figure 1 in [5]). The lack of
resource allocation is instead detrimental to an efficient slice

embedding when the system aims to embed virtual networks
(slices) that are profitable to the leasing infrastructure.

We discuss the case study of [79], that adds resource
allocation to the virtual network mapping task, and hence
introduces cooperation between the last two tasks ofthe slice
embedding problem. The solution proposed in [79] is targeted
specifically for infrastructure providers, as the physical re-
sources considered—bandwidth and CPU—are assumedto be
rentable. The authors define a revenue function R for each

requested virtual network GY = (NY, L") as:

WG’) = S> bw(+2 5° CPUn"), 2)
iVELV nV ENV

where bw,(1”) and CPU,(n") are the bandwidth and the
CPU requirements for the virtual link /” and the virtual node
n” , respectively. LY and NY are the sets of requested virtual
links and nodes, and 2 captures the price difference that the
infrastructure provider may charge for CPU and bandwidth.

The algorithm is depicted in Figure 3: after collecting a
set of requests, a greedy node mapping algorithm with the
objective of maximizing the (long term) revenue # is run. In
particular, the algorithm consists of the following three steps:

1) First the requests are sorted by revenue TI(GY) so
that the most profitable mapping is sought with highest
priority.
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Fig. 3. Path splitting and migration mapping algorithm [79].

2) Then the physical nodes with insufficient available CPU
capacity are discarded to reduce the complexity of the
search.

3) Similarly to [81] (see Section V-B), a virtual node is
mapped on the physical node n? (if it exists) that
maximizes the available resources H, where:

H(nP)=CPUa(n?) S2 bwa(t?)
IPEL(nP)

CPU,(n”) and bw,(l”) are the CPU and bandwidth
available on the physical node n” and link 7”, respec-
tively, and L(n”)is the set of links adjacent to n”.

After the node mapping, different link mapping algorithms
are presented. First, the authors propose to use a k-shortest
path algorithm [27]. The originality of this paper though,
lies in the improvement of such a link assignment algorithm
through two techniques: path splitting and path migration.
In path splitting the virtual routers forward a fraction of the
traffic through different physical paths to avoid congestion of
critical physical links useful to host other virtual networks.
Path migration instead is adopted to further improve the
resource utilization as it consists of a periodic link mapping re-
computation with a larger set of pre-mapped virtual networks,
leaving unchanged both node mapping—virtual node cannot
migrate on another physical node— and the path splitting
ratios—fraction of the total virtual links requested to which
at least two physical loop-free paths are assigned. After the
link mapping algorithm, the slice requests that could not be
embedded are queued fora re-allocation attempt, and they are
definitively discarded if they fail a given number of attempts.

Inspired by [79] and by the PageRank algorithm [63], two
topology-aware virtual network mapping and allocation algo-
rithms (Random Walk MaxMatch and Random Walk Breuth

First Search) have been recently proposed [15]. The novelty,
and common underlying idea of the two algorithms, is to use
the same Markov chain model used in PageRank [63] to sort
both physical and virtual nodes (instead of web pages), and
map the most important virtual nodes to the most important
physical nodes. A physical (virtual) node is highly ranked not
only if it has available (required) CPU, and its adjacent links

have available (required) bandwidth (as in [79]), but alsoif its
neighbors (recursively) have high rank.

After sorting both physical and virtual nodes, highly ranked
virtual nodes are mapped to highly ranked physical nodes.

E. Dynamic approaches to network mapping and allocation

As mentioned in Section II-B, in the virtual network

mapping task, virtual resources maybestatically assigned to
each physical resource, or they can be reassigned to maximize
some notion of utility during the lifetime ofa slice.

Many algorithms whose task is simply to discover feasible
mappings are considered static, whether they use simulated
annealing [67], genetic algorithms [77], or backtrack heuris-
tics [54], [52]. A static resource assignment for multiple virtual
networks though, especially when each virtual network needs
to be customizedto a particular application, can lead to lower
performance and under utilization of the physical resources.
Being aware of such inefficiencies, adaptive mechanismsto re-
allocate physical resources, on demand or periodically, have
been proposed.

Zan and Ammar [81] have proposed a dynamic version of
their mapping algorithm, in which critical nodes and links in
the physical network are periodically identified. To evaluate
the current stress levels Sy; and Sy for nodes and links, two
metrics are defined: the node and link stress ratio (Ry and
ty). The formeris the ratio between the maximum nodestress

and the average nodestress across the whole physical network,
while the latter is the ratio between the maximumlink stress

and the average link stress. Formally:

maxX»cwe Sy(v)

oven? Su (vl /|N?|

maxjenp Sy(l)

~ Divere SrOV/IEF|
where NP and L? are the set of physical nodes and edges
of the hosting infrastructure, respectively. Ry and Ry,
are periodically compared, and new requests are mapped
optimizing the node stress if Ry > Mz, or the link stress
if Ry < Ry. This process is iterated with the aim of
minimizing the stress across the entire physical network.

Rn =

Ry

Dynamic mapping approaches also include the solutions
proposed in [55], since virtual links are iteratively reassigned,
and in |79]|, due to the migration operations. Although without
any considerations to the node constraints, also in [29] the
authors consider a dynamic topology mapping for virtual
networks.

A solution to the dynamic network mapping problem
that uses optimization theory was presented in the DaVinci
architecture—Dynamically Adaptive Virtual Networks for a
Customized Internet [37]. A physical network with ny vir-
tual mapped networks is considered. Each virtual network
k= 1,...,no9 runs a distributed protocol to maximize its own
performance objective function U*(-), assumed to be convex
with respect to network parameters, efficiently utilizing the
resources assigned to it. These objective functions, assumed
to be known to a centralized authority, may vary with the
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traffic class (e.g., delay-sensitive traffic may wish to choose
paths with low propagation-delay and keep the queues small to
reduce queuing delay, while throughput-sensitive traffic may
wish to maximize aggregate user utility, as a function of
rate), and may depend on both virtual path rates z‘*) and the
bandwidth share y‘*) of virtual network k over every physical
link 7.

The traffic-management protocols running in each virtual
network are envisioned as the solution to the following opti-
mization problem:

UH) (26) yl)
COR) AK) << yl*)
Gg) (29) <0
2) > 0

maximize

subject to
(3)

where z‘*) are the variables (virtual path rates), g(zk)
are general convex constraints and C) defines the mapping
of virtual paths over physical links. This means that there
could be manyflows on a single virtual network,2.¢., a virtual
network /& mayhost (allocate) multiple services. In particular,
ol) — lif virtual path 7 in virtual network k uses the physical
link / and 0 otherwise. +

The dynamism of this approach lies in the periodic band-
width reassignment among the ng hosted virtual networks. The
physical network in fact runs another (convex) optimization
problem, whose objective is to maximize the aggregate utility
of all the virtual networks, subject to some convex constraints:

maximize DE wTED (2) yl)
subject to COR) 2Kk) <y™ Vk

vy <D
g(2) <0 Vk (4)
2) > 0 Vk

variables 2), y() Yk

where w*) is a weight (or priority) that a centralized
authority in charge of embedding the slices assigns to each
virtual network, and D represents the physical capacities. Note
howthere are two levels of resource allocation in this model:

each slice maximizesits utility by assigning capacity to each
service hosted, and the physical network maximizesits utility
by assigning resources to someslices.

As in [79], the DaVinci architecture allows (virtual) path
splitting, causing packet reordering problems, and assumes the
node mapping to be given. A more serious limitation is the
assumption that physical links are aware of the performance
objectives of all the virtual networks, which may not be
possible in real world settings.

£. Distributed Virtual Network Mapping Solutions

All the previously discussed solutions assumed a centralized
entity that would coordinate the mapping assignment. In
other words, their solutions are limited to the intra-domain

virtual network mapping. These solutions are well suited for

4 asin [42], a system mayin fact be hosted on a physical infrastructure by
Icasing a slice, and then provide other services by hosting (even recursively)
other slices.

enterprises serving slices to their customers by using only
their private resources. However, when a service must be
provisioned using resources across multiple provider domains,
the assumption of a complete knowledge of the substrate net-
work becomes invalid, and another set of interesting research
challenges arises.

It is well knownthat providers are not happy to sharetraffic
matrices or topology information, useful for accomplishing an
efficient distributed virtual network mapping. As a result, ex-
isting embedding algorithms that assume complete knowledge
of the substrate network are not applicable in this scenario.

To the best of our knowledge, the first distributed virtual
network mapping problem was devised by Houidi et al. [40].
The protocol assumes that all the requests are hub-spoke
topologies, and runs concurrently three distributed algorithms
at each substrate node: a capacity-node-sorting algorithm, a
shortest path tree algorithm, and a main mapping algorithm.
‘The first two are periodically executed to provide up to date
information on node and link capacities to the main mapping.

For every element mapped, there has to be a trigger and
a synchronization phase across all the nodes. The algorithm
is composed of two phases: when all nodes are mapped,
a shortest path algorithm is run to map the virtual links.
The authors propose the use of an external signalling/control
network to alleviate the problem of the heavy overhead.

In [17], the authors proposed a simultaneous node and link
distributed class of mapping algorithms. In order to coordinate
the node andthe link mapping phases, the distributed mapping
algorithm is run on the physical topology augmented with
some additional logical elements (meta node and meta links)
associated with the location of the physical resource.

In [16], the same authors describe a similar distributed

(policy-based) inter-domain mapping protocol, based on ge-
ographic location of the physical network: PolyViNE. Each
network provider keeps track of the location information of
their own substrate nodes employing a hierarchical addressing
scheme, and advertising availability and price information to
its neighbors via a Location Awareness Protocol (LAP) —
a hybrid gossiping - publish/subscribe protocol. Gossiping
is used to disseminate information in a neighborhood of a
network provider and pub/sub is employed so a provider could
subscribe to other providers which are notin its neighborhood.
PolyViNE also considers a reputation metric to cope with the
lack of truthfulness in disseminating the information with the
LAPprotocol.

VI. ALLOCATION

Ditferent strategies have been proposed when allocating
physical resources to independent parties. Some solutions pre-
fer practicality to efficiency, and adopt best effort approaches,
(see, e.g., PlanetLab [65]), while others let the (selfish) users
decide the allocation outcome with a game [43], [42]. When
instead it is the system that enforces the allocation, it can doit
with [33] or without [5] providing guarantees. In the remainder
of this section we focusfirst on the gametheoretic solutions to
resource allocation, and then on the latter case, describingfirst
a set of solutions dealing with market-based mechanisms[5],
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[49], [9], and then a reservation-based approach [33]. All those
solutions focus solely on the standalone allocation task of the
slice embedding problem.

A. Game-theory based allocation

Londofio et al. [43] defined a general pure-strategies colo-
cation game which allows users to decide on the allocation of
their requests. In their setting, customerinteractions is driven
by the rational behavior of users, who are free to relocate and
choose whatever is best for their own interests. Undertheir

model, a slice consists of a single node in a graph that needs
to be assigned to a single resource. Theydefine a cost function
K(4) for user 4 when mapped to resource j as

K,;(i) — P;2if ) Jj Uj
where w,; is the weight(or utilization) imposed on resource

j by user i, P; is the price (in dollars) of the resource j, U;
is the overall utilization of resource 7, which must satisfy its
capacity constraint

(5)

U; = S> Wy < Rj (6)
ie J

where J is the set of users mapped on resource j, and R,; is
the physical CPU capacity of resource j.

They define a rational “move” of user ¢ from resource a
to resource b if Ry(i) < R(t). The game terminates when
no user has a move that minimizes her cost. Note how the

utility of a user (player) is higher if she can move to a more
“Joaded” resource, as she will share the cost with the other

players hosted on the same resource.
The model has two interesting properties. First, the inter-

action among customers competing for resources leads to a
Nash Equilibrium (NE), 7.e. a state where no customer in
the system has incentive to relocate. Second, it has been
shown that the Price of Anarchy—the ratio between the
overall cost of all customers under the worst-case NE and

that cost under a socially optimal solution— is bounded by
3/2 and by 2 for homogeneous and heterogeneous resources,
respectively. The authors also provide a generalized version of
this game (General Colocation Game), in which resources to
be allocated are graphs representing the set of virtual resources
and underlying relationships that are necessary to support a
specific user application or task. In this general case however,
the equilibrium results no longer hold as the existence of a
NE is not always guaranteed.

The work by Chen and Roughgarden [14] also introduces
a game theoretical approach to link allocation in the form of
source-destination flows on a shared network. Each flow has

a weight and the cost of the link is split in proportion to the
ratio between the weight of a flow and the total weightsofall
the flows sharing the physical link.

As shown, even recently by Chowdhury [17], in a cen-
tralized solution, the virtual network mapping problem can
be thought of as a flow allocation problem where the virtual
network is a flow to be allocated on a physical network.

These two game theoretic approaches may serve as inspir-
ing example for new allocation strategies involving different

selfish principles for virtual service provisioning / competition.
A system may in fact let the users play a game in which the
set of strategies represent the set of different virtual networks
to collocate with, in order to share the infrastructure provider
costs.

B. Market-based allocation

When demand exceeds supply and not all needs can be
met, virtualization systems’ goals can no longer be related to
maximizing utilization, but different policies to guide resource
allocation decisions have to be designed. A natural policy is to
seek efficiency, namely, to allocate resources to the set of users
that bring to the system the highest utility. To such an extent,
the research community has frequently proposed market-based
mechanisms to allocate resources among competing interests
while maximizing the overall utility of the users. A subclass of
solutions dealing with this type of allocation is represented by
auction-based systems. An auction is the process of buying
and selling goods or services by offering them up for bid,
taking bids, and then selling them to the highest bidder.

Few examples where auctions have been adopted in
virtualization-oriented systems are Bellagio [5], Tycoon [49]
and Mirage [9]. They use a combinatorial auction mechanism
with the goal of maximizing a social utility (the sum of the
utilities for the users who get the resources allocated).

A Combinatorial Auction Problem (CAP) is equivalent to a
Set Packing Problem (SPP), a well studied integer program:
given a set O of elements and a collection @ of subsets of
these elements, with non-negative weights, SPP is the problem
of finding the largest weight collection of subsets that are
pairwise disjoint. This problem can be formulated as an integer
program as follows: we let y; = 1 if the 7” set in W with
weight w; is selected and y; = 0, otherwise. Then we let
aj; — 1 if the 7 4 set in W contains element i < O and zero
otherwise. If we assume also that there are 4; copies of the
same element 7, then we have:

maximize >)joy Wi¥j
subject to Dye y Mag V7 SO, VIE O ce

yj ={0, 1} Vi EQ

SPPis equivalent to a CAP if we think of the y;s as the users
to be possibly allocated and requesting a subset of resources

in O, and w, as the values of their bids. Note that solving a
set packing problem is NP-Hard [25]. This means that optimal
algorithms to determine the winner in an auction are also NP-
Hard. ‘To deal with this complexity, many heuristics have been
proposed.In [5] for example, the authors rely on a thresholding
auction mechanism called SHARE [20], which usesa first-fit

packing heuristic.
Another example of a systemthat handles the allocation for

multiple users with an auction is Tycoon [49]. In Tycoon,users
place bids on the different resources they need. Thefraction of
resource allocated to one user is her proportional share of the
total bids in the system. For this reason, Tycoon’s allocation
mechanism can also be considered best-effort: there are no

guarantees that users will receive the desired fraction of the
resources. The bidding process is continuous in the sense that
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Fig. 4. Architecture and allocation phases in SHARP [33].

any user may modify or withdraw their bid at any point in time,
and the allocation for all the users can be adjusted according
to the new bid-to-total ratio.

As pointed out in [4], although market-based allocation
systems can improveusersatisfaction on large-scale federated
infrastructures, and may lead to a social optimal resource
allocation, there are few issues that should be taken into

account when designing such mechanisms.In fact, the system
may be exploited by users in many ways. Current auction-
based resource allocation systems often employ very simple
mechanisms, and there are known problems that may impact
efficiency or fairness (see [4], Section 6). We report three of
themhere:

e underbidding: users knowthat the overall demand is low
and they can drive the prices down.

« iterative bidding: often one shot auctions are not enough
to reach optimal resource allocation but the iterations may
not end by the time the allocations are needed.

e auction sandwich attack: occurs when users bid for

resources in several time intervals. This attack gives the
opportunity to deprive other users of resources they need,
lowering the overall system utility.

C. Reservation-based allocation

Asthe last piece of this section on allocation approaches,
we discuss a reservation-based system, SHARP [33] whose
architecture is depicted in Figure 4. The system introduces
a level of indirection between the user and the centralized

authority responsible for authentication and for building the
slice: the broker or agent. The authority issues a number
of tickets to a number of brokers (usually many brokers
responsible for a subset of resources are connected). Users
then ask and eventually get tickets, and later in time, they
redeem their tickets to the authority that does the final slice
assignment (Figure 4).

This approach has many interesting properties but it may
lead to undesirable effects. For example, coexisting brokers
are allowed to split the resources: whoever has more requests
should be responsible for a bigger fraction of them. This

OY)

Hard
Carat 

Oversubscription
Degree (OD)

Fig. 5. Different values of Oversubscription Degree tune allocation guaran-
tees [33].

sharing of responsibilities may bring fragmentation problems
as resources becomedivided into many small pieces over time.
Fragmentation of the resources is a weakness, as the resources
become effectively unusable being divided into pieces that are
too small to satisfy the current demands.

One of the most relevant contributions of SHARP in the

context of the slice embedding problem, is the rule of the
Oversubscription Degree (OD). The OD is defined as the
ratio between the number of issued tickets and the number

of available resources. When OD is greater than one, 7.e.,
there are more tickets than actual available resources, the user

has a probability less than one to be allocated even though
she owns a ticket. When instead OD is less or equal than
one, users with tickets have guaranteed allocation (Figure 5).

Note how the level of guarantees changes with OD. In
particular, when the numberoftickets issued by the authority
increases, the level of guarantees decreases. The authors say
that the allocation policy tends to a first come first serve
for OD that tends to infinity. In other words, if there are
infinite tickets, there is no reservation at all, and simply the
first requests will be allocated. The oversubscription degree is
not only useful to control the level of guarantees (by issuing
less tickets than available resources the damage from resource
loss if an agent fails or becomes unreachable is limited), but
it can be used also to improve resource utilization by means
of statistical multiplexing the available resources.

VII. FACILITY LOCATION PROBLEMS

In this section we discuss a set of problems similar to slice
embedding: the facility location problems. Facility location
is a branch of operations research whose goal is to assign
a numberof facilities to a set of users, while minimizing a
given cost function. An ample amountof literature exists on
centralized [61], |76] or distributed [32], [50] solutions forthis

NP-hard problem [44].
The centralized facility location problem is defined as

follows: suppose we are given 7 potential facility locations
and a list of m users who need to be serviced from these

locations. There is an initial fixed cost ¢; of opening the facility
at location 7, while there is a cost d;; of serving a user j from
facility 2. The goal is to select (open) a set of facility locations
and to assign each user to one facility, while minimizing the
cost.

In order to model this problem, we define a binary decision
variable z; for each location 7, which is equal to one if the
facility is selected, and 0 otherwise. In addition, we define a

binary variable x;; — 1 if user j is served byfacility 7, and 0
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Fig. 6. Interactions and data exchanges in the slice embedding problem.

otherwise. The facility location problem is then formulated as
follows:

minimize ampowit ieI a1 big haj
subject to 7, ay —1 Vi

Ry Sa VV
45,2; € {0,1} V2, V7.

(8)

The affine constraint 57)", 74; = 1 enforces a single facility
to a user, while the constraint 2;; < z; ensures that if there
is no facility at location 2, 2.e. z; = 0, then user 7 cannot be

served there, and we must have x; = 0.
The facility location and the slice embedding problems may

look similar since both have the high level goal of assigning
a set of resources to a set of users, and both solutions require
knowledge of the resource availability to work efficiently.
However, the two problems differ in many aspects: first,
the facility location assignment algorithms usually assume
no cooperation with the discovery protocol, while in the
slice embedding problem the resource discovery is directly
interacting with the other two phases, as we discuss in the
next section. More importantly, the slice embedding problem
assumes that resources are virtual instances of both nodes and

edges of the physical infrastructure, as opposed to standalone
facilities to be assigned to users. This detail leads to important
differences in the assignment algorithms as explained in [79]
and in [52]. Moreover, facility location problems assume
that each and every user has to be assigned to only one
physical resource (and the positive cost to the system of such
assignment is minimized), while this assumption disappears in
the slice embedding problem where, in general, there may not
be the guarantee that every user is allocated.

VIII. ON MODELING THE SLICE EMBEDDING PROBLEM

In this section we use optimization theory to model the
interactions between the three phases ofthe slice embedding
problem. We first model each standalone phase — resource
discovery, virtual network mapping, and allocation — and
subsequently model the slice embedding problem as a whole
by merging the three phases into a centralized optimization
problem. Consider the ellipsoid in Figure 6, augmented from
Figure 1 (we explain the rest of the notation throughout this

section): user 7 requests a virtual network composed of y; € N
virtual nodes, 4; € N virtual links and a vector of constraints
Ci(e) —< Cj(e1),....Cj(ec) > where e is a vector of

c= y; + 4); elements — nodes and links — of the network.

Discovery: To model the resource discovery we introduce two
binary variables, np and py that are equal to | if the 7%
physical node and the k* loop-free physical path, respectively,
are available, and zero otherwise. An element is available

if a discovery operation is able to find it, given a set of
protocol parameters, e.g., find all loop-free paths within a
given deadline, or find as many available physical nodes as
possible within a given numberof hops.

If the system does not return at least ~ physical nodes and
w available loop-free physical paths among all the possible
N nodes and P paths of the physical network G'”, then the
user’s request should be immediately discarded. Among all
possible resources, the system may choose to return a set
that maximizes a given notion of utility. Those utilities may
have the role of selecting the resources that are closer —
with respect to some notion of distance — to the given set
of constraints C(e). If we denote as 1; € R and uw, € R
the utility of physical nodes and paths respectively, then
the discovery phase of the slice embedding problem can be
modeled as follows:

maximize f(r? pr) = Siew un + rep WkPk
subject to Yiey nf > 0)

DUpeP Pr = a :
ns pe € {0,1} Vi Wh

After the discovery phase is completed, the vectors of available
physical resources (n”,p) are passed to the virtual network
mapper.

Virtual Network Mapping: This phase takes as input all
the available resources (subset of all the existing resources)
P’ © P and N’ CN, mapsvirtual nodes to physical nodes,
virtual links to loop-free physical paths, and returns a list of
candidates — virtual nodes and virtual links — to the allocator.

To model this phase, we define two sets of binary variables

nv Vi & N’, and Ixy Vk © P’, Vj < J, where J isthe set of
users requesting a slice. nnh, — 1 if a virtual instance of node 7
could possibly be mapped to user j and zero otherwise, while
Ix; — 1 if a virtual instance of the loop-free physical path
k; could possibly be mapped to user j, and zero otherwise.
The virtual network mapping phase ofthe slice embedding
problem can hence be modeled by the following optimization
problem:

maximize (ny, Inj)
subject to Sey ny, _ % Vie Jd

Dyer"igi= Wy Vj ednv i, Vi ENVie Jty

ln cme VkEP Wed
nen. pejslg c {0,1} Vi V7 Vk,

(19)

where ©;; is the revenue that the system would get if user
j gets assigned to virtual node z, and ®); is the system’s
revenue if the user 7 gets the virtual link &. The first two
constraints enforce that all the virtual resources requested by
each user are mapped, the third constraint ensures that the one-
to-one mapping betweenvirtual and physical nodesissatisfied,
and the fourth constraint ensures that at least one loop-free
physical path is going to be assigned to each virtual link of
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the requestedslice.
Allocation: As soon as the virtual mapping candidates have
been identified, a packing problem needsto be run, considering
both user priorities and physical constraints. Enhancing the
level of details from the standard set packing problem [71] to
virtual nodes and links, we modelthe allocation phase of the
slice embedding problem as follows:

maximize h(y;) — doc) WiYy
subject to Dicey nyu; <CP Wie N'

jer RIYs < ch VkeP
yy © {0,1} Vj

where C? and Ciare the number of virtual nodes andlinks
respectively, that can be simultaneously hosted onthe physical

node 7 and physical path hk, respectively, and y; is a binary
variable equal to 1 if user 7 has been allocated and zero
otherwise. A weight w,; is assigned to each user 7, and it
depends on the allocation policy used (e.g. in first-comefirst-
serve, w; = w WV j, or in a priority based allocation
w, Yepresents the importance of allocating user j’s request).
As multiple resources are typically required for an individual
slice, the slice embedding needs to invoke the appropriate
resource allocation methods on individual resources, and it

does so throughout this last phase. Each resource type may
in fact have its own allocation policy (e.g., either guaranteed
or best-effort resource allocation models), and this phase only
ensures that users will not be able to exceed physical limits
or their authorized resource usage. For example, the system

may assign a weight w; — 0 to a user that has not yet
been authorized, even though her virtual network could be
physically mapped.
Slice Embedding: In order to clarify how the three phases
of the slice embedding problem interact and how they may
impact efficiency in network virtualization, we formulate a
centralized optimization problemthat considers the slice em-
bedding problem as a whole. In particular, we model the three
phases as follows:

qd)

maximize a- f(nt;,pej) + 8 g(n¥, ley) + 6 h(y,)
subject to Dien 1; 2% Vi (12a)

Ree PRI 2; V3 (12b)

Dany — Wy VI (12c)
Daley = 05 VI (12d)

ny = ni, Vi Vi (12e)
ley < Pry VE VG (12f)

Dyer My SCP Vi (12g)
Dyed ley; S Ch Vie (12h)

yy <nky Vi V5 (123)
yy Slag Vk VG (12))

Yj TA; Phj. Myr leg, € {0,1} Vi V7 (12k)

where the first nine constraints (from (12a) to (12h)) are

the same as in problems (9), (10) and (11), respectively, the
two coupling constraints (122) and (127) guarantee that a user

is not allocated unless all the resources she queried can be
mapped, and a, 3 and 6 are normalization factors.

Note how constraints (12e), (12) and constraints (122) and
(127) bind the three phases of the slice embedding problem
together. However, all the above constraints have never been
simultaneously considered before in related literature. In [79]
for example, the first two as well as the last two constraints
are omitted (plus a = 6 = 0), and a global knowledge of
the resource availability is assumed. Other solutions that focus
only on the virtual network mapping phase (for example [81]),
omit even the capacity constraints (12q) and (12h).

From an optimization theory point of view, constraint omis-
sions in general may result in sub-optimal solutions while
constraint additions may lead to infeasible solutions. For
example, the resource discovery constraints impact the other
phases of the slice embedding, since a physical resource not
found certainly cannot be mappedorallocated. Moreover, it is
useless to run the virtual network mapping phase on resources
that can never be allocated because they will exceed the
physical capacity constraints. As a consequence, centralized
or distributed solutions for the slice embedding problem as
a whole seem to be a valuable research subarea of network

virtualization.

