US010469614B2

az United States Patent

Shribman et al.

US 10,469,614 B2
Nov. 5, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

*)

@
(22)

(65)

(60)

(1)

(52)

(58)

SYSTEM AND METHOD FOR IMPROVING
INTERNET COMMUNICATION BY USING
INTERMEDIATE NODES

Applicant: LUMINATI NETWORKS LTD.,
Netanya (IL)

Inventors: Derry Shribman, Tel Aviv (IL); Ofer
Vilenski, Moshav Hadar Am (IL)

Assignee: LUMINATI NETWORKS LTD.,
Netanya (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/214,433

Filed: Dec. 10, 2018

Prior Publication Data

US 2019/0116242 Al Apr. 18, 2019

Related U.S. Application Data

Continuation of application No. 16/140,785, filed on
Sep. 25, 2018, which is a continuation of application

(Continued)
Int. CL.
HO4L 29/06 (2006.01)
HoO4L 29/08 (2006.01)
(Continued)
U.S. CL
CPC HO4L 67/32 (2013.01); HO4L 63/029

(2013.01); HO4L 65/4084 (2013.01);
(Continued)

Field of Classification Search
CPC HO4L 63/029; HO4L 65/4084; HO4L

(56) References Cited
U.S. PATENT DOCUMENTS

3,922,494 A
3,962,539 A

11/1975 Cooper et al.
6/1976 Ehrsam et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
EP
EP

0948176 A2
2597869 Al 12/2013
2922275 Bl 3/2016

(Continued)

10/1999

OTHER PUBLICATIONS

“Anonymous Connections and Onion Routing”—Reed et al, Naval
Research Laboratory, Apr. 1998 https://www.onion-router.net/
Publications/JSAC-1998.pdf (Year: 1998).*

(Continued)

Primary Examiner — Randy A Scott
(74) Attorney, Agent, or Firm — May Patents Ltd.

(57) ABSTRACT

A method for fetching a content from a web server to a client
device is disclosed, using tunnel devices serving as inter-
mediate devices. The client device accesses an acceleration
server to receive a list of available tunnel devices. The
requested content is partitioned into slices, and the client
device sends a request for the slices to the available tunnel
devices. The tunnel devices in turn fetch the slices from the
data server, and send the slices to the client device, where the
content is reconstructed from the received slices. A client
device may also serve as a tunnel device, serving as an
intermediate device to other client devices. Similarly, a
tunnel device may also serve as a client device for fetching
content from a data server. The selection of tunnel devices
to be used by a client device may be in the acceleration
server, in the client device, or in both. The partition into
slices may be overlapping or non-overlapping, and the same
slice (or the whole content) may be fetched via multiple

67/2838 tunnel] devices.
(Continued) 29 Claims, 134 Drawing Sheets
"
30 2 = | 33b
~ Shl Sm
g5l !
! 5| | o
N e 13
Tunnel #3 e .(..... » 31b
|)
Internet Ctent #2
Client #1 e s zzasﬁ
p ' e Data
{ s
= |“ i i
22b 33a _v
Data
Server \D
#2 Ve

Tunnel #1

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
1 of 228

US 10,469,614 B2

Page 2

(60)

(1)

(52)

(58)

(56)

Related U.S. Application Data

No. 15/663,762, filed on Jul. 30, 2017, which is a
continuation of application No. 14/930,894, filed on
Nov. 3, 2015, now Pat. No. 9,742,866, which is a
division of application No. 14/468,836, filed on Aug.
26, 2014, now Pat. No. 9,241,044.

Provisional application No. 61/870,815, filed on Aug.
28, 2013.
Int. CL.
GOG6F 15/173 (2006.01)
HO4N 21/462 (2011.01)
U.S. CL
CPC ..o HO4L 67/02 (2013.01); HO4L 67/06
(2013.01); HO4L 67/2838 (2013.01); HO4N
21/4622 (2013.01)
Field of Classification Search
USPC oo 709/217, 218, 219, 232, 235
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
4,405,829 A 9/1983 Rivest et al.
4,464,650 A 8/1984 Eastman et al.
4,558,302 A 12/1985 Welch
4,814,746 A 3/1989 Miller et al.
4,937,781 A 6/1990 Lee et al.
5,519,693 A 5/1996 Galuszka
5,577,243 A 11/1996 Sherwood et al.
5,758,195 A 5/1998 Balmer
6,061,278 A 5/2000 Kato et al.
6,154,782 A 11/2000 Kawaguchi
6,173,330 B1 1/2001 Guo et al.
6,236,652 Bl 5/2001 Preston et al.
6,266,704 Bl 7/2001 Reed et al.
6,466,470 Bl 10/2002 Chang
6,519,693 Bl 2/2003 Debey
6,868,453 Bl 3/2005 Watanabe
6,895,011 Bl 5/2005 Lassers
7,027,418 B2 4/2006 Gan et al.
7,120,666 B2 10/2006 McCanne et al.
7,149,797 B1 12/2006 Weller et al.
7,203,741 B2 4/2007 Marco et al.
7,234,059 Bl 6/2007 Beaver
7,558,942 Bl 7/2009 Chen et al.
7,673,048 Bl 3/2010 O’Toole
7,742,485 B2 6/2010 Zhang
7,751,628 Bl 7/2010 Reisman
7,783,777 Bl 8/2010 Pabla
7,788,378 B2 8/2010 Rao
7,818,430 B2 10/2010 Zuckerman
7,831,720 B1 11/2010 Noureddine
7,865,585 B2 1/2011 Samuels et al.
7,970,835 B2 1/2011 St. Jacques
7,890,547 B2 2/2011 Hotti
7,929,535 B2 4/2011 Chen et al.
7,941,525 Bl 5/2011 Yavilevich
8,108,245 Bl 1/2012 Hosea et al.
8,135,912 B2 3/2012 Shribman et al.
8,171,101 B2 5/2012 Gladwin et al.
8,234,370 B2 7/2012 Hammer et al.
8,452,901 Bl 5/2013 Sandstrom et al.
8,479,251 B2 7/2013 Feinleib et al.
8,499,059 B2 7/2013 Stoyanov
8,560,604 B2 10/2013 Shribman et al.
8,595,786 B2 11/2013 Choi
8,639,630 B2 1/2014 Fomenko et al.
8,671,221 B2 3/2014 Shribman et al.
8,719,430 B2 5/2014 Van Ackere
8,719,505 B2 5/2014 Shribman et al.
8,769,035 B2 7/2014 Resch et al.

8,832,179

8,838,811

9,015,335

9,177,157

9,201,808

9,253,164

9,378,473

9,990,295
2001/0033583
2001/0054020
2002/0007413
2002/0065930
2002/0069241
2002/0091760
2002/0120874
2002/0123895
2003/0009518
2003/0009583
2003/0074403
2003/0097408
2003/0115364
2003/0174648
2003/0200307
2003/0204602
2003/0210694
2003/0229682
2003/0229718
2003/0229785
2004/0088646
2004/0254907
2004/0264506
2005/0015552
2005/0018645
2005/0022236
2005/0027782
2005/0097441
2005/0228964
2006/0036755
2006/0039352
2006/0047844

2006/0187830
2006/0212542
2006/0212584
2006/0224687
2006/0259728
2007/0042332
2007/0050522
2007/0073878
2007/0100839
2007/0142036
2007/0156855
2007/0174246
2007/0174442
2007/0226810
2007/0239655
2008/0008089
2008/0025506
2008/0046562
2008/0086730
2008/0109446
2008/0125123
2008/0222291
2008/0235361
2008/0235391
2008/0256175
2009/0010426
2009/0037529
2009/0182843
2009/0216887
2009/0217122
2009/0232003
2009/0248793
2009/0279559
2009/0292816
2009/0319502
2010/0002882
2010/0066808
2010/0085977

*

9/2014
9/2014
4/2015
11/2015
12/2015
2/2016
6/2016
6/2018
10/2001
12/2001
1/2002
5/2002
6/2002
7/2002
8/2002
9/2002
1/2003
1/2003
4/2003
5/2003
6/2003
9/2003
10/2003
10/2003
11/2003
12/2003
12/2003
12/2003
5/2004
12/2004
12/2004
1/2005
1/2005
1/2005
2/2005
5/2005
10/2005
2/2006
2/2006
3/2006

8/2006
9/2006
9/2006
10/2006
11/2006
2/2007
3/2007
3/2007
5/2007
6/2007
7/2007
7/2007
7/2007
9/2007
10/2007
1/2008
1/2008
2/2008
4/2008
5/2008
5/2008
9/2008
9/2008
9/2008
10/2008
1/2009
2/2009
7/2009
8/2009
8/2009
9/2009
10/2009
11/2009
11/2009
12/2009
1/2010
3/2010
4/2010

Owen et al.

Chen

Gigliotti

Binderccccoenn. HO04L 63/18

Shribman et al.

Gouge

Wolfe

Shribman et al.

Rabenko et al.

Barth

Garcia-Luna-Aceves et al.

Rhodes

Narlikar et al.

Rozen

Shu et al.

Potekhin

Harrow et al.

Chan et al.

Harrow et al.

Kageyama

Shu et al.

Wang et al.

Raju et al.

Hudson et al.

Jayaraman et al.

Day

Tock

Daseke

Yeager et al.

Crow et al.

Furukawa

So et al.

Mustonen et al.

Ito et al.

Jalan

Herbach

Sechrest et al.

Abdullah

Karstens

Deng GO6F 16/958
709/231

Nam

Fang

Yu et al.

Popkin
Chandrasekaran et al.
Leem
Grove
Issa

Kim
Wikman
Johnson
Sigurdsson
Sherman et al.
Hotti
Agetsuma
Bornstein et al.
Muraoka
Butler

Vertes

Wang
Dorenbosch
Weller

Crosbie et al.
Painter et al.
Lee

Redmond
Armon-Kest
Hluchyj

Hertle
Yokokawa et al.
Vasseur
Jacobsson
Wong et al.
Etchegoyen
Chalouhi et al.
Rieger et al.
Tucker et al.
Khalid et al.

GO6F 16/1787

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002
2 of 228

US 10,469,614 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0094970 Al

2010/0115063 Al

2010/0154044 Al 6/2010 Manku

2010/0235438 Al 9/2010 Narayanan

2010/0262650 Al* 10/2010 Chauhan HO4L 67/26
709/203

4/2010 Zuckerman
5/2010 Gladwin et al.

2010/0293555 Al
2010/0329270 Al
2011/0035503 Al
2011/0066924 Al*

11/2010 Vepsalainen
12/2010 Asati et al.
2/2011 Zaid
3/2011 DOrsoc.c...... HO04L 65/1069
714/776
2011/0087733 Al
2011/0128911 Al
2011/0145317 Al
2011/0264809 Al
2011/0314347 Al
2012/0099566 Al
2012/0124173 Al
2012/0124239 Al
2012/0164980 Al
2012/0166582 Al
2012/0246273 Al
2012/0254370 Al
2012/0254456 Al
2013/0007232 Al
2013/0007253 Al
2013/0064370 Al
2013/0080575 Alf
2013/0157699 Al
2013/0166768 Al
2013/0171964 Al*

4/2011 Shribman

6/2011 Shaheen

6/2011 Serban et al.

10/2011 Koster

12/2011 Nakano et al.

4/2012 Laine et al.

5/2012 De et al.

5/2012 Shribman

6/2012 Van Phan

6/2012 Binder

9/2012 Bornstein

10/2012 Bacher

10/2012 Visharam

1/2013 Wang

1/2013 Li

3/2013 Gouge

3/2013 Prince

6/2013 Talwar

6/2013 Gouache et al.

7/2013 Bhatiacocoev. HO4W 12/08
455/411

2013/0201316 Al 8/2013 Binder et al.

2013/0219458 Al 8/2013 Ramanathan

2013/0272519 Al 10/2013 Huang

2013/0304796 Al* 11/2013 Jackowski HO4L 47/19

709/202

2013/0326607 Al

2014/0082260 Al

2014/0189802 Al

2014/0301334 Al

2014/0359081 Al

2014/0376403 Al

2015/0033001 Al

2015/0067819 Al

2015/0189401 Al

2015/0206176 Al

2015/0206197 Al

2015/0341812 Al

2015/0358648 Al

2016/0021430 Al

2016/0105530 Al

2017/0221092 Al

12/2013 Feng
3/2014 Oh et al.
7/2014 Montgomery
10/2014 Labranche
12/2014 Van Deventer
12/2014 Shao
1/2015 Ivanov
3/2015 Shribman
7/2015 Yi
7/2015 Toval
7/2015 Toval
11/2015 Dion
12/2015 Limberg
1/2016 LaBosco et al.
4/2016 Shribman
8/2017 Toval

FOREIGN PATENT DOCUMENTS

JP 2007280388 10/2007
KR 1020090097034 9/2009
WO 2000/018078 Al 3/2000
WO 2004094980 11/2004
WO 2004094980 A2 11/2004
WO 2010090562 Al 8/2010
WO 2011068784 Al 6/2011
WO 2015034752 Al 3/2015

OTHER PUBLICATIONS

R. Fielding et al, RFC 2616: Hypertext Transfer Protocol—HTTP/
1.1, Jun. 1999, retrieved from the Internet http://rcf-editor.org
[retrieved Apr. 15, 2002].

Syverson P., Reed M. G., Goldschlag M., “Towards an Analysis of
Onion Routing Security”, “Workshop on Design Issues in Anonym-
ity and Unobservability”, Berkeley, CA, Jul. 2000 (14 pages).

International Organization for Standardization, ISO 8601, “Data
elements and interchange formats—Information Interchange—
Representation of dates and times”, 1988 (19 pages).

IETF RFC 675 “Specification of Internet Transmission Control
Program”, Dec. 1974 (70 pages).

IETF RFC 793 “Protocol Specification”, Sep. 1981 (90 pages).
IETF RFC 791 “Protocol Specification”, Sep. 1981 (50 pages).
IETF RFC 1349 “Type of Service in the Internet Protocol Suite”,
Jul. 1992 (28 pages).

IETF RFC 2460 “Internet Protocol, Version 6 (IPv6)”, Dec. 1998
(39 pages).

IETF RFC 3315 “Dynamic Host Configuration Protocol for IPv6
(DHCPv6)”, Jul. 2003 (101 pages).

IETF RFC 2131 “Dynamic Host Configuration Protocol”, Mar.
1997 (45 pages).

IETF RFC 1034 “Domain Names—Concepts and Facilities”, Nov.
1987 (52 pages).

IETF RFC 1035 “Domain Names—Implementation and Specifica-
tion”, Nov. 1987 (52 pages).

IETF RFC 792, “Internet Control Message Protocol: DARPA
Internet Program Protocol Specification”, Sep. 1981 (21 pages).
IETF RFC 1072, “TCP Extensions for Long-Delay Paths”, Oct.
1988 (16 pages).

IETF RFC 1323, “TCP Extensions for High Performance”, May
1992 (37 pages).

IETF RFC 1825, “Security Architecture for the Internet Protocol”,
Aug. 1995 (22 pages).

IETF RFC 2401, “Security Architecture for the Internet Protocol”,
Nov. 1998 (66 pages).

IETF RFC 1826, “IP Authentication Header”, Aug. 1995 (13 pages).
IETF RFC 4301, “Security Architecture for the Internet Protocol”,
Dec. 2005 (101 pages).

IETF RFC 1827, “IP Encapsulating Security Payload (ESP)”, Aug.
1995 (12 pages).

IETF RFC 1828, “IP Authentication using Keyed MD5”, Aug. 1995
(6 pages).

IETF RFC 1829, “The ESP DES-CBC Transform”, Aug. 1995 (11
pages).

IETF RFC 1885, “Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification”, Dec. 1995 (20
pages).

IETF RFC 1918, “Address Allocation for Private Internets”, Feb.
1996 (9 pages).

IETF RFC 2463, “Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification”, Dec. 1998 (18
pages).

IETF RFC 2464, “Transmission of IPv6 Packets over Ethernet
Networks”, Dec. 1998 (7 pages).

IETF RFC 2547, “BGP/MPLS VPNs”, Mar. 1999 (25 pages).
IETF RFC 2616, “Hypertext Transfer Protocol—HTTP/1.1”, Jun.
1999 (114 pages).

IETF RFC 2914, “Congestion Control Principles”, Sep. 2000 (17
pages).

IETF RFC 3207, “SMTP Service Extension for Secure SMTP over
Transport Layer Security”, Feb. 2002 (9 pages).

IETF RFC 3489, “STUN—Simple Traversal of User Datagram
Protocol (UDP) Through Network Address Translators (NATs)”,
Mar. 2003 (47 pages).

IETF RFC 4026, “Provider Provisioned Virtual Private Network
(VPN) Terminology”, Mar. 2005 (20 pages).

IETF RFC 4309, “Using Advanced Encryption Standard (AES)
CCM Mode with IPsec Encapsulating Security Payload (ESP)”,
Dec. 2005 (13 pages).

IETF RFC 5246, “The Transport Layer Security (TLS) Protocol
Version 1.2, Aug. 2008 (104 pages).

IETF RFC 6520, “Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension”, Feb. 2012
(9 pages).

IETF RFC 7230, “Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing”, Jun. 2014 (89 pages).

IETF RFC 7231, “Hypertext Transfer Protocol (HTTP/1.1): Seman-
tics and Content”, Jun. 2014 (101 pages).

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
3 of 228

US 10,469,614 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

IETF RFC 7232, “Hypertext Transfer Protocol (HTTP/1.1): Con-
ditional Requests”, Jun. 2014 (28 pages).

IETF RFC 7233, “Hypertext Transfer Protocol (HTTP/1.1): Range
Requests”, Jun. 2014 (25 pages).

IETF RFC 7234, “Hypertext Transfer Protocol (HTTP/1.1): Cach-
ing”, Jun. 2014 (43 pages).

IETF RFC 7235, “Hypertext Transfer Protocol (HTTP/1.1): Authen-
tication”, Jun. 2014 (19 pages).

Peter Snyder, “tmpfs: A Virtual Memory File System”, Sun Microsystem
Inc. date unknown, downloaded on Jul. 2014 (8 pages).

IETF RFC 2198, “RTP Payload for Redundant Audio Data”, Sep.
1997 (11 pages).

IEEE STD. 802.3a¢-2002—IEEE Standard for Information tech-
nology—TLocal and metropolitan area networks—Specific require-
ments Part 3: CSMA/CD Access Method and Physical Layer
Specifications, by Electrical and Electronic Engineers, Inc. Aug. 30,
2002 (529 pages).

IEEE STD. 802.3ba-2010—IEEE Standard for Information tech-
nology—TLocal and metropolitan area networks—Specific require-
ments Part 3: CSMA/CD Access Method and Physical Layer
Specifications, by LAN/MAN Standards Committee, Jun. 22, 2010
(457 pages).

University of Michigan paper “Dictionary-Based Compression for
Long Time-Series Similarity”, by Willis Lang, Michael Morse, and
Jignesh M. Patel, downloaded from http://pages.cs.wisc.edw/ on
Aug. 2014.

Carnegie Mellon University, chapter: “Introduction to Data Com-
pression”, by Guy E. Blelloch, dated Jan. 31, 2013 (55 pages).
University of Toronto, Department of Computer Science presenta-
tion “Tutorial on Socket Programming”, by Amin Tootoonchian,
downloaded on Aug. 2014 (27 pages).

Wiley Publishing, Inc. publication “Professional Linux Kernel
Architecture”, by Wofgang Mauerer published 2008 (1370 pages).
“WiFi Technology” by Telecom Regulatory Authority, published on
Jul. 2003 (60 pages).

Brian Mariani, “Userland Hooking in Windows”, by High-Tech
Bridge SA, Aug. 3, 2011 (33 pages).

“Filter Driver Development Guide”, Version 1.0a by Microsoft
Corporation dated 2004 (28 pages).

Samsung Electronics Co. Ltd., presentation “GoogleTM Chrome
OS User Guide”, published 2011, version 1.00 (41 pages).
Hubert Kirrmann, “Highly Available Automation Networks Stan-
dard Redundancy Methods—Rationale behind the IEC 63429 stan-
dard suite”, by ABB Switzerland Ltd., 2012 presentation, down-
loaded Jul. 2014 (51 pages).

IBM Corporation, International Technical Support Organization
Redbook Documents No. SG24-4756-00 “Local area Network
Concepts and Products: LAN Operation Systems and management”,
1st Edition, May 1996 (216 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jul. 1999),
“Internetworking Technologies Handbook”, Chapter 30: “Internet
Protocols”, pp. 30-1 to 30-16 (16 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jul. 1999),
“Internetworking Technologies Handbook”, Chapter 7: “Ethernet
Technologies”, pp. 7-1 to 7-38 (38 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jul. 1999),
“Internetworking Technologies Handbook”, Chapter 32: “IPv6”, pp.
32-1 to 32-6 (6 pages).

Standard Microsystems Corporation (SMSC) “LAN91C111 10/100
Non-PCI Ethernet Single Chip MAC + PHY” Data-Sheet, Rev. 15
(Feb. 20, 2004) (127 pages).

Cisco Systems, Inc. (Jul. 1999), “Internetworking Technologies
Handbook”, Chapter 18: “Multiservice Access Technologies”, pp.
18-1 to 18-10 (18 pages).

Syverson P.; Reed M. G.; Goldschlag M., “Onion Routing for
Anonymous and Private Internet Connections”, Communications of
the ACM, vol. 42, No. 2, Feb. 1999 (5 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jun. 1999),
“Internetworking Technologies Handbook”, Chapter 45: “OSI Rout-
ing”, pp. 45-1 to 45-8 (8 pages).

Syverson P.; Reed M. G.; Goldschlag M.: “Anonymous Connec-
tions and Onion Routing”, IEEE Journal on Selected Areas in
Communication Special Issue on Copyright and Privacy Protection,
1998 (15 pages).

Overlier L., Syverson P., “Improving Efficiency and Simplicity of
Tor circuit establishment and hidden services”, Proceedings of the
2007 Privacy Enhancing Technologies Symposium, Springer-
Verlag, LNCS 4776 (20 pages).

IBM Corporation, International Technical Support Organization
Redbook Document No. SG24-2580-01 “IP Network Design Guide”,
2nd Edition Jun. 1999 (324 pages).

IBM Corporation, International Technical Support Organization
Redbook Document No. GG24-3376-07 “TCP/IP Tutorial and Tech-
nical Overview”, 8th Edition Dec. 2006 (1004 pages).

IBM Corporation, International Technical Support Organization
Redbook Document No. GG24-4338-00 “Introduction to Network-
ing Technologies”, 1st Edition Apr. 1994 (220 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jul. 1999),
“Internetworking Technologies Handbook”, Chapter 5: “Routing
Basics”, pp. 5-1 to 5-10 (10 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jul. 1999),
“Internetworking Technologies Handbook”, Chapter 51: “Security”,
pp. 51-1 to 51-12 (12 pages).

Cisco Systems, Inc. publication No. 1-587005-001-3 (Jul. 1999),
“Internetworking Technologies Handbook”, Chapter 19: “Voice /
Data Integration Technologies”, pp. 19-1 to 19-30 (30 pages).
Alan Grosskurth; Michael W. Godfrey, “Architecture and Evolution
of the Modern Web Browser”, University of Waterloo in Canada,
Jun. 20, 2006 (24 pages).

Information Systems Audit and Control Association (ISACA) white-
paper, “Geolocation: Risk, Issues and Strategies”, 2011 (13 pages).
“Android Tutoriap”, downloaded from tutorialspoint.com on Jul.
2014 (216 pages).

Anna Lewis; Graeme Benge; Gemma Hollooway: “The Practical
Guide to Google Analytics for Business”, 2nd Edition, published
2013, Koozai Ltd. (77 pages).

Dingledine R.; Mathewson N.; Syverson P.. “Tor: The Second-
Generation Onion Router”, in Proceedings of the 13th USENIX
Security Symposium, Aug. 2004 (17 pages).

Brian Mariani, “Inline Hooking in Windows”, by High-Tech Bridge
SA, Sep. 6, 2011 (26 pages).

Chaum D.:. “Untraceable electronic mail, return addresses, and
digital pseudonyms”, in Communications of the ACM, vol. 24, No.
2, Feb. 1981, pp. 84-88 (5 pages).

Dingledine R.; Mathewson N.: “Tor Protocol specification”, down-
loaded Nov. 2010 from www.torproject.org (12 pages).

“Tor Directory Protocol Version 3”, downloaded Nov. 2010 from
www.torproject.org (29 pages).

“TC: Tor Control Protocol (Version 1)”, downloaded Nov. 2010
from www.torproject.org (24 pages).

Yong Wang et al., “Towards Street-Level Client-Independent IP
Geolocation”, downloaded on Jul. 2014 (14 pages).

Hans Weibel, Tutorial on Parallel Redundancy Protocol (PRP), by
Zurich University of Applied Sciences, date unknown, downloaded
Jul. 2014 (20 pages).

Syverson P.; Reed M. G.; Goldschlag M., “Onion Routing Access
Configurations, DISCEX 2000: Proceedings of the DARPA Infor-
mation Survivability Conference and Exposition”, vol. I Hilton
Head, SC, IEEE CS Press, Jan. 2000, pp. 34-40 (7 pages).

W3C Recommendation for the geolocation API specifications draft
dated Oct. 24, 2013, is available from the web-site http://www.w3.
org/TR/2013/REC-geolocation-API-20131024 (10 pages).

“IOS TUTORIAF”, downloaded from tutorialspoint.com on Jul.
2014 (185 pages).

Jerry Honeycutt: “Introducing Windows 8—An Overview for IT
Professionals”, by Microsoft Press, 2012 (168 pages).

Karn; Phil; Craig Partridge: “Improving Round-Trip Time Esti-
mates in Reliable Transport Protocols”, ACM SIGCOMM ’87—
Computer Communication Review, pp. 67-74.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
4 of 228

US 10,469,614 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

M. Saeed: “Welcome to Version 2.0 of the Win32 API TutoriaP”,
published by Brook Miles downloaded from the Internet on Jul.
2014 (108 pages).

Whitepaper by E-Nor, Inc. entitled: “A 7-Step Analytics Reporting
Framework-Marketing Optimization Whitepaper” by Feras Alhlou,
downloaded on Aug. 2014 (13 pages).

Melekam Tsegaye; Ricahrd Foss, “A Comparison of the Linux and
Windows Device Driver Architecture”, Rhodes University, South-
Africa, downloaded from the Internet on Jul. 2014 (26 pages).
IBM Corporation (headquartered in Armonk, New-York, U.S.A.)
publication No. SC34-2597-03, “Device Drivers, Features, and
Commands on Red Hat Exterprise Linux 6.3”, downloaded from the
Internet on Jul. 2014 (580 pages).

Mohamad (Hani) Atassy, “Microsoft Windows Driver Model (WDM)”,
Jan. 28, 2002 (32 pages).

Overlier L.; Syverson P.: “Valet Services: Improving Hidden Serv-
ers with a Personal Touch”, Proceedings of the 2006 Privacy
Enhancing Technologies Workshop, Springer-Verlag, LNCS 4285
(22 pages).

Peter Jay Salzman; Michael Burian; Ori Pomerantz: “The Linux
Kernel Module Programming Guide”, ver. 2.6.4., dated May 18,
2007 (82 pages).

Philip Koopman: “32-Bit Cyclic Redundancy Codes for Internet
Applications”, Carnegie Mellon University, International Confer-
ence on Dependable Systems and Networks (DSN), 2002 (10
pages).

Robert D. Doverspike; K. K. Ramakrishnan; Chris Chase: “Guide to
Reliable Internet Services and Applications”, Chapter 2: “Structural
Overview of ISP Networks”, published 2010 (ISBN: 978-1-84882-
827-8) (76 pages).

“Safari Web Content Guide”, Apple Inc., Mar. 10, 2014 (113 pages).
Syverson P., “Making Anonymous Communication”, Generation 2
Onion Routing briefing slides, Center for High Assurance Computer
Systems, Naval Research Laboratory, National Science Foundation,
Jun. 8, 2004 (64 pages).

University of Michigan paper “Dictionary-Based Compression for
Long Time-Series Similarity” by Willis Lang, Michael Morse, and
Jignesh M. Patel, downloaded from http://pages.cs.wisc.edw/ on
Aug. 2014 (14 pages).

Feigenbaum J.; Johnson J.; Syverson P: “A Model of Onion
Routing with Provable Anonymity”, Financial Cryptography and
Data Security *07 (FC 2007), pp. 57-71 (15 pages).

International Search Report of PCT/US2010/034072 dated Jul. 1,
2010.

Screen captures from YouTube video clip entitle “nVpn.net | Double
your Safety and use SocksS + nVpn” 38 pages, last accessed Nov.
20, 2018 <https://www.youtube.com/watch?v=L0Hct2kSnn4>.
Screen captures from YouTube video clip entitle “Andromeda” 47
pages, publicly known and available as of at least 2011 <https://
www.youtube.com/watch?v=yRRYpFLbKNU>.

Screen captures from YouTube video clip entitle “Change Your
Country IP Address & Location with Easy Hide IP Software” 9
pages, publicly known and available as of at least 2011, <https://
www.youtube.com/watch?v=ulwkf1sOfd A and https://www.youtube.
com/watch?v=iFEMT-09DTc>.

SpyEye, https://www.symantec.com/security-center/writeup/2010-
020216-0135-9; http://securesql.info/riskyclouds/spyeye-user-
manual; known as of at least 2010.

CoralCDN (“CoralCDN”), https://pdos.csail.mit.edu/6.824/papers/
freedman-coral.pdf (14 Pages).

International Search Report issued in PCT Application No. PCT/
US2010/051881 dated Dec. 9, 2010.

Supplementary European Search Report issued in EP Application
No. 10822724 dated Apr. 24, 2013.

Notice of Preliminary Rejection in KR Application No. 10-2012-
7011711 dated Jul. 15, 2016.

YouTube video clip entitled “nVpn.net | Double your Safety and use
SocksS + nVpn” <https://www.youtube.com/watch?v=L0Hct2kSnn4>.

YouTube video clip entitled “Andromeda” <https://www.youtube.
com/watch?v=yRRYpFLbKNU>.

YouTube video clip entitled “Change Your Country IP Address &
Location with Easy Hide IP Software” <https://www.youtube.com/
watch?v=ulwkflsOfdA and https://www.youtube.com/watch?v=
iIFEMT-09DTc>.

SAS Institute Inc. SHARE Session 5958 tutorial ‘C Socket Pro-
gramming Tutorial” entitled: “Writing Client / Server Programs in C
Using Sockets (A Tutorial) Part I”, by Greg Granger, dated Feb.
1998 (31 pages).

IETF RFC 3467, “Role of the Domain Name System (DNS)”, Feb.
2003 (31 pages).

IETF RFC 6195, “Domain Name System (DNS) IANA Consider-
ations”, Mar. 2011 (17 pages).

IETF RFC 1591, “Domain Name System Structure and Delega-
tion”, Mar. 1994 (7 pages).

IETF RFC 6323, “Sender RTT Estimate Option for the Datagram
Congestion Control Protocol (DCCP)”, Jul. 2011 (13 pages).
Operating Systems, Chapter 9: “Interprocess Communication”, by
Marko Vuskovic, 1998-2002, pp. 9-1 to 9-19 (20 pages).

“UNIX Tutorial” by tutorialspoint.com, downloaded on Jul. 2014
(152 pages).

William R. Stanek, “Inside-Out Windows Server 20127, published
by Microsoft Press in 2013 (1584 pages).

Publication No. 1-587005-001-3 by Cisco Systems, Inc. (Jul. 1999),
“Internetworking Technologies Handbook”: Chapter 30: “Internet
Protocols”, pp. 30-1 to 30-16.

IETF RFC 2544, “Benchmarking Methodology for Network Inter-
connect Devices”, Mar. 1999 (32 pages).

ITU-T Y.1564 “Ethernet Service Activation Test Methodology”,
Mar. 2011 (38 pages).

ITU-T H.323 “Packet-based multimedia communication systems”,
Dec. 2009 (320 pages).

IETF RFC 4098, “Terminology for Benchmarking BGP Device
Convergence in the Control Plane”, Jun. 2005 (37 pages).

IETF RFC 3550, “RTP: A Transport Protocol for Real-Time Appli-
cations”, Jul. 2003 (89 pages).

IETF RFC 3261, “SIP: Session Initiation Protocol”, Jun. 2002 (269
pages).

IETF RFC 1750, “Randomness Recommendations for Security”,
Dec. 1994 (31 pages).

Cisco Systems, Inc., “An Introduction to IP Security (IPSec) Encryp-
tion”, 1992 (28 pages).

Feigenbaum J., Johnson A., Syverson P., “Probabilistic Analysis of
Onion Routing in a Black-box Model [Extended Abstract]”, WPES’07:
Proceedings of the 2007 ACM Workshop on Privacy in Electronic
Society, ACM Press Oct. 2007, pp. 1-10 (10 pages).

“On the leakage of personally identifiable information via online
social networks”, Wills et al. AT&T, Apr. 2009 http://www?2.research.
att.com/-bala/papers/wosn09.pdf.

Partial European Search Report for EP 14182547, dated Feb. 24,
2015.

Jesse Burstyn et al, Assignment |—Conceptual Architecture of
Google Chrome, CISC 322, Fall 2009 (18 pages).

Mark Russinovich, David A. Solomon, and Alex Ioescu, “Windows
Internals—Part 17, published by Microsoft Press in 2012, 6th
edition (752 pages).

Mark Russinovich, David A. Solomon, and Alex Ioescu, “Windows
Internals—Part 2”, published by Microsoft Press in 2012, 6th
edition (672 pages).

European Search Report for EP 14182547.1, dated Aug. 7, 2015.
Ingmar Poese, Steve Uhlig, et al., IP Geolocation Database: Unre-
liable?. date unknown, downloaded Jul. 2014 (4 pages).

Cloud Optimize your business—Windows Server 2012, published
Oct. 7, 2013 by Microsoft (34 pages).

“Step by Step Tutorials for Microsoft Internet Explorer 8 Accessi-
bility Options”, Microsoft Corporation 2009 (25 pages).

Cisco Systems, Inc. (Jun. 1999), “Internetworking Technologies
Handbook”, Chapter 5: “Routing Basics”, pp. 5-1 to 5-8 (8 pages).
Feigenbaum J.; Johnson J.; Syverson P.: “A Model of Onion
Routing with Provable Anonymity”, Financial Cryptography and
Data Security, 11th International Conference, FC 2007, LNCS
forthcoming (15 pages).

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
5 of 228

US 10,469,614 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

“Slice Embedding Solutions for Distributed Service Architectures”—
Esposito et al., Boston University, Computer Science Dept., Oct.
2011 http://www.cs.bu.edw/techreports/pdf/2011-025-slice-embedding.
pdf.

Reed et al, “Anonymous Connections and Onion Routing”, Naval
Research Laboratory, Mar. 1998 https://www.onion-router.net/
Publications/JSAC-1998.pdf (Year: 1998).

“Keep Alive”—Imperva, 2019 https://www.imperva.com/learn/
performance/keep-alive (2019) (3 pages).

Third party observation filed on Jun. 21, 2019 in PCT Application
No. PCT/IL2018/050910 (7 pages).

IETF named: IPv6 Tunnel Broker, Apr. 1999—First uploaded
document submitted with third party observation dated Jun. 21,
2019 (13 pages).

RFC 3053 (Jan. 2001) named: IPv6 Tunnel Broker—Secod uploaded
document submitted with third party observation dated Jun. 21,
2019 (13 pages).

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/140,749.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/140,785.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/214,433.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/214,451.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/214,476.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/214,496.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/292,363.

Third-party submission under 37 CFR 1.290 filed on Jul. 22, 2019
and entered in U.S. Appl. No. 16/292,364.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/292,374.

Third-party submission under 37 CFR 1.290 filed on Jul. 23, 2019
and entered in U.S. Appl. No. 16/292,382.

Third-party submission under 37 CFR 1.290 filed on Jul. 25, 2019
and entered in U.S. Appl. No. 16/365,250.

Third-party submission under 37 CFR 1.290 filed on Jul. 25, 2019
and entered in U.S. Appl. No. 16/365,315.

“Slice Embedding Solutions for Distributed Service Architectures”—
Esposito et al., Boston University, Feb. 12, 2011 http://www.cs.bu.
edu/techreports/pdf/2011-025-slice-embedding.pdf (Year 2011) (16
pages).

Michael J. Freedman, Princeton University, “Experiences with
CoralCDN: a five-year operational view”, Proceeding NSDI’10
Proceedings of the 7th USENIX conference on Networked systems
design and implementation San Jose, California—Apr. 28-30, 2010
(17 pages).

“The BitTorrent Protocol Specification”, Website: https://web.archive.
org/web/20120513011037/http:/www.bittorrent.org/beps/bep_0003.
html describing BitTorrent dated Jan. 10, 2008 downloaded using
web archive on Aug. 16, 2019 (6 pages).

“BitTorrent”, Website: https://en.wikipedia.org/w/index.php?title=
BitTorrent&oldid=530466721 describing BitTorrent dated Dec. 30,
2012 downloaded using Wikipedia on Aug. 16, 2019 (9 pages).
“VIP Socks/VPN Service”, Website: http://vip72.com:80/?drgn=1
describing VIP72 proxy service dated Jan. 2010 downloaded using
VIP Technologies webpage on Aug. 16, 2019 (3 pages).
“Welcome to Easy Hide IP”, Website: https://web.archive.org/web/
20130702093456/http://www.easy-hide-ip.com:80/ describing Easy
Hide IP dated Jun. 26, 2007 downloaded using web archive on Aug.
16, 2019 (2 pages).

“You make it fun; we’ll make it run”, Website: https://web.archive.
org/web/20130726050810/https://www.coralcdn.org describing
CoralCDN dated Jan. 25, 2005 downloaded using web archive on
Aug. 16, 2019 (2 pages).

“Net Transport”, Website: http://www.xi-soft.com/default. htm describ-
ing Net Transport Overview dated 2005 downloaded using Net
Transport webpage on Aug. 16, 2019 (2 pages).

Net Transport—Develop History, Website: http://www.Xi-soft.com/
download.htm describing Net Transport Download dated 2005
downloaded using Net Transport webpage on Aug. 16, 2019 (10
pages).

Net Transport FAQ, Website: http://www xi-soft.com/faq.htm describ-
ing Net Transport FAQ dated 2005 downloaded using Net Transport
webpage on Aug. 16, 2019 (4 pages).

Net Transport News, Website: http://www.xi-soft.com/news.htm
describing Net Transport News dated 2005 downloaded using Net
Transport webpage on Aug. 16, 2019 (5 pages).

* cited by examiner
T cited by third party

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
6 of 228

US 10,469,614 B2

Sheet 1 of 134

Nov. 5, 2019

U.S. Patent

7 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

m AOV-HILNI :
m L TOHEINOD
| p, @Z 61
| N 301A30
| sng | LOdN
dsl W Mw‘ J b D,
e W £1
ZL | = m WOH M\ 81
e : qsz
| w N
m F0IA3a L AHOWEN N | m
i . W AOVHOLS | 95z NIVIA ecy |
o B m
CYOUIBIUL ™ o
14 +
T < \ls..sﬂ\
IR AP S), m\m\ /
gL

US 10,469,614 B2

Sheet 2 of 134

Nov. 5, 2019

U.S. Patent

it
JEINETS

eled

Em————

o

o ~

UONRISIB00Y

8 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019

iP Data

16§
1

iIP Header
i

Frame
Footer

PAYLOAD
\
16b

£
/%Q
sseppy di | ¥
ucReunRSasq g
sseIpPY dl |/ T
B80.N0S
o5
CER® 8
H m 3
B e T
N TR N

Sheet 3 of 134 US 10,469,614 B2

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
9 of 228

U.S. Patent Nov. 5, 2019 Sheet 4 of 134 US 10,469,614 B2

20a

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
10 of 228

US 10,469,614 B2

Sheet 5 of 134

Nov. 5, 2019

U.S. Patent

:
{
20¢Y _\)m
f
1

qoey

ﬂ..“
|
i
|
!
|
|
{
|
|
|
!
|
i
|
!
!
|
{
|
|
|
!
|
i
!
!
!
|
!
|
|
|
i
|
|

sgep— Ef lBseuduad

(34

Bpey

agey ~iabauep 18mMod i«

anedg pulay

~PLEY

ogep”

JBALCT [BAST-MOT

£

oy

JBALCT [BABTT-SIBIDRULIBIL]

£

X
~asey

JRAU BAeTUBiY

i
i
1
7
i
1
7
3
3
7
i
3
3
w
3
i -
1G9gy”
i
]
[
!
s
i
!
1
g
i
t
!
i

w Jabeuew O/

¥

1ebeueN dud [T egoy

ocy k

asedsg Jasn

P

Id¥ ZEUM

ey

oy

&

- gzey

%

T EECY

%

IBSMOIE GO

Z# vopeoyddy

L# uoneoyddy

2ieP

mwmwk

eLey”

SNE SIEMPIEH

0cYy

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

11 of 228

US 10,469,614 B2

Sheet 6 of 134

Nov. 5, 2019

U.S. Patent

(Jy Jouid) eg o

-

30y \)m B c#feseydusd | | z# eseydued 1 feseyduad ey
Q6L

i .

_v,.., — \\\@, < SN 2IEMPIEH

| ~ — pgcy

m TYH ey

| £

| ~pgSY

! ppeigssinpey LT :

i : 4 ;

i ' ;

! L opey it BINPOY M

! ! ;

_ ; T ;

! " Toggy ;

" ” L ;
q0ev | apey| 2#OIPON

| : .

| m ~assy | ey

] ' k i

| § m

" m BpCy L# SINPOW w

| m h m

| eoedgpwey T “~eggy

i soedg sesn) :

M SoBLBIU

| B WSISAG ™™ coy

3 23 .

egCy sy Iy ey

M k\L\\\\\a m/mwmw///r/!

i

w o# uogedyjddy Z# uopeoyddy L uoyeoyddy 0S¥

[

15y aLgy” eLep”

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

12 of 228

US 10,469,614 B2

Sheet 7 of 134

Nov. 5, 2019

U.S. Patent

SOIAS(] DUIDODS(]

L VIVA <5~ 18p008(J

’ S

s
qgiy QLY
tuw\

\
&Ly

821A8(] BUIPODUZD

Fieuonoich
paieus [

T egy

’
™

C igpooul mﬂwasws<h<a
™~

agly | L BSlp

yiy
/

Liy

0Ly

13 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Sheet 8 of 134

Nov. 5, 2019

U.S. Patent

aoine(] Buipooseq / Buipooul

BLOGOIT]
poseye

m§<ﬁ<@.:muwv

26y

L VIV < J8P0sBJ
D /

B9LY
N.N.w\\

qsiy

e
PELY

ao1ra(] Buipons / Buipoous

2uonoif]
08.IYS

28.p
- W

[— R ANE

L v viva smw

N 394y

hY

y egLy

M\
m/. L@ﬁ@ﬂvﬁm A«d.i:l.l!:{ {
oz vval N . S

asLy _ BELY
yiy
0 WA

\

BOLY

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

14 of 228

US 10,469,614 B2

Sheet 9 of 134

Nov. 5, 2019

U.S. Patent

UOIBIBIRI0Y

ZH
JETNEIS

gied

N
4ze

of jIeuUUNg

15 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 10 of 134

U.S. Patent

peisaBuoy 1dAB3 ‘oeD Zri0Z LYZ | €2°5Z°26°80) | feuuny /iusis
BUHO [9RIS] ‘NAY-BL VEGL L/bEe | £4809°00°G2L sy
auluO efensny Asupis POl LIEZ | Z1°26°68°98 sl
pe1sebuo) AueuLien) ‘Uony GG'8 L/EZ | §8L'ET60L lpuuny
SUHUO VSN YN ‘ucisog FANYV ARV A 0492L¢6eL jpuunj
SNIVLS NOILYD0T mqmwmww% 9| ssawaav TdAL
Ly PLY 3P iy BLp

< 87y
< Py
< 7Y

< Gy

< BZP

St 4

17

16 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 11 of 134

U.S. Patent

‘ : ws 4 :
St g : DBAIBDSY :
m - [ben oy T} _weeo
paJjedeid \\mwm : - T mwmm
fo1gg | eWoD N4 | wewod PUSS |
P ey T : :
peJedsld T euod ﬁammiw
JuBLoD . /mmm 1111111 \Wmmm : :
! ; : :
i [Isenbey jusyuog | Bog : :
wmﬂwmmm , - palinbey
: ! / 1senbe ! i :
1senbay TTH e | !W;\ EeD :
: 396 : pgg
HEIg | ucpoeuuod-eid |
: UONIBULOD-8id COps L \mwm
;[1OROSUL0D-ag ey | A ogs P98
L o E
weeg ummhif,s.mw@mm H\ | s ssedeld
: H \\ J 5 :
: : rA
: LONOBLUOD-8id M 1811 «wm@wﬂbmwm
m 2N elS —agg—— - 1817 etepdn
: Poolg , Tuubis |
: : eqs HEIG %ﬂ,mmm PR 1817 8jepdn
: -
wﬁwwm | u cmwmiw P
: 1eIs &)/ eps b N
: : 4is ﬁ./
P ey ORISR
F0IAZ0 F0IA30 HANnd4s 0%
YivQ TINNNL ANZNO NOILyHaT1300V

17 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 12 of 134

U.S. Patent

[e teom o e e o aan e cnnn e o s e i o e o oo nen o s S e S s e s

U018 JUSWOT
usuon
a Al
ogh BAIB08}
18anbey
A
acé EmEcQ pussg

SaA

m\ padinbay

Jusjuod

f
i
1
| a a1 N
m Pz jeniu 9
N O
m jsuunj
| ozg | 1919S
i
f
| p 1817 s|puun g
mn\.
SN BAIBDOY
| g9 4Z9
{
i
| s1sieuuny
i
| 76 1s8nboyy
| 7
m w
m “
| \) uslo) se
m o
| qig | urudis
|
w IRSLARS
2L9

18 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 13 of 134

U.S. Patent

Yoie4 Jusjuon

e
8¢l

wsio O
JUBIUOD pueg

-
pEL

19AI8S WO
JUBIUOY) BAIB08Y

e
Il

BAes o)
1senbey pusg

el

188nbey
JUBIUOY) BAIBOEY

_.
|
|
w
|
|
!
|
|
!
!
f
|
|
|
{
|
|
!
|
|
|
|
|
|
|
!
]
|
!
M
{
!
|
“
|
|
!
{
[N

47101

2gL

UOI0BUUOD-8Ad
Q1Ei]

jsuunj se
a -
ail u-ubis
HRS LA RS
Bl T

19 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 14 of 134

U.S. Patent

e e e s v v v . o s s . e . wen. - v vvve =" rove Pon. . - v wn. o wen oevs vees vv— T v v " e vevs —"_ev" . Ve wevi v . e . . v—." .. o voee s won e vve - won vens vevs e,

>

18AI8S W01
vl Tl JUBIUCT) BAIB0SY

INEle,
AJION

/

| oyl
(s)uonosuuod |
? uad mw ,
J8AIeS Of
e
o¢] Mwmxwmw pusy

20 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 15 of 134

U.S. Patent

Ewmmwu oL

WSIUOT pUBS

JBAIBS WO0i
JUBILOY 8J0IS

L

JBAISS WO
WUBJUOT BAIS00Y

1aAleg o)

1senbay pussg

~ BGL

1s8nbay
JUBIUOTD BAIS00Y

21 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 16 of 134 US 10,469,614 B2

80

Send
List

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
22 of 228

U.S. Patent Nov. 5, 2019 Sheet 17 of 134 US 10,469,614 B2

90

91a

Selected List -

Select
Tunnels
Send

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
23 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 18 of 134

U.S. Patent

o fouuny
/Yo JUSIUC
g |01 1UBIOD

oH mmm% L
/" lUoIOBUUCI-Bid
%9

q

g

74 lauun]
4o1e4 1Usjuos

A

t
i
i
¥
L]

avr9

2 Buuny
LOHOBUUOS-8.d

uchiled
A
Lol 1t} (800!
SEIN]
e
Lol 108189
1SI7 sjsuuUng
e
azé BAIB08Y
18177 S[@uUUng
\)/
ez6 wmmﬂwmm

3
3

(a4

BP9

L# ioulng

U084 JUBI0Y

e

L# [euung
UOI08UU0D-8.d

o

24 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 19 of 134

U.S. Patent

e
o |suun Z# |suun |
/T uoie4 Jueuo A Tumed Jusiuo
569 swmw\yw)’ qc9 xwuﬁ\yuﬂ 0]
P o mmmcﬁ 74 mmgcﬁ
UONDBULOD-8) /7 -
ov0 il d ave |UOHOBULCO-B1d
A./:/.i:l
uoiiled
e
qioj | 1YEWOO
sjpuun
>
eLol 108109
1817 Sjauun
\\.\)
azé BAI800Y
1817 Sjsuuny
A
\ 276 %@3\,@@&

2001

P9

L# [suuny
Yala JUBIUCYH

-eee3)

L# [uung
UOOBUU00-81d

e
PsY

10811
40194 1UBIUOYD

\

25 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 20 of 134

U.S. Patent

LA A

L
JEYNETS

g1eq]

#
FEETRET
B b~

T
f ettt 4

’ R

’ PLLE
-

WSIOT DUBS

BLE

1senbay usuon

JETSETS

A/mm‘z‘

. S [sUUN

26 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 21 of 134

U.S. Patent

ege

L
FEETNETS

eleq

qee

Z#
FETNE=T
2jec] ~
\A
g PZLL

<

WBUCY pUBS

UONEISBOoY

|

[rasssmommmasores

138nbay 8o

p../..
eZLL
“ e# jouun]

27 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 22 of 134

U.S. Patent

ege

L#
FEYNEETS

BlRC]

#
lonsg

BIE(]

[

qee

o BSLE

\ <

sue) pusg

L# JUSHD

15enhay WBoD

<

N
BSLL

qee —

C# jouun

28 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 23 of 134

U.S. Patent

ege

L#
FEYNET
B1B(] 7,.Mw i

ziweyn Tl S
. V/ o)

e

Nm.@q
P///.O@Q

4,

Z#
ieAag

Bleq

qée

29 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 24 of 134

U.S. Patent

b
JEINETS)

g1eq

e —

L# IQUUng

!!!!!

%4
JETNETS)

BeQ I~
A4

: L# jeuUng / uslD

N
1 74°

Cf euun g

IBAIRG
UONBISI0DY

1l

30 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 25 of 134

U.S. Patent

&
jonag

e1eq L~

"

i

ZHBIDI 00

PR

L# jouun,

J‘HUVN« x;f B
s | N
oes |4, eLzl

_______ ,,
AY
A

il

FETSETS
UOIIBIBIB0DY

ittt

31 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 26 of 134

U.S. Patent

.

L isUUng

el

-

S

~

cH#
JEINET

g1ec]

e

£# puUN L

32 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 27 of 134

U.S. Patent

BIUO boy
Em‘we% suonoesuBl| N
; ajepdn oL
/
MWW JUBIUCT SAIB0aM
4 G0IS Z# Joun | puUT BABOeY |~
qevi aiyi
@ N
A URIS T4 FOWNL o ° 3¢9
539 43 sl UEIS QAI08Y
4 do1g L seu) b givi
qzvi
UEIS L o] 1senboy -
\) B
ezpl JUBIUOY PUSS Wmm
SdA
"¢ painbay
S WS
T ego

33 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 28 of 134

U.S. Patent

0LL 00v1 [UGUS'GALOD IR L MW | 41z /2100690 | seiosgesz | EPOL P91
ovs 0052 dud-gyuicoAMAAmmn | 1ogczigzzs | geieLzizest | €O b B/SE
0L 0S¢ 1A AU/UWOD X0 MMM czysiey | oLeoLiolsve | OV-BE/EL
o 0001 Bdurzzauco Ly L mawn | zpL6evalL ezl | 89l iessieze | €06 E/EL
1 l I ! !
LG 814l PLGE JLGL gLgL BLGL

< PZot

<3261

< g8t

< Bggl

<« gG1

o
U3
g

34 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 29 of 134

U.S. Patent

WINAMXL YA S =4 UOTRM

0Ll 00%L | oneqmokmmrsduy | spel-gy | 1LV80ZOVIE | EVOL B0
ovs | oosz | CCMOBIODO=CREM o e 2T PISL
) ¢ JLUOO BOMINOA" mAA/ S ¢ 9€°08°9v'8P :
oL 05e NHBD09MAY Y A=A UOIBM -
oo sgminohmemsdny | gzpgLgy | L6V 09THALCEL .
0 ooo, | F¥OSAONNrO=AcTM .
) Juoo-agnnckmwnysdiy | gzvepgy | cre VS 0ECEEL .
(sw) (s/G3) ssTMaAvV | SSIMaAav di
1M ma 0 MIAMIS TaNNAL | 3WIL/Eiva
6L 8LGL PEGL %4 gesl BLGL

< PY§L
< 2p6]
< a5

< epsl

<« PGl

N\

e0GL

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

35 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 30 of 134

U.S. Patent

e

SERIYY
SICH
1senbay

9L

e

SjguUuny
BION
91BANOY

Birot

ON

; paels
Sax ¢ balosioy
.//r/
aLGL
SUCHO2UUOD
e
a 1senhay
mu m\@w 7

S3A |

-~ ieqeieny ™
<. SUCHOBUUCD

o~
4 2: 17

FosM
SUCHIBUUOY

10 JBquinN
Ve aulIeQ
qigi

IBQUINN
SUGHEBUU0N
LNLUIXEA]

Ve
219} suUILLISRJ

36 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 31 of 134 US 10,469,614 B2

171b
d

1714
e

171c

171a
e
e

©

& &
e & o
= c @ e g BN D

s I E ey << = Lwyb-->

- o 2 © T ©
@ &5 £ & -
= S <2 A
2 . [

£ @

- W

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
37 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 32 of 134

U.S. Patent

el

A
H
3
i

JBAIDG BIB(]

e
PL 031 188nbay
A asuodsay Jonag
a4 sopAjeuy
Janag
\/
qun | SonAreuy erepdn
N palijuapy
/ el
E0LL p

t
1
t

asuodsay

[eoidAp wimey |\

9ELL

asuodsay N

eoidA| uie

{ed ...m..,, eIqo aziL
arepdn n
1deniaiu) WN m

38 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 33 of 134 US 10,469,614 B2

0. @
i [} <=
| ﬂ TG
i 23
A
o /)
&y - ;
] ;
g 1
:
¥
H
¥
H
]
%
LEw] S
h ol -~
4 Z
5\
NG
§
H
3
Sy
1
]
1

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
39 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 34 of 134

U.S. Patent

\\14/
584

Bsuodssy oN,
LISy

\\\./
24344

asuodsay
LINIsy

EQ8L

%, PONROaY ™

SHA

asuodssy

AN
2531
N b doUdL |
-
assl HEIS
e 1senbay
ue
ecgs | OHQ pues

40 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 35 of 134

U.S. Patent

Bsuodsey O,

uIney

3
m‘

SdA

wmkaxm;
gaownl

N
9581

‘A;;myﬁmxaxm‘
TS T dewi]

7 panisosy

S4A

ON k

,_..mmcmnmmm.;.;wm>x
N
3581
1senbayy .
dOHAPUSS | Jgqy
Gt dsudl]
LeIg N\
2i6L
A
Lg Bl
AN
HEIS assl

asuodsay
LISy

N
PS8l

061

41 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 36 of 134

U.S. Patent

L
FEYSETS

e1eq

L# Jusby

L # 1994

IPAIBS
UOIRIDIBODY

L aamstrris s]

oH
N JETNET)
eZ0L €ed i~
ca| AL
\%JMM

.. CH 1884

42 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 37 of 134

U.S. Patent

deg yunyd

&
@

QCH NUNYO

Qe UNyo

BEH HUNYD

UZ#H YO

L2
L4

QCH HUNYD

Qé# UnYo

BZ# MUNYD

i byt 1o8d

PeLz
.

o T 198d
2CLE

e C# 198
QLig

o L# 1984
BgLE

N# TN T
PLLE
€ TN .
24174
f TN >~
qii2
L# TN T
2Lz

Wi # Junyy

L4
&

SL# MUNYD

Qi#Aunysd

BL# HUNYD

1] 4

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

43 of 228

U.S. Patent Nov. 5, 2019 Sheet 38 of 134 US 10,469,614 B2

o L2 [&] T
™ W o]
SN Y N &
YV ™Y)
e od fsp)
| R £
DD Hiee 5
(] @O &)
(AT I T B o 0.
= LN O prad
i3S 3k
TClT|T|ee | T
QL @
D O [y}
<L | << | <L <
1))
8/8/8/ &/
T e e g
S B £

210a
\

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
44 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 39 of 134

U.S. Patent

deg yunyp

&
%

JEH NUNYD

Qe# HUNYD

BEH UNYD

UZH# Hunyo

&
L

QEHAUNYD

Qé# MUnyd

BZH MUNYD

o by 1084
PELE

. £ 1984
2ELE

e CH 198d
geiz

o L# 109
BELZ

W Junyg

8
@

DL # HUNYS

Qi#HuUnyo

BL# UnyD

N# TN ™~
pLiz
€ TN _
2L
o 1dn T
qiLz
b TN T~
BLLE

qaoie

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

45 of 228

U.S. Patent Nov. 5, 2019 Sheet 40 of 134 US 10,469,614 B2

oL [3) k2]
LA 5 o €3
TN N <
YV)
™= PN O

* || d
505 5 ee| 5
O] £ a3 I
o oe o 0.
Lunll BN e =
3 {3k (H W
TElTlel Sle €

QO

Qo o @
I o o
<L < <
Y. Y
S/ 8/ g// W5/
Lol et o
o o &~ o

210¢c
N\

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
46 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 41 of 134

U.S. Patent

(peieaden)

AUNYG |
yoied

N STITIIILL 3

DOAISODY
i) vlg)
SIOUAA

=
B
Il
x
E
2
F
E
Kl
=
El
5
2
x
a
®
5
2
F
»
x
a
»
2

%@%mmmmw

07

p

B nmzasansersEna

aseesseansfrunnnoansakneasuonnounsuxsonnn s

\\mmwm

39ZZ

f

agge | WS

euuuua%ﬁuuauunaulnnlnnumquxnnaunuxauunaunnnunauneuxunaunuxununau

Hels

.ﬁ/l A TA A

&

i P12
AOIAFA

H33d

xﬂé_\@’si :
E L
:

ﬂgaﬁ
g =0l
biii%i :
.
H
:

ERuEEsRIBEsELASNGsNOAFNBASANSD

S198
Psfes

1922
C

o, s ssoasponzoaxRErTRanIRsRIREITsSPAnERENREAREGLESTARITENT DT

c

1817 pua
@mmmﬁ;:s;;umL

™,

1811 sledaid

1811 eepdn

ﬁiwwwﬁ‘gg

| Isreenta

181 Mmmncmmw 1 ogee

-

Big |

1817 a1epdn

| upubis
Ll m%uwmwmw —

HFOINZA
INIOY

FOIAZA

ANZTO

P eyze
SRR

HIALLS
NOLLVHINE00V

N

0Z¢

47 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 42 of 134

U.S. Patent

1817 spueby
8JOIS

!

Bicz

0ce

s1uaby
nefd | 1oes
e
181 sjuaby
e BAIB08Y
pLge
1817 sjualy
-
o165 1senbay
A
w80 se
qes | Urubis

yLee

48 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 43 of 134

U.S. Patent

UBU0D
a B840
BGLY S
e TN
2I0UWIasSs
GeZ iq Y
P ¢# Juaby ~ Z# Jusby
a6e7 Yala-d syunyn a6er yolad syunyn
pu c# Jusby - Z# uaby
811 18anbs s 188nbs
opie 18173 & aves 1811} |
sjuaby
a
Va ez Mummw

egee

1
i
i

B6EE

L# weby
Yaie4 syunyo

epte

L# Weby
18177 188nbay

e
£ee

108110
yoled Jusjuo

49 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 44 of 134

U.S. Patent

qoee

C# 1884
SJUNYD) SAIBDaY

Cit 199d
NUNYD) 1senbayy

A o 180
qgez | AUNUD 8ABosy
Z# Joad
e
e NUNYS 1senbayy
S99
e
Y o8jes
T
1817 81884
a
acs AAIS08
A~ L# weby
eper | IS Mm\w%@m

L# 1884
\il
egez | 1UNUD BAIBOBY
L# 1984
i yunyn 1sanbay
LT AWA y

50 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 45 of 134

U.S. Patent

el oL
o~
bz 18 pusg
1817 S488d
e
aL¥z aJedaid
188nboay
e ;
PLbZ 18 mmmmomm

8D oL
s
1sanbay
=
e YUNLD) 8AI808Y

EE D

RrA L4

1984 sy

51 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 46 of 134 US 10,469,614 B2

250

/

_;_NO

251a
Request ?_~ |

- 'Agems List

251d

Update
Table

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
52 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 47 of 134

U.S. Patent

euys ‘Builisg £G LC €91 08 LEEL 'S0 1984 / jusby
[orIS] ‘wisesniar £yl €68 FASR TS SR TA) JUBHD
BHEASNY ‘SUINOIS oyl €8¢ 8L°68°CL LI =ile
AuBluias) ‘uiey 6601 €/G2 £8484°89 jueby
WS 1 IWEIN GE'8 e/PT 8Z80¢ juelby
AL/ 31vd
NOILYOOT NI-NSIS SSFNAAY dl 3dAL
pesz 9262 azsz AT

< BgSZ

< pgee
< 2g8Z

< ggsz

< BEGE

<« £C8

e0s¢Z

53 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 48 of 134

U.S. Patent

L#ieeg

L# usby
_ o I
BN BTN E=Ta
A EZ0L el
; e B (24
.M \.u.w fretsvmsmmsrrirnd
N y TN e A
;r 4 e . 4 M‘QN
e S N
v (44 P b - L UBHD
. V| weby senbey | o

UONRIBIBODY

54 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 49 of 134

U.S. Patent

L
JEINETS

eeq |

fo i o]

| rem——

L# sy

E

Lt 1894

iiiii

ZH
FETNELS

e
b re it §

929¢

m\

i1 sr Jead pueg

e1ed L

JouIaIU]

1817 188 1senbay

JEETNET
UOIRIBRIDY

| e

55 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 50 of 134

U.S. Patent

L
JEINE T

g1ec]

e

L# Jueby

i
SETNEL

BE9¢

YUy oy 1senboy

HUnYG puag

“gegz

erq -,

4ee

< L USiD

BLoL

56 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 51 of 134

U.S. Patent

L
JETNETS

gled]

T

L# Jusby

!!!!!

=

L4 Jood
. i
N FEINETS)
AT EBZOL Qe ~
; 4qze
; A =
N e
{ i b
| yunys 1senbay
/
e
w N
HUNYD pueg
S peoz
Cf 108

UORISIBO0Y

f aenmsemenmmemnives

\MNWN ™

57 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 52 of 134

U.S. Patent

1 # ueby

L
JETNETS
e1ec]

[—————

7
’
,

=%

“w/i\v
1949 #

=

L# 1984

Z#
janag

g1 b

3E9¢

\

FUNY) 188n0hay

UOIRIBIRODY

HUNYD puag
AN

€92

2201

P09¢

58 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 53 of 134

U.S. Patent

P . T e . L T ——

Y84 suunysy

N
O

\;
9eiz

BgLZ
qzlZ

e
eZLie

doig z# Jewi]

~ HeIs z# Jawi]

~ dOIg L o)

{ UBIS L4 Jowi]

31084
10885

1

1517 S48
SINERENY

L# Jusby
1817 158nbay

A

H
5
H

i
masm SUOloBESUBI | M
arepdn N
viz |
i
L# 1884 YUNyD sAssay §
i
pUT BAIS09Y b~ M
: QFNN\// W
BOLZ,
L WUBIS DAIB0BY .
vels ¥ sz m
;
m
L# 1894 . m
3unyo 1senbayy mN.WNW
i
w
i
!
M
i
i
M
w
|
i
m
i

59 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 54 of 134

U.S. Patent

01 0oL juus GruooBL MR | sz ole9L | seresoesz | EVIOL WO
ovs 0062 dyd-gyuior MMAmmam | 15gez15zzs | seLelzlzest | €8 L B/SE
0L 0s¢ 1B AU/UID 00C MM czysley | oL'eoLiolevz | 9VBE/EL
0 0001 Bdwrzz/auod Ly L' mawm | zpige oLzl | ssLlessiezz | £C-BE/EL
1 l | [l
3182 4 %14 pLEE] 814 1514 e8¢

<— PZ8L

- 9Z8e

< OZ8z

< BZgL

< g8¢

08¢

60 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 55 of 134

U.S. Patent

WINAMXL YA S=A UO1RM

0LL 00Vl T €Yol /oL
JUIOY BGMINOA MWA/SARY | CZYCLBY LL17802°9LLE
OvG oogy | ORHOICOOTUIEN | 2T YIS
UG BGNINOA M/ SR 98’ 08'9¥ '8V ‘
0l 0se WHBOOOMAY Y A=Al UEM —
jwooagnnohmwwisdny | czpoLgy | 009 ELLCEL :
¢ 0004 AVOSOUNMB=ALHRIER geBe/el
juoosgmnokmwnrsdny | gppeLey | ore 7Sk 0ECBEL :
(sw) (s/1) SEIAAY il SSIVAAY
1id ma 0 \IAMIS ENNAL | AL/ 30va
(I ! l ! !
m
1474 8Lge pege 2£8e 1% 74 egg

<« Pyee

R 4 14

< ay8e

< Bepge

< pUg

©08¢

61 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 56 of 134

U.S. Patent

A7)

NL1BZ ‘\\

Ni# 199

06¢

62 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 57 of 134

U.S. Patent

ETATA

pZeg

2262

14 T4

eg6C

€6l

4 E a 3 = A4

N YN

ie6e BE6E peee 62 o 1T 4 % 74

| =t =i
ma {/Hima. i) { +XT=NL=""=1l=1(9)
N N

L=l L=l
gy — (g /g, iy T+ x N Tomg = X (v
N N

NL=""=2¢L=1]=1(€)

L=l
X { =X :orjoelgns (1) eziuuin jebiel (2)
N

§ i

(1A /1X + LLLM) Xew = (11) xew = | :Aousie jg10) (1)

63 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 58 of 134

U.S. Patent

L

¥
1]
1]
i
e
m// f/....i
€62 @ 8E6Z T
" a
t
_ b
T
" e
" o
" \\\
\ \\\
I b
1]
t
o
IE6T |
0=1
i
;
i
g
313
¢ ' e,
S n// H ;:.i!.../
T AN T S
: >
ai -
\ L
PE6Z e
; \\\
] e
218 v -
18
oS N
I¢6Z ULEZ BELBE
H

g

A AN

PE6Z

N

1414

— ¥62
"~
BEGE

N

qse6e

N\

1414

BG6Z

64 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 59 of 134

U.S. Patent

3
4 .
2100 AN T
: T
Zd) >
: S
{ N \\\\\\
N i e
wammm L
P
{ ;
N i
mmmmw
1=
:
H
1
3
7 e
/ il..lél
2867 T
N
- ¥
\\%
o

g

A4

N

i

T

7
M.

N
a¢se

N

1414

BE6Z

N\

8662

2

A4

\//

pLeg

ﬂ./
462

7

N

vee

BLET

N\

PS6C

65 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 60 of 134

U.S. Patent

e o) o, R RO OOy RO SRR R RO KR KRR KR S RO AR W) R RRRS, ROK) NI RO R KRS0 R AR RORS TR KRS,) TR RO R KD | KRROR RO RO VKRS RO XA RO R, R R K, KRR RS IR G

SdA

ydtad syunysd

<6 81B0| -0 >

V# 1884 HUNUp
BAIB08Y LEIS

L# 1884
NUNYD 1senbay

--

|
m
|
|
|
|
j
|
| A
| X~ qgez
|
m 3
L1y MY
|
m mmm/ 2INSEs
e Saliia .
e e ;
! T T
| E# 199d qunyp ¢ 1994 UnyD R
m ummM) aAIB08Y HeIS QmmM) INIB09NM LBIG @mmm\
|
|
| CH 198) ZH# 88d
| e 8
M 5157 WUnyD 1senbay mﬁm NunyD 1senbay ﬁm\w
| pp—
M $188d
} ye
08jeg
m BQET
j
|

66 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 61 of 134

U.S. Patent

~N4l3alalo 8y
N6 (T T TR,
1867 o862 PE6Z 9862 agBZ €862 NZ(D ﬂ,,,,,,w@&@\%
%@/Wg&@
\M\//:; 2
N 4 Uy MO e
\\\./ _m m m Mw m @ &.;::ﬁs:xmgmmwm\gmmr%shtm - N..mu ,.liuv. .
L S N N S NI - TV ~
)66z g6z Peez ogez ager ez |, 1Z0L 146 AL T BLOZ
o1 413,008 v
BLEZ T C C { T C
Ji6z etez iz oféz agz esez BLOL

2062

67 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 62 of 134

U.S. Patent

1 d = ¢ Y
NiGE C n/ C C
1S67 9862 PE6T BEBZ
L UBID
o4 m o Y e
iL62 A/ ﬂ/ ﬂ/ ﬁ \1/
1662 PE6Z DEBZ BE6Z BLOZ
ya = o BN = Y
ELG? A/ m/ f C

3L6¢

9¢6Z GL6Z BE6EZ /

2111174

68 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019

&4
o2
£

300
\

303

CONGESTED] 5.0 [

Sheet 63 of 134 US 10,469,614 B2

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
69 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 64 of 134

U.S. Patent

0LE

uW@m
R RETIOI
ashe uels
| leaquesH
eoée | PUSS

€ENREE)

L0E

G3L8IONOD

¢, peisabuon

/
q.0¢

pasabuon
e pusg PROE

q80¢

na188BUO7) - UON
W BQOc pussg

B0le

70 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 65 of 134

U.S. Patent

SUlLO
SE NI
\
yLze
5 peneoay]
m@mww\,m\ax =
N sze
SN
A
pu 201A8(]
pi7e aoejdoy
pajsalbuon SUNUO
A
E,N\m; s€ %mmz o @mee S8 HEN
e pejsebuoy ~~ ON
0Z¢ ™

71 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 66 of 134

U.S. Patent

189d mwccn 1
\\\/ QQ T Tt Al Gwm \)/
HLEE 1S L opewdxg [T T 1 pesdxg | fige
L egaswil b 1 prewy !
pejaidwon HP A SR ,,,w,}\\ P pa1sidwos
[LEE | L wilee
PR
Heuomold | <@ o HEUOMOL
iBuUun | J88d
. e
HET Yige
ey o4 Jowy . | uelg v dsw |
K v e W e N W e e e e -5 r..!.!.!lJ-!.!l.Mf.! iiiiii wd
/ J
Breg ULge
A
sjouun]
18AI8S) SUaen) 12007
Wwody Yoo | SIA P WO Yo
N {
“ pree X olee ~
olee qiee
ya 1YVLS
T
oce -
BLEE

72 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 67 of 134

U.S. Patent

T
15>
L#
BTN .
e1ec] b~

L# euun |

= pe cH#
A £e SEINELS

ATTREOL / g

~
.
o,
e
-

~. o 108

.
~ -

... uu%.t

73 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 68 of 134 US 10,469,614 B2

351
353

e
354
v

=

P List

Receive
Select
Devices

N
Associate
Location
Associate
Attribute

350

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
74 of 228

U.S. Patent

W‘ia

361b

Nov. 5, 2019
2
@
= &
[sg]
v A o>
TALZ
2 180
? 3

eceive IMG(
Scaling (%)

/R

360

Sheet 69 of 134

g

361f
361

Scale 50%
N «— N+1

US 10,469,614 B2

361h

ou st

Resize 200%
Scale « Scale *2

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002
75 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 70 of 134

U.S. Patent

pESE—]

Bl —

BG9C

e29¢C

76 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 71 of 134

U.S. Patent

L9

E99¢

77 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent

Nov. 5, 2019
_
i\
!
&
e £3
I @ o
g
o

375
Object (1)

7

372

370a

Sheet 72 of 134 US 10,469,614 B2

3

o,
[P
o
s
—— [®]
O @
ot =
hond'
[&
R4 ©
L3
@
[ag
Fo
m\
Pl
=
s
s
3
w2
P £
m\o

370b
N

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
78 of 228

U.S. Patent Nov. 5, 2019 Sheet 73 of 134 US 10,469,614 B2

_
P
™\
;
P
o
i
(8]
2,
o)
O
£
N
)
=
S
[]
&
5
-
\ e
</% 5
&
N\
N
e
[&]
R4
£
O

370c

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
79 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 74 of 134

U.S. Patent

UOBO0T MBN O
(N ‘Z ‘1) s108l00 arop

ON N

s
< {L+N) P8lgo

/7 BEN N ~_puokeg uoneoo -

271 BN
218¢

LONBOOT MON
o
1o BAIDBY

\\,.\ (1) 198100 "\
elge a0y

08¢

80 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 75 of 134 US 10,469,614 B2

390

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
81 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 76 of 134

U.S. Patent

88900y

Yyioy

pasey
JOPUBA

£ 88800y

poseg
51 Te
3OV :
ON|
< 488800y
| " elop
poseq
/1 uoneso
PLOY bl

S3A

198UUOYD

1 on

¢ Pe1oelllqg

pIOMSSE

\\/
BLOY

dYM
109]9S

N
SL0p

dVA IBUjouy
oees

82 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 77 of 134

U.S. Patent

DTA

\\\.

A

eov

00y

83 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 78 of 134

U.S. Patent

ssa00ng |

ON

hY

/

b T4 4

ON 3
/
207

aseqgeIRQ

S3A |

< njsssoong

J0BUUCY W JaAISG
~ LUOY 9AI900Y
Yeoy

PIOMSSB
SS8N5)

& PRItIS
J8nIeg

/

4

Bzoy

.“w.a._wm
oy | WO Mmmmsvwm

e

ON

e paioig
~_ Ajjeso

pZoy mm\r. ,

7 peunbai~
S LOlESHUBYINY

gzor

UCHDBUUOT)
aYM D

asrepdn

¢ INJSSInONG

12o¥

Ble(] |00

) = S50 Buisn auuo)

)

Craty

108UU0YD

N
ViZov
asegeled
ON | wou a1sjaq
UZny
SSE00NG
ON
HEOY

q00v

84 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 79 of 134

U.S. Patent

| pezijeuloN
BLiy oIS
ya 198HO
iLLP DZYBULION
e BAIeg
spLp | SleuuLs)
JBAIES W0
EM.M OJU} BAIZ0YN
| Janeg o)
uwmm) senbey pusg
19840
ﬁww\ BACLISY
DBAID08 Y
~

85 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 80 of 134

U.S. Patent

_;
}
20¢¥ \,m
§
{

q0ey

BOCY

7

Ovv

i
i
i
i
i
§
i
|
i
i
i
i
i
i
|
i
i
i
!
]

I
m
i
i
m
m
i
i
m
|
=
_
|
“
,
|

-
,
|
|
|
_
Lo

£# soeyalu Z# soBp8| L o0
LT UOHBSIUNWILWOT mmmm UCHEDIUNWIWIOD UONBDIUNWWOoD }wm\ww
2 £ F:
- SNE] QICADIEH

i ! ! pPOCY

MOBIS SIBAU(T SUDHEDIUNWWOD .
424
$ ¥ v

EHIVMO0S | Sopp ZHNOOS | Gppy LEINO0S [Tappy

oH onany ZH sneny) L# anany
mw Bepy mw Gepy mw Beyy
wbeueiy O o

“GGEY
802dg [BLISY
d
aoedg Jasn s}, vep
IdY ZEUIAM
M e M T M P
Jasmoig ” HELUOMOI LEUIMO|d UBUYOIMO] HEYIMO| LBYIMO
RETY) m 1884 by jouung (s1@ad) way | | (jlsuuny) sy
7 A T T S S OOy USRS

didd v Bive” Sy aive” vn”

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

86 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 81 of 134

U.S. Patent

i
i
m
qoey 1

|
]
|

=

,

|

|

BOEP
!
|
|
i

\

LSV

SEYET

o# Q0BG
UCHRIIUNLLIWOD

7# sovUBU]
~UOHEDIUNWILCT

qLvy

L B0EUSIU

B,

2

UOREOIUNWLIOD ey

SNg SJEMPIBH

J ! “—pocy
TVH S
NOBIS SISAUCT SUCHEDIUNLULLIOS n
~ZhP
$ T ¥
CHIVOOS [Bypy | ZHII0S [Gppp | LENOS [eppy
e anenp Z# onany) L# enany
SO Sepy mﬂo agyy m% Tecvy
S anent cHeneny | L# enany
ok [aggy | OWEUAD | qggy | OWEUAD [Teggy
JebBruepy sensny SlBUA n
W 0 SlweuAg ~gap
soeds euIDy) 4
8560 16511 e
Y ZEUIM ~~goy
ssmoig || Weuomor PEYOMO] WBLOMO| 4 HBYIMOL PEYOMOlS | |
eI : 198 eby puung (sigad) usyD | | (jpuuny) ey | |
- p; L T T L T L T T ;
oy T Bive” o4vy Giv” s

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

87 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 82 of 134

U.S. Patent

sjgejieABUN
19M008

195003
lewndo wees | N\

eea |
SAOUWIBY mw o
enend oI PPY |\
2LoY

| SMEIS $193008
Loy uelqo
pueg /
-
2197 oeeq /

09vy

88 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 83 of 134

U.S. Patent

aoaa Buipooe

Teuonoid

RIRUCHOHT

asinsg Buipoouzg

BUGH0
posBUS

B

Rieuonoid

. ~ 18007
reac mew BELY T ey
46L¥ e B LY \\
. e ..:....w...J:;\L.\H::M :::::::::: ; MMH;:R ssssss e _
VIV < sepooeq | POPIPOST -PBAPSSd | T 4epoous e 1 TWivd
\ e AN gvlval N , .
aory " esly 2 asly N\, e
A epLy
5 S/)
/ 08% /
BZLY BLLY
ﬁ/
11 VA4

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

89 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 84 of 134

U.S. Patent

g Buiaeoay

1senbay

o lwisuensy
pESY pUSS

Oz_\ﬁ |

<7, |NiSs900Ng >

L8P

Ve ssa1duInoa(]
GEgy

DOAIBDEY
eie(]

%1 4

%

€8y

g Buipuesg

AlRUoiOIC]
pateys Buisn
HUWSUBIISY

DOAIBOSY
Husuessy

/] pusg

/A
]
1
1

gle(]

e

Geay

S8UBUOHIG Uiog
Buisny ssasdwion

\\\
B8y

pues
0] Bleq]

Buipjing Areucnai((200

Sonijiqeqoid

A
olep a1eo0|ly

ALRUONDIC)

/1 oo ppn
aLey i 1 ping

Asowiain

\r/
ooy | ©VEO0IY

/

[A 14

214

90 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 85 of 134

U.S. Patent

SBLEUOROIC Wog

Buisn ssaudwion
Areuonoi(]
paseys Buisn
ssaudwion

ON]
i o<
_Buwi] peseg

alli| pPaABSg
/1 spewns
12114 -
Anjigeqoid
A 1
epay 21800y

ABuonoI(]
2o Buisn
ssaidwion

4414

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

91 of 228

U.S. Patent

Nov. 5, 2019 Sheet 86 of 134
&
]
< a =
55
53]
iy
o/ |
€ :
& ;
|
H
H
H
H
:
:
M
A ' 5
,) Ifﬁ'“"\»\
! : N
a‘ ‘ﬁ
Ky i
_/i" s ‘~4’\
; @
* - \
i - e >
g o) ;
AN o N
s - ; o
'1) H ol
¢ ; &3
\ S ﬁ"
\\ 1,7
'ﬂ e : ;‘
‘\ ,’_“_,.”

