US 8,639,267 B2

73

nology. While WDR 1100 contains field 1100e, field 11004
provides a standard and generic measurement for evaluating
WDRs from different location technologies, without concern
for the location technology used. The highest confidence
entries to a WDR queue 22 are used regardless of which
location technology contributed to the WDR queue 22.

LBX Configuration

FIG. 12 depicts a flowchart for describing an embodiment
of MS initialization processing. Depending on the MS, there
are many embodiments of processing when the MS is pow-
ered on, started, restarted, rebooted, activated, enabled, or the
like. FIG. 12 describes the blocks of processing relevant to the
present disclosure as part of that initialization processing. Itis
recommended to first understand discussions of FIG. 19 for
knowing threads involved, and variables thereof. Initializa-
tion processing starts at block 1202 and continues to block
1204 where the MS Basic Input Output System (BIOS) is
initialized appropriately, then to block 1206 where other char-
acter 32 processing is initialized, and then to block 1208 to
check if NTP is enabled for this MS. Block 1206 may start the
preferred number of listen/receive threads for feeding queue
26 and the preferred number of send threads for sending data
inserted to queue 24, in particular when transmitting CK 1304
embedded in usual data 1302 and receiving CK 1304 or 1314
embedded in usual data 1302 or 1312, respectively. The num-
ber of threads started should be optimal for parallel process-
ing across applicable channel(s). In this case, other character
32 threads are appropriately altered for embedded CK pro-
cessing (sending at first opportune outbound transmission;
receiving in usual inbound transmission).

If block 1208 determines NTP is enabled (as defaulted or
last set by a user (i.e. persistent variable)), then block 1210
initializes NTP appropriately and processing continues to
block 1212. If block 1208 determines NTP was not enabled,
then processing continues to block 1212. Block 1210 embodi-
ments are well known in the art of NTP implementations (also
see block 1626). Block 1210 may cause the starting of
thread(s) associated with NTP. In some embodiments, NTP
use is assumed in the MS. In other embodiments, appropriate
NTP use is not available to the MS. Depending on the NTP
embodiment, thread(s) may pull time synchronization infor-
mation, or may listen for and receive pushed time informa-
tion. Resources 38 (or other MS local resource) provides
interface to an MS clock for referencing, maintaining, and
generating date/time stamps at the MS. After block 1210
processing, the MS clock is synchronized to NTP. Because of
initialization of the MS in FIG. 12, block 1210 may rely on a
connected service to initially get the startup synchronized
NTP date/time. MS NTP processing will ensure the NTP
enabled/disabled variable is dynamically set as is appropriate
(using semaphore access) because an MS may not have con-
tinuous clock source access during travel when needed for
resynchronization. If the MS does not have access to a clock
source when needed, the NTP use variable is disabled. When
the MS has (or again gets) access to a needed clock source,
then the NTP use variable is enabled.

Thereafter, block 1212 creates shared memory to maintain
data shared between processes/threads, block 1214 initializes
persistent data to shared memory, block 1216 initializes any
non-persistent data to shared memory (e.g. some statistics
14), block 1218 creates system queues, and block 1220 cre-
ates semaphore(s) used to ensure synchronous access by con-
current threads to data in shared memory, before continuing
to block 1222. Shared memory data accesses appropriately
utilize semaphore lock windows (semaphore(s) created at

40

45

74

block 1220) for proper access. In one embodiment, block
1220 creates a single semaphore for all shared memory
accesses, but this can deteriorate performance of threads
accessing unrelated data. In the preferred embodiment, there
is a semaphore for each reasonable set of data of shared
memory so all threads are fully executing whenever possible.
Persistent data is that data which maintains values during no
power, for example as stored to persistent storage 60. This
may include data 8 (including permissions 10, charters 12,
statistics 14, service directory 16), data 20, LBX history 30,
data 36, resources 38, and/or other data. Persistent data pref-
erably includes at least the DLMV (see DLM role(s) list
Variable below), ILMV (see ILM role(s) list Variable below),
process variables 19xx-Max values (19xx=1902, 1912, 1922,
1932, 1942 and 1952 (see FIG. 19 discussions below)) for the
last configured maximum number of threads to run in the
respective process, process variables 19xx-PID values
(19xx=1902, 1912, 1922, 1932, 1942 and 1952 (see FIG. 19
discussions below)) for multi-purpose of: a) holding an Oper-
ating System Process Identifier (i.e. O/S PID) for a process
started; and b) whether or not the respective process was last
enabled (i.e. PID>0) or disabled (i.e. PID <=0), the confi-
dence floor value (see FIG. 14A), the WTV (see Whereabouts
Timeliness Variable (see FIG. 14A)), the NTP use variable
(see FIG. 14A) for whether or not NTP was last set to disabled
or enabled (used at block 1208), and the Source Periodicity
Time Period (SPTP) value (see FIG. 14B). There are reason-
able defaults for each of the persistent data prior to the first use
of MS 2 (e.g. NTP use is disabled, and only becomes enabled
upon a successful enabling of NTP at least one time). Non-
persistent data may include data involved in some regard to
data 8 (and subsets of permissions 10, charters 12, statistics
14, service directory 16), data 20, LBX history 30, data 36,
resources 38, queues, semaphores, etc. Block 1218 creates
queues 22, 24, and 26. Queues 1980 and 1990 are also created
there if required. Queues 1980 and 1990 are not required
when NTP is in use globally by participating data processing
systems. Alternate embodiments may use less queues by
threads sharing a queue and having a queue entry type field
for directing the queue entry to the correct thread. Alternate
embodiments may have additional queues for segregating
entries of a queue disclosed for best possible performance.
Other embodiments incorporate queues figuratively to facili-
tate explanation of interfaces between processing.

All queues disclosed herein are understood to have their
own internally maintained semaphore for queue accesses so
that queue insertion, peeking, accessing, etc uses the inter-
nally maintained semaphore to ensure two or more concur-
rently executing threads do not corrupt or misuse data to any
queue. This is consistent with most operating system queue
interfaces wherein a thread stays blocked (preempted) after
requesting a queue entry until a queue entry appears in the
queue. Also, no threads will collide with another thread when
inserting, peeking, or otherwise accessing the same queue.
Therefore, queues are implicitly semaphore protected. Other
embodiments may use an explicit semaphore protected win-
dow around queue data accessing, in which case those sema-
phore(s) are created at block 1220.

Thereafter, block 1222 checks for any ILM roles currently
enabled for the MS (for example as determined from persis-
tent storage of an IL.M role(s) list Variable (ILMV) preferably
preconfigured for the MS at first use, or configured as last
configured by a user of the MS). ILM roles are maintained to
the ILM role(s) list Variable (ILMV). The ILMV contains one
or more entries for an ILM capability (role), each entry with
a flag indicating whether it is enabled or disabled
(marked=enabled, unmarked=disabled). If block 1222 deter-

APPLE

EXHIBIT 1001 - PAGE 0301



US 8,639,267 B2

75

mines there is at least one ILM role enabled (i.e. as marked by
associated flag), then block 1224 artificially sets the corre-
sponding 19xx-PID variables to a value greater than O for
indicating the process(es) are enabled, and are to be started by
subsequent FIG. 12 initialization processing. The 19xx-PID
will be replaced with the correct Process Identifier (PID)
upon exit from block 1232 after the process is started. Pref-
erably, every MS can have ILM capability. However, a user
may want to (configure) ensure a DLM has no ILM capability
enabled (e.g. or having no list present). In some embodi-
ments, by default, every MS has an unmarked list of ILM
capability maintained to the ILMV for 1) USE DLM REF-
ERENCES and 2) USE ILM REFERENCES. USE DLM
REFERENCES, when enabled (marked) in the ILMV, indi-
cates to allow the MS of FIG. 12 processing to determine its
whereabouts relative remote DLMs. USE ILM REFER-
ENCES, when enabled (marked) in the ILMYV, indicates to
allow the MS of FIG. 12 processing to determine its where-
abouts relative remote ILMs. Having both list items marked
indicates to allow determining MS whereabouts relative
mixed DLMs and ILMs. An alternative embodiment may
include a USE MIXED REFERENCES option for controlling
the MS of FIG. 12 processing to determine its whereabouts
relative mixed DLMs and/or ILMs. Alternative embodiments
will enforce any subset of these options without exposing user
configurations, for example on a MS without any means for
being directly located.

For any of the ILMV roles of USE DLM REFERENCES,
USE ILM REFERENCES, or both, all processes 1902, 1912,
1922, 1932, 1942 and 1952 are preferably started (i.e. 1902-
PID, 1912-PID, 1922-PID, 1932-PID, 1942-PID and 1952-
PID are artificially set at block 1224 to cause subsequent
process startup at block 1232). Characteristics of an antici-
pated LN-expanse (e.g. anticipated location technologies of
participating MSs, MS capabilities, etc) will start a reason-
able subset of those processes with at least process 1912
started. Block 1224 continues to block 1226. If block 1222
determines there are no ILMV role(s) enabled, then block
processing continues to block 1226.

Block 1226 initializes an enumerated process name array
for convenient processing reference of associated process
specific variables described in F1G. 19, and continues to block
1228 where the first member of the set is accessed for subse-
quent processing. The enumerated set of process names has a
prescribed start order for MS architecture 1900. Thereafter, if
block 1230 determines the process identifier (i.e. 19xx-PID
suchthat 19xxis 1902,1912, 1922, 1932, 1942, 1952 ina loop
iteration of blocks 1228 through 1234) is greater than 0 (e.g.
this first iteration of 1952-PID>0 implies it is to be started
here; also implies process 1952 is enabled as used in FIGS.
14A, 28, 29A and 29B), then block 1232 spawns (starts) the
process (e.g. 1952) of FIG. 29A to start execution of subor-
dinate worker thread(s) (e.g. process 1952 thread(s)) and
saves the real PID (Process Identifier) to the PID variable (e.g.
1952-PID) returned by the operating system process spawn
interface. Block 1232 passes as a parameter to the process of
FIG. 29A which process name to start (e.g. 1952), and con-
tinues to block 1234. If block 1230 determines the current
process PID variable (e.g. 1952-PID) is not greater than O (i.e.
not to be started; also implies is disabled as used in FIGS.
14A, 28, 29A and 29B), then processing continues to block
1234. Block 1234 checks if all process names of the enumer-
ated set (pattern of 19xx) have been processed (iterated) by
blocks 1228 through 1234. If block 1234 determines that not
all process names in the set have been processed (iterated),
then processing continues back to block 1228 for handling the
next process name in the set. If block 1234 determines that all

10

15

20

25

30

35

40

45

50

55

60

65

76
process names of the enumerated set were processed, then
block 1236 checks the DLMV (DLM role(s) list Variable).
Blocks 1228 through 1234 iterate every process name of FIG.
19 to make sure that each is started in accordance with non-
zero 19xx-PID variable values at FIG. 12 initialization.

Block 1236 checks for any DLM roles currently enabled
for the MS (for example as determined from persistent stor-
age of a DLM role(s) list Variable (DLMV) preferably pre-
configured for the MS at first use if the MS contains DLM
capability). DLM capability (roles), whether on-board at the
MS, or determined during MS travels (see block 288), is
maintained to the DLM role(s) list Variable (DLMV). The
DLMYV contains one or more entries for a DLM capability
(role), each (role) entry with a flag indicating whether it is
enabled or disabled (marked=enabled, unmarked=disabled).
If block 1236 determines there is at least one DLM role
enabled (i.e. as marked by associated flag), then block 1238
initializes enabled role(s) appropriately and processing con-
tinues to block 1240. Block 1238 may cause the starting of
thread(s) associated with enabled DLM role(s), for DLM
processing above (e.g. FIGS. 2A through 9B). Block 1238
may invoke API(s), enable flag(s), or initialize as is appropri-
ate for DLM processing described above. Such initializations
are well known in the art of prior art DLM capabilities
described above. If block 1236 determines there are no DLM
roles to initialize at the MS, then processing continues to
block 1240. Any of the FIG. 9A technologies are eligible in
the DLMV as determined to be present at the MS and/or as
determined by historical contents of the WDR queue 22 (e.g.
location technology field 1100e with MS ID field 1100q for
this MS) and/or determined by L.BX history 30. Application
Programming Interfaces (APIs) may also be used to deter-
mine MS DLM capability (role(s)) for entry(s) to the DLMV.

Block 1240 completes LBX character initialization, and
FIG. 12 initialization processing terminates thereafter at
block 1242. Depending on what threads were started as part
of'block 1206, Block 1240 may startup the preferred number
of listen/receive threads for feeding queue 26 and the pre-
ferred number of send threads for sending data inserted to
queue 24, in particular when transmitting new data 1302 and
receiving new data 1302 or 1312. The number of threads
started should be optimal for parallel processing across appli-
cable channel(s). Upon encounter of block 1242, the MS is
appropriately operational, and a user at the MS of FIG. 12
processing will have the ability to use the MS and applicable
user interfaces thereof.

With reference now to FIG. 29A, depicted is a flowchart for
describing a preferred embodiment of a process for starting a
specified number of threads in a specified thread pool. FIG.
29A is in itself an O/S process, has a process identifier (PID)
after being started, will contain at least two threads of pro-
cessing after being started, and is generic in being able to take
on the identity of any process name passed to it (e.g. 19xx)
with a parameter (e.g. from block 1232). FIG. 29 A represents
the parent thread of a 19xx process. The FIG. 29A process is
generic for executing any of processes 19xx (i.e. 1902, 1912,
1922, 1932, 1942 and 1952) with the prescribed number of
worker threads using the 19xx-Max configuration (i.e. 1902-
Max, 1912-Max, 1922-Max, 1932-Max, 1942-Max and
1952-Max). FIG. 29 A will stay running until it (first all of its
worker thread(s)) is terminated. FIG. 29A consists of an O/S
Process 19xx with at least a parent thread (main thread) and
one worker thread (or number of worker threads for FIG. 19
processing as determined by 19xx-Max). The parent thread
has purpose to stay running while all worker threads are
running, and to own intelligence for starting worker threads
and terminating the process when all worker threads are ter-

APPLE

EXHIBIT 1001 - PAGE 0302



US 8,639,267 B2

77
minated. The worker threads are started subordinate to the
FIG. 29A process at block 2912 using an O/S start thread
interface.

A 19xx (i.e. 1902, 1912, 1922, 1932, 1942 and 1952) pro-
cess starts at block 2902 and continues to block 2904 where
the parameter passed for which process name to start (i.e. take
on identity of) is determined (e.g. 1952). Thereafter, block
2906 creates a RAM semaphore (i.e. operating system term
for a well performing Random Access Memory (RAM) sema-
phore with scope only within the process (i.e. to all threads of
the process)). The local semaphore name preferably uses the
process name prefix (e.g. 1952-Sem), and is used to synchro-
nize threads within the process. RAM semaphores perform
significantly better than global system semaphores. Alternate
embodiments will have process semaphore(s) created at
block 1220 in advance. Thereafter, block 2908 initializes a
thread counter (e.g. 1952-Ct) to O for counting the number of
worker threads actually started within the 19xx process (e.g.
1952), block 2910 initializes a loop variable J to 0, and block
2912 starts a worker thread (the first one upon first encounter
of'block 2912 for a process) in this process (e.g. process 1902
starts worker thread FIG. 20, . . ., process 1952 starts worker
thread FIG. 26 A—see architecture 1900 description below).

Thereafter, block 2914 increments the loop variable by 1
and block 2916 checks if all prescribed worker threads have
been started. Block 2916 accesses the 19xx-Max (e.g. 1952-
Max) variable from shared memory using a semaphore for
determining the maximum number of threads to start in the
process worker thread pool. If block 2916 determines all
worker threads have been started, then processing continues
to block 2918. If block 2916 determines that not all worker
threads have been started for the process of FIG. 29A, then
processing continues back to block 2912 for starting the next
worker thread. Blocks 2912 through 2916 ensure the 19xx-
Max (e.g. 1952-Max) number of worker threads are started
within the process of FIG. 29A.