IX. OPEN PROBLEMS

In this section we present some research challenges that are
important to achieving efficient slice embedding. In general,
due to its complexity, an efficient and largely scalable solution
for the slice embedding problem that involves all the three
tasks is still elusive.

A. Devising new heuristics and approximation algorithms

As described in Section V, the virtual network mapping
is often split into node and link mappings to reduce the
complexity. Note, however, that such assignments are not inde-
pendent. In other words, solving them sequentially introduces
sub-optimalities. Researchers should therefore keep in mind
that node assignments affect link assignments and vice-versa
when devising heuristics for this particular task of the slice
embedding problem.

Another interesting research direction is to devise heuris-
tics for conflicting objectives. For example, it is not clear
whether load balancing is the only way to improve system
performance as done in [81]. One can think about optimizing
other objectives such as bin packing onthe physical resources
to save power. Clearly these two optimization approaches are
different and over the lifetime of a slice, one may need to
optimize one more than the other. The load profiling technique
presented in [59], seems to be a more generalized approach
than bin packing and load balancing, where neither extreme
is the objective, and the system attempts to match sometarget
load distribution across the physical resources.

Although approximation algorithms have been discussed for
similar problems (see for example [46] or in [12]), to the best
of our knowledge, only in [16] they have been applied to the
virtual network mapping task, thus leaving the modeling o
the interaction with discovery and allocation open for further
research.
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B. Addressing scalability and cooperation among the slice
embedding tasks

In all the solutions discussed, it is assumed that allocators

have ubiquitous and updated information on the physical
network. A resource allocator’s ability to make effective and
efficient use of the available resources, however, is governed
by howmuch information is available to it at the time it needs
to make a decision. Thus, its interaction with the resource

discovery is key. An important factor in this interaction is
how much data must be passed back and forth between
the two components. While passing node information—how
much resources are still available on each particular physical
node—should be manageable, path information is O(n”) in
the numberof nodes, and hence will scale poorly.

Another open question is whether and how a system can
achieve efficient allocation with partial information: although
we are not the first to advocate that resource discovery and
allocation in virtualization oriented architectures should work

tightly together (Ricci et al. in [68] for example, claim that
the Emulab testbed is being improved by Keeping this design
principle in mind), it is still not clear how much data should
pass between the discoverer and the allocator, how often the
two tasks need to communicate, and which subset of available
resources should be advertised to the allocator.

C. Modeling interactions between the slice embedding tasks

Generally, when designing solutions that involve different
tasks of the slice embedding problem, researchers mayutilize
(distributed) optimization techniques. It is in fact possible
to view each phase of the slice embedding problem as a
standalone optimization problem, where different principles
try to optimize the different tasks of the slice embedding
problem, passing around a limited amount of information, to
obtain a globally optimal embedding solution. An efficiency-
overhead trade-off analysis of the mechanisms that involve
such message passing among the tasks encompassing the
slice embedding problem could be helpful in designing novel
virtualization-based systems. Such an analysis could also be
generalized to the cooperation among any coexisting infras-
tructure services [30], with the help of (centralized or dis-
tributed) optimization theory [8], [24], control or even game
theory, for those cases where the principles involved are selfish
or do not have incentives to cooperate.

D. Dissecting distributed decomposition alternatives

A systematic understanding of the decomposability struc-
tures of the slice embedding problem may help obtain the
most appropriate distributed algorithms, given the application.
Decomposition theory provides tools to build analytic founda-
tions for the design of modularized and distributed control of
both physical and virtual networks.

For a given problem representation, there are often many
choices of distributed algorithms, each leading to different
outcome of the global optimality versus message passing
tradeoff [56], [64]. Which alternative is the best depends on
the specifics of the slice embedding application.

We believe that qualitative or quantitative comparisons
across architectural decomposition alternatives of the slice
embedding problem is an interesting research area. When
designing novel (virtual) network architectures for specific
applications, to understand where to place functionalities and
how to interface them is an issue that could be morecritical

than the design of how to execute and implement the func-
tionalities themselves.

E. Supporting multiple allocators

Since each allocator can only make scheduling decisions
based on the jobs submittedto it, it seems challenging to make
multiple allocators work together, and this opens an interesting
research direction. Allocation solutions consider only the
scheduling problem, but another interesting problem is what
to do after the resources are allocated. Since an infrastructure
should be able to host customized virtual networks, each with

different goals and constraints, we believe that there is not a
“right” type of resource allocator, but resource allocators of
modern distributed service architectures should rather support
different policies for different applications that they support;
for example, some users should be able to be allocated in a
first come first serve manner, others should have soft or hard

reservation guarantees. An architecture that would support a
range of allocation policies is still missing.

F. Protocol Design and Implementation

The recently proposed distributed service architectures (e.g.
NetServ [73] or RINA [23]) are a promising petri dish for
testing novel protocols and distributed applications. In the case
of RINA for example, (recursive) slice embedding protocols
could be designed and prototyped over virtualization-based
platforms. In particular, (inspired by [37]), we believe that
designing and implementingefficient protocols to guarantee a
given Service Level Agreement among slices managed by the
same, or by different providers, is an interesting research area.
In the case of the RINA architecture [23], where “Distributed

Inter-process communication Facilities (DIF)’—the building
blocks of the architecture — can be thought of as slices, this
would mean designing recursive protocols to enable service
provisioning across multipletier-level providers. In fact, a DIF,
just as a slice, is a service building block that can be repeated
and composed in layers to build wider scoped services that
meet user requirements.

Moreover, as mentioned in Section VI-A, distributed pro-
tocols to capture competition and interactions among slice
embedding providers could be devised, assuming cooperation
among different principles providing the service, or by means
of a marketplace that allows selfish behavior.

X. CONCLUSIONS

Network virtualization has been proposed as the technology
that will allow growing and testing of novel Internet architec-
tures and protocols, overcoming the weaknesses of the current
Internet, as well as testing them in repeatable and reproducible
network conditions. Moreover, taking cue from current trends
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in industry, it can be anticipated that virtualization will be
an essential part of future networks as it allows leasing and
sharing the physical (network) infrastructure. In this regard, an
important challenge is the allocation of substrate resources to
instantiate multiple virtual networks. In order to do so, three
main steps can be identified in the so called slice embedding
problem: resource discovery, virtual network mapping and
allocation.

Weoutlined how these three tasks are tightly coupled, and
how there exists a wide spectrum ofsolutions that either solve
a particular task, or jointly solve multiple tasks along with
the interactions between them. We then concluded with a few

interesting research directions in this area.
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NETWORK AWARE PEER TO PEER

TECHNICAL FIELD

The present invention relates to methods and arrangements

for selecting suitable peers for content downloading, in a

peer to peer network.

BACKGROUND

The increased bandwidth introduced by the penetration of

broadband and the availability of enhanced terminal

capabilities, content creation and publishing tools has

Significantly increased in availability on the Internet of

user generated content, e.g. YouTube, Podcasting, etc.

Software distribution such as Microsoft update, Linux

distributions, and content aggregators such as Joost, BBC

iPlayer are also becoming established sources of legal

online content.

Peer-to-peer technology has shown itself as a viable

technology for distributing user generated content and

technology of choice of the content aggregators. For

example, the iPlayer utilizes an IMP P2P client. Peer-to-

peer P2P architecture is a type of network in which each

workstation has equivalent capabilities and

responsibilities. This differs from client/server

architectures where some computers are dedicated to serving

the others. The P2P network distributes the computing power

between connected peers in the network and utilizes the

aggregated resources, e.g. network available bandwidth, for

efficient content distribution. P2P is often used as a term

to describe one user linking with another user to transfer
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information and files through the use of a common P2P

client to download material, such as software upgrades or

media files.

When downloading content using P2P clients, pieces or

chunks of the selected file are gathered from several nodes

simultaneously in order to decrease download time and to

increase robustness of the P2P network. The set of peers to

download data chunks from has been selected by a so called

Tracker which functions as a gateway between peers in the

P2P network. In P2P systems based on Tracker architecture

when a client requests content, it contacts the Tracker in

order to obtain addresses of peers having the desired data

chunks. The Tracker replies with a list of addresses to

peers having the data. For example, in the BitTorrent

protocol the list of peers in the tracker response is by

default 50, if the number of available peers is equal or

above 50. If there are more peers that have the desired

chunk of content, the tracker randomly selects peers to

include in the response, or the tracker may choose to

implement a more intelligent mechanism for peer selection

when responding to a request. This selection can for

example be made based on locality, network measurements and

similar. All based on the viewpoint of the Tracker.

The problem is that much locality information and other

operator specific information is not usually available to a

central Internet based Tracker. Further, the Tracker may

not always take the operator needs into account - such as

keeping traffic local to the operator at hand.

The limited knowledge of the network location of the

different peers causes the traffic flow to be non optimal

from a network point of view. This will put unnecessary

load on expensive peering connections between Internet

Service Providers ISPs, especially when transit peering is
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used. This also causes longer download times for the end-
users.

To overcome this problem there is an initiative called

Proactive network Provider Participation for P2P (P4P)}). The

P4Pp working group has participants from the ISP,

Movie/Content, and P2P industries. The working group is

focused on helping ISPs handle the demands of large media

files and enabling legal distribution using P2P technology,

they are building what they believe will be a more

effective model of transmitting movies and other large

files to customers.

P4P works by having an ISP use an “iTracker" which provides

information on how its network is configured. P2P software

can query the iTracker and identify preferred data routes

and network connections to avoid, or change depending on

the time of day. The P2P software can then co-operatively

connect to peers which are closer or cheaper for the

specific ISP, selectively favoring peers instead of

choosing peers randomly, or based on access or sharing

speeds.

The drawback with the iTracker; are that the ISP must

install an iTracker into there network and the P2P

applications must be aware of the ISP specific iTracker and

be allowed to connect to it. The P4P iTracker concept is

also working against Net Neutrality regulations.

SUMMARY

An object of the invention to overcome above identified

limitations of the prior art. The invention focuses on

improving the way of managing P2P traffic in an optimal way

from network point of view.
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The problem of managing P2P traffic is solved by a method

for grouping peers by utilizing public information of the

distribution network. The invention describes mechanisms and

techniques for selecting peers that possess required content

and grouping the peers in a coordinating node, based on

network topology. Basically, the method involves grouping of

peers based on network information fetched from a public

database to the coordinating node.

According to a first exemplary embodiment a tracker receives

information of peers that possess requested content. The

tracker then collects information with regard to network

topology related to the content holding peers, from the

public database. The tracker groups the peers with respect

to received topology parameters such as for example relative

geographical position between peers. After having received a

content request from a requesting client, the tracker ranks

the grouped peers with respect to for example most

favourable location of grouped peers in relation to the

requesting client.

In another aspect of the invention, instead of using a

tracker as search mechanism, a distributed Hash Table has

been used and instead of sending the request from the

requesting client to the tracker, the request is forwarded

to the most appropriate peer in accordance to the DHT

implementation. So, instead of the tracker responding back

with the ranked list of IP addresses of peers with the

desired content, the found peer that possess the IP

addresses, will after having consulted the public database

respond back and deliver the ranked list.

An object of the invention is to optimize traffic flow from

network point of view without working against Net Neutrality

regulations. This object and others are achieved by methods,

arrangements, nodes, systems and articles of manufacture.
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The invention results in advantages such as it gives the P2P

application better knowledge of the network location of the

different peers, and by ranking and choosing the download

peers based on their peer-to-peer network location it will

result in a more optimal traffic flow from a network point

of view. This will reduce the P2P applications traffic load

on expensive peering and transit connections between ISPs,

and try to keep the P2P traffic local to the ISP’s network

if possible. This will also reduce download times for the

end-users.

The invention will now be described more in detail with the

aid of preferred embodiments in connection with the enclosed

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block schematic illustration disclosing a

plurality of clients connected via various access networks

to internet. A central P2P Tracker is located in the

internet. The Tracker is associated with a central public

database.

Figure 2 discloses a signal sequence diagram representing a

method for grouping and ranking suitable peers and

downloading a ranking list to a requesting client, according

to a first embodiment.

Figure 3 discloses the same block schematic illustration as

is shown in figure 1 disclosing a plurality of clients

connected via various access networks to internet. The

figure also discloses a grouping table showing content

holding peers grouped in relation to a requesting client.

Figure 4 discloses a signal sequence diagram that represents

a method for grouping peers.
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Figure 5 discloses a block schematic illustration of a

coordinating node.
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DETAILED DESCRIPTION

Figure 1 discloses according to an exemplary embodiment, a

peer to peer P2P network that includes plural clients 1-8

connected via various access networks AN1-AN5 to INTERNET.

The figure discloses a very simplified example and the

number of clients are in the reality much higher. The

clients 1-8 may be, for example, a mobile phone, a computer,

a set top box, or other devices that are capable of

exchanging information with the internet. The access

networks AN1-ANS may be, for example, a communication

network, a phone network, an internet service provider, etc.

In this exemplified embodiment a first operator OP1l is

accessible in the access networks ANI1-AN2 and a_ second

operator OP2 is accessible in AN3-AN5. The client 1 is

attached to OP1/AN1, the clients 5 and 6 are attached to

OP1/AN2, the clients 2-4 are attached OP2/AN4, client 7 is

attached to OP2/AN3 and client 8 is attached to OP2/ANS5. A

central tracker 9 is in this example located within the

Internet. The tracker functions as a directory service for

the clients, also called peers, in the P2P network. A P2P

tracker may be any P2P searching mechanism (e.g. the

BitTorrent tracker system). The tracker gathers information

on which peers have what data chunks and spread information

to any requesting peer. The central tracker is capable to

communicate and fetch information from a public database RIR

10 (see for example “Wikipedia” in general or

“http: //en.wikipedia.org/wiki/RegionalInternet_Registry”).

The public database is in this example a so called Regional

Internet Registrie RIR that manage, distribute, and register

public Internet Number Resources within their respective

regions. A regional Internet registry (RIR) is an

organization overseeing the allocation and registration of

Internet number resources within a particular region of the

world. Resources include IP addresses (both Ipv4 and Ipv6)

and autonomous system numbers. RIRs work closely together,
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and with others, to develop consistent policies and promote

best current practice for the Internet. Internet Number

Resources (IP addresses and Autonomous System AS Numbers)

are distributed in a hierarchical way. RIRs allocate IP

address space and AS Numbers to Local Internet Registries

that assign these resources to end users. In this first

embodiment that will be explained more in detail together

with figure 2, a method for grouping and ranking suitable

peers for content downloading will be shown. According to

the first exemplary embodiment, a tracker receives

information of peers that possess requested content. The

tracker then, according to the invention, collects

information related to content holding peers, with regard to

network topology, from the public database RIR. Instead of a

RIR the Tracker might fetch public information from an

Internet Routing Registry IRR (see for example “Wikipedia”

or “http://www.irr.net/docs/list.html”). The tracker groups

the peers with respect to network parameters such as for

example relative geographical position between the peers.

After having received a request for the content from a

requesting client, the tracker ranks the grouped peers with

respect to, for example, most favourable location of grouped

peers in relation to the requesting client.

The method according to the first embodiment will now be

explained together with figure 2. Figure 2 is a signal

sequence diagram wherein the signalling points RIR 10,

Tracker 9 and the clients 1-8 that were briefly explained

earlier together with figure 1 have been disclosed.

According to the well known P2P protocol, the Tracker

continuously receives torrent files from peers/clients. The

Torrent files comprise metadata pointing at peers where

pieces of data chunks, from now referred to as the content,

can be obtained from or be delivered to. The method

comprises the following steps:
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eA torrent file comprising an identity i.e. an IP address

pointing at client 1 is received 21 from client 1 to

the Tracker 9. Client 1 hereby informs the tracker that

it is willing to download the content.

e According to the invention, the Tracker searches a local

storage to see if the file pointing at the client 1

already has been cashed in the storage. The storage can

be located “within” or “outside” the Tracker.

eIn this example the file was not cashed since before and

the Tracker sends 22 a network parameter requests

comprising the IP address pointing at client 1, to the

public database RIR. It is to be noted that the

Internet Service Provider ISP, Autonomous System AS and

routed IP subnet information is not changing that

often, and can then be cashed by the tracker. So next

time a client connects from the same IP subnet as a

previous peer/client, the cached information can be

used instead of queering the RIR or IRR database. The

mentioned query 22 uses a standard that is interface

with RIR specific command options. The query may point

out another RIR as the one responsible for managing

the information. E.g. a request towards the ARIN RIR

(see for example “Wikipedia” or

“http://www.arin.net/”) for an IP address in a network

in Europe, will point out RIPE as the RIR for handling

the information, and this will require a subsequent

query towards the RIPE database.

The RIR replies 23 with network parameters associated

with the IP address of client 1, from the public

database to the Tracker. In case the file pointing at

client 1 was cashed in the local storage since before,
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the steps 22 and 23 of sending and replying would not

have been performed.

The tracker cashes 24 the response from the RIR in the

local storage and checks according to the invention if

an IP address pointing at a peer holding the same

content also is cashed in the storage. If that was the

case, grouping will start. The grouping will be further

explained later in the description.

In the same way as described above, after having

received 25 a torrent file comprising an IP address

pointing at client 2 that is willing to download

content, the Tracker searches a local storage to see if

the file pointing at the client 2 already has been

cashed in the storage. In this example the file was not

cashed and the Tracker sends 26 a network parameter

requests comprising the IP address pointing at client

2, to the public database RIR that replies 27 with

network parameters associated with the IP address of

client 2, from the public database to the Tracker.

The tracker cashes 28 the response from the RIR in the

lecal storage and checks according to the invention if

an IP address pointing at a peer holding the same

content already is cashed in the storage. The IP

address of client 1 is hereby found and grouping of the

two content holding peers 1 and 2 now takes place. The

grouping will be further clarified later in the

description together with figure 3A.

In the same way as described above, after having

received 29,33,37,41,45 torrent files comprising IP

addresses pointing at clients 4,5,6,7,8 (the clients

are all willing to download content), the Tracker

searches the local storage. In this example the files
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were not cashed and the Tracker sends 30,34,38,42,46

network parameter requests comprising IP addresses

pointing at clients 4,5,6,7,8 to the public database

RIR that replies 31,35,39,43,47 with network parameters

associated with the IP addresses of the clients.

e The tracker cashes 32,36,40,44,48 the responses from

the RIR in the local storage and checks if an IP

address pointing at a peer holding the same content

already was cashed in the storage. In this exemplified

embodiment the tracker has received and cashed

information from the clients 1,2,4-8, which clients all

possess pieces of data chunks that constitutes a subset

of the content. Grouping of the peers has continuously

been performed after network parameters associated with

the IP addresses of clients was cashed in the local

storage. The grouping has been performed according to

predefined rules. The rule that has been applied in

this embodiment can be seen later in the description.

The client 3, from now on referred to as the requesting

client, decides to send a request for the content to the

Tracker. A prerequisite is that the requesting client 3 by

some means know the address of a tracker which has

information about which peers that possess the desired

content for example by downloading a torrent file such as

BitTorrent.

eA torrent file comprising an IP address pointing at the

requesting client 3 is received 49 from client 3 to the

Tracker. Client 3 hereby informs the tracker of it’s

desire to obtain the content from the P2P network. Like

before, the Tracker searches the local storage to see

if the file pointing at the client 3 already was cashed

in the storage.
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e Since the file was not cashed in this example, the

Tracker sends 50 a network parameter requests

comprising the IP address pointing at client 3, to the

public database RIR. The RIR replies 51 with network

parameters associated with the IP address of client 3,

from the public database to the Tracker.

e The tracker cashes the response from the RIR in the

local storage and starts to group the cashed addresses

that belong to the clients 1,2,4-8 together with the

newly received address of the requesting client 3. This

final grouping of content holding clients together with

the requesting client is disclosed in figure 2 with a

block symbol and will now be further explained together

with figure 3.

Figure 3 discloses the same network configuration as was

disclosed in figure 1. The figure also discloses a table

showing the final grouping performed after having received

the request for content from the requesting client 3. The

grouping has been done according to the below shown ranking

scheme. To be noted is that the scheme in this example is

based on currently available operator preferences and is

just an example. Another parameter that can be considered

for the ranking is for example operator possession. The

network ranking can also be used together with common P2P

client information like access line bandwidth and maximum

up-load speed, to get the best peer-to-peer relationship

ranking etc.

Below is the mentioned ranking scheme following rules from a

geographical network location point of view that has been

applied in this embodiment:

A. Extremely Good, Within a /22 address range in the ISP

assigned IP-subnet
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B. Very Good, Within ISP assigned IP-subnet

C. Good, Different IP-subnet within the same ISP’s AS

number

D. Fairly Good, IP-subnet in an different AS, but within

the same ISP

E. Fair, Direct peering between different ISP’s AS

F. Very Bad, Transit Peering via multiple AS hops

As can be seen in the table in figure 3, peer 3 has been

ranked in relation with peer 2 as a group B relation, i.e.

“Very good, Within ISP assigned IP-subnet”. Peer 3 has been

ranked in relation with peer 4 as a group C relation, i.e.

“Good” and in relation with peers 1,5,6,8 as a group &£

relation i.e. “Fair”, while in relation to peer 7, peer 3

has been ranked as a group F relation i.e, “Very bad”. The

tracker creates a ranking list regarding the requesting

client’s most favourable peers to download content from,

with the most favourable peer at the top of the list. The

created ranking list in this example looks like follows:

1. Client 2

2. Client 4

3. Clients 1,5,6,8

4. Client 7

When the ranking list is finalized in the Tracker, the

tracker sends 52 the ranking list to the requesting client

3. This can be seen in figure 2. The requesting client now

decides which peers to download content from by using the

ranking list as reference, and contacts the chosen content

holding peers and starts to download the content according

to well known conventional P2P technique.
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If the client was unable toe establish a connection to top

ranked peers from the list for example if the peer has left

the P2P network, or if the aggregated download speed from

the selected peers is too low, the requesting client could

either select lower ranked peers or request a further list

of ranked peers from the Tracker.

A second embodiment of the invention will now briefly be

discussed. Instead of using a tracker as search mechanism, a

Distributed Hash Table may be used. One of the central parts

of a P2P system is a directory service. Basically the

directory service is a database which contains IP addresses

of peers that have a specific content. In a centralized P2P

implementation this directory is called tracker (as

discussed above), in a distributed P2P implementation it is

called Distributed Hash Table DHT. In DHT a plurality of

distributed databases resides on many peers rather than in a

single node like in the tracker case; hence it is a

distributed database. The DHT algorithm is well known by

persons skilled in the art. In this second embodiment

instead of sending the request from the requesting client to

the tracker, the request is forwarded to the most

appropriate peer in accordance to the DHT implementation.

So, instead of the tracker responding back with the ranked

list of IP addresses of peers with the desired content, the

found peer - also called a coordinating node, that possess

the IP addresses, will after having consulted the public

database RIR respond back and deliver the ranked list (For

more information of “trackerless” torrent see e.g.

“http://www. bittorrent.org/beps/bep ooo5.html”). As an

alternative a DHT based tracker can exist in carrier domain

that contains several servers, then the solution is more

stable.

The invention can also be used in server to client

communication when the same content should be distributed to

many clients, with the option to use Unicast or Multicast
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distribution depending on multiple clients’ network

location.

Figure 4 discloses a flow chart illustrating some essential

method steps of the invention. The flow chart is to be read

together with the earlier shown figures. The flow chart

comprises the following steps:

> identities of peers willing to deliver/receive content

is received to the coordinating node. This step is

shown in the figure with a block 101.

> If not already cached, the coordinating node requests

network parameters related to the received identities,

from a public database. This step is shown in the

figure with a block 102.

>» The coordinating node receives network parameters

related to the identities, from the public database.

This step is shown in the figure with a block 103.

> The coordinating node groups the peers from a network

point of view. This step is shown in the figure with a

block 104.

Figure 5 discloses in some more detail an example of the

coordinating node 9 that has been discussed earlier in the

application together with the previous figures 1-3. In the

previous figures the coordinating node has been represented

by for example the tracker.

This section describes as an example some for the invention

important parts of the coordinating node. As can be seen in

figure 5, the coordinating node comprises two main blocks

i.e. a capturing block and a processing block. Data files

from content holding peers (or peers that desire to receive
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content) are received to a receiver REC and forwarded to the

capturing block.

The capturing block is responsible for extracting the

identities for peers from the data files and to query the

local data base LS to see if a peer already has been cashed

in the database.

The processing block is responsible for the requesting of

network parameters associated with IP addresses extracted

from the messages in the capturing block; from a public

database PD. The processing block also receives the network

parameters from the public database. The processing block is

also responsible for the earlier discussed grouping and

ranking of peers by querying the local data base LS. A

created ranking list is forwarded from the coordinating node

to a requesting peer via a sender SEND.

A system that can be used to put the invention into practice

is schematically shown in the figure 1 and figure 5.

Enumerated items are shown in the figures as individual

elements. In actual implementations of the invention,

however, they may be inseparable components of other

electronic devices such as a digital computer. Thus, actions

described above may be implemented in software that may be

embodied in an article of manufacture that includes a

program storage medium. The program storage medium includes

data signal embodied in one or more of a carrier wave, a

computer disk (magnetic, or optical (e.g., CD or DVD, or

both), non-volatile memory, tape, a system memory, and a

computer hard drive.

The systems and methods of the present invention may be

implemented for example on any of the Third Generation

Partnership Project {3GPP), European Telecommunications

Standards Institute (ETSI), American National Standards

Institute (ANSI) or other standard telecommunication network
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architecture. Other examples are the Institute of Electrical

and Electronics Engineers (IEEE) or The Internet Engineering

Task Force (IETF).

The description, for purposes of explanation and not

limitation, sets forth specific details, such as particular

components, electronic circuitry, techniques, etc., in order

to provide an understanding of the present invention. But it

will be apparent to one skilled in the art that the present

invention may be practiced in other embodiments that depart

from these specific details. In other instances, detailed

descriptions of well-known methods, devices, and techniques,

etc., are omitted so as not to obscure the description with

unnecessary detail. Individual function blocks are shown in

one or more figures. Those skilled in the art will

appreciate that functions may be implemented using discrete

components or multi-function hardware. Processing functions

may be implemented using a programmed microprocessor or

general-purpose computer. The invention is not limited to

the above described and in the drawings shown embodiments

but can be modified within the scope of the enclosed claims.
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CLAIMS

Method for selecting peers (1,2,4-8) suitable for

content downloading in a peer to peer network, whereby

identities of peers possessing a specified content

are received to a coordinating node (9),

characterizedin steps of fetching network

parameters associated with the received identities and

steps of grouping the peers with respect to the

network parameters.

Method for selecting suitable peers according to claim

1, which steps of fetching information comprises:

sending a network parameter request comprising an IP

address identity of a peer, from the coordinating node

(9) to a public database (10);

receiving network parameters associated with the IP

address, from the public database (10) to the

coordinating node (9).