493b

US 10,469,614 B2

Device #2

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002
92 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 87 of 134

U.S. Patent

~ BOIAB(] WL BAIE WOl ~
U0 Yoo u
e SO Yo JUBUo]) Yl ey |
e STNAS(] WIOI
204 Yoo |
e 1S yoled m
oZ\ﬁ m
¢ Adony 8007
S3A 3e sUeg m
\ “
ayey m
JBAIDS IO 4 !
/1 soig yoe :
e ‘mmﬁ 194
ST ON
Adoo "¢ PiEA
ovéy | feoorosn SEIIAd0D =)
aver
bay
e 1880
T JUBIUOTS
A
! E06Y

93 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 88 of 134

U.S. Patent

UCHEDIEA
e
iShy JusuoD
e JSIUOD
agpy |PHEAUON 1ORISS

a
pS6Y

sul | uonedxs
2IRIDOSSY

¢, su0s

PHEA-UON ON

IGEY

A

14414

sUoR7)

ueog <

q06v

94 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

VE AVAMILIVD

Sheet 89 of 134

Nov. 5, 2019

U.S. Patent

&
kid

NOLLYOMddV

95 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 90 of 134

U.S. Patent

”,
<, -
.~ -
] = <
e = -~ ’
Jrsu—— - P -
- - - \\
- \\ A "
\‘ul ﬂ ~
K i s
f Keammew
<
Lo ot
¢ L -~
] > 3
3 3
% e ;!
¥
§ |
% H
1 ¢
IA \\

L8 AYMEIYD

L AVMIIVD

NCILYOIddY s,

/i Aowspy
m AVMELIYD TWNLEIA ~
: % FARY
m 1
m SO
” N
; & 405
i &

805

96 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 91 of 134

U.S. Patent

UOROBULIND
ON Uiniey SaA

H

\
fiig

PLLE

¢ pandxy

ST

7 peAe0ay

N
ULpig

Aemalen)
[ENUIA B1EAIIDY

LS

$S0IPPY d
pieA uinyey

egLs

BLLG

Jeuly
yels

$S2IPPY di
[BUIBIXT 199)

w, 1senbey n:
qLis

Wﬁ\ SIA

$SRI0Y
Aemeoren) Waslony

97 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 92 of 134

U.S. Patent

2@: . xﬁ ﬁﬂx

DIV WALEAS UV D DL WAL mﬂm

Gone

FIAG T

ATAAGG AEMHOLE

98 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 93 of 134

U.S. Patent

ML LOAEI

99 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 94 of 134

U.S. Patent

o
el
i
o3
£F

. [T A T W0 XTONE AHL 10H 4 1 DRIADHEY
AT BHOYD Bl WO YYD D3IRT 34 :&@Qw@u& aw (I EE
B P @K%ﬁ FING AR TR0 38 QN0 300 AML W0 ANYAT Y |
LBV B MOBIA VAT W0 MO0 ONY YAYD OAMOYD T MAAATY m

- 51778 .,
T3 04 951 39 NYO & 344 'S

ﬁym \

D st L 39 N9 A : 3
m T B WK msayw 487 z\\B\ sz x?mx &%

534

b RO
o e g

e IO fade

LRFAINE ST BT ﬁmﬁ%m& o

f ool
omripmn T

eonsr

Gees
T A EE@\

AT PO B 3 Hod 34 W I ui qu FLA
531 mwxhym\m&

AOEIA0 WRLSAS
;xu umwxwgm

-y .\.3
3}

e e 03 I SOl VY 3 &« P
. SHOWY__ i

g

BT

SUUAAC SIS 30 TN = MR AR

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

100 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 95 of 134

U.S. Patent

—
P

NGLLOZHIG

LM ARG
WALSAS BHOVD

NOILD SR 10
AAYOMODES

i, M\h\ P

WAL

FOYAE

WIED
40945
g

FHAI0 ATHE0LE

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

101 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 96 of 134

U.S. Patent

MR LN YLD

_vW.\A\ &

P A i
R%&ﬁ T
 NOLYI0T NS
ML MO S VIV IHL OV3Y e

B \(,34 .&EC, :ik

HABA 8] R

15153 1 naP

SHI \

CINYPED B

HO Y HY BHDY D AN

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

102 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 97 of 134

U.S. Patent

‘\\..\\\\\\A\\\.v\\
¢
iy %

BN
FO AGOD b

SANIHD
3O ADD

71

N

FIAS

FAed

ATVIS
EERE

-]

SAMNHD

A0 AT

il <+

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

103 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 98 of 134

U.S. Patent

ssmasd o Bubunpy o efivd

gnapnsd oy Buduopy obud

P72k

[t

i | apeTonss

arpdls SReIpe EysAld wapds LR8I WILYS

20y 2 Gy 2

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

104 of 228

U.S. Patent Nov. 5, 2019 Sheet 99 of 134 US 10,469,614 B2

Rntesinmmmane

ey
~ohe % 38E
AL SIS SIS S

§j

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
105 of 228

U.S. Patent Nov. 5, 2019 Sheet 100 of 134 US 10,469,614 B2

H
g
37

PHYRILHS
7

B
£

‘. o
= § | o S
NN 2 0= &
m Py oo S A e o o
- oo oy e <5 S
oo W S S
E gx
B &5
-
&
¥

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
106 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 101 of 134

U.S. Patent

¢ VA S OMEE

LBk FEPd e ,m.t@m

AN B N‘ y
“,E" S G

v \ v.rz mr} ind

DHIHAG 008 w.mm,wLQ N b 28 m.m m»mﬁﬁw»&ux\

y AT) QL FER S BN R T DWT% BT A B0
%
AHL P wiﬁ@ﬁw& WIS AHG OBUEAEN 3L LBEN0Y

1

s

T A A SAM
e T

mmﬁ\& 4 mmw&h,_ﬁ{

| VAN OIS AR S

Bt

d:‘

LMY B AR
LS OL DMlddYRL %

SAHd D

O L9l SN LI0 AW .\Mz‘»ﬁmm AL

T ABOVIAIN SAHd M 30V wa&@ﬁt SOA3N A 2R3 30 Gl 8380

4

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

107 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 102 of 134

U.S. Patent

M0
L¥HL"

AL NCILDYSMYHL 3OS

A3 HH h.j FQY el
Y N 4 BHOW AN ma iaﬁw

‘.ﬁ,

¥4 \Qmw @Q&l 4L waﬁ Tw

?maw EhtHd LD

?& .E ixQd

DI Y HAWA S
EII LA T

B

2065

MO T P

AN 9
LEAG

BLTHTG0 THL OHA ©

D AR TG D ;
LS “Qmsm MO \ﬂu

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

108 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 103 of 134

U.S. Patent

O QL B ION N340 9 40 Bl
FIaY) B0vd 4L V0L AHiNG S x.wd‘uwxz 2 ZOLIERY M C? :

AL 30
HEZG AW 3HL -

WEE

k\ﬁmﬁ &

\” mi uqaaz ZMQQ u“ (9 xwm xﬁdq

SLEMRA WO VS OF B3LAR 40 HIEND

TR
POy AR
G4 -

0k

4ng ”.E\ wmﬁm mt.f BRI

ETI

ERTECTe q.\;z N340 I, 40 HOLAMOSEO 31 gx.wx

ECRMER ELERERE L jmam%w S WO T MO A0EE0
TR ST S @@%m
gﬁmmﬁ&m@mﬁﬁmﬁ: TN

.H o m Om. mwu

mK e\ Ea?_.:.m Ema an #\ Qg mI i

3 AGYHAE Y 1 4l \Nkﬁ%
PO Akt ARYYE Q 23 QEmdnNL § - 99 2I9INidL »
: B0 ,«m?{z = V00 SHTOON
st mho\mw. ®
I Gl WIS 3G B
4 A4G MYD @ﬁ.\\

46 mxk

% wQ\wx\\ fags sk Tyl

N &Lh .

SRl U ¢ 3

W ONIGY 3 B4 30N 0F JAC Bigh duﬁz ?« »m
LA ALY %m«w LIRS N TR O

{1504 NI 1dY T4 3HL OL YVTHAIS) 1dY

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

109 of 228

U.S. Patent Nov. 5, 2019 Sheet 104 of 134 US 10,469,614 B2

S =

COMPUTER
86202

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
110 of 228

U.S. Patent Nov. 5, 2019 Sheet 105 of 134 US 10,469,614 B2

1%
e

e

& [T
B R
= e
o S
Frooe

1%

,,
£B

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
111 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 106 of 134

U.S. Patent

VNCHATE B 99 VURA L A0 M
PO B RO BN

1B ISYY G B0 BHO0E 28 O
LAR W AYRL 08

A 30 WABWEN ¥ AL
&

HOHLERTY

DA #G

VY3 W 951 38 TN
AL AN Y ENDEVE ONY 3LV YD

AW
53,4830 3

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

112 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 107 of 134

U.S. Patent

4]

i

‘E.ﬁm@wxm PEATAWE 3009 TENEEA SR O0ON

G015

S

MUY LMAPEA AP 000 WEED B0 30N

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

113 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 108 of 134

U.S. Patent

[Maxww«

13 OL 2L BLSIME FHOYOON S1HL Y {E LM 3H0YoON muﬁ

RO GHE DF INDENDD MEN 9HL Yy :QMEM&
GHIY N mwem.w MELNGLNGD 51 ZHEHL 1VHE SILYOIN 7 e+lold LN}

59583004 mﬁ& Enﬁ \rm Q@m% 5 “Nmm Eu\ wﬁxw @ Mm‘@ﬁmw@ @mwﬁﬁxw #

BUHEN SNHL ONY SLEME FHOYOON HINS ON

i) 1

VDN AL OF Bid L3 7 ENeN SHOYOONNMOOT SHOYO0N=4. LN

\& ,L:%st@ﬁ& \mxm&u ,3 W NAALSY

1O LA

114 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

U.S. Patent Nov. 5, 2019 Sheet 109 of 134 US 10,469,614 B2

5 %8

\"M

= -
R SRR

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
115 of 228

US 10,469,614 B2

Sheet 110 of 134

Nov. 5, 2019

NANLTY

fold
GASYA VA S BUSWOYIY S, 0 MO0 BHOYO0N 34
ML DMILYDION Sy 00 BNO AS DY MO0 SHL ANSNEH030 4

B MO 4 7 = Il

o HO

eae ¥O4 4 ibla = 408

AW TN L QLIOMA INBINOD BN H

{
CINNOE LOW WEN MEnLEY
8 1

}
{teeilildes) 41

SN AHE S0 N

ﬁ@ L BHL W04 1 ADCTONY 'BASIWE THLS IHOYION BHL 4 ¥O3HD 4
05 WIYDON SIML LD O3ddwias B0 ML LNIOd S0 1V LKL 38 QW00 4

1l szl ,N@z WAN MNENLEY m&% E

AL AR NG L

:n.\\

ek S LE S BB

U.S. Patent

7%

(R bum AN SO F DOy A DO

116 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 111 of 134

U.S. Patent

i erte
{Du3ZA30 OL DD A8 T1NYRE B0 300W AIND
Ov3e Nl 39NYY DM 1T WY O SHALNIOG AXNDWIN TYNLYIA 3HL YR

LR LTI

AR AR AN § MDY ON ML LI oA DL BRSO WH IO Y

NOLLTHAZ 880 SHL MIHA 2

§ AHOWER FHOYDON THL 40 JUME NO

X
o
X
by
e

e AUQHEY S L0 SYME LD
CFA D0 N 380 1 B B0MYY WAW BHOVIAN S L 0% MO0 4

BONYY AMOWIN SIHL 10O JYME 0L LON ¥3438d N3HL
AARFT LR 108 AN b S 0N WV ST b oes SR BD0T)

3
i

FONYH AMOWAN BIHL LOD JYME NaHL
S8 M LON G0NV WA 1 0 = 09 M0 4

SA0R0 RO DO SH A8 D WINYH £

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

117 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 112 of 134

U.S. Patent

S39%d AMOPIIN 3HL ¥0% S5 W00 YIEY LNIMISTNY !

i

annd

{
b

whITYd ERADY4 TBEENd T4 79%4d

~FHE A B3 Y 3EY LNIVEE NN AN ORI W8T

118 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Sheet 113 of 134

,\\\\\\‘(

ACHZR A0 WIDACHEZIR P OO AdCrErvd

{108
“l 4218 nmwﬂ.uvwk YIMY INFWIDYNYIN Y 2LY00TTY

i

Nov. 5, 2019

_ {awoz 31v00 Ty
{OVOON 3HL HOH AHOW

| ALY

U.S. Patent

NOLLYZI P LN

119 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 114 of 134

U.S. Patent

wii&liiii:iii«\\%%%%i%g%g%%%iﬁt{ii@i{si,ii.%,g}m
g
:

(5704 ORI BL B0 S99 MO0 wAdY IHIME Y

DY Y AY OEM W&

P

b&@wﬁ m@ ﬂm.._uqmm \m\\ w

ki B 128 14 A

N

W A5 YR ADYE BB 3D

WINY LD
FEYONCOTS

120 of 228

IPR2022-00135, EX. 2002

The Data Company Technologies Inc. v. Bright Data Ltd.

US 10,469,614 B2

Nov. 5, 2019 Sheet 115 of 134

U.S. Patent

Ix

IMOELTAS IO A ONDIDES L HALY
Jriaitey E{f immw PR OO 3L BB AMOPER
MO0 e SH DL MOINEO A Y BNHE) qum e} BRFEESY

i

s

w&i LHBNITYMYY ATINODEE 3] YILAY
AV M AL OL SAMICE AN Jd EvHL OB~

MR TSI Y
LTI deg

2

3

ATH }xﬂknmy 5.4 3&@&2
,% B3¢ ?i AU HBBNON GHL BINE8EEIEY YHL WL gADEL
; ‘mmw@awm%& ﬁ HZALMIOC Y L QLN
e QK,@ o A0 1HYLS SHL 1Y 1L Ny ININIDNN Y G490

Lh

o

M IHE UG
D? " ﬁi m@\&w mxc mm ,wu &

AMIAOAZIS ¢ T L0 450
s,m{ ‘mxm% Epiidy x&iﬁx BT Jﬁ\ m:szm m

\wagm Bl

b:ﬁ&&@ﬁ& 2H \Duz sIaw KQm fedl AMOIWEW A1 Lﬁ

ISV IR I I0N = o HOART Y JNINETE THYIGH MIN

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

121 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 116 of 134

U.S. Patent

ArEnET 2 ,
BHL 2L Q30600 WY AUOED
Wy NI A0S IHE 839

(ot} BS007 FHVION THOVICTTY S LG

BHOLLAZONTE 088 HLY

WO INANE vl WLd004 GHE Sy WL Qﬂy\mﬁmﬁo\ 9L 980

CAMAMATE THIYIOM SHL 000 DNILIAA B0 WO BMITYEY

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

122 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 117 of 134

U.S. Patent

et
e

SONDIES L
T BASHL G 321
AL
AL bﬁ.@ﬁ vxt ,m E \E
L i B0 SOV IdaY 3t

SHAS

T
ITNE

o

T, YO0 CEBAED A GEM0LRIY

e BHH e e

e S 55
o e,

" w&s w.\ b R

LUCEMNAG AN

zN\\
;3

w z,m&m})vu *

ARE ®

O ALS

H LM

WO %G 39 O

S30M 3

iww v M

s LWHE m“.@mﬁc&‘wmso«q .
TS

T

.ém.h.%
ﬁf
nw LApA ¥ md\w« .v

w nQYTT ¢
e ey

2 m‘

o O INES DS RLE

,u@ \ﬂi« 38 NI mm@ HOOS BEENETTH WY DS

G GAYHEY

KO

I E8 zﬁ ;) mE azq §§ ehh
QAT L35 001 S5
(i LB MY BT Ty o

VI A0 QAL

HATHVRS
\, }mmi ik
B el

.“A(}m
i’

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

123 of 228

U.S. Patent Nov. 5, 2019 Sheet 118 of 134 US 10,469,614 B2

£

oY

Sy B

STiRA

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
124 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 119 of 134

U.S. Patent

HOLE O 30300 WOHS ININDEE Y0 30

SENAIGH T,
_ﬁn BL A0
KA LEa L)

o ,,“,S,me §\

Y AHL 30E6D

LATYAS FA:

e, .mmmnC AzbAnA dAHE 5 mQu e

e @Qz 2

LMY
Tedpef, CAAES0 A 3;3&0»& B3O J@mm o
e, AOHEL, 1A AT ﬁ\w B o

T, e

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

125 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 120 of 134

U.S. Patent

A

LLTIENNCYD SOHAT Y
: Y LMY IO B

A1 L SEYOY
AP O LR AN DY S A4 G GFETNNO0 0R0
i
e

181 ZHL W BAMIGH SEZ00V 3WL S0 ASTU IHE »)

&;ﬁ&c 398 QUOMESYY U385IN
FAARE TN DL B T

35 AVEL M HELIAG LM

LB¥d B MEOGL HLIBA LANEIANG
LS00 GHL LWL B4

THLOMALLS TYNDIE AT WAKL A0S
MY S B B dﬁMQ WO TWHAAES HdY &
B L EMIIEOIY 81T A THE M S

LS
SISO DHIPAO TG
4 Orp LOENNGD O AL

o

BAZN LS B AWML BENIOG ¢ mm\vunxi&m ®:
B8 LEOW BHAL LWHE BIMID 880V NES0 #

3 SRATDY UMD k4

i

DK
L YANNOEISHI MO R
LMV L SR ¢
GHL Sha L18Yd mt.w Pl ai
LNBFTD SHHL EVH L BHL Gl &omx& RN

L GOy #,m\?
SHOLLOENNOS
DRPATIO AL %n i

4 B .wo“;(ArLL HIPA B9 LAV 8iL L¥HL
A S0 ZRVEYIYD AR MO GESYE MO IR

% Ak G SETON BME A0 10YE (3 U0y
T Heddl NOADEOUNIHLINY HIONFELY ToMIE
O A AN
DNACTICE SHE SHOIE oY MWD 802 HARRT 1454
AL AE M b2 ML LLEET Y SLNIOCD BEBRY 40

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

126 of 228

U.S. Patent Nov. 5, 2019 Sheet 121 of 134 US 10,469,614 B2

e

% N

=

OTH
42008

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
127 of 228

U.S. Patent Nov. 5, 2019 Sheet 122 of 134 US 10,469,614 B2

g

41206

P i ; 3 Hipgmt® ©
{;} k=g B oot

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
128 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 123 of 134

U.S. Patent

......... & 51 S30 w&ﬁ Rumme AL L LDERN0D
3 . By ¥

el
n e,
i i,

san = AN BRIAE0 04 3N @ i B0 SOAIA BHL O
LT &%m&ﬁ%ﬁ 40 mw?ﬁm 3 LS LN
e ADENNODSIG Sk

]

LEYT T

ﬁ@ U
S5

5438 \#m ﬁ%&ﬁ sod wasn T

DML ENMCTSIE SMC4EE 0L J3E03MNCT
A LPETED SIHL DL Ll SEZ00Y LEYT 3L BEAD L8

EA
TE4,
o x\\.l.\ .y
\&,\xs\ ot ,@w@tﬂw% s -
o LBOET Y

o A GHLD sx PRSI AR
ff;&\anma 1B ﬁ%&x

!

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

129 of 228

U.S. Patent Nov. 5, 2019 Sheet 124 of 134 US 10,469,614 B2

2 W

LERZED

o gl

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
130 of 228

U.S. Patent Nov. 5, 2019 Sheet 125 of 134 US 10,469,614 B2

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
131 of 228

U.S. Patent Nov. 5, 2019 Sheet 126 of 134 US 10,469,614 B2

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
132 of 228

U.S. Patent Nov. 5, 2019 Sheet 127 of 134 US 10,469,614 B2

ETWORK

EES

;{

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
133 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 128 of 134

U.S. Patent

i

LEYVINOANE SH SIXOMA G
LM FHL %5 WL O O

W EEK 0L A0 OYHLEN
v Tﬁ&&@#& SONAL LN

P

)m\w &m“m 4 x.ﬁrh E: 5

38 R ChE LR WM WMCRLDINMDD
,a mmq # a Nwz Q\ m‘m& 5 %@. S&%

5

YT IEY

m.qw Fe
w«I umm R

e

P

e
Pty

., xs

{1
HHORLEN AROM ALTNEY WEYTTEN LS IR
%
(29 LR
2L 5& i ZAM MW ATLDEYNT LY DINNIGD
L3 : ¥
LR 0 :
ALY :

v o
CAN] £ LN

AL

ML LY OINORIAOT 0L B3N 130 L LNV HYOMLaN

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

134 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 129 of 134

U.S. Patent

£
t

3

1
it
Pt
Yoi
3

i

3

N
3

K
T
X
L

53LO0H YIHLO 3HL W04 03M303Y
SLDANE A WIS daH 10 AR L OOl Oy WO Ty 3HL
024 11 OMA% EAE0EY MOLLYINOPRN0D 40 LAY 300N MV B

i

ig
N
N

Y WO

F50 O SALNOY FHL
10NC0H SIHL NG g i LYY
LEWADT EHL O ,&q_,. mﬁw\\m@pw m¢ it 3HL § 3 531N0Y

s E&ﬁ% a8 AIAOD SIHL YO 38N O

ﬁi Bl

Y FIEYIYAY STLN0H ,S xum VTN THL LINTY SINLLAOH WO 139

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

135 of 228

US 10,469,614 B2

Sheet 130 of 134

Nov. 5, 2019

U.S. Patent

REoteNE
e "

SHIYG 3 WL ArL

g
A HP L

LA
.w»mG MQQO%.K\MLG m 144G

7 S TR &
O MIRELIT Y LBINY i:h SO

¥

ESENT A WEML AC MOYE W AYASLYD NO
5 HEONOYRL GEHENEYIES B N&z O VAN WE S MO

DANROD

»F:qz ¥ D.w A LS #13
ALY SO M) L mw ﬁ”wmm .E HAOARLIN

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

136 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 131 of 134

U.S. Patent

mmm“r.zu abwu L&

ABAYLYE BEL ﬁ,@\ﬂ
%

WY 0 w

TAVHN0E 04 AN SLSIKT AEYEYIYO SANEIO N

TS G4 Lid 1

slele
BEVBYLYW M TS

S0 U5 1272 PAIA By OE BER

FAS

001

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

137 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 132 of 134

U.S. Patent

‘..*ﬁwﬁﬁ M3 LSV €

LWL L BY FOYHANY
AR L mnm_ﬁ FdOLS
Q ﬁé& MEM, 2 a5

w

,§ &Uﬁﬁmm m m..hm\m MY M8 B0 39 WEY.LY M NOLIR0 M

d‘& {rm ta. 4 Qza w\rwv JQq mﬁm iﬁl& D?d

vx\ﬂ ST T 0

.L

oS

WY T Z0UN0S 0L A0 SLRIKE 28YEYLYD SUNANTD N HOLLYREO M

K ATWMIS OL LI 0Ny 008 K1 B355EY OL BINVA LN

i

P4 O 1RO 36y SININETE HIOML
LEYd AHL 0 HOVE M) o AR

 LILvHLSINBNETE

{ ix.mwm\x v

«&wmmﬁa P4 LMIWETE 393k
FONY LB o A »w a W.Ruma.r

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

138 of 228

US 10,469,614 B2

Nov. 5, 2019 Sheet 133 of 134

U.S. Patent

pms—
vietz

ﬁmﬁw

kE s E] QE \éx n:&m&m% .

Y PR A0 BN

ot T mozwﬁnm& & mC \moﬁ& “& Lcwmcz\, VO CINTIOY = LB

&
QWY JF LB0H N AR

A1 BLYIN D

wo r;

1S
Ny 51
N3 %m

QE»QPED d

w mu&, 2524

O~ HZOL WZ

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

139 of 228

US 10,469,614 B2

Sheet 134 of 134

Nov. 5, 2019

U.S. Patent

E17

e
]
=
|£J
®

4 RAGWFLRIE A ZIY YD

W 3 AT BY 3

@M LA ONY A OG0T

.;JI,:.}V. “

ONY 545
F15CE G L A P HE :i_a\.‘w:wxm \ﬁh..\.uz mx.w.

FHL MR AMLNT ALSWENON HOVE U4

Qc
; gL I .ﬁmd 3
YHAERE P Y O
35 A8 FQ AR 3 WA LIN
L GALYDINDAOS SN TS

£ 1517 « mm N7 u@ﬁ% 01
AN HOI, 4G LSFLY 300

i; 08

ﬁ &u ﬁ?. ux

« ?

U,

DA AN HEHLONY ML
=G 30 KA Ddifer D KG% EA
HHORALEM B

ROWIELG (7

The Data Company Technologies Inc. v. Bright Data Ltd.

IPR2022-00135, EX. 2002

140 of 228

US 10,469,614 B2

1

SYSTEM AND METHOD FOR IMPROVING
INTERNET COMMUNICATION BY USING
INTERMEDIATE NODES

RELATED APPLICATION

This application is a continuation application of U.S.
application Ser. No. 15/663,762, filed on Jul. 30, 2017,
which is a continuation application of U.S. application Ser.
No. 14/930,894, filed on Nov. 3, 2015 (now U.S. Pat. No.
9,742,866), which is a divisional of U.S. application Ser. No.
14/468,836, filed on Aug. 26, 2014 (now U.S. Pat. No.
9,241,044), which claims priority from U.S. Provisional
Application Ser. No. 61/870,815, filed on Aug. 28, 2013, all
of which are hereby incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates generally to an apparatus and
method for improving communication over the Internet by
using intermediate nodes, and in particular, to using devices
that may doubly function as an end-user and as an interme-
diate node.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this appli-
cation and are not admitted to be prior art by inclusion in this
section.

The Internet is a global system of interconnected com-
puter networks that use the standardized Internet Protocol
Suite (TCP/IP), including Transmission Control Protocol
(TCP) and the Internet Protocol (IP), to serve billions of
users worldwide. It is a network of networks that consists of
millions of private, public, academic, business, and govern-
ment networks, of local to global scope, that are linked by
a broad array of electronic and optical networking technolo-
gies. The Internet carries a vast range of information
resources and services, such as the interlinked hypertext
documents on the World Wide Web (WWW) and the infra-
structure to support electronic mail. The Internet backbone
refers to the principal data routes between large, strategically
interconnected networks and core routers in the Internet.
These data routes are hosted by commercial, government,
academic, and other high-capacity network centers, the
Internet exchange points and network access points that
interchange Internet traffic between the countries, continents
and across the oceans of the world. Traffic interchange
between Internet service providers (often Tier 1 networks)
participating in the Internet backbone exchange traffic by
privately negotiated interconnection agreements, primarily
governed by the principle of settlement-free peering.

The Transmission Control Protocol (TCP) is one of the
core protocols of the Internet protocol suite (IP) described in
RFC 675 and RFC 793, and the entire suite is often referred
to as TCP/IP. TCP provides reliable, ordered and error-
checked delivery of a stream of octets between programs
running on computers connected to a local area network,
intranet or the public Internet. It resides at the transport
layer. Web browsers typically use TCP when they connect to
servers on the World Wide Web, and used to deliver email
and transfer files from one location to another. HTTP,
HTTPS, SMTP, POP3, IMAP, SSH, FTP, Telnet and a
variety of other protocols that are typically encapsulated in
TCP. As the transport layer of TCP/IP suite, the TCP
provides a communication service at an intermediate level

25

30

40

45

2

between an application program and the Internet Protocol
(IP). Due to network congestion, traffic load balancing, or
other unpredictable network behavior, IP packets can be lost,
duplicated, or delivered out of order. TCP detects these
problems, requests retransmission of lost data, rearranges
out-of-order data, and even helps minimize network con-
gestion to reduce the occurrence of the other problems. Once
the TCP receiver has reassembled the sequence of octets
originally transmitted, it passes them to the receiving appli-
cation. Thus, TCP abstracts the application’s communica-
tion from the underlying networking details. The TCP is
utilized extensively by many of the Internet’s most popular
applications, including the World Wide Web (WWW),
E-mail, File Transfer Protocol, Secure Shell, peer-to-peer
file sharing, and some streaming media applications.

While IP layer handles actual delivery of the data, TCP
keeps track of the individual units of data transmission,
called segments, which a message is divided into for effi-
cient routing through the network. For example, when an
HTML file is sent from a web server, the TCP software layer
of that server divides the sequence of octets of the file into
segments and forwards them individually to the IP software
layer (Internet Layer). The Internet Layer encapsulates each
TCP segment into an IP packet by adding a header that
includes (among other data) the destination IP address.
When the client program on the destination computer
receives them, the TCP layer (Transport Layer) reassembles
the individual segments and ensures they are correctly
ordered and error free as it streams them to an application.

The TCP protocol operations may be divided into three
phases. Connections must be properly established in a
multi-step handshake process (connection establishment)
before entering the data transfer phase. After data transmis-
sion is completed, the connection termination closes estab-
lished virtual circuits and releases all allocated resources. A
TCP connection is typically managed by an operating sys-
tem through a programming interface that represents the
local end-point for communications, the Internet socket.
During the duration of a TCP connection, the local end-point
undergoes a series of state changes.

Since TCP/IP is based on the client/server model of
operation, the TCP connection setup involves the client and
server preparing for the connection by performing an OPEN
operation. A client process initiates a TCP connection by
performing an active OPEN, sending a SYN message to a
server. A server process using TCP prepares for an incoming
connection request by performing a passive OPEN. Both
devices create for each TCP session a data structure used to
hold important data related to the connection, called a
Transmission Control Block (TCB).

There are two different kinds of OPEN, named ‘Active
OPEN’ and ‘Passive OPEN’. In Active OPEN the client
process using TCP takes the “active role” and initiates the
connection by actually sending a TCP message to start the
connection (a SYN message). In Passive OPEN the server
process designed to use TCP is contacting TCP and saying:
“l am here, and I am waiting for clients that may wish to talk
to me to send me a message on the following port number”.
The OPEN is called passive because aside from indicating
that the process is listening, the server process does nothing.
A passive OPEN can in fact specify that the server is waiting
for an active OPEN from a specific client, though not all
TCP/IP APIs support this capability. More commonly, a
server process is willing to accept connections from all
comers. Such a passive OPEN is said to be unspecified.

In passive OPEN, the TCP uses a three-way handshake,
and before a client attempts to connect with a server, the

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
141 of 228

US 10,469,614 B2

3

server must first bind to and listen at a port to open it up for
connections. Once the Passive OPEN is established, a client
may initiate an Active OPEN. To establish a connection, the
three-way (or 3-step) handshake occurs:

1. SYN: The active open is performed by the client
sending a SYN to the server. The client sets the
segment’s sequence number to a random value A.

2. SYN-ACK: In response, the server replies with a
SYN-ACK. The acknowledgment number is set to one
more than the received sequence number, i.e. A+1, and
the sequence number that the server chooses for the
packet is another random number, B.

3. ACK: Finally, the client sends an ACK back to the
server. The sequence number is set to the received
acknowledgement value, i.e. A+1, and the acknowl-
edgement number is set to one more than the received
sequence number i.e. B+1.

At this point, both the client and server have received an
acknowledgment of the connection. The steps 1, 2 establish
the connection parameter (sequence number) for one direc-
tion and it is acknowledged. The steps 2, 3 establish the
connection parameter (sequence number) for the other direc-
tion and it is acknowledged, and then a full-duplex commu-
nication is established.

The Internet Protocol (IP) is the principal communica-
tions protocol used for relaying datagrams (packets) across
a network using the Internet Protocol Suite. Responsible for
routing packets across network boundaries, it is the primary
protocol that establishes the Internet. IP is the primary
protocol in the Internet Layer of the Internet Protocol Suite
and has the task of delivering datagrams from the source
host to the destination host based on their addresses. For this
purpose, IP defines addressing methods and structures for
datagram encapsulation. Internet Protocol Version 4 (IPv4)
is the dominant protocol of the Internet. IPv4 is described in
Internet Engineering Task Force (IETF) Request for Com-
ments (RFC) 791 and RFC 1349, and the successor, Internet
Protocol Version 6 (IPv6), is currently active and in growing
deployment worldwide. IPv4 uses 32-bit addresses (provid-
ing 4 billion: 4.3x10° addresses), while IPv6 uses 128-bit
addresses (providing 340 undecillion or 3.4x10°®
addresses), as described in RFC 2460.

An overview of an IP-based packet 15 is shown in FIG.
2a. The packet may be generally segmented into the IP data
1654 to be carried as payload, and the IP header 16f. The 1P
header 16/ contains the IP address of the source as Source IP
Address field 164 and the Destination IP Address field 16¢.
In most cases, the IP header 16/ and the payload 1654 are
further encapsulated by adding a Frame Header 16e and
Frame Footer 16a used by higher layer protocols.

The Internet Protocol is responsible for addressing hosts
and routing datagrams (packets) from a source host to the
destination host across one or more IP networks. For this
purpose the Internet Protocol defines an addressing system
that has two functions. Addresses identify hosts and provide
a logical location service. Each packet is tagged with a
header that contains the meta-data for the purpose of deliv-
ery. This process of tagging is also called encapsulation. IP
is a connectionless protocol for use in a packet-switched
Link Layer network, and does not need circuit setup prior to
transmission. The aspects of guaranteeing delivery, proper
sequencing, avoidance of duplicate delivery, and data integ-
rity are addressed by an upper transport layer protocol (e.g.,
TCP—Transmission Control Protocol and UDP—User
Datagram Protocol).

The main aspects of the IP technology are IP addressing
and routing. Addressing refers to how IP addresses are

10

15

20

25

30

40

45

50

55

60

65

4

assigned to end hosts and how sub-networks of IP host
addresses are divided and grouped together. IP routing is
performed by all hosts, but most importantly by internet-
work routers, which typically use either Interior Gateway
Protocols (IGPs) or External Gateway Protocols (EGPs) to
help make IP datagram forwarding decisions across IP
connected networks. Core routers serving in the Internet
backbone commonly use the Border Gateway Protocol
(BGP) as per RFC 4098 or Multi-Protocol Label Switching
(MPLS). Other prior art publications relating to Internet
related protocols and routing include the following chapters
of the publication number 1-587005-001-3 by Cisco Sys-
tems, Inc. (7/99) entitled: “Internetworking Technologies
Handbook”, which are all incorporated in their entirety for
all purposes as if fully set forth herein: Chapter 5. “Routing
Basics” (pages 5-1 to 5-10), Chapter 30: “Internet Proto-
cols” (pages 30-1 to 30-16), Chapter 32 “IPv6” (pages 32-1
to 32-6), Chapter 45: “OSI Routing” (pages 45-1 to 45-8)
and Chapter 51: “Security” (pages 51-1 to 51-12), as well as
in a IBM Corporation, International Technical Support
Organization Redbook Documents No. G(G24-4756-00,
entitled: “Local area Network Concepts and Products: LAN
Operation Systems and management”, 1st Edition May
1996, Redbook Document No. GG24-4338-00, entitled:
“Introduction to Networking Technologies”, 1* Edition
April 1994, Redbook Document No. GG24-2580-01 “IP
Network Design Guide”, 2" Edition June 1999, and Red-
book Document No. GG24-3376-07 “TCP/IP Tutorial and
Technical Overview”, ISBN 0738494682 87 Edition
December 2006, which are incorporated in their entirety for
all purposes as if fully set forth herein.

An Internet packet typically includes a value of Time-to-
live (TTL) for avoiding the case of packet looping endlessly.
The initial TTL value is set in the header of the packet, and
each router in the packet path subtracts one from the TTL
field, and the packet is discarded upon the value exhaustion.
Since the packets may be routed via different and disparately
located routers and servers, the TTL of the packets reaching
the ultimate destination computer are expected to vary.

The Internet architecture employs a client-server model,
among other arrangements. The terms ‘server’ or ‘server
computer’ relates herein to a device or computer (or a
plurality of computers) connected to the Internet and is used
for providing facilities or services to other computers or
other devices (referred to in this context as ‘clients’) con-
nected to the Internet. A server is commonly a host that has
an [P address and executes a ‘server program’, and typically
operates as a socket listener. Many servers have dedicated
functionality such as web server, Domain Name System
(DNS) server (described in RFC 1034 and RFC 1035),
Dynamic Host Configuration Protocol (DHCP) server (de-
scribed in RFC 2131 and RFC 3315), mail server, File
Transfer Protocol (FTP) server and database server. Simi-
larly, the term ‘client’ is used herein to include, but not
limited to, a program or to a device or a computer (or a series
of computers) executing this program, which accesses a
server over the Internet for a service or a resource. Clients
commonly initiate connections that a server may accept. For
non-limiting example, web browsers are clients that connect
to web servers for retrieving web pages, and email clients
connect to mail storage servers for retrieving mails.

The Hypertext Transfer Protocol (HTTP) is an application
protocol for distributed, collaborative, hypermedia informa-
tion systems, commonly used for communication over the
Internet. Hypertext is. HTTP is the protocol to exchange or
transfer hypertext, which is a structured text that uses logical
links (hyperlinks) between nodes containing text. HTTP

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
142 of 228

US 10,469,614 B2

5

version 1.1 was standardized as RFC 2616 (June 1999),
which was replaced by a set of standards (obsoleting RFC
2616), including RFC 7230—HTTP/1.1: Message Syntax
and Routing, RFC 7231—HTTP/1.1: Semantics and Con-
tent, RFC 7232—HTTP/1.1: Conditional Requests, RFC
7233—HTTP/1.1: Range Requests, RFC 7234—HTTP/1.1:
Caching, and RFC 7235—HTTP/1.1: Authentication. HTTP
functions as a request-response protocol in the client-server
computing model. A web browser, for example, may be the
client and an application running on a computer hosting a
website may be the server. The client submits an HTTP
request message to the server. The server, which provides
resources such as HTML files and other content, or performs
other functions on behalf of the client, returns a response
message to the client. The response contains completion
status information about the request and may also contain
requested content in its message body. A web browser is an
example of a user agent (UA). Other types of user agent
include the indexing software used by search providers (web
crawlers), voice browsers, mobile apps and other software
that accesses, consumes or displays web content.

HTTP is designed to permit intermediate network ele-
ments to improve or enable communications between clients
and servers. High-traffic websites often benefit from web
cache servers that deliver content on behalf of upstream
servers to improve response time. Web browsers cache
previously accessed web resources and reuse them when
possible, to reduce network traffic. HT'TP proxy servers at
private network boundaries can facilitate communication for
clients without a globally routable address, by relaying
messages with external servers. HT'TP is an application layer
protocol designed within the framework of the Internet
Protocol Suite. Its definition presumes an underlying and
reliable transport layer protocol, and Transmission Control
Protocol (TCP) is commonly used. However, HTTP can use
unreliable protocols such as the User Datagram Protocol
(UDP), for example, in the Simple Service Discovery Pro-
tocol (SSDP). HTTP resources are identified and located on
the network by Uniform Resource Identifiers (URIs) or,
more specifically, Uniform Resource Locators (URLs),
using the http or https URI schemes. URIs and hyperlinks in
Hypertext Markup Language (HTML) documents form
webs of inter-linked hypertext documents. An HTTP session
is a sequence of network request-response transactions. An
HTTP client initiates a request by establishing a Transmis-
sion Control Protocol (TCP) connection to a particular port
on a server. An HTTP server listening on that port waits for
a client’s request message. Upon receiving the request, the
server sends back a status line, such as “HTTP/1.1 200 OK”,
and a message of its own. The body of this message is
typically the requested resource, although an error message
or other information may also be returned. HTTP is a
stateless protocol. A stateless protocol does not require the
HTTP server to retain information or status

HTTP persistent connection, also called HTTP keep-
alive, or HTTP connection reuse, refers to using a single
TCP connection to send and receive multiple HTTP
requests/responses, as opposed to opening a new connection
for every single request/response pair. Persistent connec-
tions provide a mechanism by which a client and a server
can signal the close of a TCP connection. This signaling
takes place using the Connection header field. The HTTP
persistent connection is described in IETF RFC 2616,
entitled: “Hypertext Transfer Protocol—HTTP/1.1”. In
HTTP 1.1, all connections are considered persistent unless
declared otherwise. The HT'TP persistent connections do not
use separate keepalive messages, but they allow multiple

10

15

20

25

30

35

40

45

50

55

60

65

6

requests to use a single connection. The advantages of using
persistent connections involve lower CPU and memory
usage (because fewer connections are open simultaneously),
enabling HTTP pipelining of requests and responses,
reduced network congestion (due to fewer TCP connec-
tions), and reduced latency in subsequent requests (due to
minimal handshaking). Any connection herein may use, or
be based on, an HTTP persistent connection.

An Operating System (OS) is software that manages
computer hardware resources and provides common ser-
vices for computer programs. The operating system is an
essential component of any system software in a computer
system, and most application programs usually require an
operating system to function. For hardware functions such
as input and output and memory allocation, the operating
system acts as an intermediary between programs and the
computer hardware, although the application code is usually
executed directly by the hardware and will frequently make
a system call to an OS function or be interrupted by it.
Common features typically supported by operating systems
include process management, interrupts handling, memory
management, file system, device drivers, networking (such
as TCP/IP and UDP), and Input/Output (I/O) handling.
Examples of popular modern operating systems include
Android, BSD, i0S, Linux, OS X, QNX, Microsoft Win-
dows, Windows Phone, and IBM z/OS.

A server device (in server/client architecture) typically
offers information resources, services, and applications to
clients, and is using a server dedicated or oriented operating
system. Current popular server operating systems are based
on Microsoft Windows (by Microsoft Corporation, head-
quartered in Redmond, Wash., U.S.A.), Unix, and Linux-
based solutions, such as the ‘Windows Server 2012’ server
operating system is part of the Microsoft ‘Windows Server’
OS family, that was released by Microsoft on 2012, provid-
ing enterprise-class datacenter and hybrid cloud solutions
that are simple to deploy, cost-effective, application-fo-
cused, and user-centric, and is described in Microsoft pub-
lication entitled: “Inside-Out Windows Server 20127, by
William R. Stanek, published 2013 by Microsoft Press,
which is incorporated in its entirety for all purposes as if
fully set forth herein.

Unix operating systems are widely used in servers. Unix
is a multitasking, multiuser computer operating system that
exists in many variants, and is characterized by a modular
design that is sometimes called the “Unix philosophy,”
meaning the OS provides a set of simple tools that each
perform a limited, well-defined function, with a unified
filesystem as the main means of communication, and a shell
scripting and command language to combine the tools to
perform complex workflows. Unix was designed to be
portable, multi-tasking and multi-user in a time-sharing
configuration, and Unix systems are characterized by vari-
ous concepts: the use of plain text for storing data; a
hierarchical file system; treating devices and certain types of
Inter-Process Communication (IPC) as files; and the use of
a large number of software tools, small programs that can be
strung together through a command line interpreter using
pipes, as opposed to using a single monolithic program that
includes all of the same functionality. Under Unix, the
operating system consists of many utilities along with the
master control program, the kernel. The kernel provides
services to start and stop programs, handles the file system
and other common “low level” tasks that most programs
share, and schedules access to avoid conflicts when pro-
grams try to access the same resource or device simultane-
ously. To mediate such access, the kernel has special rights,

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
143 of 228

US 10,469,614 B2

7

reflected in the division between user-space and kernel-
space. Unix is described in a publication entitled: “UNIX
Tutorial” by tutorialspoint.com, downloaded on July 2014,
which is incorporated in its entirety for all purposes as if
fully set forth herein.

A client device (in server/client architecture) typically
receives information resources, services, and applications
from servers, and is using a client dedicated or oriented
operating system. Current popular server operating systems
are based on Microsoft Windows (by Microsoft Corporation,
headquartered in Redmond, Wash., U.S.A.), which is a
series of graphical interface operating systems developed,
marketed, and sold by Microsoft. Microsoft Windows is
described in Microsoft publications entitled: “Windows
Internals—Part 17 and “Windows Internals—Part 27, by
Mark Russinovich, David A. Solomon, and Alex loescu,
published by Microsoft Press in 2012, which are both
incorporated in their entirety for all purposes as if fully set
forth herein. Windows 8 is a personal computer operating
system developed by Microsoft as part of Windows NT
family of operating systems, that was released for general
availability on October 2012, and is described in Microsoft
Press 2012 publication entitled: “Introducing Windows
8—An Overview for IT Professionals” by Jerry Honeycutt,
which is incorporated in its entirety for all purposes as if
fully set forth herein.

Chrome OS is a Linux kernel-based operating system
designed by Google Inc. out of Mountain View, Calif.,
U.S.A., to work primarily with web applications. The user
interface takes a minimalist approach and consists almost
entirely of just the Google Chrome web browser; since the
operating system is aimed at users who spend most of their
computer time on the Web, the only “native” applications on
Chrome OS are a browser, media player and file manager,
and hence the Chrome OS is almost a pure web thin client
OS.

The Chrome OS is described as including a three-tier
architecture: firmware, browser and window manager, and
system-level software and userland services. The firmware
contributes to fast boot time by not probing for hardware,
such as floppy disk drives, that are no longer common on
computers, especially netbooks. The firmware also contrib-
utes to security by verifying each step in the boot process
and incorporating system recovery. The system-level soft-
ware includes the Linux kernel that has been patched to
improve boot performance. The userland software has been
trimmed to essentials, with management by Upstart, which
can launch services in parallel, re-spawn crashed jobs, and
defer services in the interest of faster booting. The Chrome
OS user guide is described in the Samsung Flectronics Co.,
Ltd. presentation entitled: “Google™ Chrome OS USER
GUIDE” published 2011, which is incorporated in its
entirety for all purposes as if fully set forth herein.

A mobile operating system (also referred to as mobile
OS), is an operating system that operates a smartphone,
tablet, PDA, or other mobile device. Modern mobile oper-
ating systems combine the features of a personal computer
operating system with other features, including a touch-
screen, cellular, Bluetooth, Wi-Fi, GPS mobile navigation,
camera, video camera, speech recognition, voice recorder,
music player, near field communication and infrared blaster.
Currently popular mobile OS are Android, Symbian, Apple
i0S, BlackBerry, MeeGo, Windows Phone, and Bada.
Mobile devices with mobile communications capabilities
(e.g. smartphones) typically contain two mobile operating
systems—the main user-facing software platform is supple-

30

40

45

55

8

mented by a second low-level proprietary real-time operat-
ing system which operates the radio and other hardware.

Android is an open source and Linux-based mobile oper-
ating system (OS) based on the Linux kernel that is currently
offered by Google. With a user interface based on direct
manipulation, Android is designed primarily for touchscreen
mobile devices such as smartphones and tablet computers,
with specialized user interfaces for televisions (Android
TV), cars (Android Auto), and wrist watches (Android
Wear). The OS uses touch inputs that loosely correspond to
real-world actions, such as swiping, tapping, pinching, and
reverse pinching to manipulate on-screen objects, and a
virtual keyboard. Despite being primarily designed for
touchscreen input, it also has been used in game consoles,
digital cameras, and other electronics. The response to user
input is designed to be immediate and provides a fluid touch
interface, often using the vibration capabilities of the device
to provide haptic feedback to the user. Internal hardware
such as accelerometers, gyroscopes and proximity sensors
are used by some applications to respond to additional user
actions, for example adjusting the screen from portrait to
landscape depending on how the device is oriented, or
allowing the user to steer a vehicle in a racing game by
rotating the device, simulating control of a steering wheel.

Android devices boot to the homescreen, the primary
navigation and information point on the device, which is
similar to the desktop found on PCs. Android homescreens
are typically made up of app icons and widgets; app icons
launch the associated app, whereas widgets display live,
auto-updating content such as the weather forecast, the
user’s email inbox, or a news ticker directly on the home-
screen. A homescreen may be made up of several pages that
the user can swipe back and forth between, though
Android’s homescreen interface is heavily customizable,
allowing the user to adjust the look and feel of the device to
their tastes. Third-party apps available on Google Play and
other app stores can extensively re-theme the homescreen,
and even mimic the look of other operating systems, such as
Windows Phone. The Android OS is described in a publi-
cation entitled: “Android Tutorial”’, downloaded from tuto-
rialspoint.com on July 2014, which is incorporated in its
entirety for all purposes as if fully set forth herein.

i0S (previously iPhone OS) from Apple Inc. (headquar-
tered in Cupertino, Calif., U.S.A.) is a mobile operating
system distributed exclusively for Apple hardware. The user
interface of the iOS is based on the concept of direct
manipulation, using multi-touch gestures. Interface control
elements consist of sliders, switches, and buttons. Interac-
tion with the OS includes gestures such as swipe, tap, pinch,
and reverse pinch, all of which have specific definitions
within the context of the iOS operating system and its
multi-touch interface. Internal accelerometers are used by
some applications to respond to shaking the device (one
common result is the undo command) or rotating it in three
dimensions (one common result is switching from portrait to
landscape mode). The 10S is described in the publication
entitled: “IOS Tutorial”, downloaded from tutorialspoint.
com on July 2014, which is incorporated in its entirety for
all purposes as if fully set forth herein.

Operating systems: An Operating System (OS) is software
that manages computer hardware resources and provides
common services for computer programs. The operating
system is an essential component of any system software in
a computer system, and most application programs usually
require an operating system to function. For hardware func-
tions such as input and output and memory allocation, the
operating system acts as an intermediary between programs

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
144 of 228

US 10,469,614 B2

9

and the computer hardware, although the application code is
usually executed directly by the hardware and will fre-
quently make a system call to an OS function or be inter-
rupted by it. Common features typically supported by oper-
ating systems include process management, interrupts
handling, memory management, file system, device drivers,
networking (such as TCP/IP and UDP), and Input/Output
(I/0O) handling. Examples of popular modern operating
systems include Android, BSD, i0S, Linux, OS X, QNX,

10

design of distributed and client-server systems and in soft-
ware run on multi-processor systems.

Modes: Many contemporary processors incorporate a
mode bit to define the execution capability of a program in
the processor. This bit can be set to a kernel mode or a user
mode. A kernel mode is also commonly referred to as
supervisor mode, monitor mode or ring 0. In kernel mode,
the processor can execute every instruction in its hardware
repertoire, whereas in user mode, it can only execute a

Microsoft Windows, Windows Phone, and IBM z/OS. 10 subset of the instructions. Instructions that can be executed
Process management: The operating system provides an only in kernel mode are called kernel, privileged or pro-
interface between an application program and the computer tected instructions to distinguish them from the user mode
hardware, so that an application program can interact with instructions. For example, I/O instructions are privileged.
the hardware only by obeying rules and procedures pro- So, if an application program executes in user mode, it
grammed into the operating system. The operating system is 15 cannot perform its own 1/O, and must request the OS to
also a set of services which simplify development and perform /O on its behalf. The system may logically extend
execution of application programs. Executing an application the mode bit to define areas of memory to be used when the
program involves the creation of a process by the operating processor is in kernel mode versus user mode. If the mode
system kernel which assigns memory space and other bit is set to kernel mode, the process executing in the
resources, establishes a priority for the process in multi- 20 processor can access either the kernel or user partition of the
tasking systems, loads program binary code into memory, memory. However, if user mode is set, the process can
and initiates execution of the application program which reference only the user memory space, hence two classes of
then interacts with the user and with hardware devices. The memory are defined, the user space and the system space (or
OS must allocate resources to processes, enable processes to kernel, supervisor or protected space). In general, the mode
share and exchange information, protect the resources of 25 bit extends the operating system’s protection rights, and is
each process from other processes, and enable synchroni- set by the user mode trap instruction, also called a supervisor
zation among processes. The OS maintains a data structure call instruction. This instruction sets the mode bit, and
for each process, which describes the state and resource branches to a fixed location in the system space. Since only
ownership of that process, and which enables the OS to exert the system code is loaded in the system space, only the
control over each process. 30 system code can be invoked via a trap. When the OS has
In many modern operating systems, there can be more completed the supervisor call, it resets the mode bit to user
than one instance of a program loaded in memory at the mode prior to the return.
same time; for example, more than one user could be Computer operating systems provide different levels of
executing the same program, each user having separate access to resources, and these hierarchical protection
copies of the program loaded into memory. With some 35 domains are often referred to as ‘protection rings’, and are
programs, known as re-entrant type, it is possible to have used to protect data and functionality from faults (by
one copy loaded into memory, while several users have improving fault tolerance) and malicious behaviour (by
shared access to it so that they each can execute the same providing computer security). A protection ring is one of two
program-code. The processor at any instant can only be or more hierarchical levels or layers of privilege within the
executing one instruction from one program but several 40 architecture of a computer system. These levels may be
processes can be sustained over a period of time by assign- hardware-enforced by some CPU architectures that provide
ing each process to the processor at intervals while the different CPU modes at the hardware or microcode level.
remainder become temporarily inactive. A number of pro- Rings are arranged in a hierarchy from most privileged
cesses being executed over a period of time instead of at the (most trusted, usually numbered zero) to least privileged
same time is called concurrent execution. A multiprogram- 45 (least trusted, usually with the highest ring number). On
ming or multitasking OS is a system executing many pro- most operating systems, kernel mode or ‘Ring 0’ is the level
cesses concurrently. A multiprogramming requires that the with the most privileges and interacts most directly with the
processor be allocated to each process for a period of time, physical hardware such as the CPU and memory. Special
and de-allocated at an appropriate moment. If the processor gates between rings are provided to allow an outer ring to
is de-allocated during the execution of a process, it must be 50 access an inner ring’s resources in a predefined manner, as
done in such a way that it can be restarted later as easily as opposed to allowing arbitrary usage. Correctly gating access
possible. between rings can improve security by preventing programs
There are two typical ways for an OS to regain control of from one ring or privilege level from misusing resources
the processor during a program’s execution in order for the intended for programs in another. For example, spyware
OS to perform de-allocation or allocation: The process 55 running as a user program in Ring 3 should be prevented
issues a system call (sometimes called a software interrupt); from turning on a web camera without informing the user,
for example, an I/O request occurs requesting to access a file since hardware access should be a Ring 1 function reserved
on hard disk. Alternatively, a hardware interrupt occurs; for for device drivers. Programs such as web browsers running
example, a key was pressed on the keyboard, or a timer runs in higher numbered rings must request access to the net-
out (used in pre-emptive multitasking). The stopping of one 60 work, a resource restricted to a lower numbered ring.
process and starting (or restarting) of another process is Kernel: With the aid of the firmware and device drivers,
called a context switch or context change. In many modern the kernel provides the most basic level of control over all
operating systems, processes can consist of many sub- of the computer’s hardware devices. It manages memory
processes. This introduces the concept of a thread. A thread access for programs in the RAM, it determines which
may be viewed as a sub-process; that is, a separate, inde- 65 programs get access to which hardware resources, it sets up

pendent sequence of execution within the code of one
process. Threads are becoming increasingly important in the

or resets the CPU’s operating states for optimal operation at
all times, and it organizes the data for long-term non-volatile

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
145 of 228

US 10,469,614 B2

11

storage with file systems on such media as disks, tapes, flash
memory, etc. The part of the system executing in kernel
supervisor state is called the kernel, or nucleus, of the
operating system. The kernel operates as trusted software,
meaning that when it was designed and implemented, it was
intended to implement protection mechanisms that could not
be covertly changed through the actions of untrusted soft-
ware executing in user space. Extensions to the OS execute
in user mode, so the OS does not rely on the correctness of

12

hardware (such as a peripheral), it may interrupt the oper-
ating system’s kernel, which causes control to be passed
back to the kernel. The kernel will then process the request.
If a program wishes additional resources (or wishes to shed
resources) such as memory, it will trigger an interrupt to get
the kernel’s attention. Each interrupt has its own interrupt
handler. The number of hardware interrupts is limited by the
number of interrupt request (IRQ) lines to the processor, but
there may be hundreds of different software interrupts.

those parts of the system software for correct operation of 10 Interrupts are a commonly used technique for computer
the OS. Hence, a fundamental design decision for any multitasking, especially in real-time computing systems,
function to be incorporated into the OS is whether it needs which are commonly referred to as interrupt-driven systems.
to be implemented in the kernel. If it is implemented in the Memory management: A multiprogramming operating
kernel, it will execute in kernel (supervisor) space, and have system kernel is responsible for managing all system
access to other parts of the kernel. It will also be trusted 15 memory which is currently in use by programs, ensuring that
software by the other parts of the kernel. If the function is a program does not interfere with memory already in use by
implemented to execute in user mode, it will have no access another program. Since programs time share, each program
to kernel data structures. must have independent access to memory. Memory protec-
There are two techniques by which a program executing tion enables the kernel to limit a process’ access to the
in user mode can request the kernel’s services, namely 20 computer’s memory. Various methods of memory protection
‘System call’ and ‘Message passing’. Operating systems are exist, including memory segmentation and paging. In both
typically with one or the other of these two facilities, but segmentation and paging, certain protected mode registers
commonly not both. Assuming that a user process wishes to specify to the CPU what memory address it should allow a
invoke a particular target system function, in the system call running program to access. Attempts to access other
approach, the user process uses the trap instruction, so the 25 addresses will trigger an interrupt which will cause the CPU
system call should appear to be an ordinary procedure call to re-enter supervisor mode, placing the kernel in charge.
to the application program; the OS provides a library of user This is called a segmentation violation (or Seg-V), and the
functions with names corresponding to each actual system kernel will generally resort to terminating the offending
call. Each of these stub functions contains a trap to the OS program, and will report the error.
function, and when the application program calls the stub, it 30 ~ Memory management further provides ways to dynami-
executes the trap instruction, which switches the CPU to cally allocate portions of memory to programs at their
kernel mode, and then branches (indirectly through an OS request, and free it for reuse when no longer needed. This is
table), to the entry point of the function which is to be critical for any advanced computer system where more than
invoked. When the function completes, it switches the a single process might be underway at any time. Several
processor to user mode and then returns control to the user 35 methods have been devised that increase the effectiveness of
process; thus simulating a normal procedure return. In the memory management. Virtual memory systems separate the
message passing approach, the user process constructs a memory addresses used by a process from actual physical
message, that describes the desired service, and then it uses addresses, allowing separation of processes and increasing
a trusted send function to pass the message to a trusted OS the effectively available amount of RAM using paging or
process. The send function serves the same purpose as the 40 swapping to secondary storage. The quality of the virtual
trap; that is, it carefully checks the message, switches the memory manager can have an extensive effect on overall
processor to kernel mode, and then delivers the message to system performance.
a process that implements the target functions. Meanwhile, File system: Commonly a file system (or filesystem) is
the user process waits for the result of the service request used to control how data is stored and retrieved. By sepa-
with a message receive operation. When the OS process 45 rating the data into individual pieces, and giving each piece
completes the operation, it sends a message back to the user a name, the information is easily separated and identified,
process. where each piece of data is called a “file”. The structure and
Interrupts handling: Interrupts are central to operating logic rules used to manage the groups of information and
systems, as they provide an efficient way for the operating their names is called a “file system”. There are many
system to interact with and react to its environment. Inter- 50 different kinds of file systems. Each one has a different
rupts are typically handled by the operating system’s kernel, structure and logic, properties of speed, flexibility, security,
and provide a computer with a way of automatically saving size and more. Some file systems have been designed to be
local register contexts, and running specific code in response used for specific applications. For example, the ISO 9660
to events. When an interrupt is received, the computer’s file system is designed specifically for optical discs. File
hardware automatically suspends whatever program is cur- 55 systems can be used on many different kinds of storage
rently running, saves its status, and runs computer code devices. Some file systems are used on local data storage
previously associated with the interrupt. When a hardware devices; others provide file access via a network protocol
device triggers an interrupt, the operating system’s kernel (for example, NFS, SMB, or 9P clients). Some file systems
decides how to deal with this event, generally by running are “virtual”, in that the “files” supplied are computed on
some processing code. The amount of code being run 60 request (e.g. procfs) or are merely a mapping into a different
depends on the priority of the interrupt, and the processing file system used as a backing store. The file system manages
of hardware interrupts is executed by a device driver, which access to both the content of files and the metadata about
may be either part of the operating system’s kernel, part of those files. It is responsible for arranging storage space;
another program, or both. Device drivers may then relay reliability, efficiency, and tuning with regard to the physical
information to a running program by various means. A 65 storage medium are important design considerations.

program may also trigger an interrupt to the operating
system. For example, if a program wishes to access an

A disk file system takes advantages of the ability of disk
storage media to randomly address data in a short amount of

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
146 of 228

US 10,469,614 B2

13

time. Additional considerations include the speed of access-
ing data following that initially requested and the anticipa-
tion that the following data may also be requested. This
permits multiple users (or processes) access to various data
on the disk without regard to the sequential location of the
data. Examples include FAT (FAT12, FAT16, FAT32),
exFAT, NTFS, HFS and HFS+, HPFS, UFS, ext2, ext3, ext4,
XFS, btrfs, ISO 9660, Files-11, Veritas File System, VMFS,
ZFS, ReiserFS and UDF. Some disk file systems are jour-
naling file systems or versioning file systems.

TMPFS. TMPFS (or tmpfs) is a common name for a
temporary file storage facility on many Unix-like operating
systems. While intended to appear as a mounted file system,
it is stored in volatile memory instead of a non-volatile
storage device. A similar construction is a RAM disk, which
appears as a virtual disk drive and hosts a disk file system.
The tmpfs is typically a file system based on SunOS virtual
memory resources, which does not use traditional non-
volatile media to store file data; instead, tmpfs files exist
solely in virtual memory maintained by the UNIX kernel.
Because tmpfs file systems do not use dedicated physical
memory for file data, but instead use VM system resources
and facilities, they can take advantage of kernel resource
management policies. Tmpfs is designed primarily as a
performance enhancement to allow short-lived files to be
written and accessed without generating disk or network
1/0. Tmpfs maximizes file manipulation speed while pre-
serving UNIX file semantics. It does not require dedicated
disk space for files and has no negative performance impact.
The tmpfs is described in a Sun Microsystem Inc. paper
entitled: “tmpfs: A Virtual Memory File System” by Peter
Snyder, downloaded on 7/2014, which is incorporated in its
entirety for all purposes as if fully set forth herein.

Device drivers: A device driver is a specific type of
computer software developed to allow interaction with hard-
ware devices. Typically, this constitutes an interface for
communicating with the device, through the specific com-
puter bus or communications subsystem that the hardware is
connected to, providing commands to and/or receiving data
from the device, and on the other end, the requisite interfaces
to the operating system and software applications. It is a
specialized hardware-dependent computer program which is
also operating system specific that enables another program,
typically an operating system or applications software pack-
age or computer program running under the operating sys-
tem kernel, to interact transparently with a hardware device,
and usually provides the requisite interrupt handling neces-
sary for any necessary asynchronous time-dependent hard-
ware interfacing needs.

Networking: Most operating systems support a variety of
networking protocols, hardware, and applications for using
them, allowing computers running dissimilar operating sys-
tems to participate in a common network, for sharing
resources such as computing, files, printers, and scanners,
using either wired or wireless connections. Networking can
essentially allow a computer’s operating system to access
the resources of a remote computer, to support the same
functions as it could if those resources were connected
directly to the local computer. This includes everything from
simple communication, to using networked file systems, or
sharing another computer’s graphics or sound hardware.
Some network services allow the resources of a computer to
be accessed transparently, such as SSH, which allows net-
worked users direct access to a computer’s command line
interface. A client/server networking allows a program on a
computer, called a client, to connect via a network to another
computer, called a server. Servers offer (or host) various

10

30

35

40

45

50

55

14

services to other network computers and users. These ser-
vices are usually provided through ports or numbered access
points beyond the server’s network address. Each port
number is usually associated with a maximum of one
running program, which is responsible for handling requests
to that port. A daemon, being a user program, can in turn
access the local hardware resources of that computer by
passing requests to the operating system kernel.

Input/Output (/O) handling: An input/output (or 1/O) is
the communication between an information processing sys-
tem (such as a computer) and the outside world, possibly a
human or other information processing system. The inputs
are typically the signals or data received by the system, and
the outputs are the signals or data sent from it. [/O devices
may be used by a person (or other system) to communicate
with a computer. For instance, a keyboard or a mouse may
be an input device for a computer, while monitors and
printers are considered output devices for a computer.
Devices for communication between computers, such as
modems and network cards, typically serve for both input
and output.

User interface: Every computer that is to be operated by
a human being requires a user interface, usually referred to
as a ‘shell’, and is essential if human interaction is to be
supported. The user interface views the directory structure
and requests services from the operating system that will
acquire data from input hardware devices, such as a key-
board, mouse or credit card reader, and requests operating
system services to display prompts, status messages and
such on output hardware devices, such as a video monitor or
printer. The two most common forms of a user interface have
historically been the command-line interface, where com-
puter commands are typed out line-by-line, and the Graphi-
cal User Interface (GUI), where a visual environment (most
commonly a WIMP) is present. Typically the GUI is inte-
grated into the kernel, allowing the GUI to be more respon-
sive by reducing the number of context switches required for
the GUI to perform its output functions.

WDM. The Windows Driver Model (WDM), also known
as the Win32 Driver Model, is a standard model defining a
framework for device drivers specified by Microsoft, pro-
viding unified driver models. The WDM model is based on
WDM drivers that are layered in a complex hierarchy and
communicate with each other via I/O Request Packets
(IRPs). The WDM was introduced with Windows 98 and
Windows 2000 to replace VXD which was used on older
versions of Windows such as Windows 95 and Windows 3.1,
as well as the Windows NT Driver Model, and WDM drivers
are usable on all of Microsoft’s operating systems of Win-
dows 95 and later. The WDM is described in the publication
entitled: “Microsoft Windows Driver Model (WDM)”, by
Mohamad (Hani) Atassy, submitted to Dr. Dennis R. Hafer-
mann dated Jan. 28, 2002, and in publication entitled: “4
Comparison of the Linux and Windows Device Driver Archi-
tecture”, by Melekam Tsegaye and Ricahrd Foss, both from
Rhodes University, South-Africa, downloaded from the
Internet on 7/2014, both are incorporated in their entirety for
all purposes as if fully set forth herein.

A general schematic view of the WDM architecture 430
is shown on FIG. 3. In the example shown, three applica-
tions designated as application #1 431a, application #2
4315, and application #3 431c, are accessing three periph-
eral hardware devices, designated as peripheral #1 439a,
peripheral #2 43956, and peripheral #3 439c¢. The model
involves three layers. The lower layer is the hardware layer
50c¢, which includes the hardware devices and peripherals,
accessed by the processor (such as processor 27) via the

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
147 of 228

US 10,469,614 B2

15

hardware bus 4304, which may correspond to internal bus 13
shown in FIG. 1. The highest layer is a ‘user space’ layer
430a, corresponding to the user mode nd to the higher ‘ring’
layers such as Ring 3, and is relating to the space is the
memory area where application software and some drivers
execute. The kernel of the operating system provides the
services as part of a ‘kernel space’ layer 4304, serving as an
intermediate layer between the user space layer 430q and the
hardware layer 430c. The kernel space 4305 operates in a
highly privileged hierarchical protection domain, and is
strictly reserved for running privileged kernel, kernel exten-
sions, and most device drivers, and is typically correspond-
ing to the kernel mode and to the ‘ring-0’ layer (in x86
processors). The kernel mode may be supported by the
processor hardware, or may be supported by a code segment
level.

The user mode applications (such as application #1 431a,
application #2 4315, and application #3 431c¢) access the
kernel space 4305 by the invoking of system calls respec-
tively denoted as connections 432a, 4326 and 432c¢. Typi-
cally, such system calls are processed via intermediating
entity known as Windows API, such as a Win32 API 433,
which access the kernel space 4305 via a standard messag-
ing 434. The Win32 API 433 is an example of a Windows
API (informally WinAPI), which is Microsoft’s core set of
Application Programming Interfaces (APIs) available in the
Microsoft Windows operating systems. Almost all Windows
programs interact with the Windows API; on the Windows
NT line of operating systems, a small number (such as
programs started early in the Windows startup process) uses
the Native API. Supporting for developers is in the form of
the Windows Software Development Kit (SDK), providing
documentation and tools necessary to build software based
upon the Windows API and associated Windows interfaces.
The Win32 API 433 is the 32-bit API for modern versions of
Windows, and consists of functions implemented, as with
Winl6, in system DLLs. The core DLLs of the Win32
include the kernel32.dll, user32.dll, and gdi32.dll. The
Win32 API is described in the tutorial entitled: “Welcome to
Version 2.0 of the Win32 API Tutorial” by Prof. M. Saeed,
published by Brook Miles, downloaded from the Internet on
7/2014, which is incorporated in its entirety for all purposes
as if fully set forth herein.

System calls provide an essential interface between a
process and the operating system. A system call is how a
program requests a service from an operating system’s
kernel. This may include hardware related services (e.g.,
accessing the hard disk), creating and executing new pro-
cesses, and communicating with integral kernel services
(such as scheduling). A system call is typically processed in
the kernel mode, which is accomplished by changing the
processor execution mode to a more privileged one. The
hardware sees the world in terms of the execution mode
according to the processor status register, and processes are
an abstraction provided by the operating system. A system
call does not require a context switch to another process, it
is processed in the context of whichever process invoked it.
The system calls are often executed via traps or interrupts;
that automatically puts the CPU into some required privilege
level, and then passes control to the kernel, which deter-
mines whether the calling program should be granted the
requested service. If the service is granted, the kernel
executes a specific set of instructions over which the calling
program has no direct control, returns the privilege level to
that of the calling program, and then returns control to the

40

45

50

55

16

calling program. Implementing system calls requires a con-
trol transfer, which involves some sort of architecture-
specific feature.

System calls can be roughly grouped into five major
categories: Process control, such as load, execute, create/
terminate process, get/set process attributes, wait for time,
wait event, and signal event; file management, such as
request/release device, create/delete file, open/close file,
read/write/reposition file, and get/set file attributes; device
management, such as read/write/reposition device, get/set
device attributes, and logically attach/detach devices; infor-
mation maintenance, such as get/set time or date, get/set
system data, and get/set process, file, or device attributes;
and communication such as create, delete communication
connection, transfer status information, and attach or detach
remote devices.

The system calls are commonly handled by the I/O
manager 4355, which allows devices to communicate with
user-mode subsystems. It translates user-mode read and
write commands into read or write IRPs which it passes to
device drivers. It accepts file system /O requests and
translates them into device specific calls, and can incorpo-
rate low-level device drivers that directly manipulate hard-
ware to either read input or write output. It also includes a
cache manager to improve disk performance by caching read
requests and write to the disk in the background. The I/O
manager 4356 may interface the power manager 435c,
which deals with power events (power-off, stand-by, hiber-
nate, etc.) and notifies affected drivers with special IRPs
(Power IRPs).

The PnP manager 435¢ handles ‘Plug and Play’ and
supports device detection and installation at boot time. It
also has the responsibility to stop and start devices on
demand, that can happen when a bus (such as USB or
FireWire) gains a new device and needs to have a device
driver loaded to support it. The PnP manager 4354 may be
partly implemented in user mode, in the Plug and Play
Service, which handles the often complex tasks of installing
the appropriate drivers, notifying services and applications
of'the arrival of new devices, and displaying GUI to the user.

1/0 Request Packets (IRPs) are kernel mode structures
that are used to communicate with each other and with the
operating system. They are data structures that describe 1/O
requests, to a driver, all of these parameters (such as buffer
address, buffer size, /O function type, etc.) are passed via a
single pointer to this persistent data structure. The IRP with
all of its parameters can be put on a queue if the I/O request
cannot be performed immediately. /O completion is
reported back to the I/O manager by passing its address to
a routine for that purpose, loCompleteRequest. The IRP may
be repurposed as a special kernel APC object if such is
required to report completion of the I/O to the requesting
thread. IRPs are typically created by the [/O Manager in
response to 1/O requests from user mode. However, IRPs are
sometimes created by the plug-and-play manager, power
manager, and other system components, and can also be
created by drivers and then passed to other drivers.

The WDM uses kernel-mode device drivers to enable it to
interact with hardware devices, where each of the drivers has
well defined system routines and internal routines that it
exports to the rest of the operating system. DriverEntry is the
first routine called after a driver is loaded, and is responsible
for initializing the driver. All devices are seen by user mode
code as a file object in the I/O manager, though to the /O
manager itself the devices are seen as device objects, which
it defines as either file, device or driver objects. The drivers
may be aggregated as a driver stack 436, including kernel

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
148 of 228

US 10,469,614 B2

17

mode drivers in three levels: highest level drivers 436a,
intermediate drivers 43654, and low level drivers 436¢. The
highest level drivers 436a, such as file system drivers for
FAT and NTFS, rely on the intermediate drivers 4365, which
consist of function drivers or main driver for a device, that
are optionally sandwiched between lower and higher level
filter drivers. The highest level drivers typically know how
files are represented on disk, but not the details of how to
actually fetch the data, the intermediate level drivers process
the requests from the highest level driver by breaking down
a large request into a series of small chunks. The function
driver commonly possesses the details relating to how the
hardware of the peripheral works, typically relies on a bus
driver, or a driver that services a bus controller, adapter, or
bridge, which can have an optional bus filter driver that sits
between itself and the function driver. For example, a PCI
bus driver detects the PCI-slot plugged card or hardware,
and determines the 1/O-mapped or the memory-mapped
connection with the host. Intermediate drivers 4364 rely on
the low level drivers 436¢ to function. The lowest level
drivers 436¢ are either legacy device drivers that control a
device directly, or can be a PnP hardware bus. These lower
level drivers 436¢ directly control hardware and do not rely
on any other drivers. The I/O manager 435¢ communicate
with the high-level driver 436a using IRP 4374, the high-
level driver 436a communicate with the intermediate level
driver 43656 using IRP 4375, the intermediate level driver
4365 communicate with the low-level driver 436¢ using IRP
437¢, and the low-level driver 4365 communicate with the
HAL 438 using IRP 4374.

WDM drivers can be classified into the following types
and sub-types: Device function drivers, bus drivers, and
filter drivers. A function driver is the main driver for a
device. A function driver is typically written by the device
vendor and is required (unless the device is being used in
raw mode). A function driver can service one or more
devices. Miniport drivers are a type of function drivers for
interfaces such as USB, audio, SCSI and network adapters.
They are hardware specific, but the control access to the
hardware is through a specific bus class driver. Class drivers
are a type of function drivers and can be thought of as
built-in framework drivers that miniport and other class
drivers can be built on top of. The class drivers provide
interfaces between different levels of the WDM architecture.
Common functionality between different classes of drivers
can be written into the class driver and used by other class
and miniport drivers. The lower edge of the class driver will
have its interface exposed to the miniport driver, while the
upper edge of top level class drivers is operating system
specific. Class drivers can be dynamically loaded and
unloaded at will. They can do class specific functions that
are not hardware or bus-specific (with the exception of
bus-type class drivers) and in fact sometimes only do class
specific functions such as enumeration.

A bus driver services a bus controller, adapter, or bridge.
Microsoft provides bus drivers for most common buses,
such as Advanced configuration and Power Interface
(ACPI), Peripheral Component Interconnect (PCI), PnPISA,
SCSI, Universal Serial Bus (USB), and FireWire. A bus
driver can service more than one bus if there is more than
one bus of the same type on the machine. The ACPI bus
driver interacts with the ACPI BIOS to enumerate the
devices in the system and control their power use, the PCI
bus driver (such as pci.sys) enumerates and configures
devices connected via the PCI bus, the FireWire and the
USB bus driver respectively enumerates and controls
devices connected via the IEEE 1394 high speed bus and the

30

40

45

50

55

18

USB. The stream class driver provides a basic processing
supporting high bandwidth, time critical, and video and
audio data related hardware, and uses minidrivers for inter-
facing the actual hardware, and hard-disk, floppies, CDs,
and DVDs are interfaces using SCSI and CDROM/DVD
class driver. The Human Input Device (HID) provides an
abstract view of input devices, and the Still Image Archi-
tecture (SIA) class driver is used to obtain content from a
scanner and a still camera, using minidrivers. For example,
accessing an hard disk (such as HDD 30) involves a file
system driver as high-level driver, a volume manager driver
as intermediate level driver, and a disk driver as a low-level
driver.

Filter drivers are optional drivers that add value to or
modify the behavior of a device and may be non-device
drivers. A filter driver can also service one or more devices.
Upper level filter drivers sit above the primary driver for the
device (the function driver), while lower level filter drivers
sit below the function driver and above the bus driver. A
driver service is a type of kernel-level filter driver imple-
mented as a Windows service that enables applications to
work with devices.

The Hardware Abstraction Layer 438, or HAL, is a layer
between the physical hardware layer 430c¢ of the computer
and the rest of the operating system. It was designed to hide
differences in hardware and therefore provide a consistent
platform on which the kernel is run. The HAL 438 includes
hardware-specific code that controls 1/O interfaces, interrupt
controllers and multiple processors. Typically the particular
hardware abstraction does not involve abstracting the
instruction set, which generally falls under the wider con-
cept of portability. Abstracting the instruction set, when
necessary (such as for handling the several revisions to the
x86 instruction set, or emulating a missing math coproces-
sor), is performed by the kernel, or via platform virtualiza-
tion.

Linux is a Unix-like and mostly POSIX-compliant com-
puter operating system assembled under the model of free
and open source software development and distribution. The
defining component of Linux is the Linux kernel, an oper-
ating system kernel first released on 5 Oct. 1991 by Linus
Torvalds. Linux was originally developed as a free operating
system for Intel x86-based personal computers, but has since
been ported to more computer hardware platforms than any
other operating system. Linux also runs on embedded sys-
tems such as mobile phones, tablet computers, network
routers, facility automation controls, televisions, and video
game consoles. Android, which is a widely used operating
system for mobile devices, is built on top of the Linux
kernel. Typically, Linux is packaged in a format known as a
Linux distribution for desktop and server use.

Linux distributions include the Linux kernel, supporting
utilities and libraries and usually a large amount of appli-
cation software to fulfill the distribution’s intended use. A
Linux-based system is a modular Unix-like operating sys-
tem. Such a system uses a monolithic kernel, the Linux
kernel, which handles process control, networking, and
peripheral and file system access. Device drivers are either
integrated directly with the kernel or added as modules
loaded while the system is running. Some components of an
installed Linux system are a bootloader, for example GNU
GRUB or LILO, which is executed by the computer when it
is first turned on, and loads the Linux kernel into memory;
an init program, which is the first process launched by the
Linux kernel, and is at the root of the process tree, and starts
processes such as system services and login prompts
(whether graphical or in terminal mode); Software libraries

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
149 of 228

US 10,469,614 B2

19

which contain code which can be used by running processes;
and user interface programs such as command shells or
windowing environments. A version of Linux is described,
for example, in IBM Corporation (headquartered in Armonk,
N.Y., U.S.A) publication No. SC34-2597-03 entitled:
“Device Drivers, Features, and Commands on Red Hat
Exterprise Linux 6.3”, downloaded from the Internet on
7/2014, which is incorporated in its entirety for all purposes
as if fully set forth herein.

The general schematic Linux driver architecture 450 is
shown in FIG. 3a, and the Linux kernel is further described
in Wiley Publishing, Inc. publication entitled: “Professional
Linux Kernel Architecture”, by Wofgang Mauerer published
2008, and Linux programming is described in the book
entitled: “The Linux Kernel Module Programming Guide”
ver. 2.6.4 by Peter Jay Salzman, Michael Burian, and Ori
Pomerantz, dated May 18, 2007, and in the publication
entitled: “4 Comparison of the Linux and Windows Device
Driver Architecture”, by Melekam Tsegaye and Richard
Foss, both from Rhodes University, South-Africa, down-
loaded from the Internet on 7/2014, which are all incorpo-
rated in their entirety for all purposes as if fully set forth
herein.

Similar to the WDM 430 shown in FIG. 3, the Linux
kernel involves a ‘System Call Interface’ 453, receiving
system calls 452a, 4525, and 452¢ from the respective
applications such as an application #1 431a, an application
#2 431b, and an application #3 431c, and serves as the
denomination for the entirety of all implemented and avail-
able system calls in a kernel. The Linux kernel is based on
a layered modules stack 454, which may include three levels
of modules, such as module #1 454a, module #2 4545, and
module #3 454¢, where the module #1 454a communicate
over connection 4554 with the system call interface 453, the
module #2 454b communicates with the module #1 454a
over connection 4555, the module #3 454¢ communicates
over the connection 455¢ with the module #2 4545 and over
a connection 4554 with the HAL 438.