Block 2918 waits until all worker threads of blocks 2912
through 2916 have been started, as indicated by the worker
threads themselves. Block 2918 waits until the process 19xx-
Ct variable has been updated to the prescribed 19xx-Max
value by the started worker threads, thereby indicating they
are all up and running. When all worker threads are started
(e.g. 1952-Ct=1952-Max), thereafter block 2920 waits (per-
haps a very long time) until the worker thread count (e.g.
1952-Ct) has been reduced back down to 0 for indicating that
all worker threads have been terminated, for example when
the user gracefully powers off the MS. Block 2920 continues
to block 2922 when all worker threads have been terminated.
Block 2922 sets the shared memory variable for the 19xx
process (e.g. 1952-PID) to 0 using a semaphore for indicating
that the 19xx (e.g. 1952) process is disabled and no longer
running. Thereafter, the 19xx process terminates at block
2924. Waiting at blocks 2918 and 2920 are accomplished in a
variety of well known methods:

Detect signal sent to process by last started (or terminated)

worker thread that thread count is now MAX (or 0); or

Loop on checking the thread count with sleep time between

checks, wherein within the loop there is a check of the
current count (use RAM semaphore to access), and pro-
cessing exits the loop (and block) when the count has
reached the sought value; or

Use of a semaphore for a count variable which causes the

parent thread of FIG. 29A to stay blocked prior to the
count reaching its value, and causes the parent thread to
become cleared (will leave wait block) when the count
reaches its sought value.

10

15

20

25

30

35

40

45

50

55

60

65

78

Starting threads of processing in FIG. 29A has been pre-
sented from a software perspective, but there are hardware/
firmware thread embodiments which may be started appro-
priately to accomplish the same functionality. If the MS
operating system does not have an interface for returning the
PID atblock 1232, then FIG. 29 A can have a block (e.g. 2905)
used to determine its own PID for setting the 19xx-PID vari-
able.

FIGS. 13A through 13C depict an illustration of data pro-
cessing system wireless data transmissions over some wave
spectrum. Embodiments may exist for any of the aforemen-
tioned wave spectrums, and data carried thereon may or may
not be encrypted (e.g. encrypted WDR information). With
reference now to FIG. 13A, a MS, for example a DLM 2004,
sends/broadcasts data such as a data 1302 in a manner well
known to those skilled in the art, for example other character
32 processing data. When a Communications Key (CK) 1304
is embedded within data 1302, data 1302 is considered usual
communications data (e.g. protocol, voice, or any other data
over conventional forward channel, reverse channel, voice
data channel, data transmission channel, or any other prior art
use channel) which has been altered to contain CK 1304. Data
1302 contains a CK 1304 which can be detected, parsed, and
processed when received by another MS or other data pro-
cessing system in the vicinity of the MS (e.g. DLM 200q) as
determined by the maximum range of transmission 1306. CK
1304 permits “piggy-backing” on current transmissions to
accomplish new functionality as disclosed herein. Transmis-
sion from the MS radiate out from it in all directions in a
manner consistent with the wave spectrum used. The radius
1308 represents a first range of signal reception from the MS
200a, perhaps by another MS (not shown). The radius 1310
represents a second range of signal reception from the MS
200a, perhaps by another MS (not shown). The radius 1311
represents a third range of signal reception from the MS 200a,
perhaps by another MS (not shown). The radius 1306 repre-
sents a last and maximum range of signal reception from the
MS 200aq, perhaps by another MS (not shown). MS design for
maximum radius 1306 may take into account the desired
maximum range versus acceptable wave spectrum exposure
health risks for the user of the MS. The time of transmission
from MS 200a to radius 1308 is less than times of transmis-
sion from MS 200a to radiuses 1310, 1311, or 1306. The time
of transmission from MS 200a to radius 1310 is less than
times of transmission from MS 200a to radiuses 1311 or
1306. The time of transmission from MS 2004 to radius 1311
is less than time of transmission from MS 200a to radius
1306.

In another embodiment, data 1302 contains a Communi-
cations Key (CK) 1304 because data 1302 is new transmitted
data in accordance with the present disclosure. Data 1302
purpose is for carrying CK 1304 information for being
detected, parsed, and processed when received by another MS
or other data processing system in the vicinity of the MS (e.g.
DLM 2004) as determined by the maximum range of trans-
mission 1306.

With reference now to FIG. 13B, a MS, for example an
ILM 1000%, sends/broadcasts data such as a data 1302 in a
manner well known to those skilled in the art. Data 1302 and
CK 1304 are as described above for FIG. 13A. Data 1302 or
CK 1304 can be detected, parsed, and processed when
received by another MS or other data processing system in the
vicinity of the MS (e.g. ILM 1000%) as determined by the
maximum range of transmission 1306. Transmission from the
MS radiate out from it in all directions in a manner consistent
with the wave spectrum used, and as described above for FIG.
13A.

APPLE

EXHIBIT 1001 - PAGE 0303



US 8,639,267 B2

79

With reference now to FIG. 13C, aservice or set of services
sends/broadcasts data such as a data packet 1312 in a manner
well known to those skilled in the art, for example to service
other character 32 processing. When a Communications Key
(CK) 1314 is embedded within data 1312, data 1312 is con-
sidered usual communications data (e.g. protocol, voice, or
any other data over conventional forward channel, reverse
channel, voice data channel, data transmission channel, or
any other prior art use channel) which has been altered to
contain CK 1314. Data 1312 contains a CK 1314 which can
be detected, parsed, and processed when received by an MS
or other data processing system in the vicinity of the
service(s) as determined by the maximum range of transmis-
sion 1316. CK 1314 permits “piggy-backing” on current
transmissions to accomplish new functionality as disclosed
herein. Transmissions radiate out in all directions in a manner
consistent with the wave spectrum used, and data carried
thereon may or may not be encrypted (e.g. encrypted WDR
information). The radius 1318 represents a first range of sig-
nal reception from the service (e.g. antenna thereof), perhaps
by a MS (not shown). The radius 1320 represents a second
range of signal reception from the service (e.g. antenna
thereof), perhaps by a MS (not shown). The radius 1322
represents a third range of signal reception from the service
(e.g. antenna thereof), perhaps by a MS (not shown). The
radius 1316 represents a last and maximum range of signal
reception from the service (e.g. antenna thereof), perhaps by
a MS (not shown). The time of transmission from service to
radius 1318 is less than times of transmission from service to
radiuses 1320, 1322, or 1316. The time of transmission from
service to radius 1320 is less than times of transmission from
service to radiuses 1322 or 1316. The time of transmission
from service to radius 1322 is less than time of transmission
from service to radius 1316. In another embodiment, data
1312 contains a Communications Key (CK) 1314 because
data 1312 is new transmitted data in accordance with the
present disclosure. Data 1312 purpose is for carrying CK
1314 information for being detected, parsed, and processed
when received by another MS or data processing system in
the vicinity of the service(s) as determined by the maximum
range of transmission.

In some embodiments, data 1302 and 1312 are prior art
wireless data transmission packets with the exception of
embedding a detectable CK 1304 and/or CK 1314, respec-
tively. Usual data communications of MSs are altered to
additionally contain the CK so data processing systems in the
vicinity can detect, parse, and process the CK. Appropriate
send and/or broadcast channel processing is used. In other
embodiments, data 1302 and 1312 are new broadcast wireless
data transmission packets for containing CK 1304 and CK
1314, respectively. A MS may use send queue 24 for sending/
broadcasting packets to data processing systems in the vicin-
ity, and may use the receive queue 26 for receiving packets
from other data processing systems in the vicinity. Contents
of CKs (Communications Keys) depend on which LBX fea-
tures are in use and the functionality intended.

In the case of “piggybacking” on usual communications,
receive queue 26 insertion processing simply listens for the
usual data and when detecting CK presence, inserts CK infor-
mation appropriately to queue 26 for subsequent processing.
Also in the case of “piggybacking” on usual communications,
send queue 24 retrieval processing simply retrieves CK infor-
mation from the queue and embeds it in an outgoing data 1302
at first opportunity. In the case of new data communications,
receive queue 26 insertion processing simply listens for the
new data containing CK information, and inserts CK infor-
mation appropriately to queue 26 for subsequent processing.

5

10

15

20

25

30

35

40

45

50

55

60

65

80

Also in the case of new data communications, send queue 24
retrieval processing simply retrieves CK information from
the queue and transmits CK information as new data.

LBX: LN-EXPANSE Configuration

FIG. 14A depicts a flowchart for describing a preferred
embodiment of MS LBX configuration processing. FIG. 14 is
of Self Management Processing code 18. MS LBX configu-
ration begins at block 1402 upon user action to start the user
interface and continues to block 1404 where user interface
objects are initialized for configurations described below
with current settings that are reasonable for display to avail-
able user interface real estate. Thereafter, applicable settings
are presented to the user at block 1406 with options. Block
1406 preferably presents to the user at least whether or not
DLM capability is enabled (i.e. MS to behave as a DLM=at
least one role of DLMV enabled), whether or not ILLM capa-
bility is enabled (i.e. MS to behave as an ILLM=at least onerole
of ILMV enabled), and/or whether or not this MS should
participate in the LN-expanse as a source location for other
MSs (e.g. process 1902 and/or 1942 enabled). Alternative
embodiments will further present more or less information
for each of the settings, or present information associated
with other FIG. 14 blocks of processing. Other embodiments
will not configure DLM settings for an MS lacking DLM
capability (or when all DLMYV roles disabled). Other embodi-
ments will not configure ILM settings when DLM capability
is present. Block 1406 continues to block 1408 where pro-
cessing waits for user action in response to options. Block
1408 continues to block 1410 when a user action is detected.
If block 1410 determines the user selected to configure DLM
capability (i.e. DLMV role(s)), then the user configures DLM
role(s) at block 1412 and processing continues back to block
1406. Block 1412 processing is described by FIG. 15A. If
block 1410 determines the user did not select to configure
DLM capability (i.e. DLMYV role(s)), then processing contin-
ues to block 1414. If block 1414 determines the user selected
to configure ILM capability (i.e. ILMV role(s)), then the user
configures ILM role(s) at block 1416 and processing contin-
ues back to block 1406. Block 1416 processing is described
by FIG. 15B. If block 1414 determines the user did not select
to configure IL.M capability (i.e. ILMV role(s)), then process-
ing continues to block 1418. If block 1418 determines the
user selected to configure NTP use, then the user configures
NTP use at block 1420 and processing continues back to
block 1406. Block 1420 processing is described by FIG. 16. If
block 1418 determines the user did not select to configure
NTP use, then processing continues to block 1422.

If block 1422 determines the user selected to maintain the
WDR queue, then the user maintains WDRs at block 1424
and processing continues back to block 1406. Block 1424
processing is described by FIG. 17. Blocks 1412, 1416, 1420
and 1424 are understood to be delimited by appropriate sema-
phore control to avoid multi-threaded access problems. If
block 1422 determines the user did not select to maintain the
WDR queue, then processing continues to block 1426. If
block 1426 determines the user selected to configure the
confidence floor value, then block 1428 prepares parameters
for invoking a Configure Value procedure (parameters for
reference (address) of value to configure; and validity criteria
of value to configure), and the Configure Value procedure of
FIG. 18 is invoked at block 1430 with the two (2) parameters.
Thereafter, processing continues back to block 1406. Blocks
1428 and 1430 are understood to be delimited by appropriate
semaphore control when modifying the confidence floor
value since other threads can access the floor value.

APPLE

EXHIBIT 1001 - PAGE 0304



US 8,639,267 B2

81

The confidence floor value is the minimum acceptable
confidence value of any field 11004 (for example as checked
by block 276). No WDR with a field 11004 less than the
confidence floor value should be used to describe MS where-
abouts. In an alternative embodiment, the confidence floor
value is enforced as the same value across an LN-expanse
with no user control to modify it. One embodiment of FIG. 14
does not permit user control over a minimum acceptable
confidence floor value. Various embodiments will default the
floor value. Block 1812 enforces an appropriate value in
accordance with the confidence value range implemented
(e.g. value from 1 to 100). Since the confidence of where-
abouts is likely dependent on applications in use at the MS,
the preferred embodiment is to permit user configuration of
the acceptable whereabouts confidence for the MS. A new
confidence floor value can be put to use at next thread(s)
startup, or can be used instantly with the modification made,
depending on the embodiment. The confidence floor value
can be used to filter out WDRs prior to inserting to queue 22,
filter out WDRs when retrieving from queue 22, filter out
WDR information when listening on channel(s) prior to
inserting to queue 26, and/or used in accessing queue 22 for
any reason (depending on embodiments). While confidence is
validated on both inserts and queries (retrievals/peeks), one or
the other validation is fine (preferably on inserts). It is pre-
ferred that executable code incorporate checks where appli-
cable since the confidence floor value can be changed after
queue 22 is in use. Also, various present disclosure embodi-
ments may maintain all confidences to queue 22, or a particu-
lar set of acceptable confidences.

If block 1426 determines the user did not select to config-
ure the confidence floor value, then processing continues to
block 1432. If block 1432 determines the user selected to
configure the Whereabouts Timeliness Variable (WTV), then
block 1434 prepares parameters for invoking the Configure
Value procedure (parameters for reference (address) of value
to configure; and validity criteria of value to configure), and
the Configure Value procedure of FIG. 18 is invoked at block
1430 with the two (2) parameters. Thereafter, processing
continues back to block 1406. Blocks 1434 and 1430 are
understood to be delimited by appropriate semaphore control
when modifying the WTV since other threads can access the
WTV.

A critical configuration for MS whereabouts processing is
whereabouts timeliness. Whereabouts timeliness is how often
(how timely) an MS should have accurate whereabouts.
Whereabouts timeliness is dependent on how often the MS is
updated with whereabouts information, what technologies
are available or are in the vicinity, how capable the MS is of
maintaining whereabouts, processing speed(s), transmission
speed(s), known MS or LN-expanse design constraints, and
perhaps other factors. In some embodiments, whereabouts
timeliness is as soon as possible. That is, MS whereabouts is
updated whenever possible as often as possible. In fact, the
present disclosure provides an excellent system and method-
ology to accomplish that by leveraging location technologies
whenever and wherever possible. However, there should be
balance when considering less capable processing of a MS to
prevent hogging CPU cycles from other applications at the
MS. In other embodiments, a hard-coded or preconfigured
time interval is used for keeping an MS informed of'its where-
abouts in a timely manner. For example, the MS should know
its own whereabouts at least every second, or at least every 5
seconds, or at least every minute, etc. Whereabouts timeliness
is critical depending on the applications in use at the MS. For
example, if MS whereabouts is updated once at the MS every
5 minutes during high speeds of travel when using navigation,

20

30

40

45

82

the user has a high risk of missing a turn during travel in
downtown cities where timely decisions for turns are
required. On the other hand, if MS whereabouts is updated
every 5 seconds, and an application only requires an update
accuracy to once per minute, then the MS may be excessively
processing.

In some embodiments, there is a Whereabouts Timeliness
Variable (WTV) configured at the MS (blocks 1432, 1434,
1430). Whether it is user configured, system configured, or
preset in a system, the WTV is used to:

Define the maximum period of time for MS whereabouts to

become stale at any particular time;

Cause the MS to seek its whereabouts if whereabouts infor-

mation is not up to date in accordance with the WI'V; and

Prevent keeping the MS too busy with keeping abreast of

its own whereabouts.

In another embodiment, the WTV is automatically adjusted
based on successes or failures of automatically locating the
MS. As the MS successfully maintains timely whereabouts,
the WTV is maintained consistent with the user configured,
system configured, or preset value, or in accordance with
active applications in use at the time. However, as the MS fails
in maintaining timely whereabouts, the WTV is automati-
cally adjusted (e.g. to longer periods of time to prevent unnec-
essary wasting of power and/or CPU resources). Later, as
whereabouts become readily available, the WTV can be auto-
matically adjusted back to the optimal value. In an emergency
situation, the user always has the ability to force the MS to
determine its own whereabouts anyway (Blocks 856 and 862
through 878, in light of a WDR request and WDR response
described for architecture 1900). In embodiments where the
WTV is adjusted in accordance with applications in use at the
time, the most demanding requirement of any application
started is maintained to the WTV. Preferably, each application
of'the MS initializes to an API of the MS with a parameter of
its WTV requirements. If the requirement is more timely than
the current value, then the more timely value is used. The
WTYV can be putto use at next thread(s) startup, or can be used
instantly with the modification made, depending on the
embodiment.

