78

7

7

7 Fig. 3.11 Edge models for orientation
4 % and displacement sensitivity analyses.

g

<0< ¢ <nfd4 (325

N\

¢ if0 < ¢ < tan™!

if tan~!

1
1| 7tan’¢ + 6tan¢g — 1 3
—9tan’¢ + 22tang — 1

tan

Arguments from symmetry show that only the 0 < ¢ < /4 cases need be exam-
ined. Similar studies could be made using ramp edge models.

A rather specialized kind of gradient is that taken ‘‘between pixels.”” This
scheme is shown in Fig. 3.12. Here a pixel may be thought of as having four crack
edges surrounding it, whose directions of are fixed by the pixel to be multiples of
/2. The magnitude of the edge is determined by |f (x) — f(3y)|, where x and y are
the coordinates of the pixels that have the edge in common. One advantage of this
formulation is that it provides an effective way of separating regions and their
boundaries. The disadvantage is that the edge orientation is crude.

The Laplacian is an edge detection operator that is an approximation to the
mathematical Laplacian 8%f/0x2 + 8%f/0y? in the same way that the gradient is an
approximation to the first partial derivatives. One version of the discrete Laplacian
is given by

X y
WY

“Crack” edge Fig. 3.12 “‘Crack’ edge representation.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 96

Lx,p)=flx,y)—%lfGy+1)+fxy—1) (3.26)
+fx+1,p)+ flx—1,]

The Laplacian has two disadvantages as an edge measure: (1) useful directional in-
formation is not available, and (2) the Laplacian, being an approximation to the
second derivative, doubly enhances any noise in the image. Because of these disad-
vantages, the Laplacian has fallen into disuse, although some authors have used it
as an adjunct to the gradient [Wechsler and Sklansky 1977; Akatsuka 1974] in the
following manner: There is an edge at x with magnitude g (x) and direction ¢ (x) if
g(x) > MandL(x) > T,

Edge Templates

The Kirsch operator [Kirsch 1971] is related to the edge gradient and is given
by

S(x) = max [1, mfx%lf(xk)] (3.27)
k=1

where £ (x,) are the eight neighboring pixels to x and where subscripts are com-
puted modulo 8. A 3-bit direction can also be extracted from the value of k that
yields the maximum in (3.27). In practice, ‘‘pure”’ template matching has replaced
the use of (3.27). Four separate templates are matched with the image and the
operator reports the magnitude and direction associated with the maximum match.
As one might expect, the operator is sensitive to the magnitude of f(x), so that in
practice variants using large templates are generally used. Figure 3.13 shows
Kirsch-motivated templates with different spans.

il o

3
]
nl=

-1 0 1 1 1 1 0 1 1 110

n=1 "~ =1. ¥ 1 0 00 =1. 0 101

-1 01 =1 =1 =1 -1-1 0 0 ==1—1
“t=31 0 1 4 11 1 11 o1 1 11 111 10
-1-1 011 111 11 -10 1 1 1 11 1 0-1
n=2 -1-1 0 1 1 0 00 0O -1-10 1 1 11 0 -1
-1-1 0 1 1 =1 =1 =1 =11 =] =F =1 @ 7 1T O —f=1=1
-1-10 1 1 ={ A= -1-1-4 -1 0 g =f A= =1

Fig. 3.13 Kirsch templates.

Sec. 3.3 Finding Local Edges 79

IPR2022-00092 - LGE
Ex. 1015 - Page 97

80

This brief discussion of edge templates should not be construed as a com-
ment on their appropriateness or popularity. In fact, they are widely used, and the
template-matching concept is the essence of the other approaches. There is also
evidence that the mammalian visual system responds to edges through special
low-level template-matching edge detectors [Hubel and Wiesel 1979].

3.3.2 Edge Thresholding Strategies

For most images there will be but few places where the gradient magnitude is equal
to zero. Furthermore, in the absence of any special context, small magnitudes are
most likely to be due to random fluctuations, or noise in the image function f.
Thus in practical cases one may use the expedient of only reporting an edge ele-
ment at x if g(x) is greater than some threshold, in order to reduce these noise
effects.

This strategy is computationally efficient but may not be the best. An alter-
native thresholding strategy [Frei and Chen 1977] views difference operators as
part of a set of orthogonal basis functions analogous to the Fourier basis of Sec-
tion 2.2.4. Figure 3.14 shows the nine Frei-Chen basis functions. Using this
basis, the image near a point x, can be represented as

8
& =Y (¢ b h(x— x0)/ (B, B (3.28)
k=1

where the (f, #,) is the correlation operation given by

(f, i) =2 f(xg) e (x — xg) (3.29)
D

and D is the nonzero domain of the basis functions. This operation is also regarded
as the projection of the image into the basis function A,. When the image can be
reconstructed from the basis functions and their coefficients, the basis functions
span the space. In the case of a smaller set of functions, the basis functions span a
subspace.

The value of a projection into any basis function is highest when the image
function is identical to the basis function. Thus one way of measuring the ‘“‘edge-
ness’’ of a local area in an image is to measure the relative projection of the image

-1/2 -1 1 1 1 -2 1

-1 1 -1 1 -2 4 -2

11 1 1 V21 -1 -1 1 -2 1
111

E bt 2E VZ -1 -1 -2 1 -2

VI V2 -1 1 1.4 1

=1 1 142 1 -4 -2 1 -2

Fig. 3.14 Frei-Chen orthogonal basis.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 98

into the edge basis functions. The relative projection into the particular ‘‘edge sub-
space’’ is given by

E\y
cos @ = (E)/ (330)

where

E=Y(h)?
k=1

and
8
S = E (f, h)?
k=0

Thus if 8 < T, report an edge; otherwise, not. Figure 3.15 shows the potential ad-
vantage of this technique compared to the technique of thresholding the gradient
magnitude, using two hypothetical projections B; and B,. Even though B, has a
small magnitude, its relative projection into edge subspace is large and thus would
be counted as an edge with the Frei-Chen criterion. This is not true for B,.

Under many circumstances it is appropriate to use model information about
the image edges. This information can affect the way the edges are interpreted after
they have been computed or it may affect the computation process itself. As an ex-
ample of the first case, one may still use a gradient operator, but vary the threshold
for reporting an edge. Many versions of the second, more extreme strategies of us-
ing special spatially variant detection methods have been tried [Pingle and Tenen-
baum 1971; Griffith 1973; Shirai 1975]. The basic idea is illustrated in Fig. 3.16.
Knowledge of the orientation of an edge allows a special orientation-sensitive
operator to be brought to bear on it.

3.3.3 Three-Dimensional Edge Operators

In many imaging applications, particularly medicine, the images are three-
dimensional. Consider the examples of the reconstructed planes described in Sec-
tions 1.1 and 2.3.4. The medical scanner that acquires these data follows several
parallel image planes, effectively producing a three-dimensional volume of data.

Edge
subspace
“g(x)" . »
Fig. 3.15 <Comparison of thresholding
(a) (b) techniques.
Sec. 3.3 finding Local Edges 81

IPR2022-00092 - LGE
Ex. 1015 - Page 99

82

e e e o

A, SR T
ST S 7L S S

IS v - A R
DA

(a)

Fig. 3.16 Model-directed edge
(b) detection.

In three-dimensional data, boundaries of objects are surfaces. Edge elements
in two dimensions become surface elements in three dimensions. The two-
dimensional image gradient, when generalized to three dimensions, is the local
surface normal. Just as in the two-dimensional case, many different basis operators
can be used [Liu 1977; Zucker and Hummel 1979]. That of Zucker and Hummel
uses an optimal basis assuming an underlying continuous model. We shall just
describe the operator here; the proof of its correctness given the continuous image
model may be found in the reference. The basis functions for the three-
dimensional operator are given by

gilx y 2) = % (3.31)
&y 2) =lr

L,
g3(xn Y Z) - r

where r = (x? 4+ y® + z9)*. The discrete form of these operators is shown in Fig.
3.17fora 3 x 3 x 3 pixel domain D. Only g; is shown since the others are obvious
by symmetry. To apply the operator at a point xg_,y, zo compute projections a, b,
and ¢, where

a= (g, f) =X gxf(x—x)
D

b= (g2 1) (3.32)
¢ = (g:,, f)

The result of these computations is the surface normal n = (a, 5, ¢) at (xq g zo).
Surface thresholding is analogous to edge thresholding: Report a surface element
Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 100

3| VZ| V3
73| T2 3
72]
Y=z L 2
B VZ| V3
TTal| @ 3
X
0 0 0 V31 V2| V3
3 2 3
2 2
0 0 0 £ 1 £
2 2
0 0 0 VB3I V2 VB Fig. 3.17 The 3% 3% 3 edge basis
3 2 3 function g, (x, y, z).

only if s (x, y, z) = |n|exceeds some threshold. Figure 3.18 shows the results of
applying the operator to a synthetic three-dimensional image of a torus. The

display shows small detected surface patches.
3.3.4 How Good are Edge Operators?

The plethora of edge operators is very difficult to compare and evaluate. For exam-
ple, some operators may find most edges but also respond to noise; others may be

= N

Fig. 3.18 Results of applying the Zucker-Hummel 3-D operator to synthetic im-
age data in the shape of a torus.
Sec. 3.3 Finding Local Edges 83

IPR2022-00092 - LGE
Ex. 1015 - Page 101

84

noise-insensitive but miss some crucial edges. The following figure of merit [Pratt
1978] may be used to compare edge operators:

1 ¢__1 (3.33)
F= 5
max (NA, Nl) El 1+ (adpz)

where N, and N, represent the number of actual and ideal edge points, respec-
tively, a is a scaling constant, and 4 is the signed separation distance of an actual
edge point normal to a line of ideal edge points. The term ad,? penalizes detected
edges which are offset from their true position; the penalty can be adjusted via a.
Using this measure, all operators have surprisingly similar behaviors. Unsurpris-
ingly, the performance of each deteriorates in the presence of noise [Abdou 1978].
(Pratt defines a signal-to-noise ratio as the square of the step edge amplitude di-
vided by the standard deviation of Gaussian white noise.) Figure 3.19 shows some
typical curves for different operators. To make this figure, the threshold for report-
ing an edge was chosen independently for each operator so as to maximize Eq.
(3.33).

These comparisons are important as they provide a gross measure of
differences in performance of operators even though each operator embodies a
specific edge model and may be best in special circumstances. But perhaps the
more important point is that since all real-world images have significant amounts
of noise, all edge operators will generally produce imperfect results. This means
that in considering the overall computer vision problem, that of building descrip-
tions of objects, the efforts are usually best spent in developing methods that can
use or improve the measurements from unreliable edges rather than in a search for
the ideal edge detector.

Prewitt/Sobel
100
80 |- i
Hueckel with
conf=0.9
60 diff =100
w
40
20
0 1 L L 1] .
1.0 2.0 5.0 10 20 50 100

h2/02

Fig. 3.19 Edge operator performance using Pratt’s measure (Eq. 3.33).

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 102

3.3.5 Edge Relaxation

One way to improve edge operator measurements is to adjust them based on meas-
urements of neighboring edges. This is a natural thing to want to do: If a weak hor-
izontal edge is positioned between two strong horizontal edges, it should gain cred-
ibility. The edges can be adjusted based on local information using parallel-
iterative techniques. This sort of process is related to more global analysis and is
complementary to sequential approaches such as edge tracking (Chapter 4).

Early cooperative edge detection techniques used pairwise measurements
between pixels [Zucker et al. 1977]. A later version [Prager 1980] allows for more
complicated adjustment formulas. In describing the edge relaxation scheme, we
essentially follow Prager’s development and use the crack edges described at the
end of the discussion on gradients (Sec. 3.31). The development can be extended
to the other kinds of edges and the reader is invited to do just this in the Exercises.

The overall strategy is to recognize local edge patterns which cause the
confidence in an edge to be modified. Prager recognizes three groups of patterns:
patterns where the confidence of an edge can be increased, decreased, or left the
same. The overall structure of the algorithm is as follows:

Algorithm 3.1 Edge Relaxation

0. Compute the initial confidence of each edge C°(e) as the normalized gradient
magnitude normalized by the maximum gradient magnitude in the image.

1. k=1,
Compute each edge type based on the confidence of edge neighbors;

3. Modify the confidence of each edge C*(e) based on its edge type and its pre-
vious confidence C*~1(e);

4. Test the C*(e)’s to see if they have all converged to either 0 or 1. If so, stop;
else, increment k and go to 2.

The two important parts of the algorithm are step 2, computing the edge type, and
step 3, modifying the edge confidence.

The edge-type classification relies on the notation for edges (Fig. 3.20). The
edge type is a concatenation of the left and right vertex types. Vertex types are
computed from the strength of edges emanating from a vertex. Vertical edges are
handled in the same way, exploiting the obvious symmetries with the horizontal
case. Besides the central edge e, the left vertex is the end point for three other pos-
sible edges. Classifying these possible edges into “‘edge’” and ‘‘no-edge’’ provides
the underpinnings for the vertex types in Fig. 3.21.

Sec. 3.3 Finding Local Fdges 85

IPR2022-00092 - LGE
Ex. 1015 - Page 103

86

(a) (b) . I i Fig. 3.20 Edge notation. (a) Edge
— position with no edge. (b) Edge position
& 5 - with edge. (c) Edge to be updated. (d)
l Edge of unknown strength. ()
E==) & A Configuration of edges around a central
(e} (d) (e) edgee.

To compute vertex type, choose the maximum confidence vertex, i.e., the
vertex is type jwhere jmaximizes conf ()

and
conf(0) = (m-a)(m-b)(m-c)
conf(1) = a(m-b)(m-c)
conf(2) = ab(m-o)
conf(3) = abe

where

m = max (a, b, c, q)

gisaconstant (0.1 is about right)
and @, b, and c are the normalized gradient magnitudes for the three edges.
Without loss of generality, a = & = ¢. The parameter m adjusts the vertex
classification so that it is relative to the local maximum. Thus (g, b, ¢ = (0.25,
0.01, 0.01) is a type 1 vertex. The parameter g forces weak vertices to type zero
[e.g., (0.01, 0.001, 0.001) is type zero].

Once the vertex type has been computed, the edge type is simple. It is merely
the concatenation of the two vertex types. That is, the edge type is (i), where iand
Jjare the vertex types. (From symmetry, only consider i = j.)

||

a) -———

B == [

(c) —i el === =3

(d)
— Fig. 3.21 Classification of vertex type
of left-hand endpoint of edge e, Fig. 3.20.

Ch. 3 tarly Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 104

Decisions in the second step of modifying edge confidence based on edge
type appear in Table 3.1. The updating formula is:

increment: CHl(e) = min (1, C*(e) + &)
decrement: C**1(e) = max (0, C*(e) — 8)
leave as is: CHl(e) = C*(e)

where 8 is a constant (values from 0.1 to 0.3 are appropriate). The result of using
the relaxation scheme is shown in Fig. 3.22. The figures on the left-hand side show

Fig. 3.22 Edge relaxation results. (a) Raw edge data. Edge strengths have been threshold-
ed at 0.25 for display purposes only. (b) Results after five iterations of relaxation applied to
(a). (c) Different version of (a). Edge strengths have been thresholded at 0.25 for display
purposes only. (d) Results after five iterations of relaxation applied to (c).

Sec. 3.3 Ffinding Local Edges ' 87

IPR2022-00092 - LGE
Ex. 1015 - Page 105

the edges with normalized magnitudes greater than 0.25. Weak edges cause many
gaps in the boundaries. The figures on the right side show the results of five itera-
tions of edge relaxation. Here the confidence of the weak edges has been increased
owing to the proximity of other edges, using the rules in Table 3.1.

Table 3.1

Decrement Increment Leave as is

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

88

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.
For a fixed viewpoint and direction, infinitely many continuous and discontinuous
three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverly
placed at varying distances so as to project onto the same area. An astronomer
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a ‘‘grandmother constellation.”” All that can be
mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The ‘“‘inverse perspective” transformation (Appendix 1) simply deter-
mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, a line and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro-
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light-
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has been

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 106

considerable effort in this direction [Moravec 1977; Quam and Hannah 1974; Bin-
ford 1971; Turner 1974; Shapira 1974]. The technique is conceptually simple:

1. Take two images separated by a baseline.
2. Identify points between the two images.

3. Use the inverse perspective transform (Appendix 1) or simple tri-
angulation (Section 2.2.2) to derive the two lines on which the world
point lies,

4. Intersect the lines.

The resulting point is in three-dimensional world coordinates.

The hardest part of this method is step 2, that of identifying corresponding
points in the two images. One way of doing this is to use correlation, or template
matching, as described in Section 3.2.1. The idea is to take a patch of one image
and match it against the other image, finding the place of best match in the second
image, and assigning a related “‘disparity’’ (the amount the patch has been dis-
placed) to the patch.

Correlation is a relatively expensive operation, its naive implementation re-
quiring 0(n?m?) multiplications and additions for an m xm patch and n X n image.
This requirement can be drastically improved by capitalizing on the idea of variable
resolution; the improved technique is described in Section 3.7.2.