Method for selecting suitable peers according to claim

1, which steps of fetching information comprises:

checking if a network parameter related to an IP

address identity of a peer, is cashed in a storage

(LS).
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Method for selecting suitable peers according to any

of claims 1-3, which steps of grouping the peers

comprises:

checking if a content corresponding peer is cashed;

grouping peer-to-peer relationship with regard to

network parameters.

Method for selecting suitable peers according to any

of the claims 1-2, wherein a requesting client (3)

requests the specified content and whereby grouped

peers are ranked with respect to network parameters of

the requesting client (3) versus parameters of the

grouped peers (1,2,4-8).

Method for selecting suitable peers according to

claims 5, whereby a list of ranked peers is sent from

the coordinating node to the requesting client (3).

Method for selecting suitable peers according to any

of the previous claims, which public database (10),

Manage, distribute and/or register public internet

number resources within their respective regions.

Method for selecting suitable peers according to

according to any of the previous claims, wherein each

group contains peers related to each other by a

specific criterion.
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Method for selecting suitable peers according to

claims 8, which criterion is based on at least one of

the following rules:

geographical network location;

operator possession;

access line bandwidth;

up-load speed.

A node (9) for selecting peers (1,2,4-8) suitable for

content downloading in a peer to peer network, whereby

identities of peers possessing a specified content

are received to the node (9), which node is

characterized by means of fetching network

parameters associated with the received identities and

means of grouping the peers with respect to the

network parameters.

A node (9) for selecting suitable peers according to

claim 10, which node further comprises:

means for sending a network parameter request

comprising an IP address identity of a peer, from the

node (9) to a public database (10);

means for receiving network parameters associated with

the IP address, from the public database (10) to the

coordinating node (9).

A node for selecting suitable peers according to claim

10, which node further comprises:
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means for checking if a network parameter related to

an IP address identity of a peer, is cashed in a

storage (LS).

A node for selecting suitable peers according to any

of claims 10-12, which node further comprises:

means for checking if a content corresponding peer is

cashed;

means for grouping peer-to-peer relationship with

regard to network parameters.

A node for selecting suitable peers according to any

of the claims 10-13, wherein a requesting client (3)

requests the specified content, which node further

comprise means for ranking grouped peers with respect

to network parameters of a requesting client (3)

versus parameters of the grouped peers (1,2,4-8).

A node for selecting suitable peers according to

claims 14, which node further comprises means for

sending a list of ranked peers from the node to the

requesting client (3).

A node for selecting suitable peers according to any

of the claims 11-15, wherein the node is a tracker

(9).
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17. A node for selecting suitable peers according to claim

16, which tracker (9) is decentralized.

18. Article of manufacture comprising a program storage

5 medium having a computer readable code embodied

therein to select suitable peers (1,2,4-8) in a peer

to peer network for content downloading, the program

code comprising:

10 - computer readable program code able to_receive

identities of peers possessing a specified content;

characterized by

- computer readable program code able to fetch network

parameters associated with the received identities;

15 - computer readable program code able to group the peers

with respect to the network parameters.

19. A network operator system for content downloading from

suitable peers in a peer to peer network, the system

20 comprising:

- means for receiving identities of peers possessing a

specified content; characterized by

- means for sending a network parameter request

comprising an IP address identity of a peer, from a

25 node (9) to a public database (10);

- means for receiving network parameters associated with

the IP address, from the public database (10) to the

coordinating node (9);
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- means for grouping the peers with respect to the

network parameters.

Ex. 1002 - Page 463



Ex. 1002 - Page 464

WO 2010/090562

 

 p2P
- Client2 KLe | 

v7 ae 4

‘pap cyClient 4 -
\ ; ; i ~ 7~~

 \
\

2 \

1/5

OP1/ 1
AN 1 (— \—~ L \

Pap \ vo
| Client1 a,~ ~ nd

Internet

( ‘Pap
7s Client 8—_—___!

Ex. 1002 - Page 464

  

PCT/SE2009/050124

oh,
an “

“7 \
7 | '? P2P t

Yo | Client 5 !sf . i/
/

/
OP1i ,

rm. »8 AN2/
p2P 7

, Client6 | ¢| ’

osa”

“oo

SL ~
“~

NN
NX
\

‘\

L_ \
\

os \

P2P \
, ; Client 7 | 1

SS -—— 1~ J

Sy /
~.OPQ)

AN 3-7



Ex. 1002 - Page 465

WO 2010/090562 PCT/SE2009/050124

2/5

Requesting client
—_—SS”

TO GdEn
222 1

;fe

4o—

fe
flOo

£8

|—_

Grouping

Ranking
(Fig. 3) 

on RO

Fig. 2

Ex. 1002 - Page 465



Ex. 1002 - Page 466

WO 2010/090562

3/5

Groupinglist

  
 

  
  

  

 

 

PCT/SE2009/050124

 
Ex. 1002 - Page 466



Ex. 1002 - Page 467

WO 2010/090562 PCT/SE2009/050124

4/5

Identities of peers willing to deliver or receive a specified
contentis received to the coordinating node

The coordinating node requests network parameters
related to the identities, from a public database

Requested network parameters are received from the
public database to the coordinating node

The coordinating node groups the peers with respect of
the network parameters

 
Fig. 4
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METHOD AND SYSTEM FOR SECURE AND RELIABLE VIDEO STREAMING

WITH RATE ADAPTATION

BACKGROUND

The invention relates in general to streaming media and more specifically to

implementing secure andreliable streaming media with dynamic bit rate adaptation.

Available bandwidth in the internet can vary widely. For mobile networks, the

limited bandwidth and limited coverage, as well as wircless interference can cause large

fluctuations in available bandwidth which exacerbate the naturally bursty nature of the

internet. When congestion occurs, bandwidth can degrade quickly. For streaming media,

which require long lived connections, being able to adapt to the changing bandwidth can be

advantageous. This is especially so for streaming which requires large amounts of

consistent bandwidth.

In gencral, interruptions in nctwork availability where the usable bandwidth falls

below a certain level for any extended period of time can result in very noticeable display

artifacts or playback stoppages. Adapting to network conditions is especially important in

these cases. The issue with videois that video is typically compressed using predictive

differential encoding, where interdependencies between frames complicate bit rate changes.

Vidco file formats also typically contain header information which describe frame

encodings andindices; dynamically changing bit rates may cause conflicts with the existing

header information. This is further complicated in live streams where the complete video is

not available to generate headers from.

Frame-basedsolutions like RTSP/RTP solve the header problem by only sending

one frame at atime. In this case, there is no need for header information to describe the

surrounding frames. However RTSP/RTPsolutions can result in poorer quality due to

UDPframeloss and require network support for UDP firewall fixups, which may be viewed

as network security risks. More recently segment-based solutions like HTTP Live

Streaming allowfor the use of the ubiquitous HTTP protocol which does not have the frame

loss or firewall issues of RTSP/RTP, but does require that the client media player support

the specified m3u8 playlist polling. For many legacy mobile devices that support RTSP,

and not m3u8playlists, a different solution is required.
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Within the mobile carrier network, physical security and network access control

provide content providers with reasonable protection from unauthorized. content extrusion,

at a network level. Similarly the closed platforms with proprietary interfaces used in many

mobile end-point devices prevent creation of rogue applications to spoof the native end-

point application for unauthorized content extrusion. However, content is no longer solely

distributed through the carrier network alone, and not all mobile end-point devices are

closed platforms anymore. Over the top (OTT) delivery has become a much more popular

distribution mechanism, bypassing mobile carricr integration, and recent advancements in

smart phone and smart pad platforms (e.g., Apple iPhone, Blackberry, and Android) have

made application development and phone hacking much more prevalent. The need to

secure content delivery paths is critical to the monetization of content and the protection of

content provider intellectual property.

In addition to security, high quality video delivery is paramount to successful

monctization of contcnt. Traditional vidco streaming protocols, c.g., RTSP/RTP,arc based

on unreliable transport protocols, i.c., UDP. The use of UDP allowsfor graceful

degradation of quality by dropping or ignoring late and lost packets, respectively. While

this helps prevent playback interruptions, it causes image distortion when rendering video

content. Within a well-provisioned private network where packet loss and lateness is

known to be minimal, UDP works well. UDPalso allowsfor the use of IP multicast for

scalability. In the public Internet, however, there are few network throughput or packet

delivery guarantees. The lack of reliability causes RTSP/RTP-based video streaming

deployments to be undesirable given their poor quality.

Methodssuch as layered video encodings, multiple description video encodings

(MDC), and forward error correction (FEC) have been proposed to help combat the lack of

reliable transport in RTSP/RTP. These schemesdistribute data over multiple paths and/or

send redundant data in order to increase the probability that at least partially renderable data

is received by the client. Though these schemes have been shown to improve quality, they

add complexity and overhead but are still not guaranteed to produce high quality video. A

different approach is required for integrating secure delivery of high quality video into the

RTSP/RTP delivery infrastructure.
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SUMMARY

A method is provided for integrating and enhancingthe reliability and security of

streaming video delivery protocols. The method can work transparently with standard

HTTPservers andusea file format compatible with legacy HTTP infrastructure. Media

may be delivered over a persistent connection from a single server or a plurality of servers.

The method can also includethe ability for legacy client media players to dynamically

change the encoded rate of the media delivered over a persistent connection. The method

may require no clicnt modification and can leverage standard media players embedded in

mobile devices for seamless media delivery over wireless networks with high bandwidth

fluctuations. The method may be used with optimized multicast distribution infrastructure.

Generally, the method for distributing live streaming data to clients includesa first

(server-side) proxy connecting to a streaming server, aggregating streaming data intofile

segments and writing the file segments to one or more storage devices. The file segments

arc transferred from the storage devices to a second(clicnt-sidc) proxy, which decodes and

parses the file segments to generate native live stream data and serves the native live stream

data to clients for live media playback.

A system is also specified for implementing a client and server proxy infrastructure

in accordance with the provisions of the method. The system includes a server-side proxy

for aggrcgating and cncrypting stream data for cfficient HTTP-based distribution over an

unsecured network. The system further includes a client-side proxy for decrypting and

distributing the encapsulated stream data to the client devices. The distribution mechanism

includes support for multicast-based infrastructure for increased scalability. The method

further support for dynamically adapting the encoded rate of the media delivered over the

persistent HTTP proxy connections. An additional system is specified for integrating the

client-side proxy within a mobile device for maximum network security and an reliability.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the

following description ofparticular embodiments of the invention, as illustrated in the

accompanying drawings.

Figure 1] is a block diagram of a system whichis capable of conducting procedures,

in accordance with various embodiments of the invention;
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Figure 2 is another block diagram of a system which is capable of conducting

procedures, in accordance with various embodiments of the invention;

Figure 3 is another block diagram of a system which is capable of conducting

procedures, in accordance with various embodiments of the invention;

Figure 4 is a diagram of a segmentfile format used, in accordance with an

embodimentof the present invention;

Figure 5 is a flow chart showing a method for performing stream segmentation, in

accordance with various embodiments of the invention;

Figure 6 is a flow chart showing a method for performing stream segmentretrieval

and decoding, in accordance with an embodimentof the present invention;

Figure 7 is a flow chart showing another method for performing stream segment

retrieval and decoding, in accordance with an embodiment of the present invention;

Figure 8 is a block diagram of a proxy capable ofperforming server-side

transcoding, cncapsulation, and streaming services , in accordance with an cmbodiment of

the present invention;

Figure 9 is a block diagram of a proxy capable ofperforming RTSP client-side

decapsulation, parsing, and streaming services , in accordance with an embodimentofthe

present invention;

Figure 10 is a block diagram of another proxy capable ofperforming HLSclient-side

decapsulation, parsing, and streaming services , in accordance with an embodimentof the

present invention;

Figure 11 is another block diagram of a system which is capable of conducting

procedures in accordance with various embodiments of the invention; and

Figure 12 is a flow chart showing a method for performing segmentretrieval

failover, in accordance with an embodimentof the present invention.

DETAILED DESCRIPTION

Overview

In one embodiment, the present invention provides a method for delivering

streaming data over a network. In one embodiment, the invention is described as being

integrated into an existing Real-Time Streaming Protocol/ Real-Time Protocol (RTSP/RTP)

video delivery infrastructure, however, the invention is generally suitable for tunneling any
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real-time streaming protocol; RTSP/RTP just happens to be a predominant protocol andis

therefore of focus. In another embodiment, the invention is suitable for integration into an

HTTP Live Streaming (HLS) video delivery infrastructure. In another embodiment, the

invention is suitable for integration into Real-Time Messaging Protocol (RTMP) video

delivery infrastructure. In another embodiment, the invention is suitable for integration into

an Internet Information Services (IS) Smooth Streaming video delivery infrastructure.

In one embodiment, the invention includes a server-side proxy and one or more

client-side proxics. The server-side proxy connects to onc or more streaming servers and

records the data in batches. In one embodiment, the streaming server is an RTSP server and

the data is RTP/RTCP data. The RTP and RTCPdatais written into segmentfiles along

with control information used to decode the segments by the client-side proxies. In another

embodiment, the streaming server is an HLS server and the data is MPEGtransport stream

(MPEG-TS) data, where MPEGstands for "Motion Picture Experts Group" as known in the

art. In another embodiment, the streaming server is an RTMPserverand the data is RTMP

data. In another embodiment, the streaming server is an IIS Smooth Streaming server and

the data is MPEG-4 (MP4) fragment data. In one embodiment, the segment is then

encrypted by the server-side proxy. In one embodiment, encryption uses the AES128 block

cipher. In another embodiment, the encryption uses the RC4 stream cipher. In another

embodiment, the cncryption uscs the HC128 stream cipher. In another embodiment, the

encryption uses the AES128 counter mode (CTR) stream cipher. There are many encryption

methods, as should be familiar to those skilled in the art; any valid encryption method may

be used. The segment is then available for transmission to the client-side proxies.

In one embodiment, client-side proxies initiate persistent HTTP connectionsto the

server-side proxies, and the segments are streamed. out as they become available. The

segments are sent using the HTTP chunkedtransfer encoding so that the segment sizes and

number of segments do not need to be known a priori. In another embodiment, the client-

side proxies may use non-persistent HTTP requests to poll the server-side proxy for new

segments at fixed intervals. In another embodiment, the client-side proxies initiate

persistent HTTP connections to a CDNtoretrieve the segments. In another embodiment,

the clicnt-side proxics initiate non-persistent HTTP conncctions to a CDN to retricve the

segments at fixed intervals. In another embodiment, the client-side proxies may use FTP

requests to poll for new segments at fixed intervals. In one embodiment, HTTP connections

-5-

Ex. 1002 - Page 478



Ex. 1002 - Page 479

WO 2011/068784 PCT/US2010/058306

may be secured (i.e., HTTPS) using SSL/TLSto provide data privacy whenretrieving

segments. In another embodiment, the FTP connections may besecure (i.¢., SFTP/SCP) to

provide data privacy whenretrieving segments. In one embodiment, the segmentfiles

adhereto a file naming convention which specifies the bitrate and format in the name,to

simplify segment polling andretrieval.

In one embodiment, the server-side proxy connects to a single streaming server

retrieving a single video stream. In one embodiment, the streaming server is an RTSP

server. Each RTSP connection should be accompanied by at lcast onc audio RTP channel,

one audio RTCP channel, one video RTP channel, and one video RTCP channel, as should

be known to those skilled in the art. Herein, this group of RTSP/RTP/RTCP connectionsis

considered a single atomic stream. In one embodiment, the stream contains a high

definition video stream. This source video is transcodedinto a plurality of different

encodings. In one embodimentonly the video bitrates differ between encodings. In another

embodiment, the vidco bitrates, frame rates, and/or resolution may differ. The different

encodings are written into separate file segments.

In another embodiment, the server-side proxy connects to a single streaming server

retrieving a plurality of streams. Each stream is for the same source video content, with

each stream encodeddifferently. In another embodiment, the server-side proxy connects to

a single RTSPserverto retricve a plurality of streams. In onc cmbodiment, cach stream in

the plurality of streams contains the same content encoded differently. In one embodiment

only the video bitrates differ. In another embodiment, the video bitrates, frame rates,

and/or resolution may differ. The client-side proxy may request that one or morebitrates be

sent to it over a persistent HTTP connection. The client-side proxy may choosea different

bitrate or set of bitrates by initiating a new persistent HTTP connection to the server-side

proxy. The client-side proxy mayselect any segments it wishes when using a polling-based

approach.

In another embodiment, the server-side proxy connects to a plurality of streaming

servers retrieving multiple streams which are to be spliced together. In one embodiment, an

advertisement may be retrieved from one server, while the main content is retrieved from

another server, and the advertisementis spliced in at designated intervals. In another

embodiment, one viewing angle for an event may be available on one server, while another

viewing angle may be available on the other server, and the different viewing angles are to
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be switched between. In one embodimentthe splicing and switching is done based on a

fixed schedule that is known a priori. In another embodiment the splicing and. switching is

done on demand based on userinput.

In one embodiment, the segments are all of a fixed duration. In another

embodiment, the segments mayall be of a fixed size. In one embodiment, video segments

are packed to integer time boundaries. In another embodiment compressed and/or encrypted

segments are padded out to round numbered byte boundaries. This can help simplify byte-

based offsct calculations. It also can provide a level of size obfuscation, for security

purposes. In another embodiment the segments may be ofvariable duration or size. In one

embodiment, video segments are packed based on key frame or group of frame counts.

In one embodiment, the segments are served from standard HTTP servers. In

another embodiment, the segments may be served from an optimized caching infrastructure.

The segments are designed to be usable with existing infrastructure. They do not require

special servers for dclivcry and they do not require decoding for delivery. They also do not

require custom rendering engines for displaying the content.

In one embodiment, the client-side proxy acts as an RTSP server for individual

client devices. The client-side proxy decodes the segments retrieved from the server-side

proxy and replays the RTP/RTCP content contained within the segment. The RTP/RTCP

headers may be spoofed to produce valid sequence numbers and port numbers, ctc., for cach

client device. The methods for headerfield rewrite for spoofing prior to transmission

should be known to those skilled in the art. In one embodiment, the client-side proxy is

embedded inside a client application, directly interacting with only the local device’s native

media player. In another embodiment, the client-side proxy acts as an HLSserver for

individual client devices. The client-side proxy tracks segment availability and creates

m3u8playlists for the client. In another embodiment, the client-side proxy acts as a

standalone device, serving multiple client endpoints. In one embodiment, the client-side

proxy accepts individual connections from each endpoint. In another embodiment, the

client-side proxydistributes the RTP/RTCP data via IP multicast. The client devices join an

IP multicast tree and receive the data from the network, rather than making direct

connectionsto the clicnt-side proxy.

In one embodiment, the invention uses bandwidth measurements to determine when

a changein bitrate is required. If the estimated bandwidth falls below a given threshold for
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the current encoding, for a specified amountof time, then a lower bit rate encoding should

be selected. Likewise if the estimated bandwidth rises above a different threshold for the

current encoding, for a different specified amount of time, then a higher bit rate encoding

maybe selected. The rate change takes place at the download of the next segment.

In one embodiment, the bandwidth is estimated based on the download time for each

segment (S / T), where S is the size of the segment and T is the time elapsed in retrieving

the segment. In one embodiment, the downloader keepsa trailing history of B bandwidth

estimates, calculating the average over the last B samples. When a new sampleis taken, the

Bth oldest sample is dropped and the new sample is included in the average:

integer B_index // tail position in the circular history buffer

integer Btotal // sum of all the entries in the history buffer

integer B_count // tetal number of entries in the history buffer

integer B_new // newly sampled bandwidth measurement

integer Bold // oldest bandwidth sample to be replaced

integer Baverage // current average bandwidth

array B_history // circular history buffer

Bold = Bhistory[B_index] // find the sample to be replaced

B_history[B_index] = B_new // veplace the sample with the new
sample

Btotal = Btotal - Bold // remove the old sample from the sum

B_total = B_total + B_new // add the new sample into the sum

B_average = Btotal / B_count // update the average

B_index = (B_index + 1) % Bcount // update the buffer index

Thehistory size should be selected so as not to tax the client device. A longer

history will be less sensitive to transient fluctuations, but will be less able to predict rapid

decreases in bandwidth. In another embodiment the downloader keeps only a single sample

and uses a dampeningfilter for statistical correlation.

integer Bnew // newly sampled bandwidth measurement

integer Baverage // current average bandwidth

float B_weight // weight of new samples, between 0 and 1

Baverage = (B_average * (1 - B_weight)) + (B_average * Bweight) // update
the average

This method requires less memory and fewer calculations. It also allows for

exponential drop off in historical weighting. In one embodiment, download progress for a

given segment is monitored periodically so that the segment size S of the retrieved data does
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not impact the rate at which bandwidth measurements are taken. There are numerous

methods for estimating bandwidth, as should be known to those skilled in the art; the above

are representative of the types of schemes possible but do not encompass an exhaustivelist

of schemes. Other bandwidth measurement techniques as applicable to the observedtraffic

patterns are acceptable within the context of the present invention.

Live RTP data is typically sent just-in-time (JIT) by the RTSPserver, so the data

received by the server-side proxy is naturally paced. The server-side proxy does not need to

inject additional delay into the distribution of segments, nor does the clicnt-side proxy need

to inject additional pacing into the polling retrieval of segments. The data is received by the

server-side proxy and packed into segments. Once the segment is complete, the segmentis

immediately distributed to the client-side proxies. The client-side proxies then immediately

distribute the data contained in the segment to the client devices. If the segment sizes are

large, then the client-side proxy paces the delivery ofRTP data to the client devices. In one

embodiment, the clicnt-side proxy inspects the RTP timestamps produced by the RTSP

server, and uses them as a guideline for pacing the RTP/RTCPdata to the client devices. In

one embodiment, the segments are made available for video on demand (VoD)playback

once they have been created. If the segments already exist on the storage device, then they

could be downloadedas fast as the network allows. In one embodiment, the server-side

proxy paces the delivery of segments to the clicnt-side proxy. In another embodiment, the

client-side proxy requests segments from the server-side proxy in a paced manner. In

another embodiment, the client-side proxy requests segments from the CDN in a paced

manner. The pacing rate is determined by the duration of the segments. The segments are

delivered by the server-side proxy or retrieved by the client-side proxy JIT to maximize

networkefficiency.

In one embodiment, the invention uses bandwidth measurements to determine when

a changein bitrate is required. If the estimated bandwidth falls below a given threshold for

the current encoding, for a specified amountof time, then a lower bit rate encoding should

be selected. Likewise if the estimated bandwidth rises above a different threshold for the

current encoding, for a different specified amountof time, then a higher bit rate encoding

may be selected. In one embodiment, the rate change is initiated by the server-side proxy.

The server-side proxy uses TCP buffer occupancyrate to estimate the network bandwidth.

Whenthe estimated available bandwidth crosses a rate change threshold, the next segment
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delivered is chosen from a different bitrate. In another embodiment, the rate changeis

initiated by the client-side proxy. The client-side proxy uses segmentretrieval time to

estimate the network bandwidth. When the estimated available bandwidth crossed a rate

change threshold, the next segment requested is chosen from a different bitrate.

In the description that follows, a single reference number mayrefer to analogous

items in different embodiments described in the figures. It will be appreciated that this use

of a single reference numberis for ease ofreference only and does not signify that the item

referred to is necessarily identical in all pertinent details in the different embodiments.

Additionally, as noted below, items may be matched in ways other than the specific ways

shownin the Figures.

Description of Illustrative Embodiments

In FIG.1 is a block diagram 100 for one embodiment of the present invention. It

showsa streaming scrvcr 108 (shown as an RTSP server 108), a server-side proxy 106, a

client-side proxy 104, and a client device 102. The streaming server 108, the server-side

proxy 106, the client-side proxy 104, and the client device 102 areall typically

computerized devices which include one or moreprocessors, memory, storage (e.g.,

magnetic or flash memory storage), and input/output circuitry all coupled together by one or

morc data buses, along with program instructions which are cxccuted by the processor out

of the memory to perform certain functions which are described herein. Part or all of the

functions may be depicted by corresponding blocks in the drawings, and these should be

understood to cover a computerized device programmedto perform the identified function.

In the interest of specificity, the following description is directed primarily to an

embodiment employing RTSP. As described below,other types of streaming protocols,

servers, and connections may be employed. The references to RTSP in the drawings and

description are not to be taken as limiting the scope of any claims not specifically directed to

RTSP.

The server-side proxy 106 initiates a real-time streaming connection 112 (shown as

RTSP connection 112) to the RTSP server 108. The RTSP connection 112 shown contains

a bi-directional RTSP control channcl, and four unidirectional RTP/RTCPdata channels

(.e., one audio RTP channel, one audio RTCP channel, one video RTP channel, and one

video RTCP channel), all ofwhich constitutes a single stream. The server-side proxy 106
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captures the data from all four RTP/RTCP channels and orders them based on timestamps

within the packets. The packets are then written to a segmentfile. A header is added to

each of the individual packets to make the different channels distinguishable when parsed

by the client-side proxy 104. Once the segmentfile has reached its capacity, the file is

closed and a newfile is started. In one embodiment, the file capacity is based on the wall-

clock duration of the stream, e.g., 10 seconds of data. In another embodiment,thefile

capacity 1s based. on video key frame boundaries, e.g. 10 seconds of data plus any data until

the next key frame is detected. In another embodiment, then file capacity is based on file

size in bytes, e.g., 128KB plus any data until the next packet.

In one embodiment, the server-side proxy 106 takes the recorded stream and

transcodesit into a plurality of encodings. In one embodiment only the video bitrates differ

between encodings. In another embodiment, the video bitrates, frame rates, and/or

resolution may differ.

The clicnt device 102 initiates a real-time streaming connection 114 (shown as

RTSP connection 114) to the client-side proxy 104. The RTSP connection 114 shown

contains a bi-directional RTSP control channel, and four unidirectional RTP/RTCP data

channels (i.e., one audio RTP channel, one audio RTCP channel, one video RTP channel,

and one video RTCP channel), all ofwhich constitutes a single stream. The client-side

proxy 104 initiates a connection 110 to the server-side proxy 106. In one embodiment, the

connection 110 is a persistent HTTP connection. In another embodiment, the connection

110 is a persistent HTTPS connection. In another embodiment, the connection 110 is a

onetime use HTTP connection. In another embodiment, the connection 110 is a onetime use

HTTPSconnection. In another embodiment, the connection 110 is a persistent FTP, SFTP,

or SCP connection. In another embodiment, the connection 110 is a onetime use FTP,

SFTP, or SCP connection.

