(b)

Fig. 11.3 Anexample of matching as
parameter optimization. (a) Initial
parameter set (displayed at left as three-
dimensional surface (see Fig. 9.8) (b)
Fitting process: iteratively adjust @ based
onM (see text). (c) Final parameter set
yields this three-dimensional surface.
(See color inserts.)

Ch. 11 Matching

356

IPR2022-00092 - LGE
Ex. 1015 - Page 367

continuum, and that labeled arcs could be replaced by nodes to yield a directed
graph with labeled nodes.

Depending on the attributes of the relational structure and of the correspon-
dence desired, the definition of a match may be more or less elegant. It is always
possible to translate powerful representations such as labeled graphs or r-ary rela-
tions into computational representations which are amenable to formal treatment
(such as undirected graphs). However, when graph algorithms are to be imple-
mented with computer data structures, the freedom and power of programming
languages often tempts the implementer away from pure graph theory. He can re-
place elegant (but occasionally restrictive and impractical) graph-theoretic con-
cepts and operations with arbitrarily complex data structures and algorithms.

One example is the “graph isomorphism”’ problem, a very pure version of
relational structure matching. In it, all graph nodes and arcs are unlabeled, and
graphs match if there is a 1:1 and onto correspondence between the arcs and nodes
of the two graphs. The lack of expressive power in these graphs and the require-
ment that a match be *‘perfect’” limits the usefulness of this pure model of match-
ing in the context of noisy input and imprecise reference structures. In practice,
graph nodes may have properties with continuous ranges of values, and an arbi-
trarily complex algorithm determines whether nodes or arcs match. The algorithm
may even access information outside the graphs themselves, as long as it returns
the answer ““match” or “‘no match.”” Generalizing the graph-theoretic notions in
this way can obscure issues of their efficiency, power, and properties; one must
steer a course between the ‘“‘elegant and unusable’’ and the ‘‘general and uncon-
trollable.”” This section introduces some ‘‘pure” graph-theoretic algorithms that
form the basis for techniques in Sections 11.3 and 11.4.

11.2.1 The Algorithms

The following are several definitions of matching between graphs [Harary 1969;
Berge 1976].

e Graph isomorphism. Given two graphs (Vy, E) and (V,, E,), find a 1:1 and
onto mapping (an isomorphism) f between ¥, and ¥, such that for
vi, v2 € Vi, V5, f(¥;) = v, and for each edge of E; connecting any pair of
nodes vy and v'; € V|, there is an edge of £, connecting £ (v,) and f(v,").

o Subgraph isomorphism. Find isomorphisms between a graph (V| E) and sub-
graphs of another graph (V, E). This is computationally harder than isomor-
phism because one does not know in advance which subsets of ¥, are involved
in isomorphisms.

o “Double” subgraph isomorphisms. Find all isomorphisms between subgraphs of
a graph (V1 E)) and subgraphs of another graph (V, E,). This sounds harder
than the subgraph isomorphism problem, but is equivalent.

+ A match may not conform to strict rules of correspondence between arcs and
nodes (some nodes and arcs may be ‘‘unimportant’). Such a matching cri-
terion may well be implemented as a ‘‘computational’’ (impure) version of one
of the pure graph isomorphisms.

Sec. 11.2 Craph-Theoretic Algorithms 357

IPR2022-00092 - LGE
Ex. 1015 - Page 368

358

Figure 11.4 shows examples of these kinds of matches.

One algorithm for finding graph isomorphism [Corneil and Gotlieb 1970] is
based on the idea of separately putting each graph into a canonical form, from
which isomorphism may easily be determined. For directed graphs (i.e., nonsym-
metric relations) a backtrack search algorithm [Berztiss 1973] works on both
graphs at once.

Two solutions to the subgraph isomorphism problem appear in [Ullman
1976]: The first is a simple enumerative search of the tree of possible matches
between nodes. The second is more interesting; in it a process of ‘‘parallel-
iterative” refinement is applied at each stage of the search. This process is a way of
rejecting node pairs from the isomorphism and of propagating the effects of such
rejections; one rejected match can lead to more matches being rejected. When the
iteration converges (i.e., when no more matches can be rejected at the current
stage), another step in the tree search is performed (one more matching pair is hy-
pothesized). This mixing of parallel-iterative processes with tree search is useful in
a variety of applications (Section 11.4.4, Chapter 12).

“Double” subgraph isomorphism is easily reduced to subgraph isomorphism
via another well-known graph problem, the “‘clique problem.”” A clique of size Nis
a totally connected subgraph of size NV (each node is connected to every other node
in the clique by an arc). Finding isomorphisms between subgraphs of a graph A
and subgraphs of a graph B is accomplished by forming an association graph G from
the graphs A and B and finding cliques in G (for details, see Section 11.3.3). Clique

(a) (b) (c)
(d) @)

Fig. 11.4 Isomorphisms and matches. The graph (a) has an isomorphism with
(b), various subgraph isomorphisms with {c), and several ““double” subgraph iso-
morphisms with (d). Several partial matches with (e) (and also (b), (¢}, and (d)),
depending on which missing or extra nodes are ignored.

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 369

finding may be done with a subgraph isomorphism algorithm; hence the reduction.
Several other clique-finding algorithms exist [Ambler et al. 1975; Knodel 1968;
Bron and Kerbosch 1973; Osteen and Tou 1973].

11.2.2 Complexity

It is of some practical importance to be aware of the computational complexity of
the matching algorithms proposed here; they may take surprising amounts of com-
puter time. There are many accessible treatments of computational complexity of
graph-theoretic algorithms [Reingold et al. 1977; Aho, Hopcroft and Uliman
1974]. Theoretical results usually describe worst-case or average time complexity.
The state of knowledge in graph algorithms is still improving; some interesting
worst-case bounds have not been established.

A “‘hard” combinatorial problem is one that takes time (in a usual model of
computation based on a serial computer) proportional to an exponential function
of the length of the input. ‘“‘Polynomial-time’’ solutions are desirable because they
do not grow as fast with the size of the problem. The time to find all the cliques of a
graph is in the worst case inherently exponential in the size of the input graphs, be-
cause the output is an exponential number of graphs. Both the single subgraph iso-
morphism problem and the “‘clique problem’” (does there exist a clique of size k?)
are NP-complete; all known deterministic algorithms run (in the worst case) in time
exponential in the length of the description of the graphs involved (which must
specify the nodes and arcs). Not only this, but if either of these problems (or a host
of other NP complete problems) could be solved deterministically in time polyno-
mially related to the length of the input, it could be used to solve all the other NP
problems in polynomial time.

Graph isomorphism, both directed and undirected, is at this writing in a
netherworld (along with many other combinatorial problems). No polynomial-
time deterministic algorithms are known to exist, but the relation of these prob-
lems to each other is not as clear-cut as it is between the NP-complete problem. In
particular, finding a polynomial-time deterministic solution to one of them would
not necessarily indicate anything about how to solve the other problems determin-
istically in polynomial time. These problems are not mutually reducible. Certain
restrictions on the graphs, for instance that they are planar (can be arranged with
their nodes in a plane and with no arcs crossing), can make graph isomorphism an
“‘easy’’ (polynomial-time) problem.

The average-case complexity is often of more practical interest than the worst
case. Typically, such a measure is impossible to determine analytically and must be
approximated through simulation. For instance, one algorithm to find isomor-
phisms of randomly generated graphs yields an average time that seems not ex-
ponential, but proportional to N , with N the number of nodes in the graph [Ull-
man 1976]. Another algorithm seems to run in average time proportional to N*
[Corneil and Gotlieb 1970].

All the graph problems of this section are in NP. That is, a nondeterministic
algorithm can solve them in polynomial time. There are various ways of visualizing

Sec. 11.2 GraphATh@tﬂc Algorithms 359

IPR2022-00092 - LGE
Ex. 1015 - Page 370

nondeterministic algorithms; one is that the algorithm makes certain significant
““good guesses’’ from a range of possibilities (such as correctly guessing which sub-
set of nodes from graph B are isomorphic with graph 4 and then only having to
worry about the arcs). Another way is to imagine parallel computation; in the
clique problem, for example, imagine multiple machines running in parallel, each
with a different subset of nodes from the input graph. If any machine discovers a
totally connected subset, it has, of course, discovered a clique. Checking whether
N nodes are all pairwise connected is at most a polynomial-time problem, so all the
machines will terminate in polynomial time, either with success or not. Several in-
teresting processes can be implemented with parallel computations. Ullman’s algo-
rithm uses a refinement procedure which may run in parallel between stages of his
tree search, and which he explains how to implement in parallel hardware [Ullman
1976].

11.3 IMPLEMENTING GRAPH-THEORETIC ALGORITHMS

360

11.3.1 Matching Metrics

Matching involves quantifiable similarities. A match is not merely a correspon-
dence, but a correspondence that has been quantified according to its *‘goodness.”
This measure of goodness is the matching metric. Similarity measures for correla-
tion matching are lumped together as one number. In relational matching they
must take into account a relational, structured form of data [Shapiro and Haralick
1979].

Most of the structural matching metrics may be explained with the physical
analogy of “‘templates and springs™ [Fischler and Elschlager 1973]. Imagine that
the reference data comprise a structure on a transparent rubber sheet. The match-
ing process moves this sheet over the input data structure, distorting the sheet so
as to get the best match. The final goodness of fit depends on the individual
matches between elements of the input and reference data, and on the amount of
work it takes to distort the sheet. The continuous deformation process is a pretty
abstraction which most matching algorithms do not implement. A computationally
more tractable form of the idea is to consider the model as a set of rigid ‘‘tem-
plates’ connected by ‘‘springs’’ (see Fig. 11.5). The templates are connected by
“‘springs” whose ‘‘tension”’ is also a function of the relations between elements. A
spring function can be arbitrarily complex and nonlinear; for example the ‘‘ten-
sion’” in the spring can attain very high or infinite values for configurations of tem-
plates which cannot be allowed. Nonlinearity is good for such constraints as: in a
picture of a face the two eyes must be essentially in a horizontal line and must be
within fixed limits of distance. The quality of the match is a function of the good-
ness of fit of the templates locally and the amount of “energy’’ needed to stretch
the springs to force the input onto the reference data. Costs may be imposed for
missing or extra elements.

The template match functions and spring functions are general procedures,
thus the templates may be more general than pure iconic templates. Further,

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 371

Hair

Left

Right
edge J

edge

Mouth

Fig. 11.5 A templates and springs model of a face.

matches may be defined not only between nodes and other nodes, but between
nodes and image data directly. Thus the template and springs formalism is work-
able for ‘‘cross-representational’’ matching. The mechanism of minimizing the to-
tal cost of the match can take several forms; more detailed examples follow in Sec-
tion 11.4.

Equation 11.3 a general form of the template-and-springs metric. Tem-
plateCost measures dissimilarity between the input and the templates, and
SpringCost measures the dissimilarity between the matched input elements’ rela-
tions and the reference relations between the templates. MissingCost measures the
penalties for missing elements. F(-) is the mapping from templates of the reference
to elements of the input data. F partitions the reference templates into two classes,
those found {FoundinRefer} and those not found {MissinginRefer} in the input
data. If the input data are symbolic they may be similarly partitioned. The general
metricis

Cost = z TemplateCost(d, F(d))
d € {FoundinRefer}

SpringCost(F(d), F(e)) (11.3)

(d,) € {FoundinRefer x Foundinlnput]
+ z MissingCost (c)
¢ € [MissinginRefer] | {MissinginInput}

Equation 11.3 may be written as one sum of generalized SpringCosts in which
the template properties are included (as 1-ary relations), as are ‘‘springs’” involv-
ing missing elements.

Sec. 11.3 Implementing Graph-Theoretic Algorithms 361

IPR2022-00092 - LGE
Ex. 1015 - Page 372

362

As with correlation metrics, there are normalization issues involved with
structural matching metrics. The number of elements matched may affect the ulti-
mate tagmtude of the metric. For instance, if springs always have a finite cost,
then the more elements that are matched, the higher the total spring energy must
be; this should probably not be taken to imply that a match of many elements is
worse than a match of a few. Conversely, suppose that relations which agree are
given positive ““goodness’’ measures, and a match is chosen on the basis of the to-
tal ““‘goodness.”” Then unless one is careful, the sheer number of possibly mediocre
relational matches induced by matching many elements may outweigh the “‘good-
ness’” of an elegant match involving only a few elements. On the other hand, a
small, elegant match of a part of the input structure with one particular reference
object may leave much of the search structure unexplained. This good “‘sub-
match’ may be less helpful than a match that explains more of the input. To some
extent the general metric (Eq.11.3) copes with this by acknowledging the ‘‘miss-
ing”’ category of elements.

If the reference templates actually contain iconic representations of what the
input elements should look like in the image, a TemplateCost can be associated
with a template and a location in the image by

TemplateCost(Template, Location)

= (1 — normalized correlation metric between
template shape and input image at the location).

If the match is, for instance, to match reference descriptions of a chair with
an input data structure, a typical “‘spring’’ might be that the chair seat must be sup-
ported by its legs. Thus if Fis the association function mapping reference elements
such as LEG or TABLETOP to input elements,

SpringCost,; (F (LEG),F (TABLETOP)

o if F(LEG) appears to support F(TABLETOP),
1 if F(LEG) does not appear to support #(TABLETOP).

For quantified relations, one might have
SpringCost, = number of standard deviations from the
canonical mean value for this relation.

Another version of SpringCost, is the following [Barrow and Popplestone
1971].
Costor Matah = SpringCosts of properties (unary) z.md bmar‘y relations (11.4)

total number of unary and binary springs
4 Empirical Constant
Total number of reference elements matched

The first term measures the average badness of matches between properties
(unary relations) and relations between regions. The second term is inversely pro-
portional to the number of regions that are matched, effectively increasing the cost
of matches that explain less of the input.

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 373

11.3.2 Backtrack Search

Backtrack search is a generic name for a type of potentially exhaustive search or-
ganized in stages; each processing stage attempts to extend a partial solution
derived in the previous stage. Should the attempt fail, the search ‘‘backtracks’ to
the most recent partial solution, from which a new extension is attempted. The
technique is basic, amounting to a depth-first search through a tree of partial solu-
tions (Fig. 11.6). Backtracking is a pervasive control structure in artificial intelli-

(2} .l

Choices for A

Choices for B
given A

Choices for C
given A and B

Fig. 11.6 The graph of (a) is to be matched in (b) with arcs all being unlabeled
but nodes having properties indicated by their shapes, (c) is the tree of solutions
built by a backtrack algorithm.

Sec. 11.3 Implementing Graph-Theoretic Algorithms 363

IPR2022-00092 - LGE
Ex. 1015 - Page 374

364

gence, and through the years several general classes of techniques have evolved to
make the basic, brute-force backtrack search more efficient.

Example: Graph Isomorphisms
Given two graphs,

X = (Vx, EX)
Y = (Vy, Ey),

without loss of generality, let ¥y = Vy = {1, 2, ..., n}, and let X be the reference
graph, Y the input graph. The isomorphism is given by: If i € ¥y, the correspond-
ing node under the isomorphism is F (i) € Vy.

In the algorithm, S is the set of nodes accounted for in ¥ by a partial solution.
k gives the current level of the search in the tree of partial solutions, the number of
nodes in the current partial solution, and the node of X whose match in Y is
currently being sought. v is a node of Y currently being considered to extend the
current partial solution. As written, the algorithm finds all isomorphisms. It is
easily modified to quit after finding the first.

Algorithm 11.1 Backtrack Search for Directed Graph Isomorphism

Recursive Procedure DirectedGraphlsomorphisms(S,4);
begin
if S=Vy then ReportAsIsomorphism (F)
else
Sorallv € (Vy—S)
do
if Match(k,v)
then
begin
Flk) =,
DirectedGraphlsomorphisms (S € {y}, k+1);
end,
end,

ReportAsIsomorphism could print or save the current value of F, the global
structure recording the current solution. Match(k,v) is a procedure that tests
whether v € ¥y can correspond to k € Vy under the isomorphism so far defined by
F. Let X, be the subgraph of X with vertices {1, 2,. . .,k}. The procedure ‘‘Match”’
must check for i < k, whether (i, k) is an edge of X, iff (F(i), v) is an edge of ¥
and whether (k, i) is an edge of X, iff (v, F(i)) is an edge of Y.

Improving Backtrack Search
Several techniques are useful in improving the efficiency of backtrack search
[Bittner and Reingold 1975]:

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 375

Sec. 11.3

1. Branch pruning. All techniques of this variety examine the current partial solu-
tion and prune away descendents that are not viable continuations of the solu-
tion. Should none exist, backtracking can take place immediately.

2. Branch merging. Do not search branches of the solution tree isomorphic with
those already searched.

3. Tree rearrangement and reordering. Given pruning capabilities, more nodes are
likely to be eliminated by pruning if there are fewer choices to make early in
the search (partial solution nodes of low degree should be high in the search
tree). Similarly, search first those extensions to the current solution that have
the fewest alternatives.

4. Branch and bound. If a cost may be assigned to solutions, standard techniques
such as heuristic search and the A* search algorithm [Nilsson 1980] (Section
4.4) may be employed to allow the search to proceed on a ‘‘best-first’’ rather
than a “‘depth-first’’ basis.

For extensions of these techniques, see [Haralick and Elliott 1979].

11.3.3 Association Graph Techniques

Generalized Structure Matching

A general relational structure ‘‘best match®’ is less restricted than graph iso-
morphism, because nodes or arcs may be missing from one or the other graph.
Also, it is more general than subgraph isomorphism because one structure may not
be exactly isomorphic to a substructure of the other. A more general match con-
sists of a set of nodes from one structure and a set of nodes from the otherand a 1:1
mapping between them which preserves the compatibilities of properties and rela-
tions. In other words, corresponding nodes (under the node mapping) have
sufficiently similar properties, and corresponding sets under the mapping have
compatible relations.

The two relational structures may have a complex makeup that falls outside
the normal purview of graph theory. For instance, they may have parameterized
properties attached to their nodes and edges. The definition of whether a node
matches another node and whether two such node matches are mutually compati-
ble can be determined by arbitrary procedures, unlike the much simpler criteria
used in pure graph isomorphism or subgraph isomorphism, for example. Recall
that the various graph and subgraph isomorphisms rely heavily on a 1:1 match, at
least locally, between arcs and nodes of the structures to be matched. However, the
idea of a ‘‘best match’® may make sense even in the absence of such perfect
correspondences.

The association graph defined in this section is an auxiliary data structure pro-
duced from two relational structures to be matched. The beauty of the association
graph is that it is a simple, pure graph-theoretic structure which is amenable to
pure graph-theoretic algorithms such as clique finding. This is useful for several
reasons.

Implementing Graph-Theoretic Algorithms 365

IPR2022-00092 - LGE
Ex. 1015 - Page 376

366

« It takes relational structure matching from the ad hoc to the classical domain.

« It broadens the base of people who are producing useful algorithms for struc-
ture matching. If the rather specialized relational structure matching enterprise
is reducible to a classical graph-theoretical problem, then everyone working on
the classical problem is also working indirectly on structure matching.

« Knowledge about the computational complexity of classical graph algorithms il-
luminates the difficulty of structure matching.

Cligue Finding for Generalized Matching

Let a relational structure be a set of elements ¥, a set of properties (or more
simply unary predicates) P defined over the elements, and a set of binary relations
(or binary predicates) R defined over pairs of the elements. An example of a graph
representation of such a structure is given in Fig. 11.7.

Given two structures defined by (¥, P, R) and (V,, P, R), say that ‘‘simi-
lar’” and ‘‘compatible’’ actually mean ‘‘the same.”” Then we construct an associa-
tion graph G as follows [Ambler et al. 1975)]. For each v, in ¥, and v, in V5, con-
struct a node of G labeled (v, v5) if v; and v, have the same properties [p (v,) iff
p (v,) for each pin Pl. Thus the nodes of G denote assignments, or pairs of nodes,
one each from ¥, and ¥,, which have similar properties. Now connect two nodes
(vq, v2) and (v}, v5) of Gif they represent compatible assignments according to R,
that is, if the pairs satisfy the same binary predicates [r (v, v,) iff r(v,, v') for
each rin R].

A match between (F; P, R) and (¥, P, R), the two relational structures, is
just a set of assignments that are all mutually compatible. The ‘‘best match’” could
well be taken to be the largest set of assignments (node correspondences) that
were all mutually compatible under the relations. But this in the association graph
G is just the largest totally connected (completely mutually compatible) —set of
nodes. It is a cligue. A clique to which no new nodes may be added without destroy-
ing the clique properties is a maximal clique. In this formulation of matching, larger
cliques are taken to indicate better matches, since they account for more nodes.

o1 p2

Fig. 11.7 A graphrepresentation of a
relational structure. Elements (nodes) v,
and v; have property pl, v; and v4 have
property p2, and the arcs between nodes
indicate that the relation rl holds
between v, and v, and between vy and
v3, and r2 holds between vz and vqand
between vgand v).

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 377

Sec. 711.3

Thus the best matches are determined by the largest maximal cliques in the associ-
ation graph. Figure 11.8 shows an example: Certain subfeatures of the objects have
been selected as “‘primitive elements’ of the objects, and appear as nodes (ele-
ments) in the relational structures. To these nodes are attached properties, and
between them can exist relations. The choice of primitives, properties, and rela-
tions is up to the designer of the representation. Here the primitives of the
representation correspond to edges and corners of the shape.