Similar to the WDM 430 shown in FIG. 3, the Linux
kernel shown as the arrangement 450 in FIG. 3aq, is using the
concept of layered architecture of a modules stack 454,
which may comprise module #1 454a, module #2 4545, and
module #3 454¢, communicating using messaging mecha-
nism, such as a connection 455a between the system call
interface 453 and the module #1 454a, a connection 4555
between the module #1 454a and the module #2 4545, a
connection 455¢ between the module #2 4545 and the
module #3 454c¢, and a connection 455d between the module
#3 454¢ and the HAL 438.

The modules in the modules stack 454, typically referred
to as Loadable Kernel Modules (or LKM), are object files
that contain code to extend the running Linux kernel, or
so-called base kernel. LKMs are typically used to add
support for new hardware and/or filesystems, or for adding
system calls. When the functionality provided by a LKM is
no longer required, it can be unloaded in order to free
memory and other resources. Loadable kernel modules in
Linux are located in /lib/modules and have had the extension
< ko’ (“kernel object”) since version 2.6 (previous versions
used the .0 extension), and are loaded (and unloaded) by the
modprobe command. The lsmod command lists the loaded
kernel modules. In emergency cases, when the system fails
to boot (due to e.g. broken modules), specific modules can
be enabled or disabled by modifying the kernel boot param-
eters list (for example, if using GRUB, by pressing ‘e’ in the
GRUB start menu, then editing the kernel parameter line).
Linux allows disabling module loading via sysctl option

10

15

20

25

30

35

40

45

50

55

60

65

20

/proc/sys/kernel/modules_disabled. An initramfs system
may load specific modules needed for a machine at boot and
then disable module loading.

A web browser (commonly referred to as a browser) is a
software application for retrieving, presenting, and travers-
ing information resources on the World Wide Web. An
information resource is identified by a Uniform Resource
Identifier (URI/URL) and may be part of a web page, a
web-page, an image, a video, or any other piece of content.
Hyperlinks present in resources enable users easily to navi-
gate their browsers to related resources. Although browsers
are primarily intended to use the World Wide Web, they can
also be used to access information provided by web servers
in private networks or files in file systems. The primary
purpose of a web browser is to bring information resources
to the user (“retrieval” or “fetching”), allowing them to view
the information (“display”, “rendering”), and then access
other information (“navigation”, “following links”). Cur-
rently the major web browsers are known as Firefox, Inter-
net Explorer, Google Chrome, Opera, and Safari.

The process begins when the user inputs a Uniform
Resource Locator (URL), for example ‘http://en.wikipedi-
a.org/’, into the browser. The prefix of the URL, the Uniform
Resource Identifier or URI, determines how the URL will be
interpreted. The most commonly used kind of URI starts
with http: and identifies a resource to be retrieved over the
Hypertext Transfer Protocol (HTTP). Many browsers also
support a variety of other prefixes, such as https: for HTTPS,
fip: for the File Transfer Protocol, and file: for local files.
Prefixes that the web browser cannot directly handle are
often handed off to another application entirely. For
example, mailto: URIs are usually passed to the user’s
default e-mail application, and news: URIs are passed to the
user’s default newsgroup reader. In the case of http, https,
file, and others, once the resource has been retrieved the web
browser will display it. HTML and associated content (im-
age files, formatting information such as CSS, etc.) is passed
to the browser’s layout engine to be transformed from
markup to an interactive document, a process known as
“rendering”. Aside from HTML, web browsers can gener-
ally display any kind of content that can be part of a web
page. Most browsers can display images, audio, video, and
XML files, and often have plug-ins to support Flash appli-
cations and Java applets. Upon encountering a file of an
unsupported type or a file that is set up to be downloaded
rather than displayed, the browser prompts the user to save
the file to disk. Information resources may contain hyper-
links to other information resources. Each link contains the
URI of a resource to go to. When a link is clicked, the
browser navigates to the resource indicated by the link’s
target URI, and the process of bringing content to the user
begins again. The architecture of a web browser is described
in the publication entitled: “Architecture and evolution of
the modern web browser” by Alan Grosskurth and Michael
W. Godfrey of the University of Waterloo in Canada, dated
Jun. 20, 2006, which is incorporated in its entirety for all
purposes as if fully set forth herein.

A currently popular web browser is the Internet Explorer
(formerly Microsoft Internet Explorer and Windows Internet
Explorer, commonly abbreviated IE or MSIE) from Micro-
soft Corporation, headquartered in Redmond, Wash.,
U.S.A., which is a series of graphical web browsers devel-
oped by Microsoft and included as part of the Microsoft
Windows line of operating systems. The Internet Explorer 8
is described, for example, in Microsoft 2009 publication
entitled: “Step by Step Tutorials for Microsofi Internet
Explorer 8 Accessibility Options”, which is incorporated in

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
150 of 228

US 10,469,614 B2

21

its entirety for all purposes as if fully set forth herein.
Another popular web browser is the Google Chrome which
is a freeware web browser developed by Google, heagquar-
tered in Googleplex, Mountain View, Calif., U.S.A. Google
Chrome aims to be secure, fast, simple, and stable, providing
strong application performance and JavaScript processing
speed.

A mobile browser, also called a microbrowser, mini-
browser, or Wireless Internet Browser (WIB), is a web
browser designed for use on a mobile device such as a
mobile phone or PDA. Mobile browsers are optimized so as
to display Web content most effectively for small screens on
portable devices. Mobile browser software must be small
and efficient to accommodate the low memory capacity and
low-bandwidth of wireless handheld devices. Some mobile
browsers can handle more recent technologies like CSS 2.1,
JavaScript, and Ajax. Websites designed for access from
these browsers are referred to as wireless portals or collec-
tively as the Mobile Web. They may automatically create
“mobile” versions of each page, for example this one

The mobile browser typically connects via cellular net-
work, via Wireless LAN, or via other wireless networks, and
are using standard HTTP over TCP/IP, and displays web
pages written in HTML, XHTML Mobile Profile (WAP 2.0),
or WML (which evolved from HDML). WML and HDML
are stripped-down formats suitable for transmission across
limited bandwidth, and wireless data connection called
WAP. WAP 2.0 specifies XHTML Mobile Profile plus WAP
CSS, subsets of the W3C’s standard XHTML and CSS with
minor mobile extensions. Some mobile browsers are full-
featured Web browsers capable of HTML, CSS,
ECMAScript, as well as mobile technologies such as WML,
i-mode HTML, or cHTML. To accommodate small screens,
some mobile browsers use Post-WIMP interfaces. An
example of a mobile browser is Safari, which is a mobile
web browser developed by Apple Inc. (headquartered in
Apple Campus, Cupertino, Calif., U.S.A.), included with the
OS X and iOS operating systems, and described in Apple
publication entitled: “Safari Web Content Guide”, dated
March 2014, which is incorporated in its entirety for all
purposes as if fully set forth herein.

FIG. 1 shows a block diagram that illustrates a system 10
including a computer system 11 and the associated Internet
113 connection. Such configuration is typically used for
computers (hosts) connected to the Internet 113 and execut-
ing a server or a client (or a combination) software. The
system 11 may be used as a portable electronic device such
as a notebook/laptop computer, a media player (e.g., MP3
based or video player), a desktop computer, a laptop com-
puter, a cellular phone, a Personal Digital Assistant (PDA),
an image processing device (e.g., a digital camera or video
recorder), and/or any other handheld or fixed location com-
puting devices, or a combination of any of these devices.
Note that while FIG. 1 illustrates various components of a
computer system, it is not intended to represent any particu-
lar architecture or manner of interconnecting the compo-
nents; as such details are not germane. It will also be
appreciated that network computers, handheld computers,
cell phones and other data processing systems which have
fewer components or perhaps more components may also be
used. The computer system of FIG. 1 may, for example, be
an Apple Macintosh computer or Power Book, or an IBM
compatible PC. The computer system 11 includes a bus 13,
an interconnect, or other communication mechanism for
communicating information, and a processor 27, commonly
in the form of an integrated circuit, coupled to the bus 13 for
processing information and for executing the computer

10

15

20

25

30

35

40

45

50

55

60

65

22

executable instructions. Computer system 11 also includes a
main memory 122, such as a Random Access Memory
(RAM) or other dynamic storage device, coupled to bus 13
for storing information and instructions to be executed by
processor 27. Main memory 122 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by
processor 27. The computer system 11 further includes a
Read Only Memory (ROM) 256 (or other non-volatile
memory) or other static storage device coupled to the bus 13
for storing static information and instructions for the pro-
cessor 27. A storage device 25¢, such as a magnetic disk or
optical disk, a hard disk drive (HDD) for reading from and
writing to a hard disk, a magnetic disk drive for reading from
and writing to a magnetic disk, and/or an optical disk drive
(such as DVD) for reading from and writing to a removable
optical disk, is coupled to bus 13 for storing information and
instructions. The hard disk drive, magnetic disk drive, and
optical disk drive may be connected to the system bus by a
hard disk drive interface, a magnetic disk drive interface,
and an optical disk drive interface, respectively. The drives
and their associated computer-readable media provide non-
volatile storage of computer readable instructions, data
structures, program modules and other data for the general
purpose computing devices. Typically, the computer system
11 includes an Operating System (OS) stored in a non-
volatile storage for managing the computer resources and
provides the applications and programs with an access to the
computer resources and interfaces. An operating system
commonly processes system data and user input, and
responds by allocating and managing tasks and internal
system resources, such as controlling and allocating
memory, prioritizing system requests, controlling input and
output devices, facilitating networking and managing files.
Non-limiting examples of operating systems are Microsoft
Windows, Mac OS X, and Linux.

The term “processor” is used herein to include, but not
limited to, any integrated circuit or other electronic device
(or collection of devices) capable of performing an operation
on at least one instruction, including, without limitation,
Reduced Instruction Set Core (RISC) processors, CISC
microprocessors, Microcontroller Units (MCUs), CISC-
based Central Processing Units (CPUs), and Digital Signal
Processors (DSPs). The hardware of such devices may be
integrated onto a single substrate (e.g., silicon “die”), or
distributed among two or more substrates. Furthermore,
various functional aspects of the processor may be imple-
mented solely as software or firmware associated with the
processor.

The computer system 11 may be coupled via a bus 13 to
a display 17, such as a Cathode Ray Tube (CRT), a Liquid
Crystal Display (LCD), a flat screen monitor, a touch screen
monitor or similar means for displaying text and graphical
data to a user. The display may be connected via a video
adapter for supporting the display. The display allows a user
to view, enter, and/or edit information that is relevant to the
operation of the system. An input device 18, including
alphanumeric and other keys, is coupled to the bus 13 for
communicating information and command selections to the
processor 27. Another type of user input device is a cursor
control 19, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to the processor 27 and for controlling
cursor movement on the display 17. This input device
typically has two degrees of freedom in two axes, a first axis
(e.g., X) and a second axis (e.g., y), that allows the device to
specify positions in a plane.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
151 of 228

US 10,469,614 B2

23

The computer system 11 may be used for implementing
the methods and techniques described herein. According to
one embodiment, those methods and techniques are per-
formed by the computer system 11 in response to the
processor 27 executing one or more sequences of one or
more instructions contained in a main memory 25a. Such
instructions may be read into the main memory 25a from
another computer-readable medium, such as a storage
device 123. Execution of the sequences of instructions
contained in the main memory 25a causes the processor 27
to perform the process steps described herein. In alternative
embodiments, hard-wired circuitry may be used in place of
or in combination with software instructions to implement
the arrangement. Thus, embodiments of the invention are

10

24

limiting example, the communication interface 29 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN. For example,
Ethernet based connection based on IEEE802.3 standard
may be used, such as 10/100BaseT, 1000BaseT (gigabit
Ethernet), 10 gigabit Ethernet (10 GE or 10 GbE or 10 GigE
per IEEE Std. 802.3ae-2002as standard), 40 Gigabit Ether-
net (40 GbE), or 100 Gigabit Ethernet (100 GbE as per
Ethernet standard IEEE P802.3ba). These technologies are
described in Cisco Systems, Inc. Publication number
1-587005-001-3 (6/99), “Internetworking Technologies
Handbook”, Chapter 7: “Ethernet Technologies”, pages 7-1
to 7-38, which is incorporated in its entirety for all purposes
as if fully set forth herein. In such a case, the communication

not limited to any specific combination of hardware circuitry 15 interface 29 typically includes a LAN transceiver or a
and software. modem, such as Standard Microsystems Corporation
The term “computer-readable medium” (or “machine- (SMSC) LAN9IC111 10/100 Ethernet transceiver,

readable medium”) is used herein to include, but not limited
to, any medium or any memory, that participates in provid-
ing instructions to a processor, (such as the processor 27) for
execution, or any mechanism for storing or transmitting
information in a form readable by a machine (e.g., a com-
puter). Such a medium may store computer-executable
instructions to be executed by a processing element and/or
control logic, and data which is manipulated by a processing
element and/or control logic, and may take many forms,
including but not limited to, non-volatile medium, volatile
medium, and transmission medium. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise the bus 13. Transmission media
can also take the form of acoustic or light waves, such as
those generated during radio-wave and infrared data com-
munications, or other form of propagating signals (e.g.,
carrier waves, infrared signals, digital signals, etc.). Com-
mon forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch-cards, paper-tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 27 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to the
computer system 11 can receive the data on the telephone
line and use an infrared transmitter to convert the data to an
infrared signal. An infrared detector can receive the data
carried in the infrared signal and appropriate circuitry can
place the data on the bus 13. The bus 13 carries the data to
the main memory 25a, from which the processor 27 retrieves
and executes the instructions. The instructions received by
the main memory 25a¢ may optionally be stored on the
storage device 25¢ either before or after execution by the
processor 27.

The computer system 11 commonly includes a commu-
nication interface 29 coupled to the bus 13. The communi-
cation interface 29 provides a two-way data communication
coupling to a network link 28 that is connected to a local
network 14. For example, the communication interface 29
may be an Integrated Services Digital Network (ISDN) card
or a modem to provide a data communication connection to
a corresponding type of telephone line. As another non-

20

25

30

35

40

45

50

55

60

65

described in a Standard Microsystems Corporation (SMSC)
data-sheet “LAN91C111 10/100 Non-PCI Ethernet Single
Chip MAC+PHY” Data-Sheet, Rev. 15 (Feb. 20, 2004),
which is incorporated in its entirety for all purposes as if
fully set forth herein.

The Internet 113 is a global system of interconnected
computer networks that use the standardized Internet Pro-
tocol Suite (TCP/IP), including Transmission Control Pro-
tocol (TCP) and the Internet Protocol (IP), to serve billions
of users worldwide. It is a network of networks that consists
of millions of private, public, academic, business, and
government networks, of local to global scope, that are
linked by a broad array of electronic and optical networking
technologies. The Internet carries a vast range of informa-
tion resources and services, such as the interlinked hypertext
documents on the World Wide Web (WWW) and the infra-
structure to support electronic mail. The Internet backbone
refers to the principal data routes between large, strategically
interconnected networks and core routers in the Internet.
These data routes are hosted by commercial, government,
academic and other high-capacity network centers, the Inter-
net exchange points and network access points that inter-
change Internet traffic between the countries, continents and
across the oceans of the world. Traffic interchange between
Internet service providers (often Tier 1 networks) partici-
pating in the Internet backbone exchange traffic by privately
negotiated interconnection agreements, primarily governed
by the principle of settlement-free peering.

An Internet Service Provider (ISP) 12 is an organization
that provides services for accessing, using, or participating
in the Internet 113. Internet Service Providers may be
organized in various forms, such as commercial, commu-
nity-owned, non-profit, or otherwise privately owned. Inter-
net services typically provided by ISPs include Internet
access, Internet transit, domain name registration, web host-
ing, and colocation. Various ISP Structures are described in
Chapter 2: “Structural Overview of ISP Networks” of the
book entitled: “Guide to Reliable Internet Services and
Applications”, by Robert D. Doverspike, K. K. Ramakrish-
nan, and Chris Chase, published 2010 (ISBN: 978-1-84882-
827-8), which is incorporated in its entirety for all purposes
as if fully set forth herein.

A mailbox provider is an organization that provides
services for hosting electronic mail domains with access to
storage for mailboxes. It provides email servers to send,
receive, accept, and store email for end users or other
organizations. Internet hosting services provide email, web-
hosting, or online storage services. Other services include
virtual server, cloud services, or physical server operation. A
virtual ISP (VISP) is an operation that purchases services

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
152 of 228

US 10,469,614 B2

25

from another ISP, sometimes called a wholesale ISP in this
context, which allow the VISP’s customers to access the
Internet using services and infrastructure owned and oper-
ated by the wholesale ISP. It is akin to mobile virtual
network operators and competitive local exchange carriers
for voice communications. A Wireless Internet Service Pro-
vider (WISP) is an Internet service provider with a network
based on wireless networking. Technology may include
commonplace Wi-Fi wireless mesh networking, or propri-
etary equipment designed to operate over open 900 MHz,
2.4 GHz, 4.9, 5.2, 5.4, 5.7, and 5.8 GHz bands or licensed
frequencies in the UHF band (including the MMDS fre-
quency band) and LMDS.

ISPs may engage in peering, where multiple ISPs inter-
connect at peering points or Internet exchange points (IXs),
allowing routing of data between each network, without
charging one another for the data transmitted—data that
would otherwise have passed through a third upstream ISP,
incurring charges from the upstream ISP. ISPs requiring no
upstream and having only customers (end customers and/or
peer ISPs), are referred to as Tier 1 ISPs.

A multitasking is a method where multiple tasks (also
known as processes or programs) are performed during the
same period of time—they are executed concurrently (in
overlapping time periods, new tasks starting before others
have ended) instead of sequentially (one completing before
the next starts). The tasks share common processing
resources, such as a CPU and main memory. Multitasking
does not necessarily mean that multiple tasks are executing
at exactly the same instant. In other words, multitasking
does not imply parallelism, but it does mean that more than
one task can be part-way through execution at the same time,
and more than one task is advancing over a given period of
time.

In the case of a computer with a single CPU, only one task
is said to be running at any point in time, meaning that the
CPU is actively executing instructions for that task. Multi-
tasking solves the problem by scheduling which task may be
the one running at any given time, and when another waiting
task gets a turn. The act of reassigning a CPU from one task
to another one is called a context switch. When context
switches occur frequently enough, the illusion of parallelism
is achieved. Even on computers with more than one CPU
(called multiprocessor machines) or more than one core in a
given CPU (called multicore machines), where more than
one task can be executed at a given instant (one per CPU or
core), multitasking allows many more tasks to be run than
there are CPUs.

Operating systems may adopt one of many different
scheduling strategies. In multiprogramming systems, the
running task keeps running until it performs an operation
that requires waiting for an external event (e.g. reading from
a tape) or until the computer’s scheduler forcibly swaps the
running task out of the CPU. Multiprogramming systems are
designed to maximize CPU usage. In time-sharing systems,
the running task is required to relinquish the CPU, either
voluntarily or by an external event such as a hardware
interrupt. Time sharing systems are designed to allow sev-
eral programs to execute apparently simultaneously. In real-
time systems, some waiting tasks are guaranteed to be given
the CPU when an external event occurs. Real time systems
are designed to control mechanical devices such as industrial
robots, which require timely processing.

Encryption based mechanisms are commonly end-to-end
processes involving only the sender and the receiver, where
the sender encrypts the plain text message by transforming
it using an algorithm, making it unreadable to anyone,

10

15

20

25

30

35

40

45

50

55

60

65

26

except the receiver which possesses special knowledge. The
data is then sent to the receiver over a network such as the
Internet, and when received the special knowledge enables
the receiver to reverse the process (decrypt) to make the
information readable as in the original message. The encryp-
tion process commonly involves computing resources such
as processing power, storage space and requires time for
executing the encryption/decryption algorithm, which may
delay the delivery of the message.

Transport Layer Security (TLS) and its predecessor
Secure Sockets Layer (SSL) are non-limiting examples of
end-to-end cryptographic protocols, providing secured com-
munication above the OSI Transport Layer, using keyed
message authentication code and symmetric cryptography.
In client/server applications, the TLS client and server
negotiate a stateful connection by using a handshake pro-
cedure, during which various parameters are agreed upon,
allowing a communication in a way designed to prevent
eavesdropping and tampering. The TLS 1.2 is defined in
RFC 5246, and several versions of the protocol are in
widespread use in applications such as web browsing, elec-
tronic mail, Internet faxing, instant messaging and Voice-
over-IP (VoIP). In application design, TLS is usually imple-
mented on top of any of the Transport Layer protocols,
encapsulating the application-specific protocols such as
HTTP, FTP, SMTP, NNTP, and XMPP. Historically, it has
been used primarily with reliable transport protocols such as
the Transmission Control Protocol (TCP). However, it has
also been implemented with datagram-oriented transport
protocols, such as the User Datagram Protocol (UDP) and
the Datagram Congestion Control Protocol (DCCP), a usage
which has been standardized independently using the term
Datagram Transport Layer Security (DTLS). A prominent
use of TLS is for securing World Wide Web traffic carried by
HTTP to form HTTPS. Notable applications are electronic
commerce and asset management. Increasingly, the Simple
Mail Transfer Protocol (SMTP) is also protected by TLS
(RFC 3207). These applications use public key certificates to
verify the identity of endpoints. Another Layer 4 (Transport
Layer) and upper layers encryption-based communication
protocols include SSH (Secure Shell) and SSL (Secure
Socket Layer).

Layer 3 (Network Layer) and lower layer encryption
based protocols include IPsec, L2TP (Layer 2 Tunneling
Protocol) over IPsec, and Ethernet over IPsec. The IPsec is
a protocol suite for securing IP communication by encrypt-
ing and authenticating each IP packet of a communication
session. The IPsec standard is currently based on RFC 4301
and RFC 4309, and was originally described in RFCs
1825-1829, which are now obsolete, and uses the Security
Parameter Index (SPL, as per RFC 2401) as an identification
tag added to the header while using IPsec for tunneling the
IP traffic. An IPsec overview is provided in Cisco Systems,
Inc. document entitled: “An Introduction to IP Security
(IPSec) Encryption”, which is incorporated in its entirety for
all purposes as if fully set forth herein.

Two common approaches to cryptography are found in
U.S. Pat. No. 3,962,539 to Ehrsam et al., entitled “Product
Block Cipher System for Data Security”, and in U.S. Pat.
No. 4,405,829 to Rivest et al., entitled “Cryptographic
Communications System and Method”, which are both
incorporated in their entirety for all purposes as if fully set
forth herein. The Ehrsam patent discloses what is commonly
known as the Data Encryption Standard (DES), while the
Rivest patent discloses what is commonly known as the
RSA algorithm (which stands for Rivest, Shamir and Adle-
man who first publicly described it), which is widely used in

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
153 of 228

US 10,469,614 B2

27

electronic commerce protocols. The RSA involves using a
public key and a private key. DES is based upon secret-key
cryptography, also referred to as symmetric cryptography,
and relies upon a 56-bit key for encryption. In this form of
cryptography, the sender and receiver of cipher text both
possess identical secret keys, which are, in an ideal world,
completely unique and unknown to the world outside of the
sender and receiver. By encoding plain text into cipher text
using the secret key, the sender may send the cipher text to

28

sage content, messages are encrypted between routers. The
advantage of onion routing (and mix cascades in general) is
that it is not necessary to trust each cooperating router; if one
or more routers are compromised, anonymous communica-
tion can still be achieved. This is because each router in an
OR network accepts messages, re-encrypts them, and trans-
mits to another onion router. The idea of onion routing (OR)
is to protect the privacy of the sender and the recipient of a
message, while also providing protection for message con-

the receiver using any available public or otherwise insecure 10 tent as it t twork. Oni & lish
communication system. The receiver, having received the En as 1 (rigverses ine vors '1 anCLou 1ng accomp lsd es.
cipher text, decrypts it using the secret key to arrive at the this according 1o the principle O Mhaum X cascades:
plain text. messages traYel from source to .destlnatlon via a sequence of
A proxy server is a server (a computer system or an proxies (“onion routers”), which re-route messages in an
application) that acts as an intermediary for requests from 15 unpredl.ctable .path.
clients seeking resources from other servers. A client con- Routing onions are data structures used to create paths
nects to the proxy server, requesting some service, such as through which many messages can be transmitted. To create
a file, connection, web page, or other resource, available an onion, the router at the head of a transmission selects a
from a different server and the proxy server evaluates the number of onion routers at random and generates a message
request as a way to simplify and control its complexity. 20 for each one, providing it with symmetric keys for decrypt-
Proxies may be used to add structure and encapsulation to ing messages, and instructing it which router will be next in
distributed systems. Today, most proxies are web proxies, the path. Each of these messages, and the messages intended
facilitating access to content on the World Wide Web and for subsequent routers, is encrypted with the corresponding
providing anonymity. A proxy server may reside on the router’s public key. This provides a layered structure, in
user’s local computer, or at various points between the user’s 25 which it is necessary to decrypt all outer layers of the onion
computer and destination servers on the Internet. A proxy in order to reach an inner layer. Onion routing is described
server that passes requests and responses unmodified is iy U.S. Pat. No. 6,266,704 to Reed et al., entitled: “Onion
usually called a gateway or sometimes a tunneling proxy. A Routing Network for Securely Moving data through Com-
forward proxy 1s an Internet-facmg proxy used to retrieve munication Networks”, which is incorporated in its entirety
from a wide range of sources (in most cases anywhere on.the 30 for all purposes as if fully set forth herein. Other prior art
Internet). Forward proxies are proxies in which the client blications relating to onion routing are the publications
server names the target server to connect to, and are able to B}l, babilistic A lg . Onion R e . . P Black-b
retrieve from a wide range of sources (in most cases any- robabilistic Analysis of . rmon oum?g " d s ac. “oox
where on the Internet). An open proxy is a forwarding proxy Mod?l [Extended Abstract]” presented in WPES 97. Pro-
server that is accessible by any Internet user, while browsing 35 ceed.lngs O,f the“2007 ACM Wor.kshop on PHV?CY in Elec-
the Web or using other Internet services. There are varying tronic SQCIety’ 4 Moq’el of 0’”?” Roum?g W’?h Provable
degrees of anonymity, however, as well as a number of Anonymity” presenteq in Proceedings of Financial Cryptog-
methods of ‘tricking’ the client into revealing itself regard- raphy and Data Security *07, and “4 Model of Onion Routing
less of the proxy being used. A reverse proxy is usually an ~ With Provable Anonymity”, presented in the Financial Cryp-
Internet-facing proxy used as a front-end to control and 40 tography and Data Security, 11th International Conference,
protect access to a server on a private network. A reverse all by Feigenbaum J., Johnson J. and Syverson P., publica-
proxy commonly also performs tasks such as load-balanc- tions “Improving Efficiency and Simplicity of Tor circuit
ing, authentication, decryption or caching. establishment and hidden services”, Proceedings of the 2007
Randomness is commonly implemented by using random Privacy Enhancing Technologies Symposium, Springer-Ver-
numbers, defined as a sequence of numbers or symbols that 45 lag, LNCS 4776, publication “Untraceable electronic mail,
lack any pattern and thus appear random, are often generated return addresses, and digital pseudonyms” by Chaum D., in
by a random number generator. Randomness for security is Communications of the ACM 24(2), February 1981, and
also described in IETF RFC 1750 “Randomness Recom- “Valet Services: Improving Hidden Servers with a Personal
mendations for Security” (12/1994), which is incorporated Touch”, Proceedings of the 2006 Privacy Enhancing Tech-
in its entirety for all purposes as if fully set forth herein. A 50 nologies Workshop, Springer-Verlag, LNCS 4285, both by
random number generator (having either analog or digital Overlier L., Syverson P., publications “Making Anonymous
output) can be hardware based, using a physical process Communication”, Generation 2 Onion Routing briefing
such as thermal noise, shot noise, nuclear decaying radia- slides, Center for High Assurance Computer Systems, naval
tion, photoelectric effect or other quantum phenomena. Research Laboratory, Presented at the National Science
Alternatively, or in addition, the generation of the random 55 Foundation, Jun. 8, 2004 by Syverson P., publications
numbers can be software based, using a processor executing “Onion Routing Access Configurations, DISCEX 2000: Pro-
an algorithm for generating pseudo-random numbers which ceedings of the DARPA Information Survivability Confer-
approximates the properties of random numbers. ence and Exposition”, Volume I Hilton Head, S.C., IEEE CS
Onion routing (OR) is a technique for anonymous com- Press, January 2000, “Omnion Routing for Anonymous and
munication over the Internet or any other computer network. 60 Private Internet Connections” Communications of the
Messages are repeatedly encrypted and then sent through ACM, vol. 42, num. 2, February 1999, and “Anonymous
several network nodes called onion routers. Each onion Connections and Onion Routing” IEEE Journal on Selected
router removes a layer of encryption to uncover routing Areas in Communication Special Issue on Copyright and
instructions, and sends the message to the next router where Privacy Protection, 1998, all by Syverson P., Reed M. G.,
this is repeated. This prevents these intermediary nodes from 65 Goldschlag M., publication “Towards arn Analysis of Onion

knowing the origin, destination, and contents of the mes-
sage. To prevent an adversary from eavesdropping on mes-

Routing Security”, and “Workshop on Design Issues in
Anonymity and Unobservability”, Berkeley, Calif., July

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
154 of 228

US 10,469,614 B2

29
2000 by Syverson P, Tsudik G., Reed M. G., and Landwehr
C, which are incorporated in their entirety for all purposes
as if fully set forth herein.

“Tor’ is an anonymizing network based on the principles
of ‘onion routing’, and involves a system which selects a
randomly chosen route for each connection, via the routers
present in the Tor network. The last server appears herein as
an ‘exit node’ and sends the data to the final recipient after
leaving the Tor cloud. At this point, it is no longer possible
for an observer constantly watching the ‘exit node’ to
determine who the sender of the message was. This concept
and its components are known from the Tor project in
http://www.torproject.org. The Tor network concept is
described in U.S. Patent Application Publication 2010/
0002882 to Rieger et al., in the publication “Tor: The
Second-Generation Onion Router”, in Proceedings of the
13th USENIX Security Symposium August 2004, by
Dingledine R., Mathewson N., Syverson P., in the publica-
tion “Tor Protocol specification” by Dingledine R. and
Mathewson N., in the publication “Zor Directory Protocol,
Version 37, and the publication “TC: 4 Tor Control Proto-
col” downloaded from the Tor web-site, which are incorpo-
rated in their entirety for all purposes as if fully set forth
herein.

Computer networks may use a tunneling protocol where
one network protocol (the delivery protocol) encapsulates a
different payload protocol. Tunneling enables the encapsu-
lation of a packet from one type of protocol within the
datagram of a different protocol. For example, VPN uses
PPTP to encapsulate IP packets over a public network, such
as the Internet. A VPN solution based on Point-to-Point
Tunneling Protocol (PPTP), Layer Two Tunneling Protocol
(L2TP), or Secure Socket Tunneling Protocol (SSTP) can be
configured. By using tunneling a payload may be carried
over an incompatible delivery-network, or provide a secure
path through an untrusted network. Typically, the delivery
protocol operates at an equal or higher OSI layer than does
the payload protocol. In one example of a network layer over
a network layer, Generic Routing Encapsulation (GRE), a
protocol running over IP (IP Protocol Number 47), often
serves to carry 1P packets, with RFC 1918 private addresses,
over the Internet using delivery packets with public IP
addresses. In this case, the delivery and payload protocols
are compatible, but the payload addresses are incompatible
with those of the delivery network. In contrast, an IP payload
might believe it sees a data link layer delivery when it is
carried inside the Layer 2 Tunneling Protocol (L2TP), which
appears to the payload mechanism as a protocol of the data
link layer. L2TP, however, actually runs over the transport
layer using User Datagram Protocol (UDP) over IP. The IP
in the delivery protocol could run over any data-link proto-
col from IEEE 802.2 over IEEE 802.3 (i.e., standards-based
Ethernet) to the Point-to-Point Protocol (PPP) over a dialup
modem link.

Tunneling protocols may use data encryption to transport
insecure payload protocols over a public network (such as
the Internet), thereby providing VPN functionality. IPsec has
an end-to-end Transport Mode, but can also operate in a
tunneling mode through a trusted security gateway. HT'TP
tunneling is a technique by which communications per-
formed using various network protocols are encapsulated
using the HTTP protocol, the network protocols in question
usually belonging to the TCP/IP family of protocols. The
HTTP protocol therefore acts as a wrapper for a channel that
the network protocol being tunneled uses to communicate.
The HTTP stream with its covert channel is termed an HT TP
tunnel. HTTP tunnel software consists of client-server

10

15

20

25

30

35

40

45

50

55

60

65

30

HTTP tunneling applications that integrate with existing
application software, permitting them to be used in condi-
tions of restricted network connectivity including firewalled
networks, networks behind proxy servers, and network
address translation.

Virtual Private Networks (VPNs) are point-to-point con-
nections across a private or public network, such as the
Internet. A VPN client typically uses special TCP/IP-based
protocols, called tunneling protocols, to make a virtual call
to a virtual port on a VPN server. In a typical VPN
deployment, a client initiates a virtual point-to-point con-
nection to a remote access server over the Internet, then the
remote access server answers the call, authenticates the
caller, and transfers data between the VPN client and the
organization’s private network. To emulate a point-to-point
link, data is encapsulated, or wrapped, with a header. The
header provides routing information that enables the data to
traverse the shared or public network to reach its endpoint.
To emulate a private link, the data being sent is encrypted for
confidentiality. Packets that are intercepted on the shared or
public network are indecipherable without the encryption
keys. The link in which the private data is encapsulated and
encrypted is known as a VPN connection. Commonly there
are two types of VPN connections, referred to as Remote
Access VPN and Site-to-Site VPN. Popular VPN connec-
tions use PPTP, L2TP/IPsec, or SSTP protocols. The RFC
4026 provides ‘Provider Provisioned Virtual Private Net-
work (VPN) Terminology’, and RFC 2547 provides a VPN
method based on MPLS (Multiprotocol Label Switching)
and BGP (Border Gateway Protocol).

Remote access VPN connections enable users working at
home or on the road to access a server on a private network
using the infrastructure provided by a public network, such
as the Internet. From the user’s perspective, the VPN is a
point-to-point connection between the computer (the VPN
client) and an organization’s server. The exact infrastructure
of the shared or public network is irrelevant because it
appears logically as if the data is sent over a dedicated
private link.

Site-to-site VPN connections (also known as router-to-
router VPN connections) enable organizations to have
routed connections between separate offices or with other
organizations over a public network while helping to main-
tain secure communications. A routed VPN connection
across the Internet logically operates as a dedicated wide
area network (WAN) link. When networks are connected
over the Internet, a router forwards packets to another router
across a VPN connection. To the routers, the VPN connec-
tion operates as a data-link layer link. A site-to-site VPN
connection connects two portions of a private network. The
VPN server provides a routed connection to the network to
which the VPN server is attached. The calling router (the
VPN client) authenticates itself to the answering router (the
VPN server), and, for mutual authentication, the answering
router authenticates itself to the calling router. In the site-to
site. VPN connection, the packets sent from either router
across the VPN connection typically do not originate at the
routers.

There is a growing widespread use of the Internet for
carrying multimedia, such as a video and audio. Various
audio services include Internet-radio stations and VoIP
(Voice-over-IP). Video services over the Internet include
video conferencing and IPTV (IP Television). In most cases,
the multimedia service is a real-time (or near real-time)
application, and thus sensitive to delays over the Internet. In
particular, two-way services such a VoIP or other telephony
services and video-conferencing are delay sensitive. In some

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
155 of 228

US 10,469,614 B2

31

cases, the delays induced by the encryption process, as well
as the hardware/software costs associated with the encryp-
tion, render encryption as non-practical. Therefore, it is not
easy to secure enough capacity of the Internet accessible by
users to endure real-time communication applications such
as Internet games, chatting, VoIP, and MolIP (Multimedia-
over-IP), so there may be a data loss, delay or severe jitter
in the course of communication due to the property of an
Internet protocol, thereby causing inappropriate real-time
video communication. The following chapters of the publi-
cation number 1-587005-001-3 by Cisco Systems, Inc.
(7/99), entitled: “Internetworking Technologies Handbook”,
relate to multimedia carried over the Internet, and are all
incorporated in their entirety for all purposes as if fully set
forth herein: Chapter 18: “Multiservice Access Technolo-
gies” (pages 18-1 to 18-10), and Chapter 19: “Voice/Data
Integration Technologies” (pages 19-1 to 19-30).

VoIP systems in widespread use today fall into three
groups: systems using the ITU-T H.323 protocol, systems
using the SIP protocol, and systems that use proprietary
protocols. H.323 is a standard for teleconferencing that was
developed by the International Telecommunications Union
(ITU). It supports full multimedia, audio, video and data
transmission between groups of two or more participants,
and it is designed to support large networks. H.323 is
network-independent: it can be used over networks using
transport protocols other than TCP/IP. H.323 is still a very
important protocol, but it has fallen out of use for consumer
VoIP products due to the fact that it is difficult to make it
work through firewalls that are designed to protect comput-
ers running many different applications. It is a system best
suited to large organizations that possess the technical skills
to overcome these problems.

Session Initiation Protocol (SIP) is an Internet Engineer-
ing Task Force (IETF) standard signaling protocol for tele-
conferencing, telephony, presence and event notification and
instant messaging. It provides a mechanism for setting up
and managing connections, but not for transporting the
audio or video data. It is probably now the most widely used
protocol for managing Internet telephony. Similar to the
IETF protocols, SIP is defined in a number of RFCs,
principally RFC 3261. A SIP-based VoIP implementation
may send the encoded voice data over the network in a
number of ways. Most implementations use a Real-time
Transport Protocol (RTP), which is defined in RFC 3550.
Both SIP and RTP are implemented on UDP, which, as a
connectionless protocol, can cause difficulties with certain
types of routers and firewalls. Usable SIP phones therefore
also need to use Simple Traversal of UDP over NAT
(STUN), a protocol defined in RFC 3489 that allows a client
behind a NAT router to find out its external IP address and
the type of NAT device.

FIG. 2 shows arrangement 20 of devices communicating
over the Internet. Various devices such as client #1 24a,
client #2 245, client #3 24c¢, client #4 244, and client #5 24e,
may communicate over the Internet 113 for obtaining data
from a data server #1 22a and a data server #2 22b. In one
example, the servers are HT'TP servers, sometimes known as
web servers. A method describing a more efficient commu-
nication over the Internet is described in U.S. Pat. No.
8,560,604 to Shribman et al., entitled: “System and Method
for Providing Faster and More Efficient Data Communica-
tion” (hereinafter the “‘604 Patent”””), which is incorporated
in its entirety for all purposes as if fully set forth herein. The
method described in the *604 Patent uses an acceleration
server 32 for managing the traffic in the network, as shown
in FIG. 2. A splitting of a message or a content into slices,

10

15

20

25

30

35

40

45

50

55

60

65

32

and transferring each of the slices over a distinct data path
is described in U.S. Patent Application No. 2012/0166582 to
Binder entitled: “System and Method for Routing-Based
Internet Security”, which is incorporated in its entirety for
all purposes as if fully set forth herein.

A Cyclic Redundancy Check (CRC) is an error-detecting
code commonly used in digital networks and storage devices
to detect accidental changes to raw data. Blocks of data
entering these systems get a short check value attached,
based on the remainder of a polynomial division of their
contents; on retrieval the calculation is repeated, and cor-
rective action can be taken against presumed data corruption
if the check values do not match. Ethernet commonly uses
32-bit CRC function. Specification of a CRC code requires
definition of a so-called generator polynomial. The polyno-
mial becomes a divisor in a polynomial long division, which
takes the message as the dividend, and in which the quotient
is discarded and the remainder becomes the result. The
important caveat that the polynomial coefficients are calcu-
lated according to the arithmetic of a finite field, so the
addition operation can always be performed bitwise-parallel
(there is no carry between digits). The length of the remain-
der is always less than the length of the generator polyno-
mial, which therefore determines how long the result can be.
In practice, all commonly used CRCs employ the finite field
GF(2). This is the field of two elements, usually called O and
1, comfortably matching computer architecture.

A CRC is referred to as an n-bit CRC when its check value
is n bits. For a given n, multiple CRCs are possible, each
with a different polynomial. Such a polynomial has highest
degree n, which means it has n+1 terms. In other words, the
polynomial has a length of n+1; its encoding requires n+1
bits. Note that most integer encodings either drop the Most
Significant Bit (MSB) or Least Significant Bit (LSB), since
they are always 1. The CRC and associated polynomial
typically have a name of the form CRC-n-XXX. The sim-
plest error-detection system, the parity bit, is in fact a trivial
1-bit CRC: it uses the generator polynomial x+1 (two terms),
and has the name CRC-1. Computation of a cyclic redun-
dancy check is derived from the mathematics of polynomial
division, modulo two. In practice, it resembles long division
of the binary message string, with a fixed number of zeroes
appended, by the “generator polynomial” string except that
exclusive OR operations replace subtractions. Division of
this type is efficiently realised in hardware by a modified
shift register and in software by a series of equivalent
algorithms, starting with simple code close to the mathemat-
ics and becoming faster through byte-wise parallelism and
space-time tradeoffs.

Various CRC standards extend the polynomial division
algorithm by specifying an initial shift register value, a final
exclusive OR step and, most critically, a bit ordering (endi-
anness). As a result, the code seen in practice deviates
confusingly from “pure” division, and the register may shift
left or right. The most important attribute of the polynomial
is its length (largest degree—exponent—+1 of any one term in
the polynomial), because of its direct influence on the length
of the computed check value. The most commonly used
polynomial lengths are 9 bits (CRC-8), 17 bits (CRC-16), 33
bits (CRC-32), and 65 bits (CRC-64). A calculation of
CRC-32 is described in the publication entitled: “32-Bit
Cyclic Redundancy Codes for Internet Applications” by
Philip Koopman of Carnegie Mellon University, presented
at The International Conference on Dependable Systems and
Networks (DSN) 2002.

A CRC is an example of a hash function, which refers to
any function that can be used to map data of arbitrary size

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
156 of 228

US 10,469,614 B2

33

to data of fixed size, with slight differences in input data
producing very big differences in an output data. Values
returned by the hash function are called hash values, hash
codes, hash sums, or simply hashes. Hash values are com-
monly used to differentiate between data. For example, in
implementing a set in software, one has to avoid including
an element more than once. Recent developments in internet
payment networks also uses a form of ‘hashing’ for produc-
ing checksums, bringing additional attention to the term.

34

modated in some way. In a well-dimensioned hash table, the
average cost (number of instructions) for each lookup is
independent of the number of elements stored in the table.
Many hash table designs also allow arbitrary insertions and
deletions of key-value pairs, at a constant average cost per
operation. In many situations, hash tables turn out to be more
efficient than search trees or any other table lookup structure,
and thus are widely used in many kinds of computer
software, particularly for associative arrays, database index-

Hash functions are primarily used to generate fixed-length 10 ing, caches, and sets.
output data that act as a shortened reference to the original Filter driver. A filter driver is a Microsoft Windows
data. This is useful when the original data is too cumbersome compatible driver that extends or modifies the function of
to use in its entirety. Hash functions commonly include peripheral devices or supports a specialized device in a
checksums, check digits, fingerprints, randomization func- personal computer. It is a driver or program or module that
tions, error-correcting codes, and ciphers. 15 is inserted into the existing driver stack to perform some
One practical use is a data structure called a hash table specific function, while not affecting the normal working of
where the data is stored associatively. Searching linearly for the existing driver stack in any major way. Any number of
a person’s name in a list becomes cumbersome as the length filter drivers can be added to Windows, where upper level
of'the list increases, but the hashed value can be used to store filter drivers sit above the primary driver for the device (the
a reference to the original data and retrieve constant time 20 function driver), while lower level filter drivers sit below the
(barring collisions). Another use is in cryptography, the function driver and above a bus driver. Filter drivers may
science of encoding and safeguarding data. It is easy to work on a certain brand of device such as a mouse or
generate hash values from input data and easy to verify that keyboard, or they may perform some operation on a class of
the data matches the hash, but for certain hash functions hard devices, such as any mouse or any keyboard. A filter driver
to ‘fake’ a hash value to hide malicious data. Hash functions 25 may be developed using the guide entitled: “Filter Driver
are also frequently used to accelerate table lookup or data Development Guide” Version 1.0a by Microsoft Corpora-
comparison tasks such as finding items in a database, tion, dated 2004, which is incorporated in its entirety for all
detecting duplicated or similar records in a large file and purposes as if fully set forth herein.
finding similar stretches in DNA sequences. A hash function Hook. A hook (also known as a hook procedure or hook
should be deterministic: when it is invoked twice on iden- 30 function) is a mechanism by which an application can
tical data (e.g. two strings containing exactly the same intercept events, such as messages, mouse actions, and
characters), the function should produce the same value. keystrokes, and generally refers to a function provided by a
This is crucial to the correctness of virtually all algorithms software application that receives certain data before the
based on hashing. In the case of a hash table, the lookup normal or intended recipient of the data. The hook function
operation should look at the slot where the insertion algo- 35 can thus examine or modify certain data before passing on
rithm actually stored the data that is being sought for, so it the data. Therefore, a hook function allows a software
needs the same hash value. application to examine data before the data is passed to the
Hash functions used to accelerate data searches typically intended recipient. A function that intercepts a particular
produce smaller hash values, such as a 32 bit integer. On the type of event is known as a hook procedure. The hook
other hand, cryptographic hash functions produce much 40 procedure can act on each event it receives, and then modify
larger hash value, in order to ensure the computational or discard the event. The term ‘hooking’ is used herein to
complexity of brute-force inversion. For example SHA-1, include, but not limited to, a range of techniques used to alter
one of the most widely used cryptographic hash functions, or augment the behavior of an operating system, of appli-
produces a 160-bit value. In both cases, the hash function cations, or of other software components by intercepting
breaks the input data into chunks of specific size. Hash 45 function calls, messages, or events passed between software
functions used for data searches use an arithmetic expression components. A code that handles such intercepted function
which iteratively processes those chunks (such as the char- calls, events or messages is called a “hook”. Hooking is used
acters in a string) to produce the hash value. In crypto- for many purposes, including debugging and extending
graphic hash functions, these chunks are processed by a functionality. Examples might include intercepting key-
one-way compression function, with the last chunk being 50 board or mouse event messages before they reach an appli-
padded if necessary. In this case, their size, which is called cation, or intercepting operating system calls in order to
block size, is much bigger than the size of the hash value. monitor behavior or modify the function of an application or
For example, in SHA-1, the hash value is 160 bits and the other component. It is also widely used in benchmarking
block size 512 bits. programs, for example frame rate measuring in 3D games,
A hash table (a.k.a. Hash map) is a data structure that 55 where the output and input is done through hooking. Hook-
associates keys with values, and is commonly used to ing is described, for example, in the presentations by High-
support a lookup: given a key (e.g., a person’s name), find Tech Bridge SA and titled: “Userland Hooking in Windows”
the corresponding value (e.g., that person’s telephone num- dated August 2011, and “Inline Hooking in Windows” dated
ber), thus allowing to use a number to locate a desired value September 2011, both by Brian Mariani, and both incorpo-
in a table. Hash tables are typically used to implement an 60 rated in their entirety for all purposes as if fully set forth
associative array, a structure that can map keys to values. A herein.
hash table uses a hash function to compute an index into an Physical modification. An hooking may be achieved by
array of buckets or slots, from which the correct value can physically modifying an executable or library before an
be found. The hash function may assign each key to a unique application is running through techniques of reverse engi-
bucket, but typically hash table designs assume that hash 65 neering. This is typically used to intercept function calls to

collisions—different keys that are assigned by the hash
function to the same bucket—will occur and must be accom-

either monitor or replace them entirely. For example, by
using a disassembler, the entry point of a function within a

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
157 of 228

US 10,469,614 B2

35

module can be found. It can then be altered to instead
dynamically load some other library module and then have
it execute desired methods within that loaded library. If
applicable, another related approach by which hooking can
be achieved is by altering an import table of an executable.
This table can be modified to load any additional library
modules as well as changing what external code is invoked
when a function is called by an application. An alternate
method for achieving the function of hooking is by inter-

36

themselves with the host application and a protocol for the
exchange of data with plug-ins. Plug-ins depend on the
services provided by the host application and do not usually
work by themselves. Conversely, the host application oper-
ates independently of the plug-ins, making it possible for
end-users to add and update plug-ins dynamically without
needing to make changes to the host application. The term
‘plug-in’ is used herein to include, but not limited to, a
software extension, which is software that serves to extend

cepting function calls through a wrapper library. When 10 the capabilities of, or data available to an existing software
creating a wrapper, you make your own version of a library application; it becomes included in the program. Therefore,
that an application loads, with all the same functionality of after integration, extensions can be seen as part of the
the original library that it will replace, so all the functions browser itself, tailored from a set of optional modules.
that are accessible are essentially the same between the IPC. An Inter-Process Communication (IPC) (also be
original and the replacement. This wrapper library can be 15 referred to as inter-thread communication and inter-applica-
designed to call any of the functionality from the original tion communication) is a set of methods for the exchange of
library, or replace it with an entirely new set of logic. data between multiple threads, in one or more processes.
Runtime modification. Operating systems and software IPC methods may use message passing, synchronization,
may provide the means to easily insert event hooks at shared memory, and Remote Procedure Calls (RPC). IPC
runtime, as long as the process inserting the hook is granted 20 provides an environment that allows process cooperation,
enough permission to do so. Microsoft Windows allows to and may be used for providing Information sharing, com-
insert hooks that can be used to process or modify system putational speedup, modularity, convenience, and privilege
events and application events for dialogs, scrollbars, and separation. In the Windows operating system environment,
menus, as well as other items. It also allows a hook to insert, the IPC provides mechanisms for facilitating communica-
remove, process, or modify keyboard and mouse events. 25 tions and data sharing between processes or applications.
Linux provides another example where hooks can be used in Common IPC methods include file sharing, where a
a similar manner to process network events within the kernel record (or any other information) stored on disk (or any
through NetFilter. When such functionality is not provided, other memory) can be accessed by name by any process; a
a special form of hooking employs intercepting library signal which is an asynchronous notification sent to a
function calls that are made by a process. Function hooking 30 process or to a specific thread within the same process in
is implemented by changing the very first few code instruc- order to notify it of an event that occurred; a socket which
tions of the target function to jump to an injected code. is a data stream sent over a network interface, either to a
Alternatively on systems using the shared library concept, different process on the same computer or to another com-
the interrupt vector table or the import descriptor table can puter, such as Internet sockets; a pipe (or pipeline) which is
be modified in memory. 35 atwo-way data stream interfaced through standard input and
A hook chain is a list of pointers to special, application- output and is read character by character, commonly used in
defined callback functions called hook procedures. When a Unix-like computer operating systems; message queues
message occurs that is associated with a particular type of which are anonymous data stream similar to the pipe that
hook, the operating system passes the message to each hook stores and retrieves information in packets, providing an
procedure referenced in the hook chain, one after the other. 40 asynchronous communications protocol; a semaphore which
The action of a hook procedure can depend on the type of is a variable or abstract data type that is used for controlling
hook involved. For example, the hook procedures for some access to a common resource; a shared memory which is a
types of hooks can only monitor messages, others can memory that may be simultaneously accessed by multiple
modify the messages or stop their progress through the programs with an intent to provide communication among
chain, restricting them from reaching the next hook proce- 45 them or avoid redundant copies, such as where one process
dure or a destination window. creates an area in RAM which other processes can access;
Plug-in. A plug-in (or ‘plugin’, ‘extension’, or ‘add-on’/ and memory mapped file, where a file that is physically
‘addon’) is a software component that adds a specific feature present on-disk, but can also be a device, shared memory
to an existing software application, for example for enabling object, or other resource that the operating system can
customization. The common examples are the plug-ins used 50 reference through a file descriptor. Few IPC mechanisms are
in web browsers to add new features such as search-engines, described in the Marko Vuskovic publication ‘Operating
virus scanners, or the ability to utilize a new file type such Systems’ in Chapter 9 entitled: “/INTERPROCESS COM-
as a new video format. An ‘Add-on’ (or ‘addon’) is the MUNICATION”, which is incorporated in its entirety for all
general term for what enhances an application, and com- purposes as if fully set forth herein.
prises snap-in, plug-in, theme, and skin. An extension add- 55 The Windows operating system supports IPC mechanisms
on tailors the core features of an application by adding an such as a clipboard, where the clipboard acts as a central
optional module, whereas a plug-in add-on would tailor the depository for data sharing among applications, so when a
outer layers of an application to personalize functionality. A user performs a cut or copy operation in an application, the
theme or a skin add-on is a preset package containing application puts the selected data on the clipboard in one or
additional or changed graphical appearance details, achieved 60 more standard or application-defined formats, and any other
by the use of a Graphical User Interface (GUI) that can be application can then retrieve the data from the clipboard,
applied to a specific software and websites to suit the choosing from the available formats that it understands;
purpose, topic, or tastes of different users to customize the using Component Object Model (COM), where applications
look and feel of a piece of computer software or an operating that use Object Linking and Embedding (OLE) manage
system front-end GUI (and window managers). 65 compound documents can be used to call on other applica-

Typically, the host application provides services which
the plug-in can use, including a way for plug-ins to register

tions for data editing; Using Data Copy enabling an appli-
cation to send information to another application using the

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
158 of 228

US 10,469,614 B2

37
WM_COPYDATA message; DDE protocol that enables
applications to exchange data in a variety of formats; and
mailslots providing one-way communication where pro-
cesses write messages to their mailslot.

Browser extension. A browser extension is a computer
program that extends the functionality of a web browser in
some way. Extensions can be created through use of web
technologies such as HTML, JavaScript, and CSS. Browser
extensions can also improve the user interface of the web
browser without directly affecting viewable content of'a web
page, which can be achieved through a variety of add ons
such as toolbars and plug-ins. Microsoft Internet Explorer
started supporting extensions from version 5 released in
1999. Mozilla Firefox has supported extensions since its
launch in 2004. The Opera desktop web browser supported
extensions from version 10 released in 2009. Google
Chrome started supporting extensions from version 4
released in 2010. The Apple Safari web browser started
supporting native extensions from version 5 released in
2010. The syntax for extensions may differ from browser to
browser, or at least enough different that an extension
working on a browser does not work on another one.

Plug-ins add specific abilities into browsers using Appli-
cation Programming Interfaces (APIs) allowing third parties
to create plug-ins that interact with the browser. The original
API was NPAPI, but subsequently Google introduced the
PPAPI interface in Chrome. In addition, plug-ins allow
browser extensions to perform tasks such as blocking ads,
creating a secure online connection, and adding applications
within a browser. Well-known browser plug-ins include the
Adobe Flash Player, the QuickTime Player, and the Java
plug-in, which can launch a user-activated Java applet on a
web page to its execution a local Java virtual machine.

Sockets. A socket (ak.a. ‘network socket’) is an endpoint
of an IPC flow across a computer network. In the case the
communications is based on IP (Internet Protocol), the
network sockets are referred to as Internet sockets. A socket
API is an application programming interface (API), usually
provided by the operating system, that allows application
programs to control and use network sockets. Internet socket
APIs are usually based on the Berkeley sockets standard. A
socket address is the combination of an IP address and a port
number, similar to one end of a telephone connection in the
combination of a phone number and a particular extension.
Based on this address, internet sockets deliver incoming data
packets to the appropriate application process or thread.
Sockets are further described in a Universoty of Toronto,
Department of Computer Science presentation entitled:
“Tutorial on Socket Programming” by Amin Tootoonchian,
downloaded on August, 2014, and in the SAS Institute Inc.
SHARE Session 5958 tutorial ‘C Socket Programming
Tutorial’ entitled: “Writing Client/Server Programs in C
Using Sockets (A Tutorial) Part I, by Greg Granger, dated
February of 1998, which are both incorporated in their
entirety for all purposes as if fully set forth herein.

An Internet socket is characterized by a unique combi-
nation of a Local socket address (Local IP address and port
number), remote socket address (used for established TCP
sockets), and the used Protocol, typically a transport proto-
col (e.g., TCP, UDP, raw IP, or others). Within the operating
system and the application that created a socket, a socket is
referred to by a unique integer value called a socket descrip-
tor. The operating system forwards the payload of incoming
1P packets to the corresponding application by extracting the
socket address information from the IP and transport pro-
tocol headers and stripping the headers from the application
data.

10

15

20

25

30

35

40

45

50

55

60

65

38

Several Internet socket types are available, such as Data-
gram sockets, also known as connectionless sockets, which
use User Datagram Protocol (UDP), Stream sockets, also
known as connection-oriented sockets, which use Transmis-
sion Control Protocol (TCP) or Stream Control Transmis-
sion Protocol (SCTP), and Raw sockets (or Raw IP sockets),
typically available in routers and other network equipment.
Here the transport layer is bypassed, and the packet headers
are made accessible to the application. Other socket types
are implemented over other transport protocols, such as
Systems Network Architecture (SNA). Communicating
local and remote sockets are called socket pairs. Each socket
pair is described by a unique 4-tuple consisting of source and
destination IP addresses and port numbers, i.e. of local and
remote socket addresses. In the TCP case, each unique
socket pair 4-tuple is assigned a socket number, while in the
UDRP case, each unique local socket address is assigned a
socket number.

The socket is primarily a concept used in the Transport
Layer of the Internet model. Networking equipment such as
routers and switches do not require implementations of the
Transport Layer, as they operate on the Link Layer level
(switches) or at the Internet Layer (routers). However,
stateful network firewalls, network address translators, and
proxy servers keep track of active socket pairs. Also in fair
queuing, layer 3 switching and quality of service (QoS)
support in routers, packet flows may be identified by extract-
ing information about the socket pairs. Raw sockets are
typically available in network equipment and are used for
routing protocols such as IGRP and OSPF, and in Internet
Control Message Protocol (ICMP).

The amount of data transferred in a given period in
commonly referred to as ‘bandwidth’ (BW) or ‘bit-rate’,
which is the number of bits that are conveyed or processed
per unit of time. The bit rate is quantified using the bits per
second unit (symbol bit/s or b/s), often in conjunction with
an SI prefix such as kilo- (1 kbit/s=1000 bit/s), mega- (1
Mbit/s=1000 kbit/s), giga- (1 Gbit/s=1000 Mbit/s) or tera- (1
Tbit/s=1000 Gbit/s). The non-standard abbreviation bps is
often used to replace the standard symbol bit/s, so that, for
example, “1 Mbps” (or 1 Mb/s) is used to mean one million
bits per second. One byte per second (1 B/s) corresponds to
8 bit/s.

Latency is typically defined as a time interval between the
stimulation and the response, or, from a more general point
of view, as a time delay between the cause and the effect of
some physical change in the system being observed. Net-
work-related latency, such as in a packet-switched network,
is measured either one-way (the time from the source
sending a packet to the destination receiving it), or Round-
Trip delay Time (RTT), referring to the one-way latency
from source to destination plus the one-way latency from the
destination back to the source, plus any delays at the
destination, such as processing or other delays. Round-trip
latency can be measured from a single point. Latency limits
total bandwidth in reliable two-way communication systems
as described by the bandwidth-delay product, which refers
to the product of a data link’s capacity (in bits per second)
and its end-to-end delay (in seconds). The result, an amount
of data measured in bits (or bytes), is equivalent to the
maximum amount of data on the network circuit at any given
time, i.e., data that has been transmitted but not yet acknowl-
edged. Sometimes it is calculated as the data link’s capacity
multiplied by its round trip time. A network with a large
bandwidth-delay product is commonly known as a Long Fat
Network (LFN). As defined in IETF RFC 1072, a network

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
159 of 228

US 10,469,614 B2

39

is considered an LFN if its bandwidth-delay product is
significantly larger than 105 bits (12500 bytes).

The Round-trip Delay Time (RTD) or Round-Trip Time
(RTT) is the length of time it takes for a signal to be sent and
to be received and processed at the destination node, plus the
length of time it takes for an acknowledgment of that signal
to be received. This time delay therefore includes the
propagation times between the two points of a signal. The
signal is generally a data packet, and the RTT is also known
as the ping time, and an internet user can determine the RTT
by using the ping command. Network links with both a high
bandwidth and a high RTT can have a very large amount of
data (the bandwidth-delay product) “in flight” at any given
time. Such “long fat pipes” require a special protocol design.
One example is the TCP window scale option. The RTT was
originally estimated in TCP by: RTT=(c-Old_RTT)+((1-v)-
New_Round_Trip_Sample), where a is a constant weighting
factor (0=a<l1). Choosing a value a close to 1 makes the
weighted average immune to changes that last a short time
(e.g., a single segment that encounters long delay). Choosing
avalue for a close to 0 makes the weighted average response
to changes in delay very quickly. Once a new RTT is
calculated, it is entered into the above equation to obtain an
average RTT for that connection, and the procedure contin-
ues for every new calculation. The RTT may be measured as
described in IETF 1323, and may be estimated by using a
method described in IETF RFC 6323, which are both
incorporated in their entirety for all purposes as if fully set
forth herein.

An estimation of RTT for messages using TCP may use
Karn’s Algorithm, described by Karn, Phil and Craig Par-
tridge in ACM SIGCOMM ’87—Computer Communication
Review publication, entitled: “Improving Round-Trip Time
Estimates in Reliable Transport Protocols”, which is incor-
porated in its entirety for all purposes as if fully set forth
herein. The round trip time is estimated as the difference
between the time that a segment was sent and the time that
its acknowledgment was returned to the sender, but when
packets are re-transmitted there is an ambiguity: the
acknowledgment may be a response to the first transmission
of the segment or to a subsequent re-transmission. Karn’s
Algorithm ignores re-transmitted segments when updating
the round trip time estimate. Round trip time estimation is
based only on unambiguous acknowledgments, which are
acknowledgments for segments that were sent only once.

Many software platforms provide a service called ‘ping’
that can be used to measure round-trip latency. Ping per-
forms no packet processing; it merely sends a response back
when it receives a packet (i.e., performs a no-op), thus it is
a first rough way of measuring latency. Ping operates by
sending Internet Control Message Protocol (ICMP) echo
requesting packets to the target host, and waiting for an
ICMP response. During this process it measures the time
from transmission to reception (round-trip time) and records
any packet loss. The results of the test are printed in a form
of a statistical summary of the response packets received,
including the minimum, maximum, and the mean round-trip
times, and sometimes the standard deviation of the mean.

The Transmission Control Protocol/Internet Protocol
(TCP/1P) suite normally used on the Internet has included an
Internet Message Control Protocol (ICMP) that is commonly
used in echo testing or ping and trace route applications. In
general, the Internet standard ‘ping’ or ‘ICMP echo’ has a
request/response format, wherein one device sends an ICMP
echo request and another device responds to a received
ICMP echo request with a transmitted ICMP echo response.
Normally, IP devices are expected to implement the ICMP

25

40

45

55

40

as part of the support for IP, to be able to use ICMP for
testing. Internet RFC 792, entitled “Internet Control Mes-
sage Protocol: DARPA Internet Program Protocol Specifi-
cation”, which is incorporated in its entirety for all purposes
as if fully set forth herein, at least partially describes the
behavior of ICMP. The ICMP echo message has a type field,
a code field, a checksum field, an identifier field, a sequence
number field, and a data field. According to RFC 79: “The
data received in the echo message must be returned in the
echo reply message”. Thus, an RFC compliant ping respond-
ers or an ICMP echo reply message responders are supposed
to copy the received data field in an echo request message
directly into the data field of the transmitted echo response
message.

A newer version of ICMP known as ICMP version 6 or
ICMPv6 as described at least partially in RFCs 1885 and
2463, which are both entitled “Internet Control Message
Protocol (ICMPV6) for the Internet Protocol Version 6
(IPv6) Specification”, which are both incorporated in their
entirety for all purposes as if fully set forth herein. Accord-
ing to RFC 2463, “Every [IPv6] node MUST implement an
ICMPv6 Echo responder function that receives Echo
Requests and sends corresponding Echo Replies. An IPv6
node SHOULD also implement an application-layer inter-
face for sending Echo Requests and receiving Echo Replies,
for diagnostic purposes.”. Thus, responding to ICMP echo
requests normally is a necessary function in supporting IPv4
and/or IPv6 standards. The ICMPv6 RFCs 1885 and 2464
goes on to specify that the data field of an ICMP echo
response contains the “data from the invoking Echo Request
message.” Therefore, both ICMP and ICMP v6 associated
with IPv4 and IPv6, respectively, specify that the data field
in an ICMP echo reply message is to essentially contain a
copy of the data received in the corresponding ICMP echo
request message.

Moreover, the ICMP echo protocol is basically a two-way
echo in which one initiating device and/or process starts the
communication by transmitting an echo request message,
which may be then received by an echo responder process.
The echo responder process, generally located on another
device, receives the echo request message and responds with
an echo reply back to the initiating process. Once the
initiating device and/or process receives the response or
times out waiting on the response, the two-way echo
exchange of messages is complete. Although the echo
request and echo response normally are performed between
processes on two different devices, one skilled in the art will
be aware that a device can ping its own IP address implying
that the echo request and echo responder reply processes are
on the same device. In addition, the loopback address of
network 127.0.0.0 in IPv4 can be used to allow a device to
the loopback outbound echo request messages back into the
device’s own incoming echo request responder processes.
IPv6 has a loopback functionality as well.

This copying of data exactly in the ICMP echo response
is somewhat wasteful because the responder generally does
not convey that much (if any) information back to the ICMP
echo request initiating device. Arguably the initiating device
could compute bit error rate (BER) statistics on the trans-
mitted versus the received data field in ICMP echo packets.
However, such physical layer issues as BER statistics nor-
mally are not as relevant for network layer 1P datagranis that
already include various error control code mechanisms.
Arguably the device running the responding process can
communicate information to the device running the initiat-
ing process by having the device running the original
responding process initiate its own echo request and wait for

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
160 of 228

US 10,469,614 B2

41

an echo response from the original initiating device. Such a
solution results in four packets, with a first echo request
from a local device responded to by a first echo response
from a remote device, and with a second echo request from
the remote device responded to by a second echo response
from the local device.

An identifier and/or sequence number in ping packets
generally has allowed the ping to be used by a device to
determine the round-trip delay from the time an ICMP echo

42

process of the communication device looking up a DNS
request within the cache storage, if the communication
device views an expired DNS entry within the cache storage,
the communication device continues the process of looking
up the DNS request in the cache storage while, in parallel,
sending out a concurrent DNS request to an authoritative
domain name server that the expired DNS entry belongs to,
is described in U.S. Pat. No. 8,671,221 to the same inventors
as this application, entitled: “Method and System for

request packet is sent to the time corresponding to when an 10 Increasing Speed of Domain Name System Resolution
associated received ICMP echo request is received back at within a Computing Device”, which is incorporated in its
an initiating device. Furthermore, ping packets generally entirety for all purposes as if fully set forth herein.
convey little or no information about the type of the device Systems and methods of storing previously transmitted
that initiated the ping. Moreover, although IPv4 has Type of data and using it to reduce bandwidth usage and accelerate
Service (ToS) fields in the IP datagram, these fields have 15 future communications, and using algorithms to identify
become more important as the services used over the Inter- long compression history matches. A network device that
net and networks using Internet technology have grown may improve compression efficiency and speed is described
from basic computer data communication to also include in U.S. Pat. No. 7,865,585 to Samuels et al., entitled:
real-time applications such as voice and/or video. Various “Systems and Methods for Providing Dynamic Ad Hok
Type of Service (ToS) in IPv4 and IPv6 have been used in 20 Proxy-Cache Hierarchies”, which is incorporated in its
implementing various (Quality of Service) QoS character- entirety for all purposes as if fully set forth herein. Further,
istics that are defined for different classes of service and/or a method and system for accelerating the receipt of data in
Service Level Agreements (SLAs). a client-to-client network described in U.S. Pat. No. 7,203,
Timestamp. A timestamp is a sequence of characters or 741 to Marco et al., entitled: “Method and System for
encoded information identifying when a certain event 25 Accelerating Receipt of Data in a Client-to-Client Net-
occurred, usually giving date and time of day, sometimes world”, which is incorporated in its entirety for all purposes
accurate to a small fraction of a second, and also refers to as if fully set forth herein.
digital date and time information attached to the digital data. Hearbeat. A heartbeat is a periodic signal generated by
For example, computer files contain timestamps that tell hardware or software to indicate normal operation or to
when the file was last modified, and digital cameras add 30 synchronize other parts of a system. Usually a heartbeat is
timestamps to the pictures they take, recording the date and sent between machines at a regular interval of an order of
time the picture was taken. A timestamp is typically the time seconds. If a heartbeat is not received for a time—usually a
at which an event is recorded by a computer, not the time of few heartbeat intervals—the machine that should have sent
the event itself. In many cases, the difference may be the heartbeat is assumed to have failed. As used herein, a
inconsequential: the time at which an event is recorded by a 35 heartbeat is a periodic message, such as a ‘ping’, generated
timestamp (e.g., entered into a log file) should be close to the by devices connected to the Internet to indicate being
time of the event. Timestamps are typically used for logging ‘online’ (connected to the Internet) and normal operation,
events or in a Sequence of Events (SOE), in which case each and if a heartbeat is not received for a time, the device is
event in the log or SOE is marked with a timestamp. In a file assumed to be ‘offline’ (not connected to the Internet). A
system such as a database, timestamp commonly mean the 40 heartbeat protocol is generally used to negotiate and monitor
stored date/time of creation or modification of a file or a the availability of a resource, such as a floating IP address.
record. The ISO 8601 standard standardizes the representa- Typically, when a heartbeat starts on a machine, it will
tion of dates and times which are often used to construct perform an election process with other machines on the
timestamp values, and IETF RFC 3339 defines a date and network to determine which machine, if any, owns the
time format for use in Internet protocols using the ISO 8601 45 resource. The IETF RFC 6520 describes Heartbeat operation
standard representation. for the Transport Layer Security (TLS), and is incorporated
Caching. A system and method for increasing cache size in its entirety for all purposes as if fully set forth herein.
by performing the steps of: categorizing storage blocks Users in the Internet may desire anonymity in order not to
within a storage device as within a first category of storage be identified as a publisher (sender), or reader (receiver), of
blocks if the storage blocks that are available to the system 50 information. Common reasons include censorship at the
for storing data when needed; categorizing storage blocks local, organizational, or national level, personal privacy
within the storage device as within a second category of preferences such as preventing tracking or data mining
storage blocks if the storage blocks contain application data activities, the material or its distribution is considered illegal
therein; and categorizing storage blocks within the storage or incriminating by possible eavesdroppers, the material
device as within a third category of storage blocks if the 55 may be legal but socially deplored, embarrassing, or prob-
storage blocks are storing cached data and are available for lematic in the individual’s social world, and fear of retribu-
storing application data if no first category of storage blocks tion (against whistleblowers, unofficial leaks, and activists
are available to the system, is described in U.S. Pat. No. who do not believe in restrictions on information nor knowl-
8,135,912 to Shribman et al. entitled: “System and Method edge). Full anonymity on the Internet, however, is not
of Increasing Cache Size”, which is incorporated in its 60 guaranteed since IP addresses can be tracked, allowing to
entirety for all purposes as if fully set forth herein. A system identify the computer from which a certain post was made,
for resolving Domain Name System (DNS) queries that albeit not the actual user. Anonymizing services, such as
contains a communication device for resolving DNS que- 12P—*The Anonymous Network’ or Tor, address the issue of
ries, wherein the communication device further contains a IP tracking, as their distributed technology approach may
memory and a processor that is configured by the memory, 65 grant a higher degree of security than centralized anony-

a cache storage for use by the communication device, and a
network of authoritative domain name servers, where in a

mizing services where a central point exists that could
disclose one’s identity. An anonymous web browsing refers

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
161 of 228

US 10,469,614 B2

43

to browsing the World Wide Web while hiding the user’s IP
address and any other personally identifiable information
from the websites that one is visiting. There are many ways
of accomplishing anonymous web browsing. Anonymous
web browsing is generally useful to internet users who want
to ensure that their sessions cannot be monitored. For
instance, it is used to circumvent traffic monitoring by
organizations that want to find out or control which web sites
employees visit. Further, since some web-sites response
differently when approached from mobile devices, anonym-
ity may allow for accessing such a web-site from a non-
mobile device, posing as a mobile device.

WiFi. A device herein (such as device 11) may consist of,
be part of, or include, a Personal Computer (PC), a desktop
computer, a mobile computer, a laptop computer, a notebook
computer, a tablet computer, a server computer, a handheld
computer, a handheld device, a Personal Digital Assistant
(PDA) device, or a cellular handset. Alternatively or in
addition, a device may consist of, be part of, or include, a
handheld PDA device, an on-board device, an off-board
device, a hybrid device, a vehicular device, a non-vehicular
device, a mobile device, or a portable device. A network
herein (such as LAN 14), may consist of, be part of, or
include, a wired or wireless network, a Local Area Network
(LAN), a Wireless LAN (WLAN), a Metropolitan Area
Network (MAN), a Wireless MAN (WMAN), a Wide Area
Network (WAN), a Wireless WAN (WWAN), a Personal
Area Network (PAN), or a Wireless PAN (WPAN). Alter-
natively or in addition, a network herein may be operating
substantially in accordance with existing IEEE 802.11,
802.11a, 802.11b, 802.11g, 802.11k, 802.11n, 802.1lr,
802.16, 802.16d, 802.16e, 802.20, 802.21 standards and/or
future versions and/or derivatives of the above standards.
Further, a network element (or a device) herein may consist
of, be part of, or include, a cellular radio-telephone com-
munication system, a cellular telephone, a wireless tele-
phone, a Personal Communication Systems (PCS) device, a
PDA device which incorporates a wireless communication
device, or a mobile/portable Global Positioning System
(GPS) device. The communication interface 29 may consist
of, be part of, or include, a transceiver or modem for
communication with the network, such as LAN 14. In the
case of wired networks, the communication interface 29
connects to the network via a port 28 that may include a
connector, and in the case of wireless network, the commu-
nication interface 29 connects to the network via a port 28
that may include an antenna.

The LAN 14 may be a Wireless LAN (WLAN) such as
according to, or base on, IEEE 802.11-2012, and the WLAN
port may be a WLAN antenna and the WLAN transceiver
may be a WLAN modem. The WLAN may be according to,
or base on, IEEE 802.11a, IEEE 802.11b, IEEE 802.11g,
IEEE 802.11n, or IEEE 802.11ac. Commonly referred to as
Wireless Local Area Network (WL AN), such communica-
tion makes use of the Industrial, Scientific and Medical
(ISM) frequency spectrum. In the US, three of the bands
within the ISM spectrum are the A-Band, 902-928 MHz; the
B-Band, 2.4-2.484 GHz (ak.a. 2.4 GHz); and the C-Band,
5.725-5.875 GHz (a.k.a. 5 GHz). Overlapping and/or similar
bands are used in different regions such as Europe and
Japan. In order to allow interoperability between equipment
manufactured by different vendors, few WLAN standards
have evolved, as part of the IEEE 802.11 standard group,
branded as WiFi (www.wi-fi.org). The IEEE 802.11b stan-
dard describes a communication using the 2.4 GHz fre-
quency band and supporting a communication rate of 11
Mb/s, IEEE 802.11a uses the 5 GHz frequency band to carry

10

20

25

30

35

40

45

55

60

65

44

54 MB/s, and IEEE 802.11g uses the 2.4 GHz band to
support 54 Mb/s. The WiFi technology is further described
in a publication entitled: “WiFi Technology” by Telecom
Regulatory Authority, published on July 2003, which is
incorporated in its entirety for all purposes as if fully set
forth herein. The IEEE 802 defines an ad-hoc connection
between two or more devices without using a wireless
access point: the devices communicate directly when in
range. An ad hoc network offers peer-to-peer layout and is
commonly used in situations such as a quick data exchange
or a multiplayer LAN game, because the setup is easy and
an access point is not required.

In order to support multiple devices and using a perma-
nent solution, a Wireless Access Point (WAP) is typically
used. A Wireless Access Point (WAP, or Access Point—AP)
is a device that allows wireless devices to connect to a wired
network using Wi-Fi, or related standards. The WAP usually
connects to a router (via a wired network) as a standalone
device, but it can also be an integral component of the router
itself. Using Wireless Access Point (AP) allows users to add
devices that access the network with little or no cables. A
WAP normally connects directly to a wired Ethernet con-
nection and the AP then provides wireless connections using
radio frequency links for other devices to utilize that wired
connection. Most APs support the connection of multiple
wireless devices to one wired connection. An example of
using WAPs is shown in a system 20a shown in FIG. 25,
where a device 11a(corresponding to the device 11 above)
may communicate, and for example, any access the Internet,
via any one of a WAPs 264, 265, or 26¢. Wireless access
typically involves special security considerations, since any
device within a range of the WAP can attach to the network.
The most common solution is wireless traffic encryption.
Modern access points come with built-in encryption such as
Wired Equivalent Privacy (WEP) and Wi-Fi Protected
Access (WPA), typically used with a password or a pass-
phrase. A WAP may not be password protected, allowing
free access (for example to the Internet via the WAP) to any
device communicating with it, such as WAP 264 shown in
system 20a. However, most WAPs, such as WAPs 265 and
26¢ shown in system 20a (denoted with the lock symbol),
are password protected, allowing access only to specific
users which can use the password.

Authentication in general, and a WAP authentication in
particular, is used as the basis for authorization, which is the
determination whether a privilege may be granted to a
particular user or process, privacy, which keeps information
from becoming known to non-participants, and non-repu-
diation, which is the inability to deny having done some-
thing that was authorized to be done based on the authen-
tication. An authentication in general, and a WAP
authentication in particular, may use an authentication
server, that provides a network service that applications may
use to authenticate the credentials, usually account names
and passwords, of their users. When a client submits a valid
set of credentials, it receives a cryptographic ticket that it
can subsequently use to access various services. Authenti-
cation algorithms include passwords, Kerberos, and public
key encryption.

Compression. Data compression, also known as source
coding and bit-rate reduction, involves encoding informa-
tion using fewer bits than the original representation. Com-
pression can be either lossy or lossless. Lossless compres-
sion reduces bits by identifying and eliminating statistical
redundancy, so that no information is lost in lossless com-
pression. Lossy compression reduces bits by identifying
unnecessary information and removing it. The process of

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
162 of 228

US 10,469,614 B2

45

reducing the size of a data file is commonly referred to as a
data compression. A compression is used to reduce resource
usage, such as data storage space or transmission capacity.
Data compression is further described in a Carnegie Mellon
University chapter entitled: “Introduction to Data Compres-
sion” by Guy E. Blelloch, dated Jan. 31, 2013, which is
incorporated in its entirety for all purposes as if fully set
forth herein.

In a scheme involving lossy data compression, some loss
of information is acceptable. For example, dropping of a
nonessential detail from a data can save storage space. Lossy
data compression schemes may be informed by research on
how people perceive the data involved. For example, the
human eye is more sensitive to subtle variations in lumi-
nance than it is to variations in color. JPEG image compres-
sion works in part by rounding off nonessential bits of
information. There is a corresponding trade-off between
preserving information and reducing size. A number of
popular compression formats exploit these perceptual dif-
ferences, including those used in music files, images, and
video.

Lossy image compression is commonly used in digital
cameras, to increase storage capacities with minimal deg-
radation of picture quality. Similarly, DVDs use the lossy
MPEG-2 Video codec for video compression. In lossy audio
compression, methods of psychoacoustics are used to
remove non-audible (or less audible) components of the
audio signal. Compression of human speech is often per-
formed with even more specialized techniques; speech cod-
ing, or voice coding, is sometimes distinguished as a sepa-
rate discipline from audio compression. Different audio and
speech compression standards are listed under audio codecs.
Voice compression is used in Internet telephony, for
example, and audio compression is used for CD ripping and
is decoded by audio player.