If block 1432 determines the user did not select to config-
ure the WTV, then processing continues to block 1436. If
block 1436 determines the user selected to configure the
maximum number of threads in a 19xx process (see 19xx-Max
variable in FIG. 19 discussions), then block 1438 interfaces
with the user until a valid 19xx-max variable is selected, and
processing continues to block 1440. If block 1440 determines
the 19xx process is already running (i.e. 19xx-PID>0 implies
it is enabled), then an error is provided to the user at block
1442, and processing continues back to block 1406. Prefer-
ably, block 1442 does not continue back to block 1406 until
the user acknowledges the error (e.g. with a user action). If
block 1440 determines the user selected 19xx process (pro-
cess 1902, process 1912, process 1922, process 1932, process
1942, or process 1952) is not already running (i.e. 19xx-
PID=0 implies it is disabled), then block 1444 prepares
parameters for invoking the Configure Value procedure (pa-
rameters for reference (address) of 19xx-Max value to con-
figure; and validity criteria of value to configure), and the
Configure Value procedure of FIG. 18 is invoked at block
1430 with the two (2) parameters. Thereafter, processing
continues back to block 1406. Blocks 1438, 1440, 1444 and
1430 are understood to be delimited by appropriate sema-
phore control when modifying the 19xx-Max value since
other threads can access it. The 19xx-Max value should not be
modified while the 19xx process is running because the num-
ber of threads to terminate may be changed prior to terminat-

APPLE

EXHIBIT 1001 - PAGE 0305



US 8,639,267 B2

83

ing. An alternate embodiment of modifying a process number
of threads will dynamically modify the number of threads in
anticipation of required processing.

If block 1436 determines the user did not select to config-
ure a process thread maximum (19xx-Max), then block 1446
checks if the user selected to (toggle) disable or enable a
particular process (i.e. a 19xx process of FIG. 19). If block
1446 determines the user did select to toggle enabling/dis-
abling a particular FIG. 19 process, then block 1448 inter-
faces with the user until a valid 19xx process name is selected,
and processing continues to block 1450. If block 1450 deter-
mines the 19xx process is already running (i.e. 19xx-PID>0
implies it is enabled), then block 1454 prepares parameters
(just as does block 2812). Thereafter, block 1456 invokes
FIG. 29B processing (just as does block 2814). Processing
then continues back to block 1406. If block 1450 determines
the 19xx process is not running (i.e. 19xx-PID=0 implies it is
disabled), then block 1452 invokes FIG. 29 A processing (just
as does block 1232). Processing then continues back to block
1406. Block 1456 does not continue back to block 1406 until
the process is completely terminated. Blocks 1448, 1450,
1452, 1454 and 1456 are understood to be delimited by appro-
priate semaphore control.

Preferred embodiments of blocks 1446 and 1448 use con-
venient names of processes being started or terminated, rather
than convenient brief process names such as 1902, 1912,
1922, 1932, 1942, or 1952 used in flowcharts. In some
embodiments, the long readable name is used, such as where-
abouts broadcast process (1902), whereabouts collection pro-
cess (1912), whereabouts supervisor process (1922), timing
determination process (1932), WDR request process (1942),
and whereabouts determination process (1952). For example,
the user may know that the whereabouts supervisor process
enabled/disabled indicates whether or not to have where-
abouts timeliness monitored in real time. Enabling the where-
abouts supervisor process enables monitoring for the WTV in
real time, and disabling the whereabouts supervisor process
disables monitoring the WTV in real time.

In another embodiment of blocks 1446 and 1448, a com-
pletely new name or description may be provided to any of the
processes to facilitate user interface usability. For example, a
new name Peer Location Source Variable (PLSV) can be
associated to the whereabouts broadcast process 1902 and/or
1942. PLSV may be easier to remember. If the PLSV was
toggled to disabled, the whereabouts broadcast process 1902
and/or 1942 terminates. If the PLSV was toggled to enabled,
the whereabouts broadcast process 1902 and/or 1942 is
started. It may be easier to remember that the PL.SV enables/
disables whether or not to allow this MS to be a location
source for other MSs in an LN-expanse.

In other embodiments, a useful name (e.g. PLSV) repre-
sents starting and terminating any subset of 19xx processes (a
plurality (e.g. 1902 and 1942)) for simplicity. In yet other
embodiments, FIG. 14A/14B can be used to start or terminate
worker thread(s) in any process, for example to throttle up
more worker threads in a process, or to throttle down for less
worker threads in a process, perhaps modifying thread
instances to accommodate the number of channels for com-
munications, or for the desired performance. There are many
embodiments for fine tuning the architecture 1900 for optimal
peer to peer interaction. In yet other embodiments, toggling
may not be used. There may be individual options available at
block 1408 for setting any data of this disclosure. Similarly,
the 19xx-Max variables may be modified via individual user
friendly names and/or as a group of 19xx-Max variables.

Referring back to block 1446, if it is determined the user
did not select to toggle for enabling/disabling process(es),

10

15

20

30

35

40

45

50

55

60

65

84

then processing continues to block 1458. If block 1458 deter-
mines the user selected to exit FIG. 14A/14B configuration
processing, then block 1460 terminates the user interface
appropriately and processing terminates at block 1462. If
block 1458 determines the user did not select to exit the user
interface, then processing continues to block 1466 of FIG.
14B by way of off page connector 1464.

With reference now to FIG. 14B, depicted is a continued
portion flowchart of FIG. 14A for describing a preferred
embodiment of MS LBX configuration processing. If block
1466 determines the user selected to configure the Source
Periodicity Time Period (SPTP) value, then block 1468 pre-
pares parameters for invoking the Configure Value procedure
(parameters for reference (address) of value to configure; and
validity criteria of value to configure), and the Configure
Value procedure of FIG. 18 is invoked at block 1470 with the
two (2) parameters. Thereafter, processing continues back to
block 1406 by way of off page connector 1498. Blocks 1468
and 1470 are understood to be delimited by appropriate sema-
phore control when modifying the SPTP value since other
threads can access it. The SPTP configures the time period
between broadcasts by thread(s) 1902, for example 5 sec-
onds. Some embodiments do not permit configuration of the
SPTP.

If block 1466 determines the user did not select to config-
ure the SPTP value, then processing continues to block 1472.
If block 1472 determines the user selected to configure ser-
vice propagation, then the user configures service propaga-
tion at block 1474 and processing continues back to block
1406 by way of off page connector 1498. If block 1472
determines the user did not select to configure service propa-
gation, then processing continues to block 1476.

If block 1476 determines the user selected to configure
permissions 10, then the user configures permissions at block
1478 and processing continues back to block 1406 by way of
off page connector 1498. If block 1476 determines the user
did not select to configure permissions 10, then processing
continues to block 1480. If block 1480 determines the user
selected to configure charters 12, then the user configures
charters 12 at block 1482 and processing continues back to
block 1406 by way of off page connector 1498. If block 1480
determines the user did not select to configure charters 12,
then processing continues to block 1484. If block 1484 deter-
mines the user selected to configure statistics 14, then the user
configures statistics 14 at block 1486 and processing contin-
ues back to block 1406 by way of off page connector 1498. If
block 1484 determines the user did not select to configure
statistics 14, then processing continues to block 1488. If
block 1488 determines the user selected to configure service
informant code 28, then the user configures code 28 at block
1490 and processing continues back to block 1406 by way of
off page connector 1498. If block 1488 determines the user
did not select to configure code 28, then processing continues
to block 1492. If block 1492 determines the user selected to
maintain LBX history 30, then the user maintains [.BX his-
tory at block 1494 and processing continues back to block
1406 by way of off page connector 1498. If block 1492
determines the user did not select to maintain LBX history 30,
then processing continues to block 1496.

Block 1496 handles other user interface actions leaving
block 1408, and processing continues back to block 1406 by
way of off page connector 1498.

Details of blocks 1474, 1478, 1482, 1486, 1490, 1494, and
perhaps more detail to block 1496, are described with other
flowcharts. Appropriate semaphores are requested at the
beginning of block processing, and released at the end of
block processing, for thread safe access to applicable data at

APPLE

EXHIBIT 1001 - PAGE 0306



US 8,639,267 B2

85

risk of being accessed by another thread of processing at the
same time of configuration. In some embodiments, a user/
administrator with secure privileges to the MS has ability to
perform any subset of configurations of FIGS. 14A and 14B
processing, while a general user may not. Any subset of FIG.
14 configuration may appear in alternative embodiments,
with or without authenticated administrator access to perform
configuration.

FIG. 15A depicts a flowchart for describing a preferred
embodiment of DLM role configuration processing of block
1412. Processing begins at block 1502 and continues to block
1504 which accesses current DLMYV settings before continu-
ing to block 1506. If there were no DLMYV entries (list empty)
as determined by block 1506, then block 1508 provides an
error to the user and processing terminates at block 1518. The
DLMYV may be empty when the MS has no local DLM capa-
bility and there hasn’t yet been any detected DLM capability,
for example as evidenced by WDRs inserted to queue 22.
Preferably, the error presented at block 1508 requires the user
to acknowledge the error (e.g. with a user action) before block
1508 continues to block 1518. If block 1506 determines at
least one entry (role) is present in the DLMYV, then the current
DLMV setting(s) are saved at block 1510, the manage list
processing procedure of FIG. 15C is invoked at block 1512
with the DLMYV as a reference (address) parameter, and pro-
cessing continues to block 1514.

Block 1514 determines if there were any changes to the
DLMV from FIG. 15C processing by comparing the DLMV
after block 1512 with the DLMYV saved at block 1510. If there
were changes via FIG. 15C processing, such as a role which
was enabled prior to block 1512 which is now disabled, or
such as a role which was disabled prior to block 1512 which
is now enabled, then block 1514 continues to block 1516
which handles the DLMV changes appropriately. Block 1516
continues to block 1518 which terminates FIG. 15A process-
ing. If block 1514 determines there were no changes via block
1512, then processing terminates at block 1518.

Block 1516 enables newly enabled role(s) as does block
1238 described for FIG. 12. Block 1516 disables newly dis-
abled role(s) as does block 2804 described for FIG. 28.

FIG. 15B depicts a flowchart for describing a preferred
embodiment of ILLM role configuration processing of block
1416. Processing begins at block 1522 and continues to block
1524 which accesses current ILMV settings before continu-
ing to block 1526. If there were no ILMV entries (list empty)
as determined by block 1526, then block 1528 provides an
error to the user and processing terminates at block 1538. The
ILMV may be empty when the MS is not meant to have ILM
capability. Preferably, the error presented at block 1528
requires the user to acknowledge the error before block 1528
continues to block 1538. If block 1526 determines at least one
entry (role) is present in the ILMYV, then the current ILMV
setting(s) are saved at block 1530, the manage list processing
procedure of FIG. 15C is invoked with a reference (address)
parameter of the ILMV at block 1532, and processing con-
tinues to block 1534.

Block 1534 determines if there were any changes to the
ILMYV from FIG. 15C processing by comparing the ILMV
after block 1532 with the ILMV saved at block 1530. If there
were changes via FIG. 15C processing, such as a role which
was enabled prior to block 1532 which is now disabled, or
such as a role which was disabled prior to block 1532 which
is now enabled, then block 1534 continues to block 1536
which handles the ILMV changes appropriately. Block 1536
continues to block 1538 which terminates FIG. 15B process-
ing. If block 1534 determines there were no changes via block
1532, then processing terminates at block 1538.

10

15

20

25

30

35

40

45

50

55

60

65

86

Block 1536 enables newly enabled role(s) as does blocks
1224 through 1234 described for FIG. 12. Block 1536 dis-
ables newly disabled role(s) as does blocks 2806 through
2816 described for FIG. 28.

FIG. 15C depicts a flowchart for describing a preferred
embodiment of a procedure for Manage List processing. Pro-
cessing starts at block 1552 and continues to block 1554.
Block 1554 presents the list (DLM capability if arrived to by
way of FIG. 15A; ILM capability if arrived to by way of FIG.
15B) to the user, as passed to FIG. 15C processing with the
reference parameter by the invoker, with which list items are
marked (enabled) and which are unmarked (disabled) along
with options, before continuing to block 1556 for awaiting
user action. Block 1554 highlights currently enabled roles,
and ensures disabled roles are not highlighted in the presented
list. When a user action is detected at block 1556, thereafter,
block 1558 checks if a list entry was enabled (marked) by the
user, in which case block 1560 marks the list item as enabled,
saves it to the list (e.g. DLMV or ILMV), and processing
continues back to block 1554 to refresh the list interface. If
block 1558 determines the user did not respond with an
enable action, then block 1562 checks for a disable action. If
block 1562 determines the user wanted to disable a list entry,
then block 1564 marks (actually unmarks it) the list item as
disabled, saves it to the list (e.g. DLMV or ILMV), and
processing continues back to block 1554. If block 1562 deter-
mines the user did not want to disable a list item, then block
1566 checks if the user wanted to exit FIG. 15C processing. If
block 1566 determines the user did not select to exit list
processing, then processing continues to block 1568 where
other user interface actions are appropriately handled and
then processing continues back to block 1554. If block 1566
determines the user did select to exit manage list processing,
then FIG. 15C processing appropriately returns to the caller at
block 1570.

FIG. 15C interfaces with the user for desired DLMV (via
FIG. 15A) or ILMV (via FIG. 15B) configurations. In some
embodiments, it makes sense to have user control over
enabling or disabling DLM and/or ILM capability (roles) to
the MS, for example for software or hardware testing.

FIG. 16 depicts a flowchart for describing a preferred
embodiment of NTP use configuration processing of block
1420. Processing starts at block 1602 and continues to block
1604 where the current NTP use setting is accessed. There-
after, block 1606 presents the current NTP use setting to its
value of enabled or disabled along with options, before con-
tinuing to block 1608 for awaiting user action. When a user
action is detected at block 1608, block 1610 checks ifthe NTP
use setting was disabled at block 1608, in which case block
1612 terminates NTP use appropriately, block 1614 sets (and
saves) the NTP use setting to disabled, and processing con-
tinues back to block 1606 to refresh the interface. Block 1612
disables NTP as does block 2828.

If block 1610 determines the user did not respond for
disabling NTP, then block 1616 checks for a toggle to being
enabled. If block 1616 determines the user wanted to enable
NTP use, then block 1618 accesses known NTP server
address(es) (e.g. ip addresses preconfigured to the MS, or set
with another user interface at the MS), and pings each one, if
necessary, at block 1620 with a timeout. As soon as one NTP
server is determined to be reachable, block 1620 continues to
block 1622. If no NTP server was reachable, then the timeout
will have expired for each one tried at block 1620 for con-
tinuing to block 1622. Block 1622 determines if at least one
NTP server was reachable at block 1620. If block 1622 deter-
mines no NTP server was reachable, then an error is presented
to the user at block 1624 and processing continues back to

APPLE

EXHIBIT 1001 - PAGE 0307



US 8,639,267 B2

87

block 1606. Preferably, the error presented at block 1624
requires the user to acknowledge the error before block 1624
continues to block 1606. If block 1622 determines that at least
one NTP server was reachable, then block 1626 initializes
NTP use appropriately, block 1628 sets the NTP use setting to
enabled (and saves), and processing continues back to block
1606. Block 1626 enables NTP as does block 1210.

Referring back to block 1616, if it is determined the user
did not want to enable NTP use, then processing continues to
block 1630 where it is checked if the user wanted to exit FIG.
16 processing. If block 1630 determines the user did not
selectto exit FIG. 16 processing, then processing continues to
block 1632 where other user interface actions leaving block
1608 are appropriately handled, and then processing contin-
ues back to block 1606. If block 1630 determines the user did
select to exit processing, then FIG. 16 processing terminates
at block 1634.

FIG. 17 depicts a flowchart for describing a preferred
embodiment of WDR maintenance processing of block 1424.
Processing starts at block 1702 and continues to block 1704
where it is determined if there are any WDRs of queue 22. If
block 1704 determines there are no WDRs for processing,
then block 1706 presents an error to the user and processing
continues to block 1732 where FIG. 17 processing termi-
nates. Preferably, the error presented at block 1706 requires
the user to acknowledge the error before block 1706 contin-
ues to block 1732. If block 1704 determines there is at least
one WDR, then processing continues to block 1708 where the
current contents of WDR queue 22 is appropriately presented
to the user (in a scrollable list if necessary). Thereafter, block
1710 awaits user action. When a user action is detected at
block 1710, block 1712 checks if the user selected to delete a
WDR from queue 22, in which case block 1714 discards the
selected WDR, and processing continues back to block 1708
for a refreshed presentation of queue 22. If block 1712 deter-
mines the user did not select to delete a WDR, then block
1716 checks if the user selected to modify a WDR. If block
1716 determines the user wanted to modify a WDR of queue
22, then block 1718 interfaces with the user for validated
WDR changes before continuing back to block 1708. If block
1716 determines the user did not select to modify a WDR,
then block 1720 checks if the user selected to add a WDR to
queue 22. If block 1720 determines the user selected to add a
WDR (for example, to manually configure MS whereabouts),
then block 1722 interfaces with the user for a validated WDR
to add to queue 22 before continuing back to block 1708. If
block 1720 determines the user did not select to add a WDR,
then block 1724 checks if the user selected to view detailed
contents of a WDR, perhaps because WDRs are presented in
an abbreviated form at block 1708. If it is determined at block
1724 the user did select to view details of a WDR, then block
1726 formats the WDR in detail form, presents it to the user,
and waits for the user to exit the view of the WDR before
continuing back to block 1708. If block 1724 determines the
user did not select to view a WDR in detail, then block 1728
checks if the user wanted to exit FIG. 17 processing. If block
1728 determines the user did not select to exit FIG. 17 pro-
cessing, then processing continues to block 1730 where other
user interface actions leaving block 1710 are appropriately
handled, and then processing continues back to block 1708. If
block 1728 determines the user did select to exit processing,
then FIG. 17 processing terminates at block 1732.