The association graph is shown in 11.8e. Its nodes correspond to pairs of
nodes, one each from A and B, whose properties are similar. [Notice that there is
no node in the association graph for (6,6")]. The arcs of the association graph indi-
cate that the endpoints of the arc represent compatible associations. Maximal
cliques in the association graph (shown as sets of nodes with the same shape) indi-
cate sets of consistent associations. The largest maximal clique provides the node
pairings of the ‘“‘best match.”

In the example construction, the association graph is formed by associating
nodes with exactly the same properties (actually unary predicates), and by allowing
as compatible associations only those with exactly the same relations (actually
binary predicates). These conditions are easy to state, but they may not be exactly
what is needed. In particular, if the properties and relations may take on ranges of
values greater than the binary “‘exists” and “‘does not exist,”’ then a measure of
similarity must be introduced to define when node properties are similar enough
for association, and when relations are similar enough for compatibility. Arbitrarily
complex functions can decide whether properties and relations are similar. As long
as the function answers ‘‘yes’” or “‘no,’’ the complexity of its computations is ir-
relevant to the matching algorithm.

The following recursive clique-finding algorithm builds up cliques a node at a
time [Ambler et al. 1975]. The search tree it generates has states that are ordered
pairs (set of nodes chosen for a clique, set of nodes available for inclusion in the
clique). The root of the tree is the state (@, all graph nodes), and at each branch a
choice is made whether to include or not to include an eligible node in the clique.
(If a node is eligible for inclusion in clique X, then each clique including X must ei-
ther include the node or exclude it).

Algorithm 11.2: Clique-Finding Algorithm
Comment Nodes is the set of nodes in the input graph.

Comment
Cligues (X,Y) takes as arguments a clique X, and ¥, a set of nodes that includes
X. Itreturns all cliques that include X and are included in Y.
Cligues (@ ,Nodes) finds all cliques in the graph.
Cligues(X,Y) :=
if nonode in ¥Y—Xis connected to all elements of X
then | X}

else
Cliques(X J {»),) U Cliques (X, Y—{3})
where y is connected to all elements of X.

Implementing Graph-Theoretic Algorithms 367

IPR2022-00092 - LGE
Ex. 1015 - Page 378

al__% s 2 ¥ e

(

[
2
ij 4

12 ar’

14/

AN

32

34

a)
(e)
23 \

43’ 63

54"
52'

le)

Q Property ‘‘corner” [:I Property “‘short” w—p— Relation *‘next”

Fig. 11.8 Clique-finding example. Entities to be matched are given in (a) (refer-
ence) and (b) (input). The relational structures corresponding 10 them are shown
in (¢) and (d). The resulting association graph is shown in (e) with its largest
cliques indicated by node shapes.

368 Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 379

Extensions

Modifications to the clique-finding algorithm extend it to finding maximal
cliques and finding largest cliques. To find largest cliques, perform an additional
test to stop the recursion in Cligues if the size of X plus the number of nodes in
Y—X connected to all of X becomes less than k, which is initially set to the size of
the largest possible clique. If no cliques of size k are found, decrement & and run
Cliques with the new k.

To find maximal cliques, at each stage of Cligues, compute the set

Y’ = {z € Nodes: z is connected to each node of Y}.

Since any maximal clique must include Y, searching a branch may be terminated
should Y'not be contained in Y, since ¥ can then contain no maximal cliques.

The association graph may be searched not for cliques, but for r-connected
components. An r-connected component is a set of nodes such that each node is
connected to at least r other nodes of the set. A clique of size n is an n—1-
connected component. Fig. 11.9 shows some examples.

The r-connected components generalize the notion of clique. An r-connected
component of N nodes in the association graph indicates a match of N pairs of
nodes from the input and reference structures, as does an N-clique. Each matching
pair has similar properties, and each pair is compatible with at least r other matches
in the component.

Whether or not the r-connected component definition of a match between
two structures is useful depends on the semantics of ‘‘compatibility.”” For in-
stance, if all relations are either compulsory or prohibited, clearly a clique is called
for. If the relations merely give some degree of mutual support, perhaps an r-
connected component is the better definition of a match.

11.4 MATCHING IN PRACTICE

This section illustrates some principles of matching with examples from the com-
puter vision literature.

(a) (b} (c)

Fig. 11.9 rconnected components. (a) A 5-clique (which is 4-connected). (b) A
3-connected set of 5 nodes. (c) A 1-connected set of 5 nodes.

Sec. 11.4 Matching in Practice 369

IPR2022-00092 - LGE
Ex. 1015 - Page 380

370

11.4.1 Decision Trees

Hierarchical decision-tree matching with ad hoc metrics is a popular way to identify
input data structures as instances of reference models and thus classify the input
instances [Nevatia 1974; Ambler et al. 1975; Winston 1975]. Decision trees are in-
dicated when it is predictable that certain features are more reliably extracted than
others and that certain relations are either easier to sense or more necessary to the
success of a match.

Winston and Nevatia both compare matches with a ‘‘weighted sums of
difference’” metric that reflects cumulative differences between the parameters of
corresponding elements and relations in the reference and input data. In addition,
Nevatia does parameter fitting; his reference information includes geometrical in-
formation.

Matching Structural Descriptions

Winston is interested in matching such structures as appear in Fig. 11.10B.
The idea is to recognize instances of structural concepts such as “‘arch> or
“house,”” which are relational structures of primitive blocks (Fig.11.10A) [Wins-
ton 1975]. An important part of the program learns the concept in the first place —
only the matching aspect of the program is discussed here. His system has the
pleasant property of representational uniqueness: reference and input data struc-
tures that are identical up to the resolution of the descriptors used by the program
have identical representations. Matching is easy in this case. Reflections of block
structures can be recognized because the information available about relations
(such as LEFT-OF and IN-FRONT-OF) includes their OPPOSITE (i.e., RIGHT-
OF and BEHIND). The program thus can recognize various sorts of symmetry by
replacing all input data structure relations by their relevant opposite, then compar-
ing with the reference.

The next most complicated matching task after exact or symmetric matches
is to match structures in isolation. Here the method is sequentially to match the in-
put data against the whole reference data catalog of structures and determine which
match is best (which difference description is most inconsequential). Easily com-
puted scene characteristics can rule out some candidate models immediately.

The models contain arcs such as MUST-BE and MUST-NOT, expressing re-
lations mandatory or forbidden relations. A match is not allowed between a
description and a model if one of the strictures is violated. For instance, the pro-
gram may reject a “‘house’ immediately as not being a “‘pedestal,”” ““tent,”” or
“‘arch,” since the pedestal top must be a parallelepiped, both tent components
must be wedges, and the house is missing a component to support the top piece
that is needed in the arch. These outright rejections are in a sense easy cases; it can
also happen that more than one model matches some scene description. To deter-
mine the best match in this case, a weighted sum of differences is made to express
the amount of difference.

The next harder case is to match structures in a complex scene. The issue
here is what to do about evidence that is missing through obscuration. Two heuris-
tics help:

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 381

Arch Near miss

o 2%

Near miss Arch

MODIFICATION- OF

MUST-BE- l y
supPORTED- By) (SUPPORTED-SY

MUST-BE-SATELLITE

ONE-PART-IS
GROUP -OF
HAS-PROPERT Y-OF

~

MODIFICATION -OF

MUST-NOT. .
ABUT ABUT

MUST-NOT-BE-
SATELLITE

ORIENTATION

SPATIAL -
RELATION

./

(b)
Fig. 11.10 (a) Several arches and non-arches. (b) The computer-generated arch
description to be used for matching.

1. Objects that seem to have been stacked and could be the same type are of the
same type.

2. Essential model properties may be hidden in the scene, so the match should
not be aborted because of missing essential properties (though the presence of
forbidden properties is enough to abort a match).

This latter rule is equivalent to Nevatia’s rules about connectivity difference and
missing input instance parts (see below). In terms of the general structure metric
introduced earlier, neither Winston or Nevatia penalize the match for missing ele-
ments or relations in the reference data. One result of this is that the best match is
sometimes missed in favor of the first possible match. Winston suggests that com-

Sec. 11.4 Matching in Practice 371

IPR2022-00092 - LGE
Ex. 1015 - Page 382

372

plex scenes be analyzed by identifying subscenes and subtracting out the identified
parts, as was done by Roberts.

Winston’s program can learn shortcuts in matching strategy by itself; it builds
for itself a similarity network relating models whose differences are slight. If a
reference model does not quite fit an input structure, the program can make an in-
telligent choice of the next model to try. A good choice is a model that has only
minor differences with the first. This self-organization and cataloging of the models
according to their mutual differences is a powerful way to use matching work that is
already performed to guide further search for a good match.

Backtrack Search

Nevatia addresses a domain of complex articulated biological-like forms
(hands, horses, dolls, snakes) [Nevatia 1974]. His strategy is to segment the ob-
jects into parts with central axes and ‘‘cross section” (not unlike generalized
cylinders, except that they are largely treated in two dimensions). The derived
descriptions of objects contain the connectivity of subparts, and descriptions of the
shape and joint types of the parts. Matching is needed to compare descriptions and
find differences, which can then be explained or used to abort the match. Partial
matches are important (as in most real-world domains) because of occlusions,
noise, and so on. .

A priori ideas as to the relative importance of different aspects of structures
are used to impose a hierarchical order on the matching decision tree. Nevatia finds
this heuristic approach more appealing than a uniform, domain-independent one
such as clique finding. His system knows that certain parts of a structure are more
important than others, and uses them to index into the reference data catalog con-
taining known structures. Thus relevant models for matching may be retrieved
efficiently on the basis of easily-computed functions of the input data. The models
are generated by the machine by the same process that later extracts descriptions of
the image for recognition. Several different models are stored for the same view of
the same object, because his program has no idea of model equivalence, and can-
not always extract the same description.

The matching process is basically a depth-first tree search, with initial choices
being constrained by ‘‘distinguished pieces.”” These are important pieces of image
which first dictate the models to be tried in the match, and then constrain the pos-
sible other matches of other parts.

There is a topological and a geometrical component to the match. The topo-
logical part is based on the connectivity of the “‘stick figure’” that underlies the
representation. The geometrical part matches the more local characteristics of indi-
vidual pieces. Consider Nevatia’s example of matching a doll with stored reference
descriptions, including those of a doll and a horse.

By a process not concerning us here, the doll image is segmented into pieces
as shown in Fig. 11.11. From this, before any matching is done, a connection graph
of pieces is formed, as shown in Fig. 11.12.

This connection graph is topologically the same as the reference connection
graph for the doll, which looks as one would expect. In both reference and input,
““distinguished pieces’’ are identified by their large size. During reference forma-

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 383

Fig. 11.11 A view of a doll, with derived structure.

tion time, the two largest pieces were the head and the trunk, and these are the
distinguished pieces in the reference. There are the same pieces picked
as distinguished in the instance to be matched consistent with the hierarchical
decision-tree style, distinguished pieces are matched first.

Because of noise, connections at joints may be missed; because of the nature
of the objects, extra joints are hardly ever produced. Thus there is a domain-
dependent rule that an input piece with two other pieces connected at a single joint
(a ““two-ended piece’’) cannot match a one-ended reference piece, although the
reverse is possible.

On the basis of the distinguished pieces in the input instance, the program
decides that the instance could be a doll or a horse. Both these possibilities are
evaluated carefully; Fig. 11.13 shows a schematic view of the process. Piece-match
evaluation must be performed at the nodes of the tree to determine which pieces at
a joint should be made to correspond.

The final best match between the doll input and the horse reference model is
diagrammed in Fig. 11.14. This match is not as good as the match between the doll
input and the doll reference.

A

H
B
Fig. 11.12 Connection graph of the

A L doll.

Sec. 71.4 Matching in Practice 373

IPR2022-00092 - LGE
Ex. 1015 - Page 384

The final choice of matches is made with a version of the general relational
structure matching metric (Eq. 11.3). It takes into account the connectivity rela-
tions, which are the same in this case, and the quality of the individual piece
matches. In the doll-horse match, more reference parts are missing, but this can
happen if parts are hidden in a view, and do not count against the match. The
doll-doll match is preferred on the basis of piece matching, but both matches are
considered possible.

In summary, the selection of best match proceeds roughly as follows: unac-
ceptable differences are first sought (not unlike the Winston system). The number
of input pieces not matched by the reference is an important number (not vice

versa, because of the possibility of hidden input parts). Only elongated, large parts

il 21

?A Q ®0:0 @0O:A

I \
| \
" (same \
A: A ’ A' :; leftmoi:;s \
path} \
| \
\\ \‘
1 1
| o - * :
i I

-
\\
\ 3 4 ,%
o \ %
.
& A * (nomatnhes
T{

W

{extra input 2 now for
piece matches instance leg)
unmatched (leg matched (head (4): leg {4')
reference arm) @ despite match very poor)

shadows)

(both branches lead
to correct match)

Fig. 11,13 A pictorial guide to the combinations tried by the matcher establishing the best
correspondence of the doll input with the doll reference. The graphic shapes are purely
pedagogical: the program deals with symbolic connectivity information and geomelric meas-
urements. Inferences and discoveries made by the program while matching are given in the
diagram. A:B means that structure A is matched with structure B, with the numbered sub-
structures of A matching their primed counterparts in B.

374 Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 385

Input

ﬁg[:) 3 A
L

Fig. 11.14 The best match of the doll input with the horse reference model. One
doll arm is unmatched, as is the horse head and two legs.

Qs

are considered for this determination, to eliminate small ‘‘noise’’ patches. The
match with fewest unmatched input pieces is chosen.

If no deciding structural differences exist, the quality of piece matches deter-
mines the quality of the match. These correspond to the template cost term in Eq.
(11.3). If a ““significant’’ difference in match error exists, the better match is ex-
clusively selected; if the difference is not so great as that, the better match is
merely preferred.

Piece matching is a subprocess of joint matching. The difference in the
number of pieces attached at the ends of the piece to be matched is the connectivity
difference. If the object piece has more pieces connected to it than the model piece,
the match is a poor one; since pieces may not be visible in a view, the converse is
not true. If one match gives fewer excess input pieces, it is accepted at this point. If
not, the goodness of the match is computed as a weighted sum of width difference,
length-to-width ratio difference, and difference in acuteness of the generalized
cylinders (Chapter 9) forming the pieces. The weighted sum is thresholded to yield
a final “‘yes or no’” match result. Shadowing phenomena are accommodated by al-
lowing the input piece to be narrower than the reference model piece with no
penalty. The error function weights are derived empirically; one would not expect
the viewing angle to affect seriously the width of a piece, for example, but it could
affect its length. Piece axis shapes (what sort of space curve they are) are not used
for domain-dependent reasons, nor are cross section functions (aside from a meas-
ure of ““acuteness’’ for cone-like generalized cylinders).

11.4.2 Decision Tree and Subgraph Isomorphism

A robotics program for versatile assembly [Ambler et al. 1975] uses matching to
identify individual objects on the basis of their boundaries, and to match several
individual blobs on a screen with a reference model containing the known location
of multiple objects in the field of view. In both cases the best subgraph isomor-
phism between input and reference data structures is found when necessary by the
clique-finding technique (Algorithm 11.2).

Sec. 11.4 Matching in Practice 375

IPR2022-00092 - LGE
Ex. 1015 - Page 386

376

The input data to the part recognizer consist of silhouettes of parts with out-
lines of piecewise linear and circular segments. A typical set of shapes to be recog-
nized might be stored in terms of boundary primitives as shown in Fig. 11.15a,
with matchable and unmatchable scenes shown in Fig. 11.15b.

Generally, the matching process works on hierarchical structures which cap-
ture increasing levels of detail about the objects of interest. The matching works its
way down the hierarchy, from high-level, easily computable properties such as size
down to difficult properties such as the arrangements of linear segments in a part
outline. After this decision tree pre-processing, all possible matches are computed
by the clique-finding approach to subgraph isomorphism. A scene can be assigned
a number of interpretations, including those of different views of the same part.
The hierarchical organization means that complicated properties of the scene are
not computed unless they are needed by the matcher. Once computed they are
never recomputed, since they are stored in accessible places for later retrieval if
needed. Each matching level produces multiple interpretations; ambiguity is
treated with backtracking. The system recognizes rotational and translational in-
variance, but must be taught different views of the same object in its different grav-
itationally stable states. It treats these different states basically as different objects.

11.4.3 Informal Feature Classification

The domain of this work is one of small, curved tabletop objects, such as a teacup
(Fig. 11.16) [Barrow and Popplestone 1971]. The primitives in models and image
descriptions are regions which are found by a process irrelevant here. The regions
have certain properties (such as shape or brightness), and they have certain
parameterized relations with other regions (such as distance, adjacency, ““above-
ness”’). The input and reference data are both relational structures. The properties
and relations are the following:

(al

Fig. 11.15 A small catalog of part
boundaries (a) and some sample
silhouettes (b). The “‘heap’’ will not
match any part very well, while the
square can match the square model in
four different ways, through rotations.
Gross properties such as area may be
used cheaply to reject matches such as
the square with the axle.

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 387

Fig. 11.16 An object for recognition
by relational matching.

1. Region Properties

Shape 1-Shape 6: the first six root mean square amplitudes of the Fourier com-
ponents of the ¢ (s) curve [Chapter 8].

2. Relations between Regions A and B
Bigger: Area(A)/Area(B)
Adjacency: Fraction of A’s boundary which also is a boundary of B.

Distance: Distance between centroids divided by the geometric mean of aver-
age radii. The average radius is twice the area over the perimeter. Distance is
scale, rotation, translation, reflection invariant.

Compactness: 4+ *area / perimeter®

Above, Beside: Vertical and horizontal distance between centroids, normal-
ized by average radius. Not rotation invariant.

The model that might be derived for the cup of Fig. 11.16 is shown in Fig. 11.17.

The program works on objects such as spectacles, pen, cup, or ball. During
training, views and their identifications are given to the program, and the program
forms a relational structure with information about the mean and variance of the
values of the relations and properties. After training, the program is presented
with a scene containing one of the learned objects. A relational structure is built
describing the scene; the problem is then to match this input description with a
reference description from the set of models.

One approximation to the goodness of a match is the number of successes
provided by a region correspondence. A one-region object description has 7 rela-
tions to check, a two-region object has 28, a three-region one has 63. Therefore,
the ““successes’ criterion could imply the choice of a terrible three-region in-
terpretation over a perfect one-region match. The solution adapted in the matching
evaluation is first to grade failures. A failure weight is assigned to a trial match ac-
cording to how many standard deviations o from the model mean the relevant

Sec. 11.4 Matching in Practice 377

IPR2022-00092 - LGE
Ex. 1015 - Page 388

378

Comp 0.9

Fig. 11.17 Relational model for cups such as that of Fig. 11.16.

parameter is. From zero to three o imply a success, or a failure weight of 0; from
three to six o, a failure weight of 1; from six to nine o, failure weight of 2, and so
on. Then the measure ‘‘trials-cumulative failure weight’’ is an improvement on
just “‘successes.”” On the other hand, simple objects are often found as subparts of
complex ones, and one does not want to reject a good interpretation as a complex
object in favor of a less explanatory one as a simple object. The final evaluation
function adapted is

B = 1 — (tries-failure v‘veight) (11.5)
number of relations

K
0y % r = . e
number of regions in view description

As in Eq. (11.4), the first term measures the average badness of matches
between properties (unary relations) and relations between regions. The second
term is inversely proportional to the number of regions that are matched,
effectively increasing the cost of matches that explain less of the input.

11.4.4 A Complex Matcher

A program to match linear structures like those of Fig. 11.18 is described in [Davis
1976]. This matcher presents quite a diversity of matching techniques incorporated
into one domain-dependent program.

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 389

The matching metric is very close to the general metric of Eg. (11.3). The
match is characterized by a structural match of reference and input elements and a
geometrical transformation (found by parameter fitting) which accounts for the
spatial relations between reference and input. Davis forms an association graph
between reference and input data. This graph is reduced by parallel-iterative relax-
ation (see Section 12.4) using the ‘‘spring functions’” to determine which node as-
sociations are too costly. Eliminating one node-node match may render others

Cape Breton Baffin Island

Cuba

(Fig. 11.18 continues on p. 380.)

Sec. 11.4 Matching in Practice 379

IPR2022-00092 - LGE
Ex. 1015 - Page 390

380

Baffin Island Baffin Island

Cape Breton Cape Breton

Fig. 11.18 (a) Reference and (b) input
data for a complex shape maltching
T Cuba program.

(b)

more unlikely, so the node-pruning process iterates until no more nodes are elim-
inated. What remains is something like an r-connected component of the graph,
which specifies an approximate match supported by some amount of consistent re-
lations between nodes.

After the process of constraint relaxation, there are still in general several lo-
cally consistent interpretations for each component of the input structure. Next,
therefore, a tree search is used to establish global consistency and therefore the
best match. The tree search is the familiar ‘‘best first’” heuristic search through the
partial match space, with pruning taking place between each stage of search again
by using the parallel-iterative relaxation technique.

EXERCISES

11.1 Relational structures A and B are to be matched by the association-graph, clique-
finding method.

Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 391

Exercises

11.2

11.4

11.8

11.9

Relational structure 4: entities u, v, w, x, y, z.
relations P(u), P(w), P(y), R(v), R(x), R(z),
Flu, v), F(y, w), F{w, x), F(x,), F(y, z}, F(z, u)

Relational structure B: entities a, b, ¢, d, e, f.
relations P(a), P(b), P(d)}, Q(e), Q(f), R(c)
F(b, ¢), F(c, d), F(d, e), Fle, f),F(f, a).

