
APPLE
EXHIBIT 1001 - PAGE 0301

US 8,639,267 B2
73

nology. While WDR 1100 contains field 1100e, field 1100d
provides a standard and generic measurementfor evaluating
WDRsfrom different location technologies, without concern
for the location technology used. The highest confidence
entries to a WDR queue 22 are used regardless of which
location technology contributed to the WDR queue 22.

LBX Configuration

FIG. 12 depicts a flowchart for describing an embodiment
of MSinitialization processing. Depending on the MS, there
are many embodiments of processing when the MSis pow-
ered on, started, restarted, rebooted, activated, enabled, or the
like. FIG. 12 describes the blocks ofprocessing relevantto the
present disclosure as part ofthatinitialization processing.Itis
recommendedto first understand discussions of FIG. 19 for

knowing threads involved, and variables thereof. Initializa-
tion processing starts at block 1202 and continues to block
1204 where the MS Basic Input Output System (BIOS) is
initialized appropriately,then to block 1206 where other char-
acter 32 processing is initialized, and then to block 1208 to
check ifNTPis enabled for this MS. Block 1206 maystart the
preferred numberoflisten/receive threads for feeding queue
26 and the preferred numberof send threads for sending data
inserted to queue 24, inparticular when transmitting CK 1304
embeddedin usual data 1302 and receiving CK 1304 or 1314
embeddedin usual data 1302 or 1312, respectively. The num-
ber of threads started should be optimalfor parallel process-
ing across applicable channel(s). In this case, other character
32 threads are appropriately altered for embedded CK pro-
cessing (sending at first opportune outbound transmission;
receiving in usual inbound transmission).

If block 1208 determines NTPis enabled (as defaulted or
last set by a user(i.e. persistent variable)), then block 1210
initializes NTP appropriately and processing continues to
block 1212. If block 1208 determines NTP was not enabled,
then processing continues to block 1212. Block 1210 embodi-
ments are well knowninthe art ofNTP implementations(also
see block 1626). Block 1210 may cause the starting of
thread(s) associated with NTP. In some embodiments, NTP
use is assumedin the MS. In other embodiments, appropriate
NTPuseis not available to the MS. Depending on the NTP
embodiment, thread(s) may pull time synchronization infor-
mation, or may listen for and receive pushed time informa-
tion. Resources 38 (or other MS local resource) provides
interface to an MS clock for referencing, maintaining, and
generating date/time stamps at the MS. After block 1210
processing, the MSclock is synchronized to NTP. Because of
initialization of the MSin FIG.12, block 1210 mayrely ona
connected service to initially get the startup synchronized
NTP date/time. MS NTP processing will ensure the NTP
enabled/disabled variable is dynamically set as is appropriate
(using semaphore access) because an MS maynot have con-
tinuous clock source access during travel when needed for
resynchronization. Ifthe MS does not have access to a clock
source when needed, the NTP use variable is disabled. When
the MShas(or again gets) access to a needed clock source,
then the NTPuse variable is enabled.

Thereafter, block 1212 creates shared memory to maintain
data shared between processes/threads, block 1214 initializes
persistent data to shared memory, block 1216 initializes any
non-persistent data to shared memory (e.g. somestatistics
14), block 1218 creates system queues, and block 1220 cre-
ates semaphore(s) used to ensure synchronousaccess by con-
current threads to data in shared memory, before continuing
to block 1222. Shared memory data accesses appropriately
utilize semaphore lock windows (semaphore(s) created at

40

45

74

block 1220) for proper access. In one embodiment, block
1220 creates a single semaphore for all shared memory
accesses, but this can deteriorate performance of threads
accessing unrelated data. In the preferred embodiment, there
is a semaphore for each reasonable set of data of shared
memory soall threads are fully executing wheneverpossible.
Persistent data is that data which maintains values during no
power, for cxample as stored to persistent storage 60. This
mayinclude data 8 (including permissions 10, charters 12,
statistics 14, service directory 16), data 20, LBX history 30,
data 36, resources 38, and/or other data. Persistent data pref-
erably includes at least the DLMV (see DLM role(s) list
Variable below), ILMV (see ILM role(s)list Variable below),
processvariables 19xx.-Max values (192x.=1902, 1912, 1922,
1932, 1942 and 1952 (see FIG. 19 discussions below)) for the
last configured maximum numberof threads to run in the
respective process, process variables 19xx-PID values
(19xx=1902, 1912, 1922, 1932, 1942 and 1952 (see FIG. 19
discussions below)) for multi-purposeof: a) holding an Oper-
ating System Process Identifier (1.e. O/S PID) for a process
started; and b) whetheror not the respective process waslast
enabled (i.e. PID>0) or disabled (i.e. PID <=0), the confi-
dencefloor value (see FIG. 14A), the WTV(see Whereabouts
Timeliness Variable (see FIG. 14A)), the NTP use variable
(see FIG. 14A) for whether or not NTP waslast set to disabled
or enabled (used at block 1208), and the Source Periodicity
Time Period (SPTP) value (see FIG. 14B). There are reason-
able defaults for each ofthe persistentdata priorto thefirst use
of MS2 (e.g. NTP useis disabled, and only becomes enabled
upon a successful enabling of NTPat least one time). Non-
persistent data may include data involved in some regard to
data 8 (and subsets of permissions 10, charters 12, statistics
14, service directory 16), data 20, LBX history 30, data 36,
resources 38, queues, semaphores, etc. Block 1218 creates
queues 22, 24, and 26. Queues 1980 and 1990 are also created
there if required. Queues 1980 and 1990 are not required
when NTPis in use globally by participating data processing
systems. Alternate embodiments may use less queues by
threads sharing a queue and having a queue entry type field
for directing the queue entry to the correct thread. Alternate
embodiments may have additional queues for segregating
entries of a queue disclosed for best possible performance.
Other embodiments incorporate queuesfiguratively to facili-
tate explanation of interfaces between processing.

All queues disclosed herein are understood to have their
own internally maintained semaphore for queue accesses so
that queue insertion, peeking, accessing, etc uses the inter-
nally maintained semaphore to ensure two or more concur-
rently executing threads do not corrupt or misuse data to any
queue. This is consistent with most operating system queue
interfaces wherein a thread stays blocked (preempted) after
requesting a queue entry until a queue entry appears in the
queue. Also, no threads will collide with another thread when
inserting, peeking, or otherwise accessing the same queue.
Therefore, queues are implicitly semaphore protected. Other
embodiments may use an explicit semaphore protected win-
dow around queue data accessing, in which case those sema-
phore(s) are created at block 1220.

Thereafter, block 1222 checks for any ILM roles currently
enabled for the MS (for example as determined from persis-
tent storage ofan ILM role(s) list Variable ILMV)preferably
preconfigured for the MSat first use, or configured as last
configured by a user of the MS). ILM roles are maintained to
the ILM role(s) list Variable ILMV). The ILMV contains one
or more entries for an ILM capability (role), each entry with
a flag indicating whether it is enabled or disabled
(marked=enabled, unmarked=disabled). Ifblock 1222 deter-

APPLE

EXHIBIT 1001 - PAGE 0301

APPLE
EXHIBIT 1001 - PAGE 0302

US 8,639,267 B2
75

minesthere is at least one ILM role enabled(i.e. as marked by
associated flag), then block 1224artificially sets the corre-
sponding 19xx-PID variables to a value greater than 0 for
indicating the process(es) are enabled, and are to be started by
subsequent FIG. 12 initialization processing. The 19xx-PID
will be replaced with the correct Process Identifier (PID)
upon exit from block 1232 after the process is started. Pref-
erably, every MS can have ILM capability. However, a user
may wantto (configure) ensure a DLM has no ILM capability
enabled (e.g. or having no list present). In some embodi-
ments, by default, every MS has an unmarked list of ILM
capability maintained to the ILMV for 1) USE DLM REF-
ERENCESand 2) USE ILM REFERENCES. USE DLM
REFERENCES,when enabled (marked) in the ILMYV, indi-
cates to allow the MSof FIG. 12 processing to determineits
whereabouts relative remote DLMs. USE ILM REFER-

ENCES, when enabled (marked) in the ILMV, indicates to
allow the MSof FIG. 12 processing to determine its where-
abouts relative remote ILMs. Having bothlist items marked
indicates to allow determining MS whereabouts relative
mixed DLMs and ILMs. An alternative embodiment may
include a USE MIXED REFERENCESoptionfor controlling
the MS of FIG. 12 processing to determine its whereabouts
relative mixed DLMsand/or ILMs. Alternative embodiments

will enforce any subset ofthese options without exposing user
configurations, for example on a MS without any means for
being directly located.

For any of the ILMV roles of USE DLM REFERENCES,
USE ILM REFERENCES,orboth, all processes 1902, 1912,
1922, 1932, 1942 and 1952are preferably started (i.e. 1902-
PID, 1912-PID, 1922-PID, 1932-PID, 1942-PID and 1952-
PID are artificially set at block 1224 to cause subsequent
process startup at block 1232). Characteristics of an antici-
pated LN-expanse(e.g. anticipated location technologies of
participating MSs, MScapabilities, etc) will start a reason-
able subset of those processes with at least process 1912
started. Block 1224 continues to block 1226. If block 1222

determines there are no ILMV role(s) enabled, then block
processing continues to block 1226.

Block 1226 initializes an enumerated process name array
for convenient processing reference of associated process
specific variables described in FIG. 19, and continuesto block
1228 where thefirst memberof the set is accessed for subse-

quent processing. The enumeratedset ofprocess nameshas a
prescribedstart order for MS architecture 1900. Thereafter, if
block 1230 determines the process identifier (i.e. 19xx-PID
such that 19xx is 1902, 1912, 1922, 1932, 1942, 1952 ina loop
iteration of blocks 1228 through 1234) is greater than0(e.g.
this first iteration of 1952-PID>0 implies it is to be started
here; also implies process 1952 is enabled as used in FIGS.
14A,28, 29A and 29B), then block 1232 spawns(starts) the
process (e.g. 1952) of FIG. 29A to start execution of subor-
dinate worker thread(s) (e.g. process 1952 thread(s)) and
saves the real PID (Process Identifier) to the PID variable (e.g.
1952-PID) returned by the operating system process spawn
interface. Block 1232 passes as a parameterto the process of
FIG. 29A which process nametostart (e.g. 1952), and con-
tinues to block 1234. If block 1230 determines the current

process PID variable (e.g. 1952-PID)is not greaterthan0(i.e.
not to be started; also implies is disabled as used in FIGS.
14A,28, 29A and 29B), then processing continues to block
1234. Block 1234 checksif all process names of the enumer-
ated set (pattern of 19xx) have been processed (iterated) by
blocks 1228 through 1234. Ifblock 1234 determinesthat not
all process names in the set have been processed (iterated),
then processing continues back to block 1228 for handling the
next process namein theset. Ifblock 1234 determinesthatall

10

15

20

25

30

35

40

45

50

55

60

65

76

process names of the enumerated set were processed, then
block 1236 checks the DLMV (DLMrole(s)list Variable).
Blocks 1228 through 1234 iterate every process nameofFIG.
19 to make sure that each is started in accordance with non-
zero 19xx-PID variable values at FIG. 12 initialization.

Block 1236 checks for any DLM roles currently enabled
for the MS (for example as determined from persistentstor-
age of a DLMrole(s)list Variable (DLMV)preferably pre-
configured for the MSat first use if the MS contains DLM
capability). DLM capability (roles), whether on-boardat the
MS, or determined during MStravels (see block 288), is
maintained to the DLM role(s) list Variable (DLMV). The
DLMV contains one or more entries for a DLM capability
(role), each (role) entry with a flag indicating whetherit is
enabled or disabled (marked=enabled, unmarked=disabled).
If block 1236 determines there is at least one DLM role

enabled(i.e. as marked by associated flag), then block 1238
initializes enabled role(s) appropriately and processing con-
tinues to block 1240. Block 1238 maycausethe starting of
thread(s) associated with enabled DLM role(s), for DLM
processing above (e.g. FIGS. 2A through 9B). Block 1238
mayinvoke API(s), enable flag(s), or initialize as is appropri-
ate for DLM processing described above. Such initializations
are well known in the art of prior art DLM capabilities
described above.Ifblock 1236 determines there are no DLM

roles to initialize at the MS, then processing continues to
block 1240. Any of the FIG. 9A technologies are eligible in
the DLMV as determinedto be present at the MS and/or as
determinedbyhistorical contents of the WDR queue 22 (e.g.
location technologyfield 1100e with MSID field 1100a for
this MS) and/or determined by LBX history 30. Application
Programming Interfaces (APIs) may also be used to deter-
mine MS DLM capability (role(s)) for entry(s) to the DLMV.

Block 1240 completes LBX character initialization, and
FIG. 12 initialization processing terminates thereafter at
block 1242. Depending on whatthreads werestarted as part
ofblock 1206, Block 1240 maystartup the preferred number
of listen/receive threads for feeding queue 26 andthe pre-
ferred number of send threads for sending data inserted to
queue 24, in particular when transmitting new data 1302 and
receiving new data 1302 or 1312. The numberof threads
started should be optimal for parallel processing across appli-
cable channel(s). Upon encounter of block 1242, the MS is
appropriately operational, and a user at the MS of FIG. 12
processing will have the ability to use the MS andapplicable
user interfaces thereof.

With reference now to FIG. 29A, depictedis a flowchart for
describing a preferred embodimentofa processfor starting a
specified numberof threads in a specified thread pool. FIG.
29A isin itself an O/S process, has a process identifier (PID)
after being started, will contain at least two threads of pro-
cessing after being started, and is generic in being able to take
on the identity of any process namepassedto it (e.g. 19x)
with a parameter(e.g. from block 1232). FIG. 29A represents
the parent thread of a 19xx process. The FIG. 29A processis
generic for executing any ofprocesses 19xx (i.e. 1902, 1912,
1922, 1932, 1942 and 1952) with the prescribed numberof
workerthreads using the 19xx.-Max configuration (i.e. 1902-
Max, 1912-Max, 1922-Max, 1932-Max, 1942-Max and
1952-Max). FIG. 29A will stay running until it (first all of its
workerthread(s)) is terminated. FIG. 29A consists of an O/S
Process 19xx with at least a parent thread (main thread) and
one worker thread (or numberofworker threads for FIG. 19
processing as determined by 19xx-Max). The parent thread
has purpose to stay running while all worker threads are
running, and to ownintelligence for starting worker threads
and terminating the process when all worker threadsareter-

APPLE

EXHIBIT 1001 - PAGE 0302

APPLE
EXHIBIT 1001 - PAGE 0303

US 8,639,267 B2
77

minated. The worker threads are started subordinate to the

FIG. 29A process at block 2912 using an O/S start thread
interface.

A 19xx (i.e. 1902, 1912, 1922, 1932, 1942 and 1952) pro-
cess starts at block 2902 and continues to block 2904 where

the parameter passed for which process nametostart (i.e. take
on identity of) is determined (e.g. 1952). Thereafter, block
2906 creates a RAM semaphore(i.e. operating system term
fora well performing RandomAccess Memory (RAM) sema-
phore with scope only within the process(i.e.to all threads of
the process)). The local semaphore namepreferably uses the
process nameprefix (e.g. 1952-Sem), and is used to synchro-
nize threads within the process. RAM semaphores perform
significantly better than global system semaphores. Alternate
embodiments will have process semaphore(s) created at
block 1220 in advance. Thereafter, block 2908 initializes a
thread counter(e.g. 1952-Ct) to 0 for counting the number of
worker threads actually started within the 19xx process(e.g.
1952), block 2910 initializes a loop variable J to 0, and block
2912 starts a workerthread(the first one uponfirst encounter
ofblock 2912 for a process)in this process(e.g. process 1902
starts worker thread FIG. 20, ..., process 1952 starts worker
thread FIG. 26A—seearchitecture 1900 description below).

Thereafter, block 2914 increments the loop variable by 1
and block 2916 checksif all prescribed worker threads have
been started. Block 2916 accesses the 19xx-Max (e.g. 1952-
Max) variable from shared memory using a semaphore for
determining the maximum numberofthreadstostart in the
process worker thread pool. If block 2916 determines all
worker threads have beenstarted, then processing continues
to block 2918. If block 2916 determines that not all worker

threads have been started for the process of FIG. 29A, then
processing continues back to block 2912 for starting the next
worker thread. Blocks 2912 through 2916 ensure the 19xx-
Max(e.g. 1952-Max) number of worker threads are started
within the process of FIG. 29A.

Block 2918 waits until all worker threads of blocks 2912

through 2916 have been started, as indicated by the worker
threads themselves. Block 2918 waits until the process 19x.x-
Ct variable has been updated to the prescribed 192xx-Max
value by the started worker threads, thereby indicating they
are all up and running. Whenall worker threads are started
(e.g. 1952-Ct=1952-Max), thereafter block 2920 waits (per-
haps a very long time) until the worker thread count(e.g.
1952-Ct) has been reduced back downto 0 for indicating that
all worker threads have been terminated, for example when
the user gracefully powers off the MS. Block 2920 continues
to block 2922 whenall worker threads have been terminated.

Block 2922 sets the shared memory variable for the 192.
process(e.g. 1952-PID) to 0 using a semaphorefor indicating
that the 19xx (e.g. 1952) process is disabled and no longer
running. Thereafter, the 19x» process terminates at block
2924. Waiting at blocks 2918 and 2920 are accomplished in a
variety of well known methods:

Detect signal sent to process by last started (or terminated)
workerthread that thread count is now MAX (or 0); or

Loop on checkingthe thread count with sleep time between
checks, wherein within the loop there is a check of the
current count (use RAM semaphoreto access), and pro-
cessing exits the loop (and block) when the count has
reached the sought value; or

Use of a semaphore for a count variable which causes the
parent thread of FIG. 29A to stay blocked prior to the
count reaching its value, and causes the parent thread to
become cleared (will leave wait block) when the count
reachesits sought value.

10

15

20

25

30

35

40

45

50

55

60

65

78

Starting threads of processing in FIG. 29A has been pre-
sented from a software perspective, but there are hardware/
firmware thread embodiments which maybe started appro-
priately to accomplish the same functionality. If the MS
operating system does not have an interface for returning the
PID at block 1232, then FIG. 29A can havea block(e.g. 2905)
used to determine its own PID for setting the 19x.x-PID vari-
able.

FIGS. 13A through 13C depictan illustration of data pro-
cessing system wireless data transmissions over some wave
spectrum. Embodiments may exist for any of the aforemen-
tioned wave spectrums,and data carried thereon may or may
not be encrypted (e.g. encrypted WDR information). With
reference now to FIG. 13A, a MS,for example a DLM 200a,
sends/broadcasts data such as a data 1302 in a manner well

knownto those skilled in the art, for example other character
32 processing data. When a Communications Key (CK) 1304
is embeddedwithin data 1302, data 1302 is considered usual
communications data (e.g. protocol, voice, or any other data
over conventional forward channel, reverse channel, voice
data channel, data transmission channel, or any otherpriorart
use channel) which has been altered to contain CK 1304. Data
1302 contains a CK 1304 which can be detected, parsed, and
processed whenreceived by another MSor other data pro-
cessing system in the vicinity of the MS (e.g. DLM 200a) as
determined by the maximumrangeoftransmission 1306. CK
1304 permits “piggy-backing” on current transmissions to
accomplish new functionality as disclosed herein. Transmis-
sion from the MSradiate out from it in all directions in a

mannerconsistent with the wave spectrum used. The radius
1308 representsa first range of signal reception from the MS
200a, perhaps by another MS (not shown). The radius 1310
represents a second range of signal reception from the MS
200a, perhaps by another MS (not shown). The radius 1311
representsa third range ofsignal reception from the MS 200a,
perhaps by another MS (not shown). The radius 1306 repre-
sents a last and maximum rangeofsignal reception from the
MS200a, perhaps by another MS(not shown). MSdesign for
maximum radius 1306 may take into account the desired
maximum range versus acceptable wave spectrum exposure
health risks for the user of the MS. The time of transmission
from MS 200ato radius 1308 is less than times of transmis-

sion from MS200ato radiuses 1310, 1311, or 1306. The time
of transmission from MS 200a to radius 1310 is less than
times of transmission from MS 200a to radiuses 1311 or
1306. The time oftransmission from MS 200ato radius 1311
is less than time of transmission from MS 200a to radius
1306.

In another embodiment, data 1302 contains a Communi-
cations Key (CK) 1304 because data 1302 is new transmitted
data in accordance with the present disclosure. Data 1302
purpose is for carrying CK 1304 information for being
detected, parsed, and processed whenreceivedby another MS
or other data processing system in the vicinity of the MS(e.g.
DLM 200a) as determined by the maximum rangeoftrans-
mission 1306.

With reference now to FIG. 13B, a MS, for example an
ILM 10004, sends/broadcasts data such as a data 1302 ina
mannerwell knownto those skilled in the art. Data 1302 and
CK 1304 are as described above for FIG. 13A. Data 1302 or

CK 1304 can be detected, parsed, and processed when
received by another MSorother data processing system in the
vicinity of the MS (e.g. ILM 10004) as determined by the
maximum range oftransmission 1306. Transmission from the
MSradiate out from it in all directions in a mannerconsistent

with the wave spectrum used, and as described abovefor FIG.
13A.

APPLE

EXHIBIT 1001 - PAGE 0303

APPLE
EXHIBIT 1001 - PAGE 0304

US 8,639,267 B2
79

With reference now to FIG. 13C,aserviceor set of services
sends/broadcasts data such as a data packet 1312 in a manner
well knownto those skilled in the art, for example to service
other character 32 processing. When a Communications Key
(CK) 1314 is embedded within data 1312, data 1312 is con-
sidered usual communications data (e.g. protocol, voice, or
any other data over conventional forward channel, reverse
channel, voice data channel, data transmission channel, or
any other prior art use channel) which has been altered to
contain CK 1314. Data 1312 contains a CK 1314 which can

be detected, parsed, and processed when received by an MS
or other data processing system in the vicinity of the
service(s) as determined by the maximum range of transmis-
sion 1316. CK 1314 permits “piggy-backing” on current
transmissions to accomplish new functionality as disclosed
herein. Transmissions radiate outin all directions in a manner

consistent with the wave spectrum used, and data carried
thereon may or may notbe encrypted (e.g. encrypted WDR
information). The radius 1318 representsafirst range ofsig-
nal reception from the service (e.g. antenna thereof), perhaps
by a MS (not shown). The radius 1320 represents a second
range of signal reception from the service (e.g. antenna
thereof), perhaps by a MS (not shown). The radius 1322
represents a third range of signal reception from the service
(e.g. antenna thereof), perhaps by a MS (not shown). The
radius 1316 represents a last and maximum rangeofsignal
reception from the service (e.g. antenna thereof), perhaps by
a MS(not shown). The time of transmission from service to
radius 1318 is less than timesoftransmission from service to

radiuses 1320, 1322, or 1316. The time of transmission from
service to radius 1320 is less than times of transmission from
service to radiuses 1322 or 1316. The time of transmission
from service to radius 1322 is less than time of transmission

from service to radius 1316. In another embodiment, data
1312 contains a Communications Key (CK) 1314 because
data 1312 is new transmitted data in accordance with the

present disclosure. Data 1312 purpose is for carrying CK
1314 information for being detected, parsed, and processed
when received by another MSor data processing system in
the vicinity of the service(s) as determined by the maximum
range of transmission.

In some embodiments, data 1302 and 1312 are prior art
wireless data transmission packets with the exception of
embedding a detectable CK 1304 and/or CK 1314, respec-
tively. Usual data communications of MSsare altered to
additionally contain the CK so data processing systemsin the
vicinity can detect, parse, and process the CK. Appropriate
send and/or broadcast channel processing is used. In other
embodiments, data 1302 and 1312 are new broadcast wireless
data transmission packets for containing CK 1304 and CK
1314, respectively. A MS mayuse send queue 24for sending/
broadcasting packets to data processing systemsin the vicin-
ity, and may use the receive queue 26 for receiving packets
from other data processing systemsin the vicinity. Contents
of CKs (Communications Keys) depend on which LBX fea-
tures are in use and the functionality intended.

In the case of “piggybacking” on usual communications,
receive queue 26 insertion processing simply listens for the
usual data and when detecting CK presence,inserts CK infor-
mation appropriately to queue 26 for subsequent processing.
Also in the case of“piggybacking”on usual communications,
send queue 24retrieval processing simply retrieves CK infor-
mation from the queue and embedsit in an outgoing data 1302
at first opportunity. In the case of new data communications,
receive queue 26 insertion processing simply listens for the
newdata containing CK information, and inserts CK infor-
mation appropriately to queue 26 for subsequent processing.

5

10

15

20

25

30

35

40

45

50

55

60

65

80

Also in the case of new data communications, send queue 24
retrieval processing simply retrieves CK information from
the queue and transmits CK information as new data.

LBX: LN-EXPANSE Configuration

FIG. 14A depicts a flowchart for describing a preferred
embodiment ofMS LBX configuration processing. FIG. 14 is
of Self Management Processing code 18. MS LBX configu-
ration begins at block 1402 uponuseraction to start the user
interface and continues to block 1404 where user interface

objects are initialized for configurations described below
with current settings that are reasonable for display to avail-
able userinterface real estate. Thereafter, applicable settings
are presented to the user at block 1406 with options. Block
1406 preferably presents to the user at least whether or not
DLMcapability is enabled (i.e. MS to behave as a DLM=at
least one role of DLMVenabled), whether or not ILM capa-
bility is enabled (i.e. MS to behave as an ILM=atleast one role
of ILMV enabled), and/or whether or not this MS should
participate in the LN-expanse as a source location for other
MSs(e.g. process 1902 and/or 1942 enabled). Alternative
embodiments will further present more or less information
for each of the settings, or present information associated
with other FIG. 14 blocks ofprocessing. Other embodiments
will not configure DLMsettings for an MS lacking DLM
capability (or when all DLMV roles disabled). Other embodi-
ments will not configure ILM settings when DLM capability
is present. Block 1406 continues to block 1408 where pro-
cessing waits for user action in response to options. Block
1408 continues to block 1410 whenauseractionis detected.

If block 1410 determinesthe user selected to configure DLM
capability (i.e. DLMVrole(s)), then the user configures DLM
role(s) at block 1412 and processing continues back to block
1406. Block 1412 processing is described by FIG. 15A.If
block 1410 determines the user did not select to configure
DLMcapability (i.e. DLMV role(s)), then processing contin-
ues to block 1414. Ifblock 1414 determines the user selected

to configure ILM capability (.e. ILMV role(s)), then the user
configures ILM role(s) at block 1416 and processing contin-
ues back to block 1406. Block 1416 processing is described
by FIG. 15B.Ifblock 1414 determines theuserdid notselect
to configure ILM capability (i.e. ILMV role(s)), then process-
ing continues to block 1418. If block 1418 determines the
user selected to configure NTP use, then the user configures
NTP use at block 1420 and processing continues back to
block 1406. Block 1420 processing is described by FIG. 16. If
block 1418 determines the user did not select to configure
NTPuse, then processing continues to block 1422.

If block 1422 determinestheuser selected to maintain the

WDRqueue, then the user maintains WDRsat block 1424
and processing continues back to block 1406. Block 1424
processing is described by FIG. 17. Blocks 1412, 1416, 1420
and 1424 are understood to be delimited by appropriate sema-
phore control to avoid multi-threaded access problems. If
block 1422 determines the user did not select to maintain the

WDR queue, then processing continues to block 1426. If
block 1426 determines the user selected to configure the
confidence floor value, then block 1428 prepares parameters
for invoking a Configure Value procedure (parameters for
reference (address) ofvalue to configure; and validity criteria
of value to configure), and the Configure Value procedure of
FIG.18 is invokedat block 1430 with the two (2) parameters.
Thereafter, processing continues back to block 1406. Blocks
1428 and 1430 are understoodto be delimited by appropriate
semaphore control when modifying the confidence floor
value since other threads can access the floor value.

APPLE

EXHIBIT 1001 - PAGE 0304

APPLE
EXHIBIT 1001 - PAGE 0305

US 8,639,267 B2
$1

The confidence floor value is the minimum acceptable
confidence value of any field 1100d (for example as checked
by block 276). No WDR with a field 1100d less than the
confidence floor value should be used to describe MS where-

abouts. In an alternative embodiment, the confidence floor
value is enforced as the same value across an LN-expanse
with nouser control to modify it. One embodimentofFIG. 14
does not permit user control over a minimum acceptable
confidence floor value. Various embodiments will default the

floor value. Block 1812 enforces an appropriate value in
accordance with the confidence value range implemented
(e.g. value from 1 to 100). Since the confidence of where-
abouts is likely dependent on applications in use at the MS,
the preferred embodiment is to permit user configuration of
the acceptable whereabouts confidence for the MS. A new
confidence floor value can be put to use at next thread(s)
startup, or can be used instantly with the modification made,
depending on the embodiment. The confidence floor value
can be used tofilter out WDRspriorto inserting to queue 22,
filter ont WDRs whenretrieving from queue 22, filter out
WDRinformation when listening on channel(s) prior to
inserting to queue 26, and/or used in accessing queue 22 for
any reason (depending on embodiments). While confidence is
validated on both inserts and queries(retrievals/peeks), one or
the other validation is fine (preferably on inserts). It is pre-
ferred that executable code incorporate checks where appli-
cable since the confidence floor value can be changed after
queue 22 is in use. Also, various present disclosure embodi-
ments may maintain all confidences to queue 22, or a particu-
lar set of acceptable confidences.

If block 1426 determinesthe user did not select to config-
ure the confidence floor value, then processing continues to
block 1432. If block 1432 determines the user selected to

configure the Whereabouts Timeliness Variable (WTV), then
block 1434 prepares parameters for invoking the Configure
Value procedure (parameters for reference (address) ofvalue
to configure; and validity criteria of value to configure), and
the Configure Value procedure of FIG. 18 is invoked at block
1430 with the two (2) parameters. Thereafter, processing
continues back to block 1406. Blocks 1434 and 1430 are

understoodto be delimited by appropriate semaphorecontrol
when modifying the WTVsince other threads can access the
WIV.

A critical configuration for MS whereabouts processing is
whereabouts timeliness. Whereaboutstimelinessis how often

(how timely) an MS should have accurate whereabouts.
Whereabouts timeliness is dependent on how often the MSis
updated with whereabouts information, what technologies
are available or are in the vicinity, how capable the MSis of
maintaining whereabouts, processing speed(s), transmission
speed(s), known MS or LN-expansedesign constraints, and
perhaps other factors. In some embodiments, whereabouts
timeliness is as soon as possible. That is, MS whereaboutsis
updated whenever possible as often as possible. In fact, the
present disclosure provides an excellent system and method-
ology to accomplish that by leveraging location technologies
whenever and wherever possible. However, there should be
balance when considering less capable processing of a MS to
prevent hogging CPU cycles from other applications at the
MS.In other embodiments, a hard-coded or preconfigured
timeinterval is used for keeping an MSinformed ofits where-
abouts in a timely manner. For example, the MS should know
its own whereabouts at least every second,or at least every 5
seconds,or at least every minute, etc. Whereabouts timeliness
is critical depending on the applications in use at the MS. For
example, if MS whereabouts is updated once at the MS every
5 minutes during high speeds oftravel when using navigation,

20

30

40

45

82

the user has a high risk of missing a turn during travel in
downtown cities where timely decisions for turns are
required. On the other hand, if MS whereabouts is updated
every 5 seconds, and an application only requires an update
accuracy to once per minute, then the MS maybeexcessively
processing.

In some embodiments, there is a Whereabouts Timeliness
Variable (WTV)configured at the MS (blocks 1432, 1434,
1430). Whetherit is user configured, system configured, or
preset in a system, the WTV is usedto:

Define the maximum period oftime for MS whereabouts to
becomestale at any particular time;

Cause the MSto seek its whereabouts ifwhereabouts infor-

mation is not up to date in accordance with the WTV; and
Prevent keeping the MStoo busy with keeping abreast of

its own whereabouts.

In another embodiment, the WTVis automatically adjusted
based on successes or failures of automatically locating the
MS. As the MSsuccessfully maintains timely whereabouts,
the WTVis maintained consistent with the user configured,
system configured, or preset value, or in accordance with
active applications in use at the time. However, as the MSfails
in maintaining timely whereabouts, the WTV is automati-
cally adjusted (e.g. to longer periods oftime to prevent unnec-
essary wasting of power and/or CPU resources). Later, as
whereabouts becomereadily available, the WTV can be auto-
matically adjusted back to the optimal value. In an emergency
situation, the user always has the ability to force the MS to
determine its own whereabouts anyway (Blocks 856 and 862
through 878, in light of a WDR request and WDRresponse
described for architecture 1900). In embodiments where the
WTYVis adjusted in accordance with applicationsinuse at the
time, the most demanding requirement of any application
started is maintained to the WTV. Preferably, each application
of the MSinitializes to an API of the MS with a parameter of
its WTV requirements. Ifthe requirementis more timely than
the current value, then the more timely value is used. The
WTYVcanbe putto useat next thread(s) startup, or can be used
instantly with the modification made, depending on the
embodiment.

If block 1432 determines the user did not select to config-
ure the WTYV, then processing continues to block 1436. If
block 1436 determines the user selected to configure the
maximum numberofthreads in a 192xx process (see 19x.x-Max
variable in FIG. 19 discussions), then block 1438 interfaces
with the user until a valid 19x.-maxvariable is selected, and
processing continuesto block 1440. Ifblock 1440 determines
the 19xx processis already running(i.e. 19xx-PID>0 implies
it is enabled), then an error is provided to the user at block
1442, and processing continues back to block 1406. Prefer-
ably, block 1442 does not continue back to block 1406 until
the user acknowledgesthe error (e.g. with a user action). If
block 1440 determines the user selected 19xx process (pro-
cess 1902, process 1912, process 1922, process 1932, process
1942, or process 1952) is not already running (i.e. 19xx-
PID=0 implies it is disabled), then block 1444 prepares
parameters for invoking the Configure Value procedure (pa-
rameters for reference (address) of 19xx.-Max value to con-
figure; and validity criteria of value to configure), and the
Configure Value procedure of FIG. 18 is invoked at block
1430 with the two (2) parameters. Thereafter, processing
continues back to block 1406. Blocks 1438, 1440, 1444 and
1430 are understood to be delimited by appropriate sema-
phore control when modifying the 19x.-Max value since
other threads can accessit. The 19x.x.-Max value should not be

modified while the 19xx process is running because the num-
berofthreads to terminate may be changedprior to terminat-

APPLE

EXHIBIT 1001 - PAGE 0305

APPLE
EXHIBIT 1001 - PAGE 0306

US 8,639,267 B2
83

ing. An alternate embodimentofmodifying a process number
of threads will dynamically modify the numberof threads in
anticipation of required processing.

If block 1436 determinesthe user did not select to config-
ure a process thread maximum (19xx-Max), then block 1446
checks if the user selected to (toggle) disable or enable a
particular process (i.e. a 19xx process of FIG. 19). If block
1446 determines the user did select to toggle cnabling/dis-
abling a particular FIG. 19 process, then block 1448 inter-
faces with the useruntil a valid 19x process nameis selected,
and processing continues to block 1450. If block 1450 deter-
mines the 19xx process is already running (i.e. 19xx-PID>0
implies it is enabled), then block 1454 prepares parameters
Gust as does block 2812). Thereafter, block 1456 invokes
FIG. 29B processing (just as does block 2814). Processing
then continues back to block 1406. If block 1450 determines

the 19xx processis not running (i.e. 19xx-PID=0 impliesit is
disabled), then block 1452 invokes FIG. 29A processing(just
as does block 1232). Processing then continues back to block
1406. Block 1456 does not continue back to block 1406 until

the process is completely terminated. Blocks 1448, 1450,
1452, 1454 and 1456 are understood to be delimited by appro-
priate semaphore control.

Preferred embodiments of blocks 1446 and 1448 use con-

venient namesofprocesses beingstarted or terminated,rather
than convenient brief process names such as 1902, 1912,
1922, 1932, 1942, or 1952 used in flowcharts. In some
embodiments, the long readable nameis used, such as where-
abouts broadcast process (1902), whereabouts collection pro-
cess (1912), whereabouts supervisor process (1922), timing
determination process (1932), WDR request process (1942),
and whereabouts determination process (1952). For example,
the user may knowthat the whereabouts supervisor process
enabled/disabled indicates whether or not to have where-

abouts timeliness monitoredin real time. Enabling the where-
abouts supervisor process enables monitoring for the WTV in
real time, and disabling the whereabouts supervisor process
disables monitoring the WTVin real time.

In another embodimentof blocks 1446 and 1448, a com-
pletely new nameordescription maybe provided to any ofthe
processesto facilitate user interface usability. For example, a
new name Peer Location Source Variable (PLSV) can be
associated to the whereabouts broadcast process 1902 and/or
1942. PLSV may be easier to remember. If the PLSV was
toggled to disabled, the whereabouts broadcast process 1902
and/or 1942 terminates. If the PLSV was toggled to enabled,
the whereabouts broadcast process 1902 and/or 1942 is
started. It may be easier to rememberthat the PLSV enables/
disables whether or not to allow this MS to be a location

source for other MSs in an LN-expanse.
In other embodiments, a useful name (e.g. PLSV) repre-

sents starting and terminating any subset of19x processes (a
plurality (e.g. 1902 and 1942)) for simplicity. In yet other
embodiments, FIG. 144/14Bcanbe usedto start or terminate
worker thread(s) in any process, for example to throttle up
more workerthreadsin a process, or to throttle downforless
worker threads in a process, perhaps modifying thread
instances to accommodate the numberof channels for com-

munications, or for the desired performance. There are many
embodimentsfor fine tuning the architecture 1900 for optimal
peer to peer interaction. In yet other embodiments, toggling
may not be used. There maybeindividual optionsavailableat
block 1408 for setting any data of this disclosure. Similarly,
the 19xx.-Max variables may be modified via individual user
friendly names and/or as a group of 19..x-Max variables.

Referring back to block 1446, if it is determined the user
did not select to toggle for enabling/disabling process(es),

10

15

20

30

35

40

45

50

55

60

65

84

then processing continues to block 1458. Ifblock 1458 deter-
mines the user selected to exit FIG. 144/14B configuration
processing, then block 1460 terminates the user interface
appropriately and processing terminates at block 1462. If
block 1458 determinesthe user did notselect to exit the user

interface, then processing continues to block 1466 of FIG.
14B by wayof off page connector 1464.

With reference now to FIG. 14B, depicted is a continued
portion flowchart of FIG. 14A for describing a preferred
embodiment of MS LBX configuration processing. If block
1466 determines the user selected to configure the Source
Periodicity Time Period (SPTP) value, then block 1468 pre-
pares parameters for invoking the Configure Value procedure
(parameters for reference (address) ofvalue to configure; and
validity criteria of value to configure), and the Configure
Value procedure of FIG.18 is invokedat block 1470 with the
two(2) parameters. Thereafter, processing continues back to
block 1406 by wayofoff page connector 1498. Blocks 1468
and 1470 are understood to be delimited by appropriate sema-
phore control when modifying the SPTP value since other
threads can access it. The SPTP configures the time period
between broadcasts by thread(s) 1902, for example 5 sec-
onds. Some embodiments do not permit configuration of the
SPTP.

If block 1466 determinesthe user did not select to config-
ure the SPTP value, then processing continues to block 1472.
If block 1472 determines the user selected to configure ser-
vice propagation, then the user configures service propaga-
tion at block 1474 and processing continues back to block
1406 by way of off page connector 1498. If block 1472
determinesthe user did notselect to configure service propa-
gation, then processing continues to block 1476.

If block 1476 determines the user selected to configure
permissions 10, then the user configures permissionsat block
1478 and processing continues back to block 1406 by way of
off page connector 1498. If block 1476 determines the user
did not select to configure permissions 10, then processing
continues to block 1480. If block 1480 determines the user

selected to configure charters 12, then the user configures
charters 12 at block 1482 and processing continues back to
block 1406 by wayofoffpage connector 1498. Ifblock 1480
determines the user did not select to configure charters 12,
then processing continues to block 1484. Ifblock 1484 deter-
minesthe userselected to configure statistics 14, then the user
configuresstatistics 14 at block 1486 and processing contin-
ues back to block 1406 by wayofoffpage connector 1498.If
block 1484 determines the user did not select to configure
statistics 14, then processing continues to block 1488. If
block 1488 determines the user selected to configure service
informant code 28, then the user configures code 28 at block
1490 and processing continues back to block 1406 by way of
off page connector 1498. If block 1488 determines the user
did not select to configure code 28, then processing continues
to block 1492. If block 1492 determines the user selected to

maintain LBX history 30, then the user maintains LBX his-
tory at block 1494 and processing continues back to block
1406 by way of off page connector 1498. If block 1492
determinestheuserdid not select to maintain LBX history 30,
then processing continues to block 1496.

Block 1496 handles other user interface actions leaving
block 1408, and processing continues back to block 1406 by
way of off page connector 1498.

Details ofblocks 1474, 1478, 1482, 1486, 1490, 1494, and
perhaps more detail to block 1496, are described with other
flowcharts. Appropriate semaphores are requested at the
beginning of block processing, and released at the end of
block processing, for thread safe access to applicable data at

APPLE

EXHIBIT 1001 - PAGE 0306

APPLE
EXHIBIT 1001 - PAGE 0307

US 8,639,267 B2
85

risk of being accessed by another thread of processing at the
same time of configuration. In some embodiments, a user/
administrator with secure privileges to the MShasability to
perform any subset of configurations of FIGS. 14A and 14B
processing, while a general user may not. Any subset of FIG.
14 configuration may appear in alternative embodiments,
with or without authenticated administrator access to perform
configuration.

FIG. 15A depicts a flowchart for describing a preferred
embodiment of DLM role configuration processing of block
1412. Processing begins at block 1502 and continuesto block
1504 which accesses current DLMV settings before continu-
ing to block 1506. Ifthere were no DLMV entries(list empty)
as determined by block 1506, then block 1508 provides an
error to the user and processing terminates at block 1518. The
DLMV may be empty when the MShasno local DLM capa-
bility and there hasn’t yet been any detected DLM capability,
for example as evidenced by WDRsinserted to queue 22.
Preferably,the error presentedat block 1508 requires the user
to acknowledgethe error(e.g. with a user action) before block
1508 continues to block 1518. If block 1506 determines at

least one entry (role) is present in the DLMV, then the current
DLMV setting(s) are saved at block 1510, the managelist
processing procedure of FIG. 15C is invoked at block 1512
with the DLMV asa reference (address) parameter, and pro-
cessing continues to block 1514.

Block 1514 determines if there were any changes to the
DLMV from FIG. 15C processing by comparing the DLMV
after block 1512 with the DLMV savedat block 1510. Ifthere

were changes via FIG. 15C processing, such as a role which
wasenabled prior to block 1512 which is now disabled, or
such as a role which wasdisabledprior to block 1512 which
is now enabled, then block 1514 continues to block 1516
which handles the DLMV changesappropriately. Block 1516
continues to block 1518 which terminates FIG. 15A process-
ing. Ifblock 1514 determines there were no changesvia block
1512, then processing terminates at block 1518.

Block 1516 enables newly enabled role(s) as does block
1238 described for FIG. 12. Block 1516 disables newly dis-
abled role(s) as does block 2804 described for FIG. 28.

FIG. 15B depicts a flowchart for describing a preferred
embodiment of ILM role configuration processing of block
1416. Processing begins at block 1522 and continuesto block
1524 which accesses current ILMV settings before continu-
ing to block 1526. If there were no ILMV entries(list empty)
as determined by block 1526, then block 1528 provides an
error to the user and processing terminates at block 1538. The
ILMVmay be empty whenthe MSis not meant to have ILM
capability. Preferably, the error presented at block 1528
requires the user to acknowledgethe error before block 1528
continues to block 1538. Ifblock 1526 determinesat least one

entry (role) is present in the ILMV, then the current ILMV
setting(s) are saved at block 1530, the managelist processing
procedure of FIG. 15C is invoked with a reference (address)
parameter of the ILMV at block 1532, and processing con-
tinues to block 1534.

Block 1534 determines if there were any changes to the
ILMVfrom FIG. 15C processing by comparing the ILMV
after block 1532 with the ILMV savedat block 1530. If there

were changes via FIG. 15C processing, such as a role which
wasenabled prior to block 1532 which is now disabled, or
such as a role which wasdisabledprior to block 1532 which
is now enabled, then block 1534 continues to block 1536
which handles the ILMV changes appropriately. Block 1536
continues to block 1538 which terminates FIG. 15B process-
ing. Ifblock 1534 determines there were no changesvia block
1532, then processing terminates at block 1538.

10

15

20

25

30

35

40

45

50

55

60

65

86

Block 1536 enables newly enabled role(s) as does blocks
1224 through 1234 described for FIG. 12. Block 1536 dis-
ables newly disabled role(s) as does blocks 2806 through
2816 described for FIG. 28.

FIG. 15C depicts a flowchart for describing a preferred
embodimentofa procedure for ManageList processing. Pro-
cessing starts at block 1552 and continues to block 1554.
Block 1554 presents the list (DLM capability if arrived to by
way ofFIG. 15A; ILM capability if arrived to by way ofFIG.
15B)to the user, as passed to FIG. 15C processing with the
reference parameter by the invoker, with whichlist items are
marked (enabled) and which are unmarked (disabled) along
with options, before continuing to block 1556 for awaiting
user action. Block 1554 highlights currently enabled roles,
and ensures disabled roles are not highlightedinthe presented
list. When a useraction is detected at block 1556, thereafter,
block 1558 checksiflist entry was enabled (marked) by the
user, in which case block 1560 marksthelist item as enabled,
saves it to the list (e.g. DLMV or ILMV), and processing
continues back to block 1554 to refresh the list interface. If

block 1558 determines the user did not respond with an
enable action, then block 1562 checksfor a disable action.If
block 1562 determines the user wantedto disable a list entry,
then block 1564 marks (actually unmarksit) the list item as
disabled, saves it to the list (e.g. DLMV or ILMV), and
processing continues back to block 1554. Ifblock 1562 deter-
minesthe user did not wantto disable a list item, then block
1566 checksifthe user wanted to exit FIG. 15C processing.If
block 1566 determines the user did not select to exit list

processing, then processing continues to block 1568 where
other user interface actions are appropriately handled and
then processing continues back to block 1554. If block 1566
determinesthe userdid select to exit managelist processing,
then FIG. 15C processing appropriately returns to the caller at
block 1570.

FIG. 15C interfaces with the user for desired DLMV (via
FIG. 15A) or ILMV (via FIG. 15B) configurations. In some
embodiments, it makes sense to have user control over
enabling or disabling DLM and/or ILM capability (roles) to
the MS, for example for software or hardwaretesting.

FIG. 16 depicts a flowchart for describing a preferred
embodiment of NTP use configuration processing of block
1420. Processing starts at block 1602 and continues to block
1604 where the current NTP use setting is accessed. There-
after, block 1606 presents the current NTP usesetting toits
value of enabled or disabled along with options, before con-
tinuing to block 1608 for awaiting user action. When a user
action is detected at block 1608, block 1610 checks ifthe NIP
use setting was disabled at block 1608, in which case block
1612 terminates NTPuse appropriately, block 1614 sets (and
saves) the NTP usesetting to disabled, and processing con-
tinues back to block 1606 to refresh the interface. Block 1612
disables NTP as does block 2828.

If block 1610 determines the user did not respond for
disabling NTP, then block 1616 checks for a toggle to being
enabled. If block 1616 determines the user wanted to enable

NTP use, then block 1618 accesses known NTP server
address(es) (e.g. ip addresses preconfigured to the MS,or set
with anotheruser interface at the MS), and pings each one, if
necessary, at block 1620 with a timeout. As soon as one NTP
server is determinedto be reachable, block 1620 continues to
block 1622. Ifno NTPserver was reachable, then the timeout
will have expired for each onetried at block 1620 for con-
tinuing to block 1622. Block 1622 determinesif at least one
NTPserver was reachable at block 1620. Ifblock 1622 deter-

mines no NTPserver wasreachable, then anerror is presented
to the user at block 1624 and processing continues back to

APPLE

EXHIBIT 1001 - PAGE 0307

APPLE
EXHIBIT 1001 - PAGE 0308

US 8,639,267 B2
87

block 1606. Preferably, the error presented at block 1624
requires the user to acknowledgethe error before block 1624
continues to block 1606. Ifblock 1622 determinesthatat least

one NTP server was reachable, then block 1626 initializes
NTPuse appropriately, block 1628 sets the NTPusesetting to
enabled (and saves), and processing continues back to block
1606. Block 1626 enables NTP as does block 1210.

Referring back to block 1616,if it is determined the user
did not want to enable NTPuse, then processing continues to
block 1630 whereit is checkedifthe user wantedto exit FIG.

16 processing. If block 1630 determines the user did not
select to exit FIG. 16 processing, then processing continues to
block 1632 where other user interface actions leaving block
1608 are appropriately handled, and then processing contin-
ues back to block 1606. Ifblock 1630 determines the user did

select to exit processing, then FIG. 16 processing terminates
at block 1634.

FIG. 17 depicts a flowchart for describing a preferred
embodiment ofWDR maintenanceprocessing ofblock 1424.
Processing starts at block 1702 and continues to block 1704
where it is determinedifthere are any WDRsofqueue 22.If
block 1704 determines there are no WDRsfor processing,
then block 1706 presents an error to the user and processing
continues to block 1732 where FIG. 17 processing termi-
nates. Preferably, the error presented at block 1706 requires
the user to acknowledge the error before block 1706 contin-
ues to block 1732. If block 1704 determinesthere is at least

one WDR,then processing continues to block 1708 where the
current contents ofWDR queue 22 is appropriately presented
to the user (in a scrollable list ifnecessary). Thereafter, block
1710 awaits user action. When a user action is detected at

block 1710, block 1712 checksifthe user selected to delete a

WDRfrom queue 22, in which case block 1714 discards the
selected WDR,and processing continues back to block 1708
for a refreshed presentation of queue 22. Ifblock 1712 deter-
mines the user did not select to delete a WDR, then block

1716 checks if the user selected to modify a WDR.If block
1716 determines the user wanted to modify a WDRofqueue
22, then block 1718 interfaces with the user for validated

WDRchanges before continuing back to block 1708. Ifblock
1716 determines the user did not select to modify a WDR,
then block 1720 checksif the user selected to add a WDRto

queue 22. If block 1720 determines the user selected to add a
WDR(for example, to manually configure MS whereabouts),
then block 1722 interfaces with the user for a validated WDR

to add to queue 22 before continuing back to block 1708. If
block 1720 determinesthe user did not select to add a WDR,
then block 1724 checks if the user selected to view detailed

contents of a WDR,perhaps because WDRsare presented in
an abbreviated form at block 1708. If itis determinedat block

1724the userdid select to view details of a WDR,then block

1726 formats the WDRin detail form, presents it to the user,
and waits for the user to exit the view of the WDRbefore

continuing back to block 1708. If block 1724 determines the
user did not select to view a WDRin detail, then block 1728

checks if the user wanted to exit FIG. 17 processing. Ifblock
1728 determines the user did not select to exit FIG. 17 pro-
cessing, then processing continues to block 1730 where other
user interface actions leaving block 1710 are appropriately
handled, and then processing continues back to block 1708. If
block 1728 determinesthe userdid select to exit processing,
then FIG. 17 processing terminates at block 1732.

45

55

88

There are many embodiments for maintaining WDRsof
queue 22. In some embodiments, FIG. 17 (i.e. block 1424)
processing is only provided for debug of an MS. In a single
instance WDR embodiment, block 1708 presents the one and
only WDR which is used to keep current MS whereabouts
whenever possible. Other embodiments incorporate any sub-
set of FIG. 17 processing.

FIG. 18 depicts a flowchart for describing a preferred
embodiment of a procedure for variable configuration pro-
cessing, namely the Configure Value procedure, for example
for processing ofblock 1430. Processing starts at block 1802
and continues to block 1804 where parameters passed by the
invoker of FIG. 18 are determined, namely the reference
(address) of the value for configuration to be modified, and
the validity criteria for what makes the value valid. Passing
the value by reference simply means that FIG. 18 has the
ability to directly change the value, regardless of whereit is
located. In some embodiments, the parameteris an address to
a memory location for the value. In another embodiment, the
value is maintained in a database or somepersistent storage,
and FIG. 18 is passed enough information to know how to
permanently affect/change the value.

Block 1804 continues to block 1806 where the current

value passed is presented to the user (e.g. confidence floor
value), and then to block 1808 for awaiting user action. When
a user action is detected at block 1808, block 1810 checks if

the user selected to modify the value, in which case block
1812 interfaces with the user for a validated value using the
validity criteria parameter before continuing back to block
1806. Validity criteria may take the form of a value range,
value type, set of allowable values, or any othercriteria for
what makesthe value a valid one.

If block 1810 determinesthe user did not select to modify
the value, then block 1814 checks if the user wanted to exit

FIG.18 processing. Ifblock 1814 determinesthe user did not
select to exit FIG. 18 processing, then processing continuesto
block 1816 where otheruser interface actions leaving block
1808 are appropriately handled, and then processing contin-
ues back to block 1806. Ifblock 1814 determinesthe userdid

select to exit processing, then FIG. 18 processing appropri-
ately returns to the caller at block 1818.

LBX: LN-EXPANSEInteroperability

FIG. 19 depicts an illustration for describing a preferred
embodiment multithreaded architecture of peer interaction
processing ofa MSin accordancewiththe present disclosure.
MSarchitecture 1900 preferably includes a set of Operating
System (O/S) processes(i.e. O/S terminology “process” with
O/S terminology“thread”or “threads(i.e. thread(s))), includ-
ing a whereabouts broadcast process 1902, a whereabouts
collection process 1912, a whereabouts supervisor process
1922, a timing determination process 1932, a WDR request
process 1942, and a whereabouts determination process
1952. Further included are queuesfor interaction of process-
ing, and process associated variables to facilitate processing.
All of the FIG. 19 processes are of PIP code 6. There is
preferably a plurality (pool) of worker threads within each of
said 19xx processes (i.e. 1902, 1912, 1922, 1932, 1942 and
1952) for high performance asynchronous processing. Each
19xx process (1.e. 1902, 1912, 1922, 1932, 1942 and 1952)
preferably has at least two (2) threads:

1) “parent thread”; and
2) “worker thread”.

APPLE

EXHIBIT 1001 - PAGE 0308

APPLE
EXHIBIT 1001 - PAGE 0309

US 8,639,267 B2
89

A parent thread (FIG. 29A)is the main process threadfor:
starting the particular process;
starting the correct number of worker thread(s) of that

particular process;
staying alive while all worker threads are busy processing;

and

properly terminating the process when worker threads are
terminated.

The parent threadis indeed the parent for governing behavior
of threads at the process whole level. Every process has a
namefor convenient reference, such as the names 1902, 1912,
1922, 1932, 1942 and 1952. Of course, these names maytake
on the associated human readable forms of whereabouts

broadcast process, whereabouts collection process, where-
abouts supervisor process, timing determination process,
WDRrequest process, and whereabouts determination pro-
cess, respectively. For brevity, the names used herein are by
the process label of FIG. 19 in a form 19xx. There mustbe at
least one worker thread in a process. Worker thread(s) are
described with a flowchart as follows:

1902—FIG.20;
1912—FIG.21;
1922—FIG.22;
1932—FIG.23;
1942—FIG.25; and
1952—FIG. 26A.

Threads of architecture MS are presented from a software
perspective, but there are applicable hardware/firmwarepro-
cess thread embodiments accomplished for the same func-
tionality. In fact, hardware/firmware embodiments are pre-
ferred whenit is knownthat processing is mature(i.e. stable)
to provide the fastest possible performance. Architecture
1900 processing is best achieved at the highest possible per-
formance speeds for optimal wireless communications pro-
cessing. There are two (2) types of processes for describing
the types of worker threads:

1) “Slave to Queue”; and
2) “Slave to Timer”.
A 19xx process is a slave to queue process whenits worker

thread(s) are driven by feeding from a queue of architecture
1900. A slave to queue process stays “blocked” (O/S termi-
nology “blocked’=preempted) on a queue entry retrieval
interface until the sought queue item is inserted to the queue.
The queueentry retrieval interface becomes “cleared” (O/S
terminology “cleared’’=clear to run) when the sought queue
entry is retrieved from the queue by a thread. These terms
(blocked and cleared) are analogous to a semaphore causing
a thread to be blocked, and a thread to be cleared, as is well
knowninthe art. Queues have semaphore control to ensure no
more than one thread becomesclear at a time for a single
queue entry retrieved (as done in an O/S). Onethread sees a
particular queue entry, but many threads can feed offthe same
queue to do the same work concurrently. Slave to queue type
ofprocesses are 1912, 1932, 1942 and 1952.A slave to queue
processis properly terminated byinserting a special termina-
tion queue entry for each worker thread to terminate itself
after queue entry retrieval.

A 19xx processis a slave to timer process whenits worker
thread(s) are driven by a timer for peeking a queueofarchi-
tecture 1900. A timer provides the period of time for a worker
thread to sleep during a loopediteration of checking a queue
for a sought entry (without removing the entry from the
queue). Slave to timer threads periodically peek a queue, and
based on whatis found, will process appropriately. A queue
peek does not alter the peeked queue. The queue peek inter-
face is semaphore protected for preventing peeking at an
un-opportune time (e.g. while thread inserting or retrieving

20

25

35

40

45

50

55

60

65

90

from queue). Queue interfaces ensure onethreadis acting on
a queue with a queueinterface at any particular time. Slave to
timer type of processes are 1902 and 1922. A slave to timer
processis properly terminated by inserting a special termina-
tion queue entry for each workerthread to terminate itself by
queue entry peek.

Block 2812 knows the type of 19x process for preparing
the process type parameter for invocation of FIG. 29B at
block 2814. The type of processhasslightly different termi-
nation requirements because ofthe worker thread(s) process-
ing type. Alternate embodimentsofslave to timer processes
will make them slave to queue processes by simply feeding
off Thread Request (TR) queue 1980 for driving a worker
thread whento execute (and whento terminate). New timer(s)
would insert timely queue entries to queue 1980, and pro-
cesses 1902 and 1922 would retrieve from the queue (FIG.
24Arecord 2400). The queue entries would becomeavailable
to queue 1980 whenit is timefora particular workerthread to
execute. Worker threads of processes 1902 and 1922 could
retrieve, and stay blocked on, queue 1980 until an entry was
inserted by a timer for enabling a workerthread(field 2400a
set to 1902 or 1912). TR queue 1980 is useful for starting any
threads of architecture 1900 in a slave to queue manner. This
may be a cleanerarchitecture for all thread pools to operate
the same way (slave to queue). Nevertheless, the two thread
pool methods are implemented.

Each 19xx process has at least four (4) variables for
describing present disclosure processing:

19xx-PID=The O/S terminology “Process Identifier
(PID)”for the O/S PID ofthe 192process. This variable
is also used to determine if the process is enabled
(PID>0), or is disabled (PID=0 (i.e. <=0));

19xx-Max=The configured number ofworker thread(s) for
the 19xx process;

19xx-Sem=A process local semaphore for synchronizing
19xx workerthreads, for example in properly starting up
worker threads in process 19xx, and for properly termi-
nating workerthreads in process 19xx; and

19xx-Ct=A process local count of the number of worker
thread(s) currently running in the 19xx process.

19xx-PID and 19xx-Max are variables of PIP data 8. 19xx-

Sem and 19xx-Ct are preferably process 19xx stack variables
within the context of PIP code 6. 19xv-PID is a semaphore
protected global variablein architecture 1900 sothat it can be
used to determine whetheror not a particular 19x processis
enabled(i.e. running) or disabled (not running). 19..-Maxis
a semaphoreprotected globalvariable in architecture 1900 so
that user configuration processing outside of architecture
1900 can be used to administrate a desired number ofworker

threads for a 19xx process. Alternate embodiments will not
provide user configuration of 19x..-Max variables (e.g. hard
coded maximum numberof threads), in which case no 19xx-
Maxglobal variable is necessary. ““Thread(s) 19xx’”is a brief
form ofstating “worker thread(s) of the 19xx process”.

Receive (Rx) queue 26 is for receiving CK 1304 or CK
1314 data (e.g. WDR or WDRrequests), for example from
wireless transmissions. Queue 26 will receive at least WDR
information (destined for threads 1912) and WDRrequests
(FIG. 24C records 2490 destined for threads 1942). At least
one thread (not shown)is responsible for listening on appro-
priate channel(s) and immediately depositing appropriate
records to queue 26 so that they can be processed by archi-
tecture 1900. Preferably, there is a plurality (pool) of threads
for feeding queue 26 based on channel(s) being listened on,
and data 1302 or 1312 anticipated for being received. Alter-
native embodiments of thread(s) 1912 may themselves
directlybe listening on appropriate channels and immediately

APPLE

EXHIBIT 1001 - PAGE 0309

APPLE
EXHIBIT 1001 - PAGE 0310

US 8,639,267 B2
91

processing packets identified, in lieu of a queue 26. Alterna-
tive embodiments of thread(s) 1942 may themselves directly
be listening on appropriate channels and immediately pro-
cessing packets identified, in lieu of a queue 26. Queue26is
preferred to isolate channel(s) (e.g. frequency(s)) and trans-
mission reception processing in well known modular (e.g.
Radio Frequency (RF)) componentry, while providing a high
performance queue interface to other asynchronous threads
of architecture 1900 (e.g. thread(s) of process 1912). Wave
spectrums(via particular communications interface 70) are
appropriately processed for feeding queue 26. As soon as a
record is received by an MS,it is assumed ready for process-
ing at queue 26. All queue 26 accesses are assumed to have
appropriate semaphore control to ensure synchronousaccess
by any threadat any particular time to prevent data corruption
and misuse. Queue entries inserted to queue 26 may have
arrived on different channel(s), and in such embodiments a
channel qualifier mayfurther direct queue entries from queue
26 to a particular thread 1912 or 1942 (e.g. thread(s) dedi-
cated to channel(s)). In other embodiments, receive process-
ing feeds queue 26 independentof any particular channel(s)
monitored, or received on (the preferred embodiment
described). Regardless of how data is received and then
immediately placed on queue 26, a received date/time stamp
(e.g. fields 1100p or 2490c) is addedto the applicable record
for communicating the received date/time stamp to a thread
(e.g. thread(s) 1912 or 1942) of when the data wasreceived.
Therefore, the queue 26 insert interface tells the waiting
thread(s) when the data wasactually received. This ensures a
most accurate received date/time stamp as close to receive
processing as possible (e.g. enabling most accurate TDOA
measurements). An alternate embodiment could determine
applicable received date/time stamps in thread(s) 1912 or
thread(s) 1942. Other data placed into recetved WDRsare:
wave spectrum and/or particular communications interface
70 of the channelreceived on, and heading/yaw/pitch/roll (or
accelerometer readings) with AOA measurements, signal
strength, and other field 1100/eligible data of the receiving
MS. Depending onalternative embodiments, queue 26 may
be viewed metaphorically for providing convenient grounds
of explanation.