45

55

88

There are many embodiments for maintaining WDRs of
queue 22. In some embodiments, FIG. 17 (i.e. block 1424)
processing is only provided for debug of an MS. In a single
instance WDR embodiment, block 1708 presents the one and
only WDR which is used to keep current MS whereabouts
whenever possible. Other embodiments incorporate any sub-
set of FIG. 17 processing.

FIG. 18 depicts a flowchart for describing a preferred
embodiment of a procedure for variable configuration pro-
cessing, namely the Configure Value procedure, for example
for processing of block 1430. Processing starts at block 1802
and continues to block 1804 where parameters passed by the
invoker of FIG. 18 are determined, namely the reference
(address) of the value for configuration to be modified, and
the validity criteria for what makes the value valid. Passing
the value by reference simply means that FIG. 18 has the
ability to directly change the value, regardless of where it is
located. In some embodiments, the parameter is an address to
a memory location for the value. In another embodiment, the
value is maintained in a database or some persistent storage,
and FIG. 18 is passed enough information to know how to
permanently affect/change the value.

Block 1804 continues to block 1806 where the current
value passed is presented to the user (e.g. confidence floor
value), and then to block 1808 for awaiting user action. When
a user action is detected at block 1808, block 1810 checks if
the user selected to modify the value, in which case block
1812 interfaces with the user for a validated value using the
validity criteria parameter before continuing back to block
1806. Validity criteria may take the form of a value range,
value type, set of allowable values, or any other criteria for
what makes the value a valid one.

If block 1810 determines the user did not select to modify
the value, then block 1814 checks if the user wanted to exit
FIG. 18 processing. If block 1814 determines the user did not
selectto exit FIG. 18 processing, then processing continues to
block 1816 where other user interface actions leaving block
1808 are appropriately handled, and then processing contin-
ues back to block 1806. If block 1814 determines the user did
select to exit processing, then FIG. 18 processing appropri-
ately returns to the caller at block 1818.

LBX: LN-EXPANSE Interoperability

FIG. 19 depicts an illustration for describing a preferred
embodiment multithreaded architecture of peer interaction
processing of a MS in accordance with the present disclosure.
MS architecture 1900 preferably includes a set of Operating
System (O/S) processes (i.e. O/S terminology “process” with
O/S terminology “thread” or “threads (i.e. thread(s))), includ-
ing a whereabouts broadcast process 1902, a whereabouts
collection process 1912, a whereabouts supervisor process
1922, a timing determination process 1932, a WDR request
process 1942, and a whereabouts determination process
1952. Further included are queues for interaction of process-
ing, and process associated variables to facilitate processing.
All of the FIG. 19 processes are of PIP code 6. There is
preferably a plurality (pool) of worker threads within each of
said 19xx processes (i.e. 1902, 1912, 1922, 1932, 1942 and
1952) for high performance asynchronous processing. Each
19xx process (i.e. 1902, 1912, 1922, 1932, 1942 and 1952)
preferably has at least two (2) threads:

1) “parent thread”; and

2) “worker thread”.

APPLE

EXHIBIT 1001 - PAGE 0308



US 8,639,267 B2

89

A parent thread (FIG. 29A) is the main process thread for:
starting the particular process;
starting the correct number of worker thread(s) of that
particular process;
staying alive while all worker threads are busy processing;
and
properly terminating the process when worker threads are
terminated.
The parent thread is indeed the parent for governing behavior
of threads at the process whole level. Every process has a
name for convenient reference, such as the names 1902,1912,
1922,1932, 1942 and 1952. Of course, these names may take
on the associated human readable forms of whereabouts
broadcast process, whereabouts collection process, where-
abouts supervisor process, timing determination process,
WDR request process, and whereabouts determination pro-
cess, respectively. For brevity, the names used herein are by
the process label of FIG. 19 in a form 19xx. There must be at
least one worker thread in a process. Worker thread(s) are

described with a flowchart as follows:
1902—FIG. 20;
1912—FIG. 21;
1922—TFIG. 22;
1932—FIG. 23;

1942—FIG. 25; and

1952—FIG. 26A.

Threads of architecture MS are presented from a software
perspective, but there are applicable hardware/firmware pro-
cess thread embodiments accomplished for the same func-
tionality. In fact, hardware/firmware embodiments are pre-
ferred when it is known that processing is mature (i.e. stable)
to provide the fastest possible performance. Architecture
1900 processing is best achieved at the highest possible per-
formance speeds for optimal wireless communications pro-
cessing. There are two (2) types of processes for describing
the types of worker threads:

1) “Slave to Queue”; and

2) “Slave to Timer”.

A 19xx process is a slave to queue process when its worker
thread(s) are driven by feeding from a queue of architecture
1900. A slave to queue process stays “blocked” (O/S termi-
nology “blocked”=preempted) on a queue entry retrieval
interface until the sought queue item is inserted to the queue.
The queue entry retrieval interface becomes “cleared” (O/S
terminology “cleared”=clear to run) when the sought queue
entry is retrieved from the queue by a thread. These terms
(blocked and cleared) are analogous to a semaphore causing
a thread to be blocked, and a thread to be cleared, as is well
known in the art. Queues have semaphore control to ensure no
more than one thread becomes clear at a time for a single
queue entry retrieved (as done in an O/S). One thread sees a
particular queue entry, but many threads can feed off the same
queue to do the same work concurrently. Slave to queue type
of processes are 1912, 1932, 1942 and 1952. A slave to queue
process is properly terminated by inserting a special termina-
tion queue entry for each worker thread to terminate itself
after queue entry retrieval.

A 19xx process is a slave to timer process when its worker
thread(s) are driven by a timer for peeking a queue of archi-
tecture 1900. A timer provides the period of time for a worker
thread to sleep during a looped iteration of checking a queue
for a sought entry (without removing the entry from the
queue). Slave to timer threads periodically peek a queue, and
based on what is found, will process appropriately. A queue
peek does not alter the peeked queue. The queue peek inter-
face is semaphore protected for preventing peeking at an
un-opportune time (e.g. while thread inserting or retrieving

20

25

35

40

45

50

55

60

65

90

from queue). Queue interfaces ensure one thread is acting on
a queue with a queue interface at any particular time. Slave to
timer type of processes are 1902 and 1922. A slave to timer
process is properly terminated by inserting a special termina-
tion queue entry for each worker thread to terminate itself by
queue entry peek.
Block 2812 knows the type of 19xx process for preparing
the process type parameter for invocation of FIG. 29B at
block 2814. The type of process has slightly different termi-
nation requirements because of the worker thread(s) process-
ing type. Alternate embodiments of slave to timer processes
will make them slave to queue processes by simply feeding
off Thread Request (TR) queue 1980 for driving a worker
thread when to execute (and when to terminate). New timer(s)
would insert timely queue entries to queue 1980, and pro-
cesses 1902 and 1922 would retrieve from the queue (FIG.
24A record 2400). The queue entries would become available
to queue 1980 when it is time for a particular worker thread to
execute. Worker threads of processes 1902 and 1922 could
retrieve, and stay blocked on, queue 1980 until an entry was
inserted by a timer for enabling a worker thread (field 2400a
set t0 1902 or 1912). TR queue 1980 is useful for starting any
threads of architecture 1900 in a slave to queue manner. This
may be a cleaner architecture for all thread pools to operate
the same way (slave to queue). Nevertheless, the two thread
pool methods are implemented.
Each 19xx process has at least four (4) variables for
describing present disclosure processing:
19xx-PID=The O/S terminology “Process Identifier
(PID)” for the O/S PID of'the 19xx process. This variable
is also used to determine if the process is enabled
(PID>0), or is disabled (PID=0 (i.e. <=0));

19xx-Max=The configured number of worker thread(s) for
the 19xx process;

19xx-Sem=A process local semaphore for synchronizing

19xx worker threads, for example in properly starting up
worker threads in process 19xx, and for properly termi-
nating worker threads in process 19xx; and

19xx-Ct=A process local count of the number of worker

thread(s) currently running in the 19xx process.

19xx-PID and 19xx-Max are variables of PIP data 8. 19xx-
Sem and 19xx-Ct are preferably process 19xx stack variables
within the context of PIP code 6. 19xx-PID is a semaphore
protected global variable in architecture 1900 so that it can be
used to determine whether or not a particular 19xx process is
enabled (i.e. running) or disabled (not running). 19xx-Max is
a semaphore protected global variable in architecture 1900 so
that user configuration processing outside of architecture
1900 can be used to administrate a desired number of worker
threads for a 19xx process. Alternate embodiments will not
provide user configuration of 19xx-Max variables (e.g. hard
coded maximum number of threads), in which case no 19xx-
Max global variable is necessary. “Thread(s) 19xx” is a brief
form of stating “worker thread(s) of the 19xx process”.

Receive (Rx) queue 26 is for receiving CK 1304 or CK
1314 data (e.g. WDR or WDR requests), for example from
wireless transmissions. Queue 26 will receive at least WDR
information (destined for threads 1912) and WDR requests
(FIG. 24C records 2490 destined for threads 1942). At least
one thread (not shown) is responsible for listening on appro-
priate channel(s) and immediately depositing appropriate
records to queue 26 so that they can be processed by archi-
tecture 1900. Preferably, there is a plurality (pool) of threads
for feeding queue 26 based on channel(s) being listened on,
and data 1302 or 1312 anticipated for being received. Alter-
native embodiments of thread(s) 1912 may themselves
directly be listening on appropriate channels and immediately

APPLE

EXHIBIT 1001 - PAGE 0309



US 8,639,267 B2

91

processing packets identified, in lieu of a queue 26. Alterna-
tive embodiments of thread(s) 1942 may themselves directly
be listening on appropriate channels and immediately pro-
cessing packets identified, in lieu of a queue 26. Queue 26 is
preferred to isolate channel(s) (e.g. frequency(s)) and trans-
mission reception processing in well known modular (e.g.
Radio Frequency (RF)) componentry, while providing a high
performance queue interface to other asynchronous threads
of architecture 1900 (e.g. thread(s) of process 1912). Wave
spectrums (via particular communications interface 70) are
appropriately processed for feeding queue 26. As soon as a
record is received by an MS, it is assumed ready for process-
ing at queue 26. All queue 26 accesses are assumed to have
appropriate semaphore control to ensure synchronous access
by any thread at any particular time to prevent data corruption
and misuse. Queue entries inserted to queue 26 may have
arrived on different channel(s), and in such embodiments a
channel qualifier may further direct queue entries from queue
26 to a particular thread 1912 or 1942 (e.g. thread(s) dedi-
cated to channel(s)). In other embodiments, receive process-
ing feeds queue 26 independent of any particular channel(s)
monitored, or received on (the preferred embodiment
described). Regardless of how data is received and then
immediately placed on queue 26, a received date/time stamp
(e.g. fields 1100p or 2490c¢) is added to the applicable record
for communicating the received date/time stamp to a thread
(e.g. thread(s) 1912 or 1942) of when the data was received.
Therefore, the queue 26 insert interface tells the waiting
thread(s) when the data was actually received. This ensures a
most accurate received date/time stamp as close to receive
processing as possible (e.g. enabling most accurate TDOA
measurements). An alternate embodiment could determine
applicable received date/time stamps in thread(s) 1912 or
thread(s) 1942. Other data placed into received WDRs are:
wave spectrum and/or particular communications interface
70 of the channel received on, and heading/yaw/pitch/roll (or
accelerometer readings) with AOA measurements, signal
strength, and other field 11001 eligible data of the receiving
MS. Depending on alternative embodiments, queue 26 may
be viewed metaphorically for providing convenient grounds
of explanation.

Send (Tx) queue 24 is for sending/communicating CK
1304 data, for example for wireless transmissions. At least
one thread (not shown) is responsible for immediately trans-
mitting (e.g. wirelessly) anything deposited to queue 24. Pref-
erably, there is a plurality (pool) of threads for feeding off of
queue 24 based on channel(s) being transmitted on, and data
1302 anticipated for being sent. Alternative embodiments of
thread(s) of processes 1902, 1922, 1932 and 1942 may them-
selves directly transmit (send/broadcast) on appropriate
channels anything deposited to queue 24, in lieu of a queue
24. Queue 24 is preferred to isolate channel(s) (e.g. fre-
quency(s)) and transmission processing in well known modu-
lar (e.g. RF) componentry, while providing a high perfor-
mance queue interface to other asynchronous threads of
architecture 1900 (e.g. thread(s) 1942). Wave spectrums and/
or particular communications interface 70 are appropriately
processed for sending from queue 24. All queue 24 accesses
are assumed to have appropriate semaphore control to ensure
synchronous access by any thread at any particular time to
prevent data corruption and misuse. As soon as a record is
inserted to queue 24, it is assumed sent immediately. Prefer-
ably, fields sent depend on fields set. Queue entries inserted to
queue 24 may contain specification for which channel(s) to
send on in some embodiments. In other embodiments, send
processing feeding from queue 24 has intelligence for which
channel(s) to send on (the preferred embodiment described).

10

15

20

25

30

35

40

45

50

55

60

65

92

Depending on alternative embodiments, queue 24 may be
viewed metaphorically for providing convenient grounds of
explanation.

When interfacing to queue 24, the term “broadcast” refers
to sending outgoing data in a manner for reaching as many
MSs as possible (e.g. use all participating communications
interfaces 70), whereas the term “send” refers to targeting a
particular MS or group of MSs.

WDR queue 22 preferably contains at least one WDR 1100
at any point in time, for at least describing whereabouts of the
MS of architecture 1900. Queue 22 accesses are assumed to
have appropriate semaphore control to ensure synchronous
access by any thread at any particular time to prevent data
corruption and misuse. A single instance of data embodiment
of queue 22 may require an explicit semaphore control for
access. In a WDR plurality maintained to queue 22, appro-
priate queue interfaces are again provided to ensure synchro-
nous thread access (e.g. implicit semaphore control). Regard-
less, there is still a need for a queue 22 to maintain a plurality
of WDRs from remote MSs. The preferred embodiment of all
queue interfaces uses queue interface maintained sema-
phore(s) invisible to code making use of queue (e.g. API)
interfaces. Depending on alternative embodiments, queue 22
may be viewed metaphorically for providing convenient
grounds of explanation.

Thread Request (TR) queue 1980 is for requesting process-
ing by either a timing determination (worker) thread of pro-
cess 1932 (i.e. thread 1932) or whereabouts determination
(worker) thread of process 1952 (i.e. thread 1952). When
requesting processing by a thread 1932, TR queue 1980 has
requests (retrieved via processing 1934 after insertion pro-
cessing 1918) from a thread 1912 to initiate TDOA measure-
ment. When requesting processing by a thread 1952, TR
queue 1980 has requests (retrieved via processing 1958 after
insertion processing 1918 or 1930) from a thread 1912 or
1922 so that thread 1952 performs whereabouts determina-
tion of the MS of architecture 1900. Requests of queue 1980
comprise records 2400. Preferably, there is a plurality (pool)
of threads 1912 for feeding queue 1980 (i.e. feeding from
queue 26), and for feeding a plurality each of threads 1932
and 1952 from queue 1980. All queue 1980 accesses are
assumed to have appropriate semaphore control to ensure
synchronous access by any thread at any particular time to
prevent data corruption and misuse. Depending on alternative
embodiments, queue 1980 may be viewed metaphorically for
providing convenient grounds of explanation.

