(0L
AANNAN

NANNAN
[/ /)]

]
LN
TN
|
LT
LN

™
N
™~
N
™
Fong

Two choices for primitives:

&
0

Fig. 6.7 Ambiguous texture.

grammars correspondingly more complicated. A particular texture that can be
described in eight rules in a shape grammar requires 85 rules in a tree grammar [Lu
and Fu 1978]. The compensating trade-off is that pixels are gratis with the image;
considerable processing must be done to derive the more complex primitives used
by the shape grammar.

6.3.2 Shape Grammars

A shape grammar [Stiny and Gips 1972] is defined as a four-tuple < V, Viur R, §>
where:

1. V,isafinite set of shapes
2. V,isafinite setof shapessuchthat ¥, () ¥, = ¢

3. Ris afinite set of ordered pairs (&, v) such that u is a shape consisting of ele-
ments of ¥," and vis a shape consisting of an element of ¥, combined with an
element of ¥V,

4, Sisashape consisting of an element of ¥, combined with an element of V.

Elements of the set ¥, are called terminal shape elements (or terminals). Elements
of the set V,, are called nonterminal shape elements (or markers). The sets ¥, and
V,, must be disjoint. Elements of the set ¥,* are formed by the finite arrangement
of one or more elements of ¥V, in which any elements and/or their mirror images
may be used a multiple number of times in any location, orientation, or scale. The
set ¥, = ¥ |J {A}, where A is the empty shape. The sets ¥,/ and V,, are
defined similarly. Elements (u, v) of R are called shape rules and are written uv.
uis called the left side of the rule; vthe right side of the rule. ¥ and v usually are en-
closed in identical dashed rectangles to show the correspondence between the two
shapes. S is called the initial shapé and normally contains a « such that there is a
(, v) which is an element of R.

Sec. 6.3 Structural Models of Texel Placement 173

IPR2022-00092 - LGE
Ex. 1015 - Page 189

174

A texture is generated from a shape grammar by beginning with the initial
shape and repeatedly applying the shape rules. The result of applying a shape rule
R to a given shape sis another shape, consisting of s with the right side of R substi-
tuted in S for an occurrence of the left side of R. Rule application to a shape
proceeds as follows:

1. Find part of the shape that is geometrically similar to the left side of a rule in
terms of both terminal elements and nonterminal elements (markers). There
must be a one-to-one correspondence between the terminals and markers in
the left side of the rule and the terminals and markers in the part of the shape
to which the rule is to be applied.

2. Find the geometric transformations (scale, translation, rotation, mirror im-
age) which make the left side of the rule identical to the corresponding part in
the shape.

3. Apply those transformations to the right side of the rule.

Substitute the transformed right side of the rule for the part of the shape that
corresponds to the left side of the rule.

The generation process is terminated when no rule in the grammar can be applied.
As a simple example, one of the many ways of specifying a hexagonal texture

{(Vis Voo, R, Sl is
vi={O

" R:O—*@;@;etc.
s=A{ 3|

Hexagonal textures can be generated by the repeated application of the single rule
in R. They can be recognized by the application of the rule in the opposite direction
to a given texture until the initial shape, [, is produced. Of course, the rule will
generate only hexagonal textures. Similarly, the hexagonal texture in Fig. 6.8a will
be recognized but the variants in Fig. 6.8b will not.

W

(b)

Fig. 6.8 Textures to be recognized (see text).

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 190

A more difficult example is given by the “‘reptile’’ texture. Except for the oc-
casional new rows, a (3, 6, 3, 6) tesselation of primitives would model this texture
exactly. As shown in Fig. 6.9, the new row is introduced when a seven-sided pol-
ygon splits into a six-sided polygon and a five-sided polygon. To capture this with a
shape grammar, we examine the dual of this graph, which is the primitive place-
ment graph, Fig. 6.9b. This graph provides a simple explanation of how the extra
row is created; that is, the diamond pattern splits into two. Notice that the dual
graph is composed solely of four-sided polygons but that some vertices are (4, 4, 4)
and some are (4,4,4,4,4,4). A shape grammar for the dual is shown in Fig. 6.10.
The image texture can be obtained by forming the dual of this graph. One further
refinement should be added to rules (6) and (7); so that rule (7) is used less often,
the appropriate probabilities should be associated with each rule. This would make
the grammar stochastic.

Fig. 6.9 (a) The reptile texture. (b) The reptile texture as a (3, 6, 3, 6) semireg-
ular tesselation with local deformations.

6.3.3 Tree Grammars

The symbolic form of a tree grammar is very similar to that of a shape grammar. A
grammar

Gf L (I/tl me r, R, S)
is a tree grammar if

V, is a set of terminal symbols
V.. is a set of symbols such that
Vi m Vi=¢
r: V,— N (where Nis the set of nonnegative integers)
is the rank associated with symbols in ¥,
Sis the start symbol
R is the set of rules of the form
X ? T or Xo—x
Xo.o X0
with xin V, and Xo Xr(x) in Vm

For a tree grammar to generate arrays of pixels, it is necessary to choose some way
of embedding the tree in the array. Figure 6.11 shows two such embeddings.

Sec. 6.3 Structural Models of Texel Placement 175

IPR2022-00092 - LGE
Ex. 1015 - Page 191

:
|

+
|

;
I
0

&
IS =

Fig. 6.10 Shape grammar for the reptile texture.

In the application to texture [Lu and Fu 1978], the notion of pyramids or
hierarchical levels of resolution in texture is used. One level describes the place-
ment of repeating patterns in texture windows—a rectangular texel placement
tesselation—and another level describes texels in terms of pixels. We shall illus-

176 Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 192

starting

point
v
. - . e~ . L b wd B s
AP SEYEIRS LT
el ol el el ol a]la|e]s At o el chicmidlipallivling
N] 1 I Il I |
11 O L R O L 1
i I i e R N rTrTrertrTt TS
T T T | T 1T
' ; E : ; : ; 4 E ; S e e e T R ST S
Sta,rtlng Rl IS S e SR Sl SR S S I.___.__'___‘__. P S S -1
point 1 [1 [T I [l 8
i [1 ! T ¥ T T
P I O Al I O i e il K M) G
T 1111 T 71 T 1
1' 'L 1. l. 1 r l' : . L e o L. ¢ s o .
1 T ! T I T] T
elef ool alojels]s i i s dedeaed, sl eola
i 1 L I I =
1 | L T | I |
. . . . - . L] - . P T R e SR Sl SR S o]
(a) Structure A (b) Structure B

Fig. 6.11 Two ways of embedding a tree structure in an array.

trate these ideas with Lu and Fu’s grammar for ““wire braid.”” The texture windows
are shown in Fig. 6.12a. Each of these can be described by a ‘‘sentence’ in a
second tree grammar. The grammar is given by:

G,=(V,V, 1R, S)

where
Ve =1{4, Ci
Va=1{X, ¥, Z} (6.2)

r=1{0,1, 2}

R.X;/i{y or;fl

Y— or C4
2

Z — A, or 4,
v

and the first embedding in Fig. 6.11 is used. The pattern inside each of these win-
dows is specified by another grammatical level:

G=(V, V,rnRS)

Sec. 6.3 Structural Models of Texel Placement 177

IPR2022-00092 - LGE
Ex. 1015 - Page 193

where
v, =11, 0}
V,, = (A1, A3,A3, Ay, As, Ag, A7, C1, Ca, C3, C4, Cs, Cg, C1,
Ng, Ny, Ny, N3, Ny}

r=1{0,1,2}
S = {Al, C]}
R:
1 c 0 p 0
Ao AN o” | i 0
NO/ AZ\ND "l./ C2 N“ "0

i 0
Rl Y ° /1N oo
Ny Ay M, Cy N H

0 L}

1 0
Ay |\ LW Mt
N/A,’ o N,{ N

o Gy Ny |
0 o [}
A c, »
¥ /l\ b® A5, i
Ny AN Ny € Ny N,
0 o 0
A, » c. +
5 /[\ 5 /l\ N
Ny B N, Ny G Ny Ny
0 0
A c, -+
6~ /]\ 6 /i\
Nj A] N} Nl C], H'

o

0 1
AT i / \ &=
N'vl/AT\ﬂ'I N" N" NO/CT\M

1
/\
Ho Mo

The application of these rules generates the two different patterns of pixels
shown in Fig. 6.13.

0

6.3.4 Array Grammars

Like tree grammars, array grammars use hierarchical levels of resolution [Milgram
and Rosenfeld 1971; Rosenfeld 1971]. Array grammars are different from tree
grammars in that they do not use the tree-array embedding. Instead, prodigious
use of a blank or null symbol is used to make sure the rules are applied in appropri-
ate contexts, A simple array grammar for generating a checkerboard pattern is

G =1V, V, R}

178 Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 194

At A g
Y — —

A] —"—c] —t— Al --[—- C.l

A, 4 C 4 A, - C

Fig. 6.12 Texture window and grammar (see text).

where

¥V, = {0, 1} (corresponding to black and white pixels, respectively)
V.= (b S)

b is a “‘blank’’ symbol used to provide context for the application of the rules.
Another notational convenience is to use a subscript to denote the orientation of
symbols. For example, when describing the rules R we use

0,6 — 0,1 where x is one of {U, D, L, R}

to summarize the four rules

0,0 b_,1 .]
p=8, g o0p=0l,- s0->10

Thus the checkerboard rule set is given by
R:S5—0orl
0,6 —0,1 xin{U D L, R)
1,6 — 1,0

A compact encoding of textural patterns [Jayaramamurthy 1979] uses levels of ar-
ray grammars defined on a pyramid. The terminal symbols of one layer are the start
symbols of the next grammatical layer defined lower down in the pyramid. This
corresponds nicely to the idea of having one grammar to generate primitives and
another to generate the primitive placement tesselations.

As another example, consider the herringbone pattern in Fig. 6.14a, which is
composed of 4x3 arrays of a particular placement pattern as shown in Fig. 6.14b.
The following grammar is sufficient to generate the placement pattern.

Gy 11, ¥r- B, 5]

Sec. 6.3 Structural Models of Texel Placement 179

IPR2022-00092 - LGE
Ex. 1015 - Page 195

180

Cam UL e U G e
W" ¥ 2 "m,'*— - “m"‘ H,'!W.“
S _x - » * R
L - i 3) -.‘ o %, ‘ﬁg

* 4 o 3 o » £ *
W‘: 2 ; i q;'- e

»* ol *, o2 " " % >
e " £ * *a i ' »

q’ "*ﬁ 5, N 8 v’ iR a ay ol g

fi o s 0 o 3 » s o Sy
S '3mq > n, 't'l','l'). o~ . .u‘ : ‘nm

. - i - L L) = " -
- 5 . ™ Fi e —

" - 5 ** P + ﬁl) w
x A » = e | " £

o ', e i . o LN o

s, » e 0 ™

3 o~ LS X WAt £ o w,‘“

. M T

s, ‘a' *u, e o v, g
25 ‘!bmn_-‘ . o % " b k, l““‘n_ : ’wm

L LS » > N k2
- o e— P am—
- o ; » s » " By '
: L L (1] L]

- > .n‘ L ‘ﬂ)’ n, o u, o

L * " * F L3
wine o ', o ., o v,
el el sl el

" R " L - - L . » e
S e e S

M 0 T’ 1 e T ot
where

V,=la}
V, = {5 5}
RIS —a
—
aub =g

Fig. 6.13 Texture generated by tree
gramimar.

xin{U, D, L, R)

We have not been precise in specifying how the terminal symbol is projected onto
the lower level. Assume without loss of generality that it is placed in the upper
left-hand corner, the rest of the subarray being initially blank symbols. Thus a sim-

ple grammar for the primitive is

G, =1{V, V., R S)

*

®lnln
wi%|0|*
*l% (%]
LR R BE]

INITIAL ARRAY AT LEVEL1

a a a' a'
a|a | a| a
ul al al al

.
EN_GEE EEN- S8

(N | = [

W SR SN SR

a | a| a] a

TERMINAL ARRAY AT LEVEL 1

FINAL ARRAY

Fig. 6.14 Stepsin generating a
herringbone texture with an array
grammar.

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 196

where

v,=1{0, 1}

K= {a, b]
a b b b 001 0
Rb b b b— 0101
b b b b 1 000

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of *“‘reptile’ or “‘wire
braid”’; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Statistical paitern recognition is a
paradigm that can classify statistical variations in patterns. (There are other statisti-
cal methods of describing texture [Pratt et al. 1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the ideas
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszka
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes “‘orchard,” “‘field,”
“residential,”” “‘water.”

The basic notion of pattern recognition is the fearure vector. The feature vec-
tor v is a set of measurements {v; -+ v,} which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
Seature space of m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure 6.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classes.
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic solutions are
sometimes available, In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions are
used to classify feature vectors from unknown samples. Figure 6.17 shows this
Process.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].

Sec. 6.4 Texture as a Pattern Recognition Problem 181

IPR2022-00092 - LGE
Ex. 1015 - Page 197

Fig. 6.15 Aerial image textures for
discrimination.

182 Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 198

Fig. 6.15 (cont.)

One popular way of doing this is to use prototype points for each class and a
nearest-neighbor rule [Cover 1968]:

assign v to class w; if i minimizes
min d (v, vw!_)
]

where Vi, is the prototype point for class w;.
Parametric techniques assume information about the feature vector probabil-
ity distributions to find rules that maximize the likelihood of correct classification:

assign v to class w; if imaximizes

max p (w;|v)
!
vy vy
+ o+
* o o o o
+ + 5
o o +
o
-+ o DO o © a
o [0} o o +
+
0 o0 O ©O o o o o
o o o) o +
v, vy
(a) (b)
Fig. 6.16 Feature space for texture discrimination. (a) effective features (b)
ineffective features.
Sec. 6.4 Texture as a Pattern Recognition Problem 183

IPR2022-00092 - LGE
Ex. 1015 - Page 199

184

(o] o UGD wy
o
++ g @
0° +
+ + wy
(a) (b)

® Classified as w,

Fig. 6.17 Pattern recognition paradigm.

The distributions may also be used to formulate rules that minimize errors.

Picking good features is the essence of pattern recognition. No elaborate for-
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy to define features that (1)
cluster in feature space according to different classes, and (2) can separate texture
classes.

The ensuing subsections describe features that have worked well. These sub-
sections are in reverse order from those of Section 6.2 in that we begin with
features defined on pixels—Fourier subspaces, gray-level dependencies—and con-
clude with features defined on higher-level texels such as regions. However, the
lesson is the same as with the grammatical approach: hard work spent in obtaining
high-level primitives can both improve and simplify the texture model. Space does
not permit a discussion of many texture features; instead, we limit ourselves to a
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

If a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies. These peaks can form the
basis of features of a pattern recognition discriminator. One way to define features
is to search Fourier space directly [Bajcsy and Lieberman 1976]1. Another is to par-
tition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrum
are used to define features. If Fis the Fourier transform, the Fourier power spec-
trum is given by | F|%.

Radial features are given by

vy = J S 1F G v} du av (6.5)

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 200

(a) {b)

Fig. 6.18 Partitioning the Fourier domain into bins.

where the limits of integration are defined by
<t +vi< r#
0 u,v < n-l1
where [r;, ry] is one of the radial bins and v is the vector (not related to v) defined

by different values of r; and r,. Radial features are correlated with texture coarse-
ness. A smooth texture will have high values of ¥, ,, for small radii, whereas a

coarse, grainy texture will tend to have relatively higher values for larger radii.
Features that measure angular orientation are given by

Vo0, = ff{F(u, V)2 du dv (6.6)

where the limits of integration are defined by

6, < tan”!

< 6,

0<uv<n—1

where [0, 8,) is one of the sectors and v is defined by different values of 8, and 8.
These features exploit the sensitivity of the power spectrum to the directionality of
the texture. If a texture has as many lines or edges in a given direction 8, |F|? will
tend to have high values clustered around the direction in frequency space ¢ +
/2.

Texture Energy in the Spatial Domain

From Section 2.2.4 we know that the Fourier approach could also be carried

out in the image domain. This is the approach taken in [Laws 1980]. The advantage
of this approach is that the basis is not the Fourier basis but a variant that is more

Sec. 6.4 Texture as a Pattern Recognition Problem 185

IPR2022-00092 - LGE
Ex. 1015 - Page 201

186

matched to intuition about texture features. Figure 6.19 shows the most important
of Laws’ 12 basis functions.

The image is first histogram-equalized (Section 3.2). Then 12 new images are
made by convolving the original image with each of the basis functions (i.e., fk' =
f = h, for basis functions #1, ..., A12). Then each of these images is transformed
into an “‘energy’’ image by the following transformation: Each pixel in the con-
volved image is replaced by an average of the absolute values in a local window of
15 x 15 pixels centered over the pixel:

Hey= 2 f& D 6.7)
X'y’ in window
The transformation f— f,;', k=1, ..12is termed a “‘texture energy transform”’
by Laws and is analogous to the Fourier power spectrum. The £, k = 1, ... 12
form a set of features for each point in the image which are used in a nearest-
neighbor classifier. Classification details may be found in [Laws 1980]. Our in-
terest is in the particular choice of basis functions used.

Figure 6.20 shows a composite of natural textures [Brodatz 1966] used in
Laws’s experiments. Each texture is digitized into a 128 x 128 pixel subimage. The
texture energy transforms were applied to this composite image and each pixel was
classified into one of the eight categories. The average classification accuracy was
about 87% for interior regions of the subimages. This is a very good result for tex-
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popular
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. The
SGLD approach computes an intermediate matrix of measures from the digitized
image data, and then defines features as functions on this intermediate matrix.
Given an image f with a set of discrete gray levels I, we define for each of a set of
discrete values of dand 8 the intermediate matrix S (d, 8) as follows:

S(i, j|d. 6), an entry in the matrix, is the number of times gray level i is
oriented with respect to gray level jsuch that where
fx)=1i and f(y) =, then
y=x + (dcosf, dsin8)

-1 -4 -6 -4 -1 1 -4 6 -4 1
=2 =8 =12 =8 . =2 -4 16 -24 16 —4
0 0o 0 O 6-24 36-24 6
2 8 12 8 2 -4 16 -24 16 —4
1 4 6 4 1 L1 —4 6 -4 1|
-1 0 2 0 -1 1 o 2 o -1
=2 0 4 0 -2 -4 0 0 -4
0 0 0 0 O =6 0 12 0 -6| gy 619 Laws’ basis functions (these
2 0-4 0 2 -4 0 o -4 are the low-order four of twelve actually
1 0 -2 0 1 -1 0 2 0 -1 yged).

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 202

&,

(®)

Fig. 6.20 (a) Texture composite. (b) Classification.
Note that we the gray-level values appear as indices of the matrix S, implying that
they are taken from some well-ordered discrete set 0, ..., K. Since
S5(d 8 =580 6+).

common practice is to restrict # to multiples of /4. Furthermore, information is
not usually retained at both @ and 8 + «. The reasoning for the latter step is that
for most texture discrimination tasks, the information is redundant. Thus we
define

S(d 6)=1%15d 0)+ S 8+l

The intermediate matrices S yield potential features. Commonly used features are:

1. Energy
K K
E(d8)=3 3 [5G jld)] (6.8)
i=0 j=0
2. Entropy
K K
H(d o)=Y Y SG jld 6) log £ j|d 9) (6.9)
=0 j=0

3. Correlation

M=
M=

(i=p)G—p,)SG jld 6)

C(d, 0) = =22 (6.10)
O'XU'),
4. Inertia
K K
1@ 6 =% % (i—-)*5G jld 0) (6.11)
i=0 j=0
Sec. 6.4 Texture as a Pattern Recognition Problem 187

IPR2022-00092 - LGE
Ex. 1015 - Page 203

188

5. Local Homogeneity

LaD=3% 1
' ‘%E, 1+ (i—j)?

where S (i, j|d,) is the (i, j) th element of (d,), and

S, jld) (6.12)

K K

w=3 135G jld 0 (6.13a)
i=0 j=0
K K

my=2J 2 S jla 0) (6.13b)
i=0 j=0
K K

of=Y G(-p)?Y rGjld 0 (6.13¢)
i=0 j=0

and

K K

ol=3 G-u)?Y fG jld 6) (6.13d)
i=0 i=0

One important aspect of this approach is that the features chosen do not have
psychological correlates [Tamura et al. 1978]. For example, none of the measures
described would take on specific values corresponding to our notions of “‘rough”
or ‘“‘smooth.”” Also, the texture gradient is difficult to define in terms of SGLD
feature values [Bajcsy and Lieberman 19761.