(a) Construct graph structures corresponding to the structures 4 and B. Label
the nodes and arcs.

(b) Construct the association graph of structures 4 and B.

(c) Visually find the largest maximal cliques in the association graph and thus
the best matches between 4 and B. (There are three.)

Suppose in a geometric match that two input points on the xy plane are identified
with two others taken to correspond with two reference points. It is known that the
input data comes about only through rotation and translation of the reference data.
Given the two input points (x|, ;) and (x3, y;) and the two reference points
(x;, 1) and (x5, y%), one way to find the transformation from reference to input is
to solve the equation

2
z b — (ax) + by +)2+ [y, — (bx' + ap + d)?P=0

The resulting values of g, b, ¢, and drepresent the desired transformation. Solve the
equation analytically to get expressions for g, 5, ¢, and 4 in terms of the reference
and input coordinates. What happens if the reference and input data are not related
by simple rotation and translation?

What are the advantages and disadvantages of a uniform method (such as subgraph
isomorphism algorithm approach) to matching as compared to an ad hoc (such as a
decision-tree approach with various empirically derived metrics) one?

In the worst case, for graphs of » nodes, how many partial solutions total will Algo-
rithm 11.1 have to proceed through? Construct “‘worst case’” graphs X and Y (label
their nodes 1, . . ., a, of course), assuming that nodes of Y are selected in ascending
order at any stage.

Find out something about the state of associative memories in computers. How do
they work? How are they used? Would anything like this technology be useful for
computer vision? Introspect about familiar phenomena of visual recall, recognition,
and memory. Do you have a theory about how human visual memory could possi-
bly work ?

What graph of N nodes has the maximum number of maximal cliques? How many
does it have?

Think about reasoning by analogy and find out something about programs that do
analogical reasoning. In what sense can analogical process be used for computer vi-
sion, and technically do the matching techniques necessary provide any insight?

Compare Nevatia’s structure matching with Hinton’s relaxation-based puppet
recognition (Chapter 12).

Verify the observation made in Section 11.4.3 about the number of relations that
must be checked between regions (one region, 7; two regions, 28; three regions, 63;
etc.).

381

IPR2022-00092 - LGE
Ex. 1015 - Page 392

REFERENCES

AHO, A. V., J. E. HopcrOFT and J. D. ULLMAN. The Design and Analysis of Algorithms. Reading, MA:
Addison-Wesley, 1974.

AMBLER, A. P, H. G. BArRrROW, C, M. BROWN, R. M. BURSTALL, and R. J. POPPLESTONE. ‘A versatile
computer-controlled assembly system.”” Artificial Intelligence 6, 2, 1975, 129-156.

Barrow, H. G. and R. J. POPPLESTONE. ‘“Relational descriptions in picture processing.”” In M6, 1971.

Barrow, H. G., J. M. TENENBAUM, R. C. BoLLES, and H. C. WoLF. ‘‘Parametric correspondence and
chamfer matching: two new techniques for image matching.”” Proc., DARPA IU Workshop,
May 1978, 21-27.

BERGE, C. Graphs and Hypergraphs 2nd rev. ed.. New York: American Elsevier, 1976.

BERzTISS, A. T. ““A backtrack procedure for isomorphism of directed graphs.” J. ACM 20, 3, July 1973,
365-377.

BITTNER, J. R. and E. M. REINGOLD. “‘Backtrack programming techniques.” Comm. ACM 18, 11, No-
vember 1975, 651-656.

Bron, C. and J. KERBOSCH. *‘Algorithm 457: finding all cliques in an undirected graph (H).” Comm.
ACM 16,9, September 1973, 575-577.

CoRNEIL, D. G. and C. C. GoTLIEB. ‘‘An efficient algorithm for graph isomorphism.” J. ACM 17, 1,
January 1970, 51-64.

Davis, L. S. “Shape matching using relaxation techniques.” JEEE-PAMI 1, 1, January 1979, 60-72.

FISCHLER, M. A. and R. A. ELSCHLAGER. ““The representation and matching of pictorial structures.”
IEEE Trans. Computers 22, 1, January 1973, 67-92.

HARALICK, R. M. and G. L. ELLIOTT. ““Increasing tree search efficiency for constraint satisfaction prob-
lems.” Proc., 6th DCAI, August 1979, 356-364.

HaRARY, F. Graph Theory. Reading, MA: Addison-Wesley, 1969.

KnoDEL, W. “‘Bestimmung aller maximalen vollstandigen Teilgraphen eines Graphen G nach
Stoffers.”” Computing 3, 3, 1968, 239-240 (and correction in Computing 4, p. 715).

NEVATIA, R. “Structured descriptions of complex curved objects for recognition and visual memory.”
AIM-250, Stanford Al Lab, October 1974.

NiLLsoN, N.J. Principles of Ariificial Intelligence. Palo Alto, CA: Tioga, 1980.

OsTEEN, R. E. and J. T. Tou. ““A clique-directed algorithm based on neighbourhoods in graphs.” /nter-
national J. Computer and Information Science 2, 4, December 1973, 257-268.

REINGOLD, E. M., J. NIEVERGELT, and N. DEo. Combinatorial Algorithm Theory and Practice. Englewood
Cliffs,N. J.: Prentice-Hall, 1977.

ScHupy, R. B. and D. H. BALLARD. **Model-directed detection of cardiac chambers in ultrasound im-
ages.”” TR12, Computer Science Dept., Univ. Rochester, November 1978.

SHAPIRO, L. G. and R. M. HARALICK. *‘Structural descriptions and inexact matching.”” Technical Re-
port CS79011-R, Computer Science Dept., Virginia Polytechnic Institute, November 1979.

ULLMAN, J. R. *“An algorithm for a subgraph isomorphism.”” J. ACM 23, 1, January 1976, 31-42.
WINsTON, P. H. *‘Learning structural descriptions from examples.” In PCV, 1975.

382 Ch. 11 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 393

Inference 12

Classical and Extended Inference

This chapter explores inference, the process of deducing facts from other
known facts. Inference is useful for belief maintenance and is a cornerstone of ra-
tional thought. We start with predicate logic, and then explore extended inference
systems—production systems, relaxation labeling, and active knowledge (pro-
cedures).

Predicate logic (Section 12.1) is a system for expressing propositions and for
deriving consequences of facts. It has evolved over centuries, and many clear ac-
counts describe predicate logic in its various forms [Mendelson 1964; Robinson
1965]. It has good formal properties, a nontrivial but automatable inference pro-
cedure, and a history of study in artificial intelligence. There are several ‘‘classical”’
extensions (modal logics, higher-order logics) which are studied in well-settled
academic disciplines of metamathematics and philosophy. Extended inference (Sec-
tion 12.2) is possible in automated systems, and is interesting technically and from
an implementational standpoint.

A production system (Section 12.3) is a general rewriting system consisting of
a set of rewriting rules (A — BC could mean ‘‘rewrite 4 as BC’’) and an executive
program to apply rewrites. More generally, the rules can be considered
““situation—action’’ pairs (‘‘in situation 4, do Band C*’). Thus production systems
can be used to control computational activities. Production systems, like semantic
nets, embody powerful notions that can be used for extended inference.

Labeling schemes (Section 12.4) are unlike most inference mechanisms in
that they often involve mathematical optimization in continuous spaces and can be
implemented with parallel computation. Labeling is like inference because it estab-
lishes consistent ‘‘probability-like’” values for ‘‘hypotheses’” about the interpreta-
tion of entities.

383

IPR2022-00092 - LGE
Ex. 1015 - Page 394

Active knowledge (Section 12.5) is an implementation of inference in which
each chunk of knowledge is a program. This technique goes far in the direction of
““proceduralizing’’ the implementation of propositions. The design issues for such
a system include the vocabulary of system primitives and their actions, mechan-
isms for implementing the flow of control, and overall control of the action of the
system.

12.1 FIRST ORDER PREDICATE CALCULUS

384

Predicate logic is in many ways an attractive knowledge representation and infer-
ence system. However, despite its historical stature, important technical results in
automated inference, and much research on inference techniques, logic has not
dominated all aspects of mechanized inference. Some reasons for this are present-
ed in Sections 12.1.6 and 12.2. The logical system that has received the most study
is first order predicate logic. General theorem provers in this calculus are cumber-
some for reasons which we shall explore. Furthermore, there is some controversy
as to whether this logical system is adequate to express the reasoning processes
used by human beings [Hayes 1977; Collins 1978; Winograd 1978; McCarthy and
Hayes 1969]. We briefly describe some aspects of this controversy in Section
12.1.6. Our main purpose is to give the flavor of predicate calculus-based methods
by describing briefly how automated inference can proceed with the formulae of
predicate calculus expressed in the convenient clause form. Clause form is appeal-
ing for two reasons. First, it can be represented usefully in relational a-tuple or se-
mantic network notation (Section 12.1.5). Second, the predicate calculus clause
and inference system may be easily compared to production systems (Section
12.3).

12.1.1 Clause-Form Syntax (Informal)

In this section we describe the syntax of clause-form predicate calculus sentences.
In the next, a more standard nonclausal syntax is described, together with a
method for assigning meaning to grammatical logical expressions. Next, we show
briefly how to convert from nonclausal to clausal syntax.

A sentence is a set of clauses. A clause is an ordered pair of sets of aromic for-
mulae, or atoms. Clauses are written as two (possibly null) sets separated by an ar-
row, pointing from the Aypotheses or conditions of the clause to its conclusion. The
null clause, whose hypotheses and conclusion are both null, is written O0. For exam-
ple, a clause could appear as

‘ Ay,..., A, — By,..., B,
where the A’s and B’s are atoms. An atom is an expression
Pl vovs s B
where Pis a predicate symbol which “‘expects jarguments,’’ each of which must be

a variable, constant symbol, or a term. A term is an expression

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 395

Il 18

where f'is a function symbol which “‘expects k arguments,”’ each of which may be a
term. It is convenient to treat constant symbols alone as terms.

A careful (formal) treatment of the syntax of logic must deal with technical
issues such as keeping constant and term symbols straight, associating the number
of expected arguments with a predicate or function symbol, and assuring an
infinite supply of symbols.

Forexample, the following are sentences of logic.

— Obscured (Backface (Block1))
Visible (Kidney) —
Road (x), Unpaved(x) — Narrow (x)

12.1.2 Nonclausal Syntax and Logic Semantics (Informal)

Nonclausal Syntax

Clause form is a simplified but logically equivalent form of logic expressions
which are perhaps more familiar. A brief review of non-clausal syntax follows.

The concepts of constant symbols, variables, terms, and atoms are still basic.
A set of logical connectives provides unary and binary operators to combine atoms
to form well-formed formulae (wifs). If 4 and B are atoms, then A is a wif, as is "4
(“not 4*) 4 == B (‘A implies B,” or *“if Athen B}, AN/ B(“dor B’), A\ B
(“dand B’), A <> B (‘““disequivalent to B,” or ““4 if and only if B”’). Thus
an example of a wif is

Back (Face) \/ (Obscured(Face)) =" (Visible (Face))

The last concept is that of universal and existential quantifiers, the use of which
is illustrated as follows.

(x) (wif using ““x as a variable).
(3 thing) (wff using *‘thing”” as a variable).

A universal quantifier ¥/ is interpreted as a conjunction over all domain ele-
ments, and an existential quantifier 3 as a disjunction over all domain elements.
Hence their usual interpretation as “‘for each element . . .”” and “‘there exists an
element....”

Since a quantified wif is also a wff, quantifiers may be iterated and nested. A
quantifier quantifies the ‘“dummy’’ variable associated with it (x and thing in the
examples above). The wif within the scope of a quantifier is said to have this
quantified variable bound by the quantifier. Typically only wffs or clauses all of
whose variables are bound are allowed.

Semantics

How does one assign meaning to grammatical clauses and formulae? The se-
mantics of logic formulae (clauses and wifs alike) depends on an interpretation and
Sec. 12.1 First Order Predicate Calculus 385

IPR2022-00092 - LGE
Ex. 1015 - Page 396

386

on the meaning of connectives and quantifiers. An interpretation specifies the fol-
lowing.

1. A domain of individuals

2. A particular domain element is associated with each constant symbol

3. A function over the domain (mapping k individuals to individuals) is associ-
ated with each function symbol.

4. A relation over the domain (a set of ordered k-tuples of individuals) is associ-
ated with each predicate symbol.

The interpretation establishes a connection between the symbols in the
representation and a domain of discourse (such as the entities one might see in an
office or chest x-ray). To establish the truth or falsity of a clause or wff, a value of
TRUE or FALSE must be assigned to each atom. This is done by checking in the
world of the domain to see if the terms in the atom satisfy the relation specified by
the predicate of the atom. If so, the atom is TRUE; if not, itis FALSE. (Of course,
the terms, after evaluating their associated functions, ultimately specify individu-
als). For example, the atom

GreaterThan(5,7)

is true under the obvious interpretation and false with domain assignments such
that

GreaterThan means ‘‘Is the author of”’
5 means the book Gone With the Wind
7 means Rin-Tin-Tin.

After determining the truth values of atoms, wffs with connectives are given
truth values by using the truth tables of Table 12.1, which specify the semantics of
the logical connectives. The relation of this formal semantics of connectives with
the usual connectives used in language (especially ‘‘implies’’) is interesting, and
one must be careful when translating natural language statements into predicate
calculus.

The semantics of clause form expressions is now easy to explain. A sentence
is the conjunction of its clauses. A clause

Al,...,A”_'Bl,...,Bm

with variables x, .. .,x; is to be understood

Table 12.1
A B A AAB AVB A=>B A< B
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F i T

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 397

Sec. 12.1

Vxl, oo o3 Xfy (Al/\ /\A") @(B]\/‘..\/Bm).

The null clause is to be understood as a contradiction. A clause with no conditions
is an assertion that at least one of the conclusions is true. A clause with null conclu-
sion is a denial that the conditions (hypotheses) are true.

12.1.3 Converting Nonclausal Form to Clauses

The conversion of nonclausal to clausal form is done by applying straightforward
rewriting rules, based on logic identities (ultimately the truth tables). There is one
trick necessary, however, to remove existential quantifiers. Skolem functions are
used to replace existentially quantified variables, according to the following rea-
soning.

Consider the wif

(% x (3 y)(Behind (y, x))).

With the proper interpretation, this wff might correspond to saying *‘For any object
x we consider, there is another object y which is behind x.”’ Since the 3 is within
the scope of the %, the particular y might depend on the choice of x. The Skolem
function trick is to remove the existential quantifier and use a function to make ex-
plicit the dependence on the bound universally quantified variable. The resulting
wif could be

(W x) (Behind(SomethingBehind(x), x))

which might be rendered in English: ‘“‘Any object x has another object behind it;
furthermore, some Skolem function we choose to call SomethingBehind deter-
mines which object is behind its argument.” This is a notational trick only; the ex-
istence of the new function is guaranteed by the existential quantification; both no-
tations are equally vague as to the entity the function actually produces.

In general, one must replace each occurrence of an existentially quantified
variable in a wif by a (newly created Skolem) function of all the universally
quantified variables whose scope includes the existential quantifier being elim-
inated. If there is no universal quantifier, the result is a new function of no argu-
ments, or a new constant.

3 x (Red (%)),

which may be interpreted ‘‘Something is red,’” is rewritten as something like
Red(RedThing)

or
“Something is red, and furthermore let’s call it RedThing.”

The conversion from nonclausal to clausal form proceeds as follows (for
more details, see [Nilsson 1971]). Remove all implication signs with the identity
(4 =>B) < (C A)\V/ B). Use DeMorgan’s laws (suchas " (4\ B) <> ((
A) A\ C B)), and the extension to quantifiers, together with cancellation of double
negations, to force negations to refer only to single predicate letters. Rewrite vari-

first Order Predicate Calcufus 387

IPR2022-00092 - LGE
Ex. 1015 - Page 398

388

ables to give each quantifier its own unique dummy variable. Use Skolem func-
tions to remove existential quantifiers. Variables are all now universally quantified,
so eliminate the quantifier symbols (which remain implicitly), and rearrange the
expression into conjunctive normal form (a conjunction of disjunctions.) The A’s
now connect disjunctive clauses (at last!). Eliminate the A’s, obtaining from the
original expression possibly several clauses.

At this point, the original expression has yielded multiple disjunctive clauses.
Clauses in this form may be used directly in automatic theorem provers [Nilsson
1971]. The disjunctive clauses are not quite in the clause form as defined earlier,
however; to get clauses into the final form, convert them into implications. Group
negated atoms, reexpanding the scope of negation to include them all and convert-
ing the\/ of ”’sinto a ™ of \’s. Reintroduce one implication to go from

BV By..\IB,\ CQLA;ANA;...N 4,0
to
AN...NA,— BV B,...\V B,

To obtain the final form, replace the connectives (which remain implicitly) with
commas.

12.1.4 Theorem Proving

Good accounts of the basic issues of automated theorem proving are given in
[Nilsson 1971; Kowalski 1979; Loveland 1978]. The basic ideas are as follows. A
sentence is inconsistent, or unsatisfiable, if it is false in every interpretation. Some
trivially inconsistent sentences are those containing the null clause, or simple con-
tradictions such as the same clause being both unconditionally asserted and
denied. A sentence that is true in all interpretations is valid. Validity of individual
clauses may be checked by applying the truth tables unless quantifiers are present,
in which case an infinite number of formulae are being specified, and the truth
status of such a clause is not algorithmically decidable. Thus it is said that first
order predicate calculus is undecidable. More accurately, it is semidecidable, because
any valid wif can be established as such in some (generally unpredictable) finite
time. The validation procedure will run forever on invalid formulae; the rub is that
one can never be sure whether it is running uselessly, or about to terminate in the
next instant.

The notion of a proof is bound up with the notion of logical entailment. A
clause C logically follows from a set of clauses S (we take S to prove C) if every in-
terpretation that makes S true also makes C true. A formal proof is a sequence of
inferences which establishes that C logically follows from S. In nonclausal predi-
cate logic, inferences are rewritings of axioms and previously established formulae
in accordance with rules of inference such as

Modus Ponens: From (4) and (4 = B) infer (B)

Modus Tollens: From ("B8) and (4 ==> B) infer (4)

Substitution: e.g. From (% x) (Convex(x)) infer (Convex(Region31))

Syllogisms,

and so forth.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 399

Sec. 121

Automatic clausal theorem provers usually try to establish that a clause C
logically follows from the set of clauses S. This is accomplished by showing the
unsatisfiability of Sand (C) taken together. This rather backward approach is a tech-
nical effect of the way that theorem provers usually work, which is to derive a
contradiction.

The fundamental and surprising result that all true theorems are provable in
finite time, and an algorithmic (but inefficient) way to find the proof, is due to Her-
brand [Herbrand 1930]. The crux of the result is that although the domain of indi-
viduals who might participate in an interpretation may be infinite, only a finite
number of interpretations need be investigated to establish unsatisfiability of a set
of clauses, and in each only a finite number of individuals must be considered. A
computationally efficient way to perform automatic inference was discovered by
Robinson [Robinson 1965]. In it, a single rule of inference called resolution is used.
This single rule preserves the completeness of the system (all true theorems are
provable) and its correctness (no false theorems are provable).

The rule of resolution is very simple. Resolution involves matching a condi-
tion of one clause A with a conclusion of another clause B. The derived clause,
called the resolvent, consists of the unmatched conditions and conclusions of 4 and
B instantiated by the matching substitution. Marching two atoms amounts to
finding a substitution of terms for variables which if applied to the atoms would
make them identical.

Theorem proving now means resolving clauses with the hope of producing
the empty clause, a contradiction.

As an example, a simple resolution proof goes as follows. Say it is desired to
prove that a particular wastebasket is invisible. We know that the wastebasket is
behind Brian’s desk and that anything behind something else is invisible (we have
a simpleminded view of the world in this little example). The givens are the
wastebasket location and our naive belief about visibility:

— Behind (WasteBasket, DeskOf(Brian)) (12.1)
Behind (object,obscurer) — Invisible (object) (12.2)

Here Behind and Invisible are predicates, DeskOf is a function, Brian and
WasteBasket are constants (denote particular specific objects), and object and ob-
scurer are (universally quantified) variables. The negation of the conclusion we
wish to prove is

Invisible (WasteBasket) — (12.3)

or, ‘“‘Asserting the wastebasket is invisible is contradictory.”” QOur task is to show
this set of clauses is inconsistent, so that the invisibility of the wastebasket is
proved. The resolution rule consists of matching clauses on opposite sides of the
arrow which can be unified by a substitution of terms for variables. A substitution
that works is:

Substitute WasteBasket for-object and DeskOf (Brian) for obscurer in (12.2).

Then a cancellation can occur between the right side of (12.1) and the left side of
(12.2). Another cancellation can then occur between the right side of (12.2) and

First Order Predicate Calculus 389

IPR2022-00092 - LGE
Ex. 1015 - Page 400

390

the left side of (12.3), deriving the empty clause (a contradiction), Quod Erat
Demonstrandum.

Anyone who has ever tried to do a nontrivial logic proof knows that there is
searching involved in finding which inference to apply to make the proof ter-
minate. Usually human beings have an idea of ‘““‘what they are trying to prove,”
and can occasionally call upon some domain semantics to guide which inferences
make sense. Notice that at no time in a resolution proof or other formal proof of
logic is a specific interpretation singled out; the proof is about all possible interpre-
tations. If deductions are made by appealing to intuitive, domain-dependent,
semantic considerations (instead of purely syntactic rewritings), the deduction
system is informal. Almost all of mathematics is informal by this definition, since
normal proofs are not pure rewritings.