Lossless data compression algorithms usually exploit
statistical redundancy to represent data more concisely with-
out losing information, so that the process is reversible.
Lossless compression is possible because most real-world
data has statistical redundancy. The Lempel-Ziv (LZ) com-
pression methods are among the most popular algorithms for
lossless storage. DEFLATE is a variation on LZ optimized
for decompression speed and compression ratio, and is used
in PKZIP, Gzip and PNG. The LZW (Lempel-Ziv-Welch)
method is commonly used in GIF images, and is described
in IETF RFC 1951. The LZ methods use a table-based
compression model where table entries are substituted for
repeated strings of data. For most [.Z methods, this table is
generated dynamically from earlier data in the input. The
table itself is often Huffman encoded (e.g., SHRI, LZX).
Typical modern lossless compressors use probabilistic mod-
els, such as prediction by partial matching.

Lempel-Ziv-Welch (LZW) is an example of lossless data
compression algorithm created by Abraham Lempel, Jacob
Ziv, and Terry Welch. The algorithm is simple to implement,
and has the potential for very high throughput in hardware
implementations. It was the algorithm of the widely used
Unix file compression utility compress, and is used in the
GIF image format. The LZW and similar algorithms are
described in U.S. Pat. No. 4,464,650 to Eastman et al.
entitled: “Apparatus and Method for Compressing Data
Signals and Restoring the Compressed Data Signals™, in
U.S. Pat. No. 4,814,746 to Miller et al. entitled: “Data
Compression Method”, and in U.S. Pat. No. 4,558,302 to
Welch entitled: “High Speed Data Compression and Decom-
pression Apparatus and Method”, which are all incorporated
in their entirety for all purposes as if fully set forth herein.

10

15

20

25

30

35

40

45

50

55

60

65

46

A class of lossless data compression algorithms is based
on using dictionaries, and operates by searching for matches
between the text to be compressed and a set of strings
contained in a data structure (called the ‘dictionary’) main-
tained by the encoder. When the encoder finds such a match,
it substitutes a reference to the string’s position in the data
structure.

Some dictionary coders use a ‘static dictionary’, one
whose full set of strings is determined before coding begins
and does not change during the coding process. This
approach is most often used when the message or set of
messages to be encoded is fixed and large. A dictionary is
often built from redundancy extracted from a data environ-
ment (various input streams) which dictionary is then used
statically to compress a further input stream. For example, a
dictionary may be built from old English texts then is used
to compress a book. More common are methods where the
dictionary starts in some predetermined state, but the con-
tents change during the encoding process, based on the data
that has already been encoded.

Both the [.Z77 and L.Z78 algorithms work on this prin-
ciple, where in 1.Z77, a circular buffer called the “sliding
window” holds the last N bytes of data processed, which
serves as the dictionary, effectively storing every substring
that has appeared in the past N bytes as dictionary entries.
Instead of a single index identifying a dictionary entry, two
values are needed: the length, indicating the length of the
matched text, and the offset (also called the distance),
indicating that the match is found in the sliding window
starting offset bytes before the current text. LZ78 uses a
more explicit dictionary structure; at the beginning of the
encoding process, the dictionary only needs to contain
entries for the symbols of the alphabet used in the text to be
compressed, but the indexes are numbered in order to leave
spaces for many more entries. At each step of the encoding
process, the longest entry in the dictionary that matches the
text is found, and its index is written to the output; the
combination of that entry and the character that followed it
in the text is then added to the dictionary as a new entry. An
example of a dictionary-based compression is described in
an University of Michigan paper entitled: “Dictionary-
Based Compression for Long Time-Series Similarity” by
Willis Lang, Michael Morse, and Jignesh M. Patel, down-
loaded from http://pages.cs.wisc.ed/ on August 2014,
which is incorporated in its entirety for all purposes as if
fully set forth herein.

A one-way dictionary-based compression system is
shown as a system 470 in FIG. 4. An encoding device 471
is shown to transmit data, such as DATA_1 to a decoding
device 472 via a network 480, which may be the Internet
113. The encoding device 471 comprises an encoder 474
(also referred to as a coder, data coder, or data compressor),
serving to compress DATA_1 received at an input port 475a
into a DATA_2 (which is a lossless compression of
DATA_1, preferably having a lower number of bits or lower
data-rate that DATA_1) at an output port 4755, using the
content in a shared dictionary 473a. The output DATA_2 is
transmitted via the network 480, and is received at an input
port 476a of a decoder 477 (also referred to as a data decoder
or data decompressor) in the decoding device 472. Using a
shared dictionary 4734 in the decoding device 472, which
preferably includes the same content as in the shared dic-
tionary 473a of the encoding device 471, the decoder 477
reconstructs the original data DATA_1 at an output port
476b.

A two-way dictionary-based compression system is
shown as a system 470a in FIG. 4a. An encoding/decoding

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
163 of 228

US 10,469,614 B2

47

device 471c¢ includes the functionalities of an encoding
device 471a for transmitting, and of a decoding device 472a
for receiving data. Similarly, an encoding/decoding device
472¢ includes the functionalities of the encoding device
471a for transmitting, and of the decoding device 472a for
receiving data. In addition to the functionality of the decod-
ing device 472a, the encoding/decoding device 472¢ is
shown to also transmit data, such as DATA_3 to the encod-
ing/decoding device 471c¢ via the network 480, which may
be the Internet 113. The encoding /decoding device 472¢
comprises an encoder 4745 (also referred to as a coder, data
coder, or data compressor), serving to compress DATA_3
received at an input port 475¢ into a DATA_4 (which is a
lossless compression of DATA_3, preferably having a lower
number of bits or lower data-rate that DATA_3) at an output
port 475d, using the content in a shared dictionary 4734. The
output DATA_4 is transmitted via the network 480, and is
received at an input port 476d of a decoder 4776 (also
referred to as a data decoder or data decompressor) in the
encoding/decoding device 471¢. Using the shared dictionary
473c¢ in the encoding/decoding device 471¢, which prefer-
ably includes the same content as in the shared dictionary
473d of the encoding/decoding device 472¢, the decoder
477b reconstructs the original data DATA_3 at an output
port 476¢.

Image/video. Any content herein may consist of, be part
of, or include, an image or a video content. A video content
may be in a digital video format that may be based on one
out of: TIFF (Tagged Image File Format), RAW format, AV],
DV, MOV, WMV, MP4, DCF (Design Rule for Camera
Format), ITU-T H.261, ITU-T H.263, ITU-T H.264, ITU-T
CCIR 601, ASF, Exif (Exchangeable Image File Format),
and DPOF (Digital Print Order Format) standards. A intra-
frame or interframe compression may be used, and the
compression may a lossy or a non-lossy (lossless) compres-
sion, that may be based on a standard compression algo-
rithm, which may be one or more out of JPEG (Joint
Photographic Experts Group) and MPEG (Moving Picture
Experts Group), ITU-T H.261, ITU-T H.263, ITU-T H.264
and ITU-T CCIR 601.

Web Analytics. Web analytics typically refers to the
measurement, collection, analysis, and reporting of web data
for purposes of understanding and optimizing web usage.
Web analytics is commonly used for measuring web traffic,
and may be used as a tool for business and market research,
as well as to assess and improve the effectiveness of a web
site. Web analytics applications can also help companies
measure the results of traditional print or broadcast adver-
tising campaigns. For example, it helps one to estimate how
traffic to a website changes after the launch of a new
advertising campaign. The web analytics provide informa-
tion about the number of visitors to a website and the
number of page views, and helps gauge traffic and popularity
trends, which may be useful for market research. Web
analytics related description and methods are described in a
whitepaper by E-Nor, Inc. entitled: “4 7-Step Analytics
Reporting Framework—Marketing Optimization Whitepa-
per” by Feras Alhlou, downloaded on 8/2014, and in U.S.
Pat. No. 8,234,370 to Hammer et al., entitled: “Determining
Web Analytics Information”, in U.S. Patent Application
Publication No. 2008/0046562 to Butler entitled: “Visual
Web Page Analytics”, and in U.S. Pat. No. 7,941,525 to
Yavilevich entitled: “Method and System for Monitoring an
Activity of a User”, which are all incorporated in their
entirety for all purposes as if fully set forth herein.

There are two categories of web analytics: off-site and
on-site web analytics. Off-site web analytics refers to web

10

15

20

25

30

35

40

45

50

55

60

65

48

measurement and analysis, and includes the measurement of
a website’s potential audience (opportunity), share of voice
(visibility), and buzz (comments) that is happening on the
Internet. On-site web analytics measure a visitor’s behavior
once on the website, and includes its drivers and conver-
sions; for example, the degree to which different landing
pages are associated with online purchases. On-site web
analytics typically measures the performance of the website
in a commercial context, and this data is typically compared
against key performance indicators for performance, and
used to improve a web site or marketing campaign’s audi-
ence response. Google Analytics is a widely used on-site
web analytics service; although new tools are emerging that
provide additional layers of information, including heat
maps and session replay.

Google Analytics is a service offered by Google that
generates detailed statistics about a website’s traffic and
traffic sources and measures conversions and sales. The
product is aimed at marketers as opposed to webmasters and
technologists from which the industry of web analytics
originally grew. Google Analytics can track visitors from all
referrers, including search engines and social networks,
direct visits and referring sites, and also tracks display
advertising, pay-per-click networks, email marketing and
digital collateral such as links within PDF documents.
Integrated with AdWords, users can now review online
campaigns by tracking landing page quality and conversions
(goals). Goals might include sales, lead generation, viewing
a specific page, or downloading a particular file.

Google Analytics is implemented with “page tags”. A
page tag, in this case called the Google Analytics Tracking
Code is a snippet of JavaScript code that the website owner
user adds to every page of the web site. The tracking code
runs in the client browser when the client browses the page
(if JavaScript is enabled in the browser), and collects visitor
data and sends it to a Google data collection server, as part
of a request for a web beacon. The tracking code loads a
larger JavaScript file from the Google webserver and then
sets variables with the user’s account number. The larger file
(currently known as ga.js) is typically 18 KB. The file does
not usually have to be loaded, though, because of browser
caching. Assuming caching is enabled in the browser, it
downloads ga.js only once at the start of the visit. Further-
more, as all websites that implement Google Analytics with
the gajs code use the same master file from Google, a
browser that has previously visited any other website run-
ning Google Analytics will already have the file cached on
their machine. In addition to transmitting information to a
Google server, the tracking code sets first party cookies (If
cookies are enabled in the browser) on each visitor’s com-
puter. These cookies store anonymous information, such as
whether the visitor has been to the site before (new or
returning visitor), the timestamp of the current visit, and the
referrer site or campaign that directed the visitor to the page
(e.g., search engine, keywords, banner, or email). Google
Analytics is further described in an Koozai [td. guide
entitled: “The Practical Guide 1o Google Analytics For
Business”, 2" Edition, published 2013, by Anna Lewis,
Graeme Benge, and Gemma Hollooway, which is incorpo-
rated in its entirety for all purposes as if fully set forth
herein.

DHCP. The Dynamic Host Configuration Protocol
(DHCP) is a standardized networking protocol used on
Internet Protocol (IP) networks for dynamically distributing
network configuration parameters, such as IP addresses for
interfaces and services. With DHCP, network elements
request [P addresses and networking parameters automati-

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
164 of 228

US 10,469,614 B2

49

cally from a DHCP server, reducing the need for a network
administrator or a user to configure these settings manually.

DHCP is typically used by network elements for request-
ing Internet Protocol parameters, such as an IP address from
a network server, and is based on the client-server model.
When a network element connects to a network, its DHCP
client software in the operating system sends a broadcast
query requesting necessary information. Any DHCP server
on the network may service the request. The DHCP server
manages a pool of IP addresses and information about client
configuration parameters such as default gateway, domain
name, the name servers, and time servers. On receiving a
request, the server may respond with specific information
for each client, as previously configured by an administrator,
or with a specific address and any other information valid for
the entire network, and the time period for which the
allocation (lease) is valid. A host typically queries for this
information immediately after booting, and periodically
thereafter before the expiration of the information. When an
assignment is refreshed by the client computer, it initially
requests the same parameter values, and may be assigned a
new address from the server, based on the assignment
policies set by administrators.

Depending on implementation, the DHCP server may
have three methods of allocating [P-addresses: (a) Dynamic
allocation, where a network administrator reserves a range
of IP addresses for DHCP, and each client computer on the
LAN is configured to request an IP address from the DHCP
server during network initialization. The request-and-grant
process uses a lease concept with a controllable time period,
allowing the DHCP server to reclaim (and then reallocate) [P
addresses that are not renewed. (b) Automatic allocation,
where the DHCP server permanently assigns an [P address
to a requesting client from the range defined by the admin-
istrator. This is similar to dynamic allocation, but the DHCP
server keeps a table of past IP address assignments, so that
it can preferentially assign to a client the same IP address
that the client previously had. (c) Static allocation, where the
DHCP server allocates an IP address based on a preconfig-
ured mapping to each client’s MAC address.

DHCP used for Internet Protocol version 4 (IPv4) is
described in IETF RFC 2131, entitled “Dynamic Host Con-
figuration Protocol”, and DHCP for IPv6 is described IETF
RFC 3315, entitled: “Dyramic Host Configuration Protocol
for IPv6 (DHCPv6)”, both incorporated in their entirety for
all purposes as if fully set forth herein. While both versions
serve the same purpose, the details of the protocol for IPv4
and IPv6 are sufficiently different that they may be consid-
ered separate protocols. For IPv6 operation, devices may
alternatively use stateless address autoconfiguration. IPv4
hosts may also use link-local addressing to achieve opera-
tion restricted to the local network link.

The DHCP protocol employs a connectionless service
model, using the User Datagram Protocol (UDP). It is
implemented with two UDP port numbers for its operations,
which are the same as for the BOOTP protocol. The UDP
port number 67 is the destination port of a server, and the
UDP port number 68 is used by the client. DHCP operations
fall into four phases: Server discovery, IP lease offer, IP
request, and IP lease acknowledgment. These stages are
often abbreviated as DORA for discovery, offer, request, and
acknowledgment. The DHCP protocol operation begins with
clients broadcasting a request. If the client and server are on
different subnets, a DHCP Helper or DHCP Relay Agent
may be used. Clients requesting renewal of an existing lease
may communicate directly via an UDP unicast, since the
client already has an established IP address at that point.

10

15

20

25

30

35

40

45

50

55

60

65

50

Redundancy. A redundancy may be used in order to
improve an accuracy, reliability, or availability. The redun-
dancy may be implemented where two or more components
may be used for the same functionality. The components
may be similar, substantially or fully the same, identical,
different, substantially different, or distinct from each other,
or any combination thereof. The redundant components may
be concurrently operated, allowing for improved robustness
and allowing for overcoming a Single Point Of Failure
(SPOF), or alternatively one or more of the components
serves as a backup. The redundancy may be a standby
redundancy, which may be ‘Cold Standby’ and ‘Hot
Standby’. In the case three redundant components are used,
Triple Modular Redundancy (TMR) may be used, and
Quadruple Modular Redundancy (QMR) may be used in the
case of four components. A 1:N Redundancy logic may be
used for three or more components. A communication sys-
tem employing redundancy is described in U.S. Patent
Application No. 2013/0201316 to Binder et al., entitled:
“System and Method for Server Based Control”, and redun-
dancy for carrying audio over the Internet is described in
IETF RFC 2198 entitled: “RTP Payload for Redundant
Audio Data”, both are incorporated in their entirety for all
purposes as if fully set forth herein.

Parallel Redundancy Protocol (PRP) is a data communi-
cation network standardized by the International Electro-
technical Commission (IEC) as IEC 62439-3 Clause 4,
which allows systems to overcome any single network
failure without affecting the data transmission by using
redundancy. Under PRP, each network node has two Ether-
net ports attached to two different local area networks of
arbitrary, but similar topology, and the two LANs are
completely separated and are assumed to be fail-indepen-
dent. A source node sends simultaneously two copies of a
frame, one over each port. The two frames travel through
their respective LANs until they reach a destination node, in
the fault-free case, with a certain time skew. The destination
node accepts the first frame of a pair and discards the second,
taking advantage of a sequence number in each frame that is
incremented for each frame sent. Therefore, as long as one
LAN is operational, the destination always receives one
frame. This protocol provides a zero-time recovery and
allows checking the redundancy continuously to detect
lurking failures. The PRP is described in an ABB Switzer-
land [td. 2012 presentation entitled “Highly Available Auto-
mation Networks Standard Redundancy Methods—Ratio-
nale behind the IEC 63429 standard suite”, and in a Zurich
University tutorial entitled: “Tutorial on Parallel redun-
dancy Protocol (PRP)”, by Prof. Hans Weibel, downloaded
7/2014, both are incorporated in their entirety for all pur-
poses as if fully set forth herein.

Gateway. The term ‘gateway’ is used herein to include,
but not limited to, a network element (or node) that is
equipped for interfacing between networks that uses differ-
ent protocols. A gateway typically contains components
such as protocol translators, impedance matching devices,
rate converters, fault isolators, or signal translators, as
necessary to provide networking interoperability. A gateway
may be a router or a proxy server that routes between
networks, and may operate at any network layer. In a
network for an enterprise, a computer server acting as a
gateway node is often also acting as a proxy server and a
firewall server. A gateway is often associated with both a
router, which knows where to direct a given packet of data
that arrives at the gateway, and a switch, which furnishes the
actual path in and out of the gateway for a given packet.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
165 of 228

US 10,469,614 B2

51

A subnet mask is a mask used to determine what subnet
belongs to an IP address. An IP address has two components,
the network address and the host address. For example,
consider the IP address 150.215.017.009. Assuming this is
part of a Class B network, the first two numbers (150.215)
represent the Class B network address, and the second two
numbers (017.009) identify a particular host on this network.
A subnetting enables the network administrator to further
divide the host part of the address into two or more subnets.
In this case, a part of the host address is reserved to identify
the particular subnet. On an IP network, clients should
automatically send IP packets with a destination outside a
given subnet mask to a network gateway. A subnet mask
defines the IP range of a private network. For example, if a
private network has a base IP address of 192.168.0.0 and has
a subnet mask of 255.255.255.0, then any data going to an
IP address outside of 192.168.0.X will be sent to that
network gateway. While forwarding an IP packet to another
network, the gateway might or might not perform Network
Address Translation (NAT).

Domain Name System (DNS) is a hierarchical distributed
naming system for computers, services, or any resource
connected to the Internet or a private network. It associates
various information with domain names assigned to each of
the participating entities, and translates easily memorized
domain names to the numerical IP addresses needed for the
purpose of locating computer services and devices world-
wide. The DNS is described, for example, in the IETF RFC
3467 entitled: “Role of the Domain Name System (DNS)”, in
the IETF RFC 6195 entitled: “Domain Name System (DNS)
LANA Considerations”, and in the IETF RFC 1591 entitled:
“Domain Name System Structure and Delegation”, which
are incorporated in their entirety for all purposes as if fully
set forth herein.

The ‘404’ or ‘Not Found’ error message is a HTTP
standard response code indicating that the client was able to
communicate with a given gateway or server, but the server
could not find what was requested. The web site hosting
server will typically generate a “404 Not Found” web page
when a user attempts to follow a broken or dead link; hence,
the 404 error is one of the most recognizable errors users can
find on the web. When communicating via HTTP, a server
is required to respond to a request, such as a web browser
request for a web page, with a numeric response code and an
optional, mandatory, or disallowed (based upon the status
code) message. In the code 404, the first digit indicates a
client error, such as a mistyped Uniform Resource Locator
(URL). The following two digits indicate the specific error
encountered. At the HTTP level, a 404 response code is
followed by a human-readable “reason phrase”. The HTTP
specification suggests the phrase “Not Found” and many
web servers by default issue an HTML page that includes
both the 404 code and the “Not Found” phrase.

Referring to FIG. 50 showing a system 500 using a
gateway #1 5054 as an intermediate device between a LAN
503 (which may be the LAN 14 in FIG. 1) and a WAN 502
(which may be the Internet 113). The gateway #1 5054
allows an application 506 in the network element 504 to
communicate with another network element such as a server
501 via the networks. The network element 504 typically
includes a memory, such as the main memory 25q, the
storage device 25¢, or the ROM 255, storing a software 508,
which typically includes the application 506, which uses the
Operating System (OS) 507, which may be associated with
the WDM architecture 430 shown in FIG. 3, or with the
Linux architecture 450 shown in FIG. 3a. As part of initial-
izing of a communication session with the network element

20

25

35

40

45

55

52

501, the OS 507 typically identifies the gateway 505¢ in the
LAN 503, and obtains therefrom the required information
such as an IP address, a DNS server IP, a subnet mask, and
other information to be used before and during the commu-
nication session. The gateway #1 5054 may consist of,
include, be part of, or integrated with, a network router or a
WiFi router.

In consideration of the foregoing, it would be an advance-
ment in the art to provide an improved functionality method
and system that is simple, secure, anonymous, cost-effective,
load balanced, redundant, reliable, provide lower CPU and/
or memory usage, enable pipelining of requests and
responses, reduce network congestion, easy to use, reduce
latency, faster, has a minimum part count, minimum hard-
ware, and/or uses existing and available components, pro-
tocols, programs and applications for providing better qual-
ity of service, overload avoidance, better or optimal
resources allocation, better communication and additional
functionalities, and provides a better user experience.

SUMMARY

A system may comprise multiple data servers and mul-
tiple client and tunnel devices, each data server may be
storing a respective content that may be fetched by the client
devices via the Internet. The tunnel devices may be used as
intermediate devices (or nodes). Upon initializing of the
client and tunnel devices (such as upon powering up or upon
launching the applicable software application), they sign-in
with an acceleration server, which stores an identification
(such as IP address) of each of the client and tunnel devices.
A client device, which may be requesting a content from a
data server, first communicates with the acceleration server
to receive a list of the available tunnel devices. The client
device may then select one (or more) tunnel device, and then
executes a pre-connection process with the selected tunnel
device. Upon determining the need for a content to be
fetched from the data server, the client device sends a
request to the tunnel device, which in turn fetches the
required content from the data server, and sends the fetched
content to the client device. Each of the devices (client or
tunnel) and each of the servers (acceleration or data) may be
identified in the Internet using an IP address that may be in
an IPv4 or IPv6 form. Alternatively or in addition to using
an intermediary device such as the tunnel device (or multiple
tunnel devices), the client device may directly access and
fetch content from the data server, without using any inter-
mediate device such as a tunnel device. A device may be
both a client device and a tunnel device, and the roles may
be assumed one at a time, or may be employed in parallel
using multitasking or multiprocessing.

The required communication of requests and content
between the client device and the selected tunnel device may
be preceded by a pre-connection phase used for establishing
a connection between the devices, which may be later used
for the required request or content transfer. The devices may
communicate using VPN or TCP, and a connection may be
established by performing ‘Active OPEN’ or ‘Passive
OPEN’. The content may include files, text, numbers, audio,
voice, multimedia, video, images, music, computer pro-
grams or any other sequence of instructions, as well as any
other form of information represented as a string of bits or
bytes. In one example, the content may include, be a part of,
or a whole of, a web site page.

One or a plurality of tunnel devices may be used. Further,
a device may directly access the data server, hence acting as
its own tunnel device. The selection of a tunnel or of

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
166 of 228

US 10,469,614 B2

53

multiple tunnels to be used by the client device may be based
on pre-set criteria. The selection may use various attributes
or characteristics of the tunnel devices, its operation envi-
ronment, history, and any other characteristics. The attri-
butes associated with each tunnel device may be stored in
the acceleration server, and sent to the client device as part
of the available tunnel devices list, so that the client device
may use these attributes for the selection process. The
criteria herein may be used independently or in combination.

54

further comprise the steps of the third device sending the
fourth identifier to the first server; in response to receiving
the fourth identifier, the first server storing the fourth iden-
tifier; in response to receiving the first request, the first
server sending the fourth identifier to the first device; the
first device sending a third request to the third device using
the fourth identifier, the third request includes the first
content identification and the third identifier; in response to
receiving the third request, the third device sending the first

I.n yet another altf:rnatlve, the selection may be based on a 10 content identification to the second server using the third
timing, such as Time-Of-Day (TOD) or a day of the week. ‘dentifier: i t ivine the first content identifi-
The tunnel device (or devices) to be used may be ran- IGCNULCE 10 TeSpOnse fo recerving the Hrst content 1entl
domly selected; using a random number generator may be catlgn, the se.cond server sendlng.th.e first content to the third
based on a physical process, or may be software based using deylce; aI}d in response to receiving the first content, .the
pseudo-random numbers. Alternatively or in addition, the 15 third device sending the first content to the first device.
tunnel device (or devices) to be used may be selected based 1 hese steps may be performed before, after, or concurrently
on physical geographical location, such as based on the (using multitasking or multiprocessing) with any of the

physical proximity to another device in the system, such as former steps.
the data server. Alternatively or in addition, the tunnel The method may further be used with a group consisting
device (or devices) to be used may be selected based on their 20 of a plurality of devices, each associated with a respective
IP address or addresses. Alternatively or in addition, the identifier for being identified in the Internet, for each of the
tunnel device (or devices) to be used may be selected based devices in the group the method further comprising the steps
on their sign-in time, or the time of its last activity as a of the group device sending the associated identifier to the
tunnel. first server; and in response to receiving the associated
The content requested by the client device may be parti- 25 identifier, the first server storing the associated identifier.
tioned into multiple parts or ‘slices’. Any number of slices Further, in response to receiving the first request, the first
may be used. The slicing may be in a bit, nibble (4-bits), byte server may be sending the identifiers of all the devices in the
(8-bits), word (multiple bytes), character, string, or a file group to the first device. The method may further comprise
level. The partition may be into equal length parts, or may the steps of the first device sending a third request to the
use different length slicing. The content may be composed of 30 group device using the device associated identifier, the third
inherent or identifiable parts or segments, and the partition request includes the first content identification and the third
may make use of these parts. The content may be a website identifier; in response to receiving the third request, the
content composed of multiple webpages, and each slice may group device sending the first content identification to the
include one (or few) webpages. Further, the partition may be second server using the third identifier; in response to
sequential or non-sequential in the content. The partitioning 35 receiving the first content identification, the second server
may be non-overlapping or overlapping. sending the first content to the group device; and in response
A method is disclosed for fetching over the Internet a first to receiving the first content, the group device sending the
content, identified by a first content identification, by a first first content to the first device.
device, identified in the Internet by a first identifier, from a The second device may be included as part of the group,
second server identified in the Internet by a third identifier 40 and the method may further comprise a step of selecting the
via a second device identified in the Internet by a second second device out of the devices in the group. The first
identifier, by using a first server. The method may be server may select the second device out of the devices in the
comprising the steps of the second device sending the group, and in the first server may send the second identifier
second identifier to the first server; in response to receiving to the first device in response to the selection. Further, the
the second identifier, the first server storing the second 45 first server may send the identifiers of all the devices in the
identifier; the first device sending a first request to the first group to the first device, followed by a step of the first device
server; in response to receiving the first request, the first selecting the second device. Further, the method may
server sending the second identifier to the first device; the include a step of selecting one or more devices, distinct from
first device sending a second request to the second device the second device, out of the devices in the group.
using the second identifier, the second request includes the 50 The second device may be randomly selected out of the
first content identification and the third identifier; in devices in the group using one or more random numbers
response to receiving the second request, the second device generated by a random number generator. The random
sending the first content identification to the second server number generator may be hardware based using thermal
using the third identifier; in response to receiving the first noise, shot noise, nuclear decaying radiation, photoelectric
content identification, the second server sending the first 55 effect, or quantum phenomena. Alternatively or in addition,
content to the second device; and in response to receiving the random number generator may be software based, based
the first content, the second device sending the first content on executing an algorithm for generating pseudo-random
to the first device. numbers. The second device may be selected based on
The method may further comprise the following steps of attributes or characteristics of the device.
the first device sending the first content identification to the 60 The second device may be selected based on the physical
second server using the third identifier; and in response to geographical location, and the method may comprise for
receiving the first content identification, the second server each of the devices in the group the step of sending the
sending the first content to the first device. These steps may device physical geographical location to the first server,
be performed before, after, or concurrently (using multitask- followed by the step of the first server storing the received
ing or multiprocessing) with any of the former steps. 65 group device physical geographical location. The physical

The method may further be used with a third device
identified in the Internet by a fourth identifier, and may

geographical location may include at least one out of a
continent, a country, a state or province, a city, a street, a ZIP

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
167 of 228

US 10,469,614 B2

55

code, or a longitude and a latitude. The second device may
be selected based on the physical geographical proximity to
the second server.

The second device may be selected based on the second
identifier, the second identifier may be an IP address, and the
second device may be selected based on its IP address.
Alternatively or in addition, the second device may be
selected based on comparing the second identifier to the
third identifier. Alternatively or in addition, the second

56

second device. The method may further comprising of the
step of sending the first content identification to the second
server using the third identifier. These steps may be per-
formed before, after, or concurrently (using multitasking or
multiprocessing) with any of the former steps.

The method may further be used with a third device
identified in the Internet by a fourth identifier, and may
further comprise the steps of receiving the fourth identifier
from the first server; sending a third request to the third

device may be selected based on past activities, such as 10 device using the fourth identifier, the third request includes
based on the timing of an event. The event may be a last or the first content identification and the third identifier; and
previous communication between the second device and the receiving the first content from the third device. These steps
first device, the last communication between the second may be performed before, after, or concurrently (using
device and the first server, or the last communication multitasking or multiprocessing) with any of the former
between the second device and the second server. These 15 steps.
steps may be performed before, after, or concurrently (using The method may further be used with a group consisting
multitasking or multiprocessing) with any of the former of a plurality of devices, each device in the group may be
steps. associated with a respective identifier for being identified in
Each of the identifiers herein may be a URL or an IP the Internet, and may further comprise the steps of receiving
address in IPv4 or IPv6 form. Any one of the servers herein 20 the identifiers of the group devices from the first server;
may be a web server using Hyper Text Transfer Protocol sending a third request to the group devices using their
(HTTP) that responds to HT'TP requests via the Internet, and associated identifiers, the third request includes the first
any request herein may be an HTTP request. Any commu- content identification and the third identifier; and receiving
nication herein may be based on, or according to, TCP/IP the first content from the group devices. The second device
protocol or connection, and may be preceded by the step of 25 may be included in the group, and the method may further
establishing a connection, such as an ‘Active OPEN’ or a comprise a step of selecting the second device out of the
‘Passive OPEN’. Alternatively or in addition, any commu- devices in the group, or the step of selecting one or more
nication herein may be based on, or use a VPN or a tunneling devices, distinct from the second device, out of the devices
protocol. Any content herein may include, consist of, or in the group.
comprise, part or whole of files, text, numbers, audio, voice, 30 The method may further be used for fetching over the
multimedia, video, images, music, or computer program, or Internet a second content, identified by a second content
may include, consists of, or comprise, a part of, or a whole identification, by a third device, identified in the Internet by
of, a website page. a fourth identifier, from a third server identified in the
The method may be used for fetching over the Internet a Internet by a fifth identifier, via the first device. The method
second content, identified by a second content identification, 35 may further comprise steps of receiving a third request from
by a third device identified in the Internet by a fourth the third device, the third request includes the second
identifier, from a third server identified in the Internet by a content identification and the fifth identifier; in response to
fifth identifier, via the first device, and may further com- receiving the third request, sending the second content
prising the steps of the third device sending a third request identification to the third server using the fifth identifier;
to the first server; in response to receiving the third request, 40 receiving the second content from the third server; and in
the first server sending the first identifier to the third device; response to receiving the second content, sending the second
the third device sending a fourth request to the first device content to the third device using the fourth identifier. The
using the first identifier, the fourth request includes the third server may be distinct from the second server, or the
second content identification and the fifth identifier; in third server and the second server are the same server. The
response to receiving the fourth request, the first device 45 second content may be distinct from the first content, or the
sending the second content identification to the third server second content and the first content may be the same
using the fifth identifier; in response to receiving the second content.
content identification, the third server sending the second A tunnel device may be identified in the Internet by a
content to the first device; and in response to receiving the second identifier execute a method for fetching over the
second content, the first device sending the second content 50 Internet a first content, identified by a first content identifi-
to the third device. The third server may be distinct from, or cation, by a first device, identified in the Internet by a first
the same device as, the second server. The third device may identifier, from a second server identified in the Internet by
be distinct from, or the same device as, the second device. a third identifier using a first server. The method may
The second content may be distinct from, or the same comprise the steps of sending the second identifier to the first
content as, the first content. 55 server; receiving a second request from the first device, the
A client device may be a first device identified in the second request includes the first content identification and
Internet by a first identifier, executing a method for fetching the third identifier; in response to receiving the second
over the Internet a first content, identified by a first content, request, sending the first content identification to the second
from a second server identified in the Internet by a third server using the third identifier; receiving the first content
identifier, via a second device identified in the Internet by a 60 from the second server; and in response to receiving the first
second identifier, using a first server. The method may content, sending the first content to the first device using the
include the steps of sending the first identifier to the first first identification.
server; sending a first request to the first server; receiving the An acceleration server may execute a method for fetching
second identifier from the first server; sending a second over the Internet a first content, identified by a first content
request to the second device using the second identifier, the 65 identification, by a first device identified in the Internet by

second request includes the first content identification and
the third identifier; and receiving the first content from the

a first identifier, from a second server identified in the
Internet by a third identifier via a second device identified in

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
168 of 228

US 10,469,614 B2

57

the Internet by a second identifier. The method may com-
prise steps of receiving the second identifier from the second
device; in response to receiving the second identifier, storing
the second identifier; receiving a first request from the first
device; and in response to receiving a first request, sending
the second identifier to the first device. The method may
further be used with a third device identified in the Internet
by a fourth identifier, and may comprise the steps of receiv-
ing the fourth identifier from the third device; in response to

58

associated group device identifier, the method comprising a
step of partitioning the content into a plurality of content
slices, each content slice containing at least part of the
content, and identified using a content slice identifier. For
each of the content slices, the method may comprise steps of
selecting a device from the group; sending a first request to
the selected device using the selected device identifier, the
first request including the content slice identifier and the
second identifier; receiving the content slice from the

receiving the fourth identifier, storing the fourth identifier; 10 selected device; and constructing the content from the
and in response to receiving the first request, sending the received content slices.
fourth identifier to the first device. A method is disclosed for fetching over the Internet a first
The method may further be used with a group consisting content, identified by a first content identifier, by a first
of a plurality of devices; each device in the group may be device, identified in the Internet by a first identifier, from a
associated with a respective identifier for being identified in 15 second server identified in the Internet by a third identifier
the Internet, for each of the group devices in the group. The via a second device identified in the Internet by a second
method may comprise steps of receiving the associated identifier, using a first server. The method may comprise the
identifier from the group device; in response to receiving the steps of the second device sending the second identifier to
associated identifier, storing the associated identifier; and in the first server; in response to receiving the second identifier,
response to receiving the first request, sending the identifier 20 the first server storing the second identifier; the first device
of all group devices to the first device. The second device sending a first request to the first server; in response to
may be included as part of the group, and the method may receiving the first request, the first server sending the second
further comprise the step of selecting the second device out identifier to the first device; the first device sending a second
of the devices in the group, and the sending the second request to the second device using the second identifier, the
identifier to the first device may be in response to the 25 second request includes the first content identifier and the
selection. third identifier; in response to receiving the second request,
A method is disclosed for fetching a content over the the second device sending the first content identifier to the
Internet by a first device identified in the Internet by a first second server using the third identifier; in response to
identifier, from a first server identified in the Internet by a receiving the first content identifier, the second server send-
second identifier via a group of multiple devices each 30 ing the first content to the second device; and in response to
identified in the Internet by an associated group device receiving the first content, the second device sending the first
identifier. The method may comprise a step of partitioning content to the first device. Alternatively or in addition, the
the content into a plurality of content slices, each content method may comprise the additional steps of the first device
slice containing at least part of the content, and identified sending the first content identifier to the second server using
using a content slice identifier. For each of the content slices, 35 the third identifier; and in response to receiving the first
the method may comprise steps of selecting a device from content identifier, the second server sending the first content
the group; the first device sending a first request to the to the first device. These additional steps may precede any
selected device using the selected device identifier, the first of the other steps, follow any of the other steps, or may be
request including the content slice identifier and a second executed simultaneously with any one of the other steps
identifier; in response to receiving the first request, the 40 using multitasking or multiprocessing.
selected device sending a second request to the first server Alternatively or in addition, the method may be for use
using the second identifier, the second request including the with a third device identified in the Internet by a fourth
content slice identifier; in response to receiving the second identifier, and may further comprising the steps of the third
request, the first server sending the content slice to the device sending the fourth identifier to the first server; in
selected device; and in response to receiving the content 45 response to receiving the fourth identifier, the first server
slice, the selected device sending the content slice to the first storing the fourth identifier; in response to receiving the first
device. request, the first server sending the fourth identifier to the
The content may be composed of bits, nibbles, bytes, first device; the first device sending a third request to the
characters, words, or strings, and the partitioning may be third device using the fourth identifier, the third request
based on bit, nibble, byte, multi-byte, number, character, 50 includes the first content identifier and the third identifier; in
word, or string level, or may be composed of files, or response to receiving the third request, the third device
programs, and the partitioning may be based on file or sending the first content identifier to the second server using
program level. Alternatively or in addition, the content may the third identifier; in response to receiving the first content
be a website content comprising multiple webpages, and the identifier, the second server sending the first content to the
partitioning may be based webpages level. All the parts of 55 third device; and in response to receiving the first content,
the content may be included in all of the content slices. All the third device sending the first content to the first device.
of the content slices may be having a same size. A part of the Alternatively or in addition, the method may be for use
content may be included in two or more content slices. The with a group consisting of a plurality of devices, each
partitioning may be sequential or non-sequential in the associated with a respective identifier for being identified in
content. The number of content slices may be equal to, 60 the Internet, for each of the devices in the group, and the
higher than, or lower than, the number of devices in the method may further comprise the steps of the group device
group. A distinct device may be selected for each content sending the associated identifier to the first server; and in
slice response to receiving the associated identifier, the first server
A method to be executed by a device is disclosed for storing the associated identifier. Alternatively or in addition,
fetching a content over the Internet from a first server 65 the method may comprise the step of in response to receiv-

identified in the Internet by a second identifier via a group
of multiple devices each identified in the Internet by an

ing the first request, the first server sending the identifiers of
all the devices in the group to the first device. Alternatively

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
169 of 228

US 10,469,614 B2

59

or in addition, for each of the group devices in the group, the
method may further comprise the steps of the first device
sending a third request to the group device using the device
associated identifier, the third request includes the first
content identifier and the third identifier; in response to
receiving the third request, the group device sending the first
content identifier to the second server using the third iden-
tifier; in response to receiving the first content identifier, the
second server sending the first content to the group device;

60

first device sending the second content to the third device.
The third server may be distinct from, or the same as, the
second server, the third device may be distinct from, or the
same as, the second device, and the second content may be
distinct from, or the same as, the first content. The method
may further comprise the steps of the first device receiving
the first content from the second device; and the first device
storing the first content in a memory.

Further, a method is disclosed for fetching over the

and in response to receiving the first content, the group 10 Internet a first content, identified by a first content identifier,
device sending the first content to the first device. by a first device, identified in the Internet by a first identifier,
The second device may be included in the group, the from a second server identified in the Internet by a third
method may further comprise the step of selecting the identifier via a second device identified in the Internet by a
second device out of the devices in the group by the first second identifier, using a first server. The method may
server, and the first server may be sending the second 15 comprise the steps of sending the first identifier to the first
identifier to the first device in response to the selection. server; sending a first request to the first server; receiving the
Alternatively or in addition, the method may comprise the second identifier from the first server; sending a second
step of the first server may be sending the identifiers of all request to the second device using the second identifier, the
devices and the group to the first device, followed by a step second request includes the first content identifier and the
of the first device selecting the second device. Alternatively 20 third identifier; and receiving the first content from the
or in addition, the method may comprise the step of selecting second device. The method may be further for use with a
2,3,4,5,6,7,8,9, 10, or more than 10 devices, distinct from third device identified in the Internet by a fourth identifier,
the second device, out of the devices in the group. The and may further comprise the steps of receiving the fourth
second device may be randomly selected out of the devices identifier from the first server; sending a third request to the
in the group, such as being randomly selected using one or 25 third device using the fourth identifier, the third request
more random numbers generated by a random number includes the first content identifier and the third identifier;
generator. The random number generator may be software and receiving the first content from the third device.
based, such as based on executing an algorithm for gener- The method may further for use with a group consisting
ating pseudo-random numbers. Alternatively or in addition, of a plurality of devices, each device in the group may be
the second device may be selected based on attributes or 30 associated with a respective identifier for being identified in
characteristics of the device, or based on the device physical the Internet, and may further comprise the steps of receiving
geographical location. Further, for each of the devices in the the identifiers of the group devices from the first server;
group, the method may comprise the steps of sending the sending a third request to the group device using their
device physical geographical location to the first server, associated identifiers, the third request includes the first
followed by the step of the first server storing the received 35 content identifier and the third identifier; and receiving the
group device physical geographical location. The physical first content from the group devices. The second device may
geographical location may include a continent, a country, a be included in the group, and the method may further
state or province, a city, a street, a ZIP code, or longitude and comprise the step of selecting the second device out of the
latitude, and the second device may be selected based on the devices in the group. Further, one or more devices, distinct
physical geographical proximity to the second server. The 40 from the second device, may be selected out of the devices
second device may be selected based on the second identifier in the group. The second device may be randomly selected
that may be an IP address, and the second device may be out of the devices in the group, may be selected based on
selected based on its IP address, or the second device may attributes or characteristics of the device. Alternatively or in
be selected based on comparing the second identifier to the addition, the selection may be based on a physical geo-
third identifier. Alternatively or in addition, the second 45 graphical location, such as on the physical geographical
device may be selected based on past activities, or based on proximity to the second server. Further, the second device
the timing of an event, wherein the event may be the last may be selected based on the second identifier, based on past
communication between the second device and the first activities, or based on the timing of an event.
device, may be the last communication between the second Further, the method may be for fetching over the Internet
device and the first server, or may be the last communication 50 asecond content, identified by a second content identifier, by
between the second device and the second server. a third device, identified in the Internet by a fourth identifier,
The method may be used for fetching over the Internet a from a third server identified in the Internet by a fifth
second content, identified by a second content identifier, by identifier, via the first device, the method may further
a third device, identified in the Internet by a fourth identifier, comprise the steps of receiving a third request from the third
from a third server identified in the Internet by a fifth 55 device, where the third request includes the second content
identifier, via the first device, the method further comprising identifier and the fifth identifier; in response to receiving the
the steps of the third device sending a third request to the third request, sending the second content identifier to the
first server; in response to receiving the third request, the third server using the fifth identifier; receiving the second
first server sending the first identifier to the third device; the content from the third server; and in response to receiving
third device sending a fourth request to the first device using 60 the second content, sending the second content to the third
the first identifier, the fourth request includes the second device using the fourth identifier. The third server may be
content identifier and the fifth identifier; in response to distinct from, or same as, the second server. The second
receiving the fourth request, the first device sending the content may be distinct from, or same as, the first content.
second content identifier to the third server using the fifth A method is disclosed for fetching over the Internet a first
identifier; in response to receiving the second content iden- 65 content, identified by a first content identifier, by a first

tifier, the third server sending the second content to the first
device; and in response to receiving the second content, the

device, identified in the Internet by a first identifier, from a
second server identified in the Internet by a third identifier

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
170 of 228

US 10,469,614 B2

61

via a second device identified in the Internet by a second
identifier, using a first server. The method may comprise the
steps of sending the second identifier to the first server;
receiving a second request from the first device, the second
request includes the first content identifier and the third
identifier; in response to receiving the second request, send-
ing the first content identifier to the second server using the
third identifier; receiving the first content from the second
server; and in response to receiving the first content, sending

62

using the selected device identifier, the first request includ-
ing the content slice identifier and the second identifier;
receiving the content slice from the selected device; and
constructing the content from the received content slices.
A content herein may be composed of bits, nibbles, bytes,
characters, words, or strings, and the partitioning may be
based on bit, nibble, byte, multi-byte, number, character,
word, or string level. Alternatively or in addition, a content
herein may be composed of files or programs, and the

the first content to the first device using the first identifier. 10 artition be based on fil level. Furth
A method is disclosed for fetching over the Internet a first ph 1HOMNg may be ase bo.n © Of programm fevel. ul . elr,
content, identified by a first content identifier, by a first the content may be a we 51.te content comprising multiple
device, identified in the Internet by a first identifier, from a webpages, and the partitioning may be? based on webpages
second server identified in the Internet by a third identifier level. All Parts of the content may be included in all Of the
via a second device identified in the Internet by a second 15 content shce?s, and two or more, or all of the content slices,
identifier, using a first server, the method may comprise the ~ may be having the same size. Two or more of the content
steps of receiving the second identifier from the second slices may include the same information. Further, the same
device; in response to receiving the second identifier, storing part of the content may be included in two or more content
the second identifier; receiving a first request from the first slices. The partitioning may be sequential or non-sequential
device; and in response to receiving a first request, sending 20 in the content, and the number of the content slices may be
the second identifier to the first device. The method may for equal to, higher than, or lower than, the number of devices
use with a third device identified in the Internet by a fourth in the group. A distinct device may be selected for each
identifier, and may further comprise the steps of receiving content slice.
the fourth identifier from the third device; in response to The first device may consist of, comprise, or be part of,
receiving the fourth identifier, storing the fourth identifier; 25 any network element. In one example, the first device may
and in response to receiving the first request, sending the consist of, comprise, or be part of, a client device, such as
fourth identifier to the first device. The method may be used the client device #1. The first server may consist of, com-
with a group consisting of a plurality of devices; each device prise, or be part of, any network element. In one example,
in the group may be associated with a respective identifier the first server may consist of, comprise, or be part of, the
for being identified in the Internet. For each of the group 30 acceleration server. The second server may consist of, com-
devices in the group, the method further comprising the prise, or be part of, any network element. In one example,
steps of receiving the associated identifier from the group the second server may consist of, comprise, or be part of, a
device; in response to receiving the associated identifier, data server, such as the data server #1. The third server may
storing the associated identifier; and in response to receiving consist of, comprise, or be part of, any network element. In
the first request, sending the identifier of all group devices 35 one example, the third server may consist of, comprise, or be
to the first device. part of, a data server, such as the data server #2. The second
A method is disclosed for fetching a content over the device may consist of, comprise, or be part of, any network
Internet by a first device identified in the Internet by a first element. In one example, the second device may consist of,
identifier, from a first server identified in the Internet by a comprise, or be part of, a tunnel device, such as the tunnel
second identifier is a group of multiple devices, each iden- 40 device #1. The third device may consist of, comprise, or be
tified in the Internet by an associated group device identifier, part of, any network element. Alternatively or in addition,
the method comprising the step of partitioning the content the third device may consist of, comprise, or be part of, a
into a plurality of content slices, each content slice contain- client device, such as the client device #2.
ing at least part of the content, and identified using a content A method is disclosed for a first device fetching over the
slice identifier, and for each of the content slices. The 45 Internet a first content, identified by a first content identifier,
method may comprise the steps of selecting a device from stored in a first server that may be identified in the Internet
the group; the first device sending a first request to the by a first identifier, where the first content may be composed
selected device using the selected device identifier, the first of multiple content parts, and each content part may be
request including the content slice identifier and the second identified by a respective content part identifier. The method
identifier; in response to receiving the first request, the 50 may be for use with a group of devices, each storing a copy
selected device sending a second request to the first server of at least one content part and each group device may be
using the second identifier, the second request including the identified in the internet by a respective group device
content slice identifier; in response to receiving the second identifier, and may be further for use with a second device
request, the first server sending the content slice to the identified in the Internet by a second identifier and storing
selected device; and in response to receiving the content 55 the group device identifiers, and furthermore for use with a
slice, the selected device sending the content slice to the first second server. The method may comprise the steps of the
device. first device sending the first content identifier to the second
A method is disclosed for fetching a content over the server; in response to receiving the first content identifier,
Internet from a first server identified in the Internet by a the second server sending the second identifier to the first
second identifier via a group of multiple devices, each 60 device; the first device sending the first content identifier to
identified in the Internet by an associated group device the second device using the second identifier; and in
identifier, the method may comprise the step of partitioning response to receiving the first content identifier, the second
the content into a plurality of content slices, each content device sending the group devices identifiers to the first
slice containing at least part of the content, and identified device. Further, for each one out of the group devices
using a content slice identifier. For each of the content slices, 65 identifiers, the method may comprise the steps of the first

the method may comprise the steps of selecting a device
from the group; sending a first request to the selected device

device sending a content part identifier to the group device
using the group device identifier; and in response to receiv-

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
171 of 228

US 10,469,614 B2

63

ing the content part identifier, the group device sending the
content part identified by the content part identifier to the
first device.

The first device may consist of, comprise, or be part of,
any network element. In one example, the first device may
consist of, comprise, or be part of, a client device, such as
the client device #1. The first server may consist of, com-
prise, or be part of, any network element. In one example,
the first server may consist of, comprise, or be part of, the

64

steps may precede, follow, or be executed concurrently, with
any one of the previously mentioned steps, using multitask-
ing or multiprocessing

The method may be for use with a second group consist-
ing of a plurality of devices, each associated with a respec-
tive identifier for being identified in the Internet, the second
group including the second device, wherein in response to
receiving the first content identifier, the second server send-
ing the identifiers of all devices in the second group to the

. . 10 first device, and may further comprise the step of selecting
acceleration server. The second server may consist of, com- . .

. be part of. anv network element. In one example the second device from the second group. The s.econd device
Prise, or be > any et . Pie, may be randomly selected out of the devices in the group,
the second server may consist of, comprise, or be part of, a -

. using one or more random numbers generated by a random
data Server, such as the data server #1. The third server may number generator. The random number generator may be
consist of, Comprise, or be part of, any network ele.ment. In 5 hardware based, and may be using thermal noise, shot noise,
one example, the third server may consist of, comprise, or be nuclear decaying radiation, photoelectric effect, or quantum
part of, a data server, such as the data server #2. The second phenomena. Alternatively or in addition, the random number
device may consist of, comprise, or be part of, any network generator may be software based, and may be based on
element. In one example, the second device may consist Of, executing an algonthnl for generating pseudo_random num-
comprise, or be part of, a tunnel device, such as the agent 20 bers. Alternatively or in addition, the second device may be
device #1. Any device included in the group of devices may selected based on attributes or characteristics of the device.
consist of, comprise, or be part of, any network element. Further, the second device may be selected based on the
Alternatively or in addition, a group device may consist of, physical geographical location, and the method may further
comprise, or be part of, a peer device, such as the peer device comprise for each of the devices in the second group, the
#2. 25 steps of sending the device physical geographical location to

The first server may be a web server, and the first content ~ the first device, followed by the step of the first device
may be a web-site, a web-page, or a URL, and the first storing the received second group devices physical geo-
content identifier may be an IP address, URL, or an HTTP graphlcal locat.lon. The physical geographical .locatlon.may
header. The first identifier may be the first server IP address, include a continent, a country, a state Or provinee, a C,lty’ a
the second identifier may be the second IP address, and each 30 street, or a ZIP code, as W?H as longitude and latitude.

s . Furthermore, the second device may be selected based on
of the group devices identifier may be an IP address or the
; . the physical geographical proximity to the first device.
respective group device. The first content may be composed . : L. .
. . . Alternatively or in addition, the second device may be
of bits, nibbles, bytes, characters, words, or strings, and the . . .

R . selected based on the second identifier, which may be an IP
content parts may be based on blt’ nibble, by.te.:, multl-byte, 35 address, where the second device may be selected based on
number, character, word, or string leV.el partltlomng of the its IP address, or based on comparing the second identifier
first content, and the first content may include, consistof, or (4, 5 first device identifier. Further, the second device may be
comprise, part or whole of files, text, numbers, audio, voice, selected based on past activities, or based on the timing of
multimedia, video, images, music, or computer program. an event, such as the last communication between the second
Alternatively or in addition, the first content may include, be 40 device and the first device. Furthermore, the second device
composed of, consist of, or comprise, a part of, or a whole may be selected based on the ISP used to connect the second
of, files or programs, and the content parts may be based on device to the Internet.
file level or program level partitioning of the first content. One or more of the group devices may be storing the first
Further, the first content may be a website content compris- content. Alternatively or in addition, all of the group devices
ing multiple webpages, and the content parts may be based 45 may be storing the first content. Alternatively or in addition,
on webpages level partitioning of the first content. All the at least one of, or all of, the group devices may be storing
components of the first content may be included in all of the only one content part. Each of the identifiers may be an IP
content parts. The method may further comprise the step of address (such as in IPv4 or IPv6 form) or a URL. At least one
the first device reconstructing the first content from the of'the servers may be a web server using HyperText Transfer
received multiple content parts. Part of, or all of, the content 50 Protocol (HTTP) that responds to HTTP requests (such as
parts may be having the same size, that may be 8 KB, 16 KB, the first and second requests) the via the Internet. Further, the
32 KB, or 64 KB. Two or more content parts may be communication with the second server may be based on, or
identical and may contain the same data. A same portion of using, HTTP persistent connection. Furthermore, the com-
the first content may be included in two or more content munication with the first device, the second device, one of
parts. The content parts may be a result of a sequential, or 55 the group devices, the first server, or the second server, may
a non-sequential, partitioning of the first content. The num- be based on, or may be according to, TCP/IP protocol or
ber of content parts may be equal to the number of group connection.
devices in the group. Each of the content part identifiers may The method may further comprise the step of establishing
be a hash value that may be the result of a hash function of a connection between the first device and the second device
the respective data in the content part, such as a checksum 60 in response to receiving the second identifier, and the first
or CRC of the respective data in the content part. The CRC device may be communicating with the second device over
may be CRC-8, CRC-16. CRC-32, or CRC-64. the established connection. Further, the first device may be

The method may further comprise the steps of the first communicating with the second device using TCP, wherein
device sending the first content identifier to the first server the connection may be established by performing ‘Active
using the first identifier; and in response to receiving the first 65 OPEN’ or ‘Passive OPEN’. Alternatively or in addition, the

content identifier, the first server may be sending the part of,
or the whole of, the first content to the first device. These

first device may be communicating with the second device
using a VPN or a tunneling protocol, and the connection may

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
172 of 228

US 10,469,614 B2

65

be established using authentication. Further, the method may
comprise the step of of establishing a connection between
the first device and at least one of the group devices in
response to receiving the group devices identifiers. The first
device may be communicating with at least one of; or all of,
the group devices over established connections. The first
device may be communicating with at least one of the group
devices using TCP, and the connection may be established
by performing ‘Active OPEN’ or ‘Passive OPEN’. Alterna-

66

be the same device or distinct devices, and the fourth device
may be the same as one of the group devices. The fifth
device may consist of, comprise, or be part of, any network
element. In one example, the fifth device may consist of,
comprise, or be part of, an agent device, such as the agent
device #2.

The fourth device and the second device may be the same
device or distinct devices. The fourth device may be the
same as one of the group devices. Further, the fifth device

tively or in addition, the first device may be communicating 10 and the second device may be the same device. Alternatively
with at least one of the group devices using a VPN or using or in addition, the fifth device and the one of the group
a tunneling protocol. Any of the connections may be using devices may be the same device.
authentication. A method is disclosed for fetching over the Internet a first
The method according may further used with a fourth content, identified by a first content identifier, stored in a first
device fetching over the Internet a second content, identified 15 server that may be identified in the Internet by a first
by a second content identifier, stored in a second server that identifier, the first content may be composed of multiple
may be identified in the Internet by a fifth identifier, the content parts, each content part may be identified by a
second content may be composed of multiple second content respective content part identifier. The method may be used
parts, each second content part may be identified by a with a group of devices each storing a copy of at least one
respective second content part identifier, and may be for use 20 content part and each group device may be identified in the
with a second group of devices each storing a copy of at least internet by a respective group device identifier, may be for
one second content part and each second group device may use with a second device identified in the Internet by a
be identified in the internet by a respective second group second identifier and storing the group device identifiers,
device identifier, where the first device may be identified in and may be used with a second server. The method may
the Internet by a third identifier. The method may further 25 comprise the steps of sending the first content identifier to
comprise the steps of the fourth device sending the second the second server; receiving the second identifier from the
content identifier to the second server; in response to receiv- second server; sending the first content identifier to the
ing the second content identifier, the second server sending second device using the second identifier; and receiving the
the third identifier to the fourth device; the fourth device group devices identifiers from the second device. For each
sending the second content identifier to the first device using 30 one out of the group devices identifiers, the method may
the third identifier; and in response to receiving the second further comprise the steps of sending a content part identifier
content identifier, the first device sending the second group to the group device using the group device identifier; and
devices identifiers to the fourth device. receiving from the group device the content part identified
The method may further be used with a fourth device by the content part identifier. The method may further
fetching over the Internet a second content, identified by a 35 comprise the steps of sending the first content identifier to
second content identifier, stored in a second server that may the first server using the first identifier; and receiving the part
be identified in the Internet by a fifth identifier, the second of, or the whole of, the first content, from the first server.
content may be composed of multiple second content parts, A method is disclosed for a first device fetching over the
each second content part may be identified by a respective Internet a first content, identified by a first content identifier,
second content part identifier, and may be further for use 40 stored in a first server that may be identified in the Internet
with a second group of devices each storing a copy of at least by a first identifier, the first content may be composed of
one second content part and each second group device is multiple content parts, each content part may be identified
identified in the internet by a respective second group device by a respective content part identifier, for use with a group
identifier where the first device may be identified in the of'devices each storing a copy of at least one content part and
Internet by a third identifier and may be storing at least one 45 each group device may be identified in the internet by a
of the second content parts, and may be for use with a fifth respective group device identifier. The method may be used
device fetching identified in the Internet by a fifth identifier with a second device identified in the Internet by a second
and storing the third identifier. The method may further identifier and storing the group device identifiers, and may
comprise the steps of the fourth device sending the second further be for use with a second server. The method may
content identifier to the second server; in response to receiv- 50 comprise the steps of receiving the first content identifier
ing the second content identifier, the second server sending from the first device; and sending the group devices iden-
the fifth identifier to the fourth device; the fourth device tifiers to the first device.
sending the second content identifier to the fifth device using A method for a first device fetching over the Internet a
the fifth identifier; in response to receiving the second first content, identified by a first content identifier, stored in
content identifier, the fourth device sending the third iden- 55 a first server that may be identified in the Internet by a first
tifier to the fourth device; the fourth device sending the identifier, the first content may be composed of multiple
identifier of the at least one second content part stored in the content parts, where each content part may be identified by
first device to the first device using the third identifier; and a respective content part identifier, is disclosed. The method
in response to receiving the identifier of the at least one may comprise the steps of storing a content part identified by
second content part, the first device sending the at least one 60 a content part identifier; receiving from the first device
second content part to the fourth device. sending the content part identifier; and in response to
The fourth device may consist of, comprise, or be part of, receiving the content part identifier sending the content part
any network element. In one example, the first device may identified by the content part identifier to the first device.
consist of, comprise, or be part of, a client device, such as A method and system using an internet-connected device
the client device #1. In one example, the second server may 65 designated as a tunnel device is disclosed. A tunnel device

consist of, comprise, or be part of, a data server, such as the
data server #2. The fourth device and the second device may

may receive from a client device a request for content from
a data server. Upon receiving such a request, the tunnel

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
173 of 228

US 10,469,614 B2

67

device fetches the requested content from the data server and
sends the retrieved content to the client device. The request
may specify a range of, or any portion of, the content, and
then only the specified portion or range is retrieved from the
data server and sent to the requesting client device. A tunnel
device may open multiple connections when fetching the
requested content from the data server. In a case where more
connections may be opened for higher loading bandwidth,
the client device may send a request to the tunnel device to

68

instead of the operating system getting it from a gateway on
the network. The program may communicate with the exter-
nal gateway to get the configuration information so that it
can communicate with other network elements, and provides
separate configuration information to the operating system,
thereby having the operating system communicate with the
program, and the program communicating with the external
network elements.

In a scenario where a communication of content between

open more connection with the data server. 10 two network elements may use two or more data paths
The client device may use multiple tunnel devices, and (routes), the content may be concurrently transmitted and
may specify different or the same ranges or portions for each received over multiple data paths. In one scenario, one or
one of the tunnel devices. In a case where the requested both of the network elements may connect only via a single
content is locally stored in the tunnel device, such as in a data path. A reliability proxy server that is capable of
local memory, such as a cache, the content is fetched from 15 concurrently communicating with one (or both) of the
the local (internal) memory. Multiple tunnel devices, such as network elements over multiple data paths, may be used.
5 tunnel devices, may be selected to be used by the client The reliability proxy server serves as a proxy server, and
device, and the client device may request each of the tunnel communicate the content with one (or both) of the network
devices to open more connections to the data server, up to elements over multiple data paths,
the maximum allowable number of connections. The selec- 20 A timeout period (such as 5 ms, or any period substan-
tion may be based on their proximity to the data server, such tially shorter than the defined typical) may be defined for
as selecting those tunnel devices that are the closest to the completing a DHCP request. A DHCP request is repeatedly
data server, based on their geolocation, IP distance, physical retransmitted to a DHCP server upon each timeout expira-
location, or the data communication characteristics. tion, until a response is received, or until the typical timeout
A first network element may request content stored in a 25 period expires.
second network element over a communication link being A data may be transferred from a first network element to
part of a network. A time period for fetching the content may a second network element may involve transporting of a low
be estimated by the first network element by estimating the priority, such as less time critical, meta data. Such meta data
Bandwidth (BW) and the Round Trip Time (RTT) associated may be delayed by the first network element and be sent to
with the content fetching transaction. The estimation of the 30 the second network element only after higher priority, or
BW and RTT may use a database that contains information more time sensitive, data was sent.
relating to previous interactions with the second network For use with devices such as WiFi access points that
elements. Alternatively or in addition, the estimation of the requires authentication such as being password protected, a
BW and RTT may use a database that contains information user may try to connect a network element to a device that
relating to previous interactions with a first group of network 35 its password is unknown. The connection may automatically
elements that are associated with an IP distance lower than, guess passwords for the connection, such as passwords that
and with a second group of network elements that is asso- were used to connect to other devices, passwords that are
ciated with an IP distance higher than, the second network common in the geographical location, or passwords that are
element, such as by calculating the average IP distance common to similar devices from this same manufacturer. A
between the two groups. 40 central server (or servers) may store a list of known devices,
A system may comprise a central server and network such as WiFi access points, and their associated authentica-
elements, each of the network elements may be in an tion methods, and may further store social connections
‘online’ or an ‘offline’ state. When in the online’ state, each between users. A user connecting to the devices may be
of the network elements periodically transmits a message prompted to update the central server the authentication
(such as a ‘ping’) to the central server. In response to 45 information regarding the device and the device associated
receiving the message, the central server determines that the sharing level with others. A sharing-approved user may fetch
network element from which a message was received in a the authentication information from the central server for
defined past period is in an ‘online’ state, and further connecting to a device.
determines that network elements, from which a message A network element may use a hierarchical structure,
was not received in the defined past period, are in an ‘offline’ 50 whereby some of the graphical elements are sons or parents
state. of other elements, for a user interface. If a user drags an
An operating system may send data from an application to object beyond the borders of a parent object, the dragging
network elements using sockets. A method may queue the may be performed by carrying over (inheriting) the dragging
data to be sent, and transfer the data to a socket that is to the parent object, and so recursively until reaching a
available for immediate data transfer. The queue may be 55 parent that allows the dragging.
dynamic and may be part of an added layer to the OS. The A method is disclosed for dictionary-based compression
added layer may further continuously check the sockets and scheme, that may be used with a first device storing a first
queues, and upon detecting a queued data and a ready-to- content in a first memory, and a second device storing a
send data socket, the data is un-queued from its dynamic second content in a second memory, and for use with
queue and sent through the socket ready for sending. In a 60 communicating a third content stored in the first device over
case where the application cancels the data sending, data is a network. The method comprising the steps of the first
removed from the respective socket and the respective device partitioning at least part of the first content into a
queue. plurality of first content slices according to a partitioning
In a network element that is connected to a network and scheme; the first device associating a distinct slice identifier
includes an operating system and applications, a method by 65 to each of the first content slices according to a rule; the

which a program on the network element may provide the
communication configuration to the operating system,

second device partitioning at least part of the second content
into a plurality of second content slices according to a

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
174 of 228

US 10,469,614 B2

69

partitioning scheme; the second device associating a distinct
slice identifier to each of the second content slices according
to the rule; the first device partitioning at least part of the
third content into a plurality of third content slices according
to a partitioning scheme. For each one of the third content
slices, the method may further comprise the steps of the first
device comparing the data in the third content slice to the
data in the plurality of the first content slices; the first device
sending to the second device over the network the slice

70

identifier. The first device may be identified in the Internet
by a first identifier, and the method may comprise the steps
of the first device sending the first identifier and the first
content identification to the second device; in response to
receiving the first identifier and the first content identifica-
tion, the second device sending the first content to the first
device using the first identifier; the first device starting to
receive the first content from the second device; the first
device ending to receive the first content from the second

identifier of the first content slice that includes the same data 10 device; the first device measuring an Round Trip Time
as the third content slice; the second device receiving the (RTT) as a first time interval between the sending of the first
slice identifiers sent from the first device over the network; identifier and the starting to receive the first content from the
and the second device associating second content slices second device; the first device measuring a second time
associated with the received slice identifiers. Two of, or all interval (T) between the starting and the ending of receiving
of, the slices may have the same the same size. Two of, or 15 the first content from the second device; and the first device
all of, the slices may be the same. The partitioning may be calculating the bandwidth (BW) as X/T.
sequential in the respective content. The method may further comprise the step of the first
A method for attribute-based selecting devices by a first device storing in a memory the RTT and the BW, or the step
device located in a first geographical location, from a group of'the first device sending the RTT and the BW to the second
of multiple Internet-connected devices is disclosed, where 20 device. The method may be used with a second content
each of the group devices may be addressable in the Internet having a size Y identified by a second content identification
by a respective IP address. The method comprising the steps stored in the second device, and the method may further
of obtaining a list of the IP addresses of the devices of the comprise the step of estimating a third time interval between
group; determining the geographical location of each of the a sending of the first identifier to the second device and an
group devices based on the IP address; associating a value 25 ending to receive the second content from the second device,
of the attribute for each of the geographical location of each where the third time interval may be estimated to be RTT+
of'the group devices; associating a first value of the attribute Y/BW.
for the first geographical location; and selecting one or more A method is disclosed for a first device fetching over the
devices from the group based on comparing the values of the Internet a first content having a size X identified by a first
group devices to the first value. A single device or multiple 30 content identification, for use with a group of group devices,
devices may be selected, associated with the first value or each of the group devices storing the first content and each
having a value close to the first value. The geographical identified in the Internet by a respective group device
location may consist of, or comprise, a continent, a country, identifier. Each of the group devices may be associated with
a region, a city, a street, a ZIP code, or a timezone. The a respective Round Trip Time (RTT) and a respective
determining of the geographical location of each of the 35 bandwidth (BW), and the method may comprise the steps of
group devices may be based on a geolocation, such as based for each one of the group devices, estimating the time
on W3C Geolocation AP interval for fetching the first content from the group device
The method may be used with a database associating IP using the RTT and BW; selecting the group device having
addresses to geographical locations, wherein the determin- the lowest estimated time interval; the first device sending
ing of the geographical location of each of the group devices 40 the first identifier and the first content identification to the
based on the IP address may be using the database. The selected group device; and in response to receiving the first
database may be stored in the first device or may be stored identifier and the first content identification, the selected
in a server accessible via the Internet, where the geographi- group device sending the first content to the first device
cal location may be determined by the first device sending using the first identifier. The method may further comprise
the IP addresses of the group devices to the server over the 45 the steps of the first device starting to receive the first
Internet; in response to receiving the IP addresses, the server content from the selected group device; the first device
sending the database associated physical locations to the first ending to receive the first content from the selected group
device; and the first device receiving the physical locations device; the first device measuring an Round Trip Time
from the server. The attribute may relate to people or society, (RTT) as a first time interval between the sending of the first
such as language, sport, demographics, or religion, or may 50 identifier and the starting to receive the first content from the
be demographic based, such as culture, race, ethnicity, selected group device; the first device measuring a second
population, age structure, population growth rate, death rate, time interval (T) between the starting and the ending of
birth rate, migration rate, sex ratio, life expectancy, or health receiving the first content from the selected group device;
expenditures. The attribute may be economy related, such as and the first device calculating the bandwidth (BW) as X/T.
Gross Domestic Product (GDP), GDP per capita (PPP), 55 Further, the method may further comprise the step of asso-
gross national saving, agriculture products, industry types, ciating the measured RTT and the calculated BW with the
labor force, unemployment rate, household income or con- selected group device, and the step of the first device storing
sumption by percentage share, Government budget, taxes in a memory the measured RTT and the calculated BW.
and other revenues, inflation rate (consumer prices), export/ Alternatively or in addition, the method may further com-
import of goods and services, household consumption, gov- 60 prising the step of the first device sending the measured RTT
ernment consumption, or investment in fixed capital. The and the calculated BW to the selected group device, wherein
attribute may relate to geography, such as climate, coastline, the time interval for each group device is estimated using the
terrain, natural resources, and environment. RTT and the BW associated with the group device, and is
A method is disclosed for a first device fetching over the calculated as RTT+X/BW.
Internet a first content having a size X and identified by a 65 A method is disclosed for fetching to a first device a

first content identification, the first content may be stored in
a second device that is identified in the Internet by a second

content having a size X from N multiple locations each
storing a copy of a part of, or the entire of, the content. The

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
175 of 228

US 10,469,614 B2

71

method may comprise for each location designated as i
(1=i=N) the steps of obtaining the Round Trip Time (RTTi),
wherein the RTTi is the time interval between a sending of
a request to the 1 location and a starting to receive part of the
first content from the i location; obtaining the Bandwidth
(BWi), wherein the BWi is the rate of receiving data after the
starting to receive from the i location; and designating Ti as
Ti=RTTi+Xi/BWi, wherein Xi is the size of part of the
content fetched from the i location. The method may further
comprise the steps of non-overlapping partitioning of the
content into N partitions, wherein the size of each partition
is designated as Xi, so that for i=1 to N, ZXi=X; the first
device fetching the partitions from the N locations; and the
first device assembling the content from the received parti-
tions. The content may be stored in a device in each location,
and the first device and the location devices may be inter-
connected via a digital network, such as the Internet.

The partitioning may be based on the RTTi values, may be
based on BWi, or may be based on both BWi and RTTi of
all of the locations. The partitioning may be based on
calculating the maximum or minimum value of Ti for all
locations. Alternatively or in addition, the partitioning may
be based on minimizing the maximum value of Ti for all
locations, and may be calculated at the first device according
to: Xi=BWi*[(X+2RTTi*BWi)/(ZBWi)-RTTi]. The RTTi
and the BWi values may be stored in the first device, and
may be based on previous communication with the loca-
tions. A non-transitory computer readable medium contain-
ing computer instructions that, when executed by a com-
puter processor, cause the processor to perform at least part
of, or all of, the above steps.

The first device may consist of, comprise, or be part of,
any network element. In one example, the first device may
consist of, comprise, or be part of, a client device, such as
the client device #1. The second device, or each of the group
devices, may consist of, comprise, or be part of, any network
element. In one example, the second device, or each of the
group devices, may consist of, comprise, or be part of, a
tunnel device, such as the tunnel device #1 or the tunnel
device #2.

A method for improving the fetching of a content from a
first server over the Internet, for use with a second server
distinct from the first server identified in the Internet by an
identifier, is described. The method may comprise the steps
of the application sending a first message to the second
server; intercepting the first message to the second server;
obtaining a second message based on the first message and
on the identifier; returning the second message to the appli-
cation; and in response to receiving the second message, the
application sending a request for the content to the first
server. The interception may be by hooking to the applica-
tion, may be in a filter driver form, or may use an Inter-
Process Communication (IPC). The IPC may use, or be
based on, a file sharing, a signal, a socket, a pipe, a message
queue, a shared memory, a semaphore, memory mapped file,
a clipboard, a Component Object Model (COM), a data
copy, a DDE protocol, or mailslots.

The application may be a web browser that consists of,
comprises, or may be based on, Microsoft Internet Explorer,
Google Chrome, Opera™, or Mozilla Firefox®. The web
browser may be a mobile web browser, which consists of,
comprises of, or may be based on, Safari, Opera Mini™, or
Android web browser. The identifiers may be an IP address
(in IPv4 or IPv6 form), or a URL.

The first message may be a web analytic related message,
and the second server may be a web analytic server, such as
Google Analytics server. The second message may be the

40

45

72

same as, or based on, a response to the first message from the
web analytic server. The method may use a database storing
a list of typical responses from a web analytic server, and the
second message may be obtained from the database. The
method may comprise the step of blocking the sending of the
first message to the second server, and the step of receiving
a response from the second server. The method may use a
database storing a list of typical responses from a web
analytic server, and may further comprise the step of storing
the response from the second server in the database.

A system is disclosed comprising multiple Internet-con-
nected network elements, designated as peer devices, where
each of' the peer devices may store only a portion of a file (or
other content) (‘chunks’) in its cache memory. Network
elements, designated as client devices, may use the peer
devices for fetching the portions of the file therefrom, and
reconstructing the entire file. The system may consist, may
include, may be based on, or may be part of, the system
described in the *604 Patent. A same portion or the file may
be stored in two or more peer devices, each may be
associated with a BW and RTT (where BW is the bandwidth
of a peer device to the client device connection and RTT is
the round trip time from a peer device to the client and back),
and the peer device associated with the highest BW/RTT
may be selected to provide the portion of the file. Alterna-
tively or in addition, the number of portions allocated to be
fetched from a peer device is based on, or pro-rata to, the
respective peer device BW/RTT.

The system may further comprise multiple Internet-con-
nected network elements, designated as agent devices,
which store in their memory information regarding which
peer devices are storing which portions of the file, and
further store which client devices requested which files, so
that client devices may serve as peer devices for providing
the portions of file that they have fetched. After a client
device completes the fetching of a file, it may update
network elements, such as the agent devices used, regarding
the files availability in each of the used peer devices.

An agent device may provide a client device a list of peer
devices that may be used for sourcing a part of, or an entire
of, the file, and the client device may select five (5) or any
other number of peer devices from the list, to fetch data
therefrom. The agent device may store a first list of peer
devices that may be available for use and storing a part of,
or an entire of, the file, and may select from the first list a
second list of peer devices to be sent to the client device. The
second list may be selected based on the BW/RTT ratio
associated with the communication of the respective peer
device with the client device, such as selecting the peer
devices having the highest ration of BW/RTT. Alternatively
or in addition, the second list may be selected based on
recent transaction between these peer devices and other
client devices, such as selecting only peer devices that
completed a successful data transfer. Alternatively or in
addition, the second list may be selected based on the
geographical distance to the client device.

The number of chunks allocated to the peer devices, to be
fetched by a client device from the peer devices, may be set
to a same number for all the peer devices. Alternatively or
in addition, the number of chunks allocated to the peer
devices may be determined by the latency in transporting the
chunks to the client device, such as based on estimating the
BW/RTT between the peer devices to the client device.

A client device may send out the request for a list of agent
devices also to other network elements that the client device
has communicated with in the past, so that if these elements
have knowledge of any agent devices that may provide the

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
176 of 228

US 10,469,614 B2

73

information about the applicable peer devices, such an agent
devices list will be sent to the client device. If these network
elements themselves have knowledge of peer devices (in-
cluding themselves) that might provide portions of the data
required by the client device, they might provide themselves
as an agent devices to the client device. Further, the client
device may fetch information from a peer device regarding
available agent devices, such as agent devices that were
previously used with the data server. Alternatively or in

74

A network element may log network elements that are
accessing it, or may only log a portion of the requests
according to a certain algorithm, by which the list of
accessing network elements may be representative of all of
the requests. The algorithm may be based on logging only
the past several requests (such as a last 1000 requests or the
requests in the past 5 minutes), or may be based on logging
a logarithmically reducing list of random requests.

Upon fetching requested chunks from various sources

addition, the client device may request a list of agent devices 10 (such as peer devices) by a client device, some chunks may
from an acceleration server. be larger than a pre-set minimum size. The client device may
A client device may request a list of peer devices from an estimate that one of the sources will complete providing its
agent device. If the requested data or file, in part or in whole, last chunk much later than all other chunks from the other
is stored in the agent device, the agent device may provide sources. In such a case, this chunk may be split into smaller
that data or file directly to the client device, instead of 15 sized chunks, such as into half of the original size, and
providing the meta data about the file to the client device. re-distributed between the various sources. The splitting
Alternatively or in addition, the agent device may provide may be only performed if the last chunk is expected to delay
that data or file directly to the client device only when the file the entire file loading by 10% or 50%. A back end module
is below a certain size, such as 16 KB. In a case where a may be used that is based on applying criteria to a request
client device fetches the required file from any other source, 20 received by a client device. Only requests that meet the
and that file is below that certain size, the client device may criteria may be handled using a handling method associated
update and send the file to be stored in the agent devices, so with the criteria. The criteria may be based on the URL
that the data may be later provided to a client device. requested, the domain requested, the IP address of the
A client device may receive and use a list of agent devices request defined data server, the type of the requested file, the
for a specific transaction, and when the network is idle, the 25 request timing, or the client device geographical location.
client device may update the acceleration server regarding Two or more data path may be available for fetching a
the used agent devices, allowing the acceleration server to content. The selection of which data path to use may be
later recommend or use these agent devices. The updating of based on estimating the time for completing the content
the acceleration server may include the IP address of each of fetching for each data path, and may be based on historical
the agent devices, the communication session information 30 data regarding the performance and timing of each stage of
such as RTT, BW and speed, the ports used in the commu- part connections of each of the data paths. The times used for
nication sessions, the latency and speed for each of the each stage may be the top percentile under which most
connection phases, and whether the required file or data was samples fall (e.g., using a sample that is larger than 95% of
stored in each of the agent devices. The acceleration server the other samples). A watermark system may be used to
may use this information to decide which agent devices to 35 determine a threshold used to prefer and select one scheme
recommend and include in a future agent devices list over the other. If both data paths estimated performance are
requested by client devices. A client device may receive and below a threshold, both data paths may be simultaneously
use a list of peer devices for a specific transaction (such as used.
from an agent device), and when the network is idle, the In a case where either a peers-using scheme (system or
client device may update the acceleration server, agent 40 method) or a tunnels-using scheme may be used, the scheme
devices, or both, regarding the used peer devices, allowing to be used may be selected based on an evaluating the time
the acceleration server or the agent devices to later recom- to completely receive the information using the scheme. The
mend or use these peer devices. The updating of the accel- evaluation may be based on data from previous interactions
eration server or the agent devices may include the IP with peer devices and tunnel devices associated with, or in
address of each of the peer devices, the communication 45 the vicinity of, the available peer devices and tunnel devices.
session information such as RTT, BW and speed, the ports Once the desired scheme is chosen, a timer is set for the
used in the communication sessions, the latency and speed expected time to complete the transaction, and if that time
for each of the connection phases, and whether the required plus a margin has passed, both schemes may be selected to
file or data was stored in each of the peer devices. The operate concurrently. In such a case of simultaneous acti-
acceleration server or the agent devices may use this infor- 50 vation of both schemes, upon receiving the first piece of data
mation to decide which peer devices to recommend and by one of the schemes, and if the other scheme is still active,
include in future peer devices list requested, such as by that other scheme is terminated. Alternatively or in addition,
client devices. In a case where an agent device does not store upon receiving the last piece by one of the schemes, if the
a required information, such as a peer devices list, the client other scheme is still active, it is terminated. Further, upon
device or the acceleration server may update the agent 55 fetching all requested data, information about all of the
device with that information after it was obtained. Further, participating network elements, including response times for
the client device or the acceleration server may update all of one or more of their functions, is stored for future use, and
the agent devices that were used in a transaction. Such an may further be sent to other network elements in the network
update may be performed only when the communication is for future use.
idling. 60 A method for managing congestion within a group of
The acceleration server may periodically review the load network elements is disclosed; where a central load-balanc-
of each of the network elements (such as agent devices), and ing server may identify that an element is congested. If over
if two network elements are used below a certain threshold a certain amount of the network elements within the group
of'load, it merges the range responsibilities of these network are congested, a new network element is added to the group,
elements. The responsibilities may be the peer devices that 65 and if over a certain amount of the network elements has not

the agent device is responsible for serving, or may be the
data servers that the agent device is responsible for serving.

signaled being congested (such as by sending a message
from the congested network elements), the server removes

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
177 of 228

US 10,469,614 B2

75

one or more of the network elements from the group.
Alternatively or in addition, the signaling to the central
load-balancing server may be performed by communication
devices that are trying to connect or to use these network
elements. The signaling to the central load-balancing server
may be performed by the network elements whenever their
own resources (such as storage capacity, I/O activity, CPU
utilization, or available communication bandwidth) are used
over a certain threshold. The central load-balancing server
may send a request to the network elements and may mark
them as congested, if they do not respond within a deter-
mined timeframe to a status request.