Send (Tx) queue 24 is for sending/communicating CK
1304 data, for example for wireless transmissions. At least
one thread (not shown) is responsible for immediately trans-
mitting (e.g. wirelessly) anything deposited to queue 24. Pref-
erably, there is a plurality (pool) of threads for feeding off of
queue 24 based on channel(s) being transmitted on, and data
1302 anticipated for being sent. Alternative embodiments of
thread(s) ofprocesses 1902, 1922, 1932 and 1942 may them-
selves directly transmit (send/broadcast) on appropriate
channels anything deposited to queue 24, in lieu of a queue
24. Queue 24 is preferred to isolate channel(s) (e.g. fre-
quency(s)) and transmission processing in well known modu-
lar (e.g. RF) componentry, while providing a high perfor-
mance queue interface to other asynchronous threads of
architecture 1900 (e.g. thread(s) 1942). Wave spectrums and/
or particular communications interface 70 are appropriately
processed for sending from queue 24. All queue 24 accesses
are assumedto have appropriate semaphore control to ensure
synchronous access by any thread at any particular time to
prevent data corruption and misuse. As soon as a record is
inserted to queue 24,it is assumed sent immediately. Prefer-
ably,fields sent dependon fields set. Queue entries inserted to
queue 24 may contain specification for which channel(s) to
send on in some embodiments. In other embodiments, send
processing feeding from queue 24 hasintelligence for which
channel(s) to send on (the preferred embodimentdescribed).

10

15

20

25

30

35

40

45

50

55

60

65

92

Depending on alternative embodiments, queue 24 may be
viewed metaphorically for providing convenient grounds of
explanation.

Wheninterfacing to queue 24, the term “broadcast”refers
to sending outgoing data in a mannerfor reaching as many
MSsaspossible (e.g. use all participating communications
interfaces 70), whereas the term “send”refers to targeting a
particular MS or group of MSs.

WDRqueue22 preferably containsat least one WDR 1100
at any pointin time, forat least describing whereabouts ofthe
MSofarchitecture 1900. Queue 22 accesses are assumed to
have appropriate semaphore control to ensure synchronous
access by any thread at any particular time to prevent data
corruption and misuse. A single instance of data embodiment
of queue 22 may require an explicit semaphore control for
access. Ina WDRplurality maintained to queue 22, appro-
priate queue interfaces are again provided to ensure synchro-
nousthread access (e.g. implicit semaphore control). Regard-
less, thereis still a need for a queue 22 to maintain a plurality
ofWDRsfrom remote MSs. The preferred embodimentofall
queue interfaces uses queue interface maintained sema-
phore(s) invisible to code making use of queue (e.g. API)
interfaces. Depending on alternative embodiments, queue 22
may be viewed metaphorically for providing convenient
grounds of explanation.

Thread Request (TR) queue 1980 is for requesting process-
ing by either a timing determination (worker) thread of pro-
cess 1932 (i.e. thread 1932) or whereabouts determination
(worker) thread of process 1952 (1.e. thread 1952). When
requesting processing by a thread 1932, TR queue 1980 has
requests (retrieved via processing 1934 after insertion pro-
cessing 1918) from a thread 1912to initiate TDOA measure-
ment. When requesting processing by a thread 1952, TR
queue 1980 has requests (retrieved via processing 1958 after
insertion processing 1918 or 1930) from a thread 1912 or
1922 so that thread 1952 performs whereabouts determina-
tion of the MSofarchitecture 1900. Requests of queue 1980
comprise records 2400. Preferably, there is a plurality (pool)
of threads 1912 for feeding queue 1980 (.e. feeding from
queue 26), and for feeding a plurality each of threads 1932
and 1952 from queue 1980. All queue 1980 accesses are
assumed to have appropriate semaphore control to ensure
synchronous access by any thread at any particular time to
prevent data corruption and misuse. Depending on alternative
embodiments, queue 1980 may be viewed metaphorically for
providing convenient grounds of explanation.

With reference now to FIG. 24A,depicted is an illustration
for describing a preferred embodiment of a thread request
queue record, as maintained to Thread Request (TR) queue
1980. TR queue 1980 is not required when a LN-expanse
globally uses NTP, as found in thread 19xx processing
describedfor architecture 1900, howeveritmay be requiredat
a MS whichdoesnot have NTP, ora MS whichinteracts with
another data processing system (e.g. MS)that does not have
NTP. Therefore, TR queue record 2400 (i.e. queue entry
2400) may, or may not, be required. This is the reason FIG. 1A
does not depict queue 1980. When NTPisin use globally (in
LN-expanse), TDOA measurements can be made using a
single unidirectional data (1302 or 1312) packet containing a
sent date/time stamp (of when the data was sent). Upon
receipt, that sent date/time stamp received is compared with
the date/time of receipt to determinethe difference. The dif-
ference is a TDOA measurement. Knowing transmission
speeds with a TDOA measurementallowscalculating a dis-
tance. In this NTP scenario, no thread(s) 1932 are required.

Threads 1912 and/or DLM processing may always insert
the MS whereabouts without requirementfor thread(s) 1952

APPLE

EXHIBIT 1001 - PAGE 0310

APPLE
EXHIBIT 1001 - PAGE 0311

US 8,639,267 B2
93

by incorporating thread 1952 logic into thread 1912, or by
directly starting (without queue 1980) a thread 1952 from a
thread 1912. Therefore, threads 1952 may notbe required.If
threads 1952 are not required, queue 1980 may not be
required by incorporating thread 1932 logic into thread 1912,
or by directly starting (without queue 1980) a thread 1932
from a thread 1912. Therefore, queue 1980 may not be
required, and threads 1932 may not be required.

Records 2400 (i.e. queue entries 2400) contain a request
type field 2400a and data field 24005. Request type field
2400a simply routes the queue entry to destined thread(s)
(e.g. thread(s) 1932 or thread(s) 1952). A thread 1932 remains
blocked on queue 1980 until a record 2400 is inserted which
has a field 2400a containing the value 1932. A thread 1952
remains blocked on queue 1980 until a record 2400 is inserted
whichhas a field 2400a containing the value 1952. Data field
24005 is set to zero (0) whentype field 2400a contains 1952
(i.e. not relevant). Data field 24006 contains an MSID (field
11002) value, and possibly a targeted communications inter-
face 70 (or wave spectrum if one to one), when typefield
contains 1932. Field 24004 will contain information for

appropriately targeting the MS ID with data (e.g. communi-
cations interface to use if MS has multiple of them). An MS
with only one communicationsinterface can store only a MS
ID in field 24008.

Records 2400 are used to cause appropriate processing by
19xx threads (e.g. 1932 or 1952) as invoked when needed(e.g.
by thread(s) 1912). Process 1932 is a slave to queue type of
process, and there are no queue 1980 entries 2400 which will
not get timely processed by a thread 1932. No interim pruning
is necessary to queue 1980.

With reference nowbackto FIG. 19, Correlation Response
(CR) queue 1990 is for receiving correlation data for corre-
lating requests transmitted in data 1302 with responses
received in data 1302 or 1312. Records 2450 are inserted to

queue 1990 (via processing 1928) from thread(s) 1922 so that
thread(s) 1912 (after processing 1920) correlate data 1302 or
1312 with requests sent by thread(s) 1922 (e.g. over interface
1926), for the purpose of calculating a TDOA measurement.
Additionally, records 2450 are inserted to queue 1990 (via
processing 1936) from thread(s) 1932 so that thread(s) 1912
(after processing 1920) correlate data 1302 or 1312 with
requests sent by thread(s) 1932 (e.g. overinterface 1938), for
the purpose ofcalculating a TDOA measurement.Preferably,
there is a plurality (pool) of threads for feeding queue 1990
and for feeding from queue 1990 (feeding from queue 1990
with thread(s) 1912). All queue 1990 accesses are assumed to
have appropriate semaphore control to ensure synchronous
access by any thread at any particular time to prevent data
corruption and misuse. Depending on alternative embodi-
ments, queue 1990 may be viewed metaphorically for pro-
viding convenient grounds of explanation.

With reference nowto FIG. 24B,depicted is an illustration
for describing a preferred embodiment of a correlation
response queue record, as maintained to Correlation
Response (CR) queue 1990. CR queue 1990 is not required
when a LN-expanse globally uses NTP, as found in thread
19xx processing described for architecture 1900, howeverit
may be required at a MS which does not have NTP, or a MS
which interacts with another data processing system (e.g.
MS)that does not have NTP. Therefore, CR record 2450(i.e.
queue entry 2450) may, or may not, be required. This is the
reason FIG. 1A does not depict queue 1990. The purpose of
CR queue 1990 is to enable calculation of TDOA measure-
ments using correlation data to match a request with a
response. When NTPis used globally in the LN-expanse, no
such correlations between a request and responseis required,

10

15

20

25

30

35

40

45

50

55

60

65

94

as described above. In the NTP scenario, thread(s) 1912 can
deduce ‘DOA measurements directly from responses (see
FIG.21), and there is no requirementfor threads 1932.

TDOA measurements are best taken using date/time
stamps as close to the processing points of sending and
receiving as possible, otherwise critical regions of code may
be required for enabling process time adjustments to the
measurements when processing is “further out” from said
points. This is the reason MSreceive processing provides
received date/time stamps with data inserted to queue 26
(field 1100p or 2490c). In a preferred embodiment, send
queue 24 processing inserts to queue 1990 so the date/time
stamp field 2450a for when sent is as close to just prior to
having been sent as possible. However, there is still the
requirement for processing time spent inserting to queue
1990 prior to sending anyway. Anticipated processing speeds
of architecture 1900 allow reasonably moving sent date/time
stampsetting just a little “further out” from actually sending
to keep modular send processing isolated. A preferred
embodiment(as presented) assumes the send queue 24 inter-
face minimizes processing instructions from when data is
placed onto queue 24 and whenitis actually sent, so that the
sending thread(s) 19x. (1902, 1922, 1932 and 1942)insert to
queue 1990 with a reasonably accurate sent/date stampfield
2450a. This ensures a most accurate sent date/time stamp
(e.g. enabling most accurate TDOA measurements). An alter-
nate embodiment makes appropriate adjustments for more
accurate time to consider processing instructions up to the
point of sending after queue 1990 insertion.

Records 2450 (i.e. queue entries 2450) contain a date/time
stamp field 2450a anda correlation data field 24500. Date/
time stamp field 2450a contains a date/time stamp of when a
request (data 1302) wassent as set by the thread inserting the
queue entry 2450. Correlation data field 24505 contains
unique correlation data (e.g. MS id with suffix of unique
number) used to provide correlation for matching sent
requests (data 1302) with received responses (data 1302 or
1312), regardless of the particular communications inter-
face(s) used (e.g. different wave spectrums supported by
MS). Upon a correlation match, a TDOA measurementis
calculated using the time difference betweenfield 2450a and
a date/time stamp of when the response wasreceived (e.g.
field 1100p). A thread 1912 accesses queue 1990 for a record
2450 using correlation field 24506 to match, when data 1302
or 1312 contains correlation data for matching. A thread 1912
then uses the field 2450a to calculate a TDOA measurement.

Process 1912 is not a slave to queue 1990 (but is to queue 26).
A thread 1912 peeks queue 1990 for a matching entry when
appropriate. Queue 1990 may contain obsolete queueentries
2450 until pruning is performed. Some WDRrequests may be
broadcasts, therefore records 2450 maybeusedfor correlat-
ing a plurality of responses. In another record 2450 embodi-
ment, an additional field 2450c is provided for specification
of which communication interface(s) and/or channel(s) to
listen on for a response.

With reference now back to FIG. 19, any reasonable subset
ofarchitecture 1900 processing may be incorporated ina MS.
For example in one minimal subset embodiment, a DLM
which has excellent direct locating means only needsa single
instance WDR(queue 22) anda single thread 1902 for broad-
casting whereabouts data to facilitate whereabouts determi-
nation by other MSs.In a near superset embodiment, process
1942 processing may be incorporated completely into pro-
cess 1912, thereby eliminating processing 1942 by having
threads 1912 feed from queue 26 for WDRrequests as well as
WDRinformation. In another subset embodiment, process
1922 may only send requests to queue 24 for responses, or

APPLE

EXHIBIT 1001 - PAGE 0311

APPLE
EXHIBIT 1001 - PAGE 0312

US 8,639,267 B2
95

mayonly start a thread 1952 for determining whereabouts of
the MS. ‘There are many viable subset embodiments depend-
ing on the MSbeing a DLM orILM,capabilities of the MS,
LN-expanse deployment design choices, etc. A reference to
FIG. 19 accompanies thread 19xx flowcharts (FIGS. 20, 21,
22, 23, 25 and 26A). The user, preferably an administrator
type (e.g. for IbxPhone™ debug) selectively configures
whether or not to start or terminate a process (thread pool),
and perhaps the number ofthreads to start in the pool (see
FIG. 14A). Starting a process (and threads) and terminating
processes (and threads) is shown in flowcharts 29A and 29B.
There are other embodimentsfor properly starting and termi-
nating threads without departing from the spirit and scope of
this disclosure.

LBX of data may also be viewed as LBX ofobjects, for
example a WDR, WDR request, TDOA request, AOA
request, charters, permissions, data record(s), or any other
data may be viewedas an object. An subset ofan objector data
may also be viewedas an object.

FIG. 20 depicts a flowchart for describing a preferred
embodiment of MS whereabouts broadcast processing, for
example to facilitate other MSsin locating themselves in an
LN-expanse. FIG. 20 processing describes a process 1902
worker thread, and is of PIP code 6. Thread(s) 1902 purpose
is for the MS of FIG. 20 processing (e.g.a first, or sending,
MS)to periodically transmit whereabouts information to
other MSs(e.g.at least a second, or receiving, MS) to use in
locating themselves. It is recommendedthatvalidity criteria
set at block 1444 for 1902-Max be fixed at one (1) in the
preferred embodiment. Multiple channels for broadcast at
block 2016 should be isolated to modular send processing
(feeding from a queue 24).

In an alternative embodimenthaving multiple transmission
channels visible to process 1902, there can be a workerthread
1902 per channel to handle broadcasting on multiple chan-
nels. If thread(s) 1902 (block 2016) do not transmitdirectly
over the channel themselves, this embodiment would provide
means for communicating the channel for broadcast to send
processing when interfacing to queue 24 (e.g. incorporate a
channel qualifier field with WDRinserted to queue 24). This
embodiment could allow specification of at least one (1)
worker thread per channel, however multiple worker threads
configurable for process 1902 as appropriated for the number
of channels configurable for broadcast.

Processing begins at block 2002, continues to block 2004
where the process worker thread count 1902-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1902-Sem)), and continues to block 2006 for peeking
WDRqueue 22 for a special termination request entry. Block
2004 may also check the 1902-Ct value, and signal the pro-
cess 1902 parent thread that all worker threads are running
when 1902-Ct reaches 1902-Max. Thereafter, if block 2008
determines that a worker thread termination request was not
found in queue 22, processing continues to block 2010. Block
2010 peeks the WDR queue 22 (using interface 1904)for the
most recent highest confidence entry for this MS whereabouts
by searching queue 22 for: the MS ID field 1100a matching
the MS ID of FIG. 20 processing, and a confidence field
1100d greater than or equal to the confidence floor value, and
a most recent NTP enabled date/time stamp field 11005
within a prescribedtrailing period oftime(e.g.preferably less
than or equal to 2 seconds). For example, block 2010 peeks
the queue (i.e. makes a copy for use if an entry found for
subsequent processing, but does not removethe entry from
queue) for a WDRofthis MS(i.e. MS of FIG. 20 processing)
whichhasthe greatest confidence over 75 and has been most
recently inserted to queue 22 with an NTP date/time stamp in

40

45

96

the last 2 seconds. Date/time stamps for MS whereabouts
whichare not N'I'P derived havelittle use in the overall palette
of process 19xx choices of architecture 1900 becausereceiv-
ing data processing systems (e.g. MSs) will have no means of
determining an accurate TDOA measurementin the unidirec-
tional transmission from an NTP disabled MS.A receiving
data processing system will still require a bidirectional cor-
related exchange with the MSofFIG.20 processing to deter-
mine an accurate TDOA measurementin its own time scale

(which is accomplished with thread(s) 1922 pulling WDR
information anyway). An alternate embodiment to block
2010 will not use the NTP indicator as a search criteria so that

receiving data processing systems can receive to a thread
1912, and then continue for appropriate correlation process-
ing, or can at least maintain whereabouts to queue 22 to know
whois nearby.

Thread 1902 is of less value to the LN-expanse whenit
broadcasts outdated/invalid whereabouts of the MStofacili-

tate locating other MSs. In an alternate embodiment, a move-
ment tolerance (e.g. user configured or system set (e.g. 3
meters)) is incorporated at the MS,or at service(s) used to
locate the MS, for knowing when the MShassignificantly
moved (e.g. more than 3 meters) and how longit has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MSis awareofthe period of time sincelast
significantly moving and the search timecriteria is set using
the amountoftimesince the MSsignificantly moved (which-
ever is greater). This way a large numberof (perhaps more
confident candidates) WDRsare searched in the time period
when the MShasnotsignificantly moved. Optional blocks
278 through 284 may have been incorporated to FIG. 2F for
movementtolerance processing just described, in which case
the LWT is compared to the current date/time of block 2010
processing to adjust block 2010 search time criteria for the
correct trailing period. In any case, a WDRis soughtat block
2010 which will help other MSs in the LN-expanse locate
themselves, and to let other MSs know whois nearby.

Thereafter, if block 2012 determines a useful WDR was
found, then block 2014 prepares the WDRfor send process-
ing, block 2016 broadcasts the WDRinformation (using send
interface 1906) by inserting to queue 24so that send process-
ing broadcasts data 1302 (e.g. on all available communica-
tions interface(s) 70), for example as far as radius 1306, and
processing continues to block 2018. The broadcast is for
reception by data processing systems (e.g. MSs)in the vicin-
ity. At least fields 11005, 1100c, 1100d, and 11007 are broad-
cast. See FIG. 11A descriptions. Fields are set to the follow-
ing upon exit from block 2014:
MSID field 1100a is preferably set with: Field 1100¢ from
queue 22, or transformed (ifnot already) into a pseudo MS ID
(possibly for future correlation) ifdesired. This field may also
beset to null (notset) becauseit is not required when the NTP
indicatorof field 11006 is enabled and the broadcast is sent
with an NTP enabledfield 11007.

DATE/TIME STAMPfield 11004 is preferably set with: Field
11004 from queue 22.
LOCATIONfield 1100c is preferably set with: Field 1100c
from queue 22.
CONFIDENCEfield 1100d is preferably set with: Field
1100d from queue 22.
LOCATION TECHNOLOGYfield 1100¢ is preferably set
with: Field 1100e from queue 22.
LOCATION REFERENCE INFO field 1100fis preferably
set with: null (not set). Null indicates to send processing
feeding from queue 24to use all available comm.interfaces
70 (i.e. Broadcast). Specifying a comm.interface targets the
specified interface (i.e. send).

APPLE

EXHIBIT 1001 - PAGE 0312

APPLE
EXHIBIT 1001 - PAGE 0313

US 8,639,267 B2
97

COMMUNICATIONS REFERENCEINFO field 1100g is
preferably set with: null (not set). IfMS ID (or pseudo MS ID)
is sent, this is all that is required to target this MS.
SPEED field 1100+ is preferably set with: Field 1100/ from
queue 22.
HEADINGfield 11007 is preferably set with: Field 1100
from queue 22.
ELEVATIONficld 1100; is preferably sct with: Ficld 11007
from queue 22.
APPLICATION FIELDSfield 11004 is preferably set with:
Field 11004 from queue 22. An alternate embodiment will
add,alter, or discard data (with or without date/time stamps)
here at the time of block 2014 processing.
CORRELATION FIELD 1100m is preferably set with: null
(notset).
SENT DATE/TIME STAMPfield 11007 is preferably set
with: Sent date/time stamp as close in processing the broad-
cast of block 2016 as possible.
RECEIVED DATE/TIME STAMPfield 1100p is preferably
set with: Not Applicable (i.e. N/A for sending).

Block 2018 causes thread 1902 to sleep according to the
SPTPsetting (e.g. a few seconds). When the sleep time has
elapsed, processing continues back to block 2006 for another
loopiteration ofblocks 2006 through 2016. Referring back to
block 2012, if a useful WDR wasnotfound(e.g. candidates
too old), then processing continues to block 2018. Referring
back to block 2008, if a worker thread termination request
entry was found at queue 22, then block 2020 decrements the
worker thread count by 1 (using appropriate semaphore
access (e.g. 1902-Sem)), and thread 1902 processing termi-
nates at block 2022. Block 2020 mayalso check the 1902-Ct
value, and signal the process 1902 parent thread that all
workerthreads are terminated when 1902-Ct equals zero (0).

Block 2016 causes broadcasting data 1302 containing CK
1304 wherein CK 1304 contains WDR information prepared
as described abovefor block 2014. Alternative embodiments

of block 2010 may not search a specified confidence value,
and broadcastthe best entry available anywayso thatlisteners
in the vicinity will decide what to do with it. A semaphore
protected data access (instead ofa queue peek) may be used in
embodiments where there is always one WDRcurrent entry
maintained for the MS.

In the embodiment wherein usual MS communications
data 1302 ofthe MSis altered to contain CK 1304forlisten-

ing MSsin the vicinity, send processing feeding from queue
24, caused by block 2016 processing, will place WDRinfor-
mation as CK 1304 embeddedin usual data 1302 at the next

opportune time of sending usual data 1302. If an opportune
time is not timely, send processing should discard the send
request of block 2016 to avoid broadcasting outdated where-
abouts information (unless using a movementtolerance and
timesincelast significant movement). As the MS conductsits
normal communications, transmitted data 1302 contains new
data CK 1304to be ignored by receiving MSother character
32 processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable signal
by MSsin the vicinity, FIG. 20 sends repeated timely pulsed
broadcasts of new data 1302 (per SPTP) for MSsin the
vicinity of the first MS to receive. In any case, appropriate
implementation should ensure field 11007 is as accurate as
possible for when data 1302 is actually sent.

An alternate embodimentto architecture 1900 for elimina-

tion of process 1902 incorporates a trigger implementation
for broadcasting MS whereabouts atthe best possible time—
i.e. when the MS whereaboutsis inserted to queue 22. As soon

10

15

20

25

30

35

40

45

50

55

60

65

98

as anew (preferably NTP enabled) WDRcandidate becomes
available, it can be broadcast at a new block 279 of FIG.2F.

(e.g. new block 279 continued to from block 278 and then
continuing to block 280), Fields are set as described abovefor
FIG. 20. Preferably, the new block 279 starts an asynchronous
thread consisting of blocks 2014 and 2016 so that FIG. 2F
processing performance is not impacted. In a further embodi-
ment, block 279 can be further enhanced using the SPIP
value to make sure that too many broadcasts are not made.
The SPTP (Source Periodicity Time Period) could be
observed for getting as close as possible to broadcasting
whereabouts in accordance with SPTP(e.g. worst case there
are not enough broadcasts).

FIG. 21 depicts a flowchart for describing a preferred
embodiment of MS whereabouts collection processing. FIG.
21 processing describes a process 1912 workerthread, andis
of PIP code 6. Thread(s) 1912 purposeis for the MS of FIG.
21 processing (e.g. a second, or receiving, MS) to collect
potentially useful WDRinformation from other MSs(e.g.at
least a first, or sending, MS) in the vicinity for determining
whereabouts of the receiving (second) MS.It is recom-
mendedthat validity criteria set at block 1444 for 1912-Max
be set as high as possible(e.g. 10) relative performance con-
siderations of architecture 1900, with at least one thread per
channel that WDR information may be received on by the
receiving MS. Multiple channels for receiving data fed to
queue 26 should be isolated to modular receive processing
(feeding a queue 26).

In an alternative embodiment having multiple receiving
transmission channels visible to process 1912 (e.g. thread(s)
1912 receiving directly), there can be a worker thread 1912
per channel to handle receiving on multiple channels simul-
taneously. If thread(s) 1912 do not receive directly from the
channel, the preferred embodimentofFIG. 21 would not need
to convey channel information to thread(s) 1912 waiting on
queue 26 anyway. Embodiments could allow specitication/
configuration of many thread(s) 1912 per channel.

Processing begins at block 2102, continues to block 2104
where the process worker thread count 1912-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1912-Sem)), and continues to block 2106 for interim
housekeeping ofpruning the WDR queueby invoking a Prune
Queuesprocedure ofFIG. 27. Block 2104 mayalso check the
1912-Ct value, and signal the process 1912 parent thread that
all worker threads are running when 1912-Ct reaches 1912-
Max.Block 2106 maynot be required since block 2130 can
cause queue 22 pruning (block 292).

Thereafter, block 2108 retrieves from queue 26 a WDR
(using interface 1914), perhaps a special termination request
entry, ora WDRreceived in data 1302 (CK 1304) or data 1312
(CK 1314), and only continues to block 2110 when a WDR
has been retrieved. Block 2108 stays blocked on retrieving
from queue 26 until any WDRis retrieved. If block 2110
determines that a special WDRindicating to terminate was
not found in queue 26, processing continues to block 2112.
Block 2112 adjusts date/time stamp field 11000 if necessary
depending on NTP use in the LN-expanse and adjusts the
confidence field 1100d accordingly. In a preferred embodi-
ment, fields 1100 and 1100d for the WDRinprocessis set as
follows for certain conditions:

Fields 11005, 1100” and 1100p all NTP indicated: keep
fields 11006 and 1100dasis; or

Fields 11005 and 11007 are NTPindicated, 1100p is not: Is
correlation (field 11007) present?: No, then set confi-
dence(field 1100¢) to 0 (forfiltering out at block 2114)/
Yes, then set field 11008 to 1100p (in time termsofthis

APPLE

EXHIBIT 1001 - PAGE 0313

APPLE
EXHIBIT 1001 - PAGE 0314

US 8,639,267 B2
99

MS)and adjust confidence lower based on differences
between fields 11005, 11007 and 1100p; or

Fields 11006 and 1100p are NTPindicated, 1100z is not: Is
correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11004 to
1100p (in time terms of this MS) and adjust confidence
lowerbased on differences betweenfields 11004, 1100x
and 1100p; or

Fields 11006 NTP indicated, 1100” and 1100p not: Is
correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11004 to
1100p (in time terms of this MS) and adjust confidence
lowerbased on differences betweenfields 11004, 1100x
and 1100p; or

Field 11006 not NTP indicated, 11007 and 1100p are: Is
correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11004 to
1100p (in time terms of this MS) and adjust confidence
lowerbased on differences betweenfields 11004, 1100x
and 11007; or

Fields 11006 and 1100p are not NTPindicated, 11007 is: Is
correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11004 to
1100p (in time terms of this MS) and adjust confidence
lowerbased on differences betweenfields 11004, 1100x
and 11007; or

Fields 1100and 11007 are not NTPindicated, 1100p is: Is
correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11004 to
1100p (in time terms of this MS) and adjust confidence
lowerbased on differences betweenfields 11004, 1100x
and 11007; or

Fields 11004, 11007 and 1100p not NTP indicated: Is
correlation present?: No, then set confidence to 0 (for
filtering out at block 2114)/Yes, then set field 11004 to
1100p (in time terms of this MS) and adjust confidence
lowerbased on differences betweenfields 11004, 1100x
and 1100p.

NTP ensures maintaining a high confidence in the LN-ex-
panse, but absence of NTPisstill useful. Confidence values
should be adjusted with the knowledge ofthetrailing time
periods used for searches when sharing whereabouts (e.g.
thread(s) 1942 searches). Block 2112 continues to block
2114.

If at block 2114, the WDR confidence field 1100d is not
greater than the confidence floor value, then processing con-
tinues back to block 2106. If block 2114 determinesthat the

WDRfield 1100¢ is satisfactory, then block 2116 initializes a
TDOA_FINALvariable to False, and block 2118 checks if
the WDRfrom block 2108 containscorrelation (field 11007).

If block 2118 determines the WDR does not contain cor-

relation, then block 2120 accesses the ILMV, block 2122
determines the source (ILM or DLM)of the WDRusing the
originator indicator of field 1100e, and block 2124 checks
suitability for collection of the WDR. While processes 19xx.
running are generally reflective of the ILMV roles config-
ured, it is possible that the more descriptive nature of ILMV
role(s) notbe oneto onein relationship to 19xx processes, in
particular depending on the subset ofarchitecture 1900 in use.
Block 2124 is redundant anyway because of block 274. If
block 2124 determines the ILMV roleis disabled for collect-

ing this WDR,then processing continues back to block 2106.
If block 2124 determines the ILMV role is enabled for col-

lecting this WDR,then processing continues to block 2126.
If block 2126 determines both the first (sending) and sec-

ond (receiving) MS are NTP enabled (i.e. Fields 11008,
11007 and 1100p are NTP indicated) OR ifTDOA_FINALis

10

15

20

25

30

35

40

45

50

55

65

100

set to True (as arrived to via block 2150), then block 2128
completes the WDRfor queue 22 insertion, block 2130 pre-
pares parameters for FIG. 2F processing and block 2132
invokes FIG. 2F processing (interface 1916). Parameters set
at block 2130 are: WDRREF=areference or pointer to the
WDRcompleted at block 2128; DELETEQ=FIG.21 location
queue discard processing; and SUPER=FIG.21 supervisory
notification processing. Block 2128 calculates a TDOA mea-
surement wheneverpossible and inserts to field 1100f See
FIG. 11A descriptions. Fields are set to the following upon
exit from block 2128:

MSID field 1100a is preferably set with: Field 1100¢ from
queue 26.
DATE/TIME STAMPfield 11008is preferably set with: Pre-
ferred embodiment discussed for block 2112.

LOCATIONfield 1100c is preferably set with: Field 1100c
from queue 26.
CONFIDENCEfield 1100d is preferably set with: Confi-
denceat equalto or less than field 1100d received from queue
26 (see preferred embodiment for block 2112).
LOCATION TECHNOLOGYfield 1100e is preferably set
with: Field 1100e from queue 26.
LOCATION REFERENCE INFO field 1100fis preferably
set with: All available measurements from receive processing
(e.g. AOA, heading, yaw, pitch,roll, signal strength, wave
spectrum, particular communicationsinterface 70, etc), and
TDOA measurement(s) as determined in FIG. 21 (blocks
2128 and 2148).
COMMUNICATIONS REFERENCEINFO field 1100g is
preferably set with: Field 1100g from queue 26.
SPEED field 1100+ is preferably set with: Field 1100/ from
queue 26.
HEADINGfield 1100: is preferably set with: Field 1100i
from queue 26.
ELEVATIONfield 1100; is preferably set with: Field 1100;
from queue 26.
APPLICATION FIELDSfield 11004 is preferably set with:
Field 11004 from queue 26. An alternate embodimentwill
add, alter, or discard data (with or without date/time stamps)
here at the time of block 2128 processing.
CORRELATIONFIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22). Was used by
FIG.21 processing.
SENT DATE/TIME STAMPfield 1100x is preferably set
with: Not Applicable (i.e. not maintained to queue 22). Was
used by FIG.21 processing.
RECEIVED DATE/TIME STAMPfield 1100p is preferably
set with: Not Applicable (1.e. not maintained to queue 22).
Was used by FIG. 21 processing.

Block 2132 continues to block 2134 where a record 2400 is

built (i.e. field 2400a=1952 andfield 24000 is set to null (e.g.
-1)) and then block 2136 inserts the record 2400 to TR queue
1980 (using interface 1918) so that a thread 1952 will perform
processing. Blocks 2134 and 2136 maybe replaced with an
alternative embodiment for starting a thread 1952. Block
2136 continues back to block 2106.

Referring now backto block 2126,ifit is determinedthat a
TDOA measurement cannot be made (ie. (field 11007 or
1100p not NTP indicated) OR if TDOA_FINALis set to
False), then block 2138 checks if the WDR contains a MS ID
(or pseudo MSID). If block 2138 determines there is none,
then processing continues back to block 2106 becausethere is
no wayto distinguish one MSfrom anotherwithrespect to the
WDRretrieved at block 2108 for directing bidirectional cor-
relation. An alternate embodimentwill use a provided corre-
lation field 1100m received at block 2108, instead ofa field
1100a, for knowing how to target the originating MS for

APPLE

EXHIBIT 1001 - PAGE 0314

APPLE
EXHIBIT 1001 - PAGE 0315

US 8,639,267 B2
101

TDOAmeasurementprocessing initiated by a thread 19372. If
block 2138 determines there is a usable MS ID (or correlation
field), then block 2140 builds a record 2400 (field
2400a=1932, field 24005=the MS ID (or pseudo MSID, or
correlation) and particular communications interface from
field 1100/Gfavailable) ofthe WDR ofblock 2108, and block
2142 inserts the record 2400 to queue 1980 (interface 1918)
for starting a thread 1932. Block 2142 continuesbackto block
2106. An alternate embodiment causes block 2126 to con-

tinue directly to block 2140 (no block 2138) for a No condi-
tion from block 2126. Regardless of whether the originating
MS ID can betargeted, a correlation (in lieu ofan MS ID) may
be used when the MSresponds with a broadcast. The WDR
request made by thread 1932 can be a broadcast rather than a
targeted request. Thread(s) 1932 can handle sending targeted
WDRrequests (to a known MSID) and broadcast WDR
requests.

Referring back to block 2118, if it is determined the WDR
does contain correlation (field 11007), block 2144 peeks the
CR queue 1990 (using interface 1920) for a record 2450
containing a match(i.e. field 1100m matchedto field 24505).
Thereafter, ifblock 2146 determinesno correlation was found
on queue 1990 (e.g. response took too long and entry was
pruned), then processing continues to block 2120 already
described. Ifblock 2146 determinesthe correlation entry was
found (i.e. thread 1912 received a response from an earlier
request (e.g. from a thread 1922 or 1932), then block 2148
uses date/time stampfield 2450a (from block 2144) with field
1100p (e.g. from block 2108) to calculate a TDOA measure-
mentin time scale of the MS of FIG.21 processing, and sets
field 1100/appropriately in the WDR.Note that correlation
field 24506 is valid acrossall available MS communications

interfaces (e.g. all supported active wave spectrums). The
TDOAmeasurementconsiders duration of time between the
earlier sent date/time of record 2450 and the later time of

received date/timefield 1100p. The TDOA measurement may
further be altered at block 2148 processing timeto a distance
knowingthe velocity ofthe wave spectrum used as received to
queue 26. Block 2148 continues to block 2150 where the
TDOA_FINALvariable is set to True, then to block 2120 for
processing already described.

Referring back to block 2110, ifa WDRfora workerthread
termination request was found at queue 26, then block 2152
decrements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1912-Sem)), and thread 1912 pro-
cessing terminates at block 2154. Block 2152 may also check
the 1912-Ct value, and signal the process 1912 parent thread
that all worker threads are terminated when 1912-Ct equals
zero (0).

In the embodiment wherein usual MS communications
data 1302 of the MSisaltered to contain CK 1304 or 1314 for

listening MSs in the vicinity, receive processing feeding
queue 26 will place WDR information to queue 26 as CK
1304 or 1314 is detected for being present in usual commu-
nication data 1302 or 1304. As normal communications are

conducted, transmitted data 1302 or 1312 contains new data
CK 1304 or 1314 to be ignored by receiving MSother char-
acter 32 processing, but to be found by listening MSs within
the vicinity which anticipate presence of CK 1304 or 1314.
Otherwise, when LN-Expanse deployments have not intro-
duced CK 1304 (or 1314) to usual data 1302 (or 1312) com-
municated on a receivable signal by MSs inthe vicinity, FIG.
21 receives new data 1302 (or 1312) sent. In any case,field
1100p should be as accurate as possible for when data 1302
(or 1312) was actually received. Critical regions of code
and/or anticipated execution timing may be usedto affect a
best setting of field 1100p.

10

15

20

25

30

35

40

45

50

55

60

65

102

So, FIG. 21 is responsible for maintaining whereabouts of
others to queue 22 with data useful for triangulatingitself.

FIG. 22 depicts a flowchart for describing a preferred
embodiment of MS whereabouts supervisor processing, for
example to ensure the MS of FIG. 22 processing (e.g. first
MS) is maintaining timely whereabouts information for
itself. FIG. 22 processing describes a process 1922 worker
thread, and is ofPIP code 6. Thread(s) 1922 purposeis for the
MSofFIG. 22 processing(e.g.a first, or sending, MS),after
determining its whereaboutsarestale, to periodically trans-
mit requests for whereabouts information from MSsin the
vicinity(e.g. from at least a second, or receiving, MS), and/or
to start a thread 1952 for immediately determining where-
abouts. Alternative embodiments to FIG. 22 will implement
processing of blocks 2218 through 2224, or processing of
blocks 2226 through 2228, or both as depicted in FIG. 22. It
is recommendedthat validity criteria set at block 1444 for
1922-Max befixed at one (1) in the preferred embodiment.
Multiple channels for broadcast at block 2224 should be
isolated to modular send processing feeding from a queue 24.

Inan alternative embodiment having multiple transmission
channels visible to process 1922, there can be a workerthread
1922 per channel to handle broadcasting on multiple chan-
nels. If thread(s) 1922 (block 2224) do not transmit directly
over the channel, this embodiment would provide meansfor
communicating the channel for broadcast to send processing
when interfacing to queue 24 (e.g. incorporate a channel
qualifier field with WDR request inserted to queue 24). This
embodiment could allow specification of one (1) thread per
channel, however multiple worker threads configurable for
process 1922 as determined by the numberof channels con-
figurable for broadcast.

Processing begins at block 2202, continues to block 2204
where the process worker thread count 1922-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1922-Sem)), and continues to block 2206 for interim
housekeeping of pruning the CR queue by invoking a Prune
Queuesprocedure ofFIG. 27. Block 2204 mayalso check the
1922-Ct value, and signal the process 1922 parent thread that
all worker threads are running when 1922-Ct reaches 1922-
Max.Block 2206 continues to block 2208 for peeking WDR
queue 22 (using interface 1924) for a special termination
request entry. Thereafter, if block 2210 determines that a
workerthread termination request was not found in queue 22,
processing continues to block 2212. Block 2212 peeks the
WDR queue 22 (using interface 1924) for the most recent
highest confidence entry for this MS whereabouts by search-
ing queue 22 for: the MS ID field 1100a matching the MS ID
of FIG. 22 processing, and a confidence field 1100d greater
than or equalto the confidencefloor value, and a mostrecent
date/time stamp field 11004 within a prescribed trailing
period of time of block 2212 search processing using a func-
tion of the WTV (.e. f(WTV)=short-hand for “function of
WTV”) for the period. For example, block 2212 peeks the
queue(i.e. makes a copyfor use if an entry found for subse-
quentprocessing, but does not removethe entry from queue)
for a WDRofthe first MS which hasthe greatest confidence
over 75 and has been mostrecently inserted to queue 22in the
last 3 seconds. Since the MS whereabouts accuracy may be
dependenton timeliness of the WTYV, it is recommendedthat
the f(WTV) be somevalue less than or equal to WTV, but
preferably not greater than the WTV. Thread 1922 is of less
value to the MS when not making sure in a timely mannerthe
MSis maintaining timely whereabouts for itself. In an alter-
nate embodiment, a movementtolerance (e.g. user configured
or system set (e.g. 3 meters)) is incorporated at the MS,or at
service(s) used to locate the MS, for knowing when the MS

APPLE

EXHIBIT 1001 - PAGE 0315

APPLE
EXHIBIT 1001 - PAGE 0316

US 8,639,267 B2
103

has significantly moved (e.g. more than 3 meters) and how
long it has been (e.g. 45 seconds) since last significantly
moving.In this embodiment, the MS is aware of the period of
time since last significantly moving and the f(WTV)is set
using the amount of time since the MSsignificantly moved
(i.e. f(WTV)=as described above, or the amountoftime since
significantly moving, whicheveris greater). This way a large
numberof (perhaps more confident candidates) WDRs are
searchedin the time period when the MShasnotsignificantly
moved. Optional blocks 278 through 284 may have been
incorporated to FIG. 2F for movementtolerance processing
just described, in which case the LWT is compared to the
current date/time to adjust the WTV for the correcttrailing
period. In any case, aWDRis soughtatblock 2212 whichwill
verify whether or not MS whereabouts are current.

Thereafter, if block 2214 determines a satisfactory WDR
was found, then processing continues to block 2216. Block
2216 causes thread 1922 to sleep according to a f(WTV)
(preferably a value less than or equal to the WTV(e.g. 95% of
WTV)). Whenthe sleep time has elapsed, processing contin-
ues back to block 2206 for another loop iteration of blocks
2206 through 2214.

If block 2214 determines a current WDR wasnot found,
then block 2218 builds a WDRrequest(e.g. containing record
2490 with field 2490a for the MS of FIG. 22 processing (MS
ID or pseudo MS ID) so receiving MSs in the LN-expanse
know who to respond to, and field 24905 with appropriate
correlation for response), block 2220 builds a record 2450
(using correlation generated for the request at block 2218),
block 2222 inserts the record 2450 to queue 1990 (using
interface 1928), and block 2224 broadcasts the WDRrequest
(record 2490) for responses. Absenceoffield 2490dindicates
to send processing feeding from queue 24 to broadcaston all
available comm.interfaces 70.

With reference nowto FIG. 24C,depicted is an illustration
for describing a preferred embodiment of a WDR request
record, as communicated to queue 24 or 26. When a LN-
expanse globally uses NTP, as found in thread 19xx process-
ing described for architecture 1900, a WDR request record
2490 may, or may not, be required. TDOA calculations can be
made using a single unidirectional data (1302 or 1312) packet
containing a sentdate/time stamp (ofwhenthe data wassent)
as described above.

Records 2490 contain a MSID field 2490a andcorrelation

field 24906. MS ID field 2490a@ contains an MSID (e.g. a
value offield 1100a). An alternate embodimentwill contain a
pseudo MSID (for correlation), perhaps madeby a derivative
of the MS ID with a unique (suffix) portion, so that receiving
MSscan directly address the MS sending the request without
actually knowing the MS ID (i.e. they know the pseudo MS
ID which enables the MS to recognize originated transmis-
sions). Correlation data field 24905 contains unique correla-
tion data (e.g. MS id with suffix of unique number) used to
provide correlation for matching sent requests (data 1302)
with received WDRresponses (data 1302 or 1312). Upon a
correlation match, a TDOA measurementis calculated using
the time difference betweenfield 2450a and a date/time stamp
of when the response was received (e.g. field 1100p).
Received date/time stamp field 2490c is added by receive
processing feeding queue 26 when an MSreceived the
request from another MS. Comm interface field 2490d is
added by receive processing inserting to queue 26 for how to
respond and target the originator. Many MSs do not have
choices ofcommunicationsinterfaces, so field 2490d may not
be required. Ifavailable it is used, otherwise a response can be
a broadcast. Field 2490d may contain a wave spectrum iden-
tifier for uniquely identifying how to respond(e.g. one to one

15

25

30

40

45

50

104

with communications interface), or any other value for indi-
cating how to send given how the request was received.

With reference back to FIG.22, block 2218 builds a request
that receiving MSswill knowis for soliciting a response with
WDRinformation. Block 2218 generates correlation for field
24506to be returned in responses to the WDRrequest broad-
cast at block 2224. Block 2220alsosets field 2450a to when

the request was sent. Preferably, ficld 2450ais sect as close to
the broadcast as possible. In an alternative embodiment,
broadcast processing feeding from queue 24 makesthe record
2450 andinsertsit to queue 1990 with a mostaccurate time of
whenthe request wasactually sent. Fields 2450a are to be as
accurate as possible. Block 2224 broadcasts the WDRrequest
data 1302 (using sendinterface 1926) by inserting to queue 24
so that send processing broadcasts data 1302, for example as
far as radius 1306. Broadcasting preferably usesall available
communications interface(s) 70 (e.g.all available wave spec-
trums). Therefore, the comm interface field 2490dis not set
(which implies to send processing to do a broadcast).

Block 2224 continues to block 2226 where a record 2400 is

built (e. field 2400a=1952 andfield 24006 is set to null(e.g.
-1)) and then block 2228 inserts the record 2400 to TR queue
1980 (using interface 1930) so that a thread 1952 will perform
processing. Blocks 2226 and 2228 may be replaced with an
alternative embodiment for starting a thread 1952. Block
2228 continues back to block 2216.

Referring back to block 2210, if a worker thread termina-
tion request entry was found at queue 22, then block 2230
decrements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1922-Sem)), and thread 1922 pro-
cessing terminates at block 2232. Block 2230 mayalso check
the 1922-Ct value, and signal the process 1922 parent thread
that all worker threads are terminated when 1922-Ct equals
zero (0).

In the embodiment wherein usual MS communications
data 1302 of the MSisaltered to contain CK 1304forlisten-

ing MSsin the vicinity, send processing feeding from queue
24, caused by block 2224 processing, will place the request as
CK 1304 embeddedin usual data 1302 at the next opportune
time of sending usual data 1302. This may require thealter-
native embodiment of adding the entry to queue 1990 being
part of send processing. As the MS conducts its normal com-
munications, transmitted data 1302 contains new data CK
1304 to be ignored by receiving MSother character 32 pro-
cessing, but to be found by listening MSs within the vicinity
which anticipate presence ofCK 1304. Otherwise, when LN-
Expanse deployments have not introduced CK 1304 to usual
data 1302 communicated on a receivable signal by MSsin the
vicinity, FIG. 22 sends new WDRrequest data 1302.

FIG. 23 depicts a flowchart for describing a preferred
embodiment of MStiming determination processing. FIG. 23
processing describes a process 1932 worker thread, and is of
PIP code 6. Thread(s) 1932 purposeis for the MS of FIG.23
processing to determine TDOA measurements when needed
for WDRinformation received. It is recommendedthatvalid-

ity criteria set at block 1444 for 1932-Maxbeset as high as
possible (e.g. 12) relative performance considerations of
architecture 1900, to service multiple threads 1912.

Processing begins at block 2302, continues to block 2304
where the process worker thread count 1932-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1932-Sem)), and continues to block 2306 for interim
housekeeping of pruning the CR queue by invoking a Prune
Queuesprocedure ofFIG. 27. Block 2304 mayalso check the
1932-Ct value, and signal the process 1932 parent thread that
all worker threads are running when 1932-Ct reaches 1932-
Max.

APPLE

EXHIBIT 1001 - PAGE 0316

APPLE
EXHIBIT 1001 - PAGE 0317

US 8,639,267 B2
105

Thereafter, block 2308 retrieves from queue 1980 a record
2400 (using interface 1934), perhaps a special termination
request entry, or a record 2400 received from thread(s) 1912,
and only continues to block 2310 when a record 2400 con-
taining field 2400a set to 1932 has beenretrieved. Block 2308
stays blocked on retrieving from queue 1980 until a record
2400 with field 2400a=1932is retrieved. Ifblock 2310 deter-

minesa special entry indicating to terminate was not found in
queue 1980, processing continues to block 2312.

If at block 2312, the record 2400 does not contain a MS ID
(or pseudo MS ID)in field 24004, processing continues to
block 2314 for building a WDR request (record 2490) to be
broadcast, and then to block 2318. Broadcasting preferably
uses all available communications interface(s) 70 (e.g. all
available wave spectrums). Ifblock 2312 determinesthefield
24005 is a valid MS ID (notnull), block 2316 builds a WDR
request targeted for the MS ID, and processing continues to
block 2318. A targeted requestis built for targeting the MS ID
(and communications interface, if available) from field
24006. Send processing is told which communicationsinter-
faceto use, ifavailable (e.g. MS has multiple), otherwise send
processing will target each available interface. In the unlikely
case a MSIDis present in field 24005 without the commu-
nications interface applicable, then all communicationsinter-
faces 70 are used with the targeted MS ID. In MS embodi-
ments with multiple communications interfaces 70, then
24005 is to contain the applicable communication interface
for sending. Block 2318 generates appropriate correlation for
a field 24506 (e.g. to be compared with a response WDRat
block 2144), block 2320 sets field 2450a to the current MS
date/time stamp, block 2322 inserts the record 2450 to queue
1990 (using interface 1936), and block 2324 sends/broad-
casts (using interface 1938) a WDR request (record 2490).
Thereafter, processing continues back to block 2306 for
another loop iteration. An alternative embodimentwill only
target a WDRrequest to a known MSID.For example, block
2312 would continue back to block 2306 if no MS ID is

found (=null), otherwiseit will continue to block 2316 (i.e. no
use for block 2314).

Block 2318 sets field 24505 to correlation to be returned in

responses to the WDRrequest sent/broadcast at block 2324.
Block 2320 sets field 2450a to when the request is sent.
Preferably, field 2450a is set as close as possible to when a
send occurred.In an alternative embodiment, send processing
feeding from queue 24 makesthe record 2450 andinsertsit to
queue 1990 with a most accurate time ofwhen the request was
actually sent. Fields 2450a are to be as accurate as possible.
Block 2324 sends/broadcasts the WDR request data 1302
(using send interface 1938) by inserting to queue 24 a record
2490 (2490a=the targeted MS ID (or pseudo MSID) ORnull
if arrived to from block 2314,field 2490b=correlation gener-
ated at block 2318) so that send processing sends data 1302,
for example as far as radius 1306. A null MS ID may be
respondedto by all MSsin the vicinity. A non-null MS ID is
to be respondedto by a particular MS. Presenceoffield 2490d
indicates to send processing feeding from queue 24to target
the MS ID overthe specified comm.interface (e.g. when MS
has a plurality of comm.interfaces 70 (e.g. cellular, WiFi,
Bluetooth, etc; i.e. MS supports multiple classes of wave
spectrum)).

Referring back to block 2310, if a worker thread termina-
tion request was found at queue 1980, then block 2326 dec-
rements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1932-Sem)), and thread 1932 pro-
cessing terminates at block 2328. Block 2326 mayalso check

10

15

20

25

30

35

40

45

50

55

60

65

106

the 1932-Ct value, and signal the process 1932 parent thread
that all worker threads are terminated when 1932-Ct equals
zero (0).

In the embodiment wherein usual MS communications
data 1302 of the MSisaltered to contain CK 1304forlisten-

ing MSsin the vicinity, send processing feeding from queue
24, caused by block 2324 processing, will place the WDR
request as CK 1304 embedded in usual data 1302 at the next
opportune time of sending usual data 1302. As the MS con-
ducts its normal communications, transmitted data 1302 con-
tains new data CK 1304 to be ignored by receiving MSother
character 32 processing, but to be found by listening MSs
within the vicinity which anticipate presence of CK 1304.
This may require the alternative embodimentof adding the
entry to queue 1990 being part of send processing. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated ona receivable signal
by MSsin the vicinity, FIG. 22 sends/broadcasts new WDR
request data 1302.

An alternate embodiment to block 2324 can wait for a

response with a reasonable timeout, thereby eliminating the
need for blocks 2318 through 2322 whichis usedto correlate
the subsequent response(to thread 1912) with the request sent
at block 2324. However, this will cause a potentially unpre-
dictable numberof simultaneously executing thread(s) 1932
when many MSsare in thevicinity.

Thread(s) 1932 are useful when one or both parties to
WDRtransmission (sending and receiving MS) do not have
NTP enabled. TDOA measurements are taken to triangulate
the MSrelative other MSsin realtime.

FIG. 25 depicts a flowchart for describing a preferred
embodiment of MS WDRrequest processing, for example
when aremote MSrequests(e.g. from FIG. 22 or 23) a WDR.
Receive processing identifies targeted requests destined(e.g.
FIG. 23) for the MS of FIG. 25 processing, and identifies
general broadcasts (e.g. FIG. 22) for processing as well. FIG.
25 processing describes a process 1942 workerthread, andis
of PIP code 6. Thread(s) 1942 purposeis for the MS of FIG.
25 processing to respond to incoming WDRrequests.It is
recommendedthatvalidity criteria set at block 1444 for 1942-
Maxbeset as high as possible (e.g. 10) relative performance
considerationsofarchitecture 1900, to service multiple WDR
requests simultaneously. Multiple channels for receiving data
fed to queue 26 should be isolated to modular receive pro-
cessing.

In an alternative embodiment having multiple receiving
transmission channels visible to process 1942, there can bea
workerthread 1942 per channelto handle receiving on mul-
tiple channels simultaneously. If thread(s) 1942 do not
receive directly from the channel, the preferred embodiment
of FIG. 25 would not need to convey channel information to
thread(s) 1942 waiting on queue 24 anyway. Embodiments
could allow specification/configuration of many thread(s)
1942 per channel.

Processing begins at block 2502, continues to block 2504
where the process worker thread count 1942-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1942-Sem)), and continues to block 2506for retrieving
from queue 26 a record 2490 (using interface 1948), perhaps
a special termination request entry, and only continues to
block 2508 when a record 2490 is retrieved. Block 2506 stays
blocked onretrieving from queue 26 until any record 2490 is
retrieved. If block 2508 determinesa special entry indicating
to terminate was not found in queue 26, processing continues
to block 2510. There are various embodiments for thread(s)
1912 and thread(s) 1942 to feed off a queue 26 for different
record types, for example, separate queues 26A and 26B,ora

APPLE

EXHIBIT 1001 - PAGE 0317

APPLE
EXHIBIT 1001 - PAGE 0318

US 8,639,267 B2
107

thread target field with either record found at queue 26(e.g.
like field 2400). In another embodiment, thread(s) 1912 are
modified with logic of thread(s) 1942 to handle all records
described for a queue 26, since thread(s) 1912 are listening
for queue 26 data anyway.

Block 2510 peeks the WDR queue 22 (using interface
1944) for the most recent highest confidence entry for this MS
whereabouts by searching queue 22 for: the MS ID field
1100@ matching the MS ID of FIG. 25 processing, and a
confidencefield 1100d greater than or equal to the confidence
floor value, and a most recent date/time stamp field 11005
within a prescribed trailing period of time of block 2510
search processing (e.g. 2 seconds). For example, block 2510
peeks the queue(i.e. makes a copy for use ifan entry found for
subsequent processing, but does not removethe entry from
queue) for a WDRof the MS (of FIG. 25 processing) which
has the greatest confidence over 75 and has been most
recently inserted to queue 22 in the last 2 seconds. It is
recommendedthatthe trailing period of time used by block
2510 be never greater than a few seconds. Thread 1942 is of
less value to the LN-expanse whenit responds with outdated/
invalid whereabouts of the MSto facilitate locating other
MSs. In an alternate embodiment, a movementtolerance(e.g.
user configured or system set (e.g. 3 meters)) is incorporated
at the MS,orat service(s) used to locate the MS,for knowing
when the MS has significantly moved (e.g. more than 3
meters) and how longit has been (e.g. 45 seconds) sincelast
significantly moving.In this embodiment, the MSis aware of
the period of time since last significantly moving and the
trailing period of time used by block 2510 is set using the
amount of time since the MS significantly moved, or the
amount of lime since significantly moving, whichever is
greater. This way a large numberof (perhaps more confident
candidate) WDRsare searched in the time period when the
MShasnotsignificantly moved. Optional blocks 278 through
284 may have been incorporated to FIG. 2F for movement
tolerance processing just described, in which case the LWTis
comparedto the current date/timeto adjust the trailing period
of time used by block 2510 for the correct trailing period. In
any case, a WDRis soughtat block 2510 to satisfy a request
helping another MSin the LN-expanselocateitself.

Thereafter, ifblock 2512 determines a useful WDR wasnot
found, then processing continues back to block 2506 for
another loop iteration of processing an inbound WDR
request. If block 2512 determines a useful WDR wasfound,
then block 2514 prepares the WDRfor send processing with
correlation field 1100m set from correlation field 24905

retrieved at block 2506, and block 2516 sends/broadcasts (per
field 2490a) the WDR information (using send interface
1946) by inserting to queue 24 so that send processing trans-
mits data 1302, for example as far as radius 1306, and pro-
cessing continues back to block 2506. At least fields 11008,
1100c, 1100d, 1100 and 1100z are sent/broadcast. See FIG.
11A descriptions. Fields are set to the following upon exit
from block 2514:

MSIDfield 1100a is preferably set with: Field 2490a from
queue 26.
DATE/TIME STAMPfield 11006is preferably set with: Field
11006 from queue 22.
LOCATIONfield 1100c is preferably set with: Field 1100c
from queue 22.
CONFIDENCEfield 1100d is preferably set with: Field
1100d from queue 22.
LOCATION TECHNOLOGYfield 1100¢ is preferably set
with: Field 1100e from queue 22.

10

30

35

40

45

65

108

LOCATION REFERENCE INFO field 1100fis preferably
set with: null (not set) for Broadcast by send processing,
otherwise set to field 2490d for Send by send processing.
COMMUNICATIONS REFERENCEINFO field 1100g is
preferably set with: null (notset).
SPEED field 1100+ is preferably set with: Field 1100/ from
queue 22.
HEADINGficld 1100is preferably sct with: Ficld 1100
from queue 22.
ELEVATIONfield 1100; is preferably set with: Field 1100;
from queue 22.
APPLICATION FIELDSfield 11004 is preferably set with:
Field 11004 from queue 22. An alternate embodimentwill
add,alter, or discard data (with or without date/time stamps)
here at the time of block 2514 processing.
CORRELATIONFIELD 11007 is preferably set with: Field
24906 from queue 26.
SENT DATE/TIME STAMPfield 1100x is preferably set
with: Sent date/time stamp as close in processing the send/
broadcast of block 2516 as possible.
RECEIVED DATE/TIME STAMPfield 1100p is preferably
set with: Not Applicable (i.e. N/A for sending).

Embodiments may rely completely on the correlation field
24906 with no needforfield 2490a. Referring back to block
2508, if a worker thread termination request was found at
queue 26, then block 2518 decrements the worker thread
count by 1 (using appropriate semaphoreaccess (e.g. 1942-
Sem)), and thread 1942 processing terminates at block 2520.
Block 2518 mayalso check the 1942-Ct value, and signal the
process 1942 parent thread that all worker threads are termi-
nated when 1942-Ct equals zero (0).

Block 2516 causes sending/broadcasting data 1302 con-
taining CK 1304, depending on the type of MS, wherein CK
1304 contains WDRinformationpreparedas described above
for block 2514. Alternative embodiments of block 2510 may
not search a specified confidence value, and broadcast the
best entry available anyway so that listeners in the vicinity
will decide what to do with it. A semaphore protected data
access(instead ofa queue peek) may be used in embodiments
wherethere is always one WDRcurrent entry maintained for
the MS.

In the embodiment wherein usual MS communications
data 1302 of the MSisaltered to contain CK 1304forlisten-

ing MSsin the vicinity, send processing feeding from queue
24, caused by block 2516 processing, will place WDRinfor-
mation as CK 1304 embedded in usual data 1302 at the next

opportune time of sending usual data 1302. If an opportune
time is not timely, send processing should discard the send
request of block 2516 to avoid broadcasting outdated where-
abouts information (unless using a movementtolerance and
time sincelast significant movement). As the MS conductsits
normal communications, transmitted data 1302 contains new
data CK 1304to be ignored by receiving MSother character
32 processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated ona receivable signal
by MSsin the vicinity, FIG. 25 sends/broadcasts new WDR
response data 1302. In any case, field 1100” should be as
accurate as possible for when data 1302 is actually sent.
Critical regions of code(i.e. prevent thread preemption) and/
or anticipated execution timing may be usedto affect a best
setting of field 11007.

In an alternate embodiment, records 2490 contain a sent
date/time stamp field 2490e of when the request was sent by
aremote MS,andthe received date/time stamp field 2490cis
processed at the MSin FIG.25 processing. This would enable

APPLE

EXHIBIT 1001 - PAGE 0318

APPLE
EXHIBIT 1001 - PAGE 0319

US 8,639,267 B2
109

block 2514 to calculate a TDOA measurementfor returning
in field 1100fof the WDRsent/broadcast at block 2516.

FIG. 26A depicts a flowchart for describing a preferred
embodiment of MS whereabouts determination processing.
FIG. 26A processing describes a process 1952 workerthread,
and is of PIP code 6. Thread(s) 1952 purposeis for the MS of
FIG. 26A processing to determine its own whereabouts with
useful WDRsfrom other MSs.It is recommendedthat valid-

ity criteria set at block 1444 for 1952-Maxbeset as high as
possible (e.g. 10) relative performance considerations of
architecture 1900, to service multiple threads 1912. 1952-
Max mayalso be set depending on what DLM capability
exists for the MS of FIG. 26A processing. In an alternate
embodiment, thread(s) 19x are automatically throttled up or
down(e.g. 1952-Max) per unique requirements of the MS as
it travels.

Processing begins at block 2602, continues to block 2604
where the process worker thread count 1952-Ct is accessed
and incremented by 1 (using appropriate semaphore access
(e.g. 1952-Sem)), and continues to block 2606 for interim
housekeeping ofpruning the WDR queueby invoking a Prune
Queuesprocedure ofFIG. 27. Block 2604 mayalso check the
1952-Ct value, and signal the process 1952 parent thread that
all worker threads are running when 1952-Ct reaches 1952-
Max. Block 2606 may not be necessary since pruning may be
accomplished at block 2620 when invoking FIG. 2F (block
292).

Thereafter, block 2608 retrieves from queue 1980 a record
2400 (using interface 1958), perhaps a special termination
request entry, or a record 2400 received from thread(s) 1912,
and only continues to block 2610 when a record 2400 con-
taining field 2400aset to 1952 has beenretrieved. Block 2608
stays blocked on retrieving from queue 1980 until a record
2400 with field 2400a=1952is retrieved. Ifblock 2610 deter-

minesa special entry indicating to terminate was not found in
queue 1980, processing continues to block 2612.