With reference now to FIG. 24 A, depicted is an illustration
for describing a preferred embodiment of a thread request
queue record, as maintained to Thread Request (TR) queue
1980. TR queue 1980 is not required when a LN-expanse
globally uses NTP, as found in thread 19xx processing
described for architecture 1900, however it may be required at
a MS which does not have NTP, or a MS which interacts with
another data processing system (e.g. MS) that does not have
NTP. Therefore, TR queue record 2400 (i.e. queue entry
2400) may, or may not, be required. This is thereason FIG. 1A
does not depict queue 1980. When N'TP is in use globally (in
LN-expanse), TDOA measurements can be made using a
single unidirectional data (1302 or 1312) packet containing a
sent date/time stamp (of when the data was sent). Upon
receipt, that sent date/time stamp received is compared with
the date/time of receipt to determine the difference. The dif-
ference is a TDOA measurement. Knowing transmission
speeds with a TDOA measurement allows calculating a dis-
tance. In this NTP scenario, no thread(s) 1932 are required.

Threads 1912 and/or DLM processing may always insert
the MS whereabouts without requirement for thread(s) 1952

APPLE

EXHIBIT 1001 - PAGE 0310



US 8,639,267 B2

93

by incorporating thread 1952 logic into thread 1912, or by
directly starting (without queue 1980) a thread 1952 from a
thread 1912. Therefore, threads 1952 may not be required. If
threads 1952 are not required, queue 1980 may not be
required by incorporating thread 1932 logic into thread 1912,
or by directly starting (without queue 1980) a thread 1932
from a thread 1912. Therefore, queue 1980 may not be
required, and threads 1932 may not be required.

Records 2400 (i.e. queue entries 2400) contain a request
type field 2400a and data field 24005. Request type field
2400qa simply routes the queue entry to destined thread(s)
(e.g. thread(s) 1932 or thread(s) 1952). A thread 1932 remains
blocked on queue 1980 until a record 2400 is inserted which
has a field 2400a containing the value 1932. A thread 1952
remains blocked on queue 1980 until a record 2400 is inserted
which has a field 2400a containing the value 1952. Data field
24005 is set to zero (0) when type field 24004a contains 1952
(i.e. not relevant). Data field 24005 contains an MS 1D (field
1100q) value, and possibly a targeted communications inter-
face 70 (or wave spectrum if one to one), when type field
contains 1932. Field 24005 will contain information for
appropriately targeting the MS ID with data (e.g. communi-
cations interface to use if MS has multiple of them). An MS
with only one communications interface can store only a MS
ID in field 24005.

Records 2400 are used to cause appropriate processing by
19xxthreads (e.g. 1932 or 1952) as invoked when needed (e.g.
by thread(s) 1912). Process 1932 is a slave to queue type of
process, and there are no queue 1980 entries 2400 which will
not get timely processed by a thread 1932. No interim pruning
is necessary to queue 1980.

With reference now back to FIG. 19, Correlation Response
(CR) queue 1990 is for receiving correlation data for corre-
lating requests transmitted in data 1302 with responses
received in data 1302 or 1312. Records 2450 are inserted to
queue 1990 (via processing 1928) from thread(s) 1922 so that
thread(s) 1912 (after processing 1920) correlate data 1302 or
1312 with requests sent by thread(s) 1922 (e.g. over interface
1926), for the purpose of calculating a TDOA measurement.
Additionally, records 2450 are inserted to queue 1990 (via
processing 1936) from thread(s) 1932 so that thread(s) 1912
(after processing 1920) correlate data 1302 or 1312 with
requests sent by thread(s) 1932 (e.g. over interface 1938), for
the purpose of calculating a TDOA measurement. Preferably,
there is a plurality (pool) of threads for feeding queue 1990
and for feeding from queue 1990 (feeding from queue 1990
with thread(s) 1912). All queue 1990 accesses are assumed to
have appropriate semaphore control to ensure synchronous
access by any thread at any particular time to prevent data
corruption and misuse. Depending on alternative embodi-
ments, queue 1990 may be viewed metaphorically for pro-
viding convenient grounds of explanation.

With reference now to FIG. 24B, depicted is an illustration
for describing a preferred embodiment of a correlation
response queue record, as maintained to Correlation
Response (CR) queue 1990. CR queue 1990 is not required
when a LN-expanse globally uses NTP, as found in thread
19xx processing described for architecture 1900, however it
may be required at a MS which does not have NTP, or a MS
which interacts with another data processing system (e.g.
MS) that does not have NTP. Therefore, CR record 2450 (i.e.
queue entry 2450) may, or may not, be required. This is the
reason FIG. 1A does not depict queue 1990. The purpose of
CR queue 1990 is to enable calculation of TDOA measure-
ments using correlation data to match a request with a
response. When NTP is used globally in the LN-expanse, no
such correlations between a request and response is required,

25

35

40

45

50

55

60

65

94

as described above. In the NTP scenario, thread(s) 1912 can
deduce TDOA measurements directly from responses (see
FIG. 21), and there is no requirement for threads 1932.

TDOA measurements are best taken using date/time
stamps as close to the processing points of sending and
receiving as possible, otherwise critical regions of code may
be required for enabling process time adjustments to the
measurements when processing is “further out” from said
points. This is the reason MS receive processing provides
received date/time stamps with data inserted to queue 26
(field 1100p or 2490c¢). In a preferred embodiment, send
queue 24 processing inserts to queue 1990 so the date/time
stamp field 2450a for when sent is as close to just prior to
having been sent as possible. However, there is still the
requirement for processing time spent inserting to queue
1990 prior to sending anyway. Anticipated processing speeds
of architecture 1900 allow reasonably moving sent date/time
stamp setting just a little “further out” from actually sending
to keep modular send processing isolated. A preferred
embodiment (as presented) assumes the send queue 24 inter-
face minimizes processing instructions from when data is
placed onto queue 24 and when it is actually sent, so that the
sending thread(s) 19xx (1902, 1922, 1932 and 1942) insert to
queue 1990 with a reasonably accurate sent/date stamp field
2450q. This ensures a most accurate sent date/time stamp
(e.g. enabling most accurate TDOA measurements). An alter-
nate embodiment makes appropriate adjustments for more
accurate time to consider processing instructions up to the
point of sending after queue 1990 insertion.

Records 2450 (i.e. queue entries 2450) contain a date/time
stamp field 2450a and a correlation data field 245056. Date/
time stamp field 2450a contains a date/time stamp of when a
request (data 1302) was sent as set by the thread inserting the
queue entry 2450. Correlation data field 24505 contains
unique correlation data (e.g. MS id with suffix of unique
number) used to provide correlation for matching sent
requests (data 1302) with received responses (data 1302 or
1312), regardless of the particular communications inter-
face(s) used (e.g. different wave spectrums supported by
MS). Upon a correlation match, a TDOA measurement is
calculated using the time difference between field 24504 and
a date/time stamp of when the response was received (e.g.
field 1100p). A thread 1912 accesses queue 1990 for a record
2450 using correlation field 24504 to match, when data 1302
or 1312 contains correlation data for matching. A thread 1912
then uses the field 24504 to calculate a TDOA measurement.
Process 1912 is not a slave to queue 1990 (but is to queue 26).
A thread 1912 peeks queue 1990 for a matching entry when
appropriate. Queue 1990 may contain obsolete queue entries
2450 until pruning is performed. Some WDR requests may be
broadcasts, therefore records 2450 may be used for correlat-
ing a plurality of responses. In another record 2450 embodi-
ment, an additional field 2450¢ is provided for specification
of which communication interface(s) and/or channel(s) to
listen on for a response.

With reference now back to FIG. 19, any reasonable subset
of architecture 1900 processing may be incorporated in a MS.
For example in one minimal subset embodiment, a DLM
which has excellent direct locating means only needs a single
instance WDR (queue 22) and a single thread 1902 for broad-
casting whereabouts data to facilitate whereabouts determi-
nation by other MSs. In a near superset embodiment, process
1942 processing may be incorporated completely into pro-
cess 1912, thereby eliminating processing 1942 by having
threads 1912 feed from queue 26 for WDR requests as well as
WDR information. In another subset embodiment, process
1922 may only send requests to queue 24 for responses, or

APPLE

EXHIBIT 1001 - PAGE 0311



US 8,639,267 B2

95

may only start a thread 1952 for determining whereabouts of
the MS. There are many viable subset embodiments depend-
ing on the MS being a DLM or ILM, capabilities of the MS,
LN-expanse deployment design choices, etc. A reference to
FIG. 19 accompanies thread 19xx flowcharts (FIGS. 20, 21,
22, 23, 25 and 26A). The user, preferably an administrator
type (e.g. for IbxPhone™ debug) selectively configures
whether or not to start or terminate a process (thread pool),
and perhaps the number of threads to start in the pool (see
FIG. 14A). Starting a process (and threads) and terminating
processes (and threads) is shown in flowcharts 29A and 29B.
There are other embodiments for properly starting and termi-
nating threads without departing from the spirit and scope of
this disclosure.

LBX of data may also be viewed as LBX of objects, for
example a WDR, WDR request, TDOA request, AOA
request, charters, permissions, data record(s), or any other
data may be viewed as an object. An subset of an object or data
may also be viewed as an object.

FIG. 20 depicts a flowchart for describing a preferred
embodiment of MS whereabouts broadcast processing, for
example to facilitate other MSs in locating themselves in an
LN-expanse. FIG. 20 processing describes a process 1902
worker thread, and is of PIP code 6. Thread(s) 1902 purpose
is for the MS of FIG. 20 processing (e.g. a first, or sending,
MS) to periodically transmit whereabouts information to
other MSs (e.g. at least a second, or receiving, MS) to use in
locating themselves. It is recommended that validity criteria
set at block 1444 for 1902-Max be fixed at one (1) in the
preferred embodiment. Multiple channels for broadcast at
block 2016 should be isolated to modular send processing
(feeding from a queue 24).

In an alternative embodiment having multiple transmission
channels visible to process 1902, there can be a worker thread
1902 per channel to handle broadcasting on multiple chan-
nels. If thread(s) 1902 (block 2016) do not transmit directly
over the channel themselves, this embodiment would provide
means for communicating the channel for broadcast to send
processing when interfacing to queue 24 (e.g. incorporate a
channel qualifier field with WDR inserted to queue 24). This
embodiment could allow specification of at least one (1)
worker thread per channel, however multiple worker threads
configurable for process 1902 as appropriated for the number
of channels configurable for broadcast.

Processing begins at block 2002, continues to block 2004
where the process worker thread count 1902-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1902-Sem)), and continues to block 2006 for peeking
WDR queue 22 for a special termination request entry. Block
2004 may also check the 1902-Ct value, and signal the pro-
cess 1902 parent thread that all worker threads are running
when 1902-Ct reaches 1902-Max. Thereafter, if block 2008
determines that a worker thread termination request was not
found in queue 22, processing continues to block 2010. Block
2010 peeks the WDR queue 22 (using interface 1904) for the
most recent highest confidence entry for this MS whereabouts
by searching queue 22 for: the MS ID field 1100a matching
the MS ID of FIG. 20 processing, and a confidence field
11004 greater than or equal to the confidence floor value, and
a most recent NTP enabled date/time stamp field 11005
within a prescribed trailing period of time (e.g. preferably less
than or equal to 2 seconds). For example, block 2010 peeks
the queue (i.e. makes a copy for use if an entry found for
subsequent processing, but does not remove the entry from
queue) for a WDR of this MS (i.e. MS of FIG. 20 processing)
which has the greatest confidence over 75 and has been most
recently inserted to queue 22 with an NTP date/time stamp in

40

45

96

the last 2 seconds. Date/time stamps for MS whereabouts
which are not NTP derived have little use in the overall palette
of process 19xx choices of architecture 1900 because receiv-
ing data processing systems (e.g. MSs) will have no means of
determining an accurate TDOA measurement in the unidirec-
tional transmission from an NTP disabled MS. A receiving
data processing system will still require a bidirectional cor-
related exchange with the MS of FIG. 20 processing to deter-
mine an accurate TDOA measurement in its own time scale
(which is accomplished with thread(s) 1922 pulling WDR
information anyway). An alternate embodiment to block
2010 will not use the NTP indicator as a search criteria so that
receiving data processing systems can receive to a thread
1912, and then continue for appropriate correlation process-
ing, or can at least maintain whereabouts to queue 22 to know
who is nearby.

Thread 1902 is of less value to the LN-expanse when it
broadcasts outdated/invalid whereabouts of the MS to facili-
tate locating other MSs. In an alternate embodiment, a move-
ment tolerance (e.g. user configured or system set (e.g. 3
meters)) is incorporated at the MS, or at service(s) used to
locate the MS, for knowing when the MS has significantly
moved (e.g. more than 3 meters) and how long it has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MS is aware of the period of time since last
significantly moving and the search time criteria is set using
the amount of time since the MS significantly moved (which-
ever is greater). This way a large number of (perhaps more
confident candidates) WDRs are searched in the time period
when the MS has not significantly moved. Optional blocks
278 through 284 may have been incorporated to FIG. 2F for
movement tolerance processing just described, in which case
the LWT is compared to the current date/time of block 2010
processing to adjust block 2010 search time criteria for the
correct trailing period. In any case, a WDR is sought at block
2010 which will help other MSs in the LN-expanse locate
themselves, and to let other MSs know who is nearby.

Thereafter, if block 2012 determines a useful WDR was
found, then block 2014 prepares the WDR for send process-
ing, block 2016 broadcasts the WDR information (using send
interface 1906) by inserting to queue 24 so that send process-
ing broadcasts data 1302 (e.g. on all available communica-
tions interface(s) 70), for example as far as radius 1306, and
processing continues to block 2018. The broadcast is for
reception by data processing systems (e.g. MSs) in the vicin-
ity. At least fields 110056, 1100¢, 11004, and 11007 are broad-
cast. See FIG. 11A descriptions. Fields are set to the follow-
ing upon exit from block 2014:

MS ID field 1100q is preferably set with: Field 1100a from
queue 22, or transformed (if not already) into a pseudo MS ID
(possibly for future correlation) if desired. This field may also
be set to null (not set) because it is not required when the NTP
indicator of field 11005 is enabled and the broadcast is sent
with an NTP enabled field 1100.

DATE/TIME STAMP field 11005 is preferably set with: Field
110056 from queue 22.

LOCATION field 1100c is preferably set with: Field 1100¢
from queue 22.

CONFIDENCE field 11004 is preferably set with: Field
11004 from queue 22.

LOCATION TECHNOLOGY field 1100¢ is preferably set
with: Field 1100e from queue 22.

LOCATION REFERENCE INFO field 1100/ is preferably
set with: null (not set). Null indicates to send processing
feeding from queue 24 to use all available comm. interfaces
70 (i.e. Broadcast). Specifying a comm. interface targets the
specified interface (i.e. send).

APPLE

EXHIBIT 1001 - PAGE 0312



US 8,639,267 B2

97
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set). IfMS ID (or pseudo MS ID)
is sent, this is all that is required to target this MS.
SPEED field 1100/ is preferably set with: Field 1100/ from
queue 22.
HEADING field 1100i is preferably set with: Field 1100/
from queue 22.
ELEVATION field 1100; is preferably set with: Field 1100
from queue 22.
APPLICATION FIELDS field 1100% is preferably set with:
Field 1100% from queue 22. An alternate embodiment will
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2014 processing.
CORRELATION FIELD 1100 is preferably set with: null
(not set).
SENT DATE/TIME STAMP field 1100z is preferably set
with: Sent date/time stamp as close in processing the broad-
cast of block 2016 as possible.
RECEIVED DATE/TIME STAMP field 1100p is preferably
set with: Not Applicable (i.e. N/A for sending).

Block 2018 causes thread 1902 to sleep according to the
SPTP setting (e.g. a few seconds). When the sleep time has
elapsed, processing continues back to block 2006 for another
loop iteration of blocks 2006 through 2016. Referring back to
block 2012, if a useful WDR was not found (e.g. candidates
too old), then processing continues to block 2018. Referring
back to block 2008, if a worker thread termination request
entry was found at queue 22, then block 2020 decrements the
worker thread count by 1 (using appropriate semaphore
access (e.g. 1902-Sem)), and thread 1902 processing termi-
nates at block 2022. Block 2020 may also check the 1902-Ct
value, and signal the process 1902 parent thread that all
worker threads are terminated when 1902-Ct equals zero (0).