Efficient correlation is of technological concern, but even if it were free and
instantaneous, it would still be inadequate. The basic problems with correlation in
stereo imaging have to do with the fact that things can look significantly different
from different points of view. It is possible for the two stereo views to be
sufficiently different that corresponding areas may not be matched correctly.
Worse, in scenes with much obscuration, very important features of the scene may
be present in only one view. This problem is alleviated by decreasing the baseline,
but of course then the accuracy of depth determinations suffers; at a baseline
length of zero there is no problem, but no stereo either. One solution is to identify
world features, not image appearance, in the two views, and match those (the nose
of a person, the corner of a cube). However, if three-dimensional information is
sought as a help in perception, it is unreasonable to have to do perception first in
order to do stereo.

3.4.2 A Relaxation Algorithm for Stereo

Human stereopsis, or fusing the inputs from the eyes into a stereo image, does not
necessarily involve being aware of features to match in either view. Most human
beings can fuse quite efficiently stereo pairs which individually consist of randomly
placed dots, and thus can perceive three-dimensional shapes without recognizing
monocular clues in either image. For example, consider the stereo pair of Fig. 3.23.
In either frame by itself, nothing but a randomly speckled rectangle can be per-
ceived. All the stereo information is present in the relative displacement of dots in
the two rectangles. To make the right-hand member of the stereo pair, a patch of

Sec. 3.4 Range Formation from Geometry 89

IPR2022-00092 - LGE
Ex. 1015 - Page 107

90

R oy
R o

L =y, 1

(2 Al D
o A T
T ‘T‘P 7. I-’ﬁ."

YREF SR T 2N

Fig. 3.23 A random-dof stereogram.

‘the randomly placed dots of the left-hand image is displaced sideways. The dots
which are thus covered are lost, and the space left by displacing the patch is filled in
with random dots.

Interestingly enough, a very simple algorithm [Marr and Poggio 1976] can be
formulated that computes disparity from random dot stereograms. First consider
the simpler problem of matching one-dimensional images of four points as de-
picted in Fig. 3.24. Although only one depth plane allows all four points to be
placed in correspondence, lesser numbers of points can be matched in other
planes.

The crux of the algorithm is the rules, which help determine, on a local basis,
the appropriateness of a match. Two rules arise from the observation that most im-
ages are of opaque objects with smooth surfaces and depth discontinuities only at
object boundaries:

1. Each point in an image may have only one depth value.
2. A point is almost sure to have a depth value near the values of its neighbors.

F'ig. 3.24 The stereo matching problem.

Ch. 3 Farly Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 108

Figure 3.24 can be viewed as a binary network where each possible match is
represented by a binary state. Matches have value 1 and nonmatches value 0. Fig-
ure 3.25 shows an expanded version of Fig. 3.24. The connections of alternative
matches for a point inhibit each other and connections between matches of equal
depth reinforce each other. To extend this idea to two dimensions, use paralle] ar-
rays for different values of y where equal depth matches have reinforcing connec-
tions. Thus the extended array is modeled as the matrix C(x, y, d) where the
point x, y, d corresponds to a particular match between a point (x;, y,) in the
right image and a point (x;, y,) in the left image. The stereopsis algorithm pro-
duces a series of matrices C, which converges to the correct solution for most
cases. The initial matrix Cy(x, y, d) has values of one where x, y, d correspond to
a match in the original data and has values of zero or otherwise.

Algorithm 3.2 [Marr and Poggio 1976]

Until C satisfies some convergence criterion, do

C,1(x v, d)=| Y CK yid)— ¥ Cxly,d) + Colx, y, d)|(3.34)

x\y,d'€S x,y,d'€n
where the term in braces is handled as follows:

1 ife>T
[¥F}= 0 otherwise

S = set of points x', y’, d’ such that |x — x|
d

6 = set of points x/ y, d’ such that |x — x

and d = d’

<1
£land|d —d'|=1

o
oSS w S

(]
@“34‘7‘7.'7 Disparity

Match bet
e x'e ween

/ Inhibitory
connection

Excitatory
connection

Fig. 3.25 Extension of stereo matching.

Sec. 3.4 Range Formation from Geometry 91

IPR2022-00092 - LGE
Ex. 1015 - Page 109

92

One convergence criterion is that the number of points modified on an iteration
must be less than some threshold 7. Fig. 3.26 shows the results of this computa-
tion; the disparity is encoded as a gray level and displayed as an image for different
values of n.

A more general version of this algorithm matches image features such as
edges rather than points (in the random-dot stereogram, the only features are

5 =

Fig. 3.26 The results of relaxation computations for stereo.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 110

points), but the principles are the same. The extraction of features more compli-
cated than edges or points is itself a thorny problem and the subject of Part I1. It
should be mentioned that Marr and Poggio have refined their stereopsis algorithm
to agree better with psychological data [Marr and Poggio 1977].

3.5 SURFACE ORIENTATION FROM REFLECTANCE MODELS

The ordinary visual world is mostly composed of opaque three-dimensional ob-
jects. The intensity (gray level) of a pixel in a digital image is produced by the light
reflected by a small area of surface near the corresponding point on the object.

It is easiest to get consistent shape (orientation) information from an image if
the lighting and surface reflectance do not change from one scene location to
another. Analytically, it is possible to treat such lighting as uniform illumination, a
point source at infinity, or an infinite linear source. Practically, the human shape-
from-shading transform is relatively robust. Of course, the perception of shape
may be manipulated by changing the surface shading in calculated ways. In part,
cosmetics work by changing the reflectivity properties of the skin and misdirecting
our human shape-from-shading algorithms.

The recovery transformation to obtain information about surface orientation
is possible if some information about the light source and the object’s reflectivity is
known. General algorithms to obtain and quantify this information are compli-
cated but practical simplifications can be made [Horn 1975; Woodham 1978; Ikeu-
chi 1980]. The main complicating factor is that even with mathematically tractable
object surface properties, a single image intensity does not uniquely define the sur-
face orientation. We shall study two ways of overcoming this difficulty. The first al-
gorithm uses intensity images as input and determines the surface orientation by
using multiple light source positions to remove ambiguity in surface orientation.
The second algorithm uses a single source but exploits constraints between neigh-
boring surface elements. Such an algorithm assigns initial ranges of orientations to
surface elements (actually to their corresponding image pixels) on the basis of in-
tensity. The neighboring orientations are “‘relaxed’” against each other until each
converges to a unique orientation (Section 3.5.4).

3.5.1 Reflectivity Functions

For all these derivations, consider a distant point source of light impinging on a
small patch of surface; several angles from this situation are important (Fig. 3.27).

A surface’s reflectance is the fraction of a given incident energy flux (irradi-
ance) it reflects in any given direction. Formally, the reflectivity function is defined

asr = z—é, where L is exitant radiance and E is incident flux. In general, for an-

isotropic reflecting surfaces, the reflectivity function (hence L) is a function of all
three angles i, e, and g. The quantity of interest to us is image irradiance, which is
proportional to scene radiance, given by L = | r dE. In general, the evaluation of
this integral can be quite complicated, and the reader is referred to [Horn and

Sec. 3.5 Surface Orientation from Reflectance Models 93

IPR2022-00092 - LGE
Ex. 1015 - Page 111

94

\Cl)/
P i N
Fig. 3.27 Important reflectance angles:
4 i, incidence; e, emittance; g, phase.

Sjoberg 1978] for a more detailed study. For our purposes we consider surfaces
with simple reflectivity functions.

Lambertian surfaces, those with an ideal matte finish, have a very simple
reflectivity function which is proportional only to the cosine of the incident angle.
These surfaces have the property that under uniform or collimated illumination
they look equally bright from any direction. This is because the amount of light
reflected from a unit area goes down as the cosine of the viewing angle, but the
amount of area seen in any solid angle goes up as the reciprocal of the cosine of the
viewing angle. Thus the perceived intensity of a surface element is constant with
respect to viewer position. Other surfaces with simple reflectivity functions are
“dusty”’ and ‘‘specular’ surfaces. An example of a dusty surface is the lunar sur-
face, which reflects in all directions equally. Specular (purely mirror-like) surfaces
such as polished metal reflect only at the angle of reflection = angle of incidence,
and in a direction such that the incidence, normal, and emittance vectors are
coplanar.

Most smooth things have a specular component to their reflection, but in
general some light is reflected at all angles in decreasing amounts from the specular
angle. One way to achieve this effect is to use the cosine of the angle between the
predicted specular angle and the viewing angle, which is given by C where

C = 2cos (i) cos (e) — cos (g)

T
2
radians away from it. Convincing specular contributions of greater or less sharp-
ness are produced by taking powers of C. A simple radiance formula that allows the

simulation of both matte and specular effects is

This quantity is unity in the pure specular direction and falls off to zero at

LG, e g)=s(C)"+ (1— s)cos (i) (3.35)

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 112

Here s varies between 0 and 1 and determines the fraction of specularly reflected
light; n determines the sharpness of specularity peaks. As n increases, the specular
peak gets sharper and sharper. Computer graphics research is constantly extending
the frontiers of realistic and detailed reflectance, refractance, and illumination cal-
culations [Blinn 1978; Phong 1975; Whitted 1980].

3.5.2 Surface Gradient

The reflectance functions described above are defined in terms of angles measured
with respect to a local coordinate frame. For our development, it is more useful to
relate the reflectivity function to surface gradients measured with respect to a
viewer-oriented coordinate frame.

The concept of gradient space, which is defined in a viewer-oriented frame
[Horn 1975], is extremely useful in understanding the recovery transformation al-
gorithm for the surface normal. This gradient refers to the orientation of a physical
surface, notto local intensities. It must not be confused with the intensity gradients
discussed in Section 3.3 and elsewhere in this book.

Gradient space is a two-dimensional space of slants of scene surfaces. It
measures a basic ““intrinsic’” (three-dimensional) property of surfaces. Consider
the point-projection imaging geometry of Fig. 2.2, with the viewpoint at infinity
(far from the scene relative to the scene dimensions). The image projection is then
orthographic, nor perspective.

The surface gradient is defined for a surface expressed as —z = f(x, y). The
gradient is a vector (p, ¢), where

_9(=2)
P="%
X
_ 98(=2)
oy
Any plane in the image (such as the face plane of a polyhedral face) may be
expressed in terms of its gradient. The general plane equation is

(3.36)

Ax+By+Cz+ D=0 (3.37)
Thus
_A. .8 ,D
z= Cx+ Cy-i— C (3.38)
and from (3.36) the gradient may be related to the plane equation:
—z=px+tqgr +K (3.39)

Gradient space is thus the two-dimensional space of (p, g) vectors. The pand
g axes are often considered to be superimposed on the x and y image plane coord-
inate axes. Then the (p, ¢) vector is “‘in the direction’’ of the surface slant of im-
aged surfaces. Any plane perpendicular to the viewing direction has a (p, ¢) vector
of (0,0). Vectors on the g (or y) axis correspond to planes tilted about the x axis in
an ““‘upward”’ or “‘downward’” (“‘yward’’) direction (like the tilt of a dressing table

Sec. 3.5 Surface Orientation from Reflectance Models 95

IPR2022-00092 - LGE
Ex. 1015 - Page 113

96

mirror). The direction arctan (g/p) is the direction of fastest change of surface
depth (—2) as xand ychange. (p? + g»)" is the rate of this change. For instance, a
vertical plane “‘edge on’’ to the viewer hasa (p, g) of (I e, 0).

The reflectance map R (p, q) represents this variation of perceived brightness
with surface orientation. R (p, ¢) gives scene radiance (Section 2.2.3) as a function
of surface gradient (in our usual viewer-centered coordinate system). (Figure 3.27
showed the situation and defined some important angles.) R (p, g) is usually
shown as contours of constant scene radiance (Fig. 3.28). The following are a few
useful cases.

In the case of a Lambertian surface with the source in the direction of the
viewer (i = e), the gradient space image looks like Fig. 3.28. Remember that
Lambertian surfaces have constant intensity for constant illumination angle; these
constant angles occur on the concentric circles of Fig. 3.28, since the direction of
tilt does not affect the magnitude of the angle. The brightest surfaces are those
illuminated from a normal direction—they are facing the viewer and so their
gradients are (0, 0).

Working this out from first principles, the incident angle and emittance angle
are the same in this case, since the light is near the viewer. Both are the angle bet-
ween the surface normal and the view vector. Looking at the x—y plane means a
vector to the light source of (0,0,—1), and at a gradient point (p, ¢), the surface
normal is (p, g, —1). Also,

R =r,cosi (3.40)

N~/

Fig. 3.28 Contours of constant radiance in gradient space for Lambertian sur-
faces; single light source near the viewpoint.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 114

where r, is a proportionality constant, and we conventionally use R to denote ra-
diance in a viewer-centered frame. Let n, and n be unit vectors in the source and
surface normal directions. Since cos i = n-n

ro
YT (3.41)
Thus cos (i) determines the image brightness, and so a plot of it is the gradient
space image (Figs. 3.29 and 3.30).
For a more general light position, the mathematics is the same; if the light
source is in the (p,, ¢,, —1) direction, take the dot product of this direction and
the surface normal.

R = r,n'n; (3.42)
Or, in other words,
_ rlop + g9+ 1)
(1 +p*+ g2 (U +p + ¢)]*
The phase angle g is constant throughout gradient space with orthographic projec-
tion {viewer distant from scene) and light source distant from scene.
Setting R constant to obtain contour lines gives a second-order equation,
producing conic sections. In fact, the contours are produced by a set of cones of
varying angles, whose axis is in the direction of the light source, intersecting a

plane at unit distance from the origin. The resulting contours appear in Fig. 3.29.
Here the dark line is the terminator, and represents all those planes that are edge-

NA

NN
2\ \\\\

Fig. 3.29 Contours of constant radiance in gradient space. Lambertian surfaces;
light not near viewpoint.

Sec. 3.5 Surface Orientation from Reflectance Models 97

IPR2022-00092 - LGE
Ex. 1015 - Page 115

98

on to the light source; gradients on the back side of the terminator represent self-
shadowed surfaces (facing away from the light). One intensity determines a con-
tour and so gives a cone whose tangent planes all have that emittance. For a surface
with specularity, contours of constant I (J, e, g) could appear as in Fig. 3.30.

The point of specularity is between the matte component maximum bright-
ness gradient and the origin. The brightest matte surface normal points at the light
source and the origin points at the viewer. Pure specular reflection can occur if the
vector tilts halfway toward the viewer maintaining the direction of tilt. Thus its
gradient is on a line between the origin and the light-source direction gradient po-
int.

3.5.3 Photometric Stereo

The reflectance equation (3.42) constrains the possible surface orientation to a
locus on the reflectance map. Multiple light-source positions can determine the
orientation uniquely [Woodham 1978]. Each separate light position gives a sepa-
rate value for the intensity (proportional to radiance) at each point f(x). If the
surface reflectance r, is unknown, three equations are needed to determine the
reflectance together with the unit normal n. If each source position vector is
denoted by n,, k = 1, ..., 3, the following equations result:

I(x,) = r,(nym), E=100,3 (3.43)

where [is normalized intensity. In matrix form

I=r,Nn (3.44)

Fig. 3.30 Contours of constant radiance for a specular/matte surface.

0

\

g
I

Ch. 3 Farly Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 116

where

I=[1(x »),1,(x »),I;(x)17,

and

ny hi2 ny3
N = |ny np N (3.45)
n3 n32 n33

and I = fcwhere cis the appropriate normalization constant. If ¢ is not known, it
can be regarded as being part of r, without affecting the normal direction calcula-
tion. As long as the three source positions n;, n,, n3 are not coplanar, the matrix
N will have an inverse. Then solve for r, and n by using (3.44), first using the fact
that n is a unit vector to derive

ro=IN"'1 (3.46)
and then solving for # to obtain

e (3.47)
o
Examples of a particular solution are shown in Fig. 3.31. Of course, a prerequisite
for using this method is that the surface point not be in shadows for any of the
sources.

R, b,g)=0723 |

A, (o, q) = 0.942

R3 (p, q) = 0.505

-20 + Fig. 3.31 A particular solution for

photometric stereo.

3.5.4 Shape from Shading by Relaxation

Combining local information allows improved estimates for edges (Section 3.3.5)
and for disparity (Section 3.4.2). In a similar manner local information can help in
computing surface orientation [Ikeuchi 1980]. Basically, the reflectance equation

Sec. 3.5 Surface Orientation from Reflectance Models 99

IPR2022-00092 - LGE
Ex. 1015 - Page 117

provides one constraint on the surface orientation and another is provided by the
heuristic requirement that the surface be smooth.

