266

\

A
@

m Fig. 9.1 A volume and the faces of a

boundary representation.

\
i

opinion (Fig. 9.2). In short, any single definition of face is likely to be inadequate
for some important application.

The availability of explicit representations of edges, faces, and vertices makes
boundary representations quite useful in computer vision and graphics. The com-
putational advantages of polyhedral surfaces are so great that they are often pressed
into service as approximate representations of nonpolyhedra (Fig. 9.3).

An influential system for using face-based representations for planar po-
lyhedral objects is the ‘‘winged edge’’ representation [Baumgart 1972]. Included in
the system is an editor for creating complex polyhedral objects (such as that of Fig.
9.3) interactively. The system uses rules for construction based on the theorem of
Euler that if Vis the number of vertices in a polyhedron, E the number of edges,
and F the number of faces, then ¥ — E + F = 2. In fact, the formula can be ex-
tended to deal with non-simply connected bodies. The extended relation is
V — E+ F= 2(B — H), with B being the number of bodies and H being the

Fig. 9.2 What are the faces?

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 280

CANINE HEART

PSEUDD-SYSTOLE | 1 ¢ PSEUDG-DIASTOLE

Fig. 9.3 A polyhedral approximation to a portion of a canine heart at systole and
diastole. Both exterjor (coarse grid) and interior surfaces (fine grid) are shown,

number of holes, or “‘handles,” each resulting from a hole through a body [Laka-
tos 1976]. Baumgart’s system uses these rules to oversee and check certain validity
conditions on the constructions made by the editor.

The “‘winged edge’’ polyhedron representation achieves many desiderata for
boundary representations in an elegant way. This representation is presented
below to give a flavor of the features that have been traditionally found useful.
Given as primitives the vertices, edges, faces, and polyhedra themselves, and
given various relations between these primitives, one is naturally thinks of a record
and pointer (relational) structure in which the pointers capture the binary relations
and the records represent primitives and contain data about their locations or
parameters.

In the winged edge representation, there are data structure records, or nodes,
which contain fields holding data or links (pointers) to other nodes. An example
using this structure to describe a tetrahedron is shown in Fig. 9.4. There are four
kinds of nodes: vertices, edges, faces, and bodies. To allow convenient access to
these nodes, they are arranged in a circular doubly linked list. The body nodes are
actually the heads of circular structures for the faces, edges, and vertices of the
body. Each face points to one of its perimeter edges, and each vertex points to one
of the edges impinging on it. Each edge node has links to the faces on each side of
it, and the vertices at either end.

Figure 9.4 shows only the last-mentioned links associated with each edge
node. The reader may notice the similarity of this data structure with the data
structure for region merging in Section 5.4. They are topologically equivalent.
Each edge also has associated four links which give the name ‘‘winged edge’’ to the
representation. These links specify neighboring edges in order around the two
faces which are associated with the edge. The complete link set for an edge is
shown in Fig. 9.5, together with the link information for bodies, vertices, and
faces. To allow unambiguous traversal around faces, and to preserve the notion of

Sec. 9.2 Surface Representations 267

IPR2022-00092 - LGE
Ex. 1015 - Page 281

268

O vertex
O edge
A

face

— link

Fig. 9.4 A subset of edge links for a
tetrahedron using the ““winged edge”
representation.

interior and exterior of a polyhedron, a preferential ordering of vertices and lines is
picked (counterclockwise, say, as seen from outside the polyhedron),

Data fields in each vertex allow storage of three-dimensional world coordi-
nates, and also of three-dimensional perspective coordinates for display. Each
node has fields specifying its node type, hidden line elimination information, and
other general information. Faces have fields for surface normal vector informa-
tion, surface reflectance, and color characteristics. Body nodes carry links to relate
them to a tree structure of bodies in a scene, allowing for hierarchical arrangement
of subbodies into compiex bodies. Thus body node data describe the scene struc-
ture; face node data describe surface characteristics; edge node data give the topo-
logical information needed to relate faces, edges, and vertices; and vertex node
data describe the three-dimensional vertex location.

This rich and redundant structure lends itself to efficient calculation of useful
functions involving these bodies. For instance, one can easily follow pointers to
extract the list of points around a face, faces around a point, or lines around a face.
Winged edges are not a universal boundary representation for polyhedra, but they
do give an idea of the components to a representation that are likely to be useful.
Such a representation can be made efficient for accessing all faces, edges, or ver-
tices; for accessing vertex or edge perimeters; for polyhedron building; and for
splitting edges and faces (useful in construction and hidden-line picture produc-
tion, for instance).

9.2.2 Surfaces Based on Splines

The natural extension of polyhedral surfaces is to allow the surfaces to be curved.
However, with an arbitrary number of edges for the surface, the interpolation of

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 282

Boundary Representation Node Accessing Functions

1. To enter and traverse Face ring of a body:
NextFace, PreviousFace: Body or Face + Face

2. To enter and traverse Edge ring of a body:
NextEdge, PreviousEdge: Body or Edge > Edge
3. Toenter and traverse Vertex ring of a body:
NextVert, PreviousVert: Body or Vertex —+ Vertex

o 5 N 4. First Edge of a Face:
FirstEdge: Face - Edge

PCW(£) 5. FirstEdge of a Vertex:
FirstEdge: Vertex — Edge

NCCW(£} / PVert(£)
6. Faces of an Edge: [see diagram in (a)]
{ &E_dge PFace(£) Nfext) Face, P(revious)Fam‘e: Ed?e - Face
Vertices of an Edge: [see diagram in (a)]
N{extVert, P(revious)Vert: Edge — Vertex

NFace(E)

\ NVert(E) 7 8. Neighboring Wing Edges of an Edge: [see diagram in (a)]
% 7 NCW, NCCW: Edge -+ Edge (NFace Edge Clockwise,
NFace Edge Counterclockwise)
PCW, PCCW: Edge— Edge (PFace Edge Clockwise,
NCW(E) PCCW(E) PFace Edge Counterclockwise
(a) (b)

Fig. 9.5 (a) Node accessing functions. (b) Semantics of winged edge functions.

interior face points becomes impractically complex. For that reason, the number of
edges for a curved face is usually restricted to three or four.

A general technique for approximating surfaces with four-sided surface
patches is that of Coons [Coons 1974]. Coons specifies the four sides of the patch
with polynomials. These polynomials are used to interpolate interior points.
Although this is appropriate for synthesis, it is not so easy to use for analysis. This
is because of the difficulty of registering the patch edges with image data. A given
surface will admit to many patch decompositions.

An attractive representation for patches is splines (Fig. 9.6). In general,
two-dimensional spline interpolation is complex: For two parameters u and vinter-
polate with

x(u, v) =3 % VB, v) 9.1)
A
similar to Eq. (8.4). However, for certain applications a further simplification can

be made. In a manner analogous to (8.9) define a grid of knot points v
corresponding to x;; and related by

x; = Mvy 9.2)

Now rather than interpolating in two dimensions simultaneously, interpolate in
one direction, say ¢, to obtain

x,'j(t) = [t3 tz t 1][C] [vi—l.jg' vi'j(]’ vH"i’jD’ V,'.Q.Q'j[)]T (93)
for each value of j. Now compute v,-j(t) by solving

x;; (1) = Mv; (1) (9.4)

Sec. 9.2 Surface Representations 269

IPR2022-00092 - LGE
Ex. 1015 - Page 283

270

Fig. 9.6 Using spline curves to model
the surface of an object: a portion of a
human spinal column taken from CAT
data.

for each value of 1. Finally, interpolate in the other direction and solve:
XU(S, t) = [53 52 s 1][C][V,'71'J'(f), V,‘Jj(f), V,‘Jr]‘j(f), Vp+2'j(f)] (95)

This is the basis for the spline filtering algorithm discussed in Section 3.2.3.
Some advantages of spline surfaces for vision are the following.

1. The spline representation is economical: the space curves are represented as a
sparse set of knot points from which the underlying curves can be interpolated.

2. It is easy to define splines interactively by giving the knot points; reference
representations may be built up easily.

3. [Itis often useful to search the image in a direction perpendicular to the model
reference surface. This direction is a simple function of the local knot points.

9.2.3 Surfaces That Are Functions on the Sphere

Some surfaces can be expressed as functions on the “‘Gaussian sphere.”” (the dis-
tance from the origin to a point on the surface is a function of the direction of the
point, or of its longitude and latitude if it were radially projected on a sphere with
the center at the origin.) This class of surfaces, although restricted, is useful in
some application areas [Schudy and Ballard 1978, 1979]. This section explores
briefly two schemes for representation of these surfaces. The first specifies expli-
citly the distance of the surface from the origin for a set of vector directions from
the origin. The second is akin to Fourier descriptors; an economically specified set
of coefficients characterizes the surface with greater accuracy as the number of
coefficients increases.

Direction-Magnitude Sets

One approximation to a spherical function is to specify a number of three-
dimensional direction vectors from the origin and for each a magnitude. This is
equivalent to specifying a set of (@, ¢, p) points in a spherical coordinate system
(Appendix 1). These points are on the surface to be represented; connecting them
yields an approximation.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 284

It is often convenient to represent directions as points on the unit (Gaussian)
sphere centered on the origin. The points may be connected by straight lines to
form a polyhedron with triangular, hexagonal or rhomboidal faces. Moving the
points on the sphere out (or in) by their associated magnitude distorts this po-
lyhedron, moving its vertices radically out or in.

The spherical function determines the distance of face vertices from the ori-
gin. Resolution at the surface increases with the number of faces. An approxi-
mately isotropic distribution of directions over the surface may be obtained by
placing the face vertices (directions) in accordance with ‘‘geodesic dome”’-like cal-
culations which make the faces approximately equilateral triangles [Clinton 1971].

Although the geodesic tesselation of the sphere’s surface is more complex
than a straightforward (latitude and longitude, say) division, its pleasant properties
of isotropy and display [Brown 1979a; 1979b; Schudy and Ballard 1978] sometimes
recommend it. Some example shapes indicating the range of representable sur-
faces are given in Fig. 9.7. Methods for tesselating the sphere are given in Appen-
dix 1.

Spherical Harmonic Surfaces

In two dimensions, Fourier coefficients can give approximations to certain
curved boundaries (Section 8.3.4). Analogously in three dimensions, a set of
orthogonal functions may be used to express a closed boundary as a set of
coefficients when the boundary is a function on the sphere. One such decomposi-
tion is spherical harmonics. Low order coefficients capture gross shape characteris-
tics; higher order coefficients represent surface shape variations of higher spatial
frequency. The function with m = 0 is a sphere, the three with m = 1 represent
translation about the origin, the five with m = 2 are similar to prolate and oblate
spheroids, and so forth, the lobedness of the surfaces increasing with m. A sample
three dimensional shape and its ‘‘description’’ is shown in Fig. 9.8.

Spherical harmonics are analogs on the sphere of Fourier functions on the
plane; like Fourier functions, they are smooth and continuous to every order. They
may be parameterized by two numbers, m and r; thus they are a doubly infinite set
of functions which are continuous, orthogonal, single-valued, and complete on the

Fig. 9.7 Sample surfaces described by
some 320 triangular facets in a geodesic
tesselation.

Sec. 9.2 Surface Representations 271

IPR2022-00092 - LGE
Ex. 1015 - Page 285

272

P,

-
S
N
S
Y
¥
~

h
N

oA

&
-
3
-
-,
=~
123
=
R
1

NN

i
IR

o 7
AV
1]
]

DEGREE S SEMIRXES 1.1.2

Fig. 9.8 A spherical harmonic function description of an ellipsoid. Coefficients
are displayed on the right as grey levels in the matrix format

oo
Up1 Vil
uyn o2 Y12 Y22
12
L)

sphere. In combination, the harmonics can thus produce all ‘‘well-behaved”
spherical functions.

The spherical harmonic functions U, (#,¢) and V,,, (8, ¢) are defined in

polar coordinates by:
U, (0, ¢) = cos (n8) sin” () P (m, n, cos(s)) (9.6)
V,n @, ¢) = sin (n8) sin” () P (m, n, cos(¢)) 9.7

withm=0,1,2, .., M; n = 0,1, ..., m. Here P(m, n, x) is the nth derivative of
the mth Legendre polynomial as a function of x. To represent an arbitrary shape,
let the radius R in polar coordinates be a linear sum of these spherical harmonics:

RO, ¢) =3 3 4, Ui ®, 8) + By V6, $) (9.8)

m=0 n=0

Any continuous surface on the sphere may be represented by a set of these real
constants; reasonable approximations to heart volumes are obtained with m < 5
[Schudy and Ballard 1979].

Figure 9.9 shows a few simple combinations of functions of low values of
(m, n). The sphere, or (0, 0) surface, is added to the more complex ones to ensure
positive volumes and drawable surfaces.

Spherical harmonics have the following attractive properties.

1. They are orthogonal on the sphere under the inner product;

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 286

\\ - SOME SPHERICAL

% HARMONIC FUNCTIONS %/

Fig. 9.9 Simple combinations of functions.

(u, v) = fuv sing do d¢

2. The functions are arranged in increasing order of spatial complexity.

3. The whole set is complete; any twice-differentiable function on the sphere can
be approximated arbitrarily closely.

Spherical harmonics can provide compact, nonredundant descriptions of sur-
faces that are useful for analysis of shape, but are less useful for synthesis. The
principal disadvantages are that the primitive functions are not necessarily related
to the desired final shape in an intuitive way, and changing a single coefficient
affects the entire resulting surface.

An example of the use of spherical harmonics as a volume representation is
the representation of heart volume [Schudy and Ballard 1978, 1979]. In extracting
a volume associated with the heart from ultrasound data, a large mass of data is in-
volved. The data is originally in the form of echo measurements taken in a set of
two-dimensional planes through the heart. The task is to choose a surface sur-
rounding the heart volume of interest by optimization techniques that will fit three
dimensional time-varying data. The optimization involved is to find the best
coefficients for the spherical harmonics that define the surface. The goodness of fit
of a surface is measured by how well it matches the edge of the volume as it appears
in the data slices. To extend spherical harmonics to time-varying periodic data, let
the radius R in polar coordinates be a linear sum of these spherical harmonics:

RO, 6.0 =3 3 AU @, ¢) + By Vin®, 8) 09

m=0 n=0

Sec. 9.2 Surface Representations 273

IPR2022-00092 - LGE
Ex. 1015 - Page 287

The functions A4 (¢) and B (¢) are given by Fourier time series:

I
Ay () = @y + 2 ayicos Qmt/7) + by, sin Qut/7) (9.10)
i=1

/
Bnm(t) = by T 2 Cnpi COS Qmi/7) + i i 277 t/7) (9.11)
i=1
where ¢is time, the a,,,;, Byunis Coni> a0d d,,,; are arbitrary real constants, and 7 the
period. Any continuous periodically moving surface on the sphere may be
represented by some selection of these real constants; in the cardiac application,
reasonable approximations to the temporal behavior are obtained with ¢ < 3. Fig-
ure 9.10 shows three stages from a moving-harmonic-surface representation of the
heart in early systole. The atria, at the top, contract and pump blood into the ven-
tricles below, after which there is a ventricular contraction.

9.3 GENERALIZED CYLINDER REPRESENTATIONS

274

The volume of many biological and manufactured objects is naturally described as
the ‘“‘swept volume” of a two-dimensional set moved along some three-space
curve. Figure 9.11 shows a ‘“‘translational sweep’’ wherein a solid is represented as
the volume swept by a two-dimensional set when it is translated along a line. A
““rotational sweep’’ is similarly defined by rotating the two-dimensional set around
an axis. In “three-dimensional sweeps,’’ volumes are swept. In a ‘“‘general’’ sweep
scheme, the two-dimensional set or volume is swept along an arbitrary space
curve, and the set may vary parametrically along the curve [Binford 1971; Soroka
and Bajcsy 1976; Soroka 1979a; 1979b; Shani 1980]. General sweeps are quite a po-
pular representation in computer vision, where they go by the name generalized
cylinders (sometimes “‘generalized cones™).

Fig. 9.10 Three stages from a moving har-
monic surface (see text and color insert).

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 288

Sweep

Fig. 9.11 A translational sweep.

A generalized cylinder (GC) s a solid whose axis is a 3-D space curve (Fig.
9.12a). At any point on the axis a closed cross section is defined. A usual restriction
is that the axis be normal to the cross section. Usually it is easiest to think of an axis
space curve and a cross section point set function, both parameterized by arc
length along the axis curve. For any solid, there are infinitely many pairs of axis
and cross section functions that can define it.

Generalized cylinders present certain technical subtleties in their definition.
For instance, can it be determined whether any two cross sections intersect, as they
would if the axis of a circular cylinder were sharply bent (Fig. 9.12b) ? If the solid is
defined as the volume swept by the cross section, there is no conceptual or compu-
tational problem. A problem might occur when computing the surface of such an
object. If the surface is expressed in terms of the axis and cross-section functions
(as below), the domain of objects must be limited so that the boundary formula
indeed gives only points on the boundary.

Generalized cylinders are intuitive and appealing. Let us grant that ““patho-
logical’” cases are barred, so that relatively simple mathematics is adequate for
representing them. There are still technical decisions to make about the represen-
tation. The axis curve presents no difficulties, but a usable representation for the
cross-section set is often not so straightforward. The main problem is to choose a
usable coordinate system in which to express the cross section.

9.3.1 Generalized Cylinder Coordinate Systems and Properties

Two mathematical functions defining axis and cross section for each point define a
unique solid with the “‘sweeping”” semantics described above. In a fixed Cartesian
coordinate system x, y, z, the axis may be represented parametrically as a function
of arc length s:

a(s) = (x(s), ¥y(s), z(s)) (9.12)

It is convenient to have a local coordinate system defined with origin at each
point of a (s). It is in this coordinate system that the cross section is defined. This
system may change in orientation as the axis winds through space, or it may be
most natural for it not to be tied to the local behavior of the axis. For instance, im-
agine tying a knot in a solid rubber bar of square cross section, The cross section

Sec. 9.3 Generalized Cylinder Representations 273

IPR2022-00092 - LGE
Ex. 1015 - Page 289

276

7)

(a) (b)

Fig. 9.12 (a) A generalized cylinder and some cross-sectional coordinate sys-
tems. (b) A possibly ‘‘pathological’’ situation. Cross sections may be simply
described as circles centered on the axis, but then their intersection makes volume
calculations (for instance) less straightforward.

will stay approximately a square, and (this is the point) will remain approximately
fixed in a coordinate system that twists and turns through space with the axis of the
bar. On the other hand, imagine bolt threads. They can be described by a single
cross section that stays fixed in a coordinate system that rotates as it moves along
the straight axis of the bolt. There is no a priori reason to suppose that such a useful
local coordinate system should twist along the GC axis.