In one embodiment, the client-side proxy 104 requests the first segment for the

stream from the server-side proxy 106. In another embodimentthe client-side proxy 104

requests the current segment for the stream from the server-side proxy 106. If the stream is

a live stream, the current segment will provide the closest to live viewing experience. If the

client device 102 prefers to sce the stream from the beginning, however, it may request the

first segment, whether the stream is live or not. In one embodiment,the server-side proxy

106 selects the latest completed segment and immediately sendsit to the client-side proxy
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104. In another embodiment, the server-side proxy 106 selects the earliest completed

segment and immediately sends it to the client-side proxy 104. For some live events, the

entire history of the stream may not be saved, therefore, the first segment may be mappedto

the earliest available segment. For video on demand (VoD), the first segment should exist,

and will be the earliest available segment.

For persistent HTTP/HTTPS connections, segments are sent as a single HTTP

chunk, as defined by the HTTP chunk transfer encoding. Subsequent segments will be sent

as they become available as separate HTTP chunks, as should be familiar to those skilled in

the art. For onetime use HTTP/HTTPS and FTP/SFTP/SCP,the client-side proxy 104 polls

for the availability of the next segment using the appropriate mechanism for the specific

protocol, as should be familiar to those skilled in the art. Though only one client-side proxy

104 is shown, multiple client-side proxies 104 may connect to a single server-side proxy

106. A client-side proxy 104 may also connect to multiple server-side proxies 106.

Theclicnt-side proxy 104 decodes the segments and parscs out the component

RTP/RTCPstream data and forwards the data to the client device 102. The RTP/RTCP data

is paced as per the RTP specification. The client-side proxy 104 uses the timestamp

information in the RTP/RTCP packet headers as relative measures of time. The timing

relationship between packets should be identical, as seen by the client device 102, to the

timing relationship when the stream was recorded by the server-side proxy 106. The

timestamps and sequence numbers are updated, however, to coincide with the specific client

device 102 connection. Manipulation of the RTP/RTCP header information to normalize

timestamps and sequence numbers should be familiar to those skilled in theart.

The client device 102 delivers the data to the a media player on client device 102

which renders the stream. The HTTP proxyinfrastructure is transparent to the native media

player which receives RTSP/RTP data as requested.

In FIG, 2 is a block diagram 200 for another embodimentofthe present invention.

As with FIG. 1, it shows an RTSP server 108, the server-side proxy 106, the client-side

proxy 104, and a client device 102. FIG. 2, however, showsa plurality of RTSP servers 108

and a plurality of client devices 102. The connections 112 between the server-side proxy

106 and the RTSP servers 108 are the same, there arc just multiple of them. Each

connection 112 attaches to a different RTSP server 108, to retrieve different content which

is to be spliced together. In one embodiment, one RTSP server 108 may contain a live event
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which pauses for commercial interruptions, while one or more other RTSP servers 108 may

contain advertisements whichare to be inserted during the commercial breaks. In another

embodiment, multiple RTSP servers 108 may contain different camera angles for a given

live event, where a final video stream switches between the different camera angles. In one

embodiment, the splicing of streams (advertisements) and/or the switching of streams

(camera angles) is determined before the event and performed on a set schedule. In another

embodiment, the splicing of streams (advertisements) and/or the switching of streams

(camera angles) is determined live by user intervention. Though only onc clicnt-side proxy

104 is shown, multiple client-side proxies 104 may connect to a single server-side proxy

106. A client-side proxy 104 may also connect to multiple server-side proxies 106.

In one embodiment, the server-side proxy 106 takes each of the recorded streams

and transcodes them into a plurality of encodings. In one embodiment only the video

bitrates differ between encodings. In another embodiment, the video bitrates, framerates,

and/or resolution may differ.

The connection 110 between the client-side proxy 104 and the server-side proxy 106

is the same as in the discussion of FIG. 1. The segment parsing and RTP/RTCP packet

normalization and pacing performed by the client-side proxy 104 is also the sameas in the

discussion of FIG. 1. The connection 214 between the client devices 102 and the client-side

proxy 104 is via a multicast connection such as an IP multicast distribution tree. The clicnt-

side proxy 104 and client devices 102 connect to the multicast distribution tree through a

multicast registration protocol, e.g., IGMP. A multicast router infrastructure is typically

required. The client-side proxy 104 then sends the RTP/RTCP data to a multicast address,

and does not communicate with client devices 102 directly. The client devices 102 receive

the live data from the multicast tree and deliver the data to the native media player which

renders the stream. The HTTP proxyinfrastructure is transparent to the native media player

which receives RTSP/RTPdata as requested.

FIG. 3 is a block diagram 300 for another embodimentofthe present invention. As

with FIGs. | and 2, it shows an RTSP server 108, the server-side proxy 106, the client-side

proxy 104, and. a client device 102. FIG. 3, however, showsa single server-side proxy 106

with multiple RTSP connections 112 to it. The server-side proxy 106 connects to a CDN

320 for remote storage of the generated segments. FIG. 3 also shows a more detailed view

of the client device 102, with an integrated client-side proxy 104. Each RTSP connection
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112 connects to the same RTSPserver 108. In one embodiment, the each RTSP connection

112 retrieves the same content, each encoded at a different bitrate, frame rate, and/or

resolution. The server-side proxy 106 makes multiple stmultancous RTSP connections 112

to the RTSP server 108 and recordsall of the different encodings so that it can service a

request for any ofthe different encodings at any time. In another embodiment, each RTSP

connection 112 retrieves different content and the server-side proxy 106 takes the recorded

streams and transcodes them into a plurality of encodings. In one embodimentonly the

video bitrates differ between encodings. In another embodiment, the video bitrates, frame

rates, and/or resolution may differ. Though only onc clicnt-side proxy 104 is shown,

multiple client-side proxies 104 may connect to the CDN 320. A client-side proxy 104 may

also connect to multiple CDNs 320.

The client-side proxy 104 is integrated into the client device 102, by being

embedded into a client device application 318. The client device application 318 integrates

the client-side proxy 104 software to provide direct access to the native media player 316.

This integration provides the highest level of security as the HTTP proxy security is

extendedall the way to the client device 102. Whetherit is the transport security of HTTPS

or the content security of the segment encryption, extending the security later to the client

device 102 prevents the possibility of client-side man-in-the-middle attacks. In one

embodiment, the connection 110 between the client-side proxy 104 and the CDN 320 is a

persistent HTTP conncction. In another embodiment, the connection 110 is a persistent

HTTPSconnection. In another embodiment, the connection 110 is a onetime use HTTP

connection. In another embodiment, the connection 110 is a onetime use HTTPS

connection. In another embodiment, the connection 110 is a persistent FTP, SFTP, or SCP

connection. In another embodiment, the connection 110 is a onetime use FTP, SFTP, or

SCP conncction.

In one embodiment, the client-side proxy 104 requests the first segment for the

stream from the CDN 320. In another embodimentthe client-side proxy 104 requests the

current segmentfor the stream from the CDN 320. Ifthe stream is a live stream, the current

segmentwill provide the closest to live viewing experience. If the client device 102 prefers

to see the stream from the beginning, however, it may request the first segment, whether the

stream is live or not. For some live events, the entire history of the stream may not be

saved, therefore, if the first segment does not exist, the current segment should beretrieved.
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For video on demand (VoD),the first segment should exist.

The client-side proxy 104 polls for the availability of the next segment using the

appropriate mechanism for the specific protocol, as should be familiar to those skilled in the

art. The segment parsing and RTP/RTCPpacket normalization and pacing performed by the

client-side proxy 104 is the sameas in the discussion of FIG. 1. The connection 114

between the client devices 102 and the client-side proxy 104 is the sameasin the discussion

of FIG. 1. The native media player 318 receives the data directly from the client-side proxy

104 and renders the stream. The HTTP proxyinfrastructure is transparent to the native

media player which receives RTSP/RTP data as requested.

To support rate adaptation, the client-side proxy 104 measures the bandwidth and

latency of the segment retrieval from the server-side proxy 106 or CDN 320. In one

embodiment, the client-side proxy 104 calculates the available bandwidth based on

download timeand size of each segmentretrieved. In one embodiment, bitrate switching is

initiated when the average bandwidth falls below the current cncoding’s bitrate or a higher

bitrate encoding’s bitrate:

int bandwidth_avg // average available network bandwidth

int video_bit_rate // current video encoding bit rate

if bandwidth_avg < video_bit_rate
for each encoding sorted by bit rate in descending order

if encoding.bitrate < bandwidthavg && encoding.bitrate ‘=

video_bit_rate
change encoding
break

end

end

end

In one embodiment, when an encoding changeis desired, the client-side proxy 104

will terminate its existing persistent HTTP connection and initiate a new persistent HTTP

connection requesting the data for the new encoding. In another embodiment, polled

approachesjust switch the segment type requested from the server-side proxy 106 or CDN

320 bythe clicnt-side proxy 104.

FIG. 4 is a diagram 400 of a segment format which may be used in accordance with

an embodiment of the present invention. The segment 402 contains a plurality of segment

frames 404. Each segment frame 404 consists of a frame header 406 and a frame payload
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408. The frame header 406 contains frame type information 410 and frame payload length

information 412. In one embodiment, the frame type indicates the payload channel

information (audio RTP, audio RTCP, video RTP, and/or video RTCP)as well as any

additional information about the payload framing. The frame payload length 412 indicates

the length of the segment frame payload section 408. The frame payload length 412 may be

used to parse the segment sequentially, without the need for global index headers and

metadata to be packed at the beginning of the segment. In one embodiment, the frame

header 406 is aligned to 4 or 8 byte boundarics to optimize copying of the frame payload

408. In one embodiment, the frame payload 408 contains an RTP or RTCP packet 414. In

one embodiment, RTP protocol pads the frame payload 408 out to a 4 or 8 byte boundary, to

ensure that the frame header 406 is 4 or 8 byte aligned, respectively.

FIG. 5 is a flow chart 500 describing the processof retrieving content from an RTSP

server 108 and generating segments in the server-side proxy 106. In step 502, the server-

side proxy 106 initiates a connection to the RTSP server 108, sctting up the necessary

RTP/RTCPchannels(i.e., audio RTP, audio RTCP, video RTP, and/or video RTCP). In

step 504, it checks to see if anew segmentfile is needed. In the case of a new connection,a

newsegment file is needed. In the case of an existing connection, the segmentfile contents

are checked against segmentfile capacity thresholds. In one embodiment, the file capacity

is based on the wall-clock duration of the stream, c.g., 10 scconds of data. In anothcr

embodiment, the file capacity is based on video key frame boundaries, e.g. 10 seconds of

data plus any data until the next key frame is detected. In another embodiment, then file

capacity is based onfile size in bytes, e.g., 128KB plus any data until the next packet. Ifthe

threshold is not met, processing continues to step 506. If the threshold has been met, or the

connection is new, processing continues to step 508. The processing from step 508 for

existing connections is described below. For new connections, step 508 simply opens a new

segment which is used during the processing of steps 506 through 516/518 for thefirst

segment of a new connection.

In step 506, the server-side proxy 106 reads from the RTP/RTCP connections. The

reads are performed periodically. In one embodiment, a delay is inserted at the beginning of

step 506, c.g., 1 second, to allow RTP/RTCP data to accumulate in the sockets. The data

from all RTP/RTCP channels is read, and ordered. In one embodiment, packets are inserted

into a priority queue, based on their timestamps. Enforcing time-based ordering simplifies
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the parsing for the client-side proxy 104. The priority queue allows data to be written into

segments based on different segment sizing criteria. In one embodiment, packet data from

the priority queue is later read and written to the segmentfile. This allows the segmentfile

to write less than the amount of data that was read from the sockets. In another

embodiment, RTP/RTCP packets are written directly into the segmentfile.

Oncea batch read is completed, the processing proceeds to step 516 to check and see

if any transcodingis required. If transcoding is required, processing proceeds to step 518

where the transcoding occurs. In one embodiment, a plurality of qucucs are maintained, one

for each transcoding. The RTP frame data is reassembled and transcoded using methods

which should be knownto those skilled in the art. In one embodiment only the video

bitrates differ between encodings. In another embodiment, the video bitrates, framerates,

and/or resolution may differ. The transcoded frames are re-encapsulated using the existing

RTP headers that were supplied with the original input. The encapsulated frames are

written to the corresponding qucucs associated with cach encoding.

Oncetranscoding is complete, or if no transcoding was required, processing

proceeds back to step 504 to check and see if the segment thresholds have been met with the

newly read data. The loop from 504 through 516/518 is repeated until the segment threshold

is reached in step 508.

In step 508, the data for the segmentis flushed out to a file and the file is closed. In

one embodiment, the threshold checking performed in step 504 indicates how muchdata to

pull from the priority queue and write to the file. Oncethe file has been written, the buffers

are flushed and thefile is closed. In another embodiment, the data has already been written

to the segmentfile in step 506 and only a buffer flush is required prior to closing the file.

Once the buffer has been flushed, two parallel paths are executed. In one execution path,

processing proceeds back to step 506 for normal channel operations. In another execution

path, starting in step 510, post processing is performed on the segment and the segmentis

delivered to the client. In step 510, a check is done to see if segment encryption is required.

If no segment encryption is required processing proceeds to step 514. If segment

encryption is required, processing proceeds to step 512 where the segment encryption is

performed. The segment encryption gencrates a segment specific sced valuc for the

encryption cipher. In one embodiment, the encryption seed is based off of a hash(e.g.,

MDS or SHA1)of the shared secret and the segment number. Other seed generation
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techniques may also be used, as long as they are reproducible and knownto the client-side

proxy 104. Once the segment has been encrypted, processing proceeds to step 514. In step

514, the segment is read for delivery to the client-side proxy 104. If the client-side proxy

104 has initiated a persistent HTTP connection to the server-side proxy 106, the segmentis

sent out over the persistent HTTP connection. The segment name, which contains

meaningful information about the segment (e.g., segment number, encodingtype, and

encryption method) is sent first, and then the segmentitself is sent after. Each is sent as an

individual HTTP chunk.

FIG. 6 is a flow chart 600 describing the processof retrieving content from the

server-side proxy 106 or CDN 320 andredistributing that content over RTSP connections

114 or multicast trees 214 to client devices 102 from the client-side proxy 104. In step 602,

the client-side proxy 104 accepts an RTSP connection from the client device 102. In step

604, the client-side proxy 104 then initiates a persistent HTTP connection to the server-side

proxy 106 or CDN 320. In onc embodiment, a persistent HTTPS connection using

SSL/TLSto secure the connection is initiated. The HTTP GET request indicates a segment

name. The segment name contains meaningful information about the segment(e.g.,

segment number, encoding type, encryption method, and the source content identifier). The

server-side proxy 106 associates the request with an existing backend process 500 (FIG.5),

or creatcs a new backend process 500 to service the request. Processing then procecds to

step 606 wherethe client-side proxy 104 waits for a segmentto be sent by the server-side

proxy 106. When the segmentis received by the client-side proxy 104, the client-side proxy

104 calculates the time it took to receive the segment, and uses that to compute a bandwidth

estimate. The bandwidth estimate is used at a later point to check and see if a rate switch

should be initiated.

The segment pre-processingstarts in step 608. In step 608, the segment is checked

to see if it is encrypted. In one embodiment, encryption is denoted by the segment name. If

the segment is encrypted, then processing proceeds to step 610 where the segmentis

decrypted. Once the segment is decrypted, or if the segment was not encrypted, processing

proceedsto step 612. In step 612, the segment is parsed and the RTP/RTCP contents are

retrieved. The RTP/RTCP headers are normalized so that port numbers, sequence numbers,

and timestamps provided by the RTSP server 108 to the server-side proxy 106, are

converted to match the connection parameters negotiated between the client-side proxy 104
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and the client device 102. The RTP/RTCP packets are then queued for transmission to the

client device 102. Relative time-based pacing is implemented so as not to overrun the client

device 102. In one embodiment, each packet is paced exactly using the difference in

timestamps from the original RTP/RTCPpackets to determine the delay between packet

transmissions. In another embodiment, packets are sent in bursts, using the difference in

timestamps from the original RTP/RTCP packets to determine the delay between packet

burst transmissions. Once all the packets from the current segment have been sent,

processing procecdsto step 614.

In step 614, a check is performedto see if a rate switch is desired. The bandwidth

estimate information gathered in step 606 is compared with the bitrate of the segment that

was just retrieved. If the available bandwidth is less than, or very near the current video

encoding’s bitrate, then a switch to a lower bitrate may be warranted. If the available

bandwidth is significantly higher than the current encoding’s bitrate and a higherbitrate

encoding’s bitratc, then a switch to a higher bitrate may be acceptable. If no rate switch is

desired, then processing proceeds backto step 606 to await the next segment. Ifa rate

switch is desired, processing proceeds to step 616 where the new bitrate and new segment

nameare determined. The current persistent HTTP connection is then terminated, and

processing proceeds back to step 604 to initiate a new persistent HTTP connection. In one

embodiment, the check for a rate switch may be performed in parallel with segment

decryption and parsing to mask the latency of setting up the new persistent HTTP

connection.

FIG. 7 is a flow chart 700 describing another process for retrieving content from the

server-side proxy 106 or CDN 320 and redistributing that content over RTSP connections

114 or multicast trees 214 to client devices 102 from the client-side proxy 104. In step 702,

the client-side proxy 104 accepts an RTSP connection from the client device 102. In step

704, the client-side proxy 104 then issues an HTTP request to the server-side proxy 106 or

CDN 320. In one embodiment, an HTTPS connection using SSL/TLSsecures the

connection. The HTTP GETrequest indicates a segment name. The segment name

contains meaningful information about the segment (e.g., segment number, encodingtype,

encryption method, and the source content identificr). Processing then proceeds to step 706

wherethe client-side proxy 104 waits for a segment to be retrieved from the server-side

proxy 106 or CDN 320. When the segmentis received by the client-side proxy 104, the
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client-side proxy 104 calculates the time it took to receive the segment, and uses that to

compute a bandwidth estimate.

The segment pre-processing starts in step 708. In step 708, the segment is checked

to see if itis encrypted. In one embodiment, encryption is denoted by the segment name. If

the segment is encrypted, then processing proceeds to step 710 where the segmentis

decrypted. Once the segment is decrypted, or if the segment was not encrypted, processing

proceeds to step 712. In step 712, the segment is parsed and the RTP/RTCPcontents are

retrieved. The RTP/RTCP headers are normalized. so that port numbers, sequence numbers,

and timestamps provided by the RTSP server 108 to the server-side proxy 106, are

converted to match the connection parameters negotiated between the client-side proxy 104

and the client device 102. The RTP/RTCP packets are then queued for transmission to the

client device 102. Relative time-based pacing is implemented so as not to overrun the client

device 102. In one embodiment, each packet is paced exactly using the difference in

timestamps from the original RTP/RTCP packcts to determine the delay between packet

transmissions. In another embodiment, packets are sent in bursts, using the different in

timestamps from the original RTP/RTCP packets to determine the delay between packet

burst transmissions. Once all the packets from the current segment have been sent,

processing proceedsto step 714.

In step 714, a check is performed to sce if a rate switch is desired. The bandwidth

estimate information gathered in step 706 is compared with the bitrate of the segment that

wasjust retrieved. If the available bandwidth is less than, or very near the current video

encoding’s bitrate, then a switch to a lower bitrate may be warranted. If the available

bandwidth is significantly higher than the current encoding’s bitrate and a higherbitrate

encoding’s bitrate, then a switch to a higher bitrate may be acceptable. If a rate switch is

desired, processing proceeds to step 716 where the new bitrate and new segment nameare

determined. Once the new next segment is determined, or if no rate change was necessary,

processing proceeds to step 718 where the pacing delay is calculated and enforced. The

client-side proxy 104 does not need to retrieve the next segment until the current segment

has played out; the pacing delay minimizes unnecessary network usage. In one

embodiment, a pacing delay of (D — S/B — E), where D is the duration of the current

segment, S is the size of the current segment (used as the estimated size of the next

segment), B is the estimated available bandwidth, and E is an error value > 0. The
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calculation takes the duration of the current segment, minusthe retrieval time of the next

segment, minus some constant to prevent underrun as the pacing delay. In another

embodiment, no pacing delay is enforced, to provide maximum underrun protection.

Processing waits in step 718 for the pacing delay to expire, then proceeds backto step 704

to issue the next segmentretrieval HTTP GET request.

FIG. 8 is a diagram 800 of the components of the server-side proxy 106. A video

stream 812 is recorded by the stream recorder 802. The stream recorder implements the

specific protocol required to connect to the video stream 812. In one embodiment the

protocol is RTMP. In another embodimentthe protocol is RTSP/RTP. In another

embodiment, the protocol is HTTP Live Streaming. In another embodiment, the protocol is

Smooth Streaming. There are numerous live streaming protocols, as should be known to

those skilled in the art, of which any would be suitable for the stream recorder 802. The

stream recorder 802 passes recorded data to the stream transcoder 804,as it is received. The

stream transcodcr 804 is responsible for decoding the input stream and re-cncoding the

output video framesin the proper output bitrate, frame rate, and/or resolution. The stream

transcoder 804 passes the re-encoded frames to the output framer 806. The output framer

806 is responsible for packing the encoded frames into the proper container format. In one

embodiment, the stream transcoder 804 and output framer 806 support the H.264 , H263,

MPEG2, MPEG4, and WVM,vidco codcecs and the MP3, AAC, AMR, and WMAaudio

codecs, along with the FLV, MOV, 3GP, MPEG2-TS and Advanced Systems Format (ASF)

container formats. In another embodiment, the stream transcoder 804 and output framer 806

may support other standard or proprietary codecs and container formats. In one

embodiment, the output framer supports RTP encapsulation as well as the custom segment

encapsulation described in FIG. 4. There are numerous video and audio codecs and

container formats, as should be knownto those skilled in the art, of which any would be

suitable for the stream transcoder 804 and output framer 806. The output framer 806 writes

the formatted data into segmentfiles in the local media storage 816. The output framer 806

is responsible for enforcing segment boundaries and durations. When the segments are

complete, the output framer 806 notifies the segment encryptor 808. If segment encryption

is required, the segment cncryptor 808 reads the segment from the media storage 816,

encrypts the segment, and writes the encrypted segment back out to the media storage 816.

In one embodiment, the segment uploader 810 is notified that the segment is ready
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for upload to the CDN 320 and the segment uploader 810 uploads the finished segments to

the CDN 320 over connection 814. In one embodiment, the segment uploader 810 uses

persistent HTTP connections to upload segments. In another embodiment, the segment

uploader 810 uses persistent HTTPS connections to upload segments. In another

embodiment, the segment uploader 810 uses onetime use HTTP connections to upload

segments. In another embodiment, the segment uploader 810 uses onetime use HTTPS

connections to upload segments. In another embodiment, the segment uploader 810 uses

persistent FTP, SFTP, or SCP conncctions to upload segments. In another embodiment, the

segment uploader 810 uses onetime use FTP, SFTP, or SCP connections to upload

segments. In another embodiment, segment uploader 810 uses simple file copy to upload

segments. There are numerous methods, with varying levels of security, which may be used

to upload the files, as should be known to those skilled in the art, of which any would be

suitable for the segment uploader 810.

In another embodiment, the completed segments arc made available to an HTTP

server 818. The HTTP server 818 accepts connections from the client-side proxy 104.

Segments are read from the media storage 816 and delivered to the client-side proxy 104.

FIG. 9 is a diagram 900 of a client device, wherein the client device native media

player 910 supports RTSP/RTP. In one embodiment, the client contains a downloader 902.

The downloader 902 is responsible for intcracting with the server-side proxy 106 or CDN

320 to retrieve segments. In one embodiment, the downloader 902 keeps track of multiple

server-side proxies 106 or CDNs 320. Segmentsare retrieved from the primary server-side

proxy 106 or CDN 320. Ifthe response to a segment request fails to arrive in an acceptable

amountoftime, the downloader 902 issues a request to an alternate server-side proxy 106 or

CDN 320. In one embodiment, the retrieval timeoutis set as a percentage of the duration of

the segment(e.g., 20%). The segments retrieved are written into the media buffer 920 and

the downloader 902 notifies the segment decryptor 904. If the segment does not require

decryption, the segment decryptor 904 notifies the segment parser 906 that the segmentis

ready. If the segment does require decryption, the segment decryptor 904 reads the segment

from the media buffer 920, decrypts the segment, writes the decrypted segment back out to

the media buffer 920, and notifics the scgment parser 906 that the segment 1s ready. RTSP

requires separate frame based delivery for audio and video tracks. The segments retrieved

use the format 400 detailed in FIG. 4. The segments are parsed by the segment parser 906
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to extract the individual audio and video RTP/RTCP frames. The RTP/RTCP framesare

extracted. and handed off to the RTSP server 908. In one embodiment, the segment parser

906 removes the segment from the media buffer 920 once it has been completely parsed. In

another embodiment, the segment parser 906 does not purge segments until the media buffer

920 is full. The RTSP server 908 handles requests from the media player 910 on the RTSP

control channel 914, and managessetting up the audio and video RTP channels 916 and

918, and the audio and video RTCP channels 917 and 919. The audio and video RTP/RTCP

frames are sent in a paced manner, by the RTSPserver 908 on their respective RTP/RTCP

channels 916, 918, 917, and 919. In one embodiment, the relative inter-frame pacing

information is gleaned from the RTP header timestamps. In one embodiment, the RTP

headers are spoofed to produce valid sequence numbers and port numbers,etc., prior to

delivery to the native media player 910.

FIG. 10 is a diagram 1000 of a client device, wherein the client device native media

player 1010 supports HLS. In one embodiment, the clicnt contains a downloader 1002. The

downloader 1002 is responsible for interacting with the server-side proxy 106 or CDN 320

to retrieve segments. In one embodiment, the downloader 1002 keeps track ofmultiple

server-side proxies 106 or CDNs 320. Segments are retrieved from the primary server-side

proxy 106 or CDN 320. Ifthe response to a segment request fails to arrive in an acceptable

amount of time, the downloader 902 issucs a request to an alternate server-side proxy 106 or

CDN 320. In one embodiment, the retrieval timeoutis set as a percentage of the duration of

the segment (e.g., 20%). The segments retrieved are written into the media buffer 1020 and

the downloader 1002 notifies the segment decryptor 1004. If the segment does not require

decryption, the segment decryptor 1004 notifies the m3u8 playlist generator 1006 that the

segment is ready. If the segment does require decryption, the segment decryptor 1004 reads

the segment from the media buffer 1020, decrypts the segment, writes the decrypted

segment back out to the media buffer 1020, and notifies the m3u8 playlist generator 1006

that the segment is ready. The playlist generator 1006 is passed the segment file location, in

the media buffer, by the segment decryptor 1004. The playlist generator 1006 updates the

existing playlist adding the new segment and removing the oldest segment and passes the

updated playlist to the HTTP server 1008. The playlist gencrator 1006 is also responsible

for purging old segments from the media buffer 1020. In one embodiment, segments are

purged from the media buffer 1020 as segments are removed from the playlist. In another
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embodiment, segments are only purged once the media buffer 1020 is full, to support the

largest possible rewind buffer. The HTTP server 1008 respondsto playlist polling requests

from the media player 1010 with the current playlist provided by the playlist generator 1006.