Each of the identifiers herein may be an IP address (in
IPv4 or IPv6 form) or a URL. Each of the servers may be a
web server using HyperText Transfer Protocol (HTTP) that
responds to HTTP requests via the Internet, and the first and
second requests may be HTTP requests. Each communica-
tion with a server may be based on, or using, HTTP
persistent connection.

Any communication with a network element, such as with
the first device, the second device, the first server, or the
second server, may be based on, or be according to, TCP/IP
protocol or connection, and may be preceded by the step of
establishing a connection. Further, communication between
any two network elements, such as between the first device
and the second device, may be over the established connec-
tion. Any communication between any two network ele-
ments may use TCP, and wherein the connection may be
established by performing ‘Active OPEN’ or ‘Passive
OPEN’, may use a VPN, or may use a tunneling protocol.
Any content herein, such as the first content, may include,
consist of, or comprise, a part or whole of files, text,
numbers, audio, voice, multimedia, video, images, music,
web-site page, or computer program.

Each of the network elements herein, such as the first,
second, and third servers, may store, operate, or use, a server
operating system, that may be based on, comprise, or use,
Microsoft Windows Server®, Linux, or UNIX, such as
Microsoft Windows Server® 2003 R2, 2008, 2008 R2,
2012, or 2012 R2 variant, Linux™ or GNU/Linux based
Debian GNU/Linux, Debian GNU/kFreeBSD, Debian
GNU/Hurd, Fedora™, Gentoo™, Linspire™, Mandriva,
Red Hat® Linux, SuSE, and Ubuntu®, UNIX® variant
Solaris™, AIX®, Mac™ OS X, FreeBSD®, OpenBSD, and
NetBSD®. Each of the network elements herein, such as the
first, second, and third devices, may store, operate, or use, a
client operating system, that may consist or, comprise of, or
may be based on, Microsoft Windows 7, Microsoft Windows
XP, Microsoft Windows 8, Microsoft Windows 8.1, Linux,
or Google Chrome OS. The client operating system may be
a mobile operating system, such as Android version 2.2
(Froyo), Android version 2.3 (Gingerbread), Android ver-
sion 4.0 (Ice Cream Sandwich), Android Version 4.2 (Jelly
Bean), Android version 4.4 (KitKat)), Apple iOS version 3,
Apple i0S version 4, Apple i0OS version 5, Apple i0OS
version 6, Apple iOS version 7, Microsoft Windows® Phone
version 7, Microsoft Windows® Phone version 8, Microsoft
Windows® Phone version 9, or Blackberry® operating
system.

Any method herein may further comprise the step of
intercepting a request for a content by a network element,
such as the intercepting of the request for the first content by
the first device. The request may be initiated in an applica-
tion (that may be a communications application such as a
TCP/IP or HTTP handling application) in a network element
such as the first device. The interception may be in the form
of a plug-in or an extension of the application, may be by

20

40

45

50

76

hooking to the application, may be in a filter driver form, or
may be using Inter-Process Communication (IPC). The IPC
may be using a file sharing, a signal, a socket, a pipe, a
message queue, a shared memory, a semaphore, memory
mapped file, a clipboard, a Component Object Model
(COM), a data copy, a DDE protocol, or mailslots. The
application may be a web browser that may be consisting of,
comprising of, or may be based on, Microsoft Internet
Explorer, Google Chrome, Opera™, or Mozilla Firefox®.
Alternatively or in addition, the web browser may be a
mobile web browser, that consist of, comprise of, or may be
based on, Safari, Opera Mini™, or Android web browser.

Any system or method herein may implement redun-
dancy, where the system or method may include one or more
additional identical, similar, or different element, such as
using two or more identical or similar slices or any other
content parts, using two or more identical or similar network
elements performing identical or similar functionalities,
using two or more identical or similar hardware pieces
performing identical or similar functionalities, or using two
or more data-paths transporting identical or similar infor-
mation. The redundancy may be based on Dual Modular
Redundancy (DMR), Triple Modular Redundancy (TMR),
Quadruple Modular Redundancy (QMR), 1:N Redundancy,
‘Cold Standby’, or ‘Hot Standby’.

The steps described herein may be sequential, and per-
formed in the described order. For example, in a case where
a step is performed in response to another step, or upon
completion of another step, the steps are executed one after
the other. However, in case where two or more steps are not
explicitly described as being sequentially executed, these
steps may be executed in any order, or may be simultane-
ously performed. Two or more steps may be executed by two
different network elements, or in the same network element,
and may be executed in parallel using multiprocessing or
multitasking.

A tangible machine-readable medium (such as a storage)
may have a set of instructions detailing part (or all) of the
methods and steps described herein stored thereon, so that
when executed by one or more processors, may cause the
one or more processors to perform part of, or all of, the
methods and steps described herein. Any of the network
elements may be a computing device that comprises a
processor and a computer-readable memory (or any other
tangible machine-readable medium), and the computer-read-
able memory may comprise computer-readable instructions
such that, when read by the processor, the instructions
causes the processor to perform the one or more of the
methods or steps described herein.

Any communication or connection herein, such as the
connection of peripherals in general, and memories in par-
ticular to a processor, and between any two network ele-
ments, may use a bus. A communication link (such as
Ethernet, or any other LAN, PAN or WAN communication
links may also be regarded as buses herein. A bus may be an
internal bus, an external bus or both. A bus may be a parallel
or a bit-serial bus. A bus may be based on a single or on
multiple serial links or lanes. A bus medium may be elec-
trical conductors based such as wires or cables, or may be
based on a fiber-optic cable. A bus topology may use
point-to-point, multi-drop (electrical parallel) and daisy-
chain, and may be based on hubs or switches. A point-to-
point bus may be full-duplex, or half-duplex. Further, a bus
may use proprietary specifications, or may be based on,
similar to, substantially or fully compliant to an industry
standard (or any variant thereof), and may be hot-pluggable.
A bus may be defined to carry only digital data signals, or

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
178 of 228

US 10,469,614 B2

77

may also defined to carry a power signal (commonly DC
voltages), either in separated and dedicated cables and
connectors, or may carry the power and digital data together
over the same cable. A bus may support master/slave con-
figuration. A bus may carry a separated and dedicated timing
signal or may use self-clocking line-code.

The networks or the data paths may be similar, identical
or different geographical scale or coverage types and data
rates, such as NFCs, PANs, LANs, MANs, or WANS, or any
combination thereof. The networks or the data paths may be
similar, identical or different types of modulation, such as
Amplitude Modulation (AM), a Frequency Modulation
(FM), or a Phase Modulation (PM), or any combination
thereof. The networks or the data paths may be similar,
identical or different types of duplexing such half- or full-
duplex, or any combination thereof. The networks or the
data paths may be based on similar, identical or different
types of switching such as circuit-switched or packet-
switched, or any combination thereof. The networks or the
data paths may have similar, identical or different ownership
or operation, such as private or public networks, or any
combination thereof.

Any selection of devices herein, such as the selection of
tunnel devices to be used either by a client device or by an
acceleration sever, or the selection of agent devices either by
a client device or by an acceleration sever, or the selection
of peer devices, either by a client device or by an agent
device, may be based on one or more of the following:
Content URL, such as specific files on the Internet (e.g.,
“Wikipedia.org/contact.htm!”), domain name such as spe-
cific web sites (e.g., “Wikipedia.org™), data server IP such as
specific servers (e.g., server having IP address of
“208.80.152.201”), type of file such as specific file types
(e.g., “.flv files™), time of day such as specific handling of all
files or a group of files during certain hours of the day (e.g.,
“all files between 11 pm to 4 am”™), or geography of the client
such as specific handling according to a location of the client
device (e.g., “for all Clients in Germany”).

The above summary is not an exhaustive list of all aspects
of the present invention. Indeed, it is contemplated that the
invention includes all systems and methods that can be
practiced from all suitable combinations and derivatives of
the various aspects summarized above, as well as those
disclosed in the detailed description below and particularly
pointed out in the claims filed with the application. Such
combinations have particular advantages not specifically
recited in the above summary.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of non-limiting
examples only, with reference to the accompanying draw-
ings, wherein like designations denote like elements. Under-
standing that these drawings only provide information con-
cerning typical embodiments of the invention and are not
therefore to be considered limiting in scope:

FIG. 1 illustrates schematically a block diagram of a
computer connected to the Internet;

FIG. 2 depicts schematically the Internet and computers
connected to the Internet;

FIG. 2a illustrates schematically a structure of an IP-
based packet;

FIG. 2b depicts schematically a computerized device
communicating with WAPs;

FIG. 3 illustrates schematically a simplified flowchart in
a WDM architecture;

20

25

30

40

45

50

55

65

78

FIG. 3a illustrates schematically a simplified flowchart in
a Linux architecture;

FIG. 4 illustrates schematically a block diagram of a
one-way compression-based communication;

FIG. 4a illustrates schematically a block diagram of a
two-way compression-based communication;

FIG. 5 depicts schematically client devices, tunnel
devices, and servers connected to the Internet;

FIG. 5a illustrates schematically a table of data stored in
a server;

FIG. 5b illustrates schematically a timing chart of mes-
sages and states associated with messages exchanged over
the Internet in a system using tunnel devices;

FIG. 6 illustrates schematically a simplified flowchart of
a method relating to a client device using a single tunnel
device;

FIG. 7 illustrates schematically a simplified flowchart of
a method relating to a tunnel device;

FIG. 7a illustrates schematically a simplified flowchart
for increasing a number of connections to a server;

FIG. 7b illustrates schematically a simplified flowchart
involving locally fetching of a content;

FIG. 8 illustrates schematically a simplified flowchart
relating to an acceleration server in a tunnel-device based
system,

FIG. 9 illustrates schematically a simplified flowchart
relating to an acceleration server that also selects the tunnels
to be used;

FIG. 10 illustrates schematically a simplified flowchart of
a method relating to a client device using multiple tunnel
devices;

FIG. 10q illustrates schematically a simplified flowchart
of'a method relating to a client device using multiple tunnel
devices and direct access;

FIGS. 11, 11a, and 115 depict schematically messages
exchanged over the Internet between a client device and a
data server, using different tunnel devices;

FIG. 11c¢ depicts schematically messages exchanged over
the Internet between a client device and a data server using
a direct access;

FIG. 12 depicts schematically client devices, tunnel
devices, servers, and client/tunnel device connected to the
Internet;

FIG. 124 depicts schematically messages exchanged over
the Internet between a client device and a data server using
a client/tunnel device;

FIG. 13 depicts schematically client devices, tunnel
devices, and servers connected to the Internet, where the
client device is implemented using a proxy server;

FIG. 14 illustrates schematically a simplified flowchart of
a method relating to a client device measuring and logging
a communication with a tunnel device;

FIG. 15 illustrates schematically a table of a log of
transactions of a client;

FIG. 15a illustrates schematically a table of a log of
transactions of a client relating to content fetching from a
single data server;

FIG. 16 illustrates schematically a simplified flowchart of
managing a number of connections to a server by a client
device;

FIG. 17 illustrates schematically a simplified flowchart of
an accessing of an analytics server;

FIG. 17a illustrates schematically a simplified flowchart
of an intercepting and simulating access to an analytics
server;

FIG. 18 depicts schematically a computerized device
accessing DHCP servers;

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
179 of 228

US 10,469,614 B2

79

FIG. 18a illustrates schematically a simplified flowchart
of accessing of a DHCP server;

FIG. 19 illustrates schematically a simplified flowchart of
improving an accessing of a DHCP server;

FIG. 20 depicts schematically client devices, agent
devices, peer devices, and server devices connected to the
Internet;

FIG. 21 depicts schematically the relations of chunks
relating to URLs and peer devices;

FIG. 21a depicts schematically the relations of content in
peer devices to content in agent devices;

FIG. 215 depicts schematically the relations of content in
peer devices to content of URLs;

FIG. 21¢ depicts schematically the relations of content in
peer devices to content in agent devices;

FIG. 22 illustrates schematically a timing chart of mes-
sages and states associated with messages exchanged over
the Internet in a system using peer and agent devices;

FIGS. 23, 23a, and 235 illustrate schematically a simpli-
fied flowchart relating to a client device using agent and peer
devices;

FIG. 24 illustrates schematically a simplified flowchart
relating to an agent device;

FIG. 24a illustrates schematically a simplified flowchart
relating to a peer device;

FIG. 25 illustrates schematically a simplified flowchart
relating to an acceleration server in a peer and agent devices
system,

FIG. 25a illustrates schematically a table of data stored in
an acceleration server;

FIG. 26 depicts schematically messages exchanged over
the Internet between a client device and an acceleration
server;

FIG. 264 depicts schematically messages exchanged over
the Internet between a client device and an agent device;

FIGS. 265, 26¢, and 26d depict schematically messages
exchanged over the Internet between a client device and a
peer device;

FIG. 27 illustrates schematically a simplified flowchart
relating to a client device measuring and logging a commu-
nication with a peer device;

FIG. 28 illustrates schematically a table representing a log
of transactions of a client device;

FIG. 28a illustrates schematically a table representing a
log of transactions of a client device relating to content
fetching from a single data server,

FIG. 29 depicts schematically timing considerations
involving a client device and peer devices;

FIG. 294 depicts schematically the calculations involving
optimal timing considerations of a system involving a client
device and peer devices;

FIG. 295 depicts schematically a chunks flow in a system
involving a client device and peer devices;

FIG. 29¢ depicts schematically an improved chunks flow
in a system involving a client device and peer devices;

FIG. 294 illustrates schematically a simplified flowchart
for an improved flow of chunks in a system involving a
client device and peer devices;

FIG. 29e¢ depicts schematically a flow of chunks in a
system involving a client device and peer devices;

FIG. 29f depicts schematically an improved chunks flow
in a system involving a client device and peer devices;

FIG. 30 illustrates schematically a state diagram of a
network element;

FIG. 31 illustrates schematically a simplified flowchart
for determining a network element status;

10

15

20

25

30

35

40

45

50

55

60

65

80

FIG. 32 illustrates schematically a simplified flowchart
for determining a network element status of a connected
device;

FIG. 33 illustrates schematically a simplified flowchart
for determining by a client the content fetching method;

FIG. 34 depicts schematically client devices, tunnel
devices, agent devices, peer devices, and servers connected
to the Internet;

FIG. 35 illustrates schematically a simplified flowchart
relating to selecting devices based on an attribute relating to
their geographical location;

FIG. 36 illustrates schematically a simplified flowchart
relating to scaling an image;

FIG. 36a depicts schematically a part of a prior art image
upscaling;

FIG. 3654 depicts schematically a part of a prior art image
downscaling;

FIG. 37 depicts schematically a prior art limited object
movement on a screen;

FIG. 37a depicts schematically an unlimited movement of
an object on a screen;

FIG. 38 illustrates schematically a simplified flowchart
relating to unlimited moving object on a screen;

FIG. 39 depicts schematically a computerized device
communicating with locked WAPs;

FIG. 40 illustrates schematically a simplified flowchart
relating to guessing passwords in a WiFi environment;

FIG. 41 depicts schematically computerized devices com-
municating with locked WAPs;

FIG. 42 illustrates schematically a simplified flowchart
relating to sharing passwords in a WiFi environment;

FIG. 43 illustrates schematically a simplified flowchart
relating to the normalizing reference of a video content;

FIG. 44 illustrates schematically a block diagram relating
to queueing schemes in a WDM architecture;

FIG. 45 illustrates schematically a block diagram relating
to an improved dynamic queueing scheme in a WDM
architecture;

FIG. 46 illustrates schematically a simplified flowchart
relating to implementing an improved dynamic queueing
scheme;

FIG. 47 illustrates schematically a block diagram relating
to a one-way compression using a local dictionary;

FIG. 48 illustrates schematically a simplified flowchart
relating to implementing a one-way compression using a
local dictionary;

FIG. 48a illustrates schematically a simplified flowchart
relating to implementing a compression using both diction-
aries;

FIG. 49 illustrates schematically a block diagram relating
to multiple copies of the same content;

FIG. 49q illustrates schematically a simplified flowchart
relating to comparing multiple copies of the same content;

FIG. 495 illustrates schematically a simplified flowchart
relating to validating a copy of a content;

FIG. 50 illustrates schematically a gateway connecting
network elements over a WAN and a LAN;

FIG. 51 illustrates schematically using a VGS for com-
municating with a gateway connecting network elements
over a WAN and a LAN;

FIG. 51aq illustrates schematically a simplified flowchart
of a VGS;

FIG. 52 depicts schematically a prior art of a cache
arrangement in a memory;

FIG. 53 depicts schematically a cache arrangement in a
memory using overwrite reduction;

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
180 of 228

US 10,469,614 B2

81

FIG. 54 illustrates schematically a simplified flowchart
for cache overwrite reduction and cleanup;

FIG. 55 depicts schematically a cache arrangement in a
memory using redundancy with overwrite reduction;

FIG. 56 illustrates schematically a simplified flowchart
for cache overwrite reduction;

FIG. 57 depicts schematically a cache arrangement in a
memory using overwrite reduction and having multiple
chunk copies;

FIG. 58 depicts schematically a prior-art association of
physical addresses to virtual addresses;

FIG. 59 illustrates schematically a simplified block dia-
gram of a memory management unit for translating between
physical addresses and virtual addresses;

FIG. 60 illustrates schematically a simplified block dia-
gram of a prior-art memory management unit operation;

FIG. 61 illustrates schematically a simplified flowchart of
a prior-art method of an exception handler;

FIG. 62 illustrates schematically a simplified flowchart of
an NDCACHE operation;

FIG. 63 illustrates schematically a simplified block dia-
gram of an NDCACHE API;

FIG. 64 illustrates schematically a simplified block dia-
gram of mounting a filesystem;

FIG. 65 illustrates schematically a simplified block dia-
gram of mounting a TMPFS filesystem;

FIG. 66 illustrates schematically a simplified flowchart of
an NDCACHE operation using FS mounting;

FIG. 67 illustrates schematically a simplified flowchart of
an NDCACHE operation using user and kernel mode;

FIG. 68 illustrates schematically a first part of a simplified
block diagram of a high-level implementation of
NDCACHE,

FIG. 69 depicts schematically an arrangement in a
memory of NDCACHE pages and using a lock flag;

FIG. 70 illustrates schematically a second part of a
simplified block diagram of a high-level implementation of
NDCACHE,

FIG. 71 illustrates schematically a third part of a simpli-
fied block diagram of a high-level implementation of
NDCACHE,

FIG. 72 depicts schematically an arrangement in a
memory of NDCACHE pages using multiple segments in
the cache;

FIG. 73 illustrates schematically a simplified flowchart of
an improved NDCACHE operation;

FIG. 74 depicts schematically an arrangement in a
memory of NDCACHE pages;

FIG. 75 illustrates schematically a first part of a simplified
block diagram of a high-level implementation of an
improved NDCACHE;

FIG. 76 illustrates schematically a second part of a
simplified block diagram of a high-level implementation of
an improved NDCACHE;

FIG. 77 illustrates schematically a simplified flowchart of
an idle monitor;

FIG. 78 illustrates schematically a simplified block dia-
gram of an idle monitor for reducing a storage read time;

FIG. 79 illustrates schematically a simplified flowchart of
selecting WAP.

FIG. 80 illustrates schematically a simplified flowchart of
an improved selection of a WAP;

FIG. 81 depicts schematically a network element select-
ing a WAP from two groups of WAPs;

FIG. 82 depicts schematically a network element select-
ing a WAP based on the WAP performance;

10

15

20

25

30

35

40

45

50

55

60

65

82

FIG. 83 illustrates schematically a simplified flowchart
for selecting a WAP based on the WAP prior performance;

FIG. 84 illustrates schematically two network elements
connected over an unreliable connection;

FIG. 85 illustrates schematically two network elements
connected over multiple unreliable connections;

FIG. 86 illustrates schematically two network elements
connected over multiple unreliable connections using a
reliability proxy server;

FIG. 87 illustrates schematically two network elements
connected over multiple unreliable connections using two
reliability proxy servers;

FIG. 88 illustrates schematically a simplified flowchart
for using a reliability proxy network server;

FIG. 89 illustrates schematically a simplified flowchart
for carrying packets over multiple routes;

FIG. 90 illustrates schematically a simplified flowchart
for minimizing disconnect times when using multiple
routes;

FIG. 91 illustrates schematically a table containing IP
related BW and RTT values;

FIG. 92 illustrates schematically a simplified flowchart
for estimating BW and RTT values relating to network
elements;

FIG. 93 illustrates schematically a simplified flowchart
for reading or storing BW and RTT values relating to
network elements; and

FIG. 94 illustrates schematically a simplified flowchart
for estimating BW and RTT values relating to network
elements.

DETAILED DESCRIPTION

The principles and operation of an apparatus or a method
according to the present invention may be understood with
reference to the figures and the accompanying description
wherein identical or similar components (either hardware or
software) appearing in different figures are denoted by
identical reference numerals. The drawings and descriptions
are conceptual only. In actual practice, a single component
can implement one or more functions; alternatively or in
addition, each function can be implemented by a plurality of
components and devices. In the figures and descriptions,
identical reference numerals indicate those components that
are common to different embodiments or configurations.
Identical numerical references (in some cases, even in the
case of using different suffix, such as 5, 5a, 56 and 5¢) refer
to functions or actual devices that are either identical,
substantially similar, similar, or having similar functionality.
It will be readily understood that the components of the
present invention, as generally described and illustrated in
the figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the apparatus,
system, and method of the present invention, as represented
in the figures herein, is not intended to limit the scope of the
invention, as claimed, but is merely representative of
embodiments of the invention. It is to be understood that the
singular forms “a,” “an,” and “the” herein include plural
referents unless the context clearly dictates otherwise. Thus,
for example, reference to “a component surface” includes
reference to one or more of such surfaces. By the term
“substantially” it is meant that the recited characteristic,
parameter, or value need not be achieved exactly, but that
deviations or variations, including, for example, tolerances,
measurement error, measurement accuracy limitations and

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
181 of 228

US 10,469,614 B2

83

other factors known to those of skill in the art, may occur in
amounts that do not preclude the effect the characteristic was
intended to provide.

Each of devices herein may consist of, include, be part of,
or be based on, a part of, or the whole of, the computer 11
or the system 100 shown in FIG. 1. Each of the servers
herein may consist of, may include, or may be based on, a
part or a whole of the functionalities or structure (such as
software) of any server described in the *604 Patent, such as
the web server, the proxy server, or the acceleration server.
Each of the clients or devices herein may consist of, may
include, or may be based on, a part or a whole of the
functionalities or structure (such as software) of any client or
device described in the 604 Patent, such as the peer, client,
or agent devices.

In one example, an accessing to a data server is improved
by using an intermediate device referred to as ‘tunnel’
device, that is executing a ‘tunnel” flowchart. FIG. 5 shows
a system 30 including two client devices, a client device #1
31a and a client device #2 315, that may access the data
servers 22a and 224 using one or more of a tunnel device #1
33a, a tunnel device #2 3354, and a tunnel device #3 33c,
under the management and control of an acceleration server
32. These network elements communicates with each other
using the Internet 113.

The method of using a tunnel device is described below,
based on a database 40 shown in FIG. 5a describing a list
stored in the acceleration server 32, a flowchart 60 shown in
FIG. 6 describing a client device (such as the client device
#1 31a) operation, a flow chart 70 shown in FIG. 7 describ-
ing a tunnel device (such as the tunnel device #1 33a)
operation, and a messaging and states timing chart 50 shown
in FIG. 5b. The chart 50 shows the messaging and related
timing associated with the operation of the acceleration
server 32 (corresponding to a dashed line 51a), a client
device such as the client device #1 31a (corresponding to a
dashed line 515), a tunnel device such as the tunnel device
#1 33a (corresponding to a dashed line 51c¢), and a data
server such as the data server #1 22a (corresponding to a
dashed line 514d). The flowchart 60 comprises a flowchart 64
relating to a pre-connection phase, and a flowchart 65
describing a content fetch phase, of the client device.
Similarly, a flowchart 70 comprises a flowchart 72 relating
to the pre-connection phase, and a flowchart 73 describing
the content fetch phase, of the tunnel device. The database
40 shown in FIG. 5a is illustrated as a table, wherein a first
column 41a (designated as ‘TYPE’) relates to a device
functionality, such as tunnel or client, a second column 415
(designated as ‘IP ADDRESS’) relates to the respective
device IP address, a third column 41¢ (designated as ‘SIGN-
IN DATE/TIME”) relates to a timestamping including a date
(in DD/MM format) and a time when a respective device
signed in with the acceleration server, and a fourth column
414, relating to the device physical geographical location. A
top row 42 in the table refers to the field designations. First
42a, second 425, third 42¢, fourth 424, and fifth 42¢ rows in
the table, respectively relate to first, second, third, fourth,
and fifth devices that signed in with the acceleration server
32. For example, the second device shown in the row 425
has signed in as a tunnel device as shown in the column 41a,
timestamped as January 23’7 at 8:55 as shown in the third
column 41¢, and can be addressed over the Internet using the
IP address 109.23.78.5 as shown in the second column 415.

The process starts upon initializing a tunnel application in
a tunnel device, schematically shown as a step ‘START’ 71a
in the flowchart 70, corresponding to a state 54a ‘Start’ in the
chart 50. Such initialization may be executed upon the

10

15

20

25

30

35

40

45

50

55

60

65

84

device powering up process, or upon a user request. Then the
tunnel device #1 33a sign in with the acceleration server 32
in a step ‘Sign-in as Tunnel’ 7154, which corresponds to a
message ‘Sign In” 56a in the chart 50. The message com-
prises the device functionality as ‘tunnel’, and the device
334 identification on the Internet 113, such as its IP address
(for example 125.12.67.0). The message ‘Sign In’ is
received as the acceleration server 32, which updates the
database of the signed-in devices in a state ‘Update List’
52a, as shown in a first row 42a in the table 40. The
acceleration server 32 further log to the database the date
and time of the signing in, such as 23/1 as the date and 7:32
as the time, as shown in the third column 41¢ of the table 40.
The acceleration server 32 further adds rows to the table per
each added tunnel device in a case of multiple tunnel
devices, such as the addition of the tunnel device #2 335,
that its signing-in details are shown in the second row 424,
as addressed by the IP address 109.23.78.5 and having
signed in at 23/1 at 8:55.

Similarly, the client device #1 31a starts and sign in with
the acceleration server 32. The process starts upon initial-
izing a client application in a client device, schematically
shown as a step ‘START” 61a in the flowchart 60, corre-
sponding to a state 53a “Start’ in the chart 50. Such initial-
ization may be executed upon the device powering up
process, or upon a user request. Then the client device #1
31a sign in with the acceleration server 32 in a step ‘Sign-in
as Client’ 615, which corresponds to a message ‘Sign In’ 565
in the chart 50. The message comprises the device function-
ality as ‘client’, and the device 31a identification on the
Internet 113, such as its IP address (for example
36.83.92.12). The message ‘Sign In’ is received as the
acceleration server 32, which updates the database of the
signed-in devices in a state ‘Update List” 525, as shown in
the third row 42c in the table 40. The acceleration server 32
further logs to the database the date and time of the signing
in, such as 23/1 as the date and 10:44 as the time, as shown
in the third column 41c of the table 40. The acceleration
server 32 further adds to the table an additional row per each
newly signed client device in a case of multiple client
devices, such as the addition of the client device #2 315, that
its signing-in details are shown in the second row 42d, as
addressed by the IP address 125.66.69.73 and having signed
in at 24/1 on 15:34.

In order to make the communication between a client
device and a tunnel device faster and more eflicient, a
pre-connection phase is defined, where a preparation for
communication such as a TCP connection is established,
allowing for quick data transfer afterwards. The pre-con-
nection phase starts at a ‘Start Pre-Connection’ state 535 in
the chart 50, followed by the ‘Request List” message 56¢
(corresponding to the ‘Request Tunnels List’ step 62 in the
flowchart 60), being part of the Pre-connection client flow-
chart 64, where the client 31a requests the list of the
available tunnels that may be used, from the acceleration
server 32. The tunnel device #1 33a at this point is idling in
an ‘IDLE’ step 72¢ shown in the flowchart 70, being part of
the Pre-connection tunnel flowchart 72. In response to the
client device 31a request, the acceleration server 32 prepares
in a step ‘Prepare List’ 524 the list of current available
tunnels, and sends the list as a ‘Send List” message 564 to the
client device 31a, which in turn receives the list as part of
a ‘Receive Tunnels List’ step 626.

Based on pre-set criteria, a tunnel device (or multiple
tunnel devices) is selected by the client device #1 31a in a
“Tunnel Select’ step 53¢ (corresponding to a ‘Select Tunnel’
step 62¢ in the flowchart 60). For example, the tunnel device

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
182 of 228

US 10,469,614 B2

85

#1 33a may be selected. Then, pre-connection is initiated in
an ‘Initiate Pre-Connection’ step 62d, where an ‘Initiate
Pre-Connection’ message 56e is sent to the tunnel device #1
33a, which starts the pre-connection in a ‘Pre-Connection
Start’ state 54b, and replies the ‘Pre-Connection’ message
56/ to the client device 31a, thus completing the pre-
connection phase.

The pre-connection process involves establishing a con-
nection (directly or via a server) between the client device #1

86

‘Content Fetch’ flowchart 73 executed by the tunnel device
#1 33a may be a typical HTTP session for accessing a
content from a web-server.

The content herein may consist of, or comprise, data such
as files, text, numbers, audio, voice, multimedia, video,
images, music, computer programs or any other sequence of
instructions, as well as any other form of information
represented as a string of bits, bytes, or characters. In one
example, the content may include, be a part of, or a whole

31a (executing the flowchart 64) and the tunnel device #1 10 of, a URL or a yvebsne page.
33a (executing the flowchart 72). The handshaking between The acce leration server 32 gene.ral.ly .exe.cutes‘a ﬂOW,C hart
. 80 shown in FIG. 8. The server 32 is idling in an ‘IDLE’ step
the two devices at this stage involves forming the connection 814 until a re " ived f £ the devices in th
: . . . quest is received from one of the devices in the
by exchanging .communlcatlon-related 1nf0rmat10n.. The network. The request may be a sign-in request, as checked
formed connection may be qsed later for efficiently |5 ;5 ‘Sign—1In Request ?” step 815, which may be the result
exchange data between the devices. In one example, the of a signing in of the client device #1 31a as part of the
communication between the devices uses TCP, and the ‘Sign-in as Client’ step 615 in the client flowchart 60, or may
pre-connection is used for establishing a connection by be the result of a signing in of the tunnel device #1 33a as
forming ‘passive open’, involving exchanging SYN, SYN- part of the ‘Sign-in as Tunnel’ step 714 in the tunnel
ACK, and ACK messages. In one example, the message 20 flowchart 70. In the case of signing in, the server 32 update
‘Initiate Pre-Connection’ message 56¢ includes a SYN mes- the database such as the table 40 shown in FIG. 5a in an
sage, and the ‘Pre-Connection’ message 56/ includes an ‘Update Table’ step 81c¢, corresponding to an ‘Update List’
ACK message. state 524 for tunnel signing-in and an ‘Update List’ state 526
In another example, a VPN is formed between the for the client signing-in in the timing chart 50. In a “List
devices, and the tunneling or the VPN establishment is 25 Request ?” step 81d the acceleration server 32 checks for
performed as part of the pre-connection phase. The tunnel receiving a request from the client device #1 31a as part of
endpoints are authenticated before secure VPN tunnels can a ‘Request Tunnels List” step 62a, corresponding to the
be established. User-created remote-access VPNs may use message ‘Request List” 56c¢ in the timing chart 50. In
passwords, biometrics, two-factor authentication, or any response to such request, the server 32 compiles a list of
other cryptographic methods. Network-to-network tunnels 30 tunnels that can be used by the client device #1 31a to serve
often use passwords or digital certificates, and permanently the received request, as part of a ‘Prepare List’ step 8le
stores the key in order to allow a tunnel to establish (corresponding to a ‘Prepare List’ state 52¢ in the timing
automatically, without intervention from a user. chart 50). The compiled list is sent to the client device 31a
As long as the client device #1 31a is not requiring any as part of a ‘Send List” step 81f, corresponding to a ‘Send
content from a data server as described in a ‘Content 35 List’ message 564 in the timing chart 50. After completing
Required ?” step 63a, the device is idling in an ‘IDLE’ step the signing-in or sending list processes, the server 32 reverts
62¢. Once the client device #1 31a determines that external to idling in the ‘IDLE’ step 8la.
content from a data server is required, as shown in a Data servers (such as the data server #1 22a) typically
‘Content Required’ state 53d, a ‘Content Request” message limit the number of concurrent active connections with
56g (shown in the messaging chart 50) is sent (correspond- 40 connected devices (hosts). In many cases, a web page
ing to a ‘Send Content Request’ step 635 in the flowchart 60) content may include multiple URLs, and it is beneficial to
to the selected tunnel device #1 33a. The request is received open many concurrent connections, each for one or more of
at the tunnel device #1 33a at a ‘Request Received’ state 54c, the URLs, to accelerate the fetching of the web site content.
corresponding to a ‘Receive Content Request” 7356 in the In one example, the maximum number of connections
flowchart 70). In response, the tunnel device 33a sends a 45 permitted by the data server from which the content is to be
‘Content Request’ message 56/ to the data server #1 22a fetched is sent to a tunnel device, such as the tunnel device
(corresponding to a ‘Send Request To Server’ step 73c¢), #1 33a, as part of the ‘Pre-connection Tunnel #1° step 64a
requesting the content that was requested by the client or the ‘Content Fetch Tunnel #1° step 65a, shown as part of
device #1 31a. The data server #1 22a receives the request the flowchart 100 in FIG. 10. In response, the tunnel device
and prepares the requested content in a ‘Content Prepared’ 50 #1 33a as part of the ‘Send Request To Server’ step 73c,
state 554, and sends the requested content back to the tunnel opens the requested number of connections with the respec-
device #1 33a in a ‘Send Content’ message 561, received by tive data server. For example, the client may request, based
the tunnel device #1 334 in a ‘Receive Content from Server’ on stored information in the client device (such as based on
step 73d. The received content is prepared in a ‘Content former interaction with the respective data server received
Prepared’ state 54d, and then sent, in a ‘Send Content’ 55 from a tunnel device as part of a ‘Notity Client’ step 74c¢),
message 56/ (corresponding to a ‘Send Content To Client’ sends the tunnel device a request to open 8 connections,
step 73e), to the client device #1 31a. The tunnel device 33a which is known to be the maximum available (or allowable)
may then revert to idling in the ‘IDLE’ step 73a, until a new number of connections relating to the specific data server.
request is received. The requested content is received in a The client device may request all the tunnel devices used to
‘Content Received’ state 53¢ in the timing chart 50, corre- 60 use the maximum number of connections. For example,
sponding to a ‘Receive Content’ step 63¢ shown in the assuming 3 tunnel devices are used, and the maximum
flowchart 60. The client device 31a may then revert to idling connections per host (device) is limited (by the data server)
in the ‘IDLE’ step 62e, until a new content is required. When to 10 connections per host, each tunnel device may open the
such new content is required as determined as part of the maximum 10 connections available. Hence, such scenario
‘Content Required ?° step 63a, the process repeats by 65 results in total open connections (for fetching the requested

sending a ‘Content Request” message 56, corresponding to
the “‘Send Content Request’ step 63b. In one example, the

content) to be 10¥3=30, which is 3 times better than using
a single tunnel device, or when compared to a direct content

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
183 of 228

US 10,469,614 B2

87

fetching by the single client device from the data server. In
another example, assuming the limitation of the data server
is 8 connections, and wherein the client device sets the
optimal number of total of 15 connections, the client device
may request one tunnel device to use 8 connection and
another tunnel device to use 7 connections, thus obtaining
the optimal 8+7=15 connections.

Alternatively or in addition, a tunnel device may try to
open as many connections as available, as described in a
flowchart 74 shown in FIG. 7a. The flowchart 74 corre-
sponds to the flowchart 73 shown in FIG. 7. In parallel to
starting the content fetching from the data server in the
‘Send Request To Server’ step 73¢ and starting the reception
of content from the data server in the ‘Receive Content From
Server’ step 734, the tunnel device tries to open an additional
connection (or multiple additional connections) to those
already in use in a ‘Open Connection(s)’ step 74a. In the
case the additional connection was properly established, as
is checked in a ‘Successful ?” step 744, the tunnel device
reverts to try to open an additional connection in the ‘Open
Connection(s)’ step 74a. In the case no additional connec-
tion can be established, typically because the limit set by the
data server was reached, the tunnel device notifies the client
device in the ‘Notify Client’ step 74¢ of the maximum
number of connections available for this data server. This
notification allows the client device to use such information
for use with other tunnel devices communicating with this
data server or for future use with the data server.

Alternatively or in addition, a tunnel device may be used
to store a content to be provided to a client device, as
described in a flowchart 75 shown in FIG. 7h, which
corresponds to the flowchart 73 shown in FIG. 7. Upon
receiving a request for content from a client device, a tunnel
device (such as the tunnel device #1 33a) first checks if the
requested content is stored locally (in the tunnel device
itself), such as in its cache memory, in a ‘Locally Available
?” step 75a. The requested content may be stored in the
tunnel device as a result of a former accessing the respective
data server, for example by a web browser (or any other
application) that is part of the tunnel device. Alternatively or
in addition, the content may be stored as part of a ‘Store
Content From Server’ step 755 in a past fetching of content,
for this client device or for another client device. If the
content is available locally in the tunnel device, the over-
head, time, and resources, of accessing the respective data
server are obviated, and the locally stored requested content
is sent to the client device in the ‘Send Content To Client’
step 73e. In the case the requested content is not locally
available, the tunnel device continues as described in the
flowchart 73 to fetch the content from the data server.
Alternatively or in addition, upon receiving the requested
content from the data server in the ‘Receive Content From
Server’ step 734, the receive content may be stored locally
in the tunnel device for future use, in the ‘Store Content
From Server’ step 75b. Storing of the received content may
be executed before, after, or in parallel to sending the content
to the requesting client device in the ‘Send Content To
Client” step 73e.

Since the data server #1 22a is accessed by, and sends
information only to, tunnel devices (such as the tunnel
device #1 33a), and is not aware of the final content
destination being the client device #1 31a, the identity (such
as the IP address) of the client device #1 31a is concealed
from the data server #1 22a, thus providing anonymity and
untraceability. Further, in a case where the data server #1
22a is a web server, the method and system described may
provide for an anonymous web browsing. Further, the sys-

5

10

15

20

25

30

35

40

45

50

55

60

65

88

tem and method provide an Internet traffic route for the
content delivery that is distinct from the typical approach
where the client device #1 31a access the data server #1 22a
directly over the Internet, hence may alleviates bottlenecks
and conserve bandwidth. Furthermore, since multiple parts
of'the content stored in a data server (such as the data server
#1 22a) are loaded in parallel to a client device (such as the
client device #1 31a) using multiple distinct paths, the
content is fetched faster and using more effectively the
network resources.

A schematic messaging flow diagram 110 describing the
client device #1 31a related ‘content fetch’ flowchart 65 and
the tunnel device #1 33a related flowchart 73 is shown in
FIG. 11. A ‘Content Request’ message 111a (corresponding
to the ‘Content Request’ message 56g in the timing chart 50)
is first sent from the client device #1 31a to the selected
tunnel device #1 33a, which responds by forwarding the
request to the data server #1 22a using a ‘Content Request’
message 1115 (corresponding to the ‘Content Request” mes-
sage 56/ in the timing chart 50). In turn the data server #1
replies and sends the content in a ‘Send Content” message
111¢ (corresponding to the ‘Send Content’ message 56/ in
the timing chart 50) to the requesting tunnel device #1 33a,
which in turn forward the fetched content to the asking client
device #1 31a using a ‘Send Content” message 111d (cor-
responding to the ‘Send Content” message 565 in the timing
chart 50).

While accessing the data server #1 22a was exampled
above using the tunnel device #1 33a as an intermediary
device, the system and the client #1 31a may use multiple
tunnel devices in order to fetch the content from the same
data server #1 22a. Two, three, four, or any other number of
tunnel devices, serving as intermediary devices having the
same or similar role as the tunnel device #1 33a, may be
equally used. In one example, three tunnel devices may be
used, such as adding the tunnel device #2 335 and the tunnel
device #3 33¢, shown in system 30 in FIG. 5. Each of the
tunnel devices may execute the flow chart 70 shown in FIG.
7.

A flowchart 100 relating to the client device #1 31a when
employing three tunnel devices is shown in FIG. 10, based
on the flowchart 60 described above. Upon receiving a list
of available tunnel in a ‘Receive Tunnels List” step 626 from
the Acceleration server 32, the client device #1 31a selects
multiple tunnels from the received list, rather than selecting
a single tunnel as described in the ‘Select Tunnel’ step 62¢
described above. In the described example, three distinct
tunnel devices are selected from the list, such as the tunnel
device #1 33a (as before), the tunnel device #2 334, and the
tunnel device #3 33c. The client device 31a executes three
pre-connection processes in a ‘Pre-Connection Tunnel #1 °
step 64a, a ‘Pre-Connection Tunnel #2 ’ step 645, and a
‘Pre-Connection Tunnel #3 ’ step 64¢ (each corresponding to
the ‘Pre-connection’ flow chart 64 above), followed by a
‘Content Fetch Tunnel #1° step 654, a ‘Content Fetch Tunnel
#2* step 65b, and a ‘Content Fetch Tunnel #3’ step 65c¢,
respectively (each corresponding to the ‘Content Fetch’ flow
chart 65 above).

In such a configuration, three distinct data paths are
involved in the content fetching. In addition to the messag-
ing data path 110, a messaging flow 110a shown in FIG. 11a
describes the usage of the tunnel device #2 33b as an
intermediary device, relating to the client device #1 31a
‘content fetch’ related flowchart 6556 and the tunnel device
#2 33b related flowchart 73. A ‘Content Request” message
1124 (corresponding to the ‘Content Request’ message 56g
in the timing chart 50) is first sent from the client device #1

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
184 of 228

US 10,469,614 B2

89

31a to the selected tunnel device #2 335, which responds by
forwarding the request to the data server #1 22q using a
‘Content Request” message 1126 (corresponding to the
‘Content Request” message 56/ in the timing chart 50). In
turn the data server #1 replies and sends the content in a
‘Send Content” message 112¢ (corresponding to the ‘Send
Content’ 56i in the timing chart 50) to the requesting tunnel
device #2 33b, which in turn forward the fetched content to
the asking client device #1 31a using a ‘Send Content’
message 1124 (corresponding to the ‘Send Content’ message
56; in the timing chart 50). Similarly, a messaging flow 1105
shown in FIG. 115 describes the usage of the tunnel device
#3 33c¢ as an intermediary device, relating to the client
device #1 31a associated with ‘content fetch’ in the flow-
chart 65¢ and with the tunnel device #2 335 in the flowchart
73. The ‘Content Request’ message 1154 (corresponding to
the ‘Content Request’ message 56g in the timing chart 50)
is first sent from the client device #1 31a to the selected
tunnel device #3 33¢, which responds by forwarding the
request to the data server #1 224 using the ‘Content Request’
message 1155 (corresponding to ‘Content Request’ message
56/ in the timing chart 50). In turn the data server #1 22a
replies and sends the content in the ‘Send Content” message
115¢ (corresponding to the ‘Send Content” message 56/ in
the timing chart 50) to the requesting tunnel device #3 33c,
which in turn forward the fetched content to the asking client
device #1 31a using the ‘Send Content” message 1154
(corresponding to the ‘Send Content’ message 56; in the
timing chart 50).

Alternatively or in addition to accessing the data server #1
22a via intermediary devices such as one or more tunnel
devices as described herein, the client device #1 31a may
also directly access the data server #1 22qa for fetching the
content therefrom. Such a flowchart 100a is shown in FIG.
10a, where a ‘Content Fetch Direct’ step 654 is added. In this
step 654, the client device #1 31a directly accesses the data
server #1 22a, as typically known, and in the same way, or
in a similar way, the tunnel devices are accessing the data
server #1 22a for fetching content therefrom. Such direct
access is shown in messaging flow 110c¢ shown in FIG. 11¢,
where no intermediary device is used. The ‘Content
Request’ message 114a (which may be corresponding to the
‘Content Request’ message 56g in the timing chart 50) is
first sent from the client device #1 31a to the data server #1
22a. In turn the data server #1 22a replies and sends the
content in the ‘Send Content’ message 11456 (which may be
corresponding to the ‘Send Content’ message 56/ in the
timing chart 50) to the client device #1 31a. As used herein,
a direct access by a client device, such as the client device
#1 31a, is considered as if the client device itself serves as
a tunnel device for itself.

In one example, the same content (from the same data
server #1 22a) is requested by the client device #1 31a, from
all the selected tunnel devices. In such a case, the same
content is requested and fetched in the ‘Content Fetch’
flowcharts. In the example of three tunnel devices shown in
a flowchart 100, the same content may be defined to be
requested (and later fetched) in the ‘Content Fetch Tunnel
#1’ step 65a, the ‘Content Fetch Tunnel #2° step 655, and the
‘Content Fetch Tunnel #3” step 65¢. Such configuration may
be advantageous, for example, in the case where one or
multiple data paths are unstable or unreliable, or provide
intermittent connection. In the case wherein multiple redun-
dant tunnels and data paths are used, there is a higher
probability to fetch the required content, even if one or more
of the data paths are problematic or non-functioning. For
example, in the case where the tunnel device #1 33q and the

10

15

20

25

30

35

40

45

50

55

60

65

90

tunnel device #3 33¢ are not fully functioning or having a
momentary (or continuous) problem fetching the requested
content, still the tunnel device #2 335 may provide the
content. Further, such redundant operation may allow for
quicker and faster content fetching, since the client device
#1 31a may use the content first to be received, hence using
the faster content fetching route. For example, in case of the
tunnel device #1 33a replying and providing the content
after 12 milliseconds, the tunnel device #2 335 replying and
providing the content after 23 milliseconds, and the tunnel
device #3 33c replying and providing the content after 5
milliseconds, the content is available at the client device #1
31q after 5 milliseconds, and there is no need to wait for the
other tunnels to reply. Similarly, in case of a direct access,
the client device #1 31a direct access is added as a redundant
content fetching path to the tunnels-associated data paths.

The tasks relating to the different data paths, such as
shown in a flowchart 1004, relating to communicating with
the multiple tunnel devices and/or direct access, may be
executed sequentially or in parallel. Further, each of the
messages transferred shown in the messaging charts and
data paths, such as in the diagrams 110, 110a, 1105, and
110c¢, may be executed, or may occur, sequentially or in
parallel. For example, in case of multiple pre-connection
processes, the client device #1 31a may execute the pro-
cesses sequentially, meaning initiating a new pre-connection
only after a former pre-connection is completed (or only
upon being successfully completed). For example, relating
to the flowchart 100a, the client device first executes the
‘Pre-connection Tunnel #1” step 64a, and only upon comple-
tion of this step initiates the ‘Pre-connection Tunnel #2” step
64b, and only upon completion of the latter step initiates the
‘Pre-connection Tunnel #3’ step 64c. Alternatively or in
addition, the processes may be executed in parallel, using a
multitasking.

Similarly, in case of multiple connect fetching processes,
the client device #1 31a may execute the processes sequen-
tially, meaning initiating a new content fetching only after a
former content fetching is completed (or only upon being
successfully completed). For example, relating to the flow-
chart 100a, the client device first executes the ‘Content
Fetch Direct’ step 65d, and only upon completion of this step
initiates the ‘Content Fetch Tunnel #1° step 654, and only
upon completion of the latter step initiates the ‘Content
Fetch Tunnel #2’ step 65b. Alternatively or in addition, the
processes may be executed in parallel, using a multitasking.

The client device 31a may select a single tunnel device to
be used as an intermediary device as described above
relating to the ‘Select Tunnel’ step 62c¢. Alternatively or
addition, the client device 31a may select a plurality of
tunnel devices (including itself as described in the ‘Content
Fetch Direct’ step 654d) to be used as an intermediary device
as described above relating to the ‘Select Tunnels’ step 101a.
The selection of a tunnel or of multiple tunnels may be based
on pre-set criteria. The selection may use various attributes
or characteristics of the tunnel devices, its operation envi-
ronment, history, and any other characteristics. The attri-
butes associated with each tunnel device may be stored in
the acceleration server 23, and sent to the client device #1
31a as part of the available tunnel devices list, so that the
client device #1 31a may use these attributes for the selec-
tion process. The criteria herein may be used independently
or in combination. In yet another alternative, the selection is
based on timing measurement, such as Time-of-Day (TOD).
For example, one selection scheme may be used on a daily
basis from 2.00 AM to 3.00 AM, a different selection from
3.00 AM to 4.00 AM and so on, cycling in a 24-hour day.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
185 of 228

US 10,469,614 B2

91

Similarly, each day of the week may use different selection.
Any combination of the schemes described herein may be
equally used. Any number of tunnel devices may be
selected. The number of tunnel devices that are selected in
the ‘Select Tunnels’ step 101a may be 1 (one) (correspond-
ing to the ‘Select Tunnel’ step 62¢). Alternatively, a small
number of tunnel devices may be selected, such as 2 or 3.
Alternatively, 4, 5, 6, 7, 8, 9, or 10 tunnel devices may be
selected. Further, more than 10 tunnel devices may be
selected, such as 10, 20, 30, 40, or 50.

The client device 31a may select a single tunnel device to
be used as an intermediary device as described above
relating to the ‘Select Tunnel’ step 62c. Alternatively or
addition, the client device #1 31a may select a plurality of
tunnel devices (including itself as described in the ‘Content
Fetch Direct’ step 654d) to be used as an intermediary device
as described above relating to the ‘Select Tunnels’ step 101a.
Alternatively or in addition, the tunnel devices to be used
may be selected by the acceleration server 32, and the tunnel
list sent to the client device #1 31a (in the ‘Send List’ step
81fand received by the client device #1 31a in the ‘Receive
Tunnels List’ step 625) may include only the identification
(e.g., IP address) of the tunnel devices to be used as
intermediary devices to the client device #1 31a. Such a
flowchart 90 to be executed by the acceleration server 32 is
shown in FIG. 9. After preparing a list of available or
potential tunnel devices that may be used in the ‘Prepare
List’ step 81e, the acceleration server 32 itself selects in a
‘Select Tunnels’ step 101a the tunnel devices that are to be
used by the client device #1 314, and sends only these tunnel
devices list to the client device #1 31a in a ‘Send Selected
List’ step 91a.

Alternatively or in addition, the tunnel devices to be used
may be selected by both the client device #1 31a and the
acceleration server 32 working in cooperation. In one
example, the acceleration server 32 (for example, as part of
the ‘Select Tunnels’ step 101a in the flow chart 90) may
select a subgroup of suggested, offered, or recommended
tunnel devices that can be used, while the client device #1
31a (for example, as part of the ‘Select Tunnels’ step 101a
in the flow chart 100) further selects and uses a subset of the
tunnel devices from the list of offered suggested tunnel
devices. Alternatively or in addition, the tunnel devices to be
used may be selected by the acceleration server 32, based on
rules or criteria set by, or requested from, the client device
#1 31a. For example, as part of the requesting of tunnel
devices list in the ‘Request Tunnels List’ step 62a, the client
device #1 31a may send to the acceleration server 32 a set
or rules or criteria, relating to the tunnel devices that are to
be used by this client, which may relate to various attributes
or characteristics of the available tunnel devices. In one
example, the criteria may be the geographical location of the
tunnel devices. The client device #1 31a may ask for tunnel
devices only in a specific location, such as a specific country,
and in response the acceleration server 32 may select tunnel
devices only in the specified country (for example, in the
‘Select Tunnel” step 101¢ in the flowchart 90) and send only
this list (for example in the ‘Send Selected List’ step 91a) to
the client device #1 31a. For example, relating to the
example of the table 40 shown in FIG. Sa, in the case the
client device #1 31a asks for tunnels only in Germany (or
Europe), only the second listed tunnel device in the row 425
may be included in the list, being the only one located in
Germany.

The selection of the tunnel device (or devices) to be used,
or the priorities assigned to them, may be based on the
available communication attributes or their history. For

10

25

30

35

40

45

55

92

example, based on the costs associated with the usage of a
network, the higher cost network may have lower priority
and less used than lower cost or free network. In another
example, a high quality network, such as having a higher
available bandwidth or throughput, lower communication
errors or packet loss, lower hops to destination, or lower
transfer delay time, is having higher priority that a lower
quality network. The system may use Bit Error Rate (BER),
Received Signal Strength Indicator (RSSI), Packet Loss
Ratio (PLR), Cyclic Redundancy Check (CRC) and other
indicators or measures associated with the communication
channel associated with a network interface, and may be
based on, use, or include the methodology and schemes
described in RFC 2544 entitled: “Benchmarking Methodol-
ogy for Network Interconnect Devices”, and ITU-T Y.1564
entitled: “Ethernet Service Activation Test Methodology”,
which are both incorporated in their entirety for all purposes
as if fully set forth herein. The network quality grade may be
affected by the history of using such a network, for example
during a pre-set period before the process of selection of a
network interface. In one example, the network interface
where the last proper packet was received from may be
selected as the interface to be used for the next packet to be
transmitted. The system may further use, or be based on, the
schemes and technologies described in U.S. Pat. No. 7,027,
418 to Gan et al. entitled: “Approach for Selecting Com-
munications Channels Based on Performance”, which is
incorporated in its entirety for all purposes as if fully set
forth herein.

Random: In one example, the tunnel device (or devices)
to be used are randomly selected. Randomness is commonly
implemented by using random numbers, defined as a
sequence of numbers or symbols that lack any pattern and
thus appear random, are often generated by a random
number generator. Randomness is described, for example, in
IETF RFC 1750 “Randomness Recommendations for Secu-
rity” (12/1994), which is incorporated in its entirety for all
purposes as if fully set forth herein. A random number
generator (having either analog or digital output) can be
hardware based, using a physical process such as thermal
noise, shot noise, nuclear decaying radiation, photoelectric
effect or other quantum phenomena. Alternatively, or in
addition, the generation of the random numbers can be
software based, using a processor executing an algorithm for
generating pseudo-random numbers which approximates the
properties of random numbers.

Physical location: In one example, the selection criterion
is based on physical geographical location of a tunnel
device. For example, a tunnel device, which is geographi-
cally the closest to the data server #1 22a from which a
content is to be requested, will be the first to be selected. The
second nearest tunnel device will be the second to be
selected, and so on. In this scheme, tunnel devices which are
in the same city as the data server #1 224, will have highest
priority than other tunnel devices in the same country, then
in the same continent and so forth. Alternatively or in
addition, the criterion may be based on the physical distance
between a tunnel device and the acceleration server 32
location, or on the physical distance between a tunnel device
and the client device #1 31a. In one example, the tunnel
devices may be selected based on being in a location, which
is the most distant from the data server #1 22a, the accel-
eration server 32, or the client device #1 31a. The informa-
tion about the tunnel device locations may be obtained, for
example, from the tunnel devices themselves during the
signing-up process. In such a scheme, the tunnel device
sends its physical geographical location (which may include

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
186 of 228

US 10,469,614 B2

93

country, state or province, city, street address, or ZIP code)
as part of the sign-in process, and the location is stored in the
acceleration server as part of the tunnels related database.
The table 40 in FIG. 5a shows various devices in the system
listed with associated cities and countries in the fourth
column 414. In the example shown, the first row 42a relates
to a tunnel device located in Boston, Mass., in the United
States, the second row 425 relates to a tunnel device located
in Munich in Germany, the third row 42¢ relates to a client
device located in Sidney in Australia, the fourth row 424
relates to a client device located at Tel-Aviv in Israel, and the
fifth row 42e relates to a device located at Cairo in Egypt.
In the case wherein the criterion involved relates to the node
closest to the data server #1 22a, which for example is
located in London in the United-Kingdom, the first (or only)
tunnel device to be selected may be the second tunnel device
associated with the second row 424, being in Europe and
thus the geographically closest device. In one example, the
device location may be obtained using its built-in Global
Positioning System (GPS), and may include the latitude,
longitude, and timezone of the device location.

IP address: In one example, the IP address is used as a
measure to determine ‘closeness’. For example, an IP
address that is numerically close to another IP, may be
considered as ‘geographically’ close. In this context,
192.166.3.103 is closer to 192.166.3.212 than to
192.167.3.104. Alternatively or in addition, devices that
share the same ISP are considered as ‘close’, since it is likely
that better and faster communication is provided, since the
need to communicate via the Internet is obviated.

Timing: In one example, the timing of an event or activity
of'a tunnel device affects its selection. The timing of a tunnel
device signing up with the acceleration server 32 may be
used for the selection criterion. The first available tunnel
device that signed in may be first selected, then the second
in line. In the example of the table 40 shown in FIG. 5a, the
tunnel device associated with the first row 42a will be first
to be selected, having the earliest sign-in time (23/1, 7:32),
while the following tunnel device to sign in (shown in the
row 42b) will be selected next. Alternatively or in addition,
the latest signed-in tunnel device will be the first to be
selected.

Alternatively or in addition, the time of the last usage as
the tunnel device may be used as a criterion. For example,
a tunnel device that was most recently used will have the
highest priority to be reselected. Alternatively, a ‘fairness’
rule will be applied in order to uniformly use all available
channels, where a tunnel device will be selected if it was not
used the most time.

The content requested by the client device #1 31a may be
partitioned into multiple parts or ‘slices’. Any number of
slices may be used. The slicing may be in a bit, nibble
(4-bits), byte (8-bits), word (multiple bytes), character,
string, or file level. For example, in a case wherein the
content includes 240 bytes designated byte #1 to byte #240,
using a byte level partitioning into two slices results in a first
slice (slice #1) including byte #1 to byte #120, and a second
slice (slice #2) including byte #121 to byte #240. In the case
of byte-level partitioning into three slices (referred as slice
#1, slice #2, and slice #3), a first slice (slice #1) may be
including byte #1 to byte #80, a second slice (slice #2) may
be including byte #81 to byte #160, and a third slice (slice
#3) may be including byte #161 to byte #240. Similarly, in
a case wherein the content include 3 bytes designated byte
#1 to byte #3 representing 24 bits, using a bit-level parti-
tioning into four slices results in a slice #1 including the first
6 bits, slice #2 including the next 6 bits, slice #3 including

30

40

45

94

the next 6 bits, and slice #4 including the last 6 bits. The
partition may be into equal length parts. Alternatively or in
addition, a different length slicing may be applied. For
example, in the case of a 240 bytes content and using
byte-level partitioning into three slices (referred as slice #1,
slice #2, and slice #3), a first slice (slice #1) may be
including byte #1 to byte #20 (20-byte length), a second
slice (slice #2) may be including byte #21 to byte #100
(80-byte length), and a third slice (slice #3) may be includ-
ing byte #101 to byte #240 (140-byte length). In one
example, the content itself is made of inherent or identifiable
parts or segments, and the partition may make use of these
parts. In one example, the content may be a website content
composed of multiple webpages, and thus the partition may
be such that each slice includes one (or few) webpages.
Further, the partitioning may be sequential or non-sequential
in the content.

The partitioning may be non-overlapping, wherein each
slice includes a distinct part of the content, as is exampled
above in a case wherein the content includes 240 bytes
designated byte #1 to byte #240, where using a byte level
partitioning into three slices (referred as slice #1, slice #2,
and slice #3), results in a first slice (slice #1) including byte
#1 to byte #80, a second slice (slice #2) including byte #81
to byte #160, and a third slice (slice #3) including byte #161
to byte #240. Alternatively or in addition, an overlapping
partitioning may be applied, where the same part of the
content is included in multiple slices. For example, in a case
above where the content includes 240 bytes designated byte
#1 to byte #240, and using a byte level partitioning into three
slices (referred as slice #1, slice #2 and slice #3), a first slice
(slice #1) may include byte #1 to byte #160, a second slice
(slice #2) may include byte #81 to byte #240, and a third
slice (slice #3) may include byte #1 to byte #80 in addition
to byte #161 to byte #240. In such a case, byte #1 to byte #80
are part of both slice #1 and slice #3, byte #81 to byte #160
are part of both slice #1 and slice #2, and byte #161 to byte
#240 are part of both slice #2 and slice #3. It is noted that
in such a partition, the content may be fully reconstructed
from any two of the slices, hence providing a degree of
redundancy. For example, in case of carrying the three slices
over the Internet and a failure to receive one of the slices, the
remaining two slices may be used to fully reconstruct the
whole content.

The same content may be requested and fetched using
multiple tunnel devices as exampled above. Alternatively or
in addition, the content may be partitioned into multiple
slices (overlapping or non-overlapping), where each slice is
requested and fetched using a distinct tunnel device (or via
the client device serving as its own tunnel). The content is
partitioned into slices in a ‘Content Partition’ step 1014
shown in the flowchart 100. In one example, each of the
slices is allocated to a different tunnel device, and fetched
via that tunnel device as explained herein. For example, in
the case of partitioning into 3 slices, where slice #1 may be
fetched via the tunnel device #1 33a in a ‘Content Fetch
Tunnel #1 ’ step 65a, slice #2 may be fetched via the tunnel
device #2 335 in a ‘Content Fetch Tunnel #2 * step 655, and
slice #2 may be fetched via the tunnel device #3 33¢ in a
‘Content Fetch Tunnel #3 * step 65c¢. Alternatively or in
addition, a slice (or multiple slices) may be requested and
fetched via two or more tunnel devices. Such scheme
provides redundancy and may further accelerate the content
fetch. For example, in the case of partitioning into 2 slices,
where slice #1 may be fetched via the tunnel device #1 33a
in the ‘Content Fetch Tunnel #1” step 65a and in parallel
slice #1 may also be fetched via the tunnel device #2 3354 in

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
187 of 228

US 10,469,614 B2

95

the ‘Content Fetch Tunnel #2” step 656, while slice #2 may
be fetched via the tunnel device #3 33¢ in the ‘Content Fetch
Tunnel #3” step 65¢.

The system was exampled above where a device may be
a client device (such as the client device #1 31a) executing,
for example, the flowchart 60, the flowchart 100, or the
flowchart 100a. Similarly, a device may be a tunnel device
(such as the tunnel device #1 33a) executing, for example,
the flowchart 70. It is appreciated that a device may serve as
both a client device and as a tunnel device, executing both
a client device flowchart (such as the flowchart 100a) and a
tunnel device flowchart (such as the flowchart 70). The two
roles may be performed sequentially, where one role is
assumed at a time, or may be used in parallel using multi-
tasking or multiprocessing. For example, the client device
#1 31a may also serve as a tunnel device, referred to as
Client/Tunnel device #1 31a as shown in system 120 in FIG.
12. For example, the table 40 shown in FIG. 5a shows in the
fifth row 42e such a client/tunnel device after signing in. A
system may include client—only devices using tunnel-only
devices. Alternatively or in addition, a part of, or all the
devices in a system may be client/tunnel devices, capable of
assuming both roles of client and tunnel devices.

In one example shown as a messaging flow 1204 in FIG.
124, the client/tunnel #1 device 121a is serving as a tunnel
device (in addition to being the client device #1 31a as
described above) serving as an intermediary device for the
client device #2 315 for fetching content from the data server
#2 22b. The ‘Content Request’ message 122a (correspond-
ing to the ‘Content Request’ message 56g in the timing chart
50) is first sent from the client device #2 316 to the
client/tunnel device #1 121a, which responds by forwarding
the request to the data server #2 225 using the ‘Content
Request’ message 1225 (corresponding to the ‘Content
Request’ message 56/ in the timing chart 50). In turn the
data server #2 22b replies and sends the content in ‘Send
Content” message 122¢ (corresponding to the ‘Send Con-
tent” message 56/ in the timing chart 50) to the requesting
client/tunnel device #1 121a now serving as a tunnel device,
which in turn forward the fetched content to the asking client
device #2 316 using the ‘Send Content” message 122d
(corresponding to the ‘Send Content’ message 56; in the
timing chart 50).

Any device referred to herein as a ‘tunnel device’, such as
the tunnel device #1 33a, the tunnel device #2 3354, or the
tunnel device #3 33¢, may be implemented as a computer
serving as a client device in the server/client sense, and may
execute client applications or software. In particular, such a
tunnel device may execute a web browser application.
Similarly, any tunnel device may be implemented as a
computer serving as a server device in the server/client
sense. Similarly, any device referred to herein as a ‘client
device’, such as client device #1 31a, client device #2 315,
and client device #3 31¢, may be implemented as a computer
serving as a client device in the server/client sense, and may
be executing client applications or software. In particular,
such a client device may execute a web browser application.
Similarly, any client device may be implemented as a
computer serving as a server device in the server/client
sense.

Further, the functionality of any device herein may be
implemented using multiple physical devices. In one
example shown as a system 130 in FIG. 13, the client device
#1 31a functionality is implemented in as client device #1
system 133, comprising a computer 132 (may be used for
GUI or as a client), is communicating with a proxy server

20

40

45

50

55

96

131. The client device #1 31a functionality may be split
between the computer 132 and the proxy server 131.

In one example, the acceleration server 32 (together with
the tunnel devices) forms a system that may be used to
provide a service to a client device. The service allows the
client device (such as client device #1 31a) to quickly and
anonymously fetch content from the data server #1 22a. The
service level may be measured, or the service may be billed
for, if applicable, for example, using the following param-
eters (individually or combined):

Content amount. In this example, the amount of data
relating to the content fetched from a data server (such as the
data server #1 22a) is measured and logged. In such a
scheme, the tunnel devices may send to the acceleration
server the amount of data flowing through from the data
server to the client device. Alternatively or in addition, the
client device may log or send the amount of content fetched
to the acceleration server 32.

Number of tunnels. The number of tunnels that were
available to a client device, or the number of tunnel devices
that were actually used, may be used as an indication to the
service level.

Location. The service level may be measured or billed
based the country the data server, from which the content is
fetched, is located. Similarly, the service level may be
measured or billed based the country the client device, to
which the content is fetched, is located.

While the pre-connection process was described above
regarding the communication between a client device (such
as the client device #1 31a) and a tunnel device (such as the
tunnel device #1 33a), described as the client device pre-
connection flowchart 64 and the tunnel device pre-connec-
tion flowchart 72, a pre-connection may be established
between any two devices in the system 30, such as between
a client device and the acceleration server 32, between two
client devices, or between a client device and a data server
(such as the data server #1 22a). Similarly, a pre-connection
may be established between a tunnel device and the accel-
eration server 32, between two tunnel devices, or between a
tunnel device and a data server (such as the data server #1
22a).

The performance of the method and system described
herein may be based on the latency involved in fetching a
required content. The flowchart 65 in FIG. 6 describes the
steps involved in fetching content from a tunnel device, and
a flowchart 140 in FIG. 14 provides further detailed opera-
tion of a client device, such as the client device #1 31a. The
‘receive Content” step 63¢ may be partitioned into two or
more steps, as shown in the flowchart 270 in FIG. 27, such
as a ‘Receive Start’ step 141a, relating to the starting of
receiving data from a tunnel device, upon starting or com-
pleting the reception of the first byte of the data, for
example, and a ‘Receive End’ step 1415, relating to the
ending of receiving data from a tunnel device, for example
upon starting or completing the reception of the end byte of
the data.

As part of the “‘Send Content Request’ step 635, a timer #1
is started in ‘Timer #1 Start’ step 142a, and the timer #1 is
stopped in a ‘Timer #1 Stop’ step 1425 at the beginning of
the receiving the data from the tunnel device in the ‘Receive
Start” step 141a. Hence, the timer #1 is used to measure the
Round Trip Time (RTT), relating to the time interval mea-
sured from sending the request to a tunnel device until the
requested data is starting to be received. Similarly, as part of
the ‘Receive Start’ step 143a a timer #2 is started, and the
timer #2 is stopped in a “Timer #2 Stop’ step 1435 at the end
of' the receiving the data from the tunnel device in a ‘Receive

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
188 of 228

US 10,469,614 B2

97

End’ step 1415. Hence, the timer #2 is used to measure the
time interval required to receive the content itself from the
tunnel. For example, in case the time interval is 50 milli-
seconds (ms), this is the time interval measured from starting
to ending of the data reception from the tunnel device. In the
case the content size is X bits, the BW can be calculated as
the X bits divided by the timer #2 measured time interval.
For example, in the case the received content from the tunnel
device is about the size of 50,000 bits (50 Kbits) received
during 100 milliseconds (ms), the effective (or average) BW
is BW=50,000/0.1=500,000 bits/second=500 Kb/s=62.5
Kbytes/s=62.5 KB/s. The total latency affecting the perfor-
mance is the combination of both the time interval measured
by timer #1 and the time interval measured by timer #2.
Using the above examples where the timer #1 measured an
RTT of 50 ms and the timer #2 measured 100 ms, the total
latency, measured from sending the request to the tunnel in
the ‘Send Content Request’ step 635 to the end of the content
reception in the ‘Receive End’ step 1415, is 150 ms (50+
100=150).

After a transaction involving fetching a content from a
tunnel is completed, it is beneficial to store the fetched
content for future use, as shown in a ‘Store Content’ step 145
in the flowchart 140. The fetched content may be stored in
the client device in any volatile or non-volatile memory, or
may be stored in a local cache as described in U.S. Pat. No.
8,135,912 to the same inventors as this application, entitled:
“System and Method of Increasing Cache Size”, which is
incorporated in its entirety for all purposes as if fully set
forth herein. The content is stored with its related metadata
or any other identifiers, so it can be easily detected and
fetched when later required. For example, the stored content
may be used when the same content is required at any later
stage by the same client, or may be used when the client
device also serves as a peer device, such as the peer device
#1 102a as shown in system 260. In the latter case, the
fetched content (such as a URL content) may be arranged
and stored as chunks, as described herein.

After a transaction involving fetching a content from a
tunnel is completed, it is beneficial to store the transaction
related information for future use, such as for future analy-
sis. An example of a table relating to transactions log, that
may be part of a database, is shown as table 150 in FIG. 15.
The table is updated in the ‘Update Transactions Log’ step
144 as part of the flowchart 140 shown in FIG. 14. A top row
152 provides the titles of the various columns, where each
of the rows provides information regarding a specific trans-
action, where a first transaction information is shown in a
first row 1524, the second transaction information is shown
in a second row 1524, the third transaction information is
shown in a third row 152¢, and so forth. The first column
151a shows the date and time (in DD/MM HH/MM format)
when the transaction occurred, such as the start or end of the
transaction. For example, the first transaction related infor-
mation is in the first row 1524 shows that the transaction was
completed (or started) at March 13”, on 9:23. Similarly, the
second transaction information is in the second row 1525
shows that the transaction was completed (or started) on
March 137, at 9:46, and the third transaction information is
in the third row 1525 shows that the transaction was com-
pleted (or started) at April 16”, on 11:22. The second
column 15154 includes an identifier such as the IP address of
the tunnel device that was used in the transaction to fetch the
content from the data server, which identifier (such as its IP
address) is included in the third column 151¢. In the example
of the first transaction shown in the first row 152a, the IP
address of the tunnel device used is 229.155.81.168, and it

10

15

20

25

30

35

40

45

50

55

60

65

98

was used to fetch content stored in a data server having an
IP address of 128.164.35.35.142. Similarly, in the example
of the second transaction shown in the second row 15254, the
IP address of the tunnel device used is 248.107.109.10, and
it was used to fetch content stored in a data server having an
IP address of 49.154.2.5, and in the example of the third
transaction shown in the third row 152¢, the IP address of the
tunnel device used is 158.217.19.195, and it was used to
fetch content stored in a data server having an IP address of
72.251.238.51. The fourth column 1514 describes the iden-
tifier of the content that was fetched during this transaction,
such as [P address, URL, web-site or web-page, where the
first transaction content (in the first row 152a) relates to the
URL www.111.com/22.mpg, the second transaction content
(in the second row 152b) relates to the URL www.xxx.com/
by.avi, the third transaction content (in the third row 152¢)
relates to the URL www.yyy.com/t6.php, and so forth.

A fifth column 151e logs the BW calculated in a respec-
tive transaction, based on timer #2 time interval measure-
ment as described above. In the first transaction (in the first
row 152a) the calculated BW is logged as 1000 Kb/s (=1
Mb/s=125 KB/s), in the second transaction (in the second
row 152b) the calculated BW is logged as 350 Kb/s (=0.35
Mb/s), and in the third transaction (in the third row 152¢) the
calculated BW is logged as 2500 Kb/s (=2.5 Mb/s). A sixth
column 151f logs the RTT measured in the transaction,
based on timer #1 time interval measurement as described
above. In the first transaction (in the first row 152q) the
measured RTT is logged as 30 ms (=0.03 seconds=0.03 s),
in the second transaction (in the second row 1525) the
measured RTT is logged as 70 ms, and in the third transac-
tion (in the third row 152¢) the measured RTT is logged as
540 ms (=0.54 second).

The transaction log, such as table 150, may be prepared by
a client device, such as client device #1 31a, and stored in
the client device for future use. Alternatively or in addition,
the transaction log may be sent, after each transaction or
after multiple transactions, such as per a time period (e.g.,
hourly, daily, weekly, monthly), to other entities in the
system, to be stored in the entities for future use by them or
by other entities in the network. In one example, the trans-
action log is sent to the acceleration server 32. Alternatively
or in addition, the transactions log may be sent to the tunnel
devices, such as the tunnel device #1 334, the tunnel device
#2 33b, or the tunnel device #3 33c¢, that were involved in the
content fetching transaction.

Similar to table 150 shown in FIG. 15, a table 150a shown
in FIG. 15a shows a table relating to four tunnel devices
used for fetching different content from the same data server
(such as the data server #1 22a), thus the same server IP
address is shown in the third column 153c¢. The IP addresses
the tunnel devices are shown in the second column 1535, the
URL fetched is shown in the fourth column 1534, the date
and time of the transaction are logged in the first column
153a, the BW is shown in the fifth column 153e, and the
measured RTT is shown in the sixth column 153/, The first
transaction (logged in a first row 154a) is using a first tunnel
device having IP address of 139.230.154.213, the second
transaction (logged in a second row 1545) is using a second
tunnel device having IP address of 132.171.60.197, the third
transaction (logged in a third row 154¢) is using a third
tunnel device having IP address of 248.46.80.36, and the
fourth transaction (logged in a fourth row 154d) is using a
fourth tunnel device having 1P address of 31.16.208.171.

The tunnel devices to be used when content is to be
fetched from a data server (such as the data server 22a) may
be selected by a client device (such as the client device #1

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
189 of 228

US 10,469,614 B2

99

31a) in the ‘Select Tunnel” step 62¢ in the flowchart 60, or
in the ‘Select Tunnels’ step 1015 in the flowchart 100.
Alternatively or in addition, the tunnel devices may be
selected by the acceleration server 32, as part of the ‘Select
Tunnels’ step 101a in the flowchart 90. The selection may be
based on a past performance of the tunnel devices, such as
information relating to former transactions involving these
tunnel devices. In one example, the transactions log may be
used to evaluate and select which tunnel devices to use in a
specific transaction to be executed, or in multiple transac-
tions.

In the example of the transaction log table 150a shown in
FIG. 15a and relating to a client device, the client device
may need to fetch content from the same data server shown
in the table 150q (having an IP address of 49.154.2.5), and
thus may use the table content as an indication of the
performance of the various tunnel devices. In one example,
the criterion to select a single tunnel device to be used for
fetching content from the data server may be based on
having higher BW, assuming that the higher BW has not
changed and thus will result in faster content fetching, and
hence the tunnel device used in the third logged transaction
(having an IP address of 248.46.80.36) will be selected for
this transaction, having the highest recorded BW of 2500
Kb/s. In the case two tunnel devices are to be selected, the
second tunnel device to be selected is the tunnel device used
in the fourth logged transaction (having an IP address of
31.16.208.171) will be selected for this transaction, being
associated with the second highest BW in the table. Simi-
larly, the tunnel device associated with the first logged
transaction will be the next to be selected.

Alternatively or in addition, the criterion to select a single
tunnel to be used for fetching content from the data server
may be based on having lower RTT, assuming that the lower
RTT has not changed and thus will result in faster content
fetching, and hence the tunnel device used in the first logged
transaction (having an IP address of 139.230.154.213) will
be selected for this transaction, having the lowest recorded
RTT of 30 ms. In the case two tunnel devices are to be
selected, the second tunnel device to be selected is the tunnel
device used in the second logged transaction (having an IP
address of 132.171.60.197) will be selected for this trans-
action, being associated with the second lowest RTT in the
table (70 ms). Similarly, the tunnel device associated with
the fourth logged transaction will be the next to be selected.

Alternatively or in addition, both the RTT and the BW are
used as criteria for selecting tunnel devices. In one example,
the expected total latency is calculated, based on both the
former BW and the former RTT, and the tunnel device
offering the lowest estimated total latency will be selected.
In one example, assuming the content to be fetched is
estimated (or known to be) having the size of 100 Kb (100
kilobits). The tunnel device used in the first logged trans-
action (in the first row 154a) is associated with past perfor-
mance (with the same data server) of BW=1000 Kb/s and
RTT=30 ms. In such a case, the total latency is calculated
and estimated as 30+100/1000=130 ms. The tunnel device
used in the second logged transaction (in the second row
1545b) is associated with past performance (with the same
data server) of BW=350 Kb/s and RTT=70 ms, and thus the
total latency is calculated and estimated as 70+100/
350=355.7 ms. Similarly, the estimated total latency of using
the tunnel device used in the third logged transaction (in the
third row 154¢) is 580 ms, and the estimated total latency of
using the tunnel device used in the fourth logged transaction
(in the fourth row 1544) is 241.4 ms. Having the lowest
estimated total latency, the tunnel device used in the first

10

15

20

25

30

35

40

45

50

55

60

65

100

logged transaction (in the first row 154a) will be selected
first as having the lowest expected total latency, the tunnel
device used in the fourth logged transaction (in the fourth
row 1544) will be selected second, the tunnel device used in
the second logged transaction (in the second row 1545) will
be selected third, and the tunnel device used in the third
logged transaction (in the third row 154¢) will be selected
last.

However, assuming the content to be fetched is estimated
(or known to be) having the size of 1000 Kb (1000 kilo-
bits=1 Mb). The tunnel device used in the first logged
transaction (in the first row 154a) is associated with past
performance (with the same data server) of BW=1000 Kb/s
and RTT=30 ms. In such a case, the total latency is calcu-
lated and estimated as 30+1000/1000=1030 ms (1.03 s). The
tunnel device used in the second logged transaction (in the
second row 1545) is associated with past performance (with
the same data server) of BW=350 Kb/s and RTT=70 ms, and
thus the total latency is calculated and estimated as
7041000/350=2927.1 ms. Similarly, the estimated total
latency of using the tunnel device used in the third logged
transaction (in the third row 154¢) is 940 ms, and the
estimated total latency of using the tunnel device used in the
fourth logged transaction (in the fourth row 1544) is 884.2
ms. Having the lowest estimated total latency, the tunnel
device used in the fourth logged transaction (in the fourth
row 154d) will be seclected first as having the lowest
expected total latency, the tunnel device used in the third
logged transaction (in the third row 154¢) will be selected
second, the tunnel device used in the first logged transaction
(in the first row 154a) will be selected third, and the tunnel
device used in the second logged transaction (in the second
row 1545) will be selected last.