A coordinate system that mirrors the local behavior of the GC axis space
curve is the “‘Frenet frame,’” defined at each point on the GC axis. This frame pro-
vides much information about the GC-axis behavior. The GC axis point forms the
origin, and the three orthogonal directions are given by the vectors (£, v, {),
where

¢ = unit vector tangent axis

unit vector direction of center of curvature of axis

v
I

normal curve

unit vector direction of center of torsion of axis

g

Consider the curve to be produced by a point moving at constant speed through
space; the distance the point travels is the parameter of the space curve [O’Neill
1966]. Since ¢ is of constant length, its derivative measures the way the GC axis
turns in space. Its derivative £ ‘is orthogonal to ¢ and the length of £ ‘'measures the
curvature k of the axis at that point. The unit vector in the direction of £’is ».
Where the curvature is not zero, a binormal vector { orthogonal to ¢ and v is
defined. This binormal £ is used to define the torsion 7 of the curve. The vectors £,
v, ¢ obey Frenet’s formulae:

& =xv
v/ =—x§+ 7L (9.13)
t'=—1v

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 290

where
Kk =curvature = —p’ - £ =p - £’ (9.14)
T=torsion=vp»'-{=-v- (9.15)

The Frenet frame gives good information about the axis of the GC, but it has
certain problems. First, it is not well defined when the curvature of the GC axis is
zero. Second, it may not reflect known underlying physical principles that generate
the cross sections (as in the bolt thread example). A solution, adopted in [Agin
1972, Shani 1980], is to introduce an additional parameter that allows the cross
section to rotate about the local axis by an arbitrary amount. With this additional
degree of freedom comes an additional problem: How are successive cross sections
registered? Figure 9.13 shows two solutions in addition to the Frenet frame solu-
tion.

The cross sectional curve is usually defined to be in the »—{ plane, normal to
£, the local GC axis direction. The cross section may be described as a point set in
this plane, using inequalities expressed in the »—{ coordinate system. The cross
section boundary (outline curve) may be used instead, parameterized by another
parameter r. Let this curve be given by

cross section boundary = (x(r, 5), y(r, 5))

The dependence on s reflects the fact that the cross section shape may vary along
the GC axis. The expression above is in world coordinates, but should be moved to

2“4‘%@

(a) (b)

{c)

Fig. 9.13 (a) Local coordinates are the Frenet frame. Points A and B must correspond.
(b) Local coordinates are determined by the cross sectional shape. (c) Local coordinates are
determined by a heuristic transformation from world coordinates.

Sec. 9.3 Generalized Cylinder Representations 277

IPR2022-00092 - LGE
Ex. 1015 - Page 291

the local coordinates on the GC axis. A transformation of coordinates allows the
GC boundary to be expressed (if the GC is well behaved) as

B(r,s)=a(s) + x(r,s)w (s) + y(r, 5L (s) (9.16)

One of the advantages of the generalized cylinder representation is that it al-
lows many parameters of the solid to be easily calculated.

« In matching the GC to image data it is often necessary to search perpendicular
to a cross section. This direction is given from x(r, s), y (r, s) by ((dy/ds)v,
—(dx/ds){).

» The area of a cross section may be calculated from Eq. (8.16).

« The volume of a GC is given by the integral of: the area as a function of the axis
parameter multipled by the incremental path length of the GC axis, i.e.,

L
volume = f area(s) ds
0

9.3.2 Extracting Generalized Cylinders

Early work in biological form analysis provides an example of the process of fitting
a GC to real data and producing a description [Agin 1972]. One of the goals of this
work was to infer the stick figure skeleton of biological forms for use in matching
models also represented as skeletons. In Fig. 9.14 the process of inferring the axis
from the original stripe three-dimensional data is shown; the process iterates to-
ward a satisfactory fit, using only circular cross sections (a common constraint with
“generalized” cylinders). Figure 9.15 shows the data and the analysis of a complex

Fig. 9.14 Stages in extracting a
generalized cylinder description for a
circular cone. (a) Front view. (b) Initial
axis estimate. (c) Preliminary center and
axis estimate. (d) Cone with smoothed

D E radius function. (¢) Completed analysis.

278 Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 292

(a)

Fig. 9.15 (a) TV image of a doll. (b) Completed analysis of doll.

biological form. In real data, complexly interrelated GCs are hard to decompose
into satisfactory subparts. Without that, the ability to form a satisfactory articulated
skeleton is severely restricted.

In later work, GCs with spline-based axes and cross sections were used to
model organs of the human abdomen [Shani 1980]. Figure 9.16 shows a rendition
of a GC fit to a human kidney.

9.3.3 A Discrete Volumetric Version of the Skeleton

An approximate volume representation that can be quite useful is based on an arti-
culated wire frame skeleton along which spheres (not cross sections) are placed.

Fig. 9.16 Generalized cylinder
representation of two kidneys and a
spinal column. This coarse, nominal
model is refined during examination of
CAT data (see Fig. 9.6).

Sec. 9.3 Generalized Cylinder Representations 279

IPR2022-00092 - LGE
Ex. 1015 - Page 293

This representation has some of the flavor of an approximate sweep representa-
tion. An example of the use of such a representation and a figure are given in Sec-
tion 7.3.4. This representation was originally conceived for graphics applications
(the spheres look the same from any viewpoint) [Badler and Bajcsy 1978]. Colli-
sion detection is easy, and three-dimensional objects can be decomposed into
spheres automatically [O’Rourke and Badler 1979]. From the spheres, the skele-
ton may be derived, and so may the surface of the solid. This representation is
especially apt for many computer vision applications involving nonrigid bodies if
strict surface and volumetric accuracy is not necessary [Badler and O’Rourke
1979].

9.4 VOLUMETRIC REPRESENTATIONS

280

Most world objects are solids, although usually only their surfaces are visible. A
representation of the objects in terms of more primitive solids is often useful and
can have pleasant properties of terseness, validity, and sometimes ease of compu-
tation. The representations given here are presented in order of increasing general-
ity; constructive solid geometry includes cell decomposition, which in turn in-
cludes spatial occupancy arrays.

Algorithms for processing volume-based representations are often of a
different flavor than surface-based algorithms. We give some examples in Section
9.4.4. Objects represented volumetrically can be depicted on raster graphics de-
vices by a ‘‘ray-casting’’ approach in which a line of sight is constructed through
the viewing plane for a set of raster points. The surface of the solid at its intersec-
tion with the line of sight determines the value of the display at the raster point.
Ray casting can produce hidden-line and shaded displays; graphics is only one of its
applications (Section 9.4.4).

9.4.1 Spatial Occupancy

Figure 9.17 shows that three-dimensional spatial occupancy representations are
the three-dimensional equivalent of the two-dimensional spatial occupancy
representations of Chapter 8. Volumes are represented as a three-dimensional ar-
ray of cells which may be marked as filled with matter or not. Spatial occupancy ar-
rays can require much storage if resolution is high, since space requirements in-
crease as the cube of linear resolution. In low-resolution work with irregular ob-
jects, such as arise in computer-aided tomography, spatial occupancy arrays are
very common. It is sometimes useful to convert an exact representation into an ap-
proximate spatial occupancy representation. Slices or sections through objects may
be easily produced. The spatial occupancy array may be run-length encoded (in
one dimension), or coded as blocks of different sizes; such schemes are actually
cell-decomposition schemes (Section 9.4.2).

With the declining cost of computer memory, explicit spatial occupancy ar-
rays may become increasingly common. The improvement of hardware facilities
for parallel computation will encourage the development of parallel algorithms to
compute properties of solids from these representations.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 294

Fig. 9.17 A solid (the shape of a
human red blood cell) approximated by
a volume occupancy array.

9.4.2 Cell Decomposition

In cell decomposition, cells are more complex in shape but still ‘‘quasi-disjoint”
(do not share volumes), so the only combining operation is “‘glue” (Fig. 9.18).
Cells are usually restricted to have no holes (they are “‘simply connected’’). Cell
decompositions are not particularly concise; their construction (especially for
curved cells) is best left to programs. It seems difficult to convert other representa-
tions exactly into cell decompositions. Two useful cell decompositions are the
“oct-tree”” [Jackins and Tanimoto 1980] and the kd-tree [Bentley 1975]. They
both can be produced by recursive subdivision of volume; these schemes are the
three-dimensional analogs of pyramid data structures for two dimensional binary
images.

The quasi-disjointness of cell-decomposition and spatial-occupancy primi-
tives may be helpful in some algorithins. Mass properties (Section 9.4.4) may be
computed on the components and summed. It is possible to tell whether a solid is
connected and whether it has voids. Inhomogeneous objects (such as human ana-
tomy inside the thorax) can be represented easily with cell decomposition and spa-

|
= 7
7

Fig. 9.18 A volume and its cell decomposition.

Sec. 9.4 Volumetric Representations 281

IPR2022-00092 - LGE
Ex. 1015 - Page 295

282

tial occupancy. The CT number (transparency to x-rays) or a material code can be
kept in a cell instead of a single bit indication of “‘solid or space.”

9.4.3 Constructive Solid Geometry

Figure 9.19 shows one constructive solid geometry (CSG) scheme [Voelcker and
Requicha 1977; Boyse 1979]. Solids are represented as compositions, via set opera-
tions, of other solids which may have undergone rigid motions. At the lowest level
are primitive solids, which are bounded intersections of closed half-spaces defined
by some F(x, y, z) = 0, where Fis well-behaved (e.g., analytic). Usually, primi-
tives are entities such as arbitrarily scaled rectangular blocks, arbitrarily scaled
cylinders and cones, and spheres of arbitrary radius. They may be positioned arbi-
trarily in space.

Figure 9.20 shows a parameterized representation [Marr and Nishihara 1978;
Nishihara 1979] based on shapes (here cylinders) that might be extracted from an
image.

A CSG representation is an expression involving primitive solid and set
operators for combination and motion.

<CSGRep> = <primitive solid> |
MOVE < CSG Rep> BY <Motion Params> |
< CSG Rep> <Combine Op> <CSG Rep>

The combining operators are best taken to be regularized versions of set un-
ion, intersection, and difference (the complement is a possible operator, but it al-
lows unbounded solids from bounded primitives).

Regularity is a fundamental property of any set of points that models a solid.
In a given space, a set X is regular if X = kiX, where k and / denote the closure and
interior operators. Intuitively, a regular set has no isolated or dangling boundary
points. The regularization r of a set X is defined by rX = kiX. Regularization infor-
mally amounts to taking what is inside a set and covering that with a tight skin.
Regular sets are not closed under conventional set operations, but regularized

[Fig. 9.19 Constructive solid geometry
for the volume of Fig. 9.18,

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 296

cylinder

limb

1
J

quadruped biped bird

i D%E L

thick-limb COW human ostrich

:

thin-limb giraffe

Fr yuﬁﬂ% '

Fig. 9.20 A parameterized
constructive representation for animal
shapes.

AN o

il

operators do preserve regularity. Regularized operators are defined by
X <OP> * Y= r(X <OP> 7Y)

Regularity and regularized set operators provide a natural formalization of the
dimension-preserving property exhibited by many geometric algorithms, thus ob-
viating the need to enumerate many annoying ‘‘special cases.”” Figure 9.21 illus-
trates conventional versus regularized intersection of two sets that are regular in
the plane.

If the primitives are unbounded, checking for boundedness of an object can
be difficult. If they are bounded, any CSG representation is a valid volume
representation. CSG can be inefficient for some geometric applications, such as a
line drawing display. (Converting the CSG representation to a boundary represen-
tation is the one way to proceed; see Section 9.4.4.)

ANB AN*B

Fig. 9.21 Conventional ({7) and regularized ({7) *) polygon intersection.

Sec. 9.4 Volumetric Representations 283

IPR2022-00092 - LGE
Ex. 1015 - Page 297

284

9.4.4 Algorithms for Solid Representations

Set Membership Classification

The set membership classification (SMC) function M takes a candidate point
set Cand a reference set S, and returns the points of C that are in S, out of .S, and
on the boundary of S.

(CinS, CoutS, ConS) == M(C,)

Figure 9.22a shows line—polygon classification.

SMC is a generalization of set intersection [Tilove 1980]. It is a useful
geometric utility; polygon-polygon classification is generalized clipping, and
volume-volume classification detects solid interference. Line-solid classification

(b)

Fig. 9.22 (a) The set membership classification (SMC) function M(L, P) finds
the portions of the candidate set L (here a line) that are in, on, and out of a refer-

ence set (here a polygon) P. (b) Image produced by ray casting, a special case of
SMC.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 298

may be used for ray casting visualization techniques to generate images of a known
three-dimensional representation (Fig. 9.22b).

An algorithm for SMC illustrates a ‘‘divide and conquer’’ approach to com-
puting on CSG. Recall that CSG is like a tree of set operations, whose leaves are
primitive sets which usually are simple solids such as cylinders, spheres, and
blocks. Presumably classification can be more easily computed with these simple
sets as reference than with complex unions, intersections, and differences as refer-
ence.

The idea is that the classification of a set C with respect to a complex object S
defined in CSG may be determined recursively. Any internal node S in the CSG
tree is an operation node. It has left and right arguments and an operation OpofS.
Each subtree is itself a CSG subtree or a primitive.

M(X, S) =IF Sis a primitive THEN prim—M (X, S)
ELSE Combine(M (X, left—subtree(S),
M (X, right—subtree(S),
OPofS);

Prim-Af is the easily computed classification with respect to a simple primi-
tive solid. The Combine operation is a nontrivial calculation that combines the
subresults to produce a more complex classification. It is illustrated in two dimen-
sions for line classification in Fig. 9.23. Having classified the line L against the po-
lygon P1 and P2, the classifications can be combined to produce the classification
for P1 (| P2. Precise rules for combine may be written for (regularized) union,
intersection, and set difference. An important point is that when a point is in the
““on”’ set of S and in the ““on’” set of S;, the result of the combination depends on
extra information. In Fig. 9.23, segments X and Y both result from this ON-ON
case of combine, but segment X is OUT of the boundary of the intersection and
is IN the intersection. The ambiguity must be resolved by keeping ‘‘neighborhood
information™’ (local geometry) attached to point sets, and combining the neighbor-
hoods along with the classifications. The technical problems surrounding combine
can be solved, and SMC is basic in several solid geometric modeling systems
[Boyse 1979; Voelcker et al. 1978; Brown et al. 1978].

Mass Properties

The analog of many two-dimensional geometric properties is to be found in
“‘mass properties,”” which are defined by volume integrals over a solid. The four
types of mass properties commonly of interest are:

Volume: V=f du
5

fxdu

Centroid: e.g. GC,, = S—V

Sec. 9.4 Volumetric Representations 285

IPR2022-00092 - LGE
Ex. 1015 - Page 299

P

On Out

(a)

P2
Qut In On In On Out In Out
Swvisramess. || s e G | S—— || — e | -
(b)
P10 P2 Tl
Out
Out Out On 4\ y iy Out Out
:—1 —t— —— —l— 2 o e | —
TR - e
On
Out
(c)
Fig. 9.23 Combining line-polygon classifications (a) and (b) must produce the
classification (c).
Moment of (9.17)

Inertia:e.g. I, = m f O+ 2D du
$

Product of

Inertia: e.g. P, = m f xy du
5

286

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 300

where m is a density measure, du the volume differential, and integrals are taken
over the volume.

Measures such as these are not necessarily easy to compute from a given
representation. The calculation of mass properties of solids from various represen-
tations is discussed in [Lee and Requicha 1980]. The approaches suggested by the
representations are shown in Fig. 9.24.

One method is based on decomposing the solid into quasi-disjoint cells. An
integral property of the cell decomposition is just the sum of the property for each
of the cells. Hence if computing the property for the cells is easy, the calculation is
easy for the whole volume. One is invited to decompose the body into simple cells,
such as columns or cubes, as shown in Fig. 9.25. The resulting calculations, per-
formed to reasonable error bounds on fairly complex volumes, take unacceptably
long for the pure spatial occupancy enumeration, but are acceptable for the column
and block decompositions. (The column decomposition corresponds to a ray cast-
ing approach.) The block decomposition method can be programmed using oct-
trees or kd-trees in a manner reminiscent of the Warnock hidden-line algorithm
[Warnock 1969], in which the blocks are found automatically, and their size dimin-
ishes as increased resolution is needed in the solid. In calculating from a construc-
tive solid geometry representation, the same divide-and-conquer strategy that is
useful for SMC may be applied. Again, it recursively solves subproblems induced
by the set operators (Fig. 9.26). The strategy is less appealing here since the
number of subproblems can grow exponentially in the worst case.

In boundary representations, one can perhaps directly integrate over the
boundary in a three-dimensional version of the polygon area calculation given in
Chapter 8. This method is often impossible for curved surfaces, which, however,
may be approximated by planar faces. An alternative is to use the divergence

p”!;‘ii’fm Spatial Cell Boundary
) enum’; decomp's reps
instances SIS P P
T :
Special ; Exploit > Exploit (1) Direct Divide and
f i quasi-) dimensional integration
ormulas / sAnarabii (2) Divergence conquer

A\ disjointedness
=

—

theorem

Property-
value
reps

Fig. 9.24 ‘‘Natural” approaches to computing mass properties from several
representations.

Sec. 9.4 Volumetric Representations 287

IPR2022-00092 - LGE
Ex. 1015 - Page 301

288

(a)

(b)

CSGrep \

Fig. 9.25 Cell decompositions for
(c) mass properties.

theorem (Gauss’s theorem). The divergence is a scalar quantity defined at any point
in a vector field by writing the vector function as

G(x,y,2)=Plx, y,z)i+ Qx y, 2)j+ R(x, y 2)k. (9.18)
The divergence is
g ORGP (9.19)
bd y z

There is always a function G such that div G = £ (x, y, z) for any continuous func-
tion f (f computes the integral property of interest.) Thus

[rav={[dive av 9.20)

But the divergence theorem states that
J divG av== [Gn, dF, (9.21)
s k F;

where F; is a face of the solid S, n, is the unit normal to F;, and dF; the surface
differential. Again this formula works well for planar faces, but may require ap-
proximation techniques for curved faces with complex boundaries.

Boundary Evaluation
The calculation of a face-based surface (boundary) representation from a

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 302

¢ Divide and conquer

Reduction formula

IR Y
e e

Example

s
c
7 A
\
A B8 B

_ Fig. 9.26 Recursive problem
Is=Ia g ~lans~lanc~Isnctlans c P
n nan decomposition for mass property
) [} calculation.

CSG representation is called boundary evaluation. It is an example of representation
conversion. Both the CSG and boundary are usually unambiguous representations
of a volume; a CSG expression (a solid) has just one boundary, but a boundary
(representing a solid) usually has many CSG expressions. Since a solid may be put
together from primitives in many ways, the mapping back from boundary to CSG
is not usually attempted (but see [Markovsky and Wesley 1980, Wesley and Mar-
kovsky 19811).

One style of boundary evaluation is based on the following observations
[Voelcker and Requicha 1980; Boyse 1979].

« Boundaries of composite objects may be computed from certain set-theoretic
formulae. For (regularized) intersection of two objects Sand T, the formula is

SN D=BSN"D Y G N b
U SsN TN kiSO T
where () * and | * are regularized intersection and union: b, i, and k are the

boundary, interior, and closure operators. (Recall that kiis r, the regularization
operator).

« Faces of composite objects can arise only from faces of primitives.
« Faces are either bounded by edges or are self-closing (as is the sphere).

These observations and the existence of the classification operation motivate
the grand strategy that follows (ignoring several important details and concentrat-
ing on the core of the algorithm.)

(9.22)

Sec. 9.4 Volumetric Representations 289

IPR2022-00092 - LGE
Ex. 1015 - Page 303

1. Find all possible (‘‘tentative’’) edges for each face of each primitive in the
composite.

2. Classify each tentative edge with respect to the composite solid.
3. The ON portions of those edges must be enough to define the boundary.

Given the grand strategy, several algorithms of varying sophistication are
possible, depending on what edges should be classified (how to generate tentative
edges), in what order they should be classified, and how classification is done. The
following algorithm is very simple (but very inefficient); useful algorithms are
rather more complex.

Algorithm 9.1: CSG to Boundary Conversion (top-level control loop)

Input: Solid defined by CSG expression of regularized set operations applied to
primitive solids.