Suppose there is an estimate of the surface normal at a point (p(x,),
g (x, y)). If the normal is not accurate, the reflectivity equation I (x, y) = R (p, ¢)
will not hold. Thus it seems reasonable to seek p and ¢ that minimize (I — R)2.
The other requirement is that p(x, y) and g (x, y) be smooth, and this can be
measured by their Laplacians V2p and V2 4. For a smooth curve both of these
terms should be small. The goal is to minimize the error at a point,

E(x, y) = (x y) = R(p, @)’ + X[(V?p)? + (V?¢)?] (3.48)
where the Lagrange multiplier A [Russell 1976] incorporates the smoothness con-

straint. Differentiating E (x, y) with respect to p and ¢ and approximating deriva-
tives numerically gives the following equations for p (x, y) and g (x, »):

p(x, ¥) = pu(x, ¥) + T(x, y, p, q)%—{; (3.49)
(% y) = qay(x, y) + T(x, 5, p, q)g—s (3.50)
where
T(x, v p q)= A/ I(x y) — R(p,)]
using

Pav(x,) = %!p(x +1,) +plx—1,p)+pl,y+1)+pley — D] (3.51)

and a similar expression for g,, . Now Eqs. (3.49) and (3.50) lend themselves to
solution by the Gauss-Seidel method: calculate the left-hand sides with an esti-
mate for p and ¢ and use them to derive a new estimate for the right-hand sides.
More formally,

Algorithm 3.3: Shape from Shading [Ikeuchi 1980].

Step 0. k = 0. Pick an initial p°(x, y) and ¢°(x, y) near boundaries.
Stepl. k =k + 1; compute

P

dp
Kk — k—1+ _ai
q Gav Tap

Step 2. If the sum of all the E’s is sufficiently small, stop. Else, go to step 1.

100 Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 118

A loose end in this algorithm is that boundary conditions must be specified. These
are values of pand g determined a priori that remain constant throughout each ite-
ration. The simplest place to specify a surface gradient is at an occluding contour
(see Fig. 3.32) where the gradient is nearly 90° to the line of sight. Unfortunately, p
and ¢ are infinite at these points. Ikeuchi’s elegant solution to this is to use a
different coordinate system for gradient space, that of a Gaussian sphere
(Appendix 1). In this system, the surface normal is described relative to where it
intersects the sphere if the tail of the normal is at the sphere’s origin. This is the
point at which a plane perpendicular to the normal would touch the sphere if tran-
slated toward it (Fig. 3.32b).

In this system the radiance may be described in terms of the spherical coor-
dinates 8, ¢. For a Lambertian surfdace

R(8,¢) =cos® cos @, +sin 8 sin b, cos(¢p — ¢,) (3.52)

At an occluding contour ¢ = /2 and # is given by tan~! (8y / 8x), where the
derivatives are calculated at the occluding contour (Fig. 3.32¢).

Occluding
contour

Ay

(b) (c)

Fig. 3.32° (a) Occluding contour. {b) Gaussian sphere. (c) Calculating # from
occluding contour.

Sec. 3.5 Surface QOrientation from Reflectance Models 101

IPR2022-00092 - LGE
Ex. 1015 - Page 119

To use the (9, ¢) formulation instead of the (p, ¢} formulation is an easy
matter. Simply substitute 8 for pand ¢ for ¢ in all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICAL FLOW

102

Much of the work on computer analysis of visual motion assumes a stationary ob-
server and a stationary background. In contrast, biological systems typically move
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smooth
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs can
mirror the continuous flow of the imaged world across the retina. Such continuous
information is called optical low. Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional ‘‘retinal velocity’’ at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete images.
Methods of using optical flow to compute the observer’s motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are
given in Chapter 7.

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function £ (x, y, t) in a Taylor series.

fx+de, y+dy t +adt)= (3.53)
Foo)+ af dx + gf gf dt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time t + dtis
the result of the original image at time 7 being moved translationally by dxand dy,
then in fact

fG+dx, y+dy, t+dt) = fx, 5 t) (3.54)
Consequently, from Egs. (3.53) and (3.54),
87 . Bpax O i (3.55)

at ox dt dy dt

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 120

Now 3f of and %Z are all measurable quantities, and o and —'Z—% are estimates

9:’ Ox’ dt
of what we are looking for—the velocity in the xand y directions. Writing
ax _ a _
a Y a "
gives
0L i£1.t + —Q[v (3.56)
at Ox dy
or equivalently,
—%{ - (3.57)

where V fis the spatial gradient of the image and u = (u, v) the velocity.

The implications of (3.57) are interesting. Consider a fixed camera with a
scene moving past it. The equations say that the time rate of change in intensity of a
point in the image is (to first order) explained as the spatial rate of change in the
intensity of the scene multiplied by the velocity that points of the scene move past
the camera. ‘

This equation also indicates that the velocity (4, v} must lie on a line
perpendicular to the vector (f,, fy) where f, and f, are the partial derivatives with
respect to x and y, respectively (Fig. 3.33). In fact, if the partial derivatives are very
accurate the magnitude component of the velocity in the direction (£, fy) is (from
3.57):

—fi
[(£2 +.£D1%

3.6.2 Calculating Optical Flow by Relaxation
Equation (3.57) constrains the velocity but does not determine it uniquely. The

development of Section 3.5.4 motivates the search for a solution that satisfies Eq.

”

futfv+f =0

Fig. 3.33 Relation between (», V) and
U)

Sec. 3.6 Optical Flow 103

IPR2022-00092 - LGE
Ex. 1015 - Page 121

104

(3.57) as closely as possible and also is locally smooth [Horn and Schunck 1980].
In this case as well, the Laplacians of the two velocity components, V?u and ¥ 2y,
can measure local smoothness.

Again using the method of Lagrange multipliers, minimize the flow error

EXx, y) = (fou + fv + £)2 4+ M(V2)?2 + (V)] (3.58)
Differentiating this equation with respect to # and v provides equations for the

change in error with respect to » and v, which must be zero for a minimum.
Writing V2uas u — u,, and V2vas v — v,,, these equations are

(A2+fx2)u +fx.fyv = A2“:1\4"".]‘-)(.)“1 (359)
felyu + O+ fHv = A, — £,f, (3.60)
These equations may be solved for #and v, yielding
P
W= g fx_ﬁ (3.61)
v=vwﬂﬁ§. (3.62)

where
P = fithy T+ .f;avav + f;
D=M+f2+f2

To turn this into an iterative equation for solving u (x, y) and v (x,), again use
the Gauss-Seidel method.

Algorithm 3.4: Optical Flow [Horn and Schunck 1980].
k=0.
Initialize all #z* and v* to zero.
Until some error measure is satisfied, do
. P
”k = H§V o fxB

_ P
vi=wil = 5p

As Horn and Schunck demonstrate, this method derives the flow for two time
frames, but it can be improved by using several time frames and using the final sol-
ution after one iteration at one time for the initial solution at the following time
frame. That is:

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 122

Algorithm 3.5: Multiframe Optical Flow.

t=0.
Initialize all u (x, y, 0), v(x, y, 0)
Sfor =1 until maxframes do

ulx, ¥,) = uy(x, 3, t—1) —fxg

v(x, Vs)= vav(x, Vs t—1) _fy%

The results of using synthetic data from a rotating checkered sphere are shown in
Fig. 3.34.

PP S S i R R
e e]
y N Pwved s ov i

. % CPEFREVF
::::::“l ;oo:*:«:;:atlli!i\‘ih‘.-,u,
il £ 8 S TR LA R
B S

: sae
o

B

(b)
Fig. 3.34 Optical flow results. (a), (b) and (c) are three frames from the rotating
sphere, (d) is the derived three-dimensional flow after 32 such time frames.
Sec. 3.6 Optical Flow 105

IPR2022-00092 - LGE
Ex. 1015 - Page 123

3.7 RESOLUTION PYRAMIDS

106

What is the best spatial resolution for an image? The sampling theorem states that
the maximum spatial frequency in the image data must be less than half the sam-
pling frequency in order that the sampled image represent the original unambigu-
ously. However, the sampling theorem is not a good predictor of how easily objects
can be recognized by computer programs. Often objects can be more easily recog-
nized in images that have a very low sampling rate. There are two reasons for this.
First, the computations are fewer because of the reduction in dimensionality. Se-
cond, confusing detail present in the high-resolution versions of the images may
not appear at the reduced resolution. But even though some objects are more easily
found at low resolutions, usually an object description needs detail only revealed at
the higher resolutions. This leads naturally to the notion of a pyramidal image data
structure in which the search for objects is begun at a low resolution, and refined at
ever-increasing resolutions until one reaches the highest resolution of interest.
Figure 3.35 shows the correspondence between pixels for the pyramidal structure.

In the next three sections, pyramids are applied to gray-level images and edge
images. Pyramids, however, are a very general tool and can be used to represent
any image at varying levels of detail.

3.7.1 Gray-level Consolidation

In some applications, redigitizing the image with a different sampling rate is a way
to reduce the number of samples. However, most digitizer parameters are difficult
to change, so that often computational means of reduction are needed. A
straightforward method is to partition the digitized image into nonoverlapping

LT

A VAR Fig. 3.35 Pyramidal image structure.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 124

neighborhoods of equal size and shape and to replace each of those neighborhoods
by the average pixel densities in that neighborhood. This operation is consolidation.
For an n X n neighborhood, consolidation is equivalent to averaging the original
image over the neighborhood followed by sampling at intervals n units apart.

Consolidation tends to offset the aliasing that would be introduced by sam-
pling the sensed data at a reduced rate. This is due to the effects of the averaging
step in the consolidation process. For the one-dimensional case where

p- %[fm + 7l +)] (3.63)

the corresponding Fourier transform [Steiglitz 1974] is

HG) = L1+ e P (3.64)

which has magnitude |H (1) | = coslm (u/u,)] and phase —7 (u/u,). The sampling
frequency u, = 1/A where A is the spacing between samples. Thus the averaging
step has the effect of attenuating the higher frequencies of F(u) as shown in Fig.
3.36. Since the higher frequencies are involved in aliasing, attenuating these fre-
quencies reduces the aliasing effects.

3.7.2 Pyramidal Structures in Correlation

With correlation matching, the use of multiple resolution techniques can some-
times provide significant functional and computational advantages [Moravec
1977]. Binary search correlation uses pyramids of the input image and reference

Flu) |Hu) |

Uy u Uy

(a) (b)

Fig. 3.36 Consolidation effects viewed in the spatial frequency domain. (a)} Original
transform. (b) Transform of averaging operator. (c) Transform of averaged image.

Sec. 3.7 Resolution Pyramids 107

IPR2022-00092 - LGE
Ex. 1015 - Page 125

108

patterns. The algorithm partakes of the computational efficiency of binary (as op-
posed to linear) search [Knuth 1973]. Further, the low-resolution correlation
operations at high levels in the pyramid ensure that the earlier correlations are on
gross image features rather than details.

In binary search correlation a feature to be located is at some unknown loca-
tion in the input image. The reference version of the feature originates in another
image, the reference image. The feature in the reference image is contained in a
window of n X n pixels. The task of the correlator is to find an n X n window in
the input image that best matches the reference image window containing the
feature. The details of the correlation processes are given in the following algo-
rithm.

Algorithm 3.6: Binary Search Correlation Control Algorithm

Definitions

OrigReference: an N x N image containing a feature centered at (Fea-
tureX, FeatureY).
Origlnput: an M X M array in which an instance of the Feature is
to be located. For simplicity, assume that it is at the
same resolution as OrigReference.

n: a window size; an # X n window in OrigReference is
large enough to contain the Feature.

Window: an n X n array containing a varying-resolution subim-
age of OrigReference centered on the Feature.

Input: a 2p X 2parray containing a varying-resolution subim-
age of Origlnput, centered on the best match for the
Feature.

Reference: atemporary array.

Algorithm

1. Input:= Consolidate Origlnput by a factor of 2n/Mto size 2n X 2.

2. Reference := Consolidate OrigReference by the same factor 2n/M to size
2nN/M % 2nN/M. This consolidation takes the Feature to a new (FeatureX,
FeatureY).

3. Window := n X n window from Reference centered on the new (FeatureX,

Feature Y).
4. Calculate the match metric of the window at the (n + 1)? locations in Input at

which it is wholly contained. Say that the best match occurs at (BestMatchX,
BestMatch ¥) in Input.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 126

S. Input := n x n window from Input centered at (BestMatchX, BestMatch¥),

enlarged by a factor of 2.

6. Reference := Reference enlarged by a factor of 2. This takes Feature to a new
(FeatureX, Feature).

7. Goto3.

Through time, the algorithm uses a reference image for matching that is al-
ways centered on the feature to be matched, but that homes in on the feature by
being increased in resolution and thus reduced in linear image coverage by a factor
of 2 each time. In the input image, a similar homing-in is going on, but the search
area is usually twice the linear dimension of the reference window. Further, the
center of the search area varies in the input image as the improved resolution
refines the point of best match.

Binary search correlation is for matching features with context. The template
at low resolution possibly corresponds to much of the area around the feature,
while the feature may be so small in the initial consolidated images as to be invisi-
ble. The coarse-to-fine strategy is perfect for such conditions, since it allows gross
features to be matched first and to guide the later high-resolution search for best
match. Such matching with context is less useful for locating several instances of a
shape dotted at random around an image.

3.7.3 Pyramidal Structures in Edge Detection

As an example of the use of pyramidal structures in processing, consider the use of
such structures in edge detection. This application, after [Tanimoto and Pavlidis
1975], uses two pyramids, one to store the image and another to store the image
edges. The idea of the algorithm is that a neighborhood in the low-resolution im-
age where the gray-level values are the same is taken to imply that in fact there is
no gray-level change (edge) in the neighborhood. Of course, the low-resolution
levels in the pyramid tend to blur the image and thus attenuate the gray-level
changes that denote edges. Thus the starting level in the pyramid must be picked
judiciously to ensure that the important edges are detected.

Algorithm 3.7: Hierarchical Edge Detection

recursive procedure refine (&, x, y)
begin
ifk < MaxLevel then
Jordx=0untill do
Jordy =0 untill do
ifEdgeOp (k, x + dx, y + dy) > Threshold (x)
thentefine (k + 1,x + dx,y + dy)
end,

Sec. 3.7 Resolution Pyramids 109

IPR2022-00092 - LGE
Ex. 1015 - Page 127

110

Fig. 3.37 Pyramidal edge detection.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 128

procedure FindEdges:
begin
comment apply operator to every pixel in the
starting level s, refining where necessary;
Jorx:= 0 until2®— 1do
Sory:=0until25 — 1 do
ifEdgeOp (s, x, y) > Threshold(s)
thenrefine (s. x, y);
end,

Figure 3.37 shows Tanimoto’s results for a chromosome image. The table inset
shows the computational advantage in terms of the calls to the edge operator as a
function of the starting level s.

Similar kinds of edge detection strategies based on pyramids have been
pursued by [Levine 1978; Hanson and Riseman 1978]. The latter effort is a little
different in that processing within the pyramid is bidirectional; information from
edges detected at a high-resolution level is projected to low-resolution levels of the
pyramid.

EXERCISES

3.1 Derive an analytical expression for the response of the Sobel operator to a vertical
step edge as a function of the distance of the edge to the center of the operator.

3.2 Use the formulas of Egs. (3.31) to derive the digital template function for g, in a 5°
pixel domain.

3.3 Specify a version of Algorithm 3.1 that uses the gradient edge operator instead of the
“‘crack’” edge operator.

3.4 In photometric stereo, three or more light source positions are used to determine a
surface orientation. The dual of this problem uses surface orientations to determine
light source position. What is the usefulness of the latter formulation? In particular,
how does it relate to Algorithm 3.3?

3.5 Using any one of Algorithms 3.1 through 3.4 as an example, show how it could be
modified to use pyramidal data structures.

3.6 Write a reflectance function to capture the “‘grazing incidence’ phenomenon—
surfaces become more mirror-like at small angles of incidence (and reflectance).

3.7 Equations 3.49 and 3.50 were derived by minimizing the local error. Show how these

equations are modified when total error li.e., £ E(x, y)] is minimized.
Xy

REFERENCES

ABDOU, L. E. ““Quantitative methods of edge detection.”” USCIPI Report 830, Image Processing Instit-
ute, Univ. Southern California, July 1978.

AKATSUKA, T., T. IsoBE, and Q. TAKATANL ‘‘Feature extraction of stomach radiograph.” Proc., 2nd
1JCPR, August 1974, 324-328.

References

IPR2022-00092 - LGE
Ex. 1015 - Page 129

112

ANDREWS, H. C. and B. R. HUNT. Digital Image Restoration. Englewood Cliffs, NJ: Prentice-Hall, 1977.
ATTNEAVE, F. ““Some informational aspects of visual perception.”” Psychological Review 61, 1954,
BArRrow, H. G. and J. M. TENENBAUM. ‘“Computational Vision.”” Proc. [EEE 69, 5, May 1981, 572-595

Barrow, H. G. and J. M. TENENBAUM. “‘Recovering intrinsic scene characteristics from images.”
Technical Note 157, Al Center, SRI International, April 1978.

BINFORD, T. O. “*Visual perception by computer.”” Proc., IEEE Conf. on Systems and Control, Miami,
December 1971.

BLinn, J. E. ““Computer display of curved surfaces.”” Ph.D. dissertation, Computer Science Dept.,
Univ. Utah, 1978.

FrEl, W. and C. C. CHEN. “Fast boundary detection: a generalization and a new algorithm.” IEEE
Trans. Computers 26, 2, October 1977, 988-998.

GonNzaLEZ, R. C. and P. WiNTz. Digital Image Processing. Reading, MA: Addison-Wesley, 1977.