The flowchart 74 in FIG. 7a describes a method to be
executed by a tunnel device, such as the tunnel device #1
33a (or any other network element), for independently
increasing the number of connections to a data server (such
as the data server #1 22a), in order to allow faster fetching
of content from the data server. Alternatively or in addition,
the client device may manage the number of connections
used per tunnel device, as described in a flowchart 160
shown in FIG. 16, which describes a method that may be
executed by a client device, such as the client device #1 31a
(or any other network), in element order to set more con-
nection to the data server. The maximum number of con-
nections available to the data server is determined in a
‘Determine Maximum Connections Number’ step 161a.
This maximum value may be obtained from previous inter-
actions with this data server, received from a tunnel device
in a ‘Notify Client’ step 74¢ in the flowchart 74, or using a
known default number. The actual number of connections
that are in use at a specific time is determined in a ‘Deter-
mine Number of Connections Used’ step 1615. The actual
connections used for each tunnel device may be obtained,
for example, from the tunnel devices. In one example, more
connection may be used, as checked in a ‘More Connections
Available?” step 161c. For example, the data server may
provide up to 8 connections per tunnel device, while one of
tunnel devices only uses 5 connections. In such a case, the
client device may send a request to this tunnel device to
increase the number of connections, for example by adding
a single connection, as part of a ‘Request More Connections’
step 161d. In the case where the request for adding one or
more connections is successful, as checked in a ‘Rejected ?°
step 161e, the device may repeat the request for additional
connections. However, in one example, no additional con-
nections may be opened, since the tunnel device has reached

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
190 of 228

US 10,469,614 B2

101

the maximum number of allowable connections with the
data server. If no additional connections are to be opened,
the client device may increase the effective bandwidth of
content fetching from the data server by requesting the usage
of more tunnel devices from an acceleration server (such as
the acceleration server 32) as part of a ‘Request More
Tunnels’ step 161/, corresponding to the ‘Request Tunnels
List’ step 62a in the flowchart 60, followed by activating
selected tunnel devices from the received tunnel devices list
received from the acceleration server 32, as part of an
‘Activate More Tunnels’ step 161g, corresponding to the
‘Content Fetch’ flowchart 65. The client device may further
repeat the process for maximizing the number of connec-
tions for the newly activated tunnel devices.

Web analysis is used by many web sites in order to
measure the usage statistics, such as counting of web pages
views, checking an average time between various web
pages, and other usage statistics (‘usage stats’). In many
cases, the web analysis is based on embedding a code in the
web-browser, which sends an update or request to an ana-
Iytics server, such as Google Analytics Server, which is used
to measure and log the required web analysis. A flowchart
170 shown in FIG. 17 describes the scheme of interacting
with the analytics server. An application, such as a web
browser, may identify a content (such as by a URL) to be
fetched via the Internet in a ‘URL Identified” step 171a.
Alternatively or in addition, the content may be identified by
the IP of the data server, or using any other identification.
Before accessing the URL-associated data server for fetch-
ing the required content, the application first sends infor-
mation to the analytics server for logging and gathering
statistics, in an ‘Update Analytics Server’ step 17156. The
applications then waits until the update is completed, as
acknowledged by receiving the analytics server response in
an ‘Analytics Server Response’ step 171¢. Only upon receiv-
ing the analytics server response, the application requests
the content from the respective data server in a ‘Request to
Data Server’ step 171d. The access to the analytics server, as
described in the ‘Update Analytics Server’ step 1716 and
waiting for the server to respond in the ‘Analytics Server
Response’ step 171c¢, consumes time and resources, and
makes the process of fetching the required content slower.

Each of the analytic servers that are commonly used
typically uses a unified response to an update request in the
‘Analytics Server Response’ step 171¢. In one example, a
database is built, including typical responses of analytic
servers. Such information regarding typical responses may
be obtained from previous interactions with analytic servers,
either by the device executing the requesting application, or
from other network elements.

The database containing the typical responses may be
used to accelerate the flow of the requesting application, as
described in a flowchart 170a shown in FIG. 174, which
corresponds to a flowchart 170 shown in FIG. 17. The Upon
detecting a communication request targeting the analytics
server as part of the ‘Update Analytics Server’ step 1715, the
request is intercepted in an ‘Intercept Update’ step 172b.
Such interception may be in the form of a filter driver (or any
other intermediate driver), enabling the interception as part
of the OS kernel. Alternatively or in addition, the intercep-
tion may be in the form of an extension or a plug-in of the
requesting application, such as a browser plug-in or a
browser extension in the case where the application is a web
browser. Alternatively or in addition, the interception of the
request may use hooking of the requesting application or of
the communication-related application. Alternatively or in
addition, the application and the steps described herein may

10

15

20

25

30

35

40

45

50

55

60

102

communicate using an Inter-Process Communication (IPC),
such as a file sharing, a signal, a socket, a pipe, a message
queue, a shared memory, a semaphore, or memory mapped
file. In Windows environment, the IPC may be based on a
clipboard, a Component Object Model (COM), a data copy,
a DDE protocol, or mail slots.

The typical response database is used as a look-up table,
associating to the update request intercepted a simulated
artificial typical response, that is expected to be the same or
similar to the response expected from the analytics server, as
part of an ‘Obtain Typical Response’ step 1724. The artificial
response is then returned to the requesting application, in a
‘Return Typical Response’ step 172¢, so the requesting
application may continue its operation in the ‘Request to
Data Server’ step 1714, without the need to wait first for the
actual response from the analytics server as part of the
‘Analytics Server Response’ step 171c. In such a scheme,
the latency involved with waiting to the analytics server
response is obviated.

The actual response received from the analytics server as
part of the ‘Analytics Server Response’ step 171¢ may be
ignored in general, and in particular by the requesting
application, as it was substituted by the simulated response
in the ‘Return Typical Response’ step 172¢. Alternatively or
in addition, the response is stored as part of the typical
response database, to be used for forming simulated
responses in future interactions with the same analytics
server. Further, in order to save resources such as bandwidth
and processing power, the update request to the analytics
server may not be actually transmitted, and replaced only
with the simulated response. Alternatively or in addition,
such update request may be stored and transmitted at a later
stage, for example, when the network element is idle.

The elements involved in a DHCP process are illustrated
in a system 180 shown in FIG. 18. A device 181 (which may
be any network element) may connect to a DHCP server #1
182a via a LAN 183, or may use a DHCP server #2 1826
connected via a WAN 184. Typically, a DHCP process is
completed in less than 5 milliseconds (ms) when commu-
nicating over the LAN 183, such as LAN 183, and is
completed in less than 20 ms when communicating with the
DHCP server #2 1825 over the WAN 184. The DHCP
process performed by the device 181 is described as a
flowchart 180a in FIG. 18a. Upon sending to the DHCP
server (such as DHCP server #1 182a or DHCP server #2
1824) a DHCP request in a ‘Send DHCP Request’ step 1854,
the device 181 starts a timer #1 in a ‘Start Timer #1) step
1856. Commonly, such a countdown timer is set to 5
seconds, notifying a timeout period after the 5 seconds
expire. In a ‘Response Received ?” step 185¢, it is checked
if a response was received, and the DHCP has been com-
pleted, so that the device may continue other activities, as
part of a ‘Return Response’ step 1854. The device 181
checks continuously and waits for a response from a DHCP
server for completing the DHCP process as long as the timer
#1 has not expired in a ‘Timer #1 Expired ?° step 185¢. In
the case where the timer #1 has expired, and no connection
was made with the DHCP server or the DHCP has not been
completed, then a failure of the DHCP process is declared in
a “Return ‘No Response’ step 185/

While the common DHCP resolving period is under 5 ms
in a LAN environment, and under 20 ms in a WAN envi-
ronment, the timer #1 typical setting is of 5 seconds (or any
other number of seconds), which is many orders of magni-
tude longer than required. Further, in some case a short or an
intermittent communication problem, may cause a tran-
siently drop of a packet, causing the DHCP process to fail

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
191 of 228

US 10,469,614 B2

103

and not be completed. Such failure will be detected only
after the full 5 seconds has been expired, leading to a long
delay in responding to, and fixing the problem (e.g, by
repeating the DHCP process).

An improved DHCP timing scheme is shown as a flow-
chart 190 in FIG. 19, which may be executed by the device
181, and is based on the flowchart 180a in FIG. 18a. In
addition to the prior-art timer #1 that is commonly set for a
few seconds, an additional timer #2 is added, which is set to
a much lower period, such as 100 or 200 ms, which allows
for faster reconnection in case of a failure. The timer #2
starts with a ‘Start Timer #2” step 191a. In the case the timer
#2 expires before a successful DHCP process is completed,
as checked in a “Timer #2 Expired ?” step 1915, and as long
as the timer #1 has not expired, the timer #2 is restarted in
the ‘Start Timer #2’ step 191a, and the DHCP process is
re-initialized in the ‘Send DHCP Request’ step 185a. Hence,
in the case of a brief communication problem, the DHCP
process initialization will be repeated, and as such will be
recovered and completed in one of the cycles. In the case of
a dysfunctional DHCP server, the problem will still be
determined after timer #1 expiration, as in the prior-art
scheme.

In one example, accessing a data server is improved by
using an intermediate device referred to as ‘peer’ and ‘agent’
devices, respectfully executing a ‘peer’ and ‘agent’ flow-
chart. FIG. 20 shows a system 200 including a client device
201a, which may be the same device as the client device #1
31a described above or a distinct device, that may access the
data servers 22a and 22b using one or more of the peer
device #1 102a, the peer device #2 1024, and the peer device
#3 102¢, under the management and control of the accel-
eration server 202, and using agent devices such as the agent
device #1 103a and the agent device #2 1035. The accel-
eration server 202 may be the same server as the acceleration
server 32 in the system 30 described above, or may be a
distinct or a dedicated server. Similarly, a data server, such
as the data server #1 22a or data server #2 22b, may be the
same as the same servers described above in system 30, or
may be distinct or dedicated servers. While two agent
devices are shown, any number of agent devices may be
used. Similarly, while three peer devices are shown, any
number of peer devices may be used.

The content stored in a data server, such as the data server
#1 22a, which may be requested by a client device such as
the client device #1 201a, may be partitioned into multiple
parts or ‘slices’. Any number of slices may be used. The
slicing may be in a bit, nibble (4-bits), byte (8-bits), word
(multiple bytes), character, string, or file level. For example,
in a case wherein the content includes 240 bytes designated
byte #1 to byte #240, using a byte level partitioning into two
slices results in a first slice (slice #1) including byte #1 to
byte #120, and a second slice (slice #2) including byte #121
to byte #240. In the case of byte-level partitioning into three
slices (referred as slice #1, slice #2, and slice #3), a first slice
(slice #1 may be including byte #1 to byte #80, a second
slice (slice #2) may be including byte #81 to byte #160, and
a third slice (slice #3) may be including byte #161 to byte
#240. Similarly, in a case wherein the content include 3
bytes designated byte #1 to byte #3 representing 24 bits,
using a bit-level partitioning into four slices results in a slice
#1 including the first 6 bits, slice #2 including the next 6 bits,
slice #3 including the next 6 bits, and slice #4 including the
last 6 bits. The partition may be into equal length parts.
Alternatively or in addition, a different length slicing may be
applied. For example, in the case of a 240 bytes content and
using byte-level partitioning into three slices (referred as

25

40

45

55

104

slice #1, slice #2, and slice #3), a first slice (slice #1) may
be including byte #1 to byte #20 (20-byte length), a second
slice (slice #2) may be including byte #21 to byte #100
(80-byte length), and a third slice (slice #3) may be includ-
ing byte #101 to byte #240 (140-byte length). In one
example, the content itself is made of inherent or identifiable
parts or segments, and the partition may make use of these
parts. In one example, the content may be a website content
composed of multiple webpages, and thus the partition may
be such that each slice includes one (or few) webpages.
Further, the partitioning may be sequential or non-sequential
in the content.

The partitioning may be non-overlapping, wherein each
slice includes a distinct part of the content, as exampled
above in the case wherein the content includes 240 bytes
designated byte #1 to byte #240, where using a byte level
partitioning into three slices (referred as slice #1, slice #2,
and slice #3), results in a first slice (slice #1) including byte
#1 to byte #80, a second slice (slice #2) including byte #81
to byte #160, and a third slice (slice #3) including byte #161
to byte #240. Alternatively or in addition, an overlapping
partitioning may be applied, where the same part of the
content is included in multiple slices. For example, in a case
above where the content includes 240 bytes designated byte
#1 to byte #240, and using a byte level partitioning into three
slices (referred as slice #1, slice #2, and slice #3), a first slice
(slice #1) may include byte #1 to byte #160, a second slice
(slice #2) may include byte #81 to byte #240, and a third
slice (slice #3) may include byte #1 to byte #80 in addition
to byte #161 to byte #240. In such a case, byte #1 to byte #80
are part of both slice #1 and slice #3, byte #81 to byte #160
are part of both slice #1 and slice #2, and byte #161 to byte
#240 are part of both slice #2 and slice #3. It is noted that
in such a partition, the content may be fully reconstructed
from any two of the slices, hence providing a degree of
redundancy. For example, in case of carrying the three slices
over the Internet and a failure to receive one of the slices, the
remaining two slices may be used to fully reconstruct the
whole content.

In one example, the content is a website or a webpage, or
may be identified as a URL, and consists of, or comprises,
non-overlapping and equally-sized parts, referred to as
chunks. For example, multiple chunks may be combined to
reconstruct the original content, such as website or content.
A chunk size may be 16 KB (Kilo-Bytes), and in the case the
content to be partitioned is not an exact multiple of 16 KB,
the ‘last’ chunk will padded and filled with ‘space’ charac-
ters (or any other no content data).

For example, multiple chunks may be combined to recon-
struct the original content, such as website or content, as
schematically shown in an arrangement 210 shown in FIG.
21. The data servers may include content addressed by
various IP addresses or URLs, such as URL #1 211a, URL
#2 2115, URL #3 211c¢, and URL #N 211d. While exampled
using URLs, any other type of content may equally apply.
Each URL may be associated with the URL associated
HTTP headers. A content of the URL #1 211a consists of
multiple chunks stack 214a consisting of m chunks, desig-
nated chunk #1a 212a, chunk #15 2125, chunk #1¢ 212¢, up
to chunk #1m 212d. Similarly, a content of the URL #2 2115
consists of multiple chunks stack 2144 consisting of n
chunks (n=m or n=m), designated chunk #2a 212e, chunk
#2b 212f, chunk #2¢ 212g, up to chunk #2r 212k, and a
content of the URL #N 211d consists of multiple chunks
stack 214¢ consisting of n chunks (p=m, p=n, p=n or p=m),
designated chunk #3a 212i, chunk #356 212j, chunk #3c

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
192 of 228

US 10,469,614 B2

105

212k, up to chunk #3p 212/. Similarly, the URL #3 211¢ may
be partitioned into chunks (not shown).

Each of the content in the chunks is identified by a chunk
identifier, where each chunk identifier is associated with one,
and only one, chunk. In one example, preferably used in
sequential partitioning scheme, a chunk is identified by the
identifier of the content and the location of the chunk in the
sequence of the partitioning. For example, a chunk may be
identified by the content (e.g., URL, web-site, or web-page),
and a number such as the number ‘23°, meaning that this
chunk is the 23" slice in sequential partitioning of the
content. Alternatively or in addition, the CRC of the content
of the chunk is calculated, and used as the chunk identifier.
For example, CRC-32 may be used, allowing each chunk
(such as 16 KB size) to be identified by 33-bit identifier.
Alternatively or in addition, a chunk identifier is based on a
hash function of the chunk content.

A peer device may include a part of, or the entire stack of
a single URL. Alternatively or in addition, a peer device may
include a part of, or the entire stack of multiple URLs. In one
example, a peer device may store all of the chunks included
in a URL (or any other content). As shown in the arrange-
ment 210, the peer device #1 213a stores the stack 214a of
the entire chunks relating to the single URL #1 211a, the
peer device #2 2135 stores the stacks of 2 URLs: The stack
214a of the URL #1 211a and the stack 2145 of the URL #2
2115. Similarly, the peer device #3 213c¢ stores the stacks of
3 URLs: The stack 214a of the URL #1 211a, the stack 2145
of the URL #2 2115, and the stack 214¢ of the URL #N 2114.
Similar to peer device #1 213a, the peer device #d 213¢
stores the stack 214c¢ of the entire chunks relating to the
single URL #N 2114. The agent devices serve as pointers to
the peer devices, based on the requested content. As shown
in an arrangement 210q in FIG. 21a, an agent device #1
215a stores information regarding the location of content
relating to URL #1 211a, and thus stores the identifiers of the
peer device #1 213a, the peer device #2 2135, and the peer
device #3 213c¢, since all these peer devices store the content
of URL #1 211a. An agent device #2 2155 stores information
regarding the location of content relating to URL #2 2115,
and thus stores the identifiers of the peer device #2 2135 and
the peer device #3 213c¢, since these peer devices store the
content of URL #2 2115. Similarly, an agent device #N 2154
stores information regarding the location of content relating
to URL #N 2114, and thus stores the identifiers of the peer
device #q 2134 and the peer device #3 213c, since these peer
devices store the content of URL #N 211d4. While exampled
where each agent device stores information about a single
URL, an agent device may equally store information regard-
ing the location of multiple URLs.

A peer device, such as the peer device #1 102aq, the peer
device #2 1025, and the peer device #3 102¢, may store one
or more chunks (or any part of the entire content), as a copy
of the chunk content as part of the whole content, stored as
in a data server. The availability of such content or chunks
may be the result of a past loading of the content in the
chunk from the appropriate data server. Each of the chunk
content is stored in a memory of the associated peer device,
and the memory may be referred to herein as a cache
memory. As shown in scheme 2105 in FIG. 215, the peer
device #1 213a (corresponding for example to the peer
device #1 102a) stores in its cache memory the chunk #la
212a, the chunk #15 2125, the chunk #2a 212e, and the
chunk #2¢ 212g. Similarly, the peer device #2 2135 (corre-
sponding for example to the peer device #2 102b) stores in
its cache memory the chunk #156 2124, the chunk #1m 2124,
the chunk #2b 212f, and the chunk #3a 212i; the peer device

30

40

45

50

106

#3 213¢ (corresponding for example to the peer device #3
102¢) stores in its cache memory the chunk #24 212f, the
chunk #2c¢ 212g, and the chunk #2» 212k; and the peer
device #q 213d stores in its cache memory the chunk #1m
212d, the chunk #2n 212k, the chunk #3b4 212/, and the
chunk #3p 212/. A chunk may not be associated with any
peer device, such as the chunk #3¢ 212k, which is shown in
scheme 210 as not being stored in any of the peer devices.
Alternatively or in addition, a chunk may be stored in
multiple peer devices, such as the chunk #15 2125 which is
shown to be stored in both the peer device #1 213a and the
peer device #2 21354. Further, a peer device may store chunks
which are part of multiple URLs, such as peer #q 2134
shown to store the chunk #1m 2124 which is part of URL #1
211a, the chunk #27 212/ which is part of URL #2 2115, and
the chunk #3b 212j which is part of URL #N 2114.

An agent device, such as the agent device #1 1034 or the
agent device #2 103b, may include a list of peers, for
example peers that store chunks relating to, or retrieve from,
the same data server or URL. In the example shown as a
scheme 210c¢ in FIG. 21¢, the agent device #1 215a (corre-
sponding for example to the agent device #1 103qa) stores a
list of chunks location of URL #1 211a, including the peer
device #1 213a (storing Chunk #la 212a and Chunk #1 b
212b), the peer #2 21354 (storing Chunk #15 2125 and Chunk
#1m 212d), and the peer #3 213¢ (storing Chunk #1m 212d).
Similarly, the agent device #2 2156 (corresponding for
example to the agent device #2 1035) stores a list of chunks
location of URL #2 21154, including the peer device #1 213a
(storing Chunk #2b 212f and Chunk #2¢ 212g), the peer
device #2 2135 (storing Chunk #25 212f), the peer device #3
213c¢ (storing Chunk #25 212/, Chunk #2¢ 212g, and Chunk
#2n 212h), and the peer device #q 213d (storing Chunk #2»
212k); and the agent devices #r 215¢ and Agent #N 2154,
both storing a list of chunks location of URL #N 2114, both
stores a list including the peer #2 2135 (storing Chunk #3a
212i) and the peer device #q 2134 (storing Chunk #35 212j
and Chunk #3p 212/). An agent may store an empty list
having no peers. Further, a peer may not be stored in any
agent. The peer and agent devices may be identified by their
respective 1P address, or by any other mechanism allowing
addressing over the Internet.

In one example, accessing a data server may be obviated
by accessing copies of the data server content stored as
chunks in ‘peer’ devices, each executing a ‘peer’ flowchart.
The peer devices for a content (such as a URL, web-page,
web-site, or IP address) are identified by ‘agent’ devices,
each executing an ‘agent’ flowchart.

The method of retrieving chunks from peer devices is
described below, based on the database 250a shown in FIG.
25 describing the list stored in the acceleration server 202,
a flowcharts 230, 230a, and 2305 respectively shown in
FIGS. 23, 234, and 234 describing a client device (such as
the client device #1 201a) operation, a flow chart 240 shown
in FIG. 24 describing an agent device (such as the agent
device #1 103a) operation, a flow chart 240a shown in FIG.
24a describing a peer device (such as the peer device #1
102a) operation, and a messaging and states timing chart
220 shown in FIG. 20. The chart 220 shows the messaging
and related timing associated with the operation of the
acceleration server 202 (corresponding to a dashed line
221a), a client device such as the client device #1 201a
(corresponding to a dashed line 2215), an agent device such
as the agent device #1 103a (corresponding to a dashed line
221c¢), and a peer device such as the peer device #1 102a
(corresponding to a dashed line 221d). The flowchart 230a
comprises a flowchart 239 relating to the chunks retrieving

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
193 of 228

US 10,469,614 B2

107

from peer devices. The database 250a shown in FIG. 254 is
illustrated as a table, wherein a first column 252a (desig-
nated as “TYPE”) relates to a device functionality, such as a
agent, peer, or client, a second column 2525 (designated as
‘IP ADDRESS’) relates to the device IP address, a third
column 252¢ (designated as ‘SIGN-IN DATE/TIME’)
relates to the date (in DD/MM format) and the time (in
HH:MM—Hour:Minute format) when the device signed in
with the acceleration server, and a fourth column 2524,
relating to the physical geographical location of the device.
The top row 253 in the table refers to the field designations.
The first 253a, second 2535, third 253¢, fourth 2534, and
fifth 253e rows in the table 250q respectively relate to first,
second, third, fourth, and fifth devices that signed in with the
acceleration server 202. For example, the device shown in
the first row 253 has signed in as an agent device as shown
in the first column 252a, on March 247 at 8:35 as shown in
the third column 252¢, and can be addressed over the
Internet using the IP address 73.0.82.8 as shown in the
second column 252b. Similarly, the device shown in the
third row 253c¢ has signed in as a peer device as shown in the
column 252a, on March 287 at 11:49 as shown in the third
column 252¢, and can be addressed over the Internet using
the IP address 111.13.69.78 as shown in the second column
252b.

As shown in the messaging and timing chart 220, the
process starts upon initializing an agent application in an
agent device, schematically shown as a ‘START’ step 224a
in the chart 220, corresponding to the state 241a ‘START” in
chart 240. Such initialization may be executed upon the
device powering up process, or upon a user request. Then the
agent device #1 103a (as an example of an agent device)
signs in with the acceleration server 202 in the ‘Sign-in as
Agent’ step 2415, which corresponds to a message ‘Sign In’
226a in the chart 220. The message comprises the device
functionality as ‘agent’, and the agent device 103¢ identi-
fication on the Internet 113, such as its IP address (for
example 73.0.82.8). The acceleration server 202 is in an
‘IDLE’ step 251a, until the message ‘Sign In’ 226a is
received at the acceleration server 202 at a “Sign-In Request’
step 2515, which initiate an update of the database of the
signed-in devices in a state ‘Update Table’ 251c¢ (corre-
sponding to an ‘Update List’ state 2224 in the chart 220), as
shown, for example, in the first row 253a in table 250a. The
acceleration server 202 further logs into the database the
date and time of the signing in, such as 24/3 as a date and
8:35 as the time, as shown in the first column 252a of the
table 250a. The acceleration server 202 further adds rows to
the table per each agent device, in the case of multiple agent
devices, such as the addition of the agent device #2 1035,
that its signing-in details are shown in the second row 2535,
as addressed by 1P address 68.78.78.3 and having signed in
at 25/3 at 10:59.

Similarly, the peer device #1 1024 starts and sign in with
the acceleration server 202. The process starts upon initial-
izing a peer application in a peer device, schematically
shown as a ‘START” step 225aq in the chart 220, correspond-
ing to the state ‘Start’ 242a in chart 2404, followed by the
‘Sign In’ message (shown as dashed-line) 22654 in the chart
220, corresponding to the ‘Sign-in As Peer’ step 24254 in the
flowchart 240a. The acceleration server 202 adds the agent
device #2 1035 and the signing-in details to the table 250a
in the ‘Update Table’ step 251, as shown in the third row
253c¢, as addressed by IP address 111.13.69.78 and having
signed in at 28/3 on 11:49. Such initialization may be
executed upon the device powering up process, or upon a
user request. Alternatively or in addition, the peer device #1

10

15

20

25

30

35

40

45

50

55

60

65

108

102a may sign-in with the associated agent device, such as
the agent device #1 103a, shown as a ‘Sign In’ message
(shown as dashed-line) 226¢ in the chart 220. In the latter
case, the agent device #1 103a updates its list of peer devices
by adding the newly signed-in peer device #1 102a, as
shown in an ‘Update List’ state 2245 in the chart 220.

Similarly, the client device #1 201a starts and sign in with
the acceleration server 202. The process starts upon initial-
izing a client application in a client device, schematically
shown as a ‘START’ step 231a in the flowchart 230,
corresponding to a state 223a “Start’ in the chart 220. Such
initialization may be executed upon the device powering up
process, or upon a user request. Then the client device #1
201a sign in with the acceleration server 202 in the ‘Sign-in
as Client” step 231h, which corresponds to the message
‘Sign In’ 2264 in the chart 220. The message comprises the
device functionality as ‘client’, and the client device #1 201a
identification on the Internet 113, such as its IP address (for
example 125.90.25.92). The message “Sign In’ is received as
the acceleration server 202, which update the database of the
signed-in devices in state ‘Update Table’ 251¢ (correspond-
ing to a state ‘Update List’ 2225 in the chart 220), as shown
in the fourth row 2534 in table 250a. The acceleration server
202 further logs to the database the date and time of the
signing in, such as 29/3 as a date and 14:23 as the sign-in
time, as shown in the fourth column 2534 of the table 250a.
The acceleration server 202 further add to the table rows per
each client device, in the case of multiple client devices. In
one example, a device may be assigned to have multiple
roles, such as functioning as both a client and an agent, as
both an agent and a peer, as both a client and a peer, or as
an agent, a client, and a peer. Multiple roles may be
implemented at different times, or simultaneously using
multiprocessing or multitasking. For example, a device may
sign-in as both an agent and a peer, as shown in the fifth row
253¢ of the table 250q, addressed by its IP address
95.33.37.80 and signing in at 16/3 on 21:53.

While the pre-connection process was described above
regarding the communication between a client device (such
as the client device #1 31a) and a tunnel device (such as the
tunnel device #1 33a), described as the client device pre-
connection flowchart 64 and the tunnel device pre-connec-
tion flowchart 72, a pre-connection may be equally estab-
lished between any two devices in the system 200, such as
between a client device (such as the client device #1 201q)
and the acceleration server 202, between two client devices,
between a client device (such as the client device #1 201q)
and an agent device (such as the agent device #1 103a),
between a client device (such as the client device #1 201q)
and a peer device (such as the peer device #1 102a), or
between a client device and a data server (such as the data
server #1 22a). Similarly, a pre-connection may be estab-
lished between an agent device (such as the agent device #1
103a) and the acceleration server 202, between two agent
devices, between an agent device (such as the agent device
#1 103a) and a peer device (such as the peer device #1
102a), or between an agent device and a data server (such as
the data server #1 22a). Further, a pre-connection may be
established between a peer device (such as the peer device
#1 102a) and the acceleration server 202, between two peer
devices, or between a peer device and a data server (such as
the data server #1 22a).

A content, such as an URL (or a web-page, or a web-site)
which is typically stored in a data server, such as the data
server #1 22a, may be requested by the client device, such
as the client device 201a, as shown in a state ‘Content
Needed’ 2235 in the chart 220. The client device sends a

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
194 of 228

US 10,469,614 B2

109

‘Request List” message 226¢ to the acceleration server 202,
corresponding to a ‘Request Agents List’ step 231c¢ in the
flowchart 230. This request includes the URL or any other
identifier of the requested content. The request is received at
the acceleration server 202 in the ‘Agent List Request ?” step
251d in the flowchart 250, which corresponds to the request
by preparing a list of the agent devices which are associated
with the required content, in the ‘Prepare List’ state 222¢ in
the chart 220, corresponding to the ‘Prepare List’ step 251e
in the flowchart 250. For example, the list may include
identifiers of all agent devices that are related to the data
server #1 22a, or the identifiers of all the agent devices,
which may have information about the location of the
chunks relating to the requested content. The list of agents
(including the identifiers of the agent devices) is then sent,
in a “‘Send List” step 251fin the flowchart 250 (correspond-
ing to a message ‘Send List’ 226 in the chart 220), to the
requesting client device #1 201a, that receives the list in a
‘Receive Agents List’ step 2314 in the flowchart 230. In the
case no appropriate agent devices were found, the client
device #1 may choose other schemes for fetching the
required content, such as using tunnels as described above,
or direct access to the data server #1 22qa in a ‘Content Fetch
Direct’ step 233 shown as part of the flowchart 230q in FIG.
23a. In the case the list received at the client device #1 201a
include multiple agents, the client device #1 201a may select
one, two, three, or any other number of agent devices from
the list, in a ‘Select Agents’ step 231/ in the flowcharts 230
and 230a, corresponding to a ‘Select Agent’ state 223¢ in the
chart 220 illustrating selection of a single agent. Alterna-
tively, all of the agent devices in the list may be selected.

After receiving the agent devices list in the ‘Receive
Agents List’ step 2314, the client device #1 201a may store
the list in its storage, such as a cache memory. In a ‘Store
Agents List’ step 231g. Further, a list of agent devices may
be obtained from other elements in the system. Preferably,
the list may include information about each agent device and
transaction history relating to each agent device, such as the
connection parameters (e.g., RTT and BW), the results
quality, the resolved Domain Name System (DNS), and any
other relevant information that may be used in the future.
Alternatively or in addition to accessing the acceleration
server 202 for obtaining a list of the available agent devices
in the ‘Request Agents List’ step 231¢, the client device #1
201a may obtain a list of relevant agent devices locally from
a storage or cache memory. For example, the client device
#1 201a may use a list of agent devices that were previously
stored as part of the ‘Store Agents List’ step 231g.

Any number of agent devices may be selected. The
number of agent devices that are selected in the ‘Select
Agents’ step 231f may be 1 (one). Alternatively, a small
number of agent devices may be selected, such as two (2) or
three (3). Further, 4, 5, 6, 7, 8, 9, or 10 agent devices may
be selected. Further, more than 10 agent devices may be
selected, such as 10, 20, 30, 40, or 50.

A schematic messaging flow diagram 260 describing the
client device #1 31a related steps of fetching the agent
devices list from the acceleration server 202 is shown in
FIG. 26. The ‘Request Agent’ message 261a (corresponding
to the ‘Request Agents List’ step 231¢ in the flowchart 230)
is first sent from the client device #1 31a to the acceleration
server 202, which responds by sending the agents list using
the ‘Send Agent’” message 2615 (corresponding to the
‘Receive Agents List’ step 231d in the flowchart 230).

A flowchart 230q in FIG. 23a¢ shows an example where
three agents are selected by the client device, designated as
an agent device #1 (such as the agent device #1 103a), an

10

15

20

25

30

35

40

45

50

55

60

65

110

agent device #2 (such as the agent device #2 1035), and an
agent device #3, while the timing and messaging chart 220
illustrates the usage of a single agent device. In a ‘Request
List Agent #1’ step 234a in the flowchart 230a, the client
device #1 2014 send to the agent device #1 103a (using its
identifier from the list received from the acceleration server
202) a request for a list of peers associated the requested
content identifier (such as a URL), such as these peer
devices that are known or expected to store chunks of the
requested content (or any part of it), corresponding to the
‘Request List’ message 226g in the chart 220. The agent
device #1 1034, which may be idling in an ‘IDLE’ step 241c¢,
receives the request from the client device #1 201q in a
‘Receive List Request’ step 2414. In response to the request,
in a ‘Prepare Peers List’ step 241e (corresponding to a state
‘Prepare List’ 224¢ in the chart 220), the agent device #1
103a prepares a list of the peer devices that it believes store
chunks of the requested content, and in a ‘Send List To
Client’ step 241f, corresponding to a ‘Send List’ message
226/ in the chart 220, sends the list of identifiers of the
relevant peer devices back to the requesting client device #1
201a. For each of the selected agent devices, the client
device #1 201a selects one, two, or all of the peers in the list,
and then retrieves the relevant chunks from the each of the
selected peer devices as shown in a ‘Chunks Fetch’ flow-
chart 239, shown in FIG. 234. The peers list is requested
from agent device #1 in a ‘Request List Agent #1” step 234a,
and the chunks are fetched from the peer devices in the list
in a ‘Chunks Fetch Agent #1” step 239a. Similarly, the peers
list is requested from agent device #2 in a ‘Request List
Agent #2° step 234b, and the chunks are fetched from the
peer devices in the list in a ‘Chunks Fetch Agent #2’ step
2395, which follows the same ‘Chunks Fetch’ flow in the
flowchart 239, and the peers list is requested from agent #3
in a ‘Request List Agent #3° step 234c¢, and the chunks are
fetched from the peer devices in the list in a ‘Chunks Fetch
Agent #3” step 239¢, which also follows the same ‘Chunks
Fetch’ flowchart 239.

A schematic visual messaging flow diagram 260a describ-
ing the client device #1 31a related steps of fetching the peer
devices list from the agent device #1 103a is shown in FIG.
26a. The ‘Request Peer List” message 262a (corresponding
to the ‘Request List Agent #1” step 234a in the flowchart
2300) is first sent from the client device #1 31a to the agent
device #1 103a, which responds by sending the peer list
using a ‘Send Peer List” message 26256 (corresponding to a
‘Receive Peers List’” step 238 in the flowchart 2305).

The flowchart 239 in FIG. 2354 is an example of a handling
of the list received from the agent device #1 103a. The list
of'the peer devices identifiers is received at the client device
in a ‘Receive Peers List’ step 238, followed by a ‘Select
Peers’ step 238a (corresponding to a ‘Select Peers’ state
223d shown in the chart 220), where the client device #1
201a selects which peer devices out of the list are to be used.
The client device may select one, two, three, or any other
number out of the listed peer identifiers, or may use all the
peer devices in the list. In the example shown in the
flowchart 239, three peer devices are used, designated as
peer #1, peer #2, and peer #3. For each selected peer device,
such as the peer device #1 102a, the client device #1 201a
in the ‘Request Chunk Peer #1” step 2374 which corresponds
to a ‘Chunk Request’ message 226: in the chart 220, send a
request to the selected peer device asking for a chunk (or
multiple chunks) that is stored (or expected to be stored)
thereof. The peer device, such as the peer device #1 102a is
in general idling in an ‘IDLE’ step 242¢ in the flowchart
240q. Upon receiving the request from the client device #1

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
195 of 228

US 10,469,614 B2

111

201q in a ‘Receive Chunk Request’ step 2424 in the flow-
chart 240qa, the peer device #1 102qa fetches the requested
chunk (or chunks) as denoted in ‘Fetch Chunk’ state 2255 in
the chart 220, and send it to the requesting client device #1
201a, in a ‘Send Chunk To Client’ step 242¢ in the flowchart
240a, which corresponds to a ‘Send Chunk’ message 2265
shown in the chart 220. The sent chunk is received at the
client device #1 201a in the ‘Receive Chunk Peer #1” step
236a. A schematic visual messaging flow diagram 2605
describing the client device #1 31a related steps of fetching
chunks from the peer device #1 102a is shown in FIG. 2654.
The ‘Request Chunk’ message 263a (corresponding to the
‘Request Chunk Peer #1” step 2374 in the flowchart 2305) is
first sent from the client device #1 31a to the peer device #1
102a, which responds by sending the requested chunks in
the ‘Send Chunk’ message 2636 (corresponding to the
‘Receive Chunk Peer #1” step 2364 in the flowchart 2305).

Similarly, the chunks from peer #2 are requested (in
parallel or sequentially to peer #1 chunks fetching 239a
operation) in a ‘Request Chunk Peer #2’ step 2375, and are
received in a ‘Receive Chunk Peer #2° step 2364, and the
chunks from the peer device #3 102¢ are requested (in
parallel or sequentially to peer device #1 chunks fetching
239q operation) in a ‘Request Chunk Peer #3” step 2375, and
are received in a ‘Receive Chunk Peer #3° step 236¢. A
schematic visual messaging flow diagram 260c¢ describing
the client device #1 31a related steps of fetching chunks
from the peer device #2 1025 is shown in FIG. 26¢c. A
‘Request Chunk’ message 263c¢ (corresponding to the
‘Request Chunk Peer #2’ step 2375 in the flowchart 2305) is
first sent from the client device #1 31a to the peer device #2
1024, which responds by sending the requested chunks in
the ‘Send Chunk’ message 263d (corresponding to the
‘Receive Chunk Peer #2” step 2365 in the flowchart 2305).
Similarly, a schematic visual messaging flow diagram 2604
describing the client device #1 31a related steps of fetching
chunks from the peer device #3 102¢ is shown in FIG. 264.
The ‘Request Chunk’ message 263¢ (corresponding to the
‘Request Chunk Peer #3” step 237¢ in the flowchart 2305) is
first sent from the client device #1 31a to the peer device #3
102¢, which responds by sending the requested chunks in the
‘Send Chunk’ message 263/ (corresponding to the ‘Receive
Chunk Peer #3” step 236¢ in the flowchart 2305).

Upon receiving part of, or all of, the requested chunks, the
client device #1 201a assembles the chunks to render a
reconstructed content (in part or in full), such as the
requested URL, in an Assemble URL’ step 235, correspond-
ing to a “Whole Content Received’ state 223¢ in the chart
220. In the case part of the content is still missing, the client
device #1 201a may directly approach the data server #1 22a
in a ‘Content Fetch Direct’ step 233, or use other schemes,
such as using tunnel devices as described above to fetch the
remaining part of the content.

Any number of peer devices may be selected. The number
of peer devices that are selected in the ‘Select Peers’ step
238a may be 1. Alternatively, a small number of peer
devices may be selected, such as 2 or 3. Further, 4, 5, 6, 7,
8, 9, or 10 peer devices may be selected. Further, more than
10 peer devices may be selected, such as 10, 20, 30, 40, or
50.

After a transaction involving fetching a content from all
peer devices is completed, it is beneficial to store the fetched
content for future use, as shown in a ‘Store Content’ step
235q in the flowchart 230a. The fetched content may be
stored in the client device in any volatile or non-volatile
memory, or may be stored in a local cache as described in
U.S. Pat. No. 8,135,912 to the Shribman et al., entitled:

10

15

20

25

30

35

40

45

50

55

60

65

112

“System and Method of Increasing Cache Size”, which is
incorporated in its entirety for all purposes as if fully set
forth herein. The content is stored with its related metadata
or any other identifiers, so it can be easily detected and
fetched when later required. For example, the stored content
may be used when the same content is required at any later
stage by the same client, or may be used when the client
device also serves as a peer device, such as the peer device
#1 102a as shown in system 260. In the latter case, the
fetched content (such as a URL content) may be arranged
and stored as chunks, as described herein.

The selection of the agent devices to be used in the ‘Select
Agents’ step 231/ may use any of the selection rules or
criteria described above regarding to selecting tunnel
devices in the ‘Select Tunnel’ step 62¢ or the ‘Select
Tunnels’ step 101a described above. Further, the selection of
peer devices to be used in the ‘Select Peers’ step 2384 may
use any of the selection rules or criteria described above
regarding to selecting tunnel devices in the ‘Select Tunnel’
step 62¢ or the ‘Select Tunnels’ step 101a described above.

The performance of the method and system described
herein may be based on the latency involved in fetching a
required content. The flowchart 230qa in FIG. 23a describes
the steps involved in fetching content from a peer device,
and a flowchart 239 in FIG. 235 provides further detailed
operation of a client device, such as the client device #1
201a. The ‘Receive Chunk Peer #1° step 236a (as an
example for all equivalent steps such as the ‘Receive Chunk
#2’ step 2365 and the ‘Receive Chunk #3” step 236¢) may be
partitioned into two or more steps, as shown in a flowchart
270 in FIG. 27, such as a ‘Receive Start’ step 271a, relating
to the starting of receiving data from a peer device, upon
starting or completing the reception of the first byte of the
data, for example, and a ‘Receive End’ step 2715, relating to
the ending of receiving data from a tunnel, for example upon
starting or completing the reception of the end byte of the
data.

As part of the ‘Request Chunk Peer #1° step 237a, a timer
#1 is started in a ‘Timer #1 Start’ step 272a, and the timer
#1 is stopped in a ‘Timer #1 Stop’ step 2725 at the beginning
of the receiving the data from the peer device in a ‘Receive
Start’ step 271a. Hence, timer #1 is used to measure the
Round Trip Time (RTT), relating to the time interval mea-
sured from sending the request to a peer device until the
requested data is starting to be received. Similarly, as part of
a ‘Receive Start’ step 273a a timer #2 is started, and the
timer #2 is stopped in a “Timer #2 Stop’ step 2735 at the end
of the receiving the data from the peer device in a ‘Receive
End’ step 2715. Hence, timer #2 is used to measure the time
interval required to receive the content itself from the peer
device. For example, in case the time interval is 50 milli-
seconds (ms), this is the time interval measured from starting
to end of the data reception from the peer device. In the case
the content size is X bits, the BW can be calculated as the
X bits divided by the timer #2 measured time interval. For
example, in the case the received content from the peer
device is about the size of 50,000 bits (50 Kbits) received
during 100 milliseconds (ms), the effective (or average) BW
is BW=50,000/0.1=500,000 bits/second=500 Kb/s=62.5
Kbytes/s=62.5 KB/s. The total latency affecting the perfor-
mance is the combination of both the time interval measured
by timer #1 and the time interval measured by timer #2.
Using the above examples where the timer #1 measured an
RTT of 50 ms and the timer #2 measured 100 ms, the total
latency, measured from sending the request to the peer

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
196 of 228

US 10,469,614 B2

113

device in the ‘Request Chunk Peer #1” step 237a to the end
of the content reception in the ‘Receive End’ step 2715, is
150 ms (50+100=150).

After a transaction involving fetching a content from a
peer is completed, it is beneficial to store the transaction
related information for future use, such as for future analy-
sis. An example of a table relating to transactions log, that
may be part of a database, is shown as a table 280 in FIG.
28. The table is updated in the ‘Update Transactions Log’
step 274 as part of the flowchart 270 shown in FIG. 27. A top
row 282 provides the titles of the various columns, where
each of the rows provides information regarding a specific
transaction, where a first transaction information is shown in
a first row 282a, the second transaction information is shown
in a second row 2825b, the third transaction information is
shown in a third row 282¢, and so forth. A first column 281a
shows the date and time (in DD/MM HH/MM format) when
the transaction occurred, such as the start or end of the
transaction. For example, the first transaction related infor-
mation is in the first row 2824 shows that the transaction was
completed (or started) at March 13, at 9:23. Similarly, the
second transaction information is in the second row 2825
shows that the transaction was completed (or started) at
March 137, at 9:46, and the third transaction information is
in the third row 2825 shows that the transaction was com-
pleted (or started) at April 16?, on 11:22. A second column
2815 includes an identifier such as the IP address of the peer
device that was used in the transaction to fetch the content
from the data server, which identifier (such as its IP address)
is included in a third column 281c¢. In the example of the first
transaction shown in first row 282a, the IP address of the
peer device used is 229.155.81.168, and it was used to fetch
content stored in a data server having an IP address of
128.164.35.35.142. Similarly, in the example of the second
transaction shown in second row 2825, the IP address of the
peer device used is 248.107.109.10, and it was used to fetch
content stored in a data server having an IP address of
49.154.2.5, and in the example of the third transaction
shown in third row 282¢, the IP address of the peer device
used is 158.217.19.195, and it was used to fetch content
stored in a data server having an IP address of
72.251.238.51. A fourth column 281d describes the identi-
fier of the content that was fetched during this transaction,
such as IP address, URL, web-site or web-page, where the
first transaction content (in the first row 282a) relates to the
URL www.111.com/22.mpg, the second transaction content
(in the second row 282b) relates to the URL www.xxx.com/
hy.avi, the third transaction content (in the third row 282¢)
relates to the URL www.yyy.com/t6.php, and so forth.

A fifth column 281e logs the BW calculated in a respec-
tive transaction, based on timer #2 time interval measure-
ment as described above. In the first transaction (in the first
row 282a) the calculated BW is logged as 1000 Kb/s (=1
Mb/s=125 KB/s), in the second transaction (in the second
row 282b) the calculated BW is logged as 350 Kb/s (=0.35
Mb/s), and in the third transaction (in the third row 282c¢) the
calculated BW is logged as 2500 Kb/s (=2.5 Mb/s). A sixth
column 281f logs the RTT measured in the transaction,
based on timer #1 time interval measurement as described
above. In the first transaction (in the first row 282a) the
measured RTT is logged as 30 ms (=0.03 seconds=0.03 s),
in the second transaction (in the second row 2825b) the
measured RTT is logged as 70 ms, and in the third transac-
tion (in the third row 282c¢) the measured RTT is logged as
540 ms (=0.54 second).

The transaction log, such as table 150, may be prepared by
a client device, such as client device #1 201a, and stored in

10

15

20

25

30

35

40

45

50

55

60

65

114

the client device for future use. Alternatively or in addition,
the transaction log may be sent, after each transaction or
after multiple transactions, such as per a time period (e.g,
hourly, daily, weekly, monthly), to other entities in the
system, to be stored in the entities for future use by them or
by other entities in the network. In one example, the trans-
action log is sent to the acceleration server 202. Alterna-
tively or in addition, the transactions log may be sent to the
relevant agent devices, such as the agent device #1 103a or
the agent device #2 1035, or any other agent device asso-
ciated with the relevant peer device or devices involved in
the transaction.

Similar to table 280 shown in FIG. 28, a table 280a shown
in FIG. 28a shows a table relating to four peer devices used
for fetching different content from the same data server
(such as the data server #1 22a), thus the same server IP
address is shown in the third column 283c¢. The IP addresses
of the peer devices are shown in the second column 2835,
the URL fetched is shown in the fourth column 283d, the
date and time of the transaction are logged in the first
column 2834, the BW is shown in the fifth column 283e, and
the measured RTT is shown in the sixth column 283f. The
first transaction (logged in a first row 284q) is using a first
peer device having IP address of 139.230.154.213, the
second transaction (logged in a second row 284b) is using a
second peer device having IP address of 132.171.60.197, the
third transaction (logged in a third row 282¢) is using a third
peer device having IP address of 248.46.80.36, and the
fourth transaction (logged in a fourth row 154d) is using a
fourth peer device having IP address of 31.16.208.171.

The peer devices to be used when content is to be fetched
from a data server (such as the data server 22a) may be
selected by a client device (such as the client device #1
201a) in the ‘Select Peers’ step 238a in the flowchart 2305
or by the agent devices in the ‘Prepare Peers List’ step 241e
in the flowchart 240. Alternatively or in addition, the peer
devices may be selected by the acceleration server 202.
Similarly, the agent devices to be used may be selected by
a client device (such as the client device #1 201q) in the
‘Select Agents’ step 231/ in the flowchart 230, or may be
selected by the acceleration server 202 in the ‘Prepare List’
251e in the flowchart 250. The selection may be based on a
past performance of the peer devices, such as on any
information relating to former transactions involving these
peers. In one example, the transactions log may be used to
evaluate and select which peer devices to use in a specific
transaction to be executed, or in multiple transactions.

In the example of the transaction log table 2804 shown in
FIG. 28a and relating to a client device, the client device
may need to fetch content from the same data server shown
in the table 280a (having an IP address of 49.154.2.5), and
thus may use the table content as an indication of the
performance of the various peer devices. In one example, the
criterion to select a single peer (or agent) device to be used
for fetching content from the data server may be based on
having higher BW, assuming that the higher BW has not
changed and thus will result in faster content fetching, and
hence the peer device used in the third logged transaction
(having an IP address of 248.46.80.36) will be selected for
this transaction, having the highest recorded BW of 2500
Kb/s. In the case two peer devices are to be selected, the
second peer device to be selected is the peer device used in
the fourth logged transaction (having an IP address of
31.16.208.171) will be selected for this transaction, being
associated with the second highest BW in the table. Simi-
larly, the peer device associated with the first logged trans-
action will be the next to be selected.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
197 of 228

US 10,469,614 B2

115

Alternatively or in addition, the criterion to select a single
peer (or an agent) device to be used for fetching content
from the data server may be based on having lower RTT,
assuming that the lower RTT has not changed and thus will
result in faster content fetching. Hence the peer device used
in the first logged transaction (having an IP address of
139.230.154.213) will be selected for this transaction, hav-
ing the lowest recorded RTT of 30 ms. In the case two peer
devices are to be selected, the second peer device to be
selected is the peer device used in the second logged
transaction (having an IP address of 132.171.60.197) will be
selected for this transaction, being associated with the sec-
ond lowest RTT in the table (70 ms). Similarly, the peer
device associated with the fourth logged transaction will be
the next to be selected.

Alternatively or in addition, both the RTT and the BW are
used as criteria for selecting peer (or agent) devices. In one
example, the expected total latency is calculated, based on
both the former BW and the former RTT, and the peer device
offering the lowest estimated total latency will be selected.
In one example, assuming the content to be fetched is
estimated (or known to be) having the size of 100 Kb (100
kilobits). The peer device used in the first logged transaction
(in the first row 284a) is associated with past performance
(with the same data server) of BW=1000 Kb/s and RTT=30
ms. In such a case, the total latency is calculated and
estimated as 30+100/1000=130 ms. The peer device used in
the second logged transaction (in the second row 284b) is
associated with past performance (with the same data server)
of BW=350 Kb/s and RTT=70 ms, and thus the total latency
is calculated and estimated as 70+100/350=355.7 ms. Simi-
larly, the estimated total latency of using the peer device
used in the third logged transaction (in the third row 284c)
is 580 ms, and the estimated total latency of using the peer
device used in the fourth logged transaction (in the fourth
row 284d) is 241.4 ms. Having the lowest estimated total
latency, the peer device used in the first logged transaction
(in the first row 284a) will be selected first as having the
lowest expected total latency, the peer device used in the
fourth logged transaction (in the fourth row 2844) will be
selected second, the peer device used in the second logged
transaction (in the second row 2845) will be selected third,
and the peer device used in the third logged transaction (in
the third row 284c¢) will be selected last.

However, assuming the content to be fetched is estimated
(or known to be) having the size of 1000 Kb (1000 kilo-
bits=1 Mb). The peer device used in the first logged trans-
action (the first row 284a) is associated with past perfor-
mance (with the same data server) of BW=1000 Kb/s and
RTT=30 ms. In such a case, the total latency is calculated
and estimated as 30+1000/1000=1030 ms (1.03 s). The peer
device used in the second logged transaction (in the second
row 2845b) is associated with past performance (with the
same data server) of BW=350 Kb/s and RTT=70 ms, and
thus the total latency is calculated and estimated as
70+1000/350=2927.1 ms. Similarly, the estimated total
latency of using the peer device used in the third logged
transaction (in the third row 284c¢) is 940 ms, and the
estimated total latency of using the peer device used in the
fourth logged transaction (in the fourth row 284d) is 884.2
ms. Having the lowest estimated total latency, the peer
device used in the fourth logged transaction (in the fourth
row 284d) will be seclected first as having the lowest
expected total latency, the peer device used in the third
logged transaction (in the third row 284¢) will be selected
second, the peer device used in the first logged transaction
(in the first row 284a) will be selected third, and the peer

15

25

40

45

55

116

device used in the second logged transaction (in the second
row 2845) will be selected last.

In the general case, there may be N peer devices that may
be used, designated i=1, 2, . . . N, and that the total content
size is X. Assuming non-overlapping partition, each of the
peer devices (i) will be assigned part of the total content Xi,
where X=2Xi. The latency (Ti) in each path (i) relating to a
peer device (i) is calculated as Ti=RTTi+Xi/BWi, where
RTTi is the RTT associated with peer device (i) and BWi is
the BW associated with the peer device (i). Since typically
the latency relating to complete the fetching of the whole of
the content (T) is determined by the longest latency of the
individual latency Ti, then T=max(Ti), hence it is beneficial
to minimize the maximum Ti, designated as min(max(T1))=
min(max(RTTi+Xi/BWi)). Such a minimum is obtained
when all Ti’s are equal to each other, so that
T=Ti=T ,=T,=T;= . . . =T,, which is resulted when the
partition Xi is: Xi=BWi*[(X+ZRTTi*BWi)/(ZBWi)-RTTi],
and the latency in such a case is T=(X+Z(RTTi*BWi))/
(ZBWi). In the example of using two peer devices (N=2),
then X,=BW *[X+BW,*([RTT,-RTT))/(BW,+BW,) and
X,=BW2*[X+BW *(RTT,-RTT,)]/(BW,+BW,), while the
resulting latency is T=T,=T,=(RTT,*BW +RTT,*BW,+
X)/(BW,+BW,).

Referring now to a system 290 shown in FIG. 29, sche-
matically showing a general peer device #i 102i, which
stores in a database 2911 the entire content required (or a
part of it), or at least part X, (which may be chunks-based)
of the content that is required by the client device #1 201a.
The peer device #i 102/ communicates with the client device
#1 201a over a data path 297;, characterized by an RTT, and
BW,, so that the latency can be estimated to be T,=RTT,+
X,/BW,. Similarly, a peer device #1 102a, which stores in a
database 291a the entire content required, or at least part X,
(which may be chunks-based) of the content that is required
by the client device #1 201a. The peer device #1 102a
communicates with the client device #1 201a over a data
path 2974, characterized by an RTT, and BW |, so that the
latency can be estimated to be T,=RTT,+X,/BW,. Assum-
ing that there are N peer devices, a peer device #N 102, is
shown, which stores in a database 291,, the entire content
required, or at least part X, (which may be chunks-based) of
the content that is required by the client device #1 201a. The
peer device #,,102,,communicates with the client device #1
201a over a data path 297,, characterized by an RTT,, and
BW,, so that the latency over this data path can be estimated
to be T,~RTT\+X,, BW,.

An analysis of the system 290 is shown as a view 290q in
FIG. 29a. The total latency expression is based on the arrival
of the last piece (or last chunk) of a requested content to the
client device #1 201a, and hence T=Max (T,) as shown in an
expression (1) 292q, and in order to obtain fastest load time,
the target is to minimize the total latency T, based on a
partition X, of the total content X, as shown in an expression
(2) 2925. Such minimum is obtained where the latency is the
same (1) in all the data paths, as shown in an expression (3)
292¢. An expression (4) 2924 provides the optimal partition
X, for minimum latency, and an expression (5) 292e pro-
vides the obtained latency. It is apparent that in the case
wherein a fixed-fixed chunks are used in the system, the
calculation of Xi may result in a non-integer number of
chunks. In such a case, a chunk may be further partitioned
into smaller chunks. Alternatively or in addition, the result-
ing sizes may be round to the nearest integer value, allowing
for keeping the scheme of only using fixed-size chunks.

The allocation of the parts of the requested content to the
available peer devices to be fetched therefrom, may be part

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
198 of 228

US 10,469,614 B2

117

of the ‘Select Peers’ step 238a. While exampled above
regarding the allocation of content and the partitioning in a
peer/agent based system, the method and the analysis are
equally applicable for any system or arrangement where
multiple data paths are used, each relating to the allocated
parts of the content. For example, such a method may be
used when the content is fetched using agents, such as in the
‘Content Partition’ step 1015 in the flowchart 100 (or the
flowchart 100a) above, where the partition may be based on
the expression (4) 2924 shown in the view 290a.

FIG. 29 further shows an example of a content 293,
composed of 6 (six) non-overlapping fixed-sized chunks
designated as ‘A’ 293a, ‘B’ 2935, ‘C’” 293¢, ‘D’ 2934, ‘E’
293¢, and ‘F’ 293/, In one example, assuming three (3) peer
devices are used (N=3 in the system 290), the allocation
determined is shown in view 2954 in FIG. 295, where three
chunks including the chunks ‘A’ 293a, ‘B’ 2935, and ‘C’
293¢, are allocated to be fetched from a first peer device
(such as the peer device #1 102q), a single chunk ‘D’ 2934
is allocated to be fetched from a second peer device (such as
the peer device #i 102/), and the two chunks ‘E’ 293¢ and ‘F’
293f, are allocated to be fetched from a third peer device
(such as the peer device #N 102N). At time t=0, the content
fetching from the three peer devices is started. A client
device (such as the client device #1 201a) prepares a
memory 294 for storing the requested content 293 upon
obtaining it.

The allocations of the content chunks into the available
peer devices may be based on estimation RTT, BW, as well
as other parameters relating to each of the peer devices, as
well as on the communication characteristics associated with
each peer device, and known to the client device. Such an
estimation may be found to be inaccurate or not updated.
The client device may measure and update the BW, RTT, and
other relevant information as part of the actual content
fetching. For example, an actual RTT and BW may be
measured per each of the peer devices as described in the
flowchart 140 in FIG. 14, added to other updated informa-
tion gathered throughout the content fetching process. Fur-
ther, the allocation of chunks to peer devices may be
re-evaluated according to the updated parameters, and
changed during the content fetching process. The re-evalu-
ating of the allocation may be executed continuously and
simultaneously with the content fetching, or preferably at
specified time intervals.

In one example shown as view 2955 in FIG. 295, at a time
t=t1 after the content fetching activity has initiated, the client
device checks the status of the fetching, to find that the
chunks ‘A’ 193a, ‘B’ 2935, and ‘D’ 2934 have been com-
pletely fetched and loaded into the client device memory
294. Further, the chunk ‘C’ 293¢ is about to start to be
fetched from the first peer device, and a chunk ‘E’ 293¢ is
in the process of being fetched. It is noted that the chunk ‘F’
293f'has not yet been fetched, and is expected to be the last
chunk to be fully fetched, and hence determines and affects
the total time required for the fetching of the entire requested
content 293. In one example, shown as a view 2954 in FIG.
29¢, the client device may decide, in order to reduce the total
fetching time, to recalculate the allocation, and for example
to reallocate the fetching of the chunk ‘F’ 293/ (being the
‘bottleneck’ chunk) to another peer device, such as the
second peer device. Alternatively or in addition, in order to
improve efficiency and reduce the content fetching latency,
the last to receive the chunk ‘F’ 293f is split into two
equal-sized chunks ‘F1’° 29371 and ‘F2’ 29372. It is apparent
that splitting into non-equally sized chunks, or splitting into
more than two chunks, may be equally applicable. Each of

10

20

25

40

45

50

55

118

the newly formed chunks may now be allocated to a peer
device, using any allocation scheme or criteria. In one
example shown in view 295¢ in FIG. 29¢, one of the new
chunks ‘F1’ 29311 is allocated to the third peer device, while
the other chunk ‘F2° 29372 is allocated now to the second
peer device.

The flowchart 296 shown in FIG. 294, corresponds to the
flowchart 239 shown in FIG. 235, describes an example of
a method involving real-time re-allocation of chunks to peer
devices. The initial allocation of chunks to peer devices,
based on criteria and scheme known before the content fetch
initiation, is part of the ‘Select Peers’ step 238a. The
fetching of the peer device #1 allocated chunks starts in a
‘Start Receive Chunk Peer #1” step 298a, being part of the
‘Receive Chunk Peer #1” step 236a shown in the flowchart
239 in FIG. 234. Similarly, the fetching of the peer device
#2 allocated chunks starts in a ‘Start Receive Chunk Peer #2°
step 2984, being part of the ‘Receive Chunk Peer #2’ step
2366 in the flowchart 239 in FIG. 235, and the fetching of
the peer device #3 allocated chunks starts in a “Start Receive
Chunk Peer #3” step 298¢, being part of the ‘Receive Chunk
Peer #3” step 236¢ in the flowchart 239 in FIG. 2356. In
parallel to the process of fetching the various chunks from
the allocated peer devices, the client device, continuously or
periodically, measures the various communication related
characteristics for each communication with a peer device,
such as BW and RTT, as part of a ‘Measure BW, RTT” step
299q. The new measured parameters are used for recalcu-
lation of the allocation, for example according to the expres-
sion (4) 2924 in FIG. 29a. In a ‘Re-Allocate ?” step 2995, the
need for changing the former allocation is determined. In
some cases, there may be no need to change the initial or
former allocation. If there a need for re-allocation, the
‘Select Peers’ step 238a is resumed, and new allocation is
affected.

In one example shown as arrangement 290q in FIG. 29e,
each of the peer devices stored all of the chunks composing
the entire content 293. The peer device #1 102a is shown to
store the entire content in its memory as content 291a.
Similarly, the peer device #i 102i stores the entire content in
its memory as content 291i, and the peer device #N 102N
stores the entire content in its memory as content 291N. In
such a case, the client device 201a may choose any peer
device for any chunk of the content 293, or may even choose
a single peer device (such as the peer device #1 102qa) to
fetch the entire content therefrom. Alternatively or in addi-
tion, each of the peer devices may store only part of the
chunks composing the content 293, as shown in an arrange-
ment 2905 in FIG. 29/ The peer device #1 102a is shown to
store only chunks ‘A’ 293a, ‘B’ 2935, ‘C’ 293¢, and ‘E’
293¢, in its memory as content 291a, while the peer device
#1102/ stores only chunks ‘A’293a, ‘C’ 293¢, ‘D’ 2934, and
‘F* 293/, in its memory as content 2914, and the peer device
#N 102N stores only chunks ‘A’ 293a, ‘D’ 2934, ‘E’ 293e,
and ‘F’ 293/, in its memory as content 291N. It is noted that
such storing of portions of the content 293 may not affect the
system operation described in views 295a, 2955, 295¢, and
295d, since the chunks required from each of the peer
devices are indeed stored in these peer devices. In such a
configuration, the agent devices and the client device should
consider the actual content portion in each of the peer
device, in addition to the size of the content portion that is
optimal to be fetched from them.

Each of the devices denoted herein as servers, such as the
acceleration server 32, the data server #1 22a, the data server
#2 22b, and the acceleration server 202, may typically
function as a server in the meaning of client/server archi-

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
199 of 228

US 10,469,614 B2

119

tecture, providing services, functionalities, and resources, to
other devices (clients), commonly in response to the clients’
request. Each of the server devices may further employ,
store, integrate, or operate a server-oriented operating sys-
tem, such as the Microsoft Windows Server® (2003 R2,
2008, 2008 R2, 2012, or 2012 R2 variant), Linux™ (or
GNU/Linux) variants (such as Debian based: Debian GNU/
Linux, Debian GNU/kFreeBSD, or Debian GNU/Hurd,
Fedora™, Gentoo™, Linspire™, Mandriva, Red Hat®
Linux available from Red Hat, Inc. headquartered in
Raleigh, N.C., U.S.A., Slackware®, SuSE, or Ubuntu®), or
UNIX®, including commercial UNIX® variants such as
Solaris™ (available from Oracle Corporation headquartered
in Redwood City, Calif., U.S.A.), AIX® (available from
IBM Corporation headquartered in Armonk, N.Y., U.S.A.),
or Mac™ OS X (available from Apple Inc. headquartered in
Cupertino, Calif.,, U.S.A.), or free variants such as
FreeBSD®, OpenBSD, and NetBSD®. Alternatively or in
addition, each of the devices denoted herein as servers, may
equally function as a client in the meaning of client/server
architecture.

Devices that are not denoted herein as servers, such as
client devices (such as the client device #1 31aq, the client
device #2 315, or the client device #1 201a), tunnel devices
(such as the tunnel device #1 33a or the tunnel device #2
33b), agent devices (such as the agent device #1 103a or the
agent device #2 103b), or peer devices (such as the peer
device #1 102a or the peer device #2 1025), may typically
function as a client in the meaning of client/server architec-
ture, commonly initiating requests for receiving services,
functionalities, and resources, from other devices (servers or
clients). Each of the these devices may further employ, store,
integrate, or operate a client-oriented (or end-point dedi-
cated) operating system, such as Microsoft Windows® (in-
cluding the variants: Windows 7, Windows XP, Windows 8,
and Windows 8.1, available from Microsoft Corporation,
headquartered in Redmond, Wash., U.S.A.), Linux, and
Google Chrome OS available from Google Inc. headquar-
tered in Mountain View, Calif., U.S.A. Further, each of the
these devices may further employ, store, integrate, or operate
a mobile operating system such as Android (available from
Google Inc. and includes variants such as version 2.2
(Froyo), version 2.3 (Gingerbread), version 4.0 (Ice Cream
Sandwich), Version 4.2 (Jelly Bean), and version 4.4 (Kit-
Kat)), i0S (available from Apple Inc., and includes variants
such as versions 3-7), Windows® Phone (available from
Microsoft Corporation and includes variants such as version
7, version 8, or version 9), or Blackberry® operating system
(available from BlackBerry [.td., headquartered in Waterloo,
Ontario, Canada). Alternatively or in addition, each of the
devices that are not denoted herein as servers, may equally
function as a server in the meaning of client/server archi-
tecture.

The method and system described herein allows for a
client device (such as Client device #1 31a in FIG. 5 or the
client device #1 201a in FIG. 20) to effectively fetch content
from a data server (such as the data server #1 22a). The
method and system may be used by the client device for
supporting an application, such as a web browser applica-
tion, when the application is requesting a content from the
Internet in general, and from a data server in particular. The
request for Internet-related content may be intercepted by
the ‘client’ application and process, initiating the client
flowchart 60 shown in FIG. 6, the flowchart 100 shown in
FIG. 10, or the flowchart 230 shown in FIG. 23. In one
example, the client device uses a communication-related
application to be used by the application when no ‘client’

10

15

20

25

30

35

40

45

50

55

60

65

120

application is present, such as HTTP stack handling appli-
cation. The request from the requesting application to the
communication-related application is intercepted and routed
to be handled as part of the ‘client’ application or process.
Such interception may be in the form of a filter driver (or any
other intermediate driver), enabling the interception as part
of the OS kernel. Alternatively or in addition, the intercep-
tion may be in the form of extension or a plug-in of the
requesting application, such as a browser plug-in or a
browser extension in the case where the application is a web
browser. Alternatively or in addition, the interception of the
request may use hooking of the requesting application or of
the communication-related application. Alternatively or in
addition, the application and the steps described herein may
communicate using an Inter-Process Communication (IPC),
such as a file sharing, a signal, a socket, a pipe, a message
queue, a shared memory, a semaphore, or memory mapped
file. In Windows environment, the IPC may be based on a
clipboard, a Component Object Model (COM), a data copy,
a DDE protocol, or mailslots.

Examples of web browsers include Microsoft Internet
Explorer (available from Microsoft Corporation, headquar-
tered in Redmond, Wash., U.S.A.), Google Chrome which is
a freeware web browser (developed by Google, headquar-
tered in Googleplex, Mountain View, Calif., U.S.A),
Opera™ (developed by Opera Software ASA, headquartered
in Oslo, Norway), and Mozilla Firefox® (developed by
Mozilla Corporation headquartered in Mountain View,
Calif., U.S.A.). The web-browser may be a mobile browser,
such as Safari (developed by Apple Inc. headquartered in
Apple Campus, Cupertino, Calif., U.S.A.), Opera Mini™
(developed by Opera Software ASA, headquartered in Oslo,
Norway), and Android web browser.

Any network element, or any device that is herein that is
connectable to the Internet, may be in one of the states in a
state diagram 300 shown in FIG. 30. A device may be in an
‘OFFLINE’ state 301, where the device cannot access, and
cannot be accessed via, the Internet. For example, the device
may be not powered, or may not be connected to the Internet
due to a faulty or non-operative communication interface, or
due to the lack of Internet connectivity in the vicinity of the
device. In normal operation, the device is in an ‘ONLINE’
state 302, where the device is connected to the Internet, and
may receive messages from, and send messages to, the
Internet. Further, a resource (or few resources) in the device
may in time become congested in a ‘CONGESTED’ state
303. The device monitors its resources and performance, and
upon detecting a resource utilization that is above a set
threshold, declares itself as congested. The congestion
detection scheme serves as a mechanism to measure the
device performance and quality of service, and may be used
to alert other devices in the system that the device may not
be capable to handle additional tasks or services. The
detection of congestion may be further used for load bal-
ancing, such as for distributing workloads across multiple
computing resources, such as computers, a computer cluster,
network links, central processing units, or disk drives, for
optimizing resource use, maximizing throughput, minimiz-
ing response time, and avoiding overload of any one of the
resources. Further, using multiple components in a device
with load balancing instead of a single component may
increase reliability through redundancy. Similarly, using
multiple devices in a system or network with load balancing
instead of a single (or few) device may increase reliability
through redundancy.

Upon power up and being operative, the device shifts
from the ‘OFFLINE’ state 301 to the ‘ONLINE’ state 302 as

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
200 of 228

US 10,469,614 B2

121

depicted by an arrow 3045 in the states chart 300. If for any
reason the device is not capable to access the Internet or to
be operative as required, such as upon powering the device
power off or a faulty Internet connection, the device is
considered to shift to the ‘OFFLINE’ state 301 as depicted
by an arrow 304aq. In the case a congestion is detected, the
device shifts to the ‘CONGESTED’ state 303, as depicted by
an arrow 304e. Upon detecting that the detected congestion
has elapsed, the device may resume to normal operation in
the ‘ONLINE’ state 302, as depicted by an arrow 304d. The
device may also shift from the ‘CONGESTED’ state 303 to
the ‘OFFLINE’ state 301, as depicted by an arrow 304c.

In one example, the congestion decision may be based on
a CPU utilization, where CPU time or CPU usage is reported
either for each thread, for each process, or for the entire
system. The CPU utilization relates to the relative time that
the CPU is not idling (for example, the amount of time it not
executing a system idle process). In the case the CPU
utilization is above a predetermined threshold, such as 80%,
the device declares itself as congested. Alternatively or in
addition, a congestion state may be based on memory
utilization. In the case wherein the memory locations that are
in use are above a predetermined threshold, for example,
when additional memory requirements may not be satisfied,
the device may declare itself as congested. Alternatively or
in addition, a congestion state may be the result of detecting
of low availability of communication bandwidth (for
example, for accessing the Internet), or input/output
resources limitations. The congestion in Internet related
communication is described in IETF RFC 2914 entitled:
“Congestion Control Principles”, which is incorporated in
its entirety for all purposes as if fully set forth herein.

A heartbeat mechanism may be used in order to allow
devices to sense the status of other devices in the system. A
‘ONLINE HEARTBEAT” flow chart 305 is shown in FIG.
31 as part of the flowchart 310, may be executed by any
device herein. The device may be in an ‘OFFLINE’ step 301,
corresponding to the ‘OFFLINE’ state in the state diagram
300. When in the ‘ONLINE’ state 302 and the ‘CON-
GESTED’ state 303, the device executes the flow chart
‘ONLINE HEARTBEAT’ 305, which starts at a ‘Send
Heartbeat’ step 305a, where the device sends a ‘ping’ or any
other message, thus notifying its availability over the Inter-
net, and being in normal operation, and capable of providing
services to other devices if required. The message sent in this
step may be a dedicated heartbeat related message. Alter-
natively or in addition, any message which is sent as part of
the device functionality, may as well be used as a ‘heartbeat’
message, corresponding to the ‘Send Heartbeat’ step 305a.
For example, the ‘Sign-in as Client” step 615 in the client
device flowchart 60, the ‘Request Tunnel List’ step 62a, the
‘Request Agents List’ step 231c¢ in the client flowchart 230,
and the ‘Send Chunk to Client’ step 242d in the peer
flowchart 240a, may serve also as a heartbeat message,
corresponding to the ‘Send Hearbeat’ step 3054. A timer set
to a predetermined time interval is started in a ‘Start Timer’
step 305b. The time period set by the timer is used to
determine the frequency of the heartbeat ‘pulse’, where high
frequency resulting short time periods allows for frequent
updating of the device status. The time period between
‘heartbeat pulses’ may be in the order of milliseconds, such
as every 10, 20, 30, 50, or 100 milliseconds, may be in the
order of seconds, such as every 1, 2, 3, 5, or 10 seconds, may
be in the order of tens of seconds, such as every 10, 20, 30,
50, or 100 seconds, or may be in the order of minutes, such
asevery 1,2, 3,5, or 10 minutes. The device remains as long
as the timer has not lapsed in a ‘Timer Elapsed ? step 305c¢.

20

30

35

40

45

122

Upon an expiration of the timer, the device reverts to the
‘Send Heartbeat’ step 305a, and the process is resumed.

The congestion related activities of a device is shown in
a flowchart 310q in FIG. 31, showing the flowchart 308,
including the ‘ONLINE’ flowchart 308, describing to the
device activity while in the ‘ONLINE’ state 302, and the
‘CONGESTED’ flowchart 307 describing the device activ-
ity while in the ‘CONGESTED?’ state 303. The congestion
related mechanism may also use heartbeat scheme, where
the congestion state is periodically checked and reported.
Upon entering the ‘ONLINE’ step 302 (corresponding to the
‘ONLINE’ state 302 in the state diagram 300), the device
sends a message regarding its availability in a ‘Send Non-
Congested’ step 308a. The device remains in a ‘Congested
?” step 308b, as long as no congestion is detected. Upon
detecting a congestion state, the device shifts to ‘CON-
GESTED’ state 303 and executes a ‘CONGESTED’ flow-
chart 307, starting with notifying its status as congested, in
a ‘Send Congested’ step 307a. As long as the congestion
condition is detected, the device stays in a ‘Congested ?” step
3075. When the congestion criterion is not met anymore, the
device reverts to normal operation in the “ONLINE” state
302 and executes the ‘Send Non-Congested’ step 308a.

A device that monitors or tracks the status a tracked
device (that executes the flowchart 310 and the flowchart
310a) may execute the flowchart 320 shown in FIG. 32. In
a ‘Message Received ?” step 321fthe tracking device checks
for receiving any message from the tracked device, which
may be following the flowchart 310 and the flowchart 310a
in FIG. 31. In a ‘Congested Message ?° step 321q, the
received message type is checked. The received message
may indicate that the tracked device is congested, for
example, send the ‘congested’ message in the ‘Send Con-
gested’ step 307a in the flowchart 307. In such a case, the
tracked device status is marked as ‘congested’ in a ‘Mark as
Congested’ step 321¢, and the system or the tracking device
may hold any further workload, or request for any service,
relating to the tracked device. The received message may
indicate that the tracked device is online, for example
initiated as part of a ‘Send Heartbeat’ step 305aq, as part of
the ‘Send Non-Congested’ step 308a, or any other message
indicating proper operation of the tracked device. In such a
case, the tracked device status is marked as ‘online’ in a
‘Mark as Online’ step 3214, and the tracked device is
assumed available to provide services, receive messages, or
response to requests. In a ‘Start Timer’ step 321e, a timer
configured to respond after a time interval has elapsed is
triggered, similar to the timer described in the flowchart 305
in FIG. 31. In one example, the time interval measured by
the timer starting at the ‘Start Timer’ step 321e may be the
same as the time interval measured by the timer operated in
the flowchart 305. Alternatively, the tracking device timer
may be used to measure longer time interval, such as 5%,
10%, or 120% longer than the tracked device timer, allowing
for an error margin. In the case a message is received in the
‘Message Received ?” step 321/, the message is checked and
the tracked device status is validated as described above. In
the case no message is received from the tracked device, as
noted in the ‘Timer Elapsed ?” step 321g, it is assumed that
the heartbeat mechanism of the tracked device shows as the
flowchart 305 is inoperative, hence in a ‘Mark as Offline’
step 321/ the tracked device is assumed to be inoperative,
and thus not available for any services or requests.

In one example, all the devices herein (including server
devices) in the system are tracked and are executing the
tracked device flowchart 310 and the flowchart 3104 in FIG.
31. Alternatively or in addition, all the devices in a system

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
201 of 228

US 10,469,614 B2

123

(including server devices) are tracking other devices and
execute the tracking device flowcharts 320 in FIG. 32. In one
example, the client devices, such as client device #1 31a¢ and
the client device #2 315 are the tracked devices, and thus
execute the tracked device flowchart 310 and the flowchart
310q in FIG. 31, and the tracking devices are the tunnel
devices (such as the tunnel device #1 33q, the tunnel device
#2 33b, and the tunnel device #3 33¢) and the acceleration
server 32, each executing the tracking device flowcharts 320
in FIG. 32. Alternatively or in addition, the tunnel devices
(such as the tunnel device #1 33aq, the tunnel device #2 335,
and the tunnel device #3 33¢) are the tracked devices, and
thus execute the tracked device flowchart 310 and the
flowchart 310q in FIG. 31, and the tracking devices are the
client devices (such as client device #1 31a and the client
device #2 315) and the acceleration server 32, each execut-
ing the tracking device flowcharts 320 in FIG. 32. An
example of the acceleration server 32 keeping a status of
client devices and tunnel devices is shown as a column
‘status’ 41e in the table 40 in FIG. 5a, where the first row
42a entry shows that the associated tunnel is in an ‘online’
state, the second row 424 entry shows that the associated
tunnel is in a ‘congested’ state, the third row 42¢ entry shows
that the associated client is in an ‘online’ state, the fourth
row 42d entry shows that the associated client is in an
‘offline’ state, and the fifth row 42e¢ entry shows that the
associated client/tunnel is in a ‘congested’ state. When the
acceleration server 32 prepares a list of tunnel devices to be
used as part of the ‘Prepare List’ step 81e in the flowchart 80,
tunnel devices that are ‘offline’ and tunnel devices that are
congested (such as the tunnel device associated with the
entry of the second row 425 in the table 40) are not used, and
are not included is the tunnel devices list sent to the
requesting client device as part of the ‘Send List” step 81f'in
the flowchart 80.

In one example, the client devices, such as client device
#1 201a is the tracked devices, and thus execute the tracked
device flowchart 310 and the flowchart 310q in FIG. 31, and
the tracking devices are the agent devices (such as the agent
device #1 103a, the agent device #2 1035, and the agent
device #3 103c¢), the peer devices (such as the peer device #1
102a, the peer device #2 1024, and the peer device #3 102¢),
and the acceleration server 202, each executing the tracking
device flowcharts 320 in FIG. 32. Alternatively or in addi-
tion, the agent devices (such as the agent device #1 103a, the
agent device #2 1035, and the agent device #3 103¢) are the
tracked devices, and thus execute the tracked device flow-
chart 310 and the flowchart 3104 in FIG. 31, and the tracking
devices are the client devices (such as client device #1
201a), the peer devices (such as the peer device #1 1024, the
peer device #2 1025, and the peer device #3 102¢), and the
acceleration server 202, each executing the tracking device
flowchart 320 in FIG. 32. Alternatively or in addition, the
peer devices (such as the peer device #1 102a, the peer
device #2 1025, and the peer device #3 102¢) are the tracked
devices, and thus execute the tracked device flowchart 310
and the flowchart 310a in FIG. 31, and the tracking devices
are the client devices (such as client device #1 201q), the
agent devices (such as the agent device #1 103q, the agent
device #2 1035, and the agent device #3 103¢), and the
acceleration server 202, each executing the tracking device
flowchart 320 in FIG. 32. In such a system, an agent device
or a peer device, that is either congested or offline, is not
selected to provide a service to a client device. For example
non-online agent devices are not selected as part of the
‘Select Agents’ step 231f in the flowchart 230, and non-

10

15

20

25

30

35

40

45

50

55

60

65

124

online peer devices are not selected as part of the ‘Select
Peers’ step 2384 in the flowchart 230.