Many nonsemantic heuristics are also possible to guide search, such as trying
to reduce the differences between the current formulae and the goal formula to be
proved. People use such heuristics, as does the Logic Theorist, an early non-
clausal, nonresolution theorem prover [Newell et al. 1963].

A. basic resolution theorem prover is guaranteed to terminate with a proof if
one exists, but usually resource limitations such as time or memory place an upper
limit on the amount of effort one can afford to let the prover spend. As all the
resolvents are added to the set of clauses from which further conclusions may be
derived, the question of selecting which clauses to resolve becomes quite a vital
one. Much research in automatic theorem proving has been devoted to reducing
the search space of derivations for proofs [Nilsson 1980; Loveland 1970]. This has
usually been done through heuristics based on formal aspects of the deductions
(such as: make deductions that will not increase drastically the number of active
clauses). Guidance from domain-dependent knowledge is not only hard to imple-
ment, it is directly against the spirit of resolution theorem proving, which attempts
to do all the work with a uniform inference mechanism working on uninterpreted
symbol strings. A moderation of this view allows the ““‘intent’’ of a clause to guide
its application in the proof. This can result in substantial savings of effort; an exam-
ple is the treatment of ‘‘frame axioms’ recommended by Kowalski (Section
13.1.4). Ad hoc, nonformalizable, domain-dependent methods are not usually
welcome in automatic theorem-proving circles; however, such heuristics only
guide the activity of a formal system; they do not render it informal.

12.1.5 Predicate Calculus and Semantic Networks

Predicate calculus theorem proving may be assisted by the addition of more rela-
tional structure to the set of clauses. The structure in a semantic net comes from
links which connect nodes; nodes are accessed by following links, so the availability
of information in nodes is determined by the link structure. Links can thus help by
providing quick access to relevant information, given that one is “‘at’ a particular
node.

Although there are several ways of representing predicate calculus formulae
in networks, we adopt here that of [Kowalski 1979; Deliyanni and Kowalski 1979].
The steps are simple:

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 401

Sec. 712.1

1. Use a partition to represent the clause.
2. Convert all atoms to binary predicate atoms.
3. Distinguish between conditions and conclusions.

Recall that in Chapter 10, a partition is defined as a set of nodes and arcs in a graph.
The internal structure of the partition cannot be determined from outside it. Parti-
tioning extends the structure of a semantic net enough to allow unambiguous
representations of all of first order predicate calculus.

The first step in developing the network representation for clauses is to con-
vert each relation to a binary one. We distinguish between conditions and conclu-
sions by using an additional bit of information for each arc. Diagrammatically, an
arc is drawn with a double line if it is a condition and a single line if it is a conclu-
sion. Thus the earlier example § = {(12.1), (12.2), (12.3)} can be transformed
into the network shown in Fig. 12.1.

This figure hints at the advantages of the network embedding for clauses: It is
an indexing scheme. This scheme does not indicate which clauses to resolve next
but can help reduce the possibilities enormously. If the most recent resolution in-
volved a given clause with a given set of terms, other clauses which also have those
terms will be represented by explicit arcs nearby in the network (this would rot be
true if the clauses were represented as a set). Similarly, other clauses involving the
same predicate symbols are also nearby being indexed by those symbols. Again,
this would not be true in the set representation. Thus the embedded network

Behind

/-é——Desk (Brian)

Wastebasket

Invisible

{12:3) HR)

Behind

% Obscurer

Object
Invisible

(12.2)

Fig. 12.1 Converting clauses to networks.

first Order Predicate Calculus 391

IPR2022-00092 - LGE
Ex. 1015 - Page 402

392

representation contains argument indices and predicate indices which can be ex-
tremely helpful in the inference process.

A very simple example illustrates the foregoing points. Suppose that S con-
sists of the set of clauses

SouthOf(river2,x), NorthOf (riverl,x) — Between (riverl, river2, x) (12.4)
— SouthOf (u, silo30) (12.5)
— NorthOf (riverl, silo30) (12.6)

Clause (12.5) might arise when it is determined that “‘silo30” is south of some
feature in the image whose identity is not known. Bottom up inference derives new
assertions from old ones. Thus in the example above the variable substitutions

u = river2 x = silo30

match assertion (12.5) with the general clause (12.4) and allow the inference

NorthOf(riverl, silo30)
— Between (riverl, river2, silo30) (12.7)

Consequently, use (12.6) and (12.7) to assert

— Between(riverl, river2, silo 30) (12.8)
Suppose that this was not the case: that is, that

Between (riverl, river2, silo30) — (12.9)

and that S = {(12.4), (12.9)}. One could then use top-down inference, which infers
new denials from old ones. In this case

NorthOf{(riverl,silo30), SouthOf(river2,silo30) — (12.10)

follows with the variable substitution x = silo30. This can be interpreted as fol-
lows: ““If x is really silo30, then it is neither north of river] or south of river2.”” Fig-
ure 12.2 shows two examples using the network notation.

Now suppose the goal is to prove that (12.8) logically follows from (12.4)
through (12.6) and the substitutions. The strategy would be to negate (12.8), add
it to the data base, and show that the empty clause can be derived. Negating an
assertion produces a denial, in this case (12.9), and now the set of axioms (includ-
ing the denial) consists of {(12.4), (12.5), (12.6), (12.9)}. It is easy to repeat the
earlier steps to the point where the set of clauses includes (12.8) and (12.9), which
resolve to produce the empty clause. Hence the theorem is proved.

12.1.6 Predicate Calculus And Knowledge Representation

Pure predicate calculus has strengths and weaknesses as a knowledge representa-
tion system. Some of the seeming weaknesses can be overcome by technical
‘““tricks.”” Some are not inherent in the representation but are a property of the
common interpreters used on it (i.e., on state-of-the-art theorem provers). Some
problems are relatively basic, and the majority opinion seems to be that first order

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 403

Isa

w —-é—» Between
(12.6)
Side \im (12.4)
North of Middle

A/Q/— River 1 River 2
‘_/ ’
silo 30 w

North of South of

Isa

we —é—b- Between

South of Side Side
u Middle
(12.5) d
Rive i
ver Silo 30 River 2
(a)
W ——— Between
(12.8)
River 1
North of Sou
Silo 30 :
River 1 Silo 30 River 2

S

(b)

Fig. 12.2 Resolution using networks. (a) Bottom-up inference as a result of substitu-

tions u = river2, x = silo30. (b) Top-down inference as a result of substitutions w = v, x
= silo30.

predicate logic must be extended in order to become a representation scheme that
is satisfactorily matched to the power of the deductive methods applied by human
beings. Opinion is divided on the technical aspects of such enhancements. Predi-
cate calculus has several strengths, some of which we list below.

1. Predicate logic is a well-polished gem, having been refined and studied for
several generations. It was designed to represent knowledge and inference.
One knows what it means. Its model theory and proof theory are explicit and
lucid [Hayes 1977; 19801.

Sec. 12.1 First Order Predicate Calculus 393

IPR2022-00092 - LGE
Ex. 1015 - Page 404

394

Predicate logic can be considered a language with a machine-independent se-
mantics; the meaning of the language is determined by the laws of logic, not
the actual programming system upon which the logic is “‘executed.”

Predicate calculus clauses with only one conclusion atom (Horn clauses) may
be considered as ‘‘procedures,”” with the single conclusion being the name of
the procedure and the conditions being the procedure body, which itself is
made up of procedure calls. This view of logic leads to the development of
predicate logic-based programming languages (such as PROLOG [Warren et
al. 1977; McDermott 1980]). These programs exhibit nondeterminism in
several interesting ways; the order of computations is not specified by the
proof procedure (and is not restricted by it, either). Several resolutions are in
general possible for any clause; the combinations determine many computa-
tions and several distinguishable forms of nondeterminism [Kowalski 1974].

Predicate logic may be interpreted as a problem-reduction system. Then a
(Horn) clause of the form

— B
represents a solved problem. One of the form
. [— A” =T
with variables xy, . . . ,x; is a goal statement, or command, which is to find the
x’s that solve the problems 4, . . . ,4,. Finding the x’s solves the goal. A
clause
> —

is a solution method, which reduces the solution of B to a combination of solu-
tions of 4’s. This interpretation of Horn clauses maps cleanly into a standard
and-or goal tree formulation of problem solving.

Resolutions may be performed on the left or right of clauses, and the resulting
derivation trees correspond, in the problem-solving interpretation of predicate
calculus, to top-down and bottom-up versions of problem solving. This duality
is very important in conceptualizing aspects of problem solving.

There is a uniform proof procedure for logic which is guaranteed to prove in
finite time any true theorem (logic is semidecidable and complete). No false
theorems are provable (logic is correct). These and other good formal proper-
ties are important when establishing formally the properties of a knowledge
representation system.

Predicate calculus is not a favorite of everyone, however; some of the (per-

ceived) disadvantages are given below, together with ways they might be coun-
tered.

1. Sometimes the axioms necessary to implement relatively common con-

cepts are not immediately obvious. A standard example is ‘‘equality.”” These
largely technical problems are annoying but not basic.

2. The ““first order’ in first order predicate calculus means that the system

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 405

does not allow clauses with variables ranging over an infinite number of predicates,
functions, assertions and sentences (e.g., ‘‘All unary functions are boring” cannot
be stated directly). This problem may be ameliorated by a notational trick; the si-
tuations under which predicates are true are indicated with a Holds predicate. Thus
instead of writing On(block1, surface, situationl), write Holds (On(blockl,sur-
face), situation1). This notation allows inferences about many situations with only
one added axiom. The “‘situational calculus’’ reappears in Section 12.3.1. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms are
different; the actual system can be made to incorporate them implicitly in a well-
defined way. The Diff relation is also used in Section 12.3.1.

3. The frame problem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solving
methods including predicate logic. One aspect of this problem is that for technical
reasons, it must be explicitly stated in axioms that describe actions (in a general
sense a visual test is an action) that almost all assertions were true in a world state
remain true in the new world state after the action is performed. The addition of
these new axioms causes a huge increase in the ‘‘bureaucratic overhead’ neces-
sary to maintain the state of the world. Currently, no really satisfactory way of han-
dling this problem has been devised. The most common way to attack this aspect of
the frame problem is to use explicit “‘add lists” and ‘‘delete lists’> ([Fikes 1977],
Chapter 13) which attempt to specify exactly what changes when an action occurs.
New true assertions are added and those that are false after an action must be delet-
ed. This device is useful, but examples demonstrating its inadequacy are readily
constructed. More aspects of the frame problem are given in Chapter 13.

4. There are several sorts of reasoning performed by human beings that
predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘“‘quotation”), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12.2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of ““truth’” which may be inferred.

Sec. 12.2 Computer Reasoning 395

IPR2022-00092 - LGE
Ex. 1015 - Page 406

does not allow clauses with variables ranging over an infinite number of predicates,
functions, assertions and sentences (e.g., ‘‘All unary functions are boring” cannot
be stated directly). This problem may be ameliorated by a notational trick; the si-
tuations under which predicates are true are indicated with a Holds predicate. Thus
instead of writing On(block1, surface, situationl), write Holds (On(blockl,sur-
face), situation1). This notation allows inferences about many situations with only
one added axiom. The “‘situational calculus’’ reappears in Section 12.3.1. Another
useful notational trick is a Diff relation, which holds between two terms if they are
syntactically different. There are infinitely many axioms asserting that terms are
different; the actual system can be made to incorporate them implicitly in a well-
defined way. The Diff relation is also used in Section 12.3.1.

3. The frame problem (so called for historical reasons and not related to the
frames described in Section 10.3.1) is a classic bugbear of problem-solving
methods including predicate logic. One aspect of this problem is that for technical
reasons, it must be explicitly stated in axioms that describe actions (in a general
sense a visual test is an action) that almost all assertions were true in a world state
remain true in the new world state after the action is performed. The addition of
these new axioms causes a huge increase in the ‘‘bureaucratic overhead’ neces-
sary to maintain the state of the world. Currently, no really satisfactory way of han-
dling this problem has been devised. The most common way to attack this aspect of
the frame problem is to use explicit “‘add lists” and ‘‘delete lists’> ([Fikes 1977],
Chapter 13) which attempt to specify exactly what changes when an action occurs.
New true assertions are added and those that are false after an action must be delet-
ed. This device is useful, but examples demonstrating its inadequacy are readily
constructed. More aspects of the frame problem are given in Chapter 13.

4. There are several sorts of reasoning performed by human beings that
predicate logic does not pretend to address. It does not include the ability to
describe its own formulae (a form of ‘“‘quotation”), the notion of defaults, or a
mechanism for plausible reasoning. Extensions to predicate logic, such as modal
logic, are classically motivated. More recently, work on extensions addressing the
topics above have begun to receive attention [McCarthy 1978; Reiter 1978; Hayes
1977]. There is still active debate as to whether such extensions can capture many
important aspects of human reasoning and knowledge within the model-theoretic
system. The contrary view is that in some reasoning, the very process of reasoning
itself is an important part of the semantics of the representation. Examples of such
extended inference systems appear in the remainder of this chapter, and the issues
are addressed in more detail in the next section.

12.2 COMPUTER REASONING

Artificial intelligence in general and computer vision in particular must be con-
cerned with efficiency and plausibility in inference [Winograd 1978]. Computer-
based knowledge representations and their accompanying inference processes
often sacrifice classical formal properties for gains in control of the inference proc-
ess and for flexibility in the sorts of ““truth’” which may be inferred.

Sec. 12.2 Computer Reasoning 395

IPR2022-00092 - LGE
Ex. 1015 - Page 407

Automated inference systems usually have inference methods that achieve
efficiency through implementational, computation-based, inference criteria. For
example, truth may be defined as a successful lookup in a data base, falsity as the
failure to find a proof with a given allocation of computational resources, and the
establishment of truth may depend on the order in which deductions are made.

The semantics of computer knowledge representations is intimately related
to the inference process that acts on them. Therefore, it is possible to define
knowledge representations and interpreters in computers whose properties differ
fairly radically from those of classical representations and proof procedures, such
as the first-order predicate calculus. For instance, although the systems are deter-
ministic, they may not be formally consistent (loosely, they may contain contradic-
tory information). They may not be complete (they cannot derive all true
theorems from the givens); it may be possible to prove P from @ but “Pfrom Qand
R. The set of provable theorems may not be recursively enumerable [Reiter 1978].
Efforts are being made to account for the ‘“‘extended inference’ needed by
artificial intelligence using more or less classical logic [McCarthy 1978; Reiter
1978; Hayes 1977; 1978a; 1978b; Kowalski 1974, 1979]. In each case, the classical
view of logic demands that the deductive process and the deducible truths be in-
dependent. On the other hand, it is reasonable to devote attention to developing a
nonclassical semantics of these inference processes; this topic is in the research
stage at this writing,

Several knowledge representations and inference methods using them are
“‘classical” in the artificial intelligence world; that is, they provide paradigmatic
methods of dealing with the issues of computational inference. They include
STRIPS [Fikes and Nilsson 1971], the situational calculus [McCarthy and Hayes
1969], PLANNER and CONNIVER [Hewitt 1972; Sussman and McDermott
1972], and semantic net representations [Hendrix 1979; Brachman 1979].

To illustrate the issue of consistency, and to illustrate how various sorts of
propositions can be represented in semantic nets, we address the question of how
the order of inference can affect the set of provable theorems in a system.

Consider the semantic net of Fig. 12.3. The idea is that in the absence of
specific information to the contrary, one should assume that railroad bridges are
narrow. There are exceptions, however, such as Bridge02 (which has a highway
bridge above the rail bridge, say). The network is clearly inconsistent, but trouble
is avoided if inferences are made “‘from specific to general.”” Such ordering implies
that the system is incomplete, but in this case incompleteness is an advantage.

Simple ordering constraints are possible only with simple inferential powers
in the system [Winograd 1978]. Further, there is as yet little formal theory on the
effects of ordering rules on computational inference, although this has been an ac-
tive topic [Reiter 1978].

12.3 PRODUCTION SYSTEMS

The last section explored why the process of inference itself could be an important
part of the semantics of a knowledge representation system. This idea is an impor-

396 Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 408

Narrow

Width

RR Bridge
Wide

e
e
Width
RR Bridge 27 RR Bridge 02

Fig. 12.3 An inconsistent network.

tant part of production systems. Perceived limitations in logic inference mechan-
isms and the seductive power of arbitrary algorithmic processes for inference has
spawned the development of rule-based systems which differ from first-order logic
in the following respects:

« Arbitrary additions and deletions to the clausal data base are allowed.

o An interpreter that controls the inference process in special ways is usually an
integral part of the system.

Early examples of systems with the first addition are STRIPS [Fikes and Nilsson
1971] and PLANNER [Hewitt 1972]. Later examples of systems with both addi-
tions are given in [Waterman and Hayes-Roth 1978]. The virtues of trying to con-
trol inferences may be appreciated after our brief introduction to clausal automatic
theorem proving, where there are no very good semantic heuristics to guide infer-
ences. However, the price paid for restricting the inference process is the loss of
formal properties of consistency and correctness of the system, which are not
guaranteed in rule-based systems. We shall look in some detail at a particular form
of rule-based inference system called production systems.

A production system supports a general sort of “‘inference.’’ It has in common
with resolution that matching is needed to identify which inference to make. It is
different in that the action upon finding a matching data item is less constrained.
Actions of arbitrary complexity are allowed. A production system consists of an ex-
plicit set of situation—action nodes, which can be applied against a data base of sit-
uations. For example, in a very constrained visual domain the rule

(Green (Region X)) — (Grass (Region X)) (12.11)

could infer directly the interpretation of a given region. Segmentation rules can
also be developed; the following example merges two adjacent green regions into a
single region.

Sec. 12.3 Production Systems 397

IPR2022-00092 - LGE
Ex. 1015 - Page 409

398

(Green(Region X))A (Green(Region ¥))A
(Adjacent(Region X), (Region ¥))

— {Green(Region 2))A ((Region Z) :=
(Union(Region X, Region 1)))

These examples highlight several points. The first is that basic idea of production
systems is simple. The rules are easy to “‘read’’ by both the programmer and his
program and new rules are easily added. Although it is imaginable that “‘situa-
tions”’ could extend down to the pixel level, and production systems could be used
(for instance) to find lines, the system overhead would render such an approach
impractical. In the visual domain, the production system usually operates on the
segmented image (Chapters 4 and 5) or with the high-level internal model. In the
rules above, X and Y are variables that must be bound to specific instances of re-
gions in a data base. This process of binding variables or matching can become very
complex, and is one of the two central issues of this kind of inference. The other is
how to choose rules from a set all of whose situations match the current situation
to some degree.

12.3.1 Production System Details

In its simplest form a production system has three basic components:

1. A database
2. Asetofrules
3. Aninterpreter for the rules

The vision data base is usually a set of facts that are known about the visual en-
vironment. Often the rules are considered to be themselves a manipulable part of
the data base. Examples of some visual facts may be

(ABOVE (Region 5) (Region 10))
(SIZE (Region 5) 300)
(SKY (Region 5)) (12.12)
(TOP (Region 5) 255)

The data base is the sole storage medium for all state variables of the system. In
particular, unlike procedurally oriented languages, there is no provision for
separate storage of control state information—no separate program counter, push-
down stack, and so on [Davis and King 1975].

A rule is an ordered pair of patterns with a left-hand side and a right-hand
side. A pattern may involve only data base primitives but usually will have vari-
ables and special forms as subpatterns which are matched against the data base by
the interpreter. For example, applying the following rule to a data base which in-
cludes (12.12),

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 410

(TOP (Region X) (GreaterThan 200))
— (12.13)
(SKY (Region X))

region 5 can be inferred to be sky. The left-hand side matches a set of data-base
facts and this causes (SKY (Region 5)) to be added to the data base. This example
shows the kinds of matching that the interpreter must do: (1) the primitive TOP in
the data base fact matches the same symbol in the rule, (2) (Region X) matched
(Region 5) and Xis bound to 5 as a side effect, and (3) (GreaterThan 200) matches
255. Naturally, the user must design his own interpreter to recognize the meaning
of such operational subpatterns.

However, even the form of the rules outlined so far is relatively restrictive.
There is no reason why the right-hand side cannot do almost arbitrary things. For
instance, the application of a rule may result in various productions being deleted
or added from the set of productions; the data base of productions and assertions
thus can be adaptive [Waterman and Hayes-Roth 1978]. Also, the right-hand side
may specify programs to be run which can resuit in facts being asserted into the
data base or actions performed.

Control in a basic production system is relatively simple: Rules are applied
until some condition in the data base is reached. Rules may be applied in two dis-
tinct ways: (1) a match on the left-hand side of a rule may result in the addition of
the consequences on the right-hand side to the data base, or (2) a match on the
right-hand side may result in the addition of the antecedents in the left-hand side
to the data base. The order of application of rules in the first case is termed forward
chaining reasoning, where the objective is to see if a set of consequences can be
derived from a given set of initial facts. The second case is known as backward
chaining, the objective is to determine a set of facts that could have produced a par-
ticular consequence.

12.3.2 Pattern Matching

In the process of matching rules against the data base, several problems occur:

« Many rule situations may match data base facts

« Rules designed for a specific context may not be appropriate for larger context
« The pattern matching process may become very expensive

« The data base or set of rules may become unmanageably large.