Output: ““Bfaces’’ in the object boundary. Bfaces are represented by their bounding
edges. They may have little relation to the “‘intuitive faces’’ of the boundary; they
may overlap each other, and a Bface may be disconnected (specify more than one
region). Edges may appear many times. The Bface-oriented boundary may be pro-
cessed to remove repetition and merge Bfaces into more intuitively appealing
boundary faces.

BEGIN

Form a list PFaces of all (‘“‘intuitive’”) faces of primitive solids involved in the
CSG expression, and an initially empty list BFaces to hold the output faces.

For every PFace F1 in PFaces:
Create a B-Face called ThisBFace, initially with no edges in it.

For every PFace F2 after F1 in the PFaces list (this generates all distinct pairs of
PFaces just once):

Intersect F1 and F2 to get TEdges, a set of edges tentatively on the boundary
of the solid. If F1 and F2 do not intersect or intersect only in a point, TEdges
is empty. If they intersect in a line, TEdges is the single resulting edge. If they
intersect in a two-dimensional region, TEdges contains the bounding edges
of the intersection region.

Classify every TEdge in TEdges with respect to the whole solid (the CSG ex-
pression). Put TEdges that are ON the solid boundary into ThisBFace.

If ThisBFace is not empty, put it into BFaces.

290 Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 304

End Inner Loop
End Outer Loop

END

Algorithms such as this involve many technical issues, such as merging
coplanar faces, stitching edges together into faces, regularization of faces, remov-
ing multiple versions of edges. Boundary evaluation is inherently rather complex,
and depends on such things as the definition and representation of faces as well as
the geometric utilities taken as basic [Voelcker and Requicha 1981]. Boundary
evaluation is an example of exact conversion between significantly different
representations. Such conversions are useful, since no single representation seems
convenient for all geometric calculations.

9.5 UNDERSTANDING LINE DRAWINGS

“Engineering’’ line drawings have been (and to a great extent are still) the main
medium of communication between human beings about quantitative aspects of
three-dimensional objects. The line drawings of this section are only those which
are meant to represent a simple domain of polyhedral or simply curved objects. In-
terpretation of ““naturalistic’> drawings (such as a sketchmap [Mackworth 1977]) is
another matter altogether.

Line drawings (even in a restricted domain) are often ambiguous; interpret-
ing them sometimes takes knowledge of everyday physics, and can require train-
ing. Such informed interpretation means that even drawings that are strictly non-
sense can be understood and interpreted as they were meant. Missing lines in
drawings of polyhedra are often so easy to supply as to pass unnoticed, or be “‘au-
tomatically supplied’’ by our model-driven perception.

Generalizing the line drawing to three dimensions as a list of lines or points is
not enough to make an unambiguous representation, as is shown by Fig. 9.27,

Fig. 9.27 An ambiguous (wireframe) representations of a solid with two of
three possible interpretations.

Sec. 9.5 Understanding Line Drawings 291

IPR2022-00092 - LGE
Ex. 1015 - Page 305

292

which illustrates that a set of vertices or edges can define many different solids. (It
is possible, however, to determine algorithmically all possible polyhedral boun-
daries described by a three-dimensional wireframe [Markowsky and Wesley
19801.). A line drawing nevertheless does convey three-dimensional information.
For any set of N projection specifications (e.g., viewpoint and camera transform), a
wire-frame object may be constructed that is ambiguous given the N projections.
However, for a given object, there is a maximum number of projections that can
determine the object unambiguously. The number depends on the number of
edges in the object [Shapira 1974]. Reconstruction of all solids represented by pro-
jections is possible [Wesley and Markowsky 1981].

Line drawings were a natural early target for computer vision for the follow-
ing reasons:

1. They are related closely to surface features of polyhedral scenes.

2. They may be represented exactly; the noise and incomplete visual processing
that may have affected the ““line drawing extraction’’ can be modelled at will or
completely eliminated.

3. They present an interpretation problem that is significant but seems approach-
able.

The understanding of simple engineering (3-view) drawings was the first
stage in a versatile robot assembly system [Ejiri et al. 1971]. This application
underlined the fact that heuristics and conventions are indispensible in engineer-
ing drawing understanding. This section deals with the problem of ‘‘understand-
ing’’ asingle-view line drawing representation of scenes containing polyhedral and
simple curved objects like those in Fig. 9.28.

Our exposition follows a historical path, to show how early heuristic pro-
grams in the middle 1960s evolved into more theoretical insights in the early
1970s.

The first real computer vision program with representations of a three-
dimensional domain appeared around 1963 [Roberts 1965]. This system, ambi-
tious even by today’s standards, was to accept a digitized image of a polyhedral
scene and produce a line drawing of the scene as it would appear when viewed from
any requested viewpoint. This work addressed basic issues of imaging geometry,
feature finding, object representation, matching, and computer graphics.

Since then, several systems have appeared for accomplishing either the same
or similar results [Falk 1972; Shirai 1975; Turner 1974]. The line drawings of this
section can appear as intermediate representations in a working polyhedral vision
system, but they have also been studied in isolation. This topic took on a life of its
own and provides a very pretty example of the general idea of going to the three-
dimensional world of physics and geometry to understand the appearance of a
two-dimensional image. The later results can be used to understand more clearly
the successes and failures of early polyhedral vision systems. One form of under-
standing (line labelling) provided one of the first and most convincing demonstra-
tions of parallel constraint propagation as a control structure for a computer vision
process.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 306

Fig. 9.28 Several typical line drawing scenes for computer understanding.

9.5.1 Matching Line Drawings to Three-dimensional Primitives

Roberts desires to interpret a line drawing such as Fig. 9.28a in terms of a small set
of three polyhedral primitives, shown in Fig. 9.29. A simple polyhedron in a scene
is regarded as an instance of a transformed primitive, where a transform may in-
volve scaling along the three coordinate axes, translation, and rotation. Compound
polyhedra, such as Fig. 9.28a, are regarded as simple polyhedra “‘glued together.”
(A cell-decomposition representation is thus used for compound polyhedra.) The
program is first to derive from the scene the identity of the primitive objects used
to construct it (including details of the construction of compound polyhedra).
Next, it is to discover the transformations applied to the primitives to obtain the
particular incarnations making up the scene. Finally, to demonstrate its under-
standing, it should be able to construct a line drawing of the scene from any
viewpoint, using its derived description.

To understand a part of the scene, the program first decides which primitive it
comes from, and then derives the transformation the primitive underwent to ap-
pear as it does in the scene. Identifying primitives is done by matching “‘topologi-
cal” features of the line drawing (configurations of faces, lines, and vertices) with
those of the model primitives; matching features induce a match between scene
and model points. At least four noncoplanar matching points are needed to derive

Sec. 9.5 Understanding Line Drawings 293

IPR2022-00092 - LGE
Ex. 1015 - Page 307

(a) {b) (c) (d)

Fig. 9.31 Topological match structures of Roberts.

The idea once again is to accumulate local evidence from the scene, and then
to group polygons on the basis of this evidence. The evidence takes the form of
“links’” which link two regions if they may belong to the same body; links are
planted around vertices, which are classified into types, each type always planting
the same links (Fig. 9.32). No links are made with the background region.

Scenes are interpreted by grouping according to regions/links, using fairly
complex rules, including “‘inhibitory links’* that preclude two neighboring regions
from being in the same body.

The final form of the program performs reasonably well on scenes without ac-
cidents of visual alignment, but it is a maze of special cases and exceptions, and
seems to shed little light on what is going on in known polyhedral line-drawing per-
ception. One might well ask where the links come from; no justification of why
they are correct is given. Further ([Mackworth 1973]), Guzman can accept as one
body the two regions in Fig. 9.33a. Finally, one feels a little dissatisfied with a
scheme that just answers “‘one body’’ to a scene like Fig. 9.33b, instead of answer-
ing “‘pyramid on cube’’ or “‘two wedges,’’ for example.

Guzman’s method is correct for a world of convex isolated trihedral polyhe-
dra: it is extended by ad hoc adjustments based on various potentially conflicting
items of evidence from the line drawing. Ultimately it performs adequately with a

~ much increased range of scenes, albeit not very elegantly. Further progress in the
line drawing domain came about when attention was directed at the three-
dimensional causes of the different vertex types.

A8 L

FORK ARROW ELL
PSI T PEAK Fig. 9.32 Linksaround vertices.
Sec. 9.5 Understanding Line Drawings 295

IPR2022-00092 - LGE
Ex. 1015 - Page 308

296

(a) (b)

Fig. 9.33 (a) Non-polyhedral scene. (b) Two wedges or a pyramid on cube.

9.5.3 Labeling Lines

Huffman and Clowes independently concerned themselves with scenes similar to
Guzman’s, not excluding non-simply connected polyhedra, but excluding ac-
cidents of alignment [Huffman 1971; Clowes 1971]. They desired to say more
about the scene than just which regions arose from single bodies; they wanted to
ascribe interpretations to the lines. Figure 9.34 shows a cube resting on the floor;
lines labeled with a + are caused by a convex edge, those labeled with a — are
caused by a concave edge, and those labeled with a > are caused by matter occlud-
ing a surface behind it. The occluding matter is to the right of the line looking in
the direction of the >, the occluded surface is to the left. If the cube were floating,
one would label the lowest lines with < instead of with —. The shadow line labels
(arrows) were not used by Huffman.

A systematic investigation can find the types of lines possibly seen around a
trihedral corner; such corners can be classified by how many octants of space are
filled by matter around them (one for the corner of a cube, seven for the inside
corner of a room, etc.). By considering all possible trihedral corners as seen from

Fig. 9.34 A block resting on its
bottom surface.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 309

all possible viewpoints, Huffman and Clowes found that without occlusion, just
four vertex types and only a few of the possible labelings of lines meeting at a ver-
tex can occur. Figure 9.35 shows views of one- and three-octant corners which give
rise to all possible vertices for these corner types. The vertices appear in the first
two rows of Table 9.1, which is a catalogue of all possible vertices, including those
arising from occlusion, in this restricted world of trihedral polyhedra. It is easy to
imagine extending the catalog to include vertices for other corner types.

It is important to note that there are four possible labels for each line (+ — >
<), and thus 4* = 64 possible labels for the fork, arrow, and T and 16 possible la-
bels for the ell. In the catalog, however, only 3/64, 3/64, 4/64, and 6/16, respec-
tively, of the possible labels actually occur. Thus only a small fraction of possible
labels can occur in a scene.

The main observation that lets line-labeling analysis work is the coherence
rule: In a real polyhedral scene, no line may change its interpretation (label) between
vertices. For example, what is wrong with scenes like Fig. 9.36 is that they cannot
be coherently labeled; lines change their interpretation within the impossible ob-
ject. Perhaps the lines in drawings of real scenes can be interpreted quickly because
the small percentage of meaningful labelings interacts with the coherence rule to
reduce drastically the number of explanations for the scene.

How does line labeling relate to Guzman? A labeled-line description clearly
indicates the grouping of regions into bodies, and also rejects scenes like Fig.
9.33a, which cannot be coherently labeled with labels from the catalog. The origin
of Guzman’s links can be explained this way: consider again the world of convex
polyhedra; the only labels from the catalog that are possible are shown in Fig.
9.37a. Further, it is clear that a convex edge has two faces of the same body on ei-
ther side of it, and an occluding edge has faces from two different bodies on either
side of it. A convex label means the regions on either side of it should be linked;
this is Guzman’s link-planting rule (Fig. 9.37b). The inhibition rules are a further
corollary of the labels; they are to suppress links across an edge if evidence that it

Fig. 9.35 Different views of various
corner types.

Sec. 9.5 Understanding Line Drawings 297

IPR2022-00092 - LGE
Ex. 1015 - Page 310

298

Table 9.1

VERTEX CATALOGUE
Visible
surfaces
3 2 1 0
Octants
filed

o \/
A~ -
5 _/L_\/\\/_ s e,
vz
£

QOcclusion

7T

must be occluding is supplied by the vertex at its other end (Fig. 9.37c). When ver-
tices at both ends of a line agree that the line is convex, Guzman would have
planted two links; this is in fact the strongest evidence that the regions are part of
the same body. If just one vertex gives evidence that the edge has a link, a decision
based on heuristics is made; the coherence rule is being used implicitly by Guz-
man. The same physical and geometric reality is driving both his scheme and that
of Huffman.

The labeling scheme explained here still has problems: syntactically nonsen-
sical scenes are coherently labeled (Fig. 9.38a); scenes are given geometrically im-
possible labels (Fig. 9.38b); and scenes that cannot arise from polyhedra are easily
labelled (Fig. 9.38¢). It is very hard to see how a labeling scheme can detect the il-
legality of scenes like (Fig. 9.38¢); the problem is not that the edges are incorrectly
labeled, but that the faces cannot be planar.

Concern with this last-mentioned problem led to a program (see the next sec-
tion) that can obtain information about a polyhedral scene equivalent to labeling it,

Fig. 9.36 An impossible object.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 311

file:///surfaces
file:///surfaces

A ad T
ko> T

Fig. 9.37 The reilation of links to labels. {(a} Line fabeis. (b} Link planting ver-

tices. (¢) Inhibitory links.
and also can reject non-polyhedra as impossible. There has also been an exciting
denoument to the line-labeling idea [Waltz 1975; Turner 1974].

Waltz extends the line labels to include shadows, three illumination codes for
each face on the side of an edge, and the separability of bodies in the scene at
cracks and concave edges; this brings the number of line labels possible up to just
below 100. He also extends the possible vertex types, so that many vertices of four
lines occur. He can deal with scenes such as the one shown in Fig. 9.28c.

The combinatorial consequence of these extensions is clear; the possible ver-
tex labelings multiply enormously. The first interesting thing Waltz discovered was
that despite the combinatorics, as more information is coded into the lines, the
smaller becomes the percentage of geometrically meaningful labels for a vertex. In
his final version, only approximately 0.03 percent of the possible arrow labels can
occur, and for some vertices the percentage is approximately 0.000001.

The second interesting thing Waltz did was to use a constraint-propagating la-
beling algorithm which very quickly eliminates labels for a vertex that is impossible
given the neighboring vertices and the coherence rule, which places constraints on
labelings. The small number of meaningful labels for a vertex imposes severe con-
straints on the labeling of neighboring vertices. By the coherence rule, the con-
straints may be passed around the scene from each vertex to its neighbors; elim-
inating a label for a vertex may render neighboring labels illegal as well, and so on
recursively.

> N

.‘ Fig. 9.38 Nonsense labelings and

(@) (b) © nonpolyhedra.

Sec. 9.5 Understanding Line Drawings 299

IPR2022-00092 - LGE
Ex. 1015 - Page 312

300

Waltz found that for scenes of moderate complexity, eliminating all impossi-
ble labelings left only one, the correct one. The labeling process, which might have
been expected to involve much search, usually involved none. This constraint pro-
pagation is an example of parallel constraint satisfaction, and is discussed in
Chapter 12 in a broader context. In the event that a vertex is left with several labels
after all junction coherence constraints have been applied, they all participate in
some legal labeling. At this point one can resort to tree search to find the explicit la-
belings, or one can apply more constraints. Many such constraints, heuristic and
geometric, may be imagined. For instance, a constraint could involve color edge
profiles. If two aligned edges are separated by some (possibly occluding) structure,
but still divide faces of the same color, they should have the same label. Another
important constraint concerns how face planarity constrains line orientations.

Scenes with missing lines may be labeled; one merely adds to the legal vertex
catalog the vertices that result if lines are missing from legal vertices. This idea has
the drawbacks of increasing the vertex catalog and widening the notion of con-
sistency, but can be useful.

Another extension to line labeling is that of [Kanade 1978]. This extension
considers not only solid polyhedra but objects (including nonclosed ‘‘shells’’)
made up of planar faces. This extension has been called origami world after the art
of making objects from folded (mostly planar) paper. An example from origami
world is the box in Fig. 9.39a. A quick check shows that this cannot be labeled with
the Huffman-Clowes label set. It can be labeled using the origami world label set
(Table 9.2) and its interpretation is shown in Fig. 9.39b.

Table 9.2

EXPANDED JUNCTION TABLE
FORK

N N R N
O A AN ot S

ARROW T

A T
S T T T
AN AT TS TS
AP ,

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 313

(a) (b)

Fig. 9.39 (a) Box. (b) Labeled edges according to origami world label set.

The vertex labels may be extended to include scenes with cylinders, cones,
spheres, tori, and other simple curves. In expanded domains the notion of “‘legal
line drawing’’ becomes very imprecise. In any event the number of vertex types
and labels grow explosively, and the coherence rule must be modified to cope with
the fact that lines can change their interpretation between vertices and can tail off
into nothing, and that one region can attain all three of Waltz’s illumination types
[Turner 1974, Chakravarty 1979]. The domain is of scenes such as appear in Fig.
9.28d.

9.5.4 Reasoning About Planes

The deficiencies in the scene line-labeling algorithms prompted a consideration of
the geometrical foundations of the junction labels [Mackworth 1973, Sugihara
1981]. This work seeks to answer the same sorts of questions as do labeling pro-
grams, but also to take account of objects that cannot possibly be planar polyhedra,
such as those of Fig. 9.40. Neither approach uses a catalog of junction labels, but
relies instead on ideas of geometric coherence. The basis is a plane-oriented for-
mulation rather than a line-oriented one.

Gradient Space

Mackworth’s program relies heavily on the relation of polyhedral surface gra-
dients to the lines in the image (recall section 3.5.2). Image information from
orthographic projections of planar polyhedral scenes may be related to gradient in-
formation in a useful way. An image line L is the projection of a three-space line M
arising from the intersection of two faces lying in distinct planes I1, and II, of gra-
dients (py, q;) and (p,, g,). With the (p, ¢) coordinate system superimposed on
the image (x, y) coordinate system, there is the following constraint. The orienta-
tion of L constrains the gradients of I and I1,; specifically, the line L is perpendic-
ular to the line G between (pi, q;) and (p,, q,) (Fig. 9.41).

Fig. 9.40 Labelable but not planar polyhedra.

Sec. 9.5 Understanding Line Drawings 301

IPR2022-00092 - LGE
Ex. 1015 - Page 314

302

/P2 az) Fig. 9.41 Gradient space constraint.

The result is easily shown. With orthographic projection, the origin may be
moved of the image plane to be in L without loss of generality. Then L is defined
by its direction vector (A, x) = (cos@, sinf). The three-space point on II,
corresponding to (0,0) may be expressed as (0,0, k;), and at (\, u) the
corresponding point is (A, w, Ap; + wgq; + k;). Thus moving along M (which is in
) from (x, y) = (0,0) to (x, y) — (\, w) moves along —z by Ap; + pq;. The
coordinates of a unit vector on L can then be expressed as (A, u, Ap; + ©q). But
Lis also in T, and this argument may be repeated for I1,, using p; and ¢,. Thus

Api+ g =Apy T pg; 9.23)
or
M) po—p1 g2—q) =0 (9.24)

Equation (9.24) is a dot product set equal to zero, showing that its two vector
operands are orthogonal, which was to be shown.

Every picture line results from the intersection of two planes, and so it has a
line associated with it in gradient space which is perpendicular to it. Furthermore,
if the gradients of the surfaces are on the same side of the picture line as their sur-
faces, the edge was convex; if the gradients are on opposite sides of the line from
their causing surfaces, the edge was concave (Fig. 9.42). For every junction in the
image there are just two ways the gradients can be arranged to satisfy the perpendi-
cularity requirement (Fig. 9.43). In the first, all edges are convex, in the second,
concave. Switching interpretations from one to the other by negating gradients is
the psychological ‘‘Necker reversal.”