A device may be selected to provide a service, such as a
tunnel device that may be selected (alone or as part of a
group) by a client device as part of the ‘Select Tunnels’ step
101a in the flowchart 100. The selected tunnel device may
shift to the ‘offline’ state 301 or to the ‘congested’ state 303,
and thus respectively becomes unavailable or less effective
to use. In such a case, a new tunnel device, that was not
formerly selected, may be now selected as a substitute for
the ‘offline’ or ‘congested’ tunnel device as part of a
‘Replace Device’ step 3214. Similarly, an agent device may
be selected (alone or as part of a group) by a client device
as part of the ‘Select Agents’ step 231fin the flowchart 230.
The selected agent device may shift to the ‘offline’ state 301
or to the ‘congested’ state 303, and thus respectively
becomes unavailable or less effective to use. In such a case,
a new agent device, that was not formerly selected, may be
now selected as a substitute for the ‘offline’ or ‘congested’
agent device as part of a ‘Replace Device’ step 321d.
Alternatively or in addition, a peer device may be selected
(alone or as part of a group) by a client device as part of the
‘Select Peers’ step 238a in the flowchart 2305. The selected
peer device may shift to the ‘offline’ state 301 or to the
‘congested” state 303, and thus respectively becomes
unavailable or less effective to use. In such a case, a new
peer device, that was not formerly selected, may be now
selected as a substitute for the ‘offline’ or ‘congested’ peer
device as part of a ‘Replace Device’ step 321d.

Alternatively or in addition, in the case where multiple
devices are selected to provide a service, such as a group of
multiple tunnel devices, a group of multiple agent devices,
or a group of multiple peer devices, the unavailability of a
single device or multiple devices in the group (due to
shifting to ‘offline’ state 301 or to ‘congested’ state 303),
may not be handled or corrected, as long as a performance
criterion or a threshold is not crossed. For example, assume
5 tunnel devices are assigned to a client device in the ‘Select
Tunnels’ step 101a, where the system set a criterion of a
minimum of 3 operative tunnel devices. Hence, as long as at
least 3 tunnel devices are available and operational, no
corrective action will be taken, and no devices will be
replaced as part of the ‘Replace Device’ step 321d. Hence,
even in the case of two tunnel devices becoming unavailable
or congested, no new tunnel devices will be provided to
fetch content for the applicable client device. However, in
such a case, if 3 tunnel devices become unavailable render-
ing only 2 in operational (online) state, at least one new
tunnel device will be selected (according to any criterion
described herein) and will be used as a replacement as part
of the ‘Replace Device’ step 321d.

The system 30 shown in FIG. 5 above describes the
components involved in fetching content using tunnel
devices. The system 30 comprises the acceleration server 32,
which may execute a part of, or the whole of, the accelera-
tion server tunnel-related flowcharts, such as the flowchart
80 shown in FIG. 8 or the flowchart 90 shown in FIG. 9.
Further, the system 30 comprises client devices such as the
client device #1 31a and the client device #2 315, each of
which may execute a part of, or the whole of, the client
device related flowcharts, such as the flowchart 60 shown in
FIG. 6, the flowchart 100 shown in FIG. 10, or the flowchart
100a shown in FIG. 10a. In addition, the system 30 com-
prises tunnel devices such as the tunnel device #1 33aq, the
tunnel device #2 3354, and the tunnel device #3 33¢, each of

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
202 of 228

US 10,469,614 B2

125

which may execute a part of, or the whole of, the tunnel
device related flowcharts, such as the flowchart 70 shown in
FIG. 7.

Similarly, the system 200 shown in FIG. 20 above
describes the components involved in fetching content using
agent and peer devices. The system 200 comprises the
acceleration server 202, which may execute a part of, or the
whole of, the acceleration server agent/peer related flow-
charts, such as the flowchart 250 shown in FIG. 25. Further,
the system 200 comprises client devices such as the client
device #1 201a, which may execute a part of, or the whole
of, the client device related flowcharts, such as the flowchart
230 shown in FIG. 23, the flowchart 230a shown in FIG.
23a, or the flowchart 2305 shown in FIG. 2354. In addition,
the system 200 comprises agent devices such as the agent
device #1 103a and the agent device #2 1035, each of which
may execute a part of, or the whole of, the agent device
related flowcharts, such as the flowchart 240 shown in FIG.
24. Furthermore, the system 200 comprises peer devices
such as the peer device #1 102a, the peer device #2 1035,
and the peer device #3 103¢, each of which may execute a
part of, or the whole of, the agent device related flowcharts,
such as the flowchart 240a shown in FIG. 24a.

Any network element in the system may be a dedicated
device that assumes only a single role, and thus being only
a client (using tunnels), a tunnel, a client (using agents/
peers), an agent, or a peer device. Alternatively or in
addition, a network element may be capable of assuming
two or more roles, either at different times or simultaneously,
from the list of roles including a client (using tunnels), a
tunnel, a client (using agents/peers), an agent, or a peer
device. Alternatively or in addition, a device may be capable
of assuming all of the above roles. Further, the same server
may be both the tunnels-related acceleration server 32 and
the peer/agent related acceleration server 202, either simul-
taneously or at different times. Alternately, two (or more)
distinct servers may be used.

Referring to a system 340 shown in FIG. 34, integrating
both the system 30 shown in FIG. 5 and the system 200
shown in FIG. 20. Using such a system, content may be
fetched using either tunnel devices, as described, for
example, in the timing and messaging chart 50 shown in
FIG. 5b, or using agent and peer devices as described, for
example, in the timing and messaging chart 220 shown in
FIG. 22, or both methods together. A client device such as
a client device #1 341 may assume the role of the tunnel-
using client device #1 31a, the role of the agent/peers-using
client device #1 201a, or both. Such a dual-function client
device may execute the flowchart 330 shown in FIG. 33,
which is based on using one of the methods described
herein, or both.

The client device 341 in the system 340 may use tunnel
devices and assume the role of the client device #1 31a, may
use peer/agent devices and assume the role of the client
device #1 201a, or may use both methods, as shown in a flow
chart 330 shown in FIG. 33. Upon a content request, the
method starts in a ‘START” step 331a. First, it is checked in
a ‘Locally Cached ?’ step 331c if the requested content is
available in the client device #1 341 itself, for example in its
cache or any available storage. In one example, the content
may be available in the cache memory, since the content was
fetched in a past transaction and stored in the device, such
as in ‘Store Content’ step 145 as a part of the flowchart 140
in FIG. 14, or in a ‘Store Content’ step 235aq as a part of the
flowchart 230qa. In the case of locally available content, the
content is fetched from the cache (or any other storage) as
part of a ‘Fetch from Local cache’ step 33154. In the case the

10

15

20

25

30

35

40

45

50

55

60

65

126

requested content is not locally available at the device, the
client device #1 341 may check in a ‘Direct Fetch ?° step
331d the possibility of directly accessing a data server (such
as the data server #1 22a) storing the content. In one
example, such directly approaching the data server without
using any intermediate devices such as using tunnel devices,
or fetching the content from peer devices, may result in less
overhead and handling, and sometimes may be faster. In the
case of direct fetching, the client device #1 341 accesses and
fetch the requested content directly from the data server in
a ‘Fetch from Server’ step 331e.

If the direct fetching is not selected, then in a ‘Method
Select” step 331/, the device selects which content fetching
method to use. The selection of which method to use may be
based on estimation of the latency associated with each
method until the content is fully fetched. In one example, a
method may be selected when the estimated latency using
the other method is substantially longer. The client device #1
341 may select to only use tunnel devices (“Tunnels Only’),
and in this scenario, it will execute the tunnels-using client
device flowchart (such as the flowchart 60 in FIG. 6) as part
of a ‘Tunnel Flowchart’ step 331i. In one example, the
estimated latency using the tunnel-based method may not
apply in reality, and may be much longer than estimated. In
such a case, it may be beneficial to revert to the other
method, which may be faster. Hence, a timer may be used in
order to assess in real-time the latency associated with a
method, in order to reconsider which method to use. Such a
Timer #3 is set to the estimated latency expected in the
tunnels-using method, preferably with an additional margin
to allow for estimation errors or inaccuracies. The Timer #3
starts in a “Timer #3 Start’ step 331g, before or in parallel the
starting of the tunnel-using method in the ‘Tunnel Flow-
chart’ step 331i. In the case the content fetching in the
‘Tunnel Flowchart’ step 331i is completed before the timer
#3 expiration, the selected method has succeeded to fetch the
content in full and the process is completed. In the case
where the Timer #3 expires in a ‘Timer #3 Expired’ step 331/
before content fetching completion, the tunnel-based
method in the ‘“Tunnel Flowchart’ step 331/ may be stopped
in ‘Stop Tunnel’ step 331/ in order to save resources (such
as processing power), and the ‘Peer Flowchart’ step 331/ is
initiated, executing the alternate method for fetching the
content.

Alternatively, the client device #1 341 may select to only
use peer/agent devices (‘Peers Only”), and in this scenario,
it will execute the peers/agents-using client device flowchart
(such as the flowchart 230 in FIG. 23 and the flowchart 230a
in FIG. 23a) as part of a ‘Peer Flowchart’ step 331/%. In one
example, the estimated latency using the tunnel-based
method may not apply in reality, and may be much longer
than estimated. In such a case, it may be beneficial to revert
to the other method, which may be faster. Hence, a timer
may be used in order to assess in real-time the latency
associated with a method, in order to reconsider which
method to use. Such a Timer #4 is set to the estimated
latency expected in the peers/agents-using method, prefer-
ably with an additional margin to allow for estimation errors
or inaccuracies. The Timer #4 starts in a ‘Timer #4 Start’ step
331n, before or in parallel to the starting of the peers/agents-
using the method in the ‘Peers Flowchart’ step 331%. In the
case the content fetching in the ‘Peer Flowchart® step 331/
is completed before the timer #4 expiration, the selected
method has succeeded to fetch the content in full and the
process is completed. In the case where the Timer #4 expires
in a “Timer #4 Expired’ step 331m before content fetching
completion, the peers/agents-based method in the ‘Peer

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
203 of 228

US 10,469,614 B2

127

Flowchart’ step 331/ may be stopped in a ‘Stop Peer’ step
331k in order to save resources (such as processing power),
and the “Tunnel Flowchart” step 331/ is initiated, executing
the alternate method for fetching the content.

Alternatively or in addition, the client device #1 341 may
select to use both methods (‘Both’), and such to simultane-
ously execute both the tunnels-using client device flowchart
(such as the flowchart 60 in FIG. 6) as part of the ‘Tunnel
Flowchart’ step 331/, and the peers/agents-using client
device flowchart (such as the flowchart 230 in FIG. 23 and
the flowchart 230a in FIG. 23a) as part of the ‘Peer
Flowchart’ step 331%4. The two methods are executed in
parallel, and one of them is completed before the other. In
the case using of tunnels is faster than using peer/agent
devices, the content will be fetched in full using this method,
and the “Tunnel Flowchart’ step 331/ will be completed first.
In such a case, in a ‘Stop Peer’ step 331k the peer/agent
using method executed as part of the ‘Peer Flowchart’ step
331#% is not needed anymore (since the content was fetched
in full) and is stopped, in order to save processing power and
bandwidth. Similarly, In the case the using peers/agents is
faster than using tunnel devices, the content will be fetched
in full using this method, and the ‘Peer Flowchart’ step 331/
will be completed first. In such a case, in a ‘Stop Tunnel’ step
331j the tunnels-using method executed as part of the
‘Tunnel Flowchart” step 331 is not needed anymore (since
the content was fetched in full) and is stopped, in order to
save processing power and bandwidth.

A content fetched or sent by a network element may
consist of, or include, video data. Video data fetched via the
Internet are typically identified by a set of characters,
including three fields, relating to a URL domain name, a
specific video identifier, and offset, relating to the viewing
point in the video data itself. For example, in a video
identifier such as https://www.youtube.com/
watch?v=9mSb3P7cZIE?ST=1:48, the field ‘https://www.y-
outube.com’ is the URL domain, which identify the server
from which the video can be fetched, the part
‘OmSb3P7cZIE’ identifies the video data (such as a movie)
as a whole, and the offset ‘1:48” part in the video starting
point, in this example after 1 minute and 48 seconds after the
video start point. The offset may be presented (as part of the
video identifier) in time using another format such as
#T=3M54S (denoting starting point after 3 minutes and 54
seconds) is bytes (such as B=10344, denoting a starting
point after 10344 bytes), relative offset (such as in %, such
as R=54.3, denoting that the starting point is after 54.3% of
the total video length, such as byte 543 out of 100 bytes
sized video content)), and various other methods. In the case
the content to be fetched is a video data, while the video
content may be located in other network elements, it may be
identified differently than the requested URL or content
identifier, and as such may not be easily fetched. In one
example, in order to form a common method for identifi-
cation of a video-related URL, the offset is detected (e.g., by
the /> symbol, or by the identifying the offset format, or
both), and the URL is stored (such as in a cache) identified
as the domain name and the video data identifier only, where
the offset is stored as additional separate attribute. In one
example, the offset presentation is normalized to a common
format, which is understood by all of the network elements.

A flowchart 410 shown in FIG. 43 describes a method for
forming a unified identifying scheme for video content. The
video-related content is received (or requested) by a network
element in a ‘URL Received’ step 411a. In a ‘Remove
Offset’ step 4115, the offset part of the URL is detected and
removed, such as by detecting the /> symbol, or by the

25

35

40

45

128

identifying the offset format, or both. A direct request for the
video content is sent to a respective data server (such as the
data server #1 22a) in a ‘Send Request To Server’ step 411c.
Typically, the initial part of the data server response includes
meta-data information, including the content length, in a
form of time (such as hours, minutes, and seconds) or size
(such as in bytes). Once the content size or length informa-
tion is received, there is no need for any communication
with the data server, and the communication session is
terminated in a “Terminate Server’ step 411e. The content
size or length information is used for unifying the form of
the video identifier in a ‘Normalize Offset’ step 411f. For
example, a unified scheme may include relating offset, so a
video file that start at byte 345 out of 1000 total bytes will
be identified as 34.5% (345/1000), and a video file that starts
after 1 minute 30 second (1:30) out of a total of 10 minutes
will be identified as 15%. Similarly, files that do not end at
the video end may also be accordingly identified. For
example, a video file that starts after 2 minutes and ends after
7 minutes, will be identified as 20-70%. In such a unified
scheme, a network element may store (such as in a cache),
or request, parts of a video file by using the common
identification scheme. For example, a network element that
stores the range from 1 minute to 22 minutes out of a video
file, may respond to a request asking for the range of minute
15 to minute 17.

IP-based geolocation (commonly known as geolocation)
is a mapping of an IP address (or MAC address) to the
real-world geographic location of a computing device or a
mobile device connected to the Internet. The IP address
based location data may include information such as coun-
try, region, city, postal/zip code, latitude, longitude, or
Timezone. Deeper data sets can determine other parameters
such as domain name, connection speed, ISP, language,
proxies, company name, US DMA/MSA, NAICS codes, and
home/business classification. The geolocation is further
described in the publication entitled: “Zowards Street-Level
Client-Independent IP Geolocation” by Yong Wang et al.,
downloaded from the Internet on July 2014, and in an
Information Systems Audit and Control Association
(ISACA) 2011 white-paper entitled: “Geolocation: Risk,
Issues and Strategies”, which are both incorporated in their
entirety for all purposes as if fully set forth herein. There are
a number of commercially available geolocation databases,
such as a web-site http://www.ip2location.com operated by
Ip2location.com headquartered in Penang, Malaysia, offer-
ing IP geolocation software applications, and geolocation
databases may be obtained from IpInfoDB operating web-
site http://ipinfodb.com, and by Max Mind, Inc., based in
Waltham, Mass., U.S.A. operating the web-site https://ww-
w.maxmind.com/en/home.

Further, the W3C Geolocation API is an effort by the
World Wide Web Consortium (W3C) to standardize an
interface to retrieve the geographical location information
for a client-side device. It defines a set of objects, ECMA
Script standard compliant, that executing in the client appli-
cation give the client’s device location through the consult-
ing of Location Information Servers, which are transparent
for the Application Programming Interface (API). The most
common sources of location information are IP address,
Wi-Fi and Bluetooth MAC address, radio-frequency identi-
fication (RFID), Wi-Fi connection location, or device Global
Positioning System (GPS) and GSM/CDMA cell IDs. The
location is returned with a given accuracy depending on the
best location information source available. The W3C Rec-
ommendation for the geolocation API specifications draft
dated Oct. 24, 2013, is available from the web-site http://

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
204 of 228

US 10,469,614 B2

129
www.w3.0org/TR/2013/REC-geolocation-API-20131024.
Geolocation-based addressing is described in U.S. Pat. No.
7,929,535 to Chen et al., entitled: “Geolocation-based
Addressing Method for IPv6 Addresses”, and in U.S. Pat.
No. 6,236,652 to Preston et al., entitled: “Geo-spacial Inter-
net Protocol Addressing”, and in U.S. Patent Application
Publication No. 2005/0018645 to Mustonen et al., entitled:
“Utilization of Geographic Location Information in IP
Addressing”, which are all incorporated in their entirety for
all purposes as if fully set forth herein.

Geolocation may be used by any network element. The
peer devices described above as storing a content (chunks)
that is required by a client device, and thus the client device
fetches the content from the peer devices rather than directly
from the web server (or in addition to it). In some cases,
multiple devices are available storing unknown content
which may be the content required by a client device. The
geolocation may be used to determine which available
devices may be, or are expected to be, storing the content
that is requested. In this context, two Internet-connected
devices, each identified by a respective IP address, for
example, are considered as being ‘close’ if there is a like-
lihood that the same content is stored in both, or that both
devices fetched the same content from a data server. Simi-
larly, two devices are considered closer than the other two
devices if there is a higher likelihood that they store the same
content (from the same data server).

Referring now to FIG. 35 showing a flowchart 350, which
may be executed by any network element, describing a
method for selecting devices based on a geolocation and on
location-specific attributes, for use by a requesting device,
interested in obtaining a content from a data server. In a
‘Receive IP List’ step 351 a list of devices available to select
from is obtained. In one example, the devices may be
identified by their respective 1P addresses. In an ‘Associate
Location’ step 352, the IP address of each of the devices is
used to obtain the physical geographical location of the
device using any geolocation schemes, such as looking up a
local database stored in the requesting device, or using a
remote database via the Internet. The physical geographical
location may include a country, region (such as state or
county), city, postal/zip code, latitude, longitude, or tim-
ezone. In a “Select Devices’ step 354, one or more devices
are selected from the list.

In one example, the selection is based only on the
obtained the geographical location. In one example, such
selection may be based on the physical geographical loca-
tion of the requesting device (obtained locally at the request-
ing device or by using a geolocation), a physical geographi-
cal location of the data server storing a content that is
requested (obtained locally or by using geolocation), or
relating to physical geographical location of IP addressable,
Internet connected device. In one example, the devices may
be selected based on being in the same location, such as in
the same continent, country, region, city, street, or timezone.
The devices may be selected from the list based on the
physical geographical distance, where ‘closeness’ is defined
as based on actual geographical distance between devices,
where shorter distance indicates closer devices. For
example, is the case where the latitude and the longitude are
obtained, the physical distance between each device in the
list and the requesting device (or the data server or another
device) may be calculated, and the nearest device will be
first selected, then the second nearest device, and so on.
Alternatively or in addition, devices in the same city (or
street) as the requesting device are considered as the closest

10

15

20

25

30

35

40

45

50

55

60

65

130

and may be first selected, then the devices that are in the
same region or country may be considered as close and may
be selected next.

In one example, an attribute is used as a basis for defining
‘closeness’ in the ‘Select Devices’ step 354, and each device
is associated with an attribute value based on its geographi-
cal physical location, in an ‘Associate Attribute’ step 353.
The information relating to the various attributes can be
obtained from a database that is local to the requesting
device, or may be publicly available via the Internet, using
city, region, or country based databases. In one example,
country based information may be obtained via the Internet,
such as “The World Factbook’ website by the U.S. Central
Intelligence Agency (CIA) having a URL: “https://www-
.cia.gov/library/publications/the-world-factbook/docs/
notesanddefs.html?fieldkey=2113&alphaletter=G&term=
Geography-note”, and the United Nations Statistics Division
website: https://data.un.org.

One example of such an attribute is the language that is
widely spoken (or is the formal language) in a geographical
location, such as in a country. In this aspect, while Portugal
is geographically closer to Germany than to Brazil, using the
language as the selection attribute suggest that Portugal is
‘closer’ to Brazil, since the Portuguese language is popular
in both these countries, and Portuguese—speaking Portugal
is language-wise distant from German-speaking Germany.
Similarly, Arabic-spoken countries are close to each other,
regardless of the actual geographical distance. Such ‘close-
ness’ definition is supported, since a web-site or URL having
a content (such as text, audio or video) in Portuguese
language, is likely to be accessed by users from Brazil and
Portugal, and less likely to be accessed by users located in
Germany.

Another example of an attribute is the popular sport type
in the geographical location. For example, soccer is most
popular in Brazil and in Germany, while American football
is popular in the U.S. Regarding this aspect, Brazil is
considered to be closer to Germany than to the U.S., as it is
expected that web-sites associated with soccer will be more
popular with users in Germany and Brazil rather than with
user in North-America. Another example of an attribute is
the religion popular in a region or a country. In this aspect,
Turkey and Egypt, both being Islamic countries, are reli-
gion-wise closer than Turkey and Greece, having different
dominant religion, in spite of their geographical proximity.
For example, web-site offering Islamic-related content are
likely to be more popular in Turkey and Egypt, rather than
in Greece.

Other attributes relating to people and society may
include race and ethnic groups, and demographic or social
characteristics, such as population, age structure, population
growth rate, death rate, birth rate, migration rate, sex ratio,
life expectancy, and health expenditures. Other attributes
may include economical-related characteristics (of a loca-
tion or a country), such as Gross Domestic Product (GDP),
GDP per capita (PPP), gross national saving, agriculture
products, industry types, labor force, unemployment rate,
household income or consumption by percentage share,
Government budget, taxes and other revenues, inflation rate
(consumer prices), export/import of goods and services,
household consumption, government consumption, and
investment in fixed capital.

Another example of an attribute is the weather in a
location or a country. Countries or locations associated with
cold weather are being considered weather-wise closer than
locations having distinct and different weather. For example,
web-sites relating to ski resorts or snow related equipment

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
205 of 228

US 10,469,614 B2

131

are likely to be more popular in cold weather countries than
countries having a desert climate. Similarly, web-sites relat-
ing to cooling equipment (such as air conditioners) are likely
to be more popular in warm weather locations and countries.
In addition to climate, other geographical related character-
istics include having a coastline, terrain, natural resources,
and environment.

In one example, the following demographic attributes or
categories can be used: Gender, such as male or female; age,
such as the age groups 0-11, 12-17, 18-20, 21-24, 25-34,
35-49, 50-54, 55-64, and 65-99; income (in US $, for
example) such as 0-24,999, 25,000-49,999, 50,000-74,999,
75,000-99,999, 100,000-149,000, and 150,000 and up; edu-
cation such as some High School, High School Graduate,
Home College, Associates Degree, Bachelor’s Degree, and
Post Graduate; occupation such as administrative or Cleri-
cal, Craftsman, Educators, Executive, Laborer, Homemaker,
Military, Professional, Sales, Service, Student, Technical,
Self-employed, and Retired; race such as Hispanic, Non-
Hispanic, African American, Caucasian, Asian, and Native
American. Alternatively or in addition, the following psy-
chographic categories may be used: Travel, such as Air, Car
Rental, Lodging; Reservations; and Maps; Finance/Invest-
ments such as Banking Brokers, Quotes, Insurance, and
Mortgage; sports, such as Auto Racing, Baseball, Basket-
ball, Fantasy Sports, Football, Hockey, Soccer, Golf, and
Tennis; recreation & hobbies such as Cycling, Golf, Hiking,
Sailing, Snow, Sports, Surfing, Tennis, Home & Garden,
Pets, Genealogy, Photography, Games, and Toys; entertain-
ment such as Movies/Film, Music, Theater, TV/Video, Sci-
Fi, Humor, Games, and Toys; auto such as Trucks, SUV, and
Sports car; news and information such as Magazines and
Weather; politics such as Democrat and Republican; E-shop-
ping such as Groceries, Furniture, Auctions, Cards/Gifts,
Apparel, Books, Music, TV/Video; Software such as E-pur-
chasing and Computers; Science; Employment; health &
fitness; Medical; Pharmacy; Dating/Single; Advice; Beauty;
Weddings; Maternity; or Spirituality/Religion such as
Astrology. An example of profiling web users is described in
U.S. Pat. No. 8,108,245 to Hosea et al., entitled: “Method
and System for Web User Profiling and Selectivve Content
Delivery”, which is incorporated in its entirety for all
purposes as if fully set forth herein.

A bitmap (a.k.a. bit array or bitmap index) is a mapping
from some domain (for example, a range of integers) to bits
(values that are zero or one). In computer graphics, when the
domain is a rectangle (indexed by two coordinates) a bitmap
gives a way to store a binary image, that is, an image in
which each pixel is either black or white (or any two colors).
More generally, the term ‘bitmap’ is used herein to include,
but not limited to, a pixmap, which refers to a map of pixels,
where each one may store more than two colors, thus using
more than one bit per pixel. A bitmap is a type of memory
organization or image file format used to store digital
images.

In typical uncompressed bitmaps, image pixels are gen-
erally stored with a color depth of 1, 4, 8, 16, 24, 32, 48, or
64 bits per pixel. Pixels of 8 bits and fewer can represent
either grayscale or indexed color. An alpha channel (for
transparency) may be stored in a separate bitmap, where it
is similar to a grayscale bitmap, or in a fourth channel that,
for example, converts 24-bit images to 32 bits per pixel. The
bits representing the bitmap pixels may be packed or
unpacked (spaced out to byte or word boundaries), depend-
ing on the format or device requirements. Depending on the
color depth, a pixel in the picture will occupy at least n/8
bytes, where n is the bit depth. For an uncompressed, packed

10

15

20

25

30

35

40

45

50

55

60

65

132

within rows, bitmap, such as is stored in Microsoft DIB or
BMP file format, or in uncompressed TIFF format, a lower
bound on storage size for a n-bit-per-pixel (2n colors)
bitmap, in bytes, can be calculated as: size=width-heightn/8,
where height and width are given in pixels. In the formula
above, header size and color palette size, if any, are not
included.

The BMP file format, also known as bitmap image file or
Device Independent Bitmap (DIB) file format or simply a
bitmap, is a raster graphics image file format used to store
bitmap digital images, independently of the display device
(such as a graphics adapter), especially on Microsoft Win-
dows and OS/2 operating systems. The BMP file format is
capable of storing 2D digital images of arbitrary width,
height, and resolution, both monochrome and color, in
various color depths, and optionally with data compression,
alpha channels, and color profiles. The Windows Metafile
(WMF) specification covers the BMP file format.

An image scaling is the process of resizing a digital
image. Scaling is a non-trivial process that involves a
trade-off between efficiency, smoothness and sharpness.
With bitmap graphics, as the size of an image is reduced or
enlarged, the pixels that form the image become increasingly
visible, making the image appear “soft” if pixels are aver-
aged, or jagged if not. With vector graphics, the trade-off
may be in processing power for re-rendering the image,
which may be noticeable as slow re-rendering with still
graphics, or slower frame rate and frame skipping in com-
puter animation.

Apart from fitting a smaller display area, image size is
most commonly decreased (or subsampled or downsampled)
in order to produce thumbnails. Enlarging an image (upsam-
pling or interpolating) is generally common for making
smaller imagery fit a bigger screen in fullscreen mode, for
example. In “zooming” a bitmap image, it is not possible to
discover any more information in the image than already
exists, and image quality inevitably suffers. However, there
are several methods of increasing the number of pixels that
an image contains, which evens out the appearance of the
original pixels. Typically scaling of an image, such as
enlarging or reducing the image, involves manipulation of
one or more pixels of the original image into one or more
pixels in the target image. In many applications, image
scaling is required to be executed in real-time, requiring
processing power. Scaling or resizing of an image is typi-
cally measured as the ratio (in %, for example) of the
number of pixels of the resulting image relative to the
number of pixels in the original image. Some image scaling
schemes are simple and may be quickly and efficiently
processed, such as the examples shown in FIG. 36a. An
original image is shown in grid 362a, including an exem-
plary pixel 363, and the image after image scaling of 400%
is shown as grid 362b, where the single pixel 363 is
manipulated into four pixels 363a, 3635, 363¢, and 3634
arranged as a 2x2 square matrix. Similarly, each of the pixels
in the original image is converted into 4 pixels arranged as
a square, where all the newly generated pixels have the same
bit value (‘0’ or ‘1°) in a bitmap, or the color value in case
of multiple bits per pixel. Similarly, an original image is
shown in grid 365¢, including an exemplary pixel 364, and
the image after image scaling of 900% is shown as grid
365b, where the single pixel 364 is manipulated into nine
pixels 364a, 364b, 364c, 364d, 364e, 3641, 364g, 364/, and
364i arranged as a 3x3 square. Similarly, each of the pixels
in the original image is converted into 9 pixels arranged as

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
206 of 228

US 10,469,614 B2

133

a square, where all the newly generated pixels have the same
bit value (‘0’ or “1°) in a bitmap, or the color value in case
of multiple bits per pixel.

Some image reduction schemes are simple and may be
quickly and efficiently processed, such as the examples
shown in FIG. 365. An original image is shown in grid 3665,
including an exemplary 4 pixels 368a, 3685, 368¢, and 3694
arranged as a 2x2 square, and the image after image down-
scaling of 25% is shown as grid 366a, where a single pixel
368 is represents the four pixels. Similarly, each group of
2x2 pixels in the original image is converted into a single
pixel, where all the newly generated pixels are an average of
the original 4 pixels value (‘0’ or *1” in a bitmap, or the color
value in case of multiple bits per pixel). Similarly, an
original image is shown in a grid 367b, including an
exemplary 9 pixels 369a, 3695, 369c, 3694, 369¢, 369/,
369g, 369/, and 369i, arranged as a 3x3 square, and the
image after image downscaling of % (11.11%) is shown as
a single pixel 369 in the grid 367a, where the single pixel
369 represents the 9 pixels. Similarly, each 3x3 pixels matrix
in the original image is converted into a single pixel, where
all the newly generated pixel is an average of the original 9
pixel value (0’ or 1’ in a bitmap, or the color value in case
of multiple bits per pixel).

Referring now to a flowchart 360 in FIG. 36, which may
be executed by any network element, describing a method
for combining quick scaling schemes with another scaling
scheme, for achieving quicker and more efficient downscal-
ing scheme. The original image, designated as IMG(0) and
the scaling requested (in %) is obtained in a ‘Receive
IMG(0), Scaling (%)’ step 361a. The parameter N is zeroed
in an ‘N<-0’ step 3615, denoting the flowchart initial state.
If the scaling required is above 50% as is checked in a
‘Scaling>50% ?’ step 361c, then the current image in the
N-th cycle designated as IMG(N), is scaled using any
scaling or resizing method in a ‘Scale IMG(N)’ step 3614,
and the method ends in an ‘END’ step 361e. In the case the
scaling required is below 50%, a 50% scaling is executed
using a quick and simple scaling scheme as described above,
in a ‘Scale 50%’ step 361f. The cycle counter N is raised by
1 in a ‘N<-N+1’ step 361g, and then the image is scaled
200% and the requested scaling (received in the initial
‘Receive IMG(0), Scaling (%)’ step 361a) is doubled, in a
‘Resize 200%, Scale<—Scale*2’ step 361/, and the process
is repeated until the scaling is above 50%. In such a scheme,
in case a scaling of 30% is required, a scaling of 50% will
be followed by another scaling of 60% (30%%*2), resulting a
total of scaling of 30% as originally required.

When using a graphics-based human interface, when an
element is dragged from a location to another location on a
screen, the dragging is typically limited by the outer limits
of the parent object, as schematically shown in views 370a
and 3705 in FIG. 37. In the view 370aq, a box-shaped object
(1) 373 is located within the area of a parent object (2) 372,
which in turn is within the area of its parent object (3) 371.
A user may attempt to drag the object (1) 373 to a left bottom
corner of the screen, as illustrated by the hand 375 and the
dashed line 374, to a location which is external to the object
(3) 371 defined area. In many cases, the dragging of the
object (1) 373 may not exceed its parent object (2) 372
periphery, and thus the dragging is limited to the left bottom
limit of the object (2) 372 as shown in view 37054. It may be
beneficial to allow the object (1) 373 to be dragged as
requested by the user along the dragging line 374 to the left
bottom corner as shown by view 370c¢ in FIG. 37a. In one
example, such dragging external to a limited low-level
object area may be executed by transferring (or ‘inheriting’)

10

15

20

25

30

35

40

45

50

55

60

65

134
the dragging request to higher level objects (such as object
(2) 372 and object (3) 371, where such dragging is allowed.

Referring now to a flowchart 380 shown in FIG. 38, which
may be executed by any network element, and is schemati-
cally describing the transfer of a dragging request to higher
levels until such dragging is allowed. The element to be
dragged is identified as an object (1) in a ‘Receive Object
(1)’ step 381a, located in a current located designated as
(current_X, current_Y), denoting the (X,y) coordinated on
the screen. For example, object (1) 373 (shown in views
370a and 37056) and its associated current coordinates are
identified. The new location coordinates, designated as
(new_X, new_Y) to which the object (1) is to be dragged
(such as the drag line 374), is received in a ‘Receive New
Location’ step 3815, hence a requested movement can be
calculated as (new_X-current_X, new_Y-current_+Y). The
cycles of the flowchart 380 are monitored by a cycle counter
N, which is set to 1 at a ‘N<1" step 381c.

In a ‘Location Beyond Object (N+1) Limits?’ step 381d
the requested new location (new_X, new_Y) is checked to
be within the limits of the parent (object (N+1)) of the
current object (N). For example, the object (1) 373 new
location is checked to be within the limits of object (2) 372.
In the case where the requested new location exceeds the
limits of the parent (object (N+1)), the counter N in raised
by 1 ina ‘N<-N+1"step 381e, and the check is repeated with
the new object in a ‘Location Beyond Object (N+1) Limits?’
step 381d. In the example shown in view 370a, the required
new location is outside the area of an object (2) 372, hence
the counter will be increased, and the new location will now
be checked versus the object (3) 371. In a case where the
new location (new_X, new_Y) is found to be within the
limits of the parent (object (N+1)), then in a ‘Move Objects
(1, 2, ...N) to New Location’ step 381/ the object (1), as
well as all its parent objects, such as object (2), object
(3), . . . object (N), are shifted according to dragging
requested (new_X-—current_X, new_Y—current+Y), so that
the object (1) reaches the required new location (new_X,
new_Y). Such movement is exampled in a view 370¢, where
the object (1) 373 is shown in its new location, and where
the object (2) 372 is shown also after being moved as
required in order to allow for the object (1) 373 movement.

Any device herein may be connected to the Internet using
a wireless access, such as via a WLAN, such as the device
11a shown in an arrangement 20a in FIG. 2b. In one
example shown in an arrangement 390 in FIG. 39, a device
391 (which may correspond to any device or network
element herein) may be in the range of 3 WAPs 265, 26¢ and
26d, which are all password protected, and each of the WAPs
is allowing connection to the Internet. In a case where the
user of the device 391 is not aware of the password, no
connection to the Internet is easily available. In an emer-
gency, where no other communication means are available,
there may be an urgent need to communicate via one of the
WARPs, such as to the Internet, for example in order to call
for help. In such a case, it may be beneficial to guess a
password used by one (or more) of the WAPs, in order to be
able to communicate over the Internet (or any other network
backbone). The device 391 may include locally (such as in
storage memory 25¢), or be connected to, a database 392,
which may comprise a list of passwords that may be suitable
for use with the WAPs. The database 392 may be periodi-
cally updated by the device 391, or may be updated by
accessing and fetching passwords from other databases over
the Internet.

A flowchart 400 in FIG. 40, which may be executed by
any network element, describes a method for guessing

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
207 of 228

US 10,469,614 B2

135

passwords, for example to be used for communicating via
WAPs, based on a geographical location, a user history, or
a WAP vendor. Starting in a ‘Select WAP’ step 4014, one of
the WAPs is selected. In the case of a presence of a single
WAP, it is the one to select. If few WAPs are available, such
as in the system 390 shown in FIG. 39, one of the WAPs is
selected, such as WAP 265, randomly or according to set
criteria. The selected WAP is then checked to be password
protected in a ‘Password Protected ?” step 4015. Upon
detecting that the WAP is not ‘locked” and no password is
thus not required, a connection with the selected WAP is
established in a ‘Connect’ step 401¢, and the device (such as
the device 391) may then communicate via the selected
WAP (such as the WAP 26b) over the Internet.

Commonly users or devices in a certain geographical
location (such as city or country) are more likely to use
certain passwords, due to the tendency of the local popula-
tion (having similar demographics, for example), to choose
similar or same words. Hence, in a case wherein the selected
WAP is password-protected, the device 391 fetches from the
database 392 and tries various passwords associated with the
local geographical location in a ‘Location Based’ step 401d.
If one of the tried guessed password is indeed successful,
and a connectivity is achieved with the selected WAP, as
checked in an ‘Access?’ step 401e, then a connection to the
selected WAP is established in a ‘Connect’ step 401¢, and the
device (such as device 391) may then communicate via the
selected WAP (such as WAP 2654) over the Internet. In order
to simplify remembering and handling multiple passwords,
users commonly use the same password or a minimal set of
correlated passwords for many purposes. Hence, in the case
none of the location based guessed passwords was found
suitable, the device 391 fetches from database 392 a list of
passwords that were previously used, even if used for
another WAP. If one of the tried guessed password is indeed
successful, and connectivity is achieved with the selected
WAP, as checked in an ‘Access?’ step 401g, a connection
with the selected WAP is established in a ‘Connect’ step
401c, and the device (such as device 391) may then com-
municate via the selected WAP (such as WAP 2656) over the
Internet. Typically WAPs are manufactured and shipped
having a default (vendor set) password. In many cases, the
user of a WAP does not change the default password, and the
database 392 may store a list of such default passwords,
associated with various manufacturers and WAP types.
Typically, as part of communicating with a WAP, the WAP
type (e.g., model number) or the WAP manufacturer iden-
tifier or name (or both), are exchanged as part of the
handshaking process. In a ‘Vendor Based’ step 401/, the
device 391 tries a list of passwords based on the WAP type
or vendor, or based on a list of all known manufacturers
default values. If one of the tried guessed password is indeed
successful, and connectivity is achieved with the selected
WAP, as checked in an ‘Access?’ step 4014, a connection
with the selected WAP is established in a ‘Connect’ step
401c, and the device (such as the device 391) may then
communicate via the selected WAP (such as the WAP 265)
over the Internet. If none of the former password guessing
techniques is successful, and in case other WAPs are avail-
able, the device 391 may select another WAP, such as WAP
26¢ in system 390, in a ‘Select Another WAP’ step 401/, and
repeat the passwords guessing with the newly selected WAP.

Referring to FIG. 41 showing a system 400a, which is
based on the system 390 shown in FIG. 39, comprising also
a locked WAP 26e and a locked WAP 26f. The system is
shown to include two devices, a device #1 391a (which may
correspond to device 391 in the system 390) having a

25

30

40

45

55

136

password database 392¢ in the memory, and a device #2
3916 (which may also correspond to device 391 in the
system 390) having a password database 3925 in the
memory. The device #1 391a is located in the range of the
WAP 264, and may communicate with this WAP over a WiFi
communication link 4044, is located in the range of the WAP
265, and may communicate with this WAP over a WiFi
communication link 4045, and is located in the range of
WAP 26¢, and may communicate with this WAP over a WiFi
communication link 404¢. Similarly, the device #2 3915 is
located in the range of the WAP 265, and may communicate
with this WAP over a WiFi communication link 404aq, is
located in the range of the WAP 26¢, and may communicate
with this WAP over a WiFi communication link 404g, is
located in the range of the WAP 26¢, and may communicate
with this WAP over a WiFi communication link 404e, and is
located in the range of the WAP 26/, and may communicate
with this WAP over a WiFi communication link 404f. Hence,
both two devices 3914 and 3915 may communicate with the
WAPs 2656 and 26¢. The two devices may share information
about the authentication with these WAPs. Furthermore, an
authentication server 403 may include a database 392c¢
storing passwords (and other authentication means), and
may share the database 392¢ with the two devices 391a and
3915.

For each of the communication links, a device may assign
a level of sharing, associated with the intention of a user of
the device to share the passwords, stored in the local
database or stored in the database 392¢ of the authentication
server 403, with other users or devices. For example, the
device #1 391¢ may assign a level of ‘Private’ to the
communication link 4044 with the WAP 264, denoting that
the password (or other credentials) associated with this
connection is not to be shared with others, for example, since
the WAP 26d is the user private network at home. Similarly,
the user of the device #2 3915 may assign a level of “Private’
to the communication links 404¢ and 404f. Alternatively or
in addition, a device (such as the device #1 391a or the
device #2 391b) may assign a level of ‘Friends’ to a
password, associated with an intention to share the available
password with a limited number of devices or users
(‘friends’), as shown regarding to communication links 404¢
and 404g in the system 400a. Further, a device (such as the
device #1 391a or the device #2 3915) may assign a level of
‘All’ to a password, associated with an intention to share the
available password with any device or user, as shown
regarding to communication links 404a and 4045 in the
system 400a. The user and authentication database 392c¢
keeps the connection levels between the users of the system
(i.e., who is friends with who). The clients update this
central database 392¢ when new authentication information
about a WAP is acquired, such as when the authentication
information no longer works, or when updated or new
authentication information is known. Once deployed in large
numbers, the size of the authentication database 392c¢
becomes significant and large. Thus the update from the
central database 392c¢ to the clients can be done in parts, such
as loading only the information that a device is most likely
to require, for example, to limit the size of the database to
local geography, and/or by getting all access points located
in close proximity to all (or popular) points of entries in
various countries. For example, a device may periodically
connect to the central database 392¢, and may fetch there-
from an update of list of relevant passwords, and store these
passwords in the local database, such as the database 392a
or 392b. Further, the device may also update the central
database 392¢ of any new information it has acquired

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
208 of 228

US 10,469,614 B2

137

regarding authentication methods (such as passwords)
regarding to various WAPs. The size of the information that
is loaded into the device may be limited, and the device may
get an update on authentication information only regarding
to WAPs that may be of interest to that device.

A flowchart 4005 shown in FIG. 42 describes an example
of the system 400a operation. In a “WAP connection’ step
402a, a request from a device (such as the device #1 391qa
or the device #2 3915) to connect to a WAP (such as the
WAP 26d or the WAP 26f) is intercepted, typically in order
to access the Internet. First, using a protocol handshake or
any other scheme, the device checks if authentication is
required by the specific WAP, as part of an ‘Authentication
Required ?’ step 4024. If no authentication is required, the
device may connect to the WAP in a ‘Connect’ step 402¢. In
the case the WAP required authentication for connecting to,
the device checks the local authentication database (such as
the database 391a or the database 3915), as part of a ‘Locally
Stored ?” step 402d. If the relevant authentication informa-
tion is locally available, the device may connect using this
information in a ‘Connect Using Local Data’ step 402¢. In
the case of successful connection to the WAP, as checked in
a ‘Successful ?” step 402, the device may send an update to
the central database 392¢ in the authentication server 403,
notifying or updating it regarding the validity and regarding
the authentication information associated with the WAP.

In the case there is no locally available password regard-
ing the respective WAP, the device may connect to the
authentication server 403 for fetching authentication infor-
mation from the central database 392c¢. The server 403
checks the availability of the requested password in a
‘Server Stored ?” step 402¢g. If no authentication information
is found to be stored in the central database 392c¢, the
authentication server 403 accordingly replies to the request-
ing device. Upon receiving of the server 403 response, the
device may be prompted that no authentication information
is available for the WAP, in a ‘No Success’ step 402%. The
user then may select another WAP (if available), and repeat
the process (with the newly selected WAP) as part of the
‘WAP Connection’ step 402a.

Alternatively or in addition, the device may try the
password of the WAP in a ‘Guess Password’ step 402/, and
such guessing scheme may consist of, include, or be based
on, the guessing method described in the flowchart 400 in
FIG. 40. If the password guessing in the ‘Guess Password’
step 402/ is successful, as checked in a ‘Successful ?° step
402j, the device may send the successfully guessed pass-
word to the server 403 to be stored in the database 392¢, as
part of an ‘Update Database’ step 402m, so this password
may be used by other devices (if allowed) when connecting
to this WAP. In the case wherein a password is stored in the
central database 392¢ for this WAP, the authentication server
403 fetches the stored password, and sends it to the request-
ing device, which then uses this password for connecting to
the WAP, in a ‘Receive from Server & Connect’ step 402/5.
If the connection is successful, as checked in a ‘Successful
?” step 402/, the device may send a message to the server
403, notifying it that the password fetched is indeed valid.
However, if the connection is not successful, for example,
since the password was changed or is otherwise not valid,
the device may send this information to the server 403,
allowing it to delete the non-valid password from the central
database 392c¢, in a ‘Delete from database’ step 402n.

As part of sending the authentication server 403 a new
password, such as in ‘Update Database’ step 402m, the
sending device may associate a level of sharing with such
password, such as ‘Private’ (i.e., don’t share with anyone),

10

15

20

25

30

35

40

45

50

55

60

65

138

Friends’ (i.e., only share with friends), ‘Family’ (i.e. only
share with family), or ‘All’. When fetching a password from
the central database 392¢, such as in ‘Request from Server’
step 402/, the server 403 returns the stored password only if
the requesting device is authorized to receive this informa-
tion. For example, if the password is marked as ‘Friends’,
only devices (or users) that are identified as ‘friends’ may
fetch the stored password.

Referring to an architecture 440 shown in FIG. 44, which
is based on the architecture 430 shown in FIG. 3, describing
an example of a software and hardware interface in a
WDM-based operating system, which may be part of any
device (or server) described herein. In the arrangement 440,
the device may assume the role of a tunnels-using client
device (such as the client device #1 31a or the client device
#2 31b) and thus executes a ‘Client (Tunnel) Flowchart’
441a, which may be a part of, or the whole of, the client
device related flowcharts, such as the flowchart 60 shown in
FIG. 6, the flowchart 100 shown in FIG. 10, or the flowchart
100a shown in FIG. 10a. Alternatively or in addition, the
device may assume the role of a Peers/Agents-using client
device (such as the client device #1 201a) and thus executes
a ‘Client (Peers) Flowchart” 441a, which may be a part of,
or the whole of, the client device related flowcharts, such as
the flowcharts 230, 230a, and 2305, respectively shown in
FIGS. 23, 23a, and 23b. Alternatively or in addition, the
device may assume the role of a tunnel device (such as the
tunnel device #1 33a, the tunnel device #2 3354, or the tunnel
device #3 33c¢), and thus executes a “Tunnel Flowchart’
441c¢, which may be a part of, or the whole of, the tunnel
device related flowcharts, such as the flowchart 70 shown in
FIG. 7. Alternatively or in addition, the device may assume
the role of an agent device (such as the agent device #1 103a,
the agent device #2 10354, or the agent device #3 103¢), and
thus executes an ‘Agent Flowchart’ 441d, which may be a
part of, or the whole of, the agent device related flowcharts,
such as the flowchart 240 shown in FIG. 24. Alternatively or
in addition, the device may assume the role of a peer device
(such as the peer device #1 102a, the peer device #2 1025,
or the peer device #3 102¢), and thus executes a ‘Peer
Flowchart’ 441e, which may be a part of, or the whole of, the
agent device related flowcharts, such as the flowchart 240a
shown in FIG. 24a. Similarly, the device may execute a web
browser application 441/, that may use the acceleration
applications above for faster operation.

While the arrangement 10 shown in FIG. 1 includes a
single communication interface 29 connecting to a LAN 14,
currently many computerized devices and systems include
multiple communication interfaces, such as Communication
Interface #1 443a, Communication Interface #2 4435, and
Communication Interface #3 443¢, shown as part of the
architecture 440 (corresponding to the peripherals #1 439a,
#2 4395, and #3 439c¢, shown as part of the architecture 430
in FIG. 3). While three (3) interfaces are shown, any number
of such interfaces may be equally used. Typically, each
communication interface enables communication over a
distinct network type, so that the multiple communication
interfaces allow for concurrent communication over mul-
tiple networks. FEach network may be a wired network,
which is based on conductive medium, such as a coaxial
cable, twisted-pair, powerlines, or telephone lines, or may be
a wireless network which is based on a non-conductive
medium, and is using RF, light, or sound guided, or any other
over-the-air propagation. Further, a network may be NFC,
PAN, LAN, MAN, WAN, WPAN, WLAN (such as WiFi),
WMAN, or WWAN. Further, the communication may be
based on a cellular communication. A network may be

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
209 of 228

US 10,469,614 B2

139

half-duplex, full-duplex, or unidirectional, and may use
modulation such as AM, FM, or PM. Furthermore, a net-
work may be packet-based or circuit-switched. The various
communication interfaces and the respective protocols are
serviced by the kernel space 4306 Communications Drivers
Stack 442 (corresponding to the drivers stack 436 shown in
the architecture 430). The data to be sent or received via the
communication interfaces is transferred via applicable
queues serving to buffer the transferred data, such as an OS
Queue #1 443a, an OS Queue #2 443b, and an OS Queue #3
443c¢, using underlying sockets such as a Socket #1 444a
serving OS Queue #1 443a, a Socket #2 444b serving OS
Queue #2 4435, and a Socket #3 444¢ serving OS Queue #3
443c. A queue (such as queue #1 443a) may be loaded with
data, such as data to be sent, and next data that may use the
same queue may need to wait until the former data in that
queue is vacated, and only then the newly introduced data
will be handled. In one example, the allocation of data to the
queues may be static, and not changing in time. Alterna-
tively or in addition, the allocation to the various OS queues
may be adaptive. For example, at the same time the first data
is handled, another queue (such as queue #2 4435) may be
empty, and thus may be used for faster handling of the new
data. An adaptive queue mechanism is described, for
example, in U.S. Patent Application No. 2006/0187830 to
Nam, entitled: “Adaptive Queue Mechanism for Efficient
Realtime Packet Transfer and Adaptive Queue Establish-
ment System thereof”, and improved technique for handling
events in a multipathing system employing event queueing
is described in U.S. Pat. No. 8,452,901 to Sandstrom et al.,
entitled: “Ordered Kernel Queue for Multipathing Events”,
which are all incorporated in their entirety for all purposes
as if fully set forth herein.

An adaptive system involving real-time moving data
between sockets and queues upon their availability is shown
as an architecture 457 in FIG. 45, which may be part of any
network element. Dynamic queues are added to the transmit
data path, from an application (in the User Space) and the
communication interfaces, allowing better usage of the
system resources, in particular the various sockets and OS
queues. A Dynamic Queue #1 459a is added to cooperated
with the OS queue #1 443a¢ and the socket #1 444a, a
Dynamic Queue #2 4595 is added to cooperated with the OS
queue #2 443b and the socket #2 444b, and a Dynamic
Queue #3 459¢ is added to cooperated with the OS queue #3
443¢ and the socket #3 444c¢. The dynamic queues are data
allocated, managed, and supervised by a Dynamic Queues
Manager 458 added software module, which may execute a
flowchart 460 shown in FIG. 46. The dynamic queues
manager 458 checks the status of the queues and sockets in
the system, and shifts the data to be transmitted between the
various queues and sockets to obtain higher system effi-
ciency. For example, in a case one queue is loaded while
another queue is empty, the manager 458 may remove data
from a loaded queue and shifts the data to the empty one.

The flowchart 460, which may be executed by any net-
work element, starts at a ‘Data to Send’ step 461a, where
data to be sent from the device is intercepted from an
application. In a ‘Obtain Sockets Status’ step 4615, the status
of all sockets (and related queues) is checked. For example,
if the data was already loaded into one of the queues relating
to a socket, the waiting time for the socket to transmit all
loaded data is estimated. Further, the characteristics of the
socket and its underlying communication interface, such as
BW and RTT (based on previous transactions), is also
fetched. Based on the obtained information in the ‘Obtain
Sockets Status’ step 4615, one of the sockets is selected as

5

10

15

20

25

30

40

45

55

60

65

140

the optimal one, in a ‘Select Optimal Socket’ step 461¢. The
optimal socket (and related queues) may be selected based
on the time it is estimated that the data will be fully
transmitted from the device and the applicable queues will
be rendered empty. The selected optimal socket route queues
are then checked in an ‘Empty ?” step 461d to be empty. In
the case the optimal socket is empty, the data is routed to the
selected socket, such as to the OS queue #1 443a, to be
queued for being sent via the socket #1 444a and a respec-
tive communication interface, in an ‘Add to Queue’ step
46le. In the case the selected route via the socket (e.g.,
socket #1 444a) is not empty, the manager 458 checks in a
‘Cancelled ?° step 461f whether the data that is currently
stored in that route has been cancelled by the application that
requested this data transfer, or whether it was previously
cancelled by the manager 458. In the case the data trans-
mitting was indeed cancelled, the respective cancelled
operation is cancelled and the data is removed from the
queues in a ‘Remove Data’ step 461g, and the new data to
be sent is loaded to be transmitted via this route, in the ‘Add
to Queue’ step 461e. In the case the data transmitting process
has not been cancelled, the socket (and its respective queues)
is declared as unavailable in a ‘Socket Unavailable’ step
4617, and another optimal socket (different from the last
selected one) is selected in the ‘Select Optimal Socket’ step
461c.

Any transfer of data between any two network elements,
may use, or be based on, a compression scheme (which may
be any compression scheme), such as the communication
between a client device (such as the client device #1 31a)
and the acceleration server 32, that is a part of the illustrated
messaging chart 50, such as the ‘Sign in’ 565, ‘Request List’
56¢, ‘Send List’ 56d, or any other communications between
these elements. Alternatively or in addition, the same or
other compression scheme may be used in the communica-
tion between a tunnel device (such as the tunnel device #1
33a) and the acceleration server 32, that is a part of the
illustrated messaging chart 50, such as the ‘Sign in’ 56a or
any other communications between these elements. Alter-
natively or in addition, the same or other compression
scheme may be used in the communication between a client
device (such as the client device #1 31a) and a tunnel device
(such as the tunnel device #1 33a), that is a part of the
illustrated messaging in the timing chart 50, such as the
‘Initiate Pre-Connection’ 56¢, ‘Pre-Connection’ 561, ‘Con-
tent Request’ 56g, ‘Send Content’ 56/, or any other com-
munications between these elements. Alternatively or in
addition, the same or other compression scheme may be
used in the communication between a tunnel device (such as
the tunnel device #1 33a) and a data server (such as the data
server #1 22a), that is a part of the illustrated messaging
chart 50, such as the ‘Content Request’ 56/, ‘Send Content’
56i, or any other communications between these clements.

Alternatively or in addition, the same or other compres-
sion scheme may be used in the communication between an
agent device (such as the agent device #1 103q) and the
acceleration server 202, that is a part of the illustrated
messaging chart 220, such as the ‘Sign In’ 226a, or any other
communications between these elements. Alternatively or in
addition, the same or other compression scheme may be
used in the communication between a client device (such as
the client device #1 210a) and the acceleration server 202,
that is a part of the illustrated messaging chart 220, such as
the “Sign In’ 2264, ‘Request List” 226¢, ‘Send List” 226f; or
any other communications between these elements. Alter-
natively or in addition, the same or other compression
scheme may be used in the communication between a client

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
210 of 228

US 10,469,614 B2

141

device (such as the client device #1 210a) and an agent
device (such as the agent device #1 103a), that is a part of
the illustrated messaging chart 220, such as the ‘Request
List’ 226g, ‘Send List’ 2264, or any other communications
between these elements. Alternatively or in addition, the
same or other compression scheme may be used in the
communication between a client device (such as the client
device #1 210qa) and a peer device (such as the peer device
#1 102a), that is a part of the illustrated messaging chart 220,
such as the ‘Chunk Request’ 226, ‘Send Chunk’ 2267, or any
other communications between these elements.

The same compression scheme may be used in all of the
above communications. Alternatively or in addition, no
compression or different compression scheme may be used
in each of the above communication. A compression scheme
used may be lossy or lossless (non-lossy). Further, a com-
pression scheme may be a dictionary-based scheme. Fur-
thermore, the compression may be according to, or based on,
a standard compression algorithm which may be JPEG
(Joint Photographic Experts Group) and MPEG (Moving
Picture Experts Group), ITU-T H.261, ITU-T H.263, ITU-T
H.264, or ITU-T CCIR 601. Further, the compression
scheme may be according to, or based on, Lempel-Ziv (I.Z)
or Huffman encoding (or both) compression methods, such
as LZ, DEFLATE, SHRI, LZX, or LZW. Further, a diction-
ary-based compression scheme may be used that is accord-
ing to, or based on, a local dictionary as described herein. In
the case wherein the data transferred consists of, or include,
m video data, the compression scheme may be an intraframe
or interframe compression.

Devices communicating over a network, such as over the
Internet 113, may include the same software components or
applications, such as the same operating system or the same
web browser, and may further retrieve and store the same or
similar content from the Internet 113. Such stored content
similarities may be used in order to build a dictionary to use
in a lossless compression scheme.

Referring now to a lossless dictionary-based system 4705
shown in FIG. 47, which is based on the system 470 shown
in FIG. 4. In addition to the shared dictionary 473a, the
encoder 474a (corresponding to the encoder 474) shown as
part of the encoding device 471a (corresponding to the
encoding device 471) which may be part of any network
element, is using also a local dictionary 478a. The compres-
sion may use only the shared dictionary 473a, only the local
dictionary 478a, or both. Similarly, the decoder 477a (cor-
responding to the encoding device 471a) shown as part of
the decoding device 472a (corresponding to the decoding
device 472) which may be part of any network element, is
using also a local dictionary 478b. Further, the decoding
device 472a which is the receiving device, may transmit
feedback over connection 4795 of the decoding device 472a,
communicating over the network 480 to the connection 479«
of the encoding device 471a.

The building of the local dictionaries 478a and 4785 in the
respective encoding device 471a and the decoding device
472a is shown as a ‘Local Dictionary Building’ flowchart
481 in FIG. 48, which may be executed by any network
element. In the first step (such as upon a device power-up or
upon launching the respective application), the device allo-
cates a storage space in its memory (such as in its storage
device 25¢) for the local dictionary in an ‘ Allocate Memory’
step 481a. For example, a buffer of the size of 1 GB may be
allocated for serving as a dictionary. Alternatively or in
addition, a portion of an available hard-disk storage area
may be allocated. Next, a local dictionary (such as diction-
aries 478a and 478b) is built in each of the devices in a

10

15

20

25

30

35

40

45

50

55

60

65

142

‘Build Local Dictionary’ step 4815. The device (such as the
encoding device 471a or the decoding device 472a) scans
the content stored in all its storage devices, such as the
storage device 25¢, the main memory 25a, and the ROM
25b, and partition it into chunks. The partition into chunks
may involve the chunks being non-overlapping, equally-
sized parts. In one example, a chunk size may be 2 KB
(Kilo-Bytes), and in the case the content to be partitioned is
not an exact multiple of 2 KB, the ‘last’ chunk will padded
and filled with ‘space’ characters (or any other no content
data). Each of the content in the chunks is identified by a
chunk identifier, where each chunk identifier is associated
with one, and only one, chunk, and the local dictionary
stores the identifiers for the chunks. The identifiers of the
chunks may be their calculated checksum, or the CRC of the
content of the chunk is calculated, and used as the chunk
identifier. For example, CRC-32 may be used, allowing each
chunk (such as 16 KB size) to be identified by 33-bit
identifier. Alternatively or in addition, a chunk identifier is
based on a hash function of the chunk content. Since the
same rules regarding partitioning into chunks and identify-
ing the chunks are used by both the encoding device 471a
and the decoding device 4724, and since it is assumed that
some identical content is stored in both devices, the resulting
local dictionaries 478a and 4785 will have many common
entries, that can be used for dictionary-based lossless com-
pression.

Since the storage area allocated in the ‘Allocate Memory’
step 481a may be limited and may not store all the chunks’
identifiers, priorities may be assigned to parts of the parti-
tioned content, and only identifiers of chunks associated
with a high priority content will be stored as part of the local
dictionary. Such probabilities are allocated as part of an
‘Allocate Probabilities’ step 481¢, and may involve assign-
ing higher probability, leading to higher priority for being
included in the local dictionary, to files and data that are
likely to be stored in both devices. For example, files of the
operating system may be assigned higher probability since
they are likely to be stored in both devices, while locally
generated data may be associated with a lower probability.

The encoding device 471a may execute a ‘Sending Data’
flowchart 482 shown in FIG. 48, which may be executed by
any network element. Upon receiving data to send in a ‘Data
to Send’ step 482a, such as receiving DATA_1 in input port
475a of the encoder 4744, the encoder 474a compresses the
received data in a ‘Compress Using Both Dictionaries’ step
482b. The compression scheme may use either the local
dictionary 478a, or the shared dictionary 473a, or both,
where chunks to be transmitted are replaced with their
identifiers as stored in one of these dictionaries. In one
example, the local dictionary 478a is first fetched for a
chunk identifier, and only if such identifier do not exist in
that dictionary, the shared dictionary is used according to
any compression scheme. The compressed data DATA_2 at
encoder 474a output port 4755 is then sent via the network
480 to the decoding device 472a.

Upon receiving data, such as the DATA_2 from the
network 480, the decoding device executes a ‘Receiving
Data’ flowchart 483, shown in FIG. 48, which may be
executed by any network element. The data is received at the
decoder (or decompressor) 477a input port 4764, in a ‘Data
Received’ step 483a. The decoder 477a decompress the
received data in a ‘Decompress’ step 4835, such as by
replacing the received identifiers with the actual chunks for
reconstructing the original data DATA_1, and outputting it at
the port 4765. However, a received chunk identifier (or
multiple identifiers) may not be found in the local dictionary

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
211 of 228

US 10,469,614 B2

143

478b, as checked in a ‘Successful ?° step 483¢. In the case
an identifier is not located, the decoder 477a sends via the
Feedback connection 4795, a retransmit request over the
network 480, in a ‘Send Retransmit Request’ step 4834. In
the case the decompression was successful, or after sending
the retransmit request, the decoder 477a handles the next
received chunk (if exists) by reverting to the ‘Data
Received’ step 483a.

The retransmit request is received at the connection 479«
of the encoder 4744, and is handled as part of a ‘Retransmit
Request’ step 482d. The encoder 474a retransmits the chunk
for which an identifier was not found in the decoding device
472a. The encoder 474a may send the chunk in an uncom-
pressed form. Alternatively or in addition, if the unidentifi-
able chunk was compressed using the local dictionary 478a,
the encoder may now retransmit the chunk using the shared
dictionary 473a. The shared dictionaries 473a and 4735 may
be built and used using any known dictionary-based com-
pression scheme. Alternatively or in addition, the shared
dictionaries 473a and 4735 may be based on content and
dictionaries received from other network elements.

Using a compression scheme allows for reducing the time
interval required in order to transfer a content from an
encoding device (such as the encoding device 471q) to a
decoding device (such as the encoding device 472a), by
reducing the number of bits that are actually transferred,
while allowing to fully reconstruct the entire content. For
example, in a case where the content to be transferred is
about the size of 100 Kb, using lossless compression may
allow for transmitting and receiving only 80 Kb, while
allowing the reconstruction of the whole 100 Kb size
content, hence saving 20% of the total content size. Assum-
ing the content is transferred over a communication medium
(such as the network 480) that is associated with RTT, and
BW,, the time saved due to the compression can be calcu-
lated to be BITS_REDUCED/BW,, where BITS_RE-
DUCED denotes the size of the saved content that is not
transmitted over the network due to the compression, such
as 20 Kb (100 Kb-80 Kb) in the above example. In one
example, assuming the saved part of the content is trans-
mitted separately and hence the RTT, is associated with its
transmission, the time saved may be calculated to be RTT, +
BITS_REDUCED/BW,. It is noted that in a case wherein
the processing time due to the compression and decompres-
sion is not negligible (denoted COMPRESS_TIME), the
added time associated with these activities may be reduced
from the calculated saved time above, to be
SAVED_TIME=RTT,+BITS_REDUCED/BW,-COM-
PRESS-TIME.

In the case wherein a retransmission is required, there is
time-consuming overhead added to the total transfer time,
relating to the retransmission request from the decoding
device to the encoding device, such as the ‘Send Retransmit
Request’ step 483d, the ‘Retransmit Received’ step 4824,
and the ‘Retransmit Using Shared Dictionary’ step 4825, and
the associated overhead of handling these steps, and the
actual retransmission process. Assuming the communication
medium (such as the network 480) used to send the retrans-
mitted message from the decoding device to the encoding
device is associated with RTT, and BW,, the added time
period for the sending of the retransmitted message (the
‘penalty’) can be calculated to be RTT,+MESSAGE_SIZE/
BW,, where the MESSAGE_SIZE relates to the size of the
retransmitted message. Further, the retransmission itself of
the content part that was not successfully compressed when
first transmitted, causes a delay of RTT,+RETRANSMIT_
SIZE/BW,, hence the total delay associated with retrans-

10

15

20

25

30

35

40

45

50

55

60

65

144

mission may be calculated to be RTT,+MESSAGE_SIZE/
BW,+RTT,+RETRANSMIT_SIZE/BW,. It is noted that in
a case wherein the processing time due to the retransmission,
the re-compression and the re-decompression (assuming
another compression scheme is used) is not negligible
(denoted RECOMPRESS_TIME), the added time associ-
ated with these activities may be added to the calculated
added time above, so that the retransmission total added time
(‘penalty’) may be PENALTY=RECOMPRESS TIME+
RTT,+RETRANSMIT_SIZE/BW,+RTT,+MESSAG-
E_SIZE/BW,. Hence, while the net time saved as part of a
compression scheme may be calculated to be the saved time
period, deducting the total retransmission related time
period, and thus the actual time saving, denoted as an
ACTUAL_SAVE and equal to SAVED_TIME-PENALTY,
may be calculated as ACTUAL_SAVE=(RTT +BITS_RE-
DUCED/BW,-COMPRESS-TIME)-(RECOMPRESS _
TIME+RTT,+MESSAGE_SIZE/BW,+RTT,+RETRANS-
MIT_SIZE/BW),). In the case the ACTUAL_SAVE is nega-
tive (ACTUAL_SAVE<0), the using of the compression
scheme is not efficient, as there is no actual saving of any
latency in the effective total content transmission time.

The need for retransmission may be estimated, and thus
the time saving in using a compression scheme may be
estimated, and used for deciding to use a compression
scheme, or what compression scheme to use. In one
example, a probability of retransmission is allocated to each
content (or a part thereof). The probability may be estimated
based on the probability that a random device may store such
content, based on former communication sessions, based on
a receiving device characteristics (such as being a laptop, a
desktop, a smartphone, or a mobile device), based on the
receiving device operating system (such as Windows or
Android), or based on the receiving device IP address. Based
on the assigned retransmission probability, the estimated
time savings using various compression schemes may be
estimated, and the estimation may be used in order to select
between compression schemes. Assuming a probability P for
a successful compression, the probability for a retransmis-
sion is 1-P, and hence the estimated time saving (EST_AC-
TUAL_SAVE) can be calculated as
EST_ACTUAL_SAVE=SAVED_TIME-(1-P)*PENALTY,
hence in the case of P=1 (successful compression, no
retransmission), the saved time will be the SAVED_TIME,
and in case of P=0 (retransmission guaranteed), the esti-
mated saved time is SAVED_TIME-PENALTY. In the case
the EST_ACTUAL_SAVE is negative (or zero), whereby no
actual time saving is expected to be achieved, an alternative
(or none) compression scheme should be used.

Referring now to a flowchart 484 shown in FIG. 48a,
which may be part of the ‘Compress Using Both Diction-
aries’ step 4824 of the flowchart 482. The content or data to
be compressed before transmission is checked, and a prob-
ability of successful compression using a local dictionary
(such as the dictionary 478a), defined as a compression
where no retransmission is required, is allocated as part of
an ‘Allocate Probability’ step 484a. Using the allocated
probability, the saved time is estimated in an ‘Estimate
Saved Time’ step 4845, for example based on the expression
EST_ACTUAL_SAVE=SAVED_TIME-(1-P)*PENALTY
described above. The actual estimated time saving (such as
EST_ACTUAL_SAVE) is checked in a ‘Saved Time>0 ?’
step 484c. In a case where the estimated time is positive,
suggesting that there is a latency reduction by using a
compression based on the local dictionary 4784 method, a
compression based on the local dictionary 478a follows in a
‘Compress Using Local Dictionary’ step 484d. In a case

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
212 of 228

US 10,469,614 B2

145

where the estimated saved time is negative, suggesting that
no time is saved using a local dictionary based compression
scheme, a compression based on the shared dictionary 478a
(or sending the data uncompressed) follows in a ‘Compress
Using Shared Dictionary’ step 484e.

Referring to a system 490 shown in FIG. 49, showing a
device #1 491a, which may consist of, comprise of, or is
included in, a tunnel-based client device (such as the client
device #1 31a), a peer-based client device (such as the client
device #1 31a), or any other network element, a device #2
4915, which may consist of, comprise of, or is included in,
a tunnel device (such as the tunnel device #1 33a), a peer
device (such as the peer device #1 102a), or any other
network element, and the data server #1 22a, connected for
exchanging information over the Internet 113. The data
server #1 22a may store a content that is identified by a URL
(or by any other identifier type). Further copies of the
content may be stored in a memory 493a being part of the
device #1 491a, and in a memory 4935 being part of the
device #2 491b. The copies of the content stored in the
devices may be the result of fetching it from the data server
#1 22a as part of previous interactions. In one example, an
application in the device #1 491a requests the same content.
As described in the ‘Locally cached ?° step 331c in the
flowchart 330, it is more efficient to retrieve the requested
content from the local memory (such as the memory 493a)
as described in the ‘Fetch from Local cache’ step 3315 in the
flowchart 330, than to spend resources in order to again fetch
the same content from the data server #1 22a.

However, while identified by the same identifier (such as
a URL), the content in the data server #1 22a may have been
changed or updated since it was fetched by the device #1
493a or by the device #2 49154, thus the copies stored in
these devices may not anymore be valid or updated. In such
a scenario, the locally stored non-valid stored copy should
be ignored and discarded, and not used anymore, and hence
a fresh content relating to the URL needs to be fetched from
the data server #1 22a, or from another location. Further, a
validity period may be associated with a content or its copy,
where the content is ensured to be valid until the validity
period expires. In one example, the validity of a copy of a
content is verified by comparing a part of a validated (or
original) content, to the respective part of the checked copy.
In the case the two parts are the same, the copy is declared
as valid, assuming the rest of the copy of the content is the
same as the updated content.

Referring to a flowchart 490a shown in FI1G. 49aq, describ-
ing a method for validating a copy of a content. The request
for the content (such as by using a URL or any other content
identifier) is obtained in an ‘Obtain Content Request’ 494a.
Ina ‘Local Copy Valid’ step 4945 (which may be part of the
‘Locally Cached’ step 331c¢) the validity of the content, if
known (such as by checking that the associated period has
not yet expired), is checked. In the case the locally stored
copy (such as in the memory 493a of the device #1 491aq) is
determined to be valid, the locally stored content is used in
a ‘Use Local Copy’ step 494¢, which corresponds to the
‘Fetch from Local Cache’ step 3315 in the flowchart 330. In
the case the validity of the locally stored copy is suspected,
a part of the content (preferably a small part) is fetched from
the data server #1 22a in a ‘Fetch Slice From Server’ step
494d. The requested and fetched part of the content may be
a slice or chunk, as described herein. Alternatively or in
addition, a fixed number of bytes may be used. Further, the
size of the fetched part may be 5% or 10% of the total size
of the content. The part of the content may be the first part,
the last part, or any other part of the content.

20

40

45

50

146

In a ‘Same as Local Copy ?” step 494e, the fetched part of
the content is compared with the respective part of the
locally stored copy of the content. In the case the two
checked parts are found to consist of the same information,
the locally cached content is determined to be valid, and is
used as a response to the content request in the ‘Content
Request’ step 494a as part of the “Use Local Copy’ step
494c¢. In the case where the two checked parts are different,
the locally cached content is determined to be non-valid.
Next, a slice of a copy of the content is requested and fetched
from another network element, such as from the device #2
4915 in a ‘Fetch Slice From Device’ step 494f, and the
fetched slice is checked in a ‘same as Server Slice ?° step
494¢, and compared versus the slice that was fetched from
the data server #1 22a in the ‘Fetch Slice From Server’ step
494d. In the case where the two checked parts are found to
consist of the same information, the cached content in the
network element (such as in the memory 4935 of the device
#2 491b) is determined to be valid, and the device #1 491a
may fetch the content therefrom in a ‘Fetch Content From
Device’ step 494/. In one example, such fetching may use
any of the methods described herein, for example, the device
#2 4915 may be used as a peer device. Alternatively or in
addition, the device #1 491a may fetch the updated content
from the data server #1 22a itself, corresponding to the
‘Fetch from Server’ step 331e in the flowchart 330. In the
case where the two checked parts are different, the cached
content in the network element (such as in the memory 4935
of the device #2 4915b) is determined to be non-valid, and
thus the device #1 491a can only fetch the updated content
from the data server #1 22a, as part of a ‘Fetch Content From
Server’ 494i, corresponding to the ‘Fetch from Server’ step
331e in the flowchart 330.

The steps involved in the actual validating of the local
content copy are considered part of a ‘Content Validation’
flowchart 496, that is part of the flowchart 490a in FIG. 49a.
In a ‘Same as Local Copy’ step 494¢ and a ‘Same as Server
Slice’ step 4941, two parts of the content are compared. The
actual information in the compared parts may be compared
in a bit-by-bit (or byte-by-byte) level. Alternatively or in
addition, the checksums, the CRCs (or any other hash
function), HTTP headers, or any other information repre-
sentative of the parts information may be used for deter-
mining of the parts are the same.

In one example, a network element (device) periodically
checks and validates the content stored in it. Hence, when
the content is required, local copy may be used for either
local use or as a peer device, allowing for faster response to
a request for the locally stored content. A network element
may thus execute a flowchart 4905 shown in FIG. 495. The
validation process is considered as a low-priority task, so in
an ‘Idle 7’ step 4954, the activity of the network element is
checked, such as checking the CPU utilization, the available
storage size, or the available communication bandwidth. In
the case the activity is above a set threshold, the higher-
priority activities are given precedence, and the validation
activity is not activated, and the element remains in the ‘Idle
?” step 495a. Upon availability of enough resources and
determination that no other more important tasks are to be
activated, the device scans the local memory (or cache) in a
‘Scan Cache’ step 4955, and the entries of the various
content copies are checked for validity. In the case where all
the content parts are found to be valid in a ‘Non-Valid
Content ?” step 495¢, the device resumes to the idling of the
validation process in the ‘Idle ?° step 495a, since no vali-
dation activity is required. For each of all content entries that
are found to be non-valid, the time left until its validity

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
213 of 228

US 10,469,614 B2

147

expiration is checked, and is associated with the respective
content entry, in an ‘Associate Expiration Time’ step 495d.
It is noted that some content entries may be determined to be
not important, and thus will not be part of the validation
process. Out of the content entries that are considered as
important, the device selects the content entry that is the first
to expire, in a ‘Select Non-Valid Content” step 495¢. The
selected content is then validated in a ‘Content Validation’
step 495/, which corresponds to the ‘Content Validation’
flowchart 496 shown as part of the flowchart 490q in FIG.
49a. After validating the selected content, the memory is
re-scanned for non-valid content in the ‘Scan Cache’ step
495p, and the validating process is until all important and
non-valid content entries are validated.

As shown in the system 500 in FIG. 50, a network element
504 may connect to another network element 501 via the
gateway #1 505a. Due to many reasons, the network element
504 may disconnect for a short time from the gateway #1
505a, and then may re-connect to the same gateway 505a or
to another gateway. In such a case, the application 506
detects the connection disruption with the gateway 505a,
and lose the connectivity during the time there is no con-
nection to any gateway. In a case where the application is a
web browser, such short loss of connectivity may cause
service disruption, such as the “404 page not found” mes-
sage to a user. Further, recovering from such loss of con-
nection may be time consuming and employs valuable
resources.

A Virtual Gateway Service 512 (VGS) may be used to
reduce the period of re-connection, and to reduce the harm-
ful impact on the network element 504 operations, as shown
in a system 510 in FIG. 51. The network element 504 may
use either the gateway #1 505a or a gateway #2 50556 for
connecting to the network element 501. The VGS 512 is a
software stored in the network element 504 memory 508,
and operating as an intermediate level between the OS 507
and the physical layer connecting to the LAN 503. The VGS
512 intercepts requests from the operating system 507 to the
network for receiving configuration information, and
receives on the configuration information from the gateway
#1 5054a. This information is fed back to the OS 507, hence
serving as a proxy (or an agent) for a configuration infor-
mation between the OS 507 and the gateway #1 505a.
Alternatively or in addition, an intercepted request from the
OS 507 may be responding directly by the VGS 512. For
example, in a case of an intercepted IP request, the VGS may
locally provide an IP address.

In one example, the network element 504 may disconnect
from the gateway #1 505a, and may connect to the gateway
#2 50556 shortly after. The VGS 512 may simulate to the
operating system 507 a gateway response, so that the OS 507
may not detect the disconnection from gateway #1 505q, and
as such may not report an error or a change of a status. When
the re-connection to the new gateway #2 5055 has been
done, the VGS 512 may request new configuration infor-
mation, while not notifying or changing the operating sys-
tem 507 status. Thus, from the perspective of the operating
system 507, it is continuously connected to a gateway and a
network, and the actual disconnection is not sensed by the
OS 507. However, in a case of a long disconnection (from
a network or a gateway), the VGS 512 senses such a
disconnection (such as longer than pre-defined time period),
and accordingly notifies the operating system 507, thus
providing the operating system 507 and the application 506
the ability to correctly respond correctly to the situation,
such as to notify the user.

5

10

15

20

25

30

35

40

45

50

55

60

65

148

The VGS 512 may execute a flowchart 510a shown in
FIG. 51a. Upon connecting to a network such as the LAN
503, the OS 507 (via the VGS 512) sends an IP request to
the gateway 505¢ identified on the network 503. During
such initialization process, the VGS 512 is transparent, and
allows the OS 507 to complete the regular process of
initializing of a communication session. Afterwards, any
request for IP address, for any configuration information, or
any other initialization access, to the gateway 505q is
intercepted as part of an ‘Intercept Gateway Access’ step
511a. In a case where the intercepted (or trapped) request is
an IP request, as detected in an ‘IP Request ?° step 5115, the
VGS 512 serves effectively as a NAT, and provides an IP
address for the OS 507 to use, as part of a ‘Return Valid IP
Address’ step 511¢. The VGS 512 continues to serve (from
the OS 507 point of view) as an external proxy/NAT or
simulates a connection with a gateway as part of an ‘Acti-
vate Virtual Gateway’ step 511d. In a ‘Gateway Discon-
nected ?° step S1le, the VGS 512 checks the status of the
actual connection to the gateway, such as the gateway #1
5054. If no actual disconnection is detected, the VGS 512
idles until a new IP request is intercepted as part of the ‘IP
Request ?” step 5115. If the actual connection to the gateway
#1 505a is not available, the VGS 512 tries to get an actual
externally-sourced IP address, such as from the gateway #1
505aq, in a ‘Get External IP Address’ step 511f. If no network
connection is available, the VGS 512 may skip this step. In
parallel, a timer set to a time period (such as X milliseconds)
is started in a ‘Start Timer’ step 511g, for measuring the
disconnection related time. As long as the timer has not
expired, the VGS 512 checks if an external IP address was
obtained in an ‘External IP Received ?’ step 5114, as a
response to the request sent in the ‘Get External IP Address’
step 511f. If an actual IP address was received before the
timer expiration, as checked in a “Timer Expired ?” step 511i,
such as from an alternative gateway that may be the gateway
#2 5055, the received IP address is returned for the use of the
OS 507, allowing for a quick switchover between the
gateways, and for normal NAT/proxy service to the OS 507.
However, if the timer has expired and no IP address was
obtained, the VGS 512 notifies the OS 507 that the connec-
tion was lost, allowing for the operating system 507 to react
to the disconnect state in the way it was programmed to.