The problem of multiple matches is important. Early systems simply resolved it by
scanning the data base in a linear fashion and choosing the first match, but this is
an ineffective strategy for large data bases, and has conceptual problems as well.
Accordingly, strategies have evolved for dealing with these conflicts. Like most
inference-controlling heuristics, their effectiveness can be domain-dependent,
they can introduce incompleteness into the system, and so on.

On the principle of least commitment, when there are many chances of errors,
one strategy is to apply the most general rule, defined by some metric on the com-

Sec. 12.3 Production Systems 399

IPR2022-00092 - LGE
Ex. 1015 - Page 411

400

ponents of the pattern. One simple such metric is the number of elements in a pat-
tern. Antithetical to this strategy is the heuristic of applying the most specific pat-
tern. This may be appropriate where the likelihood of making a false inference is
small, and where specific actions may be indicated (match (MAD DOG) with
(MAD DOG), not with (DOG)). Another popular but inelegant technique is to
exercise control over the order of production application by using state markers
which are inserted into the data base by right-hand sides and looked for by left-
hand sides.

1. A— BA <marker1>.
2. A— BN\ <marker2>.
3. BA <markerl>—C.
4. BN <marker 2> — D.

Here if rule 1 is executed, ‘‘control goes to rule 3,”” i.e., rule 3 is now execut-
able, whereas if rule 2 is applied, ‘‘control goes to rule 4.”* Similarly, such control
paradigms as subroutining, iteration and co-routining may be implemented with
production sytems [Rychner 1978].

The use of connectives and special symbols can make matching become arbi-
trarily complex. Rules might be interpreted as allowing all partial matches in their
antecedent clauses [Bajcsy and Joshi 1978]. Thus

(4 B C)— (D)

is interpreted as
(ABC) V/ (BC)\/ (AB)V (4UC)V AV (B)V (C) — (D)

where the leftmost actual match is used to compare the rule to others in the case of
conflicts.

The problem of large data bases is usually overcome by structuring them in
some way so that the interpreter applies the rules only to a subset of the data base
or uses a subset of the rules. This structuring undermines a basic principle of pure
rule-based systems: Control should be dependent on the contents of the data base
alone. Nevertheless, many systems divide the data base into two parts: an active
smaller part which functions like the original data base but is restricted in size, and
a larger data base which is inaccessible to the rule set in the active smaller part.
““Meta-rules’” have actions that move situation-action rules and facts from the
smaller data base to the larger one and vice versa. The incoming set of rules and
facts is presumably that which is applicable in the context indicated by the situation
triggering the meta-rule. This two-level organization of rules is used in “‘black-
board’’ systems, such as Hearsay for speech-understanding [Erman and Lesser
1975]. The meta-rules seem to capture our idea of ‘‘mental set,” or ‘“‘context,’” or
“frame” (Section 10.3.1, [Minsky 1975]). The two data bases are sometimes re-
ferred to as short-term memory and long term memory, in analogy with certain
models of human memory.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 412

12.3.3 An Example

We shall follow the actions of a production system for vision [Sloan 1977; Sloan
and Bajcsy 1979]. The intent here is to avoid a description of all the details (which
may be found in the References) and concentrate on the performance of the sys-
tem as reflected by a sample of its output. The program uses a production system
architecture in the domain of outdoor scenes. The goal is to determine basic
features of the scene, particularly the separation between sky and ground. The in-
terpreter is termed the ‘‘observer’” and the memory has a two-tiered structure: (1}
short term memory (STM) and (2) long term memory (LTM), a data base of all
facts ever known or established, structured to prefer access to the most recently
used facts. The image to be analyzed is shown in Fig. 12.4, and the action may be
followed in Fig. 12.5. The analysis starts with the initialization command

*(look 100000 100 nil)

This command directs the Observer to investigate all regions that fall in the size
range 100 to 100000, in decreasing order of size. The LTM is initialized to NIL.

our first look at (region 11)

x y rg yb wb size top Dbottom left right
35 2 24 29 6 2132 35 97 2 127

This report is produced by an image-processing procedure that produces
assertions about (region 11). This region is shown highlighted in Fig. 12.5c.

Progress Report

regions on this branch:
(11)

context stack:

Fig. 12.4 Outdoor scene to be analyzed with production system.

Sec. 12.3 Production Systems 401

IPR2022-00092 - LGE
Ex. 1015 - Page 413

402

(d)

Fig. 12.5 Images corresponding to steps in production system analysis. (a) Tex-
ture in the scene. (b) Region 11 outlined. (c) Sky-Ground separation. (d) Skyline.

nil

contents of short term memory:

((far-left (region 11)) (far-right (region 11))
(right (region 11) 127) (left (region 11) 2)
(bottom (region 11) 97) (top (region 11) 35)
(w-b (region 11) minus) (y-b (region 11) zero)
(r-g (region 11) zero) (size (region 11) 2132))

end of progress report

Note that gray-level information is represented as a vector in opponent color space
(Chapter 2), where the components axes are WHITE-BLACK (w-4), RED-
GREEN (r-g), and YELLOW-BLUE (3~4). Three values (plus, zero, minus) are
used for each component. The display above is generated once after every itera-
tion of the Observer. The report shows that (REGION 11) is being investigated;
there is no known context for this investigation; the information about (REGION
11) created by the image-processing apparatus has been placed in STM. The con-
text stack is for information only, and shows a trace of activated sets of rules.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 414

i think that (far-left (region 11))

i think that (far-right (region 11))

i think that (right (region 11) 127)
i think that (left (region 11) 2)

i think that (bottom (region 11) 97)
i think that (top (region 11) 35)

i think that (size (region 11) 2132)

This portion of the trace shows assertions moving from STM to LTM. They
are reported because this is the first time they have been REMEMBERed (a special
procedure in the Observer).

Progress Report

regions on this branch:

(11)

context stack:

nil

contents of short term memory:
((color (region 11) black))

end of progress report

The assertions created from the region data structure have been digested,
and lead only to the conclusion that (REGION 11) is BLACK, based on a produc-
tion that looks like:

(w-b (region x) minus) A (r-w (region x) zero)
A (8w (region x) zero) — (color (region x) black)

Progress Report

regions on this branch:

(1n

context stack:

nil

contents of short term memory:

((ground (region 11)) (shadow (region 11)))

end of progress report

The observer knows that things that are black are GROUND and SHADOW.
The facts it deduces about region 11 are again stored in the LTM.

Having discovered a piece of ground, the Observer has activated the
GROUND-RULES, and changed context. It now investigates the neighbors of
(REGION 11).

our first look at (region 16)

X v r-g y-b w-b size top bottom left right
58 2 23 30 3 1833 57 119 2 127

Sec. 12.3 Production Systems 403

IPR2022-00092 - LGE
Ex. 1015 - Page 415

404

(REGION 16) is a neighbor of (REGION 11), and the observer is trying to deter-
mine whether or not they are sufficiently similar, in both color and texture, to jus-
tify merging them.

Progress Report

regions on this branch:

(16 11)

context stack:

(ground)

contents of short term memory:
((texture-difference (region 16) (region 11)))
(color-similar (region 16) (region 11))

(distance (region 16) near) (ground (region 16))
(color (region 16 black))

end of progress report

The Observer decides that (REGION 16) is ground because it is at the bot-
tom of the picture.

The ground-growing process continues, until finally one of the neighbors of a
ground region is a piece of sky. The Observer will not immediately recognize this
region as sky, but will see that a depth discontinuity exists and that the border
between these two regions represents a section of three dimensional skyline.

our first look at (region 8)
x y rg yb wb size top bottom left right

27 2 13 13 33 394 15 38 2 57
Progress Report

regions on this branch:

(8131611)

context stack:

(ground ground ground)

contents of short term memory:

((new-neighbor (region 800) (far-left (region 8))

(right (region 8) 57) (left (region 8) 2) (bottom (region 8) 38)
(top (region 8) 15) (w-b (region 8) zero) (y-b (region 8) minus)
(r-g (region 8) minus) (size (region 8) 394))

end of progress report

texture descriptors for (region 8) are (54 50)
texture descriptors for (region 13) are (44 51)

Texture measurement is appropriate in the context of ground areas.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 416

Progress Report
regions on this branch:
(8131611)
context stack:
(ground ground ground)
contents of short term memory:
((texture-similar (region 8) (region 13)) (color-difference
(region 8) (region 13)) (color (region 8) blue-green))

end of progress report

(REGION 8) passes the texture similarity test, but fails the color match.
Progress Report

regions on this branch:

8131611)

context stack:

(ground ground ground)

contents of short term memory:

((darker (region 13) (region 8)) (brighter (region 8) (region
13))

(yellower (region 13) (region 8)) (bluer (region 8) (region 13))
(redder (region 13) 13)

(below (region 13) (region 8)) (above (region 8) (region 13)))

end of progress report
checking the border between (region 13) and (region 8)

Progress Report

regions on this branch:

(8131611)

context stack:

(skyline ground ground ground)

contents of short term memory:

((segments built) (skyline-segment ((117 42)) (region 13)
(region 8)) (skyline-segment ((14 40) (13 40)) (region 13)
(region 8)))

end of progress report

Progress Report

regions on this branch:
(8131611)

context stack:

(skyline ground ground ground)

Sec. 12.3 Production Systems 405

IPR2022-00092 - LGE
Ex. 1015 - Page 417

406

contents of short term memory:
((peak (14 40)) (peak (17 42)))

end of progress report

Two local maxima have been discovered in the skyline. On the basis of a
depth judgment, these peaks are correctly identified as treetops.

The analysis continues until all the major regions have been analyzed. The
sky-ground separation is shown in Fig. 12.5a and skyline in Fig. 12.5¢.

In most cases, complete analysis of the image follows from the context esta-
blished by the first (largest) region. This implies that initial scanning of such
scenes can be quite coarse, and very simple ideas about gross context are enough
to get started. Once started, inferences about local surroundings lead the
Observer’s attention over the entire scene, often returning many times to the same
part of the image, each time with a bit more knowledge.

12.3.4 Production System Pros and Cons

In their pure form, the productions of production systems are completely ‘“modu-
lar,”” and are themselves independent of the control process. The data base of
facts, or situations, is unordered set accessed in undetermined order to find one
matching some rule. The rule is applied, and the system reports the search for a
matching situation and situation-action pair (rule). This completely unstructured
organization of knowledge could be a model for the human learning of *‘facts”
which become available for use by some associative mechanism that finds relevant
facts in our memories. The hope for pure production systems is that performance
will degrade noncatastrophically from the deletion of rules or facts, and that the
rules can interact in synergistic and surprising ways. A learning curve may be simu-
lated by the addition of productions. Thus one is encouraged to experiment with
how knowledge may best be broken up into disjoint fragments that interact to pro-
duce intelligent behavior.

Together with the modularity of productions in a simple system, there is a
corresponding simplicity in the overall control program. The pure controller sim-
ply looks at the data base and somehow finds a matching situation (left-hand side)
among the productions, applies the rule, and cycles. This simple structure remains
constant no matter how the rules change, so any nondeterminism in the perfor-
mance arises from the matcher, which may find different left hand side matches for
sets of assertions in the data base.

The productions usually have a syntax that is machine-readable. Their se-
mantics is similarly constrained, and so it begins to seem hopeful that a program
(perhaps fired up by a production) could reason about the rules themselves, add
them, modify them, or delete them. This is in contrast to the situation with pro-
cedurally embedded knowledge (Section 10.1.3), because it is difficult or impossible
for programs to answer general questions about other programs. Thus the claim is
that a production system can more easily reason about itself than can many other
knowledge representation systems.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 418

Productions often interact in ways that are not foreseen. This can be an ad-
vantage or a drawback, depending on the behavior desired. The pattern-matching
control structure allows knowledge to be used whenever it is relevant, not only
when the original designer thought that it might be. Symbiotic interaction of
knowledge may also produce unforeseen insights. Production systems are a pri-
mary tool of knowledge engineering, an enterprise that attempts to encode and use
expert knowledge at such tasks as medical diagnosis and interpretation of mass
spectrograms [Lindsay et al. 1980; Buchanan and Mitchell 1978; Buchanan and
Feigenbaum 1978; Shortliffe 1976; Aikins 1980].

There are many who are not convinced that production systems really offer
the advantages they initially seem to. They use the following sorts of arguments.

The pure form of production system is almost never seen doing anything use-
ful. In particular, the production system is most naturally a forward-chaining infer-
ence system, and one must exercise restraints and guidelines on it to keep it from
running away and deducing lots of irrelevant facts instead of doing useful work. Of
course, production systems may be written to do backward chaining by hypothesiz-
ing a RHS and seeing which LHS must be true for the desired RHS to occur (the
process may be iterated to any depth). In practical systems based on production
systems, there is implicit or explicit ordering of production rules so the matcher
tries them in some order. Often the ordering is determined in a rather complex and
dynamic manner, with groups of related rules being more likely to be applied to-
gether, the most recently used rule not allowed to be reapplied immediately, and
so on. In fact, many production systems’s controllers have all the control structure
tricks mentioned above (and more) built into them; the simple and elegant ‘‘bag of
rules’’ ideal is inadequate for realistic examples. When the rules are explicitly writ-
ten with an idiosyncratic control structure in mind, the system can become unprin-
cipled and inexplicable.

On the same lines, notice how difficult it is to specify a time-ordered se-
quence of actions by a completely modular set of rewriting rules. It is unnatural to
force knowledge about processes that may contain iteration, tests, and recursion
into the form of independent situation—action rules. A view that is more easily de-
fensible is that knowledge about procedures for perception should be encoded as
(embedded in) computer procedures, not assertions or rules. The causal chain that
dictates that some actions are best performed before others is implicit in the
sequential execution of procedures, and the language constraints, such as iterate
and test, test and branch, or subroutine invocation, are all fairly natural ways to
think about solving certain problems. Production systems can in fact be made to
perform all these procedural-like functions, but only through an abrogation of the
ideal of modular, unordered, matching-oriented rule invocation which is the pro-
duction system ideal. The question turns into one of aesthetics; how to use produc-
tions in a good style, and to work with their philosophy instead of against it.

To summarize the previous two objections: Production-based knowledge sys-
tems may in practice be no more robust, easily modified, modular, extensible,
understandable, or self-understanding than any other (say, procedural) system un-
less great care is taken. After a certain level of complexity is reached, they are

Sec. 12.3 Production Systems 407

IPR2022-00092 - LGE
Ex. 1015 - Page 419

likely to be as opaque as any other scheme because of the control-structuring
methods that must be imposed on the pure production system form.

12.4 SCENELABELING AND CONSTRAINT RELAXATION

408

The general computational problem of assigning labels consistently to objects is
sometimes called the “‘labeling problem,’ and arises in many contexts, such as
graph and automata homomorphism, graph coloring, Latin square generation, and
of course, image understanding [Davis and Rosenfeld 1976; Zucker 1976; Haralick
and Shapiro 1979]. ‘‘Relaxation labeling,”” ‘‘constraint satisfaction,” and
“‘cooperative algorithms’’ are natural implementations for labeling, and their po-
tential parallelism has been a very influential development in computer vision. As
should any important development, the relaxation paradigm has had an impact on
the conceptualization as well as on the implementation of processes.

Cooperating algorithms to solve the labeling problem are useful in low level
vision (e.g., line finding, stereopsis) and in intermediate-level vision (e.g., line-
labeling, semantics-based region growing). They may also be useful for the
highest-level vision programs, those that maintain a consistent set of beliefs about
the world to guide the vision process.

Section 12.4.1 presents the main concepts in the labeling problem. Section
12.4.2 outlines some basic forms that “‘discrete labeling’’ algorithms can take. Sec-
tion 12.4.3 introduces a continuing example, that of labeling lines in a line draw-
ing, and gives a mathematically well-behaved probabilistic ‘‘linear operator’’ label-
ing method. Section 12.4.4 modifies the linear operator to be more in accord with
our intuitions, and Section 12.4.5 describes relaxation as linear programming and
optimization, thereby gaining additional mathematical rigor.

12.4.1 Consistent and Optimal Labelings

All labeling problems have the following notions.

1. A set of objects. In vision, the objects usually correspond to entities to be la-
beled, or assigned a ‘‘meaning.”’

" 2. A finite set of relations between objects. These are the sorts of relations we saw

in Chapter 10; in vision, they are often geometric or topological relations
between segments in a segmented image. Properties of objects are simply
unary relations. An input scene is thus a relational structure.

3. A finite set of labels, or symbols associated with the ‘‘meanings’’ mentioned
above. In the simplest case, each object is to be assigned a single label. A label-
ing assigns one or more labels to (a subset of) the objects in a relational struc-
ture. Labels may be weighted with ‘‘probabilities’™; a (label, weight) pair can
indicate something like the “‘probability of an object having that label.”’

4. Constraints, which determine what labels may be assigned to an object and
what sets of labels may be assigned to objects in a relational structure.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 420

A basic labeling problem is then: Given a finite input scene (relational struc-
ture of objects), a set of labels, and a set of constraints, find a “‘consistent label-
ing.”” That is, assign labels to objects without violating the constraints. We saw this
problem in Chapter 11, where it appeared as a matching problem. Here we shall
start with the discrete labeling of Chapter 11 and proceed to more general labeling
schemes.

As a simple example, consider the indoor scene of Fig. 12.6. The segmented
office scene is to have its regions labeled as Door, Wall, Ceiling, Floor, and Bin,
with the obvious interpretation of the labels. Here are some possible constraints,
informally stated. Note that these particular constraints are in terms of the input
relational structure, not the world from which the structure arose. A more com-
plex (but reasonable) situation arises if scene constraints must be derived from
rules about the three dimensional domain of the scene and the imaging process.
Unary constraints use object properties to constrain labels; n-ary constraints force
sets of label assignments to be compatible.

Unary constraints

1. The Ceiling is the single highest region in the image.
2. The Floor must be checkered.

DBFWC
DBFWC
DBFWC
DB
FCW DB
Fw
c
DBFWC
(a)
&
K w
D
B
F

(c}

Fig. 12.6 A stylized “‘segmented office scene.’” The regions are the objects to be
assigned labels D, B, F, W, C (Door, Bin, Floor, Wall, Ceiling). In (a), each ob-
ject is assigned all labels. In (b) unary constraints have been applied (see text). In
(c), relational constraints have been applied, and a unique Jabel for each region

results.

Sec. 12.4 Scene Labeling and Constraint Relaxation 409

IPR2022-00092 - LGE
Ex. 1015 - Page 421

410

N-ary constraints

3. A Wallis adjacent to the Floor and Ceiling.
4. A Door is adjacent to the Floor and a Wall.
5. A Binis adjacent to a Floor.

6. A Binis smaller than a Door.

Obviously, there are many constraints on the appearance of segments in such
a scene; which ones to use depends on the available sensors, the ease of computa-
tion of the relations and their power in constraining the labeling. Here the applica-
tion of the constraints (Fig. 12.6) results in a unique labeling. Although the con-
straints of this example are purely for illustration, a system that actually performs
such labeling on real office scenes is described in [Barrow and Tenenbaum 1976].

Labelings may be characterized as inconsistent or consistent. A weaker notion
is that of an optimal labeling. Each of these adjectives reflects a formalizable pro-
perty of the labeling of a relational structure and the set of constraints. If the con-
straints admit of only completely compatible or absolutely incompatible labels,
then a labeling is consistent if and only if all its labels are mutually compatible, and
inconsistent otherwise. One example is the line labels of Section 9.5; line drawings
that could not be consistently labeled were declared ‘‘impossible.”” Such a black-
and-white view of the scene interpretation problem is convenient and neat, but it is
sometimes unrealistic. Recall that one of the problems with the line-labeling ap-
proach of Chapter 9 is that it does not cope gracefully with missing lines; strictly,
missing lines often mean ‘‘impossible’’ line drawings. Such an uncompromising
stance can be modified by introducing constraints that allow more degrees of com-
patibility than two (wholly compatible or strictly incompatible). Once this is done,
both consistent and inconsistent labelings may be ranked on compatibility and
likelihood. It is possible that a formally inconsistent labeling may rank better than a
consistent but unlikely labeling.

Some examples are shown in Fig. 12.7. In 12.7b, the ““inconsistent’’ labels
are not nonsensical, but can only arise from (a very unlikely) accidental alignment
of convex edges with three of the six vertices of a hexagonal hole in an occluding
surface. The vertices that arise are not all included in the traditional catalog of legal
vertices, hence the “‘inconsistent’ labeling. The ““floating cube’” interpretation is
consistent, but the “‘sitting cube”” interpretation may be more likely if support and
gravity are important concepts in the system. In Fig.12.7c, the scene with a missing
line cannot be consistent according to the traditional vertex catalog, but the ““in-
consistent’’ labels shown are still the most likely ones. Labelings are only ‘‘con-
sistent,”” “‘inconsistent,” or ‘‘optimal’’® with respect to a given relational structure
of objects (an input scene) and a set of constraints. These examples are meant to
be illustrative only.

12.4.2 Discrete Labeling Algorithms
Let us consider the problem of finding a consistent set of labels, taken from a

discrete finite set. This problem may be placed in an abstract algebraic context
[Haralick and Kartus 1978; Haralick 1978; Haralick et al. 1978]. Perhaps the sim-

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 422

LY

Inconsistent Consistent Optimal

Scene labels labels labeling
Car Trees Trees

Road
Grass

Trees

Shadow

{a)

(b)

@ @
ol i)

Fig. 12.7 Three scenes (A, B, C) and their labelings. Labelings are only “‘consistent,”
“inconsistent,”” or “‘optimal™ with respect to a given relational structure of objects (an
input scene) and a set of constraints. These examples are meant to be illustrative only.