Block 2612 peeks the WDR queue 22 (using interface
1954) for the most recent highest confidence entry for this MS
whereabouts by searching queue 22 for: the MS ID field
1100@ matching the MS ID of FIG. 26A processing, and a
confidencefield 1100d greater than or equal to the confidence
floor value, and a most recent date/time stamp field 11005
within a prescribed trailing period of time of block 2612
search processing using a f(WTV) for the period. For
example, block 2612 peeks the queue (i.e. makes a copy for
use if an entry found for subsequent processing, but does not
removethe entry from queue) fora WDRofthe MS (of FIG.
26A processing) which has the greatest confidence over 75
and has been mostrecently inserted to queue 22 in thelast 2
seconds. Since MS whereabouts accuracy may be dependent
on timeliness ofthe WTV, itis recommendedthat the f{(WTV)
be some value less than or equal to WTV. In an alternate
embodiment, a movementtolerance (e.g. user configured or
system set (e.g. 3 meters)) is incorporated at the MS,or at
service(s) used to locate the MS, for knowing when the MS
has significantly moved (e.g. more than 3 meters) and how
long it has been (e.g. 45 seconds) since last significantly
moving. In this embodiment, the MSis awareofthe period of
time since last significantly moving and the f(WTV)is set
using the amount of time since the MSsignificantly moved
(i.e. f(WTV)=as described above, or the amountoftime since
significantly moving, whicheveris greater). This way a large
number of (perhaps more confident candidate) WDRsare
searchedin the time period whenthe MShasnotsignificantly
moved. Optional blocks 278 through 284 may have been
incorporated to FIG. 2F for movementtolerance processing

10

15

20

25

30

35

40

45

50

55

60

65

110

just described, in which case the LWT is compared to the
current date/time to adjust the W'l'V for the correct trailing
period.

Thereafter, ifblock 2614 determinesa timely whereabouts
for this MSalready exists to queue 22 (current WDR found),
then processing continues back to block 2606 for another
loopiteration ofprocessing. If2614 determines a satisfactory
WDRdocs not already exist in queue 22, then block 2600
determines a new highest confidence WDRfor this MS (FIG.
26B processing) using queue 22.

Thereafter, if block 2616 determines a WDR wasnot cre-
ated (BESTWDRvariable=null) for the MS of FIG. 26A
processing (by block 2600), then processing continues back
to block 2606. If block 2616 determines a WDR wascreated

(BESTWDR=WDERcreated by FIG. 26B)for the MS ofFIG.
26A processing by block 2600, then processing continues to
block 2618 for preparing FIG. 2F parameters and FIG. 2F
processing is invoked with the new WDRat block 2620 (for
interface 1956) before continuing back to block 2606. Param-
eters set at block 2618 are: WORREF=areference or pointer
to the WDR completed at block 2600; DELETEQ=FIG.26A
location queue discard processing; and SUPER=FIG. 26A
supervisory notification processing.

Referring back to block 2610, if a worker thread termina-
tion request was found at queue 1980, then block 2622 dec-
rements the worker thread count by 1 (using appropriate
semaphore access (e.g. 1952-Sem)), and thread 1952 pro-
cessing terminates at block 2624. Block 2622 mayalso check
the 1952-Ct value, and signal the process 1952 parent thread
that all worker threads are terminated when 1952-Ct equals
zero (0).

Alternate embodiments to FIG. 26A will have a pool of
thread(s) 1952 per location technology (WDRfield 1100e)
for specific WDR field(s) selective processing. FIG. 26A
processing is shownto be generic with handling all WDRsat
block 2600.

FIG. 26B depicts a flowchart for describing a preferred
embodimentofprocessing for determining a highest possible
confidence whereabouts, for example in ILM processing,
such as processing of FIG. 26A block 2600. Processingstarts
at block 2630, and continues to block 2632 where variables
are initialized (BESTWDRe=null, THIS_MS=null,
REMOTE_MS=null). BESTWDRwill reference the highest
confidence WDR for whereabouts of the MS of FIG. 26B

processing (i.e. this MS) upon return to FIG. 26A when
whereabouts determination is successful, otherwise
BESTWDRisset to null (none found). THIS_MSpoints to an
appropriately sorted list of WDRs which were originated by
this MS and are DLM originated(i.e. inserted by the DLM of
FIG. 26B processing). REMOTE_MSpoints to an appropri-
ately sorted list ofWDRs which wereoriginated by other MSs
(i.e. from DLMsand/or ILMs and collected by the ILM of
FIG. 26B processing).

Thereafter, block 2634 peeks the WDR queue 22 (using
interface 1954) for most recent WDRsby searching queue 22
for: confidence field 1100d greater than or equal to the con-
fidence floor value, and a most recent date/time stampfield
1100within a prescribed trailing period of time of block
2634 search processing using a {(WTV)for the period. For
example, block 2634 peeks the queue(i.e. makes a copy ofall
WDRsto a result list for use if any found for subsequent
processing, but does not removethe entry(s) from queue) for
all WDRswhich have confidence over 75 and has been most

recently inserted to queue 22 in the last 2 seconds. It is
recommendedthat the {(WTV)used here be some valueless
than or equal to the WTV (wantto be ahead of curve, so may
use a percentage (e.g. 90%)), but preferably not greater than

APPLE

EXHIBIT 1001 - PAGE 0319

APPLE
EXHIBIT 1001 - PAGE 0320

US 8,639,267 B2
111

a couple/few seconds (depends on MS, MSapplications, MS
environment, whereabouts determination related variables,

etc).
In an alternative embodiment, thread(s) 1952 coordinate

with each other to know successes, failures or progress of
their sister threads for automatically adjusting the trailing
f(WTV) period of time appropriately. See “Alternative IPC
Embodiments” below.

Thread 1952 is of less value to the MS when whereabouts

are calculated using stale WDRs, or when not enough useful
WDRsare considered. In an alternate embodiment, a move-

ment tolerance (e.g. user configured or system set (e.g. 3
meters)) is incorporated at the MS,or at service(s) used to
locate the MS, for knowing when the MShassignificantly
moved (e.g. more than 3 meters) and how longit has been
(e.g. 45 seconds) since last significantly moving. In this
embodiment, the MSis awareofthe period of timesincelast
significantly moving and the f(WTV)is set using the amount
of time since the MSsignificantly moved (i.e. f{(WTV)=as
described above, or the amount of time since significantly
moving, whichever is greater). This way a large number of
(perhaps more confident candidates) WDRsare searched in
the time period when the MShasnotsignificantly moved.
Optional blocks 278 through 284 may have been incorporated
to FIG. 2F for movementtolerance processing just described,
in which case the LWT is comparedto the current date/time to
adjust the WTVfor the correcttrailing period. In anycase,all
useful WDRsare sought at block 2634 and placedintoa list
upon exit from block 2634.

Thereafter, block 2636 sets THISMS list and
REMOTE_MSlist sort keys to be used at blocks 2644 and
2654. Blocks 2638 through 2654 will prioritize WDRsfound
at block 2634 depending on the sort keys made at block 2636.
A numberofvariables may be used to determine thebestsort
keys, such as the time period used to peek at block 2634
and/or the number of entries in the WDRlist returned by
block 2634, and/or other variables. When the time period of
search is small (e.g. less than a couple seconds), lists
(THIS_MSand REMOTE_MS)should be prioritized prima-
rily by confidence(fields 1100d) since any WDRsare valu-
able for determining whereabouts. This is the preferred
embodiment.

Whenthe time period is great, careful measure must be
taken to ensure stale WDRsare notused(e.g. > few seconds,
and not considering movement tolerance). Depending on
decision embodiments, there will be preferred priority order
sort keys created at exit from block 2636, for example “key1/
key2/key3”impliesthat “key1”is a primary key, “key2”is a
second order key, and “key3”is a third order key. A key such
as “field-11005/field-1100d/field-1100/signal-strength”
would sort WDRsfirst by using date/time stampfields 11005,
then by confidence valuefields 1100d (sorted within match-
ing date/time stamp WDRs), then by signal-strength field
1100f/ sub-field values (sorted within matching WDRconfi-
dences; no signal strength present=lowestpriority). Another
sort key may be “field-1100d/field-1100”for sorting WDRs
first by using confidence values, then by date/time stamps
(sorted within matching WDR confidences). The same or
different sort keys can be used for lists THIS_MS and
REMOTE_MS. Any WDRdata (fields or subfields) can be
sorted with a key, and sort keys can be of N order dimension
such that “keyl/key2/ .. . /keyN”. Whatever sort keys are
used, block 2686 will have to consider confidence versus
being stale,relative to the WTV. In the preferred embodiment,
the REMOTE_MSand THIS_MSlists are set with the same

5

10

15

20

25

30

35

40

45

50

55

60

65

112

sort keys of “field-1100d/field-11005”(1.e. peek time period
used at block 2634is less than 2 seconds) so that confidence
is primary.

Thereafter, block 2638 gets the first Gfany) WDRin thelist
returnedat block 2634 (also processes next WDRinlist when
encountered again in loop ofblocks 2638 through 2654), and
block 2640 checksifall WDRshavealready been processed.
If block 2640 finds that all WDRshave not been processed,
then block 2642 checks the WDRorigination. If block 2642
determines the WDRisonethat originated from a remote MS
(i.e. MS ID does not match the MS of FIG. 26B processing),
then block 2644 inserts the WDRinto the REMOTE_MSlist

using the desired sort key (confidence primary, time second-
ary) from block 2636, and processing continuesto block 2638
for anotherloopiteration. Ifblock 2642 determines the WDR
is one that originated from this MS (MS ID field 1100a
matches the MSofFIG. 26B processing(e.g. this MS being a
DLMatthe time of WDRcreation (this MS ID=field 1100a)
or this MS being an ILM at the time of WDRcreation (pre-
vious processing of FIG. 26A)), then processing continues to
block 2646 to determine how to process the WDR which was
inserted by “this MS”for its own whereabouts.

Block 2646 accessesfield 1100ffor data foundthere(e.g.
FIGS. 2D and 2E mayhaveinserted useful TDOA measure-
ments, even though DLM processing occurred; or FIG. 3C
may haveinserted useful TDOA and/or AOA measurements
with reference station(s) whereabouts; or receive processing
may have inserted AOA andrelated measurements). There-
after, if block 2648 determines presence of TDOA and/or
AOA data, block 2650 checksif reference whereabouts(e.g.
FIG. 3C selected stationary reference location(s)) is also
stored in field 1100f If block 2650 determines whereabouts
information is also stored to field 1100f then block 2652
makes new WDR(s) from the whereabouts information con-
taining at least the WDRCore andfield 1100fcontaining the
AOA and/or TDOA information as though it were from a
remote DLM or ILM.Block 2652 also performsthe expected
result of inserting the WDR of loop processing into the
THIS_MSlist using the desired sort key from block 2636.
Processing then continues to block 2644 where the newly
made WDR(s)is inserted into the REMOTE_MSlist using
the desired sort key (confidence primary, time secondary)
from block 2636. Block 2644 continues back to block 2638.

Block 2646 through 2652 show that DLMstationary ref-
erences may contribute to determining whereabouts of the
MS of FIG. 26B processing by making such references
appear to processing like remote MSs with known where-
abouts. Any DLM location technology processing discussed
above can facilitate FIG. 26B whereabouts processing when
reference whereabouts can be maintainedto field 1100/falong
with relative AOA, TDOA, MPT, confidence, and/or other
useful information for locating the MS. Various embodiments
will populate field 1100fwherever possible with any useful
locating fields (see data discussed for field 1100f/with FIG.
11Adiscussions above)for carrying plenty of information to
facilitate FIG. 26B processing.

Referring back to block 2650, if it is determined that
whereabouts information wasnot present with the AOA and/
or TDOAinformation offield 1100 then processing contin-
ues to block 2644 for inserting into the REMOTE_MSlist
(appropriately with sort key from block 2636) the currently
looped WDRfrom block 2634. In-range location technology
associates the MSwith the antenna(or cell tower) location, so
that field 1100c already contains the antenna (or cell tower)
whereabouts, and the TDOA information was stored to deter-
mine how close the MSwasto the antenna(or cell tower) at
the time. The WDRwill be more useful in the REMOTE_MS

APPLE

EXHIBIT 1001 - PAGE 0320

APPLE
EXHIBIT 1001 - PAGE 0321

US 8,639,267 B2
113

list, then if added to the THIS_MSlist (see loop of blocks
2660 through 2680). Referring back to block 2648,if it is
determined that no AOA and/or TDOA information was in

field 1100f then processing continues to block 2654 for
inserting the WDRinto the THIS_MSlist (appropriately with
sort key (confidence primary, time secondary) from block
2636).

Block 2654 handles WDKsthat originated from the MS of
FIG. 26B (this MS), such as described in FIGS. 2A through
9B, or results from previous FIG. 26A processing. Block
2644 maintains remote DLMs and/or ILMs(their where-
abouts) to the REMOTE_MSlist in hope WDRscontain
useful field 1100/ information for determining the where-
abouts ofthe MS ofFIG. 26B processing. Block 2652 handles
WDRsthat originated from the MS of FIG. 26B processing
(this MS), but also processesfields from stationary references
used (e.g. FIG. 3C) by this MS which can be helpful as though
the WDR wasoriginated by a remote ILM or DLM. Thus,
block 2652 causes inserting to both lists (THIS_MS and
REMOTE_MS) when the WDRcontains useful information
for both. Blocks 2652, 2654 and 2644 causethe iterative loop
of blocks 2660 through 2680 to perform ADLT using DLMs
and/or ILMs. Alternate embodiments ofblocks 2638 through
2654 may use peek methodologies to sort from queue 22 for
the REMOTE_MSand THIS_MSlists.

Referring back to block 2640, if it is determined that all
WDRsin thelist from block 2634 have been processed, then
block 2656 initializes a DISTANCElist andANGLElist each

to null, block 2658 sets a loop iteration pointer to the first
entry of the prioritized REMOTE_MSlist (e.g. first entry
higher priority then last entry in accordance with sort key
used), and block 2660 starts the loop for working with
ordered WDRs of the REMOTE_MSlist. Exit from block
2640 to block 2656 occurs when the REMOTE_MSand

THIS_MSlists are in the desiredpriority order for subsequent
processing. Block 2660 gets the next(orfirst) REMOTE_MS
list entry for processing before continuing to block 2662. If
block 2662 determines all WDRshavenot yet been processed
from the REMOTE_MSlist, then processing continues to
block 2664.

Blocks 2664 and 2670 direct collection of all useful ILM

triangulation measurements for TDOA, AOA, and/or MPT
triangulation of this MSrelative known whereabouts (e.g.
other MSs). It is interesting to note that TDOA and AOA
measurements(field 1100/) may have been made from differ-
ent communications interfaces 70 (e.g. different wave spec-
trums), depending on interfaces the MShasavailable (i.e.all
can participate). For example, a MS with blue-tooth, WiFi and
cellular phone connectivity (different class wave spectrums
supported) can be triangulated using the best available infor-
mation (i.e. heterogeneous location technique). Examination
of fields 1100fin FIG. 17 can show wave spectrums(and/or
particular communicationsinterfaces 70) inserted by receive
processing for what the MS supports. If block 2664 deter-
mines anAOA measurementis present(field 1100/sub-field),
then block 2666 appends the WDR to the ANGLElist, and
processing continuesto block 2668. Ifblock 2664 determines
an AOA measurementis not present, then processing contin-
ues to block 2670. If block 2670 determines a TDOA mea-

surementis present (field 1100/ sub-field), then block 2672
appends the WDRto the DISTANCElist, and processing
continues to block 2674. Block 2674 uses WDRsfor provid-
ing at least an in-range whereabouts ofthis MSbyinserting to
the THIS_MSlist in sorted confidence priority order (e.g.
highest confidence first in list, lowest confidence at end of
list). Block 2674 continues to block 2668. Block 2674 may

10

15

20

25

30

35

40

45

50

55

60

65

114

cause duplicate WDR(s) inserted to the THIS_MSlist, but
this will have no negative effect on selected outcome.

Block 2668 compares the ANGLE and DISTANCElists
constructed thus far from loop processing (blocks 2660
through 2680) with minimum triangulation requirements
(e.g. see “Missing Part Triangulation (MPT)” above). Three
(3) sides, three (3) angles and a side, and other knowntrian-
gular solution guides will also be compared. Thereafter, if
block 2676 determinesthereis still not enough datato trian-
gulate whereabouts of this MS, then processing continues
back to block 2660 for the next REMOTE_MSlist entry,
otherwise block 2678 maximizes diversity of WDRsto use
for triangulating. Thereafter, block 2680 uses the diversified
DISTANCEandANGLElists to perform triangulation ofthis
MS,block 2682 inserts the newly determined WDRinto the
THIS_MSlist in sort key order, and continues back to block
2660. Block 2680 will use heterogeneous (MPT), TDOA
and/or AOA triangulation on ANGLE and DISTANCElists
for determining whereabouts.

Block 2682 preferably keeps track of (or checks THIS_MS
for) what it has thus far determined whereabouts for in this
FIG. 26B thread processing to prevent inserting the same
WDR to THIS_MS using the same REMOTE_MSdata.
Repeated iterations of blocks 2676 through 2682 will see the
same data from previous iterations and will use the best of
breed data in conjunction with each otherat each iteration (in
current thread context). While inserting duplicates to
THIS_MSat block 2682 does not cause failure, it may be
avoided for performance reasons. Duplicate insertions are
preferably avoided at block 2674 for performancereasonsas
well, but they are again not harmful. Block 2678 preferably
keepstrack ofpreviousdiversity orderin this FIG. 26B thread
processing to promote using new ANGLE and DISTANCE
data in whereabouts determination at block 2680 (since each
iteration is a superset ofa previousiteration (in current thread
context). Block 2678 promotes using WDRsfrom different
MSs(different MS IDs), and from MSslocated at signifi-
cantly different whereabouts (e.g. to maximize surrounded-
ness), preferably around the MS of FIG. 26B processing.
Block 2678 preferably uses sorted diversity pointerlists so as
to not affect actual ANGLE and DISTANCElist order. The

sorted pointer lists provide pointers to entries in the ANGLE
and DISTANCElists for a unique sorted order governing
optimal processing at block 2680 to maximize unique MSs
and surrounded-ness, without affecting the lists themselves
(like a SQL database index). Different embodiments of
blocks 2678 through 2682 should minimize inserting dupli-
cate WDRs(for performance reasons) to THIS_MS which
were determined using identical REMOTE_MSlist data.
Block 2682 causes using ADLTat blocks 2684 through 2688
whichusesthe best ofbreed whereabouts, either as originated
by this MS maintained in THIS_MSlist up to the thread
processing point of block 2686, or as originated by remote
MSs (DLMsand/or ILMs)processed by blocks 2656 through
the start of block 2684.

Referring back to block 2662, if it is determined thatall
WDRsin the REMOTE_MSlist have been processed, then
block 2684 sets the BESTWDRreference to the head of

THIS_MS (ie. BESTWDR references first WDR in
THIS_MSlist which is so far the best candidate WDR (high-
est confidence) for this MS whereabouts, or null if the list is
empty). It is possible that there are other WDRswith match-
ing confidence adjacent to the highest confidenceentry in the
THIS_MSlist. Block 2684 continues to block 2686 for com-
paring matching confidence WDRs,andifthere are matches,
then breaking a tie between WDRswith matching confidence
by consulting any other WDRfield(s)(e.g.field 1100/signal

APPLE

EXHIBIT 1001 - PAGE 0321

APPLE
EXHIBIT 1001 - PAGE 0322

US 8,639,267 B2
115

strength, or location technology field 1100e, etc). If there is
still a tie between a plurality of WDRs,then block 2686 may
average whereabouts to the BESTWDR WDRusing the
matching WDRs. Thereafter processing continues to block
2688 where the BESTWDRis completed, and processing
terminates at block 2690. Block 2688 also frees resources (if
any) allocated by FIG. 26B processing (e.g. lists). Blocks
2686 through 2688 result in setting BESTWDRtothe highest
priority WDR (i.e. the best possible whereabouts deter-
mined). It is possible that FIG. 26B processing causes a
duplicate WDRinserted to queue 22 (at block 2620) forthis
MSwhereabouts determination,butthat is no issue except for
impacting performance to queue 22. An alternate embodi-
ment to queue 22 may define a unique index for erring out
when inserting a duplicate to prevent frivolous duplicate
entries, or block 2688 will incorporate processing to elimi-
nate the chance of inserting a WDRofless use than whatis
already contained at queue 22. Therefore, block 2688 may
include processing for ensuring a duplicate will not be
inserted (e.g. null the BESTWDRreference) prior to return-
ing to FIG. 26A at block 2690.

Averaging whereabouts at block 2686 occurs only when
there are WDRsatthe headofthe list with a matching highest
confidence valueandstill tie in other WDRfields consulted,
yet whereabouts information is different. In this case, all
matching highest confidence whereaboutsare averagedto the
BESTWDR to come up with whereabouts in light of all
matching WDRs. Block 2686 performs ADLT whenfinaliz-
ing a single whereabouts (WDR)using any of the where-
abouts found in THIS_MS(which may contain at this point
DLM whereaboutsoriginated by this MS and/or whereabouts
originated by remote DLMsand/or ILMs). Block 2686 must
be cognizantofsort keys used at blocks 2652 and 2654 in case
confidence is not the primary key (time may be primary).

Ifno WDRswere found at block 2634, or no THIS_MSlist
WDRs were found at blocks 2652 and 2654, and no
REMOTE_MSlist entries were found at block 2644; or no
THIS_MSlist WDRs were found at blocks 2652 and 2654,
and no REMOTE_MSlist entries were found useful at blocks
2664 and/or 2670; then block 2684 may be setting
BESTWDRto a null reference (i.e. none in list) in which case
block 2686 does nothing. Hopefully, at least one good WDR
is determined for MS whereabouts anda new WDRis inserted

for this MS to queue 22, otherwise a null BESTWDRrefer-
ence will be returned (checkedat block 2616). See FIG. 11A
descriptions. If BESTWDRis not null, then fields are set to
the following upon exit from block 2688:
MSID field 1100a is preferably set with: MS ID of MS of
FIG. 26B processing.
DATE/TIME STAMPfield 11006 is preferably set with:
Date/time stamp of block 2688 processing.
LOCATION field 1100c is preferably set with: Resulting
whereabouts after block 2688 completion.
CONFIDENCEfield 1100d is preferably set with: WDR
Confidence at THIS_MSlist head.
LOCATION TECHNOLOGYfield 1100¢ is preferably set
with: “ILM TDOATriangulation”, “ILM AOA Triangula-
tion’, “ILM MPTTriangulation”or “ILM in-range”’,as deter-
mined by the WDRsinserted to MS_LIST at blocks 2674 and
2682. The originator indicator is set to ILM.
LOCATION REFERENCEINFOfield 1100fis preferably
set with: null (not set), but may be set with contributing data
for analysis of queue 22 provided it is marked for being
overlooked by future processing of blocks 2646 and 2648
(e.g. for debug purpose).
COMMUNICATIONS REFERENCEINFO field 1100g is
preferably set with: null (notset).

5

10

15

20

25

30

35

40

45

50

55

60

116

SPEED field 1100+ is preferably set with: Block 2688 may
compare prioritized entries and their order of time(field
11005) in THIS_MSlist for properly setting this field, if
possible.
HEADINGfield 11007 is preferably set with: null (notset).
Block 2688 may compareprioritized entries andtheir order of
time (field 11006) in THIS_MSlist for properly setting this
field, if possible.
ELEVATIONfield 1100) is preferably set with: Field 11007 of
BESTWDR(maybe averaged if WDRtie(s)), if available.
APPLICATION FIELDSfield 11004 is preferably set with:
Field(s) 11004 from BESTWDRor tie(s) thereof from
THIS_MS.An alternate embodimentwill add, alter, or dis-
card data (with or without date/time stamps) hereat the time
of block 2688 processing.
CORRELATIONFIELD 1100m is preferably set with: Not
Applicable (i.e. not maintained to queue 22).
SENT DATE/TIME STAMPfield 1100x is preferably set
with: Not Applicable (i.e. not maintained to queue 22).
RECEIVED DATE/TIME STAMPfield 1100p is preferably
set with: Not Applicable (i.e. not maintained to queue 22).

Block 2680 determines whereabouts using preferred
guidelines, such as whereabouts determinedneverresults ina
confidence value exceeding any confidence value used to
determine whereabouts. Some embodiments will use the

mean (average) of confidence values used, some will use the
highest, and some the lowest of the WDRs used. Preferred
embodiments tend to properly skew confidence values to
lower values as the LN-Expanse grows away from region
1022. Blocks 2668 through 2680 may consult any of the
WDRfields(e.g.field 1100/sub-fields yaw,pitch, roll; speed,
heading, etc) to deduce the most useful WDR inputs for
determining an optimal WDRfor this MS whereabouts.

Alternative IPC Embodiments

Thread(s) 1952 are started for every WDRcollected from
remote MSs. Therefore, it is possible that identical new
WDERsare inserted to queue 22 using the same WDRinfor-
mation at blocks 2634 of simultaneously executing threads
1952, but this will not cause a problem sinceat least one will
be found when needed, and duplicates will be pruned together
whenappropriate. Alternative embodiments provide IPC (In-
terprocess Communications Processing) coordination
between 1952 threads for higher performance processing, for
example:

As mentioned above, thread(s) 1952 can coordinate with
each other to know successes, failures or progress of
their sister 1952 thread(s) for automatically adjusting
the trailing f(WTV)period of time appropriately. The
f(WTV) period of time used at block 2634 would be
semaphore accessed and modified (e.g. increased) for
another 1952 thread when a previous 1952 thread was
unsuccessful in determining whereabouts (via sema-
phore accessed thread outcomeindicator). After a suc-
cessful determination, the f(WTV) period of time could
be reset backto the smaller window. One embodiment of

increasing maystart with 10% of the WTV, then 20% at
the next thread, 30% at the next thread, up to 90%,until
a successful whereabouts is determined. After success-

ful whereabouts determination, a reset to its original
starting value is made.

A semaphore accessed thread 1952 busy flag is used for
indicating a certain thread is busy to prevent another
1952 thread from doing the same or similar work. Fur-
thermore, other semaphoreprotected data for what work

APPLE

EXHIBIT 1001 - PAGE 0322

APPLE
EXHIBIT 1001 - PAGE 0323

US 8,639,267 B2
117

is actually being performedby a thread can be informa-
tive to ensure that no thread 1952 starts for doing dupli-
cated effort.

Useful data of statistics 14 may be appropriately accessed
by thread(s) 1952 for dynamically controlling key vari-
ables of FIG. 26B processing, such as the search
f(WTV)timeperiod, sort keys used, when to quit loop
processing (c.g. on first successful whereabouts deter-
mination at block 2680), surrounded-ness preferences,
etc. This can dynamically change the FIG. 26B logic
from onethread to another for desired results.

FIG. 26B continues processing through every WDR
retrieved at block 2634. An alternative embodimentwillter-

minate processing after finding the first (which is highest
priority data supported) successful triangulation at block
2682.

FIG. 27 depicts a flowchart for describing a preferred
embodiment of queue prune processing. Queue pruning is
best done on an interim basis by threads which mayinsert to
the queue being pruned.In an alternate embodiment, a back-
ground asynchronousthread will invoke FIG. 27 for periodic
queue pruning to ensure no queue which can grow becomes
too large. The Prune Queuesprocedurestarts at block 2702
and continues to block 2704 where parameters passed by a
caller for which queue(s) (WDR and/or CR) to prune are
determined. Thereafter, if block 2706 determines that the
caller wanted to prune the WDR queue 22, block 2708 appro-
priately prunes the queue, for example discarding old entries
using field 11000, and processing continuesto block 2710. If
block 2706 determinesthat the caller did not wantto prune the
WDRqueue 22, then processing continues to block 2710. If
block 2710 determinesthat the caller wanted to prune the CR
queue 1990, block 2712 appropriately prunes the queue, for
example discarding old entries using field 2450a, and pro-
cessing continues to block 2714. If block 2710 determines
that the caller did not want to prune the CR queue 1990, then
processing continues to block 2714. Block 2714 appropri-
ately returns to the caller.

The current design for queue 1980 does not require FIG. 27
to prune it. Alternative embodiments may add additional
queues for similar processing. Alternate embodiments may
use FIG. 27 like processing to prune queues 24, 26, or any
other queue undercertain system circumstances. Parameters
received at block 2704 may also include how to prune the
queue, for example when using different constraints for what
indicates entry(s) for discard.

FIG. 28 depicts a flowchart for describing a preferred
embodiment of MS termination processing. Depending on
the MS, there are many embodiments ofprocessing when the
MSis poweredoff, restarted, rebooted, reactivated, disabled,
or the like. FIG. 28 describes the blocks ofprocessing relevant
to the present disclosure as part of that termination process-
ing. Termination processing starts at block 2802 and contin-
ues to block 2804 for checking any DLMroles enabled and
appropriately terminating if any are found (for example as
determined from persistent storage variable DLMV). Block
2804 maycause the termination of thread(s) associated with
enabled DLMrole(s) for DLM processing above(e.g. FIGS.
2A through 9B). Block 2804 may invoke API(s), disable
flag(s), or terminate as is appropriate for DLM processing
described above. Such terminations are well knownintheart

of prior art DLM capabilities described above. Block 2804
continues to block 2806.

Blocks 2806 through 2816 handle termination of all pro-
cesses/threads associated with the ILMV roles so there is no

explicit ILMV check required. Block 2806 initializes an enu-
merated process namearray for convenient processing refer-

10

15

20

25

30

35

40

45

50

55

60

65

118

ence of associated process specific variables described in
FIG. 19, and continues to block 2808 wherethe first member
ofthe set is accessed for subsequent processing. The enumer-
ated set of process nameshas a prescribed termination order
for MSarchitecture 1900. Thereafter, if block 2810 deter-
mines the process identifier (i.e. 19xx-PID such that 19.xx is
1902, 1912, 1922, 1932, 1942, 1952 in a loop iteration of
blocks 2808 through 2816) is greater than 0 (c.g. this first
iteration of 1912-PID>0 implies it is to be terminated here;
also implies process 1912 is enabled as used in FIGS. 14A,
28, 29A and 29B), then block 2812 prepares parameters for
FIG.29B invocation, and block 2814 invokes (calls) the pro-
cedure of FIG. 29B to terminate the process (of this current
loop iteration (19xx)). Block 2812 prepares the second
parameter in accordance with the type of 19xx process.Ifthe
process (19x) is one that is slave to a queue for dictating its
processing (i.e. blocked on queue until queue entry present),
then the second parameter(process type) is set to 0 (directing
FIG. 29A processing to insert a special termination queue
entry to be seen by worker thread(s) for terminating). If the
process (19xx) is one that is slave to a timer for dictatingits
processing (i.e. sleeps until it is time to process), then the
second parameter (process type) is set to the associated 19.xx-
PID value (directing FIG. 29B to use in killing/terminating
the PID in case the worker thread(s) are currently sleeping).
Block 2814 passes the process name and process type as
parameters to FIG. 29B processing. Upon return from FIG.
29B, block 2814 continues to block 2816. If block 2810
determinesthat the 19xx processis not enabled, then process-
ing continues to block 2816. Upon return from FIG. 29B
processing, the process is terminated and the associated 192x-
PID variableis already setto 0 (see blocks 2966, 2970, 2976
and 2922).

Block 2816 checksif all process names of the enumerated
set (19xx) have been processed (iterated) by blocks 2808
through 2816. If block 2816 determinesthat not all process
namesin the set have been processed(iterated), then process-
ing continues back to block 2808 for handling the next pro-
cess name in the set. Ifblock 2816 determinesthatall process
namesofthe enumerated set were processed, then block 2816
continues to block 2818.

Block 2818 destroys semaphore(s) created at block 1220.
Thereafter, block 2820 destroys queue(s) created at block
1218 (may have to removeall entries first in some embodi-
ments), block 2822 saves persistent variables to persistent
storage (for example to persistent storage 60), block 2824
destroys shared memory created at block 1212, and block
2826 checks the NTP usevariable (saved prior to destroying
shared memory at block 2824).

Ifblock 2826 determines NTPis enabled, then block 2828
terminates NTP appropriately (also see block 1612) andpro-
cessing continues to block 2830. If block 2826 determines
NTP was not enabled, then processing continues to block
2830. Block 2828 embodiments are well knownin the art of

NTP implementations. Block 2828 may cause terminating of
thread(s) associated with NTPuse.

Block 2830 completes LBX character termination, then
block 2832 completes other character 32 termination process-
ing, and FIG. 28 processing terminates thereafter at block
2834. Depending on what threads werestarted at block 1240,
block 2830 may terminate the listen/receive threads for feed-
ing queue 26 andthe send threads for sending data inserted to
queue 24. Depending on whatthreads werestarted at block
1206, block 2832 mayterminate the listen/receive threads for
feeding queue 26 and the send threads for sending data
inserted to queue 24 (1.e. other character 32 threadsaltered to
cause embedded CK processing). Upon encounter of block

APPLE

EXHIBIT 1001 - PAGE 0323

APPLE
EXHIBIT 1001 - PAGE 0324

US 8,639,267 B2
119

2834, the MSis appropriately terminated for reasonsat set
forth above for invoking FIG.28.

With reference now to FIG. 29B, depicted is a flowchart for
describing a preferred embodimentofa procedure for termi-
nating a process started by FIG. 29A. When invoked by a
caller, the procedure starts at block 2952 and continues to
block 2954 where parameters passed are determined. There
are two parameters: the process nameto terminate, and the
type ofprocess to terminate. The typeofprocessis set to 0 for
a process which has worker threads which are a slave to a
queue. The type of processis set to a valid O/S PID whenthe
process worker threadsare slave to a timer.

Thereafter, if block 2956 determinesthe process typeis 0,
then block 2958 initializes a loop variable J to 0, and block
2960 inserts a special termination request queue entry to the
appropriate queue for the process worker thread to terminate.
See FIG. 19 discussions for the queueinserted for which 19x.
process name.

Thereafter, block 2962 increments the loop variable by 1
and block 2964 checks if all process prescribed worker
threads have been terminated. Block 2964 accesses the 19xx-

Max(e.g. 1952-Max) variable from shared memory using a
semaphorefor determining the maximum numberofthreads
to terminate in the process workerthread pool. If block 2964
determinesall worker threads have been terminated, process-
ing continues to block 2966 for waiting until the 19xx-PID
variable is set to disabled (e.g. set to 0 by block 2922), and
then to block 2978 which causes return to the caller. Block

2966 uses a preferred choice of waiting described for blocks
2918 and 2920. The 19xx process (e.g. 1952) will have its
19xx-PID (e.g. 1952-PID)variableset at 0 (block 2922) when
the process terminates. In some embodiments, the wailing
methodologyusedat block 2966 mayuse the 19xx-PID vari-
able, or may be signaled by the last terminating worker
thread, or by block 2922.

If block 2964 determines that not all worker threads have

been terminated yet, then processing continues back to block
2960 to insert another special termination request queue entry
to the appropriate queue for the next process workerthread to
terminate. Blocks 2960 through 2964insert the proper num-
ber of termination queue entries to the same queuesothatall
of the 19xx process worker threads terminate.

Referring back to block 2956,if it is determined the pro-
cess type is not 0 (i.e. is a valid O/S PID), then block 2968
inserts a special WDR queue 22 entry enabling a queue peek
for worker thread termination. The reader will notice that the

process termination order of block 2806 ensures processes
which were slaves to the WDR queue 22 have already been
terminated. This allows processes which are slaves to a timer
to see the special termination queueentry inserted at block
2968 since no threads (whichare slaves to queue) will remove
it from queue 22. Thereafter, block 2970 waits until the 192.
process name (parameter) worker threads have been termi-
nated using a preferred choice ofwaiting described for blocks
2918 and 2920. The 19xx process (e.g. 1902) will have its
19xx-PID (e.g. 1902-PID)variableset at 0 (block 2922) when
the process terminates. In some embodiments, the waiting
methodologyusedat block 2970 mayuse the 19xx-PID vari-
able, or may be signaled by the last terminating worker
thread,orby block 2922. Block 2970 also preferably waits for
a reasonable timeout period in anticipation of known sleep
time of the 19xx process being terminated, for cases where
anticipated sleep times are excessive and the user should not
have to wait for lengthy FIG. 28 termination processing.Ifthe
timeout occurs before the process is indicated to be termi-

10

15

20

25

30

35

40

45

55

60

65

120

nated, then block 2970 will continue to block 2972. Block
2970 also continues to block 2972 when the process has
successfully terminated.

If block 2972 determines the 192x process did terminate,
the caller is returned to at block 2978 (i.e. 19xx-PID already
set to disabled (0)). Ifblock 2972 determines the 19xx process
termination timedout, then block 2974 forces an appropriate
O/S kill to the PID thereby forcing process termination, and
block 2976 sets the 19xx-PID variable for disabled (1.e. pro-
cess 19xx was terminated). Thereafter, block 2978 causes
return to the caller.

There are many embodiments for setting certain queue
entry field(s) identifying a special queue termination entry
inserted at blocks 2960 and 2968. Somesuggestions: In the
case of terminating thread(s) 1912, queue 26 insertion of a
WDRpreferably sets the MS ID field with a value that will
never appear in any other case except a termination request
(e.g. -100). In the case of terminating thread(s) 1902, 1922
and 1952, queue 22 insertion of a WDRpreferably sets the
MSIDfield with a value that will never appear in any other
case except a termination request (e.g. -100). In the case of
terminating thread(s) 1942, queue 26 insertion of a WDR
request preferably sets the MS ID field with a valuethat will
never appear in any other case except a termination request
(e.g. -100). In the case of terminating thread(s) 1932, queue
1980 insertion of a thread request queue record 2400 prefer-
ablysets field 2400a with a valuethat will never appear in any
other case except a termination request(e.g. -100). Ofcourse,
any available field(s) can be used to indicate termination to
particular thread(s)).

Terminating threads of processing in FIG. 29B has been
presented from a software perspective, but there are hard-
ware/firmware thread embodiments which may be terminated
appropriately to accomplish the same functionality. Ifthe MS
operating system does not have an interface for killing the
PID at block 2974, then blocks 2972 through 2976 can be
eliminatedfor relying ona FIG.28 invocation timeout(incor-
porated for block 2814) to appropriately rob power from
remaining thread(s) of processing.

An ILM has many methods and systems for knowing its
own location. LBX depends on MSs maintaining their own
whereabouts. No service is required to maintain the where-
abouts of MSsin order to accomplish novel functionality.

LBX:Permissions and Charters—Configuration

Armed with its own whereabouts, as well as whereabouts
ofothers and others nearby, a MS usescharters for governing
many of the peer to peer interactions. A user is preferably
unaware of specificities of the layer(s) providing WDR
interoperability and communications. Permissions 10 and
charters 12 surface desired functionality to the MS user(s)
without fully revealing the depth of features that could be
made available. Permissions provide authentication for novel
features and functionality, and to which context to apply the
charters. However, some permissions can provide action(s),
features, and functionality by themselves withouta charter.It
is preferred that LBX features and functionality be provided
in the most elegant manneracross heterogeneous MSs.

User configured permissions are maintained at a MS and
their relevance (applicability) to WDRsthat are being pro-
cessed is determined. WDRprocessing events are recognized
through being placed in strategic LBX processing paths of
WDRs. For example, permissions govern processing of
newly processed WDRsat a MS, regardless of where the
WDRoriginated. A permission can provide at least one privi-
lege, and mayprovidea plurality of privileges. A permission

APPLE

EXHIBIT 1001 - PAGE 0324

APPLE
EXHIBIT 1001 - PAGE 0325

US 8,639,267 B2
121

is granted from a grantor identity to a grantee identity.
Depending on what permissions are determined relevant to
(i.e. applicable to) a WDRbeing processed(e.g. by accessing
at least one field in the WDR), an actionorplurality ofactions
which are associated with the permission can automatically
occur. Actions may be as simple as modifying a setting which
is monitored/used by an LBX application, or as complex as
causing many executable application actions for processing.
User configured charters are maintained at a MS and their
relevance applicability) to WDRsthat are being processedis
determined, preferably in context of the same recognized
events (i.e. strategic processing paths) which are used for
determining relevance of permissions to WDRs. A charter
consists of a conditional expression and can have an action or
plurality of actions which are associated with the expression.
Upon evaluating the expression to an actionable condition
(e.g. evaluates to a Boolean true result), the associated
action(s) are invoked. Charters can be created for a MS by a
user of that MS, or by a user of another MS. Charters are
granted similarly to permissions in using a grantor and
grantee identity, therefore granting a charter is equivalent to
granting a permission to execute the charter.

While some embodiments will provide disclosed features
as one at a time implementations, a comprehensivearchitec-
ture is disclosed for providing a platform that will survive
LBX maturity. FIGS. 30A through 30E depict a preferred
embodiment BNF (Backus Naur Form) grammar for permis-
sions 10 and charters 12. A BNF grammaris an elegant
method for describing the many applicable derived subset
embodiments of syntax and semantics in carrying out pro-
cessing behavior. The BNF grammarof FIGS. 30A through
30E specifically describes:

Prescribed command languages, such as a programming
language, for encoding/representing permissions 10 and
charters 12 (e.g.a Whereabouts Programming Language
(WPL));

Prescribed configuration in a Lex & Yacc processing of a
suitable encoding;

Prescribed XML encodings/representations of permis-
sions 10 and charters 12;

Prescribed communications datastream encodings/repre-
sentations of permissions 10 and charters 12, such as in
an ANSIencoding standard (e.g. X.409);

Prescribed internalized encodings/representations of per-
missions 10 and charters 12, for example in a data pro-
cessing memory;

Prescribed internalized encodings/representations of per-
missions 10 and charters 12, for example in a data pro-
cessing storage means;

Prescribed database schemas for encoding/representing
permissions 10 and charters 12;

Prescribed semantics ofconstructs to carry out permissions
10 and charters 12;

A delimited set of constructs for defining different repre-
sentative syntaxes for carrying out permissions 10 and
charters 12; and

Prescribed data processing of interpreters and/or compilers
for internalizing a syntax for useful semantics as dis-
closed herein.

There are many embodiments (e.g. BNF grammar subsets) of
carrying out permissions 10 and charters 12 without depart-
ing from the spirit and scope of the present disclosure. A
particular implementation will choose which derivative
method and system to implement, and/or which subsetof the
BNF grammars shall apply. Atomic elements of the BNF
grammar (leaf nodes of the grammar tree) are identified
within double quotes(e.g.“text string” implies the value is an

35

40

45

50

55

65

122

atomic elementin text string form). Atomic elements are not
constructs which elaborate to other things and/or types of
data.

FIGS. 30A through 30B depict a preferred embodiment
BNF grammar 3002a through 3002for variables, variable
instantiations and common grammar for BNF grammars of
permissions 10, groups(e.g. data 8) and charters 12. Variables
are convenient for holding values that become instantiated
where appropriate. This provides a rich programming lan-
guage and/or macro nature to the BNF grammar. Variables
can be set with: a) a typed value(i.e. value ofa particular data
type (maybea list)); b) another variable for indirect referenc-
ing; c) a plurality of typed values; d) a plurality of variable
references; or e) any combinations ofa) through d). Variables
can appear anywhere in the permissions or charters encod-
ings. Whenvariables are referenced by name,they preferably
resolve to the name of the variable (not the value). When
variables are referenced by their name with an instantiation
operator (e.g. *), the variable is instantiated (1.e. elaborated/
resolved) to assigned value(s). Instantiation also provides a
macro (or function) ability to optionally replace subset(s)
(preferably string replacements) of the variable’s instantiated
value with parameter substitutions. This enables customiz-
ably instantiating values(i.e. optionally, string occurrences in
the value are replaced with specified matching parameters).
An alternate embodimentto string substitution is for support-
ing numbers to be incremented, decremented, or keptas is,
depending on the substitution syntax. For example:

*myVar(555++, 23-=4,888--,200+=100)
This instantiation specifies that all occurrences ofthe string
“555” should be incremented by 1 suchthatthe first occur-
rence of “555” becomes “556”, next occurrence of “555”
becomes“557”, and so on. Changing all occurrences of“555”
to “556” is accomplished with the string substitution. This
instantiation also specifies that all occurrences of the string
“23” should be decremented by 4 such that thefirst occur-
rence of “23” becomes “19”, next occurrence of “23”
becomes“15”, and so on. Changingall occurrences of“23”to
“19” is accomplished with thestring substitution. This instan-
tiation also specifies that all occurrences ofthe string “888”
should be decremented by 1 such thatthefirst occurrence of
“888” becomes “887”, next occurrence of “888” becomes
“886”, and so on. Changingall occurrences of“888”to “887”
is accomplished with the string substitution. This instantia-
tion also specifies that all occurrences of the string “200”
should be incremented by 100 such thatthe first occurrence of
“200” becomes ‘300’, next occurrence of “200” becomes
“400”, and so on. Changingall occurrences of“200”to “300”
is accomplished with the string substitution.

Preferably, when a variable is set to another variable (e.g.
a=b), an instantiation ofthe variable(i.e. *a) equals the vari-
able b, not b’s value (i.e. *(**a)=b’s value). If the variable b is
set to a variable c (e.g. b=c) in the example, andthe variable
a is set to the variable b as already described (past or future,
prior to instantiation), and c wasset(i.e. c=2) to the value 2
(past or future, prior to instantiation), then the preferred
embodimentrequires three (3) instantiations of variable a to
get to the value assigned to variable c (e.g. *(*(*a)))=2).
Instantiation of variable a (e.g. *a) preferably corresponds to
a level of “peeling back” through the hierarchy of variable
assignments if one exists. Alternative embodiments will
allow a single instantiation of a variable to get through any
numberofindirect variable assignmentsforthefirst encoun-
tered value in the indirect chain value (e.g. *a=2) at the time
of instantiation. Either semantic may have useful features
from a programming standpoint. Over-instantiating

APPLE

EXHIBIT 1001 - PAGE 0325

APPLE
EXHIBIT 1001 - PAGE 0326

US 8,639,267 B2
123

(e.g. *(*c)=error) should cause an error. An assigned value is
the leaf node in peeling back with instantiations.

The BNF Grammar “null” is an atomic element for no

value. In a syntactic embodiment, a null value may be a
special null character (e.g. @). The History constructis pref-
erably used to track when certain constructs were created and
last modified. An alternative embodimentwill track all con-

struct changes to LBX history 30 for later human, or auto-
mated, processing audit.

Grammar 30026 “system type” is an atomic element
(atomic elements are not constructs which elaborate to other
things; atomic elements are shown delimited in double
quotes) generalized for the type of MS (e.g. PDA,cell phone,
laptop, etc). Other embodiments will provide more detail to
the type of MS(e.g. iPhone, Blackberry Pearl, Nextel 1845,
Nokia 741, etc). ID is an identity construct of the present
disclosure for identifying a MS,a user, a group, or any other
entity for which to associate data and/or processing. IDType
providesthe type ofID to support a heterogeneousidentifying
grammar. An identity (i.e. ID [IDType]) can be directly asso-
ciated to a MS (e.g. MS ID), or maybeindirectly associated
toaMS(e.g.user ID or group ID ofthe MS). Indirectidentity
embodiments may assume an appropriate lookup for map-
ping betweenidentities is performed to get one identity by
looking up anotheridentity. There may be multiple identities
for a MS. Identities, by definition, provide a collective handle
to data. For example, an email sender or recipient is an
example of an identity (‘logical handle”) which can be asso-
ciated to a user identity and/or MS identity and/or group
identity. A sender, source, recipient, and system parameterin
some atomic commandspresented belowis any ofthe variety
oftypes of identities.

Address elements of “ip address” and “SNA address”are
examples of logical addresses, but are mentionedspecifically
anyway. ID, IDType and Address construct atomic elements
(as elaborated on Right Hand Side (RHS)) are self explana-
tory. The TimeSpecconstructis one ofvarious kinds of“date/
time stamp”or “date/time period” atomic elements. In a
syntactic embodiment, date/time stamps are specified with
prefixed character(s) and a time format such as XYYYYM-
MDDHHMMSS.12...J J=# placesto right ofdecimalpoint,
such that 1=is the one tenth (10) second place, two=the one
hundredth (00) secondplace,etc). The first character(s)(i.e.
x) clarify the date/time stamp information.

>20080314 indicates “in effect if current date/time after

Mar. 14, 2008;
>=200803 14 indicates “in effect if current date/time on or

after Mar. 14, 2008;
<200803 142315 indicates “in effect if current date/time

prior to Mar. 14, 2008 at 11:15 PM;
<=200803 142315 indicates “in effect if current date/time

on or prior to Mar. 14, 2008 at 11:15 PM; and
=200803 14231503 indicates “in effect if current date/time

matches Mar. 14, 2008 at 11:15:03 PM.
Date/time periods may have special leading characters, just as
described above (which are also periods). When using the
date/time format, the granulation of the date/time stampis a
period of time.

20080314 indicates “in effect if current date/time during
Mar. 14, 2008;

200803 142315 indicates “in effect ifcurrent date/time dur-

ing Mar. 14, 2008 at 11:15 PM (any time during that
minute); and

200803 14231503 indicates “in effect if current date/time

during Mar. 14, 2008 at 11:15:03 PM (any time during
that second).

10

15

20

25

30

35

40

45

50

55

60

65

124

Date/time periods can also be specified with a range using a
colon such as 20080314:20080315 (Mar. 14, 2008 through
Mar. 15, 2008). A date/time period can be plural such as
200803 14:20080315, 2008031712:2008031823 Ge. mul-
tiple periods) by using a comma.

FIG. 30C depicts a preferred embodiment BNF grammar
3034 for permissions 10 and groups(of data 8). The termi-
nology “permissions” and “privileges”are used interchange-
ably in this disclosure. However, the BNF grammar shows a
permission can provide oneprivilege, or a plurality of privi-
leges. There are a massive number(e.g. thousands) ofvalues
for “atomic privilege for assignment”(i.e. privileges that can
be assigned from a grantor to a grantee) in grammar 3034.
Few examplesare discussed below. This disclosure would be
extremely lengthy to describe every privilege. The reader can
determine a minimum set of LBX privileges (permissions)
disclosed as: Any configurable privilege granted by one iden-
tity to another identity that can limit, enable, disable, del-
egate, or govem actions, feature(s), functionality,
behavior(s), or any subset(s) thereof which are disclosed
herein. Every feature disclosed herein, or feature subset
thereof, can be managed (granted and enforced) with an asso-
ciated privilege. Privileges may be usedto “turn on”a feature
or “turn off” a feature, depending on various embodiments.

There are two (2) main types of permissions (privileges):
semantic privileges which on their own enable LBX features
and functionality, and grammar specification privileges
which enable BNF grammarspecifications. Semantic privi-
leges are named, anticipated by applications, and have a
semantic meaning to an application. Semantic privileges are
variables to applications whereby values at the time of an
application checking the variable(s) determine how the appli-
cation will behave. Semantic privileges can also have implicit
associated action(s). Grammar specification privileges are
named, anticipated by charter parser implementation, and
indicate whatis, and whatis not, permitted when specifying
a charter. Grammar specification privileges are variables to
charter parsing whereby values at the time of charter parse
logic checking the variable(s) determine whetheror not the
charteris valid (i.e. privileged) for execution. Impersonation
is not directly defined in the BNF grammarofcharters,andis
therefore considered a semantic privilege.

The “MSrelevance descriptor” atomic elementis prefer-
ably a binary bit-mask accommodatingall anticipated MS
types (see “system type”). Each system typeis represented by
a bit-mask bit position wherein a bit set to 1 indicates the MS
type doesparticipate with the privilege assigned, and a bitset
to 0 indicates the MS type does not participate with the
privilege assigned. This is useful when MSs do not have
equivalent capabilities thereby limiting interoperability for a
particular feature governedbya privilege. When the optional
MSRelevance construct is not specified with a privilege, the
preferred default is assumed relevance for all MSs (i.e. =all
bits set to 1). An alternate embodimentwill make the default
relevant for no MSs(i.e. =all bits set to 0). Privilege codes(i.e.
syntactical constants equated to an “atomic privilege for
assignment” description) are preferably long lived and never
changing so that as new LBX privileges are introduced(i.e.
new privileges supported), the old onesretain their values and
assigned function, and operate properly with new software
releases (i.e. backwards compatible). Thus, new constants
(e.g. \Ibxall=privilege for allowing all LBX interoperable
features) for “atomic privilege for assignment” should be
chosen carefully.

Grants are used to organize privileges in desired categories
and/or sub-categories (e.g. organization name, team name,
person name,etc and then privileges for that particular grant

APPLE

EXHIBIT 1001 - PAGE 0326

APPLE
EXHIBIT 1001 - PAGE 0327

US 8,639,267 B2
125

name). A grant can be used like a folder. Grants provide an
hierarchy oftree branch nodes while privileges are leafnodes
ofthe grantprivilege tree. There are many types ofprivileges.
Manyare categorized for configuring charter conditions and
charter actions, and some can be subsets of others, for
example to have an overall category of privileges as well as
many subordinate privileges within that category. This facili-
tates cnabling/disabling an entire sct with a single configura-
tion, or enabling/disabling certain privileges within the set.
This also prevents forcing a user to define Grants to define
privilege categories. BNF grammar 3034 doesnotclarify the
Privilege construct with a parameter for further interpreta-
tion, however some embodiments will incorporate an
optional Parameters specification:
Privilege=“atomic privilege for assignment” [Parameters]

[MSRelevance][TimeSpec] [Description]_[History]
|Varinstantiations

In such embodiments, Parameters preferably resolves to the
Parameters construct of FIG. 30E for clarifying how to apply
a particular privilege. Parameters, ifused forprivileges, have
meaning within the context of a particular privilege. Some
examples of semantic privileges (i.e. “atomic privilege for
assignment”) that can be granted from a grantor identity
(IDIDType) to a grantee identity ID/IDType) include:

Impersonate: allows the grantee to perform MS adminis-
tration of grantor (alternate embodiments will further
granulate to a plurality of impersonate privileges for
each possible type, or target, of administration);

LBX interoperable: allows overall LBX interoperability
(all or none);

View nearby status: enables determining if nearby each
other;

View whereabouts status: enables determining where-
abouts (e.g. on a map);

View Reports: enables viewing statistics and/or reports;
This privilege is preferably set with a parameter for
which statistics and/or which reports; An alternate
embodiment will have individual privileges for each
type of statistic and/or report;

View Historical Report: enables viewing history informa-
tion (e.g. routes); This privilege is preferably set with a
parameter for which history information; An alternate
embodiment will have individual privileges for each
type of history information;

Set Geofence arrival alert: allows an action for alerting
based onarrival to a geofencedarea; This privilege may
be set with parameter(s) for which eligible area(s) to
define geofences; An alternate embodiment will have
individualprivileges for each area(s);

Set Geofence departure alert: allows an action for alerting
based on departure from a geofenced area; This privilege
may be set with parameter(s) for which eligible area(s)
to define geofences; An alternate embodimentwill have
individualprivileges for each area(s);

Set nearbyarrivalalert: allows an action for alerting based
onarrival to being nearby; Thisprivilege may beset with
a parameter for quantifying amount nearby;

Set nearby departure alert: allows an action for alerting
based on departure from being nearby; This privilege
may be set with a parameter for quantifying amount
nearby;

Set Geofence grouparrivalalert: allows an action for alert-
ing based on a group’s arrival to a geofenced area; This
privilege maybe set with parameter(s) for which groups
or MSsapply;

Set Geofence group departure alert: allows an action for
alerting based on a group’s departure from a geofenced

10

15

20

25

30

35

40

45

50

55

60

65

126

area; This privilege may be set with parameter(s) for
which groups or MSs apply;

Set nearby grouparrivalalert: allows an action foralerting
based on a group’s arrivalto being nearby; Thisprivilege
may be set with parameter(s) for quantifying amount
nearby, and/or which groups or MSsapply;

Set nearby group departure alert: allows an action for alert-
ing based on a group’s departure from being nearby;
This privilege may be set with parameter(s) for quanti-
fying amount nearby, and/or which groups or MSs
apply;

Set Situational Location (as defined in U.S. Pat. Nos.
6,456,234; 6,731,238; 7,187,997; U.S. PTO Publication
2006/0022048 (Johnson))arrival alert: allows an action
for alerting based on arrival to a situational location;
This privilege may be set with parameter(s) for one or
moresituational location(s) defined;

Set Situational Location (as defined in U.S. Pat. Nos.
6,456,234; 6,731,238; 7,187,997; U.S. PTO Publication
2006/0022048 (Johnson)) departure alert: allows an
action for alerting based on departure from a situational
location; This privilege may be set with a parameter(s)
for one or moresituational location(s) defined;

Set Situational Location (as defined in U.S. Pat. Nos.
6,456,234; 6,731,238; 7,187,997; U.S. PTO Publication
2006/0022048 (Johnson)) grouparrivalalert: allows an
action for alerting based on a group’s arrival to a situ-
ational location; This privilege may be set with param-
eter(s) for one or more situational location(s) defined,
and/or which groups or MSsapply;

Set Situational Location (as defined in U.S. Pat. Nos.
6,456,234; 6,731,238; 7,187,997; U.S. PTO Publication
2006/0022048 (Johnson)) group departurealert: allows
an action for alerting based on a group’s departure from
a situational location; This privilege may be set with
parameter(s) for one or more situational location(s)
defined, and/or which groups or MSsapply;

Allow action monitoring: allows condition for the moni-
toring ofcertain action(s); This privilege may be set with
parameter(s) for which action(s) to be monitored;

Accept service routing: enables being a service routing
system; This privilege may be set with parameter(s) for
whichservice(s) to route;

Allow whereabouts monitoring (i.e. any WDR 1100
fields): allows condition for the monitoring of certain
whereabouts; This privilege may be set with para-
meter(s) for which area(s) where whereabouts can be
monitored; Another embodimentwill define a specific
privilege for each field and/or subfield of a WDR 1100
(e.g. speed monitoring (e.g. field 1100/));

Service informantutilization (includes derived subsets for
how to be used; e.g. log for me all successful detections
(or particular types) by the remote MSofinterest);

Strip out WDR information inbound, outbound, and/or
prior to be inserting to queue 22: these types of privi-
leges mayalso affect what charters can and cannot do;

Support certain types of service informant code process-
ing, for example for carpool collaboration;

Participate in parking lot search functionality; this privi-
lege may beset with parameter(s) for which parkinglots
apply;

Be a candidate peer service target for any particular appli-
cation, types of applications, or all applications, or for
certain MSs, certain groups, or combinations of any of
these (parameter(s) may be specified);

Participate in LN-expanse as a master MS, for example to
maintain a database of historical MSsin thevicinity, or

APPLE

EXHIBIT 1001 - PAGE 0327

APPLE
EXHIBIT 1001 - PAGE 0328

US 8,639,267 B2
127

a database of identity mappings (e.g. users to MSs; (pa-
rameter(s) may be specified);

Keep track of hotspot history;
Provide service propagation forany particular application,

types of applications, or all applications, or for certain
MSs, certain groups, or combinations of any of these
(parameter(s) may be specified);

Enable automatic call forwarding functionality when
within proximity to a certain phone, for example to route
a wireless call to a nearby wired line phone; this privi-
lege may be set with parameter(s) for which phones or
phone numbersparticipate;

Enable configuration of deliverable content that can be
delivered in a peer to peer mannerto a MSinthevicinity,
using any data type, size, location,or other characteristic
to be a unique privilege; parameter(s) may be specified
to qualify this;

A privilege for any functionality or feature disclosed
herein;

Any subordinate privilege ofabove,or of any functionality
or feature disclosed herein;

Any parent privilege of above, or of any functionality or
feature disclosed herein; and/or

Anyprivilege combination of above, or of any functional-
ity or feature disclosed herein.

Grammarspecification privileges can enable/disable permit-
ted specifications of certain charter terms, conditions,
actions, or any other charter aspect. Some examples of gram-
marspecification privileges(i.e. “atomic privilege for assign-
ment’) that can be granted from a grantor identity (ID/ID-
Type) to a grantee identity ID/IDType) include:

Accept autodial #: allows an action for sending a speed dial
number;

Accept web link:allows an action for sending a hyperlink;
Accept email: allows an action for sending an email;
Accept SMS msg: allows an action for sending an SMS

message;

Accept content: allows an action for sending a content of
any type;

Accept broadcast email: allows an action for sending a
broadcast email;

Accept broadcast SMS msg:allows an action for sending a
broadcast SMS message;

Accept indicator: allows an action for sending anindicator;
Accept invocation: allows an action for invoking (option-

ally with parameters for which executable and param-
eters to it) an executable (application, script, command
file, or any other executable); Alternate embodiments
will have specific privileges for each type of executable
that may be invoked);

Acceptfile: allows an action for sendinga file or directory;
Accept semaphore control: allows an action for setting or

clearing a semaphore; This privilege is preferably set
with a parameter for which semaphore and what to do
(set or clear);

Accept data control: allows an action for access, storing,
alerting, or discarding data (alternate embodiments will
further granulate to a plurality of data controlprivileges
for each data control type (access, store, alter, discard,
etc); This privilege may be set with parameter(s) for
which data and whatto do;

Accept database control: allows an action for access, stor-
ing, alerting, or discarding database data (alternate
embodiments will further granulate to a plurality ofdata
control privileges for each data control type (access,
store, alter, discard, etc); This privilege may be set with
parameter(s) for which database data and what to do;

10

15

20

25

30

35

40

45

50

55

60

65

128

Accept file control: allows an action for access, storing,
alerting, or discarding file/directory path data (alternate
embodiments will further granulateto a plurality of data
control privileges for each data control type (access,
store, alter, discard, etc); This privilege may be set with
parameter(s) for which directory orfile path(s) and what
to do;

Allow profile match comparison: allows condition for the
monitoring of certain profile(s); This privilege may be
set with a parameter(s) for which profile(s) can be moni-
tored/compared; An alternate embodimentwill define a
specific privilege for each ProfileMatch type;

Allow interest match comparison: allows condition for the
monitoring of interests; This privilege may be set with
parameter(s) for which interests can be monitored/com-
pared; An alternate embodiment will define a specific
privilege for each interest candidate;

Allow filters match comparison: allows condition for the
monitoring of filters; This privilege may be set with
parameter(s) for which filters can be monitored/com-
pared; An alternate embodiment will define a specific
privilege for eachfilter candidate;

Allow movement monitoring: allows condition for the
monitoring ofmovement; This privilege maybeset with
parameter(s) for quantifying how much movement, and/
or how long for lack ofmovement(an alternate embodi-
ment will define distinct privileges for each movement
monitoring type);

Allow application use monitoring: allows condition for the
monitoring of application usage; This privilege may be
set with parameter(s) for specifying which appli-
cation(s) to monitor, and/or how long for usage of the
application(s); Another embodiment specifies which
aspect of the application is to be monitored(e.g. data,
DB data, semaphore, thread/process invoke or termi-
nate, file/directory data, etc);

Allow invocation monitoring: allows an action for moni-
toring application(s) used (optionally with parameter(s)
for which application/executable); Alternate embodi-
ments will have specific privileges for each application
or executable ofinterest;

Allow application termination monitoring: allows condi-
tion for monitoring application(s) terminated (option-
ally with parameter(s) for which application/execut-
able); Alternate embodiments will have specific
privileges for each application or executable ofinterest;

Allow file system monitoring: allows condition for moni-
toringa file or directory; This privilege may be set with
parameter(s) for specifying which path(s) to monitor,
and/or what to monitor for, and how long for absence or
removalof the path(s);

Allow semaphore monitoring: allows condition for moni-
toring a semaphore; This privilege may be set with
parameter(s) for specifying which semaphore(s) to
monitor, and/or what to monitor for (clear or set);

Allow data monitoring(file or directory): allows condition
for monitoring data; This privilege may be set with
parameter(s) for specifying which data to monitor, and/
or what value to monitor for (charter condition like a
debugger watch);

Allow data attribute monitoring (file or directory): allows
condition for monitoring data attribute(s); This privilege
may beset with parameter(s) for specifying which data
attributes (e.g. chmodorattrib or extendedattributes) to
monitor, and/or what value to monitor for (charter con-
dition like a debugger watch);

APPLE

EXHIBIT 1001 - PAGE 0328

APPLE
EXHIBIT 1001 - PAGE 0329

US 8,639,267 B2
129

Allow database monitoring: allows condition for monitor-
ing database data; Thisprivilege may be set with param-
eter(s) for specifying which database data to monitor,
and/or what value to monitor for (like a database trig-
ger);

Allow sender monitor: allows condition for monitoring
sender information; This privilege may be set with
parameter(s) for specifying which sender address(es) to
monitor email or SMS messages from (may have sepa-
rate privileges for each type ofdistribution);

Allow recipient monitor: allows condition for monitoring
recipient information; This privilege may be set with
parameter(s) for specifying which recipient address(es)
to monitor email or SMS messages to (may have sepa-
rate privileges for each type ofdistribution);

Allow “modification” instead of “monitor’/“monitoring”
for each monitor/monitoring privilege described above;

Allow focusedtitle bar use: allows using the focused title
bar for alerting;

A privilege for any BNF grammar atomic command,
atomic operand, parameter(s), parameter type, atomic
operator, or underlying action performed in a charter
herein;

Any subordinate privilege ofabove,or of any functionality
or feature disclosed herein;

Any parent privilege of above, or of any functionality or
feature disclosed herein; and/or

Anyprivilege combination of above, or of any functional-
ity or feature disclosed herein.