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pix-
els. Rather than defining features directly as functions of pixels, a region segmen-
tation of the image is created first. Features can then be defined in terms of the
shape of the resultant regions, which are often more intuitive than the pixel-
related features. Naturally, the approach of using edge elements is also possible.
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et al.
1977]. In that implementation, all regions are ultimately modeled as ellipses and a
corresponding five-parameter shape description is computed for each region.
These parameters only define gross region shape, but the five-parameter primi-
tives seem to work well for many domains. The texture image is segmented into
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ap-
plied to a sample of “‘straw’’ texture. Next, parameters of the region grower are
controlled so as to encourage convex regions which are fit with ellipses. Figure 6.22
shows the resultant ellipses for the “‘straw’’ texture. One set of ellipse parameters
is X, a, b, 0 where X is the origin, a and b are the major and minor axis lengths
and 4 is the orientation of the major axis (Appendix 1). Besides these shape param-
eters, elliptical texels are also described by their average gray level. Figure 6.23
gives a qualitative indication of how ranges on feature values reflect different tex-
els.

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 204

http://lt.SU
http://lt.SU

£ 3
(b) With Region Boundaries
Fig. 6.21 Region segmentation for straw texture.

{a) Image

6.5 THE TEXTURE GRADIENT

The importance of texture in determining surface orientation was described by
Gibson [Gibson 1950]. There are three ways in which this can be dope. These
methods are depicted in Fig. 6.24. All these methods assume that the texture s
embedded on a planar surface.

Fig. 6.22 Ellipses for straw texture,

Sec. 6.5 The Texture Gradient 189

IPR2022-00092 - LGE
Ex. 1015 - Page 205

Bubbles i< i
Fiber —_—t—t—t—tt +—
Grass| i
Leather ————i
Paper ——H——
Raffia ——
Sand +——t—t ——
Screen HH—
Straw H—
Water |H——t—t+—r-
35 20

Average size

Bubbles —t—
Fiber HH———
Grass | FHi—HH
Leather —tr——t—d
Paper —H-H—
Raffia W —t—]
Sand |HHHH—
Screen -
Straw H———t—
Water i e
0.1 0.7
Average eccentricity Fig. 6.23 Features defined on ellipses.

the plane in the following manner. The direction of maximum rate of change of
projected primitive size is the direction of the texture gradient. The orientation of
this direction with respect to the image coordinate frame determines how much
the plane is rotated about the camera line of sight. The magnitude of the gradient
can help determine how much the plane is tilted with respect to the camera, but
knowledge about the camera geometry is also required. We have seen these ideas
before in the form of gradient space; the rotation and tilt characterization is a polar
coordinate representation of gradients.

N

m A\
Qax,

“ W

Uk
@“&3&
% %%b &

@B

(a) (b} (c)

Fig. 6.24 Methods for calculating surface orientation from texture.

190 Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 206

The second way to measure surface orientation is by knowing the shape of
the texel itself. For example, a texture composed of circles appears as ellipses on
the tilted surface. The orientation of the principal axes defines rotation with respect
to the camera, and the ratio of minor to major axes defines tilt [Stevens 1979].

Finally, if the texture is composed of a regular grid of texels, we can compute
vanishing points. For a perspective image, vanishing points on a plane P are the
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments on a
plane that are oriented in two orthogonal directions in the physical world. The gen-
eral method applies whenever the placement tesselation defines lines of texels.
Two vanishing points that arise from texels on the same surface can be used to
determine orientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect to
the zaxis (i.e., the intersection of the line joining the vanishing points with x = 0)
determines the tilt of the plane.

Line segment textures indicate vanishing points [Kender 1978]. As shown in
Fig. 6.25, these segments could arise quite naturally from an urban image of the
windows of a building which has been processed with an edge operator.

As discussed in Chapter 4, lines in images can be detected by detecting their
parameters with a Hough algorithm. For example, by using the line parameteriza-
tion

xcos# + ysinf = r

and by knowing the orientation of the line in terms of its gradient g = (Ax, Ay), a
line segment (x, y, Ax, Ay) can be mapped into r, § space by using the relations

2 SEEL AP, (6.14)
VAX? + Ay?
6 = tan™! |22 (6.15)
Ax

These relationships can be derived by using Fig. 6.26 and some geometry. The
Cartesian coordinates of the r—#@ space vector are given by

X g (6.16)

Fig. 6.25 Orthogonal line segments comprising a texture.

Sec. 6.5 The Texture Gradient 191

IPR2022-00092 - LGE
Ex. 1015 - Page 207

192

Ay

x, y) [Ax

N Fig. 6.26 16 transform.

Using this transformation, the set of line segments L, shown in Fig. 6.27 are all
mapped into a single point in r—@ space. Furthermore, the set of lines L, which
have the same vanishing point (x, y,) project onto a circle in r—8 space with the
line segment ((0, 0), (x, y,)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity .are projected into infinity, and (2) circles require some
effort to detect. Hence we are motivated to use the transform (x, y, Ax, Ay) —

1{_, #| for some constant k. Now vanishing points at infinity are projected into the
7

origin and the locus of the set of points L, is now a line. This line is perpendicular

to the vector x, and _k_ units from the origin, as shown in Fig. 6.28. It can be

[, [

detected by a second stage of the Hough transform; each point a is mapped into an
r'—@' space. Forevery a, compute all the r’, ¢’ such that

acosf' + bsing' = r' (6.17)

and increment that location in the appropriate r’, 8’ accumulator array. In this
second space a vanishing point is detected as

i (6.18)
I,
8' = tan™! % (6.19)

(x,.v,)

(a) (b)
Fig. 6.27 Detecting the vanishing point with the Hough transform.
Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 208

(x,.v,) \ 7 (%, ¥,)
&

(a) (b}
Fig. 6.28 Vanishing point loci.

In Kender’s application the texels and their placement tesselation are similar in
that the primitives are parallel to arcs in the placement tesselation graph. In a more
general application the tesselation could be computed by connecting the centers of
primitives.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

EXERCISES

Devise a computer algorithm that, given a set of texels from each of a set of different
“windows’’ of the textured image, checks to see of the resolution is appropriate. In
other words, try to formalize the discussion of resolution in Section 6.2.

Are any of the grammars in Section 6.3 suitable for a parallel implementation (i.e.,
parallel application of rules) ? Discuss, illustrating your arguments with examples or
counterexamples from each of the three main grammatical types (shape, tree, and ar-
ray grammars).

Are shape, array, and tree grammars context free or context-sensitive as defined?
Can such grammars be translated into “‘traditional’” (string) grammars? If not, how
are they different; and if so, why are they useful?

Show how the generalized Hough transform (Section 4.3) could be applied to texel
detection.

In an outdoors scene, there is the problem of different scales. For example, consider
the grass. Grass that is close to an observer will appear ‘‘sharp” and composed of
primitive elements, yet grass distant from an observer will be much more “‘fuzzy”
and homogeneous. Describe how one might handle this problem.

The texture energy transform (Section 6.4.1) is equivalent to a set of Fourier-domain
operations. How do the texture energy features compare with the ring and sector
features?

The texture gradient is presumably a gradient in some aspect of texture. What aspect
is it, and how might it be quantified so that texture descriptions can be made gradient
independent?

Write a texture region grower and apply it to natural scenes.

REFERENCES

Bascsy, R. and L. LIEBERMAN. *“Texture gradient as a depth cue.”” CGIP 3, 1, March 1976, 52-67.
BRODATZ, P. Textures: A Photographic Album for Artists and Designers. Toronto: Dover Publishing Co.,

References

1966.

193

IPR2022-00092 - LGE
Ex. 1015 - Page 209

194

CoNNORS, R. “Towards a set of statistical features which measure visually perceivable qualities of tex-
tures.” Proc., PRIP, August 1979, 382-390.

CovEeR, T. M. *“‘Estimation by the nearest neighbor rule.”” IEEE Trans. Information Theory 14, January
1968, 50-55.

Fu, K. S. Sequential Methods in Pattern Recognition and Machine Learning. New York: Academic Press,
1968.

Fu, K. S. Syntactic Methods in Partern Recognition. New York: Academic Press, 1974,
FUKUNAGA, K. Introduction to Statistical Pattern Recognition. New York, Academic Press, 1972.
GiIBSON, I. 1. The Perception of the Visual World. Cambridge, MA: Riverside Press, 1950.

HaLL, E. L, R. P. KRUGER, S. J. DwyER III, D. L. HaLL, R. W. McLAREN, and G. S. LoDWICK. ““A sur-
vey of preprocessing and feature extraction techniques for radiographic images.”” IEEE Trans.
Computers 20, September 1971.

HaRALICK, R. M. *‘Statistical and structural approaches to texture.”’ Proc., 4th [JCPR, November
1978, 45-60.

HARALICK, R. M., R. SHANMUGAM, and 1. DINSTEIN. “Textural features for image classification.” IEEE
Trans. SMC 3, November 1973, 610-621.

Horcrort, J. E. and J. D. ULLMAN. [ntroduction to Automata Theory, Languages and Computation. Read-
ing, MA: Addison-Wesley, 1979.

JAYARAMAMURTHY, S. N. ““Multilevel array grammars for generating texture scenes.” Proc., PRIP,
August 1979, 391-398.

JuLesz, B. “‘Textons, the elements of texture perception, and their interactions.”” Narure 290, March
1981, 91-97.

KENDER, J. R. ““Shape from texture: a brief overview and a new aggreéalion transform.” Proc.,
DARPA IU Workshop, November 1978, 79-84.

KRUGER, R. P., W. B. THoMPSON, and A. F. TWINER. ‘‘Computer diagnosis of pneumoconiosis.” /EEE
Trans. SMC 45, 1974, 40-49.

Laws, K. L. “Textured image segmentation.”” Ph.D. dissertation, Dept. of Engineering, Univ. South-
ern California, 1980,

Lu, S.Y.and K. S. Fu. “°A syntactic approach to texture analysis.”” CGIP 7, 3, June 1978, 303-330.

MALESON, J. T., C. M. BRowN, and J. A. FELDMAN. ““Understanding natural texture.”” Proc., DARPA
IU Workshop, October 1977, 19-27.

MILGRAM, D. L. and A. ROSENFELD. ‘*Array automata and array grammars.”’ Proc., IFIP Congress 71,
Booklet TA-2. Amsterdam: North-Holland, 1971, 166-173.

PratT, W. K., O. D. FAUGERAS, and A. GAGALOWICZ. ‘‘Applications of Stochastic Texture Field
Models to Image Processing.’” Proc. of the IEEE. Vo0l.69, No. 5, May 1981

ROSENFELD, A. ‘‘Isotonic grammars, parallel grammars and picture grammars.” [n M/6, 1971.

Stevens, K.A. “‘Representing and analyzing surface orientation.”” In Artificial Intelligence: An MIT Per-
spective, Vol. 2, P. H. Winston and R. H. Brown (Eds.). Cambridge, MA: MIT Press, 1979.

STINY, G. and J. GIPS. Algorithmic Aesthetics: Computer Models for Criticism and Design in the Arts. Berke-
ley, CA: University of California Press, 1972.

Tamura, H., S. Mori, and T. Yamawakl. “Textural features corresponding to visual perception.”
IEEE Trans. SMC 8, 1978, 460-473.

Tou, J. T. and R. C. GONZALEZ. Pattern Recognition Principles. Reading, MA: Addison-Wesley, 1974.

WEszKaA, J. S., C. R. DYER, and A. ROSENFELD. ‘*A comparative study of texture measures for terrain
classification.”” [EEE Trans. SMC 6, 4, April 1976, 269-285.

ZUCKER, S. W. “Toward a model of texture.”” CGIP 3, 2, June 1976, 190-202.

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 210

Motion 4

7.1 MOTION UNDERSTANDING

Motion imagery presents many interesting challenges to computer vision, but
static scene analysis received more attention in the 1960°s and 1970’s. In part, this
may have been due to a technical problem: With most types of input media and
domains, motion vision input is much more voluminous than static vision input.
However, we believe that a more basic problem has been the assumption that mo-
tion vision could best be understood (or implemented) as many static frames
analyzed very quickly, with results linked up in temporal sequence. This character-
ization of motion vision is extreme but perhaps illuminating. First, it assumes that
vision involves processing static scenes. Second, it acknowledges that massive
amounts of data may be required. Third, in it motion understanding degenerates
to a postprocessing step which is mostly a matching operation—the differences or
similarities between (understood) frames are analyzed and recorded. The extreme
“‘static is basic’’ view is that motion is an unnaturally complex or difficult problem
because it is ill suited to the techniques available.

A modified view is that object motion provides good image cues for segmen-
tation, much as color might. This approach leads to the use of motion for segmen-
tation, so that motion gets a more basic role in the understanding process. In this
view, motion as such is useful for basic image understanding; a motion image se-
quence may actually be easier to understand than a static image, because the
effects of motion can help in segmentation. Recent examples may be found in
[Snyder 1981].

A further departure from the “‘static is basic’” view is that motion under-
standing is qualitatively different from static vision. A logical extreme of this view
is that there are many visual processing operations whose primitives are points in
motion, and that in fact static vision is the puzzle, being ill-suited to the needs and
mechanisms of biological systems. Serious work in computer motion understand-

195

IPR2022-00092 - LGE
Ex. 1015 - Page 211

196

ing has begun even more recently than computer vision as a whole, and it is too
early to dismiss any approach out of hand. There are domains and applications in
which the ““static is basic’’ paradigm seems natural, but it also seems very reason-
able that animals have perceptual systems or subsystems for which ‘““motion is
basic.””

Section 7.2 is concerned with processing and understanding the ““‘flow”” of the
world image across the retina. Section 7.3 considers several techniques for under-
standing sequences of static images.

7.1.1 Domain Independent Understanding

Domain independent motion processing extracts information from time-varying
images using the weakest possible assumptions about the world. Processing that
merely transforms the input data into another image-like structure is in the pro-
vince of generalized image processing. However, if the motion processing aggre-
gates spatial information on the basis of a common feature, then the processing is a
form of segmentation.

The basic visual input for domain-independent work in motion vision under-
standing is optical flow. Although Helmholtz noted the striking immediacy of
three-dimensional perception mediated through motion [Helmholtz 1925], Gib-
son is usually credited with pioneering the theory that a primary visual stimulus for
motion is the flow of elements in the optic array, or pattern of luminance in the full
sphere of solid angle surrounding the observer [Gibson 1950, 1957, 1965, 1966].
Human beings undoubtedly are sensitive to optical flow, as evidenced by the
“looming” reflex [Schiff 1965], the effect of flow on balance [Lee and Lishman
1975], and many other documented phenomena [Nakayama and Loomis 1974].
The basic input to an ‘“‘optical flow understander’ is a continuously changing
visual field, which may be considered a field of vectors, each expressing the instan-
taneous change of position on the optic array of the image of a world point. A field
of such vectors is shown in Fig. 7.1. The extraction of the vectors from the chang-
ing image is a low-level operation often posited by optical flow research; one com-
putational mechanism was given in Chapter 3. Flow may also be approximated in
an image sequence by matching and difference operations (Section 7.3.1).

Computer vision researchers have recently begun to concern themselves
with both the geometry and computational mechanisms that might be useful in the
understanding of optical flow [Horn and Schunck 1980; Clocksin 1980; Prager
1979; Prazdny 1979; Lawton 1981]. Many formalisms are in use. Cartesian, polar
space, and spherical coordinates all have their appeal in different situations;
differential vector geometry and simple analytic geometry are both used; even the
geometry of the eye or camera varies from one study to another. This chapter does
not contain a ‘‘unified flow theory;’” instead it briefly describes several approaches,
each of which uses a different aspect of optical flow.

7.1.2 Domain Dependent Understanding

The use of models, or at least stronger assumptions about the world, is comple-
mentary to domain-independent processing. The changing image, or even the field
of optical flow, can be treated as input to a model-driven vision process whose goal

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 212

0
.
()
0.&

)
\

S

N
OO
00

‘7
SR

)
Y

N
0
00

N

W
0
A

\
i

(a) (b)

Fig. 7.1 An example of an optical flow field for an approaching *‘hill.”” (a) The hill. (b)
Flow field.

is typically to segment the input into areas corresponding to meaningful world ob-
jects. The optical flow field becomes just another compoenent of the generalized im-
age, together with intensity, texture, or color. Motion often reveals information
similar to that from range data; flow and range are discontinuous at object boun-
daries, surface orientation may be derived, and so forth. Object (or world) mo-
tions determine image (or retinal) motions; we shall be explicit about which
motion we mean when confusion can occur.

Section 7.3 describes how knowledge of object motion phenomena can help
in segmenting the flow field. One useful assumption is that the world contains rigid
bodies. Tests for rigid bodies and calculations using data from them are quite
useful—for example, the three-dimensional position of four points on a rigid ob-
ject may be determined uniquely from three views (Section 7.3.2). A weaker ob-
ject model, that they are assemblies of compound rigid pendula (linkages), is
enough to accomplish successful segmentation of very sparse motion input which
consists only of images of the end points of links (Section 7.3.3). Section 7.3.4
describes work with a highly specific and detailed model which is used in several
ways to restrict low-level image processing and aid in three-dimensional interpreta-
tion of human motion images. Section 7.3.5 considers the processing of sequences
of segmented images.

The coherence of most three-dimensional objects and their continuity
through time are two general principles which, although occasionally violated,
guide many segmentation and point-matching heuristics. The assumed correspon-
dence of regions in images with objects is one example. Motion images provide
another example; object coherence implies the likelihood of many ‘‘continuity”’
(actually similarity) conditions on the positions and velocities of neighboring
image points.

Sec. 7.1 Motion Understanding 197

IPR2022-00092 - LGE
Ex. 1015 - Page 213

Here are five heuristics for use in matching points from images separated by a
small time interval [Prager 1979] (Fig. 7.2).

1. Maximum velocity. If a world point is known to have a maximum velocity ¥V
with respect to a stationary imaging device, then it can move at most V dr
between two images made 4t time units apart. Thus given the location of the
point in one image (and some assumptions about depth), this constraint limits
where the point can appear on the second image.

2. Small velocity change. Since most visible physical objects have finite mass, this
heuristic is a consegence of physical laws and the assumption of a *‘small inter-
val’’ between images. Of course, the definition of ““small interval’’ depends on
the definition of the velocity changes one desires to measure.