Block 2016 causes broadcasting data 1302 containing CK
1304 wherein CK 1304 contains WDR information prepared
as described above for block 2014. Alternative embodiments
of block 2010 may not search a specified confidence value,
and broadcast the best entry available anyway so that listeners
in the vicinity will decide what to do with it. A semaphore
protected data access (instead of a queue peek) may be used in
embodiments where there is always one WDR current entry
maintained for the MS.

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for listen-
ing MSs in the vicinity, send processing feeding from queue
24, caused by block 2016 processing, will place WDR infor-
mation as CK 1304 embedded in usual data 1302 at the next
opportune time of sending usual data 1302. If an opportune
time is not timely, send processing should discard the send
request of block 2016 to avoid broadcasting outdated where-
abouts information (unless using a movement tolerance and
time since last significant movement). As the MS conducts its
normal communications, transmitted data 1302 contains new
data CK 1304 to be ignored by receiving MS other character
32 processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable signal
by MSs in the vicinity, FIG. 20 sends repeated timely pulsed
broadcasts of new data 1302 (per SPTP) for MSs in the
vicinity of the first MS to receive. In any case, appropriate
implementation should ensure field 11007 is as accurate as
possible for when data 1302 is actually sent.

An alternate embodiment to architecture 1900 for elimina-
tion of process 1902 incorporates a trigger implementation
for broadcasting MS whereabouts at the best possible time—
i.e. when the MS whereabouts is inserted to queue 22. As soon

10

15

20

25

30

35

40

45

50

55

60

65

98

as anew (preferably NTP enabled) WDR candidate becomes
available, it can be broadcast at a new block 279 of FIG. 2F.
(e.g. new block 279 continued to from block 278 and then
continuing to block 280). Fields are set as described above for
FIG. 20. Preferably, the new block 279 starts an asynchronous
thread consisting of blocks 2014 and 2016 so that FIG. 2F
processing performance is not impacted. In a further embodi-
ment, block 279 can be further enhanced using the SPTP
value to make sure that too many broadcasts are not made.
The SPTP (Source Periodicity Time Period) could be
observed for getting as close as possible to broadcasting
whereabouts in accordance with SPTP (e.g. worst case there
are not enough broadcasts).

FIG. 21 depicts a flowchart for describing a preferred
embodiment of MS whereabouts collection processing. FIG.
21 processing describes a process 1912 worker thread, and is
of PIP code 6. Thread(s) 1912 purpose is for the MS of FIG.
21 processing (e.g. a second, or receiving, MS) to collect
potentially useful WDR information from other MSs (e.g. at
least a first, or sending, MS) in the vicinity for determining
whereabouts of the receiving (second) MS. It is recom-
mended that validity criteria set at block 1444 for 1912-Max
be set as high as possible (e.g. 10) relative performance con-
siderations of architecture 1900, with at least one thread per
channel that WDR information may be received on by the
receiving MS. Multiple channels for receiving data fed to
queue 26 should be isolated to modular receive processing
(feeding a queue 26).

In an alternative embodiment having multiple receiving
transmission channels visible to process 1912 (e.g. thread(s)
1912 receiving directly), there can be a worker thread 1912
per channel to handle receiving on multiple channels simul-
taneously. If thread(s) 1912 do not receive directly from the
channel, the preferred embodiment of FIG. 21 would not need
to convey channel information to thread(s) 1912 waiting on
queue 26 anyway. Embodiments could allow specification/
configuration of many thread(s) 1912 per channel.

Processing begins at block 2102, continues to block 2104
where the process worker thread count 1912-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1912-Sem)), and continues to block 2106 for interim
housekeeping of pruning the WDR queue by invoking a Prune
Queues procedure of FIG. 27. Block 2104 may also check the
1912-Ct value, and signal the process 1912 parent thread that
all worker threads are running when 1912-Ct reaches 1912-
Max. Block 2106 may not be required since block 2130 can
cause queue 22 pruning (block 292).

Thereafter, block 2108 retrieves from queue 26 a WDR
(using interface 1914), perhaps a special termination request
entry, ora WDR received indata 1302 (CK 1304) or data 1312
(CK 1314), and only continues to block 2110 when a WDR
has been retrieved. Block 2108 stays blocked on retrieving
from queue 26 until any WDR is retrieved. If block 2110
determines that a special WDR indicating to terminate was
not found in queue 26, processing continues to block 2112.
Block 2112 adjusts date/time stamp field 11005 if necessary
depending on NTP use in the LN-expanse and adjusts the
confidence field 11004 accordingly. In a preferred embodi-
ment, fields 11005 and 11004 for the WDR in process is set as
follows for certain conditions:

Fields 110056, 11007 and 1100p all NTP indicated: keep

fields 11005 and 11004 as is; or

Fields 11005 and 11007 are NTP indicated, 1100p is not: Is

correlation (field 1100m) present?: No, then set confi-
dence (field 11004) to O (for filtering out at block 2114)/
Yes, then set field 11005 to 1100p (in time terms of this

APPLE

EXHIBIT 1001 - PAGE 0313



US 8,639,267 B2

929
MS) and adjust confidence lower based on differences
between fields 11005, 11007 and 1100p; or

Fields 11005 and 1100p are NTP indicated, 1100z is not: Is

correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11005 to
1100p (in time terms of this MS) and adjust confidence
lower based on differences between fields 11005, 1100#
and 1100p; or

Fields 11005 NTP indicated, 11007 and 1100p not: Is

correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11005 to
1100p (in time terms of this MS) and adjust confidence
lower based on differences between fields 11005, 1100#
and 1100p; or

Field 11005 not NTP indicated, 11007 and 1100p are: Is

correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11005 to
1100p (in time terms of this MS) and adjust confidence
lower based on differences between fields 11005, 1100#
and 1100p; or

Fields 11005 and 1100p are not NTP indicated, 1100z is: Is

correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11005 to
1100p (in time terms of this MS) and adjust confidence
lower based on differences between fields 11005, 1100x
and 1100p; or

Fields 11005 and 11007 are not NTP indicated, 1100p is: Is

correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11005 to
1100p (in time terms of this MS) and adjust confidence
lower based on differences between fields 11005, 1100#
and 1100p; or

Fields 11005, 11007~ and 1100p not NTP indicated: Is

correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11005 to
1100p (in time terms of this MS) and adjust confidence
lower based on differences between fields 11005, 1100x
and 1100p.
NTP ensures maintaining a high confidence in the LN-ex-
panse, but absence of NTP is still useful. Confidence values
should be adjusted with the knowledge of the trailing time
periods used for searches when sharing whereabouts (e.g.
thread(s) 1942 searches). Block 2112 continues to block
2114.

If at block 2114, the WDR confidence field 11004 is not
greater than the confidence floor value, then processing con-
tinues back to block 2106. If block 2114 determines that the
WDR field 11004 is satisfactory, then block 2116 initializes a
TDOA_FINAL variable to False, and block 2118 checks if
the WDR from block 2108 contains correlation (field 1100m).

If block 2118 determines the WDR does not contain cor-
relation, then block 2120 accesses the ILMV, block 2122
determines the source (ILM or DLM) of the WDR using the
originator indicator of field 1100e, and block 2124 checks
suitability for collection of the WDR. While processes 19xx
running are generally reflective of the ILMV roles config-
ured, it is possible that the more descriptive nature of ILMV
role(s) not be one to one in relationship to 19xx processes, in
particular depending on the subset of architecture 1900 in use.
Block 2124 is redundant anyway because of block 274. If
block 2124 determines the ILMV role is disabled for collect-
ing this WDR, then processing continues back to block 2106.
If block 2124 determines the ILMYV role is enabled for col-
lecting this WDR, then processing continues to block 2126.

If block 2126 determines both the first (sending) and sec-
ond (receiving) MS are NTP enabled (i.e. Fields 11005,
11007 and 1100p are NTP indicated) OR if TDOA_FINAL is

10

15

20

25

30

35

40

45

50

55

65

100

set to True (as arrived to via block 2150), then block 2128
completes the WDR for queue 22 insertion, block 2130 pre-
pares parameters for FIG. 2F processing and block 2132
invokes FIG. 2F processing (interface 1916). Parameters set
at block 2130 are: WDRREF=a reference or pointer to the
WDR completed at block 2128; DELETEQ=FIG. 21 location
queue discard processing; and SUPER=FIG. 21 supervisory
notification processing. Block 2128 calculates a TDOA mea-
surement whenever possible and inserts to field 1100f. See
FIG. 11A descriptions. Fields are set to the following upon
exit from block 2128:

MS ID field 1100q is preferably set with: Field 1100a from
queue 26.

DATE/TIME STAMP field 11004 is preferably set with: Pre-
ferred embodiment discussed for block 2112.

LOCATION field 1100c is preferably set with: Field 1100¢
from queue 26.

CONFIDENCE field 11004 is preferably set with: Confi-
dence at equal to or less than field 11004 received from queue
26 (see preferred embodiment for block 2112).

LOCATION TECHNOLOGY field 1100e is preferably set
with: Field 1100e from queue 26.

LOCATION REFERENCE INFO field 1100/ is preferably
set with: All available measurements from receive processing
(e.g. AOA, heading, yaw, pitch, roll, signal strength, wave
spectrum, particular communications interface 70, etc), and
TDOA measurement(s) as determined in FIG. 21 (blocks
2128 and 2148).

COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: Field 1100g from queue 26.

SPEED field 1100/ is preferably set with: Field 1100/ from
queue 26.

HEADING field 1100i is preferably set with: Field 1100/
from queue 26.

ELEVATION field 11005 is preferably set with: Field 11005
from queue 26.

APPLICATION FIELDS field 1100% is preferably set with:
Field 1100% from queue 26. An alternate embodiment will
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2128 processing.

CORRELATION FIELD 1100 is preferably set with: Not
Applicable (i.e. not maintained to queue 22). Was used by
FIG. 21 processing.

SENT DATE/TIME STAMP field 1100z is preferably set
with: Not Applicable (i.e. not maintained to queue 22). Was
used by FIG. 21 processing.

RECEIVED DATE/TIME STAMP field 1100p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).
Was used by FIG. 21 processing.

Block 2132 continues to block 2134 where a record 2400 is
built (i.e. field 2400a=1952 and field 24005 is set to null (e.g.
-1)) and then block 2136 inserts the record 2400 to TR queue
1980 (using interface 1918) so that a thread 1952 will perform
processing. Blocks 2134 and 2136 may be replaced with an
alternative embodiment for starting a thread 1952. Block
2136 continues back to block 2106.

Referring now back to block 2126, if it is determined that a
TDOA measurement cannot be made (i.e. (field 11007 or
1100p not NTP indicated) OR if TDOA_FINAL is set to
False), then block 2138 checks if the WDR contains a MS ID
(or pseudo MS ID). If block 2138 determines there is none,
then processing continues back to block 2106 because there is
no way to distinguish one MS from another with respect to the
WDR retrieved at block 2108 for directing bidirectional cor-
relation. An alternate embodiment will use a provided corre-
lation field 1100 received at block 2108, instead of a field
1100a, for knowing how to target the originating MS for

APPLE

EXHIBIT 1001 - PAGE 0314



US 8,639,267 B2

101

TDOA measurement processing initiated by a thread 1932. If
block 2138 determines there is a usable MS ID (or correlation
field), then block 2140 builds a record 2400 (field
24004a=1932, field 24005=the MS ID (or pseudo MS ID, or
correlation) and particular communications interface from
field 11007 (if available) of the WDR of block 2108, and block
2142 inserts the record 2400 to queue 1980 (interface 1918)
for starting a thread 1932. Block 2142 continues back to block
2106. An alternate embodiment causes block 2126 to con-
tinue directly to block 2140 (no block 2138) for a No condi-
tion from block 2126. Regardless of whether the originating
MS ID can be targeted, a correlation (in lieu of an MS ID) may
be used when the MS responds with a broadcast. The WDR
request made by thread 1932 can be a broadcast rather than a
targeted request. Thread(s) 1932 can handle sending targeted
WDR requests (to a known MS ID) and broadcast WDR
requests.

Referring back to block 2118, if it is determined the WDR
does contain correlation (field 1100m2), block 2144 peeks the
CR queue 1990 (using interface 1920) for a record 2450
containing a match (i.e. field 1100m matched to field 24505).
Thereafter, if block 2146 determines no correlation was found
on queue 1990 (e.g. response took too long and entry was
pruned), then processing continues to block 2120 already
described. If block 2146 determines the correlation entry was
found (i.e. thread 1912 received a response from an earlier
request (e.g. from a thread 1922 or 1932), then block 2148
uses date/time stamp field 2450a (from block 2144) with field
1100p (e.g. from block 2108) to calculate a TDOA measure-
ment in time scale of the MS of FIG. 21 processing, and sets
field 11007 appropriately in the WDR. Note that correlation
field 24505 is valid across all available MS communications
interfaces (e.g. all supported active wave spectrums). The
TDOA measurement considers duration of time between the
earlier sent date/time of record 2450 and the later time of
received date/time field 1100p. The TDOA measurement may
further be altered at block 2148 processing time to a distance
knowing the velocity of the wave spectrum used as received to
queue 26. Block 2148 continues to block 2150 where the
TDOA_FINAL variable is set to True, then to block 2120 for
processing already described.

Referring back to block 2110, ifa WDR for a worker thread
termination request was found at queue 26, then block 2152
decrements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1912-Sem)), and thread 1912 pro-
cessing terminates at block 2154. Block 2152 may also check
the 1912-Ct value, and signal the process 1912 parent thread
that all worker threads are terminated when 1912-Ct equals
zero (0).

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 or 1314 for
listening MSs in the vicinity, receive processing feeding
queue 26 will place WDR information to queue 26 as CK
1304 or 1314 is detected for being present in usual commu-
nication data 1302 or 1304. As normal communications are
conducted, transmitted data 1302 or 1312 contains new data
CK 1304 or 1314 to be ignored by receiving MS other char-
acter 32 processing, but to be found by listening MSs within
the vicinity which anticipate presence of CK 1304 or 1314.
Otherwise, when LN-Expanse deployments have not intro-
duced CK 1304 (or 1314) to usual data 1302 (or 1312) com-
municated on a receivable signal by MSs in the vicinity, FIG.
21 receives new data 1302 (or 1312) sent. In any case, field
1100p should be as accurate as possible for when data 1302
(or 1312) was actually received. Critical regions of code
and/or anticipated execution timing may be used to affect a
best setting of field 1100p.

10

15

20

25

30

35

40

45

50

55

60

65

102

So, FIG. 21 is responsible for maintaining whereabouts of
others to queue 22 with data useful for triangulating itself.

FIG. 22 depicts a flowchart for describing a preferred
embodiment of MS whereabouts supervisor processing, for
example to ensure the MS of FIG. 22 processing (e.g. first
MS) is maintaining timely whereabouts information for
itself. FIG. 22 processing describes a process 1922 worker
thread, and is of PIP code 6. Thread(s) 1922 purpose is for the
MS of FIG. 22 processing (e.g. a first, or sending, MS), after
determining its whereabouts are stale, to periodically trans-
mit requests for whereabouts information from MSs in the
vicinity (e.g. from at least a second, or receiving, MS), and/or
to start a thread 1952 for immediately determining where-
abouts. Alternative embodiments to FIG. 22 will implement
processing of blocks 2218 through 2224, or processing of
blocks 2226 through 2228, or both as depicted in FIG. 22. It
is recommended that validity criteria set at block 1444 for
1922-Max be fixed at one (1) in the preferred embodiment.
Multiple channels for broadcast at block 2224 should be
isolated to modular send processing feeding from a queue 24.

Inan alternative embodiment having multiple transmission
channels visible to process 1922, there can be a worker thread
1922 per channel to handle broadcasting on multiple chan-
nels. If thread(s) 1922 (block 2224) do not transmit directly
over the channel, this embodiment would provide means for
communicating the channel for broadcast to send processing
when interfacing to queue 24 (e.g. incorporate a channel
qualifier field with WDR request inserted to queue 24). This
embodiment could allow specification of one (1) thread per
channel, however multiple worker threads configurable for
process 1922 as determined by the number of channels con-
figurable for broadcast.