(c)

IPR2022-00092 - LGE
Ex. 1015 - Page 423

plest way to find a consistent labeling of a relational structure (we shall often say
“labeling of a scene™) is to apply a depth-first tree search of the labeling possibili-
ties, as in the backtracking algorithm (11.1).

Label an object in accordance with unary constraints.

Iterate until a globally consistent labeling is found:

Given the current labeling, label another object
consistently —in accordance with all constraints.

If the object cannot be labeled consistently, backtrack
and pick a new label for a previously labeled object.

This labeling algorithm can be computationally inefficient. First, it does not
prune the search tree very effectively. Second, if it is used to generate all con-
sistent labelings, it does not recognize important independences in the labels. That
is, it does not notice that conclusions reached (labels assigned) in part of the tree
search are usable in other parts without recomputation.

In a serial relaxation, the labels are changed one object at a time. After each
such change, the new labeling is used to determine which object to process next.

This technique has proved useful in some applications [Feldman and Yakimovsky
1974]. ‘

Assign all possible labels to each object in accordance with

unary constraints.

Iterate until a globally consistent labeling is found:
Somehow pick an object to be processed.
Modify its labels to be consistent with the current
labeling.

A parallel iterative algorithm adjusts all object labels at once; we have seen
this approach in several places, notably in the ‘“Waltz filtering algorithm’” of Sec-
tion 9.5.

Assign all possible labels to each object in accordance with
unary constraints.

Iterate until a globally consistent labeling is found:

In parallel, eliminate from each object’s label set
those labels that are inconsistent with the current
labels of the rest of the relational structure.

A less structured version of relaxation occurs when the iteration is replaced
with an asynchronous interaction of labeled objects. Such interaction may be imple-
mented with multiple cooperating processes or in a data base with ““demons’” (Ap-

412 Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 424

pendix 2). This method of relaxation was used in MSYS [Barrow and Tenenbaum
1976]. Here imagine that each object is an active process that knows its own label
set and also knows about the constraints, so that it knows about its relations with
other objects. The program of each object might look like this.

IfI have just been activated, and my label set is not
consistent with the labels of other objects in the
relational structure, then I change my label set to be
consistent, else I suspend myself.

Whenever I change my label set, I activate other objects
whose label set may be affected, then I suspend myself.

To use such a set of active objects, one can give each one all possible labels
consistent with the unary constraints, establish the constraints so that the objects
know where and when to pass on activity, and activate all objects.

Constraints involving arbitrarily many objects (i.e., constraints of arbitrarily
high order) can efficiently be relaxed by recording acceptable labelings in a graph
structure [Freuder 1978]. Each object to be labeled initially corresponds to a node
in the graph, which contains all legal labels according to unary constraints. Higher
order constraints involving more and more nodes are incorporated successively as
new nodes in the graph. At each step the new node constraint is propagated, that is,
the graph is checked to see if it is consistent with the new constraint. With the in-
troduction of more constraints, node pairings that were previously consistent may
be found to be inconsistent. As an example consider the following graph coloring
problem: color the graph in Fig. 12.8 so that neighboring nodes have different
colors. It is solved by building constraints of increasingly higher order and pro-
pagating them. The node constraints are given explicitly as shown in Fig. 12.8a,
but the higher-order constraints are given in functional implicit form; prospective
colorings must be tested to see if they satisfy the constraints. After the node con-
straints are given, order two constraints are synthesized as follows: (1) make a
node for each node pairing; (2) add all labelings that satisfy the constraint. The
result is shown in Fig. 12.8b. The single constraint of order three is synthesized in
the same way, but now the graph is inconsistent: the match *‘ ¥, Z: Red,Green’’ is
ruled out by the third order legal label set (RGY,GRY). To restore consistency the
constraint is propagated through node (Y, Z) by deleting the inconsistent labelings.
This means that the node constraint for node Z is now inconsistent. To remedy
this, the constraint is propagated again by deleting the inconsistency, in this case
the labeling (Z:G). The change is propagated to node (X,Z) by deleting (X,Z:
Red,Green) and finally the network is consistent.

In this example constraint propagation did not occur until constraints of
order three were considered. Normally, some constraint propagation occurs after
every order greater than one. Of course it may be impossible to find a consistent
graph. This is the case when the labels for node Z in our example are changed from
(G, V) to (G,R). Inconsistency is then discovered at order three.

It is quite possible that a discrete labeling algorithm will not yield a unique la-
bel for each object. In this case, a consistent labeling exists using each label for the

Sec. 12.4 Scene Labeling and Constraint Relaxation 413

IPR2022-00092 - LGE
Ex. 1015 - Page 425

414

(c)

Fig. 12.8 Coloring a graph by building constraints of increasingly higher order.

object. However, which of an object’s multiple labels goes with which of another
object’s multiple labels is not determined. The final enumeration of consistent la-
belings usually proceeds by tree search over the reduced set of possibilities remain-
ing after the relaxation.

Convergence properties of relaxation algorithms are important; convergence
means that in some finite time the labeling will “‘settle down’’ to a final value. In
discrete labeling, constraints may often be written so that the label adjustment
phase always reduces the number of labels for an object (inconsistent ones are el-
iminated). In this case the algorithm clearly must converge in finite time to a con-
sistent labeling, since for each object the label set must either shrink or stay stable.
In schemes where labels are added, or where labels have complex structure (such
as real number ‘‘weights” or ‘probabilities’”), convergence is often not
guaranteed mathematically, though such schemes may still be quite useful. Some
probabilistic labeling schemes (Section 12.4.3) have provably good convergence
properties.

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 426

It is possible to use relaxation schemes without really considering their
mathematical convergence properties, their semantics (What is the semantics of
weights attached to labels—are they probabilities?), or a clear definition of what
exactly the relaxation is to achieve (What is a good set of labels?). The fact that
some schemes can be shown to have unpleasant properties (such as assigning
nonzero weights to each of two inconsistent hypotheses, or not always converging
to a solution), does not mean that they cannot be used. It only means that their
behavior is not formally characterizable or possibly even predictable. As relaxation
computations become more common, the less formalizable, less predictable, and
less conceptually elegant forms of relaxation computations will be replaced by
better behaved, more thoroughly understood schemes,

12.4.3 A Linear Relaxation Operator and a Line Labeling Example

The Formulation

We now move away from discrete labeling and into the realm of continuous
weights or supposition values on labels. In Sections 12.4.3 and 12.4.4 we follow
closely the development of [Rosenfeld et al. 1976]. Let us require that the sum of
label weights for each object be constrained to sum to unity. Then the weights are
reminiscent of probabilities, reflecting the “‘probability that the label is correct.”
When the labeling algorithm converges, a label emerges with a high weight if it oc-
curs in a probable labeling of the scene. Weights, or supposition values, are in fact
hard to interpret consistently as probabilities, but they are suggestive of likelihoods
and often can be manipulated like them.

In what follows p refers to probability-like weights (supposition values)
rather than to the value of a probability density function. Let a relational structure
with n objects be given by a;, i=1, ..., n, each with m discrete labels Ay, ..., A,.
The shorthand p;, (\) denotes the weight, or (with the above caveats) the “‘proba-
bility™” that the label A (actually X , for some &) is correct for the object a,. Then the
probability axioms lead to the following constraints,

0<p) <1 (12.14)
p () =1 (12.15)

The labeling process starts with an initial assignment of weights to all labels
for all objects [consistent with Egs. (12.14) and (12.15)]1. The algorithm is parallel
iterative: It transforms all weights at once into a new set conforming to Egs.
(12.14) and (12.15), and repeats this transformation until the weights converge to
stable values.

Consider the transformation as the application of an operator to a vector of la-
bel weights. This operator is based on the compatibilities of labels, which serve as
constraints in this labeling algorithm. A compatibility p; looks like a conditional
probability.

:; py; W) =1 forall i, j, A’ (12.16)

Sec. 12.4 Scene Labeling and Constraint Relaxation 415

IPR2022-00092 - LGE
Ex. 1015 - Page 427

416

pi WA =1 iff \=X\', elseO. (12.17)

The p; (A |]A") may be interpreted as the conditional probability that object ¢; has la-
bel A given that another object a; has label A". These compatibilities may be gath-
ered from statistics over a domain, or may reflect a priori belief or information.

The operator iteratively adjusts label weights in accordance with other
weights and the compatibilities. A new weight p;(\) is computed from old weights
and compatibilities as follows.

W) = ¢ (X py WIN)p () (12.18)
i

The c;; are coefficients such that
Le=1 (12.19)
J

In Eq. (12.18), the inner sum is the expectation that object g, has label A, given the
evidence provided by object a;. p; (A) is thus a weighted sum of these expecta-
tions, and the c;; are the weights for the sum.

To run the algorithm, simply pick the p; and ¢; , and apply Eq. (12.18) re-
peatedly to the p; until they stop changing. Equation (12.18) is in the form of a ma-
trix multiplication on the vector of weights, as shown below; the matrix elements
are weighted compatibilities, the c;p;;. The relaxation operator is thus a matrix; if it
is partitioned into several component matrices, one for each set of non-interacting
weights, linear algebra yields proofs of convergence properties [Rosenfeld et al.
1976]. The iteration for the reduced matrix for each component does converge,
and converges to the weight vector that is the eigenvector of the matrix with eigen-
value unity. This final weight vector is independent of the initial assignments of la-
bel weights; we shall say more about this later.

An Example

Let us consider the input line drawing scene of Fig. 12.9a used in [Rosenfeld
et.al. 1976]). The line labels given in Section 9.5 allow several consistent labels as
shown in Fig. 12.9b-e, each with a different physical interpretation.

In the discrete labelling ““filtering’’ algorithm presented in Section 9.5 and
outlined in the preceding section, the relational structure is imposed by the neigh-
bor relation between vertices induced by their sharing a line. Unary constraints are
imposed through a catalog of legal combinations of line labels at vertices, and the
binary constraint is that a line must not change its label between vertices. The algo-
rithm eliminates inconsistent labels.

Let us try to label the sides of the triangle a;, a,, and a; in Fig. 12.9 with the
solid object edge labels {>, <, +,—]. To do this requires some *‘conditional prob-
abilities’” for compatibilities p;; (X|A"), s0 let us use those that arise if all eight in-
terpretations of Fig. 12.9 are equally likely. Remembering that

SX|Y) = Lp(% (12.20)

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 428

ey

N (

(b}

/\/\
AN

(d)

+ + Fig. 12.9 A triangle and its possible
labels. (a) Edge names. (b) Floating.
+
(e)

a

(¢) Flap folded up. (d) Triangular hole.
(e) Flap folded down.

and taking p (X, Y) to mean the probability that labels X and Y occur consecutively
in clockwise order around the triangle, one can derive Table 12.2. Of course, we
could choose other compatibilities based on any considerations whatever as long as
Egs. (12.16) and (12.17) are preserved.

Table 12.2 shows that there are two noninteracting components, {—,>} and
{+,<]. Consider the first component that consists of the weight vector

[p1(>), Pl(_), Dz(>), pz(_), p3(>), p;(—)] (12.21)

The second is treated similarly. This vector describes weights for the subpopula-
tion of labelings given by Fig. 12.9b and c. The matrix M of compatibilities has
columns of weighted p;;.

cipnn(>1>) cppn(>|>)
cupn (G- capa(>1-)
cpn(>>) capn>|>)

M= (12.22)
crpn(>1=) cppn(>[-)
cppin(>1>) capn(>1>)
cpps(>1-) enpn(>1-) - J
Sec. 12.4 Scene Labeling and Constraint Relaxation 417

IPR2022-00092 - LGE
Ex. 1015 - Page 429

418

Table 12.2

Ay Aj p(hg,;\z) p(.\l[)\z)

> > Vi .
> - i’ﬁ 1
- >
- B 5
% 0 0
>+ 0 0
- < 0 0
-+ 0 0
< > 0 0
+ > 0 0
< - 0 0
+ - 0 0
< < s ¥
3
< + y 1
+ < A y
+ + i 0

If we let ¢; = Jsforall i, j, then

0 % h %K
1 1 0 1 0
L1 0 %%
1 001 1 0
LB B Bo1 o0
1 01 0 0 1

An analytic eigenvector calculation (Appendix 1) shows that the M of Eq.
(12.23) yields (for any initial weight vector) the final weight vector of

[, Y, %, %, %, %l (12.24)

Thus each line of the population in the component we chose (Fig. 12.9b and ¢) has
label > with “‘probability” %, —with *‘probability’’ 1. In other words, from an ini-
tial assumption that all labelings in Fig. 12.9b and ¢ were equally likely, the system
of constraints has ‘‘relaxed’’ to the state where the ‘“most likely”’ labeling is that of
Fig. 12.9b, the floating triangle.

This relaxation method is a crisp mathematical technique, but it has some
drawbacks. It has good convergence properties, but it converges to a solution en-
tirely determined by the compatibilities, leaving no room for preferences or local
scene evidence to be incorporated and affect the final weights. Further, the algo-
rithm perhaps does not exactly mirror the following intuitions about how relaxa-
tion should work.

(12.23)

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 430

1. Increase p;(\) if high probability labels for other objects are compatible with
assignment of A to a;.

2. Decrease p, (1) if high probability labels are incompatible with the assignment
of A to a,.

3. Labels with low probability, compatible or incompatible, should have little
influence on p;(\).

However, the operator of this section decreases p;(A) the most when other labels
have both low compatibility and low probability. Thus it accords with (1) above,
but not with (2) or (3). Some of these difficulties are addressed in the next section.

12.4.4 A Nonlinear Operator

The Formulation

If compatibilities are allowed to take on both positive and negative values,
then we can express strong incompatibility better and obtain behavior more like
(1), (2), and (3) just above. Denote the compatibility of the event “‘label A on a;”’
with the event ““label A on a;”” by r;; (A, A"). If the two events occur together often,
r; should be positive. If they occur together rarely, r; should be negative. If they
are independent, r; should be 0. The correlation coefficient behaves like this, and
the compatibilities of this section are based on correlations (hence the the notation
ry for compatibilities). The correlation is defined using the covariance.

cov(X, V) =p(X, Y) — p(X)p(Y)

Now define a quantity o which is like the standard deviation

o(X)=[pX) - (XNY”~ (12.25)
then the correlation is the normalized covariance
cov(X, ¥)
X et Nty Gl
cor(Y, Y) (Mo (1) (12.26)

This allows the formulation of an expression precisely analogous to Eq.
(12.18), only that r; instead of p;; is used to obtain a means of calculating the posi-
tive or negative change in weights.

aP W) =T, [T ry(, A)p 0] (12.27)
J A
In Egs. (12.27)-(12.29) the superscripts indicate iteration numbers. The weight
change (Eq. 12.27) could be applied as follows,
pl_(h—l)()\) _ p,(k)(:\) Je q,(k)()\) (12.28)

but then the resultant label weights might not remain nonnegative. Fixing this in a
straightforward way yields the iteration equation

M1 + ¢®)]
Zp,’(k)()\)[l + q,-(k)(?\)]
A

gt = (12.29)

Sec. 12.4 Scene Labeling and Constraint Relaxation 419

IPR2022-00092 - LGE
Ex. 1015 - Page 431

420

The convergence properties of this operator seem to be unknown, and like
the linear operator it can assign nonzero weights to maximally incompatible label-
ings. However, its behavior can accord with intuition, as the following exampie
shows.

An Example

Computing the covariances and correlations for the set of labels of Fig.
12.9b-e yields Table 12.3.
Figure 12.10 shows the nonlinear operator of Eq.(12.29) operating on the ex-
ample of Fig. 12.9. Figure 12.10 shows several cases.
1. Equal initial weights: convergence to apriori probabilities (%, 7, s, Vs).
2. Equal weights in the component {>,—}: convergence to “most probable”
floating triangle labeling.

3. Slight bias toward a flap labeling is not enough to overcome convergence to the
““most probable”’ labeling, as in (2).

Like (3), but greater bias elicits the ““improbable’ labeling.

5. Contradicatory biases toward ‘‘improbable’” labelings: convergence to ‘‘most
probable” labeling instead.

6. Like (5), but stronger bias toward one “‘improbable”’ labeling elicits it.

7. Bias toward one of the components {>,—], {<,+]} converges to most prob-
able labeling in that component.

8. Like (7), only biased to less probable labelling in a component.

12.4.5 Relaxation as Linear Programming

The Idea

Linear programming (LP) provides some useful metaphors for thinking
about relaxation computations, as well as actual algorithms and a rigorous basis
[Hummel and Zucker 1980]. In this section we follow the development of [Hinton
1979].

Table 12.3

Ay Az COVO\], }tz) COT()\],)\2)

> > Tea His

> - Yoa 5//105
- > 54 5/V105
- - ~Yes —¥
> < —%a ¥

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 432

Ly

a az
43
(a)
After 210 3 After 20 to 30
Case Initial weights iterations iterations Limit

0:25 0.25 0.25 0.25 03 03 02 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13
{1 025 0.25 0.25 0.25 03 03 02 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13

0.25 0.25 025 0.25 03 03 0.2 02 0.33 0.33 0.17 0.17 0.37 0.37 0.13 0.13

0.5 0 05 0 0.8 0 02 0 098 0 0.2 0 1 0 0 0
2) 0.5 0 05 0 0.8 0 0.2 0 098 0 0.2 0 1 0 0 0

0.5 0 05 0 0.8 0 02 0 098 0 02 0 1 0 0 0

0.5 0 05 0 062 0 037 0 1 0 1] (1] 1 0 0 0
(3) 0.4 0 086 0 049 0 051 0 097 0 003 0O 1 0 0 (]

0.5 0 05 0 062 0 037 0 1 0 0 0 1 0 0 o]

0.5 0 05 0 064 0 036 O 1 0 0 0 1 0 0 0
(4) 0.3 0 07 o 036 0 064 O 007 0 093 0 0 Q 1 0 -

0.5 0 05 1] 064 0 036 O 1 0 0 0 1 0 0 0

0.3 0 07] 0.5 0 05 0 095 0 005 O 1 0 0 0
(5) 0.3 0 07 0 0.5 0 05 0 095 0 0056 O 1 0 0 0

0.5 0 05 (1] 084 0 016 0 1 0 0 0 1 0 0 4]

0.2 0 08 0 0.3 0 07 0 006 0 0984 O 0 0 1 0
{6) 0.3 o 07 0 051 0 049 O 1 0 0 0 1 0 0 4] %

0.5 0 05 0 08 0 017 0 1 0 0 o ;| 0 4] 0

03 02 03 02 0.41 0.13 032 0.14 09 0 002 0 1 0 0 0
{7) 03 02 03 02 0.41 0.13 0.32 0.14 098 0 002 O 1 0 0 o

03 02 03 02 0.41 0.13 0.32 0.14 098 0 002 0 1 0 0 0

03 02 03 02 0.38 0.17 0.29 0.16 1 0 0 0 1 0 0 0
18) 0.25 0.25 0.25 0.25 0.35 0.20 0.25 0.20 1 0 0 0 1] 1] 0

02 02 04 02 0.23 0.16 045 0.16 0.2 0 08 0 0 0 1 0

(c)
Fig. 12.10 The nonlinear operator produces labelings for the triangle in (a). (b) shows

how the label weights are displayed, and (c) shows a number of cases (see text).

IPR2022-00092 - LGE
Ex. 1015 - Page 433

422

To put relaxation in terms of linear programming, we use the following trans-

lations.

LABEL WEIGHT VECTORS =>POINTS IN EUCLIDEAN N-SPACE. Each
possible assignment of a label to an object is a hypothesis, to which a weight
(supposition value) is to be attached. With N hypotheses, an N-vector of
weights describes a labeling. We shall call this vector a (hypothesis or label)
weight vector. For mlabels and » objects, we need at most Euclidean nm-space.

CONSTRAINTS == INEQUALITIES. Constraints are mapped into linear ine-
qualities in hypothesis weights, by way of various identities like those of ‘‘fuzzy
logic™ [Zadeh 1965]. Each inequality determines an infinite half-space. The
weight vectors within this half-space satisfy the constraint. Those outside do
not. The convex solid that is the set intersection of all the half-spaces includes
those weight vectors that satisfy all the constraints: each represents a ‘‘con-
sistent’’ labeling. In linear programming terms, each such weight vector is a
Sfeasible solution. We thus have the usual geometric interpretation of the linear
programming problem, which is to find the best (optimal) consistent (feasible)
labeling (solution, or weight vector). Solutions should have integer-valued (1-
or 0-valued) weights indicating convergence to actual labelings, not probabilis-
tic ones such as those of Section 12.4.3, or the one shown in Fig. 12.10c, case 1.

HYPOTHESIS PREFERENCES => PREFERENCE VECTOR. Often some
hypotheses (label assignments) are preferred to others, on the basis of a priori
knowledge, image evidence, and so on. To express this preference, make an
N-dimensional preference vector, which expresses the relative importance
(preference) of the hypotheses. Then

» The preference of a labeling is the dot product of the preference vector
and the weight vector (it is the sum for all hypotheses of the weight of
each hypothesis times its preference).

« The preference vector defines a preference direction in N-space. The op-
timal feasible solution is that one ‘“‘farthest’ in the preference direc-
tion. Let x and y be feasible solutions; they are N-dimensional weight
vectors satisfying all constraints. If z = x — y has a component in the
positive preference direction, then x is a better solution than y, by the
definition of the preference of a labeling.