GRIFFITH, A. K. “Edge detection in simple scenes using a priori information.”” IEEE Trans. Computers
22,4, April 1973.

HANSON, A. R. and E. M. RISEMAN (Eds.). Computer Vision Systems (CV5). New York: Academic Press,
1978.

Horn, B. K. P. ““Determining lightness from an image.” CGIP 3, 4, December 1974, 277-299.
Horn, B. K. P. ““Shape from shading.”” In PCV, 1975.

Horn, B. K. P. and B. G. ScHUNCK. ‘‘Determining optical flow.”” AI Memo 572, Al Lab, MIT, April
1980.

Horn, B. K. P. and R. W. SIOBERG. ‘‘Calculating the reflectance map.” Proc., DARPA IU Workshop,
November 1978, 115-126.

HuggL, D. H. and T. N. WiEseL. ‘‘Brain mechanisms of vision.”’ Scientific American, September 1979,

150-162.

HUECKEL, M. ““An operator which locates edges in digitized pictures.” J. ACM 18, 1, January 1971,
113-125.

HUECKEL, M. “‘A local visual operator which recognizes edges and lines.” J. ACM 20, 4, October 1973,
634-647.

IxkeucHI, K. “Numerical shape from shading and occluding contours in a single view."” AI Memo 566,
Al Lab, MIT, revised February 1980.

KirscH, R. A. “Computer determination of the constituent structure of biological images.” Computers
and Biomedical Research 4, 3, June 1971, 315-328.

KNUTH, D. E. The Art of Computer Programming. Reading, MA: Addison-Wesley, 1973.

LEvINE, M. D. ““A knowledge-based computer vision system.”” In CVS, 1978.

Liu, H. K. ““Two- and three-dimensional boundary detection.”” CGIP 6, 2, 1977, 123-134.

MARR, D. and T. PoGalo. ‘“Cooperative computation of stereo disparity.” Science 194, 1976, 283-287.

MagRR, D. and T. PoGaGio. ‘A theory of human stereo vision.”” Al Memo 451, Al Lab, MIT, No-
vember 1977,

MERO, L. and Z. Vassy. ““A simplified and fast version of the Hueckel operator for finding optimal
edges in pictures.” Proc., 4th IJCAI, September 1975, 650-655.

MoravEC, H. P. “Towards automatic visual obstacle avoidance.” Proc., 5th IICAI, August 1977, 584.

NEvaTia, R. “Evaluation of a simplified Hueckel edge-line detector.”” Note, CGIP 6, 6, December
1977, 582-588.

PHONG, B-T. ““Illumination for computer generated pictures.” Commun. ACM 18, 6, June 1975, 311-
317.

PINGLE, K. K. and J. M. TENENBAUM. “‘An accommodating edge follower.”> Proc., 2nd IJCAIL,
September 1971, 1-7.

Ch. 3 Early Processing

IPR2022-00092 - LGE
Ex. 1015 - Page 130

PRAGER, J. M. “Extracting and labeling boundary segments in natural scenes.”” IEEE Trans. PAMI 2,
1, January 1980, 16-27.

PrATT, W. K. Digital Image Processing. New York: Wiley-Interscience, 1978.

PREWITT, J. M. S. “‘Object enhancement and extraction.”” In Picture Processing and Psychopictorics, B. S.
Lipkin and A. Rosenfeld (Eds.). New York: Academic Press, 1970.

QuaMm, L. and M. J. HannaH. “Stanford automated photogrammetry research.” AIM-254, Stanford
Al Lab, November 1974.

RoBERTS, L. G. “Machine perception of three-dimensional solids.”” In Optical and Electro-optical Infor-
mation Processing, J. P. Tippett et #1. (Eds.). Cambridge, MA: MIT Press, 1965.

ROSENFELD, A. and A. C. KAK. Digital Picture Processing. New York: Academic Press, 1976.

ROSENFELD, A., R. A. HUMMEL, and S. W. ZUCKER. ‘*Scene labelling by relaxation operations.”” IEEE
Trans. SMC 6, 1976, 430.

RusseLL, D. L. (Ed.). Calculus of Variations and Control Theory. New York: Academic Press, 1976.

SHAPIRA, R. “‘A technique for the reconstruction of a straight-edge, wire-frame object from two or
more central projections.”” CGIP 3, 4, December 1974, 318-326.

SHIRAL V. ““Analyzing intensity arrays using knowledge about scenes.”” In PC¥, 1975.
STEIGLITZ, K. An Introduction to Discrete Systems. New York: Wiley, 1974,

StockHAM, T. I, Jr. ““Image processing in the context of a visual model.”” Proc. IEEE 60, 7, July 1972,
828-842.

TANIMOTO, S. and T. PavLiDIs. ““A hierarchical data structure for picture processing.”” CGIP 4, 2, June
1975, 104-119.

TRETIAK, O..J. ““A parameteric model for edge detection.”” Proc., 3rd COMPSAC, November 1979,
884-887.

TURNER, K. J. “Computer perception of curved objects using a television camera.” Ph.D. dissertation,
Univ. Edinburgh, 1974,

'WECHSLER, H. and J. SKLaNsKY. “‘Finding the rib cage in chest radiographs.”’ Pattern Recognition 9,
1977, 21-30.

WHITTED, T. ““An improved illumination model for shaded display.”” Comm. ACM 23, 6, June 1980,
343-349.

WoobpHAM, R.], “Photometric stereo: A reflectance map technique for determining surface orienta-
tion from image intensity.”” Proc., 22nd International Symp., Society of Photo-optical Instru-
mentation Engineers, San Diego, CA, August 1978, 136-143.

ZUCKER, S. W. and R. A. HUMMEL, ““‘An optimal three-dimensional edge operator.” Report 79-10,
McGill Univ., April 1979.

ZUCKER, 8. W., R. A. HUMMEL, and A. ROSENFELD. ‘*An application of relaxation labeling to line and
curve enhancement.” JEEE Trans. Computers 26, 1977.

References 113

IPR2022-00092 - LGE
Ex. 1015 - Page 131

SEGMENTED
IMAGES 1

Knowledge
base
Analogical Analo-glf:al/ :
models propositiona
models
Generalized Segmented Geometric Relational
image image structures structures
Edge Region
following growing

IPR2022-00092 - LGE
Ex. 1015 - Page 132

116

The idea of segmentation has its roots in work by the Gestalt psychologists (e.g.,
Kohler), who studied the preferences exhibited by human beings in grouping or
organizing sets of shapes arranged in the visual field. Gestalt principles dictate cer-
tain grouping preferences based on features such as proximity, similarity, and con-
tinuity. Other results had to do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories to post-
Gestaltists such as Gibson and Gregory, who emphasize that these grouping
mechanisms organize the scene into meaningful units that are a significant step
toward image understanding.

In computer vision, grouping parts of a generalized image into units that are
homogeneous with respect to one or more characteristics (or features) results in a
segmented image. The segmented image extends the generalized image in a crucial
respect: it contains the beginnings of domain-dependent interpretation. At this
descriptive level the internal domain-dependent models of objects begin to
influence the grouping of generalized image structures into units meaningful in the
domain. For instance, the model may supply crucial parameters to segmentation
procedures.

In the segmentation process there are two important aspects to consider: one
is the data structure used to keep track of homogeneous groups of features; the
other is the transformation involved in computing the features.

Two basic sorts of segments are natural: boundaries and regions. These can
be used combined into a single descriptive structure, a set of nodes (one per
region), connected by arcs representing the ‘‘adjacency’’ relation. The “‘dual’ of
this structure has arcs corresponding to boundaries connecting nodes representing
points where several regions meet. Chapters 4 and 5 describe segmentation with
respect to boundaries and regions respectively, emphasizing gray levels and gray-
level differences as indicators of segments. Of course, from the standpoint of the

Part Il Segmented Images

IPR2022-00092 - LGE
Ex. 1015 - Page 133

algorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps representing motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each has
several computationally difficult aspects, and neither has received the attention
given static, nontextured images. However, each is very important in the segmen-
tation enterprise .

Part Il Segmented Images nz

IPR2022-00092 - LGE
Ex. 1015 - Page 134

Boundary |
 Detection 4

4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objects are perhaps the most important part of the hierarchy of struc-
tures that links raw image data with their interpretation [Marr 1975]. Chapter 3
described how various operators applied to raw image data can yield primitive edge
elements. However, an image of only disconnected edge elements is relatively
featureless; additional processing must be done to group edge elements into struc-
tures better suited to the process of interpretation. The goal of the techniques in
this chapter is to perform a level of segmentation, that is, to make a coherent one-
dimensional (edge) feature from many individual local edge elements. The feature
could correspond to an object boundary or to any meaningful boundary between
scene entities. The problems that edge-based segmentation algorithms have to
contend with are shown by Fig. 4.1, which is an image of the local edge elements
yielded by one common edge operator applied to a chest radiograph. As can be
seen, the edge elements often exist where no meaningful scene boundary does,
and conversely often are absent where a boundary is. For example, consider the
boundaries of ribs as revealed by the edge elements. Missing edge elements and
extra edge elements both tend to frustrate the segmentation process.

The methods in this chapter are ordered according to the amount of
knowledge incorporated into the grouping operation that maps edge elements into
boundaries. ‘“Knowledge’® means implicit or explicit constraints on the likelihood
of a given grouping. Such constraints may arise from general physical arguments
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. If there is much knowledge, this implies that
the global form of the boundary and its relation to other image structures is very
constrained. Little prior knowledge means that the segmentation must proceed
more on the basis of local clues and evidence and general (domain-dependent) as-
sumptions with fewer expectations and constraints on the final resulting boundary.

119

IPR2022-00092 - LGE
Ex. 1015 - Page 135

120

Fig. 4.1 Edge elementsina chest
radiograph.

These constraints take many forms. Knowledge of where to expect a boun-
dary allows very restricted searches to verify the edge. In many such cases, the
domain knowledge determines the type of curve (its parameterization or func-
tional form) as well as the relevant ‘‘noise processes.”’ In images of polyhedra,
only straight-edged boundaries are meaningful, and they will come together at
various sorts of vertices arising from corners, shadows of corners, and occlusions.
Human rib boundaries appear approximately like conic sections in chest radio-
graphs, and radiographs have complex edge structures that can compete with rib
edges. All this specific knowledge can and should guide our choice of grouping
method.

If less is known about the specific image content, one may have to fall back
on general world knowledge or heuristics that are true for most domains. For in-
stance, in the absence of evidence to the contrary, the shorter line between two
points might be selected over a longer line. This sort of general principle is easily
built into evaluation functions for boundaries, and used in segmentation algo-
rithms that proceed by methodically searching for such groupings. If there are no a
priori restrictions on boundary shapes, a general contour-extraction method is
called for, such as edge following or linking of edge elements.

The methods we shall examine are the following:

1. Searching near an approximate location. These are methods for refining a boun-
dary given an initial estimate.

2. The Hough transform. This elegant and versatile technique appears in various
guises throughout computer vision. In this chapter it is used to detect boun-
daries whose shape can be described in an analytical or tabular form.

3. Graph searching. This method represents the image of edge elements as a
graph. Thus a boundary is a path through a graph. Like the Hough transform,
these techniques are quite generally applicable.

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 136

4. Dynamic programming. This method is also very general. It uses a mathemati-
cal formulation of the globally best boundary and can find boundaries in noisy
images.

5. Contour following. This hill-climbing technique works best with good image
data.

4.2 SEARCHING NEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been determined
somehow, it may be used to guide the effort to refine that boundary [Kelly 1971].
The approximate location may have been found by one of the techniques below ap-
plied to a lower resolution image, or it may have been determined using high-level
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 1977] (see Fig. 4.2). Local searches are carried
out at regular intervals along directions perpendicular to the approximate (a priori)
boundary. An edge operator is applied to each of the discrete points along each of
these perpendicular directions. For each such direction, the edge with the highest
magnitude is selected from among those whose orientations are nearly parallel to
the tangent at the point on the nearby a priori boundary. If sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degree
polynomial, and this curve becomes the representation of the boundary.

Fig. 4.2 Search orientations from an
approximate boundary location.

4.2.2 Non-linear Correlation in Edge Space

In this correlation-like technique, the a priori boundary is treated as a rigid tem-
plate, or piece of rigid wire along which edge operators are attached like beads. The
a priori representation thus also contains relative locations at which the existence
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operator
application ‘‘matches’’ the a priori boundary if its contour is tangent to the tem-
plate and its magnitude exceeds some threshold. The template is to be moved
around the image, and for each location, the number of matches is computed. If
the number of matches exceeds a threshold, the boundary location is declared to

Sec. 4.2 Searching near an Approximate Location 121

IPR2022-00092 - LGE
Ex. 1015 - Page 137

122

Fig. 4.3 A template for edge-operator
application.

be the current template location. If not, the template is moved to a different image
point and the process is repeated. Either the boundary will be located or there will
eventually be no more image points to try.

4.2.3 Divide-and-Conquer Boundary Detection

This is a technique that is useful in the case that a low-curvature boundary is
known to exist between two edge elements and the noise levels in the image are
low (Algorithm 8.1). In this case, to find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points.
The point of maximum magnitude (if it is over some threshold) becomes a break
point on the boundary and the technique is applied recursively to the two line seg-
ments formed between the three known boundary points. (Some fix must be ap-
plied if the maximum is not unique.) Figure 4.4 shows one step in this process.
Divide-and-conquer boundary detection has been used to outline kidney boun-
daries on computed tomograms (these images were described in Section 2.3.4)
[Selfridge et al. 1979].

ol
—

\ Fig. 4.4 Divide and conquer technique.

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 138

8

‘xrr’ Y")

(%, y")

(a)

(b)

Fig. 4.5 A line (a) in image space; (b) in parameter space.
4.3 THEHOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x’ in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand c satisfying y' = mx’+ c¢. Regarding (x/, y") as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x”, y"') will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢’) which corresponds to the line
AB connecting these points. In fact, all points on the line 4B will yield lines in
parameter space which interSéct at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient

Sec. 43 The Hough Method for Curve Detection 123

IPR2022-00092 - LGE
Ex. 1015 - Page 139

124

exceeds some threshold, increment all points in the accumulator array along
the appropriate line, i.e.,

Al m)=A(c, m)+1

for mand csatisfying ¢ = —mx + y within the limits of the digitization.

4. Local maxima in the accumulator array now correspond to collinear points in
the image array. The values of the accumulator array provide a measure of the
number of points on the line.

This technique is generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, a better parameteri-
zation of the line is xsin@ + ycos® = r. This produces a sinusoidal curve in (r, 9)
space for fixed x, y, but otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward and
this method works for any curve f(x, a) = 0, where g is a parameter vector. (In
this chapter we often use the symbol fas various general functions unrelated to the
image gray-level function.) In the case of a circle parameterized by

x—a)+ (y—b)2=r? 4.1)

for fixed x, the modified algorithm 4.1 increments values of a, b, rlying on the sur-
face of a cone. Unfortunately, the computation and the size of the accumulator ar-
ray increase exponentially as the number of parameters, making this technique
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of a generalized matched
filtering strategy (i.e., a template-matching paradigm). For instance, in the case of
a circle, imagine a template composed of a circle of 1’s (at a fixed radius R) and 0’s
everywhere else. If this template is convolved with the gradient image, the result is
the portion of the accumulator array 4 (a, b, R).

In its usual form, the technique yields a set of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., a line or para-
bola). Thus, if a finite curve segment is desired, some further processing is neces-
sary to establish end points.

4.3.1 Use of the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradient
direction is integrated into the algorithm [Kimme et al. 1975]. For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values a, b lying on the circle given by
(4.1) are incremented. With the gradient direction, only the points near (g,6) in
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,b) is
given by

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 140

bl
4

'
B

d
=
) -

]

..
==
1
e
1
Ny
5
-

il J Y] Contents of accumulator tray
|

oo

-

i
|
A
=1
1 ||
T
T
v

Ly

e

Gradient direction information for artifact A¢ = 45

-

i S -
-
- — =

4o
e i o
1
1
1
P

O Denotes a pixel in P(x) superimposed on
accumulator tray

G Bl e S e
S
&-—u—:-
I
C
Er-=
=
i
Bogabi
;!
Tl
o o ka2
S B W
o
Lol I
T
bdapan
| elint
17 !
it
=17
= L'
— -+
I_I_T

i

Lt h
Lt e e
Ly gt ! 1| s S
S e Tt Stk L Denotes the gradient direction
i T B P
1] ¥ 1
-1 P ea- wigls g A i
1ok et L S 3
i - [R i =gy
=4 =t e 'J“'!“*‘f*n
AN REAN - Pt
Pl Bl L
l—dll—-—:—wrrv-v—q—r —‘fd-u—f-]'
[B0 Ty 1_4_1_:_»-:_ ebdogg
il il s b ot S L

Fig 4.6 Reduction in computation with gradient information
a=x—rsing 4.2)
b=y +rcos¢

where ¢ (x) is the gradient angle returned by an edge operator. Implicit in these
equations is the assumption that the circle is the boundary of a disk that has gray
levels greater than its surroundings. These equations may also be derived by
differentiating (4.2), recognizing that dy/dx = tané, and solving for o and b
between the resultant equation and (4.2). Similar methods can be applied to other
conics. In each case, the use of the gradient saves one dimension in the accumula-
tor array.