The HTTPserver 1008 responds to segment requests from the media player 1010 by

retrieving the segment from the media buffer 1020 and delivering it to the media player

1010. The media player 1010 connects to the HTTP server 1008 though a local host HTTP

connection 1016.

FIG. 11 1s a block diagram 1100 for another embodimentofthe present invention.

As with FIGs. 1, 2, and 3, it shows an RTSP server 108, the server-side proxy 106, the

client-side proxy 104, and a client device 102. As with FIG. 3, it shows multiple RTSP

connections 112 to the server-side proxy 106. The server-side proxy 106 connects to a

plurality of CDNs 320 for redundancy in the remote storage of the generated segments,

allowing for redundancy in the retrieval of segments. The client-side proxy 104 is

integrated into the clicnt device 102 application 318. The native HLS media player 316

connects to the client-side HLS proxy 104 via an HTTP connection 1122. The server-side

proxy 106 makes multiple simultaneous RTSP connections 112 to the RTSP server 108 and

retrieves the same content encoded at different bitrates, frame rates, and/or resolutions. In

one embodimentonly the video bitrates differ between encodings. In another embodiment,

the vidco bitrates, framerates, and/or resolution may differ. Though only one clicnt-sidc

proxy 104 is shown, multiple client-side proxies 104 may connect to the CDNs320.

In one embodiment, the client-side proxy 104 connects to only a primary CDN 320

via connection 110. In one embodiment, the primary CDNis configured by the user or via

the application 318. In one embodiment, if the request for content from the primary CDN

320 does not produce a response in a set amount of time, the client-side proxy 104 will

initiate a second connection 110’ to an alternate CDN 320’ to retrieve the content. In one

embodiment, the alternate CDNsare configured by the user or via the application 318. This

providesresiliency to the system against CDN 320 network access failures for either the

client-side proxy 104 or the server-side proxy 106.

In another embodiment, the client-side proxy 104 connects to both a primary CDN

320 and an alternate CDN 320’, via connections 110 and 110’ respectively. In onc

embodiment, the primary and alternate CDNs 320 are configured by the useror via the

application 318. The client-side proxy 104 issues requests for a segment to all CDNs 320.
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The connection 110 for the first response to begin to arrive is chosen and all other

connections 110 are aborted. This provides not only resiliency against CDN 320 network

access failures, but also optimizes retrieval latency based on initial response time.

In one embodiment, the connections 110 and 110’ betweenthe client-side proxy 104

and the CDN 320 are persistent HTTP connections. In another embodiment, the

connections 110 and 110’ are persistent HTTPS connections. In another embodiment, the

connections 110 and 110’ are onetime use HTTP connections. In another embodiment, the

connections 110 and 110° arc onctime usc HTTPSconnections. In another embodiment, the

connections 110 and 110’ are persistent FTP, SFTP, or SCP connections. In another

embodiment, the connections 110 and 110’ are onetime use FTP, SFTP, or SCP

connections.

FIG. 12 is a flow chart 1200 describing the process of implementing segment

retrieval resiliency between client-side proxies 104 and server-side proxies 106 or CDNs

320. In step 1202, the clicnt-side proxy 104 initiates a connection 110 to a primary scrver-

side proxy 106 or CDN 320 and proceeds to step 1204. In step 1204, the client-side proxy

104 issues a segmentretrieval request to the primary server-side proxy 106 or CDN 320.

Theclient-side proxy 104 also sets a timer to detect when the segment responseis taking too

long. The timer should be set for less than the segment duration (e.g., 1/5 the segment

duration) to allow cnough time to request the segment from an alternate server-side proxy

106 or CDN 320. In one embodiment, the timer may beset for zero time in orderto initiate

multiple simultaneous requests for segments from multiple server-side proxies 106 or CDNs

320. When the segment responseis received, or if the timer expires, processing proceeds to

step 1206. In step 1206, the client-side proxy 104 checks to determineifthe segment was

received or if the timer expired. If the segment wasreceived processing proceeds to step

1208, otherwise processing proceeds to step 1210. In step 1208, the received segmentis

processed. In one embodiment, segmentretrieval is paced, so segment processing includes

delaying until the next segmentretrieval time. Once segment processing is complete,

processing proceeds back to step 1204 where the next segment to be retrieved is requested.

In step 1210, the current segmentretrieval request has been determined to be taking too

long. A new connection 110° may beinitiated to an alternate server-side proxy 106 or CDN

320. In one embodiment, the current request is immediately aborted. In another

embodiment, both the current connection 110 and the new connection 110’ are kept open
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until a response is received and the connection 110 with the fastest response is used, and the

other connection 110 is closed. Once the alternate connection is opened, processing

proceeds back to step 1204 where the segment request to the alternate server-side proxy 106

or CDN 320 is issued.

For purposes of completeness, the following provides a non-exclusive listing of

numerouspotential specific implementations and alternatives for various features, functions,

or components of the disclosed methods, system and apparatus.

The streaming server may be realized as an RTSPserver, or it may be realized as an

HLSserver, or it may be realized as an RTMPserver, or it may be realized as a Microsoft

Media Server (MMS)server, or it may be realized as an Internet Information Services (IIS)

Smooth Streamingserver.

Streaming data may be audio/video data. The audio/video may be encapsulated as

RTP/RTCPdata, or as MPEG-TSdata, or as RTMPdata, or as ASF data, or as MP4

fragment data.

Audio RTP, audio RTCP, video RTP, and video RTCP data within the file segments

may be differentiated using custom frame headers. The custom frame headers may include

audio/video track information for the frame, and/or frame length information, and/or end-of-

stream delimiters.

Either fixed duration or variable duration segments may be used. Fixed duration

segments may be of an integral numberof seconds.

File segments may be encrypted, and if so then per-session cipher algorithms may be

negotiated between proxies. Encryption algorithms that can be used include AES, RC4, and

HC 128. Different file segments may use different seed values for the cipher. Per-session

seed modification algorithms may also be negotiated between proxies. A seed algorithm

may use a segment numberas the seed, or it may use a hash of the segment numberand a

sharedsecret.

Storage devices used for storing file segments may includelocal disks, and/or

remote disks accessible through a storage access network.

The storage devices may be hosted by one or more content delivery networks

(CDNs). A CDN maybe accessed through one or more of HTTP POST, SCP/SFTP,and

FTP. The client-side proxy may retrieve segments from the CDN.
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Data may be transferred between proxies using HTTP,and if so persistent

connections between proxies may be used. Segments may be transferred securely using

HTTPS SSL/TLS.

Theclient-side proxy may be a standalone network device. Alternatively, it may be

embedded as part of an application in a client device (e.g., a mobile phone).

The client-side proxy may cache segments after they are retrieved. The segments

may be cached only until the content which they contain has been delivered to the client

media player, or they may be cached for a set period of time to support rewind requests from

the client media player.

The server-side proxy may initiate a plurality of connections to a single streaming

server for a single media, and may request a different bitrate for the same audio/video data

on each connection. The client-side proxy may request a specific bitrate from the server-side

proxy.

The server-side proxy may initiate a plurality of connections to a plurality of

streaming servers for a single media. Alternatively, it may initiate a plurality of connections

to a plurality of streaming servers for a plurality of different media. Media data from

different connections may be spliced together into a single stream. For example,

advertisements may bespliced in, or the data from different connections maybe for

different viewing angles for the samc video event.

The client-side proxy may stream the segment data to the media player on the client

device, for example using appropriate RTP/RTCP ports to an RTSP media player.

Streaming may be done via IP multicast to client media players. The server-side proxy may

act as an MBMS BCMCScontent provider, and the client-side proxy may act as an MBMS

BCMCScontent server. Data may be madeavailable to the client via HTTP for an HLS

media player.

Theserver-side proxy may connect to the streaming serverto retrieve a high bitrate

media. The high bitrate media may be transcoded into a plurality of different encodings,

e.g., a plurality of different bitrates, a plurality of different frame rates, a plurality of

different resolutions. Independent file segments may be generated for each encoding. A

plurality of containcr formats may be supported, such as MPEG-TSformat or a custom

RTP/RTCPformat. All of the different encoding and format segment files may be made

available to the client-side proxy throughthe storage device.
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Theclient-side proxy may request segments from a single server-side proxy. A

segment may be retrieved from an alternate first proxy if the primary first proxy does not

respond with an acceptable amountof time.

Theclient-side proxy may request segments from a plurality of server-side proxies,

and may acceptthe first response that is received. Requests whose responses were not

received first may be cancelled.

Though various implementations of both the client-side proxy and the server-side

proxy are described, the hetcrogencous permutations of multiple clicnt-side proxy

implementations and server-side proxy implementationsare all valid. Any client-side proxy

implementations, be they embedded in a mobile device application, or as a stand-alone

appliance, using multicast or unicast delivery, may be paired with any ofthe server-side

implementations, be they delivering segments via a local HTTP server or through one or

more CDNsand connecting to one or multiple streaming servers. The abstraction of the

tunncling functionality provided by the clicnt-side and server-side proxics allow for

transparent usage by the client device. The client device connects to the client-side proxy,

regardless of its specific implementation. The server-side proxy connects to the streaming

servers, regardless of its specific implementation. The client-side proxy and the server-side

proxy communicate with each other to transparently tunnel media content from the

streaming scrver to the clicnt device. The tunncling may be through various physical

transport mechanisms, including using a CDN as an intermediate storage device. It should

be understood that the examples provided herein are to describe possible independent

implementations for the client-side and server-side proxies, but should not be taken as

limiting the possible pairing of any two client-side or server-side proxy implementations.

In the description herein for embodiments of the present invention, numerous

specific details are provided, such as examples of components and/or methods, to provide a

thorough understanding of embodiments of the present invention. One skilled in the relevant

art will recognize, however, that an embodimentofthe invention can be practiced without

one or more of the specific details, or with other apparatus, systems, assemblies, methods,

components, materials, parts, and/or the like. In other instances, well-known structures,

matcrials, or operations are not specifically shown or described in detail to avoid obscuring

aspects of embodiments of the present invention.
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CLAIMS

What is claimedis:

1. A method of operating a server-side proxy in a streaming data delivery system,

comprising:

connecting to a streaming server to receive streaming data;

ageregating the streaming data into file segments and storing the file segments on

one or more storage devices; and

transferring the file segments from the storage devices to a client-side proxy for

delivery to a client device.

2. A method according to claim 1, wherein connecting to the streaming server comprises

creating one or more real-time streaming connections.

3. A method according to claim 2, wherein the real-time streaming connections include a

plurality of connections to the streaming server, the connections carrying the streaming data

at respective distinct bit rates.

4. A method according to claim 2, wherein the streaming scrver1s realized as a sclected one

of Real-Time Streaming Protocol (RTSP) server, an HTTP Live Streaming (HLS) server, a

Real-Time Messaging Protocol (RTMP)server, a Microsoft Media Server (MMS)server,

and an Internet Information Services CIS) Smooth Streamingserver.

5. A method according to claim 1, wherein the streaming data includes audio/video data

encapsulated as a selected one of Real-Time Protocol/Real-Time Control Protocol

(RTP/RTCP) data, MPEG Transport Stream (MPEG-TS) data, Real-Time Messaging

Protocol (RTMP) data, Advanced Systems Format (ASF) data, and MPEG-4 (MP4)

fragment data.

6. A method according to claim 1, wherein the streaming server is onc of a plurality of

streaming servers, and connecting to the streaming serveris part of establishing respective

connectionsto each of the plurality of streaming servers.
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7. A method according to claim 6, wherein the connectionsto different streaming servers

carry respective distinct media.

8. A method according to claim 7, further including splicing media from distinct ones of the

connections to create a single output stream to be delivered to the client device.

9. A method according to claim 1, wherein transferring the file segments includes

encrypting the file segments from the storage devices to form encrypted file segments and

transferring the encrypted file segments to the client-side proxy.

10. A method according to claim 1, wherein aggregating the file segments includes

transcoding the file segments into transcoded file segments and aggregating the transcoded

filc segments for stormg on the storage devices and transferring to the clicnt-side proxy.

11. A method according to claim 1, wherein the file segments contain data of distinct types

differentiated through use of custom frame headers each including media information,

length information and an end-of-stream delimiter.

12. A method according to claim 1, wherein transferring includes use of a secure connection

between the server-side proxy andthe client-side proxy to securely transfer the file segments

to the client-side proxy.

13. A server-side proxy for use in a streaming data delivery system, comprising:

memory:

a processor;

input/output circuitry for connecting the server-side proxy to a streaming server, one

or more storage devices, and a client-side proxy; and

one or more data buses by which the memory, processor and input/output circuitry

are coupled together,

the memory and processor being configured to store and execute program

instructions to enable the server-side proxy to perform the method of any of claims 1 to 12.
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14. A method of operating a client-side proxy in a streaming data delivery system,

comprising:

connecting to a server-side proxy to receive file segments of a data stream originated

by a streaming server to which the server-side proxy is connected;

parsing the file segments to generate native live stream data; and

serving the native live stream data to one or moreclients for live media playback.

15. A method according to claim 14, wherein serving the native live stream data to the

clients comprises creating a respective real-time streaming connection to the respective

client.

16. A method according to claim 15, wherein the real-time streaming connection is selected

from a Real-Time Streaming Protocol (RTSP) connection and an HTTP Live Streaming

(HLS) connection.

17. A method according to claim 14, wherein connecting to the server-side proxy includes

establishing a persistent hypertext transport protocol (HTTP) connection with the server-

side proxy.

18. A method according to claim 14, wherein the file segments are encrypted as received

from the server-side proxy and parsingthe file segments includes decrypting the file

segments to form decrypted file segments, and serving the native live stream data includes

streaming data from the decrypted file segments to the clients.

19. A method according to claim 14, further including monitoring for a need for a rate

switch to change a rate at which the data of the file segments is received from the server-

side proxy, and upon detecting the need for a rate switch then closing an existing connection

to the server-side proxy and establishing a new connection to the server-side proxy for

recciving the file segments at a new rate.

20. A method according to claim 14, wherein connecting to the server-side proxy includes
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use of non-persistent hypertext transport protocol (HTTP) connections with the server-side

proxy, each non-persistent HTTP connection used for receiving a respective one ofthe file

segments.

21. A method according to claim 14, further including establishing a multicast distribution

tree to which the clients can connect, and wherein serving the native live stream data

includes transmitting the native live stream data to the multicast distribution tree for

delivery to the clicnts.

22. A method according to claim 14, wherein each file segment is requested from a plurality

of content delivery networks coupled to the server-side proxy, and a requested file segment

is received from a first one of the content delivery networks to deliver the requested file

segment.

23. A method according to claim 22, further including:

monitoring for delivery of the requested file segment via one of the content delivery

networks, and receiving the requested file segment from the one content delivery network if

delivered thereby; and

in the event that the requested file segment is not delivered by the onc content

delivery network, then requesting the file segment from another content delivery network.

24. A method according to claim 22, wherein:

multiple parallel requests for the requested file segment are submitted to different

ones of the content delivery networks;

the requested file segment is received from the content delivery network having the

fastest response; and

the requests to the other content delivery networksare.

25. A client-side proxy for use in a streaming data delivery system, comprising:

memory;

a processor;

input/output circuitry for connecting the client-side proxy to one or more client
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media players and a server-side proxy; and

one or more data buses by which the memory, processor and input/output circuitry

are coupled together,

the memory and processor being configured to store and execute program

instructions to enable the client-side proxy to perform the method of any of claims 14 to 24.

26. A method for distributing live streaming data to clients, comprising:

connecting to a streaming server from a first proxy;

aggregating streaming data into file segments at the first proxy;

writing the file segments to a plurality of storage devices;

transferring the file segments from the storage devices to a second proxy;

decoding and parsingthe file segments at the second proxy to generate native live

stream data; and

serving the native live stream data to clients for live media playback.

27. A live streaming system for distributing live streaming data to clients, comprising:

a first proxy configured and operative to (1) connect to a streaming server, (2)

aggregate streaming data into file segments, (3) write the file segments to a plurality of

storage devices, and (4) transfer the filc segments from the storage devices to a second

proxy; and

a second proxy configured and operative to (1) receive the file segments from the

first proxy, (2) decode and parsethe file segments to generate native live stream data, and

(3) serve the native live stream data to clients for live media playback.
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SpyEye Manual       
 ° Iinstallastiy

 
fristailation : Intra

  
Thea SpyEve main installation tool is a GNU/Linux Gabian 5.6 virtual systers. In this overating systern there are atready installed a webserver with the adrnin formgrabber as well,
sshecii and other tools. To use the operating system ¥ <isrimeded. 

* Note. The type of hard disk controller rriust be strictly SATA,

[Ea sata nad
* Note. [nfo te login into the system:
Login: user
password: pw
root passwii pw

 warksps:

 i workspace

* Note. For Fle sharing with this OS, add # permanent foldar in the virtual rnachine settings, named Input and restart the virtual machine:

{53 input folder

Enstailation : Server : Main Cp

Admin home needed to take into account statistics for bats, as well as to control them. Far it to wark you need a webserver installed wserver.
 h PHP support, as well as am 

 itis divided inte primary and client side. Attached to both instailers. The server part is & single gate.phe. The client part is in Sedeown

installation, (fo install using a virtual OS, supplied with Spyf&ye)

  
 

ribution of ary to put the di ryer side Main CP (gate. tez}.
 approoriat:

  

 the server, where we put the gate:      

  dani~3 ssh coot@i62,    
 Go te the webserver folder of the most, where will lay the gate, and, create a folder for the admin panel, cavigate to the distcibution aed uripack it:
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# cd /tmp
#omkdiec /var/www/

gat  taz

  forosForse!
 

 
    

Create a database for th   
 efwow? cp# myscl ~u

 Pas swe.  
  

 

24, qie CREATE DATABASE gaia. 1 atteched M4

7. my: e TDENTIPIED BY ‘< 3. query CK,
 
TE, UPDATE, CR    ysql> ALTER, BPOP GN gate.* TO a

 IDENTIFIED BY

suy sql>
- Query CK, ©
 LCELETE ON gale.* IC  

woa8
 
Now, in Srewser, run installer (this foideris fourd in the root of the adroin pane? distribution). Sp
admin ares. Finally, you shoud have samething like this:

 ecify the details of the OB arid user, created above. Set the password to log inte the 
 

gate installer
 

After clicking the Install button you should get 2 log like th 

{EE gate instrailer log

  The server sida is set. Now we need to put the client side (found in Seceb). Sircilarly to the previous installer, specify the del of tne DB and user, and, set a password far togin to
the admin pan 

 Now, regarding the admin panel settings:

acing geaip-base 
  )_update iF 1, ajo

s skipupdateconfig —
  wi nat be issued;

bet config will nat be issue   
= auto_relgad panels — if 1, then the panels with the clack and online-bots statistics will autoupdate every 5 seconds;
« bors_manitering_gesip, ie — if 1, then the geoip-infor tion about the hots int Bots Monitering tab not be displayec      

  
 

  = Jogin — login fram unlimited account service at
s password password from unlimited account servi: eat
 s rdp_server_ip -— ip, on which is started the ROP-daerdon (disniayed in the ROF tab);

© rdp_db -- rriysq! DS;
a rdp_best -- IF, where is the rriysai:
= rdppassword — mysq! user password:
* rdptable — table with nation about the bots (guid, part, display ontions);
=» rdp_user --- mysq! user;

  
  

 a &e_db — raysqi DB;
« %c_host -- [°, where is the mys
= be_password — mys} user password;
= fetable — table with infermaton about the bats (guid, iz, part, geoip in
« b¢_uUser -- mysql user;

 
 

  
 « be_sarve

a beshow_gecip -- iF 1, ther
=~ bo _shew_bots_ip — if 1, th

 _ip -- ip, on whichis the BC-dsemian;
y the SOCKS, FTP Backconnact tubs will also display information

the SOCKS, FTP Backconnect tabs will be displayed bets IP;
 
    

There is a singte interface for managing files in the adrnin panel. itis implemented in the Files tab: 

EE mainepfies uploac

There are three types of jobs created:
© ugdate bot exe

Ex. 1002 - Page 559



Ex. 1002 - Page 560

© ugdate bot config
» load third-party exe
  Respectively, when loading 4 file, need te specify what type of job it is. Wher you create jobs in the Create Task tab, you can specify additional! options:

i
a create task

  

i

 ader. (exe's, packed with UPX are aise
supported);

»® repiace exe —in this case will replace the bot executasle;
bina 3 OF thi

 
       ader OFF]; {TOR}; — bots exe's loaded, without any ru
loader [ON}; raplace exe FOFF]; -- downloa bot file will be run thro i pe-loader, and, is not durnped ariywhere;

& loader [ON]; replace exe [OM], — dowrlosded botfile will be run through pe-loader, and, falls over bot exe;

fal
edacuse build-irt

© use Guild-in
  

 

To specify the Load exe type you also have the use build-in pe i¢ader option, but keep in mind that the exe entry point using PE-ioader should be strictly a prototype
3 (__stdcall EMP TYENTRYPO 

phase of thie jok, you can select specific bots, for which this task is intended 
in the Task Statistic tab you can see details of the old job:

 
is maincp crces ke (Stop)

installation : Server : Backconmect Server (for SOCKSS & FTP)

To work with the bots through the SOCKSS protocel, or FIP, there's a backconnect server for GNU/Linux.
instalation. (ho instell using 4 virtual OS, supplied with SpyEyea}

  
 usar@cebian:~3 ssh ;root@lés. 185.19. 177 %s h  

  

  

 
 
 

 
 

 

 where you want, unpack, set up rights:    

 
home’ ROR chimed         

Create a DB for the be-server acd mysql-user for
       

 dz end with ; or
3407
inyd-log (Deb. 

  DATABASE jbo; i

 

 > GRANT
SK, 0

ULPOAGS, DROP, AlLER, CREAN ON bo.* WO Tuc  
   

    
bouwes BOF sano config. cul

   L. -weesion= encoding>
PTL 
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pGeclPCity.dat>

 siocalhest>
> >

 
 
 

       
Accordingly, the config vari

 
   
  
 
  

 
   

         
  

  

  

 
 

* socks port — port, on wi ver listens for con
» figort -- port, on which the sarver listens for connect
© pingtimeaue —-- time to wait for reply fi & bot (sec.). IF doesn't (hy defautt 5 secp;
° threadsnumber -- number of threads fo process network sarveractivity;
» ftp_Hmit -- maxirnium number of sockets, v Yy be occugied by the ftp-plug
© socks limit axicoum number of sockets, which rnay be occu ocks-plugin:
° Jogin — usermame for the FTP-server authentication (used onlyinthe fip-plugin);
» password -- password for the FTP-server authentication (used oaly in the fto-plugin);
© geaip_path — path to the geoip 05 file (GealPCitydat by default),
» mysgl_host — host machine, on which is running the mysql daemon;* user -—-— no comments
> ass — 70 comments;
° info about bats;
» mysqltable -- DB, to write info about be 

 

Be
8.

 Now Tf rie a daamoent! os)

          
autostart by analogy on howis described in the Collector's instalation.

 
   

 
  

OS ¢Os, b  a collector is a da onder
ne daemon bist
rig requ

GNU/Linune d Sausages. Tt uses encryption and LZO-
un under GNUSLirnx and mysal. In additicn,    r its instalat

 

 

 
 

ek omiedir
homet  

soian:~$ sep fhore/user/besktop/iopurfai  reot@1 eS. 18.19.07 T's password:
distr. las 91% ZIGOKB 1.8MB/s 06:01 EVA 

issuing rights  
   howe, _

homes _
eg ps
home/
houes  
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total 1788
dry 4026 

    
Now create & DB for the collector and the mysql-user with¢ nts to thi a Go &

 
 
 

 
qi -u root =p i

i monitor. Commands end with ; or \g. i
: ion id is 39407 i

10. 81a-24tLleanyt-leg (eo  ve (she for help. Type te! Le   2 Type  
 ¥. mysql> CR

Query CK, 1
TH DATABAST test timep;

   

 
   yegqi> CREATE USER +
Query CK, 0 rews attected (0.90 seck

iuysql® GRANT
Query CK, 6  

  

 
  L. GY nano 2.0.7 ec. contig

 

 
 
 
 
 

HERERRHAH EHH A ESHA AL SHEAR EHAE SHAPE RAR HE RH HS HEARS Hol ReHe PR teERERASet
# [Spykye#  

 
 

 
listening pork Lo

nmnections 
roughg in ome minute.  

 

  
  

 

   
 

  
 

 
Low 1oz4/4 fact number Little twhen My atts :

up ell loys wil DB. :
. thie limit Llcctor will stop accept mew conncetions. :

   
 

is told to b

  an say that this

mext Li ms or fi ° eri rai oc t i max — 1024

  
  Netaufh contic
   

mtigs/sec. contig.tabiGet t

 
 

  
 

Prom 

cet qu
OpenedTable
Set a
Qpoenea file: Table name (4)  

Ex. 1002 - Page 562



Ex. 1002 - Page 563

cet 
 
 
 
   

 
Table

  

 
 
 

Get op :
Opened = 3able :

rable ng

 

 Config succes:

O1AG
Bw aw 

 MySQT .2 Tohoes  KAA READR ERED READE RADA ERE LH REAR ERAAP EEA EE TREES EE,  frmaps ga hesktrmep; pork:
 

socket ... 
 

iptor = 3
Lo ay

to make

Now 1 become a >) i  
 The provided ria he daemer  er, ailews you Lo view perfermarice statistic

  

 
- So30:/homef sec# ./seccmanager

   

    
 

  

 
 

 
 

  
  

2 3. ada — (INADDR_ANY—} ¢
4. GO:01:41; CHILD uptane 4l;5.
8.7

a no
 a o with some  
Pal. Mamorized ceports queue si
Pia. \ Tnitializathion bot in new aoplication/PC

\ \ Repor inke DealaBese \ cpocts by
MiBytes   

  
i \ \ \
LEST, Trout 2c HinBot ValidRepneg Loa “a SoeQo 9      

* Attention? Oo not forget tc add a line in the autostart (se, after a regcot, the collector is up and again taking the fegs).
something |

    
 

ch multiuser cunlevel   on suc ss ox any other 
ox disable this script just

  4BORHEROSSEOSEReHetkae
cetaulh this scriph doas nething.  
  

he daarnon, use the program iitall, wail (8 meutes), until it "closes" the * Note, To restar'  bused by collector and restarts it.
* Note. To deterrnine - wether a port is busy or not on the server, use something like thi  

 
 

      

Ex. 1002 - Page 563



Ex. 1002 - Page 564

Enstailation : Server : ROP Backconmect Server 

The serveris a statically compiled binary for G  (U/Linux OS. The daemon stores the info about the connected clients in a mysq! database,
Installation, (to install using a virtual OS, that comes with SpyEye)
in the permanent folder Input you must put the RDP. daernon distribution (debianx8G.tarb22),

 
 Unpack the archive, install the daemon:       

 
 
 

 

 
1. roct@Lé3.185.19.177

= swore:
io.
bo4
i 5. SE Lit

  install  
nit.d/dae;  

 ..finit.dfe
 

 
 

 
 

 

» finite, d/de
 

 
..finit.d/dae
 

ed in the main edmin panel settings, for a list of bots included with ROP-plugin):
 

  
Entcr palWelcome to tis ‘\gehowee . Your Mys  B.