It is helpful for our intuition to let the preference direction define a ‘“‘down-
ward’’ direction in N-space as gravity does in our three-space. Then we wish to
pick the lowest (most preferred) feasible solution vector.

LABELING ==> OPTIMAL SOLUTION. The relaxation algorithm must solve
the linear programming problem—find the best consistent labeling. Under the
conditions we have outlined, the best solution vector occurs generally at a ver-
tex of the N-space solid. This is so because usually a vertex will be the ““lowest”’
part of the convex solid in the preference direction. It is a rare coincidence that
the solid “‘rests on a face or edge,”” but when it does a whole edge or face of the
solid contains equally preferred solutions (the preference direction is normal to

Ch. 712 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 434

the edge or face). For integer solutions, the solid should be the convex hull of
integer solutions and not have any vertices at noninteger supposition values.

The *‘simplex algorithm™ is the best known solution method in linear pro-
gramming. It proceeds from vertex to vertex, seeking the one that gives the op-
timal solution. The simplex algorithm is not suited to parallel computation, how-
ever, so here we describe another approach with the flavor of hill-climbing optimi-
zation. Basically, any such algorithm moves the weight vector around in N-space,
iteratively adjusting weights. If they are adjusted one at a time, serial relaxation is
taking place; if they are all adjusted at once, the relaxation is parallel iterative. The
feasible solution solid and the preference vector define a “‘cost function’ over all
N-space, which acts like a potential function in physics. The algorithm tries to
reach an optimum (minimum) value for this cost function. As with many optimi-
zation algorithms, we can think of the algorithm as trying to simulate (in N-space)
a ball bearing (the weight vector) rolling along some path down to a point of
minimum gravitational (cost) potential. Physics helps the ball bearing find the
minimum; computer optimization techniques are sometimes less reliable.

Translating Constraints to Inequalities

The supposition values, or hypothesis weights, may be encoded into the in-
terval [0, 1], with 0 meaning ““false,”” 1 meaning ‘“true.”” The extension of weights
to the whole interval is reminiscent of ‘‘fuzzy logic,”” in which truth values may be
continuous over some range [Zadeh 1965]. As in Section 12.4.3, we denote suppo-
sition values by p(-); H, 4, B, and C are label assignment events, which may be
considered as hypotheses that the labels are correctly assigned. =, \/, A, = and
<= are the usual logical connectives relating hypotheses. The connectives allow
the expression of complex constraints. For instance, a constraint might be “‘Label
x as ‘" if and only if z is labeled ‘w’ or ¢ is labelled ‘v’.”” This constraint relates
three hypotheses: hy: (xis “y”), hy: (zis “w), ki (gis *“v°). The constraint is
then h, < (hz\/ h3)

Inequalities may be derived from constraints this way.

Negation. p(H) = 1— p((H)).
2. Disjunction. The sums of weights of the disjunct are greater than or equal to

one. p(4\ B\ ...\ C) gives the inequality p(4) + p(B) + ... +p(C) =
1.

3. Conjunction. These are simply separate inequalities, one per conjunct. In par-
ticular, a conjunction of disjunctions may be dealt with conjunct by conjunct,
producing one disjunctive inequality per conjunct,

4. Arbitrary expressions. These must be put into conjunctive normal form
(Chapter 10) by rewriting all connectives as /\’s and \/’s. Then (3) applies.

As an example, consider the simple case of two hypotheses 4 and B, with the
single constraint that 4 ==> B. Applying rules 1 through 4 results in the following
five inequalities in p(4) and p (B); the first four assure weights in [0, 1]. The fifth
arises from the logical constraint, since 4 => Ris the same as B\/ “(4).

Sec. 12.4 Scene Labeling and Constraint Relaxation 423

IPR2022-00092 - LGE
Ex. 1015 - Page 435

424

0< p(4)
p(4) <1
0< p(B)
p(B) €1
pB)+ {0 —pUN =21 o p(B)2pl)

These inequalities are shown in Fig. 12.11. As expected from the => con-
straint, optimal feasible solutions exist at: (1,1) or (4,8); (0,1) or ("(4),B); (0,0)
or ("(4), “(B)). Which of these is preferred depends on the preference vector. If
both its components are positive, (4,B) is preferred. If both are negative, ("(4),
“(B)) is preferred, and so on.

A Solution Method

Here we describe (in prose) a search algorithm that can find the optimal feasi-
ble solution to the linear programming problem as described above. The descrip-
tion makes use of the mechanical analogy of an N-dimensional solid of feasible
solutions, oriented in N-space so that the preference vector induces a ““downward”’
direction in space. The algorithm attempts to move the vector of hypothesis
weights to the point in space representing the feasible solution of maximum prefer-
ence. It should be clear that this is a point on the surface of the solid, and unless the
preference vector is normal to a face or edge of the solid, the point is a unique
“lowest’’ vertex.

To establish a potential that leads to feasible solutions, one needs a measure
of the infeasibility of a weight vector for each constraint. Define the amount a vec-
tor violates a constraint to be zero if it is on the feasible side of the constraint hy-
perplane. Otherwise the violation is the normal distance of the vector to the hyper-
plane. If h; is the coefficient vector of the i hyperplane (Appendix 1) and w the
weight vector, this distance is

d=w-h, (12.30)

=
(1,0 R

WP @>p
23
AN ALEALALEALRA SRR R RLR LY ——pla)<i

Fig. 12.11 The feasible region for two
hypotheses A and B and the constraint A
p(Q)>0 B. Optimal solutions may occur at the
three vertices. The preferred vertex will
be that one farthest in the direction of
. the preference vector, or lowest if the
p(P) =0 p(P) =1 preference vector defines “‘down.”

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 436

If we then define the infeasibility as

2
I= zd—’ (12.31)
i 2
then 8//0d; = d, is the rate the infeasibility changes for changes in the violation.
The force exerted by each constraint is proportional to the normal distance from
the weight vector to the feasible region defined by that constraint, and tends to pull
the weight vector onto the surface of the solid.

Now add a weak “‘gravity-like”’ force in the preference direction to make the
weight vector drift to the optimal vertex. At this point an optimization program
might perform as shown in Fig. 12.12.

Figure 12.12 illustrates a problem: The forces of preference and constraints
will usually dictate a minimum potential outside the solid (in the preference direc-
tion). Fixes must be applied to force the weight vector back to the closest (presum-
ably the optimum) vertex. One might round high weights to 1 and low ones to 0, or
add another local force to draw vectors toward vertices.

Examples

An algorithm based on the principles outlined in the preceeding section was
successfully used to label scenes of ““puppets’ such as Fig. 12.13 with body parts
[Hinton 1979].

The discrete, consistency-oriented version of line labeling may be extended
to incorporate the notion of optimal labelings. Such a system can cope with the ex-
plosive increase in consistent labelings that occurs if vertex labels are included for
cases of missing lines, accidental alignment, or ‘‘two-dimensional’” objects such as
folded paper. It allows modeling of the fact that human beings do not “‘see’’ all
possible interpretations of scenes with accidental alignments. If labelings are given

7

Best vertex

Best vertex

Feasible
region

Feasible
region

T

Preference
vector

T

Preference
S vector

{7, s
(a) (b)

Fig. 12.12 In (a), the weight vector moves from S to rest at T, under the com-
bined influence of the preferences and the violated constraints. In (b), conver-
gence is speeded by making stronger preferences, but the equilibrium is farther
away from the optimal vertex.

Sec. 12.4 Scene labeling and Constraint Relaxation 425

IPR2022-00092 - LGE
Ex. 1015 - Page 437

!.bestset;

Al BOT TRUNK NECK Bl UPPERARM D2 F2 THIGH 13 K2
Bl BOT MECK HEAD C1 TRUNK Al

Gl BOT HEAD NECK Bl

D2 TOP UPPERARM TRUNK Al LOWERARM E4
E4 TOP LOWERARM UPPERARM D2 HAND -
F2 TOP UPPERARM TRUNK Al LOWERARM GZ
62 TOP LOWERARM UPPERARM F2 HAND H2
H2 TOP HAND LOWERARM G2

I3 TOP THIGH TRUNK Al CALF J4

J4 BOT CALF THIGH I3 FOOT -

K2 BOT THIGH TRUNK Al CALF L4

L4 BOT CALF THIGH K2 FOOT -

'trytointerpret [trunk as upright importance=1];
'trytointerpret [thigh as upright importance=1];

|.bestset;
A2 TOP TRUNK NECK - UPPERARM 12 K1 THIGH D3 F3
81 BOT NECK HEAD C1 TRUNK -

Cl1 BOT HEAD NECK Bl

D3 TOP THIGH TRUNK A2 CALF E3

E3 TOP CALF THIGH D3 FQOT -

F3 TOP THIGH TRUNK A2 CALF E3

G3 TOP CALF THIGH F3 FOOT H1

Hl TOP FOQT CALF G3

12 TOP UPPERARM TRUNK A2 LOWERARM J3
J3 BOT LOWERARM UPPERARM 12 HAND -
K1 BOT UPPERARM TRUNK A2 LOWERARM L3
L3 BOT LOWERARM UPPERARM K1 HAND -

(b)

!.bestset;

Al TOP HEAD NECK Bl

Bl TOP NECK HEAD Al TRUNK C2

C2 TOP TRUNK NECK B1 UPPERARM H1 J1 THIGH D3 F3
D3 TOP THIGH TRUNK C2 CALF E3

E3 TOP CALF- THIGH D3 FQOT -

F3 TOP THIGH TRUNK C2 CALF G3

63 TOP CALF THIGH F3 FOOT-

H1 TOP UPPERARM TRUNK C2 LOWERARM 11
I1 TOP LOWERARM UPPERARM H1 HAND -
Jl1 TOP LOWERARM TRUNK C2 LOWERARM K4
K4 BOT LOWERARM UPPERARM J1 HAND L6
L6 BOT HAND LOWERARM K4

(e)

Fig. 12.13 Puppet scenes interpreted by linear programming relaxation. (a)
shows an upside down puppet. (b) is the same input zlong with preferences to in-
terpret the trunk and thighs as upright; these result in an interpretation with trunk
and neck not connected. In (c), the program finds only the “‘best’” puppet, since it
was only expecting one.

426 Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 438

costs, then one can include labels for missing lines and accidental alignment as
high-cost labels, rendering them usable but undesirable. Also, in a scene-analysis
system using real data, local evidence for edge appearance can enhance the a priori
likelihood that a line should bear a particular label. If such preferences can be ex-
tracted along with the lines in a scene, the evidence can be used by the line
labeling algorithm.

The inconsistency constraints for line labels may be formalized as follows.
Each line and vertex has one label in a consistent labeling; thus for each line L and
vertex J,

£ p(L haslabel LLABEL) = | (12.32)

all line labels

p(J haslabel VLABEL) = 1 (12.33)

all vertex labels

Of course, the VLABELS and LLABELS in the above constraints must be
forced to be compatible (if L has LLABEL, JLABEL must agree with it). For a line
L and a vertex Jat its end,

p(L hasLLABEL) = X p(J haslabel VLABEL) (12.34)

all VLABELS
giving LLABEL toL

This constraint also enforces the coherence rule (a line may not change its label
betwen vertices).

Using these constraints, linear programming relaxation labeled the triangle
example of Fig. 12.7 as shown in Fig. 12.14, which shows three cases.

1. Preference 0.5 for each of the three junction label assignments (hypotheses)
corresponding to the floating triangle, 0 preference for all other junction and
line label hypotheses: converges to floating triangle.

2. Like (1), but with equal preferences given to the junction labels for the tri-
angular hole interpretation, 0 to all other preferences.

3. Preference 3 to the convex edge label for a 2 overrides the three preferences of
1/2 for the floating triangle of case (1). All preferences but these four were 0.

Some Extensions

The translation of constraints to inequalities described above does not
guarantee that they produce a set of half-spaces whose intersection is the convex
hull of the feasible integer solutions. They can produce ‘‘noninteger optima,” for
which supposition values are not forced to 1 or 0. This is reminiscent of the
behavior of the linear relaxation operator of Section 12.4.3, and may not be objec-
tionable. If it is, some effort must be expended to cope with it. Here is an example

Sec. 12.4 Scene Labeling and Constraint Relaxation 427

IPR2022-00092 - LGE
Ex. 1015 - Page 439

428

B & B #

pla,=>)- - .
ay a, . i
. - plag=+)
2
(a) {b)
After 10 After 20 After 30 to 40
Case iterations iterations iterations
(1) 065 022 0.01 0.14 090 0.07 0 004 0.99 0 0o o
065 0.22 0.01 0.14 090 0.07 0 0.04 0.99 0 0 1]
065 0.22 0.01 0.14 090 007 0 004 0.99 0 0 0
(2) 039 0.89 0 0 014 095 0 0 0 099 0 0
0.39 0.89 0 0 0.14 095 0 0 0 099 0 0
039 0.89 0 0 014 095 0 0 0 099 0 0
(3) 056 0.48 0 0.05 081 023 0 0 0.99 0 0 0 +
0 0.34 0 0.99 0 015 0 099 0 0 0 099
056 0.48 0 0.05 081 023 0 0 099 0 0 0
{c)

Fig. 12.14 As in Fig. 12.10, the triangle of (a) is to be assigned labels, and the changing
label weights are shown for three cases in (c) using the format of (b). Supposition values
for junction labels were used as well, but are not shown. All initial supposition values
were 0.

of the problem. Assume three logical constraints, “(4 A B), "(BA ©), and "(CA
A). Suppose A, B, and C have equal preferences of unity (the preference vector is
(1,1, 1)). Translating the constraints yields

pld) +p(B) £1
pB)+plC) <1 (12.35)
p(C)+pl4) €1
The best feasible solution has a total preference of 1'%, and is
pl4)=p(B) =p(C)=1% (12.36)

Here the ““best” solution is outside the convex hull of the integer solutions (Fig.
12.15).

The basic way to ensure integer solutions is to use stronger constraints than
those arising from the simple rules given above. These may be introduced at first,
or when some noninteger optimum has been reached. These stronger constraints
are called cutting planes, since they cut off the noninteger optima vertices. In the
example above, the obvious stronger constraint is

p(4) +pB)+p(C) L1 (12.37)

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 440

p(B)=0

(A}
i plA)
PlA) +p(B) <1
A) +plB) <1
puL Tl p(C) plA) +p(B) +p(C) <1
piC)
plA)=0
.43
p(B) +plC) <1
p(8) p(B)
(a) (b)

Fig. 12.15 (a) shows part of the surface of the feasible solid with constraints = (4 & B),
- (B & (), ~(C & A), and the non-integer vertex where the three halfspaces intersect.
(b) shows a cutting plane corresponding to the constraint “‘at most one of 4, B, or €’ that
removes the non-integer vertex.

which says that at most one of 4, B, and Cis true (this is a logical consequence of
the logical constraints). Such cutting planes can be derived as needed, and can be
guaranteed to eliminate all noninteger optimal vertices in a finite number of cuts
[Gomory 1968; Garfinkel and Nemhauser 1972]. Equality constraints may be
introduced as two inequality constraints in the obvious way: This will constrain the
feasible region to a plane.

Suppose that one desires ‘‘weak rules,’” which are usually true but which can
be broken if evidence demands it? For each constraint arising from such a rule,
add a hypothesis to represent the situation where the rule is broken. This
hypothesis is given a negative preference depending on the strength of the rule,
and the constraint enhanced to include the possibility of the broken rule. For
example, if a weak rule gives the constraint P \/ Q, create a hypothesis H
equivalent to "(PY Q) = ("(P) A “(Q)), and replace the constraint with P\/ Q\/
H. Then by ‘“‘paying the cost” of the negative preference for H, we can have nei-
ther Pnor Qtrue.

Hypotheses can be created as the algorithm proceeds by having demon-like
‘‘generator hypotheses.”” The demon watches the supposition value of the genera-
tor, and when it becomes high enough, runs a program that generates explicit
hypotheses. This is clearly useful; it means that all possible hypotheses do not need
to be generated in advance of any scene investigation. The generator can be given a
preference equal to that of the best hypotheses that it can generate.

Relaxation sometimes should determine a real number (such as the slope of
a line) instead of a truth value. A generator-like technique can allow the method to
refine the value of real-valued hypotheses. Basically, the idea is to assign a
(Boolean-valued) generator hypothesis to a range of values for the real value to be

Sec. 2.4 Scene Labeling and Constraint Relaxation 429

IPR2022-00092 - LGE
Ex. 1015 - Page 441

determined. When this generator triggers, more hypotheses are generated to get a
finer partition of the range, and so on.

The enhancements to the linear programming paradigm of relaxation give
some idea of the flexibility of the basic idea, but also reveal that the method is not
at all cut-and-dried, and is still open to basic investigation. One of the questions
about the method is exactly how to take advantage of parallel computation capabili-
ties. Each constraint and hypothesis can be given its own processor, but how
should they communicate? Also, there seems little reason to suppose that the
optimization problems for this form of relaxation are any easier than they are for
any other multidimensional search, so the method will encounter the usual prob-
lems inherent in such optimization. However, despite all these technical details
and problems of implementation, the linear programming paradigm for the relaxa-
tion computation is a coherent formalization of the process. It provides a relatively
“classical’ context of results and taxonomy of problems [Hummel and Zucker
1980].

12.5 ACTIVEKNOWLEDGE

430

Active knowledge systems [Freuder 1975] are characterized by the use of pro-
cedures as the elementary units of knowledge (as opposed to propositions or data
base items, for instance). We describe how active knowledge might work, because
it is a logical extreme of the procedural implementation of propositions. In fact,
this style of control has not proven influential; some reasons are given below.

Active knowledge is notionally parallel and heterarchical. Many different
procedures can be active at the same time depending on the input. For this reason
active knowledge is more easily applied to belief maintenance than to planning; it
is very difficult to organize sequential activity within this discipline. Basically, each
procedure is responsible for a “‘chunk’” of knowledge, and knows how to manage it
with respect to different visual inputs. Control in an active knowledge system is
completely distributed. Active knowledge can also be viewed as an extension of
the constraint relaxation problem; powerful procedures can make arbitrary de-
tailed tests of the consistency between constraints.

Each piece of active knowledge (program module) knows which other
modules it depends on, which depend on it, which it can complain to, and so forth.
Thus the choice of ‘“‘what to do next” is contained in the modules and is not made
by an exterior executive.

We describe HYPER, a particular active knowledge system design which il-
lustrates typical properties of active knowledge [Brown 1975]. HYPER provides a
less structured mechanism for construction and exploration of hypotheses than
does LP-relaxation. Using primitive control functions of the system, the user may
write programs for establishing hypotheses and for using the conclusions so
reached. The programs are ‘‘procedurally embedded’” knowledge about a problem
domain (e.g. how events relate one to another, what may be conjectured or in-
ferred from a clue, or how one might verify a hypothesis).

When HYPER is in use on a particular task in a domain, hypotheses are
created, or instantiated, on the basis of low-level input, high-level beliefs, or any

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 442

reason in between. The process of establishing the initial hypotheses leads to a
propagation of activity (creation, verification, and disconfirmation of hypotheses).
Activation patterns will generally vary with the particular task, in heterarchical
fashion. A priority mechanism can rank hypotheses in importance depending on
the data that contribute to them. Generally, the actions that occur are conditioned
by previous assumptions, the data, the success of methods, and other factors.
HYPER can be used for planning applications and for multistep vision processing
as well as inference (procedures then should generate parallel activity only under
tight control). We shall thus allow HYPER to make use of a context-oriented data
base (Section 13.1.1). It will use the context mechanism to implement ‘‘alternative
worlds’” in which to reason.

12.5.1 Hypotheses

A HYPER hypothesis is the attribution of a predicate to some arguments; its name
is always of the form (PREDICATE ARGUMENTS). Sample hypothesis names
could be (HEAD-SHAPED REGION1), (ABOVE A B), (TRIANGLE (X1,Y1)
(X2,Y2) (X3,Y3)). A hypothesis is represented as a data structure with four com-
ponents; the status, contents, context, and links of the hypothesis.

The status represents the state of the HYPER’s knowledge of the truth of the
hypothesis; it may be T(rue), F(alse), (in either case the hypothesis has been esta-
blished) or P(ending). The contents are arbitrary; hypotheses are not just truth-
valued assertions. The hypothesis was asserted in the data-base context given in
context. The links of a hypothesis H are pointers to other hypotheses that have
asked that H be established because they need H’s contents to complete their own
computations.

12.5.2 HOW-TO and SO-WHAT Processes

Two processes are associated with every predicate P which appears as the predicate
of a hypothesis. Their names are (HOW-TO P) and (SO-WHAT P). In them is em-
bedded the procedural knowledge of the system which remains compiled in from
one particular task to another in a problem domain. (HOW-TO P) expresses how
to establish the hypothesis (P arguments). It knows what other hypotheses must
be established first, the computations needed to establish (P arguments), and so
forth. It has a backward-chaining flavor. Similarly, (SO-WHAT P) expresses the
consequences of knowing P: what hypotheses could possibly now be established
using the contents of (P arguments), what alternative hypotheses should be ex-
plored if the status of (P arguments) is F, and so on. The feeling here is of forward
chaining.

12.5.3 Control Primitives

HYPER hypotheses interact through primitive control statements, which affect the
investigation of hypotheses and the ramification of their consequences. The primi-

Sec. 12.5 Active Knowledge 431

IPR2022-00092 - LGE
Ex. 1015 - Page 443

432

tives are used in HOW-TO and SO-WHAT programs together with other general
computations. Most primitives have an argument called priority, which expresses
the reliability, urgency, or importance of the action they produce, and is used to
schedule processes in a nonparallel computing environment (implemented as a
priority job queue [Appendix 2]). The primitives are GET, AFFIRM, DENY, RE-
TRACT, FAIL, WONDERIF, and NUDGE.