While the Grantor construct translates to the owner of the

permission configuration according to grammar 3034, imper-
sonation permits a user to take on the identity of a Grantor for
making a configuration. For example, a group by its very
nature is a form of impersonation whena single user of the
group grants permissions from the group to another identity.
A user mayalso impersonate anotheruser(ifhas the privilege
to do so) for making configurations. In an alternative embodi-
ment, grammar 3034 may include meansfor identifying the
ownerofthe permission(s) granted. Group constructs provide
meansfor collections ofID constructs, for example for teams,
departments, family, whatever is selected for grouping by a
name (atomic element “group name”). The impersonation
privilege should be delegated very carefully in the preferred
embodiment since the BNF grammardoes not carry owner
information except through a History construct use.

The Grantorofaprivilege is the identity wanting to convey
a privilege to another identity (the Grantee). The Grantee is
the identity becomingprivileged by administration ofanother
identity (the Grantor). There are various embodiments for
maintaining privileges, some embodiments having the side
affect of increasing, or decreasing, the palette of available
privileges for assignment. Privilege/Permission embodi-
ments include:

1) Administrated privileges are maintained and enforced at
the Grantor’s MS. As privileged Grantee WDR informa-
tion is detected at the Grantor’s MS,or as Grantor WDR
information is detected at the Grantor’s MS: the appro-
priately privileged Grantee is provided with LBX appli-
cation features at their (Grantee) MS in accordance with
the privileges granted;

2) Administrated privileges are maintained and enforced at
the Grantor’s MS, but are also communicated to the
Grantee’s MSfor being used by the Grantee for infor-
mative purposes. As privileged Grantee WDR informa-
tion is detected at the Grantor’s MS,or as Grantor WDR
information is detected at the Grantor’s MS: the appro-

10

15

25

30

35

40

45

50

55

60

65

130

priately privileged Grantee is provided with LBX appli-
cation featuresat their (Grantee) MS in accordance with
the privileges granted;

3) Administrated privileges are maintained at the Grantor’s
MSfor administration purpose, but are used for govern-
ing features/processing at a Grantee MS. Privileges are
appropriately communicated to a Grantee MS for WDR
information processing, such that as Grantor WDR
information is detected at the Grantee MS, the Granteeis
provided with LBX application features at their
(Grantee) MSin accordance withthe privileges granted;
and/or

4) Privileges are stored at both the Grantor’s MS and the
Grantee’s MS for WDRinformation processing includ-
ing any combination of #1 through #3 above (i.e. WDR
information processing at each MSprovides LBX fea-
tures benefiting the Grantor and/or Grantee).

5) See FIG. 49A discussions for some of the permission/
privilege assignment considerations between a Grantor
identity and a Grantee identity.

FIGS. 30D through 30E depict a preferred embodiment
BNF grammar 3068a through 30685 for charters. Charters
embody conditional events to be monitored and the actions to
cause when those events occur. Notice thereis still a Grantee

and Grantor construct in charters, even in the face of having
privileges for governing the charters. Grantor and Grantee
constructs used in charters have to do with granting the per-
mission/privilege to enable charters at a particular MS. Once
they are enabled at a MS, permissions/privileges of grammar
3034 may be used to govern how the charters process.

It is important to note the context of terminology use
“Grantor” and “Grantee” appears in, since they are similarly
used in context of charters versus permissions. In both cases
there is an acceptance/authentication/configuration granted
by a Grantor to a Grantee. A permission Grantor grants a
privilege to a Grantee. A charter Grantor grants a privilege to
enable a Grantee’s charters (maybeat the mercyofprivileges
in the preferred embodiment). The Grantee construct in char-
ters translates to the owner/creator/maintainer identity of the
charter configuration according to grammar 3068a and
30682, and the Grantor constructtranslates to an identity the
Grantee has created the charter for, but does not necessarily
have the privilege to do so, or does not necessarily have the
privilege for any subset of processing of the charter. Privi-
leges preferably govern whether charters are in effect, and
how theyare in effect. An alternative embodimentwill acti-
vate (make in effect) a charter by grantingit from oneidentity
to another as shown in grammar 3068a. A charter consists of
aconditional expression and can have an action orplurality of
actions which are associated with the conditional expression.
Upon evaluating the expression to an actionable condition
(e.g. evaluates to a Boolean true result), the associated
action(s) are invoked.

Impersonation permits a user to take on the identity of a
Grantee for making a configuration. For example, a group by
its very nature is a form of impersonation whena single user
of the group administrates charters for the group. A user may
also impersonate anotheruser(ifhasthe privilege to do so) for
making configurations. In an alternative embodiment, gram-
mar 3068a and 3068may include meansfor identifying the
ownerofthe charters administrated. The impersonationprivi-
lege should be delegated very carefully in the preferred
embodiment since the BNF grammar does not carry owner
information except through a History construct use.

The Grantee of a charter is the identity (e.g. creates and
ownsthe charter) wanting to have its charters processed for
another identity (the Grantor). The Grantor is the identity

APPLE

EXHIBIT 1001 - PAGE 0329

APPLE
EXHIBIT 1001 - PAGE 0330

US 8,639,267 B2
131

targeted for processing the administrated charter(s) created
by the Grantee. The terminology “Grantor” and “Grantee”
will becomereversed (to match privilege assignments) in an
embodiment which grants charters like privileges. There are
various embodiments for maintaining charters, some
embodiments havingthe side affect of increasing, or decreas-
ing, the palette of available charter processing deployed.
Charter embodiments include:

6) Administrated charters are stored at the Grantee’s (the
administrator’s) MS. As privilege providing Grantor
WDRinformation is detected at the Grantee’s MS, the

Grantee is provided with LBX application charter pro-
cessing at his (Grantee) MS, preferably in accordance
with privileges defined as described in #1 through #5
above;

7) Administrated charters are maintained at the Grantee’s
(the administrator’s) MS, but are communicated to the
Grantor’s MSfor being used for informative purposes.
Asprivilege providing Grantor WDR information is
detected at the Grantee’s MS, the Grantee is provided
with LBX application charter processing at his
(Grantee) MS,preferably in accordance with privileges
defined as described in #1 through #5 above;

8) Administrated charters are maintained at the Grantee’s
MSfor administration purpose,but are used for process-
ing at the Grantor MS. Charters are appropriately com-
municated to the Grantor MS for WDR information

processing, such that as Grantor WDR information is
detected at the Grantor MS, the Grantee is provided with
LBXapplication features for processing at the Grantor’s
MS,preferably in accordance with privileges defined as
described in #1 through #5 above. Also, as Grantee
WDRinformation is detected at the Grantor’s MS, the
Grantee is provided with LBX application charter pro-
cessing at his (Grantee) MS, preferably in accordance
with privileges defined as described in #1 through #5
above; and/or

9) Charters are maintained at both the Grantor’s MS and
the Grantee’s MS for WDR information processing,
including any combination of #6 through #8 above(i.e.
WDRinformation processing at each MS provides LBX
features benefiting the Grantor and/or the Grantee).

10) See FIG. 49B discussions for some of the charter
assignment considerations between a Grantee identity
and a Grantoridentity.

Grammar 3068a “and” and “or” are atomic elements for

CondOp operators. In a syntactic embodiment, “and” and
“or” may be special characters(e.g. &, |, respectively). Gram-
mar 3068a@ Value elaboration “atomic term” (RHS) is an
atomic element for a special type of term that can be used in
a condition specification, such as:

My MSlocation (e.g. \loc_my): preferred embodiment
resolvesto field 1100c from the most recent WDR which

describes this MS(i.e. the MS ofatomic term evaluation
processing); WTV maybe usedto determineifthis is of
use (if not, may return a null, cause a failure in a condi-
tional match, or generate an error);

Aspecified MS,orgroup, mobile location (e.g. \locByL_-
30.21,-97.2=location at the specified latitude and lon-
gitude (ensure no intervening blanks): preferred
embodimentresolves to a specified location comparable
toa WDRfield 1100c, not necessarily in the same format
or units used as field 1100c (1.e. converted appropriately
for a valid comparison when used). There are many
different formats and units that can be specified here
with a unique syntax;

10

15

20

25

30

35

40

45

50

55

60

65

132

A specified MS, or group, situational location
(e.g. \sIByL_-30.21,-97.2;1050F=situational location
at the specified latitude, longitude and elevation in feet
(ensure no intervening blanks): preferred embodiment
resolves to specified situational location comparable to
applicable WDRfields, not necessarily in the samefor-
mator units used (i.e. converted appropriately for valid
comparison(s) when used). See U.S. Pat. No. 6,456,234
(Johnson) for the definition of a situational location that
can be specified. A reasonable syntax followingthe lead-
ing escape character and “sl” prefix should be used; this
example assumes an anticipated order (lat, long, eleva-
tion); One embodimentalso assumesan order for other
situational location criteria wherein a semicolon (5)
delimits data (i.e. use “;” to show lack of data at antici-
pated position (eg. \slIByL_-30.21,-97.2;;;;56);
Another embodimentuses descriptors to indicate which
data is being described so any order can be specified
(e.g. \sIByL_lat=-30.21 ,lon=—97.2;elev=1050F). There
are many different formats, fields and units that can be
specified here with a unique syntax;

My current MS mobile location (e.g. \loc_my): same as
described above;

A current MS, or group, mobile location
(e.g. \locByID_Larry=location of MS with id
Larry, \locG_dept78=location of members of the group
dept78): preferred embodiment resolves to a location
associated with an identifier. Preferably, queue 22 is
accessedfirst for the most recent occurrence of a WDR

matching the identifier(s). An alternate embodiment
additionally searches LBX history 30 if not foundelse-
where.In one embodiment, an averaged location is made
for a group identifier using locations of the identifiers
belonging to the group, otherwise a group containing
MSs with different locations causes a false condition

when used in an expression, or alternatively cause an
error. This is preferably used to compare locations of
WDRsfrom a plurality of different MSs without requir-
ing a value to be surfaced back to the expression refer-
ence;

A current MS, or group, situational location
(e.g. \sIByID_Larry=situational location of MS with id
Larry, \slG_dept78=situational location of members of
the group dept78): preferred embodimentresolves to a
situational location associated with an identifier. Prefer-

ably, queue 22 is accessedfirst for the most recent occur-
rence of a WDR matchingthe identifier(s). An alternate
embodimentadditionally searches LBX history 30 ifnot
found elsewhere. In one embodiment, an averaged situ-
ational location is made for a group identifier using
locations of the identifiers belonging to the group, oth-
erwise a group containing MSswith different locations
causes a false condition when used in an expression, or
alternatively cause an error. This is preferably used to
comparesituational locations ofWDRsfrom a plurality
ofdifferent MSs without requiring a value to be surfaced
back to the expression reference;

Last application used (e.g. \appLast): preferably resolves
to an application reference (e.g. name) which can be
successfully compared to a MS operating system main-
tained reference for the application (e.g. as maintained
to LBX history) that was last used by the MSuser(e.g.
embodimentsfor last focused, or last used that had user
input directed to it). One embodiment implements only
known PRRapplications using field 5300a and/or 53005
for the reference (See FIGS. 53 and 55A);

APPLE

EXHIBIT 1001 - PAGE 0330

APPLE
EXHIBIT 1001 - PAGE 0331

US 8,639,267 B2
133

Last application context used (e.g. \appLastCtxt): prefer-
ably resolves to an application context reference which
can be successfully compared to a MS operating system
context maintained for comparison to LBX history. One
embodiment implements only known PRRapplications
using field 5300a and/or 53006 for the application ref-
erence (See FIGS. 53 and 55A), and saveduser input for
the context of when the application was focused.
Another embodimentincorporates the system and meth-
ods ofU.S. Pat. No. 5,692,143 (‘Method and system for
recalling desktop states in a data processing system’,
Johnson et al) to maintain application contexts to his-
tory;

Application in use (e.g. \appLive): preferably resolves to
an application reference (e.g. name) which can be suc-
cessfully compared to a MS operating system main-
tained reference for the application (e.g. as maintained
to LBX history) that may or may not be running(active)
on the MS. One embodiment implements only known
PRRapplications using field 5300a and/or 53006 for the
reference (See FIGS. 53 and 55A);

Application context in use (e.g. \appLiveCtxt): preferably
resolves to an application context reference which can
be successfully compared to a MS operating system
context maintained for comparison. One embodiment
implements only known PRRapplications using field
5300a and/or 53006 for the application reference (See
FIGS. 53 and 55A), and saved user input for the current
context of the application (e.g. maintained to LBX his-
tory). Another embodimentincorporates the system and
methods of U.S. Pat. No. 5,692,143 (“Method and sys-
tem for recalling desktop states in a data processing
system”, Johnsonet al) to maintain application contexts;

Application active (e.g. \appLive): same as application in
use above;

Application context active (e.g. \appLiveCtxt): same as
application context in use above;

Current MSsystem date/time(e.g. \timestamp); preferably
resolves to the MS date/time from the MS system clock
interface for a current date/time stamp;

Particular LBX maintainedstatistical value (e.g. \st_statis-
ticName wherein statisticName is the nameof the sta-

tistic): preferably resolves to the referenced statistic
nameofstatistics 14. There are potentially hundreds of
statistics maintained for the MS;

MSID of MShosting atomic term (e.g. \thisms; alternate
embodiments support ID and IDType grammar rules):
preferably resolves to the identifier of the MS where the
atomic term is being resolved; and/or

Most current WDRfield of \thisMS(e.g. \fidname); fid-
nameis identical to WDRin-process field names which
can reference any field, subfield, set, subset, or
derived data/information ofa WDRin process(i.e. _fid-
name, _I_fldname, _O_fidname). The difference here is
that the most recent WDR(e.g. ofqueue 22) for \thisMS
is accessed, rather than an in-process WDR.Theleading
backslash indicates to reference the most recent WDR

for \thisMS. In some embodiments, the WTV is accessed
and an error is produced for \fidname references that
reference stale WDRinformation.

Preferably, a convenient syntax using a leading escape char-
acter refers to an atomic term (e.g. \loc_my=My MSloca-
tion). When used in conjunction with other conditions, an
“atomic term” provides extraordinary location based expres-
sions. Other Grammar 3068a atomic elements are described

here: “Any WDR 1100 field, or any subset thereof”is self
explanatory; “Any Application data field, or any subset

30

35

40

50

60

134

thereof”is an atomic element for any semaphore, data, data-
basedata, file/directory data, or any other reference-able data
of a specified application; “number” is any number; “text
string” is any text string; “True” is a Boolean representing
true; “False” is a Boolean representing false; “typed memory
pointer”is a pointer to memory location (of any memory or
storage described for FIG. 1D) containing a known type of
data and length; “typed memory value”is a memory location
(of any memory orstorage described for FIG. 1D) containing
a knowntype ofdata and length; “typedfile path”1s a file path
location (of any memory or storage described for FIG. 1D)
containing a knowntypeof data and length; “typedfile path
and offset” is a file path location (of any memory or storage
described for FIG. 1D) andan offset therein (e.g. byte offset)
for pointing to a knowntype of data and length; “typed DB
qualifier” is a database data path (of any memory orstorage
described for FIG. 1D) for qualifying data in a database(e.g.
with a query, with a identity/table/row/columnqualifier, or
other reasonable database qualifying method).

WDRtTermprovides meansfor setting up conditions on any
WDR1100field or subfield that is detected for WDR(s):

Inserted by FIG. 2F processing (e.g. received from other
MSs,or created by the hosting MS); and/or

Sent/communicated outbound from a MS; and/or
Received/communicated inbound to a MS.

An alternate BNF grammar embodimentqualifies the “Any
WDR1100 field, or any subset thereof” atomic element with
an operator for which of the three MScode paths to check
WDRfield conditions (e.g. Operators of“OUTBOUND”and
“INBOUND”, denoted by perhaps a syntactical O and I,
respectively). Absence of an operator can be assumed for
checking WDRson FIG. 2F insert processing. Such embodi-
ments result in a BNF grammar WDRTerm definitionof:
WDRTerm=[WDRTermOp] “Any WDR 1100 field, or any

subset thereof” [Description] [History] |Varinstantiate
WDRTermOp=“inbound”| “outbound”
Yet another embodiment will allow combination operators
for qualifying a combination of any three MS code paths to
check.

AppTerm provides meansfor setting up conditions on data
of any application of an MS,for example to trigger an action
based onaparticular active call during whereabouts process-
ing. A few AppTerm examplesare any of the following:

Any phone application data record data (e.g. incoming
call(s), outgoing call(s), active call(s), caller id, call
attributes, etc)

Any email/SMSmessage application data record data(e.g.
mailbox attributes, message last sent, message last
received, message being composed,last type ofmessage
sent, last type of message received, attribute(s) of any
message(s), etc)

Any address book application data record data (e.g.
group(s) defined, friend(s) defined, entry(s) defined and
any data associated with those, etc)

Anycalendar application data record data (e.g. last sched-
uled entry, most recently removed entry, number of
entries per time period(s), last scheduled event
attendee(s), number of scheduled events for specified
qualifier, next forthcoming appointment, etc)

Any mapapplication data record data; and/or
Anyother application data record data of a MS.
Grammar 30684 completes definition ofgrammar rules for

charters. The Invocation construct elaborates to any ofa vari-
ety of executables, with or without parameters, including
Dynamic Link Library (DLL) interfaces (e.g. function), post-
compile linked interfaces (e.g. function), scripts, batch files,
commandfiles, or any other executable. The invoked inter-

APPLE

EXHIBIT 1001 - PAGE 0331

APPLE
EXHIBIT 1001 - PAGE 0332

US 8,639,267 B2
135

face should return a value, preferably a Boolean (true or
false), otherwise one will preferably be determined or
defaulted for it. The Op construct contains atomic elements
(called atomic operators) for certain operators used for terms
to specify conditions. In syntactical embodiments, each
atomic operator maybeclarified with a not modifier(ie.!).
For example, “equal to” is “=” and “not equal to” is
Those skilled in the art recognize which atomic operator is
contextually appropriate for which applicable terms (see
BNFgrammar 3068a). There are many reasonable syntactical
embodiments for atomic operators, with at least:

=: equal to;
'=: not equalto;
>: greater than;
!>: not greater than;
>=: greater than or equalto;
!>=: not greater than or equalto;
<: less than;
!<: not less than;
<=: less than or equalto;
!<=; not less than or equalto;
“sin;
!*: not in;
“: was in;
!: was not in;
@:at;
!@: not at;
@@: wasat;
!@@: wasnot at;
$(range): in vicinity of (range=distance (e.g. 10 F=10

Feet));
!$(range): not in vicinity of (range=distance (e.g. 1 L=1

Mile));
>$(range): newly in vicinity of;
!>$(range): not newly in vicinityof;
$>(range): departed from vicinity of;
!$>(range): not departed from vicinity of;
(spec)$(range)
: recently in vicinity of (spec=time period (e.g. 8 H=inlast

8 hours));
(spec)!$(range)
: not recently in vicinity of (spec=time period (e.g. 8 H=in

last 8 hours));
(spec)$$(range)
recently departed from vicinity of (spec=timeperiod(e.g.

5 M=in last 5 minutes)); and
(spec)!$$(range)
: not recently departed from vicinity of (spec=time period

(e.g. 5 M=inlast 5 minutes)).
Values for “range” above can be any reasonable units such as
3K implies 3 Kilometers, 3M implies 3 Meters, 1 L implies 3
Miles, 3 F implies 3 Feet, etc. Values for “spec” above can be
any reasonable time specification as described for TimeSpec
(FIG. 30B) and/or using qualifiers like “range” such as 3 W
implies 3 Weeks, 3 D implies 3 Days, 3 H implies 3 Hours, 3M
implies 3 Minutes,etc.

Resolving of conditions using atomic operators involves
evaluating conditions (BNF grammar constructs) and addi-
tionally accessing similar data of LBX history 30 in some
preferred embodiments. Atomic operator validation errors
should result when inappropriately used.

Example syntactical embodiments of the “atomic profile
match operator” atomic element include:

#: numberofprofile matches;
%: percentage of profile matches;
#(tag(s)): numberofprofile tag section matches(e.g. #(in-

terests) compares oneprofile tag “interests”); and

sep

10

15

20

25

35

40

45

50

55

60

65

136

% (tag(s)): percentage of profile tag section matches(e.g.
#(interest,activities) comparesa plurality of profile tags
(“interests” and “activities”).

In one embodimentofprofiles maintained at MSs, a LBX
singles/dating application maintains a MSprofile for user’s
interests, tastes, likes, dislikes, etc. The ProfileMatch opera-
tors enable comparing user profiles undera variety of condi-
tions, for example to cause an action ofalerting a userthat a
person of interest is nearby. See FIGS. 77 and 78 for other
profile information.

Atomic operators are context sensitive and take on their
meaning in context to terms (i.e. BNF Grammar Term) they
are used with. An alternate embodiment incorporates new
appropriate atomic operators for use as CondOp operators,
provided the result of the condition is a Boolean (e.g.
term >=term results in a true or false). Also, while a syntac-
tical form of parenthesis is not explicitly shown in the BNF
grammar, the Conditions constructs explicitly defines how to
make complex expressions with multiple conditions. Using
parenthesis is one preferred syntactical embodimentfor car-
rying out the Conditions construct. The intention of the BNF
grammaris to end up with any reasonable conditional expres-
sion for evaluating to a Boolean True or False. Complex
expression embodiments involving any conceivable opera-
tors, terms, order of evaluation (e.g. as syntactically repre-
sented with parentheses), and other arithmetic similarities,
are certainly within the spirit and scopeofthis disclosure.

BNF grammar terms are to cover expressions containing
conditions involving WDR fields (WDRTerm), situational
locations, geofences(i.e. a geographic boundary identifying
an area or space), two dimensional and three dimensional
areas, two dimensionaland three dimensional space, pointin
an area, point in space, movement amounts, movementdis-
tances, movementactivity, MS IDs, MS group IDs, current
mobile locations, past mobile locations, future mobile loca-
tions, nearness, distantness, newly near, newlyafar, activities
at locations (past, present, future), applications and context
thereof in use at locations (past, present, future), etc. There
are many various embodiments for specific supported opera-
tors used to provide interpretation to the terms. Certain opera-
tors, terms, and processing is presented for explanation and is
in no way meantto limit the many other expression (BNF
Grammar Expression) embodimentscarrying thespirit ofthe
disclosure.

The Commandconstruct elaborates to atomic commands.

The “atomic command”atomic elementis a list of supported
commands such as those found in the column headings of
FIGS. 31A through 31Etable (see discussions for FIGS. 31A
through 31E). There are many commands, some popular
commandsbeing shown. The Operand construct elaborates to
atomic operands. The “atomic operand” atomic elementis a
list of supported operands (data processing system objects)
suchas those found in the row headings ofFIGS. 31A through
31Etable (see discussions for FIGS. 31A through 31E). There
are many operands, some popular operands being shown.For
each command and operand combination, there may be
anticipated parameters. The command and operandpair indi-
cates how to interpret and process the parameters.

The constructs of Parameter, WDRTerm, AppTerm, Value
and Data are appropriately interpreted within contextoftheir
usage. An optionaltime specification is made available when
specifying charters (i.e. when charter1s in effect), expressions
(i.e. a plurality of conditions (e.g. with Conditions within
Expressions construct)), a particular condition (e.g. with
Condition elaborations within Condition construct), and
actions (e.g. with Action elaborations within Action con-
struct). One embodiment supports multiple Host specifica-

APPLE

EXHIBIT 1001 - PAGE 0332

APPLE
EXHIBIT 1001 - PAGE 0333

US 8,639,267 B2
137

tions for a particular action. Some embodiments allow an
Invocation to include invocations as parameters in a recursive
mannerso as to “bubble up”a resulting Boolean(e.g. fen1(2,
fen2(p1, x, 45), 10) such that fen2 mayalso have invocations
for parameters. The conventional inside out evaluation order
is implemented. Other embodiments support various types of
invocations which contribute to the overall invocation result
returned.

In alternate embodiments, an action can return a return
code, for example to convey success, failure, or some other
value(s) back to the point of performing the action. Such
embodiments may support nesting ofreturned values in BNF
grammar Parametersso as to affect the overall processing of
actions. For example: action1(parameter(s), ..., action2(...
parameters ...),...parameter(s)), and action2 may include
returning value(s) from its parameters (which are actions).

Wildcarding is of value for broader specifications in a
single specification. Wildcards may be used for BNF gram-
marspecification wherever possible to broaden the scopeofa
particular specification (e.g. Condition, TimeSpec,etc).

FIGS. 31A through 31E depict a preferred embodimentset
ofcommandandoperandcandidates forAction Data Records
(ADRs)(e.g. FIG. 37B) facilitating the discussing of associ-
ated parameters (e.g. FIG. 37C) of the ADRsofthe present
disclosure. Preferably, there are grammarspecification privi-
leges for governing every aspect of charters. Commands
(atomic commands), operands (atomic operands), operators
(atomic operators and Condop), parameters (Parameter),
associated conditions (Condition and Condop), terms (Term),
actions thereof (Action), associated data types thereof(Data),
affected identities thereof (ID/IDType), and any other charter
specification aspect, can be controlled by grammar specitfica-
tionprivileges.

An “atomic command”is an enumeration shown in column

headings(i.e. 101, 103, . . . etc) with an implied command
meaning. FIG. 32A shows what meaningis provided to some
ofthe “atomic command” enumerations shown(also see FIG.
34D). A plurality ofcommands can mapto a single command
meaning. This supports different words/phrases (e.g. spoken
in a voice commandinterface) to produce the sameresulting
commandso that different people specify commands with
terminology, language, or (written) form they prefer. An
“atomic operand”is an enumeration shown in row headings
(i.e. 201, 203, ... etc) with an implied operand meaning. FIG.
32B shows what meaningis provided to someofthe “atomic
operand”enumerations shown(also see FIG. 34D). A plural-
ity of operands can map to a single operand meaning. This
supports different words/phrases (e.g. spoken in a voice com-
mandinterface) to produce the sameresulting operandsothat
different people specify operands with terminology, lan-
guage, or (written) form they prefer. Operands are also
referred to as data processing system objects because they are
common objects associated with data processing systems.
FIGS. 31A through 31E demonstrate anticipated parameters
for each combination of a command with an operand. There
are potentially hundreds (or more) of commands and oper-
ands. This disclosure would be extremely large to coverall the
different commands, operands, and parameters that may be
reasonable. Only some examples with a small number of
parameters are demonstrated in FIGS. 31A through 31E to
facilitate discussions. There can be a large numberofparam-
eters for a command and operand pair. Each parameter, as
shown by the BNF grammar, may be in many forms. In one
preferred embodiment (not shown in BNF grammar), the
Parameter construct of FIG. 30E may also elaborate to a
ParameterExpression which is any valid arithmetic expres-
sion that elaborates to one of the Parameter constructs (RHS)

10

15

20

25

30

35

40

45

50

55

60

65

138

shown in the BNF Grammar. This allows specifying expres-
sions which can be evaluated at run time for dynamically
evaluating to a parameter for processing.

The combination ofa commandwith an operand,andits set
of associated parameters, form an action in the present dis-
closure, relative the BNF grammardiscussed above. Some of
the command/operand combinations overlap,or intersect, in
functionality and/or parameters. In general, if parameters are
not found (null specified) for an anticipated parameterposi-
tion, a default is assumed(e.g. parameters of 5,,7 indicates
three (3) parameters of 5, use default or ignore, and 7). Oper-
ands and parameters are preferably determinedat executable
code run time when referenced/accessed so that the underly-
ing values may dynamically change as needed at executable
code run time in the samereferences. For example, a variable
set with constructs which elaborates to a command, operand,
and parameters, can be instantiated in different contexts for
completely different results. Also, a programming language
enhanced with new syntax (e.g. as described in FIG. 51) may
include a loop for processing a single construct which causes
completely different results at each loop iteration. The oper-
and or parameter specification itself may be for a static value
or dynamic value as determined by the reference used. An
alternate embodimentelaborates values like a preprocessed
macro aheadoftimeprior to processing for static command,
operand, and parameter values. Combinations described by
FIGS. 31A through 31E are discussed with flowcharts. In
another embodiment, substitution (like parameter substitu-
tion discussed above for FIG. 30A) can be used for replacing
parameters at the time of invocation. In any case, Parameters
can contain values whichare static or dynamically changing
up to the time of reference.

Parameters of atomic command processing will evaluate/
resolve/elaborate to an appropriate data type and form for
processing whichis described by the #B matrices below(e.g.
FIG.63B is the matrix for describing atomic send command
processing). The #B descriptions provide the guide for the
data types and forms supportable for the parameters. For
example, an email body parameter may bea string,a file
containing text, a variable which resolvesto a string orfile,
etc. The BNF grammaris intendedto be fully exploitedin the
many possible embodiments used for each parameter.

FIG. 32A depicts a preferred embodiment of a National
Language Support (NLS)directive command crossreference.
Each“atomic command”hasat least one associated directive,
and in manycasesa plurality of directives. Depending on an
MSembodiment, a user may interact with the MS with typed
text, voice control, selected graphical user interfacetext, sym-
bols, or objects, or some other form of communication
between the user and the MS. A directive (FIG. 32A com-
mand and FIG. 32B operand) embodies the MS recognized
communication by the user. Directives can be a word, a
phrase, a symbol, a set of symbols, something spoken, some-
thing displayed, or any other form of communications
between a user and the MS. It is advantageousfor a plurality
ofcommanddirectives mapped to an “atomic command”so a
MSuseris not limited with having to know the one command
to operate the MS. The MS should cater to everyone withall
anticipated user input from a diverse set of users which may
be used to specify a command. This maximizes MSusability.
The commanddirective is input to the MS for translating to
the “atomic command”. One preferred embodiment of a
directive commandcross reference 3202 mapsa textual direc-
tive (Directive column) to a command(“atomic command”of
Command column). In this embodiment, a user types a direc-
tive or speaks a directive to a voice control interface (ulti-
mately converted to text). Cross reference 3204-1 demon-

APPLE

EXHIBIT 1001 - PAGE 0333

APPLE
EXHIBIT 1001 - PAGE 0334

US 8,639,267 B2
139

strates an English languagecross reference. Preferably, there
is across reference for every language supported by the MS,
for example, a Spanish cross reference 3204-2, a Russian
cross reference, a Chinese cross reference, and a crossrefer-
ence for the L languages supported by the MS(i.e. 3204-L
being the final cross referenced language). Single byte char-
acter (e.g. Latin-1) and double byte character (e.g. Asian
Pacific) encodings are supported. Commandsdisclosed are
intended to be user friendly through support of native lan-
guage, slang, or preferred command annunciation (e.g. in a
voice control interface). FIG. 34D enumerates some com-
mands which may appear ina commandcross reference 3202.

FIG. 32B depicts a preferred embodiment of a NLSdirec-
tive operand cross reference. Each “atomic operand”has at
least one associateddirective, andin manycasesa plurality of
directives. It is advantageousfor a plurality of operand direc-
tives mapped to an “atomic operand” so a MSuseris not
limited with having to know the one operand to operate the
MS. The MSshould cater to everyone with all anticipated
user input from a diverse set of users which may be used to
specify an operand. The directive is input to the MS for
translating to the “atomic operand”. One preferred embodi-
ment of a directive operand cross reference 3252 maps a
textual directive (Directive column) to an operand (“atomic
operand” of Operand column). In this embodiment, a user
types a directive or speaks a directive to a voice control
interface (ultimately converted to text). Cross reference
3254-1 demonstrates an English language cross reference.
Preferably, there is a cross reference for every language sup-
ported by the MS, for example, a Spanish cross reference
3254-2, a Russian cross reference, a Chinese cross reference,
anda cross reference for the L languages supported by the MS
(i.e. 3254-L beingthe final cross referenced language). Oper-
ands disclosed are intended to be userfriendly through sup-
port of native language,slang, or preferred command annun-
ciation (e.g. in a voice control interface). FIG. 34D
enumerates some operands which may appear in an operand
cross reference 3252.

In the preferred embodiment, Parameters are contextually
determined upon the MSrecognizinguserdirectives, depend-
ing on the context in useat the time. In another embodiment,
Parameters will also have directive mappings for beinginter-
preted for MS processing, analogously to FIGS. 32A and
32B.

FIG. 33A depicts a preferred embodiment American
National Standards Institute (ANSI) X.409 encoding of the
BNFgrammar of FIGS. 30A through 30B for variables,vari-
able instantiations and common grammar for BNF grammars
ofpermissions and charters. A one superscript (1) is shown in
constructs which may not be necessary in implementations
since the next subordinate token can be parsed and deciphered
on its own meritrelative the overall length of the datastream
containing the subordinate tokens. For example,a plural Vari-
ables construct and token is not necessary since an overall
datastream length can be provided which contains sibling
Variable constructs that can be parsed. Preferably, Variable
assignments include the X.409 datastreamsfor the constructs
or atomic elements as described in FIGS. 33A through 33C.
FIG. 33B depicts a preferred embodiment ANSI X.409
encoding of the BNF grammarof FIG. 30C for permissions
10 and groups, and FIG. 33C depicts a preferred embodiment
ANSI X.409 encoding of the BNF grammar of FIGS. 30D
through 30E for charters 12. All of the X.409 encodings are
preferably used to communicate information of permissions
10 and/or charters 12 (e.g. the BNF grammar constructs)
between systems.

10

15

20

25

30

35

40

45

50

55

60

65

140

The preferred embodiment ofa WDRTerm is a system well
known WDRfield/subfield variable name with two (2) lead-
ing underscore characters (e.g. source code referencesof: ,,
confidence refers to a confidence value of a WDRconfidence

field 1100d;_msyaw refers to a yaw value ofa WDRlocation
reference field 1100f MS yaw subfield). Some useful
examples using a WDRTerm include:

A specified MS, or group, WDR 1100 ficld (c.g. con-
dition using field 1100a of (_I_msid !=George) &
(_I_msid “ChurchGroup));

A specified MS, or group, WDR 1100 field or subfield
value;

A current MS,or group, WDR 1100 field (e.g. condition
using field 1100a of (_msid !=George) & (_msid *
ChurchGroup)); and

Acurrent MS,or group, WDR 1100field or subfield value;
The preferred embodiment of an AppTerm is a system well
known application variable name with a registered prefix,
followed by an underscore character, followedby the variable
name in context for the particular application (e.g. source
codereferences of: M_sourcerefers to a source email address

of a received email for the registered MS email application
which wasregistered with a “M”prefix; B_srcheriteria refers
to the most recently specified search criteria used in the MS
internet browser application which wasregistered with a “B”
prefix). The preferred WDRTerm andAppTerm syntaxespro-
vide user specifiable programmatic variable references for
expressions/conditions to cause certain actions. The double
underscore variable references refer to a WDRinprocess(e.g.
inserted to queue 22 (_fidname), inbound to MS (_I_fid-
name), outbound from MS (_O_fidname)) at the particular
MS. There is a system well known double underscore variable
name for every field and subfield of a WDR as disclosed
herein. The registered prefix namevariable references always
refer to data applicable to an object in process(e.g. specific
data for: email just sent, email just received, phone call under-
way, phonecall last made, phonecall just received, calendar
entry last posted, etc) within an application of the particular
MS. There is a system well known underscore variable name
for each exposed application data, and registering the prefix
correlates the variable nameto a particular MS application
(see FIG. 53).

An “atomic term”is anotherspecial type ofuserspecifiable
programmatic variable reference for expressions/conditions
to cause certain actions. The preferred embodiment of an
atomic term is a system well known variable name with a
leading backslash (\) escape character(e.g. source code ref-
erences of: \loc_myrefers to the most recent MS location;
\timestamp refers to the current MS system date/time in a
date/time stamp format). There can be atomic termsto facili-
tate expression/condition specifications, some ofwhich were
described above.

FIGS. 33A through 33C demonstrate using the BNF gram-
mar of FIGS. 30A through 30E to define an unambiguous
datastream encoding which can be communicated between
systems (e.g. MSs, or service and MS). Similarly, those
skilled in the art recognize how to define a set of XMLtags
and relationships from the BNF grammar of FIGS. 30A
through 30E for communicating an unambiguous XML
datastream encoding which can be communicated between
systems. For example, X.409 encoded tokensare translatable
to XML tags that have scope between delimiters, and have
attributes for those tags. The XML author may improveeffi-
ciency by making someconstructs, which are subordinate to
other constructs, into attributes (e.g. ID and IDType con-
structs as attributes to a Grantor and/or Grantee XMLtag).
The XMLauthor mayalso decide to have some XMLtagsself

APPLE

EXHIBIT 1001 - PAGE 0334

APPLE
EXHIBIT 1001 - PAGE 0335

US 8,639,267 B2
141

contained (e.g. <History creatordt=“...” creatorid=“...”/>
or provide nesting, for example to accommodate an unpre-
dictable plurality of subordinate items (eg. <Per-
mission...>...<Grantor userid=“joe’/> . . . <Grantee
groupid=“deptl’’/> .. . <Grantee groupid=“dept43’/> .. .
<Grantee groupid=“dept9870"/> . . . </Permission>).It is a
straightforward matter for translating the BNF grammar of
FIGS. 30A through 30E into an efficiently processed XML
encoding for communications between MSs. An appropriate
XMLheaderwill identify the datastream (and version) to the
receiving system (like HTML, WML,etc) andthe receiving
system (e.g. MS) will process accordingly using the present
disclosure guide for properparsing to internalizeto a suitable
processable format(e.g. FIGS. 34A through 34G, FIGS. 35A
through 37C, FIG. 52, or another suitable formatper disclo-
sure). See FIG. 54 for one example of an XML encoding.

FIGS. 34A through 34G depict preferred embodiment C
programming source code headerfile contents, derived from
the grammarof FIGS. 30A through 30E. A C example was
selected so that the embodiment was purely data in nature.
Another preferred embodimentutilizes an object oriented
programming source code (e.g. C++, C#, or Java), but those
examples mix data and object code in defining relationships.
A preferred object oriented architecture would create objects
for BNF grammarconstructs that contain applicable process-
ing data and code. The object hierarchy would then equate to
construct relationships. Nevertheless, a purely data form of
source code is demonstrated by FIGS. 34A through 34G (and
FIG. 52) to facilitate understanding. Those skilled in the
relevant arts know how to embody the BNF grammarofFIG.
30A through 30E in a particular programming source code.
The C programming source code maybeusedfor:

Parsing, processing, and/or internalizing a derivative
X.409 encoding of the BNF grammar of FIGS. 30A
through 30E (e.g. FIGS. 33A through 33C);

Parsing, processing, and/or internalizing a derivative XML
encoding of the BNF grammarof FIGS. 30A through
30E;

Compiler parsing, processing, and/or internalizing of a
programming language processing form of the BNF
grammarof FIGS. 30A through 30E;

Interpreter parsing, processing, and/or internalizing of a
programming language processing form of the BNF
grammarof FIGS. 30A through 30E;

Internalized representation ofpermissions 10, groups (data
8) and/or charters 12 to data processing system memory;

Internalized representation ofpermissions 10, groups (data
8) and/or charters 12 to data processing system storage;
and/or

Parsing, processing, and/or internalizing any particular
derivative form,or subset, ofthe BNF grammar ofFIGS.
30A through 30E.

Source code header information is well understood by
those skilled in the relevantart in light of the BNF grammar
disclosed. The example does make certain assumptions
which are easily altered depending on specificities of a
derivative form, or subset, of the grammar of FIGS. 30A
through 30E. Assumptions are easily modified for “good”
implementations through modification of isolated constants
in the headerfile:

TLV tokens are assumed to occupy 2 bytes in length;
TLV length bytes are assumed to occupy 4 bytes in length;
Some of the header definitions may be used solely for

processing X.409 encodings in which case they can be
removed depending on the context of source code use;

Data structure linkage;
Data structure form withoutaffecting objective semantics;

5

20

30

35

40

45

60

142

Data structure field definitions;
Unsigned character type is used for data that can be a

typecast byte stream, and pointers to unsigned character
is used for pointers to data that can be typecast;

Source code syntax; or
Other aspects of the source code which are adaptable to a

particular derivative form, or subset, of the BNF gram-
marof FIGS. 30A through 30E.

The TIMESPECstructure ofFIG. 34E preferably utilizes a
well performing Julian date/time format. Julian date/time
formats allows using unambiguousfloating point numbersfor
date/time stamps. This provides maximum performance for
storage, database queries, and data manipulation. Open ended
periods of time use an unspecified start, or end data/time
stamp, as appropriate (ie. DT_NOENDSPEC or
DT_NOSTARTSPEC). A known implemented minimal time
granulation used in Julian date/time stamps can be decrement
or incremented by one (1) as appropriate to provide a non-
inclusive date/time stamp period delimiter in a range specifi-
cation (e.g. > date/time stamp).

The VAR structure provides a pointer to a datastream
which can be typecast (if applicable in embodiments which
elaborate the variable prior to being instantiated, or refer-
enced), or later processed. Variables are preferably not elabo-
rated/evaluated until instantiated or referenced. For example,
the variable assigned value(s) which are parsed from an
encoding remains unprocessed (e.g. stays in X.409 datas-
tream encoded form) until instantiated. Enough space is
dynamically allocated for the value(s) (e.g. per length of
variable’s value(s)) (e.g. X.409 encoding form), the vari-
able’s value (e.g. X.409 encoding)is copiedto the allocated
space, and thev.value pointeris set to the start ofthe allocated
space. Thev.value pointer will be used later whenthe variable
is instantiated(to then parse and processthe variable value(s)
whenat the context they are instantiated).

An alternate embodimentto the PERMISSIONstructure of

FIG. 34F may not require the grantor fields (e.g. grantor,
gortype) since the data processing system owning the data
may only maintain permissions for the grantor (e.g. the MS
user). Analternate embodimentto the CHARTERstructure of
FIG. 34G may not require the grantee fields (e.g. grantee,
geetype) or the grantor fields (e.g. grantor, gortype) since the
data processing system owning the data may only maintain
charters for that user at his MS. Another embodimentto the

CHARTERstructure ofFIG. 34G maynot require the grantor
fields (e.g. grantor, gortype) since the data processing system
owning the data may be self explanatory for the Grantor
identity (e.g. charters used at MS of Grantor).

FIGS. 35A through 37C, and FIG. 53, illustrate data
records, for example maintained in an SQL database, or main-
tained in record form bya data processing system. Depending
on the embodiment, somedata recordfields disclosed may be
multi-part fields (i.e. have sub-fields), fixed length records,
varying length records, or a combination with field(s) in one
form or another. Somedata recordfield embodiments will use

anticipated fixed length record positionsfor subfields that can
contain useful data, or a null value (e.g. -1). Other embodi-
ments may use varying length fields depending on the number
of sub-fields to be populated, or may use varying length fields
and/or sub-fields which have tags indicating their presence.
Other embodiments will define additional data record fields

to prevent putting more than one accessible data item in one
field. In any case, processing will have means for knowing
whether a value is present or not, and for which field (or
sub-field) it is present. Absence in data may be indicated with
a null indicator (-1), or indicated with its lack of being there
(e.g. varying length record embodiments). Fields described

APPLE

EXHIBIT 1001 - PAGE 0335

APPLE
EXHIBIT 1001 - PAGE 0336

US 8,639,267 B2
143

may be converted: a) prior to storing; or b) after accessing; or
c) by storage interface processing; for standardized process-
ing. Fields described may not be converted(i.e. used asis).

FIG. 35A depicts a preferred embodiment of a Granting
Data Record (GDR) 3500 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A GDR 3500 is the main data record fordefining
a granting ofpermissions 10, or charters 12. A granting iden-
tifier (granting ID) field 3500a@ contains a unique number
generated for the record 3500 to distinguish it from all other
records 3500 maintained. For example, in a Microsoft SQL
Server deployment, granting ID field 3500qis a primary key
column. Another embodimentusesthe correlation generation
techniques described above to ensure a unique numberis
generated. Field 3500a facilitates well performing searches,
updates, deletes, and other I/O (input/output) interfaces. Field
3500a may match (for joining) a field 35206 or 3700a,
depending on the GDRtype (GDRtypefield 35002 with value
of Permission or Charter). A granting type field 3500¢ distin-
guishes the type of GDR (Permission or Charter) for: a
Grantor granting all privileges to a Grantee (i.e. Permission
(e.g. ID field 3500a unique across GDRsbutnot usedto join
other data records)), a Grantor granting specific privilege(s)
and/or grants of privileges (permission(s)) to a Grantee ((i.e.
Permission (e.g. ascendant ID field 35206 value in ID field
3500a)), and a Grantor granting enablementof a charterto a
Grantee ((i.e. Charter (e.g. charter ID field 3700a value in ID
field 3500a)). An owner information (info) field 35006 pro-
vides who the owner (creator and/or maintainer) is of the
GDR 3500. Depending on embodiments, or how the GDR
3500 was created, owner info field 35004 may contain data
like the ID and type pair as defined for fields 3500c and
3500d,orfields 3500e and 3500f An alternate embodimentto
owner info field 35005 is two (2) fields: owner info ID field
35005-1 and owner info type field 35005-2. Yet another
embodiment removesfield 35005 because MSuser(e.g. the
grantor) information is understood to be the owner of the
GDR 3500. The ownerfield 35005 may become importantin
user impersonation. A grantor ID field 3500c provides an
identifier of the granting grantor and a grantor type field
3500d provides the type of the grantor ID field 3500c. A
grantee ID field 3500e provides an identifier of the granting
grantee and a grantee type field 3500/providesthe type of the
grantee ID field 3500e.

FIG. 35B depicts a preferred embodiment of a Grant Data
Record (GRTDR) 3510 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A GRTDR 3510 is the main data record for
defining a grant. A grant identifier (grant ID) field 3510a
contains a unique numbergenerated for the record 3510 to
distinguish it from all other records 3510 maintained. Field
3510a is to be maintained similarly to as describedforfield
3500a (e.g. primary key column, correlation generation,
facilitates well performing I/O). An ownerinformation (info)
field 35105 provides who the owner (creator and/or main-
tainer) is ofthe GRTDR 3510. Field 3510is to be maintained
similarly to as described for field 35005 (e.g. embodiments
for like ID andtypepair, two (2) fields, removal because MS
user information understood to be owner). A grant namefield
3510c provides the nameofthe grant.

FIG. 35C depicts a preferred embodiment of a Generic
Assignment Data Record (GADR) 3520for discussing opera-
tionsof the present disclosure, derived from the grammar of
FIGS. 30A through 30E. A GADR 3520 is the main data
record for defining an assignmentrelationship between data
records. The assignment relationship can be viewed as a
containerrelationship, or a parent-child relationship such as

25

30

40

45

60

144

in a tree structure. An ascendanttypefield 3520a contains the
type of parent (or container) data record in the relationship.
Values maintainedto field 3520a include Permission, Grant,
or Group. An ascendantID field 35206 provides an identifier
of the parent (or container) data record in the relationship
(used for joining data records in queries in an SQL embodi-
ment). Values maintained to field 35205 include values of
granting ID ficld 3500a, grant ID ficld 3510a, or group ID
field 3540a. A descendanttype field 3520c contains the type
of child (or contained) data record in therelationship. Values
maintainedto field 3520c include Grant, Privilege, Group, or
ID Type(e.g. Grantor or Grantee ID type). A descendant ID
field 3520d provides an identifier of the child (or contained)
data recordin the relationship (used in joining data records in
queries in an SQL embodiment). Values maintained tofield
3520d include values of grant ID field 3510a,privilege iden-
tifier (i.e. “atomic privilege for assignment”), group ID field
3540a, ID field 3500c, or ID field 3500e. Records 3520 (key
for list below is descendantfirst; ascendantlast (1.e. “.. . in
a...”)) are used to represent:

Grant(s) (the descendants) in a permission (the ascendant);
Privilege(s) in a permission;
Grant(s) in a grant (e.g. tree structure of grant names);
Privilege(s) in a grant;
Groups(s) in a group(e.g.tree structure of group names);
IDs in a group (e.g. group of grantors and/or grantees);

and/or

Other parent/child relationships of data records disclosed.
An alternate embodiment will define distinct record defini-

tions(e.g. 3520-z) for any subset ofrelationships described to
prevent data access performance of one relationship from
impacting performance accesses of another relationship
maintained. For example, in an SQL embodiment, there may
be two(2) tables: one for handling three (3) of the relation-
ships described, and another for handling all other relation-
ships described. In another SQL example, six (6) distinct
tables could be defined whenthere are only six (6) relation-
ships to maintain. Each ofthe distinct tables could have only
two(2)fields defined for the relationship (i.e. ascendant ID
and descendant ID). The type fields may not be required since
it would be known that each table handles a single type of
relationship (i.e. GADR-grant-to-permission, GADR-privi-
lege-to-permission, GADR-grant-to-grant, GADR-privi-
lege-to-grant, GADR-group-to-group and GADR-ID-to-
group). Performance considerations may provide good
reason to separate out relationships maintained to distinct
tables (or records).

FIG. 35D depicts a preferred embodiment of a Privilege
Data Record (PDR) 3530 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A privilege ID field 3530a@ contains a unique
numberassociated to a supported privilege (1.e. “atomic privi-
lege for assignment”). Field 3530a associates a MS relevance
field 35305 to a particular privilege for indicating the MS
types which apply to a privilege. There should not be more
than one PDR 3530 at a MS with matchingfields 3530a since
the associated field 35305 defines the MS types which are
relevant for that privilege. If there is no record 3530 for a
particularprivilege, thenit is preferably assumedthat all MSs
participate with the privilege. MS relevancefield 35305 is
preferably a bit mask accommodating all anticipated MS
types, such that a 1 in a predefined MS type bit position
indicates the MSparticipates with the privilege, and a 0 ina
predefined MS type bit position indicates the MS does not
participate with the privilege. Optimally, there are no records
3530 ata MS which impliesall supportedprivileges interop-
erate fully with other MSsaccordingto the present disclosure.

APPLE

EXHIBIT 1001 - PAGE 0336

APPLE
EXHIBIT 1001 - PAGE 0337

US 8,639,267 B2
145

FIG. 35E depicts a preferred embodimentofa Group Data
Record (GRPDR) 3540 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A GRPDR 3540 is the main data record for
defining a group. A group identifier (group ID) field 3540a
contains a unique numbergenerated for the record 3540 to
distinguish it from all other records 3540 maintained. Field
3540a is to be maintained similarly to as described for ficld
3500a (e.g. primary key column, correlation generation,
facilitates well performing I/O). An ownerinformation (info)
field 35405 provides who the owner (creator and/or main-
tainer) is ofthe GRPDR 3540. Field 35405 is to be maintained
similarly to as described for field 35005 (e.g. embodiments
for like ID andtypepair, two (2) fields, removal because MS
user information understood to be owner). A group namefield
3540c provides the nameof the group.

FIG. 36A depicts a preferred embodimentofa Description
Data Record (DDR) 3600 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A DDR 3600 is for maintaining description
information for certain constructs. A description ID field
3600a provides an identifier of the data record associated to
the description field 3600c. For example, values maintained
to field 3600a are used forjoining data records in queries in an
SQL embodiment. Values maintained to field 3600a include
values of granting ID field 3500a, grant ID field 3510a, a
privilege ID (e.g. as candidateto field 3530a), ID field 3500c,
ID field 3500e, charter ID field 3700a, action ID field 3750a,
parameter ID field 3775a, group ID field 3540a, or any other
ID field for associating a description. A description type field
36005 contains the type of data record to be associated (e.g.
joined) to the description field 3600c. Values maintained to
field 36004 include Permission, Grant, Privilege, ID, Charter,
Action, Parameter, or Group in accordance with a value of
field 3600a. Field 3600c contains a description, for example
a user defined text string, to be associated to the data
describedby fields 3600a and 36008. Alternate embodiments
will movethe description data to a new field ofthe data record
being associatedto, or distinct record definitions 3600-) may
be defined for any subset of relationship/association to pre-
vent data access performanceofonerelationship/association
from impacting performance accesses of another relation-
ship/association maintained (analogous to distinct embodi-
ments for GADR 3520).

FIG. 36B depicts a preferred embodimentofa History Data
Record (HDR) 3620 for discussing operations of the present
disclosure, derived from the grammar of FIGS. 30A through
30E. A HDR 3620is for maintaining history information for
certain constructs. A history ID field 3620a provides an iden-
tifier of the data record associated to the history field 3620c.
For example, values maintained to field 3620a are used for
joining data records in queries inan SQL embodiment. Values
maintainedto field 3620a include values of granting ID field
3500a, grant ID field 3510a,a privilege ID (e.g. as candidate
to field 3530a), ID field 3500c, ID field 3500, charter IDfield
3700a, action ID field 3750a, parameter ID field 3775a,
group ID field 3540a, or any other ID field for associating a
history. A history type field 36205 contains the type of data
record to be associated (e.g. joined) to the history field 3620c.
Values maintainedto field 36206 include Permission, Grant,
Privilege, ID, Charter, Action, Parameter, or Group in accor-
dance with a value of field 3620a. Field 3620c contains a

history, for example a collection of fields for describing the
creation and/or maintenance of data associated to the data

describedbyfields 3620a and 36205. Alternate embodiments
will movethe history data to new field(s) of the data record
being associatedto, or distinct record definitions 3620-x may

20

25

30

35

40

45

50

146

be defined for any subset of relationship/association to pre-
vent data access performanceofonerelationship/association
from impacting performance accesses of another relation-
ship/association maintained (analogous to distinct embodi-
ments for GADR 3520). Another embodiment may break out
subfields offield 3620c to fields 3620c-1, 3620c—2, 3620c-3,

etc. for individual fields accesses (e.g. see CreatorInfo and
Modifierlnfo sub-fields).

FIG. 36C depicts a preferred embodiment of a Time speci-
fication Data Record (TDR) 3640 for discussing operations of
the present disclosure, derived from the grammar of FIGS.
30A through 30E. A TDR 3640 is for maintaining time spec
information for certain constructs. A time spec ID field 3640a
provides an identifier of the data record associated to the time
spec field 3640c. For example, values maintained to field
3640qare used for joining data records in queries in an SQL
embodiment. Values maintainedto field 3640a include values

of granting ID field 3500a, grant ID field 3510a,a privilege
ID (e.g. as candidate to field 3530a), charter ID field 3700a,
action ID field 3750a, or any other ID field for associating a
time spec (specification). A time spec type field 36406 con-
tains the type of data record to be associated (e.g. joined) to
the time spec field 3640c. Values maintained to field 36405
include Permission, Grant, Privilege, Charter, or Action in
accordance with a value offield 3640a. Field 3640c contains

a time spec, for example one or morefields for describing the
date/time(s) for which the data associated to the data
described by fields 3640a and 36406 is applicable, enabled,
or active. For example, permissions can be granted as enabled
for particular time period(s). Alternate embodiments will
move the time spec data to new field(s) of the data record
being associatedto, or distinct record definitions 3640-w may
be defined for any subset of relationship/association to pre-
vent data access performanceofonerelationship/association
from impacting performance accesses of another relation-
ship/association maintained (analogous to distinct embodi-
ments for GADR 3520). Another embodiment may break out
subfields offield 3640c to fields 3640c-1, 3640c—2, 3620c-3,
etc. Field 3640c (and sub-fields if embodiment applicable)
can describe specific date/time(s) or date/time period(s). Yet
another embodiment, maintains plural TDRsfor a data record
of ID field 3640a. Field 3640c is intended to qualify the
associated data of fields 3640a and 36405 for being appli-
cable, enabled, or active at future time(s), past time(s), or
current time(s). An alternate embodimentoffield 3640c may
include a special tense qualifier as defined below:

Past (“P”’): indicates that the associated data record (e.g.
permission, charter, action, etc) applies to all WDR
information maintained to LBX History 30;

Self Past (“SP”): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to only
WDRinformation maintained to LBX History 30 for the
MSowninghistory 30;

Other Past (“OP”’): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to only
WDRinformation maintained to LBX History 30 forall
MSsother than the one owning history 30;

Future (““F’’): indicatesthat the associated data record (e.g.
permission, charter, action, etc) applies to all WDRs
created/received (e.g. inserted to queue 22) in the future
bythe MS(<e. after configuration made);

SelfFuture (“SF”): indicatesthat the associated data record
(e.g. permission, charter, action, etc) applies to all
WDRscreatedin thefuture (e.g. inserted to queue 22) by
the MSfor its own whereabouts(i.e. after configuration
made);

APPLE

EXHIBIT 1001 - PAGE 0337

APPLE
EXHIBIT 1001 - PAGE 0338

US 8,639,267 B2
147

Other Future (‘OF’): indicates that the associated data
record (e.g. permission, charter, action, etc) appliesto all
WDRsreceived(e.g. inserted to queue 22) in the future
by the MSfor other MS whereabouts(i.e. after configu-
ration made);

All (“A”): indicates that the associated data record (e.g.
permission, charter, action, etc) applies to all WDRs
created/received in the future by the MS (i.e. after con-
figuration made) and WDRsalready contained by queue
22;

Self All (“SA”): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to all
WDRscreated in the future by the MSfor its own where-
abouts (i.e. after configuration made) and WDRsalready
contained by queue 22 for the MS;

Other All (“OA”): indicates that the associated data record
(e.g. permission, charter, action, etc) applies to all
WDRsreceived in the future by the MS for other MS
whereabouts(i.e. after configuration made) and WDRs
already contained by queue 22 for other MSs; and/or

Any combination of above (e.g. “SF,OA,OP”)
A syntactical equivalent may be specified for subsequent
internalization causing configurations to immediately take
effect. Another embodiment qualifies which set of MSs to
apply time specification for, but this is already accomplished
below in the preferred embodiment through specifications of
conditions. Yet another embodimentprovides an additional
qualifier specification for which WDRsto apply the time
specification: WDRs maintained by the MS (e.g., to queue
22), inbound WDRsas communicated to the MS, outbound
WDRsas communicated from the MS; for enabling applying
of time specifications before and/or after privileges/charters
are applied to WDRs with respect to an MS. Blocks 3970,
4670 and 4470 may be amended to include processing for
immediately checking historical information maintained at
the MS whichprivileges/charters have relevance, for example
after specifying a historical time specification or special tense
qualifier.

FIG. 36D depicts a preferred embodiment of a Variable
Data Record (VDR) 3660 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A VDR 3660 contains variable information that
maybeinstantiated. A record 3660 provide a single place to
define an encoding that is instantiated in many places. One
advantage is for saving on encoding sizes. An ownerinfor-
mation (info) field 3660a provides who the owner(creator
and/or maintainer) is of the VDR 3660. Field 3660ais to be
maintained similarly to as described for field 35005 (e.g.
embodiments for like ID and typepair, two (2)fields, removal
because grantor information understood to be owner). Vari-
able name field 36605 contains the variable namestring,
variable type field 3660c contains the variable type, and vari-
able value field 3660d contains the value(s) ofthe variable for
instantiation. Preferably, field 3660d remainsin its original
form until the variable is instantiated. For example, in an
X.409 embodiment,field 3660d contains the X.409 encoding
datastream (including the overall length for starting bytes) of
the variable value. In a programming source, XML,or other
syntactical embodiment (of grammar of FIGS. 30A through
30F), field 3660d contains the unelaborated syntax in text
form for later processing (e.g. stack processing). Thus,field
3660d may be a BLOB (Binary Large Object) or text. Pref-
erably, field 3660d is not elaborated, or internalized, until
instantiated. When a variable is set to another variable name,
field 3660d preferably contains the variable name and the
variable type field 3660c indicates Variable. Preferably,field

10

15

20

25

35

40

45

50

148

3660d handles varying length data well for performance, or
an alternate embodimentwill provide additional VDRfield(s)
to facilitate performance.