)

=5 o
1

L]

ty t

Maximum Velocity Small Velocity Changes

/
/ - —— = === —— -—fF=———-e
/
// e e e (=i

a0 o = e o, o .
t, 1,
Common Motion Consistent Match
X L
™ . »
/ \ g
; NN
Model
Fig. 7.2 Five heuristics.
198 Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 214

3. Common motion. Spatially coherent objects often appear in successive images
as regions of points sharing a ‘‘common motion.”” It is interesting that such a
weak notion as common motion (and the related ‘‘common position’’) actu-
ally can serve to segment very sparse scenes of a few points with very complex
motion behavior if a long-enough sequence of images is used (Sections 7.3.3
and 7.3.4).

4, Consistent match. Two points from one image generally do not match a single
point from another image (exceptions arise from occlusions). This is one of
the main heuristics in the stereopsis algorithm described in Chapter 3.

5. Known motion. If a world model can supply information about object motions,
perhaps retinal motions can be derived, predicted, and recognized.

In the discussions to follow these heuristics (and others) are often used or
implicitly taken as principles. A careful catalog of the probable behavior of objects
in motion is often a useful practical adjunct to a mathematical treatment. The
mathematics itself must be based on a set of assumptions, and often these are
closely related to the phenomenological heuristics noted above.

7.2 UNDERSTANDING OPTICAL FLOW

This section describes some more direct calculations on optical flow, using no
other input information. Information may be obtained from flow that seems useful
both for survival in the world and (on a less existential level) for automated image
understanding. As with shape from shading research (Chapter 3), the paradigm
here is often to see mathematically what information resides in the input and to use
this to suggest mechanisms for doing the computation. The flow input is assumed
to be known (Chapter 3 showed how to derive optical flow by local analysis of
changing intensity in the image).

7.2.1 Focus of Expansion

As one moves through a world of static objects, the visual world as projected on the
retina seems to flow past. In fact, for a given direction of translatory motion and
direction of gaze, the world seems to be flowing out of one particular retinal point,
the focus of expansion (FOE). Each direction of motion and gaze induces a unique
FOE, which may be a point at infinity if the motion is parallel to the retinal (image)
plane.

These aspects of optical flow have been studied by computing the simulated
flow pattern an observer would see while moving through a ‘‘forest’ of vertical
cylinders [Prager 1979] or Gaussian hills and valleys [Lawton 1981]. Some sample
FOEs are shown in Fig. 7.3. Figure 7.3c shows a second FOE when the field of view
contains an object which is itself in motion.

Our first model of the imaging situation is a simplification of the imaging
geometry given in Appendix 1. Let the viewpoint be at the origin with the view

Sec. 7.2 Understanding Optical Flow 199

IPR2022-00092 - LGE
Ex. 1015 - Page 215

200

(a) (b)

(c)

Fig. 7.3 FOE for rectilinear observer motion. (a) An image. (b) Later image. (c) Flow
shows different FOEs for static floor and moving object.

direction out along the positive Z axis, and let the focal length £ = 1. Then the per-
spective distortion equations simplify to

(1.1

(7.2)

N ow

In the next two sections the letters u, v, and w (sometimes written as func-
tions of) denote world point velocity components, or the time derivatives of
world coordinates {x, y, z). Observer motion with instantaneous velocity (—dx/ dr,
—dy/dt, —dz/dt) = (~u, —v, —w), keeping the coordinate system attached to the
viewpoint, gives points in a stationary world a relative velocity (u, v, w). Consider a
point located at (x, yo, zo) at some initial time. After a time interval ¢, its image
will be at

., Xot ur yo+ vt
o, y) = |——— (7.3)
zo+ wt zg+ wt
Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 216

As t varies, this parametric “‘flow-path” equation is that of a straight line; as ¢ goes
to minus infinity, the image of the point travels back along the straight line toward
a particular point on the image, namely,

FOE = (7.4)

LI

w' w
This focus of expansion is where the optical flow originates on the image. If the ob-
server changes direction (or objects in the world change their direction), the FOE
changes as well.

7.2.2 Adjacency, Depth, and Collision

The flow path equation of a point moving with a constant velocity reveals informa-
tion about its depth in z. The information is not provided directly, since all flow
paths for points at a given depth do not look alike. However, there is the elegant re-
lation

D) _ z(¢)
i Wi 7.8

Here again wis dz/dt, and Vis dD/dr. Dis the distance along the straight flow path
from the FOE to the image of the point. Thus the distance/velocity ratio of the
point’s image is the same as the distance/velocity ratio of the world point. This
result is basic, but perhaps not immediately obvious.

The above relation is called the time-to-adjacency relation, because the
right-hand side, z/w, is the z-distance of the point from the image plane divided by
its velocity toward the plane. It is thus the time until the point passes through the
image plane. This basic time interval is clearly useful when dealing with world ob-
jects; it changes when the magnitude of the world point’s velocity (or the
observer’s) changes.

Knowing the depth of any point determines the depth of all others of the
same velocity w, for it follows from the two time to adjacency equations of
the points that

Zl(I)Dz(f) ¥, ()
VZ(I)Dl ()

The time-to-adjacency equation allows easy determination of the world coor-
dinates of a point, scaled by its z velocity. If the observer is mobile and in control of
his own velocity, and if the world is stationary, such scaled coordinates may be use-
ful. Using the perspective distortion equations,

Zz(f) = (76)

2 = 20D .7
y(0) = L2000 (7.8)
- £ 0D »
Sec. 7.2 Understanding Optical Flow 201

IPR2022-00092 - LGE
Ex. 1015 - Page 217

202

As a last example, let us relate optical flow to the sensing of impending colli-
sions with world objects. The focal point of the imaging system, or origin of coordi-
nates, is at any instant headed ‘‘toward the focus of expansion,’” whose image
coordinates are (u/w, v/w). It is thus traveling in the direction

o=(%, XL (7.10)
w w

and is following at any instant a path in the environment instantaneously defined
by the parametric equation

(x, y,2z) =10 = t(ﬂ, l, 1) (7.11)
wow

where facts like a real scalar measure of time. Given this vector expression for the
path of the observer, one can apply well-known vector formulas from analytic solid
geometry to derive useful information about the relation of this path to world
points, which are also vectors.

For example, the position P along the observer’s path at which a world point
approaches closest is given by

00 - x)
=== 7.12
P="00 iz
where O is the direction of observer motion and x the position of the world point.
Here the period (.) is the dot product operator. The squared distance Q2 between
the observer and the world point at closest approach is then

0= (x-x) - (x-0)/(0-0) (7.13)

7.2.3 Surface Orientation and Edge Detection

It is possible to derive surface orientation and to characterize certain types of sur-
face discontinuities (edges) by their motion. A formalism, computer program, and
biologically motivated computational mechanism for these calculations was
developed in [Clocksin 1980].

This section outlines mainly the surface orientation aspect of this work. As
usual, the model is for a monocular observer, whose focal point is the origin of
coordinates. An unusual feature of the model is that the observer has a spherical
retina. The world is thus projected onto an “‘image unit sphere”’ instead of an im-
age plane. World points and surface orientation are represented in an observer-
centered Cartesian coordinate system. The image sphere has a spherical coordi-
nate system which may be considered as “‘longitude’” 8 and ‘‘latitude’’ ¢. These
coordinates bear no relation to the orientation of the retina. World points are then
determined by their image coordinates and a range r. An observer-centered Carte-
sian coordinate system is also useful; it is related to the sphere as shown in Fig. 7.4,
and by the transformations given in Appendix 1.

The flow of the image of a freely moving world point may be found through
the following derivation. As before, let the world velocity of the point (possibly in-
duced by observer motion) (dx/dt, dv/dt, dz/dr) be written (u, v, w). Similarly,

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 218

Fig. 7.4 Spherical coordinate system, and the definition of o and 7.

write the angular velocities of the image point in the @ and ¢ directions as

de
o SE 7
8 e (7.14)

_ d¢
€= . (7.15)

Then from the coordinate transformation equations of Appendix 1,
y = xtan#d (7.16)

Differentiating and solving for 46/dt (written as 8) gives
e LMY (7.17)
x sec“d

Substituting for x its spherical coordinate expression r sin¢ cos® and simplifying
yields the general expression for flow in the 8 direction:

5 = vcosﬂ.—usme (7.18)
r sing
The derivation of € proceeds from the coordinate transformation equation
z=rcos¢ (7.19)

Differentiating, solving for d¢/dt (written as €), and using

Sec. 7.2 Understanding Optical Flow 203

IPR2022-00092 - LGE
Ex. 1015 - Page 219

204

dr _ xu +yv +zw (7.20)
dt r '

yields the general expression for flow in the ¢ direction:

€= (xu + yv -1; z?rv) cos¢p — rw 71.21)
r‘sing

As usual, general point motions are rather complicated to deal with, and
more constraints are needed if the optic flow is to be ““inverted’’ to discover much
about the outside world. Let us then make the simplification that the world is sta-
tionary and the observer is traveling along the z direction at some speed S (This as-
sumption is briefly discussed below.) Explicitly, suppose that

u=0 v=0 w=-5

Substituting these into the general flow equations (7.18) and (7.21) yields
simplified flow equations:

0 (7.22)
Song (7.23)

r

>
I

€ =

Thus ris a function of @ and ¢ and therefore soise.

It is this simplified flow equation which forms the basis for surface orientation
calculation and edge detection. The goals are to assign to any point in the flow field
one of three interpretations: edge, surface, or space and also to derive the type of
edge and the orientation of the surface.

To find surface orientation, represent the surface normal of a surface T by
two angles o and 7 defined as in Fig. 7.4 with the two planes of ¢ and 7 being the
RZ and QR planes, respectively. The slant is measured relative to the line of sight,
denoted by R in the figure. o and 7 correspond to depth changes in ‘‘depth
profiles” oriented along lines of constant @ and ¢, respectively. Thus,

- |1]8r
tano A (7.24)
1]09r
= |—|— 7.25
tant [r] 50 ()

Surface orientation is defined by o and 7 or equivalently by their tangents. A
surface perpendicular to the line of sight haso = 7 = 0.

Equations (7.24) and (7.25) assume the range ris known. However, one can
determine them without knowing r through the simplified flow equation, Eq.
(7.23). The latter may be written

_ Ssing

T €0, @)

where € (9, ¢) gives the flow in the ¢ direction. Differentiating this with respect to
and ¢ gives

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 220

9r _ o €cos¢ —sin ¢ (3¢/9¢)

Fra % (7.26)
8r _ _ Ssin¢ (9¢/96)

06 &2) (7.27)

These last three equations may be substituted into Eqs. (7.24) and (7.25), and the
results may then be simplified to the following surface orientation equations:

- _ 9
tano = cot¢ 5% Ine (7.28)
tanr = et (lne) (7.29)
90 :

These tangents are thus easily computed from optical flow. The result does
not depend on velocity, and no depth scaling is required. In fact, absolute depth is
not computable unless we know more, such as the observer speed.

Turning briefly to edge perception: Although physical edges are a depth
phenomenon, in flow they are mirrored by €, the flow measure that allows deter-
mination of orientation without depth. In particular, it is possible to demonstrate
that the Laplacian of e has singularities where the Laplacian of depth has singulari-
ties. An arc on the sphere projects out onto a ““depth profile’ in the world, along
which depth may vary. If the arc is parameterized by «, relations among the depth
profile, flow profile, and the singularities in flow are shown in Fig. 7.5. Thus the
Laplacian of e provides information about edge type but not about edge depth.

The formal derivations are at an end. Implementing them in a computer pro-
gram or in a biological system requires solutions to several technical problems.
More details on the implementation of this model on a computer and a possible

F g Sing.V2g
Range Flow Theoretical
ang : edge
profile profile signature
o [+3 o

Fig. 7.5 The singuiarities ol the
second derivative of the flow profile
inform about the type of edge.

o, |
B |
|~
1. | =

<))

Sec. 7.2 Understanding Optical Flow 205

IPR2022-00092 - LGE
Ex. 1015 - Page 221

206

implementation using low-level physiological vision primitives appear in [Clocksin
1980]. There are some data on human performance for the types of tasks at-
tempted by the program. The assumption of a fixed environment basically implies
that flow motions in the environment are likely to be interpreted as observer mo-
tions. This view is rather strikingly borne out by ‘‘swaying room’ experiments
[Lee and Lishman 1975], in which a subject stands in a swayable visual environ-
ment. (A large, low-mass bottomless box suspended from above may be lowered
around the subject, giving him a room-like visual environment.) When the hang-
ing “‘room’’ is made to sway, the subject inside tends to lose balance. Further,
moving surfaces in the real world are quite often objects of interest, such as an-
imals.

A survey of depth perception experiments [Braunstein 19761 points to mo-
tion as the dominant indicator of surface orientation perception. Random-dot
displays of monocular flow patterns [Rogers and Graham 1979] evoke striking per-
ceptions of solid oriented surfaces; flow may be adequate for shape and depth per-
ception even with no other depth information. The experiments on perception of
“‘edges,”” or discontinuities in flow caused by discontinuities in depth of textured
surfaces, are less common. However, there have been enough to provide some
confirmation of the model.

The computational model is consistent with and has correctly predicted
psychological data on human thresholds for slant and edge perception in optical
flow fields. (The thresholds are on the amount of slant to the surface and the depth
difference of the edge sides.) The computational model can be used to determine
range, but only to poor accuracy; this happens to correspond with the human trait
that orientation is much more accurately determined by flow than is range. Quanti-
tatively, the accuracy of orientation and range determinations are the same for the
model and for human beings under similar conditions.

7.2.4 Egomotion

It is possible to extract information about complex observer motions from optical
flow, although at considerable computational cost. In one formulation [Prazdny
19791, a model observer is allowed to follow any space curve in an environment of
stationary objects, while at the same time turning its head. It is possible to derive
formulae that determine the observer’s instantaneous velocity vector and head ro-
tational vector from a small number (six) of flow vectors in the image on a (stand-
ard flat) retina.

The equations that describe flow given observer motion and head rotation
can be quite compactly written by using vector operators and a polar coordinate
system (similar to that of the last section). The inherent elegance and power of the
vector operations is well displayed in these calculations. Inverting the equations
results in a system of three cubic equations of 20 terms each. Such a system can be
solved by normal methods for simultaneous nonlinear equations, but the solutions
tend to be relatively sensitive to noise. In the noise-free case, the method seems to
perform quite adequately.

The calculation yields a method for deriving relative depth, or the ratio of the

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 222

distances of points from the observer. An approximation to surface orientation
may be obtained using several relative depth measurements in a small area and as-
suming that the surface normal varies slowly in tne area.

7.3 UNDERSTANDING IMAGE SEQUENCES

An image sequence is an ordered set of images. The image sequences of interest
here are samplings of four-dimensional space-time. Commonly, as in a movie, the
images are two-dimensional projections of a three-dimensional physical world, se-
quenced through time. Sometimes the sequence consists of two-dimensional im-
ages of essentially two-dimensional slices of the three-dimensional world, se-
quenced through the third spatial dimension. Some of the techniques in this sec-
tion are useful in interpreting the three-dimensional nature of objects from such
spatial image sequences, but the main concern here is with temporal image se-
quences. In many practical applications, the input must be such a sequence, and
continuous motion must be inferred from discrete location differences of image
points. The thrust of work under these assumptions is often to extend static image
understanding by making models that incorporate or explain objects in motion, ex-
tending segmentation to work across time [Thompson 1979, Tsotsos 1980].

When asked why he was listening to a metronome ticking, Ezra Pound is said
to have replied that he did not listen to the ticks, but to the ‘‘spaces between
them.”” Like Pound, we take the ticks, or images, as given, and are really in-
terested in what goes on ‘‘between the ticks.”” We usually want to determine and
describe how the images are related to each other. This information must be
derived from the static images, and two approaches immediately present them-
selves: broadly, the first is to look for differences between the images, and the
second is to look for similarities.

These two approaches are complementary, and are often used together. A
general paradigm for object-oriented motion analysis is the following:

1. Segment (describe) the individual images. This process may be complex,
yielding a relational structure or a segmentation into regions or edges. An im-
portant special case is the one in which the description (segmentation) process
is null and the description is just the image itself. For example, an initial high-
level static description is impossible if motion is to be used as an aid to seg-
mentation.

2. Compute and describe the differences or similarities between the descriptions
(or undescribed images).

3. Build a description of the sequence as a whole from the single-frame primitives
and descriptions of difference or similarity that are relevant to the purpose at
hand.

7.3.1 Calculating Flow from Discrete Images

This method is a form of disparity calculation that is not only used for flow calcula-
tions, but may also be used for stereo matching or tracking applications. The com-

Sec. 7.3 Understanding Image Sequences 207

IPR2022-00092 - LGE
Ex. 1015 - Page 223

208

putations are implemented with “‘relaxation’’ techniques.

The flow calculations have so far assumed an underlying continuous image
which was densely sampled. With those assumptions and a few more the funda-
mental motion equation allows the calculation of flow (Chapter 3). The approach
of this section is to identify discrete points in the image that are very different from
their surround. Given such discrete points from each of two images at different
times, the problem becomes one of matching a point in one image with the right
point (if it exists) in the other image. This matching problem is known as the
correspondence problem [Duda and Hart 1973, Aggarwal et al 1981]. The solution
to the correspondence problem in the case of motion is, of course, the optic flow.

One algorithm for matching distinct points from two different frames [Bar-
nard and Thompson 1979] breaks the matching problem into two steps. The first is
the identification of candidate match points in each of the two frames. The second
is an iterative algorithm which adjusts match probabilities for pairs of match points.
After successful termination of the algorithm, correct matches have high probabil-
ities and incorrect matches have very low probabilities.

The Moravec interest operator ([Moravec 1977]; Section 3.2) produces can-
didate match points by measuring the distinctness of a local piece of the image
from its surround. Each frame is analyzed separately so that the end result is two
sets of points §; and S,, one from each frame, which are candidates to be matched.
Candidates in S, are indexed by /and those in S, by J.

The iterative part of the algorithm is initialized with a data structure for the
possible matches that exploits the heuristic that a point in the world does not move
large distances between frames. Potential matches for a given point x; in S, the
first image, are all points y; in S such that

“xi - y_j” < Vmax 7 (730)

where v, is the maximum disparity allowed between points. All points that are
selected by the Moravec operator have a given disparity vector v, and are kept as
possible matches. Each disparity has an associated probability P,; which changes
through time as the most likely disparities are found. The information kept for
each point x; in S; looks like

; (vy, Py)(vy, Py)e- (V% P%)) (7.31)

U

where F*is a special symbol that denotes ‘‘no match,”” and all the j, are members
of S,. Storing the flow vectors v implicitly stores the corresponding point in S,
since ¥; = x; + v;;. Since the probabilities are adjusted iteratively, one final index
is needed to denote the iteration value so that P, actually becomes P}} forn = 0.

The initial approximation for the probabilities P,'JQ takes advantage of the
‘“‘common motion’” heuristic: If y; is the correct match point for x;, the image near
¥, should look like the image near x;. Thus P,ﬁ’ can be defined by

1

P,?= W fOI' X in Sl (732)
where
wy= 2 [(f(x +dx, 1) = fly; + dx,1)]? (7.33)
lax| < &
Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 224

file:///dx/4
file:///dx/4

and ¢ is constant. The updating formula is complex in form but basically is a
weighted sum of neighboring match probabilities where the neighboring match is
consistent (i.e., has nearly the same velocity). A neighboring match k is consistent

if
vy = vl € dVmax (7.34)
The goodness of a particular match is measured by g,;, where
gt o ¥, B (7.35)
k aneighborof i [s.t. ki satisfies (7.34)
and the probabilities are updated by
P} = P74 + Bg;) (7.36)
- Py
Pl = 3 7 (7.37)

J S.I. ij isa match
where the function of Eq. (7.36) is to renormalize the probabilities and 4 and B are
constants.
The following simplified example makes these ideas more concrete.
Consider the situation given in Fig. 7.6, where the points in (a) are from §;
and the points in (b) are from §,. Using hypothetical values for P, an initial
match data structure is, in terms of Eq. (7.31):

((4,10) (5,00, 0.7) ((4,-5), 0.25) ((2,-8), 0.05))
(4,6) (5 4), 0.5 ((4,-1), 0.3) ((2,—-4), 0.2))
(2,3 «7,D, 0.3) (6,2, 035 (4, -1, 0.2))

v y
10 e i=1 10+ e /=1
8_ 8_
6 e /=2 6
'— e /=2
41 4
® /=3
2~ 2+ e j=3
|]] I e L 1] 1 1 %
0 2 4 6 8 0 2 4 51 8 10
(a) (b}

Fig. 7.6 Discrete matching: a concrete example.