Notice that if an image junction is a three-space polyhedral vertex, each edge
of the vertex is the intersection of two face planes. If the corresponding gradients
are connected, a “‘dual’’ (p, ¢) space representation of the (x ,y) space junction is
formed. The connected (p, ¢) gradient points form a polygon whose edges are per-
pendicular to the junction lines in (x, y) space. The polygon is larger if the three-

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 315

A 8
Als
AlB G, & oGy
PP S
(a}
Als
A B
G,—1—=*Gs
Al B
A l l B ®G,=G,
AlB
\ / GB.__—.GA
A 8

(b) (c}

Fig. 9.42 Relation of gradients, image and world structures. (a) Image. (b)
World. (c) Gradients.
dimensional corner is sharper, and shrinks toward the junction point as the corner
gets blunter.
Interpreting Drawings
It is possible to use these geometric results to interpret the lines in orthogo-
nally projected polyhedral scenes as being ‘“‘connect’ (i.e., as being between two
connected faces) or occluding. It can also be determined if connect edges are con-
vex or concave, and for occluding edges which surface is in front. Hidden parts of
the scene may sometimes be reconstructed. The orientation of each surface and
edge in the scene may be found. Thus a program can determine that input such as
Fig. 9.40 is not a planar-faced polyhedron [Mackworth 1973]. Sugihara’s work gen-
eralizes Mackworth’s; it does not use gradient space and does not rely on ortho-
graphic projection.

Sec. 9.5 Understanding Line Drawings 303

IPR2022-00092 - LGE
Ex. 1015 - Page 316

304

[od
G, Gg G¢
G, Gg G4

Fig. 9.43 A scene junction and two resulting triangles in gradient space.

Mackworth’s procedure to establish connect edges produces the most con-
nected interpretation first (a nonconnected interpretation is just a collection of
floating faces which line up by accident to give the line drawing). The background
region is the first to be interpreted; that is, means to have its gradient fixed in gra-
dient space. After a region is interpreted, the region having the most lines in com-
mon with regions so far interpreted is interpreted next.

The image of a scene is given in Fig. 9.44a; it is interpreted as follows. No
coherent interpretation is possible with five or four connect edges. Trying for three
connect edges, the program interprets A by arbitrarily picking a gradient for the
surface A represents (the background). It picks the origin of gradient space. In
order to be able to reason about lines in the image, it needs to have an interpreted
region on either side of the line, so it must interpret another region. It picks B (C
would be as good).

The lines bounding B are examined to see if they are connect. Line 1 is con-
sidered. If it is connect, the gradient space dual of it will be perpendicular to it
through the gradient space point representing surface A (i.e., the origin). Now
another arbitrary choice: The gradient corresponding to surface B is placed at unit
distance from the origin, thus ‘“‘imagining’’ the second gradient in a row. From
now on, the gradients are more strongly located. The arbitrary scaling and point of
origin imposed by these first two choices can be changed later if that is important.

In gradient space, the situation is now shown in Fig. 9.44b. Now consider
line 2; to establish it as a connect edge, Gz = (pg, 1) (the gradient space point
corresponding to the surface B) must lie on a line perpendicular to 2 through G,
(Fig. 9.44c). This cannot happen; the situation with 1 and 2 both connect is in-
coherent. Thus, with a line 1 connect edge, 2 must be occluding. This sort of in-
coherency result was what kept the program from finding four or five edges con-
nect. Further interpretation involves assigning gradients and vertices into the
developing diagram in a noncontradictory, maximally connected manner (Fig.
9.44d).

The next part of the program determines convexity or concavity of the lines.
The final part of the program looks at occlusion. It also suggests hidden surfaces

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 317

(b)

1 '
4 6,

4 1

Gg

(c)

Fig. 9.44 (a) Polyhedral scene considered by Mackworth. (b) Partial interpretation.
(¢) Continued interpretation. (d) Occluding and connect interpretations. (e) Final interpre-
tation.

and thus hidden lines that are consistent with the interpretation (Fig. 9.44e). This
figure in gradient space resembles a tetrahedron, as well it might; it is formed in
the same way as the graph-theoretic dual (point per face, edge per edge, face per
point) which defines dual graphs and dual polyhedra; the tetrahedron is self-dual.
The arbitrary choices of gradient reflect degrees of freedom in the drawing that are
also identified by Sugihara.

Sec. 9.5 Understanding Line Drawings 305

IPR2022-00092 - LGE
Ex. 1015 - Page 318

Skewed Symmetry

Many planar objects are symmetrical about an axis. This axis and another,
which is perpendicular to the first and in the plane of the object, form a natural
orthogonal coordinate system for the object. If the plane of the object is perpendic-
ular to the line of sight from the viewpoint, the coordinate axes appear to be at
right angles. If the object is tilted from this position, the axes appear skewed. Some
examples are shown in Fig. 9.45.

A skewed symmetry may or may not reflect a real symmetry; the object may
itself be skewed. However, if the skewed symmetry results from a tilted real sym-
metry, a constraint in gradient space may be developed for the object’s orientation
[Kanade 1979].

An imaged unit vector inclined at « inscribed on a plane at orientation (p, g)
must have three-dimensional coordinates given by

(cosa, sina, pcosa + gsina)

Thus if the two axes of skewed symmetry make angles of « and 8 with the image x
axis, the two vectors in three-space e and » must have coordinates

a= (cosa, sina, pcosa + ¢sina)
and
b= (cosB, sinB, pcosB + gsinB)

Since these vectors reflect a real symmetry, they must be perpendicular (i.e.,
a-b=0),or

cos (@ — B) + (pcosa + gsina) (pcosB + ¢gsinB) =0 (9.25)
By rotating the pand gaxes by A = (& -+ B)/2, thatis
p'=pcosA+ g sinA

g'=—psink + g cosA

Fig. 9.45 Skewed symmetries. (a,b,c)
are examples. {(d) Each skewed
(d) symmetry defines two axes.

306 Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 319

Equation (9.25) can be put into the form

¥

2

p2 cos? — ¢ sin?

%l = —cos (y)

where y = a—f. Thus the gradient of the object must lie on a hyperbola with axis
tilted A from the x axis, and with asymptotes perpendicular to the directions of «
and 8. This constraint is shown in Fig. 9.46.

To show how skewed symmetry can be exploited to interpret objects with
planar faces, reconsider the example of Fig. 9.43. In that example the three con-
vex edges constrained the gradients of the corresponding faces to be at the vertices
of a triangle, but the size or position of the triangle in gradient space was unknown.
However, skewed symmetry applied to each face introduces three hyperbola upon
which the gradients must lie. The only way that both the skewed symmetry con-
straint and triangle constraint can be satisfied simultaneously is shown in Fig.
9.47—the combined constraints have uniquely determined the face orientations.

EXERCISES

9.1 Derive an expression for the volume of an object represented by spherical harmonics
of order M = 1.

9.2 Derive an expression for the perpendicular to the surface of an object represented by
spherical harmonics in terms of the appropriate derivatives.

9.3 Derive an expression for the angle centroid of each of the spherical harmonic func-
tionsfor M < 2.

9.4 Label the lines in the objects of Fig. 9.48.

Exercises

Fig. 9.46 Skewed symmetry constraint
in gradient space.

307

IPR2022-00092 - LGE
Ex. 1015 - Page 320

308

(a)

for S5

for S, Gy T G, for S,

9.5
9.6

9.7
9.8

9.9

\for S5 (d)

(c)

Fig. 9.47 Using skewed symmetry to orient the faces of a cube. (a) The cube.
(b) Skewed symmetries. (c) skewed symmetries and junction constraint plotted in
gradient space. {(d) another possible object obeying the constraints.

Give two sets of CSG primitives with same domain.

Show that the dual of the plane of interpretation for a line and the duals of the two
planes that meet in the edge causing the line are all on the dual of the edge.

Prove (Section 9.3.1) that in the Frenet frame £ ’ is perpendicular to £.

Write the precise rules for combining classification results for |J*, (M *, and —
operations.

Find two interpretations of the tetrahedron of Fig. 9.44a that differ in convexity or

concavity of lines. (Hint: The concave interpretation has an accident of alignment.)
Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 321

§ % \fIL\: Fig. 9.48 Objects for labeling.

REFERENCES

AGIN, G. J. “Representation and description of curved objects” (Ph.D. dissertation). AIM-173, Stan-
ford Al Lab, October 1972.

BADLER, N. L. and R. K. Bajcsy. “‘Three-dimensional representations for computer graphics and com-
puter vision.”” Computer Graphics 12, August 1978, 153-160.

BADLER, N. L. and J. O’ROURKE. ‘‘Representation of articulable, quasi-rigid, three-dimensional ob-
jects.”” NSF Workshop on the Representation of Three-Dimensional Objects, Univ. Pennsyl-
vania, May 1979.

BARNHILL, R. E. “‘Representation and approximation of surfaces.” In Mathematical Software Ii1, J. R.
Rice (Ed.). New York: Academic Press, 1977.

BarnHILL, R. E. and R. F. RIESENFELD. Compuiter Aided Geometric Design. New York: Academic Press,
1974.

BAUMGART, B. G. **Winged edge polyhedron representation.” STAN-CS-320, AIM-179, Stanford Al
Lab, October 1972.

BENTLEY, J. L. Multidimensional search trees used for associative searching, Comm. ACM 18, 9, Sept.
1975, 509-517.

BinForD, T. O. “*Visual perception by computer.”” I[EEE Conf. on Systems and Control, Miami, De-
cember 1971.

References 309

IPR2022-00092 - LGE
Ex. 1015 - Page 322

310

Bovsg, J. W. ““Data structure for a solid modeller,”” NSF Workshop on the Representation of Three-
Dimensional Objects, Univ. Pennsylvania, May 1979,

BrowN, C. M. “Two descriptions and a two-sample test for 3-d vector data.” TR49, Computer Science
Dept., Univ. Rochester, February 197%a.

Brown, C. M. ““Fast display of well-tesselated surfaces.” Computers and Graphics 4, 2, September
1979b, 77-85.

BrownN C. M., A. A. G. REQUICHA, and H. B. VOELCKER. ‘‘Geometric modelling systems for mechani-
cal design and manufacturing.” Proc., 1978 Annual Conference of the ACM, Washington, DC,
December 1978, 770-778.

CHAKRAVARTY, I. ““A generalized line and junction labelling scheme with applications to scene
analysis,”” IEEE Trans. PAMI, April 1979, 202-205.

CLINTON, J. D. “‘Advanced structural geometry studies, Part I: Polyhedral subdivision concepts for
structural applications.” NASA CR-1734/35, September 1971.

CLOWES, M. B. ““On seeing things.” Artificial Intelligence 2, 1, Spring 1971, 79-116.

Coons, S. A. ““Surface patches and B-spline curves.”” In Computer Aided Geometric Design, R. E. Barnhill
and R. F. Riesenfeld (Eds.). (Proc., Conference on Computer Aided Geometric Design, Univ.
Utah, March 1974.) New York: Academic Press, 1974.

Enri, M., T. Uno, H. Yopa, T. Goto, and K. TAKEYASU. “‘An intelligent robot with cognition and
decision-making ability.”” Proc., 2nd 1JCAI, September 1971, 350-358.

FaLk, G. “Interpretation of important line data as a three-dimensional scene.’” Artificial Intelligence 3,
1, Spring 1972, 77-100.

Forrest, A. R. ““On cones and other methods for the representation of curved surfaces.”” CGIP I, 4,
December 1972, 341-359.

GUZMAN, A. “‘Decomposition of a visual scene into three-dimensional bodies’” (Ph.D. dissertation). In
Automatic Interpretation and Classification of Images, A. Grasseli (Ed.). New York: Academic
Press, 1969.

Hurrman, D. A. “‘Impossible objects as nonsense sentences.”’ In M16, 1971.

Jackins, C. L., and S. L. TanimoTo. Oct-trees and their use in representing three-dimensional objects,
CGIP 14,3, Nov. 1980, 249-270.

KANADE, T. *“A theory of Origami world.”” CMU-CS-78-144, Computer Science Dept., Carnegie-
Mellon Univ., 1978.

KANADE, T. “Recovery of the three-dimensional shape of an object from a single view.”” CMU-CS-
79-153, Computer Science Dept., Carnegie-Mellon Univ., October 1979.

LAKATOS, L. Proofs and Refutations. Cambridge, MA: Cambridge University Press, 1976.

LEg, Y. T. and A. A. G. REQUICHA. **Algorithms for computing the volume and other integral proper-
ties of solid objects.”” Tech. Memo 35, Production Automation Project, Univ. Rochester, Ro-
chester NY, Feb. 1980.

MackworTH, A. K. “Interpreting pictures of polyhedral scenes.”” Ariificial Intelligence 4, 2, June 1973,
121-137.
MACKWORTH, A. K. “‘On reading sketch maps.”” Proc., Sth IICAI, August 1977, 598-606.

Markowsky, G. and M. A. WESLEY. “‘Fleshing out wire frames.”’ IBM J. Res. Devel. 24, 1 (Jan. 1980)
64-74.

MARR, D. and H. K. NisHIHARA. “‘Representation and recognition of the spatial organization of three-
dimensional shapes.”” Proc., Royal Society of London B 200, 1978, 269-294.

NisHiHARA, H. K. ““Intensity, visible surface and volumetric representations.”” NSF Workshop on the
Representation of Three-Dimensional Objects, U. Pennsylvania, May 1979.

O’NEILL, B. Elementary Differential Geometry. New York: Academic Press, 1966.

Ch. 9 Representations of Three-Dimensional Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 323

O’ROURKE, J. and N. I. BADLER. ““Decomposition of three-dimensional objects into spheres.” [EEE
Trans. PAMI 1, July 1979.

REQUICHA, A. A. G. “Representations of rigid solid objects.”” Computer Surveys 12, 4, December 1980,

RoBERTS, L. G. ““Machine perception of three-dimensional solids.”” In Optical and Electro-optical Infor-
mation Processing, J.P. Tippett et al. (Eds.). Cambridge, MA: MIT Press, 1965.

ScHuDY, R. B. and D. H. BALLARD. ““Model-detection of cardiac chambers in ultrasound images.”
TR12, Computer Science Dept., Univ. Rochester, November 1978.

ScHupy, R. B. and D. H. BALLARD. ““Towards an anatomical model of heart motion as seen in 4-d car-
diac ultrasound data.”” Proc., 6th Conf. on Computer Applications in Radiology and Computer-
Aided Analysis of Radiological Images, June 1979.

SHani, U. ‘A 3-d model-driven system for the recognition of abdominal anatomy from CT scans.”
TR77, Computer Science Dept., U. Rochester, May 1980; also in Proc. 5th IJICPR, Miami, De-
cember 1980, 585-591.

SHAPIRA, R. ‘A technique for the reconstruction of a straight-edge, wire-frame object from two or
more central projections.”” CGIP 3, 4, December 1974, 318-326.

SHIRAL Y. ““Analyzing intensity arrays using knowledge about scenes.”” In PCV, 1975.
SoRrOKA, B. 1. ““Generalised cylinders from parallel slices.”” Proc., PRIP, 1979a, 421-426.

SoRoOKA, B. I. “Understanding objects from slices.”” Ph.D. dissertation, Dept. of Computer and Infor-
mation Science, Univ. Pennsylvania, 1979b.

Soroka, B. I and R. K. Baicsy. “‘Generalized cylinders from serial sections.”” Proc., 3rd IICPR, No-
vember 1976, 734-735.

SuGIHARA, K. “Mathematical structures of line drawings of polyhedra,”” RNS 81-02, Dept. of Info. Sci-
ence, Nagoya Univ., May 1981.

TiLovE, R. B. “Set membership classification: a unified approach to geometric intersection problems.”
TEEE Trans. Computers 29, 10, October 1980.

TURNER, K. J. ““Computer perception of curved objects using a television camera.”” Ph.D. dissertation,
Univ. Edinburgh, 1974.

VOELCKER, H. B. and A. A. G. REQUICHA, Boundary evaluation procedures for objects defined via con-
structive solid geometry, Tech. Memo 26, Production Automation Project, Univ. Rochester,
1981.

VOELCKER, H. B. and A. A. G. REQUICHA. ‘‘Geometric modeling of mechanical parts and processes.”
Computer 10, December 1977, 48-57.

VOELCKER, H. B. and Staff of Production Automation Project, *“The PADL-1.0/2 system for defining
and displaying solid objects.”” Computer Graphics 12, 3, August 1978, 257-263.

WaLtz, D. . “*Generating semantic descriptions from drawings of scenes with shadows.”” Ph.D. disser-
tation, Al Lab, MIT, 1972; also in PCV¥, 1975.

Warnock, J. G. ““A hidden-surface algorithm for computer-generated halftone pictures.”” TR 4-15,
Computer Science Dept., Univ. Utah, June 1969.

WESLEY, M. A. and S. MARKOWSKY. “‘Fleshing out projections.” /BM J. Res. Devel. 25,6 (Nov. 1981),
934-954.

References 3n

IPR2022-00092 - LGE
Ex. 1015 - Page 324

RELATIONAL
STRUCTURES IV

Knowledge
base
Analogical Analogical/
models propositional
models
Generalized Segmented Geometric Relational
image image structures structures

IPR2022-00092 - LGE
Ex. 1015 - Page 325

314

Visual understanding relates input and its implicit structure to explicit structure that
already exists in our internal representations of the world. More specifically, vision
operations must maintain and update beliefs about the world, and achieve specific
goals.

To consider how higher processes can influence and use vision, one must
confront the nonvisual world and powers of reasoning that have more general
applicability. The world models that are capable of supporting advanced
application-dependent calculations about objects in the visual domain are quite
complex..General techniques of knowledge representation developed in other fields
of artificial intelligence can be brought to bear on them. Similarly, much research
has been invested in the basic processes of inference and planning. These tech-
niques may be used in the visual domain to manipulate beliefs and achieve goals,
as well as reasoning for other purposes.

The organization of a complex visual system (Fig. 1.5 or Fig. 10.1), is a loose
hierarchy of models of world phenomena. The relational models that concern us in
this chapter are removed from direct perceptual experience —they are used mainly
for the last, highest-level stages of perception. Also, they are used for knowledge
attained prior to the visual experience currently being processed. The representa-
tions involved may be analogical or propositional. Analogical representations allow
simulations of important physical and geometric properties of objects. Propositions
are assertions that are either true or false with respect to the world (or a world
model). Each form is useful for different purposes, and one is not necessarily
“‘higher”’ than the other. The techniques and representations of Part IV are mainly
propositional in flavor. Sometimes the reasoning they implement (say about
geometrical entities) would seem better suited to analogical calculations; however,
technical difficulties can render that impossible.

Part IV is concerned with techniques for making the ‘““motivation’ and
“world view”’ of a vision system explicit and available. Such explicit models would

Part IV Relational Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 326

be interesting from a scientific standpoint even if they were not directly useful. But
explicitly available models are decidedly useful. They are useful to the system
designer who desires to reconfigure or extend a system. They are useful to the sys-
tem itself, which can use them to reason about its own actions, flexibly control its
own resources in accordance with higher goals, dynamically change its goals,
recover from mistakes, and so forth.

We organize the major topics of Part 1V as follows.

1. Knowledge representation (Chapter 10). Semantic nets are an important tech-
nique for structuring complex knowledge, and can be used as a knowledge
representation formalism in their own right.