FIG. 37A depicts a preferred embodiment of a Charter
Data Record (CDR) 3700 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. A CDR 3700is the main data recordfor defining
acharter. A charter identifier (charter ID) field 3700a contains
a unique numbergenerated for the record 3700 to distinguish
it from all other records 3700 maintained. Field 3700ais to be

maintained similarly to as described for field 3500a (e.g.
primary key column,correlation generation, facilitates well
performingI/O). Grantee and Grantor information is linked to
with a match offield 3700¢ with 3500a. An alternate embodi-

ment will require no Grantee or Grantor specification for a
charter(e.g. charters maintained and used at the user’s MS).
An owner information (info) field 37004 provides who the
owner(creator and/or maintainer) is of the CDR 3700. Field
37006 is to be maintained similarly to as describedforfield
35006 (e.g. embodiments for like ID and type pair, two (2)
fields, removal because MS user information understood to
be owner). An expressionfield 3700c contains the expression
containing one or more conditions for when to perform
action(s) of action field 3700d. Preferably, field 3700c
remains in its original form until the conditions are to be
elaborated, processed, or internalized. For example, in one
X.409 embodiment,field 3700c contains the X.409 encoding
datastream for the entire Expression TLV. In the preferred
syntactical embodiment (programming source code, XML
encoding, programming source code enhancement, or the
like), field 3700c contains the unelaborated syntax in text
form for later stack processing of conditions and terms and
their subordinate constructs. Thus, field 3700c may be a
BLOB(Binary Large Object) or (preferably) text. An alter-
nate embodimentto field 3700c may use General Assignment
Data Records (GADRs) 3520 to assign condition identifier
fields ofa new condition data recordto charter identifierfields

3700a(to prevent a single field from holding an unpredictable
numberofconditionsfor the charter ofrecord 3700). Actions
field 3700d contains an ordered list of one or more action

identifiers 3750a of actions to be performed whenthe expres-
sion offield 3700c is evaluated to TRUE. For example, in the
preferred syntactical embodiment, whenactionsfield 3700d
contains “45,2356,9738”, the action identifier fields 3750a
have been identified as an orderedlist ofactions 45, 2356 and
9738 whichare each an action identifier contained in anADR
3750 field 3750a. An alternate embodimentto field 3700d

will use General Assignment Data Records (GADRs) 3520 to
assign action identifier fields 3750a to charter identifier fields
3700a(to prevent a single field from holding an unpredictable
numberof actions for the charter of record 3700). Another
alternative embodiment may include Grantor and Grantee
informationas part ofthe CDR(e.g. new fields 3700¢ through
3700+ like fields 3500c through 3500f

FIG. 37B depicts a preferred embodiment of an Action
Data Record (ADR) 3750 for discussing operations of the
present disclosure, derived from the grammar of FIGS. 30A
through 30E. An action identifier (action ID) field 3750a
contains a unique number generated for the record 3750 to
distinguish it from all other records 3750 maintained. Field
3750a is to be maintained similarly to as describedforfield
3500a (e.g. primary key column, correlation generation,
facilitates well performing I/O). An ownerinformation (info)
field 37506 provides who the owner (creator and/or main-
tainer) is of the ADR 3750. Field 37504 is to be maintained
similarly to as described for field 35005 (e.g. embodiments
for like ID andtypepair, two (2) fields, removal because MS

APPLE

EXHIBIT 1001 - PAGE 0338

APPLE
EXHIBIT 1001 - PAGE 0339

US 8,639,267 B2
149

user information understood to be owner). Host field 3750c
contains the host (if not null) for where the action is to take
place. An alternate embodimentallows multiple host specifi-
cation(s) for the action. Host type field 3750d qualifies the
host field 3750c for the type of host(s) to perform the action
(helps interpretfield 3750c). An alternate embodimentallows
multiple host type specifications for multiple host specifica-
tions for the action.Yet another embodimentuses a single host
field 3750c to join to a new table for gathering all applicable
hosts for the action. Command field 3750e contains an

“atomic command”(such as those foundat the top of FIG.
34D), operandfield 3750/contains an “atomic operand”(e.g.
suchasthose foundat the bottom ofFIG. 34D), and parameter
IDsfield 3750g containsalist of null, one or more parameter
identifiers 3775a (an ordered list) for parameters in accor-
dance with the combination of command field 3750e and

operandfield 3750/f(see FIGS. 31A through 31E for example
parameters). There is a list of supported commands,list of
supported operands, and a set of appropriate parameters
depending on the combination ofa particular commandwith
a particular operand. In the preferred syntactical embodi-
ment, when parameter IDsfield 3750g contains “234, 18790”,
the parameter IDs fields 3775a have been identified as an
ordered list of parameters 234 and 18790 which are each a
parameter identifier contained in a record 3775 field 3775a.
An alternate embodiment to field 3750¢ will use General
Assignment Data Records (GADRs) 3520 to assign param-
eter identifier fields 3775a to action identifier fields 3750a (to
preventa single field from holding an unpredictable number
of parameters for the action of record 3750).

FIG. 37C depicts a preferred embodiment of a Parameter
Data Record (PARMDR) 3775 for discussing operations of
the present disclosure, derived from the grammar of FIGS.
30A through 30E. A parameteridentifier (parameterID)field
3775a contains a unique number generated for the record
3775 to distinguish it from all other records 3775 maintained.
Field 3775a is to be maintained similarly to as described for
field 3500a (e.g. primary key column,correlation generation,
facilitates well performing I/O). An ownerinformation (info)
field 37756 provides who the owner (creator and/or main-
tainer) is of the record 3775. Field 37756 is to be maintained
similarly to as described for field 35005 (e.g. embodiments
for like ID andtypepair, two (2) fields, removal because MS
user information understood to be owner). Parameters field
3775c contains one or more parameters pointed to by data of
field 3750g, preferably in a conveniently parsed form. Field
3750g¢ can point to a single record 3775 which contains a
plurality of parameters in field 3775c, or field 3750g can
specify a plurality of parameters pointing to plural records
3775, each containing parameter information in fields 3775c.

In one embodiment, data can be maintained to data records
ofFIGS. 35A through 37C,and FIG. 53, suchthat itis marked
as enabled or disabled (e.g. additional column in SQL table
for enabled/disabled). In another embodiment, a record is
configured in disabled form and then subsequently enabled,
for example with a user interface. Any subset of data records
may be enabledor disabled as a related set. Privileges may be
configured for which subsets can be enabledor disabled by a
user. In another embodiment, privileges themselves enable or
disable a data record, a subsetofdata records, a subset ofdata
record types, or a subset of data of data records.

Data records were derived from the BNF grammar of
FIGS. 30A through 30E. Other data record embodiments may
exist. In a preferred embodiment, data records of FIGS. 35A
through 37C are maintainedto persistent storage ofthe MS. A
MSusedforthefirst time should be loaded with a default set

of data(e.g. starter templates containing defaulted data) pre-

30

40

45

55

150

loadedto the data records for user convenience. Loading may
occur from local storage or from remotely loading, for
example over a communications channel whenfirstinitializ-
ing the MS(e.g. enhanced block 1214 for additionally ensur-
ing the data records are initialized, in particular for the first
startup of an MS). Ownerfields (e.g. field 35005) for pre-
loaded data are preferably set to a system identity for access
and usc byall users. Preferably, a user cannot delete any ofthe
system preloaded data. While the data records themselves are
enough to operate permissions 10 and charters 12 at the MS
after startup, a better performing internalization maybepre-
ferred. For example, block 1216 can be enhanced for addi-
tionally using data records to internalize to a non-persistent
well performing form such as compiled C encoding of FIGS.
34A through 34G (also see FIG. 52), and block 2822 can be
enhancedfor additionally using the internalized data to write
out to data records maintained in persistent storage. Any
compiled/interpreted programming source code may be used
without departing from the spirit and scope ofthe disclosure.
FIGS. 34A through 34G (also see FIG. 52) are an example,
but may provide an internalized form for processing. In any
case, many examplesare provided for encoding permissions
10 and charters 12. Continuing with the data record examples,
for examplea persistent storage form of data records ina MS
local SQL database (e.g. a data record correspondsto a par-
ticular SQL table, and data record fields correspond to the
SQLtable columns), flowcharts 38 through 48Bare provided
for configuration of permissions 10 and charters 12. Data
records are to be maintained in a suitable MS performance
conscious form (may not be an SQL database). An “s”is
addedas a suffix to disclosed acronyms(e.g. GDR)to refer-
ence a plural version of the acronym (e.g. GDRs=Granting
Data Records).

FIGS. 35A through 37C assume an unlimited number of
records(e.g. objects) to accomplish a plurality ofobjects(e.g.
BNF grammarconstructs). In various embodiments, a high
maximum number plurality of the BNF grammar derived
objects is supported wherever possible. In various embodi-
ments, any MS storage or memory means, local or remotely
attached, can be used for storing information of an imple-
mented derivative of the BNF grammarofthis disclosure.
Also, various embodiments may use a different model or
schemato carry out functionality disclosed. Various embodi-
ments may use an SQL database (e.g. Oracle, SQL Server,
Informix, DB2, etc. for storing information, or a non-SQL
database form (e.g. data or record retrieval system, or any
interface for accessible record formatted data).

It is anticipated that management of permissions 10 and
charters 12 be as simple and as lean as possible on an MS.
Therefore, a reasonably small subset of the FIGS. 30A
through 30E grammaris preferably implemented. While
FIGS. 35A through 48B demonstrate a significantly large
derivative of the BNF grammar, the reader should appreciate
that this is to “cover all bases” of consideration, and is not
necessarily a derivative to be incorporated on a MSoflimited
processing capability and resources. A preferred embodiment
is discussed, but much smaller derivatives are even more
preferred on many MSs. Appropriate semaphore lock win-
dowsare assumed incorporated when multiple asynchronous
threads can access the same data concurrently.

FIG. 38 depicts a flowchart for describing a preferred
embodiment of MS permissions configuration processing of
block 1478. FIG. 38 is of Self Management Processing code
18. Processing starts at block 3802 and continues to block
3804 where a list of permissions configuration options are
presentedto the user. Thereafter, block 3806 waits for a user
action in responseto options presented. Block 3806 continues

APPLE

EXHIBIT 1001 - PAGE 0339

APPLE
EXHIBIT 1001 - PAGE 0340

US 8,639,267 B2
151

to block 3808 whena user action has been detected. If block

3808 determines the user selected to configure permissions
data, then the user configures permissions data at block 3810
(see FIG. 39A) and processing continues back to block 3804.
If block 3808 determines the user did not select to configure
permissions data, then processing continues to block 3812. If
block 3812 determines the user selected to configure grants
data, then the user configures grants data at block 3814 (sec
FIG. 40A) and processing continues back to block 3804.If
block 3812 determines the user did not select to configure
grants data, then processing continues to block 3816. Ifblock
3816 determines the user selected to configure groups data,
then the user configures groups data at block 3818 (see FIG.
41A) and processing continues back to block 3804. If block
3816 determines the user did not select to configure groups
data, then processing continues to block 3820. If block 3820
determinesthe user selected to view other’s groups data, then
block 3822 invokes the view other’s info processing of FIG.
42 with GROUP_INFOas a parameter (for viewing other’s
groups data information) and processing continues back to
block 3804. Ifblock 3820 determinesthe userdid not select to

view other’s groups data, then processing continues to block
3824. If block 3824 determines the user selected to view

other’s permissions data, then block 3826 invokes the view
other’s info processing ofFIG. 42 with PERMISSION_INFO
as a parameter (for viewing other’s permissions data infor-
mation) and processing continues back to block 3804. If
block 3824 determinesthe user did not select to view other’s

permissions data, then processing continues to block 3828. If
block 3828 determinesthe user selected to view other’s grants
data, then block 3830 invokes the view other’s info process-
ing of FIG. 42 with GRANT_INFO asa parameter(for view-
ing other’s grants data information) and processing continues
back to block 3804. Ifblock 3828 determines the user did not

select to view other’s grants data, then processing continues
to block 3832. If block 3832 determines the user selected to

send permissionsdata, then block 3834 invokes the send data
processing of FIG. 44A with PERMISSION_INFO as a
parameter (for sending permissions data) and processing con-
tinues back to block 3804. If block 3832 determines the user

did not select to send permissions data, then processing con-
tinues to block 3836. If block 3836 determines the user

selected to configure accepting permissions, then block 3838
invokes the configure acceptance processing of FIG. 43 with
PERMISSION_INFOasa parameter(for configuring accep-
tance of permissions data) and processing continues back to
block 3804. Ifblock 3836 determinesthe user did notselect to

configure accepting permissions, then processing continues
to block 3840. If block 3840 determines the user selected to

exit block 1478 processing, then block 3842 completes block
1478 processing. If block 3840 determines the user did not
select to exit, then processing continues to block 3844 where
all other user actions detected at block 3806 are appropriately
handled, and processing continues back to block 3804.

In an alternate embodiment where the MS maintains GDRs

3500, GRTDRs 3510, GADRs 3520, PDRs 3530 and GRP-
DRs 3540 (and their associated data records DDRs, HDRs
and TDRs)at the MS where they were configured, FIG. 38
may not provide blocks 3820 through 3830. The MS may be
aware of its user permissions and need not share the data(i.e.
self contained). In some embodiments, options 3820 through
3830 cause accessto locally maintained data for others (other
users, MSs,etc) or cause remote access to data when needed
(e.g. from the remote MSs). In the embodiment where no data
is maintained locally for others, blocks 3832 through 3838
may not be necessary. The preferred embodimentis to locally
maintain permissions data for the MSuserandothers(e.g.

5

10

15

20

25

30

35

40

45

50

55

60

65

152

MSusers) which are relevant to provide the richest set of
permissions governing MSprocessing at the MS.

FIGS. 39A through 39B depict flowcharts for describing a
preferred embodiment of MS userinterface processing for
permissions configuration ofblock 3810. With reference now
to FIG. 39A, processing starts at block 3902, continues to
block 3904 for initialization(e.g. a start using database com-
mand), and then to block 3906 where groups the user is a
member of are accessed. Block 3906retrieves all GRPDRs

3540 joined to GADRs 3520 such that the descendant type
field 3520c and descendant ID field 3520d match the user

information, and the ascendant type field 3520a is set to
Group andthe ascendantID field 35204 matchesthe group ID
field 3540a. While there may be different types of groups as
defined for the BNF grammar, the GRPDRis a derivative
embodiment which happens to not distinguish. Alternate
embodiments maycarry a grouptypefield to select appropri-
ate records by group type. Yet another embodiment may not
have a block 3906 with processing at block 3908for gathering
data additionally by groups the user is a member of. Block
3906 continues to block 3908.

Block 3908 accesses all GDRs(e.g. all rows from a GDR
SQLtable) for the user of FIG. 39A matching field 35007 to
Permission, and the ownerinformation ofthe GDRs(e.g.user
information matchesfield 35008) to the user and to groups the
user is a member of(e.g. group information matches field
35008 (e.g. owner type=group, owner id=a group ID field
3540a from block 3906). The GDRsare additionally joined
(e.g. SQL join) with DDRs and TDRs(e.g.fields 36006 and
36405=Permission and by matching ID fields 3600a and
3640a with field 35002). Description field 3600 may provide
a useful description last saved by the user for the permission
entry. Block 3908 mayalso retrieve system predefined data
records for use and/or management. Thereafter, each joined
entry returned at block 3908 is associated at block 3910 with
the corresponding data IDs(at least fields 3500a and 3540a)
for easy unique record accesses whenthe useracts on the data.
Block 3910 also initializes a list cursor to pointtothefirst list
entry to be presented to the user. Thereafter, block 3912 sets
user interface indication for wherethe list cursor is currently
set (e.g. set to highlight the entry), and any list scrolling
settingsare set (thelist is initially not set for being scrolled on
first FIG. 39A processing encounterto block 3912 from block
3910). Block 3912 continues to block 3914 where the entry
list is presented to the user in accordance with the list cursor
and list scroll settings managed for presentation at block
3912. Thereafter, block 3916 waits for user action to the
presented list of permissions data and will continue to block
3918 whena user action has been detected. Presentation of

the scrollable list preferably presents in an entry format such
that an entry containsfields for: DDR 3600 description; GDR
ownerinformation, grantor information and grantee informa-
tion; GRPDR owner information and group nameif appli-
cable; and TDR time spec information. Alternate embodi-
ments will presentless information, or more information(e.g.
GRTDR(s) 3510 and/or PDR(s) 3530 via GADR(s) 3520
joining fields (e.g. 3500a, 3510a, 35205)).

If block 3918 determines the user selected to set the list

cursorto a different entry, then block 3920sets the list cursor
accordingly and processing continues back to block 3912.
Block 3912 alwayssets for indicating wherethe list cursoris
currently pointed and sets for appropriately scrolling the list if
necessary when subsequently presenting the list at block
3914. If block 3918 determines the user did not select to set

the list cursor, then processing continues to block 3922. If
block 3922 determinesthe user selected to add a permission,
then block 3924 accesses a maximum numberofpermissions

APPLE

EXHIBIT 1001 - PAGE 0340

APPLE
EXHIBIT 1001 - PAGE 0341

US 8,639,267 B2
153

allowed (perhaps multiple maximum values accessed), and
block 3926 checks the maximum(s) with the number ofcur-
rent permissions defined. There are many embodiments for
what deems a maximum (forthis user, for a group, forthis
MS,etc). If block 3926 determines a maximum numberof
permissions allowedalready exists, then block 3928 provides
an error to the user and processing continues back to block
3912. Block 3928 preferably requires the user to acknowl-
edge the error before continuing back to block 3912. Ifblock
3926 determines a maximum wasnot exceeded, then block
3930 interfaces with the user for entering validated permis-
sion data and block 3932 adds the data record(s), appropri-
ately updates the list with the new entry, and sets the list
cursor appropriately for the next list presentation refresh,
before continuing back to block 3912. If block 3922 deter-
minesthe user did not want to add a permission, processing
continues to block 3934. Block 3932 will add a GDR 3500,
DDR 3600, HDR 3620 (to set creator information) and TDR
3640. The DDR and TDRare optionally added bythe user, but
the DDR maybe strongly suggested (if not enforced on the
add). This will provide a permission record assigning all
privileges from the grantor to the grantee. Additionally,
blocks 3930/3932 may support adding new GADR(s) 3520
for assigning certain grants and/or privileges (whicharevali-
dated to exist prior to adding data at block 3932).

If block 3934 determines the user selected to delete a

permission, then block 3936 deletes the data record currently
pointed to by the list cursor, modifies the list for the discarded
entry, and sets the list cursor appropriately for the nextlist
presentation refresh, before continuing back to block 3912.
Block 3936 will use the granting ID field 3500a (associated
with the entry at block 3910) to delete the permission. Asso-
ciated GADR(s) 3520, DDR 3600, HDR 3620, and TDR
3640 is also deleted (e.g. preferably with a cascade delete in
a SQL embodiment). If block 3934 determines the user did
not select to delete a permission, then processing continues to
block 3952 of FIG. 39B by wayofoff-page connector 3950.

With reference nowto FIG.39B,ifblock 3952 determines
the user selected to modify a permission, then block 3954
interfaces with the user to modify permission data ofthe entry
pointed to bythe list cursor. The user may change information
of the GDRand any associated records (e.g. DDR, TDR and
GADR(s)). The user may also add the associated records at
block 3954. Block 3954 waits for a user action indicating
completion. Block 3954 will continue to block 3956 whenthe
complete action is detected at block 3954. If block 3956
determinesthe user exited, then processing continues back to
block 3912 by way ofoff-page connector 3998. Ifblock 3956
determines the user selected to save changes made at block
3954, then block 3958 updates the data andthelist is appro-
priately updated before continuing back to block 3912. Block
3958 may update the GDR and/or any associated records(e.g.
GADR(s), DDR, and/or TDR) using the permission id field
3500a (associated to the entry at block 3910). Block 3958 will
update an associated HDRas well. Block 3958 may add new
GADR(s), a DDR and/or TDR as part of the permission
change. If block 3952 determines the user did not select to
modify a permission, then processing continues to block
3960.

If block 3960 determines the user selected to get more
details of the permission (e.g. show all joinable data to the
GDRthat is not already presented with the entry), then block
3962 gets additional details (may involve database queries in
an SQL embodiment) for the permission pointedto by thelist
cursor, and block 3964 appropriately presents the information
to the user. Block 3964 then waits for a user action that the

user is complete reviewing details, in which case processing

25

30

40

45

154
continues back to block 3912. If block 3960 determines the

user did not select to get more detail, then processing contin-
ues to block 3966.

If block 3966 determines the user selected to internalize

permissions data thus far being maintained, then block 3968
internalizes (e.g. as a compiler would) all applicable data
records for well performing use by the MS,and block 3970
saves the internalized form, for example to MS high speed
non-persistent memory. In one embodiment, blocks 3968 and
3970 internalize permission data to applicable C structures of
FIGS. 34A through 34G (also see FIG. 52). In various
embodiments, block 3968 maintains statistics for exactly
what was internalized, and updates any running totals or
averages maintained for a plurality of internalizations up to
this point, or over certain time periods. Statistics such as:
numberofactive constructs; numberofuser construct edits of
particular types; amount of associated storage used, freed,
changed, etc with perhapsa graphicaluserinterface to graph
changes over time; numberofprivilege types specified, num-
ber of charters affected by permissions; and other permission
dependentstatistics. In other embodiments,statistical data is
initialized at internalization time to prepare for subsequent
gathering ofuseful statistics during permission processing.In
embodiments where a tense qualifier is specified for
TimeSpec information, saving the internalized form at block
3970 causes all past and current tense configurations to
becomeeffective for being processed.

Bock 3970 then continues back to block 3912. If block

3966 determinesthe user did notselect to internalize permis-
sion configurations, then processing continues to block 3972.
Alternate embodiments of processing permissions 10 in the
present disclosure will rely upon the data records entirely,
rather than requiring the user to redundantly internalize from
persistent storage to non-persistent storage for use. Persistent
storage may be of reasonably fast performanceto not require
an internalized version of permission 10. Different embodi-
ments may completely overwrite the internalized form, or
update the current internalized form with any changes.

If block 3972 determines the user selected to exit block

3810 processing, then block 3974 cleans up processing thus
far accomplished(e.g. issue a stop using database command),
and block 3976 completes block 3810 processing. If block
3972 determines the user did not selectto exit, then process-
ing continues to block 3978 where all other user actions
detected at block 3916 are appropriately handled, and pro-
cessing continues back to block 3916 by wayoff off-page
connector 3996.

FIGS. 40A through 40B depict flowcharts for describing a
preferred embodiment of MS userinterface processing for
grants configuration of block 3814. With reference now to
FIG.40A,processing starts at block 4002, continues to block
4004 forinitialization (e.g. a start using database command),
and then to block 4006 where groupsthe user is a memberof
are accessed. Block 4006retrieves all GRPDRs 3540 joined
to GADRs3520 suchthat the descendant type field 3520c and
descendant ID field 3520d match the user information, and
the ascendanttypefield 3520ais set to Group and the ascen-
dant ID field 35205 matches the group ID field 3540a. While
there maybe different types ofgroupsas defined for the BNF
grammar, the GRPDR 3540 is a derivative embodiment
which happens to not distinguish. Alternate embodiments
maycarry a group typefield to select appropriate records by
group type. Yet another embodiment maynot have a block
4006 with processing at block 4008 for gathering data addi-
tionally by groups the user is a memberof. Block 4006
continues to block 4008.

APPLE

EXHIBIT 1001 - PAGE 0341

APPLE
EXHIBIT 1001 - PAGE 0342

US 8,639,267 B2
155

Block 4008 accesses all GRTDRs 3510 (e.g.all rows from
a GRTDRSQLtable) for the user of FIG. 40A matching the
owner information of the GRTDRs(e.g. user information
matches field 35105) to the user and to groups the useris a
memberof(e.g. group information matchesfield 3510(e.g.
owner type=group, owner id=group ID field 3540a@ from
block 4006). The GRTDRs3510 are additionally joined(e.g.
SQLjoin) with DDRs3600 and TDRs 3640(e.g.fields 36005
and 36405=Grant and by matchingID fields 3600a and 3640a
with field 3510a). Description field 3600c can provide a use-
ful description last saved by the userfor the grant data, how-
ever the grant nameitself is preferably self documenting.
Block 4008 mayalso retrieve system predefined data records
for use and/or management. Block 4008 will also retrieve
grants within grants to present the entire tree structure for a
grant entry. Block 4008 retrieves all GRTDRs 3510 joined to
other GRTDRs 3510 through GADRs 3520 which will pro-
vide the grant tree structure hierarchy. Grants can be descen-
dantto other grants in a grant hierarchy. Descendanttypefield
3520c set to Grant and descendantID field 3520d for a par-
ticular grant will be a descending grant to an ascending grant
of ascendanttype field 3520a set to Grant and ascendant ID
field 3520b. Therefore, eachlist entry is a grant entry that may
be any node of a grant hierarchy tree. There may be grant
information redundantly presented, for example when a grant
is subordinate to more than one grant, but this helps the user
know a grant tree structure if one has been configured. A
visually presented embodiment maytake the following form
wherein a particular Grant, appears in the appropriate hierar-
chy form.

Grant Info,
Grant Info, ,
Grant Info,

GrantInfo ;,
GrantInfo ,55

GrantInfo ;5,,

Grant Info);
Grant Info

Grant Info;

The list cursor can be pointing to any grant item within a
single grant entry hierarchy. Thus, a single grant entry can be
represented by a visual nesting, ifapplicable. Thereafter, each
joined entry returned at block 4008 is associated at block
4010 with the corresponding data IDs(atleast fields 3510a
and 3540a) for easy unique record accesses whenthe user acts
on the data. Block 4010 alsoinitializes a list cursor to pointto
the first grant item to be presented to the user in the (possibly
nested) list. Thereafter, block 4012 sets user interface indica-
tion for where the list cursor is currently set (e.g. set to
highlight the entry) and anylist scrolling settings are set (the
list is initially not set for being scrolled on first FIG. 40A
processing encounter to block 4012 from block 4010. Block
4012 continues to block 4014 wheretheentry listis presented
to the user in accordance with the list cursor andlist scroll

settings managedfor presentation at block 4012. Thereafter,
block 4016 waits for user action to the presentedlist of grant
data and will continue to block 4018 whena user action has

been detected. Presentation of the scrollable list preferably
presents in an entry format with subordinate grants also ref-
erence-able by thelist cursor. A grant entry of the granttree
presented preferably contains fields for: GRTDR namefield
3510c; GRTDRownerinformation; GRPDR ownerinforma-

10

15

20

25

30

35

40

45

50

55

60

65

156

tion and group nameif applicable; TDR time spec informa-
tion; and DDR information. Alternate embodiments will

present less information, or more information (e.g. join
PDR(s) 3530 via GADR(s) 3520 whenapplicable).

If block 4018 determines the user selected to set the list

cursor to a different grant reference, then block 4020sets the
list cursor accordingly and processing continues back to
block 4012. Block 4012 alwayssets for indicating where the
list cursor is currently pointed and sets for appropriately
scrolling the list if necessary when subsequently presenting
the list at block 4014. If block 4018 determines the user did

not select to set the list cursor, then processing continues to
block 4022. Ifblock 4022 determinesthe user selected to add

a grant, then block 4024 accesses a maximum number of
grants allowed (perhaps multiple maximum values accessed),
and block 4026 checks the maximum(s) with the numberof
current grants defined. There are many embodiments for what
deems a maximum(for this user, fora group, for this MS,etc).
If block 4026 determines a maximum numberof grants
allowedalready exists, then block 4028 provides an error to
the user and processing continues back to block 4012. Block
4028 preferably requires the user to acknowledge the error
before continuing back to block 4012. If block 4026 deter-
mines a maximum wasnot exceeded, then block 4030 inter-
faces with the user for entering validated grant data and block
4032 addsthe data record, appropriately updates the list with
the new entry, and sets the list cursor appropriately for the
nextlist presentation refresh, before continuing back to block
4012. Ifblock 4022 determinesthe user did not wantto adda

grant, processing continues to block 4034. Block 4032 will
add a GRTDR 3500, DDR 3600, HDR 3620 (to set creator
information) and TDR 3640. The DDR and TDRare option-
ally added by the user. Additionally, at block 4030 the user
may add new GADR(s) 3520 for assigning certain grants to
the added grant and/or privileges to the grant (which are
validated to exist prior to adding data at block 4032).

If block 4034 determines the user selected to modify a
grant, then block 4036 interfaces with the user to modify
grant data of the entry pointed to by the list cursor. The user
may change information of the GRTDR andany associated
records (e.g. DDR, TDR and GADR(s)). The user may also
add the associated records at block 4036. Block 4036 waits

for a user action indicating completion. Block 4036 will
continue to block 4038 when the action is detected at block

4036. If block 4038 determinesthe user exited, then process-
ing continues back to block 4012. If block 4038 determines
the user selected to save changes made at block 4036, then
block 4040 updates the data and the list is appropriately
updated before continuing back to block 4012. Block 4040
may update the GRTDRand/or anyassociated records(e.g.
GADR(s), DDR, and/or TDR)using the grant id field 3510a
(associated to the grant item at block 4010). Block 4040 will
update an associated HDRas well. Block 4036 may add new
GADR(s), a DDR and/or TDRaspart of the grant change. If
block 4034 determines the user did not select to modify a
grant, then processing continues to block 4052 by way of
off-page connector 4050.

With reference now to FIG.40B,ifblock 4052 determines
the user selected to get moredetails ofthe grant(e.g. show all
joinable data to the GRTDRthatis not already presented with
the entry), then block 4054 gets additional details (may
involve database queries in an SQL embodiment)for the grant
pointed to by the list cursor, and block 4056 appropriately
presents the informationto the user. Block 4056 then waits for
a user action that the user is complete reviewing details, in
which case processing continues back to block 4012 by way

APPLE

EXHIBIT 1001 - PAGE 0342

APPLE
EXHIBIT 1001 - PAGE 0343

US 8,639,267 B2
157

ofoff-page connector 4098. Ifblock 4052 determinesthe user
did notis select to get more detail, then processing continues
to block 4058.

Ifblock 4058 determinesthe user selected to delete a grant,
then block 4060 determines any data records (e.g. GADR(s)
3520) that reference the grant data record to be deleted. Pref-
erably, no ascending data records (e.g. GRTDRs)are joinable
to the grant data record being deleted, otherwise the user may
improperly delete a grant from a configured permission or
other grant. In the case of descending grants, all may be
cascaded deleted in one embodiment, provided no ascending
grants exist for any ofthe grants to be deleted. The user should
remove ascending references to a grant for deletion first.
Block 4060 continues to block 4062. If block 4062 deter-

minesthere wasatleast one reference, block 4064 provides an
appropriate error with the reference(s) found so the user can
subsequently reconcile. Block 4064 preferably requires the
user to acknowledgethe error before continuing back to block
4012. If no references were found as determined by block
4062, then processing continues to block 4066 for deleting
the data record currently pointed to by the list cursor, along
with any otherrelated records that can be deleted. Block 4066
also modifies the list for the discarded entry(s), and sets the
list cursor appropriately for the next list presentation refresh,
before continuing back to block 4012. Block 4066 will use the
grant ID field 3510a (associated with the entry at block 4010)
to delete a grant. Associated records (e.g. DDR 3600, HDR
3620, and TDR 3640)are also deleted (e.g. preferably with a
cascade delete in a SQL embodiment). If block 4058 deter-
minesthe userdid notselectto delete a grant, then processing
continues to block 4068.

If block 4068 determines the user selected to exit block

3814 processing, then block 4070 cleans up processing thus
far accomplished(e.g. issue a stop using database command),
and block 4072 completes block 3814 processing. If block
4068 determines the user did not selectto exit, then process-
ing continues to block 4074 where all other user actions
detected at block 4016 are appropriately handled, and pro-
cessing continues back to block 4016 by wayoff off-page
connector 4096.

FIGS. 41A through 41B depict flowcharts for describing a
preferred embodiment of MS userinterface processing for
groups configuration of block 3818. With reference now to
FIG. 41A,processingstarts at block 4102, continues to block
4104 forinitialization(e.g. a start using database command),
and then to block 4106 where groups the user is a memberof
are accessed. Block 4106 retrieves all GRPDRs 3540 joined
to GADRs3520 suchthat the descendanttype field 3520c and
descendant ID field 3520d match the user information, and
the ascendanttypefield 3520ais set to Group and the ascen-
dant ID field 3520 matches the group ID field 3540a. While
there maybe different types of groupsas defined for the BNF
grammar, the GRPDR 3540 is a derivative embodiment
which happens to not distinguish. Alternate embodiments
may carry a group typefield to select appropriate records by
group type. Yet another embodiment may not have a block
4106 with processing at block 4108 for gathering data addi-
tionally by groups the user is a memberof. Block 4106
continues to block 4108.

Block 4108 accesses all GRPDRs 3540(e.g.all rows from
a GRPDR SQLtable) for the user of FIG. 41A matching the
owner information of the GRPDRs(e.g. user information
matches field 35405) to the user and to groups the useris a
memberof(e.g. group information matchesfield 35406(e.g.
owner type=group, owner id=group ID field 3540a from
block 4106). The GRPDRs 3540 are additionally joined(e.g.
SQLjoin) with DDRs 3600 and TDRs 3640(e.g.fields 36005

10

15

20

25

30

35

40

45

50

55

60

65

158

and 36404=Group and by matching ID fields 3600a and
3640a with field 3540a). Description field 3600c can provide
a useful description last saved by the user for the group data,
howeverthe group nameitselfis preferably selfdocumenting.
Block 4108 mayalso retrieve system predefined data records
for use and/or management. Block 4108 will also retrieve
groups within groupsto presentthe entire tree structure fora
group entry. Block 4108retrieves all GRPDRs3540 joined to
other GRPDRs 3540 through GADRs 3520 which will pro-
vide the group tree structure hierarchy. Groups can be descen-
dant to other groups in a group hierarchy. Descendant type
field 3520c set to Group and descendantID field 3520d for a
particular group will be a descending group to an ascending
group of ascendant type field 3520a set to Group and ascen-
dant ID field 3520. Therefore, eachlist entry is a group entry
that may be any nodeofa group hierarchy tree. There may be
group information redundantly presented, for example when
a group is subordinate to more than one group,butthis helps
the user know a group tree structure if one has been config-
ured. A visually presented embodiment maytake the follow-
ing form wherein a particular Group, appears in the appropri-
ate hierarchy form.

Group Info,
Group Info,,
Group Info,>

Group Infoj>,
Group Info5

Group Info5,

Group Info,,
Group Info

GroupInfo,

The list cursor can be pointing to any group item within a
single group entry hierarchy. Thus, a single group entry can
be represented by a visual nesting, if applicable. Thereafter,
eachjoined entry returned at block 4108 is associated at block
4110 with the corresponding data IDs(atleast fields 3540a)
for easy unique record accesses whenthe useracts on the data.
Block 4110 also initializes a list cursor to point to the first
group item to be presentedto the userin the (possibly nested)
list. Thereafter, block 4112 sets user interface indication for
wherethelist cursor is currently set (e.g. set to highlight the
entry) and anylist scrolling settings are set (thelist is initially
not set for being scrolled on first FIG. 41A processing
encounter to block 4112 from block 4110). Block 4112 con-
tinues to block 4114 where the entry list is presented to the
user in accordance with thelist cursor andlist scroll settings
managed for presentation at block 4112. Thereafter, block
4116 waits for user action to the presentedlist of group data
and will continue to block 4118 when a user action has been

detected. Presentation of the scrollable list preferably pre-
sents in an entry format with subordinate groupsalso refer-
ence-able by the list cursor. A group entry of the group tree
presented preferably contains fields for: GRPDR namefield
3540c; GRPDR ownerinformation; owning GRPDR owner
information and group name if applicable; TDR time spec
information; and DDR information. Alternate embodiments
will present less information, or more information(e.g. join to
specific identities via GADR(s) 3520 whenapplicable).

If block 4118 determines the user selected to set the list

cursorto a different group entry, then block 4120 sets the list
cursor accordingly and processing continues back to block
4112. Block 4112 alwayssets for indicating where the list

APPLE

EXHIBIT 1001 - PAGE 0343

APPLE
EXHIBIT 1001 - PAGE 0344

US 8,639,267 B2
159

cursor is currently pointed and sets for appropriately scrolling
the list if necessary when subsequently presenting the list at
block 4114. Ifblock 4118 determinesthe user did notselect to

set the list cursor, then processing continues to block 4122. If
block 4122 determines the user selected to add a group, then
block 4124 accesses a maximum numberof groups allowed
(perhaps multiple maximum values accessed), and block
4126 checks the maximum(s) with the number of current
groups defined. There are many embodiments for what deems
a maximum (for this user, for a group, for this MS,etc). If
block 4126 determines a maximum number of groups
allowed already exists, then block 4128 provides an error to
the user and processing continues back to block 4112. Block
4128 preferably requires the user to acknowledge the error
before continuing back to block 4112. If block 4126 deter-
mines a maximum wasnot exceeded, then block 4130 inter-
faces withtheuserfor entering validated group data and block
4132 adds the data record, appropriately updates thelist with
the new entry, and sets the list cursor appropriately for the
nextlist presentation refresh, before continuing back to block
4112. Ifblock 4122 determinesthe user did not want to add a

group, processing continues to block 4134. Block 4132 will
add a GRTDR 3500, DDR 3600, HDR 3620 (to set creator
information) and TDR 3640. The DDR and TDRareoption-
ally added by the user. Additionally, at block 4130 the user
may add new GADR(S) 3520for assigning certain groups to
the added group and/or identities to the group (which are
validated to exist prior to adding data at block 4132).

If block 4134 determines the user selected to modify a
group, then block 4136 interfaces with the user to modify
group data of the entry pointedto by the list cursor. The user
may change information of the GRPDR andany associated
records (e.g. DDR, TDR and GADR(s)). The user may also
add the associated records at block 4136. Block 4136 waits

for a user action indicating completion. Block 4136 will
continue to block 4138 whenthe complete action is detected
at block 4136. If block 4138 determines the user exited, then
processing continues back to block 4112. Ifblock 4138 deter-
minesthe user selected to save changes madeat block 4136,
then block 4140 updates the data and thelist is appropriately
updated before continuing back to block 4112. Block 4140
may update the GRPDR and/or any associated GADR(s),
DDR,and/or TDR using the group id field 3540associated
to the group item at block 4110. Block 4140 will update an
associated HDRas well. Blocks 4136/4140 may support add-
ing new GADR(s), a DDRand/or TDRas part of the group
change. If block 4134 determines the user did not select to
modify a group, then processing continues to block 4152 by
wayof off-page connector 4150.

With reference nowto FIG.41B,ifblock 4152 determines
the user selected to get more details ofthe group (e.g. show all
joinable data to the GRPDRthatis not already presented with
the entry), then block 4154 gets additional details (may
involve database queries in an SQL embodiment) for the
group pointed to by thelist cursor, and block 4156 appropri-
ately presents the information to the user. Block 4156 then
waits for a user action that the user is complete reviewing
details, in which case processing continues back to block
4112 by way ofoff-page connector 4198. Ifblock 4152 deter-
minesthe userdid not select to get more detail, then process-
ing continues to block 4158.

If block 4158 determines the user selected to delete a

group, then block 4160 determines any data records (e.g.
GADR(s) 3520) that reference the group data record to be
deleted. Preferably, no ascending data records (e.g. GRPDRs)
are joinable to the group data record being deleted, otherwise
the user may improperly delete a group from a configured

25

30

40

45

50

160

permission or other group.In the case of descending groups,
all may be cascadeddeleted in one embodiment, provided no
ascending groups exist for any of the groupsto be deleted.
The user should remove ascending references to a group for
deletion first. Block 4160 continues to block 4162. If block

4162 determines there wasat least one reference, block 4164
provides an appropriate error with the reference(s) found so
the user can subsequently reconcile. Block 4164 preferably
requires the user to acknowledgethe error before continuing
back to block 4112. If no references were found as deter-

mined by block 4162, then processing continues to block
4166 for deleting the data record currently pointed to by the
list cursor, along with any other related records that can be
deleted. Block 4166 also modifies the list for the discarded

entry(s), and sets the list cursor appropriately for the nextlist
presentation refresh, before continuing back to block 4112.
Block 4166 will use the group ID field 3540a (associated with
the entry at block 4110) to delete the group. Associated
records (e.g. DDR 3600, HDR 3620, and TDR 3640) are also
deleted (e.g. preferably with a cascade delete in a SQL
embodiment). Ifblock 4158 determinesthe userdidnotselect
to delete a group, then processing continues to block 4168.

If block 4168 determines the user selected to exit block

3818 processing, then block 4170 cleans up processing thus
far accomplished(e.g. issue a stop using database command),
and block 4172 completes block 3818 processing. If block
4168 determines the user did notselect to exit, then process-
ing continues to block 4174 where all other user actions
detected at block 4116 are appropriately handled, and pro-
cessing continues back to block 4116 by wayoff off-page
connector 4196.

FIG. 42 depicts a flowchart for describing a preferred
embodiment of a procedure for viewing MS configuration
information of others. Processing starts at block 4202 and
continues to block 4204 where an object type parameteris
determined for which information to present to the user as
passed by the caller of FIG. 42 processing (e.g.
GROUP_INFO, PERMISSION_INFO, GRANT_INFO,
CHARTER_INFO, ACTION_INFO or PARAMETER_
INFO). Thereafter, block 4206 performsinitialization (e.g. a
start using database command), and then the user specifies
owner information (criteria), at block 4208, for the object
type data records to present. No privilege is assumed required
for browsing other’s informationsinceit is preferably local to
the MSof the user anyway. Block 4208 continues to block
4210.

In an alternative embodiment, block 4208 appropriately
accesses privileges granted from the ownercriteria to the user
ofFIG. 42 to ensuretheuserhas a privilegeto browsethe data
records (per object type parameter) of the specified owner.
Block 4208 will provide an error when thereis noprivilege,
and will continue to block 4210 when there is a privilege.
Block 4208 mayalso provideauser exit option for continuing
to block 4216 for cases the user cannot successfully specify
ownercriteria. In similar embodiments, there may be a sepa-
rate privilege required for each object type a user may browse.

Block 4210 gets (e.g. SQL selects) data according to the
object type parameter (e.g. GRPDR(s), GDR(s), GRTDR(s),
CDR(s), ADR(s) or PARMDR(s), along with any available
associated joinable data (e.g. DDR(s), HDR(s), TDR(s) and
data records via GADR(s) if applicable), per object type
passed). There are various embodiments to block 4210 in
accessing data: locally maintained data for the ownercriteria
specified at block 4208, communicating with a remote MSfor
accessing the MSofthe ownercriteria to synchronously pull
the data, or sending a request to aremote MSoveran interface
like interface 1926 for then asynchronously receiving by an

APPLE

EXHIBIT 1001 - PAGE 0344

APPLE
EXHIBIT 1001 - PAGE 0345

US 8,639,267 B2
161

interface like interface 1948 for processing. One preferred
embodimentis to locally maintain relevant data. In privilege
enforced embodiments, appropriate privileges are deter-
mined before allowing access to the other’s data.

Thereafter, if block 4212 determines there were no data
records according to the object type passed bythe caller for
the ownercriteria specified at block 4208, then block 4214
provides an crror to the user, and processing continues to
block 4216. Block 4216 performs cleanup ofprocessing thus
far accomplished(e.g. perform a stop using database com-
mand), and then continues to block 4218 for returning to the
caller of FIG. 42 processing. Block 4214 preferably requires
the user to acknowledgethe error before continuing to block
4216.

If block 4212 determinesat least one data record of object
type was found,thenblock 4220 presents a browse-able scrol-
lable list ofentries to the user(i.e. similar to lists discussed for
presentation by FIGS. 39A&B, FIGS. 40A&B, FIGS.
41A&B, FIGS. 46A8B, FIGS. 47A&B or FIGS. 48A&B,per
object typed passed), and block 4222 waits for a useraction in
response to presenting the list. When a user action is detected
at block 4222, processing continues to block 4224. If block
4224 determines the user selected to specify new ownercri-
teria (e.g. for comparison to field 35005, 35105, 35408,
3700, 37506 or 37758, per object type passed) for browse,
then processing continues back to block 4208 for new speci-
fication and applicable processing already discussed for
blocks thereafter. If block 4224 determines the user did not

select to specify new ownercriteria, processing continues to
block 4226.

If block 4226 determines the user selected to get more
detail of a selected list entry, then processing continues to
block 4228 for getting data details of the selected entry, and
block 4230 presents the details to the user, and waits for user
action. Detail presentation 1s similar to getting detail process-
ing discussed for presentation by FIGS. 39A&B, FIGS.
40A&B, FIGS. 41A&B, FIGS. 46A&B, FIGS. 47A&B or
FIGS. 48A&B,per object typed passed. Block 4230 contin-
ues to block 4232 upon a user action (complete/clone).

If block 4232 determines the user action from block 4230

was to exit browse, processing continues to block 4220. If
block 4232 determinesthe user action from block 4230 wasto

clone the data (e.g. to make a copy for user’s own use),
processing continues to block 4234 for accessing permis-
sions. Thereafter, if block 4236 determines the user does not
have permission to clone, processing continues to block 4238
for reporting an error (preferably requiring the user to
acknowledge before leaving block 4238 processing), and
then back to block 4220. If block 4236 determines the user

does have permissionto clone, processing continues to block
4240 wherethedata item browsed is appropriately duplicated
with defaulted fields as though the user ofFIG. 42 processing
had created new data himself. Processing then continues back
to block 4220. Ifblock 4226 determinesthe user did not select

to get more detail on a selected item, then processing contin-
ues to block 4242.

If block 4242 determines the user selected to exit browse

processing, then processing continues to block 4216 already
described. If block 4242 determinesthe user did notselect to

exit, then processing continues to block 4244 where all other
useractions detected at block 4222 are appropriately handled,
and processing continues back to block 4222.

In an alternate embodiment, FIG. 42 will support cloning
multiple entries in one action so that a first user conveniently
makes use ofa second user’s data (like starter template(s)) for
the first user to create/configure new data withoutentering it
from scratch in the other interfaces disclosed. Another

10

15

20

25

30

35

40

45

50

55

60

65

162

embodiment will enforce unique privileges for which data
can be cloned by which user(s).

FIG. 43 depicts a flowchart for describing a preferred
embodimentofa procedure for configuring MSacceptance of
data from other MSs, for example permissions 10 and char-
ters 12. Ina preferred embodiment, permissions 10 and char-
ters 12 contain data for not only the MS 2 but also other MSs
which are relevant to the MS 2 (c.g. MS users are known to
each other). Processing starts at block 4302 and continues to
block 4304 where a parameter passed by a caller is deter-
mined. The parameter indicates which object type (data type)
to configure delivery acceptance (e.g. PERMISSION_INFO,
CHARTER_INFO). Thereafter, block 4306 displays accept-
able methods for accepting data from other MSs, preferably
in a radio button form inavisually perceptible user interface
embodiment. A user is presented with two (2) main sets of
options, the first set preferably being an exclusive selection:

Accept no data (MSwill not accept data from any source);or

Accept all data (MS will accept data from any source); or
Accept data according to permissions (MSwill accept data

according to those sources which have permission to
send certain data (perhapsprivilege also specifies by a
certain method) to the MS).

Andthe secondset being:
Targeted data packet sent or broadcast data packet sent

(preferably one or the other);
Electronic Mail Application;
SMSmessage; and/or
Persistent Storage Update(e.g.file system).

Block 4306 continues to block 4308 where the user makes a

selection in thefirst set, and any numberofselections in the
second set. Thereafter, processing at block 4310 saves the
user’s selections for the object type parameter passed, and
processing returns to the caller at block 4312. LBX process-
ing may haveintelligence for an hierarchy ofattempts such as
first trying to send or broadcast, if that fails send by email, if
thatfails send by SMS message,andifthat fails alert the MS
user for manually copying over the dataat a future time(e.g.
when MSsare in wireless vicinity ofeach other). Block 4306
may provide a user selectable order of the attempt types.
Intelligence can be incorporated for knowing which data was
sent, when it was sent, and whether or notall of the send
succeeded, and a synchronous or asynchronous acknowl-
edgement can be implementedto ensureit arrived safely to
destination(s). Applicable information is preferably main-
tained to LBX history 30 for proper implementation.

In one embodiment, the second set of configurations is
further governed by individual privileges (each send type),
and/or privileges per a source identity. For example, while
configurations of the second set may be enabled, the MS will
only accept data in a form from a source in accordancewith a
privilege which is enabled(set for the source identity). Privi-
lege examples (mayalso each have associated time specifi-
cation) include:

Grant Joe privilege to send all types of data (e.g. charters
and privileges, or certain (e.g. types, contents, features,
any characteristic(s)) charters and/or privileges);

Grant Joe privilege to send certain type of data (e.g. char-
ters or privileges, or certain (e.g. types, contents, fea-
tures, any characteristic(s)) charters and/orprivileges);

Grant Joe privilege to send certain type of data using cer-
tain method (privilege for each data type and method
combination); and/or

Grant Joe privilege to send certain type of data using cer-
tain method(s) (privilege for each data type and method
combination) at certain time(s).

EXHIBIT 1001 - PAGE 0345

APPLE
EXHIBIT 1001 - PAGE 0346

US 8,639,267 B2
163

In another embodiment, there may be other registered appli-
cations (e.g. specified other email applications) which are
candidates in the secondset. This allows more choices for a

receiving application with an implied receiving method (or
user may specify an explicit method given reasonable choices
of the particular application). For example, multiple MS
instant messaging and/or email applications maybeselect-
able in the secondset ofchoices, and appropriately interfaced
to for accepting data from other MSs. This allows specifying
preferred delivery methodsfor data (e.g. charters and/or per-
missions data), and an attemptorder thereof.

In some embodiments,charter data thatis received may be
received by a MSina deactivated form whereby the user of
the receiving MS mustactivate the charters for use (e.g. define
a new charter enabled field 3700e for indicating whether or
not the charter is active (Y=Yes, N=No)). New field 3700e
may also be used by the charter originator for disabling or
enabling for a variety of reasons. This permits a user to
examine charters, and perhaps put them to a test, prior to
putting them into use. Other embodiments support activating
charters (received and/or originated): one at a time, as
selected sets by user specified criteria (any charter character-
istic(s)), all or none, by certain originating user(s), by certain
originating MS(s), or any other desirable criteria. Of course,
privileges are defined for enabling accepting privileges or
charters from a MS,but manyprivileges can be defined for
accepting privileges or charters with certain desired charac-
teristics from a MS.

FIG. 44A depicts a flowchart for describing a preferred
embodimentof a procedure for sending MS data to another
MS.FIG. 44A processing is preferably oflinkable PIP code 6.
The purposeis for the MS ofFIG. 44Aprocessing(e.g.a first,
or sending, MS) to transmit information to other MSs(e.g.at
least a second,or receiving, MS), for example permissions 10
or charters 12. Multiple channels for sending, or broadcasting
should be isolated to modular send processing (feeding from
a queue 24). In an alternative embodiment having multiple
transmission channels visible to processing ofFIG. 44A(e.g.
block 4430), there can be intelligence to drive each channel
for broadcasting on multiple channels,either by multiple send
threads for FIG. 44A processing, FIG. 44A loop processing
on a channellist, and/or passing channel information to send
processing feeding from queue 24. If FIG. 44A does not
transmit directly over the channel(s) (i.e. relies on send pro-
cessing feeding from queue 24), an embodiment mayprovide
means for communicating the channel for broadcast/send
processing when interfacing to queue 24 (e.g. incorporate a
channelqualifier field with send packet inserted to queue 24).

In any case, see detailed explanations of FIGS. 13A
through 13C,as well as supporting exemplifications shown in
FIGS. 50A through 50C, respectively. Processing begins at
block 4402, continues to block 4404 wherethe caller param-
eter passed to FIG. 44A processing is determined (i.e.
OBJ_TYPE), and processing continues to block 4406 for
interfacing with the user to specify targets to send data to, in
context of the object type parameter specified for sending
(PERMISSION_INFO or CHARTER_INFO). An alternate
embodimentwill consult a configuration ofdata for validated
target information. Depending on the present disclosure
embodiment, a user may specify any reasonable supported
(IDIDType) combination of the BNF grammarID construct
(see FIG. 30B)asvalid targets. Validation will validate at least
syntax of the specification. In another embodiment, block
4406 will access and enforce known permissionsfor validat-
ing whichtarget(s) (e.g. grantor(s)) can be specified. Various
embodimentswill also support wildcarding the specifications
for a group of ID targets (e.g. department* forall department

10

15

20

25

30

35

40

45

50

55

60

65

164

groups). Additional target informationis to be specified when
required for sending, for example, ifemail or SMS messageis
to be used as a send method(i.e. applicable destination recipi-
ent addresses to be specified). An alternate embodiment to
block 4406 accesses mappeddelivery addresses from a data-
base, or table, (referred to as a Recipient Address Book
(RAB)) associating a recipient address to a target identity,
therebyalleviating the user from manual specification, and
perhaps allowing the user to save to the RAB for any new
useful RAB data. In another embodiment, block 4428 (dis-
cussed below) accesses the RAB for a recipient address for
the target when preparing the data for sending.

Upon validation at block 4406, processing continues to
block 4408.It is possible the user was unsuccessful in speci-
fying targets, or wanted to exit block 4406 processing. If
block 4408 determines the user did not specify at least one
validated target (equivalent to selecting to exit FIG. 444A
processing), then processing continues to block 4444 where
processing returns to the caller. If block 4408 determines
there is at least one target specified, then block 4410 accesses
LBXhistory 30 to determineif any of the targets have been
sent the specific data already. Thereafter, ifblock 4412 deter-
minesthe most recently updated data for a target has already
been sent, then block 4414 presents an informativeerrorto the
user, preferably requiring user action. Block 4414 continues
to block 4416 when the user performs the action. If block
4416 determines the user selected to ignore the error, then
processing continues to block 4418, otherwise processing
continues back to block 4406 for updating target specifica-
tions.

Block 4418 interfaces with the user to specify a delivery
method. Preferably, there are defaulted setting(s) based on the
last time the user encountered block 4418. Any ofthe “second
set” of options described with FIG. 43 can be made. There-
after, block 4420 logs to LBX history 30 the forthcoming send
attempt and gets the next target from block 4406 specifica-
tions before continuing to block 4422. If block 4422 deter-
mines that all targets have not been processed, then block
4424 determines applicable OBJ_TYPEdata for the target
(e.g. check LBX history 30 for any new data that was not
previously successfully sent), and block 4426gets (e.g. pref-
erably new data,orall, depending on embodiment) the appli-
cable target’s OBJ_TYPE data (permissions or charters)
before continuing to block 4428. Block 4428 formatsthe data
for sending in accordancewith the specified delivery method,
along with necessary packet information (e.g. source identity,
wrapper data, etc) of this loop iteration (from block 4418),
and block 4430 sends the data appropriately. For a broadcast
send, block 4430 broadcasts the information (using a send
interface like interface 1906) by inserting to queue 24 so that
send processing broadcasts data 1302 (e.g. on all available
communications interface(s) 70), for example as far as radius
1306, and processing continues to block 4432. The broadcast
is for reception by data processing systems (e.g. MSs) in the
vicinity (see FIGS. 13A through 13C,as further explained in
detail by FIGS. 50A through 50C which includespotentially
any distance). For a targeted send, block 4430 formats the
data intended for recognition by the receiving target. Block
4430 causes sending/broadcasting data 1302 containing CK
1304, depending on the type of MS, wherein CK 1304 con-
tains information appropriately. In a send email embodiment,
confirmation of delivery status may be used to confirm deliv-
ery with an email interface API to check the COD (Contfir-
mation of Delivery) status, or the sending of the email (also
SMS message) is assumed to have been delivered in one
preferred embodiment.

APPLE

EXHIBIT 1001 - PAGE 0346

APPLE
EXHIBIT 1001 - PAGE 0347

US 8,639,267 B2
165

In an embodiment wherein usual MS communications data

1302 of the MSis altered to contain CK 1304 for listening
MSsin the vicinity, send processing feeding from queue 24,
caused by block 4430 processing, will place information as
CK 1304 embeddedin usual data 1302 at the next opportune
time of sending usual data 1302. This embodiment will
replace synchronous sending success validation of blocks
4432 through 4440 and multiple delivery methods of 4418
(and subsequent loop processing) with status asynchronously
updated by the receiving MS(s)for a single type of delivery
methodselected at block 4418. An alternate embodimentwill

attempt the multiple send types in an appropriate asynchro-
nousthread ofprocessing depending on success ofa previous
attempt. As the MS conducts its normal communications,
transmitted data 1302 contains new data CK 1304 to be

ignored by receiving MSother character 32 processing, but to
be found by listening MSs within the vicinity which antici-
pate presence of CK 1304. Otherwise, when LN-Expanse
deployments have not introduced CK 1304 to usual data 1302
communicated on a receivable signal by MSsin the vicinity,
FIG. 44A sends/broadcasts new data 1302.

For sending an email, SMS message, or other application
delivery method, block 4430 will use the additional target
information (recipient address) specified via block 4406 for
properly sending. Thereafter, block 4432 waits for a synchro-
nous acknowledgementif applicable before either receiving
oneor timing out. If a broadcast was made, one (1) acknowl-
edgement maybeall that is necessary for validation, orall
anticipated targets can be accounted for before deeming a
successful ack. An email, SMS message, or other application
send may be assumedreliable and that an ack wasreceived.
Thereafter, if block 4434 determines an applicable ack was
received (i.e. data successfully sent/received), or none was
anticipated (i.e. assume got it), then processing continues
back to block 4420 for processing any next target(s). Ifblock
4434 determines an anticipated ack was not received, then
block 4436 logs the situation to LBX history 30 andthe next
specified delivery method is accessed. Thereafter, if block
4438 determinesall delivery methods have already been pro-
cessed for the current target, then processing continues to
block 4440 for logging the overall status and providing an
error to the user. Block 4440 may require a user acknowl-
edgement before continuing back to block 4420. If block
4438 determines there is another specified delivery method
for sending, then processing continues back to block 4428 for
sending using the next method.

Referring back to block 4422, if all targets are determined
to have been processed, then block 4442 maintains FIG. 444A
processing results to LBX history 30 and the caller is returned
to at block 4444. In an alternate embodiment to FIG. 44A

processing, a trigger implementation is used for sending/
broadcasting data at the best possible time (e.g. when new/
modified permissions or charters information is made for a
target) as soon aspossible, as soon asa target is detected to be
nearby, or in the vicinity (vicinity is expanded as explained by
FIGS. 50A through 50C), or as soon as theuseris notified to
send (e.g. in response to a modification) and then acknowl-
edges to send. See FIGS. 50A through 50C for explanation of
communicating data from a first MS to a second MS over
greater distances. In another embodiment, background
thread(s) timely poll (e.g. per user or system configurations)
the permissions and/or charters data to determine which data
should be sent, how to sendit, who to send it to, what appli-
cable permissions are appropriate, and whenthe best timeis
to send it. A time interval, or schedule, for sending data to
others on a continual interim basis may also be configured.
This maybe particularly useful as a user starts using a MS for

10

15

20

25

30

35

40

45

50

55

60

65

166

the first time and anticipates making many configuration
changes. ‘he user may start or terminate polling threads as
part of FIGS. 144/14Bprocessing, so that FIG. 44Ais relied
on to make sure permissions and/or charters are communi-
cated as needed. Appropriate blocks of FIGS. 44A&B will
also interface to statistics 14 for reporting successes, failures
and status of FIGS. 44A&B processing.

In sum, FIGS. 44A and 44B provide a LBX peerto peer
method for ensuring permissions and charters are appropri-
ately maintained at MSs, wherein FIG. 44A sends in a peer to
peer fashion and FIG. 44B receives in a peer to peer to
fashion. Thus, permissions 10 and charters 12 are sent from a
first MS to a second MSfor configuring maintaining, enforc-
ing, and/or processing permissions 10 and charters 12 at an
MS. There is no intermediary service required for permis-
sions and charters for LBX interoperability. FIG. 44A dem-
onstrates a preferred push model. A pull model maybealter-
natively implemented. An alternative embodiment may make
a request to a MSforits permissions and/or charters and then
populate its local image of the data after receiving the
response. Privileges would be appropriately validated at the
sending MS(s) and/or receiving MS(s) in order to ensure
appropriate data is sent/received to/from the requesting MS.

FIG. 44B depicts a flowchart for describing a preferred
embodiment ofreceiving MS configuration data from another
MS. FIG. 44B processing describes a Receive Configuration
Data (RxCD)process worker thread, and is of PIP code 6.
There may be many worker threads for the RxCD process,
just as described for a 19xprocess. The receive configuration
data (RxCD)processis to fit identically into the framework of
architecture 1900 as other 192x processes, with specific simi-
larity to process 1942 in that there is data received from
receive queue 26, the RxCD thread(s) stay blocked on the
receive queue until data is received, and a RxCD worker
thread sends data as described (e.g. using send queue 24).
Blocks 1220 through 1240, blocks 1436 through 1456 (and
applicable invocation of FIG. 18), block 1516, block 1536,
blocks 2804 through 2818, FIG. 29A, FIG. 29B, and any
other applicable architecture 1900 process/thread framework
processing is to adapt for the new RxCD process. For
example, the RxCD processis initialized as part of the enu-
meratedset at blocks 1226 (preferably last memberofset) and
2806 (preferably first memberofset) for similar architecture
1900 processing. Receive processing identifies targeted/
broadcasted data (permissions and/or charter data) destined
for the MS of FIG. 44B processing. An appropriate data
format is used, for example the X.409 encoding ofFIGS. 33A
through 33C wherein RxCD thread(s) purpose is for the MS
of FIG. 44B processing to respond to incoming data. It is
recommended that validity criteria set at block 1444 for
RxCD-Maxbeset as high as possible (e.g. 10) relative per-
formance considerationsofarchitecture 1900, to service mul-
tiple data receptions simultaneously. Multiple channels for
receiving data fed to queue 26 are preferably isolated to
modular receive processing.

In an alternative embodiment having multiple receiving
transmission channels visible to the RxCDprocess, there can
be a RxCD workerthread per channelto handle receiving on
multiple channels simultaneously. If RxCD thread(s) do not
receive directly from the channel, the preferred embodiment
ofFIG. 44B would not need to convey channel information to
RxCDthread(s) waiting on queue 24 anyway. Embodiments
could allow specification/configuration of many RxCD
thread(s) per channel.

