S2777 015879971 **Current Trends in** Engineering Practice

Editor C V Ramakrishnan

GEORGE MASON UNIVERSITY UNIVERSITY LIBRARIES

Current Trends in Engineering Practice

Editor C V Ramakrishnan

Narosa Publishing House New Delhi Chennai Mumbai Kolkata Editor C V Ramakrishnan Department of Applied Mechanics Indian Institute of Technology, Delhi New Delhi, India

Copyright © 2006 Narosa Publishing House Pvt. Ltd.

NAROSA PUBLISHING HOUSE PVT. LTD.

22 Daryaganj, Delhi Medical Association Road, New Delhi 110 002
35-36 Greams Road, Thousand Lights, Chennai 600 006
306 Shiv Centre, D.B.C. Sector 17, K.U. Bazar P.O., Navi Mumbai 400 703
2F-2G Shivam Chambers, 53 Syed Amir Ali Avenue, Kolkata 700 019

www.narosa.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

All export rights for this book vest exclusively with Narosa Publishing House. Unauthorised export is a violation of terms of sale and is subject to legal action.

Printed from the camera-ready copy provided by the Editor

ISBN 81-7319-689-3

Published by N. K. Mehra for Narosa Publishing House Pvt. Ltd., 22 Daryaganj, Delhi Medical Association Road, New Delhi 110 002 and printed at Rajkamal Electric Press, New Delhi 110033, India

CONTENTS

Foreword by R Natarajan	v
Professo	vii
Frequee	ix
From the President's Desk	xi
CIVIL ENGINEERING	~
Delhi Flyovers—On the Fast Track Mahesh Tandon	3
Modern Techniques of Geotechnical Investigation	
V. M. Sharma	n
In-Situ Characterisation of Rocks in the Himalayan Perion	1000
V. M. Sharma	25
Analysis and Instrumentation of Underground Structures	
V. M. Sharma	50
GIS for Natural Resource Identification and Management	
S. S. Chakraborty	58
Better-built Structures and Sustainability	
S. S. Chakraborty	77
IT and GIS in Infrastructure Applications	
S S Chakraborty	86

MECHANICAL ENGINEERING

Development of Non-conventional Energy Technologies	-
A. Ganguly	99
Productivity Management	1 9
A. Ganguly	110
Role of Earthmoving Equipment in Infrastructure Development Projects in India K. Aprameyan	119
Effect of Process Parameters on Bond Strength and Wear	140
Resistance of Thermally Sprayed Automotive Components N. Gowrishankar	140
Piston Ring Materials and Processes For Enhanced Performance	Coffeet
N. Gowrishankar	149
Industrial Application of Robotics	innoo?
S. R. Seetaram	159
Industrial Application of CAD-CAM	164
S. R. Seetaram	104

	171
Contents dors in Maintenance	
viv conting of Computers	177
Industrial Application	
S. R. Seetaram Technology	186
Rubber Compounder	
R. Mukhopadity	198
Mixing Technology Mixing Liboradhvay	
R. Muknopulay	210
Moulding Technology	
R. Muchoputers in Industry	224
Water Managene	
Junin A. Toy	241
Fluid Catalytic Catalytic Catalytic Compass Production Technologies	241
Sobhan One-Gasification and Syngas I route	30. 3
Steam Renning	253
Sobhan Ground of Petrochemical Feedstock	
Retinery as a bound	
Soonian Groon	
FLECTRICAL ENGINEERING	
Ellicate Society States International	
hakrabany Sa	267
Partial Discharge Measurements	Lud-unit
S Gonal	202
High Voltage Measurement Techniques	282
S Gonal	1222
Electromagnetic Compatibility (EMC) and Electromagnetic	298
Interference (EMI)—An Overview	
S Gonal	
Power System Study/Planning Methodology	312
P V Rala Subramanyam	
Generals about Power System Operations	215
P V Rala Subramaniam	515
Role of Power System Stabilizer L. D	Productive
P V Rala Subury of Stabilizers in Power Systems	326
1. v. bula Suoramanyam	
anometinita Spianeria area ura ura ura della Spianeria	
ELECTRONICS AND COMMUNICATION THE	
COMMUNICATION ENGINEERING	
Ontical Nature 11	
V Neger in Verview: Trends/Technologies	220
Spectrolly G	339
Spectral any Constrained Near-Nyquist Pulse D	
Prograting and P. K. Singh	347
aginatic TCM for 8-PSK in Sotality	
S. Jayasimha and P hother I	357
a syoinendar	331