2. Matching (Chapter 11). Matching puts a derived representation of an image
into correspondence with an existing representation. This style of processing
representations is more pronounced as domain-dependent knowledge,
idiosyncratic goals, and experience begin to dominate the ultimate use (or
understanding) of the visual input.

3. Inference (Chapter 12). Classical logical inference (a technique for manipulat-
ing purely propositional knowledge represéntations) is a well-understood and
elegant reasoning technique. It has good formal properties, but occasionally
seems restricted in its power to duplicate the range of human processing.
Extended inference techniques such as prodtiction systems are those in which the
inference process as well as the propositions may contribute materially to the
derived knowledge. Labeling techniques can ‘‘infer’” consistent or likely
interpretations for an input from given rules about the domain. Inference can
be used for both problem solving and belief-maintenance activity.

4, Planning (Chapter 13). Planning techniques are useful for problem solving,
and are especially tailored to integrating vision with real-world action. Planning
can be used for resource allocation and attentional mechanisms.

5. Control (Chapter 10; Appendix 2). Control strategies and mechanisms are of
vital concern in any complex artificial intelligence system, and are particularly
important when the computation is as expensive as that of vision processing.

Learning is missing from the list above. Disappointing as it is, at this writing
the problem of learning is so difficult that we can say very little about it in the
domain of vision.

Part IV Relational Structures 315

IPR2022-00092 - LGE
Ex. 1015 - Page 327

Knowledge

Representation
and Use 10

10.1 REPRESENTATIONS

An internal representation of the world can help an intelligent system plan its
actions and foresee their consequences, anticipate dangers, and use knowledge ac-
quired in the past. In Part IV we investigate the creation, maintenance, and use of a
knowledge base, an abstract representation of the world useful for computer vision.
Chapter 1 introduced a layered organization for the knowledge base and divided its
contents into ‘‘analogical’’ and ‘‘propositional”’ models. In this section we con-
sider this high-level division more deeply.

The outside world is accessible to a computer vision program through the im-
aging process. Otherwise, the program is manipulating its internal representations,
which should correspond to the world in understood ways. In this sense, the
knowledge base of generalized images, segmented images, and geometric entities
contains ‘“‘models’’ of the phenomena in the world. Another more abstract sense
of ““model” is high-level, prior expectations about how the world fits together.
Such a high-level model is often much more complex than the lower-level
representations, often has a large “‘propositional”” component, and is often mani-
pulated by “‘inference-like’” procedures. Explicit knowledge and belief structures
are a relatively new phenomenon in computer vision, but are playing an increas-
ingly important role.

The goals of this chapter are three.

To develop in more depth some issues of high-level models (Section 10.1).

2. To describe semantic nets—an important and general tool for both organizing
and representing models (Sections 10.2 and 10.3).

3. To address issues of control, at both abstract and implementational levels (Sec-
tion 10.4 augmented by Appendix 2).

317

IPR2022-00092 - LGE
Ex. 1015 - Page 328

10.1.1 The Knowledge Base—Models and Processes

Figure 10.1 shows the representational layers in the knowledge base as we have
developed it through the book, and shows the place of important processes. This
organization might be compared with that in [Barrow and Tenenbaum 1981].

The knowledge base organization is mirrored in the organization of the book.
Parts I to III dealt with analogical models and their construction; Part IV is con-
cerned with propositional and complex analogical models. In Chapters 11 to 13,
the emphasis moves from the structure of models to the processes (matching,
inference, and planning) needed to manipulate and use them.

The knowledge base should have the following properties.

« Represent analogical, propositional, and procedural structures
« Allow quick access to information

« Be easily and gracefully extensible

« Support inquiries to the analogical structures

« Associate and convert between structures

« Support belief maintenance, inference, and planning

Image 1]
y " model i
Generalized |) :
— image | | | Construction
| L Intrinsic b
| image I
: L
{ r Boundaries
Analogical | |
models | | Regions
— (lconic, | fSegrnented !
{ geometric, I3 i | Texture
| procedural) : :
; | L Motion
|
1 |
} | — Two-
| Geometric | dimensional
E:s:wﬂec!ge " L represen- | {x
i tations V' Thess | | Matching
| dimensional |} and
| I'| prediction
1 1
! Semantic nets < I:::') Matching
| |
I Analogical | '
1 r . Propositions
Loand {_Helational l\ and T 777 D Inference
propositional | structures | | oo
models = [
|
L Plans <::::::j:::\> Planning
Fig. 10.1 The knowledge base and associated processes in a computer vision
system.
318 Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 329

Sec. 70.1

The highest levels of the knowledge base contain both analogical and prop-
ositional models. Analogical tools do not exist for many important activities, and
when they do exist they are often computationally intensive. A three-dimensional
geometric modeling system for automatic manufacturing has very complex data
structures and algorithms compared to their elegant and terse counterparts in a
propositional model that may be used to plan the highest-level actions. In general it
makes sense to do some computation at the analogical level and some at the propo-
sitional. This multiple-representation strategy seems more efficient than translat-
ing all problems into one representation or the other.

The computations in a vision system should be organized so that information
can flow efficiently and unnecessary computation is kept to a minimum. This is the
function of the control disciplines that allocate effort to different processes. Even
the simplest biological vision systems exhibit sophisticated control of processing.

Constructive processes dominate the activity in building lower-level models,
and maiching processes become more important as prior expectations and models
are brought into play. Chapter 11 is devoted to the process of matching.

We postulate that an advanced vision system is engaged in two sorts of high-
level activity: belief maintenance and goal achievement. The former is a more or less
passive, data-driven, background activity that keeps beliefs consistent and up-
dated. The latter is an active, knowledge-driven, foreground activity that consists
of planning future activities. Planning is a problem-solving and simulation activity
that anticipates future world states; in computer vision it can determine how the
visual environment is expected to change if certain actions are performed. Plan-
ning can occur with symbolic, propositional representations (Chapter 13) or in a
more analogical vein with such simulations as trajectory planning [Lozano-Perez
and Wesley 1979]. Planning is useful as an implementational mechanism even in
contexts that are not analogous to human ‘‘conscious’’ problem solving [Garvey
1976]. Helmholtz likened the results of perception to ‘‘unconscious conclusions”
[Helmholtz 1925]. Similarly even “‘primitive” vision processes (computer or bio-
logical) may use planning techniques to accomplish their ends.

Inference and planning are both classical subfields of artificial intelligence.
Neither has seen much application in computer vision. Inference seems useful for
belief maintenance. Extended inference can deal with inconsistent beliefs and
with beliefs that are maintained with various strengths. We treat inference in
Chapter 12. Applications of planning to vision [Garvey 1976; Bolles 1977] show
good promise. Planning is treated in Chapter 13.

10.1.2 Analogical and Propositional Representations

Qur division of the internal knowledge base into ““analogical’’ and “‘propositional’
reflects a similar division in theories of how human beings represent the world
[Johnson-Laird 1980]. Psychological data are not compelling toward either pure
theory; there are indications that human beings use both forms of representation.
We introduce the division in this book because we find it conceptually useful in the

Representations 319

IPR2022-00092 - LGE
Ex. 1015 - Page 330

320

following way. Low-level representations and processes tend to be purely analogi-
cal; high-level representations and processes tend to be both analogical and propo-
sitional.

Analogical representations have the following characteristics [Kosslyn and
Pomerantz 1977; Shepard 1978; Sloman 1971; Kosslyn and Schwartz 1977, 1978;
Waltz and Boggess 1979].

1. Coherence. Each element of a represented situation appears once, with all its
relations to other elements accessible.

2. Continuity. Analogous with continuity of motion and time in the physical
world; these representations permit continuous change.

3. Analogy. The structure of the representation mirrors (and may be isomorphic
to) the relational structure of the represented situation. The representation is a
description of the situation.

4. Simulation. Analogical models are interrogated and manipulated by arbitrarily
complex computational procedures that often have the flavor of (physical or
geometric) simulation.

Propositional representations have the following characteristics [Anderson
and Bower 1973; Palmer 1975; Pylyshyn 1973].

1. Dispersion. An element of a represented situation can appear in several prop-
ositions. However, the propositions can be represented in a coherent manner
by using semantic nets.

2. Discreteness. Propositions are not usually used to represent continuous change.
However, they may be made to approximate continuous values arbitrarily
closely. Small changes in the representation can thus be made to correspond
to small changes in the represented situation.

3. Abstraction. Propositions are true or false. They do not have a geometric
resemblance to the situation; their structure is not analogous to that of the si-
tuation.

4. Inference. Propositional models are manipulated by more or less uniform com-
putations that implement *‘rules of inference’’ allowing new propositions to be
developed from old ones.

Each sort of model derives its “‘meaning’’ differently; the distinctions are in-
teresting, because they can point out weaknesses in each theory [Johnson-Laird
1980; Schank 1975; Fodor, et al. 1975]. Especially in computer implementations,
the two representations only differ essentially in the last two points. It is often pos-
sible to transform one representation to another without loss of information.

Some examples are in order. A generalized image (Part I) is an analogical
model: to find an object above a given object, a procedure can ‘‘search upward’’ in
the image. An unambiguous three-dimensional model of a solid (Chapter 9) is
analogical. It may be used to calculate many geometric properties of the solid,
even those unimagined by the designer of the representation. A set of predicate
calculus clauses (Chapter 12) is a propositional model. Closely related models can
be used to solve problems and make plans [Nilsson 1971, 1980; Chapter 13].

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 331

Sec. 10.1

A short digression: It is interesting that people do not seem to perform syl-
logistic inference (formal propositional deduction) in a ““mechanical’” way. Given
two clauses such as ‘‘Some appliances are telephones’ and ‘‘All telephones are
black,”” we are much more likely to conclude *‘Some appliances are black’ than
the equally valid “Some black things are appliances.”” There is not a satisfying
theory of the mental processes underlying syllogistic inference. An interesting
speculation [Johnson-Laird 1980] is that inference is primarily done through ana-
logical mental models (in which, for example, a population of individuals is con-
jured up and manipulated). Then syllogistic inference techniques may have arisen
as a bookkeeping mechanism to assure that analogical reasoning does not ‘“miss
any cases.”’

10.1.3 Procedural Knowledge

Procedures as explicit elements in a model pose problems because they are not
readily ‘‘understood’’ by other knowledge base components. It is very hard to tell
what a procedure does by looking at its code.

In our taxonomy we think of ‘‘procedural’’ knowledge as being analogical.
The sequential nature of a program’s steps is analogous to an ordering of actions in
time that can only be clumsily expressed in current propositional representations.
Knowledge about ‘““how-to’’ perform a complex activity is most propitiously
represented in the form of explicit process descriptions. Descriptions not involving
the element of time may be naturally represented as passive (analogical or proposi-
tional) structures.

There have been several attempts to organize chunks of procedural
knowledge by associating with the procedure a description of what it is to accom-
plish. For example, procedural knowledge can be stored in the internal model
structure (knowledge base) indexed under patterns that correspond to the argu-
ments of the procedure. Pattern-directed invocation involves going to the knowledge
base for a procedure that matches the given pattern, matching pattern elements to
bind arguments, and invoking the procedure. Several advantages accrue in
pattern-directed invocation, such as not having to know the ‘‘proper names’’ of
procedures, only their descriptions (what they claim to do). Also, when several
procedures match a pattern, one either gets nondeterminism or a chance to choose
the best. Often system facilities include a procedure to run to choose the best pro-
cedure dynamically. Similar pattern matching is involved in resolution theorem
provers and production systems (Chapter 12).

As an example, in a program to locate ribs in a chest radiograph [Ballard
1978], procedures to find ribs under different circumstances are attached to nodes
in a mixed analogic and propositional model of the ribcage as shown in Fig. 10.2.
Each procedure has an associated description which determines whether it can be
run. For example, some programs require instances of neighboring ribs to be lo-
cated before they can run, whereas others can run given only rudimentary scaling
information. When invoked, each procedure tries to find a geometric structure
corresponding to the associated rib in a radiograph. Instead of searching for ribs in
a mechanical order, descriptors allow a choice of order and procedures and hence a

Representations 321

IPR2022-00092 - LGE
Ex. 1015 - Page 332

322

Pic-Proc Pre-Cond. Proc.

Lo

Region \

XCoord

s QJ -
. it ’j;‘f‘i(‘),_u
‘O ‘\Eva;ar o

Z\u;v‘\ e Fig. 10.2 A portion of a ribcage model
(see text). Procedural attachment to a
model is denoted by jagged lines.

more flexible, efficient and robust program (Appendix 2).

The representation and use of procedural knowledge is an important topic
[Schank and Abelson 1977; Winograd 1975; Freuder 1975]. We expect it to be in-
creasingly important for computer vision.

10.1.4 Computer Implementations

A computer implementation can (and often does) obscure the sharp divisions im-
posed by pure philosophical differences between analogical and propositional
models. A propositional representation need not be an unordered set of clauses,
but may have a coherent structure; the coherent versus dispersed distinction is
thus blurred. A geometry theorem prover or a block-stacking program may mani-
pulate diagrams or simulate physical phenomena such as gravitational stability and
wobble in the manipulator [Gelernter 1963; Fahlman 1974; Funt 1977]. ‘“Non-
standard inference’ is an important tool that extends classical inference tech-
niques. Although techniques such as production systems and relaxation labeling
algorithms (Chapter 11) bear little superficial resemblance to predicate logic, both
may be naturally used to manipulate propositional models.

Propositions may be implemented as procedures. If a proposition “‘evalu-
ates”’ to true or false, it is perhaps most naturally considered a function from a
world (or world model) to a truth value. This is not to say that all such functions
exist or are evaluated when the proposition is ““brought to mind’’; perhaps
“‘understanding a proposition”’ is like compiling a function and *‘verifying a propo-
sition’’ is like evaluating it. The function may be implicit in an evaluation (infer-
ence) mechanism or more explicit, as in a *“‘procedural’” semantics such as that of
the programming languages PLANNER and CONNIVER [Hewitt 1972; Sussman
and McDermott 1972; Winograd 1978). A proposition may thus be encoded as an
(analogical!) procedural recipe for establishing the proposition. An example might

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 333

be this representation of the fact *‘In California, Grass and Trees produce green re-
gions.”

(To-Establish (GreenRegion x)
Establish (AND (InCalifornia())
(OR (Establish (Grass x))
(Establish (Trees x)))))

This might mean: To infer that x is a green region, establish that you are in
California and then try to establish that x arose from grass. Should the grass infer-
ence fail, try to establish that x arose from trees. Since the full power of the pro-
gramming language is available to an Establish statement, it can perform general
computations to establish the inference.

The important point here: Rather than a set of clauses whose application
must be organized by an interpreter, propositions may be represented by an expli-
cit control sequence, including procedure calls to other programs. In the example,
(Grass x) and (Trees x) may be procedures which have their own complicated con-
trol structures.

To say that in a computer “‘everything is propositions”’ is a truism; any pro-
gram can be reduced to a Turing machine described by a finite set of ‘“prop-
ositions’’ with a very simple rule of “‘inference.”’ The issue is at what level the pro-
gram should be described. A program may be doing propositional resolution
theorem proving or analogical trajectory planning with three-dimensional models;
it is not helpful to blur this basic functional distinction by appealing to the lowest
implementational level.

10.2 SEMANTIC NETS

10.2.1 Semantic Net Basics

Semantic nets were first introduced under that name as a means of modeling hu-
man associative memory [Quillian 1968]. Since then they have received much at-
tention [Nilsson 1980; Woods 1975; Brachman 1976; Findler 1979]. We are con-
cerned with three aspects of semantic nets.

1. Semantic nets can be used as a data structure for conveniently accessing both
analogical and propositional representations. For the latter their construction
is straightforward and based solely on propositional syntax (Chapter 12).

2. Semantic nets can be used as an analogical structure that mirrors the relevant
relations between world entities.

3. Semantic nets can be used as a propositional representation with special rules
of inference. Both classical and extended inference can be supported, but itisa
challenging enterprise to design net structure that provides the properties of
formal logic [Schubert 1976; Hendrix 1979].

Sec. 10.2 Semantic Nets 323

IPR2022-00092 - LGE
Ex. 1015 - Page 334

324

A semantic network represents objects and relationships between objects as a
graph structure of nodes and (labeled) arcs. The arcs usually represent relations
between nodes and may be ‘‘followed’’ to proceed from node to node. A directed
arc with label L between nodes X and Y can signify that the predicate L (X, Y) is
true. If, in addition, it has a value ¥, the arc can signify that some function or rela-
tion holds: L (X, Y¥) = V.

The indexing property of a network is one of its useful aspects. The network
can be constructed so that objects that are often associated in computations, or are
especially relevant or conceptually close to each other, may be represented by
nodes in the network that are near each other in the network (as measured by
number of arcs separating them). Figure 10.3 shows these ideas: (a) nodes can be
associated by searching outward along arcs and (b) nodes near a specified node are
readily available by following arcs. Semantic networks are especially attractive as
analogical representations of spatial states of affairs. If we restrict ourselves to
binary spatial relations (‘‘above,’” and “‘west of,” for example), physical objects or
parts of objects may be represented by nodes, and their positions with respect to
each other by arcs.

Let us look at a semantic net and make some basic observations. Figure 10.4
is meant to be an analogical representation of an arrangement of chairs around a
table. The LEFT-OF and RIGHT-OF relations are directed arcs, the ADJACENT
relation is undirected; there can be several such undirected arcs between nodes.
Note here that the LEFT-OF and RIGHT-OF relations do not behave in their nor-
mal way. If they are transitive, as is normal, then every chair is both LEFT-OF and

(a)

Fig. 10.3 Semantic networks as
structures for associative search. (a)
Associating two nodes. (b) Retrieving

(b) nearby nodes.

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 335

055

Right of
@
- Fig. 10.4 A representation of chairs at
Left of atable.

RIGHT-OF every other chair. Flexible treatment of this sort of phenomenon is
sometimes difficult in propositional representations.

A simple but basic point: The net of Fig. 10.4 seems to say interesting things
about furniture in a scene. But notice that merely by rewriting labels the same net
could be ““about’’ modular arithmetic, a string of pearls, or any number of things.
There are two morals here. First, a sparsely connected representation (analogical
or propositional) may have several equally good interpretations. Second, a net
without any interpretation procedures essentially represents nothing [McDermott
1976].

Now consider three neighboring chairs described by the following relations.

CHAIR (Armchair), CHAIR (Highchair), CHAIR (Stool)
WIDE (Armchair)

HIGH (Highchair)

LOW (Stool)

LEFT-OF (Armchair, Highchair)

LEFT-OF (Highchair, Stool)

BETWEEN (Highchair, Armchair, Stool)

The relations include four properties (relations with ‘‘one argument”), a
two-argument and a three-argument relation. One way to encode this information
in a net is shown in Fig. 10.5a. Nodes represent individuals, and properties are
kept as node contents. The directed arcs represent only binary relations, and
“betweenness’’ is left implicit. Properties can equally well be represented as la-
beled arcs (Fig. 10.5b).

Relations are encoded as nodes in Fig. 10.6. Here the BETWEEN relation is

encoded asymmetrically: it is not possible to tell by arcs emanating from the stool
that itisin a ‘‘between’’ relationship.

OO sy s

Sec. 10.2 Semantic Nets 325

IPR2022-00092 - LGE
Ex. 1015 - Page 336

Armchair Highchair
+ wide « high

+ chair * chair

(a)

Wide High Low

Chai Chai Chair - ; ’
ar g Fig. 10.5 (a) A simple semantic net.

{b) (b) An equivalent net.