A RxCDthread processing begins at block 4452 upon the
MSreceiving permission data and/or charter data, continues
to block 4454 wherethe process worker thread count RxCD-

APPLE

EXHIBIT 1001 - PAGE 0347

APPLE
EXHIBIT 1001 - PAGE 0348

US 8,639,267 B2
167

Ct is accessed and incrementedby 1 (using appropriate sema-
phore access (e.g. RxCD-Sem)), and continues to block 4456
for retrieving from queue 26 sent data (using interface like
interface 1948), perhaps a special termination request entry,
and only continues to block 4458 whenarecord of data
(permission/charter data, or termination record) is retrieved.
In one embodiment, receive processing deposits X.409
encoding data as record(s) to queue 26, and may break up a
datastream into individual records of data from an overall

received (or ongoing) datastream. In another embodiment,
XMLis received and deposited to queue 26, or some other
suitable syntax is received as derived from the BNF grammar.
In another embodiment, receive processing receives data in
one format and deposits a more suitable format for FIG. 44B
processing. Receive processing embodiments may deposit
“piece-meal” records of data as sent, “piece-meal” records
broken up from data received, full charter or permission
datastreams and/or subsets thereofto queue 26 for processing
by FIG. 44B.

Block 4456 stays blocked on retrieving from queue 26 until
any recordis retrieved, in which case processing continues to
block 4458. Ifblock 4458 determinesa special entry indicat-
ing to terminate was not found in queue 26, processing con-
tinues to block 4460. There are various embodiments for

RxCDthread(s), thread(s) 1912 and thread(s) 1942 to feed off
a queue 26 for different record types, for example, separate
queues 26A, 26B and 26C,or a thread target field with dif-
ferent record types found at queue 26(e.g. like field 2400a).
In another embodiment, there are separate queues 26C and
26Dfor separate processing of incoming charter and permis-
sion data. In another embodiment, thread(s) 1912 are modi-
fied with logic ofRxCDthread(s) to handle permission and/or
charter data records, since thread(s) 1912 are listening for
queue 26 data anyway. In another embodiment, there are
segregated RxCD threads RxCD-P and RxCD-Cfor separate
permission and charter data processing.

Block 4460 validates incoming data for this targeted MS
before continuing to block 4462. A preferred embodiment of
receive processing already validated the data is intended for
this MS byhaving listened specifically for the data, or by
having already validatedit is at the intended MSdestination
(e.g. block 4458 can continuedirectly to block 4464 (no block
4460 and block 4462 required)). Ifblock 4462 determines the
data is valid for processing, then block 4464 accessesthe data
source identity information (e.g. owner information, sending
MSinformation, grantor/grantee information, etc, as appro-
priate for an embodiment), block 4466 accesses acceptable
delivery methods and/or permissions/privileges for the
source identity to check if the data is eligible for being
received, and block 4468 checksthe result. Depending on an
embodiment, block 4466 may enforcean all or noneprivilege
for accepting the privilege or charter data, or may enforce
specific privileges from the receiving MS (MSuser) to the
sending MS (MSuser) for exactly which privileges or char-
ters are acceptable to be received andlocally maintained.

If block 4468 determines the delivery is acceptable (and
perhapsprivileged,orprivileged per source), then block 4470
appropriately updates the MSlocally with the data (depend-
ing on embodiment of 4466, block 4470 may remove from
existing data at the MSas wellasper privilege(s)), block 4472
completes an acknowledgment, and block 4474 sends/broad-
casts the acknowledgement(ack), before continuing back to
block 4456 for more data. Block 4474 sends/broadcasts the

ack (using a sendinterface like interface 1946)by inserting to
queue 24 so that send processing transmits data 1302, for

15

20

40

45

168

example as far as radius 1306. Embodiments will use the
different correlation methods already discussed above, to
associate an ack with a send.

If block 4468 determines the data is not acceptable, then
processing continues directly back to block 4456. For secu-
rity reasons,it is best not to respond with anerror.It is best to
ignore the data entirely. In another embodiment, an error may
be returned to the sender for appropriate crror processing and
reporting. Referring back to block 4462,if it is determined
that the data is not valid, then processing continues back to
block 4456.

Referring back to block 4458, if a worker thread termina-
tion request was found at queue 26, then block 4476 decre-
ments the RxCD workerthread count by 1 (using appropriate
semaphore access (e.g. RxCD-Sem)), and RxCDthread pro-
cessing terminates at block 4478. Block 4476 mayalso check
the RxCD-Ct value, and signal the RxCD process parent
threadthat all worker threads are terminated when RxCD-Ct

equals zero (0).
Block 4474 causes sending/broadcasting data 1302 con-

taining CK 1304, depending on the type of MS, wherein CK
1304 contains ack information prepared. In the embodiment
wherein usual MS communications data 1302 of the MSis

altered to contain CK 1304 for listening MSsin the vicinity,
send processing feeding from queue 24, caused by block 4474
processing, will place ack information as CK 1304 embedded
in usual data 1302 at the next opportune time of sending usual
data 1302. As the MSconducts its normal communications,
transmitted data 1302 contains new data CK 1304 to be

ignored by receiving MSother character 32 processing, but to
be found by listening MSs within the vicinity which antici-
pate presence of CK 1304. Otherwise, when LN-Expanse
deployments have not introduced CK 1304 to usual data 1302
communicated on a receivable signal by MSsin the vicinity,
FIG. 44B sends/broadcasts new ack data 1302.

In an alternate embodiment, permission and/or charter data
records contain a sent date/time stamp field of when the data
wassent by a remote MS,and a received date/time stampfield
(like field 2490c) is processed at the MS in FIG. 44B process-
ing. This would enable calculating a TDOA measurement
while receiving data (e.g. permissions and/or charter data)
that can then be usedfor location determination processing as
described above.

For other acceptable receive processing, methodsare well
known to those skilled in the art for “hooking” customized
processing into application processing of sought data
received. For example, in an email application, a callback
function API is preferably madeavailable to the present dis-
closure so that every time an applicable received email dis-
tribution is received with specified criteria (e.g. certain sub-
ject, certain attached file name, certain source, or any other
identifiable email attribute(s) (provided bypresent disclosure
processing to API) sent by block 4430, the callback function
(provided by present disclosure processing to the appropriate
API) is invoked for custom processing. In this example, the
present disclosure invokesthe callbackAPI for providing: the
callback function to be invoked, and the email criteria for
triggering invocationofthe callback function; for processing
ofpermissions or charter data. For example, a unique subject
field indicates to the email application that the email item
should be directed by the email application to the callback
function for processing. The presentdisclosure callback func-
tion then parses permissions and/or charter information from
the email item and updates local permissions 10 and/or char-
ters 12. Data received in the email item maybe textual syntax
derived from the BNF grammarin an email body or attached
file form, XML syntax derived from the BNF grammar in

APPLE

EXHIBIT 1001 - PAGE 0348

APPLE
EXHIBIT 1001 - PAGE 0349

US 8,639,267 B2
169

email bodyor attached file form, an X.409 binary encoding in
attached file form, or other appropriate format received with
the email item (e.g. new DocumentInterchange Architecture
(DIA)attribute data, etc). A process return status is preferably
returned bythe callback function, for example for appropriate
email confirmation of delivery processing.

In another embodiment, the present disclosure provides at
least one thread of processing for polling a known API, or
email repository, for sought criteria (e.g. attributes) which
identifies the email ttem as destined for present disclosure
processing. Once the email item(s) are found, they are simi-
larly parsed and processed for updating permissions 10 and/
or charters 12.

Thus, there are well known methodsfor processing data in
context ofthis disclosure for receiving permissions 10 and/or
charters 12 from an originating MS to a receiving MS, for
example when using email. Similarly (callback function or
polling), SMS messages can be used to communicate data 10
and/or 12 from one MSto another MS,albeit at smaller data
exchangesizes. The sending MS maybreak up larger portions
of data which can be sent as parse-able text (e.g. source
syntax, XML, etc. derived from the BNF grammar) to the
receiving MS. It may take multiple SMS messages to com-
municate the data in its entirety.

Regardless of the type of receiving application, those
skilled in the art recognize many clever methodsfor receiving
data in context of a MS application which communicates in a
peer to peer fashion with another MS (e.g. callback
function(s), API interfaces in an appropriate loop which can
remain blocked until sought data is received for processing,
polling knownstorage destinations of data received, or other
applicable processing).

Permission data 10 and charter data 12 may be manually
copied from one MSto anotherover any appropriate commu-
nications connection between the MSs. Permission data 10

and charter data 12 may also be manually copied from one
MSto another MS using available file management system
operations (moveor copyfile/data processing). For example,
a specialdirectory can be defined which upon depositofafile
to it, processing parses it, validates it, and uses it to update
permissions 10 and/or charters 12. Errors found mayalso be
reported to the user, but preferably there are automated pro-
cesses that create/maintain the file data to prevent errors in
processing. Any of a variety of communications wave forms
can be used depending on MScapability.

FIG. 45 depicts a flowchart for describing a preferred
embodiment of MS charters configuration processing of
block 1482. FIG. 45 is of Self Management Processing code
18. Processing starts at block 4502 and continues to block
4504 wherea list of charters configuration options are pre-
sented to the user. Thereafter, block 4506 waits for a user
action in responseto options presented. Block 4506 continues
to block 4508 whena user action has been detected. If block

4508 determines the user selected to configure charters data,
then the user configures charters data at block 4510 (see FIG.
46A) and processing continues back to block 4504.If block
4508 determinesthe user did not select to configure charters
data, then processing continues to block 4512. If block 4512
determines the user selected to configure actions data, then
the user configures actions data at block 4514 (see FIG. 47A)
and processing continues back to block 4504. If block 4512
determines the user did not select to configure actions data,
then processing continues to block 4516. Ifblock 4516 deter-
minesthe user selected to configure parameter data, then the
user configures parameter data at block 4518 (see FIG. 48A)
and processing continues back to block 4504. If block 4516
determinestheuserdidnot select to configure parameterdata,

10

15

20

25

30

35

40

45

50

55

60

65

170

then processing continues to block 4520. Ifblock 4520 deter-
mines the user selected to view other’s charter data, then
block 4522 invokes the view other’s info processing of FIG.
42 with CHARTER_INFOasa parameter(for viewing oth-
er’s charter data) and processing continues back to block
4504. Ifblock 4520 determinesthe user did not select to view

other’s charter data, then processing continues to block 4524.
If block 4524 determines the user selected to view other’s

actions data, then block 4526 invokes the view other’s info
processing of FIG. 42 with ACTION_INFO as a parameter
(for viewing other’s action data) and processing continues
back to block 4504. Ifblock 4524 determinestheuser did not

select to view other’s action data, then processing continues
to block 4528. If block 4528 determines the user selected to

view other’s parameter data, then block 4530 invokes the
view other’s info processing of FIG. 42 with PARA-
METER_INFOas a parameter (for viewing other’s param-
eter data information) and processing continues back to block
4504. Ifblock 4528 determinesthe user did not select to view

other’s parameter data, then processing continues to block
4532. If block 4532 determines the user selected to send

charters data, then block 4534 invokes the send data process-
ing of FIG. 44A with CHARTER_INFOasa parameter(for
sending charters data) and processing continues back to block
4504. Ifblock 4532 determines the userdid not select to send

charters data, then processing continues to block 4536. If
block 4536 determinesthe user selected to configure accept-
ing charters, then block 4538 invokes the configure accep-
tance processing of FIG. 43 with CHARTER_INFO as a
parameter (for configuring acceptance of charters data) and
processing continues back to block 4504. Ifblock 4536 deter-
minesthe user did not select to configure accepting charters,
then processing continues to block 4540. Ifblock 4540 deter-
mines the user selected to exit block 1482 processing, then
block 4542 completes block 1482 processing. If block 4540
determines the user did not select to exit, then processing
continues to block 4544 whereall other useractions detected

at block 4506 are appropriately handled, and processing con-
tinues back to block 4504.

In an alternate embodiment where the MS maintains

GDRs, GADRs, CDRs, ADRS, PARMDRs and GRPDRs
(andtheir associated data records DDRs, HDRs and TDRs)at
the MS wherethey were configured, FIG. 45 maynot provide
blocks 4520 through 4530. The MS maybeawareofits user
charters and need not share the data (i.e. self contained). In
some embodiments, options 4520 through 4530 cause access
to locally maintaineddata for others (other users, MSs,etc) or
cause remote access to data when needed (e.g. from the
remote MSs).In the embodiment where no data is maintained
locally for others, blocks 4532 through 4538 may not be
necessary. In sum, the preferred embodimentis to locally
maintain charters data for the MSuser and others (e.g. MS
users) which are relevant to provide the richest set of charters
governing MSprocessing at the MS.

FIGS. 46A through 46B depict flowcharts for describing a
preferred embodiment of MS userinterface processing for
charters configuration of block 4510. With reference now to
FIG.46A,processingstarts at block 4602, continues to block
4604for initialization (e.g. a start using database command),
and then to block 4606 where groupsthe user is a memberof
are accessed. Block 4606retrieves all GRPDRs 3540 joined
to GADRs3520 suchthat the descendant type field 3520c and
descendant ID field 3520d match the user information, and
the ascendanttypefield 3520ais set to Group and the ascen-
dant ID field 35204 matches the group ID field 3540a. While
there maybe different types ofgroupsas defined for the BNF
grammar, the GRPDRisaderivative embodiment which hap-

APPLE

EXHIBIT 1001 - PAGE 0349

APPLE
EXHIBIT 1001 - PAGE 0350

US 8,639,267 B2
171

pens to not distinguish. Alternate embodiments maycarry a
group typefield to select appropriate records by group type.
Yet another embodiment may not have a block 4606 with
processing at block 4608 for gathering data additionally by
groupsthe user is amemberof. Block 4606 continuesto block
4608.

Block 4608 accesses all CDRs(e.g.all rows from a CDR
SQL table) for the user of FIG. 46A (c.g. user information
matchesfield 37008), and for the groupsthe user is a member
of (e.g. group information matches field 37005 (e.g. owner
type=group, owner id=a group ID field 3540a from block
4606)). The CDRsare additionally joined (e.g. SQL join)
with GDRs, DDRs and TDRs(e.g. fields 35007, 36005 and
36405=Charter and by matching ID fields 3500a, 3600a and
3640a with field 3700a). Description field 3600 can provide
auseful descriptionlast saved bythe user for the charter entry.
Block 4608 mayalso retrieve system predefined data records
for use and/or management. Thereafter, each joined entry
returned at block 4608 is associated at block 4610 with the

corresponding data IDs (at least fields 3700a/3500a and
3540a) for easy unique record accesses when the user acts on
the data. Block 4610 also initializes a list cursor to pointto the
first list entry to be presented to the user. Thereafter, block
4612 sets user interface indication for wherethelist cursor is

currently set (e.g. set to highlight the entry), and anylist
scrolling settings are set (the list is initially not set for being
scrolled onfirst FIG. 46A processing encounter to block 4612
from block 4610). Block 4612 continuesto block 4614 where
the entry list is presentedto the user in accordancewiththelist
cursor andlist scroll settings managed for presentation at
block 4612. Thereafter, block 4616 waits for user action to the
presentedlist ofcharters data and will continue to block 4618
when a user action has been detected. Presentation of the

scrollable list preferably presents in an entry format such that
an entry contains fields for: DDR 3600 description; GDR
ownerinformation, grantor information and grantee informa-
tion; GRPDR owner information and group nameif appli-
cable; CDR information; and TDR time spec information.
Alternate embodiments will presentless information, or more
information (e.g. join to ADR and/or PARMDRinformation).

If block 4618 determines the user selected to set the list

cursorto a different entry, then block 4620 sets the list cursor
accordingly and processing continues back to block 4612.
Block 4612 alwayssets for indicating wherethe list cursoris
currently pointed andsets for appropriately scrolling the list if
necessary when subsequently presenting the list at block
4614. If block 4618 determines the user did not select to set

the list cursor, then processing continues to block 4622. If
block 4622 determinesthe user selected to add a charter, then
block 4624 accesses a maximum numberofcharters allowed

(perhaps multiple maximum values accessed), and block
4626 checks the maximum(s) with the number of current
charters defined. There are many embodiments for what
deems a maximum(forthis user, fora group, for this MS,etc).
If block 4626 determines a maximum numberofcharters

allowed already exists, then block 4628 provides an error to
the user and processing continues back to block 4612. Block
4628 preferably requires the user to acknowledge the error
before continuing back to block 4612. If block 4626 deter-
mines a maximum wasnot exceeded, then block 4630 inter-
faces with the user for entering validated charter data and
block 4632 adds the data record(s), appropriately updates the
list with the new entry, andsets the list cursor appropriately
for the next list presentation refresh, before continuing back
to block 4612. Ifblock 4622 determinesthe user did not want

to add a charter, processing continues to block 4634. Block
4632 will add a CDR, GDR, DDR, HDR(to set creator

10

15

20

25

30

35

40

45

50

55

60

65

172

information) and TDR. The DDR and TDRare optionally
addedbythe user, but the DDR maybe strongly suggested Gf
not enforced on the add). This will provide a charter record.
Additionally, block 4630 may add new ADR(s) and/or
PARMDR(s) (whichare validatedto exist prior to adding data
at block 4632). In one embodiment, a GDRassociated to the
CDRis not added; for indicating the user wants his charter
made available to all other user MSs which are willing to
acceptit.

If block 4634 determines the user selected to delete a

charter, then block 4636 deletes the data record currently
pointed to by the list cursor, modifies thelist for the discarded
entry, and sets the list cursor appropriately for the next list
presentation refresh, before continuing back to block 4612.
Block 4636 will use the Charter ID field 3700a/3500a (asso-
ciated with the entry at block 4610) to delete the charter.
Associated CDR, ADR(s), PARMDR(s), DDR 3600, HDR
3620, and TDR 3640is also deleted (e.g. preferably with a
cascade delete in a SQL embodiment). If block 4634 deter-
minesthe user did not select to delete a charter, then process-
ing continues to block 4652 of FIG. 46B by wayofoff-page
connector 4650.

With reference now to FIG. 46B,ifblock 4652 determines
the user selected to modify a charter, then block 4654 inter-
faces with the user to modify charter data ofthe entry pointed
to bythe list cursor. The user may change information of the
GDR, CDR, ADR and/or PARMDR and any associated
records (e.g. DDR and TDR). The user may also add appli-
cable records at block 4654. Block 4654 waits for a user

action indicating completion. Block 4654 will continue to
block 4656 when the complete action is detected. If block
4656 determines the user exited, then processing continues
back to block 4612 by way of off-page connector 4698. If
block 4656 determinesthe user selected to save changes made
at block 4654, then block 4658 updates the data andthelist is
appropriately updated before continuing back to block 4612.
Block 4658 may update the GDR, CDR, ADR, PARMDR
and/or any associated records (e.g. DDR, and/or TDR) using
the charter id field 3700a/3500a (associated to the entry at
block 4610). Block 4658 will update an associated HDR as
well. Block 4658 may add new CDR, ADR(s), PARMDR(s),
a DDR and/or TDR aspart of the charter change. If block
4652 determines the user did not select to modify a charter,
then processing continues to block 4660.

If block 4660 determines the user selected to get more
details of the charter (e.g. show all joinable data to the GDR
or CDR that is not already presented with the entry), then
block 4662 gets additional details (may involve database
queries in an SQL embodiment) for the charter pointed to by
the list cursor, and block 4664 appropriately presents the
information to the user. Block 4664 then waits for a user

action that the user is complete reviewing details, in which
case processing continues back to block 4612. If block 4660
determines the user did not select to get more detail, then
processing continues to block 4666.

If block 4666 determines the user selected to internalize

charters data thus far being maintained, then block 4668
internalizes (e.g. as a compiler would) all applicable data
records for well performing use by the MS, and block 4670
saves the internalized form, for example to MS high speed
non-persistent memory. In one embodiment, blocks 4668 and
4670 internalize charter data to applicable C structures of
FIGS. 34A through 34G (also see FIG. 52). In various
embodiments, block 4668 maintains statistics for exactly
what was internalized, and updates any running totals or
averages maintained for a plurality of internalizations up to
this point, or over certain time periods. Statistics such as:

APPLE

EXHIBIT 1001 - PAGE 0350

APPLE
EXHIBIT 1001 - PAGE 0351

US 8,639,267 B2
173

numberofactive constructs; numberofuser constructedits of
particular types; amount of associated storage used, freed,
changed, etc with perhapsa graphicaluser interface to graph
changes over time; number of charter expressions, actions,
term types, etc specified, number of charters affected and
unaffected by permissions; and other charter dependent sta-
tistics. In other embodiments, statistical data is initialized at
internalization time to prepare for subsequent gathering of
useful statistics during charter processing. In embodiments
where a tense qualifier is specified for TimeSpec information,
saving the internalized form at block 4670 causesall past and
current tense configurations to becomeeffective for being
processed.

Block 4670 then continues back to block 4612. If block
4666 determinestheuser did not select to internalize charter

configurations, then processing continues to block 4672.
Alternate embodiments of processing charters 12 in the
present disclosure will rely upon the data records entirely,
rather than requiring the user to redundantly internalize from
persistent storage to non-persistent storage for use. Persistent
storage maybe of reasonably fast performanceto not require
an internalized version ofcharters 12. Different embodiments

may completely overwrite the internalized form, or update
the current internalized form with any changes.

If block 4672 determines the user selected to exit block

4510 processing, then block 4674 cleans up processing thus
far accomplished(e.g. issue a stop using database command),
and block 4676 completes block 4510 processing. If block
4672 determines the user did not selectto exit, then process-
ing continues to block 4678 where all other user actions
detected at block 4616 are appropriately handled, and pro-
cessing continues back to block 4616 by wayoff off-page
connector 4696.

FIGS. 47A through 47B depict flowcharts for describing a
preferred embodiment of MS userinterface processing for
actions configuration of block 4514. With reference now to
FIG. 47A,processingstarts at block 4702, continues to block
4704 for initialization(e.g. a start using database command),
and then to block 4706 where groupsthe user is a memberof
are accessed. Block 4706 retrieves all GRPDRs 3540 joined
to GADRs3520 suchthat the descendanttype field 3520c and
descendant ID field 3520d match the user information, and
the ascendanttypefield 3520ais set to Group and the ascen-
dant ID field 3520 matches the group ID field 3540a. While
there maybe different types of groupsas defined for the BNF
grammar, the GRPDR 3540 is a derivative embodiment
which happens to not distinguish. Alternate embodiments
may carry a group typefield to select appropriate records by
group type. Yet another embodiment may not have a block
4706 with processing at block 4708 for gathering data addi-
tionally by groups the user is a member of. Block 4706
continues to block 4708.

Block 4708 accesses all ADRs(e.g.all rows from aADR
SQL table) for the user of FIG. 47A matching the owner
information of the ADRs(e.g. user information matchesfield
37505) to the user and to groups the user is a memberof(e.g.
group information matches field 37505 (e.g. owner
type=group, owner id=group ID field 3540a from block
4706). The ADRsare additionally joined (e.g. SQLjoin) with
DDRs 3600 and TDRs 3640 (e.g. fields 36005 and
36405=Action and by matching ID fields 3600a and 3640a
with field 3750a). Description field 3600c can provide a use-
ful description last saved by theuserforthe action data. Block
4708 mayalso retrieve system predefined data records foruse
and/or management. Thereafter, eachjoined entry returned at
block 4708 is associated at block 4710 with the correspond-
ing data IDs(at least fields 3750a and 3540a) for easy unique

20

30

35

40

45

174
record accesses when the user acts on the data. Block 4710

also initializes a list cursor to point to thefirst action item to
be presentedto the userin the list. Thereafter, block 4712 sets
user interface indication for wherethe list cursor is currently
set (e.g. set to highlight the entry) and any list scrolling
settingsare set (thelist is initially not set for being scrolled on
first FIG. 47A processing encounter to block 4712 from,
block 4710. Block 4712 continues to block 4714 where the

entry list is presented to the user in accordance with thelist
cursor andlist scroll settings managed for presentation at
block 4712. Thereafter, block 4716 waitsfor user action to the
presented list of action data and will continue to block 4718
when a user action has been detected. Presentation of the

scrollable list preferably presents in an entry format refer-
ence-able by the list cursor. An action entry presented pref-
erably contains ADR fields including owner information;
GRPDRownerinformation and group nameif applicable;
TDRtimespec information; and DDRinformation. Alternate
embodimentswill present less information, or more informa-
tion (e.g. join ADR(s) to PARMDR(s)via field(s) 3750g).

If block 4718 determines the user selected to set the list

cursor to a different action entry, then block 4720setsthelist
cursor accordingly and processing continues back to block
4712. Block 4712 always sets for indicating where the list
cursor is currently pointed andsets for appropriately scrolling
the list if necessary when subsequently presenting the list at
block 4714. Ifblock 4718 determinestheuserdid not select to

set the list cursor, then processing continues to block 4722.If
block 4722 determinesthe user selected to add an action, then
block 4724 accesses a maximum numberofactions allowed

(perhaps multiple maximum values accessed), and block
4726 checks the maximum(s) with the number of current
actions defined. There are many embodiments for what
deems a maximum(for this user, fora group, for this MS,etc).
If block 4726 determines a maximum number of actions

allowed already exists, then block 4728 provides an error to
the user and processing continues back to block 4712. Block
4728 preferably requires the user to acknowledge the error
before continuing back to block 4712. If block 4726 deter-
mines a maximum wasnot exceeded, then block 4730 inter-
faces with the user for entering validated action data and
block 4732 addsthe data record, appropriately updates thelist
with the new entry, andsets the list cursor appropriately for
the next list presentation refresh, before continuing back to
block 4712. Ifblock 4722 determinesthe user did not wantto

add an action, processing continues to block 4734. Block
4732 will add anADR, HDR3620(to set creator information)
and TDR 3640. The DDR and TDRare optionally added by
the user. Additionally, at block 4730 the user may add new
PARMDR(s)for theaction.

If block 4734 determines the user selected to modify an
action, then block 4736 interfaces with the user to modify
action data of the entry pointed to by the list cursor. The user
may change information of the ADR and any associated
records (e.g. DDR, TDR). The user mayalso add the associ-
ated records at block 4736. Block 4736 waits for a user action

indicating completion. Block 4736 will continue to block
4738 whenthe action is detected at block 4736. Ifblock 4738

determinesthe user exited, then processing continues back to
block 4712. Ifblock 4738 determinesthe user selected to save

changes madeat block 4736, then block 4740 updatesthe data
and the list is appropriately updated before continuing back to
block 4712. Block 4740 may update the ADR and/or any
associated records (e.g. DDR and/or TDR)using the action id
field 3750a (associated to the action item at block 4710).
Block 4740 will update an associated HDR as well. Block
4736 may add a new a DDRand/or TDRaspart of the action

APPLE

EXHIBIT 1001 - PAGE 0351

APPLE
EXHIBIT 1001 - PAGE 0352

US 8,639,267 B2
175

change. If block 4734 determines the user did not select to
modify an action, then processing continues to block 4752 by
wayof off-page connector 4750.

With reference nowto FIG.47B,ifblock 4752 determines
the user selected to get more details ofthe action (e.g. show all
joinable data to the ADRthatis not already presented with the
entry), then block 4754 gets additional details (may involve
database queries in an SQL embodiment) for the action
pointed to by the list cursor, and block 4756 appropriately
presents the informationto the user. Block 4756 then waits for
a user action that the user is complete reviewing details, in
which case processing continues back to block 4712 by way
ofoff-page connector 4798. Ifblock 4752 determinesthe user
did not select to get more detail, then processing continues to
block 4758.

If block 4758 determines the user selected to delete an

action, then block 4760 determines any data records (e.g.
CDR(s)) that reference the action data record to be deleted.
Preferably, no referencing data records (e.g. CDRs) are join-
able (e.g. field 37004) to the action data record being deleted,
otherwise the user may improperly delete an action from a
configured charter. The user should remove ascendingrefer-
encesto an action for deletion first. Block 4760 continues to
block 4762. If block 4762 determines there wasat least one

CDR reference, block 4764 provides an appropriate error
with the reference(s) found so the user can subsequently
reconcile. Block 4764 preferably requires the user to
acknowledgethe error before continuing back to block 4712.
If no references were found as determined by block 4762,
then processing continues to block 4766 for deleting the data
record currently pointed to by the list cursor. Block 4766 also
modifies the list for the discarded entry, andsets the list cursor
appropriately for the next list presentation refresh, before
continuing back to block 4712. Block 4766 will usethe action
ID field 3750a (associated with the entry at block 4710) to
delete an action. Associated records (e.g. DDR 3600, HDR
3620, and TDR 3640)are also deleted (e.g. preferably with a
cascade delete in a SQL embodiment). If block 4758 deter-
minesthe userdid not select to delete an action, then process-
ing continues to block 4768.

If block 4768 determines the user selected to exit block

4514 processing, then block 4770 cleans up processing thus
far accomplished(e.g. issue a stop using database command),
and block 4772 completes block 4514 processing. If block
4768 determines the user did notselect to exit, then process-
ing continues to block 4774 where all other user actions
detected at block 4716 are appropriately handled, and pro-
cessing continues back to block 4716 by wayoff off-page
connector 4796.

FIGS. 48A through 48B depict flowcharts for describing a
preferred embodiment of MS userinterface processing for
parameter information configuration ofblock 4518. Withref-
erence now to FIG. 48A, processing starts at block 4802,
continues to block 4804 for initialization (e.g. a start using
database command), and then to block 4806 where groupsthe
user is a memberof are accessed. Block 4806retrieves all

GRPDRs3540 joined to GADRs 3520 suchthat the descen-
dant type field 3520c and descendant ID field 3520d match
the user information, and the ascendanttypefield 3520aisset
to Group andthe ascendantID field 3520 matches the group
ID field 3540a. While there maybe different types of groups
as defined for the BNF grammar, the GRPDR 3540 is a
derivative embodiment which happens to not distinguish.
Alternate embodiments maycarry a group typefield to select
appropriate records by group type. Yet another embodiment
may not have a block 4806 with processing at block 4808 for

10

15

20

25

30

35

40

45

50

55

60

65

176

gathering data additionally by groupsthe user is amemberof.
Block 4806 continues to block 4808.

Block 4808 accesses all PARMDRs(e.g. all rows from a
PARMDRSQLtable) for the user of FIG. 48A matching the
owner information of the PARMDRs(e.g. user information
matches field 37755) to the user and to groups the useris a
memberof (e.g. group information matchesfield 37756(e.g.
owner type=group, owner id=group ID field 3540a from
block 4806). The PARMDRsare additionally joined (e.g.
SQLjoin) with DDRs3600 (e.g. field 36005=Parameter and
by matching ID field 3600a with field 3775a). Description
field 3600c can provide a useful description last saved by the
user for the parameter data. Block 4808 mayalso retrieve
system predefined data records for use and/or management.
Thereafter, each joined entry returned at block 4808 is asso-
ciated at block 4810 with the corresponding data IDs(at least
fields 3775a and 3540a) for easy unique record accesses
when the user acts on the data. Block 4810 also initializes a

list cursor to point to the first parameterentry to be presented
to the user in the list. Thereafter, block 4812 sets user inter-

face indication for where the list cursor is currently set (e.g.
set to highlight the entry) and anylist scrolling settings are set
(the list is initially not set for being scrolled onfirst FIG. 48A
processing encounter to block 4812 from block 4810). Block
4812 continues to block 4814 wheretheentry list is presented
to the user in accordance with the list cursor andlist scroll

settings managed for presentation at block 4812. Thereafter,
block 4816 waits for user action to the presented list ofparam-
eter data and will continue to block 4818 whena useraction

has been detected. Presentation of the scrollable list prefer-
ably presents in an entry format reference-able by the list
cursor. A parameter entry presented preferably containsfields
for: PARMDRfield 3775c; GRPDR ownerinformation; own-
ing GRPDRownerinformation and group nameifapplicable;
and DDR information. Alternate embodiments will present
less information, or more information (e.g. commands and
operands parameters may be used with, parameter descrip-
tions, etc).

If block 4818 determines the user selected to set the list

cursorto a different parameterentry, then block 4820 sets the
list cursor accordingly and processing continues back to
block 4812. Block 4812 alwayssets for indicating where the
list cursor is currently pointed and sets for appropriately
scrolling the list if necessary when subsequently presenting
the list at block 4814. If block 4818 determines the user did

not select to set the list cursor, then processing continues to
block 4822. Ifblock 4822 determinesthe user selected to add

a parameter, then block 4824 accesses a maximum numberof
parameter entries allowed (perhaps multiple maximum val-
ues accessed), and block 4826 checks the maximum(s) with
the number of current parameter entries defined. There are
many embodiments for what deems a maximum(forthis user,
for a group, for this MS, etc). If block 4826 determines a
maximum number of parameter entries allowed already
exists, then block 4828 provides an error to the user and
processing continues back to block 4812. Block 4828prefer-
ably requires the user to acknowledge the error before con-
tinuing back to block 4812. Ifblock 4826 determines a maxi-
mum was not exceeded, then block 4830 interfaces with the
user for entering validated parameter data, and block 4832
adds the data record, appropriately updates the list with the
new entry, and sets the list cursor appropriately for the next
list presentation refresh, before continuing back to block
4812. Ifblock 4822 determinesthe user did not wantto adda

parameter entry, processing continues to block 4834. Block

APPLE

EXHIBIT 1001 - PAGE 0352

APPLE
EXHIBIT 1001 - PAGE 0353

US 8,639,267 B2
177

4832 will add a PARMDR, DDR 3600 and HDR3620(to set
creator information). The DDR is optionally added by the
user.

If block 4834 determines the user selected to modify a
parameter entry, then block 4836 interfaces with the user to
modify parameter data of the entry pointed to by the list
cursor. The user may change information of the PARMDR
and any associated records (e.g. DDR). The user may also add
the associated records at block 4836. Block 4836 waits for a

user action indicating completion. Block 4836 will continue
to block 4838 when the complete action is detected at block
4836. If block 4838 determinesthe user exited, then process-
ing continues back to block 4812.If block 4838 determines
the user selected to save changes made at block 4836, then
block 4840 updates the data and the list is appropriately
updated before continuing back to block 4812. Block 4840
may update the PARMDRand/or any associated DDR using
the parameter id field 3775a (associated to the parameter
entry at block 4810). Block 4840 will update an associated
HDRas well. Block 4836 may add a new DDRaspart of the
parameter entry change.Ifblock 4834 determinesthe user did
not select to modify a parameter, then processing continues to
block 4852 by wayofoff-page connector 4850.

With reference nowto FIG.48B,ifblock 4852 determines
the user selected to get more details of the parameterentry,
then block 4854 gets additional details (may involve database
queries in an SQL embodiment) for the parameter entry
pointed to by the list cursor, and block 4856 appropriately
presents the informationto the user. Block 4856 then waits for
a user action that the user is complete reviewing details, in
which case processing continues back to block 4812 by way
ofoff-page connector 4898. Ifblock 4852 determines the user
did not select to get more detail, then processing continues to
block 4858.

If block 4858 determines the user selected to delete a

parameter entry, then block 4860 determines any data records
(e.g. ADR(s)) that reference the parameter data record to be
deleted. Preferably, no referencing data records (e.g. ADRs)
are joinable (e.g. field 3750g) to the parameter data record
being deleted, otherwise the user may improperly delete a
parameter from a configured action. The user should remove
references to a parameter entry for deletionfirst. Block 4860
continues to block 4862. If block 4862 determines there was

at least one reference, block 4864 provides an appropriate
error with the reference(s) found so the user can subsequently
reconcile. Block 4864 preferably requires the user to
acknowledgethe error before continuing back to block 4812.
If no references were found as determined by block 4862,
then processing continues to block 4866 for deleting the data
record currently pointed to bythe list cursor, along with any
other related records that can be deleted. Block 4866 also

modifies the list for the discarded entry(s), and sets the list
cursor appropriately for the next list presentation refresh,
before continuing back to block 4812. Block 4866 will use the
parameter ID field 3775a (associated with the entry at block
4810) to delete the parameter entry. Associated records(e.g.
DDR 3600, and HDR 3620) are also deleted (e.g. preferably
with a cascade delete in a SQL embodiment). If block 4858
determinesthe userdid not select to delete a parameter entry,
then processing continues to block 4868.

If block 4868 determines the user selected to exit block

4518 processing, then block 4870 cleans up processing thus
far accomplished(e.g. issue a stop using database command),
and block 4872 completes block 4518 processing. If block
4868 determines the user did not selectto exit, then process-
ing continues to block 4874 where all other user actions

10

15

25

30

35

40

45

50

55

60

65

178

detected at block 4816 are appropriately handled, and pro-
cessing continues back to block 4816 by wayoff off-page
connector 4896.

FIGS. 39A, 40A, 41A, 46A, 47A and 48A assume a known
identity of the user for retrieving data records. Alternate
embodiments may provide a user interface option (e.g. at
block 3904/4004/41 04/4604/4704/4804) for whetherthe user
wants to usc his own identity, or a different identity (c.g.
impersonate anotheruser, a group, etc). In this embodiment,
processing (e.g. block 3904/4004/4104/4604/4704/4804)
would check permissions/privileges for the user (of FIGS.
39A, 40A, 41A, 46A, 47A and/or 48A) for whether or not an
impersonation privilege was granted by the identity the user
wants to act on behalf of. Ifno such privilege was granted, an
error would be presented to the user. If an impersonation
privilege was granted to the user, then applicable processing
(FIGS. 39A&B, FIGS. 40A&B, FIGS. 41A&B, FIGS.
46A&B, FIGS. 47A&B and/or FIGS. 48A&B) would con-
tinue in context of the permitted impersonated identity. In
another embodiment, an impersonation privilege could exist
from a group to anotheridentity for enforcing who manages
grants for the group (e.g. 3904/4004/4104/4604/4704/4804
considers this privilege for which group identity data can, and
cannot, be managedbythe user). Oneprivilege could govern
who can manageparticular record data forthe group. Another
privilege can manage whocan be maintainedto a particular
group. Yet another embodiment could have a specific imper-
sonation privilege for each of FIGS. 39A&B, FIGS. 40A&B,
FIGS. 41A&B, FIGS. 46A&B, FIGS. 47A&B and/or FIGS.
48A&B. Yet another embodimentuses Grantorfield informa-

tion (e.g. fields 3500c and 3500¢) for matching to the user’s
identity(s) (user and/or group(s)) for processing when the
choice is available (e.g. in a GDR for permissions and/or
charters).

FIGS. 39A, 40A, 414A, 46A, 47A and 48A mayalsoutilize
VDRs 3660 if referenced in any data record fields ofprocess-
ing for elaboration to constructs or values that are required at
a processing block. Appropriate variable name referencing
syntax, or variable namesreferenced in data record fields, will
be used to access VDR information for elaboration to the

value(s) that are actually needed in data record information
when accessed.

FIG. 49A depicts an illustration for preferred permission
data 10 processing in the present disclosure LBX architec-
ture, for example when WDRsare in-process of being main-
tained to queue 22, or being inbound to a MS(referred to
generally as “incoming” in FIG. 49A). Table 4920 depicts
considerations for privilege data (i.e. permission data 10)
resident at the MSof a first identity ID,(grammar ID/ID-
Type), depending on privileges granted in the following sce-
narios:

1) Thefirst identity ID, (Grantor) granting a privilege to a
second identity ID, (Grantee; grammar ID/IDType), as
shownin cell 4924: Privilege data is maintained by ID,
at the ID, MSasis used to govern actions, functionality,
features, and/or behavior for the benefit of ID,, by a)
processing ID, WDRinformation at the ID, MS(pref-
erably, privileges are communicated to ID, MS for
enforcing and/or cloning there), b) processing ID, WDR
information at the ID, MS(privileges locally maintained
to ID,), and c) processing ID, WDRinformationat the
ID, MS(privileges locally maintained to ID,);

2) The first identity ID, (Grantor) granting a privilege to
himself (Grantee), as shown in cell 4922: Preferably,
privilege data in this case is not necessary, no configu-
ration interface is required for this scenario, and an iden-
tity implicitly has all conceivable privileges assigned to

APPLE

EXHIBIT 1001 - PAGE 0353

APPLE
EXHIBIT 1001 - PAGE 0354

US 8,639,267 B2
179

himself by default; however, alternatively privileges
may be appropriate for activating/deactivating function-
ality;

3) The secondidentity ID, (Grantor) granting a privilege to

180

“meoming” in FIG. 49B). Table 4960 depicts considerations
for charter data resident at the MS of a first identity 1D,
(grammar ID/IDType), depending on privileges granted in
the following scenarios:

the first identity (Grantee), as shown in cell 4926: Privi-
lege data is used for informing ID, (or enabling ID, to
clone pera privilege) and to govern actions, functional-
ity, features, and/or behaviorfor the benefit ofID,, by a)
processing ID, WDRinformation at the ID, MS(pref-

nications interface is required for this scenario, and an
identity implicitly has all conceivable privileges
assigned to himself by default; however, alternatively

5
1) Thefirst identity ID, (Grantee) owning a charter for use

at the MS of a second identity ID, (Grantor; grammar
ID/IDType), as shownincell 4964: Charterdata is main-
tained by ID, at the ID, MSforbeing candidate use at the
ID, MSto cause actions, functionality, features, and/or

erably, privileges are communicated to ID, MS for 10 behavior, in accordance with configured permission data
enforcing and/or cloning there), b) processing ID, WDR 10, for the benefit of either ID, or ID, by a) processing
information at the ID, MS(privileges locally maintained ID, WDRinformation at the ID, MS (preferably, char-
to ID,); and c) processing ID, WDRinformationat the ters are communicated to ID, MSfor use there), and b)
ID, MS(privileges locally maintained to ID); and/or processing ID, WDRinformation at the ID, MS(pref-

4) The second identity granting a privilege to himself, as 15 erably, charters are communicated to ID, MS for use
shownin cell 4928: Preferably, privilege data in this case there);
is not necessary, no communications interface is 2) Thefirst identity ID, (Grantee) owning a charter for use
required for this scenario, and an identity implicitly has at his own MS,as shown in cell 4962: Charter data is
all conceivable privileges assigned to himselfby default; maintained locally for local use to cause actions, func-
however, alternatively privileges may be appropriate for 20 tionality, features, and/or behavior, in accordance with
activating/deactivating functionality. configured permission data 10, for the benefit of either

Table 4940 depicts considerations for privilege data (i.e. ID, or ID, by a) processing ID, WDRinformation at the
permission data 10) resident at the MS of a secondidentity ID, MS,and b) processing ID, WDRinformation at the
ID, (grammar ID/IDType), depending on privileges granted ID, MS;
in the following scenarios: 25 3) The second identity ID, (Grantee) owning a charter for

5) A first identity ID, (Grantor) granting a privilege to the use at the MSofthe first identity ID, (Grantor; grammar
secondidentity ID, (Grantee; grammar ID/IDType), as ID/IDType), as shownin cell 4966: Charter data is used
shownin cell 4944: Privilege data is used for informing at the ID, MSfor informing ID, and enforcing cause of
ID, (or enabling ID, to clone per a privilege) and to actions, functionality, features, and/or behavior, in
govern actions, functionality, features, and/or behavior 30 accordance with configured permission data 10, for the
for the benefit of ID,, by a) processing ID, WDRinfor- benefit of either ID, or ID, by a) processing ID, WDR
mation at the ID, MS(preferably, privileges are com- information at the ID, MS(preferably, charters are com-
municated to ID, MS for enforcing and/or cloning municated to ID, MSfor use there), and b) processing
there), b) processing ID, WDR information at the ID, ID, WDRinformation at the ID, MS (preferably, char-
MS(privileges locally maintained to ID,), and c) pro- 35 ters are communicated to ID, MSfor use there); and/or
cessing ID, WDRinformationat the ID, MS(privileges 4) The secondidentity ID, (Grantee) owning a charter at
locally maintained to ID,); his own MS,as shownin cell 4968: Charter data may be

6) Thefirst identity ID, (Grantor) granting a privilege to communicated to the ID, MSfor informing ID,, allow-
himself (Grantee), as shown in cell 4942: Preferably, ing ID, to browse, or allowing ID, to use as a template
privilege data in this case is not necessary, no commu- 40 for cloning and then making/maintaining into ID,’s own

charter, wherein each reason for communicating to the
ID, MS(or processing at the ID, MS) has a privilege
grantable from ID, to ID,.

privileges may be appropriate for activating/deactivat- Table 4980 depicts considerations for charter data residentat
ing functionality; 45 the MS of a second identity ID, (grammar ID/IDType),

7) The secondidentity ID, (Grantor) granting a privilege to depending on privileges granted in the following scenarios:
the first identity (Grantee), as shown in cell 4946: Privi-
lege data is maintained by ID, at the ID, MSasis used to
govern actions, functionality, features, and/or behavior
for the benefit of ID,, by a) processing ID, WDRinfor-
mation at the ID, MS(preferably, privileges are com-
municated to ID, MS for enforcing and/or cloning
there), b) processing ID, WDR information at the ID,
MS(privileges locally maintained to ID,) and c) pro-
cessing ID, WDRinformationat the ID, MS(privileges
locally maintained to ID,); and/or

8) The second identity granting a privilege to himself, as
shownin cell 4948: Preferably, privilege data in this case
is not necessary, no configuration interface is required
for this scenario, and an identity implicitly has all con-
ceivable privileges assigned to himself by default; how-
ever, alternatively privileges may be appropriate foracti-
vating/deactivating functionality.

FIG. 49B depicts an illustration for preferred charter data

50

55

60

5) Thefirst identity ID, (Grantee) owning a charter for use
at the MS ofthe secondidentity ID, (Grantor), as shown
in cell 4984: Charter data is used at the ID, MS for
informing ID, and enforcing causeofactions, function-
ality, features, and/or behavior, in accordance with con-
figured permission data 10, for the benefit of either ID,
or ID, by a) processing ID, WDRinformationat the ID,
MS(preferably, charters are communicated to ID, MS
for use there), and b) processing ID, WDRinformation
at the ID, MS(preferably, charters are communicated to
ID, MSforuse there);

6) Thefirst identity ID, (Grantee) owning a charter for use
at his own MS,as shownin cell 4982: Charter data may
be communicated to the ID, MS for informing ID,,
allowing ID, to browse, or allowing ID, to use as a
template for cloning and then making into ID,’s own
charter, wherein each reason for communicating to the
ID, MS (or processing at the ID, MS) has a privilege

12 processing in the present disclosure LBX architecture, for 65
example when WDRsare in-process of being maintained to
queue 22, or being inboundto a MS(referred to generally as

grantable from ID,to ID,.
7) The secondidentity ID, (Grantee) owning a charter for

use at the MSofthe first identity ID, (Grantor; grammar

APPLE

EXHIBIT 1001 - PAGE 0354

APPLE
EXHIBIT 1001 - PAGE 0355

US 8,639,267 B2
181

ID/IDType), as shownin cell 4986: Charterdata is main-
tained by ID, at the 1D, MS for being candidate use at the
ID, MSto causeactions, functionality, features, and/or
behavior, in accordance with configured permission data
10, for the benefit of either ID, or ID, by a) processing
ID, WDRinformation at the ID, MS (preferably, char-
ters are communicated to ID, MSforuse there), and b)
processing ID, WDRinformation at the ID, MS(pref-
erably, charters are communicated to ID, MS for use
there); and/or

8) The second identity ID, (Grantee) owning a charter at
his own MS, as shown in cell 4988: Charter data is
maintained locally for local use to cause actions, func-
tionality, features, and/or behavior, in accordance with
configured permission data 10, for the benefit of either
ID,or ID, by a) processing ID, WDRinformation atthe
ID, MS,and b) processing ID, WDRinformation atthe
ID, MS.

Various embodiments will implement any reasonable sub-
set of the considerations of FIGS. 49A and 49B,for example
to minimizeor eliminate communicating a user’s permissions
10 and/or charters 12 to another MS,or to prevent storing the
same permissions and/or charters data at more than one MS.
FIGS. 49A and 49B are intended to highlight feasible
embodiments wherein FIG. 49B terminology “incoming”is
used generally for referring to WDRsin-process whichare a)
being maintained (e.g. “incoming” as being maintained to
queue 22); and b) incoming to a particular MS(e.g. “incom-
ing” as being communicated to the MS).

In one subset embodiment, privileges and charters are only
maintained at the MS where they are configured for driving
LBX features and functionality. In another embodiment,
privileges are maintained at the MS where they were config-
ured as well as any MSswhicharerelevant for those configu-
rations, yet charters are only maintainedat the MS where they
are configured. In yet another embodiment, privileges and
charters are maintained at the MS where they were config-
ured, as well as any MSs whichare relevant for those con-
figurations. In another embodiment, a MS maynothaveall
privileges assignedto itself (said to be assigned to the user of
the MS)by default. Privileges may require being enabled as
needed for any users to have the benefits of the associated
LBX features and functionality. Thus, the considerations
highlighted by FIGS. 49A and 49Bareto “cover many bases”
with any subset embodiment within the scopeofthe present
disclosure.

Preferably, statistics are maintained by WITSfor counting
occurrences of each variety of the FIGS. 49A and 49B pro-
cessing scenarios. WITS processing should also keepstatis-
tics for the count by privilege, and by charter, of each appli-
cable WITS processing event which was affected. Other
embodiments will maintain more detailed statistics by MS
ID, Group ID, or other “labels” for categories of statistics.
Still other embodiments will categorize and maintain statis-
tics by locations, time, applications in use at time of process-
ing scenarios, etc. Applicable statistical data can be initialized
at internalization time to prepare for proper gathering of
useful statistics during WITSprocessing.

FIGS. 50A through 50C depict an illustration of data pro-
cessing system wireless data transmissions over some wave
spectrum for further explaining FIGS. 13A through 13C,
respectively. Discussions above for FIGS. 13A through 13C
are expanded in explanation for FIGS. 50A through 50C,
respectively. It is well understood that the DLM 200a (FIGS.
13A and 50A), ILM 10004 (FIGS. 13B and 50B) and
service(s) (FIGS. 13C and 50C) can be capable of communi-
cating bidirectionally. Nevertheless, FIGS. 50A through 50C

10

30

40

45

182

clarify FIGS. 13A through 13C,respectively, with a bidirec-
tional arrow showingdata flow “in the vicinity” of the DLM
200a, ILM 10004, and service(s), respectively. All disclosed
descriptions for FIGS. 13A through 13Care further described
by FIGS. 50A through 50C,respectively.

With reference now to FIG. 50A,“in the vicinity” language
is described in more detail for the MS (e.g. DLM 200a) as
determined by clarificd maximum range of transmission
1306. In some embodiments, maximum wireless communi-
cations range (e.g. 1306) is used to determine whatis in the
vicinity of the DLM 200a. In other embodiments, a data
processing system 5090 may be communicated toas an inter-
mediary point between the DLM 200a and anotherdata pro-
cessing system 5000 (e.g. MSor service) for increasing the
distance of “in the vicinity” between the data processing
systemsto carry out LBX peer to peer data communications.
Data processing system 5090 may further be connected to
another data processing system 5092, by way ofa connection
5094, which is in turn connectedto a data processing system
5000 by wireless connectivity as disclosed. Data processing
systems 5090 and 5092 may bea MS,service, router, switch,
bridge, or any other intermediary data processing system
(between peerto peer interoperating data processing systems
200a and 5000) capable of communicating data with another
data processing system. Connection 5094 maybe of any type
of communications connection, for example any of those
connectivity methods, options and/or systems discussed for
FIG. 1E. Connection 5094 may involve other data processing
systems (not shown) for enabling peer to peer communica-
tions between DLM 200a anddata processing system 5000.
FIG. 50A clarifies that “in the vicinity” is conceivably any
distance from the DLM 200a as accomplished with commu-
nications well knownto those skilled in the art demonstrated

in FIG. 50A. In some embodiments, data processing system
5000 may be connected at some time with a physically con-
nected methodto data processing system 5092, or DLM 200a
may be connected at some time with a physically connected
method to data processing system 5090, or DLM 200a and
data processing system 5000 may be connected to the same
intermediary data processing system. Regardless ofthe many
embodiments for DML 200a to communicate in a LBX peer
to peer mannerwith data processing system 5000, DLM 200a
and data processing system 5000 preferably interoperate in
context ofthe LBX peerto peer architecture. In some embodi-
ments, data processing systems between DLM 200a andthe
data processing 5000 intercept data for tracking, book-keep-
ing, statistics, and for maintaining data potentially accessed
by service informant code 28, however, the LBX peerto peer
modelis preferably notinterfered with.

Data processing system 5000 may be a DLM, ILM,or
service being communicated with by DML 200aas disclosed
in the present disclosure for FIGS. 13A through 13C,or for
FIGS. 50A through 50C. LBX architecture is founded on peer
to peer interaction between MSs without requiring a service
to middleman data, however data processing systems 5090,
5092 and those applicable to connection 5094 can facilitate
the peer to peer interactions. In some embodiments, data
processing systems between DLM 200a andthe data process-
ing 5000 intercept data for tracking, book-keeping,statistics,
and for maintaining data potentially accessed by service
informant code 28, however, the LBX peer to peer modelis
preferably not interfered with. Data processing system 5000
generically represents a DLM, ILM orservice(s) for analo-
gous FIGS. 13A through 13C processing for sending/broad-
casting data such as a data packet 5002 (like 1302/1312).
When a Communications Key (CK) 5004 (like 1304/1314)is
embedded within data 5002, data 5002 is considered usual

APPLE

EXHIBIT 1001 - PAGE 0355

APPLE
EXHIBIT 1001 - PAGE 0356

US 8,639,267 B2
183

communications data (e.g. protocol, voice, or any other data
over conventional forward channel, reverse channel, voice
data channel, data transmission channel, or any other appro-
priate channel) which has been altered to contain CK 5004.
Data 5002 contains a CK 5004 which can be detected, parsed,
and processed whenreceived by an MSorother data process-
ing system in the vicinity (conceivably any distance depend-
ing on embodiment) ofdata processing system 5000 as deter-
mined by the maximum range of transmission 5006 (like
1306/1316). CK 5004 permits “piggy-backing” on current
transmissions to accomplish new functionality as disclosed
herein. Transmissions radiate outin all directions in a manner

consistent with the wave spectrum used, and data carried
thereon may or may not be encrypted (e.g. encrypted WDR
information). The radius 5008 (like 1308/1318) represents a
first range of signal reception from data processing system
5000 (e.g. antenna thereof, perhaps by a MS. Theradius 5010
(like 1310/1320) represents a second range of signal recep-
tion from data processing system 5000 (e.g. antennathereof),
perhaps by a MS.The radius 5011 (like 1311/1322) repre-
sents a third range of signal reception from data processing
system 5000 (e.g. antenna thereof), perhaps by a MS. The
radius 5006 (like 1306/1316) represents a last and maximum
range of signal reception from data processing system 5000
(e.g. antenna thereof), perhaps by a MS(not shown). The time
of transmission from data processing system 5000 to radius
5008 is less than times of transmission from service to radi-

uses 5010, 5011, or 5006. The timeoftransmission from data
processing system 5000 to radius 5010 is less than times of
transmission to radiuses 5011 or 5006. The time of transmis-

sion from data processing system 5000 to radius 5011is less
thantime of transmission to radius 5006. In another embodi-

ment, data 5002 contains a Communications Key (CK) 5004
because data 5002 is new transmitted data in accordance with

the present disclosure. Data 5002 purposeis for carrying CK
5004 information for being detected, parsed, and processed
when received by another MSor data processing system in
the vicinity (conceivably any distance depending on embodi-
ment) of data processing system 5000 as determined by the
maximum range of transmission.

With reference now to FIG. 50B,“in the vicinity” language
is described in more detail for the MS (e.g. ILM 10004) as
determined by clarified maximum range of transmission
1306. In some embodiments, maximum wireless communi-
cations range (e.g. 1306) is used to determine whatis in the
vicinity of the ILM 1000K. In other embodiments, a data
processing system 5090 may be communicatedto as an inter-
mediary point between the ILM 10004 and another data pro-
cessing system 5000 (e.g. MSorservice) for increasing the
distance of “in the vicinity” between the data processing
systems to carry out LBX peer to peer data communications.
Data processing system 5090 may further be connected to
anotherdata processing system 5092, by way ofa connection
5094, whichis in turn connectedto a data processing system
5000 by wireless connectivity as disclosed. Data processing
systems 5090 and 5092 may bea MS,service, router, switch,
bridge, or any other intermediary data processing system
(betweenpeerto peer interoperating data processing systems
10004and 5000) capable ofcommunicating data with another
data processing system. Connection 5094 maybe of any type
of communications connection, for example any of those
connectivity methods, options and/or systems discussed for
FIG. 1E. Connection 5094 may involveother data processing
systems (not shown) for enabling peer to peer communica-
tions between ILM 10004 and data processing system 5000.
FIG. 50Bclarifies that “in the vicinity” is conceivably any
distance from the ILM 10004 as accomplished with commu-

10

15

20

25

30

35

40

45

50

55

60

65

184
nications well knownto those skilled in the art demonstrated

in FIG. 50B. In some embodiments, data processing system
5000 may be connected at some time with a physically con-
nected methodto data processing system 5092, or ILM 1000k
may be connected at some time with a physically connected
method to data processing system 5090, or ILM 10004 and
data processing system 5000 may be connected to the same
intermediary data processing system. Regardless ofthe many
embodiments for ILM 10004 to communicate in a LBX peer
to peer mannerwith data processing system 5000, ILM 1000%
and data processing system 5000 preferably interoperate in
context ofthe LBX peerto peer architecture. In some embodi-
ments, data processing systems between ILM 10004 and the
data processing 5000 intercept data for tracking, book-keep-
ing, statistics, and for maintaining data potentially accessed
by service informant code 28, however, the LBX peerto peer
modelis preferably notinterfered with.

With reference now to FIG. 50C,“in the vicinity” language
is described in more detail for service(s) as determined by
clarified maximum range of transmission 1316. In some
embodiments, maximum wireless communications range
(e.g. 1316) is used to determine whatis in the vicinity of the
service(s). In other embodiments, a data processing system
5090 may be communicated to as an intermediary point
between the service(s) and another data processing system
5000 (e.g. MS)for increasing the distanceof“in the vicinity”
betweenthe data processing systems to carry out LBX peerto
peer data communications. Data processing system 5090 may
further be connected to another data processing system 5092,
by wayofa connection 5094, whichis in turn connected to a
data processing system 5000 by wireless connectivity as dis-
closed. Data processing systems 5090 and 5092 may be a MS,
service, router, switch, bridge, or any other intermediary data
processing system (between peer to peer interoperating data
processing system service(s) and 5000) capable of commu-
nicating data with another data processing system. Connec-
tion 5094 may be of any type of communications connection,
for example any of those connectivity methods, options and/
or systems discussed for FIG. 1E. Connection 5094 may
involve other data processing systems (not shown) for
enabling peer to peer communications between service(s) and
data processing system 5000. FIG. 50C clarifies that “in the
vicinity” is conceivably any distance from the service(s) as
accomplished with communications well known to those
skilled in the art demonstrated in FIG. 50C. In some embodi-

ments, data processing system 5000 may be connected at
some time with a physically connected method to data pro-
cessing system 5092, or service(s) may be connected at some
time with a physically connected methodto data processing
system 5090, or service(s) and data processing system 5000
may be connected to the same intermediary data processing
system. Regardless of the many embodiments for service(s)
to communicate in a LBX peer to peer manner with data
processing system 5000, service(s) and data processing sys-
tem 5000 preferably interoperate in context of the LBX peer
to peer architecture. In some embodiments, data processing
systems between service(s) and the data processing 5000
intercept data for tracking, book-keeping, statistics, and for
maintaining data potentially accessed by service informant
code 28, however, the LBX peer to peer model is preferably
notinterfered with.

In an LN-expanse, it is important to know whether or not
WDRinformation is of value for locating the receiving MS,
for example to grow an LN-expanse with newly located MSs.
FIGS. 50A through 50C demonstrate that WDR information
sources may be great distances (over a variety of communi-
cations paths) from a particular MS receiving the WDRinfor-

APPLE

EXHIBIT 1001 - PAGE 0356

APPLE
EXHIBIT 1001 - PAGE 0357

US 8,639,267 B2
185

mation. Carrying intermediary system indication is well
knownin the art, for example to know the number of hops of
a communications path. The preferred embodiment uses
communicationsreferencefield 1100¢to maintain whetheror
not the WDR encountered any intermediate systems, for
example as identified with hops, network address change(s),
channel extender transmission indications, or any pertinent
data to indicate whether the WDRencountered anything other
than a wireless transmission(e.g. directly between the send-
ing MSand receiving MS). This provides FIG. 26B with a
meansto qualify the peek at block 2634 for only those WDRs
which show field 1100g to be over a single wireless connec-
tion from the source to the MS(.e. block 2634 to read as
“Peek all WDRSfrom queue 22 for confidence>confidence
floor and most recentin trailing f{(WTV) period of time and
field 1100g indicating a wireless connected source over no
intermediary systems”). Field 1100g would be set intelli-
gently for all WDRsreceived and processed by the MS(e.g.
inserted to queue 22). In another embodiment, fields 1100e
and 1100f are used to indicate that the WDR can berelied
upon for triangulating a new location of the MS (e.g. block
2660 altered to get the next WDR from the REMOTE_MSlist
whichdid not arrive except through a single wireless path). In
other embodiments,the correlation (e.g. field 1100) can be
used to know whetherit involved morethan a single wireless
communications path. The requirementis to be able to dis-
tinguish between WDRsthat can contribute to locating a MS
and WDRswhichshould not be used to locate the MS. In any
case, WDRsare always useful for peer to peer interactions as
govermedbyprivileges and charters (see WITSfiltering dis-
cussed below).

In other embodiments, the WDRfields 1100e and 1100f
information is altered to additionally contain the directly
connected system whereabouts (e.g. intermediary system
5090 whereabouts) so that the MS(e.g. 10004) can use that
WDRinformation relevant for locatingitself (e.g. triangulat-
ing the MS whereabouts). This ensures that a MSreceivesall
relevant WDRs from peers and also uses the appropriate
WDRinformation for determining its own location. FIG. 26B
would distinguish between the data that describes the remote
MSwhereabouts from the data useful for locating the receiv-
ing MS. A preferred embodimentalwayssets an indicator to
at least field 1100e, 1100f or 1100g for indicating that the
WDRwas in transit through one or more intermediary
system(s). This provides the receiving MSwiththe ability to
know whether or not the WDR wasreceived directly from a
wireless in-range MS versus a MS which can be communi-
cated with so that the receiving MS can judiciously process
the WDRinformation (see WITSfiltering discussed below).