Sec. 7.3 Understanding Image Sequences 209

IPR2022-00092 - LGE
Ex. 1015 - Page 225

210

Also, Dv., = 1, using the chessboard norm. Using the updating formula (7.35),
the first set of g;;’s is given by

03 02 0
[g}1=10 0.9 0.25
0 0 03

and the corresponding unnormalized probabilities, with 4 = 0.3 and B = 3, are

.11 0.875 0.015
[P}1=[0.15 279 0.80
0.09 0.105 0.65

which are normalized to be

0.55 0.44 0.01
[Pl1=10.04 0.75 0.21
0.11 0.12 0.74

So after one iteration the match structure is already starting to converge to the best
match of P; = 1, P; = 0 for i # j Note that in general P; and g,; are, in matrix
form, sparse due to the consistency condition (7.34). To see the results for an ex-
ample of a more appropriate scale, consult Fig. 7.7.

7.3.2 Rigid Bodies from Motion

The human visual system is predisposed to interpret (perceive) two-dimensional
projections of moving three-dimensional rigid objects as just that—moving rigid
objects. This facility is an interesting one, since it persists even when all three-
dimensions information is removed from any single static view. This sort of result
has been known for some time [Wallach and O’Connell 1953; Johansson 1964].
The ability to interpret points as three-dimensional cobjects demonstrated by
Johansson means that the interpretation process does not rely solely on monitor-
ing the changes of angles and length of lines, as suggested by Wallach and
O’Connell.

Of course any change between two two-dimensional projections of points in
three dimensions can be explained by any number of configurations and motions.
Our visual system only accepts a few interpretations, often only one. This one is, in
the world of moving objects in which we live, usually correct. This ability to reject
unlikely interpretations is consistent with a *‘rigidity assumption’’ [Ullman 1979]:
Any set of elements undergoing a two-dimensional transformation which has a
unique interpretation as a rigid body moving in space should be so interpreted. It
seems likely that something like this rigidity assumption is built into our visual sys-
tem. However, saying that does not tell us much about how it could possibly work.
Below we consider the problem of obtaining three-dimensional structure from sets
of corresponding two-dimensional points.

One related area of work is the reconstruction of three-dimensional structure
when the corresponding points in two dimensions are not known. The reconstruc-

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 226

Fig. 7.7 Optical flow from feature point analyses. (a) Animage. (b) Later image. (¢) Opti-
cal flow found by relaxation.

tion procedure must begin by matching points in the several views. It can be shown
[Shapira 1974] that general wire-frame objects of straight wires (of which the edges
of polyhedra are only a special case) may be reconstructed from a finite number of
perspective projections, but that for general wire-frame objects, the number of
projections needed may be quite large. In fact, given any set of projections
(viewpoints and viewing planes), an object may be constructed that is only ambi-
guously specified by those projections. Further work on reconstruction from pro-
jections is reported in [Shapira and Freeman 1978, Wesley and Markovsky 1981].
If point correspondences are known, it is possible to compute a unique

Sec. 7.3 Understanding image Sequences 211

IPR2022-00092 - LGE
Ex. 1015 - Page 227

212

three-dimensional location of four noncoplanar points from just three (ortho-
graphic) projections [Ullman 1979]. If the projections result from noncoplanar
viewpoints, the recovery of three-dimensional structure is straightforward and is
outlined below. If the projections are from coplanar viewpoints, the computations
become more complex but still yield a unique result up to reflection. This second
case is an important one; it applies if the camera is stationary and the object re-
volves about a single axis, for instance. Since the reconstruction is unique, the
method never gets a wrong structure from accurate two-dimensional evidence
about a rigid body. The probability that three views of four nonrigidly connected
points can be interpretated as a rigid body is very low. Thus, the method is unlikely
to report structure that is not there.

The method may be heuristically extended to multiple objects. Given the ca-
pability of describing the three-dimensional structure of four points, one can seg-
ment large collections of points by treating them in groups of four, deriving their
structure and hence their motion. Groups of points that are not rigid have a very
low probability of being interpreted as rigid, and the rest will presumably cluster
into sets that share motions associated with rigid objects in the imaged scene. Thus
the method to be described may be adaptable for image segmentation.

The calculation may be applied to coplanar points, If a unique result is
derived, it is correct; otherwise, the fact that the points are coplanar is revealed.
Generally, accuracy of two-dimensional positional information can be sacrificed to
some degree if more points or more views are supplied. Perspective projections are
more difficult to analyze. Such views can easily be treated approximately by the
technique of breaking them into four element groups and treating each group as if
it were orthographically projected in a direction depending on its position in the
scene. Thus perspective may be dealt with globally, although each group is locally
treated as an orthogonal projection. The assumption of orthographic projection im-
plies that the method cannot recover relative depth of objects. The method does
not lend itself well to “‘structure from receding motion”’ in which the motion infor-
mation is largely encoded in the perspective effects which render objects larger or
smaller as they advance and recede. The method does not serve well to explain hu-
man performance on moving images of a few points on nonrigid objects (such as
those in Section 7.3.3).

Assume that three orthographic projections of four noncoplanar points are
given, and that the correspondence between the points in the projection is known.
Translational motion perpendicular to a projection plane is unrecoverable, and
translation in a plane parallel to the projection plane is explicitly reproduced in the
image by the projection process. The problem thus easily reduces to the case that
one of the points is chosen as the origin of coordinates, and stays fixed throughout
the process. This treatment follows that of [Ullman 1979].

Let the four points be 0, 4, B, and C. Three orthographic views, projections
on some planes I1;, I1,, and I13, are the input to the process. A coordinate system is
chosen with origin at 0, and a, b, and c are vectors from 0 to 4, B, and C. Then
each view has a two-dimensional coordinate system with the image of 0 at its ori-
gin. Let p, and g, be the orthogonal unit basis vectors of the coordinate systems of
the II,. Let the image coordinates of 4, B, and ConII, be (x(a;), y (a))), (x(5,),

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 228

y(8)), and (x(c), y(c)) for i = 1, 2, 3. The calculations produce vectors uy;,
which are unit vectors along the lines of intersection of IT; with I ;.
The image coordinates are in fact

x(a) =ap, yla)=ag
x(b;) = bp; y(5) = bq; (7.38)
x(g) =ep; yle) =cq;

The unit vector uy; is on both IT; and I ;; hence for some r;;, sy, £;;, and vy,

u; = ryp; + s;4q; (7.39)
rg+si=1
u; = 4;p; + v;q, (7.40)
i+ vi=1
Equaticns (7.39) and (7.40) yield
gD + sy = 1,0, + vyq; (7.41)

Taking the scalar product of a, b, and ¢ with Eq. (7.41) yields three more equa-
tions, which are linearly mdependent These equations in ry;, s, £;, and vjj> com-
bined with Egs. (7.39) and (7.40), yield two solutions differing only in sign. But
this means that (up to a'sign) u,; is determined in terms of the image coordinate
basis vectors (p,, q;) and (p;, q;). Two u vectors determine one of the planes of
orthogonal projection. For instance, u;; and uy; lie in P3. Given the plane equation
for the II;, the three-dimensional locations are computed as the intersection of
lines perpendicular to the IT; and through the two-dimensional image points. Of
course, because of the ambiguity in sign, the expected mirror image ambiguity of
structure exists.

The extension to the case that u;; = up; = uy;, where the three viewpoints
are coplanar, is not difficult. It is perhaps a little surprising that coplanar viewpoints
still yield a unique interpretation.

An extension of the mathematics to perspective imaging is not difficult to for-
mulate, but the equations are nonlinear and must be solved either conventionally,
say by the multidimensional Newton-Raphson technique of Appendix 1, or
perhaps by cooperative algorithms of a more artificial intelligence flavor [Lawton
1981].

In geometrically underconstrained situations, plausible interpretations can
sometimes be made by using other knowledge to give constraints. For example,
one can minimize a second-difference approximation to the acceleration of points
in order to use the ‘‘constraint’’ of smooth motion. Such a criterion may find a sin-
gle ““best’’ location for points. Another example is the use of position and velocity
commonality over time to establish rigid members in linkages (Sectlon 7.33);a
first step to location determination.

To see how the equations might be set up, consider the perspective geometry
of Section 7.2.1. In this simplified Cartesian system, Egs. (7.1) and (7.2) are used
as before. Since z(x’, ¥’ 1) = (x, y, z), the location of any point is determined (up

Sec. 7.3 Understanding Image Sequences 213

IPR2022-00092 - LGE
Ex. 1015 - Page 229

214

to a scale factor, since the focal length is not explicit) from its image coordinates
and its depth coordinate, z. For F > 1 images and N = 3 points there are FN — 1
unknowns (the ability to scale distance allows one point to be placed arbitrarily).

To apply the rigid body constraint, enough pairwise distances between points
must be specified to lock them into a rigid configuration. For three points, three
distances are necessary. Each additional point requires another three distances,
and so for each interframe interval 3(V —2) constraints are needed, for a total of
3(F—1) (N —2) constraints. Thus, whenever

2FN —6F—3N+7>0 (7.42)

consistent equations from the constraints can be solved [Lawton 1981]. With two
views, five points are needed; with three views, four points. This is not surprising,
given the preceding analysis for orthographic projections.

Consider the simple case of two points seen in two frames. If they are rigidly
connected, one constraint equation holds. It is equivalent to

(x[t = xlz)'(x“ e Xu) = (X21 = Xzz)‘(Kzf = Xzz) (743)

(x,»j, x'; are, respectively, the world and image coordinate vectors of point j in
frame ij). Since x;; = z;x'y, (recall (7.1) and (7.2)) the constraint becomes

28 (K1x'n) + 2 (12X 1) — 221121 ox)
= 2221 (X'z[‘X'zl) e 2222 (X'Qg'X’zz) e 2221222(X'2]'X’22) =0 (744)

A further constraint that objects only move in the ‘‘ground plane,”’ or at a
constant y, has the effect of removing two unknowns through substitution in the
constraint equation above. Since for arbitrary mand n,

Yim = Zimy’im = Zinyfm (745)
Z; 8

7 = (7.46)
Yin

As a final example, a restriction to purely translational motion of the point
configurations yields the constraint

(X]] - le) - (X]g — X22) =0 (7.47)

Expanding this as the product of unknown depths () and known image positions
(x) yields a vector equation that may be written componentwise as three linear
equations in four unknowns. Recall that a focal length must be fixed, effectively
setting one unknown: setting one z; to 1 gives a system of three linear equations in
the other three z;;.

7.3.3 Interpretation of Moving Light Displays — A Domain-Independent Approach
One of the domains that provides the purest aspects of motion vision is moving
light displays (MLDs). These are sequences of images which track only a few

discrete points per frame. A typical way to produce an MLD is to attach small glass
bead reflectors to a person’s major joints (shoulders, elbows, wrists, hips, knees,

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 230

ankles), focus a strong light on him or her, and manipulate the contrast of a video-
tape recorder so as to produce on videotape a record of the movement of the
reflective points on the joints. A single frame from such a record is unrecognizable
by an inexperienced subject (Fig. 7.8).

However, a sequence of such frames quickly gives (typically in 0.4 second)
not only a compelling perception of motion of a three-dimensional body, but al-
lows recognition of the sequence as depicting a walking person, and a description
of the type of motion (walking backward, jumping, walking left). Complicated
scenes such as several independently moving bodies and couples dancing can be
recognized. Sophisticated judgments can be made, such as determining the sex of a
subject from an MLD, or recognizing the gait of a friend [Johannson 1964].

MLDs thus present quite a challenge to computer vision. It could be that
MLDs of moving people are interpreted by specialized neural mechanisms ex-
pressty tailored to the purpose of dealing with any visual input whatever that sug-

- . '
Frame 1 Frame 5 Frame 9 Frame 13
“r” o', i .

e S e -
Frame 17 Frama 21 Frame 25 Frame 2%
e e ot
s F g
Frams 33 Frame 37 Frame 41 Frams 45
Lh e e B
I [Y R “r, .
et . e st oG e
Frame 43 Frame 53 Frame 57 Frame 61

Fig. 7.8 AnMLD for a man walking his dog.

Sec. 7.3 Understanding Image Sequences

IPR2022-00092 - LGE
Ex. 1015 - Page 231

215

216

gests moving people. MLDs certainly demonstrate that texture, continuous fields
of flow, and especially that the interpretability of static versions of the scene are not
necessary for human beings to do complex perception of certain three-dimensional
objects.

This section is concerned with MLDs of moving human beings, and the in-
terpretation we desire consists of separating images of individuals, in deriving their
“connectivity” (i.e., the rigid links that connect the points), and possibly in
describing the three-dimensional motion in which the subjects are engaged.

MLDs produced with perspective projection have few of the pleasant proper-
ties of the rigid orthographic projection which were used in Section 7.3.1. In partic-
ular, both translating and rotating objects are inherently ambiguous in perspective
projections [Roache and Aggarwal 1979]. The approximate method outlined in
Section 7.3.1, in which local groups of four points are considered rigid and ortho-
graphically projected, fails for MLDs of walking people. In many applications, di-
gitization error will limit severely the accuracy returned. Worse, in a typical 12-
point MLD of a moving person, there is never a rigid system of four noncoplanar
points. The small departures from rigidity occurring in 30 ms of normal walking are
enough to render the rigidity assumptions invalid [Rashid 1980].

An algorithm in [Badler 1975] extracts the trajectory of two moving points if
they move in parallel paths and are viewed by spherical projection. The projection
conditions are approximately met in typical moving-person MLDs, but the lack of
points moving in parallel paths is enough to render the algorithm inapplicable.

A good start in the interpretation of MLDs involves solving the point-
correspondence problem between frames. Knowing how points move from frame
to frame gives at least a start on perceiving the continuity of the objects in the
scene. Solving this problem from frame to frame may be attacked in any number of
ways; the relaxation approach of Section 7.2.3 is an example.

Another is to predict the location of a point in the two-dimensional image
from its velocity in the preceding frame. Velocity is computed from the
differences in position of the point in the preceding two frames. Predicting where a
point will be in frame 3 implies that one knew which point it was in frames 1 and 2.
One way of getting the process started is to associate points in frames 1 and 2 that
are nearest neighbors. Evidence suggests that human beings in fact are not infalli-
ble trackers of points in MLDs [Rashid 1980]. However, they do not let local in-
consistencies in point interpretation (say, if the ankle momentarily ““turns into”’
the knee) detract from their overall perception of a moving person. This is a good
example of how inconsistent interpretations arise in human vision.

A program can be given similar resilience by having it suspend judgment on
contradictory clues and use succeeding frames to resolve the problem [Rashid
1980; O’Rourke 1980]. Having established local point correspondences, the next
problem is to group the points into coherent three-dimensional structures and
separate individual bodies moving in the scene. When constraints on the scene are
available that make analytic techniques applicable (Section 7.3.1), explicit group-
ing of points prior to analysis may be unnecessary. In fact, with complex MLDs
such as Ullman studied (e.g. two transparent but spotty coaxial cylinders rotating
in opposite directions about an axis in the viewing plane), most naive grouping

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 232

strategies based on two-dimensional motion in the image will fail. Ullman’s
method chooses four-tuples of points from such a scene; on the average seven-
eighths of such groups involve points from both cylinders, but with accurate data
the algorithm can identify such nonrigid four-tuples. The remaining one-eighth of
the groups have consistent interpretations as rigid rotating groups, and the groups
fall into two classes, one for each cylinder.

One straightforward heuristic approach to MLD interpretation enjoys
moderate success and does not use domain-dependent models [Rashid 1980]. It
has the characteristic that it deals exclusively with two-dimensional motions in
order to extract information about three dimensions. The approach is more heuris-
tic than Lawton’s and certainly more than Ullman’s (Section 7.3.1). It is prey to
many of the same pitfalls that threaten any image-based (as opposed to world-
based) approach to computer vision, With sparse MLDs of nonrigid objects, clus-
tering algorithms may be used to group points into related structures. Rashid’s
method computes the minimum spanning tree of points in a four-dimensional
space of two-dimensional position and two-dimensional velocity. That is, each
point in the MLD is represented at any time t by a four-vector

Ge(e), y(), ur), v(p)

where v and v are the velocity in image x and y coordinates. Points may be
clustered in this position-velocity space on the basis of a four-dimensional
Euclidean metric, modified by information about distances derived from preceding
frames. Perspective distortion can affect the usefulness of two-dimensional dis-
tances computed in previous frames, and data scaling is useful to establish a rea-
sonable relation between units in the four-dimensional space. Rashid’s technique
is to scale the data in each dimension to have unit variance and zero mean, and to
compute cumulative distances between points in a frame by a function such as

D, j)=4dli j)+ D, 1 j) x 0.95 (7.48)

where D, (i, j) is the cumulative distance between points i and j in frame #», and
d (i, j) is their Euclidean distance.

This clustering method can successfully group points on the two cylinders in
the rotating-cylinder sequence mentioned above after seven frames. Figure 7.9
gives the results of clustering the data for the MLD of Fig. 7.8. Clustering is stable
after some 25 frames (about one-half of a step).

7.3.4 Human Motion Understanding— A Model-Directed Approach

Human motion understanding may be done with a much different approach than
the heuristic clustering applied to MLDs in Section 7.3.3. A very detailed model of
the domain can help restrict search, make inferences, disambiguate clues, and so
forth. A program for understanding images of human motion successfully uses
such an approach [0’Rourke 1980; O’Rourke and Badler 1980].

The body model accounts for such factors as relative location of body parts,
joint angle ranges, joint angle acceleration limits, collision checking, and gravity. A
motion simulation program drives a ‘‘bubble man’’ representation of a person

Sec. 7.3 Understanding Image Sequences 217

IPR2022-00092 - LGE
Ex. 1015 - Page 233

8lT

MST for frame: 7

MST for frame: 12

MST for frame: ‘7'

MST for frame: 22

MST for freme: 27

MST for frame: 32

i

MST for frame: 37

MST for frame: 42 z

Fig. 7.9 The minimal spanning tree for the than and dog.

IPR2022-00092 - LGE
Ex. 1015 - Page 234

(Fig. 7.10a) [Badler and Smoliar 1979]. This representation is used to produce a
shaded graphic rendition which serves as input to the motion understanding pro-
gram (Fig. 7.10b). Knowledge of the imaging process also provides constraints on
the configuration of the figure represented. For instance, perspective, the
figure/ground distinction, the location of features, and occlusion all have implica-
tions for the interpretation of the scene as a configuration of the model.

The system is another example of a cooperative, constraint-satisfying system
(Chapter 12), this time one that involves a high-level domain-dependent model.

(c) (d)

Fig. 7.10 Understanding human motion through the incorporation of many
constraints. (a) Bubble Man from simulation program. (b) Input to motion under-
stander; a bowing man. (c,d) Initial and final stages in understanding the motion
of the bowing man.