	Contents xv
Photovoltaic UPS	367
S. Jayasimha and T. P. Kumar	
Inertial Systems	370
S. N. Puri	517
Access Technologies	384
S. S. Shekhawat	

*

AEROSPACE ENGINEERING

Prospects for Further Work in the Rotary Wing Field with Alh as the Catalyst	397
K. S. Sudheendra	571
Military Helicopters	403
K. S. Sudheendra	105
Quality and Reliability	407
K. Sudhakara Rao	
Trajectory and Mission Design of Launch Vehicles	417
V. Adimurthy	
Space Debris: Magnitude of the Problem and Engineering Solutions to Its Mitigation	437
V. Adimurthy	
Re-entry of Objects from Geostationary Transfer Orbits	454
V. Adimurthy	101
Advances in Inertial Sensors and Systems	467
Amitava Bose	407
Navigation of Launch Vehicles	488
Amitava Bose	400
Redundancy Management of Inertial Systems	407
Amitava Rose	494
Modeling, Analysis & Design of Control for Launch Vahicles (Port D	=0.5
S Dasounta	502
D. Dusgupiu	

METALLURGY, MINING AND MATERIALS SCIENCE

Underground Coal Mining Technology in Coal India Limited Present and Future	527
N. K. Sharma	
Selective Mining by Continuous Miner in Opencast Mines	538
N. K. Sharma	
Prospects of Smelting Reduction Processes	549
Amit Chatterjee	
Some Features of Iron-and Steel making in Integrated Steel Plants	559
Amit Chatterjee	
Trends in Production of Direct Reduced Iron with Particular Reference to India	582
Amit Chatterjee	

xvi Contents

ENERGY SYSTEMS AND ENGINEERING, NUCLEAR ENGINEERING

599

609

613

Coping With Time and Cost Over-runs In Project Management

Bhaskar Bose

Corporate Turnaround—A Case Study of TVS Motor Company Limited N. S. Mohan Ram Structured New Product Development (NPD) Key to Quality Assurance and Effectiveness N. S. Mohan Ram **Enhancing Productivity of Vehicle Fleets** 624 Surjit Singh

7

Current Trends in Engineering Practice

dual tine concept. Further, Sunstrand design had metallic as well as fused quartz flexure cum proof dual tine concept. Further, Sunstrand design had internet and the sonant beam accelerometer, typed as RBA mass depending on performance. Sunstrand brought out resonant beam accelerometer, typed as RBA mass depending on performance. Substrant of ought at a considerable low cost. RBA 500 has a B_{A} 500 during 1991 for a larger application market and at a considerable low cost. RBA 500 has a b_{as} 500 during 1991 for a larger application more provided by power input 0f 0.1 watt, weighs 9 gm, operator by the second s 500 during 1991 for a larger application market and the first of 0.1 watt, weighs 9 gm, operates between error of <1mg, scale factor error of <360 ppm, power input 0f 0.1 watt, weighs 9 gm, operates between error of <1mg, scale factor error of <500 ppm, power and a scale factor error of <100 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error of <500 ppm, power and a scale factor error $C-55^{\circ}C$ to $+80^{\circ}C$ with a range of 70g and an active flexure cum proof mass has a performance one called Superflex accelerometer which uses quartz flexure cum proof mass has a performance one called Superflex accelerometer which uses quarter of one VBA with a range of 500g for strategic order better. Singer Kearfott reported the qualification of one VBA with a range of 500g for strategic order better. Singer Kcarlott reported and a scale factor error of 10 ppm, weighs 70gm.

Bottom view of tuning fork

FIG. 19 TUNING FORK USED IN DIGITAL WATCH INDUSTRY WITH ELECTRODE PATTERN

Fig.20 shows electrode pattern of a dual tine resonator under development in ISRO.