An alternate embodiment supports WDR information
source systems whichare not in wireless range for contribut-
ing to location determination of a MS. For example, a system
can transmit WDR information outboundin anticipation of
whenit will be received by a MS, given knowledge of the
communication architecture. Outbound date/time informa-

tion is strategically set along with other WDRinformation to
facilitate making a useful measurement at a receiving MS
(e.g. TDOA). The only requirementis the WDR conform to a
MSinterface and be “true” to how fields are set for LBX

interpretation and appropriate processing, for example to
emulate a MS transmitting useful WDR information.

WITSfiltering provides a methodfor filtering out (or in)
WDRswhich maybeofuse for locating the receiving MS,or
are of use for permission and/or charter processing. Support-
ing ranges beyonda range within wireless range to a MS can
cause a massive number ofWDRsto bevisible at a MS. Thus,
only those WDRs which are of value, or are candidate for

10

15

20

25

30

35

40

45

50

55

60

65

186

triggering permissions or charter processing, are to be pro-
cessed. WITS filtering can use the source information (e.g.
MSID) or any other WDRfields, or any combination ofWDR
fields to make a determination if the WDR deserves further

processing. The longer range embodiment of FIGS. 50A
through 50C preferably incorporates a send transmission for
directing the WDRsto MSswhichhave candidateprivileges
and/or charters in place, rather than a broadcast for commu-
nicating WDRs. Broadcasting can flood a network and may
inundate MSswith information for WITSfiltering, however
the multithreaded LBX architecture may processefficiently
even for broadcast data.

In another embodiment, a configuration can be made (user
or system) wherein FIGS. 13A through 13C are applicable,
and non-wireless range originated WDRsare alwaysignored.
For example, a WDR Range Configuration (WRC)indicates
how to perform WITSfilter processing:

1) Ignore WDRs which are originated from a wirelessly
connected source (e.g. within range 1306);

2) Consider all WDRsregardless of source;
3) Ignore all WDRsregardless of source; and/or
4) Ignore WDRswhichare not originated from a wirelessly

connected source.

WDRfields, as described above, are to contain where the
WDRoriginated and any relevant path it took to arrive. Block
1496 may be modified to include new blocks 1496a, 14968,
and 1496c suchthat:

Block 1496a checksto see if the user selected to configure
the WRC—an option for configuration at block 1406
wherein the user action to configure it is detected at
block 1408;

Block 14964 is processed if block 1496a determines the
userdid select to configure the WRC.Block 14966inter-
faces with the user for a WRCsetting (e.g. a block
1496-1 to prepare parameters for FIG. 18 processing,
and a block 14965-2 for invoking the Configure value
procedure of FIG. 18 to set the WRC). Processing then
continues to block 1496c.

Block 1496c is processed if block 1496a determines the
user did notselect to configure the WRC,oras the result
ofprocessing leaving block 14965. Block 1496c handles
other user interface actions leaving block 1408 (e.g.
becomes the “catch all” as currently shown in block
1496 of FIG. 14B).

The WRCis then used appropriately by WITSprocessing for
deciding what to do with the WDRin process. Assuming the
WDRis to be processed further, and the WDRisnot ofuse to
locate the receiving MS, then permissions 10 and charters 12
are still checked for relevance of processing the WDR(e.g.
MSID matchesactive configurations, WDR contains poten-
tially useful information for configurations currently in
effect, etc). In an alternative embodiment, WITSfiltering is
performed at existing permission and charter processing
blocks so as to avoid redundantly checking permissions and
charters for relevance.

FIG. 51A depicts an example of a source code syntactical
encoding embodiment of permissions, derived from the
grammar of FIGS. 30A through 30EF, for example as user
specified, system maintained, system communicated, system
generated, etc. In one embodiment, a user may specify the
source code as a portion of a hosting programming source
code like C, C++, C#, Java, or any other programming lan-
guage. The hosting programming source code compiler or
interpreter shall recognize keywords (e.g. Permissions) to
then uniquely parse and process the source code stream
between associated delimiters (e.g. { ... }) in a unique way,
for example as handled by new compiler/interpreter code, or

APPLE

EXHIBIT 1001 - PAGE 0357

APPLE
EXHIBIT 1001 - PAGE 0358

US 8,639,267 B2
187

with a processing plug-in appropriately invoked by the com-
piler/interpreter. This allows adapting an existing program-
ming environmentto handle the present disclosure with spe-
cific processing for the recognized source code section(s). In
another embodiment, the present disclosure source code is
handled as any other source code ofthe hosting programming
environment through closely adapting the hosting program-
ming source code syntax, incorporating new keywords and
contextual processing, and maintaining data and variables
like other hosting programming environmentvariables.

FIG. 51A showsthat a Permissions block contains “stuff”

between delimiters ({,}) like C, C++, C#, and the Java pro-
gramming languages(all referred hereinafter as Popular Pro-
gramming Languages (PPLs)), except the reserved keyword
“Permissions”qualifies the block which follows. Statements
within the block arealso aligned with syntax ofPPLs. Here is
an in-context description of FIG. 51A:
Text(str)=“Test Case #106729 (context)”;
The str variable is of type Text (i.e. BNF Grammar“text
string’’) andis set with string ““Test Case #106729 (context)”.
Below will demonstrate variable string substitution for the
substring “context” whenstr is instantiated.
Generic(assignPrivs)=“G=Family,Work,\vuloc

[T=>20080402000130.24,<20080428; D=*str; H;]”;
The assignPrivs variable is of type Generic andis set with a
long string containinglots of stuff. Generic tells the internal-
izer to treat the assigned value as text string without any
variable type validation at this time. The BNF grammar
showedthat variables have a type to facilitate validation at
parse time ofwhat has been assigned, howevertype checking
is really not necessary since validation will occur in contexts
whena variable is instantiated anyway. Anothervariable type
(VarType) to introduce to the BNF grammaris “Generic”
wherein anything assigned to the variableis to have its type
delayed until after instantiation (i.e. when referencedlater).
Note that the str variable is not instantiated at this time

(i.e. =the preferred embodiment, however an alternate
embodiment would instantiate str at this time). Below will
demonstrate a Generic variable instantiation.

Groups {
LBXPHONE_USERS= Austin, Davood,Jane, Kris, Mark, Ravi, Sam,
Tim;
“SW Components” = “SM 1.0”, “PIP 1.0”, “PIPGUI 1.0”, “SMGUI1.0”,

“COMM1.0”, “KERNEL 1.1";

Two (2) groups are defined. In this example embodiment,
“Groups”is a reserved keyword identifying a groups defini-
tion block just as “Permissions” did the overall block. The
“LBXPHONE_USERS”groupisset to a simplified embodi-
ment of MS IDs Austin, Davood, etc; and the “SW Compo-
nents” group is set to LBX Phone software modules with
current version numbers. Any specification ofthe BNF Gram-
mar(e.g. group name, group member, etc) with intervening
blanks can be delimited with double quotes to make blanks
significant.

Grants // Can define Grant structure(s) prior to assignment {

}

In this example embodiment, “Grants”is a reserved keyword
identifying a Grants definition block just as “Permissions”

5

10

15

20

25

30

35

40

45

50

55

60

65

188
did the overall block. Statements within the Grants block are

for defining Grants which maybe usedlater for assigning
privileges. “//” starts a commentline like PPLs, and “/*” .. .
“*/? delimits comment lines like PPLs.

Family=\lbxall[R=OxFFFFFFFF;]
(context=“Family”’)];
A grant named “Family” is assigned the privilege “\lbxall”
and is relevant for all MS types (i.e. OXFFFFFFFF such that
the “R”is a specification for MSRelevance). \Ibxall is the all
inclusive privilege for all LBX privileges. \Ibxall maps to a
unique privilege id (e.g. maintainedto field 3530a, FIGS. 34F
and 52 “unsigned long priv”, etc). Optional specifications are
made with delimiters “[” and “]”, which coincidentally were
used in defining the BNF grammaroptional specifications.
Eachoptional specification can have its own delimiters,orall
optional specifications could have been madein a single pair
of delimiters. The “D”specification is a Description specifi-
cation whichisset to an instantiation ofthestr variable using
a string substitution. Thus, the Descriptionis set to the string
“Test Case #106729 (Family)”.

[D=*str

Work =

[T=YYYYMMDD08:YYYYMMDD17;D="str(context=“Work”);H;] {

i

A grant named “Work”is assigned as a parent grant to other
grant definitions, in which case a delimited block for further
grant definitions can be assigned. Optionalspecifications can
be made for the Work grant prior to defining subordinate
grants either before the Work grant block, or after the block
just prior to the block terminating semicolon (“;”). The Work
grant has been assigned an optional “T”specification for a
TimeSpec qualifying the grantto be in effect for every day of
every month ofevery year for only the times of 8 AM through
5 PM. The Work grant also defined a Description of “Test
Case #106729 (Work)”. The “H”specificationtells the inter-
nalizer to generate History information (e.g. FIGS. 36B, 33A,
34E HISTORY, etc) for the Work grant.
“Department 232”=\geoar,\geode,\nearar,\nearde;
The grant “Department 232” is subordinate to “Work” and
has four (4) privileges assigned, and no optional specifica-
tions.

“Department 458” = [D=“Davoodlyadi’s mgt scope”s] {
“Server Development Team”= ;
“TbxPhone Development Team” =

“Comm Layer Guys” = \mssys;\msbios;
“GUIgirls” = \msguiload;
“Mark and Tim” = \msapps;

hi
hi

The grant “Department 458”is subordinate to “Work”, has an
optional Description specification, and has two (2) subordi-
nate grants defined. The grant “Server Development Team”is
defined, but has noprivileges or optional specifications. The
grant “IbxPhone Development Team” is subordinate to
“Work”, has no optional specifications, and has three (3)
subordinate grants defined. The grant “Comm Layer Guys”
has two (2) privileges assigned (\mssys and \msbios), the
grant “GUIgirls”has one (1) privilege assigned (\msguiload),
and the grant “Mark and Tim” has one (1) privilege
assigned (\msapps).

APPLE

EXHIBIT 1001 - PAGE 0358

APPLE
EXHIBIT 1001 - PAGE 0359

US 8,639,267 B2
189

“Accounting Department” [H;]=\track;
The grant “Accounting Department” is subordinate to
“Work”, has optional History information to be generated,
and has one (1) privilege assigned.
Parents={Mom=\lbxall; Dad=\Ibxall; };
Michael-Friends=\geoarr;\geode;
Jason-Friends=\nearar;\nearde;
‘The grant “Parents”is independent ofthe Work grant(a peer),
has two (2) subordinate grants “Mom”and “Dad”, each with
a single privilege assigned. The grants “Michael-Friends”
and “Jason-Friends” are each independent of other grants,
and each have two (2) privileges assigned. A nested tree
structure of Grants so far compiled which can be used for
privilege assignmentsare:

Family
Work

Department 232
Department 458

Server Development Team
lbxPhone Development Team

Comm Layer Guys
GUIgirls
Mark and Tim

Accounting Department
Parents

Mom
Dad

Michael-Friends
Jason-Friends

The nested structure ofthe source code wasintendedto high-
light the relationship of grants defined. Note that assigning
the Work grant from one ID to anotherID results in assigning
all privileges of all subordinate grants (i.e. \geoar;\geode;
\nearar;\nearde;\mssys;\msbios;\msguiload;\msapps;\track).
Bill: LEXPHONE_USERS[G=\caller;\callee;\trkall;];
The MS ID Billassigns(i.e. Grant specification “G”’) three (3)
privileges to the LBXPHONE_USERSgroup (Le. to each
member of the group). Privileges and/or grants can be
granted. The\caller privilege enablesLBXPHONE_USERS
member MSsto be able to call the Bill MS. The \callee

privilege enables the Bill MS to callLBXPHONE_USERS
member MSs. The \trkall privilege enables LBXPHO-
NE_USERS membersto use the MS local tracking applica-
tion for reporting mobile whereabouts of the Bill MS. The
grants are optional(i.e. “[” and “]’”) because withoutspecific
grants and/orprivileges specified, all privileges are granted.
LBXPHONE_USERS:Bill [G=\callee;\caller;];
Each member of the LBXPHONE_USERSgroup assigns
(i.e. Grant specification “G”) two (2) privileges to the Bill
MS.The\caller privilege enables the Bill MSto be ableto call
any of the members of the LBXPHONE_USERSgroup. The
\callee privilege enables the LBXPHONE_USERS member
MSsto call the Bill MS.

Bill:Sophia;
All system privileges are assigned from Bill to Sophia.
Bill:Brian [*assignPrivs];
The assignPrivs variable is instantiated to “G=Family,Work,
\vuloc [T=>20080402000130.24,<20080428; D=*str; H;]”
as though that configuration were madeliterally as:
Bill: Brian [G=Family,Work,\vuloc
[T=>20080402000130.24,<20080428; D=“Test Case
#106729 (context); H3]];
Note the str variable is now instantiated as well. Bill grants
Brian all privileges defined in the Family grant,all privileges
of the Work grant, and the specific \vuloc privilege. The

10

15

20

25

30

35

40

45

50

55

60

65

190

privilege \vuloc has optional specifications for TimeSpec(i.e.
after 1 minute 30.24 seconds into Apr. 2, 2008 and prior to
Apr. 28, 2008), Description, and History to be generated. The
optional specifications([...]) would haveto be outside ofthe
other optional delimiter specifications (e.g. [G=...][...])
to be specifications for the Permission.
Bill:George [G=\geoall,\nearall;];
Bill assigns two (2) privileges to George.
Michael: Bill [G=Parents,Michael-Friends;];
Michael assigns to Bill the privileges \Ibxall, \geoarr and
\geode.
Jason: Bill [G=Parents,Jason-Friends;];
Jason assigns to Bill the privileges \Ibxall, \nearar and
\nearde.

FIG. 51B depicts an example of a source code syntactical
encoding embodimentofcharters, derived from the grammar
of FIGS. 30A through 30E, for example as user specified,
system maintained, system communicated, system gener-
ated, etc. In one embodiment, a user may specify the source
code as a portion of a hosting programming source code like
C, C++, C#, Java, or any other programming language. The
hosting programming source code compiler or interpreter
shall recognize keywords (e.g. Charters) to then uniquely
parse and process the source code stream between associated
delimiters (e.g. { . . . }) in a unique way, for example as
handled by new internalization (e.g. compiler/interpreter)
code, or with a processing plug-in appropriately invoked by
the internalizer. This allows adapting an existing program-
ming environmentto handle the present disclosure with spe-
cific processing for the recognized source codesection(s). In
another embodiment, the present disclosure source code is
handled as any other source code ofthe hosting programming
environment through closely adapting the hosting program-
ming source code syntax, incorporating new keywords and
contextual processing, and maintaining data and variables
like other hosting programming environmentvariables.

It is important to understand that WDRsin process(e.g. to
queue 22 (_ref), outbound (_O_ref), and inbound (_I_ref))
cause the recognized trigger of WDR processing to scan
charters for testing expressions, and then performing actions
for those expressions which evaluate to true. Expressions are
evaluated within the context of applicable privileges. Actions
are performed within the context of privileges. Thus, WDRs
in processarethe triggering objects for consulting charters at
run time. Depending on the MS hardware and how many
privileged MSsare “in the vicinity”, there may be many(e.g.
dozens) of WDRs in process every second at a MS. Each
WDRin process at a MSis preferably in its own thread of
processing (preferred architecture 1900) so that every WDR
in process has an opportunity to scan charters for conditional
actions.

FIG. 51B shows that a Charters block contains “stuff”

between delimiters ({,}) like PPLs, except the reserved key-
word “Charters” qualifies the block which follows. State-
ments within the block are also aligned with syntax of PPLs.
Here is an in-context description of FIG. 51B:
Condition(cond1)=“(_location @@ \loc_my) [D=“‘Test Case
#104223 (v)”3]”;
The variable cond1 is of type Condition and is set accord-
ingly. Validation of the variable type can occur here since the
type is known. Cond] is a Condition specification with an
optional specification for the Description. Since the type
“Generic” can be used, it may convenientto alwaysusethat.
“ms group’={“Jane”, “George”, “Sally”};
This is another method for specifying a group without a
Groups block. The internalizer preferably treats an assign-
ment using block delimiters outside of any special block

APPLE

EXHIBIT 1001 - PAGE 0359

APPLE
EXHIBIT 1001 - PAGE 0360

US 8,639,267 B2
191

definitions as a group declaration. While there has been no
group hierarchies demonstrated, groups within groups can
certainly be accomplished like Grants.
(((_msid=“Michael”) & *cond1(v=‘Michael’))|

(Cumsid=“‘Jason”) & *cond1(v=‘Jason’))):
Invoke App myscript.cmd (“S”), Notify Autodial 214-405-

6733;
_msid is a WDRTerm indicating to check the condition of the
WDRsmaintainedto the local MS(e.g. processed for insert-
ing to queue 22). The condition _msid=“Michael”testsif the
WDRin process hasa WDR MSID field 1100a equal to the
MS ID Michael. “&” is a CondOp. After instantiation of
cond1 with the string substitution the second condition is
“(location @@ \loc_my) [D=‘‘Test Case #104223 (vy”;]”
which tests the WDR in process(e.g. for insertion to queue
22) for a WDRlocation field 1100c which was at my current
location (loc_myis a system defined atomic term for “my
current location”(i.e. the current location ofthe MS checking
the WDRinprocess)). @@ is an atomic operatorfor“was at”.
There is an optional description specified for the condition to
be generated. The expression formedonthe left hand side of
the colon(:) not only tests for Michael WDRinformation, but
also Jason WDRinformation with the same WDRfield tests.

If the WDRin process (contains a MS ID=Michael AND
Michael’s location was at my current location at some time in
the past), OR (i.e. |CondOp) the WDRin process (contains a
MS ID=Jason AND Jason’s location was at my current loca-
tion at sometimein the past), then the Actions construct(i.e.
right hand side of colon) is acted upon. The “wasat” atomic
operator preferably causes access to LBX History 30 after a
fruitless access to queue 22. It may have beenbetter to specify
another condition for Michael and Jason WDRsto narrow the

search, otherwise ifLBX history is not well pruned the search
may be timely. For example, the variable may have been
better defined priorto use as:
Condition(cond1)=“(_location
[D=Test Case #104223 (v)”3]”;
for recently in vicinity (i.e. within 10 feet) of my location in
last 2 weeks helps narrow the search.

Parenthesis are used to affect how to evaluate the expres-
sion as is customary for an arithmetic expression, and can be
used to determine which construct the optional specifications
are for. Ofcourse, a suitable precedence ofoperators is imple-
mented. So, if the Expression evaluates to true, the actions
shall be processed. There can be one or more actions pro-
cessed. Thefirst action performs an Invoke command with an
Application operand and provides the parameter of
“myscript.cmd(“S”)” which happens to be an executable
script invocable on the particular MS. A parameter of “S”is
passed to the script. The script can perform anything sup-
ported in the processable script at the particular MS. The
second action performs a Notify commandwith an Autodial
operand and provides the parameter of “214-405-6733”.
Notify Autodial will automatically performacall to the phone
number 214-405-6733 from the MS. So, if the MS of this
configuration is currently at a location where Jason or
Michael (in the vicinity) had been at some time before (as
maintained in LBX History ifnecessary, or in last 2 weeks in
refined example), then the two actions are processed. LBX
History 30 will be searched for previous WDR information
saved for Michael and Jason to see ifthe expression evaluates
to true when queue 22 does not contain a matching WDRfor
Michael or Jason.

It is interesting to note that the condition “((locByID_
Michael @@ \loc_my)I(\locByID_Jason @@ \loc_my))”
accomplishes the same expression shown in FIG. 51B
described above. \locRef_is an atomic term for the WDR

(2W)$(10F)\loc_my)

35

40

45

192

location field with the suffix (Ref) referring to the value for
test. \locR e f” is an acceptable format whenthere are sig-
nificant blanks in the suffix for testing against the value ofthe
WDRfield. It is also interesting to note that the expression
“Aloc_my @@ \locByID_Michael)” is quite different. The
expression “(\loc_my @@ \locByID_Michael)”tests if my
current location was at Michael’s location in history, again
checking LBX history. However, the WDR in process only
providedthe trigger to check permissions and charters. There
is no field of the in process WDRaccessed here.
((_I_msid=“Brian”) & (_I_location @ \loc_my) [D=“‘multi-
cond text”;H;]):

Invoke App (myscript.cmd (“B”)) [T=20080302;],
Notify Autodial (214-405-5422);

_I_msid is a WDRTerm indicating to check the condition of
the WDRsinboundto the local MS(e.g. deposited to receive
queue 26). The condition _I_msid=“Brian” tests if the
inbound WDRhas aWDR MSIDfield 1100¢ equal to the MS
ID Brian. “=”is an atomic operator. & is aCondOp. _I_loca-
tion is the contents ofthe inbound WDRlocationfield 1100c,

so that the condition of (_I_location @ \loc_my)tests the
inbound WDRfor a WDRlocationfield 1100c which is at my
current location. @ is an atomic operatorfor “is at’. There is
an optional description specified for the condition as well as
history information to be generated. The expression formed
on the left hand side of the colon (:) tests for inbound WDRs
from Brian wherein Brian is at my (1.e. recetving MS) current
location. Assumingthe expression evaluatesto true, then the
two(2) actions are performed. Theactionsare similar to the
previous example, except the syntax is demonstrated to show
parentheses may or maynot be used for command/operand
parameters. Also, the first action has an optional TimeSpec
specification which mandates that the action only be per-
formed any time during the day of Mar. 2, 2008. Otherwise,
the first action will not be performed. The secondaction is
always performed.

The _I_fidname syntax is a WDRTerm for inbound WDRs
which makes sense for our expression above. A careless pro-
grammer/user could in fact create expressions that may never
occur. For example, if the user specified _O_ instead of ,, L,
then outbound rather than inbound WDRs would betested.

((_O_msid=“Brian”) & (_O_location @ \loc_my)) causes
outbound WDRstobetested(e.g. deposited to send queue 24)
for MS ID=Brian which are at my current location (i.e. cur-
rent location of the MS with the configuration being dis-
cussed). Mixing _,_I_,and_O_ prefixes has certain semantic
implications and must be well thoughtout by the user prior to
making such a configuration. The charter expression is con-
sidered upon an event involving each single WDR and is
preferably not used to compare to a plurality of potentially
ambiguous/unrelated WDRsat the same time. A single WDR
can be both in process locally (e.g. inserted to queue 22) and
inbound to the MS whenreceived from MSsin thevicinity.It
will not be knownthat the WDR meets both criteria until after

it has been inbound andis then being inserted to queue 22.
Likewise, a single WDR can be both in process locally (e.g.
inserted to queue 22) and outbound from the MS. It will not be
knownthat the WDR meets both criteria until after it has been

retrieved from queue 22 and then ready for being sent out-
bound. The programmer/user can create bad configurations
when mixing these syntaxes.It is therefore recommended,but
not required, that users not mix WDRtrigger syntax. Know-
ing a WDRis inboundand then in process to queue 22 is
straightforward (e.g. origination other than “this MS”).
Knowing a WDR was on queue 22 and is outboundis also
straightforward (e.g. origination at outbound=“this MS”).

APPLE

EXHIBIT 1001 - PAGE 0360

APPLE
EXHIBIT 1001 - PAGE 0361

US 8,639,267 B2
193

However, a preferred embodimentprevents mixing these syn-
taxes for triggered processing.
(M_sender=~emailAddrVar [T=<YYYYMMDD18)]):

Notify Indicator (M_sender, \thisms) [D=“Test Case
#104223”; H3];
M_senderis an AppTerm for the registered Mail application
(see FIGS. 53 and 55), specifically the source address of the
last email object received. ~emailAddrVar references a pro-
grammaticvariable ofthe hosting programming environment
(PPLs), namely a string variable to compare against the
source address(e.g. billj@iswtechnologies.com). If the vari-
able type does not match the AppTerm type, then the inter-
nalizer (e.g. compiler/interpreter) should flag it prior to con-
version to an internalized form. Alternate embodimentswill

rely on run timefor error handling. The Condition also speci-
fies an optional TimeSpecspecification wherein the condition
for testing is only active during all seconds ofthe hour of 6:00
PM every day (just to explain the example). Expressions can
contain both AppTerms and WDRTerms while keeping in
mind that WDRsin process are the triggers for checking
charters. M_senderwill contain the most recent email source

address to the MS. This value continually changes as email
objects are received, therefore the window of opportunity for
containing the value is quite unpredictable. Thus, having a
condition solely on an AppTerm without regard for checking
a WDRthattriggers checking the configuration seems use-
less, however a MS may have many WDRsinprocess thereby
reasonably causing frequent checks to M_sender. A more
useful charter with an AppTerm will check the AppTerm
against a WDRfield or subfield, while keeping in mind that
WDRsin process trigger testing the charter(s). For example:
(_appfid.email.source=M_sender)
or the equivalentof:
(M_sender=_appfid.email.source)
checks each WDRin process for containing an Application
field 11004 from the email section (Gf available) which
matches an AppTerm. While this again seems unusual since
M_sender dynamically changes according to email objects
received, timeliness of WDRsin process for MSs(e.g. in the
wireless vicinity) can make this useful. Further, the program-
mer/user can specify more criteria for defining how close/far
in the vicinity (e.g. atomic operators of $(range), (spec)$
(range), etc.
((_appfid.email.source=M_sender) &
$(500F)\loc_my))
The WDRin process is checkedto seeif the originating MS
has a source email address that matches a most recently
received email object and the MSis within 500 feet of my
current location. This configuration can be useful, for
example to automatically place a call to a friend when they
just sent you an email and they are nearby. You can then walk
over to them and converse about the email information. Good

or poor configurations can be made. One embodimentof an
internalizer warns a user when an awkward configuration has
been made.

In looking at actions for this example, the command oper-
and pair is for “Notify Indicator’ with two parameters
(M_sender, \thisms). M_sender is what to use for the indica-
tor (the source address matched). Thus, an AppTerm can be
used as a parameter. \thisms is an atomic term for this MS ID.
Ifthe expression evaluates to true, the MS hosting the charter
configuration will be notified with an indicator text string
(e.g. billj@iswtechnologies.com). Notify Indicator displays
the indicator in the currently focusedtitle bar text of a win-
dowsorientedinterface. In another embodiment, Notify indi-
cator command processing displays notification data in the
focused user interface object at the time ofbeing notified. The

(location

5

10

15

20

25

30

35

40

45

50

55

60

65

194

action has optionalspecifications for Description and History
information to be generated (when internalized).

In general, History information will be updatedas the user
changes the associated configuration in the future, either in
syntax (recognized on internalization (e.g. to data struc-
tures)), with FIGS. 38 through 48B,etc.

(B_srchSubj ° M_subject) & !(_fenTest(B_srchSubj)):
“ms group” [G].Store DBobject(JOESDB.LBXTABS.TEST,

“INSERT INTO TABLESAV (” && \thisMS && “, ” && \timestamp
&&

“"9);”, \thisMS);

IF (the most recently specified B_srchSubjstring is in (.e.is
a substring of) the most recently received email object
M_subject(i.e. email subject string)), ANDif (the invocation
of the function _fenTest() with the parameter of the most
recently specified B_srchSubj string returns false) (i.e. ! the
return coderesults in true), TIIEN the configured action after
the colon (:) shall take place assuming there are applicable
privileges configured as well. Again, keep in mind that WDRs
in process (e.g. to queue 22, outbound and/or inbound) pro-
vide the triggers upon which charters are tested, therefore the
fact that no WDRfield is specified in the conditionsis strange,
but make a good point. The example demonstrates using
otherwise unrelated AppTermsand an invoked function (e.g.
can be dynamically linked as in a Dynamic Link Library
(DLL)or linked through an extern label _fenTest). B_srch-
Subj contains the mostrecently specified search criteria string
requested to the MS browserapplication.WDRTerm(s), App-
Term(s) and atomic terms can be used in conditions, as
parameters, or as portions in any part of a configured charter.

The action demonstrates an interesting format for repre-
senting the optional Host construct (qualifier) of the BNF
grammar for where the action should take place (assuming
privilege to execute there is configured). “ms group” [G]. tells
the internalizer to search for a group definition like an array
and find the first member of the group meeting the subscript
definition. This would be “George”(the G). Any substring of
“George”(or the entire string) could have been usedto indi-
cate use George from the “msgroup”. This allows a shorthand
reference to the item(s) of the group. Multiple membersthat
match “G” would all apply forthe action. Also, note that the
double quotes are used whenevervariables contain significant
blanks. “ms group”[G].Store DBobjecttells the internalizer
that the Command Operand pair is to be executed at the
George MSforstoring to a database object per parameters. An
equivalent form is George.Store DB-object with the Host
specification explicitly specified as George. The parameters
of JOESDB.LBXTABS.TEST, “INSERT INTO TABLE-
SAV (“&& \thisMS &&’”, ““&& \timestamp &&’”, 9);”,
\thisMS)indicates to insert a row into the table TABLESAV
ofthe TEST databaseat the system “this MS”(the MShosting
the configuration). The second (query) parameter matchesthe
numberofcolumnsinthetable for performing a database row
insert. Like other compilers/interpreters, the “” evaluatesto a
single double quote character when double quotes are needed
insidestrings. A single quote can also be legal to delimit query
string parameters (as shown). This example shows using
atomic term(s) for a parameter(i.e. elaborates to underlying
value; WDRTerm(s) can also be used for parameters). This
example introduces a concatenation operator (&&) for con-
catenating together multiple valuesinto a result string for one
parameter (e.g. “INSERT INTO TABLESAV (‘Bill’,
*20080421024421.45’, 9);”). Other embodiments will sup-

APPLE

EXHIBIT 1001 - PAGE 0361

APPLE
EXHIBIT 1001 - PAGE 0362

US 8,639,267 B2
195

port other programmatic operators in expressions for param-
eters. Still other embodiments will support any reasonable
programmatic statements, operators, and syntax amongchar-
ter configurationto facilitate a rich methodfor defining char-
ters 12.

Note that while we are configuring for the MS George to
execute the action, weare still performing the insert to the MS
hosting the Charter configuration (i.e. target system is
\thisms). We could just as easily have configured:

Store DBobject(JOESDB.LBXTABS.TEST,
“INSERT INTO TABLESAV(” && \thisMS && “,” && \timestamp &&

“,9)");

without using George to execute the action, and to default to
the local MS. Privileges will have to be in place for running
the action at the George MSwith the original charter of FIG.
51B.

(_I_msid=“Sophia” & \loc_my (30M)$$(25M) _I_location):
“ms group”Invoke App (alert.cmd);

_I_msid is a WDRTerm indicating to check the condition of
the WDRsinboundto the local MS(e.g. deposited to receive
queue 26). The condition _I_msid=‘Sophia” tests if the
inbound WDRhas a WDR MSIDfield 1100a¢ equal to the MS
ID Sophia. “=”is an atomic operator. & is a CondOp. _I_lo-
cation is the contents of the inbound WDR location field

1100c, so that the condition of (\loc_my 30M$$25M _I_lo-
cation) tests my current location (1.e. recetving MS)for being
within 25 meters, within the last 30 minutes, ofthe location of
the WDRreceived. A group is specified for where to run the
action (i.e. Host specification), yet no memberis referenced.
The alert.cmdfile is executed at each MSofthe group(all
three), provided there is a privilege allowing this MS to run
this action there, and providedthe alert.cmdfile is found for
execution(e.g. preferably uses PATH environmentvariable or
similar mechanism;fully qualified path can specify).

(Yoc:\myprofs\interests.chk > 90):
Send Email (“Howdy ” && _I_msid && “ !!\n\nOurprofiles matched
> 90%.\n\n”

&& “Call me at ” && \appfid-phone.id && “. We are” &&
(_Ilocation - \loc_my)F && “ feet apart\n”, \appfid.source.id,
“Call Me!”,
>» -L_appfid.email.source);

This example uses an atomic profile match operator (%). A
profile is optionally communicated inApplication field 1100%
subfield _appfid-profile.contents. A user specifies whichfile
represents his current profile and it is sent outbound with
WDRs(see FIG. 78 for profile example). Uponreceipt by a
receiving MS, the current profile can be compared to the
profile information in the WDR. (%
c:\myprofs\interests.chk>90) provides a condition for
becoming true whenthe hosting MSprofile interests.chk is
greater than 90% a match when matching to a WDRprofile of
field 11004 (preferably matches on a tag basis). The profile
operator here is triggered on in process WDRs.An alternate
embodiment will specify where to check the WDR
(e.g._I_%,_O_% or _%). If the expression evaluates to true,
the Send Email (Command Operandpair) action is invoked
with appropriate parameters. Note that the newline (\n) char-
acter and concatenation operator is used. Also, note the
WDRTerm (_I_location) and atomic term (\loc_my) were
used in an arithmetic statement to figure out the number of

10

15

20

25

40

45

55

196
feet in distance between the location ofthe inbound WDRand

“my current location”. The result is automatically typecast to
a string for the concatenation like most PPLs. The recipientis
the email source in Application fields 11004. The default
email attributes are specified (,,).

In sum,there are many embodiments derived from the BNF
grammarof FIG. 30A through 30E. FIGS. 51A and 51B are
simple examples with some interesting syntactical feature
considerations. Some embodiments will support program-
matic statements intermingled with the BNF grammar syntax
derivative used to support looping, arithmetic expressions,
and other useful programmatic functionality integrated into
Privilege and Charter definitions. FIGS. 51A and 51Billus-
trate a WPL for programming how a MSis to behave. WPLis
a unique programming language wherein peer to peerinter-
action events containing whereabouts information (WDRs)
providethe triggers for novel location based processing.Per-
missions and charters provide rules which govern theinterop-
erable LBX processing between MSs. While WPL is more
suited for a programmer type ofuser, the intent of this dis-
closure is to simplify configurations for all types of users.
WPL maysuit an advanced user while FIGS. 35A through
37C maysuit more prevalent and novice users. Other embodi-
ments may further simplify configurations. Some WPL
embodiments will implement more atomic operators, App-
Term(s), WDRTerm(s) and other configurable terms without
departing from the spirit and scopeofthis disclosure.It is the
intent that less time be spent on documentation and more time
be spent implementing it. Permissions and charters are pref-
erably centralized to the MS, and maintained with their own
user interface, outside of any particular MS application for
supervisory control ofall MS LBXapplications. See FIG. 1A
for how PIP data 8 is maintained outside of other MSpro-
cessing data and resources for centralized governing of MS
operations.

In alternate embodiments, an action can return a return
code/value, for example to convey success, failure, or some
other value(s) back to the point of performing the action. A
syntactical embodiment:

((_1_msid = “Brian”) & (_I_location @ \loc_my) [D=“multi-cond text”;H;]):
Notify Autodial (214-405-5422,,,, Invoke App (myscript.cmd (“B”))

[T=20080302;]);

Based on an outcome from Invoke App (myscript .. .), the
returned value is passed back and used as a parameter to
Notify AutoDial. The Notify AutoDial executable spawned
can thenuse the value at run-time to affect Notify processing.
Invoke App mayreturn a plurality of different values depend-
ing on the time the action is processed, and whatthe results
are of that processing. Some parameters are specified to use
defaults(i.e.,,,,).

FIG. 52 depicts another preferred embodiment C program-
ming source code headerfile contents, derived from the gram-
marofFIGS. 30A through 30E. FIG. 52 is more efficient for
aninternalized BNF grammar form by removing unnecessary
data. When comparing FIG. 52 with FIGS. 34E through 34G,
FIG. 52 has removed description and history information
since this is not necessary for internalization/processing. A
TIMESPECis the sameas definedat the top of FIG. 34E, but
time specification information has been mergedto whereit is
needed, rather than keeping it in multiple places as configured
for deducing a mergedresult later. There are many reasonable
embodiments of a derivative of the BNF grammarof FIGS.
30A through 30E.

APPLE

EXHIBIT 1001 - PAGE 0362

APPLE
EXHIBIT 1001 - PAGE 0363

US 8,639,267 B2
197

FIG. 53 depicts a preferred embodimentof a Prefix Regis-
try Record (PRR) for discussing operations of the present
disclosure. A PRR 5300 is for configuring which prefix is
assigned to which application used in anAppTerm.This helps
to ensure that an AppTerm be properly usable when refer-
enced in a charter. A prefix field 5300a providesthe prefix in
an AppTerm syntax (e.g. M_sender such that “M”is the
prefix). Any string can be usedfor a prefix (i.c. configured in
field 5300a), but preferably there are a minimal numberof
characters to save syntax encoding space. A descriptionfield
53005 provides an optional user specified description for a
PRR 5300, but it may include defaulted data available with an
application supporting at least one AppTerm. A service ref-
erences field 5300c identifies, if any, the data processing
system services associated with the application for the App-
Term referenced with the prefix of field 5300a. Validation of
such services may occur through an API, or maybe specified
by a knowledgeable user, administrator, or system setup.
Field 5300c potentially contains a list of service references.
An application references field 5300d identifies, if any, data
processing system application references (e.g. names) asso-
ciated with the Application for the AppTerm referenced with
the prefix of field 5300a. Validation of such applications
referenced may occur through an API, or maybe specified by
a knowledgeable user, administrator, or system setup. Field
5300d potentially contains a list. A process references field
5300e identifies, if any, data processing operating system
processes for spawning associated with the Application for
the AppTerm referenced with the prefix of field 5300a. Vali-
dation ofsuch processes may occur through anAPI, or may be
specified by a knowledgeable user, administrator, or system
setup. Field 5300e potentially contains a list. A paths field
5300/ identifies, if any, data processing system file name
paths to executables(e.g. .exe, .dll, etc) for spawning associ-
ated with the Application for the AppTerm referenced with
the prefix of field 5300a. Validation of such paths may occur
through anAPI, or may be specified by a knowledgeable user,
administrator, or system setup. Field 5300/fpotentially con-
tains a list. A documentary field 5300g documents each
Application data variable (i.e. AppTerm data name without
prefix), and an optional description, for what data is exposed
for the Application which can be used in the AppTerm.Vali-
dation of data in field 5300g data may occur through an API,
or may be specified by a knowledgeable user, administrator,
or system setup. Field 5300g potentially contains a list.
Extension field 5300/ contains other data for how to test for

whetheror not the Application of the PRR is up and running
in the MS,additional informationfor starting theApplication,
and additional information for accessing application vitals.
Validation of information may occur through an API, or may
be specified by a knowledgeable user, administrator, or sys-
tem setup. Field 5300/ maybealist, or null.

In one preferred embodiment, PRRs are supplied with a
MSpriortouserfirst MS use, and no administrator or user has
to maintain them. In another embodiment, only a special
administrator can maintain PRRs, which may or may nothave
been configured in advance. In another embodiment, a MS
user can maintain PRRs, which may or may not have been
configured in advance.

FIG. 54 depicts an example of an XML syntactical encod-
ing embodiment of permissions and charters, derived from
the BNF grammar ofFIGS. 30A through 30EF, for example as
user specified, system maintained, system communicated,
system generated, etc. Enough information is provided for
those skilledin the art to define an appropriate XML syntax of
the disclosed BNF grammarin light of disclosure heretofore.
A simple embodiment of variables can be handled with a

10

15

20

25

30

35

40

45

50

55

60

65

198

familiar Active Service Page (ASP) syntax wherein variables
are defined prior to being instantiated with a special syntax
(e.g. <Yo=varName %>). Double quotes can be represented
within double quote delimited character strings by the usual
providing of two double quotes for each double quote char-
acter position. Thoseskilled in the art ofXML recognize there
are many embodiments for XML tags, how to support sub-
tags, and tag attributes within a tag’s scope. FIG. 54 provides
a simple reference using a real example. FIG.54 illustrates a
WPLfor less advanced users.

The syntax “_location $(300M)\loc_my”is a condition for
the WDRinprocess being within 300 Meters ofthe vicinity of
my current location. Other syntax is identifiable based on
previous discussions.

FIG. 55A depicts a flowchart for describing a preferred
embodiment of MSuserinterface processing for Prefix Reg-
istry Record (PRR) configuration. Block 5502 may begin as
the result of an authenticated administrator user interface,
authenticated user interface, or as initiated by a user. Block
5502 starts processing and continues to block 5504 where
initialization is performed before continuing to block 5506.
Initialization may includeinitializing for using an SQL data-
base,or any other data form ofPRRs. Processing continues to
block 5506 wherea list of current PRRsare presented to the
user. The list is scrollable if necessary. A user preferably has
the ability to perform a numberof actions on a selected/
specified PRR from the list presented at block 5506. There-
after, block 5508 waits for a user action in responseto pre-
senting PRRs. Block 5508 continues to block 5510 when a
user action has been detected. If block 5510 determines the

user selected to modify a PRR,then the user configures the
specified PRRatblock 5512 and processing continues back to
block 5506. Block 5512 interfaces with the user for PRR 5300

alterations until the useris satisfied with changes which may
or may not have been made. Block 5512 preferably validates
to the fullest extent possible the data of PRR 5300.If block
5510 determinesthe userdid not select to modify a PRR,then
processing continuesto block 5514. Ifblock 5514 determines
the user selected a PRRfordelete, then block 5516 deletes the
specified PRR, and processing continues back to block 5506.
Depending on an embodiment, block 5516 mayalso properly
terminate the application fully described by the PRR 5300.If
block 5514 determinesthe user did not select to delete a PRR,
then processing continues to block 5518. Ifblock 5518 deter-
mines the user selected to add a PRR,then the user adds a
validated PRR at block 5520 and processing continues back
to block 5506. Block 5520 preferably validates to the fullest
extent possible the data of PRR 5300. Depending on an
embodiment, block 5520 mayalso properly start the applica-
tion described by the PRR 5300. Ifblock 5518 determines the
user did not select to adda PRR,then processing continues to
block 5522. If block 5522 determines the user selected to

show additional detail of a PRR, then block 5524 displays
specified PRR details including those details not already dis-
playedat block 5506in thelist. Processing continues back to
block 5506 when the user is complete browsing details. If
block 5522 determines the user did not want to browse PRR

details, then processing continues to block 5526. If block
5526 determinesthe user selected to enable/disable (toggle) a
specified PRR, then block 5528 uses PRR 5300 to determine
if the associated application is currently enabled (e.g. run-
ning) or disabled (e.g. not running). Upon determination of
the currentstate ofthe application for the specified PRR 5300,
block 5528 uses the PRR 5300to enable (e.g.start ifcurrently
not running)), or disable (e.g. terminate if currently running),
the application described fully by the specified PRR, before
continuing back to block 5506. Block 5528 should ensure the

APPLE

EXHIBIT 1001 - PAGE 0363

APPLE
EXHIBIT 1001 - PAGE 0364

US 8,639,267 B2
199

Application has been properly started, or terminated, before
continuing back to block 5506. If block 5526 determines the
user did not want to toggle (enable/disable) a PRR described
application, then processing continuesto block 5530.Ifblock
5530 determinesthe user selected to display candidate App-
Term supported applications of the MS, then block 5532
presents a list of MS applications potentially configurable in
PRR form. Block 5532 will interface with the user until

complete browsing the list. One embodiment of block 5532
accesses current PRRs 5300 anddisplays the applications
described. Another embodiment accesses an authoritative

source of candidate AppTerm supported applications, any of
which can be configured as a PRR. Processing continues back
to block 5506 when the user’s browse is complete. If block
5530 determines the user did notselect to display AppTerm
supported applications, then processing continues to block
5534. Ifblock 5534 determines the user selected to use a data

source as a template for automatically populating PRRs 5300,
then block 5536 validates a user specified template, uses the
template to alter PRRs 5300, and processing continues back
to block 5506. PRRs maybe optionally altered at block 5536
for replacement, overwrite, addingto, or any other alternation
method in accordance with a user or system preference. In
some embodiments, existing PRRs can be used for tem-
plate(s). Ifblock 5534 determinesthe userdid not select to use
a data source for a PRR template, then processing continues
to block 5538. Ifblock 5538 determinesthe user did notselect

to exit PRR configuration processing, then block 5540
handles all other user actions detected at block 5508, and
processing continues back to block 5506. Ifblock 5538 deter-
minesthe user did select to exit, then processing continues to
block 5542 where configuration processing cleanup 1s per-
formed before terminating FIG. 55A processing at block
5544. Depending on an embodiment, block 5542 may prop-
erly terminate data access initialized at block 5504,andinter-
nalize PRRsfor a well performing read-only form accessed
by FIG. 55B. Appropriate semaphoreinterfaces are used.

FIG. 55Ais used to expose those AppTerm variables which
are of interest. Candidate applications are understood to
maintain data accessible to charter processing. Different
embodiments will utilize global variables(e.g. linked extern),
dynamically linked variables, shared memory variables, or
any other data areas accessible to both the application and
charter processing with proper thread safe synchronizedaccess.

FIG. 55B depicts a flowchart for describing a preferred
embodiment ofApplication Term (AppTerm) data modifica-
tion. An application thread performing at least one AppTerm
update uses processing of FIG. 55B.A participating applica-
tion thread starts processing at block 5552 as the result of a
standardized interface, integrated processing, or some other
appropriate processing means. Block 5552 continuesto block
5554 where an appropriate semaphore lock is obtained to
ensure synchronous data access between the application and
any other processing threads (e.g. charter processing). Pro-
cessing then continues to block 5556 for accessing the appli-
cation’s associated PRR (if one exists). Thereafter, if block
5558 determines the PRR exists and at least one of the data

item(s) for modification are described by field 5300g, block
5560 updates the applicable data item(s) described by field
5300g appropriately as requested by the application invoking
FIG. 55B processing. Thereafter, block 5562 releases the
semaphore resource locked at block 5554 and processing
terminates at block 5564.

Ifblock 5558 determines the associated PRR was not found
or all data items of the found PRR for modification are not

described by field 5300g, then processing continues directly

40

45

55

200

to block 5562 for releasing the semaphorelock, thereby per-
forming no updates to an Applerm. PRRs 5300 control eli-
gibility for modification by applications, as well as which
AppTerm references can be made in charter processing.

An AppTerm is accessed (read) by grammarprocessing
with the same semaphore lock control used in FIG. 55B.

FIG. 56 depicts a flowchart for appropriately processing an
encoding embodiment of the BNF grammar of FIGS. 30A
through 30E, in context for a variety of parser processing
embodiments. Those skilled in the art may take information
disclosed heretofore to generate table records of FIGS. 35A
through 37C, and/or data of FIGS. 34A through 34G (and/or
FIG.52), and/or datastreams of FIG. 33A through 33C, and/
or a suitable syntax or internalized form derivative of FIGS.
30A through 30E. Compiler, interpreter, data receive, or other
data handling processing as disclosed in FIG. 56 is well
known in the art. Text books such as “Algorithms+Data
Structures=Programs”by Nicklaus Wirth are one ofmany for
guiding compiler/interpreter development. A BNF grammar
of FIGS. 30A through 30E mayalso be “plugged in” to a Lex
andYacc environmentto isolate processing from parsing in an
optimal manner. Compiler and interpreter developmenttech-
niques are well known.FIG. 56 can be viewed in context for
adapting Permission and Charter processing to an existing
source code processing environment(e.g. within PPLs). FIG.
56 can be viewed in context for new compiler andinterpreter
processing of permissions and/or charters (e.g. WPL). FIG.
56 can be viewedin context for receiving Permission and/or
Charter data (e.g. syntax, datastream, or other format) from
some source (e.g. communicated to MS). FIG. 56 can be
viewed in context for plugging in isolated Permission and
Charter processing to any processing point of handling a
derivative encoding of the BNF grammar of FIGS. 30A
through 30E.

Data handling of a source code for compiling/interpreting,
an encoding from a communication connection, or an encod-
ing from someprocessing source starts at block 5602. At
some point in BNF grammar derived data handling, a block
5632 gets the next (or first) token from the source encoding.
Tokens may be reserved keywords, delimiters, variable
names, expression syntax, or some construct or atomic ele-
mentofan encoding. Thereafter, ifblock 5634 determinesthe
token is a reserved key or keyword, block 5636 checksif the
reserved key or keyword is for identifying permissions 10
(e.g. FIG. 51A “Permissions”, FIG. 54 “permission”, FIG.
33B Permissions/Permission, etc), in which case block 5638
sets a stringvar pointerto the entire datastream representative
of the permission(s) 10 to be processed, and block 5640
prepares parameters for invoking LBX data internalization
processing at block 5642.

If block 5636 determines the reserved key or keywordis
not for permission(s) 10, then processing continues to block
5646. Block 5646 checksifthe reserved key or keywordis for
identifying charters 12 (e.g. FIG. 51B “Charters”, FIG. 54
“charter”, FIG. 33C Charters/Charter, etc), in which case
block 5648 sets a stringVar pointer to the entire datastream
representative of the charter(s) 12 to be processed, and block
5650 prepares parameters for invoking LBX data internaliza-
tion processing at block 5642.

Blocks 5640 and 5650 preferably havea stringVar set to the
permission/charter data encodingstart position, and then seta
length of the permission/charter data for processing by block
5642. Alternatively, the stringVar is a null terminated string
for processing the permission(s)/charter(s) data encoding.
Embodiment requirements are for providing appropriate
parameters for invoking block 5642 for unambiguouspro-
cessing of the entire permission(s)/charter(s) for parsing and

APPLE

EXHIBIT 1001 - PAGE 0364

APPLE
EXHIBIT 1001 - PAGE 0365

US 8,639,267 B2
201

processing. The procedure of block 5642 has already been
described throughoutthis disclosure (e.g. creating a process-
able internalized form (e.g. database records, programmatic
structure, etc)). Upon return from block 5642 processing,
block 5644 resets the parsing position of the data source
encoding provided at block 5602 for having already pro-
cessed the permission(s)/charter(s) encoding handled by
block 5642. Thereafter, processing continues back to block
5632 forgetting the next token from the data encoding source.

If block 5646 determines the reserved key or keyword is
notfor charter(s) 12, then processing continues to process the
applicable reserved key or keyword identified in the source
data encoding. If block 5634 determines the token is not a
reserved key or keyword, then processing continues to the
appropriate block for handling the token which is not a
reserved key or keyword.In any case there may be processing
of other source data encoding not specifically for a permis-
sion or charter.

Eventually, processing continues to a block 5692 for
checking if there is more data source to handle/process. If
block 5692 determines there is more data encoding source,
processing continues back to block 5632 for getting the next
token. Ifblock 5692 determines there is no more data encod-

ing source, processing continues to block 5694 for data
encoding source processing completion, and then to block
5696 for termination of FIG. 56 processing.

Depending on the embodiment, block 5694 may complete
processing for:

Compiling one of the PPLs (or other programming lan-
guage) with embedded/integrated encodings for permis-
sions 10 and/or charters 12;

Interpreting one of the PPLs (or other programming lan-
guage) with embedded/integrated encodings for permis-
sions 10 and/or charters 12;

Receiving the encoding source data from a communica-
tions channel;

Receiving the encoding source data from a processing
source;

Receiving the encoding source data from a user configured
source;

Receiving the encoding source data from a system config-
ured source; or

Internalizing, compiling, interpreting, or processing an
encoding derived from the disclosed BNF grammarfor
Permissions 10 and/or Charter 12.

Blocks 5636 through 5650 may represent plug-in process-
ing for permissions 10 and/or charters 12. Depending on
when and where processing occurs for FIG. 56, appropriate
semaphores may beused to ensure data integrity.

LBX: Permissions and Charters—WDRProcessing

As WDRinformation is transmitted/received between

MSs,privileges and charters are used to govern automated
actions. Thus, privileges and charter govern processing ofat
least future whereabouts information to be processed. There
is WDRIn-process Triggering Smarts (WITS) in appropriate
executable code processing paths. WITSprovidesthe intelli-
gence of whether or not privilege(s) and/or charter(s)
trigger(s) an action. WITSis the processing at a place where
a WDRis automatically examined against configured privi-
leges and charter to see what actions should automatically
take place. There are three different types of WITS, namely:
maintained WITS (mWITS), inbound WITS GWITS), and
outbound WITS (oWITS). Each type of WITSis placed in a
strategic processing path so as to recognize the event for when
to process the WDR. Maintained WITS (mWITS)occur at

10

15

20

25

30

35

40

45

50

55

60

65

202

those processing paths applicable to a WDRin process for
being maintained at an MS(e.g. inserted to queue 22). Other
embodiments may define other maintained varieties of a
WDRin process for configurations (e.g. inbound, outbound,
in-process2Q22, in-process2History (i.e. WDRin process of
being maintained to LBX history 30), in-process2appli-
cation(s) (i.e. WDRin process of being maintained/commu-
nicated to an application), ctc). Inbound WITS GWITS) occur
at those processing paths applicable to a WDR whichis
inbound to a MS(e.g. communicated to the MS). Outbound
WITS (oWITS)occur at those processing paths applicable to
a WDRwhich is outbound from a MS(e.g. sent by an MS).
There are various WITS embodiments as described below.

Users should keep in mind that a single WDR maybe pro-
cessed multiple times (by different WITS) with configuring
charters that refer to different WITS(e.g.first inbound, then
to queue 22). One embodiment supports only mWITS.
Another embodimentsupports only iWITS. Another embodi-
ment supports oWITS. Yet another embodimentsupports use
of any combination of available WITS.
mWITS:

The preferred embodimentis a new block 273 in FIG. 2F
such that block 272 continues to block 273 and block

273 continues to block 274. This allows mWITSpro-
cessing block 273 to see all WDRs whichare candidate
for insertion to queue 22, regardless of the role check at
block 274, confidence check at block 276, and any other
FIG. 2F processing. In some embodiments, block 273
may chooseto use enabled roles and/or confidence and/
or any WDRfield(s) values and/or permissions and/or
any other processing result to decisively affect whether
or not the WDR should be examined and/or processed
further by FIG. 2. For example, block 273 mayresult in
processing to continue directly to block 294 or 298
(rather than block 274). For example, upon determining
that the WDRsource had not provided anyprivileges to
the receiving MS, the WDR can be ignored so as to not
use resources of the MS. In another example, a WDR
showsthatit arrived completely wirelessly (e.g.field(s)
1100/) and did not go through an intermediary service
(e.g. router). The WDR mayprovide usefulnessin locat-
ing the receiving MSdespite the receiving MSnotbeing
privileged by the source MS,in which case block 273
continues to block 274 for WDRprocessing. It may be
important to filter WDRsso that only those WDRsare
maintained which either a) contribute to locating (per
configurations), or b) are associated with active permis-
sions or charters for applicable processing. The WRC
discussed above mayalso be usedto cause block 273 to
continueto block 294 or 298. Suchfiltering is referred to
as WITSfiltering. WITS filtering may be crucial in a
LBXarchitecture which supports MSs great distances
from each other since there can be an overloading num-
ber of WDRsto process at any point in time. Charters
and privileges that are configured are used for deciding
which WDRSare to be “seen” (processed) further by
FIG. 2F processing. If there are no privileges and no
charters in effect for the in process WDR,then the WDR
may be ignored.If there is no use for the WDRto help
locate the receiving MS, then the WDR mayalso be
ignored. If there are privileges and charters in effect for
the in process WDR,then the WDR can beprocessed
further by FIG.2F, even ifnot useful for locating the MS.

One preferred embodiment does make use of the confi-
dencefield 1100d to ensure the peer MS has been suffi-
ciently located. Block 273 will compare information of
the WDRwith configured privileges to determine which

APPLE

EXHIBIT 1001 - PAGE 0365

APPLE
EXHIBIT 1001 - PAGE 0366

US 8,639,267 B2
203

actions should be performed. When appropriate privi-
leges are in place, block 273 will also compare informa-
tion of the WDRwith configured andprivileged charters
(e.g. _fldname)to determine applicable configured char-
ter actions to be performed.

Alternate embodiments can move mWITSat multiple pro-
cessing places subsequent to where a WDR1s completed
by the MS(c.g.blocks 236, 258, 334, 366, 418, 534,618,
648, 750, 828, 874, 958, 2128, 2688, etc).

Another embodiment can support mWITSat processing
places subsequent to processing by blocks 1718 and
1722 to reflect user maintenance.

Yet another embodiment recognizes in mWITS that the
WDRwasfirst inbound to the MS andis now in process
of being maintained (e.g. to queue 22). This can allow
distinguishing between an inbound WDR, maintained
WDR,and inbound AND maintained WDR. In one
embodiment, the WDR(e.g. field 1100g) carries new
bit(s) of information (e.g. set by receive processing
wheninserting to queue 26) for indicating the WDR was
inbound to the MS. The new bit(s) are checked by
mWITSfor new processing (i.e. inbound AND main-
tained WDR).

iWITS:

The preferred embodimentis a new block 2111 in FIG. 21
such that block 2110 continues to block 2111 (1.e. on No
condition) and block 2111 continues to block 2112. This
allows iWITSprocessing block 2111 to see all inbound
WDRs, regardless of the confidence check at block
2114, and any other FIG. 21 processing. In some
embodiments, block 2111 may choose to use confidence
and/or any WDRfield(s) and/or permissions and/or any
other processing result to decisively affect whether or
not the WDRshould be examined and/or processed fur-
ther by FIG. 21. Block 2111 mayresult in processing to
continue directly to block 2106 (rather than block 2112).
For example, upon determining that the WDR source
had not provided any privileges to the receiving MS,the
WDRcan be ignored so as to not use resources of the
MS.In another example, a WDR showsthatit arrived
completely wirelessly (e.g. field(s) 1100/) and did not go
through an intermediary service (e.g. router). The WDR
may provide usefulness in locating the receirving MS
despite the receiving MS not being privileged by the
source MS,in which case block 2111 continuesto block
2112 for WDRprocessing. Similar WITSfiltering can
occur here as was described for mWITS processing
above, with the advantage of intercepting WDRsoflittle
value at the earliest possible time and preventing them
from reaching subsequent LBX processing.

One preferred embodiment does make use of the confi-
dencefield 1100d to ensure the peer MShas beensuffi-
ciently located. Block 2111 will compare information of
the WDRwith configured privileges to determine which
actions should be performed. When appropriate privi-
leges are in place, block 2111 will also compare infor-
mation ofthe WDRwith configured andprivileged char-
ters (eg. _Ifidname) to determine applicable
configured charter actions to be performed.

Another embodiment can support iWITS at processing
places associated with receive queue 26, for example
processing up to the insertion of the WDRto queue 26.

oWITS:

The preferred embodimentincorporates a new block 2015
in FIG.20 such that block 2014 continues to block 2015
and block 2015 continues to block 2016. This allows

oWITSprocessing block 2015 to see all its outbound

25

30

35

40

45

50

204

WDRsfor FIG. 20 processing. In some embodiments,
block 2015 may choose to use confidence and/or any
WDRfield(s) and/or permissions and/or any other pro-
cessing result to decisively affect whether or not the
WDRshould be processed further by FIG. 20. Block
2015 may result in processing to continue directly to
block 2018. The WRC discussed may also be used
appropriately here. Similar WITSfiltering can occur
here as was described formWITS andiWITSprocessing
above, with the advantage of intercepting WDRsoflittle
value to anyone else in the LN-expanse, and preventing
the WDRsfrom reaching subsequent LBX processing at
remote MSsthat will have no use for them.

The preferred embodiment will also incorporate a new
block 2515 in FIG. 25 such that block 2514 continues to
block 2515 and block 2515 continues to block 2516.

This allows oWITSprocessing block 2515to see allits
outbound WDRs of FIG. 25 processing. In some
embodiments, block 2515 may chooseto use confidence
and/or any WDRfield(s) and/or permissions and/or any
other processing result to decisively affect whether or
not the WDRshould be examined and/or processed fur-
ther by FIG. 25. Block 2515 mayresult in processing to
continue directly to block 2506. For example, upon
determining that the WDRis destined for a MS with no
privileges in place, the WDRcanbe ignored and unproc-
essed (i.e. not sent). The WRC discussed may also be
used appropriately here. Similar WITS filtering can
occur here as was described for mWITS, iWITS and
oWITSprocessing above, with the advantage of inter-
cepting WDRsoflittle value to anyoneelse in the LN-
expanse, and preventing the WDRsfrom reaching sub-
sequent LBX processing at remote MSsthat will have no
use for them.

Blocks 2015 and 2515 will compare information of the
WDRwith configured privileges to determine which
actions should be performed. When appropriate privi-
leges are in place, blocks 2015/2515 will also compare
information of the WDR with configured charters
(e.g. _O_fldname) to determine applicable configured
and privileged charter actions to be performed.

Another embodiment can support oWITSat processing
places associated with send queue 24, for example after
the insertion of the WDRto queue 24.

Yet another embodiment recognizes in oWITS that the
WDRwasfirst maintained to the MS and is now in

process of being sent outbound. This can allow distin-
guishing between an outbound WDR,maintained WDR,
and outbound AND maintained WDR. Different

embodiments will use differentcriteria for what desig-
nates an outbound AND maintained WDR,for example
seeking certain values in maintained WDRfield(s),
seeking certain values in outbound WDRfield(s), or
both. In one embodiment, the WDRcarries new bit(s) of
information (e.g. set by send processing) for indicating
the WDRwasoutboundfrom the MS. WDRprocessing
for a maintained WDR and/or an outbound WDRcan

also be maderelevant for designating an outbound AND
maintained WDR.Criteria may be important in this
embodimentsince an outbound WDRwas maintained in

some fashion prior to being candidate as an outbound
WDR.

FIG. 57 depicts a flowchart for describing a preferred
embodiment of WDR In-process Triggering Smarts (WITS)
processing. The term “Triggering Smarts” is used to describe
intelligent processing ofWDRsforprivileges and/or charters
that may trigger configured processing such as certain

APPLE

EXHIBIT 1001 - PAGE 0366

APPLE
EXHIBIT 1001 - PAGE 0367

US 8,639,267 B2
205

actions. FIG. 57 is presented to cover the different WITS
embodiments discussed above. WII'S processing is of PIP
code 6, andstarts at block 5700 with an in-process WDR as
the result ofthe start ofnew blocks 273, 2111, 2015 and 2515
(as described above). While preferred WITS embodiments
include new blocks 273, 2111, 2015, and 2515, it is to be
understood that alternate embodiments may include FIG. 57
processing at other processing places, for cxample as
described above. There are similarities between mWITS,
iWITS and oWITS.FIG. 57 is presented in context for each
WITStype. Thus, block 5700 shall be presented as being
invoked for mWITS, iWITS, and oWITSin order to process
a WDR(.e. in-process WDR)that is being maintainedto the
MSofFIG. 57 processing(e.g. to queue 22), is inboundto the
MSofFIG. 57 processing, and/or is outbound from the MS of
FIG. 57 processing. Applicable charter configurations
(ref, _I_ref, _O_ref) and applicable privileges are to be
handled accordingly.