Sec. 7.3 Understanding Image Sequences 219

IPR2022-00092 - LGE
Ex. 1015 - Page 235

220

The constraints imposed by the model restrict the application of low-level opera-
tors, and their results reduce uncertainty in parts of the model configuration.
Through the relations between model parts, improved estimates for part locations
are evolved and propagate throughout the model. Figure 7.10c and d show how the
image of the bowing man is understood more accurately as time passes and more
constraints are propagated through the model. It should be noted that only the
hand, foot, and head features are explicitly searched for in the image. The boxes
represent possible locations for the obvious body parts. Note how the occlusion has
been understood.

7.3.5 Segmented Images

Moving Polygons and Line Drawings

As one step along the way to motion understanding, the analysis of ideal po-
lygonal images was popular for a time [Aggarwal and Duda 1975; Martin and Ag-
garwal 1978; Potter 1975]. The assumptions are usually that opaque polygons
move in parallel planes and may obscure one another (this is often called a 2.5-
dimensional situation). The viewpoint is somewhere ‘‘above’” the collection of
moving shapes. The viewer (program) is presented with a sequence of frames ei-
ther of line drawings or gray level images of the scene (Fig. 7.11). Polygon motion
is assumed small between frames. The goal is usually to segment the scenes into
polygons, and to extract such information as their direction and speed of motion.
The solutions to these problems usually reflect assumptions about the connectivity
of the polygons, or restrictions on their motion, and often revolve about the allow-
able topological and geometrical transformations that can take place in such
scenes.

For instance, in a frame with two polygons such as that shown in Fig. 7.12,
certain scene vertices belong to primitive polyhedra (they are ‘‘true’ vertices),
whereas others are ‘‘false’” artifacts of occlusion. The lines impinging at true ver-
tices will not change their angle of meeting through time, but false vertices may
change angles if the polygons rotate as they move. False vertices are usually ob-
tuse.

Complex connectivity changes can arise when nonconvex polygons slide past
one another. Sorting out a coherent interpretation of a sequence of frames, espe-
cially in the presence of noisy vertex positions, is a challenging exercise.

A system was designed in [Badler 1975] which used sequences of line draw-
ings produced by a spherical projection of a three-dimensional world to reconstruct

o>

Fig. 7.11 Two frames from a motion image of three moving polygons.

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 236

Fig. 7.12 True (T) and False (F) vertices in a scene of two overlapping pol-
yeons.

some three-dimensional aspects of the input, and to transform the pictorial input
into natural language descriptions of motion.

Similarity Analysis, Then Difference Measurement

This approach is probably the most intuitive if motion perception is thought
to be built up from perception of successive frames. The idea is simply to extract an
object in one frame, and to search for it in the next frame. Obviously, the basic
techniques here are the description-extraction process (i.e., static computer vision,
the topic of most of this book) and matching (Chapter 11).

The entire range of matching techniques, from image matching to descrip-
tion matching, has been applied to image sequences. One characteristic of this
approach in its pure form is that motion is merely a nuisance — segmentation is
performed without using motion information. Usually the approach is pursued in a
more pragmatic and domain-dependent fashion: for instance, the matching may be
guided by knowledge about the motions.

One advanced system that uses this basic paradigm is described in [Price
1976; Price 1978, Price and Reddy 1977]. It segments and describes both images
first. Using the symbolic descriptions, it matches complex scenes (such as houses
or aerial images) that have been relatively rotated by large amounts (45 to 180°)
and have size differences as well. It also derives the geometric transformation that
produced the second image from the first.

Clearly, the major problems in systems of this sort come from generating and
matching descriptions. The matching must be sophisticated, and to be successful in
general it must combine symbolic and geometric components. The constraint that
successive frames do not reflect violent motions eases the matching problem con-
siderably, and iconic correlation techniques may sometimes apply.

Difference Measurement, Then Similarity Analysis

The idea behind this approach is to guide the similarity analysis with informa-
tion about image differences. This seems a promising idea, because differences are
easy to compute, whereas the very definition of similarity is open to question, and
computing it may be arbitrarily complex.

Sec. 7.3 Understanding Image Sequences 221

IPR2022-00092 - LGE
Ex. 1015 - Page 237

222

In particular, in locating moving objects in an image sequence, one is invited

to ignore the stationary background. The area of changing image can be tracked
easily from image to image, and subjected to further analysis. Rather than trying to
track an object from image to image, it is attractive to consider letting the object
move far enough that it does not overlap between two images. Then the difference
between the images will actually reflect the structure of the object.

One possible method [Nagel 1978a, 1978b; Jain and Nagel 1978] proceeds as

follows:

1.

7.1
7.2

7.3

7.4

7.3

7.6

Obtain two images from the motion sequence such that the object of interest
will have moved far enough not to overlap in position in the two images. (One
clearly needs information about the objects and the imaging parameters to as-
sure no overlap.)

Segment the two images into regions.

Compute a dissimilarity measure between the overlapping areas of regions in
the two images. One reasonable measure is the likelihood ratio for the two hy-
potheses that the intensities in the overlaps come from the same distribution
of intensities or from different distributions.

In one of the images, take all regions that are most consistent with the hy-
pothesis of different distributions and assume that they arise from the moving
object (or its old vacated position). Merge these regions by a reasonable tech-
nique into one which is taken to include the moving object.

Take the boundary of the candidate region and use it as a template for correla-
tion detection tracking between adjacent frames.

The offsets revealed by the correlation process give the velocity, and can be
used to “‘subtract out” the motion, register the views of the object in several
images, and thus obtain a more accurate characterization of the object.

This approach leads to results such as those shown in Fig. 7.13.

EXERCISES

Write a geometric explanation of the FOE phenomenon.

Devise a motion segmentation scheme for rigid bodies in translational three-
dimensional motion that uses the FOE calculation.

Prove that the parametric flow path equation (7.3) indeed does produce a straight
line in image coordinates.

Prove the time-to-adjacency relation (7.5). A geometrical demonstration may be
made with similar triangles; an algebraic one is not very hard.

Express Eq. (7.12) as much as possible in terms of observables in the optical flow
“image.”’ What is left unspecified?

Perform Exercise 7.5 with equation (7.13).

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 238

(d)

Fig. 7.13 Motion from segmented images. Initial (a) and final (b) frames from 16-frame
sequence. The object of interest is the car moving left to right in the intersection. (c) Car seg-
mentation from an intermediate frame. (d) Car reconstructed from several frames; the gray
values result from aligning the values extracted from individual frames by segmentation.

1.7

7.8

7.9
7.10

7.11

Exercises

Specialize the result of Exercise 7.6 to the case that the observer is moving in the
direction of his direction of view [the FOE is at (0, 0)].

Fill in the steps in the derivations of the general and special cases of and € (Egs.
(7.18) and (7.21) through (7.23)).

Fill in the steps in the derivations of tan o and tan = (Eqs. (7.28) and (7.29)).

Show how to compute absolute depth from flow (Section 7.2.2) if the observer speed
is known.

The Laplacian of € in Section 7.2.3 is the sum of the second partial derivatives of €
223

IPR2022-00092 - LGE
Ex. 1015 - Page 239

224

with respect to # and ¢. Write it out and show that it has singularities only when the
Laplacian of depth (r) does exceptat$ = Qorm or r = 0.

7.12 In Section 7.2.2, the 8, ¢ system is divorced from the retinal position. How might
this coordinate system be deduced from optical flow, or how might this deduction be
unnecessary?

7.13 Work out the details of the vector equation referred to in the last paragraph of Sec-
tion 7.3.2.

7.14 What do flow paths look like if the observer (or the environment) only executes ro-
tational motion? Pick a congenial coordinate system and prove your supposition,

7.15 Tighten up the “common motion’” heuristic in Section 7.1.2. What domains under
what sorts of world motion yield what sorts of “‘common’” image motions for ob-
jects?

REFERENCES

AGGARWAL, J. K. and R. O. DuDA. ““Computer analysis of moving polygonal images.”” IEEE Trans.
Computers 24, 1975, 966-976.

AGGARWAL, J. K., L. S. Davis, and W. N. MARTIN. ““‘Correspondence processes in dynamic scene
analysis.”” Proc. IEEE 69, 5, May 1981, 562-571.

BADLER, N. “Temporal scene analysis: conceptual descriptions of object movements.”” Technical Re-
port 80, Dept. of Computer Science, Univ. Toronto, February 1975.

BaDLER, N. I. and S. W. SMOLIAR. ‘‘Digital representations of human movement.”” Computing Surveys
11,1, 19-38, March 1979.

BARNARD, S. T. and W. B. THoMpsON. “‘Disparity analysis of images.”” Technical Report 79-1, Com-
puter Science Dept., Univ. Minnesota, January 1979.

BRAUNSTEIN, M. L. Depth Perception through Motion. New York: Academic Press, 1976.

CLocksIN, W, F. ““Computer prediction of visual thresholds for surface slant and edge detection from
optical flow fields.”” Ph.D. dissertation, Univ. Edinburgh, 1980.

Dupa, R. O. and P. E. HART. Pattern Recognition and Scene Analysis. New York: Wiley, 1973.
GiBsON, I. J. The Perception of the Visual World. Boston: Houghton Mifflin, 1950.

Gieson, J. J. ““Continuous perspective transformations and the perception of rigid motion.”” J. Experi-
mental Psychology 54, 1957, 129-138.

GiBsoN, J. J. “Research on the visual perception of motion and change.”” In Readings in the Study of
Visually Perceived Movement, Irwin M. Spigel (Ed.). New York: Harper & Row, 1965.

GIBSON, J. J. The Ecological Approach to Visual Perception. Ithaca, NY: Cornell University Press, 1966.

HELMHOLTZ, H. VON. Treatise on Physiological Optics (translated by J. P. C. Southall). New York: Dover
Publications, 1925.

Horn, B. K. P and B. G. SCHUNCK. “‘Determining optical flow.” Al Memo 572, AI Lab, MIT, April
1980.

JalN, R, and H.-H. NAGEL. ““On a motion analysis process for image sequences from real world
scenes.”” Proc., IEEE Workshop on Pattern Recognition and Artificial Intelligence, Princeton,
NI, 1978.

JonanssoN, G. “‘Perception of motion and changing form.” Scandinavian J. Psychology 5, 1964,
181-208.

Lawton, D. T. “The processing of dynamic images and the control of robot behavior.”” Ph.D. disserta-
tion, Univ. Massachusetts, 1981.

LEE, D. N. and J. R. LISHMAN. “‘Visual proprioceptive control of stance.” J. Human Movement Studies 1,
1975, 87-95.

Ch. 7 Motion

IPR2022-00092 - LGE
Ex. 1015 - Page 240

MARTIN, W. N., and J. K. AGGARWAL. “‘Dynamic scene analysis.”” CGIP 7, 1978, 356-374.
Moravec, H. P. “Towards automatic visual obstacle avoidance.”” Proc., Sth 1JCAI, August 1977, 584,

NAGEL, H.-H. “‘Formation of an object concept by analysis of systematic time variations in the optically
perceptible environment.”” CGIP 7, 2, June 1978a, 149-194.

NAGEL, H.-H. ““‘Analysis techniques for image sequences.” Proc., 4th [JCPR, November 1978b,
186-211.

Nakayama, K. and J. M. Loomis. “‘Optical velocity patterns, velocity sensitive neurons, and space per-
ception.” Perception 3, 1974, 63-80.

O’ROURKE, J. “Image analysis of human motion.”” Ph.D. dissertation, The Moore School of Electrical
Engineering, Univ. Pennsylvania, 1980.

O’ROURKE, J. and N. I. BADLER. ‘“‘Model-based image analysis of human motion using constraint pro-
pagation.” IEEE Trans. PAMI 2, 4, November 1980.

POTTER, J. L. “Velocity as a cue to segmentation.”” IEEE Trans. SMC 5, 1975, 390-394.

PRAGER, J. M. “‘Segmentation of static and dynamic scenes.”” COINS Technical Report 79-7, Com-
puter and Information Science, Univ. Massachusetts, May 1979.

Prazpny, K. “Egomotid‘n\and relative depth map from optical flow.”” Computer Science Dept., Univ.
Essex, March 1979. ©

PrICE, K. E. “Change detection and analysis in multi-spectral images.”” Ph.D. dissertation, Dept. of
Computer Science, Carnegie-Mellon Univ., 1976.

Price, K. E. ““Symbolic matching and analysis with substantial changes in orientation.”” Proc., IEEE
Workshop on Pattern Recognition and Artificial Intelligence, Princeton, NJ, 1978,

Price, K. E., and R. REDDY. ““Change detection and analysis in multi-spectral images.”” Proc., 5th
IJCAI, August 1977, 619-625.

RasHID, R. F. “LIGHTS: a system for interpretation of moving light displays.”” Ph.D. dissertation,
Computer Science Dept., Univ. Rochester, April 1980,

ROACHE, J. W. and J. K. AGGARWAL. ““On the ambiguity of three-dimensional analysis of a moving ob-
ject from its images.” IEEE Workshop on Computer Analysis of Time-Varying Imagery, April
1979.

ROGERS, B. and M. GRAHAM. ““Motion parallax as an independent cue for depth.” Perception 8, 1979,
125-134.

ScHIFF, W. ““The perception of impending collision: A study of visually directed avoidant behavior.”
Psychological Monographs 79, 1965.

SHAPIRA, R. ““A technique for the reconstruction of a straight-edge, wire-frame object from two or
more central projections.”” CGIP 3, 4, December 1974, 318-326.

SHAPIRA, R. and H. FREEMAN. ‘‘Computer description of bodies bounded by quadratic surfaces from a
set of important projections.” IEEE Trans. Computers 27, 9, September 1978, 841-854.

SNYDER, W. E. (ed.). ““Computer analysis of time varying images,”’ IEEE Computer 14, 8, August 1981.

Tuompson, W. B. “Combining motion and contrast for segmentation.”” Technical Report 79-7, Com-
puter Science Dept., Univ. Minnesota, March 1979.

Tsotsos, J. K., J. MyLopouLos, H. D. Covvey and S. W. ZUCKER. *‘A framework for visual motion
understanding.” IEEE Trans. PAMI 2, 6, November 1980, 563-573.

ULLMAN, S. The Interpretation of Visual Motion (Ph.D. dissertation). Cambridge, MA: MIT Press, 1979.

WaLLACH, H. and D. N. O’ConNELL. ““The kinetic depth effect.”” J. Experimental Psychology 45, 4, 1953,
205-217.)

WESLEY, M. A. and G. MARKOVSKY. “‘Fleshing out projections,”” Research Rpt. RC8884, Computer
Sciences Dept., IBM, T. J. Watson Research Center, April 1981.

References 225

IPR2022-00092 - LGE
Ex. 1015 - Page 241

GEOMETRICAL
STRUCTURES I

Knowledge
base

Analogical/
propositional
models

Analogical
maodels

Generalized
image

Segmented
image

Geometric
structures

Relational
structures

Two-
dimensional

Three-
dimensional

IPR2022-00092 - LGE
Ex. 1015 - Page 242

228

Ultimately, one of the most important things to be determined from an image is
the shape of the objects in it. Shape is an intrinsic property of three-dimensional
objects; in a sense it is the primal intrinsic property for the vision system, from
which many others (surface normals, object boundaries) can be derived. It is pri-
mal in the sense that we associate the definitions of objects with shape, rather than
with color or reflectivity, for example.

Webster defines shape as “‘that quality of an [object] which depends on the
relative position of all points composing its outline or external surface.” This
definition emphasizes the fact that we are aware of shapes through outlines and
surfaces of objects, both of which may be visually perceived. It also makes the dis-
tinction beiween the two-dimensional outline and the three-dimensional surface.
We preserve this distinction: Chapter 8 deals with two dimensional shapes,
Chapter 9 with three dimensional shapes.

If our goal is to understand flat images, why bring solids into consideration?
Our simple answer is that we believe in many cases vision without a ‘‘solid basis”
is a practical impossibility. Much of the recent history of computer vision demon-
strates the advantages that can be gained by acknowledging the three-dimensional
world of objects. The appearance of objects in images may be understood by under-
standing the physics of objects and the imaging process. The purest form of two-
dimensional recognition, template matching, clearly does not practically extend to
a world where objects appear in arbitrary positions, much less to a world of nonri-
gid objects. It is true that in some important image understanding tasks (interpreta-
tion of chest radiographs, ERTS images or some microscope slides), the third
dimension is irrelevant. But where the three-dimensionality of objects is impor-
tant, the considerable effort necessary to develop a usable three-dimensional
model will always be amply repaid.

Shape recognition is doubtless one of the most important facilities of the
mammalian visual system. We have seen how important shape information can be

Part Ill Geometrical Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 243

extracted from images in early processing and segmentatio... One of the major
challenges to computer vision is to represent shapes, or the important aspects of
shapes, so that they may be learned, matched against, recollected, and used. This
effort is hampered by several factors.

1. Shapes are often complex. Whereas color, motion, and intensity are relatively
simply quantified by a few well-understood parameters, shape is much more
subtle. Common manufactured or natural shapes are incredibly complex; they
may be represented ‘“explicitly” (say by representing their surface) only with
hundreds of parameters. Worse, it is not clear what aspects of shapes are
important for applications such as recognition. An explicit and complete
representation may be computationally intractable for such basic uses as
matching. What ““shape features’’ can be used to ease the burden of computa-
tion with complex shapes?

2. Introspection is no help. Human beings seem to have a large fraction of their
brains devoted to the single task of shape recognition. This important activity
is largely “‘wired in”’ at a level below our conscious introspection. Why is
shape recognition so easy for human beings and shape description so hard?
The fact that we have no precise language for shape may argue for the inacces-
sibility of our shape-processing algorithms or data structures. This lack of cog-
nitive leverage is a trifle daunting, especially when taken with the complexity
of everyday shapes.

3. There is little classical guidance. Mathematics traditionally has not concerned
itself with shape. For instance, only recently has there been a mathematical
definition of “‘rigid solid”’ that accords with our intuition and of set operations
on solids that preserve their solidity. The fact that such basic questions are
only now being addressed indicates that computer science must do more than
encode some already existing proven ideas. Thus we have the next point.

4. The discipline is young. Until very recently, human beings communicated about
complex shapes mainly through words, gestures, and two-dimensional draw-
ings. It was not until the advent of the digital computer that it became of
interest to represent complex shapes so that they could be specified to the
machine, manipulated, computed with, and represented as output graphics.
No generally accepted single representation scheme is available for all shapes;
several exist, each with its advantages and disadvantages. Algorithms for
manipulating shapes (for example, for computing how to move a sofa up a
flight of stairs, or computing the volume of a specified shape) are surprisingly
complex, and are research topics. Often the representations good for one appli-
cation, such as recognition, are not good for other computations.

It is the intention of this part of the book to indicate some of what is known
about the representation of shape. Although the details of geometric representa-
tions may be still under development, they are an essential part of our layered
computer vision organization. They are more abstract than segmented structures
and are distinguished from relational structures by their preponderance of metric
information.

Part Il Geometrical Structures 229

IPR2022-00092 - LGE
Ex. 1015 - Page 244

Representation of
Two-Dimensional
Geometric Structures 3

8.1 TWO-DIMENSIONAL GEOMETRIC STRUCTURES

The structures of this chapter are the intuitive ones of well-behaved planar regions
and curves. A mathematical characterization of these structures that bars ‘“patho-
logical”” cases (such as regions of a single point and space-filling curves) is possible
[Requicha 1977]. Basically the requirement is that regions be ‘‘homogeneously
two-dimensional”> (contain no hanging or isolated structures of different
dimension—solids, lines or points). Similarly, curves should be homogeneously
one-dimensional. The property of regularity is sometimes important; a regular set
is one that is the closure of its interior (in the relevant one- or two-dimensional to-
pology). Intuitively, regularizing a two-dimensional set (taking the closure of its
interior) first removes any hanging one- and zero-dimensional parts, then covers
the remainder with a tight skin (Fig. 8.1). In computer vision, often regions and
curves are discrete, being defined on a raster of pixels or on an orthogonal grid of
possible primitive edge segments. It is frequently convenient to associate a direc-
tion with a curve, hence ordering the points along it and defining portions of the
plane to its left and right.