Processing begins at block 2202, continues to block 2204
where the process worker thread count 1922-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1922-Sem)), and continues to block 2206 for interim
housekeeping of pruning the CR queue by invoking a Prune
Queues procedure of FIG. 27. Block 2204 may also check the
1922-Ct value, and signal the process 1922 parent thread that
all worker threads are running when 1922-Ct reaches 1922-
Max. Block 2206 continues to block 2208 for peeking WDR
queue 22 (using interface 1924) for a special termination
request entry. Thereafter, if block 2210 determines that a
worker thread termination request was not found in queue 22,
processing continues to block 2212. Block 2212 peeks the
WDR queue 22 (using interface 1924) for the most recent
highest confidence entry for this MS whereabouts by search-
ing queue 22 for: the MS ID field 11004 matching the MS ID
of FIG. 22 processing, and a confidence field 11004 greater
than or equal to the confidence floor value, and a most recent
date/time stamp field 11005 within a prescribed trailing
period of time of block 2212 search processing using a func-
tion of the WTV (i.e. f{(WTV)=short-hand for “function of
WTV?”) for the period. For example, block 2212 peeks the
queue (i.e. makes a copy for use if an entry found for subse-
quent processing, but does not remove the entry from queue)
for a WDR of the first MS which has the greatest confidence
over 75 and has been most recently inserted to queue 22 in the
last 3 seconds. Since the MS whereabouts accuracy may be
dependent on timeliness of the WTV, it is recommended that
the f(WTV) be some value less than or equal to WTV, but
preferably not greater than the WTV. Thread 1922 is of less
value to the MS when not making sure in a timely manner the
MS is maintaining timely whereabouts for itself. In an alter-
nate embodiment, amovement tolerance (e.g. user configured
or system set (e.g. 3 meters)) is incorporated at the MS, or at
service(s) used to locate the MS, for knowing when the MS

APPLE

EXHIBIT 1001 - PAGE 0315



US 8,639,267 B2

103

has significantly moved (e.g. more than 3 meters) and how
long it has been (e.g. 45 seconds) since last significantly
moving. In this embodiment, the MS is aware of the period of
time since last significantly moving and the f{WTV) is set
using the amount of time since the MS significantly moved
(i.e. f(WTV)=as described above, or the amount of time since
significantly moving, whichever is greater). This way a large
number of (perhaps more confident candidates) WDRs are
searched in the time period when the MS has not significantly
moved. Optional blocks 278 through 284 may have been
incorporated to FIG. 2F for movement tolerance processing
just described, in which case the LWT is compared to the
current date/time to adjust the WTV for the correct trailing
period. Inany case, a WDR is sought at block 2212 which will
verify whether or not MS whereabouts are current.

Thereafter, if block 2214 determines a satisfactory WDR
was found, then processing continues to block 2216. Block
2216 causes thread 1922 to sleep according to a f{WTV)
(preferably a value less than or equal to the WTV (e.g. 95% of
WTV)). When the sleep time has elapsed, processing contin-
ues back to block 2206 for another loop iteration of blocks
2206 through 2214.

If block 2214 determines a current WDR was not found,
then block 2218 builds a WDR request (e.g. containing record
2490 with field 24904 for the MS of FIG. 22 processing (MS
ID or pseudo MS ID) so receiving MSs in the LN-expanse
know who to respond to, and field 24905 with appropriate
correlation for response), block 2220 builds a record 2450
(using correlation generated for the request at block 2218),
block 2222 inserts the record 2450 to queue 1990 (using
interface 1928), and block 2224 broadcasts the WDR request
(record 2490) for responses. Absence of field 24904 indicates
to send processing feeding from queue 24 to broadcast on all
available comm. interfaces 70.

With reference now to FIG. 24C, depicted is an illustration
for describing a preferred embodiment of a WDR request
record, as communicated to queue 24 or 26. When a LN-
expanse globally uses NTP, as found in thread 19xx process-
ing described for architecture 1900, a WDR request record
2490 may, or may not, be required. TDOA calculations can be
made using a single unidirectional data (1302 or 1312) packet
containing a sent date/time stamp (of when the data was sent)
as described above.

Records 2490 contain a MS ID field 24904 and correlation
field 24905. MS ID field 2490a contains an MS ID (e.g. a
value of field 1100a). An alternate embodiment will contain a
pseudo MS ID (for correlation), perhaps made by a derivative
of'the MS ID with a unique (suffix) portion, so that receiving
MSs can directly address the MS sending the request without
actually knowing the MS ID (i.e. they know the pseudo MS
ID which enables the MS to recognize originated transmis-
sions). Correlation data field 24905 contains unique correla-
tion data (e.g. MS id with suffix of unique number) used to
provide correlation for matching sent requests (data 1302)
with received WDR responses (data 1302 or 1312). Upon a
correlation match, a TDOA measurement is calculated using
the time difference between field 2450a and a date/time stamp
of when the response was received (e.g. field 1100p).
Received date/time stamp field 2490¢ is added by receive
processing feeding queue 26 when an MS received the
request from another MS. Comm interface field 24904 is
added by receive processing inserting to queue 26 for how to
respond and target the originator. Many MSs do not have
choices of communications interfaces, so field 24904 may not
berequired. If available it is used, otherwise a response can be
a broadcast. Field 24904 may contain a wave spectrum iden-
tifier for uniquely identifying how to respond (e.g. one to one

15

25

30

40

45

50

104

with communications interface), or any other value for indi-
cating how to send given how the request was received.

With reference back to FIG. 22, block 2218 builds arequest
that receiving MSs will know is for soliciting a response with
WDR information. Block 2218 generates correlation for field
24505 to be returned in responses to the WDR request broad-
cast at block 2224. Block 2220 also sets field 2450a to when
the request was sent. Preferably, field 2450a is set as close to
the broadcast as possible. In an alternative embodiment,
broadcast processing feeding from queue 24 makes the record
2450 and inserts it to queue 1990 with a most accurate time of
when the request was actually sent. Fields 2450a are to be as
accurate as possible. Block 2224 broadcasts the WDR request
data1302 (using send interface 1926) by inserting to queue 24
so that send processing broadcasts data 1302, for example as
far as radius 1306. Broadcasting preferably uses all available
communications interface(s) 70 (e.g. all available wave spec-
trums). Therefore, the comm interface field 24904 is not set
(which implies to send processing to do a broadcast).

Block 2224 continues to block 2226 where a record 2400 is
built (i.e. field 2400a=1952 and field 24005 is set to null (e.g.
-1)) and then block 2228 inserts the record 2400 to TR queue
1980 (using interface 1930) so that athread 1952 will perform
processing. Blocks 2226 and 2228 may be replaced with an
alternative embodiment for starting a thread 1952. Block
2228 continues back to block 2216.

Referring back to block 2210, if a worker thread termina-
tion request entry was found at queue 22, then block 2230
decrements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1922-Sem)), and thread 1922 pro-
cessing terminates at block 2232. Block 2230 may also check
the 1922-Ct value, and signal the process 1922 parent thread
that all worker threads are terminated when 1922-Ct equals
zero (0).

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for listen-
ing MSs in the vicinity, send processing feeding from queue
24, caused by block 2224 processing, will place the request as
CK 1304 embedded in usual data 1302 at the next opportune
time of sending usual data 1302. This may require the alter-
native embodiment of adding the entry to queue 1990 being
part of send processing. As the MS conducts its normal com-
munications, transmitted data 1302 contains new data CK
1304 to be ignored by receiving MS other character 32 pro-
cessing, but to be found by listening MSs within the vicinity
which anticipate presence of CK 1304. Otherwise, when LN-
Expanse deployments have not introduced CK 1304 to usual
data 1302 communicated on a receivable signal by MSs in the
vicinity, FIG. 22 sends new WDR request data 1302.

FIG. 23 depicts a flowchart for describing a preferred
embodiment of MS timing determination processing. FIG. 23
processing describes a process 1932 worker thread, and is of
PIP code 6. Thread(s) 1932 purpose is for the MS of FIG. 23
processing to determine TDOA measurements when needed
for WDR information received. It is recommended that valid-
ity criteria set at block 1444 for 1932-Max be set as high as
possible (e.g. 12) relative performance considerations of
architecture 1900, to service multiple threads 1912.

Processing begins at block 2302, continues to block 2304
where the process worker thread count 1932-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1932-Sem)), and continues to block 2306 for interim
housekeeping of pruning the CR queue by invoking a Prune
Queues procedure of FIG. 27. Block 2304 may also check the
1932-Ct value, and signal the process 1932 parent thread that
all worker threads are running when 1932-Ct reaches 1932-
Max.

APPLE

EXHIBIT 1001 - PAGE 0316



US 8,639,267 B2

105

Thereafter, block 2308 retrieves from queue 1980 a record
2400 (using interface 1934), perhaps a special termination
request entry, or a record 2400 received from thread(s) 1912,
and only continues to block 2310 when a record 2400 con-
taining field 2400a set to 1932 has been retrieved. Block 2308
stays blocked on retrieving from queue 1980 until a record
2400 with field 24004=1932 is retrieved. If block 2310 deter-
mines a special entry indicating to terminate was not found in
queue 1980, processing continues to block 2312.

If at block 2312, the record 2400 does not contain a MS ID
(or pseudo MS ID) in field 24005, processing continues to
block 2314 for building a WDR request (record 2490) to be
broadcast, and then to block 2318. Broadcasting preferably
uses all available communications interface(s) 70 (e.g. all
available wave spectrums). If block 2312 determines the field
24005 is a valid MS ID (not null), block 2316 builds a WDR
request targeted for the MS ID, and processing continues to
block 2318. A targeted request is built for targeting the MS ID
(and communications interface, if available) from field
24005. Send processing is told which communications inter-
face to use, ifavailable (e.g. MS has multiple), otherwise send
processing will target each available interface. In the unlikely
case a MS ID is present in field 24005 without the commu-
nications interface applicable, then all communications inter-
faces 70 are used with the targeted MS ID. In MS embodi-
ments with multiple communications interfaces 70, then
24005 is to contain the applicable communication interface
for sending. Block 2318 generates appropriate correlation for
a field 24505 (e.g. to be compared with a response WDR at
block 2144), block 2320 sets field 2450q to the current MS
date/time stamp, block 2322 inserts the record 2450 to queue
1990 (using interface 1936), and block 2324 sends/broad-
casts (using interface 1938) a WDR request (record 2490).
Thereafter, processing continues back to block 2306 for
another loop iteration. An alternative embodiment will only
target a WDR request to a known MS ID. For example, block
2312 would continue back to block 2306 if no MS ID is
found (=null), otherwise it will continue to block 2316 (i.e. no
use for block 2314).

Block 2318 sets field 24505 to correlation to be returned in
responses to the WDR request sent/broadcast at block 2324.
Block 2320 sets field 2450a to when the request is sent.
Preferably, field 2450a is set as close as possible to when a
send occurred. In an alternative embodiment, send processing
feeding from queue 24 makes the record 2450 and inserts it to
queue 1990 with a most accurate time of when the request was
actually sent. Fields 2450aq are to be as accurate as possible.
Block 2324 sends/broadcasts the WDR request data 1302
(using send interface 1938) by inserting to queue 24 a record
2490 (2490a=the targeted MS ID (or pseudo MS ID) OR null
if arrived to from block 2314, field 2490b=correlation gener-
ated at block 2318) so that send processing sends data 1302,
for example as far as radius 1306. A null MS ID may be
responded to by all MSs in the vicinity. A non-null MS 1D is
to be responded to by a particular MS. Presence of field 24904
indicates to send processing feeding from queue 24 to target
the MS ID over the specified comm. interface (e.g. when MS
has a plurality of comm. interfaces 70 (e.g. cellular, WiF1i,
Bluetooth, etc; i.e. MS supports multiple classes of wave
spectrum)).

Referring back to block 2310, if a worker thread termina-
tion request was found at queue 1980, then block 2326 dec-
rements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1932-Sem)), and thread 1932 pro-
cessing terminates at block 2328. Block 2326 may also check

10

15

20

25

30

35

40

45

50

55

60

65

106

the 1932-Ct value, and signal the process 1932 parent thread
that all worker threads are terminated when 1932-Ct equals
zero (0).

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for listen-
ing MSs in the vicinity, send processing feeding from queue
24, caused by block 2324 processing, will place the WDR
request as CK 1304 embedded in usual data 1302 at the next
opportune time of sending usual data 1302. As the MS con-
ducts its normal communications, transmitted data 1302 con-
tains new data CK 1304 to be ignored by receiving MS other
character 32 processing, but to be found by listening MSs
within the vicinity which anticipate presence of CK 1304.
This may require the alternative embodiment of adding the
entry to queue 1990 being part of send processing. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable signal
by MSs in the vicinity, FIG. 22 sends/broadcasts new WDR
request data 1302.

An alternate embodiment to block 2324 can wait for a
response with a reasonable timeout, thereby eliminating the
need for blocks 2318 through 2322 which is used to correlate
the subsequent response (to thread 1912) with the request sent
at block 2324. However, this will cause a potentially unpre-
dictable number of simultaneously executing thread(s) 1932
when many MSs are in the vicinity.

Thread(s) 1932 are useful when one or both parties to
WDR transmission (sending and receiving MS) do not have
NTP enabled. TDOA measurements are taken to triangulate
the MS relative other MSs in real time.

FIG. 25 depicts a flowchart for describing a preferred
embodiment of MS WDR request processing, for example
when aremote MS requests (e.g. from FIG. 22 or 23) a WDR.
Receive processing identifies targeted requests destined (e.g.
FIG. 23) for the MS of FIG. 25 processing, and identifies
general broadcasts (e.g. FIG. 22) for processing as well. FIG.
25 processing describes a process 1942 worker thread, and is
of PIP code 6. Thread(s) 1942 purpose is for the MS of FIG.
25 processing to respond to incoming WDR requests. It is
recommended that validity criteria set at block 1444 for 1942-
Max be set as high as possible (e.g. 10) relative performance
considerations of architecture 1900, to service multiple WDR
requests simultaneously. Multiple channels for receiving data
fed to queue 26 should be isolated to modular receive pro-
cessing.

In an alternative embodiment having multiple receiving
transmission channels visible to process 1942, there can be a
worker thread 1942 per channel to handle receiving on mul-
tiple channels simultaneously. If thread(s) 1942 do not
receive directly from the channel, the preferred embodiment
of FIG. 25 would not need to convey channel information to
thread(s) 1942 waiting on queue 24 anyway. Embodiments
could allow specification/configuration of many thread(s)
1942 per channel.

Processing begins at block 2502, continues to block 2504
where the process worker thread count 1942-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1942-Sem)), and continues to block 2506 for retrieving
from queue 26 a record 2490 (using interface 1948), perhaps
a special termination request entry, and only continues to
block 2508 when a record 2490 is retrieved. Block 2506 stays
blocked on retrieving from queue 26 until any record 2490 is
retrieved. If block 2508 determines a special entry indicating
to terminate was not found in queue 26, processing continues
to block 2510. There are various embodiments for thread(s)
1912 and thread(s) 1942 to feed off a queue 26 for different
record types, for example, separate queues 26A and 26B, or a

APPLE

EXHIBIT 1001 - PAGE 0317



US 8,639,267 B2

107
thread target field with either record found at queue 26 (e.g.
like field 24004). In another embodiment, thread(s) 1912 are
modified with logic of thread(s) 1942 to handle all records
described for a queue 26, since thread(s) 1912 are listening
for queue 26 data anyway.

Block 2510 peeks the WDR queue 22 (using interface
1944) for the most recent highest confidence entry for this MS
whereabouts by searching queue 22 for: the MS ID field
1100a matching the MS ID of FIG. 25 processing, and a
confidence field 11004 greater than or equal to the confidence
floor value, and a most recent date/time stamp field 11005
within a prescribed trailing period of time of block 2510
search processing (e.g. 2 seconds). For example, block 2510
peeks the queue (i.e. makes a copy foruse if an entry found for
subsequent processing, but does not remove the entry from
queue) for a WDR of the MS (of FIG. 25 processing) which
has the greatest confidence over 75 and has been most
recently inserted to queue 22 in the last 2 seconds. It is
recommended that the trailing period of time used by block
2510 be never greater than a few seconds. Thread 1942 is of
less value to the LN-expanse when it responds with outdated/
invalid whereabouts of the MS to facilitate locating other
MS:s. In an alternate embodiment, a movement tolerance (e.g.
user configured or system set (e.g. 3 meters)) is incorporated
atthe MS, or at service(s) used to locate the MS, for knowing
when the MS has significantly moved (e.g. more than 3
meters) and how long it has been (e.g. 45 seconds) since last
significantly moving. In this embodiment, the MS is aware of
the period of time since last significantly moving and the
trailing period of time used by block 2510 is set using the
amount of time since the MS significantly moved, or the
amount of time since significantly moving, whichever is
greater. This way a large number of (perhaps more confident
candidate) WDRs are searched in the time period when the
MS has not significantly moved. Optional blocks 278 through
284 may have been incorporated to FIG. 2F for movement
tolerance processing just described, in which case the LWT is
compared to the current date/time to adjust the trailing period
of time used by block 2510 for the correct trailing period. In
any case, a WDR is sought at block 2510 to satisfy a request
helping another MS in the LN-expanse locate itself.