The gradient magnitude can also be used as a heuristic in the incrementing
procedure. Instead of incrementing by unity, the accumulator array location may
be incremented by a function of the gradient magnitude. This heuristic can balance
the magnitude of brightness change across a boundary with the boundary length,
but it can lead to detection of phantom lines indicated by a few bright points, or to
missing dim but coherent boundaries.

4.3.2 Some Examples

The Hough technique has been used successfully in a variety of domains. Some ex-
amples include the detection of human hemoglobin fingerprints [Ballard et al.
19751, the detection of tumors in chest films [Kimme et al. 1975], the detection of
storage tanks in aerial images [Lantz et al. 1978], and the detection of ribs in chest
radiographs [Wechsler and Sklansky 1977]. Figure 4.7 shows the tumor-detection
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius 3
units. In Fig. 4.7¢, the resultant accumulator array 4 [a, b, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated for
various radii and then a set of likely circles is chosen by setting a radius-dependent
threshold for the accumulator array contents. This result is shown in Fig. 4.7d. The

Sec. 4.3 The Hough Method for Curve Detection 125

IPR2022-00092 - LGE
Ex. 1015 - Page 141

126

(d)
Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for r = 3. (d) Results of maxima detection.

circular boundaries detected by the Hough technique are overlaid on the original

image.

4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Consider the example of detecting ellipses that are known to be oriented so that a
principal axis is parallel to the x axis. These can be specified by four parameters.
Using the equation for the ellipse together with its derivative, and substituting for
the known gradient as before, one can solve for two parameters. In the equation

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 142

(X—X())2 + (y—yg)z

=1 (4.3)
a? b?
X is an edge point and xg, yo, @, and b are parameters. The equation for its deriva-
tive is
(x —xq) —y0)?
LUt Ui 4.4)

a Bt dx
where dy/dx = tan ¢ (x). The Hough algorithm becomes:

Algorithm4.2: Hough technique applied to ellipses

For each discrete value of xand y, increment the point in parameter space given by
a, ba X0 Y0 where
a
(1 + 6% a*tan’p)"
b
+ 7
yo (1 + a*tan?e/pH)"

(4.5)

x = Xxgx

y= (4.6)

that is,
Ala, b, xo, yo) = Ala, b, x0, yo) + 1

For a and b each having # values the computational cost is proportional to m>.

Now suppose that we consider all pairwise combinations of edge elements.
This introduces two additional equations like (4.3) and (4.4), and now the four-
parameter point can be determined exactly. That is, the following equations can be
solved for a unique xg, yg, a, b.

(p — xp)? Lo yo)?

- b2 -1 (4.7a)
(x5 ;zxo)2 L ;2}’0)2 . (4.7b)
x| a—zxo + y1;2yo ii_‘;}): -0 (4.7c)
xz;xo 4 yz;zyu % = B (4.7d)

X tan ¢ (*dZ is known from the edge operator)
dx dx

Sec. 43 The Hough Method for Curve Detection 127

IPR2022-00092 - LGE
Ex. 1015 - Page 143

128

Their solution is left as an exercise. The amount of effort in the former case
was proportional to the product of the number of discrete values of a and b,
whereas this case involves effort proportional to the square of the number of edge
elements.

4.3.4 Generalizing the Hough Transform

Consider the case where the object being sought has no simple analytic form, but
has a particular silhouette. Since the Hough technique is so closely related to tem-
plate matching, and template matching can handle this case, it is not surprising that
the Hough technique can be generalized to handle this case also. Suppose for the
moment that the object appears in the image with known shape, orientation, and
scale. (If orientation and scale are unknown, they can be handled in the same way
that additional parameters were handled earlier.) Now pick a reference point in the
silhouette and draw a line to the boundary. At the boundary point compute the gra-
dient direction and store the reference point as a function of this direction. Thus it
is possible to precompute the location of the reference point from boundary points
given the gradient angle. The set of all such locations, indexed by gradient angle,
comprises a table termed the R-table [Ballard 1981]. Remember that the basic stra-
tegy of the Hough technique is to compute the possible loci of reference points in
parameter space from edge point data in image space and increment the parameter
points in an accumulator array. Figure 4.8 shows the relevant geometry and Table
4.1 shows the form of the R-table. For the moment, the reference point coordi-
nates (x., y.) are the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (x, y) with gradient orientation ¢ constrains the
possible reference points to be at {x + r; (¢) cos [a; (@)1, y + r (@) sin [a; ($)])
and so on.

Fig. 4.8 Geometry used to form the
R-Table.

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 144

Table 4.1
INCREMENTATION IN THE GENERALIZED HOUGH CASE

Angle measured
from figure boundary Set of radii {r*} where
to reference point r=(r,a
3 I R,
#2 i T
m LR - RPRPS i

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make a table (like Table 4.1) for the shape to be located.

Step 1. Form an accumulator array of possible reference points
A O min * Xemaxe Yemin : Vemax) initialized to zero.

Step 2. For each edge point do the following:
Step2.1. Compute ¢ (x)

Step 2.2a. Calculate the possible centers; that is, for each table entry for
¢, compute

x, =x+r ¢ cosla(sp)]

Ye=y+r¢ sinla(s)]

Step 2.2b. Increment the accumulator array
Alx, y) = Ax, y) +1

Step 3. Possible locations for the shape are given by maxima in array A.

The results of using this transform to detect a shape are shown in Fig. 4.9.
Figure 4.9a shows an image of shapes. The R-table has been made for the middle
shape. Figure 4.9b shows the Hough transform for the shape, that is, 4 (x., y.)
displayed as an image. Figure 4.9c shows the shape given by the maxima of

Sec. 4.3 The Hough Method for Curve Detection 129

IPR2022-00092 - LGE
Ex. 1015 - Page 145

130

(c) - . (d)

Fig. 4.9 Applying the Generalized Hough technique. (a) Synthetic image. (b) Hough
Transform A (x,, y.) for middle shape. (c) Detected shape. (d) Same shape in an aerial

image setting.

A (x,, y.) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.

What about the parameters of scale and rotation, S and ¢ ? These are readily
accommodated by expanding the accumulator array and doing more work in the in-
crementation step. Thus in step 1 the accumulator array is changed to

(xc‘min * Xemaxs Yemin * Vemaxs Smin : Smaxr gmin :Gmax)

and step 2.2a is changed to

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 146

for each table entry for ¢ do
foreach § and ¢
X, = x+r(p)Scos la(p) + 0]
v, =y +r($)Ssin[a(p) + 6]
Finally, step 2.2b is now
A Ve S,0) = A (xss 3,5 5, 0) + 1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {n,} and arcs between
nodes <p;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x,), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, x; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x;) and, furthermore, g (x;)

|
rd

aRrdasrd
l

N

NN

N f °

Fig. 4.10 Interpreting a gradient image as a graph (see text).

Sec. 4.4 Edge Following as Graph Searching 131

IPR2022-00092 - LGE
Ex. 1015 - Page 147

132

> Tt g(x;) > T, where Tis a chosen constant, and |{ [¢ (x;) — ¢ (x;)] mod 27}| <
/2. (Any or all of these restrictions may be modified to suit the requirements of a

particular problem.)

To generate a path in a graph from x, to xz one can apply the well-known
technique of heuristic search [Nilsson 1971, 1980]. The specific use of heuristic
search to follow edges in images was first proposed by [Martelli 1972]. Suppose:

1. That the path should follow contours that are directed from x4 to x5

2. That we have a method for generating the successor nodes of a given node
(such as the heuristic described above)

3. That we have an evaluation function f(x;) which is an estimate of the optimal
cost path from x, to x3 constrained to go through x;

Nilsson expresses f(x;) as the sum of two components: g (x;), the estimated cost
of journeying from the start node x4 to x;, and h (x;), the estimated cost of the path

from x; to x, the goal node.

With the foregoing preliminaries, the heuristic search algorithm (called the A
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. “Expand” the start node (put the successors on a list called OPEN with
pointers back to the start node).

2. Remove the node x; of minimum f from OPEN. If x; = x3, then stop. Trace
back through pointers to find optimal path. If OPEN is empty, fail.

3. Else expand node x;, putting successors on OPEN with pointers back to x,. Go
to step 2.

The component A (x;)} plays an important role in the performance of the algorithm;
if h (x;) = 0 for all ;, the algorithm is a minimum-cost search as opposed to a heuristic
search. If h(x;) > h*(x;)} (the actual optimal cost), the algorithm may run faster,
but may miss the minimum-cost path. If A (x;) < h*(x;), the search will always
produce a minimum-cost path, provided that # also satisfies the following con-
sistency condition:

If for any two nodes X; and X;, k (X;, X;) is the minimum cost of getting from
X; to X; (if possible), then
k(xi, X_/) = h*(x,-) s h*(xj)

With our edge elements, there is no guarantee that a path can be found since
there may be insurmountable gaps between x, and xz. If finding the edge is cru-
cial, steps should be taken to interpolate edge elements prior to the search, or gaps
may be crossed by using the edge element definition of [Martelli 1972]. He defines

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 148

edges on the image grid structure so that an edge can have a direction even though
there is no local gray-level change. This definition is depicted in Fig. 4.11a.

4.4.1 Good Evaluation Functions

A good evaluation function has components specific to the particular task as well as
components that are relatively task-independent. The latter components are dis-
cussed here.

1. Edge strength. If edge strength is a factor, the cost of adding a particular edge
element at x can be included as

M - s(x) where M = max s(x)
X

2. Curvature. If low-curvature boundaries are desirable, curvature can be meas-
ured as some monotonically increasing function of
dif 1o (x,) — 6 (x,)]
where diff measures the angle between the edge elements at x; and X;.
3. Proximity to an approximation. If an approximate boundary is known, boun-
daries near this approximation can be favored by adding:
d — dlS! (X,,B)
to the cost measure. The dist operator measures the minimum distance of the
new point x, to the approximate boundary B.

4. Estimates of the distance to the goal. If the curve is reasonably linear, points near
the goal may be favored by estimating 4 as d (x;, xgoa,), where d is a distance
measure.

Specific implementations of these measures appear in [Ashkar and Modestino
1978; Lester et al. 1978].

4.4.2 Finding All the Boundaries

What if the objective is to find all boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel’s operator (Chapter 3) is used to obtain

. b

(a) (b) {c)

Fig. 4.11 Successor conventions in heuristic search (see text).

Sec. 4.4 Edge Following as Graph Searching 133

IPR2022-00092 - LGE
Ex. 1015 - Page 149

134

strokes, another name for the magnitude and direction of the local gray-level
changes. Then these strokes are combined by heuristic search to form sequences
of edge elements called streaks. Streaks are an intermediate organization which are
used to assure a slightly broader coherence than is provided by the individual
Hueckel edges. A bidirectional search is used with four eight-neighbors defined in
front of the edge and four eight-neighbors behind the edge, as shown in Fig. 4.11b.
The search algorithm is as follows:

1. Scan the stroke (edge) array for the most prominent edge.

2. Search in front of the edge until no more successors exist (i.e., a gap is encoun-
tered).

3. Search behind the edge until no more predecessors exist.
If the bidirectional search generates a path of 3 or more strokes, the path is a
streak. Store it in a streak list and go to step 1.

Strokes that are part of a streak cannot be reused; they are marked when used
and subsequently skipped.

There are other heuristic procedures for pruning the streaks to retain only
prime streaks. These are shown in Fig. 4.12. They are essentially similar to the re-

&
5
A
5y ol
A
,)///
=%
/W’P—‘P RN ,/r”r".‘\
\ ¥
j 1

Fig. 4.12 Operations in the creation of prime streaks.

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 150

(a) (b)

(c) (d)

(e) (f)
Fig. 4.13 Ramer’s results.

laxation operations described in Section 3.3.5. The resultant streaks must still be
analyzed to determine the objects they represent. Nevertheless, this method
represents a cogent attempt to organize bottom-up edge following in an image. Fig.
4.13 shows an example of Ramer’s technique.

Sec. 4.4 Edge Following as Graph Searching 135

IPR2022-00092 - LGE
Ex. 1015 - Page 151

136

4.4.3 Alternatives to the A Algorithm

The primary disadvantage with the heuristic search method is that the algorithm
must keep track of a set of current best paths (nodes), and this set may become
very large. These nodes represent tip nodes for the portion of the tree of possible
paths that has been already examined. Also, since all the costs are nonnegative, a
good path may eventually look expensive compared to tip nodes near the start
node. Thus, paths from these newer nodes will be extended by the algorithm even
though, from a practical standpoint, they are unlikely. Because of these disadvan-
tages, other less rigorous search procedures have proven to be more practical, five
of which are described below.

Pruning the Tree of Alternatives

At various points in the algorithm the tip nodes on the OPEN list can be
pruned in some way. For example, paths that are short or have a high cost per unit
length can be discriminated against. This pruning operation can be carried out
whenever the number of alternative tip nodes exceeds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structured as
a tree. Depth-first search means always evaluating the most recent expanded son.
This type of search is performed if the OPEN list is structured as a stack in the A
algorithm and the top node is always evaluated next. Modifications to this method
use an evaluation function f to rate the successor nodes and expand the best of
these. Practical examples can be seen in [Ballard and Sklansky 1976; Wechsler and
Sklansky 1977; Persoon 1976].

Least Maximum Cost

In this elegant idea [Lester 19781, only the maximum-cost arc of each path is
kept as an estimate of g. This is like finding a mountain pass at minimum altitude.
The advantage is that g does not build up continuously with depth in the search
tree, so that good paths may be followed for a long time. This technique has been
applied to finding the boundaries of blood cells in optical microscope images. Some
results are shown in Fig. 4.14.

Branch and Bound

The crux of this method is to have some upper bound on the cost of the path
[Chien and Fu 1974]. This may be known beforehand or may be computed by actu-
ally generating a path between the desired end points. Also, the evaluation func-
tion must be monotonically increasing with the length of the path. With these con-
ditions we start generating paths, excluding partial paths when they exceed the
current bound.

Modified Heuristic Search

Sometimes an evaluation function that assigns negative costs leads to good
results. Thus good paths keep getting better with respect to the evaluation func-
tion, avoiding the problem of having to look at all paths near the starting point.

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 152

(a) (b)

Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-
scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max h (x;, x5, X3, X4) (4.8)

#j

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of x|, ..., x4
Suppose that

/1() == h] ()C], Xz) + h2 (XQ, X3) + l"I3 (X_';, X4) (49)

x; only depends on x; in ;. Maximize over x; in 4 and tabulate the best value of
hy (xy, xy) for each x,:

1 Gep) = max by (x), xo) (4.10)
]

Since the values of #; and A3 do not depend on x, they need not be considered at

Sec. 45 Edge Following as Dynamic Programming 137

IPR2022-00092 - LGE
Ex. 1015 - Page 153

this point. Continue in this manner and eliminate x, by computing £, (x3) as

b (X3) = maxl/, (x;) + Ay (xy, XJ)] 4.11)
and
f3 (X4) = max [fz (x;s) + h3(3€3, X4)] (4‘12)
X3
so that finally
max h = max f3 (x4) (4.13)
X; X4

Generalizing the example to N variables, where £ (x;) =0,
fn-l (xu) = max [fn—E (-xn—-l) + hn—l(xn—ln xn)] (414)

n—1

A

max A (x;, ..., xy) = max fy—; Cey)

XN
If each x; took on 20 discrete values, then to compute fy (xy41) one must evaluate
the maximand for 20 different combinations of xy and xy.1, so that the resultant
computational effort involves (N — 1)20? + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations of
h!

Consider the artificial example summarized in Table 4.2. In this example,
each x can take on one of three discrete values. The h; are completely described by
their respective tables. For example, the value of %;(0, 1) = 5. The solution steps
are summarized in Table 4.3. In step 1, for each x, the value of x, that maximizes
h1(x;, x7) is computed. This is the largest entry in each of the columns of 4. Store
the function value as £, (x,) and the optimizing value of x; also as a function of x;.
In step 2, add £;(x;) to #;(x;, x3). This is done by adding f; to each row of k5,
thus computing the quantity inside the braces of (4.11). Now to complete step 2,
for each x3, compute the x; that maximizes 4, + f; by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward once
these are understood. The solution is found by tracing back through the tables. For
example, for x4, = 2 we see that the best x3 is —1, and therefore the best x; is 3 and
x1 is 1. This step is denoted by arrows.