The one-dimensional closed curve that bounds a well-behaved region is an
unambiguous representation of it; Section 8.2 deals with representations of curves
and hence indirectly of regions. Section 8.3 deals with other unambiguous
representations of regions that are not based on the boundary. Sometimes unambi-
guous representation is not the issue; it may be important to have qualitative
description of a region (its size or shape, say). Section 8.4 presents several terse
descriptive properties for regions.

231

IPR2022-00092 - LGE
Ex. 1015 - Page 245

Expanded view of
neighborhood

Fig. 8.1 (a, b,¢) are Regions; (d} (¢) and (f) are not.

8.2 BOUNDARY REPRESENTATIONS

8.2.1 Polylines

The ““two-point’ form of a line segment (see Appendix 1) extends easily to the po-
Iyline, which represents a concatenation of line segments as a list of points. Thus
the point list x|, X, X3 represents the concatenation of the line segments from x; to
x; and from x; to xa. If the first point is the same as the last, a closed boundary is
represented.

Polylines can approximate most useful curves to any desired degree of accu-
racy. One might think there is one obvious way to approximate a boundary curve
(or raw data) with a polygonal line. This is not so: many different approaches are
possible. Finding a satisfying polygonal approximation to a given curve basically
involves segmentation issues. The problem is to find corners or breakpoints that

232 Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 246

yield the ‘‘best’ polyline. As with region-based segmentation schemes, the ideas
here can be characterized by the concepts of merging and splitting. Splitting and
merging schemes may be combined, especially if the appropriate number of linear
segments is known beforehand. For details, see [Horowitz and Pavlidis 1976].

In a merging algorithm, points along a curve (possibly in image data) are con-
sidered in order and accepted into a linear segment as long as they fit sufficiently
well. When they do not, a new segment is begun. The efficiency and characteristics
of these schemes are quite variable, and endless variations on the general idea are
possible. A few examples of “‘one pass’ merging schemes are given here: explicit
algorithms are available in [Pavlidis 1977].

If the boundary (represented on a discrete grid) is known to be piecewise
linear, it is specified by its breakpoints. To find them, one can look along the boun-
dary, monitoring the angle between two line segments. One segment is between
the current point and a point several points back along the boundary; the other is
between the current point and one several points forward. When the angle between
these segments reaches a maximum over some threshold, a breakpoint is declared
at the current point. This scheme does not adjust breakpoint positions, and so is
fast [Shirai 1975] but works best for piecewise linear input curves.

Tolerance-band solutions place a point on either side of the curve at the max-
imum allowable error distance, and then find the longest piece of the curve that
lies entirely between parallel lines through the two points [Tomek 1974]. This
method proceeds without breakpoint adjustment, and may not find the most
economical set of segments (Fig. 8.2).

An approximation of a curve with a polyline of minimum length in error by at
most a pixel is given in [Sklansky and Kibler 1976]. Each curve pixel is considered
a square and the resulting pixel structure is four-connected. The approximation
describes the shape of an elastic thread placed in the pixel structure (Fig. 8.3). The

Fig. 8.2 Simple tolerance-band solution (dotted lines). Better
solution (solid lines).

Sec. 8.2 Boundary Representations 233

IPR2022-00092 - LGE
Ex. 1015 - Page 247

234

Fig. 8.3 Minimum length polyline.

method tends to have difficulties with curves that are sharp relative to the grid size.

Another scheme, [Roberts 1965] is to keep a running least-squared-error
best-fit line calculation for points as they are merged into segments [Appendix 1].
When the residual (error) of a point goes over some threshold or the accumulated
error for a segment exceeds a threshold, a new segment is started. Difficulties arise
here because the concept of a breakpoint is nonexistent; they just occur at the in-
tersections of the best-fit lines, and without a phase of adjusting the set of points to
be fit by each line (analogous to breakpoint adjustment), they may not be intui-
tively appealing.

Generally, one-pass merging schemes do not produce the most satisfying po-
lylines possible under all conditions. Part of the problem is that breakpoints are
only introduced after the fit has deteriorated, usually indicating that an earlier
breakpoint would have been desirable.

In a splitting scheme, segments are divided (usually into two parts) as long as
they fail some fitting condition [Duda and Hart 1973; Turner 1974]. Algorithm 8.1
provides an example.

Algorithm 8.1: Curve Approximation

1. Given a curve as in Fig. 8.4a, draw a straight line between its end points (Fig.
8.4b).

2. For every point on the curve, compute its perpendicular distance to the
approximating (poly)line. If it is everywhere within some tolerance, exit.

3. Otherwise, pick the curve point farthest from the approximating (poly)line,
make it a new breakpoint (Fig. 8.4¢) and replace the relevant segment of poly-
line with two new line segments.

4. Recursively apply the algorithm to the two new segments (Fig. 8.4d).

A straightforward extension is needed to deal with the case of curve segments
parallel to the approximating one at maximum distance (Fig. 8.4¢).

Ch. 8 Representation of Two-Dimensional Geomelric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 248

(a) (b)
(c) (d)

Fig. 8.4 Stagesin the recursive linear
(e) segmenter (see text).

The area of a polygon may easily be computed from its polyline representa-
tion [Roberts 1965)]. For a closed polyline of n points (x (i), y (i), i=0, ..., n — 1,
labeled clockwise around a polygonal boundary, the area of the polygon is

1 n=1
3 - (Xi+1.Vi = X Vis1) 8.1

where subscript calculations are modulo n. This formula can be proved by consid-
ering it as the sum of (signed) areas of triangles, each with a vertex at the origin, or
of parallelograms constructed by dropping perpendiculars from the polyline points
to an axis. This method specializes to chain codes, which are a limiting case of poly-
lines.

8.2.2 Chain Codes

Chain codes [Freeman 1974] consist of line segments that must lie on a fixed
grid with a fixed set of possible orientations. This structure may be efficiently
represented because of the constraints on its construction. Only a starting point is
represented by its location; the other points on a curve are represented by succes-
sive displacements from grid point to grid point along the curve. Since the grid is
uniform, direction is sufficient to characterize displacement. The grid is usually
considered to be four- or eight- connected; directions are assigned as in Fig. 8.5,
and each direction can be represented in 2 or 3 bits (it takes 18 bits to represent the
starting pointina 512 x 512 image).

Chain codes may be made position-independent by ignoring the “‘start
point.”” If they represent closed boundaries they may be ‘‘start point normalized”
by choosing the start point so that the resulting sequence of direction codes forms

Sec. 8.2 Boundary Representations 235

IPR2022-00092 - LGE
Ex. 1015 - Page 249

236

an integer of minimum magnitude. These normalizations may help in matching.
Periodic correlation (Section 3.2.1) can provide a measure of chain code similarity.
The chain codes without their start point information are considered to be periodic
functions of ‘‘arc length.”” (Here the arc length is just the number of steps in the
chain code.) The correlation operation finds the (arc length) displacement of the
functions at which they match up best as well as quantifying the goodness of the
match. It can be sensitive to slight differences in the code.

The ““derivative” of the chain code is useful because it is invariant under
boundary rotation. The derivative (really a first difference mod 4 or 8) is simply
another sequence of numbers indicating the relative direction of chain code seg-
ments; the number of left hand turns of w/2 or 7 /4 needed to achieve the direction
of the next chain segment.

Chain codes are also well-suited for merging of regions [Brice and Fennema
1970] using the data structure described in Section 5.4.1. However, the pleasant
properties for merging do not extend to union and intersection. Chain codes lend
themselves to efficient calculation of certain parameters of the curves, such as area.
Algorithm 8.2 computes the area enclosed by a four-neighbor chain code.

Algorithm 8.2: Chain Code Area

Comment: For a four-neighbor code (0: +x, 1: +y, 2: —x, 3: —y) surrounding a
region in a counterclockwise sense, with starting point (x, y):
begin Chain Area,
1. area:=0;
2. yposition := y;
3. For eachelement of chain code
case element-direction of
begin case
[0] area : = area-yposition;
[1] yposition : = yposition + 1;
[2] area : = area + yposition;
[3] yposition : = yposition — 1;
end case;
end Chain Area;

To merge two region boundaries is to remove any boundary they share, obtaining a
boundary for the region resulting from gluing the two abutting regions together.
As we saw in Chapter 5, the chain codes for neighboring regions are closely related
at their common boundary, being equal and opposite in a clearly defined sense (for
N-neighbor chain codes, one number is equal to the other plus N/2 modulo N (see
Chapter 5). This property allows such sections to be identified readily, and easily
scissored out to give a new merged boundary. As with polylines, it is not immedi-
ately obvious from a chain-coded boundary and a point whether the point is within
the boundary or outside. Many algorithms for use with chain code representations
may be found in [Freeman 1974; Gallus and Neurath 1970].

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 250

-
¥

T
e i_rLJj

(a) {b) Chaincode: 1
(c) Derivative: 1

-

2<«— —> 0

———

w

0101030333032212322
3131331300133031130

Fig. 8.5 (a) Direction numbers for chain code elements. (b) Chain code for the
boundary shown. (c) Derivative of (b).

8.2.3 The ¢ -sCurve

The —s curve is like a continuous version of the chain code representation; it is
the basis for several measures of shape. ¢ is the angle made between a fixed line
and a tangent to the boundary of a shape. It is plotted against s, the arc length of the
boundary traversed. For a closed boundary, the function is periodic, with a discon-
tinuous jump from 27 back to 0 as the tangent reattains the angle of the fixed line
after traversing the boundary.

Horizontal straight lines in the y—s curve correspond to straight lines on the
boundary (i is not changing). Nonhorizontal straight lines correspond to seg-
ments of circles, since ¥ is changing at a constant rate. Thus the ¢—s curve itself
may be segmented into straight lines [Ambler et al. 1975], yielding a segmentation
of the boundary of the shape in terms of straight lines and circular arcs (Fig. 8.6).

2r

(b)

(2) ' ST

(c)

Fig. 8.6 -5 segmentation. (a) Triangular curve and a tangent. (b) y-s curve showing re-
gions of high curvature. (¢) Resultant segmentation.

Sec. 8.2 Boundary Representations 237

IPR2022-00092 - LGE
Ex. 1015 - Page 251

238

8.2.4 Fourier Descriptors

Fourier descriptors represent the boundary of a region as a periodic function which
can be expanded in a Fourier series. There are several possible parameterizations,
summarized in [Persoon and Fu 1974]. These frequency-domain descriptions pro-
vide an increasingly accurate characterization of shape as more coefficients are in-
cluded. In the infinite limit, they are unambiguous; individual coefficients are
descriptive representations indicating ‘‘lobedness”’ of various degrees.

The boundary itself may provide the parameters for the Fourier transform as
shown in Fig. 8.7. The parameterization of Fig. 8.7 gives the following series ex-
pansions:

S ;
x(p) = ZX,,e’kw"i w, = 2w/P, P = perimeter (8.2)

where the discrete Fourier coefficients X, are given by

P :
X, = 5 { x(s)e " dg (8.3)

A common feature for the Fourier descriptors is that typically the general
shape is given rather well by a few of the low-order terms in the expansion of the
boundary curve. Properly parameterized, the coefficients are independent of size,
translation, and rotation of the shape to be described. The descriptors do not lend
themselves well to reconstruction of the boundary; for one thing, the resulting
curve may not be closed if only a finite number of coefficients is used for the recon-
struction.

The ¥—s curve may be used as the basis for a Fourier transform shape
description [Barrow and Popplestone 1971]. ¥ (s) is converted to ¢ (s): ¢ (s) =
¢r(s) — 2w s/P. This operation subtracts out the rising component. A number of
shape-indicating numbers arise from taking the root-mean-square amplitudes of
the Fourier components of ¢ (s), discarding phase information. The shape descrip-
tors are again indicative of the ‘‘lobedness’’ of the shape.

Xy !

(x4(s), x5 ()

Fig. 8.7 Parameterization for Fourier
Xy Series Expansion.

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 252

file:////f-s
file:////f-s

8.2.5 Conic Sections

Polynomials are a natural choice for curve representation, and certain polynomials
of degree 2 (namely, circles and ellipses) are closed curves and hence define re-
gions. Circles may be represented with three parameters, ellipses by five, and gen-
eral conics by six. Thus the coefficients or parameters of conic sections are terse
representations. Conics are often good models for physical curves such as the
edges of manufactured objects.

Conics are commonly used to represent general curves approximately [Paton
1970]. Conics have some annoying properties, however; an important one is the
difficulty of producing a well-behaved conic from noisy data to be fitted. Unless
one is careful in defining the error measure [Turner 1974], a ““least-squared error”
fit of a conic to data points yields a conic which is a nonintuitive shape or even of a
surprising type (such as a hyperbola when an ellipse was expected). Conic
representations and algorithms are explored in Appendix 1.

8.2.6 B-Splines

Interpolative techniques may be used to yield approximate representations. B-
splines are a popular choice of piecewise polynomial interpolant. Introduced in
computer aided design and computer graphics, these classes of curves provide ade-
quate aesthetic content for much design and also have many useful analytic proper-
ties. Usually, the fact that the curves are ‘‘interpolating”” is not very relevant. What
is relevant is that they have predictable properties which make them easy to mani-
pulate in image processing, that they “‘look good’ to human beings, that they
closely approximate curves of interest in nature, and so forth. Several schemes ex-
ist for constructing complex curves that are useful in geometric modeling, and de-
tailed expositions are to be found in [deBoor 1978; Barnhill and Riesenfeld 1974].
The B-spline formulation is one of the simplest that still has properties useful for
interactive modeling and the extraction from raw data.

B-splines are piecewise polynomial curves which are related to a guiding po-
Iygon. Cubic polynomials are the most frequently used for splines since they are the
lowest order in which the curvature can change sign. An example of the relation-
ship between the guiding polygon and its spline curve is shown in Fig. 8.8. Splines
are useful in computer vision because they allow accurate, manipulable internal
models of complex shapes. The models may be used to guide and monitor seg-
mentation and recognition tasks. Interactive generation of complex shape models
is possible with B-splines, and the fact that the complex spline curves have terse
representations (as their guiding polygons) allows programs to manipulate them
easily.

Spline approximations have good computational properties as well as good
representational ones. First, they are variation diminishing. This means that the
curve is guaranteed to ‘‘vary less’’ than its guiding polygon (many interpolation
schemes have a tendency to oscillate between sample points). In fact, the curve is
guaranteed to lic between the convex hull of groups of n + 1 consecutive points
where nis the de;gree of the interpolating polynomial (Fig. 8.9.) The second advan-

Sec. 8.2 Boundary Representations 239

IPR2022-00092 - LGE
Ex. 1015 - Page 253

Fig. 8.8 A spline curve and its guiding
polygon.

tage is that the interpolation is local; if a point on the guiding polygon is moved,
the effects are intuitive and limited to nearby points on the spline. A third advan-
tage is directly related to its use in vision; a technique for matching a spline-
represented boundary curve against raw data is to search perpendicular to the
“spline for edges whose direction is parallel to the spline curve and location perpen-
dicular to the spline curve. Perpendicular and parallel directions are computable
directly from the parameters representing the spline.

B-Spline Mathematics

The interpolant through a given set of points x;, i = 1, ..., nis x(s), a vector
valued piecewise polynomial function of the parameter s, s changes uniformly
between data points. For convenience, assume that x(i) = x;, that is: s assumes
integer values at data points, and s = 1, ..., n. Each piece of x(s) is a cubic polyno-

(a)

(b) (e}~

Fig. 8.9 The spline of degree # must lie in the convex hull formed by consecu-
tive groups of n + 1 points. (a) n = 1 (linear). (b) » = 2 (quadratic). (c) n =3
(cubic).

240 Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 254

mial. Globally, x(s) has three orders of continuity across data points (i.e., up to
continuity of second derivative: curvature). Formally, x (s) is defined as

n+l
x(s) = 3 v,B,(s) @.4)
=0

The v, are coefficients representing the curve x(s). They also turn out to be the
vertices of the guiding polygon. They are a dual to the set of points x;; each can be
derived from the other. The » data points x determine » v’s. There are actually
n +2 v’s; the additional two coefficients are determined from boundary conditions.
For example, if the curvature at the end points is to be 0,

(vg + vy)
v = % (8.5)
_ (vn—l 5 vn-‘ri)
Wy —

Thus only rnof the n + 2 coefficients are selectable.

The basis functions B, (s) are nonnegative and have a limited support, that is,
each B, is non-zero only for s between i — 2 and i + 2, as shown in Fig. 8.10. The
limited support means that on a given span (i, i + 1) there are only four basis func-
tions that are nonzero, namely: B;_;(s), B;(s), B;;;(s), and B;.,(s). Figure 8.11
shows this configuration. Thus, to calculate x(sg) for some sg, simply find in which
span it resides, and then use only four terms in the summation (8.4), since there
are only four basis functions which are non-zero there.

The basis functions B;(s) are, themselves, piecewise cubic polynomials and
their definition depends on the relative size (in parameter space) of the spans
under their support. If the spans are of uniform size (e.g., unity), then all the basis
functions have the same form and are merely translates of each other. Moreover,
each of the basis functions, on its nonzero support, is made of four pieces. So, in
Fig. 8.11 in the span (i, i+ 1) appear: the fourth piece of B;_; (s), the third piece of
B;(s), the second piece of B;,;(s), and the first piece of B;;,(s). Call these pieces
Cio(s), ..., C; 3(s) respectively; then x (s) on the interval (i, i +1) is given by:

x(s) = Ciy 3(s)vioy + Ca(s)v;
+ Cf+1,l(S)Vi+1 + Ci+2,0(s)v:'+2

No matter what / is, C;; will have the same shape; this property allows a
simplification in calculations. Define four primitive basis functions, and interpolate
along the curve by parameter shifting:

C,(s) = Gls=i)i=0, ..+l j=0,1,23 (8.6)

_/.-—-__\\‘ Fig. 8.10 Uniform B-spline: B,(s). Its
t } } + ¥ = support is non-zero only for s between
i—2 i—1 i it1 i+2] i—2andi+ 2.

Sec. 8.2 Boundary Representations 241

IPR2022-00092 - LGE
Ex. 1015 - Page 255

242

Bls)
i+2

Bls)

i+1

L

i i+1 s

Fig. 8.11 The only four basis functions that are non-zero over the span (i,
i + 1). Only the overlapping parts on this span are shown.

To find x(sg), if 5o isin the span (i, i + 1), use the formula:
X(S) = v,‘-]Cj(S = I) +ij2(S - I) + VH.]C](S - l) + VH.ZC(](S - i) (8.7)

where the C;(¢) are given by:

t3
Colr) = T
i) = -3£ + 3:; + 341
)= 3" ~ 2:2 +4
50 = —£+ 3326— 3t+1

Formal derivations may be found in [Barnhill and Riesenfeld 1974; deBoor 1978].
Useful Formulae

The formulae may be simplified still further. x(s) is calculated in pieces (seg-.
ments); define the segments x;(¢) where tranges from 0 to 1. Then

x0=x, fori=1,..,n-1
and
x, (1) = x, (8.8)

In matrix notation, and explicitly calculating the definition of the cubic polynomi-
als C;(1),

X;(!) — [t3, 1‘2, L 1][C] [v,-_], "i, "'H._l, Vf+2]T (8.9)
where [C] is the matrix:
-1 3 =31
113 -6 30
6 |-3 0 30
1 4 1 0

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 256

The ith column in the matrix [C] in Eq. (8.9) above is the coefficients of the cubic
polynomial C;(¢) (i=0, 1, 2, 3).