GET is to ascertain or establish the status and contents of a hypothesis. It
takes a hypothesis H and priority PRI as arguments and returns the status and con-
tents of the hypothesis. If H’s status is T or F at the time of execution of the state-
ment, the status and contents are returned immediately. If the status is P (pend-
ing), or if H has not been created yet, the current HOW-TO or SO-WHAT program
calling GET (call it CURPROG) is exited, the proper HOW-TO job (i.e., the one
that deals with H’s predicate) is run at priority PRI with argument H, and a link is
planted in H back to CURPROG. When H is established, CURPROG will be reac-
tivated through the link mechanism.

AFFIRM is to assert a hypothesis as true with some contents.
AFFIRM (H,CONT,PRI) sets H’s status to T, its contents to CONT, activates its
linked programs and then executes the proper SO-WHAT program on it. The
newly activated SO-WHAT programs are performed with priority PRI.

DENY is to assert that a hypothesis with some contents is false.
DENY (H,CONT,PRI) is like AFFIRM except that no activation though links oc-
curs, and the status of H is of course set to F.

ASSUME is to assert a hypothesis as true hypothetically.
ASSUME(H,CONT,PRI) uses the data base context mechanism to create a new
context in which H is AFFIRMED; the original context in which the ASSUME
command is given is preserved in the context field of H. H itself is stored into a
context-dependent item named LASTASSUMED:; this corresponds to remember-
ing a decision point in PLANNER. By using the information in LASTASSUMED
and the primitive FAIL (see below), simple backtracking can take place in a tree of
contexts.

RETRACT(H) establishes as false a hypothesis that was previously AS-
SUMEd. RETRACT is always carried out at highest priority, on the principle that it
is good to leave the context of a mistaken assumption as quickly as possible. Infor-
mation (including the name of the context being exited) is transmitted back to the
original context in which H was ASSUMEGd by passing it back in the fields of H.

FAIL just RETRACTS the hypothesis that is the value of the item LASTAS-
SUMED in the present context.

WONDERIF is to pass suggested contents to HOW-TO processes for
verification. It can be useful if verifying a value is easier than computing it from
scratch, and is the primitive that passes substantive suggestions. WONDERIF (H1,
CONT, H2, PRI) approximates the notion ‘“H2 wonders if H1 has contents
CONT.”

NUDGE is to wake up HOW-TO programs. NUDGE(H,PRI) runs the
HOW-TO program on H with priority PRI. It is used to awaken hypotheses that
might be able to use information just computed. Typically it is a SO-WHAT pro-

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 444

gram that NUDGE:s others, since the SO-WHAT program is responsible for using
the fact that a hypothesis is known.

12.5.4 Aspects of Active Knowledge

The active knowledge style of computation raises a number of questions or prob-
lems for its users.

A hypothesis whose contents may attain a large range can be established for
some contents and thus express a perfectly good fact (e.g., that a given location of
an x-ray does not contain evidence for a tumor) but such a fact is usually of little
help when we want to reason about the predicate (about the location of tumors).
The SO-WHAT program for a predicate should be written so as to draw conclu-
sions from such negative facts if possible, and from the conclusions endeavor to
establish the hypothesis as true for some contents. Usually, therefore, it would set
the status of the hypothesis back to P and initiate a new line of attack, or at its dis-
cretion abandon the effort and start an entirely new line of reasoning.

Priorities

A major worry with the scheme as described is that priorities are used to
schedule running of HOW-TO and SO-WHAT processes, not to express the im-
portance (or supposition value) of the hypotheses. The hypothesis being investi-
gated has no way to communicate how important it is to the program that operates
on it, so it is impossible to accumulate importance through time. A very significant
fact may lie ignored because it was given to a self-effacing process that had no way
of knowing it had been handed something out of the ordinary.

The obvious answer is to make a supposition value a field of the hypothesis,
like its status or contents—a hypothesis should be given a measure of its impor-
tance. This value may be used to compute execution priorities for jobs involving it.
This solution is used in some successful systems [Turner 1974].

Structuring Knowledge

One has a wide choice in how to structure the ‘‘theory’’ of a complex prob-
lem in terms of HYPER primitives, predicates, arguments, and HOW-TO and SO-
WHAT processes. The set of HOW-TO and SO-WHAT processes specify the com-
plete theory of the tasks to be performed; HYPER encourages one to consider the
interrelations between widely separated and distinct-sounding facts and conjec-
tures about a problem, and the structure it imposes on a problem is minimal.

Since HOW-TO and SO-WHAT processes make explicit references to one
another via the primitives, they are not ““‘modular’’ in the sense that they can easily
be plugged in and unplugged. If HOW-TO and SO-WHAT processes are invoked
by patterns, instead of by names, some of the edge is taken off this criticism. Re-
moving a primitive from a program could modify drastically the avenues of activa-
tion, and the consequences of such a modification are sometimes hard to foresee in
a program that logically could be running in parallel.

Writing a large and effective program for one domain may not help to write a
program for another domain. New problems of segmenting the theory into predi-
cates, and quantifying their interactions via the primitives, setting up a priority

Sec. 12.5 Active Knowledge 433

IPR2022-00092 - LGE
Ex. 1015 - Page 445

434

structure, and so forth will occur in the new domain, and it seems quite likely that
little more than basic utility programs will carry over between domains.

12.1

12.2

12.3

12.4
12.5
12.6

12.7
12.8

12.9
12.10

12.11

12.12

12.13

12.14

EXERCISES

In the production system example, write a production that specifies that blue re-
gions are sky using the opponents color notation. How would you now deal with
blue regions that are lakes (a) in the existing color-only system; (b) in a system
which has surface orientation information?

This theorem was posed as a challenge for a clausal automatic theorem prover
[Henschen et al. 1980]. It is obviously true: what problems does it present?

{[@X)) (Px) == P))]
= [[Bx0W)) = ¥ PHEN]) <=
(@) ()0 x) = ()]
= [[(Bx)P)] = [(W)QOUNIN

Prove that the operator of Eq.(12.18) takes probability vectors into probability vec-
tors, thus deriving the reason for Eq.(12.19).

Verify (12.23).
How do the ¢; of (12.18) affect the labeling? What is their semantics?

If events X and Y always co-occur, then p(X, ¥) = p(X) = p(Y). What is the
correlation in this case? If Xand Y never co-occur, what values of p (X) and p(Y)
produce a minimum correlation? If X and Y are independent, how is p (X, Y¥) re-
lated to p (X) and p (¥)? What is the value of the correlation of independent X and
n

Complete Table 12.3.

Use only the labels of Fig. 12.9b and c to compute covariances in the- manner of
Table 12.3. What do you conclude?

Show that Eq.(12.29) preserves the important properties of the weight vectors.

Think of some rival normalization schemes to Eq.(12.29) and describe their pro-
perties.

Implement the linear and nonlinear operators of Section 12.4.3 and 12.4.4 and in-
vestigate their properties. Include your ideas from Exercise 12.10.

Show a case that the nonlinear operator of Eq.(12.29) assigns nonzero weights to
maximally incompatible labels (those with r; = —1).

How can a linear programming relaxation such as the one outlined in sec. 12.4.5
cope with faces or edges of the feasible solution solid that are normal to the prefer-
ence direction, yielding several solutions of equal preference?

In Fig. 12.11, what (P, Q) solution is optimal if the preference vector is (1,4)?
“,1? (=1,171,-1)?

Ch. 12 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 446

References

REFERENCES

AIKINS, J. S. “‘Prototypes and production rules: a knowledge representation for computer consulta-
tions.”” Ph.D. dissertation, Computer Science Dept., Stanford Univ., 1980.

Bascsy, R. and A. K. JosHi. **A partially ordered world model and natural outdoor scenes.” In CVS,
1978.

Barrow, H. G. and J. M. TENENBAUM. ““MSYS: a system for reasoning about scenes.”” Technical Note
121, Al Center, SRI International, March 1976.

BracHMAN, R. J. **On the epistemological status of semantic networks.” In Associative Networks:
Representation and Use of Knowledge by Computers, N. V. Findler (Ed.). New York: Academic
Press, 1979, 3-50.

BrowN, C. M. ““The HYPER system.”” DAI Working Paper 9, Dept. of Artificial Intelligence, Univ.
Edinburgh, July 1975.

BucHANAN, B. G. and E. A. FEIGENBAUM. “DENDRAL and meta-DENDRAL: their applications di-
mensions.”” Artificial Intelligence 11,2, 1978, 5-24.

BucHANAN, B. G. and T. M. MitcHELL. ‘‘Model-directed learning of production rules.” In Parrern
Directed Inference Systems, D. A. Waterman and F. Hayes-Roth (Eds.). New York: Academic
Press, 1978.

CoLLINs, A. “‘Fragments of a theory of human plausible reasoning.” Theoretical Issues in Natural
Language Processing-2, Univ. Illinois at Urbana-Champaign, July 1978, 194-201.

Davis, R. and J. KING. “‘An overview of production systems.”” AIM-271, Stanford Al Lab, October
1975.

Davis, L. S. and A. ROSENFELD. “*Applications of relaxation labelling 2. Spring-loaded template match-
ing.” Technical Report 440, Computer Science Center, Univ. Maryland, 1976,

DEeLIYANNI, A. and R. A. KowaLsKI. “*Logic and semanatic networks.”” Comm. ACM 22, 3, March
1979, 184-192.

ERrRMAN, L. D. and V. R. LESSER. **A multi-level organization for problem solving using many, diverse,
cooperating sources of knowledge.” Proc., 4th IICAI, September 1975, 483-490.

FeLDMaAN, J. A, and Y. YAKIMOVSKY. “‘Decision theory and artificial intelligence: 1. A semantics-based
region analyser.”” Artificial Intelligence 3, 4, 1974, 349-371.

Fikes, R. E. ““*Knowledge representation in automatic planning systems.”” In Perspectives on Computer
Science, A. Jones (Ed). New York: Academic Press, 1977.

Fikes, R. E. and N. J. NiLsson. ““STRIPS: a new approach to the application of theorem proving to
problem solving.”” Ariificial Intelligence 2, 3/4, 1971, 189-208.

FrEUDER, E. C. *“A computer system for visual recognition using active knowledge.” Ph.D. disserta-
tion, MIT, 1975.

FrEUDER, E. C. “‘Synthesizing constraint expressions.” Comm. ACM 21, 11, November 1978,
958-965.

GARFINKEL, R. S. and G. L. NEMHAUSER. Integer Programming. New York: Wiley, 1972,

Gomory, R. E. “*An algorithm for integer solutions to linear programs.” Bull. American Mathematical
Society 64, 1968, 275-278.

HaraLick, R. M. ““The characterization of binary relation homomorphisms.” [nternational J. General
Systems 4, 1978, 113-121.

HARrALICK, R, M. and J. S. KARTUS. ‘‘ Arrangements, homomorphisms, and discrete relaxation.” IEEE
Trans. SMC 8, 8, August 1978, 600-612.

HaraLick, R. M. and L. G. SHAPIRO. “‘The consistent labeling problem: Part 1. /EEE Trans. PAMI I,
2, April 1979, 173-184.

435

IPR2022-00092 - LGE
Ex. 1015 - Page 447

436

HARALICK, R. M., L. 8. DAvis, and A. RoSENFELD. *‘Reduction operations for constraint satisfaction.’”
Information Sciences 14, 1978, 199-219.

HavEs, P.J. ““In defense of logic.”” Proc., 5th IJCAI, August 1977, 559-565.

Havgs, P. J. “‘Naive physics: ontology for liquids.” Working paper, Institute for Semantic and Cogni-
tive Studies, Geneva, 1978a.

HAYEs, P. J. ““The naive physics manifesto.”” Working paper, Institute for Semantic and Cognitive Stu-
dies, Geneva, 1978b.

HAYES, P. J. ““The logic of frames.” The Frame Reader. Berlin: DeGruyter, in press, 1981.
HEnDRIX, G. G. “*Encoding knowledge in partitioned networks.”’ In Associative Networks: Representa-

tion and Use of Knowledge by Computers, N. V. Findler (Ed.). New York: Academic Press, 1979,
51-92.

HENnscHEN, L., E. Lusk, R. OVERBEEK, B. SMiTH, R. VEROFF, S. WINKER, and L. Wos. *‘Challenge
Problem 1.”” SIGART Newsletter 72, July 1980, 30-31.

HERBRAND, J. ‘*‘Recherches sur la théorie de la démonstration.”” Travaux de la Societe des Sciences et des
Lettres de Varsovie, Classe Ill, Sciences Mathematiques et Physiques, 33, 1930.

HewiTT, C. “‘Description and theoretical analysis (using schemata) of PLANNER” (Ph.D. disserta-
tion). AI-TR-258, Al Lab, MIT, 1972.

Hinton, G. E. “‘Relaxation and its role in vision.”” Ph.D. dissertation, Univ. Edinburgh, December
1979.

HumMEL, R. A. and S. W. ZUCKER. *‘On the foundations of relaxation labelling processes.”” TR-80-7,
Computer Vision and Graphics Lab, Dept. of Electrical Engineering, McGill Univ., July 1980.

KowaLskl, R. A. ““Predicate logic as a programming language.”” Information Processing 74. Amsterdam:
North-Holland, 1974, 569-574.

KowaLskl, R. A. Logic for Problem Solving. New York: ElsevierNorth-Holland (Al Series), 1979.

LiNDsAY, R. K., B. G. BUCHANAN, E. A. FEIGENBAUM, and J. LEDERBERG. Applications of Artificial Intelli-
gence to Chemistry: The DENDRAL Project. New York: McGraw-Hill, 1980.

LoVvELAND, D. ““A linear format for resolution.”” Proc., IRIA 1968 Symp. on Automatic Demonstra-
tion, Versailles, France. New York: Springer-Verlag, 1970.

LOVELAND, D. Automated Theorem Proving: A Logical Basis. Amsterdam: North-Holland, 1978.

McCARTHY, J. ““Circumscription induction—a way of jumping to conclusions.” Unpublished report,
Stanford Al Lab, 1978.

McCaRrTHY, J. and P. J. HAYES. *‘Some philosophical problems from the standpoint of artificial intelli-
gence.” In M4, 1969.

McDERMOTT, D. ““The PROLOG phenomenon.” SIGART Newsletter 72, July 1980, 16-20.
MENDELSON, E. Introduction to Mathematical Logic. Princeton, NJ: D. Van Nostrand, 1964.
Minsky, M. L. ““A framework for representing knowledge.”” In PCV, 1975.

NEWELL, A., J. SHAW, and H. SIMON. ““Empirical explorations of the logic theory machine.”” In Comput-
ers and Thought, E. Feigenbaum and J. Feldman (Eds.). New York: McGraw-Hill, 1963.

NiLssoN, N. I. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.
NILSSON, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

REITER, R. **On reasoning by default.”” Theoretical Issues in Natural Language Processing-2, Univ. Illi-
nois at Urbana-Champaign, July 1978, 210-218.

ROBINSON, J. A. *‘A machine-oriented logic based on the resolution principle.”” J. ACM 12, 1, January
1965, 23-41.

ROSENFELD, A., R. A, HUMMEL and S. W. ZUCKER. “‘Scene labelling by relaxation operations.” /EEE
Trans. SMC 6, 1976, 420.

Ch. 712 Inference

IPR2022-00092 - LGE
Ex. 1015 - Page 448

RYCHNER, M. ““An instructable production system: basic design issues.”” In Pattern Directed Inference
Systems, D. A. Waterman and F. Hayes-Roth (Eds.). New York: Academic Press, 1978.

SHORTLIFFE, E. H. Computer-Based Medical Consultations: MYCIN. New York: American Elsevier,
1976.

Sroan, K. R. “World model driven recognition of natural scenes.” Ph.D. dissertation, Moore School
of Electrical Engineering, Univ. Pennsylvania, June 1977.

Sroan, K. R. and R. Bascsy. “World model driven recognition of outdoor scenes.”” TR40, Computer
Science Dept., Univ. Rochester, September 1979.

SussMaN, G.J. and D. MCDERMOTT. ““Why conniving is better than planning.”” Al Memo 255, Al Lab,
MIT, 1972.

TURNER, K. J. ““Computer perception of curved objects using a television camera.” Ph.D. dissertation,
School of Artificial Intelligence, Univ. Edinburgh, 1974,

WAaRREN, H. D., L. PEREIRA, and F. PEREIRA. “PROLOG: The language and its implementation com-
pared with LISP.”” Proc., Symp. on Artificial Intelligence and Programming Languages,
SIGPLAN/SIGART, 1977, SIGPLAN Notices 12, 8, August 1977, 109-115.

WAaTERMAN, D. A. and F. HaYEs-RoTH (Eds.). Pattern-Directed Inference Systems. New York: Academic
Press, 1978.

WinoGraD, T. ““Extended inference modes in reasoning by computer systems.”” Proc., Conf. on Induc-
tive Logic, Oxford Univ., August 1978.

ZADEH, L. “‘Fuzzy sets.” Information and Control 8, 1965, 338-353.

ZUCKER, S. W. “Relaxation labelling and the reduction of local ambiguities.” Technical Report 451,
Computer Science Dept., Univ. Maryland, 1976.

437

References

IPR2022-00092 - LGE
Ex. 1015 - Page 449

Goal Achievement 13

438

Goal Achievement and Vision

Goals and plans are important for visual processing.
Some skilled vision actually is like problem solving.
Vision for information gathering can be part of a planned sequence of actions.

Planning can be a useful and efficient way to guide many visual computations,
even those that are not meant to imply ‘‘conscious’’ cognitive activity.

The artificial intelligence activity often called planning traditionally has dealt

with “‘robots’’ (real or modeled) performing actions in the real world. Planning has
several aspects.

Avoid nasty ‘‘subgoal interactions’’ such as getting painted into a corner.

Find the plan with optimal properties (least risk, least cost, maximized ‘‘good-
ness’” of some variety). '

Derive a sequence of steps that will achieve the goal from the starting situation.

Remember effective action sequences so that they may be applied in new situa-
tions.

Apply planning techniques to giving advice, presumably by simulating the
advisee’s actions and making the next step from the point they left off.

Recover from errors or changes in conditions that occur in the middle of a plan.

Traditional planning research has not concentrated on plans with information

gathering steps, such as vision. The main interest in planning research has been
the expensive and sometimes irrevocable nature of actions in the world. Our goal is
to give a flavor of the issues that are pursued in much more detail in the planning

IPR2022-00092 - LGE
Ex. 1015 - Page 450

literature [Nilsson 1980; Tate 1977; Fahlman 1974; Fikes and Nilsson 1971; Fikes
etal. 1972a; 1972b; Warren 1974; Sacerdoti 1974; 1977; Sussman 1975].

Planning concerns an active agent and its interaction with the world. This
conception does not fit with the idea of vision as a passive activity. However, one
claim of this book is that much of vision is a constructive, active, goal-oriented
process, replete with uncertainty. Then a model of vision as a sequence of deci-
sions punctuated by more or less costly information gathering steps becomes more
compelling. Vision often is a sequential (recursive, cyclical) process of alternating
information gathering and decision making. This paradigm is quite common in
computer vision [Shirai 1975; Ballard 1978; Mackworth 1978; Ambler et al. 1975].
However, the formalization of the process in terms of minimizing cost or maximiz-
ing utility is not so common [Feldman and Sproull 1977; Ballard 1978; Garvey
1976]. This section examines the paradigms of planning, evaluating plans with
costs and utilities, and how plans may be applied to vision processing.

13.1 SYMBOLIC PLANNING

Sec. 13.1

In artificial intelligence, planning is usually a form of problem-solving activity in-
volving a formal ‘‘simulation’ of a physical world. (Planning, theorem proving,
and state-space problem solving are all closely related.) There is an agent (the
“robot’’) who can perform actions that transform the state of the simulated world.
The robot planner is confronted with an initial world state and a set of goals to be
achieved. Planning explores world states resulting from actions, and tries to find a
sequence of actions that achieves the goals. The states can be arranged in a tree
with initial state as the root, and branches resulting from applying different actions
in a state. Planning is a search through this tree, resulting in a path or sequence of
actions, from the root to a state in which the goals are achieved. Usually there is a
metric over action sequences; the simplest is that there be as few actions as possi-
ble. More generally (Section 13.2), actions may be assigned some cost which the
planner should minimize.

13.1.1 Representing the World

This section illustrates planning briefly with a classical example —block stacking. In
one simple form there are three blocks initially stacked as shown on the left in Fig.
13.1, to be stacked as shown.

This task may be ‘‘formalized’’ [Bundy 1978] using only the symbolic objects
Floor, 4, B, and C. (A formalization suitable for a real automated planner must be
much more careful about details than we shall be). Assume that only a single block
can be picked up at a time. Necessary predicates are CLEAR (X) which is true if a
block may be put directly on X and which must be true before X may be picked up,
and ON(X, ¥), which is true if X is resting directly on Y. Let us stipulate that the
Floor is always CLEAR, but otherwise if ON(X, Y) is true, ¥Yis not CLEAR. Then
the initial situation in Fig. 13.1 is characterized by the following assertions.

Symbolic Planning 439

IPR2022-00092 - LGE
Ex. 1015 - Page 451