Table 4.2
DEFINITION OF h

138

Xy Xg X4

x, 1 2 3 X = 0 1 - i 2 3

0 5 7 3 1 1 7 1 =1 7 9 8

1 2 1 8 2 1 1 3 0 2 3 6

2 6 3 3 3 B 6 2 1 5 4 1
m hy hy

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 154

Table 4.3
METHOD OF SOLUTION USING DYNAMIC PROGRAMMING

Xy fy Xy
1 6 2
Step 1
2 7 0
*opIC
7
/
\
_\\
S
»
-
o
X:' \
X, =1 0 1 X3 f, Xy :
/
I N I ,@ 13 @/
Step 2 f/
2 8 8 | (4] 14 3
\
@ (9]0 N
N
X
~
-
~
~
%
-9
~
~
~
g
X4 X
Xy 1 2 3 Xg | fa [oxa N
\
\
- |®)|@)|@ BEIEN
Step 3 /f
o |16 |17 |2 @@@’
1 15 14 1 3 21 -1

Step 4: Optimal ;s are found by examing tables
(dashed line shows the order in which they
are recovered).

Solution: A% =22
x{=1,x3=3,x3=-1,x5=2

4.5.2 Dynamic Programming for Images

To formulate the boundary-following procedure as dynamic programming, one
must define an evaluation function that embodies a notion of the *‘best boundary®’
[Montanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ap-

Sec. 4.5 Edge Following as Dynamic Programming 139

IPR2022-00092 - LGE
Ex. 1015 - Page 155

140

plied to a gray-level picture to produce edge magnitude and direction information.
Then one possible criterion for a ‘“‘good boundary” is a weighted sum of high cu-
mulative edge strength and low cumulative curvature; that is, for an #-segment
curve,

n n—1 |
Ay, ..,x,) = Y s(x) +a) g(x;, Xep0) (4.16)
k=1 k=1
where the implicit constraint is that consecutive x,’s must be grid neighbors:
Ixe = X412 (4.17)
g (xg, xe41) = diff [(x;), & (x,41)] (4.18)

where a is negative. The function g we take to be edge strength, i.e., g(x) = s(x).
Notice that this evaluation function is in the form of (4.9) and can be optimized in
stages:

Fox)=0 (4.19)

f1(x2) = max [s(x)) + ag(x;, x) + folx;)] (4.20)
%]

fk(xk.,.]) = max [S (Xk) 2he aq(xk, ka) + fkfl(xk)] (4-21)
Xy

These equations can be put into the following steps:

Algorithm 4.5: Dynamic Programming for Edge Finding

1. Setk =1,

Consider only x such that s (x) 2 T. For each of these x, define low-curvature
pixels ““in front of > the contour direction.

3. Each of these pixels may have a curve emanating from it. For k=1, the curve
is one pixel in length. Join the curve to x that optimizes the left-hand side of
the recursion equation.

4. If k= N, pick the best fy_ and stop. Otherwise, set k = k + 1 and go to step
2

This algorithm can be generalized to the case of picking a curve emanating from x
(that we have already generated): Find the end of that curve, and join the best of
three curves emanating from the end of that curve. Figure 4.15 shows this process.
The equations for the general case are

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 156

""\

x
\

A VSN

e

N,
~
~

e]

Fig. 4.15 DP optimization for boundary tracing.
Sox) =0

Jr K1) = max[s (x) + ag(xy, t(x;41))
ik

+ fi-1 (x)] (4.22)

where the curve length n is related to « by a building sequence # (/) such that » (1)
=1,n(L) = N, and n(/) — n(I—1) is a member of (n (k) |k =1, ..., [— 1}.
Also, t(x,) is a function that extracts the tail pixel of the curve headed by x,.
Further details may be found in [Ballard 1976].

Results from the area of tumor detection in radiographs give a sense of this
method’s performance. Here it is known that the boundary inscribes an approxi-
mately circular tumor, so that circular cues can be used to assist the search. In Fig.
4.16, (a) shows the image containing the tumor, (b) shows the cues, and (c) shows
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo-
parallel road finder of Barrow [Barrow 1976].

4.5.3 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the components g (x,)
and ¢ (x,, X,.1) in the evaluation function are very localized; the variables x for
successive sand g are in fact constrained to be grid neighbors. This need not be the
case: The x can be very distant from each other without altering the basic tech-
nique. Furthermore, the functions g and g need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. This
general formulation of the problem for images was first described by [Fischler and

Sec. 4.5 Edge Following as Dynamic Programming 141

IPR2022-00092 - LGE
Ex. 1015 - Page 157

142

Fig. 4.16 Results of DP in boundary
tracing. (a) Image containing tumor. (b)
Contour cues. (¢) Resultant boundary.

(c)

Elschlager 1973]. The Fischler and Elschlager formulation models an object as a
set of parts and relations between parts, represented as a graph. Template func-
tions, denoted by g (x), measure how well a part of the model matches a part of the
image at the point x. (These local functions may be defined in any manner whatso-
ever.) “‘Relational functions,” denoted by g,; (x, y), measure how well the posi-
tion of the match of the kth part at (x) agrees with the position of the match of the
jthpartat (y).

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries are
modeled with a polygonal approximation defined by the five key points. These
points are the top of the lung, the two clavicle-lung junctions, and the two lower
corners. To locate these points, local functions g (x,) are defined which should be
maximized when the corresponding point x, is correctly determined. Similarly,
q (xy, xj) is a function relating points x; and x;. In their case, Chien and Fu used
the following functions:

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 158

T(x) = template centered at x computed as
an aggregate of a set of chest radiographs

T(x — x)/(x)
) =2 xITJXII}ifx

and

6(x, x;) = expected angular orientation of x, from x;

Yk~ i

X, X;) = |0 (x, x;) —arctan ————
t](k j) (K XJ) P
With this formulation no further modifications are necessary and the solution may
be obtained by solving Egs. (4.19) through (4.21), as before. For purposes of com-
parison, this method was formalized using a lower-resolution objective function.
Figure 4.17 shows Chien and Fu’s results using this method with five template

functions.

4.5.4 Theoretical Questions about Dynamic Programming

The Interaction Graph

This graph describes the interdependence of variables in the objective func-
tion. In the examples the interaction graph was simple: Each variable depended on
only two others, resulting in the graph of Fig. 4.18a. A more complicated case is
the one in 4.18b, which describes an objective function of the following form:

h() = h; (g, x2) + hy (xs, X3, JC4) + A3 (X;} X4, X5, Xg)
For these cases the dynamic programming technique still applies, but the computa-
tional effort increases exponentially with the number of interdependencies. For
example, to eliminate x, in A, all possible combinations of x; and x, must be con-
sidered. To eliminate x; in k3, all possible combinations of x4, x5, and x¢, and so
forth.
Dynamic Programming versus Heuristic Search

It has been shown [Martelli 1976] that for finding a path in a graph between
two points, which is an abstraction of the work we are doing here, heuristic search
methods can be more efficient than dynamic programming methods. However, the
point to remember about dynamic programming is that it efficiently builds paths
from multiple starting points. If this is required by a particular task, then dynamic
programming would be the method of choice, unless a very powerful heuristic
were available.

4.6 CONTOUR FOLLOWING
If nothing is known about the boundary shape, but regions have been found in the
image, the boundary is recovered by one of the simplest edge-following opera-
tions: “‘blob finding”’ in images. The ideas are easiest to present for binary images:
Sec. 4.6 Contour following 143

IPR2022-00092 - LGE
Ex. 1015 - Page 159

144

T

Pixels

(a) (b)

Fig. 4.17 Results of using local templates and global relations. (a) Model. (b) Results.

Given a binary image, the goal is find the boundaries of all distinct regions in the
image.

This can be done simply by a procedure that functions like Papert’s turtle
[Papert 1973; Duda and Hart 19731]:

1. Scan the image until a region pixel is encountered.
2. Ifitis aregion pixel, turn left and step; else, turn right and step.
3. Terminate upon return to the starting pixel.

Figure 4.19 shows the path traced out by the procedure. This procedure requires
the region to be four-connected for a consistent boundary. Parts of an eight-
connected region can be missed. Also, some bookkeeping is necessary to generate
an exact sequence of boundary pixels without duplications.

A slightly more elaborate algorithm due to [Rosenfeld 1968] generates the
boundary pixels exactly. It works by first finding a four-connected background
pixel from a known boundary pixel. The next boundary pixel is the first pixel en-
countered when the eight neighbors are examined in a counter clockwise order
from the background pixel. Many details have to be introduced into algorithms
that follow contours of irregular eight-connected figures. A good exposition of
these is given in [Rosenfeld and Kak 1976].

4.6.1 Extension to Gray-Level Images

The main idea behind contour following is to start with a point that is believed to
be on the boundary and to keep extending the boundary by adding points in the
contour directions. The details of these operations vary from task to task. The gen-

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 160

x, Xy X3 Xq Xg Xg
X X3
Xq Xg
Xg Xg

Fig. 4.18 Interaction graphs for DP {(see text).

eralization of the contour follower to gray-level images uses local gradients with a
magnitude s(x) and direction ¢ (x) associated with each point x. ¢ points in the
direction of maximum change. If x is on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contour
directions, ¢(x) = m/2, as shown by Fig. 4.20. A representative procedure is
adapted from [Martelli 1976]:

1. Assume that an edge has been detected up to a point x;. Move to the point x;
adjacent to x; in the direction perpendicular to the gradient of x;. Apply the
gradient operator to x; if its magnitude is greater than (some) threshold, this
point is added to the edge.

2. Otherwise, compute the average gray level of the 3 x 3 array centered on x;,
compare it with a suitably chosen threshold, and determine whether x; is in-
side or outside the object.

3. Make another attempt with a point x, adjacent to x; in the direction perpendic-
ular to the gradient at x; plus or minus (/4), according to the outcome of the
previous test.

Fig. 4.19 Finding the boundary in a
binary image.

Sec. 4.6 Contour Following 145

IPR2022-00092 - LGE
Ex. 1015 - Page 161

146

\

Local edge

Ny Search Fig. 4.20 Angular orientations for
&\\ space contour following.

4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977; Herman and Liu 1978]. The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
methods described in Section 4.4. Higher-dimensional image spaces arise when the
image has more than two spatial dimensions, is time-varying, or both. In these im-
ages the notion of a gradient is the same (a vector describing the maximum gray-
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele-
ments are primitive surface elements, separating volumes of differing gray level.
The objective of contour following is to link together neighboring surface elements
with high gradient modulus values and similar orientations into larger boundaries.
In four dimensions, ‘‘edge elements’’ are primitive volumes; contour following
links neighboring volumes with similar gradients.

The contour following approach works well when there is little noise present
and no “‘spurious’ boundaries. Unfortunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory; they are
easily thwarted by gaps in the data produced by noise, and readily follow spurious
boundaries. The methods described earlier in this chapter attempt to overcome
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with *‘crack’’ edges such as those in
Fig. 3.12.

4.2 Describe a modification of Algorithm 4.2 to detect parabolae in gray-level images.

4.3 Suppose that a relation A (xl, x(,) is added to the model described by Fig. 4.18a so
that now the interaction graph is cyclical. Show formally how this changes the optimi-
zation steps described by Egs. (4.11) through (4.13).

4.4 Show formally that the Hough technique without gradient direction information is
equivalent to template matching (Chapter 3).

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 162

4.5 Extend the Hough technique for ellipses described by Egs. (4.7a) through (4.7d) to
ellipses oriented at an arbitrary angle 9 to the x axis.

4.6 Show how to use the generalized Hough technique to detect hexagons.

REFERENCES

ASHKAR, G. P. and J. W. MODESTINO. ““The contour extraction problem with biomedical applications.”
CGIP 7,1978, 331-355.

BaLLARD, D. H. Hierarchic detection of tumors in chest radiographs. Basel: Birkhduser-Verlag (ISR-16),
January 1976.

BarrLarp, D. H. “Generalizing the Hough transform to detect arbitrary shapes.”” Pattern Recognition
13,2,1981, 111-122.

BaLLARD, D. H. and J. SKLANSKY. ‘A ladder-structured decision tree for recognizing tumors in chest
radiographs.” /EEE Trans. Computers 25, 1976, 503-513,

BaLLARD, D. H., M. Marinuccl, F. PROIETTI-ORLANDI, A. RossI-MARI, and L. TENTARIL ‘‘Automatic
analysis of human haemoglobin fingerprints.”” Proc., 3rd Meeting, International Society of Hae-
motology, London, August 1975.

Barrow, H. G. “Interactive aids for cartography and photo interpretation.”’ Semi-Annual Technical
Report, Al Center, SRI International, December 1976.

BELLMAN, R. and S. DREYFUS. Applied Dynamic Programming. Princeton, NJ: Princeton University
Press, 1962.

BoLLEs, R. ‘“Verification vision for programmable assembly.”” Proc., Sth IICAI, August 1977, 569-575.

CHIEN, Y. P. and K. S. Fu. *“A decision function method for boundary detection.” CGIP 3, 2, June
1974, 125-140.

Dupa, R. O. and P. E. HarT. “Use of the Hough transformation to detect lines and curves in pic-
tures.”” Commun. ACM 15, 1, January 1972, 11-15.

Dupa, R. O. and P. E. HART. Pattern Recognition and Scene Analysis. New York: Wiley, 1973.
FISCHLER, M. A. and R. A. ELSCHLAGER. *‘The representation and matching of pictoral patterns.” IEEE
Trans. Computers 22, January 1973.

Herman, G. T. and H. K. Liv. “*Dynamic boundary surface detection.”” CGIP 7, 1978, 130-138.
HougH, P. V. C. ““Method and means for recognizing complex patterns.” U.S. Patent 3,069,654; 1962.
KELLY, M.D. ““Edge detection by computer using planning.”” In M76, 1971.

KIMME, C., D. BALLARD, and J. SKLANsKY. “‘Finding circles by an array of accumulators.” Commun.
ACM 18,2,1975,120-122.

Lantz, K. A., C. M. BROwN and D. H. BALLARD. ‘““Model-driven vision using procedure decription:
motivation and application to photointerpretation and medical diagnosis.”” Proc., 22nd Interna-
tional Symp., Society of Photo-optical Instrumentation Engineers, San Diego, CA, August
1978.

LESTER, J. M., H. A. WiLLiams, B. A. WEINTRAUB, and J. F. BRENNER, ‘“Two graph searching tech-
niques for boundary finding in white blood cell images.”’ Computers in Biology and Medicine 8,
1978, 293-308.

Liu, H. K. ““Two- and three-dimensional boundary detection.”” CGIP 6, 2, April 1977, 123-134.

MARR, D. ““Analyzing natural images; a computational theory of texture vision.”” Technical Report
334, Al Lab, MIT, June 1975.

MARTELLI, A. ““Edge detection using heuristic search methods.”” CGIP I, 2, August 1972, 169-182.
MARTELLI, A. “*An application of heuristic search methods to edge and contour detection.”” Commun.

ACM 19,2, February 1976, 73~83.
References 147

IPR2022-00092 - LGE
Ex. 1015 - Page 163

148

MonTaNARI, U. ““On the optimal detection of curves in noisy pictures.”” Commun. ACM 14, 5, May
1971, 335-345.

NiLssoN, N. I. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.
NILSSON, N. I. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.
PAPERT, S. “‘Uses of technology to enhance education.” Technical Report 298, Al Lab, MIT, 1973.

PERsOON, E. ““A new edge detection algorithm and its applications in picture processing.”” CGIP 3, 4,
December 1976, 425-446.

RAMER, U, “Extraction of line structures from photographs of curved objects.”” CGIP 4, 2, June 1975,
81-103.

ROSENFELD, A. Picture Processing by Computer. New York: Academic Press, 1968.
ROSENFELD, A. and A. C. KAK. Digital Picture Processing. New York: Academic Press, 1976.

SELFRIDGE, P. G., J. M. S. PRewiTT, C. R. DYER, and S. RANADE. *‘Segmentation algorithms for ab-
dominal computerized tomography scans.” Proc., 3rd COMPSAC, November 1979, 571-577.

‘WECHSLER, H. and J. SkLANsKY. “‘Finding the rib cage in chest radiographs.” Pattern Recognition 9,
1977, 21-30.

Ch. 4 Boundary Detection

IPR2022-00092 - LGE
Ex. 1015 - Page 164

Region
Growing | 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level)
that often correspond to object boundaries, interesting surface detail, and so on.
The ““dual” problem to finding edges around regions of differing gray level is to
find the regions themselves. The goal of region growing is to use image characteris-
tics to map individual pixels in an input image to sets of pixels called regions. An
image region might correspond to a world object or a meaningful part of one.

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary to obtain a region. There are
several reasons why both region growing and line finding survive as basic segmen-
tation techniques despite their redundant-seeming nature. Although perfect re-
gions and boundaries are interconvertible, the processing to find them initially
differs in character and applicability; besides, perfect edges or regions are not al-
ways required for an application. Region-finding and line-finding techniques can
cooperate to produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, they
are considered to be connected two-dimensional areas. Whether regions can be
disconnected, non-simply connected (have holes), should have smooth boun-
daries, and so forth depends on the region-growing technique and the goals of the
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disjoint regions. That is, regions have no two-dimensional overlaps, and
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region —they may be allowed to overlap, the whole image may not
be partitioned, and so forth.

Our discussion of region growers will begin with the most simple kinds and
progress to the more complex. The most primitive region growers use only aggre-
gates of properties of local groups of pixels to determine regions. More sophisti-

149

IPR2022-00092 - LGE
Ex. 1015 - Page 165

150

cated techniques “‘grow”” regions by merging more primitive regions. To do this in
a structured way requires sophisticated representations of the regions and boun-
daries. Also, the merging decisions can be complex, and can depend on descriptions
of the boundary structure separating regions in addition to the region semantics. A
good survey of early techniques is [Zucker 1976).