There is a distinction between open and closed curves. For open curves the
boundary conditions must be used to solve for the two additional coefficients, as
above. For closed curves, simply

vo=v, and V=7V (8.10)

The relation between the different v, and x; is summarized as follows. For open
curves with zero curvature at the endpoints:

6 0 1 Yo X
1 4 1 Y1 X
1 4 1 Vﬂ*l anl
0 6 Y Xn
and for closed curves:
. | 1 Yo ¥o
1 41 vi Xy
=1 3.11)
1 41 VYp-1 Xy-1
1 f vﬂ Xﬁ

Equation (8.10) gives the relationship between the points on the guiding po-
lygon and the points on the spline. It may be derived from Eq. (8.9) with ¢ =0 (see
exercises). To interpolate between these points, use a value of 7 between the ex-
tremes of 0 and 1. Choosing = k dtfor k=0, ..., n where n dt = 1 and substituting
into Eq. (8.9) yields

x;(k dt) = [(k dt) (ke @)k d) 1 [C vy, vy, Vigr, Vil (8.12)

This can be decomposed [Wu et al. 1977; Gordon 1969] into the following equa-
tion.

0 r 1 6 d3 ¥i-1
_10] [1 1 t)
x(kdy=1o| |1 1 1 —6 2 de| [c] i
U ntrii 1 -1 1 dt Viil (8.13)
1
0 001 Tn
The tangent at a curve is obtained by differentiation: Vi-1
2003dt—13—31“
X'k dr) = H l l 10 2dt 3 =6 3 0| (8.14)
111 o 01 3 0 3 0f|vi
Sec. 8.2 Boundary Representations 243

IPR2022-00092 - LGE
Ex. 1015 - Page 257

244

8.2.7 Strip Trees

In many computational problems there are space-time trade-offs. A nonredundant
explicit representation for a general discrete curve, such as a chain code, is terse
but may be difficult to use for certain computations. On the other hand, a represen-
tation for curves may take up much space but allow operations on those curves be
very efficient. A representation with the latter property is strip trees [Ballard 1981).
Strip trees are closed under intersection and union operations, and these opera-
tions may be efficiently implemented.

A strip tree is a binary tree. The datum at each node is a eight-tuple, of which
six entries define a strip (rectangle) and two denote addresses of the sons (if any).
Thus each strip is defined by a six-tuple S (x,, X,, W) as shown in Fig. 8.12. (Only
five parameters are necessary to define an arbitrary rectangle, but the redundant
representation proves useful in union and intersection algorithms to follow.)

The tree can be created from any curve by the following recursive procedure,
which is very similar to Algorithm 8.1.

Algorithm 8.3: Making a Strip Tree

Find the smallest rectangle with a side parallel to the line segment [xg, x,,) that just
covers all the points. This rectangle is the datum for the root node of a tree. Pick a
point x, that touches one of the sides of the rectangle. Repeat the above process
for the two sublists [xy, ..., X;) and [xy, ..., x,,). These become sons of the root
node. Repeat the process until the approximation is accurate enough.

The half-open interval facilitates the computations to follow. In the example
above the point x, explicitly appears in both subtrees but implementationally need
not be part of the left one. Figure 8.13 shows the strip tree construction process.

Intersecting Two Curves via Strip Trees

Consider what happens when a strip from one tree intersects a strip from
another, as shown in Fig. 8.14. If the strips do not intersect, the underlying curves

xb
Fig. 8,12 Strip definition.

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 258

AY

(©.12)

FORMAT: [[[%e [[w[w] | |

3(7|20]7|5]|3

[s[7[ele[o[o] A [s]re[=] *Te]es[¢]]
o
X [s]z]s[]o o [T [s]«]2]7]e]es] 1]

Fig. 8.13 Strip tree construction process.

do not intersect. If the strips do intersect, the underlying curves may or may not.
To determine which, the computation may be applied recursively. At the leaf level
of the tree defined as the primitive level, the problem can always be resolved.

Algorithm 8.4: Intersecting Two Strip Trees Representing Curves

Boolean Procedure Treelnt (T1, T2, L)
Begin
case intersection type of two strips 7'l and T2 of
begin case
[primitive] return (true)
[nulll return (false)
[possible] If T2 is the “‘fatter’” strip
return (Treelnt(71,LSon(72) or Treelnt(71,RSon(T2))
Elsereturn (TreeInt(LSon(T1),T2) or Treelnt(RSon(71),T2));

end case;
end;
(57
o
NULL POSSIBLE
b.
Fig. 8.14 Types of strip intersections.
(a) Two kinds of intersections: NULL on
the left; various POSSIBLE intersections
on the right. (b) Under certain
conditions the underlying curves must
intersect.
Sec. 8.2 Boundary Representations 245

IPR2022-00092 - LGE
Ex. 1015 - Page 259

The “Union” of Two Strip Trees

The ““union” of two strip trees may be defined as a strip that covers both of
the two root strips. The two curves defined by [x'g, ..., x',), [x"g, ..., x",,) are
treated as two concatenated lists. That is, the resultant ordering is such that xy =
X0, Xp4nt1 = X", This construction is shown in Fig. 8.15.

Closed Curves Represented by Strip Trees

A region may be represented by its (closed) boundary. The strip-tree con-
struction method described in Algorithm 8.3 works for closed curves and, inciden-
tally, also for self-intersecting curves. Furthermore, if a region is not simply con-
nected (has ““holes’) it can still be represented as a strip tree which at some level
has connected primitives.

Many useful operations on regions can be carried out with strip trees. Exam-
ples are intersection between a curve and a region and intersecting two regions.
Another example is the determination of whether a point is inside a region.
Roughly, if any semi-infinite line terminating at the point intersects the boundary
of the region an odd number of times, the point is inside. The implied algorithm is
computationally simplified for strip trees in the following manner:

Point Membership Property. To decide whether a point zis a member of a region
represented by a strip tree, compute the number of nondegenerate intersec-
tions of the strip tree with any semi-infinite strip L which has | w| = 0 and
emanates from z. If this number is odd, the point is inside the region.

This is because for clear intersections the underlying curves may intersect more
than once but must intersect an odd number of times. A potential difficulty exists
when the strip L is tangent to the curve. To overcome this difficulty in practice, a
different L may be used.

Intersecting a Curve with a Region

The strategy behind intersecting a strip tree representing a curve with a strip
tree representing a region is to create a new tree for the portion of the curve that
overlaps the region. This can be done by trimming the original curve strip tree.
Trimming is done efficiently by taking advantage of an obvious property of the in-
tersection process:

Pruning Property. Consider two strips S¢ from T and S, from T,. If the inter-
section of S¢ with T, is null, then (a) if any point on S¢ is inside T, the entire
tree whose root strip is S is inside or on T, and (b) if any point on Sc is out-
side of T, then the entire tree whose root strip is S is outside 7,.

Fig. 8.15 Construction for *‘union™ of
strip trees representing two curves.

This leads to the Algorithm 8.5 for curve-region intersection using trees. If
the curve strip is “fatter’” (i.e., has more area), copy the node and resolve the in-

246 Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 260

tersection at lower levels. In the converse case prune the tree sequentially by first
intersecting the resultant pruned tree with the right region strip.

Algorithm 8.5: Curve-Region Intersection
comment A Reference Procedure returns a pointer;
reference procedure CurveRegionInt(71,72)

begin

A=T2

comment R is a global used by CRInt;

return (CRInt(T1,72));

end;

reference procedure CRInt(T1,T2)
begin
begin Case StripInt(T1,T2) of
[Null or Primitive]
ifintersection (T'1,R,TRUE) = null then
ifInside(T1,R) thenreturn {(T'1)
else return (null);
else return (T1);
[Possible] if T'1is ““fatter’” then
begin
NT := NewRecord;
x, (NT) := x, (D);
x,(NT) :=x, (T);
Wy (NT) 3 WI(T),
w,(NT) := w,(T);
LSon(NT) := CRInt (LSon(T1),T2);
RSon(NT) := CRInt (RSon(T1),T2);
return(NT);
end
elsecomment T2 is “fatter”
Return (CRInt(CRInt(7T1,LS0n(T2)),RSon{T2)));
end;
end Case;
end;

The problem of intersecting two regions can be decomposed into two curve-region
intersection problems (Fig. 8.16). Thus algorithm 8.5 can also be used to solve the
region-region intersection problem.

8.3 REGION REPRESENTATIONS
8.3.1 Spatial Occupancy Array
The most obvious and quite a useful representation for a region on a raster is a
membership predicate p (x, y) which takes the value 1 when point (x, y) is in the

Sec. 8.3 Region Representations 247

IPR2022-00092 - LGE
Ex. 1015 - Page 261

248

b. c. d.

Fig. 8.16 Decomposition of Region-Region Intersection. (a) Desired result.
(b) Portion of boundary generated by treating three-lobed region as a curve. (¢)
Portion of boundary generated by treating five-lobed region as a curve. (d) Result
of union operation.

region and the value 0 otherwise. One easy way to implement such a function is
with a membership array, an array of 1’s and 0’s with the obvious interpretation.
Such arrays are quicky interrogated and also quite easily unioned, merged and in-
tersected by AND and OR operations, applied elementwise on the operand arrays.
The disadvantages of this representation are that it requires much space and does
not represent the boundary in a useful way.

8.3.2 y-Axis

A representation that is more compact and which offers reasonable algorithms for
intersection, merging, and union is the y-axis representation [Merrill 1973]. This is
a run-length encoding of the membership array, and as such it provides no explicit
boundary information. It is a list of lists. Each element on the main list corresponds
to a row of constant y in the image raster. Each row of constant yis encoded as a list
of x-coordinate points; the first x point at which the region is entered while moving
along that y row, then the x point at which the region is exited, then the x point at
which it next is entered, and so forth. The y-rows with no region points are omitted
from the main list. Thus, in a notation where successive levels of sublist are sur-
rounded by successive levels of parentheses, the y-axis encoding of a region is
shown in Fig. 8.17; here the first element of each sublist is the y coordinate,
followed by a list of ‘‘into’’ and ‘‘out of’” x coordinates. Where a y coordinate con-

Fig. 8.17)y-axisregion
((245) (435) (63355)) representation.

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 262

tains an isolated point in the region, this point is repeated in the x-axis representa-
tion, as shown by the example in Fig. 8.17. Thus “‘lines’ (regions of unit width)
can be easily (although not efficiently) represented in this system.

Union and intersection are implemented on y-axis representations as merge-
like operations which take time linearly proportional to the number of y rows. Two
instances of y-axis representations and the representation of their union are shown
in Fig. 8.18. Note that the union amounts to a merge of x elements along rows or-
ganized within a merge of rows themselves.

The y-axis representation is wasteful of space if the region being represented
is long, thin, and parallel to the y axis. In this case one is invited to encode it in x-
axis format, in an obvious extension. Working with mixed x-axis and y-axis for-
mats presents no conceptual difficulties, but considerable loss of convenience.

8.3.3 Quad Trees

Quad trees [Samet 1980] are a useful encoding of the spatial occupancy array. The
easiest way to understand quad trees is to consider pyramids as an intermediate
representation of the binary array. Figure 8.19 shows a pyramid (Section 3.7) made
from the base image (on the left). Each pixel in images above the lowest level has
one of three values, BLACK, WHITE, or GRAY. A pixel in a level above the base
is BLACK or WHITE if all its corresponding pixels in the next lower level are
BLACK or WHITE respectively. If some of the lower level pixels are BLACK and
others are WHITE, the corresponding pixel in the higher level is GRAY.

Such a pyramid is easy to construct. To convert the pyramid to a quad tree,
simply search the pyramid recursively from the top to the base. If an array element
in the pyramid is either BLACK or WHITE, form a terminal node of the
corresponding type. Otherwise, form a GRAY node with pointers to the results of

A B

[

((12367)(227)(31133)(512)) ((134){215)(32257)(422))

AUB

(12467)(217)(31357(422)(512))

Fig. 8.18 Two pointsets 4, B, and 4 U B, with their y-axis representations.

Sec. 8.3 Region Representations 249

IPR2022-00092 - LGE
Ex. 1015 - Page 263

250

Level 2

Level 3

Fig. 8.19 Pyramid used in quad tree construction. Letters correspond to pixels
in the pyramid that are either BLACK or WHITE.

the recursive examination of the four elements at the next level in the tree (Algo-
rithm 8.6).

Algorithm 8.6: Quad Tree Generation

Reference Procedure QuadTree (integer array pyramid; integer x, y, level);
Comment NW, NE, SW, SE are fields denoting the sons of a quadtree node;
Newnode(P);
TYPE(P) := Pyramid(IND (x,y,Level));
ifTYPE(P) = BLACK or WHITE then return (P)
else begin

SW(P):=QuadTree (Pyramid, 2+x, 2+y, Level + 1);

SE(P):=QuadTree (Pyramid, 2+x + 2+Level, 2+, Level + 1);
NW (P):=QuadTree(Pyramid, 2+x, 2=y + 2+Level, Level + 1);

NE(P):=QuadTree(Pyramid, 2=(x + Level), 2+(y + Level), Level + 1);
return (P)
end;

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 264

Here an implementational point is that the entire pyramid fits into a linear array of
size 2(22%%evel} IND is an indexing function which extracts the appropriate value
given the x, y and level coordinates. The reader can apply this algorithm to the ex-
ample in Fig. 8.19 to verify that it creates the tree in Fig. 8.20.

The quad tree can be created directly from the base of the pyramid, but the al-
gorithm is more involved. This is because proceeding upward from the base, one
must sometimes defer the creation of black and white nodes. This algorithm is left
for the exercises [Samet 1980].

Many operations on quad trees are simple and elegant. For example, consider
the calculation of aréa [Schneier 1979]:

Algorithm 8.7: AreaofaQuad Tree

Integer Procedure Area (reference QuadTree; integer height)
Begin
CommentNW, NE, SW, SE are fields denoting the sons of
a quadtree node;
BlackArea:= 0;
#TYPE(QuadTree) = GRAY then
forlin the set (NW, NE, SW, SE} do
BlackArea = BlackArea + Area(I(QuadTree), height-1)
else if TYPE(QuadTree) = BLACK then
BlackArea = BlackArea + 22-heieht,
return(BlackArea)
end;

Other examples may be found in the References and are pursued in the Exercises.
The quad tree and the associated pyramid have two related disadvantages as a

representation. The first is that the resolution cannot be extended to finer resolu-

tion after a grid size has been chosen. The second is that operations between quad

12 3 4 5 6 7 8 9 10 1112

B Black

0O White

O Gray
Fig. 8.20 " Quad tree for the example in Fig. 8.19.

Sec. 8.3 Region Representations 251

IPR2022-00092 - LGE
Ex. 1015 - Page 265

252

trees tacitly assume that their pyramids are defined on the same grids. The grids
cannot be shifted or scaled without cumbersome conversion routines.

8.3.4 Medial Axis Transform

If the region is made of thin components, it can be well described for many pur-
poses by a “‘stick-figure’’ skeleton. Skeletons may be derived by thinning algo-
rithms that preserve connectivity of regions; the medial axis transform (MAT), of
[Blum 1973; Marr 1977] is a well-known thinning algorithm.

The skeleton is defined in terms of the distance of a point x to a set A:

d.(x, A) = infld(x, 2)|z in A} (8.15)

Popular metrics are the Euclidean, city block, and chessboard metrics
described in Chapter 2.

Let B be the set of boundary points. For each point P in a region, find its
closest neighbors (by some metric) on the region boundary. If more than one boun-
dary point is the minimum distance from x, then x is on the skeleton of the region.
The skeleton is the set of pairs {x, 4,(x, B)) where d;(x, B) is the distance from x
to the boundary, as defined above (this is a definition, not an efficient algorithm.)
Since each x in the skeleton retains the information on the minimum distance to
the boundary, the original region may be recovered (conceptually) as the union of
“‘disks” (in the proper metric) centered on the skeleton points.

Some common shapes have simply structured medial axis transform skele-
tons. In the Euclidean metric, a circle has a skeleton consisting of its central point.
A convex polygon has a skeleton consisting of linear segments; if the polygon is
nonconvex, the segments may be parabolic or linear. A simply connected polygon
has a skeleton that is a tree (a graph with no cycles). Some examples of medial axis
transform skeletons appear in Fig. 8.21.

The figure shows that the skeleton is sensitive to noise in the boundary.
Reducing this sensitivity may be accomplished by smoothing the boundary, using
a polygonal boundary approximation, or including only those points in the skele-
ton that are greater than some distance from the boundary. The latter scheme can
lead to disconnected skeletons.

Algorithm 8.8: Medial Axis Transformation [Rosenfeld and Kak 1976]

Let region points have value 1 and exterior points value 0. These points define an
image f°(x). Let f*(x) be given by

[= L+ min [0, %>D

(xz)<1

The points f*(x) will converge when k is equal to the maximum thickness of the
region. Where f*(x) has converged, the skeleton is defined as all points x such that

fix) > M), dx,z) € 1.

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 266

(@

S g N BT

By aamerRl

SO
S N SRS)

,};
=
h&
{gé
79

R0
a¥3s
e
Yo
SR
s

AN
HR
N
el
N/

»
Ve
i
Pt
Iy
A3
A%

{

3
1 N7
‘Q

‘od

Fig. 8.21 Medial Axis Transform skeletons (a), and the technique applied to
human cell nuclei (b). Shown in (b) are both the “normal’ skeleton obtained by
measuring distances interior to the boundaries, and the exo-skeleton, obtained by
measuring distances exterior to the boundary.

This algorithm can produce disconnected skeletons for excursions or lobes off the
main body of the region. Elegant thinning algorithms to compute skeletons are
given in [Pavlidis 1977].

8.3.5 Decomposing Complex Regions
Much work has been done on the decomposition of point sets (usually polygons)
into a union of convex polygons. Such convex decompositions provide structural

analysis of a complex region that may be useful for matching different point sets.

Sec. 83 Region Representations 253

IPR2022-00092 - LGE
Ex. 1015 - Page 267

An example of the desired result in two dimensions is presented here, and the in-
terested reader may refer to [Pavlidis 1977] for the details. Such a decomposition is
not unique in general and in three dimensions, such difficulties arise that the prob-
lem is often called ill-formed or intractable [Voelcker and Requicha 1977].

The shapes of Fig. 8.22 have three “‘primary convex subsets™ labeled X, 7,
and Z. They form different numbers of “‘nuclei’’ (roughly, intersection sets). The
shape is described by a graph that has nodes for nuclei and primary convex subsets
and an arc between intersecting sets (Fig. 8.22¢). Without nodes for the nuclei
(i.e., if only primary convex subsets and their intersections are represented), re-
gions with different topological connectedness can produce identical graphs (Fig.
8.22b).

8.4 SIMPLE SHAPE PROPERTIES

8.4.1 Area

The area of a region is a basic descriptive property. It is easily computed from curve
boundary representations (8.3.1) and thus also for chain codes (8.3.2); their con-

(b)

X
gj ;
z
x 14 4
x Y
1
z - Fig. 8.22 Decomposition of polygon

into primary convex subsets and nuclei
(c) (see text).