Thereafter, if block 2512 determines a useful WDR was not
found, then processing continues back to block 2506 for
another loop iteration of processing an inbound WDR
request. If block 2512 determines a useful WDR was found,
then block 2514 prepares the WDR for send processing with
correlation field 1100m set from correlation field 24905
retrieved at block 2506, and block 2516 sends/broadcasts (per
field 2490a) the WDR information (using send interface
1946) by inserting to queue 24 so that send processing trans-
mits data 1302, for example as far as radius 1306, and pro-
cessing continues back to block 2506. At least fields 11005,
1100¢,11004, 110072 and 11007 are sent/broadcast. See FIG.
11A descriptions. Fields are set to the following upon exit
from block 2514:

MS ID field 1100q is preferably set with: Field 2490a from
queue 26.

DATE/TIME STAMP field 11005 is preferably set with: Field
11005 from queue 22.

LOCATION field 1100c is preferably set with: Field 1100¢
from queue 22.

CONFIDENCE field 11004 is preferably set with: Field
11004 from queue 22.

LOCATION TECHNOLOGY field 1100e is preferably set
with: Field 1100e from queue 22.

10

30

35

40

45

65

108

LOCATION REFERENCE INFO field 1100fis preferably
set with: null (not set) for Broadcast by send processing,
otherwise set to field 24904 for Send by send processing.
COMMUNICATIONS REFERENCE INFO field 1100g is
preferably set with: null (not set).

SPEED field 1100/ is preferably set with: Field 1100/ from
queue 22.

HEADING field 1100; is preferably set with: Field 1100/
from queue 22.

ELEVATION field 11005 is preferably set with: Field 11005
from queue 22.

APPLICATION FIELDS field 1100% is preferably set with:
Field 1100% from queue 22. An alternate embodiment will
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2514 processing.

CORRELATION FIELD 11007 is preferably set with: Field
24905 from queue 26.

SENT DATE/TIME STAMP field 1100z is preferably set
with: Sent date/time stamp as close in processing the send/
broadcast of block 2516 as possible.

RECEIVED DATE/TIME STAMP field 1100p is preferably
set with: Not Applicable (i.e. N/A for sending).

Embodiments may rely completely on the correlation field
24905 with no need for field 24904. Referring back to block
2508, if a worker thread termination request was found at
queue 26, then block 2518 decrements the worker thread
count by 1 (using appropriate semaphore access (e.g. 1942-
Sem)), and thread 1942 processing terminates at block 2520.
Block 2518 may also check the 1942-Ct value, and signal the
process 1942 parent thread that all worker threads are termi-
nated when 1942-Ct equals zero (0).

Block 2516 causes sending/broadcasting data 1302 con-
taining CK 1304, depending on the type of MS, wherein CK
1304 contains WDR information prepared as described above
for block 2514. Alternative embodiments of block 2510 may
not search a specified confidence value, and broadcast the
best entry available anyway so that listeners in the vicinity
will decide what to do with it. A semaphore protected data
access (instead of a queue peek) may be used in embodiments
where there is always one WDR current entry maintained for
the MS.

In the embodiment wherein usual MS communications
data 1302 of the MS is altered to contain CK 1304 for listen-
ing MSs in the vicinity, send processing feeding from queue
24, caused by block 2516 processing, will place WDR infor-
mation as CK 1304 embedded in usual data 1302 at the next
opportune time of sending usual data 1302. If an opportune
time is not timely, send processing should discard the send
request of block 2516 to avoid broadcasting outdated where-
abouts information (unless using a movement tolerance and
time since last significant movement). As the MS conducts its
normal communications, transmitted data 1302 contains new
data CK 1304 to be ignored by receiving MS other character
32 processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable signal
by MSs in the vicinity, FIG. 25 sends/broadcasts new WDR
response data 1302. In any case, field 11007 should be as
accurate as possible for when data 1302 is actually sent.
Critical regions of code (i.e. prevent thread preemption) and/
or anticipated execution timing may be used to affect a best
setting of field 11007.

In an alternate embodiment, records 2490 contain a sent
date/time stamp field 2490e of when the request was sent by
aremote MS, and the received date/time stamp field 2490¢ is
processed at the MS in FIG. 25 processing. This would enable

APPLE

EXHIBIT 1001 - PAGE 0318



US 8,639,267 B2

109
block 2514 to calculate a TDOA measurement for returning
in field 1100/ of the WDR sent/broadcast at block 2516.

FIG. 26A depicts a flowchart for describing a preferred
embodiment of MS whereabouts determination processing.
FIG. 26 A processing describes a process 1952 worker thread,
and is of PIP code 6. Thread(s) 1952 purpose is for the MS of
FIG. 26 A processing to determine its own whereabouts with
useful WDRs from other MSs. It is recommended that valid-
ity criteria set at block 1444 for 1952-Max be set as high as
possible (e.g. 10) relative performance considerations of
architecture 1900, to service multiple threads 1912. 1952-
Max may also be set depending on what DLM capability
exists for the MS of FIG. 26A processing. In an alternate
embodiment, thread(s) 19xx are automatically throttled up or
down (e.g. 1952-Max) per unique requirements of the MS as
it travels.

Processing begins at block 2602, continues to block 2604
where the process worker thread count 1952-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1952-Sem)), and continues to block 2606 for interim
housekeeping of pruning the WDR queue by invoking a Prune
Queues procedure of FIG. 27. Block 2604 may also check the
1952-Ct value, and signal the process 1952 parent thread that
all worker threads are running when 1952-Ct reaches 1952-
Max. Block 2606 may not be necessary since pruning may be
accomplished at block 2620 when invoking FIG. 2F (block
292).

Thereafter, block 2608 retrieves from queue 1980 a record
2400 (using interface 1958), perhaps a special termination
request entry, or a record 2400 received from thread(s) 1912,
and only continues to block 2610 when a record 2400 con-
taining field 2400a set to 1952 has been retrieved. Block 2608
stays blocked on retrieving from queue 1980 until a record
2400 with field 24004=1952 is retrieved. If block 2610 deter-
mines a special entry indicating to terminate was not found in
queue 1980, processing continues to block 2612.

Block 2612 peeks the WDR queue 22 (using interface
1954) for the most recent highest confidence entry for this MS
whereabouts by searching queue 22 for: the MS ID field
1100a matching the MS ID of FIG. 26 A processing, and a
confidence field 11004 greater than or equal to the confidence
floor value, and a most recent date/time stamp field 11005
within a prescribed trailing period of time of block 2612
search processing using a f{(WTV) for the period. For
example, block 2612 peeks the queue (i.e. makes a copy for
use if an entry found for subsequent processing, but does not
remove the entry from queue) for a WDR of the MS (of FIG.
26A processing) which has the greatest confidence over 75
and has been most recently inserted to queue 22 in the last 2
seconds. Since MS whereabouts accuracy may be dependent
ontimeliness of the WTV, it is recommended that the f{WTV)
be some value less than or equal to WTV. In an alternate
embodiment, a movement tolerance (e.g. user configured or
system set (e.g. 3 meters)) is incorporated at the MS, or at
service(s) used to locate the MS, for knowing when the MS
has significantly moved (e.g. more than 3 meters) and how
long it has been (e.g. 45 seconds) since last significantly
moving. In this embodiment, the MS is aware of the period of
time since last significantly moving and the f{WTV) is set
using the amount of time since the MS significantly moved
(i.e. f(WTV)=as described above, or the amount of time since
significantly moving, whichever is greater). This way a large
number of (perhaps more confident candidate) WDRs are
searched in the time period when the MS has not significantly
moved. Optional blocks 278 through 284 may have been
incorporated to FIG. 2F for movement tolerance processing

10

35

40

45

50

55

60

65

110

just described, in which case the LWT is compared to the
current date/time to adjust the WTV for the correct trailing
period.

Thereafter, if block 2614 determines a timely whereabouts
for this MS already exists to queue 22 (current WDR found),
then processing continues back to block 2606 for another
loop iteration of processing. If 2614 determines a satisfactory
WDR does not already exist in queue 22, then block 2600
determines a new highest confidence WDR for this MS (FIG.
26B processing) using queue 22.

Thereafter, if block 2616 determines a WDR was not cre-
ated (BESTWDR variable=null) for the MS of FIG. 26A
processing (by block 2600), then processing continues back
to block 2606. If block 2616 determines a WDR was created
(BESTWDR=WDR created by FIG. 26B) for the MS of FIG.
26A processing by block 2600, then processing continues to
block 2618 for preparing FIG. 2F parameters and FIG. 2F
processing is invoked with the new WDR at block 2620 (for
interface 1956) before continuing back to block 2606. Param-
eters set at block 2618 are: WDRREF=a reference or pointer
to the WDR completed at block 2600; DELETEQ=FIG. 26A
location queue discard processing; and SUPER=FIG. 26A
supervisory notification processing.

Referring back to block 2610, if a worker thread termina-
tion request was found at queue 1980, then block 2622 dec-
rements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1952-Sem)), and thread 1952 pro-
cessing terminates at block 2624. Block 2622 may also check
the 1952-Ct value, and signal the process 1952 parent thread
that all worker threads are terminated when 1952-Ct equals
zero (0).

Alternate embodiments to FIG. 26A will have a pool of
thread(s) 1952 per location technology (WDR field 1100¢)
for specific WDR field(s) selective processing. FIG. 26A
processing is shown to be generic with handling all WDRs at
block 2600.

FIG. 26B depicts a flowchart for describing a preferred
embodiment of processing for determining a highest possible
confidence whereabouts, for example in ILM processing,
such as processing of FIG. 26 A block 2600. Processing starts
at block 2630, and continues to block 2632 where variables
are initialized (BESTWDR=null, THIS_MS=null,
REMOTE_MS=null). BESTWDR will reference the highest
confidence WDR for whereabouts of the MS of FIG. 26B
processing (i.e. this MS) upon return to FIG. 26A when
whereabouts determination is successful, otherwise
BESTWDR is set to null (none found). THIS_MS points to an
appropriately sorted list of WDRs which were originated by
this MS and are DLM originated (i.e. inserted by the DLM of
FIG. 26B processing). REMOTE_MS points to an appropri-
ately sorted list of WDRs which were originated by other MSs
(i.e. from DLMs and/or ILMs and collected by the ILM of
FIG. 26B processing).

Thereafter, block 2634 peeks the WDR queue 22 (using
interface 1954) for most recent WDRs by searching queue 22
for: confidence field 11004 greater than or equal to the con-
fidence floor value, and a most recent date/time stamp field
11006 within a prescribed trailing period of time of block
2634 search processing using a f{WTV) for the period. For
example, block 2634 peeks the queue (i.e. makes a copy of all
WDRs to a result list for use if any found for subsequent
processing, but does not remove the entry(s) from queue) for
all WDRs which have confidence over 75 and has been most
recently inserted to queue 22 in the last 2 seconds. It is
recommended that the f{WTV) used here be some value less
than or equal to the WTV (want to be ahead of curve, so may
use a percentage (e.g. 90%)), but preferably not greater than

APPLE

EXHIBIT 1001 - PAGE 0319



US 8,639,267 B2

111

a couple/few seconds (depends on MS, MS applications, MS
environment, whereabouts determination related variables,
etc).

In an alternative embodiment, thread(s) 1952 coordinate
with each other to know successes, failures or progress of
their sister threads for automatically adjusting the trailing
f(WTV) period of time appropriately. See “Alternative IPC
Embodiments” below.

Thread 1952 is of less value to the MS when whereabouts
are calculated using stale WDRs, or when not enough useful
WDRs are considered. In an alternate embodiment, a move-
ment tolerance (e.g. user configured or system set (e.g. 3
meters)) is incorporated at the MS, or at service(s) used to
locate the MS, for knowing when the MS has significantly
moved (e.g. more than 3 meters) and how long it has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MS is aware of the period of time since last
significantly moving and the f(WTV) is set using the amount
of time since the MS significantly moved (i.e. f{WTV)=as
described above, or the amount of time since significantly
moving, whichever is greater). This way a large number of
(perhaps more confident candidates) WDRs are searched in
the time period when the MS has not significantly moved.
Optional blocks 278 through 284 may have been incorporated
to FIG. 2F for movement tolerance processing just described,
in which case the LWT is compared to the current date/time to
adjust the WTV for the correct trailing period. In any case, all
useful WDRs are sought at block 2634 and placed into a list
upon exit from block 2634.

Thereafter, block 2636 sets THIS_MS list and
REMOTE_MS list sort keys to be used at blocks 2644 and
2654. Blocks 2638 through 2654 will prioritize WDRs found
at block 2634 depending on the sort keys made at block 2636.
A number of variables may be used to determine the best sort
keys, such as the time period used to peek at block 2634
and/or the number of entries in the WDR list returned by
block 2634, and/or other variables. When the time period of
search is small (e.g. less than a couple seconds), lists
(THIS_MS and REMOTE_MS) should be prioritized prima-
rily by confidence (fields 11004) since any WDRs are valu-
able for determining whereabouts. This is the preferred
embodiment.

When the time period is great, careful measure must be
taken to ensure stale WDRs are not used (e.g. > few seconds,
and not considering movement tolerance). Depending on
decision embodiments, there will be preferred priority order
sort keys created at exit from block 2636, for example “key1/
key2/key3” implies that “key1” is a primary key, “key2” is a
second order key, and “key3” is a third order key. A key such
as “field-11005/field-1100d/field-1100f:signal-strength”
would sort WDRs first by using date/time stamp fields 11005,
then by confidence value fields 11004 (sorted within match-
ing date/time stamp WDRs), then by signal-strength field
11007 sub-field values (sorted within matching WDR confi-
dences; no signal strength present=lowest priority). Another
sort key may be “field-1100d/field-11005" for sorting WDRs
first by using confidence values, then by date/time stamps
(sorted within matching WDR confidences). The same or
different sort keys can be used for lists THIS_MS and
REMOTE_MS. Any WDR data (fields or subfields) can be
sorted with a key, and sort keys can be of N order dimension
such that “keyl/key2/ . . . /keyN”. Whatever sort keys are
used, block 2686 will have to consider confidence versus
being stale, relative to the WT'V. In the preferred embodiment,
the REMOTE_MS and THIS_MS lists are set with the same

5

10

15

20

25

30

35

40

45

50

55

60

65

112

sort keys of “field-11004d/field-11005” (i.e. peek time period
used at block 2634 is less than 2 seconds) so that confidence
is primary.

Thereafter, block 2638 gets the first (ifany) WDR in the list
returned at block 2634 (also processes next WDR in list when
encountered again in loop of blocks 2638 through 2654), and
block 2640 checks if all WDRs have already been processed.
If block 2640 finds that all WDRs have not been processed,
then block 2642 checks the WDR origination. If block 2642
determines the WDR is one that originated from a remote MS
(i.e. MS ID does not match the MS of FIG. 26B processing),
then block 2644 inserts the WDR into the REMOTE_MS list
using the desired sort key (confidence primary, time second-
ary) from block 2636, and processing continues to block 2638
for another loop iteration. If block 2642 determines the WDR
is one that originated from this MS (MS ID field 1100a
matches the MS of FIG. 26B processing (e.g. this MS being a
DLM at the time of WDR creation (this MS ID=field 1100a)
or this MS being an ILM at the time of WDR creation (pre-
vious processing of FIG. 26 A)), then processing continues to
block 2646 to determine how to process the WDR which was
inserted by “this MS” for its own whereabouts.

Block 2646 accesses field 1100/ for data found there (e.g.
FIGS. 2D and 2E may have inserted useful TDOA measure-
ments, even though DLM processing occurred; or FIG. 3C
may have inserted useful TDOA and/or AOA measurements
with reference station(s) whereabouts; or receive processing
may have inserted AOA and related measurements). There-
after, if block 2648 determines presence of TDOA and/or
AOA data, block 2650 checks if reference whereabouts (e.g.
FIG. 3C selected stationary reference location(s)) is also
stored in field 1100f. If block 2650 determines whereabouts
information is also stored to field 1100f; then block 2652
makes new WDR(s) from the whereabouts i