3.
7. oe (he For help. ype ‘vc! outfer.
a DATABASE

; £0. ow affect :

 
 

 

sqlCREATE USER ‘rc
Query CK, G rows affecter 

 DELETE, UPDATE, DROP, ALTER, CREATE ON0.30fo.3     
   

Edit the daemanconfig:
   

 
 

 
 

1. $s Luip/disls /Gebiai.x86# uane felc/dae/dae.coul    
L. SNU  
oo
ao 
ue

ike
 

 rhbisl. dog
 beeje  
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You can change the following parameters (riarked with red are the ones that need to be changed):

 

  
  
 
 
 

  
 

  

   

 

  

    

 
 

 
 

° mriments;
* part -- mo comrnen.
. th — vo comments;
° — ng comments;
* “no comments;
° e_rdp — no comments;
° table_logs — co comrnents;
» jag_enabied — flag weite debugging inforrnation in cfg_.
. {e_tog — path to the file where you want te dump debug information;
° le logmaxsize He_log;
* je_blacktist ~- path to the file where will be dumped info on client, which sends the wrena
> on which the server ents;
° :
* rdip port ok keonriect to connected clients (for each newconnected cent ports are aliocaiad in order},
ea Mae - string up to 1S characters, indusive, necessary te authenticate clients;

Now you can start the dae:    
- 8 86H  

Everything. Daemon is ready.

installation : Client: Formgrabber CP (Collector's GUE} 
  
 
 

For s i ae a The admic: pacwel is not intended to be found on the server. This is a clent
applic . tua system ¢ 5 uta dascri 7 the Intro},
S irsk connect to the server, where is the collector DB. To do this use the gneume-rterminal and the SSti-client 

  

        
mysql> CREP IDENTIFIER
Query CK, 9    

ql> GRANT
Query CK, &

DELETE ON = 
 ql fat.

nanos /ate/mysol/n
ifmysg) fusrfshars/man/mani f/rysg!).l.gz
 

 

       aditer like nano (Cir} + W) for string network, Among      
 

 
 
 

 of ssip-net » only on :
thost. waich is more Sue. : 
 
 
  

 ao  # fetc/finit.d/mysgl reshart

   
 

  
 

Now you can open iceweasal (frefox name in Debian, ice weesel...) and sraceed about the collector and the mysgl-userDB, created above:

a ormgrabher instraier

After clicking Install, must be something tike th 

ss tnemgrahberinstratier togs
Now you can ga ta the admin pane! and search for ings:

grabber interface
 

  
 | Hawi 
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4 Zz ® 5  Harehware Identificater. Scroll box, press Otri + C and send this text to the author to obtain the contents of the file serial.txt.

Configuration : Client : Builder

    
Accordingly, builder setting a

» Encryption key -- key, with which is encrypted the config.bin. The key is hardcoded in the bot. Be careful, if you want to usdate the bot config. If you specify the wrangeet
key, which was used in the construction of the bot build, bots will not be able to update the config

 

 
 
 

» Clear cockies every startup — if enabled, the bot, avery time (whether starting the OS or s'
* Note. JF the FF browseris already running, the cookies are not deleted, as FF has an open ha

 r upgrade} will delete th:database file cockies.s:  
* Delete non-axpertable cartificahas — in Windeyv

use them, but they cannot be exoorted, say ina * ofnet stay very, § part the cert
to the collector. I.¢ @ one hand, us

  
 

erypto vault (this is a store and uses the IE browser) thereis a specia: typeof certificate - rot-exportable Le. you cari
and send to the collectar. In this case, SpyEye can also delete all the cert a ser didyou import, bet nas already uncheck non-exported ca can be sent

other hand - effectively.

  
  

 
  

    cation veiticaaty, on
° Bont send http-raports -- it's a fact, that in the HTTP -recards is a lat of rubbish. Thereby,

with Bagic-auth data}. This is what this option does
, it makes sense to send HITPS-reparts only (wall, and, in plus, HTTP- reports 

 © Compress bulld by UP --- if enabled, the builder compress the bet build with  If your crypter dees not cornpress the original file, it ate enable this option. 
kes 5 

   
* Bale built without 2271 support -- di ite the use of HTTP 2.0 pratecal in the FF injections, and the absence of the Acceot coding header, some webservers may sendoamprassed cantent (far example: gzip, defiate). In this case Spyfye uses the ziib library, to extract the content and its injected data. So, if you helieve, that the resourcesfor» vers, with whomyou do your wet ansmit in anu pmpresced farm ( ast Cases is exactiy what happens), feel free ¢ ack this option. Wi

option enabled, the builder generates a bot build without zlib suport. This wil ve 15-16KB ¢or build size (it we compare the difference between UPX compressed builds).However, ir case of, if will core the compressed content in FF, the bot will not ‘be agle te inject.

   
      

  
    
 

 
 

» Make LETE-config -- the options s:
that when creating a bet build, conmakes sense to build without thers,
hecessary tools. This approach can

acifies whether to include in config.bin such things as: webinjects, screenshots and plugins (except customcorinactor.dll}. The fact is,
bin is ALWAYS hardcoded in the bet's bady. In turn, this affects the size of the bot's exe. Te. if you u: eavy webirjects or plugin:

and place the config.bin is the sain admin panel. In this case, after infection the bot will load the config frorn the panel with all the
ignificacdly reduce the size of the goat build.

      
  

  
 
 

 

° EXE name -- bot file name, used in the sysaters (after installation).

y. Tn particubsr
rity af Got honet be able to remove the hooks

Spvtye kills Rapport threads and biocks 'f frorn writitg debu¢
module, any type of anti-rootit like

the module Anti-Rapport.
 
 
   

 » FF wehinjects — this ions spe niections will work.
 * timestamp — builder date creation (nurniber ofseconds as 70.01.02). Identical within the same builder version

The process of creating the build and its config is as follows:
» Creating a fi weight canfig.tin — you must enatle the checkbox Make LITE~config and click Make config & get Guild.
» Creating a bot build with a lightweight config -- please ciick on the Gat build.
© Creating a full-fledged config.binm -- you must uncheck the box Make LETE-config and click Make config & get Build.

 Thus, inthe builder fcider will appear canfig.bin, that can be uploaded inte the bot admin panei, which cari be shipped.

Configuration : Chlent : Bulider : plugins 
In builder directory there's a folder plugins. It may contain plugins (*.
control panel. This config file should be named, as a resuit of concatensting the plugin's name and the postfix ".cfg.dii", Exarcpie. socksS.dil and socks5.dil.cfg

Hand configs (di. cf). The narrie of the dil defines the piugin name, that will be dispiayed in the main 

For repre information about piugins see SpyFye Plugin's SDK,

Configuration : Clleant : Bullder : screenshots 
a folder screenshots. ltr when you click the mouse.

@screenshat is the mouse cursor
s with the rules of c

   
Rules file contains lines, , gach of which must contain five variables, separated by spanes. Formatis as foilows:
WURL_MASK% MWIDTH% SHELGHT% SMINIMUMCLICKS% %MINTMUM SECONDS%

* URLMASH
 URL rriask

desc
 tion loads the URL resource that fails urider the mask, then turns on the aporepriate rule to send screen: If the applic hots. Usually controlied by faur vriabies, 

* Attention! In the mask is only supported an ” ensk). It riaans zere or more charact  
> WIOTH

‘The width of the screenshot.
° HEMGHT

The height of the screenshot.
o MEREIMUMCLICKS

Miniraurnuriber of clicks, which will be done before the relevant rule tucris off.
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o MINIMUMSECONDS
 Minirnum number of seconds that pass before, than the corresponding ruleis dissbied. 

 Rule off only when the last two eptions will work (MINIMUMCLICKS ANO MINIMUMSECOMOS). Bath!

The question arises - why the jast two variables are teeded? Because there 4ampie, Because the browser have many tabs}. Therefore, there @
ofthe HTTP -resource, soecified in URLMASK) turns off screensho

 
 

problems connected with screenshots. The Gat has enough difficulty ta know whar
t the last two variables-one way or another (be:seed on the number of clicks arid timerule.        

# Attention! Note the syntax. Go not add a hyphen tine (Enter) at the end of any ruijes file. When joining files, the builder will add it autornatically.
w5 gs aR o Gain, Ma need to add enter at the end of the screenshots r file: 

 

Configuration =: Client: Bullder : webinjects 
  

 
 
 

ra's a folder webinjects. Tt ray
the flags of mask sat_uri. Nevertheless, supperted flags, qued below.

50, @ little bit about the syntax.
Thea file contains the cules in blocks of four tags. set_url, data_before, data_inject, data_after (well, plus tag data_erul indicating the end of the tag with the data_)

This tag specifies the miask, which triggers @ corresponding injection rule. As well as in Zeus, synactically supports such things as "*" acd "a".
 tain various fags (Gy defacit the A

       
 
 

» @ — means that tt jection will be made only esources that are requested by the GET mothe:

4 that the injection will be mace ory for the 1resources that 4 aquested by the met mothad.ag for grabbing content between the tags data_hefare and data_after ire! 2. this case, first part of grabbed data will he nasted from cartent a!

inject tag. (Note. Risped content can befound in the formgrahber panel, specifytrfeed couren criteria Hooked Function i "GRABBED DATA’)r ta the flag b, except, that the ripped content is not inclided and the contents of tags databefore and data_after.
« databefore, data_iniect, data_after

 
   

  

There are threesituations when dealing with these tags:
 

  
 

> Tf you find content on the mask databefore and the cocbents of the tag data_after empty th: wooo bot insert the contents of the tag data_injeact ASTER
data_before.

+ If you find content on the mask data_after and the contents of the tag data_before ernoty then ... -- bot insert the contents of the tag data_inject BEFORE
data_after.

> Tf you find content an the mask data_hefore and data_after then ... — bot will replace the content between the Ss databefore and data_after including   contents of tag data_inject.
 An example of a webdinj

webinjects_exaiyplea
 

* Note. In practi
some resources (7browser cari
making

 
 e, it was found a quite amusing behavior of BOA webserver using HTTP 1.0 (this versian

oss, *js) the webserver returns cormipressed content, while in the Content-En
nize the contentof suchreso!le (wi

: in the browser Mozilla Firefox}, On
i t to the fact t

ICS Invalid Canter and the page displays incorractly. Despite of such wabserve: i e xe ith tt id of Sp

  

 

 
 
 

       aTIpey  
Differences Getween Spyfye injetions and Zeus i ties:

» The sequ
* Zeus a

css" or

 2 of tags data_before, data_inject, data_after — is important fo
a standard injects CSS and IS content. However, to inject such content in Spy38" (depending on the type of content for injacSEHD)actly implemented the fag H — in Ze!

pyEye the special character "#" is cornmipletely analogowcharacter”

 us is not important
a rule, as the tag set_url to contain a tine 

 

  
  used £

OUR Cirt  
   dg the special character "#" used as synonim to "zero or one 

Configuration : CHent : Bullder : collectors.txt 

Tn the builder directary must oe located the file collectors.txt. In the file you can register a list, each tine has the following format (the ines are serareted by Enter):
ip:port
La. that IP, where is setup Spycye Collactar and PORT, on which the collector listens Far logging

  a of IF you can specity 4 doraain name (Aittentions
coliectar - TCP, and not HTTP)

iat dos  name, without the prefix “http. " for protocol, used to communicate with the

* Note. Setter bind 

 

ctor on any known, “cam n” port (20 or 443), bec ein same local area netwerks, routers can block the sending of traffic ta the non-standard port  

* Note. [fF you can nat send data to thefirst coll
the end of the list and sending the data

 
 

or, the bot will attempt to send da
d nok succeed, it will save the report in a sp

ch Celcn 
{the interval beatw ver atternpts is 0.1 sec}. LF thie bot reaches try fo send the data at then t lags sending

Configuration i Chient : Bulider iCustomconnector 
cusiomeognnmactor is a plugin for bot
following format:

nnection with the main adr  th 

urd; interval_in_sec  
 

° url — path to gate (gate ee) threugh HTTP or HTTPS orotocol.at 4 particular gate.
 

» interval_in_see — ir 

  
 

nthe variable ENT_PERIOD ic the rain adrnin panel. Otherwise, the adrniin panel will display an incerrect curiber of online/offline bots
nmaector, then the builder, when building will produce e Following cer ig WARNING:
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connector-warning 
 

* Note. Ii (pause between atteripis will correspond to the intervals specified in the configLUIGI 

 
of some specific countries. Because of this, you cari suecify your own DNS-~servers fist. It makesThere were faund some cases with domain iames banned on the iocal ON $

In 2 rasgive the dornains frorn custameconnector.diLcfg or collectors.txt files will primarily use thesanse to spacify as popular ONS-server type 5
DNS-servers, that are listed in dns.rxt.  

The syntax is exactly the same as in collectars.txt
. rver could not return a

ervice site:
N an

tote. Se careful, choosing the ONS-servers. The problern is that iF the damain does not exist (or is blocked}, that DNS:main does not exist (for exarnple, OpenDNS). This is rneant te redirect to a DN
 
 

3 ‘
2 a + 3 “Servers,  

  

 i wtf with dns
That such should not be. Te test the operation of a DNS server ts provided the dnscliant.exe ton! 

Configuration : CHient : Plugins : webfakes 
Waebfekes plugin can be used to spoof the contents of HTTP and HTTPS resources without recourse to the original web server in 1E and FF. Config plugin in cormmpatibie forrriat to Zeuswebfakes and locks as follows:
entry "NebFakes”
WURL MASK% %URL REBTend    % HEILAGSY KPOST_B.ACK MASK% %POST WHITE BLOCKURLK “WERFAKENAMEX SUNBLOCK URL%

» URLMASK — url
° URLREDIRECT-

 sk, determining whether the need for a specific fake HITP/HTTPS resource.
uri resource, coritent to be displayed instead of the original content of the resource.   

   
 

     
 
 
 

    
 

 
 

   
   

» FLAGS — supported flags G, P and &. Thelatter flag roay be used for, bot to insert additional heade: ource, for which is
fake) in the HTTP header when accessingURLREBERECTeo POST BLACKMASK -- POST-reques! in which the fakes r goas inte lockdown moda /7

» POST WHITE MASK — if given a ask, a fake v not wi k unt, tntit doesn't govi vest mask
» BLOTK URL---fake block-mask carn be used ta block the fake when° WEBFAKENAME — webfake name. I don't really understand whyi . Net used,
o UNBLOCK_URL — carn be used to remove the block an a fake, when appl

in the fakesSB , limited
request Cinauding size of

FF brows:
2, be careful* Note. There are some kind ofto the length of 4K. T

the HTTP-naader).  
* Note, The plugin doesn't require to be started manuaily in the admin panel.

 
 oO performa flood on an target (ex: abuse.ch}. Exarnple plugin configuration is below
type target port tine
type target port time
 
 

 

 » type — flacd tyne, this can be either
° targat -- target, ONS/IP of target you vw
* pork -- port, port of target you wishto fi
» time — time, amount of time ta perforin  2 gor). tex: 443)ises minutes). (ex: 100)toe    

 * Note, The plugin supperts multiple flood tasks seperated by newline. (Moves onto next task after completition previous task}
. The slowlaris does net use porti.

 . The plugin requires to be started manually in the admin panel

Configuration : Client: Plugins : cograbber
 

   
. Tf found a vatid

farragrabter psnel
The plugin collects © nurvibers is used the
te the collector. Finding the rigpe itarface in the adm  ther all the POST-requast is sant

 

 iesI

* Mote. The plugin doesn't require to be started manually in the admin panel

Configuration : Ctient : Plugins ; ffcertgrabber 
    

 Firefox uses Gown ce!
1 profile has 3 master pas

Seyetye h.
plugin for

rage. Howave
1 the case a}   basic aquipmer

abbing certificates fr
 

   g  
 

 i@ - fninimnurn time to wait before sending the certi iecter (indicated in secoricds). Tn the plugin config
Ripoiad certifi ra prefixed with “FF: ". Search can be performed in tha same place where are located the LE certificates:
|  ertgrankeri

* Note, The glugin does not require te be started manually for the admin paral,

Ex. 1002 - Page 568



Ex. 1002 - Page 569

* Note. Password for rioped certificate import check with the author.

Configuration : Client : Plugins : socksS backconnect 

Properly, the plugin starts s SOCKSS server on the bot and provides access to the server via backconnect. Is available in the main admin panel, sligwing to display a list of socks:

 
They can Ge used through any software, that supports SOCKSS protocol It is recornmended to use Proxifier (provided with keygen in the directory tools)
Fiugin’s corifig has the following structure:
TeBOTNAMER ; SIP% SPORT; RECONNECT INTERVAL MSI AUTORUN FLAG%.

   SBOTNAMEY, — boll's tarWEP

HPORT:vO RORY, onwhich the tans for bac*ORECONMECT INTERVAL MSEC% — time, that the plug
CpAUTORUDFLAG’, — if 4, then the SOCKSar started at once, without an adrain pane}

ai. Recomm to leave it as is ("%BOTNAME%6”), In this case, the plugin will replace the text to a real bot GUID;  

     npect connection from bots. In the section Backconmect Server (for SOCKSS & FTP),it is called socks_port;
in waits, iri case of connection failure, before trying te recornect to the server;

rimand;
   seore   

* Note. The plugin requires to be started manually in the admin panel (/f wasn't used the “AUTORUNFLAGfag).

Configuration : Client : Plugins : ftp backconnect

Actually, the plugin starts up am FTP server on the bot and gives you access to it through backconnect server. It is available in the main admin interface, allowing to displaya list ofFTPs:

ftplist
 
Connect to the bot through either FTP-rmanager. Recommended by Tota} Commander.
Plugin cocfig is the same as for the socks plugin, except one differance - %PORT% need to specify that, in the Backconnect Server (for SOCKSS & FTF) si callad fip_pork. 

 * Note. The plugin requires to be started rnanually in the admin panel (if wasn't used the AUTORUN_FLAG%faq).

Configuration : Client : Plugins : rdp backconnect

This pluginwith ROP.
Moreover, in tre pi

 
  

 
tarts up ROP-servar and forwards it to the Backcormect server. In addition, the plugin implernents the creation af a hidden user, which is needed to remctely use the PC

ii provides the coritral panei to sta ny management from any user logged irito the systern (so you can create a process om behalf of the original users,
in have a built-in portabie version , downloadable frominternet and runs dirrectly frarn mernary (without a dump to disk).

 

  
 

* Rote. TotaiCoi nder rocksi 

* Rote. The plugin deesn't maed to restart the OS to work. 

So. Plugin config has approximately the following struct 
 %IP_OF_BC_SERVER%2 %PORT_OF_BC_SERVER%; YMAGIC_COBE%: SWwINDOWS_LOGIN%: XNINDOWS_PASSWORDY% : UF  

wTP_OF_BC_SERVERSs — IP of the Backconnect server
PORT_GF_@CSERVER-- port, on which the RDP-daerron listens fer connections from be

oMAGIC_CODEN -- 1g to authentica te the conne ‘ed cients (ir the serverside coriig if is ciWEL BOWSLOGE: — hidden user a in the bot's OS
  

 
 fig it bears the name cfg_rdp_portim

 
 aeoo    

 
 

Attention The narra must be completely unique
than & characters. Otherwise, sore OS (Window: the plugin can't work with a duplicate WINDOWS LOGIN. Besides, do not use account names with length less2003, for examipe) simply won't allow you to create an user.&

° “AMIR DOWSPASSWORD— WINDOWSLOGING%user password. 

* Note. Use passwords, containing letters im lower and upper ¢: as weilas specia! charact The reason is described in the paragraph above.    
 + UREFOPORTABLETOMBS — direct link to ptamd.exs. From there will ba downloaded TotalCMD,if you click on 1 oftware plugin RunAsEx GU

 Thepiu started manually in the admin parel. List of bots can be seen in the corrasponding menu itera (RBF), The connection te the bot can be done via standard Windows toot
mastsc.exe Remote Desktop Connect 

i rdp usage oxarnpic
 Disadvantages of the current version of the plugin

» No support for x64 systems;
» The plugit need admir
° Win? Starter net supear
  
 

 
   

 arally, in the fo
th XP, including the O5 V

But nowfexcluding the exceptions described above), the plugin works Fine or ail x86 OS starticgnjons of the plugin, these problerns willta+, with the included JAC

Configuration : Client : Plugins >; bugreport

 * Attention! For the versens, whe have ne experience with the debugger, bhis
If your machine hapoens te get semething like bot crash type:

crashexample
 
Then, the bot, with the help of this plugin can send technical information about the cause of the cresh
The plugin hooks nidiliKiserexceptionDispatcherd) and, if there is one af the following exceptions:

»° EXCEPTION_ACCESSVIOLATION
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 EXCEPTION FITEXCEPTION 1

 
 

DE BY ZERO
IDEBY_ZEROFAULT

RUCTION

 eovnovec
ther, the mugin can send det stack ef¢.) acd about the system to the collector. In turn, in

the formorabber panel, you can turn on the
d error information (including disasmcode, where the exception occured ... reaister

cmlay menu BUGS and took for different exceptions:
 

  

 
With this plugin yau can identify problems necuring on the PC holder. That is partially substituted for full 11T-dehuager
The plugin corifig has sorne options (can have in the carfig: as Keywords).

 
     

 
» autostart -- in this case, the plugin is mot required ko be si ted in tha main admin panel.> silant nbhis case, the thread that caused the ox es dormant
o dost in this casi the plugin does not send repar H except ions to the collector.» slowly_uninstall -- in this case, the plugic: does not ramave the haoks when uninstalling bat (fis mode can be used ta cxich crashbugs during bet's rernoval orins: 

Configuration : Client : Plugins > jabbhernotifier

The plugin can can be used for notification on holder antry te one or anotherlink via jabber.
PS.
Opensource plugin, therefore, its Furictionaiity can be extended. Far exarnple, to make sure that when entering a specific link, the holder irmediateiy starts the SOCKS or RDF pitig-in.
 

entry “RabberNotifier”URI, HASK% XFLAGSS BPOST MASK
end

   
 

o UREMASK -- url sk, deter g whether to send 4 massage (URL, which proceedes hoder).
» FLAGS -- supported fags G, F, carresconding to a particular request method.bai° PUST_MASK — in the case of P flag being used used, you can use the mask for that POST-request data.

Preferences as to how and where to send the message, specified in tha sattings of the raain adrrin p Fier section) 
* Note. The plugin deesn't require to ty he sdmin panelo aa aa. x *

Configuration : Client : Tools : uninstailer.exe 

  This toal needed to uninstall the bot fromsysterrn (for example, if you're testing the bol and want to guickly update #s configuration, just execute @ and run the bot with the newconfig ... ar just want to heal the system fromaccident: maemination of ihe bot). To work you need the S The tool reads out the
fnutex name and the bot exe name. Based on the mutex name, the toot generates the mutex mame, requ for removal of the bot frorn the system, and, actually, creates it. After
awhile, the tool deletes the bot file. There are several messages, which this tool can deliver:

    
 

aliar can nat detect the bet in the systern (probably, the bot is not running).ler discovered the bot and successfully blewit.
7 found the bot but didn't blewit (probably, was unaole to delete the bot file, and, srabably, because, in the

» "There are nething te clean” -- means, that the uninst

© "Your system is clean now" — means, that the uninsta» "Cannot cure your system” — is, that the uninsta
settings.ini was specified = wrong bot file nacne.

  

Configuration : Client : Tools : configdecader.axe 
 
 

to verify the presence or the absence ofa plugin/webinjects/etc, in the bot config), Naturally,
ings.ini (produced by the bulider). If the enc. key is correct, the tao! will create a folder ¥

This tool needs, te see the contents of cenfig.bin (For example, in case
in ordar to reveal the configuration, you need the anc. key, recorded in
config. bin and will pur the contents of the config.bin 

Configuration t Clilent : Tools : WebinjectesDev 
WabinjecasBey is a set of tecls for devaloping and tasting inie

* wserDefineLang.xml — Syntax highlighting for the text edite!
faider "%:SPPRATA%\Natepad++\".

° ffhookdlLdll this dill can be added dirrectly into the import table cf Mezic (fo inject the ffhookdi.dil dirrectly into the addres
» lehaokdli.dil — for the IE browser, this dil can be impter

To add syntax highlighting to Zeus-like injects, you must copy the file userDefineLang.xml to 
. In addition, you can use the #

 
pregramlike

executable,   lla Firefox. For example, using a
os), if you cannot adit theng a prograr         

  
yeur webinjects in ":\webinjects.txt", and inject the dil int:

If there are changes, then the injects are loaded inte the br.
ite webinjects, you don't need a bat running in the syste

 

 

he appropriate browser. After that, the cede is ernbedded in the browser, that checks th.
This anor saves time wher making changes to a webinjectsfile to distay thernin a ino@ the dli's in the complete WebinjectesDev.  

 
  
 

  
  

 To ensure proper operation of the irgects- grabbers, you can use i Tha embedded code in the wser sends back the result of the grabbed injects. 
Tt teoks like this (right-injects file editor, left - FF with ambedded ffhogkdll dil):
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Democratizing content publication with Coral

Michael J. Freedman, Eric Freudenthal, David Maziéres

New York University
http://www.scs.cs.nyu.edu/coral/

Abstract

CoralCDN is a peer-to-peer content distribution network
that allows a user to run a web site that offers high
performance and meets huge demand,all for the price of
a cheap broadband Internet connection. Volunteer sites
that run CoralCDN automatically replicate content as
a side effect of users accessing it. Publishing through
CoralCDN is as simple as making a small change to the
hostname in an object’s URL; a peer-to-peer DNS layer
transparently redirects browsers to nearby participating
cache nodes, which in turn cooperate to minimize load on
the origin web server. One of the system’s key goals is
to avoid creating hot spots that might dissuade volunteers
and hurt performance. It achieves this through Coral,
a latency-optimized hierarchical indexing infrastructure
based on a novel abstraction called a distributed sloppy
hash table, or DSHT.

1 Introduction

The availability of content on the Internetis to a large de-
gree a function of the cost shouldered by the publisher. A
well-funded web site can reach huge numbers of people
through some combination of load-balanced servers, fast
network connections, and commercial content distribu-
tion networks (CDNs). Publishers who cannot afford such

amenities are limited in the size of audience and type of
content they can serve. Moreover, their sites risk sudden
overload following publicity, a phenomenon nicknamed
the “Slashdot”effect, after a popular web site that period-
ically links to under-provisioned servers, driving unsus-
tainable levels of traffic to them. Thus, even struggling
content providers are often forced to expend significant
resources on contentdistribution.