A concept of writing cache data to the free portion of the
memory is introduced in U.S. Pat. No. 8,135,912 to Shrib-
man et al., entitled: “System and Method of Increasing
Cache Size”. The stored information is transparent to the
operating system, and thus more cache size is available
without degrading the amount of memory that is available
for the user to use. The memory arrangement in such a prior
art system is shown in FIG. 52, where the file system first
writes the OS data 62002, after which the cache data 62004
is written, followed by a not-used (free) space 62006. The
problem with this memory management approach is that
when the file system overwrites the cache data when adding
data to the OS data 62002. In such a system where the free
space 62006 is still available, it would be beneficial to have
a system where such further OS writes would not overwrite
the cached data while free space is available. Such a memory
arrangement is shown in FIG. 53. The OS data 62012 is first
stored, whereas the cache data 62016 is stored on the other
side of the memory, starting at the furthest position from the
start of the writing of the OS data 62012, so that the OS data
62012 overwrites the cache data only when a free space
62014 is completely used. It may also be desirable to have
a system that cleans up the cache data, so that data that is no

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
214 of 228

US 10,469,614 B2

149

longer needed is removed, to maintain the free space and
avoid the cache data being overwritten.

FIG. 54 is a flowchart of a system for writing cached data
in this modified method, as well as for cleaning up the cache
periodically to allow for a free space in the system and thus
less data overwrites. In a step 62202 the cache_pointer is set
to the point on the storage location that is furthest from the
starting point of where the OS data is written to when the
storage device is empty. In a step 62204, it is checked
whether cache data (cache_data) need to be written to the
storage device. If not, then in a step 62206 it is checked
whether system resources are idle enough to warrant a cache
cleanup to be performed. If there is more cache to write, then
in a step 62208 the cache_pointer is moved back (i.e.,
‘towards’ the OS data) by the size of cache_data, and then
in a step 62210 the cache_data is written to the storage
device as the referenced patent instructs how to do (i.e.,
without notifying the operating system so that this space is
still viewed as empty by the OS). This moving back of the
pointer is novel, since it creates a situation where the data is
written in a ‘forward’ direction (in the same direction to
which the OS data is written to), which is typically the faster
writing direction for storage devices, as they are optimized
for writing OS data.

When the cleanup is performed, then in a step 62214 it is
checked whether the free space is close to running out (e.g.,
is it under x % of the total available storage size, where X can
be 10%, or under y Bytes free where Y is 1 GB for example).
If this threshold has been reached, then in a step 62216 the
least relevant cache is searched for to be removed. The
criteria for less relevant could be in that it has expired, or
that it is accessed the least, or any of other prior art cache
purge methods. This cache item is removed.

A cache system such as that described in U.S. Pat. No.
8,135,912 to Shribman et al. entitled: “System and Method
of Increasing Cache Size”, creates a very large cache size
(cache_size) but at the expense of the reliability of reading
the cache back after writing it, where the probability for a
cache miss (i.e., to try to read back the cached element and
to fail) at a certain point in time would be P, where P<1.

In some cases, the cache_size is significantly bigger than
required for the system operation. In such a case, FIG. 55 is
a diagram of how P can be increased (i.e., reliability can be
increased) at the cost of the cache_size. FIG. 55 offers to
create two zones of writing the cache data in the storage
device, where each element in the cache is written once to
each zone. This way, the cache_size is reduced by half (since
each element is written twice), and P would be reduced to
P"2, since the probability of not reading back P would be to
miss it in both of the zones. Thus, while the size of the cache
is reduced linearly (cut in half), the probability of getting a
cache miss is reduced exponentially (P"2).

FIG. 56 is a flowchart for how this could be implemented.
In a step 63202, a ‘cache read’ or a ‘cache write’ command
is received by the module, and in a step 63204, it checks if
it is a read command or a write command. If it is a read
command, then in a step 63206 the module looks up in the
cache index to find the two locations to which the cache was
written, and in a step 63208 attempts to read the cache entry
from the first location. A step 63210 checks if the cache entry
was found in that read. If it was, then return a step 63212 the
data that was read. If it was not found, then in a step 63220
read the cache entry from the second location and return it
if found in the step 63212 or return data_not_found if not
found in the second location as well. In the case of a write
command, two different free locations are identified in a step
63214 and the cache data is written to those two locations in

10

15

20

25

30

35

40

45

50

55

60

65

150

a step 63216. The cache index is updated with these two
locations so that the cache entry can be found in future
writes. FIG. 57 shows that in a similar manner, the amount
of times that a cache element is written to the storage device
can be increased from 2 as shown in FIGS. 55 and 56, to any
number N, where in such a case the available cache size is
reduced from (cache_size) to (cache_size/N), and the prob-
ability of a cache miss is reduced from (P) to (P"N).

(NDCACHE—Non-Deterministic ~ volatile memory
CACHE). In a computing device, the Random Access
Memory (RAM) is a limited resource. When the operating
system uses the RAM, it typically increases the speed of the
application. However, excessive use of the RAM for an
application limits the use of the RAM by other applications
and thus limits their speed. One such use of the RAM is for
caching information in order to speed up the speed of the
program’s operation. Such cached data may be data
retrieved from the network, or be the result of a complicated
operation, etc. Operating systems make use of the RAM for
caching purposes, and typically leave some of the RAM free
to be used later. If this free RAM, memory could be used to
store additional cache without significantly affecting system
performance in other ways that would be beneficial.

FIG. 58 is a diagram of the state of the art implementation
of address space mapping. A physical address 64004 is a
memory address that is represented in the form of a binary
number on the address bus circuitry in order to enable the
data bus to access a particular storage cell of main memory,
or a register of memory mapped I/O device. In a computer
with a virtual memory 64002, the term physical address is
used mostly to differentiate from a virtual address. In
particular, in computers utilizing Memory Management Unit
(MMU) to translate memory addresses, the virtual and
physical addresses refer to an address before and after MMU
translation respectively.

FIG. 59 is a diagram of a prior art MMU and TLB, in
which the CPU 64002 requires a translation of a logical
address into a physical address 64008 in order to read or
write to it. For the translation, it sends the logical address to
the MMU 64004, which uses a cache called a Translation
Lookaside Buffer (TLLB) 64006 to map the virtual address to
a physical address 64008. Modern MMUs 64004 typically
divide the virtual address space into pages, each having a
size which is a power of 2, usually a few kilobytes, but they
may be much larger. The bottom n bits of the address (the
offset within a page) are left unchanged. The upper address
bits are the (virtual) page number. The MMU 64004 nor-
mally translates virtual page numbers to physical page
numbers via an associative cache called TLB 64006. When
the TLB 64006 lacks a translation, a slower mechanism
involving hardware-specific data structures or software
assistance is used. The data found in such data structures are
typically called page table entries (PTEs), and the data
structure itself is typically called a page table. The physical
page number is combined with the page offset to give the
complete physical address.

Sometimes, a TL.B 64006 entry or PTE prohibits access to
a virtual page, perhaps because no physical random access
memory has been allocated to that virtual page. In this case,
the MMU 64004 signals a page fault to the CPU 64002. The
operating system (OS) then handles the situation, perhaps by
trying to find a spare frame of RAM and set up a new PTE
to map it to the requested virtual address. If no RAM is free,
it may be necessary to choose an existing page (known as a
victim), using some replacement algorithm or ‘eviction
algorithm’, and save it to another form of storage (e.g., hard
disk)—typically known as “paging”.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
215 of 228

US 10,469,614 B2

151

FIG. 60 is a diagram of prior art on how an MMU works.
The TLB 64402 receives a virtual address from the CPU. If
it finds the associated physical memory within the TLB
64402, then it returns the Physical address associated with
this virtual memory, to the CPU. If it does not find the
address in the TLB 64402, then it looks it up in the Page
Table 64404. If there is an association there, then the
physical address associated with the virtual address is
returned. If there is no such association, then the Page Table
Exception Handler 64406 is activated. It uses a database and
a set of drivers to figure out how to map the virtual memory
to physical memory (often by allocating new memory,
loading information on to that memory from disk, and
mapping it to a virtual memory). The data is then loaded into
the physical page in 64408, and the physical address is
returned to the CPU.

FIG. 61 is a diagram of prior art on how the MMU’s page
table exception handler works. When a page table exception
occurs, the page table exception handler is invoked, as per
FIG. 59. The page table exception handler 64802 first
identifies in a step 64804 the driver responsible for this data
segment. This is typically stored in the page table. For
example, the driver for a specific virtual memory segment
may determine that this part of the virtual memory should be
mapped to real physical memory, or it may determine that it
is mapped to an IO device such as a camera and the contents
should be read from the camera’s sensors. Then, the driver
assigned determines whether a new physical memory seg-
ment needs to be assigned to this virtual address space or
not. If more physical memory is required, then in a step
64808 the OS determines whether there is such physical
memory available to the system. If there isn’t free physical
memory, then in the step 64808 the OS determines which
physical page to ‘purge’ out of memory based on any
number of ‘eviction algorithms’ (e.g., least recently used is
discarded). The driver assigned to this memory space deter-
mines in which manner this information is purged—i.e., is it
simply discarded, or saved to disk, etc. The MMU then
evicts in a step 64810 the physical page by either swapping
it to disk, erasing it, or whatever method the driver associ-
ated with it determined. If in a step 64806 it is determined
that there is enough free physical memory to create the new
page, then the driver determines in a step 64814 the method
by which to load the data into the physical memory or to
otherwise map the virtual address to an IO device, etc., and
then loads in a step 64816 the data into the physical memory
or maps it as required. The virtual memory map to the
physical address is then sent to the TLB 64818, and the
request is resolved for the CPU.

The prior art memory management can be described as
deterministic, because information that is stored in the
physical memory by the application is always retrievable,
even in case that physical memory is purged, since the driver
for that memory segment that is purged typically saves the
data before discarding it. There is a ‘cost’ to this determin-
ism, in that there is a load and purge time to the physical
memory, since when purging this physical memory it needs
to be written to a different medium, and then loaded back
from the medium before it can be read. In cases where an
application wishes to store cache data in the volatile memory
in order to save time in re-calculating an algorithm, or in
order to not load it again from the web, or in other cases, it
does not need the determinism offered by the state of the art
memory management systems, but it does need high access
speeds, since if the speeds are not high, then it may be more
beneficial to the system to recalculate the algorithm or to
re-fetch the information from the web, and not to do a page

10

15

20

25

30

35

40

45

50

55

60

65

152

fault which is costly in time. In addition, the more physical
memory available for the cache, the faster that the applica-
tions can run. However, the more physical memory allocated
to cache of one application, the less is available for other
uses, and thus the system performance may be degraded.
Therefore, it is beneficial to design a system that can gain
from higher speeds associated with non-determinism in the
memory management, and that can use the maximum pos-
sible physical memory without deteriorating the perfor-
mance of other applications.

FIG. 62 is a flowchart of how a non-deterministic physical
memory caching system may be implemented. In a step
65002 an application requests from the operating system a
non-deterministic physical memory cache (NDCACHE).
The OS allocates in a step 65004 the physical memory for
the cache, and maps it to virtual memory, and marks these
pages with an ‘NDCACHE'’ flag. If the eviction algorithm of
the OS decides to swap out in a step 65006 a physical page
which is marked with an ‘NDCACHE’ flag, then that page
is discarded in a step 65010 without being stored back to non
volatile memory—it is simply removed from the page table,
and will be allocated to a new page and the new data will
overwrite the old. If the OS is running out in a step 65008
of physical memory (this may be determined via a variety of
ways that will be described later on in the document), then
the OS discards one or more NDCACHE pages from
memory to clear up memory for the OS. For example, it may
clear up four pages, check if that is enough for the OS, and
clear more if needed. When the application wishes to read in
a step 65014 a virtual memory that was requested as an
NDCACHE memory, and is now a regular memory (since
the NDCACHE memory was swapped out and thus dis-
carded), it receives back a ‘DOES NOT EXIST’ message to
indicate that this memory was lost and thus the cache data
requested no longer exists. During a read or write transaction
to or from an NDCACHE page in a step 65016, that page is
locked so that the eviction algorithm does not purge it during
that action.

FIG. 63 is a suggested Application Programming Inter-
face (API) for an NDCACHE implementation. This sug-
gested API is similar to the file system API (http://en.wiki-
pedia.org/wiki/File_system_API) in POSIX (http:/
en.wikipedia.org/wiki/POSIX). To start a new NDCACHE
type cache, an application first will call the function
NDCACHE_OPEN 6504, which returns a handle to the
NDCACHE (FILEDS) that is referenced by NAME. The
NAME that is passed to the function is a unique name for
that cache that is used between different processes accessing
this page, similar to how a filename is used in the file system
POSIX API. If the NDCACHE specified by NAME exists,
then the function simply returns a handle to the existing
cache. If it does not exist, then NULL is returned by the
function. However, if the CREATE_FLAG passed to the
function is turned on, then upon opening an NDCACHE
specified by NAME that does not yet exist, such an
NDCACHE is created and the function returns the handle to
that NDCACHE. If such a cache already exists and the
TRUNCATE_FLAG is set, then that cache is erased, and a
handle to this empty cache is returned by the function.

NDCACHE_READ and NDCACHE_WRITE 65404 are
the functions used to read from the NDCACHE and write to
the NDCACHE (respectively) that is referenced by the
FILEDS that was initially received from the NDCACHE_
OPEN function. The BUFFER is an allocated memory that
the application can use to read the information to (in case of
NDCACHE_READ) or to write from (in case of
NDCACHE_WRITE). The OFFSET is the offset (in bytes,

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
216 of 228

US 10,469,614 B2

153

for example) within the NDCACHE referenced, to start the
read, or to start the write, from. SIZE is the number of bytes
to read or to write. NDCACHE_CLOSE 65406 is called to
close the handle to the NDCACHE referenced by FILEDS.
After all handles to an NDCACHE are closed, the OS may
decide to swap it out based on its eviction algorithms.
NDCACHE_UNLINK 6508 is called to remove the
NDCACHE entry referenced by FILEDS from the operating
system’s page table, thus effectively deleting this
NDCACHE.

A file system is a means to organize data by providing
procedures to store, retrieve and update data, as well as
manage the available space on the device(s) which contain
it. A file system is tuned to the specific characteristics of the
device. There is usually a tight coupling between the oper-
ating system and the file system. Some filesystems provide
mechanisms to control access to the data and metadata.
Ensuring reliability is a major responsibility of a filesystem.
Some filesystems provide a means for multiple programs to
update data in the same file at nearly the same time.

File systems are used on data storage devices such as hard
disk drives, floppy disks, optical discs, memory storage
devices, remote servers, etc. File systems may provide
access to data on a file server by acting as clients for a
network protocol (e.g. NFS or SMB clients), or they may be
virtual and exist only as an access method for virtual data
(e.g. procfs). This is distinguished from a directory service
and registry. A File system is implemented in a file system
driver which implements a standard file system API for
using it, and is coupled to a storage device or other storage
strategy (like mapping to existing memory).

FIG. 64 shows the prior art method of mounting a file
system. A computer 66202 has a file system directory
structure 66204, which in various directories represent space
on various storage devices. The block device 66208 is such
a storage device on which data may be stored. The file
system driver 66206 links between the block device 66208
and a certain directory in the file system 66204. The file
system driver is configured to be called by the OS on a
specific point in the OS directory structure (in this example
in “Amp”). Every file call to that directory initiates a call to
the File System Driver 66206, which may use a memory
device such as the block device 66208 to store & retrieve
information. This linking of a storage device to a directory
is called ‘mounting a file system’.

FIG. 65 is a prior art diagram of the TMPFS file system.
TMPFS is a common name for a temporary file storage
facility on many Unix-like operating systems. It is intended
to appear as a mounted file system, but stored in volatile
memory instead of a persistent storage device. A similar
construction is a RAM disk, which appears as a virtual disk
drive and hosts a disk file system. The computer 66402 has
a directory structure 66404 in which the TMP directory is
mapped to the TMPFS file system driver 66406, such that
when file system calls are made on files within the TMP
directory, they are performed on data that is stored in a
volatile memory 66408.

A secondary implementation of an NDCACHE may use
simple file system mounting. This implementation is simple
in that it does not require kernel mode modifications, or
some minimal modifications to the TMPFS file storage
facility that is available on many unix-like operating sys-
tems.

FIG. 66 is a flowchart of a possible implementation of an
NDCACHE by using a TMPFS file system. In a step 66602
a TMPEFS is created and mounted, with an initial size of X
bytes, where X can be 1 GB for example, to be used for the

10

15

20

25

30

40

45

55

60

65

154

NDCACHE. In a step 66604, the system checks whether the
operating system would benefit from having additional
volatile memory. This can be done in various methods
known to those in the art. For example, this can be done by
checking every Y ms (for example every 20 ms) if less than
a certain amount of free memory exists in the system (could
be less than 200 MB for example), or if above a certain
amount of memory swaps occurred recently (could be more
than 2 swaps per second for example), or if the kernel cache
space is reduced to under a certain size (could be under 2 GB
for example). This can also be done by listening to ‘stress’
operating system calls such as “low memory” type calls—if
these are called then the operating system probably would
benefit from having additional volatile memory. This could
also be checked by attaching a callback on the swapping out
of memory of the TMPES file and deleting it instead of
swapping it out.

If any of the above events in a step 66606 occurred, then
the OS would benefit from having more volatile memory.
This is checked in a step 66608. If the OS would not benefit
from more memory, then continue to the step 66604. If it
would, then in a step 66610 the NDCACHE is reduced by
deleting a number of elements from it, so that its size is
reduced by Z bytes (for example by 200 MB). In a step
66612 shows various strategies by which elements may be
reduced from the NDCACHE: delete the least recently used
(LRU), the least frequently used (LFU), the largest elements
by bytes, or the smallest elements by size. This TMPFS size
reduction thus frees space for the operating system. This
system described in FIG. 66 thus describes an implementa-
tion of an NDCACHE, since the application gains a physical
memory cache, that is swapped out (partially or completely)
as the operating system requires more physical memory for
its operation.

Hence, a method of increasing the size of the memory
(which is a physical memory) available to applications by
which an application may request memory which is spe-
cially marked, is disclosed, where the application is able to
read and write to this physical memory, and where if the
operating system needs more memory then this specially
marked memory is discarded. If the specially marked
memory space is swapped by the operating system, then it
is simply discarded. If the operating system would benefit by
having more memory available to it, it reduces the size of the
memory allocated to the specially marked cache. The
method may be implemented by a TMPFS system that
allocates physical memory to this special cache, where if the
operating system would benefit by having more memory
available to it, it reduces the size of the TMPFS allocated to
this specially marked cache

The second implementation of the NDCACHE—the calls
to TMPFS are from user mode to kernel mode, and thus may
take thousands of CPU cycles to complete. It is thus desir-
able to avoid calls between user mode and kernel mode if
possible, to improve a performance of the system to get
minimum cycles per an NDCACHE call.

A system with higher performance can be achieved by
implementing the NDCACHE as a user mode module that
communicates with an NDCACHE kernel module, as
described in FIG. 67. Block 67202 is the user mode space of
the computing device, and block 67208 is the kernel space.
The application 67204 is running in the user mode 67202
and using an API (NDCACHE calls) that is implemented in
an NDCACHE user mode implementation 67206. It uses
system calls to communicate with the NDCACHE kernel
mode implementation 67210.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
217 of 228

US 10,469,614 B2

155

FIG. 68 is a description of the API relating to a third
implementation method of the NDCACHE. The block
67402 is pseudo code that describes how an NDCACHE
would be allocated and written to. First, a FILEDS handle is
created by opening a file that is handled by the NDCACHE_
DRIVER, which is the kernel module for NDCACHE
events, along with the NDCACHE_NAME, which is the
specific name of the NDCACHE that is being accessed.
Then, a pointer directly to the NDCACHE memory is
received by doing an NDCACHE_LOOKUP on the
NDCACHE_NAME. This lookup returns a pointer to the
memory of the specific NDCACHE, and if such a cache does
not exist, P is assigned NULL. If indeed no such NDCACHE
exists, then it needs to be created. In such a case, the pointer
P is assigned a memory map of a certain size (in this specific
implementation it is 1 MB, but this could be other sizes),
where this memory is declared as shared memory so that it
may be used by multiple processes.

Then the first memory position in P (P[0]) is increased (so
that if this was a new assignment of memory, then P is now
1), to indicate that there is content in this NDCACHE. Then
the program continues by writing the data to P, starting at
P[1]. If the cache exists (i.e. was not allocated by this call),
then do the NDCACHE_WRITE() function.

FIG. 69 shows how such an allocation would look like—
the first byte of the allocation is the lock flag (P[0]in the
above code), which indicates that there is content within this
NDCACHE of 1 MB that was allocated, and the 1 MB is
comprised of a series of 4 KB allocations. FIG. 70 is an
implementation of the NDCACHE_READ() and
NDCACHE_WRITE(). First, it is checked whether the
cache still exists, by checking the first byte of the
NDCACHE range. If it is zero, then that NDCACHE was
swapped out, and thus the program returns to the application
MEM_NOT_FOUND. Then the program increments the
first byte of the NDCACHE range. If it equals ‘1°, then it
was zero when incremented—i.e., the NDCACHE range
was swapped out and cannot be used. The program then
returns the first byte to zero, and returns MEM_NOT_
FOUND to the application. Now the NDCACHE range is
locked (because the first byte is non-zero), and the range is
read in to buffer or written from the buffer to the range, as
the case may be for NDCACHE_READ or
NDCACHE_WRITE respectively. After finishing the read
or write, the program then decrements the lock flag to
release the lock on the range by indicating it has completed
the read/write and returns.

FIG. 71 is the implementation of the eviction algorithm of
the NDCACHE kernel module (the NDCACHE_DRIVER).
In prior art operating systems, the eviction algorithm is
called when the OS needs more physical memory—it then
calls the eviction calls of the various drivers handling
memory for them to clear out selected portions of the
memory. Some of these drivers are programmed to copy
segments of the memory in to other storage devices (such as
a hard drive) and then to clear the physical memory for other
uses, while other drivers may choose other forms of action.
The eviction algorithm for the NDCACHE_DRIVER is
described in block 67802. Upon being called, it removes all
associated memory ranges associated with LOCK_FLAG
that is 0 (which means that the memory range is not in use).
If more memory needs to be freed, then it can also remove
the ranges who’s LOCK_FLAG is 1, since they are in use
but not locked. It does not remove memory ranges who’s
LOCK_FLAG is greater than 1, since they are currently
locked by a read or write operation. As an example, there
may be several NDCACHES in use, each of them of various

10

15

20

25

30

35

40

45

50

55

60

65

156
sizes. When the eviction algorithm is called, it removes
those NDCACHES associated with a lock flag thatis O or 1,
but not greater than one. Further implementations of this
may choose to not remove all the NDCACHE:s possible, but
only enough NDCACHESs so that the OS has enough free
memory (e.g. S0 MB) to continue normal operation.

Block 67804 describes how the swapping out of memory
ranges by an NDCACHE_DRIVER is done: Once the
eviction algorithm of the NDCACHE_DRIVER decided to
free a range, it maps the virtual memory pointers to an “all
zero” range in ‘read only’ mode (for example by mapping to
devzero. This quickly sets the memory and the LOCK_
FLAG to zero, thus freeing the physical memory for the OS
to use, and marking it as empty towards the applications
using the NDCACHE.

FIG. 72 is a diagram that shows the system for the fourth
method of implementation for the NDCACHE, which
allows for parts of the NDCACHE to be removed while
keeping other parts in the memory. For example, where not
all the memory ranges handled by the NDCACHE driver are
attempted to be freed, but only a certain amount that will
enable the OS to have more free space to operate (e.g.,
freeing ranges until 200 MB are free).

In the previous implementation methods, an NDCACHE
element in the previous implementations is assigned in one
block. The problem is that this whole block is swapped out
even if only a certain part needs to be swapped out by the OS
(all or nothing type of approach). It is desirable to have an
implementation where only portions of the allocation may
be swapped out (for example, the NDCACHE element could
be a whole file, and it may be useful if parts of it are swapped
out). In block 68002 there are a group of pages in the
physical memory of a computer (page #1, Page #2, . . . Page
#N), in this example each of the pages is a range of 4 KB.
In block 68004, there is a group of flags in an area of the
physical memory allocated to be the management area of the
NDCACHE, where there is one such flag for every page in
the memory, that is allocated to the NDCACHE. Each flag
in the management area in block 68004 is actually a ‘lock
flag’ from the previous implementation of the NDCACHE
and is used in the same way, but is done per page, so that
each lock flag correlates with one page in the memory. Thus,
the NDCACHE may allocate a large file from Page #1 to
Page #N, and when the OS needs more free memory then the
NDCACHE’s eviction algorithm may choose to free a
certain memory size for the OS (e.g. 4 MB), and only
remove the first 1,000 pages from this NDCACHE, instead
of removing the whole cache.

Hence, an NDCACHE system is disclosed, where each
NDCACHE is mapped to a multitude of physical memory
pages, and where there is one lock_flag associated with each
such physical memory page, so that when the operating
system of the computing device needs more physical
memory, it can release only some of the physical pages
associated with this NDCACHE.

FIG. 73 is a flowchart for implementing the fourth imple-
mentation of an NDCACHE. When an NDCACHE is
requested by an application, the application calls the initial-
ization function and specifies the size of the requested
NDCACHE. In a step 68202, physical memory is allocated
for the NDCACHE as was requested by the calling appli-
cation (e.g. 20 MB). The prior art OS responds by allocating
such a memory segment (if available), where this memory
segment is provided as series of blocks of physical pages, of
a certain size as determined by the OS (e.g. 4 MB per page).
In a step 68204, a management area is allocated, where in
this area there is one LOCK_FLAG for every physical page

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
218 of 228

US 10,469,614 B2

157

that is allocated in the step 68202. Thus this memory size is
equal to [MEM ALLOCATEDJ/[SIZEOF(MEMORY_
PAGE)]*[SIZEOF(INT)]. For example, on an OS where a
page size is 4 KB, the memory allocated for the NDCACHE
is 20 MB, and an integer is 4 Bytes, the size for allocating
a management area is =20 MB/4 KB*4B=5 k*4B=20 kB
(for storing 5,000 flags of 4 bytes each).

The normal operation (read/write) of the NDCACHE in
the fourth implementation is similar to the earlier imple-
mentations, but where the memory for the NDCACHE is the
series of memory pages allocated to the NDCACHE, and the
LOCK_FLAG is not for the whole memory range allocated
to the NDCACHE, but for each of the pages in that memory
range, and when the eviction algorithm needs to free
memory for the OS, it can evict a portion of the memory
ranges, freeing up the memory range and its corresponding
LOCK_FLAG from the management area.

FIG. 74 describes an improvement in the fourth method of
implementation of an NDCACHE. The following are three
problems with the fourth method of implementation that
may be improved:

1. When an NDCACHE that is smaller than the OS’s
memory page size (typically 4 kB) is requested, a full page
(e.g. 4 kB) is allocated and thus there is waste in allocating
more than is needed.

2. When an NDCACHE that is larger than the page size
is requested, the allocation needs to be done in multiple parts
(once for each page), thus degrading performance and
degrading the ease of use of the APL

3. The fourth implementation does not conform to the
‘malloc’/“free’ paradigm, which makes it more difficult to
integrate in to existing and new solutions

In this improvement, when a new NDCACHE is allo-
cated, when allocating the pages in memory 69002 for the
NDCACHE, a secondary management area 69004 is allo-
cated at the first page, such that it includes a pointer to the
first LOCK_FLAG in the management area 69006, and a
counter of how many pages are allocated to this NDCACHE
(“N”) is maintained. Thus, when allocating multiple pages
for an NDCACHE, the secondary management area 69004
includes all the information needed to use all pages and lock
flags.

FIG. 75 is a flowchart of the initialization process for the
improvement on the fourth method. In a step 69202 when
the NDCACHE is requested by the application, a memory
range (P) is allocated for the NDCACHE. Its size is the size
of the memory requested+sizeof(T) where T is the area
required for the secondary management area. Then in a step
69204 space is allocated for the management area to hold the
LOCK_FLAGs for each of the memory pages required by
the new NDCACHE. Then, a secondary management area
(T) is defined in a step 69206, and into it is inserted a pointer
(T->PTR) to the management area and an integer (T->N) that
represents the number of pages in this NDCACHE’s
memory range. In a step 69208 the pointer P is changed such
that P=P+SIZEOF(T). This is so that P now points to the
start of the main memory range (right after the secondary
management area). Lastly, in a step 69210 the program
returns the pointer (P+SIZEOF(T)) to the calling applica-
tion, which is a pointer to the place in the memory where the
NDCACHE memory itself starts (right after the secondary
management section).

Note that the allocations for these memory ranges can use
any of the existing malloc/free implementation algorithms to
allocate memory from the main NDCACHE pool to this
allocation. The malloc and free can be done over mmap with
the implementation of NDCACHE shown in the fourth

25

30

35

40

45

158

implementation, which makes this a non-deterministic
cache. Also note that if the allocation is less than one page
size, T->N could still span more than one page, if for
example this page already contains part of a previous
allocation and this new allocation causes the allocation to
overrun to the next page.

FIG. 76 is a flowchart of the actions of reading from or
writing to the NDCACHE for the improvement on the fourth
method of implementation. In a step 69602, the read/write is
described. The read/write is done in the same way as in the
fourth implementation with two exceptions: Lock(P)/unlock
(P): First evaluates that T->N is not zero. If it is zero, then
the NDCACHE was swapped and needs to return mem_not_
found. If T->N is not zero, lock all pages that this
NDCACHE element spans by locking the N LOCK_FLAGS
starting at the T->PTR LOCK_FLAG.

When reading/writing from/to the NDCACHE, not lim-
ited to one page of memory (can use the complete allocated
size). In a step 69606 the deleting of the allocation—
NDCACHE_CLOSE(P)—is described. The NDCACHE is
freed by calling the OS free() function and providing to it
the pointer of (P-SIZEOF(T)) where P is the pointer to the
main memory range, and T is the secondary management
area, so that the memory freed is both the secondary
management area as well as the main memory area.

A further note about NDCACHE: There is an advantage
to being able to use named objects for NDCACHE—i.e., for
the NDCACHE objects to be named so that they can be used
by multiple processes, and also lets the virtual memory
related to these named objects to be freed on swap. This can
be implemented over the systems described previously by
adding a hash table where in the open/create of the object,
this name is looked up in the hash table, and if found
provides back a pointer to an existing object.

There are applications that may benefit from understand-
ing when the computer’s resources are idle. For example, a
screensaver monitors the mouse and keyboard movements
for idleness, and after a preset amount of idle time, it
activates its display program. Further, the idling period may
be utilized for performing non-time sensitive activities, such
as upodating and maintenance. For example, idling is
detected as part of the ‘Idle ?° step 4954 in the flowchart
4905. Other cases are for a web site to monitor inactivity of
a keyboard or mouse input, and to log out as a consequence.

FIG. 77 is a flowchart of an idle monitor that uses new
inputs to define idleness of a computing device or its
operator. Such a flowchart may be executed by any network
element herein. In a step 70002, an application wishes to be
notified of when idleness has occurred, and so notifies the
idle monitor program, provides a CallBack function
(CB)—a function to call when the idleness occurs—and
defines the type of idleness on which to call this function
(PARAMS) and the duration of time they should be idle for
the CB to be called. The program then scans in a step 70004
‘idleness’ resources and tracks for how long each has been
idle. These resources include the following: Bits being sent
or received to/from communication device—i.e. idleness of
communication. Storage device read or write—i.e. idleness
of the 10 with storage devices. Temperature changes in any
of the device’s temperature gauges—i.e., idleness of the
environment. Non-idleness of the environment could signal
that there is movement in the environment of this computing
device, or that the temperature around is shifting. CPU busy
over certain threshold (could be 5% for example)—i.e.
idleness to a degree of the computing resources. Camera
senses motion—i.e. idleness of the physical surrounding of

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
219 of 228

US 10,469,614 B2

159

the computing device (movement of persons for example
can trigger this to not be idle)

Light sensor senses changes in light intensity or struc-
ture—i.e., idleness of the physical surrounding of the com-
puting device (movement of persons, for example, can
trigger this to not be idle):

Accelerometer that senses movement or orientation

change

HD accelerometer that senses movement

GPS sensor that senses movement

If any of the above sensors is idle in a step 70006, then
check in a step 70008 whether all sensors included in
PARAMS are idle and have been idle for the amount of time
as described in T. If they have all been idle for this time, call
the CB.

Hence, in a system monitoring the idleness of a comput-
ing device, the following sensors may be included in a list
of devices to be monitored for idleness: Bits being sent or
received to/from communication device, storage device read
or write, temperature changes in any of the device’s tem-
perature gauges, CPU busy over certain threshold, camera
senses motion, light sensor senses changes in light intensity
or structure, Accelerometer that senses movement or orien-
tation change, HD accelerometer that senses movement,
GPS sensor that senses movement in location or height

In storage devices with moving media, physical seek
times are typically long relative to the read or write times
because of the read/write head movement, and thus should
be avoided where possible. Also in storage devices, writing
to the storage device is typically less urgent as reading from
it, since the writing is typically to archive existing informa-
tion, whereas reading data is used for actionable results
(such as displaying data on the screen) and thus may be
blocking.

In prior art systems, reading and writing occur randomly,
and thus when the typically higher priority reading is
occurring, it could possibly be after a write has occurred, and
thus the reading head is typically not close to the place
where the information should be read from. Delaying the
writing of data until storage device read/write is idle can
speed up the read time, since there’s then no need to wait for
write to end before reading and also eliminates many seek
cycles.

FIG. 78 is a diagram of a system to reduce the read times
from a storage device 71008. It includes the OS 71002,
which calls the storage read time reduction module 71004
when accessing the disk. This module uses the storage
device idle monitor 71006 to determine when the storage
device is idle. When the storage read time reduction module
71004 wishes to write to disk, it first ensures that the disk has
been idle for a pre-determined amount of time (eg. 30 ms)
before writing to the storage device. If the storage device is
busy, it increases the chance that while the OS is writing data
to the disk, a disk read will occur, which will be slowed
down by the read time and seek time back to the place to
read from. Thus, with the system described by the diagram
in FIG. 78, such conflicts (of having a read while a write is
in action) are reduced. Thus, when the storage device idle
monitor reports non-idleness, then the data to be written to
the disk is written to the write queue 71010 instead of to the
disk.

This concept may be broadened by looking not only at the
idleness of the storage device 71008 by the storage device
idle monitor 71006, but by incorporating an idleness moni-
tor that checks for a much broader set of idleness parameters
such as keyboard inputs, mouse inputs, network communi-
cation, etc., since any kind of non-idleness on the computing

5

10

15

20

25

30

35

40

45

50

55

60

65

160

device typically correlates to reads from the storage device,
and thus storage writes should be avoided during such
periods of non-idleness.

Hence, in a computing system comprised of a storage
device and a processor, a method for reducing the average
time to read data from such storage device is disclosed, by
which storage writes are only performed when the storage
device has been idle for a certain amount of time (eg. 30 ms).
Other parameters may be checked for idleness, such as the
keyboard input, the mouse input, the network communica-
tion, etc.

FIG. 79 is a flowchart of an implementation of a storage
read time reduction module SRTRM. If the SRTRM
received a write command in a step 71202 then it checks in
a step 71204 whether the write queue has enough free space
for queuing this request. If it does, then the request is queued
in a step 71206 until the storage device is idle at which time
it will be written to it. If the write queue does not have
enough space to queue the new write data, then the program
writes in a step 71205 the new request data to the storage
device. If the SRTRM has not received a write command,
then it checks in a step 71208 whether the disk been idle
from read commands for x milliseconds (x could be 30 for
example). Alternatively or in addition, can use other param-
eters for idleness to determine idleness for the purpose of
writing, such as mouse movement, etc.). If idleness for x
milliseconds is determined, then a segment of the write
queue (e.g., S00 KB) is written from the queue to the storage
device.

When a network element is connected to a WAP, it
sometimes shortly disconnects and then reconnects. This
short disconnection (sometimes referred to as ‘cutof”) may
occur due to an ‘explicit user disconnect’ reason, where the
user explicitly requests to disconnect from the WAP, such as
due to poor service from the WAP, or because other reasons,
such as turning off the network element, and disconnecting
from the network (for example by turning off the WiFi
switch). When the network element tries to re-connect to the
WAP, it is typically preferred to first try to connect to
‘favorite’ WAPs, which are commonly WAPs that the net-
work element has already successfully previously connected
to. In one example, a WAP is determined as a ‘favorite’ WAP
when providing high signal strength. FIG. 81 shows a prior
art diagram of a network element 41002 that is trying to
connect to WAPs defined as part of a “favorite’ group 42006.
The network element 41002 may disconnect explicitly from
one of these ‘favorite’ devices 42006, for example due to
poor connection or otherwise poor service, and afterwards,
when the network element 41002 software tries to re-
connect to a WAP, it may try to re-connect again to that
problematic WAP, resulting in again a poor service. It is
therefore beneficial to distinguish between ‘explicit user
disconnect’ reasons and ‘other’ reasons associated with each
WAP in the favorite group 42006, and to first try to connect
to the WAPs associated with disconnection due to ‘other’
reasons.

FIG. 82 shows such a system, where the favorites group
41206 is subdivided to two sub-groups: an “explicit user
disconnect” group 41220, which is the group of WAPs
which the user chose to disconnect from, and an “other”
group 41210, which is a group of the favorite WAPs (shown
to include only a single WAP) that were disconnected due to
‘other’ reasons, and a WAP will preferably and firstly be
selected from the latter group.

FIG. 83 shows a flowchart relating to implementing such
a system. In a step 41402, it is checked if the client has just
disconnected from a WAP, and then in a step 41404 a

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
220 of 228

US 10,469,614 B2

161

variable designated as last_dv is set to the recently discon-
nected WAP. A proactive disconnection by the user, such as
by user pressing ‘disconnect’, is checked in a step 41406. A
poor performance disconnection is checked in a step 41408,
and as part of this step the WAP is checked to be not
responding, or responding slowly. In a case the WAP was
found to be disconnected not because of poor performance,
then the last_dv is set as “other” in a step 41410, and thus
this WAP is highly prioritized, and will be first to be
selected, followed by the rest of the “Other” WAPs, and the
“explicit user disconnect” related WAPs are the last to be
selected. If the WAP was found to be disconnected due to
poor performance, then the last_dv is marked as “explicit
user disconnect” in a step 41412. FIG. 80 shows a flowchart
of an algorithm that describes how network elements may
attempt to connect to multiple WAPs, allowing for a quick
connection to a selected one of the WAPs. While exampled
herein regarding connection to a WAP, any other commu-
nication device, such as a switch, router, or a gateway, using
a wireless or wired connection, may be equally applied.
Typical connections (including data paths and communi-
cation links) via a network, and in particular via a packet-
based network such as the Internet 113, are associated with
a reliability that is less than 100%. The reliability is typically
measured as the number of packets that do not reach their
destination intact, but can also be measured by their latency,
bandwidth, and other factors. FIG. 84 is a diagram of a
common arrangement, where a Network Element 1 (NE1)
25 communicates with another Network Element 2 (NE2)
26, where there are only multiple unreliable connections
available between the two elements. Typically, a connection
for fetching by the NE1 25 of a part of, or all of, a content
from the NE2 26, is established using only a single connec-
tion 24004, out of these available unreliable connections.
For example, in a case where Voice over IP (VoIP) call is
carried between the NE1 25 and the NE2 26 over one of
these unreliable connections, that drops, for example, 1% of
the packets, then 1 out of every 100 packets of the call will
be lost, resulting in a low quality call. The other available
unreliable connections between the two network elements
may be used to increase the reliability, as shown schemati-
cally in FIGS. 85, 86, and 87, illustrating the utilizing of
additional connections for increased connection reliability.
FIG. 85 shows a using of the multiple unreliable connec-
tions 24204 for communication between the NE1 25 and the
NE2 26, implemented by a special program that is installed
on both the NE1 25 and the NE2 26. This program transmits
each packet from the NE1 25 to the NE2 26, or vice versa,
over two or more data routes. Thus, the resulted unreliability
is decreased by a factor received by multiplying the unre-
liability of the routes, and the used bandwidth is increased
by a factor corresponding to the number of routes used. In
one example, 3 (three) data routes are used, and assuming
each data route reliability 99% (i.e., 99 out of 100 packets
typically reach their destination intact) whereby the unreli-
ability of a single connection is 1%, then the resulted
unreliability of the new scheme is 1% (unreliability)™3
(number of routes)=0.0001%, and the available bandwidth is
triple the bandwidth available when using a single data path.
Multiple routes may be implemented by using a program
that uses available multiple network interfaces of the net-
work elements, where packets are sent the packet over two
or more of the available interfaces, or alternatively by using
peer devices (such as the peer device #1 102a and the peer
device #2 102b) as described herein or in the *604 Patent.
In one example, the program may be installed on only one
of the network elements. In such a scheme, a network

20

25

40

45

162

element designated as a reliability proxy may be used, on
which the program is installed. Preferably, the reliability
proxy may use multiple connections to the other network
element. A scheme using a reliability proxy is shown in FIG.
86, used for communication between the NE1 25 and the
NE2 26, and the program is installed on the NE1 25 but not
on the NE2 26. The NE1 25 queries a reliability proxy
network server 24301 and provides the server the identifier
(e.g., IP address) of the NE2 26. The server 24301 responds
by providing the NE1 25 the identifier (e.g., IP address) of
a Reliability Proxy (RP) 24308 to be used. The RP 24308 is
a network element on which the program is installed, and
which has a connection 24310 to NE2 26, which is prefer-
ably more reliable than the direct connection between the
NE1 25 and the NE2 26. The NE1 25 then communicates
with the RP 24308 via multiple routes 24306, and the RP
24308 communicates with NE2 26 through the reliable
connection 24310. Thus, the information is reliably carried
over the routes 24306, providing a more reliable connection
than the single route that may be used, since the original
route 24004 is included in 24306, and using additional
routes improves the reliability, and since route 24310 is
more reliable by selection, the total obtained reliability is
higher than a single direct connection between the two
devices.

It is also possible to use this method in a configuration
where neither the NE1 25 nor the NE2 26 includes the
program installed, as shown in FIG. 87. In this scheme, the
NE1 25 is manually configured to use the reliability proxy
24404 as a reliability proxy, and that reliability proxy then
uses a reliability proxy network server 24401 to find a
reliability proxy 24406 that can be used to communicate
with the NE2 26.

A flowchart of the program is shown in FIG. 88. The
program is activated in a step 24602 when the NE1 25
requests to communicate with the NE2 26. The program then
checks in a step 24604 whether the existing direct connec-
tion between the two network elements is good enough, such
as by using the RTT and BW of the direct connection route.
If the existing route is good enough, then a direct commu-
nication is initiated in the step 24606, as known in the art.
However, if the existing route is not good enough, then in a
step 24622 the program checks whether the NE2 26 has the
program installed. The network elements on which the
program is installed report to the server upon being online,
and the server logs this information in a reliability database
This can be done by sending a query to the NE2 26, so that
if the program exists, the device so acknowledges, or by
requesting such information from the reliability proxy net-
work server by using the server reliability database. If the
NE2 26 does have the program installed, then a direct
communication is used between the NE 1 25 and NE2 26,
using multiple routes (as in FIG. 85), as described in FIG.
89. If the NE2 26 does not have the program installed, then
a request is sent in a step 24608 to the Reliability Proxy
Network Server (RPNS) for a proxy to use for the commu-
nication. The response received in a step 25610 from the
RPNS provides an identifier of a Reliability Proxy Device
(RPD) that may use a data path to the NE2 26 that is more
reliable than a direct connection from the NE1 25 to the NE2
26, if such a path exists. The NE1 25 then sends in a step
24612 the information to the RPD via the multiple routes
between them as described in FIG. 89. If there is no such
data path, then a direct communication is established, such
as in the step 24606.

A method of transmitting packets in parallel over multiple
routes, between the NE1 25 and the NE2 26, is described in

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
221 of 228

US 10,469,614 B2

163

FIG. 89. In a step 24702 NE1 25 receives from a routing unit
the number of routes available to the NE2 26, and the
reliability associated with each one of the routes. In a step
24704, the routes to be uses are selected as follows: A
Desired Reliability (DR) is first set, and the available routes
are ranked based on their reliability, where the highest
reliability is listed first as Route #1, assuming to be associ-
ated with a reliability of R1, the second reliable route is
listed second as Route #2, assuming to be associated with a
reliability of R2, and so on, until the less reliable route is
Route #N with an associated reliability of the RN. The routes
to use are determined by multiplying (1-R1)*(1-R2)*(1-
R3) . . ., until the product is lower than DR. Note that
(1-Rn) is the “unreliability” of a route n whose reliability is
Rn, and thus the product of the ‘unreliability’ of the routes
is the un-reliability of the parallel use of the multiple routes,
assuming that the routes R1, R2, . . . Rx are used for this
particular communication between the NE1 25 and the NE2
26. During the communication session between the NE1 25
and the NE2 26, each packet to be transmitted is carried in
a step 24706 over all the selected routes. On the receiving
side, each unique packet received is passed in a step 24708
to the application, and other similar packets received from
the other routes are discarded. In the case of a missing packet
over the fastest connection, that packet is expected to be
received via the second fastest connection.

In addition to packet loss, unreliable connections typically
frequently disconnect. In such a case, the communicating
devices try to reconnect, and often succeed. However, such
a disconnection may create discontinuity that may be
detected by the communicating applications, and may
impact their performance, such as a producing a “404 page
not found” message in a web browser. However, if the
disconnection is not detected by the applications until the
re-connection is established, the discontinuity could be
avoided. Thus, it is desirable to delay for a short time the
signaling to the applications, until the connection is re-
established, as described in a flowchart in FIG. 90.

In a step 24802 the NE1 25 initiates a communication
with other network element, such as the NE2 26. The
connection from the NE1 25 to the NE2 26 is established in
a step 24804 through a Reliability Proxy program (RP) in
each of the NE1 25 and the NE2 26 (if such an RP exists).
If the RP does not exist in the NE1 25, then it can be
configured to use an external device as a Reliability Proxy
(RP). If the RP does not exist in the NE2 26, then the NE1
25 requests an RP from the reliability proxy network server,
and communicates with it, instead of communicating
directly with the NE2 26, where the RP will proxy the
messages to the NE2 26 so that effectively the NE1 25 is
communicating with the NE2 26.

The connection between the RPs may be disconnected as
determined in a step 24810 (whether the RPs are within the
NE1 25 and the NE2 26, or external to them). If the
connection was disconnected, then in a step 24812 the
reliability proxies hold the connection between them and the
operating system that they are acting as a proxy for, for a set
short amount of time that it would take to re-connect the
broken connection in a reasonable scenario (e.g., 200 ms).
Holding the connection may be performed in a way similar
to the virtual application gateway described in FIG. 51.
During the period that the connection to the operating
system is held, the RPs try to reconnect with each other in
a step 24814. If the re-connection succeeds within the set
time, then communication resumes without a break from the

10

15

20

25

30

35

40

45

50

55

60

164

operating system perspective. However, if the re-connection
did not succeed in the set amount of time, then the OS is
notified of the disconnection.

The systems and methods herein may use redundant
communication routes (or data paths), that may be based on
standby redundancy, (a.k.a. Backup Redundancy), where
one of the data paths or the associated hardware is consid-
ered as a primary unit, and the other data path (or the
associated hardware) is considered as the secondary unit,
serving as back up to the primary unit. The secondary unit
typically does not monitor the system, but is there just as a
spare. The standby unit is not usually kept in sync with the
primary unit, so it must reconcile its input and output signals
on the takeover of the communication. This approach does
lend itself to give a “bump” on transfer, meaning the
secondary operation may not be coordinated with the last
system state of the primary unit. Such mechanism may
require a watchdog, which monitors the system to decide
when a switchover condition is met, and command the
system to switch control to the standby unit. Standby redun-
dancy configurations commonly employ two basic types,
namely ‘Cold Standby’ and ‘Hot Standby’.

In a cold standby scheme, the secondary unit is either
powered off or otherwise non-active in the system operation,
thus preserving the reliability of the unit. The drawback of
this design is that the downtime is greater than in hot
standby, because the standby unit needs to be powered up or
activated, and brought online into a known state.

In a hot standby scheme, the secondary unit is powered up
or otherwise kept operational, and can optionally monitor
the system. The secondary unit may serve as the watchdog
and/or voter to decide when to switch over, thus eliminating
the need for an additional hardware for this job. This design
does not preserve the reliability of the standby unit as well
as the cold standby design. However, it shortens the down-
time, which in turn increases the availability of the system.
Some flavors of Hot Standby are similar to Dual Modular
Redundancy (DMR) or Parallel Redundancy. The main
difference between Hot Standby and DMR is how tightly the
primary and the secondary are synchronized. DMR com-
pletely synchronizes the primary and secondary units.

While a redundancy of two was exampled above, where
two data paths and two hardware devices were used, a
redundancy involving three or more data paths or systems
may be equally used. The term ‘N” Modular Redundancy,
(ak.a. Parallel Redundancy) refers to the approach of having
multiply units or data paths running in parallel. All units are
highly synchronized and receive the same input information
at the same time. Their output values are then compared and
a voter decides which output values should be used. This
model easily provides bumpless switchovers. This model
typically has faster switchover times than Hot Standby
models, thus the system availability is very high, but
because all the units are powered up and actively engaged
with the system operation, the system is at more risk of
encountering a common mode failure across all the units.

Deciding which unit is correct can be challenging if only
two units are used. If more than two units are used, the
problem is simpler, usually the majority wins or the two that
agree win. In N Modular Redundancy, there are three main
typologies: Dual Modular Redundancy, Triple Modular
Redundancy, and Quadruple Redundancy. The Quadruple
Modular Redundancy (QMR) is fundamentally similar to the
TMR but using four units instead of three to increase the
reliability. The obvious drawback is the 4x increase in
system cost.

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
222 of 228

US 10,469,614 B2

165

Dual Modular Redundancy (DMR) uses two functional
equivalent units, thus either can control or support the
system operation. The most challenging aspect of DMR is
determining when to switch over to the secondary unit.
Because both units are monitoring the application, a mecha-
nism is needed to decide what to do if they disagree. Either
a tiebreaker vote or simply the secondary unit may be
designated as the default winner, assuming it is more trust-
worthy than the primary unit. Triple Modular Redundancy
(TMR) uses three functionally equivalent units to provide a
redundant backup. This approach is very common in aero-
space applications where the cost of failure is extremely
high. TMR is more reliable than DMR due to two main
aspects. The most obvious reason is that two “standby” units
are used instead of just one. The other reason is that in a
technique called diversity platforms or diversity program-
ming may be applied. In this technique, different software or
hardware platforms are used on the redundant systems to
prevent common mode failure. The voter decides which unit
will actively control the application. With TMR, the decision
of which system to trust is made democratically and the
majority rules. If three different answers are obtained, the
voter must decide which system to trust or shut down the
entire system, thus the switchover decision is straightfor-
ward and fast.

Another redundancy topology is 1:N Redundancy, where
a single backup is used for multiple systems, and this backup
is able to function in the place of any single one of the active
systems. This technique offers redundancy at a much lower
cost than the other models by using one standby unit for
several primary units. This approach only works well when
the primary units all have very similar functions, thus
allowing the standby to back up any of the primary units if
one of them fails. While the redundant data paths have been
exampled with regard to the added reliability and availabil-
ity, redundant data paths may as well be used in order to
provide higher aggregated data rate, allowing for faster
response and faster transfer of data over the multiple data
paths.

A client device may connect to one of multiple sources for
fetching data therefrom. The client device may estimate in
advance the Bandwidth (BW) and Round Trip Time (RTT)
relating to a connection to each of the sources, in order to
estimate the best source to use. Further, a client device may
use several available peer devices for loading chunks there-
from. A chunk may, include, for example, 16 KB of data.
Assuming that there are two peers devices, designated as P1
and P2, respectively associated with the following BW/RTT
times: P1_BW=2,000 Kb/s P1_RTT=30 ms and P2_BW=4,
000 Kb/s P2_RTT=70 ms, then the estimated time for a
transaction using P1 would be 30 ms+16,000%8/2,000,
000=30 ms+64 ms=94 ms, whereas a transaction using P2
would be 60 ms+16,000%8/4,000,000=70 ms+32 ms=102
ms. In such a case, it would be beneficial for the client device
to select and use P1. Other examples of such networks
include an HTTP client that may access two different web
servers for obtaining a certain URL, such as the original web
server, and a CDN storing the URL content. However, the
client device may not have previously (or lately) commu-
nicated with a source, and thus may not possess the BW and
the RTT data needed for the evaluation. In such a case, it
would be beneficial to have an algorithm for estimating
BT/RTT with the source.

FIG. 91 shows a network that includes a client device 2
and four available sources 20802, 20804, 20806, and 20808,
as well as a database 20810 in the client device 2 that keeps
track of the IPs, BW and RTTs of the various sources that

25

30

40

45

166

were previously communicated with. This database 20810
may also include the time of the last connection, as well as
other data. The database 20810 may sort the sources accord-
ing to their respective IPs, such that if a source_1 is shown
in the table (representing the database 20810) in a column
that is left to a source_2 related column, then necessarily the
IP of source_1 is smaller than the IP of source_2.

In the example shown in FIG. 91, the Client 2 has
previously connected with the source_1 20802 and with the
source_4 20808, and hence stores in the database 20810 the
BW and RTT for these two sources. The Client 2 may
require evaluating the BW and RTT to source_2 20804, in
order to determine whether to use it, or to seek for an
alternative source (or not to communicate at all).

In such a case, the client needs to assess the BW and RTT
of'the source_2. A good estimation (or a guess) may assume
that the values of the BW and RTT of the source 2 are
between the values of BW and RTT of source 1 and
source_4, which are the sources of either side of the
source_2 (in terms of IP address), based on the information
stored in the database 20810. The estimated values of the
source_2 related BW and RTT might be derived in various
ways. For example, using proportional estimation, so that
when the BW and RTT of source 1 are respectively BW1 and
RTT1, for source 4 they are respectively BW4 and RTT4,
and for source 2 they are respectively BW2 and RTT2, then
BW2 and RTT2 can be calculated by their relative IP
distance from BW1 and BW4 and between RTT1 and RTT4.
Other ways to calculate can be a regular average, such as
BW2 =(BW1+BW4)/2.

Alternatively or in addition, the database 20810 may
reside on a server on the network, and thus a client device
may request and fetch therefrom information about connect-
ing to various sources, even those that it has not previously
or lately connected with, based on connections with other
client devices that have communicated with it and logged
their results to this networked database.

FIG. 92 shows a flowchart for estimating a source related
BW and RTT. In a step 21002, the client device is main-
taining a database 20810 of network elements that it has
communicated with, where for each of these network ele-
ments the associated BW and RTT of the connection, and
optionally the time of a connection for each, is stored. In the
database 20810, the network elements are sorted by their IP
distance from the client device, where the IP distance is the
difference between the IP of the source and the IP of the
client. The client device is requesting in a step 21004 to
communicate with a source (source_x), and thus first
assesses the BW and RTT that relates to the source_x. In a
step 21012, it is checked whether relevant information about
the BW and RTT to source_x already exists in the database
20810. It is noted that this database may be local—in the
client device, or available via a network and thus accessible
by multiple clients. If the source_x entry exists in the
database, then these stored values of the BW and the RTT
are assumed for the source_x. If not, then the client gets
information from the database about the BW and RTT for the
two sources that are associated with IP addresses on either
side, such as a lower one and a higher one, of the source_x
(in terms of IP distance). The client device uses these two
data points to assess the BW and RTT, using any of a variety
of methods, such as using a regular average or a weighted
average.

A large database may be used to store data relating to the
connections characteristics (such as BW and RTT) to vari-
ous network elements. Over time this data accumulates, and
may be reduced by storing only valuable information, as

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
223 of 228

US 10,469,614 B2

167

shown in a flowchart FIG. 93, describing a method for
storing only the data pertaining to certain network elements,
which are indicative of other network elements in their
vicinity.

The system initializes in a step 21202, when the system
starts for the first time, before the database is initialized. As
part of an initialization process, a database is created, with
entries that signify logarithmic IP distances from the local
network element. Thus, a first entry will be for an IP_dist=1,
a second for an IP_dist=2, a third for an IP_dist=4, a fourth
for an IP_dist=8, etc., until the farthest IP distance possible
in the network that the local network element is operating in
(for an IPv4 network example, the smallest IP address is
0.0.0.0 and the largest address is 255.255.255.255, the
largest IP distance is half of the difference between these two
addresses).

In a step 21204, it is checked whether the database is
accessed for reading or writing. The database is accessed for
reading when a program requests the estimated BW & RTT
between the local network element (associated with IP that
is designated as a HOST_IP), and a certain network element
to which this local network element is considering to com-
municate with (associated with IP that is designated as
IP_NEW). The database is accessed for writing when the
local network element has completed a communication
session to another network element, or otherwise found out
information about the BW & RTT to that network element
in other ways, and requests to write the newly learned data
(NEW_BW, NEW_RTT) to the database so that the system
can make later better assessments of the BW & RTT.

Next, the IP distance (IP_DISTANCE) is calculated in a
step 21206 between the HOST_IP to the IP_NEW by finding
the number of IPs that are between the HOST IP and the
IP_NEW. Note that in the case of using IP distance, this
method considers that the IP addresses are ‘connected at the
edges’, meaning that the first address (0.0.0.0 in IPv4) is 1
IP address away from the last address (255.255.255.255 in
1Pv4), and thus there are two different IP distances between
each 2 points. The IP_DISTANCE is calculated as the
minimum between these two distances. In a step 21208, the
logarithmic distance (DIST) from HOST_IP to the NEW_IP
is calculated. The DIST is calculated as the Round down
(log_b2(IP_DISTANCE)—where the rounding down the
log (in base 2) of the IP_DISTANCE between HOST_IP and
IP_NEW. If the database action was for a READ action, then
in a step 21212 the BW & RTT are read from the entry
[DIST] of the database. If the database action was for a
WRITE action, then in a step 21214 the NEW_BW &
NEW_RTT are written to the entry [DIST]. Note that the
NEW_BW & NEW_RTT may also be written to the data-
base in other methods, in order to keep track also of
historical data. For example, the NEW_BW & NEW_RTT
may be averaged in with the other data samples (by keeping
the latest average and the number of samples in the data-
base), or in any other similar methods.

When network elements use BW & RTT values from the
tables, they could benefit from ‘teaching’ each other about
the information they already have about BW & RTT
between them and other network elements. FIG. 94 is a
flowchart showing a method where network elements can
share BW & RTT information so that a network element that
wishes to communicate with a network element that it has
not recently communicate with, may assess the BW & RTT
to it by learning from the experience of other network
elements that have recently communicated with that network
element. The method starts with scheduling an update of
other network elements in a step 21404. The scheduling can

10

15

20

25

30

35

40

45

50

55

60

65

168

be set to either happen at constant time intervals, when the
local host is idle, when both the local host and other network
element to be updated are idle, or when finished communi-
cating with other network element. If the scheduled event of
updating other network elements with the table from the
local network element, then a list is created in a step 21408
of which of the network elements to update. This can be all
the network elements that have been recently communicated
with, or a central server that will be updated and update other
network elements, or by getting a list from such a central
server. The BW & RTT of this local host are then commu-
nicated to the elements in this list.

In a step 21410 the local host receives a BW & RTT table
(UPDATE_DB) from a different network element associated
with an IP that is IP_ELEMENT. Then, for each non-empty
entry in the UPDATE_DB (entry marked as ‘E’), the fol-
lowing set of actions is performed: First, in a step 21414 the
IP of the network element that provided the UPDATE_DB
(IP_ELEMENT) is looked up in the local network element
database, and the resulting BW and RTT are stored in
memory as BW_ELEMENT and RTT_ELEMENT (these
are the BW and RTT between the local network element and
the network element that is providing the UPDATE_DB).
Then, in a step 21416, the BW & RTT in entry ‘E’ are stored
in memory as BW_E and RTT_E. In a step 21418, the IP
distance from the network element to the ‘E’ associated IP
is calculated and stored in the data base as IP_DIST_E. In
a step 21420, the local database entry for the IP distance of
(IP_ELEMENT_DIST+IP_DIST_E) is updated where the
BW value receives the value of BW_HOST+BW_E and the
RTT wvalue receives the value of RTT_HOST+RTT_E.

The term ‘network element’ (or ‘element’) is used herein
to include, but not limited to, a tunnel-based client device
(such as the client device #1 31a), a tunnel-based accelera-
tion server (such as the acceleration server 32), a tunnel
device (such as the tunnel device #1 33a), a peer-based client
device (such as the client device #1 31a), an agent device
(such as the agent device #1 103a), a peer device (such as
the peer device #1 102a), a peer-based acceleration server
(such as the acceleration server 202), or a data server (such
as the data server #1 22a). The terms ‘chunk’ and ‘slice’ are
interchangeably used herein to include, but not limited to, a
part of, or the entire of, a content. Any memory, storage,
database, or cache mentioned herein may consist of, com-
prise, use, or be included in, the local cache as described in
U.S. Pat. No. 8,135,912 to the Shribman et al., entitled:
“System and Method of Increasing Cache Size”.

The steps described herein may be sequential, and per-
formed in the described order. For example, in a case where
a step is performed in response to another step, or upon
completion of another step, the steps are executed one after
the other. However, in case where two or more steps are not
explicitly described as being sequentially executed, these
steps may be executed in any order, or may be simultane-
ously performed. Two or more steps may be executed by two
different network elements, or in the same network element,
and may be executed in parallel using multiprocessing or
multitasking.

A tangible machine-readable medium (such as a storage)
may have a set of instructions detailing part (or all) of the
methods and steps described herein stored thereon, so that
when executed by one or more processors, may cause the
one or more processors to perform part of, or all of, the
methods and steps described herein. Any of the network
elements may be a computing device that comprises a
processor and a computer-readable memory (or any other
tangible machine-readable medium), and the computer-read-

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
224 of 228

US 10,469,614 B2

169

able memory may comprise computer-readable instructions
such that, when read by the processor, the instructions
causes the processor to perform the one or more of the
methods or steps described herein.

Any device or network element herein may comprise,
consists of, or include a Personal Computer (PC), a desktop
computer, a mobile computer, a laptop computer, a notebook
computer, a tablet computer, a server computer, a handheld
computer, a handheld device, a Personal Digital Assistant

170

attached, sharing peripheral hardware connection (such as a
monitor, printer, keyboard and memory), being part of a
single package or mounted in a single enclosure (or any
other physical collocating), sharing a communication port,
or used or controlled with the same software or hardware.
The term “integration” herein is used herein to include as
applicable, but not limited to, a software integration, a
hardware integration, or any combination thereof.

Any networking protocol may be utilized for exchanging

(PDA) device, a cellular handset, a handheld PDA device, an 10 information between the network elements (e.g., clients,
on-board device, an off-board device, a hybrid device, a tunnels, peers, servers) within the network (such as the
vehicular device, a non-vehicular device, a mobile or por- Internet). For example, it is contemplated that communica-
table device, a non-mobile or a non-portable device. Further, tions can be performed using TCP/IP. Generally, HTTP and
any device or network element herein may comprise, consist HTTPS are utilized on top of TCP/IP as the message
of, or include a major appliance (white goods) and may be 15 transport envelope. These two protocols are able to deal with
an air conditioner, dishwasher, clothes dryer, drying cabinet, firewall technology better than other message management
freezer, refrigerator, kitchen stove, water heater, washing techniques. However, partners may choose to use a message-
machine, trash compactor, microwave oven and induction queuing system instead of HTTP and HTTPS if greater
cooker. The appliance may similarly be a ‘small” appliance communications reliability is needed. A non-limiting
such as TV set, CD or DVD player, camcorder, still camera, 20 example of a message queuing system is IBM’s MQ-Series
clock, alarm clock, video game console, HiFi or home or the Microsoft Message Queue (MSMQ). The system
cinema, telephone or answering machine. described hereinafter is suited for both HITP/HTTPS, mes-
The term “host” or ‘network host’ is used herein to include, sage-queuing systems, and other communications transport
but not limited to, a computer or other device connected to protocol technologies. Furthermore, depending on the dif-
a computer network, such as the Internet. A network host 25 fering business and technical requirements of the various
may offer information resources, services, and applications partners within the network, the physical network may
to users or other nodes on the network, and is typically embrace and utilize multiple communication protocol tech-
assigned a network layer host address. Computers partici- nologies.
pating in networks that use the Internet Protocol Suite may The term “port” refers to a place of access to a device,
also be called IP hosts, and computers participating in the 30 electrical circuit or network, where energy or signal may be
Internet are called Internet hosts, or Internet nodes. Internet supplied or withdrawn. The term “interface” of a networked
hosts and other IP hosts have one or more IP addresses device refers to a physical interface, a logical interface (e.g.,
assigned to their network interfaces. The addresses are a portion of a physical interface or sometimes referred to in
configured either manually by an administrator, automati- the industry as a sub-interface—for example, such as, but
cally at start-up by means of the Dynamic Host Configura- 35 not limited to a particular VLAN associated with a network
tion Protocol (DHCP), or by stateless address autoconfigu- interface), and/or a virtual interface (e.g., traffic grouped
ration methods. Network hosts that participate in together based on some characteristic—for example, such
applications that use the client-server model of computing, as, but not limited to, a tunnel interface). As used herein, the
are classified as server or client systems. Network hosts may term “independent” relating to two (or more) elements,
also function as nodes in peer-to-peer applications, in which 40 processes, or functionalities, refers to a scenario where one
all nodes share and consume resources in an equipotent does not affect nor preclude the other. For example, inde-
manner. pendent communication such as over a pair of independent
The arrangements and methods described herein may be data routes means that communication over one data route
implemented using hardware, software or a combination of does not affect nor preclude the communication over the
both. The term “software integration” or any other reference 45 other data routes.
to the integration of two programs or processes herein, is Some embodiments may be used in conjunction with
used herein to include, but not limited to, software compo- various devices, network elements, and systems, for
nents (e.g., programs, modules, functions, processes, etc.) example, a Personal Computer (PC), a desktop computer, a
that are (directly or via another component) combined, mobile computer, a laptop computer, a notebook computer,
working or functioning together or form a whole, commonly 350 a tablet computer, a server computer, a handheld computer,
for sharing a common purpose or set of objectives. Such a handheld device, a Personal Digital Assistant (PDA)
software integration can take the form of sharing the same device, a cellular handset, a handheld PDA device, an
program code, exchanging data, being managed by the same on-board device, an off-board device, a hybrid device, a
manager program, executed by the same processor, stored on vehicular device, a non-vehicular device, a mobile or por-
the same medium, sharing the same GUI or other user 55 table device, a non-mobile or non-portable device, a wireless
interface, sharing peripheral hardware (such as a monitor, communication station, a wireless communication device, a
printer, keyboard and memory), sharing data or a database, wireless Access Point (AP), a wired or wireless router, a
or being part of a single package. The term “hardware wired or wireless modem, a wired or wireless network, a
integration” or integration of hardware components is used Local Area Network (LAN), a Wireless LAN (WLAN), a
herein to include, but not limited to, hardware components 60 Metropolitan Area Network (MAN), a Wireless MAN
that are (directly or via another component) combined, (WMAN), a Wide Area Network (WAN), a Wireless WAN
working or functioning together or form a whole, commonly (WWAN), a Personal Area Network (PAN), a Wireless PAN
for sharing a common purpose or set of objectives. Such (WPAN), devices and/or networks operating substantially in
hardware integration can take the form of sharing the same accordance with existing IEEE 802.11, 802.11a, 802.11b,
power source (or power supply) or sharing other resources, 65 802.11g, 802.11k, 802.11n, 802.11r, 802.16, 802.16d,

exchanging data or control (e.g., by communicating), being
managed by the same manager, physically connected or

802.16e, 802.20, 802.21 standards and/or future versions
and/or derivatives of the above standards, units and/or

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
225 of 228

US 10,469,614 B2

171

devices which are part of the above networks, one way
and/or two-way radio communication systems, cellular
radio-telephone communication systems, a cellular tele-
phone, a wireless telephone, a Personal Communication
Systems (PCS) device, a PDA device which incorporates a
wireless communication device, a mobile or portable Global
Positioning System (GPS) device, a device which incorpo-
rates a GPS receiver or transceiver or chip, a device which
incorporates an RFID element or chip, a Multiple Input

172

in other embodiments, unless this disables the embodiment
or a sequence is explicitly or implicitly required (e.g., for a
sequence of reading the value, processing the value—the
value must be obtained prior to processing it, although some
of the associated processing may be performed prior to,
concurrently with, and/or after the read operation). Where
certain process steps are described in a particular order or
where alphabetic and/or alphanumeric labels are used to
identify certain steps, the embodiments are not limited to

Multiple Output (MIMO) transceiver or device, a Single 10 any particular order of carrying out such steps. In particular,
Input Multiple Output (SIMO) transceiver or device, a the labels are used merely for convenient identification of
Multiple Input Single Output (MISO) transceiver or device, steps, and are not intended to imply, specify or require a
a device having one or more internal antennas and/or particular order for carrying out such steps. Furthermore,
external antennas, Digital Video Broadcast (DVB) devices other embodiments may use more or less steps than those
or systems, multi-standard radio devices or systems, a wired 15 discussed herein. They may also be practiced in distributed
or wireless handheld device (e.g., BlackBerry, Palm Treo), computing environments where tasks are performed by
a Wireless Application Protocol (WAP) device, or the like. remote processing devices that are linked through a com-
As used herein, the terms “program”, “programmable”, munications network. In a distributed computing environ-
and “computer program” are meant to include any sequence ment, program modules may be located in both local and
or human or machine cognizable steps which perform a 20 remote memory storage devices.
function. Such programs are not inherently related to any The corresponding structures, materials, acts, and equiva-
particular computer or other apparatus, and may be rendered lents of all means plus function elements in the claims below
in virtually any programming language or environment are intended to include any structure, or material, for per-
including, for example, C/C++, Fortran, COBOL, PASCAL, forming the function in combination with other claimed
assembly language, markup languages (e.g., HITML, SGML, 25 elements as specifically claimed. The description of the
XML, VoXML), and the likes, as well as object-oriented present invention has been presented for purposes of illus-
environments such as the Common Object Request Broker tration and description, but is not intended to be exhaustive
Architecture (CORBA), Java™ (including J2ME, Java or limited to the invention in the form disclosed. The present
Beans, etc.) and the likes, as well as in firmware or other invention should not be considered limited to the particular
implementations. Generally, program modules include rou- 30 embodiments described above, but rather should be under-
tines, programs, objects, components, data structures, etc., stood to cover all aspects of the invention as fairly set out in
that performs particular tasks or implement particular the attached claims. Various modifications, equivalent pro-
abstract data types. The term “application program” (also cesses, as well as numerous structures to which the present
referred to as ‘application’, ‘software application’, or ‘appli- invention may be applicable, will be readily apparent to
cation software’) is used herein to include, but not limited to, 35 those skilled in the art to which the present invention is
a computer program designed to perform a specific function directed upon review of the present disclosure.
directly for a user, or for another application program. All publications, standards, patents, and patent applica-
Application software is typically a set of one or more tions cited in this specification are incorporated herein by
programs designed to carry out operations for a specific reference as if each individual publication, patent, or patent
application. Commonly, an application software is depen- 40 application were specifically and individually indicated to be
dent on system software that manages and integrates com- incorporated by reference and set forth in its entirety herein.
puter capabilities, but does not directly perform tasks that
benefit the user, such as an operating system, to execute. The invention claimed is:
Examples of types of application software may include 1. A method for use with a resource associated with a
accounting software, media players, and office suites. Appli- 45 criterion in a client device that communicates with a first
cations may be bundled with the computer and its system server over the Internet, the client device is identified in the
software, or may be published separately, and further may be Internet using a first identifier and is associated with first and
developed and coded as a proprietary, or as an open-source, second state according to a utilization of the resource, the
software. Most applications are designed to help people method comprising:
perform an activity. 50 initiating, by the client device, communication with the
The terms “task” and “process” are used generically first server over the Internet in response to connecting
herein to describe any type of running programs, including, to the Internet, the communication comprises sending,
but not limited to a computer process, task, thread, executing by the client device, the first identifier to the first server
application, operating system, user process, device driver, over the Internet;
native code, machine or other language, etc., and can be 55 when connected to the Internet, periodically or continu-
interactive and/or non-interactive, executing locally and/or ously determining whether the resource utilization sat-
remotely, executing in foreground and/or background, isfies the criterion;
executing in the user and/or operating system address responsive to the determining that the utilization of the
spaces, a routine of a library and/or standalone application, resource satisfies the criterion, shifting to the first state
and is not limited to any particular memory partitioning 60 or staying in the first state;
technique. The steps, connections, and processing of signals responsive to the determining that the utilization of the
and information illustrated in the figures, including, but not resource does not satisty the criterion, shifting to the
limited to any block and flow diagrams and message second state or staying in the second state;
sequence charts, may typically be performed in the same or responsive to being in the first state, receiving, by the
in a different serial or parallel ordering and/or by different 65 client device, a request from the first server; and

components and/or processes, threads, etc., and/or over
different connections and be combined with other functions

performing a task, by the client device, in response to the
receiving of the request from the first server,

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
226 of 228

US 10,469,614 B2

173

wherein the method is further configured for fetching over
the Internet a first content identified by a first content
identifier from a web server that is distinct from the first
server, and the task comprising:

receiving, by the client device, the first content identifier
from the first server;

sending, by the client device, the first content identifier to
the web server;

receiving, by the client device, the first content from the

174

16. The method according to claim 15, wherein the mobile
device comprises a smartphone.

17. The method according to claim 1, for use with a set
threshold value, and wherein the criterion is satisfied when
the resource utilization is above or below the threshold.

18. The method according to claim 1, wherein the
resource comprises, or consists of, a hardware component in
the client device.

19. The method according to claim 18, wherein the

web server in response to the sending of the first 19 hardware component comprises, or consists of, a processor

content identifier; and or Central Processing Unit (CPU) operation in the client
sending, by the client device, the received first content to device.

the first server. 20. The method according to claim 19, wherein the

2. The method according to claim 1, wherein the deter- . resource utilization is based on, or comprises, the processor
mining is performed by the client device. or CPU time of executing one or more threads or processes,

3. The method according to claim 1, further comprising wherein the resource utilization is based on, or comprises,
periodically or continuously sending, by the client device, the processor or CPU idling time, or wherein the resource
the resource utilization to the first server, and wherein the utilization is based on, or comprises, the processor or CPU
determining is performed by the first server in response to a 20 executing a system idle process.
receiving, by the first server, the resource utilization from 21. The method according to claim 18, wherein the
the client device. hardware component comprises, or consists of, a memory in

4. The method according to claim 1, wherein the com- the client device, and wherein the resource utilization is
munication by the client device with the first server is based based on, or comprises, an amount of used or unused
on, or is according to, TCP/IP protocol or connection. 25 location or space of the memory.

5. The method according to claim 4, further comprising 22. The method according to claim 1, wherein the
establishing a connection with the first server, and wherein regource comprises, or consists of, input or output capability.
the communication with the ﬁrst server is o.Ver.the estab- 23. The method according to claim 22, wherein the
hs.hed connection, and wherein the communicating b.y the resource comprises, or consists of, communication band-
client d?VIC? with th,e first server uses TCE, an,d wherein the 30 o qih 6 communication with another device over the Inter-
connection is established by performing ‘Active OPEN’ or net.

Passive OPEN'. . . . 24. The method according to claim 23, wherein the

6. The method according to claim 5, wherein the com- . . L
munication by the client device with the first server is based fesource Comprises, or con51.sts of, communication band-
on, or is according to, a Virtual Private Network (VPN) and 35 width of commuplcatlon with thf? .ﬁrs.t server over the
the established connection is using a tunneling protocol. Interngt, or wherein the resource utilization is based on, or

7. The method according to claim 1, wherein the steps are ~ according to, IETF RFC 2914. o
sequentially executed. 25. The method according to claim 1, further comprising

8. The method according to claim 1, wherein the first ~ periodically sending, by the client device, a message that
identifier comprises an IP address that is in IPv4 or IPv6 40 comprises a status of the client device, or is in response to
form. the status of the client device.

9. The method according to claim 1, wherein the client 26. The method according to claim 25, wherein the status
device is further storing, operating, or using, a client oper- is associated with being in the first or second state, and
ating system. wherein the message is sent over the Internet to the first

10. The method according to claim 9, wherein the client 45 server.
operating system consists or, comprises of, or is based on, 27. The method according to claim 25, wherein the
one out of Microsoft Windows 7, Microsoft Windows XP, message comprises, or is based on, an ‘heartbeat” message,
Microsoft Windows 8, Microsoft Windows 8.1, Linux, and and wherein the time period between multiple messages sent
Google Chrome OS. is at least 10 milliseconds, 20 milliseconds, 30 milliseconds,

11. The method according to claim 9, wherein the client 50 50 milliseconds, 100 milliseconds, 1 second, 2 seconds, 3
operating system is a mobile operating system. seconds, 5 seconds, 10 seconds, 20 seconds, 30 seconds, 50

12. The method according to claim 11, wherein the mobile seconds, or 100 seconds, 1 minute, 2 minutes, 3 minutes,
operating system is one out of Android version 2.2 (Froyo), minutes 5, or 10 minutes.

Android version 2.3 (Gingerbread), Android version 4.0 (Ice 28. The method according to claim 1, further comprising
Cream Sandwich), Android Version 4.2 (Jelly Bean), 55 sending, by the client device, a physical geographical loca-
Android version 4.4 (KitKat)), Apple iOS version 3, Apple tion to the first server, and wherein the physical geographical
i0S version 4, Apple i0S version 5, Apple iOS version 6, location corresponds to the actual physical geographical
Apple i0S version 7, Microsoft Windows® Phone version 7, location of the client device.

Microsoft Windows® Phone version 8, Microsoft Win- 29. The method according to claim 1, wherein the web
dows® Phone version 9, and Blackberry® operating system. 60 server uses HyperText Transfer Protocol (HTTP) and

13. The method according to claim 1, further comprising responds to HTTP requests via the Internet, and wherein the
executing an application, and wherein the application com- sending of the first content identifier to the web server
prises a web browser. comprises a HTTP request, or wherein the communication

14. The method according to claim 13, wherein the web with the web server is based on, or uses, HTTP persistent
browser is a mobile web browser. 65 connection, and wherein the first content includes, consists

15. The method according to claim 1, wherein the client
device comprises, or consists of, a portable or mobile device.

of, or comprises, a part or whole of files, text, numbers,
audio, voice, multimedia, video, images, music, or computer

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
227 of 228

US 10,469,614 B2
175 176

program, or wherein the first content includes, consists of, or
comprises, a part of, or a whole of, a web-site page.

koK ok ok %

The Data Company Technologies Inc. v. Bright Data Ltd.
IPR2022-00135, EX. 2002
228 of 228