ELECTROE PATTERN

FIG. 20 TWO TINE QUARTZ BEAM WITH ELECTRODE PATTERN (UNDER DEVELOPMENT IN ISRO)

Quartz is not the only material for resonator, subsequent development at Sunstrand during 1995 used silicon beam with capacitive excitation and fabricated using silicon micro fabrication technique. This accelerometer reached performance required for 1 Nmph INS.

6. MICROMACHINED INERTIAL SENSORS

Micromachined inertial sensors use process technology such as 'Bulk micromachining' and 'Surface micromachining' developed by integrated circuit manufacturing industry and uses materials like mono crystalline silicon, poly silicon and quartz to produce small sensors. Here, the motivating factors were substantial use of established facility and materials both of which witnessed tremendous growth during the last 30 years on account of electronic revolution. Force balance accelerometers, vibrating beam accelerometer and vibrating gyros of suitable shapes, are all amenable to micromachining.

Evolution

The first development of an open loop silicon accelerometer was reported in 1979 by Roylance and Angell. A partial application of this technology in gyro was reported by Systron Donner, USA during late eighties by bringing out Quartz Tuning fork gyro. During early part of ninety, Sunstrand, USA brought out quartz VBA in which the quartz beam alone was micromachined. During 1995, Allied Signal, USA reported all silicon VBA with navigation class performance. Draper lab, USA initiated [8] research on micromechanical sensors during 1985 and still continuing. It has reached 10°/hr class in gyro and 100 ug in accelerometer by now. Using these gyros and accelerometer, a very small (micro) IMU was realised which was integrated with a processor and GPS to guide a projectile fired from an artillery. Entire system was housed in 5 cm x 5 cm x 5 cm package. This IMU is shown in Fig.21. By 2005, an order improvement in performance is targetted with size reduced to 5 cm x 2 cm x 2 cm and price targetted for US \$500.

Micromachined gyros and accelerometers development is actively funded for a vast range of application which could not be earlier thought off due to combined factors consisting of weight, size, cost and power. Diverse application such as Automotive, guided drilling, artillery shell guidance, personal navigator on soldier, spacecraft and unmanned micro air vehicle besides penetrating all the existing areas excepting where standalone high accuracy is required. In the medical field, these small gyros and accelerometers are planned to asist a person who has lost his balance due to some defect in the inside of the ear so that he can walk without falling. Due to such multifarious applications, research on MEMS technology is growing all over the industrialised world.

6.1 Multisensors

Considerable development effort is also going in the development of multisensors which combine rate and acceleration information in one sensor. SCIRAS is one such sensor reported in [7].

7. CONCLUSION

Advances in inertial sensors and systems during the the last 50 years reveal fascinating pictures. Initially, it was highly electromechanical requiring high specific investment in materials, fabrication, assembly and integration. The specific investment scenario somewhat continued even when later generation sensors like RLG or vibrating sensors like HRG were developed and qualified. However, the advance of IFOG and its consequent development saw emergence of technology cosharing with fiber optic communication. A similar observation was noticed in vibrating beam accelerometer where fiber optic communication. A similar observation was noticed in vibrating beam accelerometer where at co-shared with frequency standard and digital watch industry. Reduction of cost and viewing for a it co-shared with a view for substantial reduction in cost and weight in developing micromachining further took a turn with a view for substantial reduction. Also, it is seen that each technology had its specific fabrication route to enable batch production. Also, it is seen that each technology had its specific fabrication took a long time to solve but ultimately achieved very high performance and reliability. The advent of GPS or GLONASS is reorienting the decision making process on high accuracy sensors.

Current Trends in Engineering Practice

Editor C V Ramakrishnan

Current Trends in Engineering Practices deals with recent engineering practices adopted in various projects in different engineering disciplines and specializations—Flyovers in Delhi, GIS applications, Geotechnical Investigations and structures, Construction of Earthmoving equipment, CAD CAM, Robotics, Automotive components, Rubber Technology, Fluid Catalytic Cracking, Syngas Production, High Voltage Measurement, Power System Methodologies, Optical Networks, Photovoltaic UPS, Inertial Systems, Access Technologies, Helicopter Technology, Launch Vehicle Design, Coal Mining, Iron and Steel making, New Product Development, Corporate Turnaround and Productivity of Vehicle Fleets.