Fortunately, at least with static content, there is an easy
way for popular data to reach many more people than
publishers can afford to serve themselves—volunteers can
mirror the data on their own servers and networks. In-

deed, the Internet has a long history of organizations with
good network connectivity mirroring data they consider to
be of value. More recently, peer-to-peer file sharing has
demonstrated the willingness of even individual broad-
band users to dedicate upstream bandwidth to redistribute
content the users themselves enjoy. Additionally, orga-
nizations that mirror popular content reduce their down-

stream bandwidth utilization and improvethe latency for
local users accessing the mirror.

This paper describes CoralCDN,a decentralized, self-
organizing, peer-to-peer web-content distribution net-
work. CoralCDN leverages the aggregate bandwidth of
volunteers running the software to absorb and dissipate
mostof the traffic for web sites using the system. In so do-
ing, CoralCDNreplicates content in proportion to the con-
tent’s popularity, regardless ofthe publisher’s resources—
in effect democratizing content publication.

To use CoralCDN, a content publisher—or some-
one posting a link to a high-traffic portal—simply ap-
pends “.nyud.net:8099”to the hostname in a URL.
Through DNSredirection, oblivious clients with unmod-
ified web browsers are transparently redirected to nearby
Coral web caches. These caches cooperate to transfer data
from nearby peers whenever possible, minimizing both
the load on the origin web server and the end-to-endla-
tency experienced by browsers.

CoralCDNis built on top of a novel key/value indexing
infrastructure called Coral. Two properties make Coral
ideal for CDNs. First, Coral allows nodesto locate nearby
cached copies of web objects without querying more dis-
tant nodes. Second, Coral prevents hot spots in the in-
frastructure, even under degenerate loads. For instance,
if every node repeatedly stores the same key, the rate of
requests to the most heavily-loaded machine isstill only
logarithmic in the total numberof nodes.

Coral exploits overlay routing techniques recently pop-
ularized by a numberof peer-to-peer distributed hash ta-
bles (DHTs). However, Coral differs from DHTs in sey-

eral ways. First, Coral’s locality and hot-spot prevention
properties are not possible for DHTs. Second, Coral’s
architecture is based on clusters of well-connected ma-

chines. Clusters are exposed in the interface to higher-
level software, and in fact form a crucial part of the DNS
redirection mechanism. Finally, to achieve its goals, Coral
provides weaker consistency than traditional DH'Ts. For
that reason, we call its indexing abstraction a distributed
Sloppy hash table, or DSHT.

CoralCDN makes a numberof contributions. Tt enables

people to publish content that they previously could not or
would not becauseofdistribution costs. It is the first com-

pletely decentralized and self-organizing web-contentdis-
tribution network. Coral, the indexing infrastructure, pro-
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vides a new abstraction potentially of use to any applica-
tion that needs to locate nearby instances of resources on
the network. Coral also introduces an epidemic clustering
algorithm that exploits distributed network measurements.
Furthermore, Coral is the first peer-to-peer key/value in-
dex that can scale to manystores of the same key without
hot-spot congestion, thanks to a new rate-limiting tech-
nique. Finally, CoralCDN contains the first peer-to-peer
DNSredirection infrastructure, allowing the system to
inter-operate with unmodified web browsers.

Measurements of CoralCDN demonstrate that it al-

lows under-provisioned websites to achieve dramatically
higher capacity, and its clustering provides quantitatively
better performance than locality-unaware systems.

The remainder of this paper is structured as follows.
Section 2 provides a high-level description of CoralCDN,
and Section 3 describes its DNS system and web caching
components. In Section 4, we describe the Coral index-
ing infrastructure, its underlying DSHT layers, and the
clustering algorithms. Section 5 includes an implementa-
tion overview and Section 6 presents experimental results.
Section 7 describes related work, Section 8 discusses fu-
ture work, and Section 9 concludes.

2 The Coral Content Distribution Network

The Coral Content Distribution Network (CoralCDN) is

composed of three main parts: (1) a network of coop-
erative HTTP proxies that handle users’ requests,! (2) a
network of DNS nameservers for nyucd.net. that map
clients to nearby Coral H'T'TP proxies, and (3) the under-
lying Coral indexing infrastructure and clustering machin-
ery on whichthefirst two applications are built.

2.1 Usage Models

To enable immediate and incremental deployment, Coral-
CDNis transparent to clients and requires no software or
plug-in installation. CoralCDN can be used in a variety of
ways, including:

e Publishers. A web site publisher for x.com can
change selected URLs in their web pages to “Cor-
alized” URLs, such as http://www.x.com.
nyud.net:8090/y. jpg.

Third-parties. An interested third-party—e.g., a
poster to a web portal or a Usenet group—can Coral-
ize a URL before publishingit, causing all embedded
relative links to use CoralCDN aswell.

Users. Coral-aware users can manually construct
Coralized URLs when surfing slow or overloaded

'While Coral’s HTTP proxy defi nilely provides proxy functionality,
it is not an HTTPproxyin the strict RFC2616 sense; it serves requests
that are syntactically formatted for an ordinary HTTPserver.

bo

 

 
 

N dns §

 \ :

asi 10

Figure 1: Using CoralCDN,the steps involved in resolving a
Coralized URL and re

tion 2.2. Rounded boxes represent CoralCDN nodes mnning
Coral, DNS, and HTTP servers. Solid arrows correspond to
Coral RPCs, dashed arrows to DNStraffic, dotted-dashed arrows

to network probes, and dotted arrows to HTTPtraffic.

 
urning the corresponding file, per Sec-

web sites. All relative links and HTTPredirects are

automatically Coralized.

2.2 System Overview

Figure | showsthe steps that occur whena client accesses
a Coralized URL, such as http://www.x.com.

nyud.net:8090/, using a standard web browser. The
two main stages—DNS redirection and HTTP request
handling—both use the Coral indexing infrastructure.

1. A client sends a DNS request for www.x.com.
nyud. netto its local resolver.

2. The chient’s resolver attempts to resolve the host-
name using some Coral DNS server(s), possibly
starting at one of the few registered under the . net
domain.

. Upon receiving a query, a Coral DNSserver probes
the client to determines its round-trip-time and last
few network hops.

. Based on the probe results, the DNS server checks
Coral to see if there are any known nameservers
and/or HTTP proxies near the client’s resolver.

. The DNSserver replies, returning any servers found
through Coral in the previous step; if none were
found, it returns a random set of nameservers and

proxies. In either case, if the DNS server is close to
the client, it only returns nodesthat are close to itself
(see Section 3.1).

. The client’s resolver returns the address of a Coral

HTTPproxy for www. x.com.nyud.net.

a
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7. The client sends the HTTP request http://www.
x.com.nyud.net.:8090/ to the specified proxy.
If the proxyis caching thefile locally, it returns the
file and stops. Otherwise, this process continues.

8. The proxy looks up the web object’s URL in Coral.
9. If Coral returns the address of a node caching the

object, the proxy fetches the object from this node.
Otherwise, the proxy downloads the object from the
origin server, www. x.com (not shown).

10. The proxy stores the web object and returns it to the
client browser.

11. The proxy stores a reference to itself in Coral,
recording the fact that is now caching the URL.

2.3. The Coral Indexing Abstraction

This section introduces the Coral indexing infrastructure
as used by CoralCDN. Coral provides a distributed sloppy
hash table (DSHT)abstraction. DSHTsare designed for
applicationsstoring soft-state key/value pairs, where mul-
tiple values may be stored under the same key. Coral-
CDN uses this mechanism to map a variety of types of
key onto addresses of CoralCDN nodes. In particular, it
uses DSHTsto find Coral nameservers topologically close
clients’ networks, to find HTTP proxies caching particu-
lar web objects, and to locate nearby Coral nodes for the
purposes of minimizing internal request latency.

Instead of one global overlay as in [5, 14, 27], each
Coral node belongsto several distinct DSHTscalled clus-
ters. Each cluster is characterized by a maximum desired
network round-trip-time (RIT) we call the diameter. The
system is parameterized by a fixed hierarchy of diameters
knownas /evels. Every node is a member of one DSHT
at each level. A group of nodes can form a level-2 cluster
if a high-enoughfraction their pair-wise RTTs are below
the level-2 diameter threshold. Although Coral’s imple-
mentation allows foran arbitrarily-deep DSHThierarchy,
this paper describes a three-level hierarchy with thresh-
olds of 50, 60 msec, and 20 msec for level-0, -1, and -2

clusters respectively. Coral queries nodes in higher-level,
fast clusters before those in lower-level, slowerclusters.

This both reduces the latency of lookups and increases
the chances of returning values stored by nearby nodes.

Coral provides the following interface to higher-level
applications:

e put(key, val, ttl, [levels]): Inserts a mapping from
the key to somearbitrary value, specifying the time-
to-live of the reference. ‘The caller may optionally
specify a subset of the cluster hierarchy to restrict
the operation to certainlevels.

e get(key, [levels]): Retrieves some subset ofthe val-
ues stored under a key. Again, one can optionally
specify a subset ofthe cluster hierarchy.

e nodes (level, count, [Laryel], [services]): Returns
count neighbors belonging to the node’s cluster as
specified by level. target, if supplied, specifies the
IP address of a machine to which the returned nodes

would ideally be near. Coral can probe targer and
exploit network topology hints stored in the DSHT
to satisfy the request. If services is specified, Coral
will only return nodes running the particular service,
e.g., an HTTP proxy or DNSserver.

e fevels(): Returns the numberof levels in Coral’s hi-
erarchy and their corresponding RTT thresholds.

The next section describes the design of CoralCDN’s
DNSredirector and HTTP proxy—especially with regard
to their use of Coral’s DSHT abstraction and clustering
hierarchy—before returning to Coral in Section 4.

3 Application-Layer Components

The Coral DNSserverdirects browsers fetching Coralized
URLs to Coral HTTP proxies, attempting to find ones near
the requesting client. These HTTP proxies exploit each
others’ caches in such a way as to minimize both transfer
latency and the load on origin web servers.

3.1. The Coral DNSserver

The Coral DNS server, dnssrv, returns IP addresses of

Coral HTTP proxies when browsers look up the host-
names in Coralized URLs. To improve locality, it at-
tempts to return proxies near requesting clients. In partic-
ular, whenever a DNS resolver(client) contacts a nearby
dnssrv instance, dnssrv both returns proxies within an ap-
propriate cluster, and ensures that future DNS requests
from that client will not need to leave the cluster. Using
the nodes function, dnssry also exploits Coral’s on-the-
fly network measurementcapabilities and stored topology
hints to increase the chancesof clients discovering nearby
DNSservers.

Morespecifically, every instance of dussrv is an au-
thoritative nameserver for the domain nyucd. net. As-
suming a 3-level hierarchy, as Coral is generally config-
ured, dnssrv maps any domain name ending http. 22.
L1.39.nyucd.netto one or more Coral HTTP prox-
ies. (For an (n+ 1)-level hierarchy, the domain name
is extended out to Ln in the obvious way.) Because
such names are somewhat unwieldy, we established a
DNS DNAMEalias [4], nyud.net, with target http.
L2.21.L0.nyucd.net. Any domain name ending
nyud.netis therefore equivalent to the same name with
suffix http.L2.L1.LO0.nyucd.net, allowing Cor-
alized URLs to have the more concise form http: //
www.x.com.nyud.nel:8080/.

dnssrv assumes that web browsers are generally close
to their resolvers on the network, so that the source ad-
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dress of a DNS queryreflects the browser’s network lo-
cation. This assumption holds to varying degrees, butis
good enough that Akamai [12], Digital Island [6], and
Mirror Image [21] have all successfully deployed com-
mercial CDNs based on DNSredirection. The locality
problem therefore is reduced to returning proxies that are
near the source of a DNS request. In order to achievelo-
cality, dnssrv measuresits round-trip-time to the resolver
and categorizesit by level. For a 3-level hierarchy,the re-
solver will correspondto a level 2, level 1, or level 0 client,
depending on howits RTT compares to Coral’s cluster-
level thresholds.

When asked for the address of a hostname ending
http.22.L1.L0.nyucd.net, dnssrv’s reply con-
tains two sections of interest: A set of addresses for the

name—answers to the query—and a set of nameservers
for that name’s domain—knownas the authority section
of a DNSreply. dussrv returns addresses of CorulProx-
ies in the cluster whose level correspondsto the client’s
level categorization. In other words, if the RTT between
the DNS client and dnssrvis belowthe level-2 threshold

(for the best 7), dassrv will only return addresses of Coral
nodes in its level-z cluster. dnssrv obtains a list of such

nodes with the nodes function. Note that dnssrv always re-
turns CoralProxy addresses with short time-to-live fields
(30 secondsfor levels 0 and 1, 60 for level 2).

To achieve better locality, dnssrv also specifies the
client’s IP address as a target argument to nodes. This
causes Coral to probe the addresses of the last five net-
work hops to the client and use the results to look for
clustering hints in the DSHTs. ‘To avoid significantly de-
laying clients, Coral maps these networkhopsusing a fast,
built-in traceroute-like mechanism that combines concur-

rent probes and aggressive time-outs to minimize latency.
The entire mapping process generally requires around 2
RTTs and 350 bytes of bandwidth. A Coral node caches
results to avoid repeatedly probing the sameclient.

The closer dussrv is to a client, the better its selection of

CoralProxyaddresses will likely be for the client. dnssrv
therefore exploits the authority section of DNSreplies to
lock a DNSclient into a good cluster wheneverit happens
upon a nearby dnssrv. As with the answersection, dnssrv
selects the nameservers it returns from the appropriate
cluster level and uses the target argument to exploit mea-
surement and network hints. Unlike addresses in the an-

swersection, however, it gives nameservers in the author-
ity section a long TTL (one hour). A nearby drssrv must
therefore override any inferior nameservers a DNS client
may be caching from previous queries. dnssrv does so by
manipulating the domain for which returned nameservers
are servers. To clients more distant than the level-1 timing
threshold, dussrvclaims to return nameservers for domain

LO.nyucd.net. For clients closer than that thresh-

old, it returns nameservers for L1.LO.nyucd.net.For
clients closer than the level-2 threshold, it returns name-

servers for domain L2,.L1.20.nyucd.net. Because

DNS resolvers query the servers for the most specific
known domain,this scheme allows closer dussrvinstances
to override the results of more distant ones.

Unfortunately, although resolvers can tolerate a frac-
tion of unavailable DNS servers, browsers do not han-

dle bad HTTPservers gracefully. (This is one reason for
returning CoralProxy addresses with short TTL fields.)
As an added precaution, dnssrv only returns CoralProxy
addresses which it has recently verified first-hand. ‘This
sometimes means synchronously checking a proxy’s sta-
tus (via a UDP RPC)prior replying to a DNS query. We
note further that people who wish to contribute only up-
stream bandwidth canflag their proxy as “non-recursive,”
in which case dassrvwill only return that proxyto clients
on local networks.

3.2 The Coral HTTP proxy

The Coral HTTP proxy, CoralProxy, satisfies HTTP re-
quests for Coralized URLs. It seeks to provide reasonable
request latency and high system throughput, even while
serving data from origin servers behind comparatively
slow network links such as home broadband connections.

This design space requires particular care in minimiz-
ing load on origin servers comparedto traditional CDNs,
for two reasons. [‘irst, many of Coral’s origin servers
are likely to have slower network connections than typ-
ical customers of commercial CDNs. Second, commer-
cial CDNsoften collocate a number of machines at each

deploymentsite and then select proxies based in part on
the URL requested—effectively distributing URLs across
proxies. Coral, in contrast, selects proxies only based on
client locality. Thus, in CoralCDN, it is much easier for
everysingle proxy to end up fetching a particular URL.

To aggressively minimize load on origin servers, a
CoralProxy must fetch web pages from other proxies
whenever possible. Each proxy keeps a local cache from
which it can immediately fulfill requests. When a client
requests a non-resident URL, CoralProxyfirst attempts
to locate a cached copy of the referenced resource using
Coral (a get), with the resource indexed by a SHA-1! hash
of its URL [22]. If CoralProxy discovers that one or more
other proxies have the data, it attempts to fetch the data
from the proxyto whichit first connects. If Coral provides
no referrals or if no referrals return the data, CoralProxy

mustfetch the resource directly from the origin.
While CoralProxy is fetching a web object—either

from the origin or from another CoralProxy—itinserts a
referenceto itself in its DSHTs with a time-to-live of 20

seconds. (It will renew this short-lived reference until it

completes the download.) Thus,if a flash crowd suddenly
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fetches a web page, all CoralProxies, other than thefirst
simultaneous requests, will naturally form a kind of mul-
ticast tree for retrieving the web page. Once any Coral-
Proxy obtains the full file, it inserts a much longer-lived
reference toitself (e.¢., 1 hour). Because the insertion al-
gorithm accounts for TTL, these longer-lived references
will overwrite shorter-lived ones, and they can be stored
on well-selected nodes even underhigh insertion load, as
later described in Section 4.2.

CoralProxies periodically renew referrals to resources
in their caches. A proxy should not evict a web object
from its cache while a reference to it may persist in the
DSHT.Ideally, proxies would adaptively set TTLs based
on cache capacity, though this is not yet implemented.

4 Coral: A Hierarchical Indexing System

This section describes the Coral indexing infrastructure,
which CoralCDN leverages to achieve scalability, self-
organization, and efficient data retrieval. We describe how
Coral implements the put and ged operations that form
the basis of its distributed sloppy hash table (DSHT) ab-
straction: the underlying key-based routing layer (4.1),
the DSHT algorithms that balance load (4.2), and the
changesthat enable latency and data-placement optimiza-
tions within a hierarchical set of DSHTs (4.3). Finally,
we describe the clustering mechanisms that manage this
hierarchical structure (4.4).

4.1. Coral’s Key-Based Routing Layer

Coral’s keys are opaque 160-bit ID values; nodes are as-
signed lDs in the same 160-bit identifier space. A node’s
ID is the SHA-1 hash of its IP address. Coral defines a

distance metric on IDs. Henceforth, we describe a node

as being close to akey if the distance between the key and
the node’s ID is small. A Coral put operation stores a
key/value pair at a node close to the key. A get operation
searches for stored key/value pairs at nodes successively
closer to the key. To support these operations, a node re-
quires some mechanism to discover other nodes close to
any arbitrary Key.

Every DSHTcontains a routing table. For any key &, a
node F’s routing table allowsit to find a node closerto k,
unless R is already the closest node. These routing tables
are based on Kademlia [17], which defines the distance

between two values in the [D-space to be their bitwise
exclusive or (XOR), interpreted as an unsigned integer.
Using the XOR metric, IDs with longer matching prefixes
(of most significant bits) are numerically closer.

Thesize of a node’s routing table in a DSHTis logarith-
mic in the total numberof nodes comprising the DSHT.
If a node FR is not the closest node to some key &, then
£#’s routing table almost always contains either the clos-

nodeids
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Figure 2: Example of routing operations in a system contain-

ing eight nodes with IDs {4, 5,7, 0, 2,3, 13, 14}. In this illus-
tration, node R. with 2d = (4 is looking up the node closest to
key k = 4, and we have sorted the nodes bytheir distance to
k. The top boxed rowillustrates XOR distances for the nodes

{0, 2, 3, 13, 14} thatare initially known by R. FR first contacts a
knownpeer whosedistanceto k is closest to halt of R’s distance

(10/2 = 5); in this illustration, this peer is node zero, whose
distance to k is 0 @ 4=4. Data in RPC requests and responses
are shown in parentheses and braces, respectively: R asks node
zero for its peers that are half-waycloserto &, i.e., those at dis-

tance 5 =2. R inserts these new referencesinto its routing table
(middle row). R nowrepeats this process, contacting node fi ve,

whosedistance 1 is closest to 5. Finally, R contacts node four,
whose distance is 0, and completes its search (bottom row).

est node to &, or some node whosedistanceto k is at least

one bit shorter than #’s. This permits # to visit a se-
quence of nodes with monotonically decreasing distances
[d1,do,...] to &, such that the encoding of d;41 as a bi-
nary number has one fewer bit than d;. As a result, the
expected numberofiterations for # to discoverthe clos-
est node to & is logarithmic in the numberof nades.

Figure 2 illustrates the Coral routing algorithm, which
successively visits nodes whose distances to the key are
approximately halved each iteration. Traditional key-
based routing layers attempt to route directly to the node
closest to the key wheneverpossible [25, 26, 31, 35], re-
sorting to several intermediate hops only when faced with
incomplete routing information. By caching additional
routing state—beyondthe necessary log(n) references—
these systems in practice manage to achieve routing in a
constant numberof hops. We observethat frequent refer-
ences to the same key can generate highlevels oftraffic in
nodesclose to the key. This congestion,called tree satu-
ration, wasfirst identified in shared-memoryinterconnec-
tion networks[24].
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To minimize tree saturation, each iteration of a Coral

search prefers to correct only 6 bits at a time.2 More
specifically, let splice(k, 1,2) designate the most signifi-
cant 67 bits of & followed bytheleast significant 160 — bi
bits of r. If node &R with ID r wishes to search for key
k, R first initializes a variable t — r. At each iteration,

R updates t¢ — splice(&,t,7), using the smallest value
of 2 that yields a new value of t. The next hop in the
lookup path is the closest node to ¢ that already exists in
f?’s routing table. As described below,by limiting the use
of potentially closer known hops in this way, Coral can
avoid overloading any node, even in the presence of very
heavily accessed keys.

‘The potential downside of longer lookup pathsis higher
lookup latency in the presence of sloworstale nodes. In
order to mitigate these effects, Coral keeps a window of
multiple outstanding RPCs during a lookup, possibly con-
tacting the closest few nodes to intermediary target /.

4.2 Sloppy Storage

Coral uses a sloppy storage technique that caches
key/value pairs at nodes whose IDs are close to the key
being referenced. These cached values reduce hot-spot
congestion and tree saturation throughoutthe indexing in-
frastructure: They frequentlysatisfy put and get requests
at nodes other than those closest to the key. This charac-
teristic differs from DHTs, whose pué operationsall pro-
ceed to nodes closestto the key.

The Insertion Algorithm. Coral performs a two-phase
operation to insert a key/value pair. In the first, or “for-
ward,” phase, Coral routes to nodes that are successively
closer to the key, as previously described. However, to
avoid tree saturation, an insertion operation may terminate
prior to locating the closest node to the key, in which case
the key/value pair will be stored at a more distant node.
Morespecifically, the forward phase terminates whenever
the storing node happens upon another nodethat is both
full and loadedforthe key:

1. A node is full with respect to some key & whenit
stores / values for k whose TTLsareall at least one-
half of the new value.

2. A node is loaded with respect to & when it has re-
ceived more than the maximum leakage rate 6 re-
quests for & within the past minute.

In our experiments, /=4 and @= 12, meaning that un-
der high load, a node claims to be loaded for all but one
store attempt every 5 seconds. This prevents excessive
numbers of requests from hitting the key’s closest nodes,
yet still allows enough requests to propagate to keep val-
ues at these nodesfresh.

2Experiments in this paper use b = 1.

In the forward phase, Coral’s routing layer makes re-
peated RPCs to contact nodes successively closer to the
key. Each of these remote nodes returns (1) whether the
key is loaded and (2) the numberofvalues it stores under
the key, along with the minimum expiry time of any such
values. The client nodeusesthis information to determine

if the remote node can accept the store, potentially evict-
ing a value with a shorter TTL. This forward phaseter-
minates whenthe client nodefinds either the node closest

to the key, or a node that is full and loaded with respect
to the key. The client nodeplacesall contacted nodesthat
are not both full and loaded on a stack, ordered by XOR
distance from the key.

During the reverse phase, the clent node attempts to
insert the value at the remote node referenced by the
top stack element, i.e., the node closest to the key. If
this operation does not succeed—perhaps dueto others’
insertions—theclient node pops the stack and tries to in-
sert on the newstack top. This process is repeated until a
store succeeds or the stack is empty.

This two-phasealgorithm avoidstree saturation by stor-
ing values progressively further from the key. Still, evic-
tion and the leakage rate ( ensure that nodes close to
the key retain long-lived values, so that live keys remain
reachable: ({ nodes per minute that contact an interme-
diate node (including itself) will go on to contact nodes
closer to the key. For a perfectly-balanced tree, the key’s

closest node receives only (3 - (2°—1) - je"7) store
requests per minute, whenfixing 0 bits per iteration.

Proof sketch. Each node in a system of nm nodes can be
uniquely identified by a string S of log nbits. Consider
S to be a string of b-bit digits. A node will contact the
closest node to the key before it contacts any other node
if and only if its ID differs from the key in exactly one
digit. There are [(log7)/b] digits in S. Each digit can
take on 2°—1 valuesthat differ from the key. Every node
that differs in one digit will throttle all but 6 requests per
minute. Therefore, the closest node receives a maximum

rate of (- (2°—1)- (221) RPCsper minute.
Irregularities in the node ID distribution may increase

this rate slightly, but the overall rate oftraffic is still loga-
rithmic, while in traditional DHTsit is linear. Section 6.4

provides supporting experimental evidence.

The Retrieval Algorithm. To retrieve the value associ-
ated with a key k, a node simply traverses the ID space
with RPCs. When it finds a peer storing /, the remote
peer returns k’s corresponding list of values. The node ter-
minates its search and get returns. The requesting client
application handles these redundant references in some
application-specific way, e.g., CoralProxy contacts mul-
tiple sources in parallel to download cached content.

Multiple stores of the same keywill be spread over mul-
tiple nodes. The pointers retrieved by the application are
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thus distributed among those stored, providing load bal-
ancing both within Coral and betweenservers using Coral.

4.3

For locality-optimized routing and data placement, Coral
uses several levels of DSHTscalled clusters. Each level-

z cluster is named by a randomly-chosen 160-bit cluster
identifier; the level-O cluster 1D is predefined as 0169) Re
call that a set of nodes should form a clusterif their aver-

age, pair-wise R'I'l’s are below some threshold. As men-
tioned earlier, we describe a three-level hierarchy with
thresholds of oo, 60 msec, and 20 msecforlevel-0O, -1, and

-2 clusters respectively. In Section 6, we present experi-
mental evidenceto the client-side benefit of clustering.

Figure 3 illustrates Coral’s hierarchical routing opera-
tions. Each Coral node has the same node ID inall clus-

ters to which it belongs; we can view a nodeas projecting
its presence to the same location in each ofits clusters.
This structure must be reflected in Coral’s basic routing
infrastructure, in particular to support switching between
a node’s distinct DSHTs midwaythrough a lookup.*

Hierarchical Operations

The Hierarchical Retrieval Algorithm. A requesting
node # specifies the starting and stopping levels at which
Coral should search. Bydefault, it initiates the get query
onits highest (level-2) clusterto try to take advantage of
networklocality. If routing RPCs on this cluster hit some
node storing the key & (RPC 1 in Fig. 3), the lookup halts
and returns the corresponding stored value(s)—a hit—
without ever searching lower-level clusters.