The techniques we consider are:

1. Local techniques. Pixels are placed in a region on the basis of their properties or
the properties of their close neighbors.

2. Global techniques. Pixels are grouped into regions on the basis of the properties
of large numbers of pixels distributed throughout the image.

3. Splitting and merging techniques. The foregoing techniques are related to indivi-
dual pixels or sets of pixels. State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both local and global
merging and splitting criteria can be used.

The effectiveness of region growing algorithms depends heavily on the appli-
cation area and input image. If the image is sufficiently simple, say a dark blob on a
light background, simple local techniques can be surprisingly effective. However,
on very difficult scenes, such as outdoor scenes, even the most sophisticated tech-
niques still may not produce a satisfactory segmentation. In this event, region
growing is sometimes used conservatively to preprocess the image for more
knowledgeable processes [Hanson and Riseman 1978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions R, are considered to be sets of points with the following properties:

x; in aregion R is connectedto x; iff there
is a sequence {x,, ..., x;} such that x, and x| (5.1
are connected and all the points are in R.

R is a connected region if the set of points x in R has the (5.2)
property that every pair of points is connected.

m
I, the entire image = |J R, (5.3)
k=1

RN R =09, i j - (54)

A set of regions satisfying (5.2) through (5.4) is known as a partition. In seg-
mentation algorithms, each region often is a unique, homogeneous area. That is,
for some Boolean function H (R) that measures region homogeneity,

H(R,) = true forall k (5.5)
H(R;U R)) = false for i= (5.6)

Note that R; does not have to be connected. A weaker but still useful criterion is
that neighboring regions not be homogeneous.

Ch. 5 Region Crowing

IPR2022-00092 - LGE
Ex. 1015 - Page 166

5.2 ALOCAL TECHNIQUE: BLOB COLORING

The counterpart to the edge tracker for binary images is the blob-coloring algo-
rithm. Given a binary image containing four-connected blobs of 1’s on a back-
ground of 0’s, the objective is to ‘‘color each blob’’; that is, assign each blob a
different label. To do this, scan the image from left to right and top to bottom with
a special L-shaped template shown in Fig. 5.1. The coloring algorithm is as follows.

Algorithm 5.1: Blob Coloring
Let the initial color, k = 1. Scan the image from left to right and top to bottom.
If f(x¢c) = 0 then continue

else
begin

if (f(xy) =1and f(x;) =0)
then color (x¢) := color (xy)

if (f(x,) = 1and f(x,) =0)
then color (x¢) := color (x;)

1f(f(xL) =1 aﬂdf(XU) = 1)

then begin
color (x¢) := color (x;)
color (x;) is equivalent to color (x,)
end

comment: two colors are equivalent.

if (f(x,) =0and f(x;) = 0)
then color (x;) :=k; k1= k +1

comment: new color

end

After one complete scan of the image the color equivalences can be used to assure
that each object has only one color. This binary image algorithm can be used as a
simple region-grower for gray-level images with the following modifications. If in a

X, x Fig. 5.1 L-shaped template for blob
coloring.

Sec. 5.2 A Local Technique: Blob Coloring 151

IPR2022-00092 - LGE
Ex. 1015 - Page 167

gray-level image f (xc) is approximately equal to f(x), assign x¢ to the same re-
gion (blob) as x . This is equivalent to the condition f(x¢c) = f(x,) = 1 in Al-
gorithm 5.1. The modifications to the steps in the algorithm are straightforward.

5.3 GLOBAL TECHNIQUES: REGION GROWING VIA THRESHOLDING

Number
of
pixels

152

This approach assumes an object-background image and picks a threshold that
divides the image pixels into either object or background:

x is part of the Objectiff f(x) > T
Otherwise it is part of the Background

The best way to pick the threshold T'is to search the histogram of gray levels,
assuming it is bimodal, and find the minimum separating the two peaks, as in Fig.
5.2. Finding the right valley between the peaks of a histogram can be difficult when
the histogram is not a smooth function. Smoothing the histogram can help but
does not guarantee that the correct minimum can be found. An elegant method for
treating bimodal images assumes that the histogram is the sum of two composite
normal functions and determines the valley location from the normal parameters
[Chow and Kaneko 1972].

The single-threshold method is useful in simple situations, but primitive. For
example, the region pixels may not be connected, and further processing such as
that described in Chapter 2 may be necessary to smooth region boundaries and re-
move noise. A common problem with this technique occurs when the image has a
background of varying gray level, or when collections we would like to call regions
vary smoothly in gray level by more than the threshold. Two modifications of the
threshold approach to ameliorate the difficulty are: (1) high-pass filter the image to
deemphasize the low-frequency background variation and then try the original
technique; and (2) use a spatiaily varying threshold method such as that of [Chow
and Kaneko 1972].

The Chow-Kaneko technique divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail to have a
threshold if its gray-level histogram is not bimodal. Such subimages receive inter-

Gray level
Fig. 5.2 Threshold determination

Threshold from gray-level histogram.

Ch. 5 Region Growing

IPR2022-00092 - LGE
Ex. 1015 - Page 168

polated thresholds from neighboring subimages that are bimodal, and finally the
entire picture is thresholded by using the separate thresholds for each subimage.

5.3.1 Thresholding in Multidimensional Space

An interesting variation to the basic thresholding paradigm uses color images; the
basic digital picture function is vector-valued with red, blue, and green com-
ponents. This vector is augmented with possibly nonlinear combinations of these
values so that the augmented picture vector has a number of components. The
idea is to re-represent the color solid redundantly and hope to find color parame-
ters for which thresholding does the desired segmentation. One implementation of
this idea used the red, green, and blue color components; the intensity, saturation,
and hue components; and the N.T.S.C. ¥, I, Q components (Chapter 2) [Ohlander
etal. 1979].

The idea of thresholding the components of a picture vector is used in a prim-
itive form for multispectral LANDSAT imagery [Robertson et al. 1973]. The novel
extension in this algorithm is the recursive application of this technique to nonrec-
tangular subregions.

The region partitioning is then as follows:

Algorithm 5.2: Region Growing via Recursive Splitting

1. Consider the entire image as a region and compute histograms for each of the
picture vector components.

2. Apply a peak-finding test to each histogram. If at least one component passes
the test, pick the component with the most significant peak and determine two
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds to
divide the region into subregions.

3. Each subregion may have a “‘noisy”’ boundary, so the binary representation of
the image achieved by thresholding is smoothed so that only a single con-
nected subregion remains. For binary smoothing see ch. 8 and [Rosenfeld and
Kak 1976].

4. Repeat steps 1 through 3 for each subregion until no new subregions are
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978]. Multiple regions are often in the
same histogram peak when a single measurement is used. The advantage of the
multimeasurement histograms is that these different regions are often separated
into individual peaks, and hence the segmentation is improved. Figure 5.4 shows
some results using a three-dimensional RGB color space.

The figure shows the clear separation of peaks in the three-dimensional histo-
gram that is not evident in either of the one-dimensional histograms. How many

Sec. 5.3 Global Techniques: Region Growing via Thresholding 153

IPR2022-00092 - LGE
Ex. 1015 - Page 169

’ 100y
: 200)
. : BOE 160]
€0) 120)
3 40 80)
g 20 40|

0 [¢]
80 180 240 o 80 160 240 80 180

240
27 S RED s 231 O SGREEN < 222 44 < BLUE < 23|
140,
\OD!;
60
20,
o o
80 180 240 150 250 350 50 150 250
27 <INTENSITY <228 osHuE <359 4.< SATURATIONS 255
() WHITE =0
a 100, 220 mE
80| 180t il
60 140|
a0 100} 80
20f 60j ag

0
60 120 18O 240 250 300 350

o
200 240 280 320 360
15<Y < 2268

243 £ 1 2 358 219 £0< 340

(b)

(c)

Fig. 5.3 Peak detection and threshold determination. (a) Original image. (b) Histograms. (¢) Image segments
resulting from first histogram peak.

154 Ch. 5 Region Growing

IPR2022-00092 - LGE
Ex. 1015 - Page 170

Fig. 5.3 (d) Final segments.

(d)

dimensions should be used? Obviously, there is a trade-off here: As the dimen-
sionality becomes larger, the discrimination improves, but the histograms are
more expensive to compute and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow and
Eisenbeis 1973]. Region growing is applied to a coarse resolution image. When the
algorithm has terminated at one resolution level, the pixels near the boundaries of
regions are disassociated with their regions. The region-growing process is then re-
peated for just these pixels at a higher-resolution level. Figure 5.5 shows this struc-
ture.

5.4 SPLITTING AND MERGING

Given a set of regions Ry, k = 1,...,m, alow-level segmentation might require the
basic properties described in Section 5.1 to hold. The important properties from
the standpoint of segmentation are Eqgs. (5.5) and (5.6).

If Eq. (5.5) is not satisfied for some k, it means that that region is inhomo-
geneous and should be split into subregions. If Eq. (5.6) is not satisfied for some i
and j, then regions iand jare collectively homogeneous and should be merged into
asingle region. -

In our previous discussions we used

true if all neighboring pairs of points
H(R) = in R aresuchthat f(x) — f(y) < T 5.7
false otherwise
and
true if the points in R passa
H(R) = bimodality or peak test (5.8)
false otherwise
Sec. 5.4 Splitting and Merging 155

IPR2022-00092 - LGE
Ex. 1015 - Page 171

Fig. 5.4 Multi-dimensional

histograms in segmentation. (a) Image.
(b) RGB histogram showing successive
planes througha 16 x 16 x 16 color
space. (c) Segments. (See color inserts.) (c)

156 Ch. 5 Region Crowing

IPR2022-00092 - LGE
Ex. 1015 - Page 172

N

VA Pixels to be
classified

Fig. 5.5 Hierarchical region refinement.

A way of working toward the satisfaction of these homogeneity criteria is the
split-and-merge algorithm [Horowitz and Pavlidis 1974]. To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions. In
this grid structure, regions are organized into groups of four. Any region can be
split into four subregions (except a region consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure is
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property H. If for any region R in
that structure, H (R) = false, split that region into four subregions. If for any
four appropriate regions Ry ,..., Rias H(R1 | Rz U Ris U Rig) = true,
merge them into a single region. When no regions can be further split or
merged, stop.

2. Ifthere are any neighboring regions R, and R; (perhaps of different sizes) such
that #(R;|J R;) = true, merge these regions.

5.4.1 State-Space Approach to Region Growing

The “‘classical’’ state-space approach of artificial intelligence [Nilsson 1971, 1980]
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initial
two-dimensional image as a discrete state, where every sample point is a separate
region. Changes of state occur when a boundary between regions is either removed
or inserted. The problem then becomes one of searching allowable changes in state
to find the best partition.

Sec. 5.4 Splitting and Merging 157

IPR2022-00092 - LGE
Ex. 1015 - Page 173

158

A A
+0+0 +0 +0 + < Uil

+ g + g + S + (JS + + Edge data Fig. 5.6 Grid structure for region
o S T, O Grey level data representation [Brice and Fennema
+0+0 +0 +0 + 1970].

An important part of the state-space approach is the use of data structures to
allow regions and boundaries to be manipulated as units. This moves away from
earlier techniques, which labeled each individual pixel according to its region. The
high-level data structures do away with this expensive practice by representing re-
gions with their boundaries and then keeping track of what happens to these boun-
daries during split-and merge-operations.

5.4.2 Low-level Boundary Data Structures

A useful representation for boundaries allows the splitting and merging of regions
to proceed in a simple manner [Brice and Fennema 1970]. This representation in-
troduces the notion of a supergrid S to the image grid G. These grids are shown in
Fig. 5.6, where - and + correspond to supergrid and O to the subgrid. The
representation is assumed to be four-connected (i.e., x1 is a neighbor of x2 if||x1 —
x2||< D.

With this notation boundaries of regions are directed crack edges (see Sec.
3.1) at the points marked +. That is, if point x, is a neighbor of x;and x, isina
different region than x;, insert two edges for the boundaries of the regions contain-
ing x; and x, at the point + separating them, such that each edge traverses its as-
sociated region in a counterclockwise sense. This makes merge operations very
simple: To merge regions R, and R, remove edges of the opposite sense from the
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sense in nearby points, as shown in Fig. 5.7b.

The method of [Brice and Fennema 1970] uses three criteria for merging re-
gions, reflecting a transition from local measurements to global measurements.
These criteria use measures of boundary strength s;; and w;; defined as

S = ,f(X,) = f(KJ,)| (59}

. ltll i)ft:;r:ris];l (5.10)

it Dol 2 B e s ¢ B

T, 1T T T
L R

(a)
Fig. 5.7 Region operations on the grid structure of Fig. 5.6.

Ch. 5 Region Growing

IPR2022-00092 - LGE
Ex. 1015 - Page 174

(=" fa SR
o S

Fig. 5.7 (cont.)

where x; and x; are assumed to be on either side of a crack edge (Chapter 3). The
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (T, k = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x; and x; if
i#jand w; = 1. When no more boundaries can be removed, go to step 2.

2. Remove the boundary between R; and R; if

w

—_—2 5.11
min [p;, p;] T2 DL

where W is the sum of the w;; on the common boundary between R; and R;,
that have perimeters p; and p; respectively. When no more boundaries can be
removed, go to step 3.

3. Remove the boundary between R; and R; if
W =T (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data structure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred to as units. An adjunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this facilitates the storing and indexing of their semantic
properties.

The scheme is based on a special graph called the region adjacency graph, and
its “‘dual graph.”” In the region adjacency graph, nodes are regions and arcs exist
between neighboring regions. This scheme is useful as a way of keeping track of re-
gions, even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9).

Sec. 5.4 Splitting and Merging 159

IPR2022-00092 - LGE
Ex. 1015 - Page 175

Consider the regions of an image shown in Fig. 5.8a. The region adjacency
graph has a node in each region and an arc crossing each separate boundary seg-
ment. To allow a uniform treatment of these structures, define an artificial region
that surrounds the image. This node is shown in Fig. 5.8b. For regions on a plane,
the region adjacency graph is planar (can lie in a plane with no arcs intersecting)
and its edges are undirected. The “‘dual’” of this graph is also of interest. To con-
stuct the dual of the adjacency graph, simply place nodes in each separate region
and connect them with arcs wherever the regions are separated by an arc in the ad-
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is like
the original region boundary map; in Fig. 5.8b each arc may be associated with a
specific boundary segment and each node with a junction between three or more
boundary segments. By maintaining both the region adjacency graph and its dual,
one can merge regions using the following algorithm:

Algorithm 5.5: Merging Using the Region-Adjacency Graph and Its Dual

Task: Merge neighboring regions R; and R;.

Phase 1. Update the region-adjacency graph.

1. Place edges between R; and all neighboring regions of R; (excluding, of

course, R;) that do not already have edges between themselves and R;.
2. Delete R; and all its associated edges.

Phase 2. Take care of the dual.

1. Delete the edges in the dual corresponding to the borders between R; and R,
2. For each of the nodes associated with these edges:

(a) if the resultant degree of the node is less than or equal to 2, delete the
node and join the two dangling edges into a single edge.

(b) otherwise, update the labels of the edges that were associated with j
to reflect the new region label /.

Figure 5.9 shows these operations.

5.5 INCORPORATION OF SEMANTICS

160

Up to this point in our treatment of region growers, domain-dependent ‘‘seman-
tics’” has not explicitly appeared. In other words, region-merging decisions were
based on raw image data and rather weak heuristics of general applicability about
the likely shape of boundaries. As in early processing, the use of domain-
dependent knowledge can affect region finding. Possible interpretations of regions
can affect the splitting and merging process. For example, in an outdoor scene pos-
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related to measurable region properties such as intensity

Ch. 5 Region Growing

IPR2022-00092 - LGE
Ex. 1015 - Page 176

(a}

Fig. 5.8 (a) Animage partition. (b)
The region adjacency graph (solid lines).
(c) The dual of the adjacency graph
(solid lines).

and hue. An example shows how semantic labels for regions can guide the merging
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977; Hanson and Riseman 1978].

Early steps in the Feldman-Yakimovsky region grower used essentially the
same steps as Brice-Fennema. Once regions attain significant size, semantic cri-

{a) (b)

Fig. 5.9 Merging operations using the region adjacency graph and its dual. (a) Before
merging regions separated by dark boundary line. (b) After merging.

Sec. 5.5 Incorporation of Semantics 161

IPR2022-00092 - LGE
Ex. 1015 - Page 177

teria are used. The region growing consists of four steps, as summed up in the fol-
lowing algorithm:

Algorithm 5.6 Semantic Region Growing

Nonsemantic Criteria
T, and T, are preset thresholds

1. Merge regions i, j as long as they have one weak separating edge until no two
regions pass this test.
2. Merge regions i, jwhere S(i, j) < T, where
C 4 OLU

SG j)=—7—
o (64 + « ij
where ¢; and ¢, are constants,

(area;)” + (area,)”

perimeter; - perimeter;

alj =

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 2.)