Block 5700 continues to block 5702-a where the WRC and

applicable origination information of the WDRis accessed.
Thereafter, if the WRC and WDR information indicates to
ignore the WDRat block 5702-5, then processing continues
to block 5746, otherwise processing continues to block 5704.
Whenever block 5746 is encountered, the decision is made
(assumed in FIG. 57) to continue processing the WDRornot
continue processing the WDRin processing which includes
FIG. 57 (1.e. FIGS. 2F, 20, 21 25) as described above. This
decision depends on how block 5746 wasarrived to by FIG.
57 processing.

Block 5704 determines the identity (e.g. originating MS)
ofthe in-process WDR(e.g. check field 1100a). Thereafter, if
block 5706 determines the identity of the in-process WDR
does not match the identity of the MS of FIG. 57 processing,
processing continues to block 5708. Block 5706 continues to
block 5708 when a) the in-process WDRis from other MSs
and is being maintained at the MS of FIG. 57 processing(i.e.
FIG. 57=mWITS); or b) the in-process WDR is from other
MSsandis inbound to the MS ofFIG. 57 processing (1.e. FIG.
57-1WIS). For example, a first MS of FIG. 57 processing
handles a WDR from a second MSstarting at block 5708.

With reference now to FIG. 58, depicted is an illustration
for granted data characteristics in the present disclosure LBX
architecture, specifically with respect to granted permission
data and granted charter data as maintained by a particular
MSofFIG. 57 processing (i.e. as maintained by “this MS”).
To facilitate discussion of FIG. 57, permission data 10 can be
viewed as permission data collection 5802 wherein arrows
shownare to be interpreted as “provides privileges to”(i.e.
Left Hand Side (LHS) providesprivileges to the Right Hand
Side (RHS)). Any of the permissions representations hereto-
fore described (internalized, datastream, XML, source code,
or any other BNF grammar derivative) can be usedto repre-
sent, or encode, data ofthe collection 5802. Regardless of the
BNF grammar derivative/representation deployed, the mini-
mal requirementof collection 5802 is to define the relation-
ships of privileges granted from one ID to another ID (and
perhaps with associated MSRelevance and/or TimeSpec
qualifier(s)). Whether grants or explicit privileges are
assigned, ultimately there are privileges granted from a
grantor ID to a grantee ID.

Different identity embodiments are supported (e.g. MS ID
or user ID) for the LHS and/or RHS (see BNF grammarfor
different embodiments). Permission data collection 5802 is to
be from the perspective of one particular MS, namely the MS
of FIG. 57 processing. Thus, the terminology “this MS ID”
refers to the MS ID of the MS of FIG. 57 processing. The
terminology “WDR MSID”is the MS ID (field 1100@) of an

30

35

40

45

50

60

206

in-process WDRofFIG. 57 processing distinguished from all
other MS IDs configured in collection 5802 at the time of
processing the WDR. The terminology “other MS IDs”is
usedto distinguish all other MS IDsconfiguredin collection
5802 which are not the same as the MS ID ofthe terminology
“WDR MS ID” (i.e. MS IDs other than the MS ID (field
1100a) of the in-process WDR of FIG. 57 processing (also
other than the “this MS” MS ID)). Privilege configurations
5810 are privileges provided from an in-process WDR MSID
(i.e. WDRbeing processed by FIG. 57 at “this MS”) to the MS
ID of FIG. 57 processing. The groups an ID belongs to can
also provide, or be provided with, privileges so that the uni-
verse of privileges granted should consider groups as well.
Privilege configurations 5820 are privileges provided from
the MSof FIG. 57 processing (this MS) to the MSID(field
1100a) of the in-process WDRbeing processed by FIG. 57.
Privilege configurations 5830 are privileges provided from
the MS of FIG. 57 processing (this MS) to MS IDs(field
1100a) configured in collection 5802 other than the MS ID of
the in-process WDRbeing processed by FIG. 57 (also other
than the “this MS” MSID).Privilege configurations 5840 are
privileges provided from MS IDs configured in collection
5802 at the MS of FIG. 57 processing (this MS) which are
different than the MSID ofthe in-process WDRbeing pro-
cessed by FIG.57 (also different than the “this MS” MS ID).

Also to facilitate discussion of FIG. 57, charter data 12 can
be viewed as a charter data collection 5852 wherein arrows

shownare to be interpreted as “creates enabled charters for”
(i.e. Left Hand Side (LHS) creates enabled charters for the
Right Hand Side (RHS)). Any of the charter representations
heretofore described (internalized, datastream, XML, source
code, or any other BNF grammar derivative) can be used to
represent, or encode, data of the collection 5852. Regardless
of the BNF grammarderivative/representation deployed, the
minimal requirementof collection 5852 is to define the char-
ters granted by one ID to another (and perhapswith associated
TimeSpec qualifier(s); TimeSpec maybe an aggregate-result
of TimeSpec specified for the charter, charter expression,
charter condition and/or charter term). Preferably, for char-
ters with multiple actions, each action is evaluated on its own
specified TimeSpec merit if applicable. In embodiments that
use a tense qualifier in TimeSpecs: LBX history, appropriate
queue(s), and any other reasonable source of information
shall be utilized appropriately.

Different identity embodiments are supported (e.g. MS ID
or user ID) for the LHS and/or RHS (see BNF grammar for
different embodiments). A privilege preferably grants the
ability to create effective (enabled) charters for one ID from
another ID. However, in some embodiments the granting ofa
charter by itself from one ID to another ID canbetreatedlike
the granting of a permission/privilege to use the charter,
therebypreventing special charter activating permission(s) be
putinplace. Charter data collection 5852 is also to be from the
perspective of the MS of FIG. 57 processing. Thus, the ter-
minology“this MS ID”refers to the MS ID ofthe MSofFIG.
57 processing. The terminology “WDR MSID”is the MS ID
(field 1100a) of the in-process WDR of FIG. 57 processing
distinguished from all other MS IDsconfigured in collection
5852 at the time of processing the WDR. The terminology
“other MS IDs”is used to distinguish all other MS IDs con-
figured in collection 5852 which are not the same as the MS
ID ofthe terminology “WDRMSID”(i.e. MS IDsother than
the MS ID(field 1100a) of the in-process WDR of FIG. 57
processing (also other than the “this MS” MS ID)). Charter
configurations 5860 are charters created by the MS ID of an
in-process WDR (i.e. WDR being processed by FIG. 57 at
“this MS”) for being effective at the MS ofFIG. 57 processing

APPLE

EXHIBIT 1001 - PAGE 0367

APPLE
EXHIBIT 1001 - PAGE 0368

US 8,639,267 B2
207

(this MS ID). The groups an ID belongsto can also provide,
or be provided with, charters so that the universe of charters
granted should consider groups as well. Charter configura-
tions 5870 are charters created by the MS ID of FIG. 57
processing(i.e. this MS) for beingeffective at the MS of FIG.
57 processing (this MS ID). Charter configurations 5870
include the most common embodimentsof creating charters
for yourselfat your own MS. Charter configurations 5880 are
charters created by the MS ID ofFIG. 57 processing (this MS)
for being effective at MSs with MSIDsconfigured in collec-
tion 5852 other than the MSID ofthe in-process WDRbeing
processed by FIG. 57. Charter configurations 5890 are char-
ters at the MS of FIG. 57 processing (this MS) which are
created by MS IDsother than the MSID of the in-process
WDRbeing processed by FIG. 57 (also other than the “this
MS”MSID).

Anysubsetofdata collections 5802 and 5852 can beresi-
dent at a MS of FIG. 57 processing, depending onaparticular
embodimentofthe present disclosure, howeverpreferred and
most commondata usedis presented in FIG. 57. While FIG.
58 facilitates flowchart descriptions and discussions for in-
process WDR embodiments of being maintained (e.g. to
queue 22), being inbound (e.g. communicated to the MS),
and/or being outbound (e.g. communicated from the MS),
FIGS. 49A and 49Bprovide relevant discussions for WDR
in-process embodiments when considering generally
“incoming” WDRs(i.e. being maintained (e.g. to queue 22)
or being inbound (e.g. communicated to the MS)).

In the preferred embodiment, groups defined local to the
MSare used for validating which data using group IDs of
collections 5802 and 5852 are relevant for processing. In
alternate embodiments, group information of other MSs may
be “visible” to FIG. 57 processing for broader group configu-
ration consideration, either by remote communications, local
maintaining of MS groups whichare privileged to have their
groups maintained there (communicated and maintained like
charters), or another reasonable method.

With reference back to FIG. 57, block 5708 forms a
PRIVS2MElist of configurations 5810 and continues to
block 5710 for eliminating duplicates that may be found.
Block 5708 may collapse grant hierarchies to form the list.
Duplicates may occur for privileges which include the dupli-
cated privileges (i.e. subordinate privileges). For example,
\lbxall specifies all LBX privileges and \nearar is only one
LBXprivilege already included in \Ibxall. Recall that some
privileges can be higher order scoped (subordinate)privileges
for a plurality of more granulated privileges. Block 5710
additionally eliminates duplicates that may exist for permis-
sion embodiments wherein a privilege can enableor disable a
feature. In a present disclosure embodiment wherein a privi-
lege can enable, and a privilege can disable the same feature
or functionality, there is preferably a tie breaker of disabling
the feature (i.e. disabling wins). In an alternate embodiment,
enabling may break a tie of ambiguity. Block 5710 further
eliminates privileges that have a MSRelevance qualifier indi-
cating the MS of FIG. 57 processing is not supported for the
particular privilege, and also eliminates privileges with a
TimeSpec qualifier invalid for the time of FIG. 57 processing
(an alternate embodiment can enforce TimeSpec interpreta-
tion at blocks 5734 (.e. in FIG. 59 processing) and 5736 (i.e.
in FIG. 60 processing)). Thereafter, block 5712 forms a
PRIVS2WDRlist of configurations 5820 and continues to
block 5714 for eliminating duplicates that may be found in a
manner analogousto block 5710 (.e. subordinate privileges,
enable/disable tie breaker, MSRelevance qualifier, TimeSpec
qualifier). Block 5712 maycollapse grant hierarchies to form
the list. An alternate embodiment can enforce TimeSpec

10

15

20

25

30

35

40

45

50

55

60

65

208

interpretation at block 5738 (i.e. in FIG. 60 processing).
‘Thereafter, block 5716 forms a CHARTERS2MEElist of con-
figurations 5860 and preferably eliminates variables by
instantiating/elaborating at points where they are referenced.
Then, block 5718 eliminates those charters which are not
privileged. In some embodiments, block 5718 is not neces-
sary (5716 continues to 5720) because un-privileged charters
will not be permitted to be present at the MS of FIG. 57
processing anyway(e.g. eliminated whenreceiving). Never-
theless, block 5718 removes from the CHARTERS2MElist
all charters which do not have a privilege (e.g. using
PRIVS2WDR)granted by the MS(the MSuser) of FIG. 57
processing to the creator of the charter, for permitting the
charter to be“in effect”(activated). In the preferred embodi-
ment, there is a privilege (e.g. \chrtrs) which can be used to
grant the permissionofactivating any charters of another MS
(or MSuser) at the MS ofFIG.57 processing.In the preferred
embodiment, there can be any numberof subordinate charter
privileges (i.e. subordinateto \chrtrs) for specifically indicat-
ing which type of charters are permitted. For example,privi-
leges for governing which charters are to be active from a
remote MSinclude:

mWITSspecifications (allow charters with _fldname);
iWITSspecifications (allow charters with _I_fidname);
oWITSspecifications (allow charters with _O_fldname),;
specified atomic terms(e.g. a privilege for each eligible

atomic term use);
specified WDRTerms(e.g. a privilege for each eligible

WDRTerm use);
specified AppTerms(e.g. a privilege for each eligible App-

Term use);
specified operators (e.g. a privilege for eacheligible atomic

operator use);
specified conditions;
specified actions;
specified host targets for actions; and/or
any identifiable characteristic of a charter encoding as

defined in the BNF grammarofFIGS.30A through 30E.
In any embodiment, block 5718 ensures no charters from
other users are considered active unless appropriately privi-
leged (e.g. using PRIVS2WDR). Thereafter, block 5720
forms aMYCHARTERSlist ofconfigurations 5870 and pref-
erably eliminates variables by elaborating at points where
they are referenced, before continuing to block 5732.

Block 5732 checks the PRIVS2MElist to see if there is a

privilege granted from the identity of the in-process WDRto
the MS(or user of MS) of FIG. 57 processing for being able
to “see” the WDR. One main privilege (e.g. \Ibxiop) can
enable or disable whetherornot the MS ofFIG. 57 processing
should be able to do anything at all with the WDR from the
remote MS.Ifblock 5732 determines this MS can process the
WDR,then processing continues to block 5734. Block 5734
enables local features and functionality in accordance with
privileges of the PRIVS2MElist by invoking the enable fea-
tures and functionality procedure of FIG. 59 with the
PRIVS2MElist, and the in-process WDR as parameters
(preferably passed by pointer/reference).

With reference now to FIG. 59, depicted is a flowchart for
describing a preferred embodiment of a procedure for
enabling LBX features and functionality in accordance witha
certain type (category) of permissions. Blocks 5920, 5924,
5928, 5932, 5936, 5940, 5944, and 5946 enable or disable
LBXfeatures and functionality for semantic privileges. Pro-
cessing of block 5734 starts at block 5900 and continues to
block 5902 where the permission type list parameter passed
(i.e. PRIVS2ME (5810) when invoked from block 5734)is
determined, and the in-process WDR maybe accessed. The

APPLE

EXHIBIT 1001 - PAGE 0368

APPLE
EXHIBIT 1001 - PAGE 0369

US 8,639,267 B2
209

list parameter passed provides not only the appropriatelist to
FIG. 59 processing, but also which list configuration (5810,
5820, 5830 or 5840) has been passed for processing by FIG.
59. There are potentially thousandsofspecific privileges that
FIG. 59 can handle. Therefore, FIG. 59 processing is shown
to generically handle different classes (categories) of privi-
leges, namely privilege classes of: privilege-configuration,
charter-configuration, data send, impersonation, WDR pro-
cessing, situational location, monitoring, LBX, LBS, and any
others as handled by block 5946. Privileges disclosed
throughoutthepresent disclosure fall into one ofthese classes
handled by FIG. 59.

Block 5902 continues to block 5904 whereif it is deter-

minedthata privilege-configuration privilege is present in the
list parameter passed to FIG. 59 processing, then block 5906
will removeprivileges from the list parameter if appropriate
to do that. For example, a privilege (or absence thereof
detected in the list parameterfor indicating no privileges can
be defined/enabled in context of the list parameter causes
block 5906 to removeall privileges from the list parameter
and also from permissions 10 (i.e. 5810 of collection 5802
when FIG. 59 invoked from block 5734). Similarly, any more
granular privilege-configuration privileges of the list param-
eter causes processing to continue to block 5906 for ensuring
remainingprivileges ofthe list parameter (and ofpermissions
10 configurations) are appropriate. There can be manydiffer-
ent privilege-configuration privileges for what can, and can’t,
be defined in permissions 10, for example by any character-
istic(s) of permissions data 10 according to the present dis-
closure BNF grammar. Block 5906 continues to block 5908
whenall privilege-configurationprivilegesare reflected in the
list parameter and collection 5802 ofpermissions 10. Ifblock
5904 determines there are no privilege-configuration privi-
leges to consider in the list parameter passed to FIG. 59
processing, then processing continues to block 5908.

Block 5908 gets the next individual privilege entry (or the
first entry upon first encounter ofblock 5908 for an invocation
of FIG. 59) from the list parameter and continues to block
5910. Blocks 5908 through 5946iterate all individualprivi-
leges (list entries) associated with the list parameter of per-
missions 10 provided to block 5908. Ifblock 5910 determines
there was an unprocessedprivilege entry remaining in the list
parameter(i.e. 5810 ofcollection 5802 when FIG.59 invoked
from block 5734), then the entry gets processed starting with
block 5912. If block 5912 determinesthe entry is a charter-
configuration privilege, then block 5914 will remove charters
from CHARTERS2MEifappropriate to do that. For example,
a privilege (or absence thereof detected in the list parameter
for indicating no CHARTERS2MEcharters can be defined/
enabled in contextof the list parameter causes block 5914 to
removeall charters from CHARTERS2MEandalso from

charters 12 (i.e. 5860 of collection 5852 when FIG. 59
invoked from block 5734). Similarly, any more granular char-
ter-configuration privileges of the list parameter causes pro-
cessing to continue to block 5914 for ensuring remaining
charters of CHARTERS2ME(andofcharters 12 configura-
tions) are appropriate. There can be manydifferent charters-
configuration privileges for what can and can’t be defined in
charters 12, for example by any characteristic(s) of charters
data 12 accordingto the present disclosure BNF grammar, in
particular for an in-process WDR from another MS. Any
aspect of charters can be privileged (all, certain commands,
certain operands, certain parameters, certain values of any of
those, whether can specify Host for action processing, certain
conditions and/or terms—See BNF grammar). Block 5914
then continues to block 5916. Block 5916 will remove char-

ters from MYCHARTERSif appropriate to do that. For

10

15

20

25

30

35

40

45

50

55

60

65

210

example, a privilege (or absence thereof) detected in the list
parameter for indicating certain MYCHAR!ERScharters
(e.g. those that involve the in-process WDR) can/cannot be
defined/enabled in context ofthe list parameter causes block
5916 to remove charters from MYCHARTERSfor subse-

quent FIG. 57 processing. Changes to charters 12 for the
MYCHARTERSlist does not occur. This prevents deleting
charters locally at the MSthat the user spent time creating at
his MS. Removing from the MYCHARTERSlist is enough to
affect subsequent FIG. 57 processing, for example of an in-
process WDR. Block 5914 shown does additionally remove
from charters 12 because the charters are not valid from a

remote user anyway. One preferred embodiment to block
5914 will not alter charters 12 (only CHARTERS2ME)simi-
larly to block 5916 so that subsequent FIG. 57 processing
continues properly while preventing a remote MSuser from
resending charters (use of FIGS. 44A and 44B)at a subse-
quenttime for reinstatement upon discovering the “this MS”
FIG. 57 processing user had not provided a needed permis-
sion/privilege. Block 5916 continues back to block 5908 for
the next entry. Blocks 5914 and 5916 make use of the privi-
lege entry data from block 5908(e.g. grantor ID, grantee ID,
privilege, etc) to properly affect change of CHARTERS2ME
and MYCHARTERS. CHARTERS2ME and MYCHAR-

TERSare shownas global variables accessible from FIG. 57
processing to FIG. 59 processing, but an alternate embodi-
mentwill pass these lists as additional parameters determined
at block 5902. Ifblock 5912 determinedthe currently iterated
privilege is not a charter configuration privilege, then pro-
cessing continues to block 5918.

Ifblock 5918 determinesthe entry is a data sendprivilege,
then block 5920 will enable LBX features and functionality
appropriately in context for the list parameter, and processing
continues back to block 5908. A data send privilege may be
onethat is used at block 4466 and enforced at block 4470 for

exactly what data can or cannotbe received. Any granulation
of permission data 10 or charter data 12 (e.g. by any charac-
teristic(s)) may be supported. A data sendprivilege may over-
lap with a privilege-configuration privilege or a charter-con-
figuration privilege since either may be used at blocks 4466
and 4470, depending on an embodiment. It may be useful to
control what data can be received by a MSat blocks 4466 and
4470 versus whatdata actually gets used for FIG. 57 process-
ing as controlled by blocks 5904, 5906, 5912, 5914, and 5916.
Ifblock 5918 determinesthe entry is not a data sendprivilege,
then processing continues to block 5922. Data sendprivileges
can control whatprivilege, charter, and/or group data can and
cannot be sent to a MS(i.e. received by a MS). Data send
privileges can be overall privileges, subordinate privileges,
and/or privileges for any granulation of data based on type,
size, value, age, or any other characteristic(s) available from
a derivative of the BNF grammar of FIGS. 30A through 30E.

If block 5922 determines the entry is an impersonation
privilege, then block 5924 will enable LBX features and
functionality appropriately in context for the list parameter,
and processing continues back to block 5908. An imperson-
ation privilege is one that is used to access certain authenti-
cated user interfaces, some of which were described above.
Any granulation of permission data 10 (e.g. by any charac-
teristic(s)) may be supported, for example for any subset of
MSuser interfaces with respect to the present disclosure.
Block 5924 mayaccesssecurity, or certain application inter-
faces accessible to the MS of FIG. 59 processing for read,
modify, add, or otherwise alter certain related data, or cause
the processing ofcertain related executable code, for example
to manage associated identity impersonation at the MS.If
block 5922 determines the entry is not an impersonation

APPLE

EXHIBIT 1001 - PAGE 0369

APPLE
EXHIBIT 1001 - PAGE 0370

US 8,639,267 B2
211

privilege, then processing continues to block 5926. Imper-
sonation privileges can be overall privileges, subordinate
privileges, and/or privileges for any granulation of identity
data or any other characteristic(s) available from a derivative
of the BNF grammar of FIGS. 30A through 30E.

Ifblock 5926 determinesthe entry is a WDRprivilege, then
block 5928 will enable LBX features and functionality appro-
priatcly in context for the list parameter, and processing con-
tinues back to block 5908. A WDRprivilege is onethat is used
to govern access to certain fields ofthe in-process WDR. Any
granulation of permission data 10 (e.g. by any character-
istic(s)) may be supported, for example for any subset of
available in-process WDRdata. Block 5924 may access any
in-process WDRfield, subfield(s), or associated in-process
WDRdata to make use ofcertain application interfaces acces-
sible to the MS ofFIG. 59 processing for read, modify, add, or
otherwise alter certain related data, or cause the processing of
certain related executable code, for example to manage
appropriate in-process WDRprocessing. Ifblock 5926 deter-
mines the entry is not a WDRprivilege, then processing
continues to block 5930. WDRprivileges can be overall privi-
leges, subordinate privileges, and/orprivileges for any granu-
lation of in-process related WDR data, perhaps using any
characteristic(s) available from a derivative ofthe BNF gram-
marof FIGS. 30A through 30E.

Ifblock 5930 determinesthe entry is a Situational Location
privilege, then block 5932 will enable LBX features and
functionality appropriately in context for the list parameter,
and processing continues back to block 5908. A Situational
Location privilege may overlap with a WDRprivilege since
WDRfields are consulted for automated processing, however
it may be usefulto distinguish. Any granulation ofpermission
data 10 (e.g. by any characteristic(s)) may be supported, for
example for any subsetofavailable in-process relevant WDR
data. The term “situational location”is useful for describing
location based conditions(e.g. as disclosed in Service deliv-
ered location dependent content of U.S. Pat. Nos. 6,456,234;
6,731,238; 7,187,997 (Johnson)). Block 5926 may access any
in-process WDRfield, subfield(s), or associated in-process
WDRdata for appropriate LBX processing involving read,
modify, add, or otherwise alter certain related data, or cause
the processing ofcertain related executable code, for example
to manage appropriate in-process WDRsituational location
processing. If block 5930 determines the entry is not a situ-
ational location privilege, then processing continuesto block
5934. Situation location privileges can be overall privileges,
subordinate privileges, and/or privileges for any granulation
of in-process related WDR data, perhaps using any charac-
teristic(s) available from a derivative of the BNF grammarof
FIGS. 30A through 30E.

If block 5934 determines the entry is a monitoring privi-
lege, then block 5936 will enable LBX features and function-
ality appropriately in context for the list parameter, and pro-
cessing continues back to block 5908. A monitoring privilege
governs monitoring any data of a MSfor any reason(e.g. in
charter conditions). Any granulation of permission data 10
(e.g. by any characteristic(s)) may be supported, for example
for any subset of MS data. Block 5936 may access any MS
data, or associated in-process WDRdata for appropriate LBX
processing involving read, modify, add, or otherwise alter
certain related data, or cause the processing ofcertain related
executable code, for example to manage appropriate in-pro-
cess WDRprocessingat the MS. Ifblock 5936 determinesthe
entry is not a monitoring privilege, then processing continues
to block 5938. Monitoring privileges can be overall privi-
leges, subordinate privileges, and/orprivileges for any granu-
lation of MS data (MS of FIG. 59 processing or of the in-

25

40

45

50

55

212

process WDR), perhaps using any characteristic(s) available
from a derivative of the BNF grammarofFIGS. 30A through
30E.

Ifblock 5938 determines the entry is a LBX privilege, then
block 5940 will enable LBX features and functionality appro-
priately in contextfor the list parameter, and processing con-
tinues back to block 5908. A LBX privilege governs LBX
processing behavior at the MS of FIG. 59 processing. Other
privileges so far discussed for FIG. 59 processing may over-
lap with an LBX privilege. Any granulation of permission
data 10 (e.g. by any characteristic(s)) may be supported, for
example for unique LBX processing at the MS of FIG. 59
processing. Block 5938 may access any MSdata, or associ-
ated in-process WDRdata for appropriate LBX processing
involving read, modify, add, or otherwisealter certain related
data, or cause the processing of certain related executable
code, for example to perform LBX processing at the MS.If
block 5938 determines the entry is not a LBX privilege, then
processing continues to block 5942. LBX privileges can be
overall privileges, subordinate privileges, and/or privileges
for any granulation of MS data (MS of FIG. 59 processing or
of the in-process WDR), perhaps using any characteristic(s)
available from a derivative ofthe BNF grammar ofFIGS. 30A
through 30E.

Ifblock 5942 determinesthe entry is a LBS privilege, then
block 5944 will enable LBSfeatures and functionality appro-
priately in contextfor the list parameter, and processing con-
tinues back to block 5908. A LBSprivilege governs LBS
processing behavior at the MS of FIG. 59 processing. Other
privileges so far discussed for FIG. 59 processing may over-
lap with an LBSprivilege. Any granulation ofpermission data
10 (e.g. by any characteristic(s)) may be supported, for
example for unique LBS processing at the MS of FIG. 59
processing. Block 5944 may access any MSdata, or associ-
ated in-process WDR data for appropriate LBS processing
involving read, modify, add, or otherwisealter certain related
data, or cause the processing of certain related executable
code, for example to perform LBSprocessing at the MS, and
perhapscause processing at a connected LBS.If block 5942
determinesthe entry is not a LBSprivilege, then processing
continues to block 5946. LBSprivileges can be overall privi-
leges, subordinate privileges, and/orprivileges for any granu-
lation of MS data (MS of FIG. 59 processing or of the in-
process WDR), perhaps using any characteristic(s) available
from a derivative of the BNF grammarofFIGS. 30A through
30E, and perhaps using any data or interface of a connected
LBS.

Block 5946 is provided for processing completeness for
handling appropriately (e.g. enable or disable MSprocessing)
a privilege that some reader may not appreciate falling into
one ofthe privilege classes ofFIG. 59 processing. Block 5946
then continues to block 5908. Referring back to block 5910,
if it is determined there are no more unprocessed entries
remaining in the list parameter (i.e. 5810 of collection 5802
when FIG. 59 invoked from block 5734), then the caller/
invokeris returned to at block 5948.

FIG. 59 may not require blocks 5904 and 5906 since a
block 4466 embodiment mayhavealready enforced what has
been received and integrated at block 4470 to a properset of
collections 5802 and 5852.In any case, the procedure of FIG.
59 is made complete having blocks 5904 and 5906 forvarious
caller/invoker embodiments. Similarly, FIG. 59 also may not
require blocks 5912 through 5916 since a block 4466 embodi-
ment may have already enforced whathas been received and
integrated at block 4470 to a properset of collections 5802

APPLE

EXHIBIT 1001 - PAGE 0370

APPLE
EXHIBIT 1001 - PAGE 0371

US 8,639,267 B2
213

and 5852. The procedure of FIG. 59 is made complete by
having blocks 5912 through 5916 for various caller/invoker
embodiments.

In one embodiment, FIG. 59 uses the absence of certain
privileges to enable or disable LBX features and functionality
wherein block 5948-A determines whichprivileges were not
provided, block 5948-B enables/disables LBX features and
functionality in accordance with the lack of privileges, and
block 5948-C returns to the caller/invoker.

With reference back to FIG. 57, block 5734 continues to
block 5736. Some embodiments of FIG. 57 blocks 5710,
5714 5718, 5742, 5750, 5756, etc mayperform sorting for a
best processing order(e.g. as provided to procedures ofFIGS.
59 and 60). Block 5736 performsactions in accordance with
privileges of the PRIVS2MElist by invoking the do action
procedure of FIG. 60 with the PRIVS2MElist, and the in-
process WDRas parameters (preferably passed by pointer/
reference).

With reference now to FIG. 60, depicted is a flowchart for
describing a preferred embodiment of a procedure for per-
forming LBX actions in accordance with a certain type of
permissions. Blocks 6012, 6016, 6020, 6024, 6028, 6032,
6036, and 6038 perform actions for semantic privileges. Pro-
cessing of block 5736 starts at block 6002 and continues to
block 6004 where the permission type parameter passed(i.e.
PRIVS2ME(5810) when invoked from block 5736)is deter-
mined, and the in-process WDR may beaccessed. Thelist
parameter passed provides not only the appropriate list to
FIG. 60 processing, but also which list configuration (5810,
5820, 5830 or 5840) has been passed for proper processing by
FIG. 60. There are potentially thousandsofspecific privileges
that FIG. 60 can handle. Therefore, FIG. 60 processing is
shown to generically handle different classes (categories) of
privileges, namely privilege classes of: data send, imperson-
ation, WDR processing, situational location, monitoring,
LBX, LBS,and any others as handled by block 6038. Privi-
leges disclosed throughoutthe present disclosure fall into one
ofthese classes handled by FIG.60.

Block 6004 continues to block 6006. Block 6006 gets the
next individual privilege entry (or the first entry uponfirst
encounter of block 6006 for an invocation of FIG. 60) from
the list parameter and continues to block 6008. Blocks 6006
through 6038 iterate all individual privileges associated with
the list parameter of permissions 10 provided to block 6002.
Ifblock 6008 determines there was an unprocessedprivilege
entry remaining in the list parameter (i.e. 5810 of collection
5802 when FIG.60 invoked from block 5736), then the entry
gets processedstarting with block 6010.

Ifblock 6010 determines the entry is a data sendprivilege,
then block 6012 will perform any LBX actions in context for
the list parameter (if any applicable), and processing contin-
ues back to block 6006. A data send privilege may be onethat
is used at block 4466 and enforced at block 4470 for exactly
what data can or cannotbe received, or alternatively, block
6012 can perform actions for communicating data between
MSs,or affecting data at MSs, for an appropriate local image
of permissions 10 and/or charters 12. Any granulation of
permission data 10 or charter data 12 (e.g. by any character-
istic(s)) may be supported. If block 6010 determinesthelist
entry is not a data send privilege, processing continues to
block 6014.

If block 6014 determines the entry is an impersonation
privilege, then block 6016 will perform any LBX actions in
contextfor the list parameter(ifany applicable), and process-
ing continues back to block 6006. Block 6016 may access
security, or certain application interfaces accessible to the MS
ofFIG.60 processing for read, modify, add, or otherwise alter

10

15

20

25

30

35

40

45

50

55

60

65

214

certain related data, or cause the processing ofcertain related
executable code, for example to manage associated identity
impersonation at the MS.If block 6014 determinesthe entry
is not an impersonation privilege, then processing continues
to block 6018.

Ifblock 6018 determines the entry is a WDRprivilege, then
block 6020 will perform any LBX actions in context for the
list parameter (if any applicable), and processing continues
back to block 6006. Block 6020 may access any in-process
WDRfield, subfield(s), or associated in-process WDRdata to
make use of certain application interfaces accessible to the
MSofFIG.60 processing for read, modify, add,or otherwise
alter certain related data, or cause the processing of certain
related executable code, for example to manage appropriate
in-process WDRprocessing. If block 6020 determines the
entry is not a WDRprivilege, then processing continues to
block 6022.

Ifblock 6022 determinesthe entry is a Situational Location
privilege, then block 6024 will perform any LBX actions in
contextfor the list parameter(ifany applicable), and process-
ing continues back to block 6006. Block 6024 mayaccess any
in-process WDRfield, subfield(s), or associated in-process
WDRdata for appropriate LBX processing involving read,
modify, add, or otherwise alter certain related data, or cause
the processing ofcertain related executable code, for example
to manage appropriate in-process WDRsituational location
processing. If block 6022 determines the entry is not a situ-
ational location privilege, then processing continuesto block
6026

If block 6026 determines the entry is a monitoring privi-
lege, then block 6028 will perform any LBX actions in con-
text for the list parameter (if any applicable), and processing
continues back to block 6006. Block 6028 may access any
MSdata, or associated in-process WDRdata for appropriate
LBX processing involving read, modify, add, or otherwise
alter certain related data, or cause the processing of certain
related executable code, for example to manage appropriate
in-process WDRprocessing at the MS.If block 6026 deter-
minesthe entry is not a monitoring privilege, then processing
continues to block 6030.

Ifblock 6030 determines the entry is a LBX privilege, then
block 6032 will perform any LBX actions in context for the
list parameter (if any applicable), and processing continues
back to block 6006. Block 6032 may access any MSdata, or
associated in-process WDR data for appropriate LBX pro-
cessing involving read, modify, add,or otherwise alter certain
related data, or cause the processing ofcertain related execut-
able code, for example to perform LBX processing at the MS.
If block 6030 determines the entry is not a LBX privilege,
then processing continues to block 6034.

Ifblock 6034 determinesthe entry is a LBS privilege, then
block 6036 will perform any LBSactions in context for the
list parameter, and processing continues back to block 6006.
Block 6036 may access any MSdata,or associated in-process
WDRdata for appropriate LBS processing involving read,
modify, add, or otherwise alter certain related data, or cause
the processing ofcertain related executable code, for example
to perform LBS processing at the MS, and perhaps cause
processing at a connected LBS.Ifblock 6034 determines the
entry is not a LBSprivilege, then processing continues to
block 6038.

Block 6038 is provided for processing completeness for
handling appropriately (e.g. performing any LBX actions in
context for the list parameter (if any applicable) a privilege
that some reader may not appreciate falling into one of the
privilege classes of FIG. 60 processing. Block 6038 then
continues to block 6006. Referring back to block 6008,ifitis

APPLE

EXHIBIT 1001 - PAGE 0371

APPLE
EXHIBIT 1001 - PAGE 0372

US 8,639,267 B2
215

determinedthere are no more unprocessed entries remaining
in the list parameter(i.e. 5810 of collection 5802 when FIG.
60 invoked from block 5736), then the caller/invoker is
returned to at block 6040.

In one embodiment, FIG. 60 uses the absence of certain
privileges to perform LBX actions in context for the list
parameter wherein block 6040-A determines which privi-
leges were not provided, block 6040-B performs LBX actions
in contextforthe lack ofprivileges, and block 6040-C returns
to the caller/invoker.

FIG. 60 processing causes application types of actions
accordingto privileges set. Such application types of actions
are preferably caused using APIs, callback functions, or other
interfaces so as to isolate FIG. 60 LBX processing from
applicationsthat are integrated with it. This prevents applica-
tion “know-how”from being part ofthe LBX processing(e.g.
software) built for MSs. FIG. 60 preferably invokes the
“know-how”through an appropriate interface (software or
hardware). In one preferred embodiment,participating appli-
cations register themselves as processing particular atomic
privileges so that FIG. 60 invokes the interface with the privi-
lege, its setting, and perhaps useful environmental data of
interest. The application itself can then optimally process the
privilege for an appropriate application action. Invocation of
the application interface may be thread oriented so as to not
wait for a return, or may be synchronous for waiting for a
return (or return code). In one preferred embodiment, the
PRR 5300 is modified for further containing a privilege join
field 5300; for joining to a new Application Privileges Refer-
ence (APR)table containing all privileges which are relevant
for the application described by the PRR 5300. This provides
the guide of all privileges which are applicable to an applica-
tion, and which are to cause invocation ofthe interface(s) of
the application. A PRR 5300is to be extended with new data
in at least one field 53004 which containsinterface directions

for how to invoke the application with the privilege for pro-
cessing (e.g. through a Dynamic Link Library (DLL), or
script, interface). Preferably, a single API or invocation is
used for all privileges to a particular application and the
burden of conditional processing paths is put on the applica-
tion in that one interface. An alternate embodiment could

allow multiple interfaces to be plugged in: one for each of a
plurality of classes, or categories, of privileges so that the
burden ofunique processing paths, depending onaprivilege,
is reduced for one application. In any embodiment,it is pref-
erable to minimize linkage execution time between LBX
processing and an application which is plugged in. Linkage
time can be reducedby:

1) Performing appropriate and directed executable linkage
as indicated by the PRR atinitialization time of block
1240;

2) Performing loading into executable memory of needed
dynamically linked executables (e.g. DLL) as indicated
by the PRRatinitialization time of block 1240 wherein
the PRRprovides link library information for resolving
linkage; and/or

3) Validating presence of, or performing loading of, the
executables/script/etc in an appropriate manner at an
appropriate initialization time.

Note that atomic commandprocessing solves performance
issues by providing a tightly linked executable environment
while providing methods for customized processing. Many
applications may be invoked for the same privilege (i.e.
blocks 6012, 6016, 6020, 6024, 6028, 6032, 6036 and/or
6038 can certainly invoke multiple applications (i.e. cause
multiple actions) fora single privilege), depending on whatis
found in the APR table. Of course, integrated application

10

15

20

25

30

35

40

45

50

55

60

65

216

action processing can be built with LBX software so that the
MSapplicationsare tightly integrated with the LBX process-
ing. Generally, FIG. 60 includes appropriate processing of
applications while FIG. 59 affects data which can be accessed
(e.g. polled) by applications.

With reference back to FIG. 57, block 5736 continues to
block 5738. Block 5738 performsactions in accordance with
privileges of the PRIVS2WDRlist by invoking the do action
procedure of FIG. 60 with the PRIVS2WDRlist, and the
in-process WDRasparameters (preferably passed bypointer/
reference), and then continues to block 5740. FIG. 60 pro-
cessing is analogously as described above except in context
for the PRIVS2WDR(5820)list and for the in-process WDR
of FIG. 57 processing relative the PRIVS2WDRlist. One
embodiment may incorporate a block 5737 (block 5736 con-
tinues to 5737 which continues to block 5738) for invoking
FIG. 59 processing with PRIVS2WDR.Generally, privilege
configurations 5820 involve actions for the benefit of the
WDRoriginator.

Block 5740 processing merges the MYCHARTERSand
CHARTERS2MElists into a CHARTERS2D0list, and con-
tinues to block 5742 for eliminating inappropriate charters
that mayexist in the CHARTERS2D0list. Block 5742 addi-
tionally eliminates charters with a TimeSpec qualifier invalid
for the time of FIG. 57 processing (an alternate embodiment
can enforce TimeSpec interpretation at block 5744). If all
actions, or any condition, term, expression, or entire charter
itself has a TimeSpecoutside of the time of FIG. 57 process-
ing, then preferably the entire charteris eliminated. Action(s)
are removed from a charter which remains in effect if

action(s) for a charter have an invalid TimeSpec for the time
of FIG. 57 processing, in which case any remaining actions
with no TimeSpec or a valid TimeSpecare preserved for the
effective charter. If all charter actions are invalid per
TimeSpec, then the charter is completely eliminated. There-
after, block 5744 performscharter actions in accordance with
conditions of charters of the CHARTERS2D0list (see FIG.
61), and processing then terminates at block 5746.

Block 5742 can eliminate charters which areirrelevant for

processing, for example depending upon the type of in-pro-
cess WDR.For a maintained WDR, inappropriate charters
may be those which do not have a maintained condition
specification (i.e. _fidname). For an inbound WDR,inappro-
priate charters may be those which do not have an in-bound
condition specification (i.e. _I_fidname). For an outbound
WDR,inappropriate charters may be those which do not have
an out-bound condition specification (i.e. _I_fidname). The
context of WITSprocessing (mWITS, iWITS, oWITS) may
be used at block 5742 for eliminating inappropriate charters.

With reference back to block 5732,if it is determined that
this MS should not process (see) the WDR in-process, pro-
cessing continues to block 5746 where FIG.57 processingis
terminated, and the processing host of FIG. 57 (.e. FIGS. 2F
20, 21, 25) appropriately ignores the WDR.

With reference back to block 5706,if it is determined that
the WDRidentity matches the MS of FIG. 57 processing,
processing continues to block 5748. Block 5706 continues to
block 5748 whena) the in-process WDRis from this MS and
is being maintained at the MS ofFIG. 57 processing(i.e. FIG.
57=mWITS); orb) the in-process WDRis outboundfrom this
MS (ie. FIG. 57=0WITS). Block 5748 forms a
PRIVS2OTHERSlist of configurations 5830 and continues
to block 5750 for eliminating duplicates that may be found.
Block 5748 may collapse grant hierarchies to form the list.
Duplicates may occurfor privileges which include the dupli-
cated privileges (i.e. subordinate privileges) as described
above. Block 5750 additionally eliminates duplicates that

APPLE

EXHIBIT 1001 - PAGE 0372

APPLE
EXHIBIT 1001 - PAGE 0373

US 8,639,267 B2
217

may exist for permission embodiments wherein a privilege
can enable or disable a feature. In a present disclosure
embodiment wherein a privilege can enable, and a privilege
can disable the samefeature or functionality, there is prefer-
ably a tie breakerofdisabling thefeature (i.e. disabling wins).
In an alternate embodiment, enabling may break a tie of
ambiguity. Block 5750 further eliminates privileges that have
a MSRelevance qualifier indicating the MS of FIG. 57 pro-
cessing is not supportedfor the particular privilege, and also
eliminates privileges with a TimeSpec qualifier invalid for the
time of FIG. 57 processing (an alternate embodiment can
enforce TimeSpecinterpretation at block 5758(i.e. in FIG. 60
processing)). Thereafter, block 5752 forms a MYCHAR-
TERSlist of configurations 5870 and preferably eliminates
variables by instantiating/elaborating at points where they are
referenced. Then, block 5754 forms a CHARTERS2MElist
ofconfigurations 5890 andpreferably eliminates variables by
instantiating/elaborating at points where they are referenced.
Then, block 5756 eliminates those charters which are not
privileged. In some embodiments, block 5756 is not neces-
sary (5754 continues to 5758) because un-privileged charters
will not be permitted to be present at the MS of FIG. 57
processing. Nevertheless, block 5756 removes from the
CHARTERS2MElist all charters which do not havea privi-
lege granted by the MS (the MSuser) of FIG. 57 processing
to the creator of the charter, for permitting the charter to be
enabled (as described above for block 5718). In any embodi-
ments, block 5756 ensures no charters from other users are
considered active unless appropriately privileged. Thereafter,
block 5758 performsactions in accordance with privileges of
the PRIVS2OTHERSlist by invokingthe do action procedure
ofFIG. 60 with the PRIVS2MElist, and the in-process WDR
as parameters (preferably passed by pointer/reference), and
then continues to block 5740 which has already been
described. FIG. 60 processing is the same as described above
exceptin context for the PRIVS2OTHERS(5830)andforthe
in-process WDR of FIG. 57 processing relative the PRIV-
SOTHERSlist. Ofcourse the context ofblocks 5748 through
5758 are processed for in-process WDRswhichare: a) main-
tained to the MS of FIG.57 for the whereabouts of the MS of

FIG. 57 processing; or b) outbound from the MS of FIG. 57
processing (e.g. an outbound WDRdescribing whereabouts
of the MS of FIG. 57 processing). One embodiment may
incorporate a block 5757 (block 5756 continues to 5757
which continues to block 5758) for invoking FIG. 59 process-
ing with PRIVS2OTHERS. Generally, privilege configura-
tions 5830 involve actions for the benefit of others (1.e. other
than this MS).

Whenconsidering the terminology “incoming”as used for
FIGS. 49A and 49B, a WDRin-processat this MS (the MS of
FIG. 57 processing) which wasoriginated by this MS with an
identity for this MS uses: a) this MS charters (5870 confirmed
by 4962 bullet 2 part 1, 4988 bullet 2 part 1, 4922, 4948); b)
others’ charters per this MS (or this MSuser) privileges to
them (5890 confirmed by 4966 bullet 3, 4964 bullet 2, 4986
bullet 3, 4984 bullet 2, 4924, 4946); andc) this MS (or this MS
user) privileges to others (5830 confirmed by 4944 bullet 4,
4924 bullet 4, 4946 bullet 4, 4926 bullet 4). An alternate
embodimentadditionally uses d) others’ privileges to this MS
(or this MS user) (5840), for example to determine how
nearby they are at outbound WDRtimeorat the time of
maintaining the MS’s own whereabouts. This alternate
embodiment would cause FIG. 57 to include: a new block

5760 for forming a PRIVS2MElistofprivileges 5840; a new
block 5762 for eliminating duplicates, MSRelevancerejects
and invalid TimeSpec entries; a new block 5764 for enabling
features an functionality in accordance with the PRIVS2ME

10

15

20

25

30

35

40

45

50

55

60

65

218

list of block 5760 by invoking the enable features and func-
tionality procedure of FIG. 39 with PRIVS2MEas a param-
eter (FIG. 59 processing analogous to as described above
except for PRIVS2MBE); anda new block 5766forperforming
actions in accordance with PRIVS2MEby invoking the do
action procedure of FIG. 60 with PRIVS2MEasa parameter
(FIG. 60 processing analogousto as described above except
for PRIVS2ME). Such an embodiment would cause block
5758to continue to block 5760 which continues to block 5762
which continuesto block 5764 which continues to block 5766
which then continues to block 5740.

Whenconsidering the terminology “incoming”as used for
FIGS. 49A and 49B, a WDRin-processat this MS (the MS of
FIG. 57 processing) which was originated by a remote MS
with an identity different than this MS uses: e) this MS char-
ters per other’s privileges to this MS (or this MS user) (5870
confirmed by 4962 bullet 2 part 2, 4988 bullet 2 part 2, 4926,
4944, 4924 bullet 2); f) others’ charters per this MS(orthis
MSuser)privileges to them (5860 confirmed by 4966 bullet
2, 4964 bullet 3, 4986 bullet 2, 4984 bullet 3, 4924, 4946); ¢)
this MS(or this MSuser) privileges to others (5820 confirmed
by 4944 bullet 3, 4924 bullet 3, 4946 bullet 3, 4926 bullet 3);
and h) others’ privileges to this MS (or this MS user) (5810
confirmed by 4926 bullet 2, 4944 bullet 2, 4946 bullet 2, 4924
bullet 2). An alternate embodimentadditionally uses i) oth-
ers’ charters per this MS(or this MSuser) privileges to them
(5890); and/orj) this MS(or this MSuser) privileges to others
(5830); and/or k) others’ privileges to this MS (or this MS
user) (5840). This alternate embodiment would cause FIG. 57
to alter block 5716 to further include charters 5890, alter
block 5708 to further include privileges 5840, include a new
block 5722 for forming a PRIVS2OTHERSlistofprivileges
5830, new block 5724 for eliminating duplicates, new block
5726 for enabling features an functionality in accordance
with the PRIVS2OTHERSlist ofblock 5722, new block 5728
for enabling features an functionality in accordance with the
modified PRIVS2MElist ofblock 5708, and new block 5730
for performing actions in accordance with the modified
PRIVS2ME(i.e. block 5720 continues to block 5722 which
continues to block 5724 which continuesto block 5726 which
continues to block 5728 which continuesto block 5730 which

then continues to block 5732). Also, blocks 5742 and 5744
would appropriately handle new charters of altered block
5716. Such an embodiment would cause new blocks 5726,
5728 and 5730 to invoke the applicable procedure (FIG.59 or
FIG. 60) with analogous processing as described above
except in context for the parameter passed.

In some FIG. 57 embodiments, blocks 5708 and/or 5716
and/or 5754 and/or relevant alternate embodiment blocks

discussed are remotely accessed by communicating with the
MS having the identity determined at block 5704 for the
WDRin-process. The preferred embodimentis as disclosed
for maintaining data local to the MS for processing there. In
other embodiments, there are separate flowcharts (e.g. FIGS.
57A, 57B and 57C)for each variety of handling in-process
WDRs(e.g. mWITS, iWITS, oWITSprocessing).

Various FIG. 57 embodiments’ processing will invoke the
procedure of FIG. 59 with appropriate parameters(i.e. lists
for 5810 and/or 5820 and/or 5830 and/or 5840) so that any
category subset of the permission data collection 5802 (i.e.
5810 and/or 5820 and/or 5830 and/or 5840)is used to enable
appropriate LBX features and functionality according to the
WDRcausing execution of FIG. 57 processing. For example,
privileges between the MS of FIG. 57 processing and an
identity other than the WDRcausing FIG. 57 processing may
be used (e.g. relevant MS third party notification, features,
functionality, or processing as defined byrelated privileges).

APPLE

EXHIBIT 1001 - PAGE 0373

APPLE
EXHIBIT 1001 - PAGE 0374

US 8,639,267 B2
219

Various FIG. 57 embodiments’ processing will invoke the
procedure of FIG. 60 with appropriate parameters(i.e. lists
for 5860 and/or 5870 and/or 5880 and/or 5890) so that any
category subsetof the charter data collection 5852(i.e. 5860
and/or 5870 and/or 5880 and/or 5890)is used to perform LBX
actions according to the WDR causing execution of FIG. 57
processing. For example, charters between the MS ofFIG. 57
processing and an identity other than the WDRcausing FIG.
57 processing may be used (e.g. relevant MS third party
charters as defined by related privileges).

FIG. 57 determines which privileges and chartersare rel-
evant to the WDRin process, regardless of where the WDR
originated. The WDRidentity checked at block 5706 can take
on various embodiments so that the BNF grammar of FIGS.
30A through 30Eare fully exploited. Preferably, the identities
associated with “this MS”and the WDRinprocessare usable
as is, however while there are specific embodiments imple-
menting the different identifier varieties, there may also be a
translation or lookup performed at block 5704 to ensure a
proper compareat block 5706. Theidentities of“this MS” and
the WDRidentity (e.g. field 1100a) may be translated prior to
performing a compare. For example, a user identifier main-
tained to the user configurations (permissions/charters) may
be “looked up”using the MSidentifiers involved (“this MS”
and WDR MSID)in order to perform a proper compare at
block 5706. Some embodiments may maintain a separate
identifier mapping table local to the MS, accessed from a
remote MS when needed, accessed from a connectedservice,
or accessed as is appropriate to resolve the source identifiers
with the identifiers for comparing at block 5706. Thus, per-
missions and/or charters can grant from one identity to
another wherein identities of the configuration are associated
directly (i.e. useable as is) or indirectly (i.e. mapped) to the
actual identities of the user(s), the MS(s), the group(s), etc
involved in the configuration.

Preferably, statistics are maintained by WITS processing
for each reasonable data worthy of tracking from standpoints
of user reporting, automated performancefine tuning (e.g.
thread throttling), automated adjusted processing, and moni-
toring of overall system processing.In fact, every processing
block of FIG. 57 can havea plurality ofstatistics to be main-
tained.

FIG. 61 depicts a flowchart for describing a preferred
embodiment of performing processing in accordance with
configured charters, as described by block 5744. The
CHARTERS2D0list from FIG. 57 is processed by FIG. 61.
FIG. 61 (and/or FIG. 57 (e.g. blocks 5718/5756)) is respon-
sible for processing grammar specification privileges. Block
5744 processing begins at block 6102 and continuesto block
6104. Block 6104 gets the next charter(orfirst charter onfirst
encounter to block 6104 from block 6102) from the
CHARTERS2D0list and continuesto block 6106 to check if

all charters have already been processed from the list. Block
6104 begins an iterative loop (blocks 6104 through 6162) for
processing all charters (if any) from the CHARTERS2D0O
list.

Ifblock 6106 determinesthere is a charter to process, then
processing continues to block 6108 for instantiating any vari-
ables that may be referencedinthe charter, and then continues
to block 6110. Charter parts are scanned for referenced vari-
ables and they are instantiated so that the charter is intact
without a variable reference. The charter internalized form

may be modified to accommodate instantiation(s). FIG. 57
may havealready instantiated variables for charter elimina-
tion processing. Block 6108is typically not required since the
variables were likely already instantiated when internalized
to a preferred embodiment CHARTERS2DO processable

10

15

20

25

30

35

40

45

50

55

60

65

220

form, and also processed by previous blocks of FIG. 57 pro-
cessing. Nevertheless, block 6108 is present to cover other
embodiments, and to handle any instantiations which were
not already necessary. In some embodiments, block 6108 is
not required since variable instantiations can occur as needed
whenprocessing the individual charter parts during subse-
quent blocks of FIG. 61 processing. Block 6106 would con-
tinuc to block 6110 when a block 6108 is not required.

Block 6110 begins an iterative loop (blocks 6110 through
6118) for processing all special terms from the current charter
expression. Block 6110 gets the next(orfirst) special term (if
any) from the charter expression and continuesto block 6112.
A special term is a BNF grammar WDRTerm, AppTerm, or
atomic term. If block 6112 determines a special term was
found for processing from the expression, then block 6114
accesses privileges to ensure the special term is privileged for
use. Appropriate permissions 5802 are accessedin this appli-
cable context of FIG. 57 processing. Block 6114 then contin-
ues to block 6116. Blocks 6114 and 6116 maynotbe required
since unprivileged charters were already eliminated in previ-
ous blocks of FIG. 57 processing (e.g. see blocks 5718 and
5756). Nevertheless, blocks 6114 and 6116 are shown to
cover other embodiments, and to ensure unprivileged charters
are treated ineffective. Depending on an embodiment, blocks
5718 and 5756 may only perform obvious eliminations. In
other embodiments, there may be no blocks 5718 or 5756 so
that charter part processing occurs only in one place(i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6114 and 6116are not required since all charter elimi-
nations based on privileges already occurred at the previous
blocks of FIG. 57 processing. Block 6112 can continue to
block 6118 when blocks 6114 and 6116 are not required.

If block 6116 determines the special term is privileged for
use(e.g. explicit privilege, or lack of a privilege denying use,
depending on privilege deployment embodiments), then
block 6118 appropriately accesses the special term data
source and replaces the expression referenced special term
with the corresponding value. Block 6118 accesses special
term data dynamically so that the terms reflect values at the
time ofblock 6118 processing. Block 6118 continues back to
block 6110. A WDRTerm is accessed from the in-process
WDRto FIG. 57 processing. An AppTerm is an anticipated
registered application variable accessed by a well known
name,typically with semaphore control since an asynchro-
nous application thread is writing to the variable. An atomic
term will cause access to WDR data at queue 22 or LBX
history 30, application status for applicationsin use at the MS
ofFIG. 57 processing, system date/time, the MS ID ofthe MS
of FIG. 57 processing, or other appropriate data source.

Referring back to block 6116,if it is determined that the
special term of the charter expression is not privileged, then
block 6120 logs an appropriate error(e.g. to LBX history 30)
and processing continues back to block 6104 for the next
charter. An alternate block 6120 mayalert the MSuser, and in
some cases require the user to acknowledgethe error before
continuing back to block 6104. So, the preferred embodiment
of charter processing eliminates a charter from being pro-
cessed if any single part of the charter expression is not
privileged.

Referring back to block 6112,if it is determined there are
no special terms in the expression remaining to process (or
there were nonein the expression), then block 6122 evaluates
the expression to a Boolean True or False result using well
known processing for a stack based parser for expression
evaluation (e.g. See well known compiler/interpreter devel-
opment techniques (e.g. “Algorithms+Data

APPLE

EXHIBIT 1001 - PAGE 0374

APPLE
EXHIBIT 1001 - PAGE 0375

US 8,639,267 B2
221

Structures=Programs” by Nicklaus Wirth published by Pren-
tice-Hall, Inc. 1976)). Block 6122 implements atomic opera-
tors using the WDR queue 22, most recent WDRfor this MS,
LBX history 30, or other suitable MS data. Any Invocation is
also invokedfor resulting to a True or False wherein a default
is enforced upon no return code, or no suitable return code,
returned. Invocation parametersthat had special terms would
have been already been updated by block 6118 to climinate
special terms prior to invocation. Thereafter, if block 6124
determines the expression evaluatedto False, then processing
continues back to block 6104 for the next charter (i.e.
expression=False implies to prevent (not cause) the action(s)
ofthe charter). Ifblock 6124 determinesthe expression evalu-
ated to True, then processing continues to block 6126.

Block 6126 beginsan iterative loop (blocks 6126 through
6162) for processing all actions from the current charter.
Block 6126 gets the next (or first) action Gf any) from the
charter and continues to block 6128. There shouldbe at least

one action in a charter provided to FIG. 61 processing since
the preferred embodiment of FIG. 57 processing will have
eliminated any placeholder charters without an action speci-
fied (e.g. charters with no actions preferably eliminated at
blocks 5740 as part of the merge process, at block 5742,or as
part ofprevious FIG. 57 processing to form privileged charter
lists). If block 6128 determines an unprocessed action was
foundfor processing, then block 6130 initializes a REMOTE
variable to No. Thereafter, if it is determined at block 6132
that the action has a BNF grammarHostspecification, then
block 6134 accesses privileges and block 6136 checksif the
action is privileged for being executed at the Host specified.
The appropriate permissions 5802 are accessedat block 6134
in this applicable context ofFIG. 57 processing.Ifblock 6136
determines the action is privileged for running at the Host,
then block 6138 sets the REMOTEvariable to the Hostspeci-
fied and processing continues to block 6140. If block 6136
determinesthe action is notprivileged for running at the Host,
then processing continues to block 6120 for error processing
already described above. If block 6132 determines there was
no Hostspecified for the action, processing continuesdirectly
to block 6140. Blocks 6134 and 6136 maynot be required
since unprivileged charters were already eliminated in previ-
ous blocks of FIG. 57 processing (e.g. see blocks 5718 and
5756). Nevertheless, blocks 6134 and 6136 are shown to
cover other embodiments, and to ensure unprivileged charters
are treated ineffective. Depending on an embodiment, blocks
5718 and 5756 may only perform obvious eliminations. In
other embodiments, there may be no blocks 5718 or 5756 so
that charter part processing occurs onlyin one place(i.e. FIG.
61) to achieve better MS performance by preventing more
than one scan over charter data. In another embodiment,
blocks 6134 and 6136are not required since all charterelimi-
nations based on privileges already occurred at the previous
blocks of FIG. 57 processing. Block 6132 can continue to
block 6138 when blocks 6134 and 6136 are not required and
a Host was specified with the action.

Block 6140 accesses appropriate permissions 5802 inthis
applicable context of FIG. 57 processing for ensuring the
commandand operandare appropriately privileged. Thereaf-
ter, if block 6142 determinesthat the action’s command and
operand are not privileged, then processing continues to
block 6120 for error processing already described. If block
6142 determines the action’s command and operandare to be
effective, then processing continues to block 6144. Blocks
6140 and 6142 maynot be required since unprivileged char-
ters were already eliminated in previous blocks of FIG. 57
processing (e.g. see blocks 5718 and 5756). Nevertheless,
blocks 6140 and 6142 are shownto cover other embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

222

and to ensure unprivileged charters are treated ineffective.
Depending on an embodiment, blocks 5718 and 5756 may
only perform obvious eliminations. In other embodiments,
there may be no blocks 5718 or 5756 so that charter part
processing occurs only in oneplace (i.e. FIG. 61) to achieve
better MS performance by preventing more than one scan
over charter data. In another embodiment, blocks 6140 and
6142 are not required since all charter climinations based on
privileges already occurredat the previous blocks of FIG. 57
processing. Block 6138, and the No condition ofblock 6132,
would continueto block 6144 when blocks 6140 and 6142are

not required.
Block 6144 begins an iterative loop (blocks 6144 through

6152) for processing all parameter special terms of the cur-
rent charter. Block 6144 gets the next (or first) parameter
special term (if any) and continues to block 6146. A special
term isa BNF grammar WDRTerm, AppTerm,or atomic term
(as described above). Ifblock 6146 determinesa special term
was found for processing from the parameterlist, then block
6148 accesses privileges to ensure the special term is privi-
leged for use. The appropriate permissions 5802 are accessed
in this applicable context of FIG. 57 processing. Block 6148
then continues to block 6150. Blocks 6148 and 6150 maynot
be required since unprivileged charters were already elimi-
nated in previous blocks of FIG. 57 processing (e.g. see
blocks 5718 and 5756). Nevertheless, blocks 6148 and 6150
are shownto cover other embodiments, and to ensure unprivi-
leged charters are treated ineffective. Depending on an
embodiment, blocks 5718 and 5756 mayonly perform obvi-
ous eliminations. In other embodiments, there may be no
blocks 5718 or 5756 so that charter part processing occurs
only in one place (i.e. FIG. 61) to achieve better MS perfor-
mance by preventing more than one scan overcharterdata.In
another embodiment, blocks 6148 and 6150 are not required
since all charter eliminations based on privileges already
occurredat the previous blocks of FIG. 57 processing. Block
6146 can continue to block 6152 when blocks 6148 and 6150

are not required.
If block 6150 determines the special term is privileged for

use (e.g. explicit privilege, or lack of a privilege denying use,
depending on privilege deployment embodiments), then
block 6152 appropriately accesses the special term data
source and replaces the parameter referenced special term
with the corresponding value. Block 6152 accesses special
term data dynamically so that the termsreflect values at the
time ofFIG.61 block 6152 processing. Block 6152 continues
back to block 6144. A WDRTerm, AppTerm,and atomic term
are accessed in a manner analogous to accessing them at
block 6118.

Referring back to block 6150, if it is determined that the
special term of the parameterlist is not privileged, then pro-
cessing continues to block 6120 for error processing already
described. Referring back to block 6146, if it is determined
there are no special terms in the parameter list remaining to
process(or there were none), then block 6154 evaluates each
and every parameter expression to a corresponding value
using well known processing for a stack based parser for
expression evaluation (e.g. See well known compiler/inter-
preter development techniques (e.g. “Algorithms+Data
Structures=Programs” by Nicklaus Wirth published by Pren-
tice-Hall, Inc. 1976)). Block 6154 implements the atomic
operators using the WDR queue 22, most recent WDRforthis
MS, LBX history 30, or other suitable MS data. Any Invoca-
tion is also invoked for resulting to Data or Value wherein a
default is enforced upon no returned data. Invocation param-
eters that had special terms would have been updatedat block
6152 to eliminate special terms prior to invocation. Block

APPLE

EXHIBIT 1001 - PAGE 0375