The three-place relation is treated more symmetrically in Fig. 10.7. In gen-
eral, n-place relations may be ‘‘binarized’’ this way; create a node for the “‘relation
instance” and new (relation) nodes for each distinct argument role in the n-ary re-
lation.

An important point: Arcs and nodes had a uniform semantics in Fig. 10.4.
This property was lost in the succeeding nets; nodes are either ““things’’ or rela-
tions, and arcs leading into relations are not the same as those leading out. For
such nets to be useful, the net interpreter (a program that manipulates the net)
must keep these things straight. It is possible but not easy to devise a rich and uni-
form network semantics [Brachman 1979].

Between

Fig. 10.6 A net with more explicit information.

326 Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 337

Between
situation

Fig. 10.7 A net with yet more explicit information.

10.2.2 Semantic Nets for Inference

This section explores some further important issues in the semantics of semantic
nets. In Chapter 12 semantic nets are used as an indexing mechanism in predicate
calculus theorem proving. In some applications an inference system with provably
good formal properties may be too restrictive. Some formal properties (such as
maintaining consistency by not deducing contradictions) may be considered vital,
however. How can ‘“‘good behavior’ be obtained from a representation that may
contain “‘inconsistent’’ information?

One example of an ‘““inconsistent” representation is the net of Fig. 10.3, with
its LEFT-OF and RIGHT-OF problem. Another example is a net version of the
propositions ““All birds fly,”” “‘Penguins are birds,” ‘‘Penguins do not fly.”” The
generalization is useful ‘“‘commonsense’’ knowledge, but the rare exceptions may
be important, too. Network interpreters can cope with these sorts of problems by a
number of methods, such as only accessing a consistent subnetwork, making
deductions from the particular toward the general (this takes care of penguins},
and so forth. All these techniques depend on the structure imposed by the net.

Some more subtle aspects of net representations appear below.

Sec. 10.2 Semantic Nets 327

IPR2022-00092 - LGE
Ex. 1015 - Page 338

328

Nodes

The basic notation of Fig. 10.4 may tempt us to produce a net such as that
shown in Fig. 10.8. Consider the object node sky in Fig. 10.8. Does it stand for the
generic sky concept or for a particular sky at a particular time and location? Clearly
both meanings cannot be embodied in the same node because they are used in
such different ways in reasoning. The standard solution is to use nodes to
differentiate between a fype, or generic concept, and a foken, or instance of it. Fig-
ure 10.9 shows this modification using the e (element of) relation to relate the in-
dividual to the generic concept. In this simple case, the node sky stands for the
type, and the empty node stands for a token, or instance of the sky concept.

The distinction between type and token is related to the distinction between
intensional and extensional concepts. In analyzing an aerial image there is a
difference between

““All bridges span roads or rivers.”’ (10.1)
and
““All bridges (found so far) span roads or rivers.” (10.2)

If “bridges™ in (10.1) means any bridge that might be found, ‘‘bridges’’ is used in
an intensional sense. If “‘bridges’> means a particular set, it is used it in an exten-
sional sense. Normally relations between fype nodes are used in an intensional
sense and relationships between foken nodes have the extensional sense.

Virtual nodes are objects that are not explicitly represented as object nodes.
The need for them arises in expressing complex relations. For example, consider

““The bridge that is at the intersection of road 57
and river 3 is near building 30.” (10.3)

which may be represented as shown in Fig. 10.10. The node labeled x is the result
of intersecting a particular road with a particular river. It is not represented expli-
citly as an instance of any generic concept; it is a virfual node. Virtual nodes can be
eliminated by introducing very complex relations, but this would sacrifice an im-
portant property of networks, the ability to build up a very large number of com-

iy RS T)

Fig. 10.8 Type or token nodes?

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 339

» Fig. 10.9 Distinguishing between

types and tokens: (a) Tokenizing an
(b) instance. (b) Tokenizing an assertion.

plex relations from a small set of primitives. Virtual nodes enhance this ability by
referring to portions of complicated relations.

Nodes in the network can also be used as variables. These variables can match
other nodes which represent constants. In Fig. 10.11, x and y are variables and the
rest of the nodes are constants. If node xis matched to the ““telephone’” node, then
xcan be regarded as a ‘‘telephone’ node.

e = element of

Fig. 10.10 Virtual nodes.

Sec. 70.2 Semantic Nets 329

IPR2022-00092 - LGE
Ex. 1015 - Page 340

330

Fig. 10.11 Nodes as variables. (a)
Black telephone and pen on desk. (b)
QObject denoted by variable x with
variable color y.

Often, it is useful to have numerical values as node properties. This can ex-
tend the discrete representation of nodes and arcs to a continuous one. For exam-
ple, in addition to “‘color of x is red37”* we may also associate the particular value
of red that we mean with node red37. A special kind of value is a default value. If a
value can be found for the node in the course of matching other nodes with values
or by examining image data, then that value is used for the node value. Otherwise,
the default is used.

Relations

Complex relations of many arguments are not uncommon in the world, but
for the bulk of practical work, relations of only a few arguments seem to suffice. Se-
mantic nets can clearly represent two-argument relations through their nodes and
arcs. More complex relations may be dealt with by various devices. The links to
multiple arguments may be ordered within a relation node, or new nodes may be
introduced to label the roles of multiple arguments (Fig. 10.7).

If inference mechanisms are to manipulate semantic nets, certain important
relations deserve special treatment. One such relation is the ““IS-A”’ relation. The
basic issue addressed by this relation is property inheritance [Moore 1979]. That is,
if Fred IS-A Camel and a Camel IS-A Mammal, then presumably Fred has the pro-
perties associated with mammals. It often seems necessary to differentiate between
various senses of ““IS-A.”” One basic sense of “XIS-A Y’ is ““X is an element of
the set ¥ *’; others are ‘X denotes Y,”” ““Xis a subset of ¥,”” and “‘ Y'is an abstrac-
tion of X.”* Notice that each sense depends on differently ““typed” arguments; in
the first three cases X is, respectively, an individual, a name, and a set. Deeper

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 341

treatments of these issues are readily available [Brachman 1979; Hayes* 1977;
Nilsson 1980].

It is particularly helpful to have a denotion link to keep perceptual structures
separate from model structures. Then if mistakes are made by the vision automa-
ton, a correction mechanism can either sever the denotation link completely or
create a new denotation link between the correct model and image structures.

When dealing with many spatial relations, it is economical to recognize that
many relations are “‘inverses’ of each other. That is, LEFT-OF(x,y) is the ““in-
verse’’ of RIGHT-OF (x,);

LEFT-OF(x,y) <=> RIGHT-OF(y,x)
and also
ADJACENT (x,y) <=> ADJACENT (y,x)

Rather than double the number of these kinds of links, one can normalize
them. That is, only one half of the inverse pair is used, and the interpreter infers
the inverse relation when necessary.

Properties have a different semantics depending on the type of object that has
the property. An ‘“‘abstract” node can have a property that gives one aspect or
refinement of the represented concept. A property of a “‘concrete’” node presum-
ably means an established and quantified property of the individual.

Partitions

Partitions are a powerful notion in networks. ‘‘Partition’’ is not used in the
sense of a mathematical partition, but in the sense of a barrier. Since the network is
a graph, it contains no intrinsic method of delimiting subgraphs of nodes and arcs.
Such subgraphs are useful for two reasons:

1. Syntactic. It is useful to delimit that part of the network which represents the
results of specific inferences.

2. Semantic. It is useful to delimit that part of the network which represents
knowledge about specific objects. Partitions may then be used to impose a
hierarchy upon an otherwise ““flat’’ structure of nodes.

The simple way of representing partitions in a net is to create an additional node to
represent the partition and introduce additional arcs from that node to every node
or arc in the partition. Partitions allow the nodes and relations in them to be mani-
pulated as a unit.

Notationally, it is cleaner to draw a labeled boundary enclosing the relevant
nodes (or arcs). An example is shown by Fig. 10.12 where we consider two objects
each made up of several parts with one object entirely left of the other. Rather than
use a separate LEFT-OF relation for each of the parts, a single relation can be used
between the two partitions. Any pair of parts (one from each object) should inherit
the LEFT-OF relation. Partitions may be used to implement quantification in se-
mantic net representations of predicate calculus [Hendrix 1975, 1979]. They may
be used to implement frames (Section 10.3.1).

Sec. 10.2 Semantic Nets 331

IPR2022-00092 - LGE
Ex. 1015 - Page 342

332

Left of

<
@,;@ /

Partition 1

Fig. 10.12 The use of partitions. (a) Construction of a partition. (b) Two objects described
by partitions.

Conversions

It is important to be able to transform from geometric (and logical) represen-
tations to propositional abstract representations and vice versa. For example, in
Fig. 10.13 the problem is to find the exact location of a telephone on a previously
located desk. In this case, propositional knowledge that telephones are usually on
desktops, together with the desk top location and knowledge about the size of tele-
phones, define a search area in the image.

Converting image data about a particular group of objects into relational form
involves the inverse problem. The problem is to perform a level of abstraction to
remove the specificity of the geometric knowledge and derive a relation that is ap-
propriate in a larger context. For example, the following program fragment creates
the relations ABOVE (A4, B), where 4 and B are world objects.

Comment: assume a world coordinate system where Z is the positive vertical.

Find ZA ;, for Zin A and ZB,,, for Zin B.
If ZA in > ZBay, then make ABOVE (4, B) true.

Many other definitions of ABOVE, one of which compares centers of gravity, are
possible. In most cases, the conversion from continuous geometric relations to
discrete propositional relations involves more or less arbitrary conventions. To ap-
preciate this further, consult Fig. 10.14 and try to determine in which of the cases

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 343

Fig. 10.13 Search area defined by relational bindings.

block A is LEFT-OF block B. Figure 10.14d shows a case where different answers
are obtained depending on whether a two-dimensional or three-dimensional in-
terpretation is used. Also, when relations are used to encode what is usually true of
the world, it is often easy to construct a counterexample. Winston [Winston 1975]

used
SUPPORTS (B,A) ABOVE (A,B)

—

-l

e W=

(a) (d)

A]
_— —

(b) (c)

Fig. 10.14 Examples to demonstrate difficulties in encoding spatial relation
LEFT-OF (see text).

Sec. 10.2 Semantic Nets 333

IPR2022-00092 - LGE
Ex. 1015 - Page 344

which is contradicted by Fig. 10.15, given the previous definition of ABOVE.
One common way around these problems is to associate quantitative, “‘con-
tinuous’” information with relations (section 10.3.2 and later examples).

10.3 SEMANTIC NET EXAMPLES

334

Examples of semantic nets abound throughout Part IV. Two more examples illus-
trate the power of the notions. The first example is described very generally, the
second in detail.

10.3.1 Frame Implementations

Frame system theory [Minsky 1975] is a way of explaining our quick access to im-
portant aspects of a (perhaps perceptual) situation. It is a provocative and con-
troversial idea, and the reader should consult the References for a full treatment.
Implementationally, a frame may be realized by a partition; a frame is a “‘chunk”
of related structure.

Associating related ‘‘chunks’ of knowledge into manipulable units is a
powerful and widespread idea in artificial intelligence [Hayes 1980; Hendrix 1979]
as well as psychology. These chunks go by several names: units, frames, parti-
tions, schemata, depictions, scripts, and so forth [Schank and Abelson 1977,
Moore and Newell 1973; Roberts and Goldstein 1977; Hayes* 1977; Bobrow and
Winograd 1977, 1979, Stefik 1979; Lehnert and Wilks 1979; Rumelhart et al.
1972].

Frames systems incorporate a theory of associative recall in which one selects
frames from memory that are relevant to the situation in which one finds oneself.
These frames include several kinds of information. Most important, frames have
slots which contain details of the viewing situation. Frame theory dictates a strictly
specific and prototypical structure for frames. That is, the number and type of slots
for a particular type of frame are immutable and specified in advance. Further,
frames represent specific prototype situations; many slots have default values; this
is where expectations and prior knowledge come from. These default values may
be disconfirmed by perceptual evidence; if they are, the frame can contain infor-
mation about what actions to take to fill the slot. Some slots are to be filled in by in-
vestigation. Thus a frame is a set of expectations to be confirmed or disconfirmed

&‘ : |
Fig. 10.15 A counterexample to

///// /////////// SUPPORTS(B, A) => ABOVE(4, B).

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 345

and actions to pursue in various contingencies. One common action is to “‘bring in
another frame.”

The theory is that based on a partial match of a frame’s defining slots, a frame
can be ‘‘brought to mind.”” The retrieval is much like jumping to a conclusion
based on partial evidence. Once the frame is proposed, its slots must be matched
up with reality; thus we have the initial major hypothesis that the frame represents,
which itself consists of a number of minor subhypotheses to be verified. A frame
may have other frames in its slots, and so frames may be linked into “‘frame sys-
tems’’ that are themselves associatively related. (Consider, for example, the
linked perceptual frames for being just outside a theater and for being just inside.)
Transformations between frames correspond to the effects of relevant actions.
Thus the hypotheses can suggest one another. ““Thinking always begins with sug-
gestive but imperfect plans and images; these are progressively replaced by
better —but usually still imperfect—ideas’’ [Minsky 1975].

Frame theory is controversial and has its share of technical problems [Hinton
1977]. The most important of these are the following.

1. Multiple instances of concepts seem to call for copying frames (since the in-
stances may have different slotfillers). Hence, one loses the economy of a
preexisting structure.

2. Often, objects have variable numbers of components (wheels on a truck, run-
ways in an airport). The natural representation seems to be a rule for con-
structing examples, not some specific example.

3. Default values seem inadequate to express legal ranges of slot-filling values or
dependencies between their properties.

4. Property inheritance is an important capability that semantic nets can imple-
ment with “‘is a”” or “‘element-of*’ hierarchies. However, such hierarchies
raise the question of which frame to copy when a particular individual is being
perceived. Should one copy the generic Mammal frame or the more specific
Camel frame, for instance. Surely, it is redundant for the Camel frame to du-
plicate all the slots in the Mammal frame. Yet our perceptual task may call for
a particular slot to be filled, and it is painful not to be able to tell where any par-
ticular slot resides.

Nevertheless, where these disadvantages can be circumvented or are ir-
relevant, frames are seeing increasing use. They are a natural organizing tool for
complex data.

10.3.2 Location Networks

This section describes a system for associating geometric analogical data with a se-
mantic net structure which is sometimes like a frame with special ‘‘evaluation’
rules. The system is a geometrical inference mechanism that computes (or infers)
two-dimensional search areas in an image [Russell 1979]. Such networks have
found use in both aerial image applications [Brooks and Binford 1980; Nevatia and
Price 1978] and medical image applications [Ballard et al. 1979].

Sec. 10.3 Semantic Net Examples 335

IPR2022-00092 - LGE
Ex. 1015 - Page 346

336

The Network

A location network is a network representation of geometric point sets related
by set-theoretic and geometric operations such as set intersection and union, dis-
tance calculation, and so forth. The operations correspond to restrictions on the lo-
cation of objects in the world. These restrictions, or rules, are dictated by cultural
or physical facts.

Each internal node of the location network contains a geometric operation, a
list of arguments for the operation, and a resuir of the operation. For instance, a
node might represent the set-theoretic union of two argument point sets, and the
result would be a point set. Inference is performed by evaluating the net; evaluating
all its operations to derive a point set for the top (root) operation.

The network thus has a hierarchy of ancestors and descendents imposed on it
through the argument links. At the bottom of this hierarchy are data nodes which
contain no operation or arguments, only geometric data. Each node is in one of
three states: A node is up-to-date if the data attached to it are currently considered
to be accurate. It is out-of-date if the data in it are known to be incomplete, inaccu-
rate, or missing. It is hypothesized if its contents have been created by net evalua-
tion but not verified in the image.

In a common application, the expected relative locations of features in a
scene are encoded in a network, which thus models the expected structure of the
image. The primitive set of geometric relations between objects is made up of four
different types of operations.

1. Directional operations (left, reflect, north, up, down, and so on) specify a point
set with the obvious locations and orientations to another.

2. Area operations (close-to, in-quadrilateral, in-circle and so on) create a point
set with a non-directional relation to another.

3. Set operations (union, difference and intersection) perform the obvious set
operations.

4. Predicates on areas allow point sets to be filtered out of consideration by
measuring some characteristic of the data. For example, a predicate testing
width, length, or area against some value restricts the size of sets to be those
within a permissible range.

The location of the aeration tank in a sewage treatment plant provides a
specific example. The aeration tank is often a rectangular tank surrounded on ei-
ther end by circular sludge and sedimentation tanks (Fig. 10.16). As a general rule,
sewage flows from the sedimentation tanks to aeration tanks and finally through to
the sludge tanks. This design permits the use of the following types of restrictions
on the location of the aeration tanks.

Rule I: ““Aeration tanks are located somewhere close to both the sludge tanks
and the sedimentation tanks.”

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 347

SED IMENTATION TFINRIS

Reration Tanks

c 3 T e :
~LUDGE [ANKS

Fig. 10.16 Aerial image of a sewage plant.
The various tanks cannot occupy the same space, so:

Rule 2: ““ Aeration tanks must not be too close to either the sludge or sedimen-
tation tanks."

Rule 1 is translated to the following network relations.
CLOSE-TO(Union (LocSludgeTanks, LocSedTanks), Distance X)

Rule 2 is translated to

NOT-IN (Union (LocSludgeTanks,LocSedTanks), Distance Y)

The network describing the probable location of the aeration tanks embodies
both of these rules. Rule 1 determines an area that is close to both groupings of
tanks and Rule 2 eliminates a portion of that area. Thinking of the image as a point
set, a set difference operation can remove the area given by Rule 2 from that
specified by Rule 1. Figure 10.17 shows the final network that incorporates both

rules.

Of course, there could be places where the aeration tanks might be located
very far away or perhaps violate some other rule. It is important to note that, like
the frames of Section 10.3.1, location networks give prototypical, likely locations
for an object. They can work very well for stereotyped scenes, and might fail to per-
form in novel situations.

The Evaluation Mechanism

The network is interpreted (evaluated) by a program that works top-down in
a recursive fashion, storing the partial results of each rule at the topmost node as-

Sec. 10.3 Semantic Net Examples 337

IPR2022-00092 - LGE
Ex. 1015 - Page 348

338

Aeration
tank
D1
difference
c2
close-to
c1 Distance
¥
close-to
u1
Distance
; X
union

g

Sludge Sediment
tanks tanks

Fig. 10.17 Constraint network for aeration tank.

sociated with that rule (with a few exceptions). Evaluation starts with the root
node. In most networks, this node is an operation node. An operation node is
evaluated by first evaluating all its arguments, and then applying its operation to
those results. Its own result is then available to the node of the network that called
for its evaluation.

Data nodes may already contain results which might come from a map or
from the previous application of vision operators. At some point in the course of
the evaluation, the evaluator may reach a node that has already been evaluated and
is marked up-to-date or hypothesized (such a node contains the results of evalua-
tion below that point). The results of this node are returned and used exactly as if it
were a data node. Qut-of-date nodes cause the evaluation mechanism to execute a
low-level procedure to establish the location of the feature. If the procedure is un-
able to establish the status of the object firmly within its resource limits, the status
will remain out-of-date. At any time, out-of-date nodes may be processed without
having to recompute any up-to-date nodes. A node marked hypothesized has a
value, usually supplied by an inference process, and not verified by low-level im-
age analysis. Hypothesized data may be used in inferences: the results of all infer-
ences based on hypothesized data are marked hypothesized as well.