Semantic Criteria

3. Let B, be the boundary between R; and R;. Evaluate each B, with a Bayesian
decision function that measures the (conditional) probability that Bj; separates
two regions R, and R; of the same interpretation. Merge R; and R, if this condi-
tional probability is less than some threshold. Repeat step 3 until no regions
pass the threshold test.

4. Evaluate the interpretation of each region R; with a Bayesian decision function
that measures the (conditional) probability that an interpretation is the correct
one for that region. Assign the interpretation to the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors. Repeat the entire process until all re-
gions have interpretation assignments,

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-
tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition. An
expression for the evaluation function is (for a given partition and interpretations X
and 1):

max I {P[B; isaboundary between X and Y | measurements on B,l}
- ot i E
x It {PIR; isan X | measurements on R,1}
x 11 {P[R; isan Y | measurements on R,]}

162) Ch. 5 Region Growing

IPR2022-00092 - LGE
Ex. 1015 - Page 178

Sec. 5.5

where P stands for probability and I is the product operator.

How are these terms to be computed? Ideally, each conditional probability
function should be known to a reasonable degree of accuracy; then the terms can
be obtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and storage. An
approximation used in [Feldman and Yakimovsky 1974] is to quantize the mea-
surements and represent them in terms of a classification tree. The conditional
probabilities can then be computed from data at the leaves of the tree. Figure 5.10
shows a hypothetical tree for the region measurements of intensity and hue, and
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivalent tree for
two boundary measurements m and n and the same interpretations. These two
figures indicate that P[R;isa CAR|0 < i< [,0 € h < H,]l =, and P[B; divides
two car regions | M, € m < M., N, < n < Ny, = . These trees were created
by laborious trials with correct segmentations of test images.

Now, finally, consider again step 3 of Algorithm 5.6. The probability that a
boundary Bj; between regions R; and R, is false is given by

Prais 5.13
false P, e P,: ()
where
P, = ¥ [P[By is between two subregions X | B,’s measurements]} (5.14a)
x{P[R; is X | measl}x{P[R; is X | meas]}
P, =% {PIB; isbetween X and Y | measl) (5.14b)
xy
x {P[R; is X | meas I}x{P[R; is ¥ | meas]} .
Fig. 5.10 Hypothetical classification tree for region measurements showing a
particular branch for specific ranges of intensity and hue.
Incorporation of Semantics 163

IPR2022-00092 - LGE
Ex. 1015 - Page 179

164

4 Road/sky
1 Road/car
3 Sky/car

2 Road/road
2 Car/car
1 Sky/sky

Fig. 5.11 Hypothetical classification
tree for boundary measurements
showing a specific branch for specific
ranges of two measurements mand n.

And for step 4 of the algorithm,
P[R; is X1 | meas]

PR, is X2 | meas] .15)

Confidence; =

where X1, X2 are the first and second most likely interpretations, respectively.
After the region is assigned interpretation X 1, the neighbors are updated using

PI[R; is X | meas]:=Prob [Rj is X | meas] (5.16)
x P[By isbetween X and X1 |meas]

EXERCISES

5.1 In Algorithm 5.1, show how one can handle the case where colors are equivalent. Do
you need more than one pass over the image?

5.2 Show for the heuristic of Eq. (5.11) that
@@ IT, 2 WT, > P,
® P, <P+I1Q/T,—2)
where P, is the perimeter of R;|J R}, I is the perimeter common to both i and j
and P,, = min (P; Pj). What does part (b) imply about the relation between T and
Pyt
5.3 Write a “histogram-peak’’ finder; that is, detect satisfying valleys in histograms
separating intuitive hills or peaks.

5.4 Suppose that regions are represented by a neighbor list structure. Each region has an
associated list of neighboring regions. Design a region-merging algorithm based on
this structure.

5.5 Why do junctions of regions in segmented images tend to be trihedral?

5.6 Regions, boundaries, and junctions are the structures behind the region-adjacency
graph and its dual. Generalize these structures to three dimensions. Is another struc-
ture needed?

5.7 Generalize the graph of Figure 5.8 to three dimensions and develop the merging algo-
rithm analogous to Algorithm 5.5. (Hint: see Exercise 5.6.)

Ch. 5 Region Growing

IPR2022-00092 - LGE
Ex. 1015 - Page 180

REFERENCES

BAarRrOW, H. G. and J. M. TENENBAUM. “‘Experiments in model-driven scene segmentation.” Artificial
Intelligence 8, 3, June 1977, 241-274.

Brice, C. and C. FENNEMA. “‘Scene analysis using regions.”” Artificial Intelligence I, 3, Fall 1970,
205-226.

CHow, C. K. and T. KANEKO. ‘‘Automatic boundary detection of the left ventricle from cinean-
giograms.” Computers and Biomedical Research 5, 4, August 1972, 388-410.

FELDMAN, J. A. and Y. YAKIMOVSKY. *‘Decision theory and artificial intelligence: I. A semantics-based
region analyzer.” Artificial Intelligence 5, 4, 1974, 349-371.

Hanson, A. R.and E. M, RISEMAN. “‘Segmentation of natural scenes.”” In CVS, 1978.

HarLow, C. A. and S. A. EisenBEIS. *“The analysis of radiographic images.”” IEEE Trans. Computers 22,
1973, 678-688.

Horowitz, S. L. and T. PavLiDis. ‘““Picture segmentation by a directed split-and-merge procedure.”
Proc., 2nd IJCPR, August 1974, 424-433.

NiLssoN, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.
NiLssoN, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.

OHLANDER, R., K. PRrICE, and D. R. REDDY. “‘Picture segmentation using a recursive region splitting
method.”” CGIP 8, 3, December 1979.

RoerTson, T. V., P. H. Swain, and K. 8. Fu. “Multispectral image partitioning.”” TR-EE 73-26
(LARS Information Note 071373), School of Electrical Engineering, Purdue Univ., August
1973.

ROSENFELD, A. and A. C. KaK. Digital Picture Processing. New York: Academic Press, 1976.
ZUCKER, S. W. “Region growing: Childhood and adolescence.” CGIP 5, 3, September 1976, 382-399.

References 165

IPR2022-00092 - LGE
Ex. 1015 - Page 181

Texture 6

6.1 WHAT IS TEXTURE?

166

The notion of texture admits to no rigid description, but a dictionary definition of
texture as ‘‘something composed of closely interwoven elements’ is fairly apt.
The description of interwoven elements is intimately tied to the idea of texture
resolution, which one might think of as the average amount of pixels for each dis-
cernable texture element. If this number is large, we can attempt to describe the
individual elements in some detail. However, as this number nears unity it be-
comes increasingly difficult to characterize these elements individually and they
merge into less distinct spatial patterns. To see this variability, we examine some
textures.

Figure 6.1 shows ‘“‘cane,” ‘“‘paper,”” ‘‘coffee beans,”” ‘‘brickwall,” ‘‘coins,”
and ““wire braid”’ after Brodatz’s well-known book [Brodatz 1966]. Five of these
examples are high-resolution textures: they show repeated primitive elements that
exhibit some kind of variation. ““Coffee beans,”” ““brick wall’> and ““coins’’ all have
obvious primitives (even if it is not so obvious how to extract these from image
data). Two more examples further illustrate that one sometimes has to be creative
in defining primitives. In “‘cane”’ the easiest primitives to deal with seem to be the
physical holes in the texture, whereas in ““wire braid’’ it might be better to model
the physical relations of a loose weave of metallic wires. However, the paper tex-
ture does not fit nicely into this mold. This is not to say that there are not possibili-
ties for primitive elements. One is regions of lightness and darkness formed by the
ridges in the paper. A second possibility is to use the reflectance models described
in Section 3.5 to compute “‘pits’’ and “bumps.’’ However, the elements seem to
be “‘just beyond our perceptual resolving power> [Laws 1980], or in our terms, the
elements are very close in size to individual pixels.

IPR2022-00092 - LGE
Ex. 1015 - Page 182

48 B aBP 430 VP a1 P q
. 90.0.0.0.0
[(]] [} .

+3b 480 ¢1B 519 anm o
. 0.0.0.0.0
a 4 4 [} (]

«af b AaPP s1 = s 2D 4P a
9.90.0.90.0
(] (] 1 (] L)

®E® aFB 91 » usy vED e
9.0.0.0.0
4 L] (] L] L

a4 B 24P s1®» sue vID @
. 9.0.90.0.0
4 L] [} a 4

“we B aN® eI ® saB a1 P
L] L] L}

Six examples of texture. (a) Cane. (b) Paper. (¢) Coffee beans. (d)

Brick wall. (e) Coins. () Wire braid.

Fig. 6.1

The exposition of texture takes place under four main headings:

Texture primitives

l.

Structural models

2.

Statistical models

3

Texturegradients

4.

167

What is Texture

Sec. 6.1

IPR2022-00092 - LGE

Ex. 1015 - Page 183

168

We have already described texture as being composed of elements of texture primi-
tives. The main point of additional discussion on texture primitives is to refine the
idea of a primitive and its relation to image resolution.

The main work that is unique to texture is that which describes how primi-
tives are related to the aim of recognizing or classifying the texture. Two broad
classes of techniques have emerged and we shall study each in turn. The structural
model regards the primitives as forming a repeating pattern and describes such pat-
terns in terms of rules for generating them. Formally, these rules can be termed a
grammar. This model is best for describing textures where there is much regularity
in the placement of primitive elements and the texture is imaged at high resolu-
tion. The “‘reptile’” texture in Fig. 6.9 is an example that can be handled by the
structured approach. The statistical model usually describes texture by statistical
rules governing the distribution and relation of gray levels. This works well for
many natural textures which have barely discernible primitives. The ‘‘paper” tex-
ture is such an example. As we shall see, we cannot be too rigid about this division
since statistical models can describe pattern-like textures and vice versa, but in
general the dichotomy is helpful.

The examples suggest that texture is almost always a property of surfaces.
Indeed, as the example of Fig. 6.2 shows, human beings tend to relate texture ele-
ments of varying size to a plausible surface in three dimensions [Gibson 1950;
Stevens 1979]. Techniques for determining surface orientation in this fashion are
termed texture gradient techniques. The gradient is given both in terms of the
direction of greatest change in size of primitives and in terms of the spatial place-
ment of primitives. The notion of a gradient is very useful. For example, if the tex-
ture is embedded on a flat surface, the gradient points toward a vanishing point in
the image. The chapter concludes with algorithms for computing this gradient.
The gradient may be computed directly or indirectly via the computation of the
vanishing point.

/ﬁ Fig. 6.2 Texture as a surface property.

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 184

6.2 TEXTURE PRIMITIVES

The notion of a primitive is central to texture. To highlight its importance, we shall
use the appelation texel (for texture element) [Kender 1978]. A texel is (loosely)
a visual primitive with certain invariant properties which occurs repeatedly in
different positions, deformations, and orientations inside a given area. One basic
invariant property of such a unit might be that its pixels have a constant gray level,
but more elaborate properties related to shape are possible. (A detailed discussion
of planar shapes is deferred until Chapter 8.) Figure 6.3 shows examples of two
kinds of texels: (a) ellipses of approximately constant gray level and (b) linear edge
segments. Interestingly, these are nearly the two features selected as texture prim-
itives by [Julesz, 1981], who has performed extensive studies of human texture
perception.

For textures that can be described in two dimensions, image-based descrip-
tions are sufficient. Texture primitives may be pixels, or aggregates of pixels such
as curve segments or regions. The ‘“‘coffee beans’ texture can be described by an
image-based model: repeated dark ellipses on a lighter background. These models
describe equally well an image of texture or an image of a picture of texture. The
methods for creating these aggregates were discussed in Chapters 4 and 5. As with
all image-based models, three-dimensional phenomena such as occlusion must be
handled indirectly. In contrast, structural approaches to texture sometimes require
knowledge of the three-dimensional world producing the texture image. One ex-
ample of this is Brodatz’s “‘coins’” shown in Fig. 6.1. A three-dimensional model of
the way coins can be stacked is needed to understand this texture fully.

An important part of the texel definition is that primitives must occur repeat-
edly inside a given area. The question is: How many times? This can be answered
qualitatively by imagining a window that corresponds approximately to our field of
view superimposed on a very large textured area. As this window is made smaller,
corresponding to moving the viewpoint closer to the texture, fewer and fewer tex-
els are contained in it. At some distance, the image in the window no longer

Fig. 6.3 Examples of texels. (a) Ellipses. (b) Linear segments.

Sec. 6.2 Texture Primitives 169

IPR2022-00092 - LGE
Ex. 1015 - Page 185

appears textured, or if it does, translation of the window changes the perceived tex-
ture drastically. At this point we no longer have a texture. A similar effect occurs if
the window is made increasingly larger, corresponding to moving the field of view
farther away from the image. At some distance textural details are blurred into
continuous tones and repeated elements are no longer visible as the window is
translated. (This is the basis for halftone images, which are highly textured pat-
terns meant to be viewed from enough distance to blur the texture.) Thus the idea
of an appropriate resolution, or the number of texels in a subimage, is an implicit
part of our qualitative definition of texture. If the resolution is appropriate, the tex-
ture will be apparent and will “‘look the same’’ as the field of view is translated
across the textured area. Most often the appropriate resolution is not known but
must be computed. Often this computation is simpler to carry out than detailed
computations characterizing the primitives and hence has been used as a precursor
to the latter computations. Figure 6.4 shows such a resolution-like computation,
which examines the image for repeating peaks [Connors 1979].

Textures can be hierarchical, the hierarchies corresponding to different reso-
lutions. The “‘brick wall’” texture shows such a hierarchy. At one resolution, the
highly structured pattern made by coliections of bricks is in evidence; at higher
resolution, the variations of the texture of each brick are visible.

6.3 STRUCTURAL MODELS OF TEXEL PLACEMENT

gias@Iniainy edadefalefefaiai
jaipraissataiy smdadndeafuirindail
lgyRigraiaing Al (e eadayr
EICEEEREEFLE IO O CTETLTETETOOY
TR FEFEREE L T ':7" afnin(ai{ning:
FREFEIETETLVE R T L LT L)

imEmrm i (EINIAIRIRIRIAdImY

170

Highly patterned textures tesselate the plane in an ordered way, and thus we must
understand the different ways in which this can be done. In a regular tesselation the

l-!—-q---nilvll!I!

miE R (s)

(@) (b)

Fig. 6.4 Computing texture
resolutions. (a) French canvas. (b)

' Resolution grid for canvas. (c) Raffia.
(d) (d) Grid for raffia.

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 186

polygons surrounding a vertex all have the same number of sides. Semiregular
tesselations have two kinds of polygons (differing in number of sides) surrounding
a vertex. Figure 2.11 depicts the regular tesselations of the plane. There are eight
semiregular tesselations of the plane, as shown in Fig. 6.5. These tesselations are
conveniently described by listing in order the number of sides of the polygons sur-

A X
\X\(XX/

/><>(\

(3, 6, 3, 6)

(3, 3,3 4,4 (3, 3, 4,3 4

Fig. 6.5 Semiregular tesselations.

Sec. 6.3 Structural Models of Texel Placement 171

IPR2022-00092 - LGE
Ex. 1015 - Page 187

172

rounding each vertex. Thus a hexagonal tesselation is described by (6,6,6) and
every vertex in the tesselation of Fig. 6.5 can be denoted by the list (3,12,12). It is
important to note that the tesselations of interest are those which describe the
placement of primitives rather than the primitives themselves. When the primitives
define a tesselation, the tesselation describing the primitive placement will be the
dual of this graph in the sense of Section 5.4. Figure 6.6 shows these relationships.

Texel Placement
tesselation Fig. 6.6 The primitive placement

tesselation as the dual of the primitive
tesselation.

6.3.1 Grammatical Models

A powerful way of describing the rules that govern textural structure is through a
grammar. A grammar describes how to generate patterns by applying rewriting rules
to a small number of symbols. Through a small number of rules and symbols, the
grammar can generate complex textural patterns. Of course, the symbols turn out
to be related to texels. The mapping between the stored model prototype texture
and an image of texture with real-world variations may be incorporated into the
grammar by attaching probabilities to different rules. Grammars with such rules
are termed stochastic [Fu 1974].

There is no unique grammar for a given texture; in fact, there are usually
infinitely many choices for rules and symbols. Thus texture grammars are
described as syntactically ambiguous. Figure 6.7 shows a syntactically ambiguous
texture and two of the possible choices for primitives. This texture is also semanti-
cally ambiguous [Zucker 1976] in that alternate ridges may be thought of in three
dimensions as coming out of or going into the page.

There are many variants of the basic idea of formal grammars and we shall
examine three of them: shape grammars, tree grammars, and array grammars. For
a basic reference, see [Hopcroft and Ullman 1979]. Shape grammars are dis-
tinguished from the other two by having high-level primitives that closely
correspond to the shapes in the texture. In the examples of tree grammars and ar-
ray grammars that we examine, texels are defined as pixels and this makes the

Ch. 6 Texture

IPR2022-00092 - LGE
Ex. 1015 - Page 188