-
(]

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 268

tinuous analog is also useful. Consider a curve parameterized on arc length s so
that points (x, y) are given by functions (x (s), y(s))

P
a2, & 8.16
area ‘!‘(x s yds)ds (8.16)
where Pis the perimeter.
8.4.2 Eccentricity

There are several measures of eccentricity, or “‘elongation’’. One of them is the ra-
tio of the length of maximum chord 4 to maximum chord B perpendicular to A
(Fig. 8.23).

Another reasonable measure is the ratio of the principal axes of inertia; this
measure can be based on boundary points or the entire region [Brown 1979]. An
(approximate) formula due to Tenenbaum for an arbitrary set of points starts with
the mean vector

x=1 T x (8.17)
B xinr
To compute the remaining parameters, first compute the ijth moments M
defined by
M;= 3 (x— x)yo—y) (8.18)
xin R

The orientation, 8, is given by

2M
0= —l—tan“(i

2 My — My,
and the approximate eccentricity eis

- My — M02)2 +4M;,;
area

) + n(%) (8.19)

(8.20)

8.4.3 Euler Number

The Euler number is a topological property defining the set of objects that are
equivalent under ‘‘rubber-sheet’’ deformations of the plane. It describes the con-
nectedness of a region, not its shape. A connected region is one in which all pairs of

B8
A
L/\—J Fig. 8.23 An eccentricity measure:
AlB.

Sec. 84 Simple Shape Properties 255

IPR2022-00092 - LGE
Ex. 1015 - Page 269

256

points may be connected by a curve lying entirely in the region. If a complex two-
dimensional object is considered to be a set of connected regions, where each one
can have holes, the Euler number for such an object is defined as

(number of connected regions) — (number of holes)

The number of holes is one less than the connected regions in the set complement
of the object.

8.4.4 Compactness

One measure of compactness (not compactness in the sense of point-set topology)
is the ratio {(perimeter?)/area, which is dimensionless and minimized by a disk.
This measure is computed easily from the chain-code representation of the boun-
dary where the length of an individual segment of eight-neighbor chain code is
given by (+/2) if the (eight-neighbor) direction is odd and by 1 if the direction is
even. The area is computed by a modification of Algorithm 8.2 and the perimeter
may be accumulated at the same time.

For small discrete objects, this measure may not be satisfactory; another
measure is based on a model of the boundary as a thin springy wire [Young et al.
1974]. The normalized ‘‘bending energy”’ of the wire is given by

E= |k (s) |ds (8.21)

1
P

OH ~

where « is curvature. This measure is minimized by a circle. E can be computed
from the chain code representation by recognizing that k = 4 0/dS, and also from
the Fourier coefficients mentioned below since

2 2

d*x d*
k(P=2Z] +|&L 8.22
| | ds? ds? ¢)
so that E, using Parseval’s theorem, is
Y Gwd(| X + 7D (8.23)

k=—o0

where X, = (X, Y,) are the Fourier descriptor coefficients in (8.2).

8.4.5 Slope Density Function

The W—s curve can be the basis for the slope density function (SDF) [Nahin 1974].
The SDF is the histogram or frequency distribution of ¢ collected over the boun-
dary. An example is shown in Fig. 8.24. The SDF is flat for a circle (or in a continu-
ous universe, any shape with a monotonically varying); straight sides stand out
sharply, as do sharp corners, which in a continuous universe leave gaps in the his-
togram. The SDF is the signature of the ¥y—scurve along the axis.

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 270

a)
b)

O
-~
O

27

(
(c)
Fig. 8.24 The Slope Density Function for three curves: a triangular blob, a cir-
cle, and a square.

8.4.6 Signatures

By definition, a projection is not an information-preserving transformation. But
Section 2.3.4 showed that (as with Fourier descriptors,) enough projections allow
reconstruction of the region to any desired degree of accuracy. (This observation
forms the basis for computer assisted tomography.)

Given a binary image £ (x) = 0 or 1, define the horizontal signature p (x) as

P =[£G (8.24)
y

p(x) is simply the projection of p onto the x axis. Similarly, define p (y), the verti-
cal signature, as

P = 56 (8.25)

Maxima and minima of signatures are often useful for establishing preliminary

Sec. 8.4 Simple Shape Properties 257

IPR2022-00092 - LGE
Ex. 1015 - Page 271

258

landmarks in an image to reduce subsequent search effort [Kruger et al. 1972]
(Fig. 8.25). If the region is not binary, but consists of a density function, Eq. (8.24)
may still be used. Polar projections may be useful characterizations if the point of
projection is chosen carefully.

Another idea is to provide a number of projections, ¢y, ..., g,, the ith one
based on the ith sublist in each row in a y-axis-like region representation. This
technique is more sensitive to non-convexities and holes than is a regular projec-
tion (Fig. 8.26).

8.4.7 Concavity Tree

Concavity trees [Sklansky 1972] represent information necessary to fill in local in-
dentations of the boundary as far as the convex hull and to study the shape of the
resultant concavities.

A region S is convex iff for any x; and x; in S, the straight line segment con-
necting x; and x; is also contained in S. The convex huil of an object Sis the small-
est A such that

SCH

and His convex.

Figure 8.27 shows a region, the steps in the derivation of the concavity tree,
and the concavity tree itself.
8.4.8 Shape Numbers

For closed curves and a 3-bit chain code (together with a controlled digitization
scheme), many chain-coded boundaries can be given a unique shape number [Bri-

Heart Analysis: Paplllary Huscles

Signature

Fig. 8.25 The use of signatures to
locate a left ventricle cross section in
ultrasound data. (Quter curves are
smoathed versions of inner signatures.)

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 272

e

(a) (b) (c)

Fig. 8.26 A shape (a) and projections; from the first (b) and second (¢) sublists
of the y-axis representation.

biesca and Guzman 1979]. The shape number is related to the resolution of the
digitization scheme. In a multiple resolution pyramid of digitization grids, every
possible shape can be represented as a path through a tree. At each grid resolu-
tion corresponding to a level in the tree, there are a finite number of possible
shapes. Moving up the tree, the coarser grids tend to blur distinctions between
different shapes until at some resolution they are identical. This level can be used
as a similarity measure between shapes. The basic idea behind shape numbers is
the following. Consider all the possible closed boundaries with » chain segments.
These form the possible shapes of ““order n.”” The chain encoding for a particular
boundary can be made unique by interpreting the chain-code direction sequence
as a number and picking the start point that minimizes this number. Notice that
the orders of shape numbers must be even on rectangular grids since a curve of
odd order cannot close.
Algorithm 8.9 generates a shape number of order n.

Object, O

Fig. 8.27 Concavities of an object and

0 .
2 the concavily tree.

Sec. 8.4 Simple Shape Properties 259

IPR2022-00092 - LGE
Ex. 1015 - Page 273

Algorithm 8.9: Making a Shape Number of Order »

Choose the maximal diameter of the shape as one of the coordinate axes.

Find the smallest rectangle that has a side parallel to this axis and just covers
the shape.

3. From the possible rectangles of order n, find the one that best approximates
the rectangle in step 2. Scale this rectangle so that the length of the longest side
equals that of the major axis, and center it over the shape.

Set all the pixels falling more than 50% inside the region to 1, and the rest to 0.

5. Find the derivative of the chain encoded boundary of the region of 1’s from
step 4.

6. Normalize this number by rotating the digits until the number is minimum.
The normalized number is the shape number.

Figure 8.28 shows these steps.

Order = 26

/_/\ 1
\—/ 24-1—1—0
3

(1) (2) and (3)

4N
Lt ¢

(4

Chaincode: 010303001000323232222212
Derivative: 200202120110020201111020

(5)

11
10

00202011110201020020212011
(68)
Fig. 8.28 Steps in determining a shape number (see text).

260 Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 274

Generating a shape number of a specific order may be tricky, as there is a
chance that the resulting shape number may be greater than order »n due to deep
concavities in the boundary. In this case, the generation procedure can be re-
peated for smaller values of » until a shape number of r digits is found. Even this
strategy may sometimes fail. The shape number may not exist in special cases
such as boundaries with narrow indentations. These features may cause step 4 in
Algorithm 8.11 to fail in the following way. Even though the rectangle of step 3
was of order n, the resultant boundary may have a different order. Nevertheless,
for the vast majority of cases, a shape number can be computed.

The degree of similarity for two shapes is the largest order for which their
shape numbers are the same. The ““distance’’ between two shapes is the inverse
of their degree of similarity. This distance is an ultradistance rather than a norm:

d(s, s) =0
d(Sl, Sz) ; 0 fOl' Sl = S2 (826)
d(8), 83 < max(d(S; Sy, d(Sy, $3))

Figure 8.29 shows the similarity tree for six shapes as computed from their shape
numbers. When the shape number is well defined, it is a useful measure since it is
unique (for each order), it is invariant under rotation and scale changes of an ob-
ject, and it provides a metric by which shapes can be compared.

O & q I
O QL

A B C D E F
Al 6 6 6
B8 © 8 8 10 8
c = 8 8 12
D e 8 8
E = 8
F oo

Fig. 8.29 Six shapes, their similarity trees, and the ultradistances between the shapes.

Sec. 8.4 Simple Shape Properties 261

IPR2022-00092 - LGE
Ex. 1015 - Page 275

262

EXERCISES

8.1 Consider a region segmentation where regions are of two types: (1) filled in and (2)
with holes. Relate the number of junctions, boundaries, and filled-in regions to the
Euler number.

8.2 Write a procedure for finding where two chain codes intersect.
8.3 Devise algorithms to intersect and union two regions in the y-axis representation.

8.4 Show that the number of intersections of the curves under a clear strip intersection
is odd.

8.5 Modify Algorithm 8.4 to work with strip trees with varying numbers of sons.

8.6 Derive Eq. (8.9) from Eq. (8.7).

8.7 Show that Eqgs. (8.12) and (8.13) are equivalent.

8.8 Given two points X; and X, and slopes ¢ (x;) and ¢ (x,), find the ellipse with major
axis a that fits the points.

8.9 Write a procedure to intersect two regions represented by quad trees, producing the
quad tree of the intersection.

8.10 Determine the shape numbers for (a) a circle and (b) an octagon. What is the dis-
tance between them?

REFERENCES

AMBLER, A. P., H. G. BArRrROW, C. M. BRowN, R. M. BURSTALL, and R. J. POPPLESTONE. “‘A versatile
system for computer controlled assembly.” Artificial Intelligence 6, 2, 1975, 129-156.

BALLARD, D. H. ““Strip trees: A hierarchical representation for curves.”” Comm. ACM 24, 5, May 1981,
310-321.

BARNHILL, R. E. and R. F. RIESENFELD. Computer Aided Geometric Design. New York: Academic Press,
1974, 160.

BarrOWw, H. G. and R. J. POPPLESTONE. ‘‘Relational descriptions in picture processing.” In MI6, 1971,
BLuM, H. **Biclogical shape and visual science (Part [).”" J. Theoretical Biology 38, 1973, 205-287.

BRIBIESCA, E. and A. Guzman. ““How to describe pure form and how to measure differences in shapes
using shape numbers.” Proc., PRIP, August 1979, 427-436.

Brice, C. R. and C. L. FENNEMA. “‘Scene analysis using regions.”” Artificial Intelligence 1, 3, Fall 1970,
205-226.

BrowN, C. M. ““Two descriptions and a two-sample test for 3-d vector data.”” TR49, Computer Sci-
ence Dept., Univ. Rochester, February 1979.

DEBOOR, C. A Practical Guide to Splines. New York: Springer-Verlag, 1978.
DupA, R. O. and P. E. HART. Pattern Recognition and Scene Analysis. New York: Wiley, 1973,

FREEMAN, H. “Computer processing of line drawing images.”” Computer Surveys 6, 1, March 1974,
57-98.

GALLUS, G. and P. W. NEURATH. “‘Improved computer chromosome analysis incorporating prepro-
cessing and boundary analysis.” Physics in Medicine and Biology 13, 1970, 435,

GOorRDON, W. I. “‘Spline-blended surface interpolation through curve networks.” J. Mathematics and
Mechanics 18, 10, 1969, 931-952.

Horowitz, S. L. and T. P. PavLIDIS. “‘Picture segmentation by a tree traversal algorithm.” J. ACM 23,
2, April 1976, 368-388.

Ch. 8 Representation of Two-Dimensional Geometric Structures

IPR2022-00092 - LGE
Ex. 1015 - Page 276

References

KRUGER, R. P., J. R. TownE, D. L. HaLL, S. J. DwyER, and G. 8. Lubpwick, ‘‘Automatic radiographic
diagnosis via feature extraction and classification of cardiac size and shape descriptors.”” IEEE
Trans. Biomedical Engineering 19, 3, May 1972,

MARR, D. “Representing visual information.” Al Memo 415, Al Lab, MIT, May 1977,

MERRILL, R. D. “Representations of contours and regions for efficient computer search.”” Comm.
ACM 16, 2, February 1973, 69-82.

NaHIN, P. J. ““The theory and measurement of a silhouette descriptor for image preprocessing and
recognition.” Pattern Recognition 6, 2, October 1974.

Paton, K. A. “Conic sections in automatic chromosome analysis.”” In M75, 1970.
PavLipis, T. Structural Pattern Recognition. New York: Springer-Verlag, 1977.

PErRsooN, E. and K. S. Fu. **Shape discrimination using Fourier descriptors.” Proc., 2nd IJCPR, Au-
gust 1974, 126-130.

REQuICHA, A. A. G. “*Mathematical models of rigid solid objects.” TM-28, Production Automation
Project, Univ. Rochester, November 1977.

ROBERTS, L. G. ““Machine perception of three-dimensional solids.”’ In Optical and Electro-optical Infor-
mation Processing, J.P. Tippett et al. (Eds.). Cambridge, MA: MIT Press, 1965.

ROSENFELD, A. and A. C. Kak. Digital Picture Processing. New York: Academic Press, 1976.

SAMET, H. “Region representation: quadtrees from boundary codes.” Comm. ACM 23, 3; March
1980, 163-170.

SCHNEIER, M. ‘‘Linear time calculations of geometric properties using quadtrees.”” TR~770, Computer
Science Center, Univ. Maryland, May 1979.

SHIRAL Y. ‘“Analyzing intensity arrays using knowledge about scenes.”” In PCV, 1975.

SKLANSKY, J. ““Measuring concavity on a rectangular mosaic.”” IEEE Trans. Computers 21, 12, De-
cember 1972.

SKLANSKY, J. and D. P. KIBLER. ‘A theory of non-uniformly digitizing binary pictures.”” IEEE Trans.
SMC 6, 9, September 1976, 637-647.

ToMEK, 1. “Two algorithms for piecewise linear continuous approximation of functions of one vari-
able.”” IEEE Trans. Computers 23, 4, April 1974, 445-448.

TURNER, K. J. ““Computer perception of curved objects using a television camera.”” Ph.D. dissertation,
Univ. Edinburgh, 1974.

VOELCKER, H. B. and A. A. G. REQUICHA. “Geometric modelling of mechanical parts and processes.”
Computer 10, December 1977, 48-57.

Wu, S., J. F. ABEL, and D. P. GREENBERG. ‘‘An interactive computer graphics approach to surface
representations.”” Comm. ACM 20, 10, October 1977, 703-711.

YounG, L. T., J. E. WALKER, and J. E. BowiE. ‘‘An analysis technique for biological shape 1.”* Faforma-
tion and Control 25, 1974,

263

IPR2022-00092 - LGE
Ex. 1015 - Page 277

Representations of
Three-Dimensional Structures 9

9.1 SOLIDS AND THEIR REPRESENTATION

264

We consider three general classes of representations for rigid solids-

1. Surface or boundary
2. Sweep (in general, generalized cylinders)
3. Volumetric (in general, constructive solid geometry)

The semantics of solid representations is intuitively clear but sometimes
mathematically tricky. The representations have different computational proper-
ties, and readers should keep this in mind when assessing a representation for pos-
sible use. As a simple example, a surface representation can describe how an object
looks; a volumetric version, which expresses the solid as a combination of sub-
parts, may not explicitly contain information about the surface of the object. How-
ever, the solid representation may be better for matching, if it can be structured to
reflect functional subparts.

Certainly we believe, as do others, that model-based vision will ultimately
have to confront the issues of geometric modeling in three dimensions [Nishihara
1979]. Ultimately, nonrigid as well as rigid solids will have to be represented. The
characterization of nonrigid solids presents very challenging problems.

Nonrigid solids are often a useful way to model time-varying aspects of ob-
jects. Here, again, the kind of model that is best depends heavily on the domain.
For example, a useful mammal model may be one with a piecewise rigid linkage
(for the skeleton) and some elastic covering (for the flesh). Computer vision in the
domain of mammals, either static in various positions or actually moving, might be
based on generalized cylinders (Section 9.3). However, another nonrigid domain is
that of heart chambers, that change through time as the heart beats. Here the
skeleton is a much less intuitive notion, so a different model of nonrigidity may ap-
ply. In most cases, nonrigid objects are modeled as parameterized rigid objects. In

IPR2022-00092 - LGE
Ex. 1015 - Page 278

the example of the human figure, the parameters may be joint angles for linkages
representing the skeleton.

The last part of this chapter deals with understanding line drawings, an
influential and well-publicized subfield of computer vision. This seemingly simple
and accessible domain avoids many of the problems involving early processing and
segmentation, yet it is important because it has furnished several important algo-
rithmic and geometric insights. An important breakthrough in this domain was a
move from ‘“‘image understanding’” in two dimensions to to an approach based on
the three-dimensional world and laws governing three-dimensional solids.

9.2 SURFACE REPRESENTATIONS

The enclosing surface, or boundary, of a well-behaved three-dimensional object
should unambiguously specify the object [Requicha 1980]. Since surfaces are what
is seen, these representations are important for computer vision. Section 9.2.1
considers mainly planar polyhedral surface representations. More complex “‘sculp-
tured surfaces” [Forrest 1972; Barnhill and Riesenfeld 1974; Barnhill 1977] are
treated in Section 9.2.2. Some useful surfaces are defined as functions of three-
dimensional directions from a central point of origin. Two of these are mentioned
in Section 9.2.3.

9.2.1 Surfaces with Faces

Figure 9.1 shows the solid representation scheme most familiar to computer scien-
tists. Solids are represented by their boundaries, or enclosing surfaces, which are
represented in terms of such primitive entities as unbounded mathematical sur-
faces, curves, and points which together may be used to define *‘faces.”

In general, a boundary is made up of a number of faces; faces are represented
by mathematical surfaces and by information about their own boundaries (consist-
ing of edges and possibly vertices). A closed surface such as the sphere or a spheri-
cal harmonic surface of Section 9.2.3 may be thought of as having only one face.

To specify a boundary representation, one must answer several important
questions of representation design. What is a face, and how are faces represented?
What is an edge, and how are edges represented? How much extra information
(i.e., useful but redundant relationships and geometric data) should be kept?

What is a face? ““Face” is an initially appealing but imprecise notion; it is at
its clearest in the context of planar polyhedra. A face should probably always be a
subset of the boundary of an object; presumably, it should have area but no dan-
gling edges or isolated points, and the union of all the faces should make up the
boundary or the object. Beyond this little can be said. For many purposes it makes
sense to have faces overlap; it may be elegant to consider the letter on an alphabet
block a special kind of face on the block that is a subset of the face making up the
side of the block. On the other hand, it is easy to imagine applications in which
faces should not overlap in area (then one easily can compute the surface area of a
solid from its faces). In some objects, just what the faces are is purely a matter of

Sec. 9.2 Surface Representations 265

IPR2022-00092 - LGE
Ex. 1015 - Page 279