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 349

If a data node ever has its value changed (say, by an independent process that
adds new information), all its ancestors are marked out-of-date. Thus the root
node will indicate an out-of-date status, but only those nodes on the out-of-date
path must be reevaluated to bring the network up to date. Figure 10.18 shows the
operation of the aeration tank network of Fig. 10.17 on the input of Fig. 10.16. In
this case the initial feature data were a single sludge tank and a single sedimenta-
tion tank. Suppose additional work is done to find the location of the remaining
sludge and sediment tanks in the image. This causes a reevaluation of the network,
and the new result more accurately reflects the actual location of the aeration
tanks.

Properties of Location Networks

The location network provides a very general example of use of semantic nets
in computer vision.

1. It serves as a data base of point sets and geometric information. The truth
status of items in the network is explicitly maintained and depends on incom-
ing information and operations performed on the net.

2. Itisan expansion of a geometric expression into a tree, which makes the order
of evaluation explicit and in which the partial results are kept for each
geometric calculation. Thus it provides efficient updating when some but not
all the partial results change in a reevaluation.

3. It provides a way to make geometrical inferences without losing track of the
hypothetical nature of assumptions. The tree structure records dependencies
among hypotheses and geometrical results, and so upon invalidation of a
geometric hypothesis the consequences (here, what other nodes have their
values affected) are explicit. The record of dependencies solves a major prob-
lem in automated inference systems.

4. It reflects implicit universal quantification. The network claims to represent
true relations whose explicit arguments must be filled in as the network is ‘‘in-
stantiated’’ with real data.

5. Ithasa ““flat” semantics. There are no element-of hierarchies or partitions.

The concept of “‘individual” is flexible. A point set can contain multiple
disconnected components corresponding to different world objects. In set
operations, such an assemblage acts like an explicit set union of the com-
ponents. An “‘individual’ in the network may thus correspond to multiple in-
dividual point (sub)sets in the world.

7. The network allows use of partial knowledge. A set-theoretic semantics of ex-
istence and location allows modeling of an unknown location by the set-
theoretic universe (the possible location is totally unconstrained). If some-
thing is known not to exist in a particular image, its ‘‘location’” is the null set.
Generally, a location is a point set.

8. The set-theoretic semantics allows useful punning on set union and the OR
operation, and set intersection and the AND operation. If a dock is on the

Sec. 10.3 Semantic Net Examples 339

IPR2022-00092 - LGE
Ex. 1015 - Page 350

shoreline AND near a town, the search for docks need only be carried out in
the intersection of the locations.

10.4 CONTROL ISSUES IN COMPLEX VISION SYSTEMS

340

Computer vision involves the control of large, complex information-processing
tasks. Intelligent biological systems solve this control problem. They seem to have
complicated control strategies, allowing dynamic allocation of computational
resources, parallelism, interrupt-driven shifts of attention, and incremental
behavior modification. This section explores different strategies for controlling the
complex information processing involved in vision. Appendix 2 contains specific

Fig. 10.18 (a) Initial data to be refined
by location network inference. (b)
Results of evaluating network of (a). (c)
Results of evaluating network after
additional information is added.

Ch. 710 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 351

techniques and programming language constructs that have proven to be useful
tools in implementing control strategies for artificial intelligence and computer vi-
sion.

10.4.1 Parallel and Serial Computation

In parallel computation, several computations are done at the same time. For exam-
ple, different parts of an image may be processed simultaneously. One issue in
parallel processing is synchronization: Is the computation such that the different
parts can be done at different rates, or must they be kept in step with each other?
Usually, the answer is that synchronization is important. Another issue in parallel
processing is its implementation. Animal vision systems have the architecture to
do parallel processing, whereas most computer systems are serial (although
developing computer technologies may allow the practical realization of some
parallel processing). On a serial computer parallelism must be simulated—this is
not always straightforward.

In serial computation, operations are performed sequentially in time whether
or not they depend on one another. The implied sequential control mechanism is
more closely matched to a (traditional) serial computer than is a parallel mechan-
ism. Sequential algorithms must be stingy with their resources. This fact has had
many effects in computer vision. It has led to mechanisms for efficient data access,
such as multiple-resolution representations. It has also led some to emphasize cog-
nitive alternatives for low-level visual processing, in the hope that the massive
parallel computations performed in biological vision systems could be circum-
vented. However, this trend is reversing; cheaper computation and more pervasive
parallel hardware should increase the commitment of resources to low-level com-
putations. Parallel and serial control mechanisms have both appeared in algo-
rithms in earlier chapters. It seems clear that many low-level operations (correla-
tion, intrinsic image computations) can be implemented with parallel algorithms.
High-level operations, such as ‘‘planning” (Chapter 13) have inherently serial
components. In general, in the low levels of visual processing control is predom-
inately parallel, whereas at the more abstract levels some useful computations are
necessarily serial in nature.

10.4.2 Hierarchical and Heterarchical Control

Visual control strategies dictate the flow of information and activity through the
representational layers. What triggers processing: a low level input like a color
patch on the retina, or a high level expectation (say, expecting to see a red car)?
Different emphasis on these extremes is a basic control issue. The two extremes
may be characterized as follows.

1. Image data driven. Here the control proceeds from the construction of the

generalized image to segmented structures and finally to descriptions. This is
also called bottom-up control.

Sec. 10.4 Control Issues in Complex Vision Systems 341

IPR2022-00092 - LGE
Ex. 1015 - Page 352

342

2. Internal model driven. Here high-level models in the knowledge base generate
expectations or predictions of geometric, segment, or generalized image struc-
ture in the input. Image understanding is the verification of these predictions.
This is also called fop-down control.

Top-down and bottom-up control are distinguished not by what they do but
rather by the order in which they do it and how much of it they do. Both ap-
proaches can utilize all the basic representations—intrinsic images, features,
geometric structures, and propositional representations—but the processing
within these representations is done in different orders.

The division of control strategies into top-down and bottom-up is a rather
simplistic one. There is evidence that attentional mechanisms may be some of the
most complicated brain functions that human beings have [Geschwind 1980]. The
different representational subsystems in a complex vision system influence each
other in sophisticated and intricate ways; whether control flows ‘““up™ or “down’’ is
only a broad characterization of local influence in the (loosely ordered) layers of
the system.

The term ‘‘bottom-up’’ was originally applied to parsing algorithms for for-
mal languages that worked their way up the parse tree, assembling the input into
structures as they did so. ‘““Top-down’’ parsers, on the other hand, notionally
started at the top of the parse tree and worked downward, effectively generating
expectations or predictions about the input based on the possibilities allowed by
the grammar; the verification of these predictions confirmed a particular parsing.

These two paradigms are still basic in artificial intelligence, and provide
powerful analogies and methods for reasoning about and performing many
information-processing tasks. The bottom-up paradigm is comparable in spirit
with “‘forward chaining,” which derives further consequences from established
results. The top-down paradigm is reflected in “‘backward chaining,”’ which breaks
problems up into subproblems to be solved.

These control organizations can be used not only “‘tactically’’ to accomplish
specific tasks, but they can dictate the whole “‘strategy’’ of the vision campaign.
We shall discover that in their pure forms the extreme strategies (top-down and
bottom-up) appear inadequate to explain or implement vision. More flexible or-
ganizations which incorporate both top-down and bottom-up components seem
more suited to a broad spectrum of ambitious vision tasks.

Bottom-Up Control
The general outline for bottom-up vision processing is:
1. PREPROCESS. Convert raw data into more usable intrinsic forms, to be inter-
preted by next level. This processing is automatic and domain-independent.

2. SEGMENT. Find visually meaningful image objects perhaps corresponding to
world objects or their parts. This process is often but not always broken up into
(a) the extraction of meaningful visual primitives, such as lines or regions of
homogeneous composition (based on their local characteristics); and (b) the
agglomeration of local image features into larger segments.

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 353

3. UNDERSTAND. Relate the image objects to the domain from which the image
arose. For instance, identify or classify the objects. As a step in this process, or
indeed as the final step in the computer vision program, the image objects and
the relations between them may be described.

In pure bottom-up organization each stage yields data for the next. The pro-
gression from raw data to interpreted scene may actually proceed in many steps;
the different representations at each step allow us to separate the process into the
main steps mentioned above.

Bottom-up control is practical if potentially useful ‘‘domain-independent’’
processing is cheap. It is also practical if the input data are accurate and yield reli-
able and unambiguous information for the higher-level visual processes. For ex-
ample, the binary images that result from careful illumination engineering and in-
put thresholding can often be processed quite reliably and quickly in a bottom-up
mode. If the data are less reliable, bottom-up styles may still work if they make
only tolerably few errors on each pass.

Top-Down Control

A bottom-up, hierarchical model of perception is at first glance appealing on
neurological and computational grounds, and has influenced much classical philo-
sophical thought and psychological theory. The “‘classical’’ explanation of percep-
tion has relatively recently been augmented by a more cognition-based one involv-
ing (for instance) interaction of knowledge and expectations with the perceptual
process in a more top-down manner [Neisser 1967; Bartlett 1932]. A similar evolu-
tion of the control of computer vision processing has accounted for the augmenta-
tion of the pure ‘‘pattern recognition” paradigm with more ‘‘cognitive’’ para-
digms. The evidence seems overwhelming that there are vision processes which do
not ‘‘run bottom-up,’’ and it is one of the major themes of this book that internal
models, goals, and cognitive processes must play major roles in computer vision
[Gregory 1970; Buckhout 1974; Gombrich 1972]. Of course, there must be a sub-
stantial component of biological vision systems which can perform in a noncogni-
tive mode.

There are probably no versions of top-down organization for computer vision
that are as pure as the bottom-up ones. The model to keep in mind in top-down
perception is that of goal-directed processing. A high-level goal spawns subgoals
which are attacked, again perhaps yielding sub-subgoals, and so on, until the goals
are simple enough to solve directly. A common top-down technique is
“hypothesize-and-verify”’; here an internal modeling process makes predictions
about the way objects will act and appear. Perception becomes the verifying of
predictions or hypotheses that flow from the model, and the updating of the model
based on such probes into the perceptual environment [Bolles 1977]. Of course,
our goal-driven processes may be interrupted and resources diverted to respond to
the interrupt (as when movement in the visual periphery causes us to look toward
the moving object). Normally, however, the hypothesis verification paradigm re-
quires relatively little information from the lower levels and in principle it can con-
trol the low-level computations.

Sec. 10.4 Control issues in Complex Vision Systems 343

IPR2022-00092 - LGE
Ex. 1015 - Page 354

344

The desire to circumvent unnecessary low-level processing in computer vi-
sion is understandable. Our low-level vision system performs prodigious amounts
of information processing in several cascaded parallel layers. With serial computa-
tion technology, it is very expensive to duplicate the power of our low-level visual
system. Current technological developments are pointing toward making parallel,
low-level processing feasible and thus lowering this price. In the past, however, the
price has been so heavy that much research has been devoted to avoiding it, often
by using domain knowledge to drive a more or less top-down perception paradigm.
Thus there are two reasons to use a top-down control mechanism. First, it seems to
be something that human beings do and to be of interest in its own right. Second, it
seems to offer a chance to accomplish visual tasks without impractical expenditure
of resources.

Mixed Top-Down and Bottom-Up Control

In actual computer vision practice, a judicious mixture of data-driven analysis
and model-driven prediction often seems to perform better than either style in iso-
lation. This meld of control styles can sometimes be implemented in a complex
hierarchy with a simple pass-oriented control structure. An example of mixed or-
ganization is provided by a tumor-detection program which locates small nodular
tumors in chest radiographs [Ballard 1976]. The data-driven component is needed
because it is not known precisely where nodular tumors may be expected in the in-
put radiograph; there is no effective model-driven location-hypothesizing scheme.
On the other hand, a distinctly top-down flavor arises from the exploitation of what
little is known about lung tumor location (they are found in lungs) and tumor size.
The variable-resolution method using pyramids, in which data are examined in in-
creasingly fine detail, also seems top-down. In the example, work done at 1/16
resolution in a consolidated array guides further processing at 1/4 resolution. Only
when small windows of the input array are isolated for attention are they con-
sidered at full resolution.

The process proceeds in three passes which move from less to greater detail
(Fig. 10.19), zooming in on interesting areas of image, and ultimately finding ob-
jects of interest (nodules). Two later passes (not shown) ‘‘understand’” the no-
dules by classifying them as ‘‘ghosts,”” tumors or nontumors. Within pass II, there
is a distinct data-driven (bottom-up) organization, but passes I and III have a
model-directed (top-down) philosophy.

This example shows that a relatively simple, pass-oriented control structure
may implement a mixture of top-down and bottom-up components which focus at-
tention efficiently and make the computation practical. It also shows a few places
where the ordering of steps is not inherently sequential, but could logically proceed
in parallel. Two examples are the overlapping of high-pass filtering of pass IT with
pass I, and parallel exploration of candidate nodule sites in pass I1I.

Heterarchical Control

The word ‘‘heterarchy’ seems to be due to McCulloch, who used it to
describe the nonhierarchical (i.e., not partially ordered in rank) nature of neural
responses implied by their connectivity in the brain. It was used in the early 1970s
to characterize a particular style of nonhierarchical, non-pass-structured control

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 355

PREPROCESS SEGMENT CONTROL
Pass 0
(Digitize The digitizer has a
radiograph) hardware attechment
which produces the
optical density.
Pass I
(Find lung In 64 X 56 In 64 X 56 array,
boundaries) consolidated find rough lung
array, apply outline; in TOP—DOWN
gradient at proper 256 X 224 array,
resolution refine lung
outline
Pass II
{Find In 256 X 224 array, In 266 X 224 array
candidate apply high-pass use gradient-
nodule sites filter to enhance directed, circular BOTTOM—-UP
and edges, then inside Hough method
large lung boundaries; to find candidate
tumors) apply gradient at sites; also detect
proper resolution large tumors
Pass I1I
(Find nodule From 1024 X 836 In 64 X 64 full-
boundaries) array, extract 64 X 64 resolution, pre-
window about each processed window,
candidate nodule site, apply dynamic
then in window apply programming TOP—-DOWN

high-pass filter for

edge enhancement;
then apply gradient
at proper resolution

technique
to find accurate
nodule boundaries

Fig. 10.19 A hierarchical tumor-detection algorithm. Technical details of the
methods are found elsewhere in this volume. The processing proceeds in passes
from top to bottom, and within each pass from left to right. The processing exhi-
bits both top-down and bottom-up characteristics.

organization. Rather than a hierarchical structure (such as the military), one
should imagine a community of cooperating and competing experts. They may be
organized in their effort by a single executive, by a universal set of rules governing
their behavior, or by an a priori system of ranking. If one can think of a task as con-
sisting of many smaller subtasks, each requiring some expertise, and not neces-
sarily performed globally in a fixed order, then the task could be suitable for
heterarchical-like control structure.

The idea is to use, at any given time, the expert who can help most toward
final task solution. The expert may be the most efficient, or reliable, or may give
the most information,; it is selected because according to some criterion its subtask
is the best thing to do at that time. The criteria for selection are wide and varied,
and several ideas have been tried. the experts may compute their own relevance,
and the decision made on the basis of those individual local evaluations (as in
PANDEMONIUM [Selfridge 1959]1). They may be assigned a priori immutable

Sec. 10.4 Control Issues in Complex Vision Systems 345

IPR2022-00092 - LGE
Ex. 1015 - Page 356

346

rank, so that the highest-ranking expert that is applicable is always run (as in
[Shirai 1975; Ambler et al. 1975]). A combination of empirically predetermined
and dynamically situation-driven information can be combined to decide which ex-
pert applies.

The actual control structure of heterarchical programming can be quite sim-
ple; it can be a single iterative loop in which the best action to take is chosen, ap-
plied, and interpreted (Fig. 10.20).

10.4.3 Belief Maintenance and Goal Achievement

Belief maintenance and goal achievement are high-level processes that imply
differing control styles. The former is concerned with maintaining a current state,
the latter with a set of future states. Belief maintenance is an ongoing activity
which can ensure that perceptions fit together in a coherent way. Goal achieve-
ment is the integration of vision into goal-directed activities such as searching for
objects and navigation. There may be ‘‘unconscious’ use of goal-seeking tech-
niques (e.g., eye-movement control).

Belief Maintenance

An organism is presented with a rich visual input to interpret. Typically, it all
makes sense: chairs and tables are supported by floors, objects have expected
shapes and colors, objects appear to flow past as the organism moves, nearer ob-
jects obscure farther ones, and so on. However, every now and then something

Choose the best action
(based on what is known

so far

Perform it

Inperpret its results
to increase knowledge

o< Done >XYesD

Fig. 10.20 A main executive control
loop for heterarchical vision.

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 357

enters the visual field that does not meet expectations. An unfamiliar object in a
familiar environment or a sudden movement in the visual periphery can be
““surprises’’ that do not fit in with our existing beliefs and thus have to be reckoned
with.

It is sometimes impossible to ignore movements in our visual periphery, but
if we are preoccupied it is easily possible to stay unconscious of small changes in
our environment. How is it possible to notice some things and not others? The be-
lief maintenance mechanism seems to be resource-limited. A certain amount of
““‘computing resource’’ is allocated for the job. With this resource, only a limited
amount of checking can be done. Checks to be made are ranked (somehow—
responses to events in the periphery are like reflexes, or high-priority hard-wired
interrupts) and those that cannot be done within the resource limit are omitted.
Changes in our beliefs are often initiated in a bottom-up way, through unexpected
inputs.

A second characteristic of belief maintenance is the almost total absence of
sequential, simulation-based or ‘“‘symbolic’’ planning or problem-solving activity.
Our beliefs are ““in the present’’; manipulation of hypothetical worlds is not belief
maintenance. ‘“Truth maintenance’ schemes have been discussed in various con-
texts [Doyle 1979; Stallman and Sussman 1977].

We conjecture that constraint-satisfaction (relaxation) mechanisms
(Chapters 3, 7, and 12) are computationally suited to maintaining belief structures.
They can operate in parallel, they seek to minimize inconsistency, they can tolerate
“noise’” in either input or axioms. Relaxation techniques are usually applied to
low-level visual input where locally noisy parameters are combined into globally
consistent intrinsic images. Chapter 12 is concerned with inference, in which con-
straint relaxation is applied to higher-level entities.

Characteristics of Goal Achievement

Goal achievement involves two related activities: planning and acting. Plan-
ning is a simulation of the world designed to generate a plan. A plan is a sequence
of actions that, if carried out, should achieve a goal. Actions are the primitives that
can modify the world. The motivation for planning is survival. By being able to
simulate the effects of various actions, a human being is able to avoid dangerous si-
tuations. In an analogous fashion, planning can help machines with vision. For ex-
ample, a Mars rover can plan its route so as to avoid steep inclines where it might
topple over. The incline measurement is made by processing visual input. Since
planning involves a sequence of actions, each of which if carried out could poten-
tially change the world, and since planning does not involve actually making those
changes, the difficult task of the planner is to keep track of all the different world
states that could result from different action sequences.

Vision can clearly serve as an important information-gathering step in plan-
ning actions. Can planning techniques be of use directly to the vision process?
Clearly so in ‘‘skilled vision,”” such as photointerpretation. Also, planning is a use-
ful computational mechanism that need not be accompanied by conscious, cogni-
tive behavior.