If a key is not found, the lookup will reach k’s closest
node C> in this cluster (RPC 2), signifying failure at this
level. So, node & continues the search in its level-! clus-

ter. As these clusters are very often concentric, C’2 likely
exists at the identical location in the identifier spacein all
clusters, as shown. FR begins searching onward from C2
in its level-1 cluster (RPC 3), having already traversed the
ID-space up to C’9’s prefix.

Evenif the search eventually switches to the global
cluster (RPC 4), the total number of RPCs required is
about the same as a single-level lookup service, as a
lookup continues from the point at which it left off in
the identifier space of the previous cluster. Thus, (1)
all lookups at the beginning are fast, (2) the system can
tightly bound RPC timeouts, and (3) all pointers in higher-
level clusters reference data within that local cluster.

The Hierarchical Insertion Algorithm. A nodestarts
byperforming a put on its level-2 cluster as in Section 4.2,
so that other nearby nodes can take advantageoflocality.

3Weinitially built Coral using the Chord [31] routing layer as a
block-box;ditfi culties in maintaining distinct clusters and the complex-
ity of the subsequent system caused us to scrap the implementation.
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Figure 3: Coral's hierarchical routing structure. Nodes use the
same IDsin each of their clusters; higher-level clusters are natu-

rally sparser. Note that a node can be identifi ed in a cluster by its
shortest unique ID prefix, e.g., “11” for & inits level-2 cluster,

nodes sharing ID prefi xes are located on common subtrees and
are closer in the XOR metric. While higher-level neighbors usu-
ally share lower-level clusters as shown,this is not necessarily
so. RPCsfor a retrieval on key & are sequentially numbered.

‘

However, this placementis only “correct” within the con-
text of the local level-2 cluster. Thus, provided that the
key is not already loaded, the node continues its insertion
in the level-1 cluster fromthe point at which the key was
inserted in level 2, much as in the retrieval case. Again,
Coral traverses the ID-space only once. As illustrated
in Figure 3, this practice results in a loose hierarchical
cache, whereby a lower-level cluster contains nearly all
data stored in the higher-level clusters to which its mem-
bers also belong.

To enable such cluster-aware behavior, the headers of

every Coral RPC include the sender’s cluster information:
the identifier, age, and a size estimate of each of its non-
global clusters. The recipient uses this information to de-
multiplex requests properly, i.e., a recipient should only
consider a put and get for those levels on which it shares
a cluster with the sender. Additionally, this information
drives routing table management: (1) nodes are added or
removed tromthe local cluster-specific routing tables ac-
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cordingly; (2) cluster information is accumulated to drive
cluster management, as described next.

4.4 Joining and Managing Clusters

As in any peer-to-peer system, a peer contacts an existing
node to join the system. Next, a new node makes sev-
eral queries to seed its routing tables. However, for non-
global clusters, Coral adds one important requirement: A
node will only join an acceptable cluster, where accept-
ability requires that the latency to 80% of the nodes be
below the cluster’s threshold. A node can easily deter-
mine whetherthis condition holds by recording minimum
round-trip-times (RT's) to some subset of nodes belong-
ing to the cluster.

While nodes learn aboutclusters as a side effect of nor-

mal lookups, Coral also exploits its DSHTsto store hints.
WhenCoral starts up, it uses its built-in fast traceroute
mechanism (described in Section 3.1) to determine the ad-

dresses of routers up to five hops out. Excluding anypri-
vate (“RFC1918”) IP addresses, Coral uses these router

addresses as keys under whichto index clustering hints in
its DSHTs. More specifically, a node R stores mappings
from each router address to its own IP address and UDP

port number. When a new node S, sharing a gateway with
R, joins the network, it will find one or more of R’s hints
and quickly cluster with it, assuming RF is, in fact, near S.

In addition, nodes store mappings to themselves using
as keys any IP subnets they directly connect to and the
24-bit prefixes of gateway router addresses. These prefix
hints are of use to Coral’s level function, which tracer-
outes clients in the other direction; addresses on forward

and reverse traceroute paths often share 24-bit prefixes.
Nodes continuouslycollect clustering information from

peers: All RPCs include round-trip-times, cluster mem-
bership, and estimates of cluster size. Every five min-
utes, each node considers changing its cluster member-
ship based on this collected data. If this collected data
indicates that an alternative candidate cluster is desirable,

the nodefirst validates the collected data by contacting
several nodes within the candidate cluster by routing to
selected keys. A node can also form a newsingleton clus-
ter when 50% of its accesses to members of its present
cluster do not meet the RTT constraints.

If probes indicate that 80% of a cluster’s nodes are
within acceptable TTLs and the cluster is larger, it re-
places a node’s current cluster. If multiple clusters are
acceptable, then Coral choosesthe largest cluster.

Unfortunately, Coral has only rough approximations of
cluster size, based onits routing-table size. If nearbyclus-
ters A and B are of similar sizes, inaccurate estimations
could lead to oscillation as nodes flow back-and-forth (al-

though we have not observed such behavior). To perturb
an oscillating systeminto a stable state, Coral employs a

preference function 6 that shifts every hour. A node se-
lects the larger cluster only if the following holds:

log(size 4) —log(sizeg)| > 6 (min(age 4, agep))

where age is the current time minus the cluster’s creation
time. Otherwise, a node simply selects the cluster with
the lowercluster ID.

We use a square wave function for 6 that takes a value
0 on an even numberof hours and 2 on an odd number.

For clusters of disproportionate size, the selection func-
tion immediately favors the larger cluster. Otherwise, 6’s
transition perturbs clusters to a steadystate.+

In either case, a node that switchesclustersstill remains

in the routing tables of nodes in its old cluster. Thus,
old neighbors will still contact it and learn of its new,
potentially-better, cluster. This produces an avalancheef-
fect as more and more nodes switch to the larger cluster.
This merging ofclusters is very beneficial. While a small
cluster diameter provides fast lookup, a large cluster ca-
pacity increasesthehitrate.

5 Implementation

The Coral indexing system is composedofa client library
and stand-alone daemon. The simpleclient library allows
applications, such as our DNS server and HTTP proxy, to
connect to and interface with the Coral daemon. Coral is

14,000 lines of C++, the DNSserver, dussrv, is 2,000 lines

of C++, and the H'T'IT'P proxyis an additional 4,000 lines.
All three components use the asynchronous I/O library
provided by the SES toolkit [19] and are structured by
asynchronousevents and callbacks. Coral network com-
munication is via RPC over UDP. We have successfully
tun Coral on Linux, OpenBSD, FreeBSD, and Mac OS X.

6 Evaluation

In this section, we provide experimental results that sup-
port our following hypotheses:

1. CoralCDN dramatically reduces load on servers,
solving the “flash crowd”problem.

2. Clustering provides performance gains for popular
data, resulting in good client performance.

3. Coral naturally forms suitable clusters.

4. Coral prevents hot spots within its indexing system.

*Should clusters of similar size continuously exchange members
when 64 is zero, as soon as 6 transitions, nodeswill all fbw to the cluster
with the lower cluster id. Should the clusters oscillate when 6 = 2 (as
the estimations ‘hit” with one around 2 -timeslarger), the nodeswill all
fbw to the larger one when6 returns to zero.
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To examine all claims, we present wide-area measure-
ments of a synthetic work-load on CoralCDN nodes run-
ning on PlanetLab, an internationally-deployed test bed.
We use such an experimental setup because traditional
tests for CDNsor web servers are not interesting in evalu-
ating CoralCDN:(1) Client-side traces generally measure
the cacheability of data and client latencies. However, we
are mainly interested in how well the system handles load
spikes. (2) Benchmark tests such as SPECweb99 mea-
sure the web server’s throughput on disk-bound access
patterns, while CoralCDN is designed to reduce load on
off-the-shelf web servers that are network-bound.

The basic structure of the experiments wereis follows.
First, on 166 PlanetLab machines geographically distri-
buted mainly over North America and Europe, we launch
a Coral daemon, as well as a dnssrv and CoralProxy.

For experiments referred to as multi-level, we configure a
three-level hierarchy by setting the clustering RTT thresh-
old of level 1 to 60 msec and level 2 to 20 msec. Ex-

periments referred to as single-level use only the level-0
global cluster. No objects are evicted from CoralProxy
caches during these experiments. For simplicity, all nodes
are seeded with the same well-known host. The network

is allowed to stabilize for 30 minutes.°

Second, we run an unmodified Apache web server
sitting behind a DSL line with 384 Kbit/sec upstream
bandwidth, serving 12 different 41KB files, representing
groups of three embedded images referenced by four web
pages.

Third, we launch client processes on each machinethat,
after an additional random delay between 0 and 180 sec-
onds for asynchrony, begin making HTTP GET requests
to Coralized URLs. Each client generates requests for the
group ofthreefiles, corresponding to a randomly selected
web page,for a period of 30 minutes. While we recognize
that web traffic generally has a Zipf distribution, we are
attempting merely to simulate a flash crowd to a popular
web page with multiple, large, embedded images(i.e., the
Slashdot effect). With 166 clients, we are generating 99.6
requests/sec, resulting in a cumulative download rate of
approximately 32, 800 Kb/sec. This rate is almost two or-
ders of magnitude greater than the origin web server could
handle. Note that this rate was chosen synthetically and
in no waysuggests a maximum system throughput.

For Experiment4 (Section 6.4), we do not run any such
clients. Instead, Coral nodes generate requests at very
highrates, all for the same key, to examine how the DSHT
indexing infrastructure prevents nodescloseto a target 1D
from becoming overloaded.

5Thestabilization time could be made shorter by reducing the clus-
tering period (5 minutes). Additionally, in real applications, clustering
is in fact a simpler task, as new nodes would immediately join nearby
large clusters as they join the pre-established system. In our setup, clus-
ters develop from an initial network comprised entirely of singletons.
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Figure 4: The numberof client accesses to CoralProxies and the

origin HTTPserver. CoralProxy accesses are reported relative to
the cluster level from which data was fetched, and do not include

requests handled through local caches.

6.1 Server Load

Figure 4 plots the number of requests per minute that
could not be handled by a CoralProxy’s local cache. Dur-
ing the initial minute, 15 requests hit the origin web server
(for 12 uniquefiles). The 3 redundant lookups are due to
the simultaneity at which requests are generated; subse-
quently, requests are handled either through CoralCDN’s
wide-area cooperative cache or through a proxy’s local
cache, supporting our hypothesis that CoralCDN can mi-
grate load off of a web server.

During this first minute, equal numbers of requests
were handled by the level-1 and level-2 cluster caches.
However,as the files propagated into CoralProxy caches,
requests quickly were resolved within faster level-2 clus-
ters. Within 8-10 minutes, the files became replicated at
nearly every server, so few client requests went further
than the proxies’ local caches. Repeated runsofthis ex-
perimentyielded some variancein the relative magnitudes
of the initial spikes in requeststo different levels, although
the numberof origin server hits remained consistent.

6.2 Client Latency

Figure 5 shows the end-to-end latency for a client to fetch
a file from CoralCDN,following the steps given in Sec-
tion 2.2. The top graph showsthe latency across all Plan-
etLab nodes used in the experiment, the bottom graph
only includes data from the clients located on 5 nodes
in Asia (Hong Kong (2), Taiwan, Japan, and the Philip-
pines). Because most nodesare located in the U.S. or Eu-
rope, the performancebenefit of clustering is much more
pronounced onthe graph of Asian nodes.

Recall that this end-to-end latencyincludes the time for
the client to make a DNS request and to connect to the
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Figure 5: End-to-End client latency for requests for Coralized
URLs, comparing the etfect of single-level vs. multi-level clus-
ters and of using traceroute during DNSredirection. The top
graph includesall nodes; the bottom only nodesin Asia.

discovered CoralProxy. The proxyattempts to fulfill the
client request first through its local cache, then through
Coral, and finally through the origin web server. We note
that CoralProxy implements cut-through routing by for-
warding data to the clientprior to receiving the entirefile.

These figures report three results: (1) the distribution of
latency of clients using only a single level-O cluster (the
solid line), (2) the distribution of latencies of clients using
multi-level clusters (dashed), and (3) the same hierarchi-

cal network, but using traceroute during DNS resolution
to map clients to nearby proxies (dotted).

All clients ran on the same subnet (andhost, in fact) as a

CoralProxyin our experimental setup. This would not be
the case in the real deployment: We would expect a com-
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Figure 6: Latencies for proxy to get keys from Coral.

bination of hosts sharing networks with CoralProxies—
within the same IP prefix as registered with Coral—and
hosts without. Although the multi-level network using
traceroute provides the lowest latency at most percentiles,
the multi-level system without traceroute also performs
better than the single-level system. Clustering has a clear
performancebenefit for clients, and this benefit is partic-
ularly apparent for poorly-connected hosts.

Figure 6 showsthe latency of ged operations, as seen by
CoralProxies when they lookup URLsin Coral(Step 8 of
Section 2.2). We plot the get latency on the single level-O
system vs. the multi-level systems. The multi-level sys-
tem is 2-5 times faster up to the 80% percentile. After the
98% percentile, the single-level system is actually faster:
Under heavy packet loss, the multi-system requires a few
more timeoutsasit traverses its hierarchylevels.

6.3 Clustering

Figure 7 illustrates a snapshot of the clusters fromthe pre-
vious experiments, at the time when clients began fetch-
ing URLs (30 minutes out). This map is meant to provide
a qualitative feel for the organic nature of cluster devel-
opment, as opposedto offering any quantitative measure-
ments. On both maps, each unique, non-singleton clus-
ter within the network is assigned a letter. We have plot-
ted the location of our nodesby latitude/longitude coor-
dinates. If two nodes belong to the samecluster, they are
represented by the same letter. As each PlanetLab site
usually collocates several servers, the size of the letter
expresses the number of nodesat that site that belong to
the same cluster. For example, the very large “H” (world
map) and “A” (U.S. map) correspond to nodes collocated
at U.C. Berkeley. We did not include singleton clusters on
the maps to improve readability; post-run analysis showed
that such nodes’ RTTsto others (surprisingly, sometimes
even at the same site) were above the Coral thresholds.
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Figure 7: World view of level-1 clusters (60 msec threshold),
and United States view of level-2 clusters (20 msec threshold).

Each unique, non-singleton cluster is assignedaletter; the size
of the letter corresponds to collocated nodes in the samecluster.

The world map shows that Coral found natural divi-
sions between sets of nodes along geospatial lines at a 60
msec threshold. The map showsseveral distinct regions,
the most dramatic being the Eastern U.S. (70 nodes), the
Western U.S. (37 nodes), and Europe (19 nodes). ‘The
close correlation between network and physical distance
suggests that speed-of-light delays dominate round-trip-
times. Note that, as we did not plot singleton clusters, the
map doesnot include three Asian nodes(in Japan, Taiwan,
and the Philippines, respectively).

The United States map shows level-2 clusters again
roughly separated by physical locality. The map shows
16 distinct clusters; obvious clusters include California

(22 nodes), the Pacific Northwest (9 nodes), the South, the
Midwest, etc. The Northeast Corridor cluster contains 29

nodes, stretching from North Carolina to Massachusetts.
Oneinteresting aspect of this map is the three separate,
non-singleton clusters in the San Francisco BayArea.
Close examination of individual RTTs betweenthesesites

shows widely varying latencies; Coral clustered correctly
given the underlying network topology.

6.4 Load Balancing

Finally, Figure 8 shows the extent to which a DSHTbal-
ances requests to the same key ID. In this experiment,
we ran 3 nodes on each of the earlier hosts for a to-

tal of 494 nodes. We configured the system as a single
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Figure 8: The total numberof put RPCshitting each Coral node
per minute, sorted by distance from node ID to targetkey.

level-O cluster. At the sametime,all PlanetLab nodes be-

gan to issue back-to-back put/get requests at their max-
imum (non-concurrent) rates. All operations referenced
the same key; the values stored during pué requests were
randomized. On average, each node issued 400 put/get
operation pairs per second, for a total of approximately
12 million put/get requests per minute, although only a
fraction hit the network. Once a nodeis storing a key,
get requests are satisfied locally. Once it is loaded, each
node only allowsthe leakage rate 6 RPCs “through”it per
minute.

The graphs show the number of put RPCsthat hit each
nade in steady-state, sorted by the XOR distance of the
node’s ID to the key. During the first minute, the clos-
est node received 106 put RPCs. In the second minute,
as shown in Figure 8, the system reached steady-state
with the closest node receiving 83 put RPCs per minute.
Recall that our equation in Section 4.2 predicts that it
should receive (3 - log) — 108 RPCs per minute. The
plot strongly emphasizes the efficacy of the leakage rate
3 =12, as the numberof RPCs received by the majority
of nodesis a low multiple of 12.

No nodes on the far side of the graph received any
RPCs. Coral’s routing algorithm explains this condition:
these nodes begin routing by flipping their ID’s most-
significant bit to match the key’s, and they subsequently
contact a node onthe nearside. We have omitted the graph
of gef RPCs: During the first minute, the most-loaded
node received 27 RPCs; subsequently, the key was widely
distributed and the system quiesced.

7 Related work

CoralCDN builds on previous work in peer-to-peer sys-
tems and web-based content delivery.
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7.1 DHTs anddirectory services

A distributed hash table (DHT) exposes two basic func-
tions to the application: put(key, value) stores a value
at the specified key ID; get(key) returns this stored value,
just as in 4 normal hash table. Most DHTs use a key-based
routing layer—such as CAN [25], Chord [31], Kadem-
lia [17], Pastry [26], or Tapestry [35]—andstore keys on
the node whose ID is closest to the key. Keys must be
well distributed to balance load among nodes. DHTsoften
replicate multiply-fetched key/value pairs for scalability,
e.g., by having peers replicate the pair onto the second-to-
last peer they contacted as part of a get request.

DHTs can act either as actual data stores or merely
as directory services storing pointers. CFS [5] and
PAST [27] take the former approach to build a distri-
buted file system: They require true read/write consis-
tency among operations, where writes should atomically
replace previously-stored values, not modify them.

Using the network as a directory service, Tapestry [35]
and Coral relax the consistency of operations in the net-
work. To put a key, Tapestry routes along fast hops be-
tween peers, placing at each peer a pointer back to the
sending node, until it reaches the node closest to the
key. Nearby nodes routing to the same key are likely
to follow similar paths and discover these cached point-
ers. Coral’s flexible clustering provides similar latency-
optimized lookup and data placement, and its algorithms
prevent multiple stores from forming hot spots. SkipNet
also builds a hierarchy of lookup groups, although it ex-
plicitly groups nodes by domain nameto support organi-
zational disconnect[9].

7.2 Web caching and contentdistribution

Web caching systemsfit within a large class of CDNsthat
handle high demand through diverse replication.

Priorto the recent interest in peer-to-peer systems, sev-
eral projects proposed cooperative Web caching [2, 7, 8,
16]. These systems either multicast queries or require
that caches know someor all other servers, which wors-

ens their scalability, fault-tolerance, and susceptibility to
hot spots. Although the cachehit rate of cooperative web
caching increases only to a certain level, corresponding to
a moderate population size [34], highly-scalable coopera-
tive systems canstill increase the total system throughput
byreducing server-side load.

Several projects have considered peer-to-peer overlays
for web caching, although all such systems only benefit
participating clients and thus require widespread adoption
to reduce server load. Stading et al. use a DHT to cache
replicas [29], and PROOFS uses a randomized overlayto
distribute popular content [30]. Both systemsfocussolely
on mitigating flash crowds and sutfer from high request

latency. Squirrel proposes web caching onatraditional
DHT,although only for organization-wide networks[10].
Squirrel reported poor load-balancing when the system
stored pointers in the DHT. Weattribute this to the DHT’s
inability to handle too many values for the same key—
Squirrel only stored 4 pointers per object—while Coral-
CDN references many more proxies by storing different
sets of pointers on different nodes. SCAN examinedrepli-
cation policies for data disseminated through a multicast
tree from a DHTdeployedat ISPs [3].

Akamai[1] and other commercial CDNs use DNSredi-

rection to reroute client requests to local clusters of ma-
chines, having built detailed maps of the Internet through
a combination of BGP feeds and their own measurements,

such as traceroutes from numerous vantage points [28].
Then, upon reaching a cluster of collocated machines,
hashing schemes [11, 32] map requests to specific ma-
chines to increase capacity. These systems require de-
ploying large numbers of highly provisioned servers, and
typically result in very good performance (both latency
and throughput) for customers.

Such centrally-managed CDNsappearto offer two ben-
efits over CoralCDN. (1) CoralCDN’s network measure-

ments, via traceroute-like probing of DNS clients, are
somewhat constrained in comparison. CoralCDN nodes
do not have BGP feeds and are undertight latency con-
straints to avoid delaying DNSreplies while probing. Ad-
ditionally, Coral’s design assumes that no single node
even knowsthe identity of all other nodes in the system,
let alone their precise network location. Yet, if many peo-
ple adopt the system, it will build up a rich database of
neighboring networks. (2) CoralCDN offers less aggre-
gate storage capacity, as cache managementis completely
localized. But, it is designed for a much larger number
of machines and vantage points: CoralCDN mayprovide
better performancefor small organizations hosting nodes,
as it is not economically efficient for commercial CDNs
to deploy machines behind most bottleneck links.

More recently, CoDeeN has provided users with a set
of open web proxies [23]. Users can reconfigure their
browsers to use a CoDeeN proxy and subsequently en-
joy better performance. The system has been deployed,
and anecdotal evidence suggests it is very successful at
distributing contentefficiently. Earlier simulation results
show that certain policies should achieve high system
throughput and low request latency [33]. (Specific details
of the deployed system have not yet been published, in-
cluding an Akamai-like service also in development.)

Although CoDeeN gives participating users better per-
formance to most web sites, CoralCDN’s goal is to
gives most users better performanceto participating web
sites—namely those whose publishers have “Coralized”
the URLs. The two design points pose somewhat dif-
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ferent challenges. For instance, CoralCDN takes pains
to greatly minimize the load on under-provisioned origin
servers, while CoDeeN has tighter latency requirements
as it is on the critical path for a// web requests. Finally,
while CoDeeN has suffered a number of administrative

headaches, many of these problemsdo not apply to Coral-
CDN,as, e.g., CoralCDN doesnot allow POST operations
or SSL tunneling, and it can be barred from accessing pat-
ticular sites without affecting users’ browsing experience.

8 Future Work

Security. This paper does not address CoralCDN’s se-
curity issues. Probably the most important issue is en-
suring the integrity of cached data. Given our experience
with spam on the Internet, we should expect that adver-
saries will attempt to replace cached data with advertise-
ments for pornographyor prescription drugs. A solution
is future work, but breaks downinto three components.

First, honest Coral nodes should not cache invalid

data. A possible solution might include embeddingself-
certifying pathnames [20] in Coralized URLs, although
this solution requires server buy-in. Second, Coral nodes
should be able to trace the path that cached data has taken
and exclude data from known bad systems. Third, we
shouldtry to prevent clients from using malicious proxies.
This requires client buy-in, but offers additional incentives
for organizations to run Coral: Recall that a client will ac-
cess a local proxy when oneis available, or administrators
can configure a local DNSresolverto always return a spe-
cific Coral instance. Alternatively, “SSL splitting” [15]
provides end-to-end security betweenclients and servers,
albeit at a higher overheadfor the origin servers.

CoralCDN may require some additional abuse-
prevention mechanisms, such as throttling bandwidth
hogsandrestricting access to address-authenticated con-
tent [23]. To leverage our redundant resources, we are
considering efficient erasure coding for large-file trans-
fers [18]. For such, we have developed on-the-fly veri-
fication mechanisms to limit malicious proxies’ abilities
to waste a node’s downstream bandwidth [13].

Leveraging the Clustering Abstraction. This paper
presents clustering mainly as a performance optimization
for lookup operations and DNSredirection. However, the
clustering algorithms we use are driven bygeneric poli-
cies that could allowhierarchy creation based on a variety
of criteria. For example, one could provide a clustering
policy by IP routing block or by AS name,for a simple
mechanism that reflects administrative control and per-
forms well under network partition. Or, Coral’s clusters
could be used to explicitly encode a web-of-trust security
modelin the system, especially useful given its standard
open-admissions policy. Then, clusters could easily repre-
sent trust relationships, allowing lookupsto resolve at the

13

most trustworthy hosts. Clustering may prove to be a very
useful abstraction for building interesting applications.

Multi-cast Tree Formation. CoralCDN may transmit
multiple requests to an origin HTTP server at the begin-
ning of a flash crowd. This is caused bya race condition
at the key’s closest node, which we could eliminate by
extending store transactions to provide return status in-
formation (like test-and-set in shared-memory systems).
Similar extensions to store semantics may be useful for
balancing its dynamically-formed disseminationtrees.

Handling Heterogeneous Proxies. We should consider
the heterogeneity of proxies when performing DNSredi-
rection and intra-Coral HTTP fetches. We might use some
type of feedback-based allocation policy, as proxies can
return their current load and bandwidth availability, given
that they are already probed to determineliveness.

Deployment and Scalability Studies. We are planning
an initial deployment of CoralCDN as a long-lived Planet-
Lab port 53 (DNS)service. In doing so, we hopeto gather
measurements from a large, active client population, to
better quantify CoralCDN’s scalability and effectiveness:
Givenour client-transparency, achieving wide-spread use
is much easier than with most peer-to-peer systems.

9 Conclusions

CoralCDNis a peer-to-peer web-contentdistribution net-
work that harnesses people’s willingness to redistribute
data they themselves find useful. It indexes cached web
content with a newdistributed storage abstraction called a
DSH'T. DSH'Ts map a key to multiple values and canscale
to many stores of the same key without hot-spot conges-
tion. Coral successfully clusters nodes by network diam-
eter, ensuring that nearby replicas of data can be located
and retrieved without querying more distant nodes. Fi-
nally, a peer-to-peer DNSlayerredirects clients to nearby
CoralProxies, allowing unmodified web browsers to ben-
efit from CoralCDN,and more importantly, to avoid over-
loading origin servers.

Measurements of CoralCDN demonstrate that it al-

lows under-provisioned websites to achieve dramatically
higher capacity. A web server behind a DSLline expe-
riences hardly any load when hit by a flash crowd with
a sustained aggregate transfer rate that is two orders of
magnitude greater than its bandwidth. Moreover, Coral’s
clustering mechanism forms qualitatively sensible geo-
graphic clusters and provides quantitatively better perfor-
mance than locality-unaware systems.

We have made CoralCDNfreely available, so that even
people with slow connections can publish web sites whose
capacity grows automatically with popularity. Please visit
hLlp://www.scs.cs.nyu.edu/coral/.
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Reference: Easy Hide IP ("Easy Hide’]
Title: Change Your Country IP Address & Location with Easy
Hide IP Sottware

Link: nttos://www.youtube.com/watch ev=ulwkti sOTdA 
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Reference: Andromeda

Title: [TUTO] Andromeda Botnet Contiguration
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