Sec. 10.4 Control issues in Complex Vision Systems 347

IPR2022-00092 - LGE
Ex. 1015 - Page 358

348

These inductive conclusions leading to the formation of our sense perceptions
certainly do lack the purifying and scrutinizing work of conscious thinking.
Nevertheless, in my opinion, by their particular nature they may be classed as
conclusions, inductive conclusions unconsciously formed. [Helmholtz 1925]

The character of computations in goal achievement is related to the inference
mechanisms studied in Chapter 11, only planning is distinguished by being
dynamic through time. Inference (Chapter 12) is concerned with the knowledge
base and deducing relations that logically follow from it. The primitives are prop-
ositions. In planning (Chapter 13) the primitives are actions, which are inherently
more complex than propositions. Also, planning need not be a purely deductive
mechanism; instead it can be integrated with visual ‘‘acting’’, or the interpretation
of visual input. Often, a long deductive sequence may be obviated by using direct
visual inspection. This raises a crucial point: Given the existence of plans, how
does one choose between them? The solution is to have a method of scoring plans
based on some measure of their effectiveness.

EXERCISES

10.1 (a) Diagram some networks for a simple dial telephone, at various levels of detail
and with various complexities of relations.
(b) Now include in your network dial and pushbutton types.
(c) Embed the telephone frame into an office frame, describing where the tele-
phone should be found.
10.2 Is a LISP vision program an analogical or propositional representation of
knowledge?
10.3 Write a semantic net for the concept ‘“‘leg,”” and use it to model human beings,
tables, and spiders. Represent the fact ‘“all tables have four legs.”” Can your *‘leg”
model be shared between tables and spiders? Shared within spiders?

REFERENCES

AMBLER, A. P., H. G. BARROW, C. M. BRowN, R, M. BURSTALL, and R. J. POPPLESTONE. ‘A versatile
system for computer controlled assembly.’” Artificial Intelligence 6, 2, 1975, 129-156.

ANDERSON, J. R. and G. H. BoweR. Human Associative Memory. New York: V. H. Winston & Sons,
1973.

BALLARD, D. H. Hierarchic Recognition of Tumors in Chest Radiographs. Basel: Birkhauser-Verlag (ISR-
16), 1976.

BALLARD, D. H. “Model-directed detection of ribs in chest radiographs.”” TR11, Computer Science
Dept., Univ. Rochester, March 1978.

BaLLARD, D. H., U. SHAN], and R. B. ScHUDY. “*Anatomical models for medical images.” Proc 3rd
COMPSAC November 1979, 565-570.

Barrow, H. G. and J. M. TEngnBAUM. “Computational vision.”” Proc. IEEE 69, 5, May 1981, 572-595.

BARTLETT, F. C. Remembering: A Study in Experimental and Social Psychology. Cambridge: Cambridge
University Press, 1932.

Ch. 70 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 359

Bosrow, D. G. and T. WINOGRAD. ‘‘An overview of KRL-0, a knowledge representation language.”
Cognitive Science 1,1, 1977, 3-46.

Boerow, D. G. and T. WINOGRAD. “KRL: another perspective.”” Cognitive Science 3, 1, 1979, 29-42.

BoLLEes, R. C. “Verification vision for programmable assembly.”” Proc., 5th IJCAI, August 1977,
569-575.

BRACHMAN, R. J. “What’s in a concept? Structural foundations for semantic networks.”” Report 3433,
Bolt, Beranek and Newman, October 1976.

BracHMAN, R. J. “On the epistemological status of semantic networks.”” In Associative Networks:
Representation and Use of Knowledge by Computers, N.V. Findler (Ed.). New York: Academic
Press, 1979, 3-50.

Brooks, R. A. and T. O. BINFORD. ‘““Representing and reasoning about specified scenes.”” Proc.,
DARPA IU Workshop, April 1980, 95-103.

BuckHouT, R. ““Eyewitness testimony.”’ Scientific American, December 1974, 23-31.
DovyLE, I. ““A truth maintenance system.” Artificial Intelligence 12, 3, 1979.

FaHLMAN, S. E. ““A planning system for robot construction tasks.’’ Artificial Inteiligence 5, 1, 1974,
1-49.

FINDLER, N. V. (Ed.). Associative Networks: Representation and Use of Knowledge by Computers. New
York: Academic Press, 1979.

Fopor, J. D., J. A. Fopor, and M. F. GARRETT. ““The psychological unreality of semantic representa-
tions.” Linguistic Inquiry 4, 1975, 515-531.

FRrReuDER, E. C. “A computer system for visual recognition using active knowledge.”” Ph.D. disserta-
tion, MIT, 1975.

Funt, B. V. “WHISPER: a problem-solving system utilizing diagrams.”” Proc., 5th IJCAI, August
1977, 459-464.

GARVEY, J. D. “Perceptual strategies for purposive vision.”” Technical Note 117, AI Center, SRI Inter-
national, 1976.

GELERNTER, H. ‘‘Realization of a geometry-theorem proving machine.”” In Computers and Thought, E.
Feigenbaum and J. Feldman (Eds.). New York: McGraw-Hill, 1963.

GESCHWIND, N. “Neurological knowledge and complex behaviors.”” Cognitive Science 4, 2, April 1980,
185-193,

GoOMBRICH, E. H. Art and Tllusion. Princeton, NJ: Princeton University Press, 1972.
GREGORY, R. L. The Intelligent Eye. New York: McGraw-Hill, 1970.
HAYES, Patrick J. ““The logic of frames.”” In The Frame Reader. Berlin: DeGruyter, 1980.

Havyes*, Philip J. “nge association-based techniques for lexical disambiguation by machine.” Ph.D.
dissertation, Ecole polytechnique fédérale de Lausanne, 1977; also TR25, Computer Science
Dept., Univ. Rochester, June 1977.

HELMHOLTZ, H. von. Treatise on Physiological Optics (translated by J. P. T. Sauthall). New York: Dover
Publications, 1925.

HenDRIX, G. G. ““Expanding the utility of semantic networks through partitions.” Proc., 4th IICAI
September 1975, 115-121.

Henprix, G. G. “Encoding knowledge in partitioned networks.” In Associative Networks: Representa-
tion and Use of Knowledge by Computers, N.V. Findler (Ed.). New York: Academic Press, 1979,
51-92.

HewITT, C. ‘“Description and theoretical analysis (using schemata) of PLANNER” (Ph.D. disserta-
tion). AI-TR-258, Al Lab, MIT, 1972.

HinTON, G. E. “Relaxation and its role in vision.”” Ph.D. dissertation, Univ. Edinburgh, December
1977.

References 349

IPR2022-00092 - LGE
Ex. 1015 - Page 360

350

Jonnson-LAIRD, P. N. ““Mental models in cognitive science.”” Cognitive Science 4, 1, January-March
1980, 71-115.

KossLyn, S. M. and J. R. POMERANTZ. ‘‘Imagery, propositions and the form of internal representa-
tions.” Cognitive Psychology 9, 1977, 52-76.

KossLyn, S. M. and S. P. SCHWARTZ. “‘A simulation of visual imagery.”” Cognitive Science 1, 3, July
1977, 265-295.

KossLYN, S. M. and S. P. SCHWARTZ. ““Visual images as spatial representations in active memory.” In
CV¥S, 1978.

LEHNERT, W. and Y. WILKS. ““A critical perspective on KRL.”* Cognitive Science 3, 1, 1979, 1-28.

LozANO-PEREZ, T. and M. A. WESLEY. ‘““An algorithm for planning collision-free paths among po-
lyhedral obstacles.”” Comm. ACM 22, 10, October 1979, 560—-570.

MCcDERMOTT, D, ““Artificial intelligence meets natural stupidity.”” SIGART Newsletter 57, April 1976,
4-9,

MINSKY, M. L. “*A framework for representing knowledge.”” In PCV, 1975.

MooRE J. and A. NEwELL. ““How can MERLIN understand?”’ In Knowledge and Cognition, L. Gregg
(Ed.). Hillsdale, NJ: Lawrence Erlbaum Assoc., 1973.

Moorg, R. C. “Reasoning about knowledge and action.”” Techical Note 191, AI Center, SRI Interna-
tional, 1979.

NEISSER, U. Cognitive Psychology. New York: Appleton-Century-Crofts, 1967.

NEVATIA, R. and K.E. PRICE. “‘Locating structures in aerial images.” USCIPI Report 800, Image Proc-
essing Institute, Univ. Southern California, March 1978, 41-58.

NiLssON, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.
NILSsON, N. I. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

PALMER, S. E. *“Visual perception and world knowledge: notes on a model of sensory-cognitive interac-
tion.”” In Explorations in Cognition, D.A. Norman, D.E. Rumelhart, and the LNR Research
Group (Eds.). San Francisco: W.H. Freeman, 1975.

PyLYSHYN, Z. W. ““What the mind’s eye tells the mind’s brain; a critique of mental imagery.”” Psycho-
logical Bulletin 80, 1973, 1-24.

QUILLIAN, M. R. “*Semantic memory.” In Semantic Information Processing, M. Minsky (Ed.). Cam-
bridge, MA: MIT Press, 1968.

RoBERTS, R. B. and 1. P. GoLDSTEIN, ““The FRL primer.”” Al Memo 408, Al Lab, MIT, 1977.

RUMELHART, D. E., P. H. LINDSAY, and D. A. NORMAN. ““A process model for long-term memory.” In
Organization of Memory, E. Tulving and J. Donaldson (Eds.). New York: Academic Press, 1972.

RUSSELL, D. M. “Where do I look now?’* Proc., PRIP, August 1979, 175-183.

ScHANK, R. C. Conceptual Information Processing. Amsterdam: North-Holland, 1975.

ScHANK, R. C. and R. P. ABELSON. Scripts, Plans, Goals and Understanding. Hillsdale, NJ: Lawrence Erl-
baum Assoc., 1977.

ScHUBERT, L. K. “Extending the expressive power of semantic networks.” Artificial Intelligence 7, 2,
1976, 163-198.

SELFRIDGE, O. “‘Pandemonium, a paradigm for learning.”’ In Proc., Symp. on the Mechanisation of
Thought Processes, National Physical Laboratory, Teddington, England, 1959.

SHEPARD, R. N. “*“The mental image.” American Psychologist 33, 1978, 125-137.
SHIRAL Y. “*Analyzing intensity arrays using knowledge about scenes.” In PCV, 1975,

SLOMAN, A. “‘Interactions between philosophy and artificial intelligence: the role of intuition and non-
logical reasoning in intelligence.” Arrificial Intelligence 2, 3/4, 1971, 209-225.

STaLLMAN, R. M. and G. J. SussmaN. “*Forward reasoning and dependency-directed backtracking in a
system for compulter-aided circuit analysis.”” Ariificial Intelligence 9,2, 1977, 135-196.

Ch. 10 Knowledge Representation and Use

IPR2022-00092 - LGE
Ex. 1015 - Page 361

STEFIK, M. ““An examination of a frame-structured representation system.”” Proc., 6th IJCAI, August
1979, 845-852.

SussmaN, G. J. and D. McDERMOTT. ““Why conniving is better than planning.”” AI Memo 255A, Al
Lab, MIT, 1972.

WaLTz, D. and L. BoGGESS. ““Visual analog representations for natural language understanding.”
Proc., 6th IJICAI, August 1979, 226-234,

WinoGraD, T. ““Extended inference modes in reasoning by computer systems.” Proc., Conf. on Induc-
tive Logic, Oxford Univ., August 1978.

WINoGRAD, T. “‘Frame representations and the declarative/procedural controversy.’” In Representation
and Understanding, D. G. Bobrow and A. M. Collins (Eds.). New York: Academic Press, 1975,
185-210.

WINSTON, P. H. “‘Learning structural descriptions from examples.”” In PCV, 1975.
WinsToN, P. H. Artificial Intelligence. Reading, MA: Addison-Wesley, 1977.

Woops, W. A. ““What’s in a link? Foundations for semantic networks.”” In Representation and Under-
standing, D. G, Bobrow and A. M. Collins (Eds.). New York: Academic Press, 1975.

References 351

IPR2022-00092 - LGE
Ex. 1015 - Page 362

Matching 11

11.1 ASPECTS OF MATCHING

352

11.1.1 Interpretation: Construction, Matching, and Labeling

Figure 10.1 shows a vision system organization in which there are several
representations for visual entities. A complex vision system will at any time have
several coexisting representations for visual inputs and other knowledge. Percep-
tion is the process of integrating the visual input with the preexisting representa-
tions, for whatever purpose. Recognition, belief maintenance, goalseeking, or
building complex descriptions—all involve forming or finding relations between
internal representations. These correspondences match (““model,” ‘‘re-
represent,’” ‘‘abstract,”” “‘label’’) entities at one level with those at another level.

Ultimately, matching ‘‘establishes an interpretation” of input data, where an
interpretation is the correspondence between models represented in a computer
and the external world of phenomena and objects. To do this, matching associates
different representations, hence establishing a connection between their interpre-
tations in the world. Figure 11.1 illustrates this point. Matching associates TOK-
NODE, a token for a linear geometric structure derived from image segmentation
efforts with a model token NODEI101 for a particular road. The token TOKNODE
has the interpretation of an image entity; NODE101 has the interpretation of a par-
ticular road.

One way to relate representations is to construct one from the other. An ex-
ample is the construction of an intrinsic image from raw visual input. Bottom-up
construction in a complex visual system is for reliably useful, domain-
independent, goal-independent processing steps. Such steps rely only on
“compiled-in”> (*‘hard-wired,” ‘‘innate’’) knowledge supplied by the designer of
the system. Matching becomes more important as the needed processing becomes
more diverse and idiosyncratic to an individual’s experience, goals, and

IPR2022-00092 - LGE
Ex. 1015 - Page 363

A road or class of roads

Sec. 17.1

Represents

ﬂ Represents S S

An image of L / v]
aroad \ 2 \iode{ed propertias P /

F 2
~
~ Input N Reference P

~ — S -

Fig. 11.1 Matching and interpretation.

knowledge. Thus as processing moves from “‘early’’ to ““late,’” control shifts from
bottom-up toward top-down, and existing knowledge begins to dominate percep-
tion.

This chapter deals with some aspects of matching, in which two already exist-
ing representations are put into correspondence. When the two representations are
similar (both are images or relational structures, say), ‘‘matching’’ can be used in
its familiar sense. When the representations are different (one image and one
geometric structure, say), we use ““matching’ in an extended sense; perhaps
“fitting”” would be better. This second sort of matching usually has a top-down or
expectation-driven flavor; a representation is being related to a preexisting one.

As a final extension to the meaning of matching, matching might include the
process of checking a structure with a set of rules describing structural legality,
consistency, or likelihood. In this sense a scene can be matched against rules to see
if it is nonsense or to assign an interpretation. One such interpretation process
(called labeling) assigns consistent or optimally likely interpretations (labels) at
one level to entities of another level. Labeling is like matching a given structure
with a possibly infinite set of acceptable structures to find the best fit. However, we
(fairly arbitrarily) treat labeling in Chapter 12 as extended inference rather than
here as extended matching.

11.1.2 Matching Iconic, Geometric, and Relational Structures

Chapter 3 presented various correlation techniques for matching iconic (image-
like) structures with each other. The bulk of this chapter, starting in Section 11.2,
deals with matching relational (semantic net) structures. Another important sort of
matching between two dissimilar representations fits data to parameterized models
(usually geometric). This kind of matching is an important part of computer vi-

Aspects of Matching 353

IPR2022-00092 - LGE
Ex. 1015 - Page 364

354

sion. A typical example is shown in Fig. 11.2. A preexisting representation (here a
straight line) is to be used to interpret a set of input data. The line that best ‘‘ex-
plains” the data is (by definition) the line of “‘best fit.”” Notice that the decision to
use a line (rather than a cubic, or a piecewise linear template) is made at a higher
level. Given the model, the fitting or matching means determining the parameters
of the model that tailor it into a useful abstraction of the data.

Sometimes there is no parameterized mathematical model to fit, but rather a
given geometric structure, such as a piecewise linear curve representing a shore-
line in a map which is to be matched to a piece of shoreline in an image, or to
another piecewise linear structure derived from such a shoreline. These geometric
matching problems are not traditional mathematical applications, but they are
similar in that the best match is defined as the one minimizing a measure of
disagreement.

Often, the computational solutions to such geometric matching problems ex-
hibit considerable ingenuity. For example, the shore-matching example above
may proceed by finding that position for the segment of shore to be matched that
minimizes some function (perhaps the square) of a distance metric (perhaps Eu-
clidean) between input points on the iconic image shoreline and the nearest point
on the reference geometric map shoreline. To compute the smallest distance
between an arbitrary point and a piecewise linear point set is not a trivial task, and
this calculation may have to be performed often to find the best match. The com-
putation may be reduced to a simple table lookup by precomputing the metric in a
““chamfer array,’’ that contains the metric of disagreement for any point around
the geometric reference shoreline [Barrow et al. 1978]. The array may be com-
puted efficiently by symmetric axis transform techniques (Chapter 8) that “‘grow”
the linear structure outward in contours of equal disagreement (dlstance) until a
value has been computed for each point of the chamfer array.

Parameter optimization techniques can relate geometrical structures to lower-
level representations and to each other through the use of a merit function measur-
ing how well the relations match. The models are described by a vector of parame-
ters a = (ay,...,a,). The merit function M must rate each set of those parameters
in terms of a real number. For example, M could be a function of both a, the
parameters, and f (x), the image. The problem is to find a such that

Ma, f(x))

Reference Input

Ax+ By +C=0

Fig. 11.2 Matching or fitting a straight
line model to data.

Ch. 71 Matching

IPR2022-00092 - LGE
Ex. 1015 - Page 365

is maximized. Note that if a were some form of template function rather than a
vector of parameters, the problem statement would encompass the iconic correla-
tion techniques just covered. There is a vast literature on optimization techniques
and we cannot do more than provide a cursory discussion of a few cases with exam-
ples. :

Formally, the different techniques have to do with the form of the merit
function M. A fundamental result from calculus is that if A is sufficiently well
behaved (i.e., has continuous derivatives), then a condition for a local maximum
(or minimum) is that

oM .
=—=0 fi = 1 .
M,,j 34, or j el (11.1)

This condition can be exploited in many different ways.

« Sometimes Eqgs. (11.1) are sufficiently simple so that the a can be determined
analytically, as in the least squares fitting, described in Appendix 1.

« An approximate solution «? can be iteratively adjusted by moving in the gra-

dient direction or direction of maximum improvement:
af =af "' +cM, (11.2)

where c is a constant. This is the most elementary of several kinds of gradient
(hill-climbing) technigues. Here the gradient is defined with respect to M and
does not mean edge strength.

« If the partial derivatives are expensive to calculate, the coefficients can be per-
turbed (either randomly or in a structured way) and the perturbations kept if
they improve M:

(1) a’":==a+ Aa
2)a =a ifM@) > M(a)

A program to fit three-dimensional image data with shapes described by
spherical harmonics used these techniques [Schudy and Ballard 1978)]. The details
of the spherical harmonics shape representation appear in Chapter 9. The fitting
proceeded by the third method above. A nominal expected shape was matched to
boundaries in image data. If a subsequent perturbation in one of its parameters
results in an improvement in fit it was kept; otherwise, a different perturbation was
made. Figure 11.3 shows this fitting process for a cross section of the shape.

Though parameter optimization is an important aspect of matching, we shall
not pursue it further here in view of the extensive literature on the subject.

11.2 GRAPH-THEORETIC ALGORITHMS
The remainder of this chapter deals with methods of matching relational struc-

tures. Chapter 10 showed how to represent a relational structure containing n-ary
relations as a graph with labeled arcs. Recall that the labels can have values from a

Sec. 11.2 Graph-Theoretic Algorithms 355

IPR2022-00092 - LGE
Ex. 1015 - Page 366

