
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

In re Patent of: Theodore L. Brann 
U.S. Patent No.: 6,059,576                Attorney Docket No.:  50095-0041IP1 
Issue Date: May 9, 2000 
Appl. Serial No.: 08/976,228 
Filing Date: November 21, 1997 
Title: TRAINING AND SAFETY DEVICE, SYSTEM AND 

METHOD TO AID IN PROPOER MOVEMENT DURING 
PHYSICAL ACTIVITY 

DECLARATION OF DR. KENNY 

I declare that all statements made herein on my own knowledge are true and 

that all statements made on information and belief are believed to be true, and 

further, that these statements were made with the knowledge that willful false 

statements and the like so made are punishable by fine or imprisonment, or both, 

under Section 1001 of Title 18 of the United States Code.  

By: __________________________ 
Thomas W. Kenny, Ph.D. 

       October 7, 2021 
Date: _________________________ 

1 APPLE 1100



TABLE OF CONTENTS 
 
I. QUALIFICATIONS AND BACKGROUND INFORMATION ...................... 4 

II. OVERVIEW OF CONCLUSIONS FORMED ............................................... 11 

III. LEVEL OF ORDINARY SKILL IN THE ART ............................................. 13 

IV. LEGAL STANDARDS ................................................................................... 14 

A. Terminology ................................................................................................ 14 

B. Legal Standards ........................................................................................... 14 

 Anticipation ............................................................................................ 15 

 Obviousness ........................................................................................... 15 

V. THE ’576 PATENT ......................................................................................... 20 

A. Overview of the ’576 Patent ....................................................................... 20 

B. Prosecution History of the ’576 Patent ....................................................... 22 

C. Claim Construction ..................................................................................... 24 

 “a movement sensor” (claim 1 and claims depending therefrom)......... 24 

VI. MANNER IN WHICH THE PRIOR ART REFERENCES RENDER THE 
’576 CLAIMS UNPATENTABLE ......................................................................... 25 

A. GROUND 1—Claims 1, 3-5, 8, 10, 20, 25, 30, 39, 41, 42, and 61-65 are 
Obvious based on Ono in view of Hutchings ............................................. 25 

 Overview of Ono .................................................................................... 25 

 Overview of Hutchings .......................................................................... 30 

 Ono-Hutchings Combination ................................................................. 34 

 Analysis of Claims 1, 3-5, 8, 10, 30, 39, 41, 42, and 61-65 .................. 38 

 Analysis of Claims 20 and 25 ..............................................................102 

B. GROUND 2—Claims 1, 3-5, 8-11, 20, 25, 30, 36, 39-42, and 61-65 are 
Obvious based on Ono in view of Hutchings and Amano ........................107 

 Overview of Amano .............................................................................107 

 Ono-Hutchings-Amano Combination ..................................................109 

 Analysis of the Claims .........................................................................112 

C. GROUND 3A—Claims 1-5, 8, 10, 20, 25, 30, 31, 39, 41, 42, 45-47, 49, 
and 61-65 are Obvious based on Ono in view of Hutchings and Conlan .117 

 Overview of Conlan .............................................................................117 

2



 Ono-Hutchings-Conlan Combination ..................................................120 

 Analysis of the Claims .........................................................................126 

D. GROUND 3B—Claims 48, 50, and 51 are Obvious based on Ono in view 
of Hutchings, Conlan, and Hickman .........................................................134 

 Overview of Hickman ..........................................................................134 

 Ono-Hutchings-Conlan-Hickman Combination ..................................135 

 Analysis of the Claims .........................................................................137 

E. GROUND 4—Claims 1, 3-5, 8, 10, 20, 25, 30, 39, 41, 42, 61-65, 144, and 
147 are Obvious based on Ono in view of Hutchings and Kaufman ........139 

 Overview of Kaufman ..........................................................................139 

 Ono-Hutchings-Kaufman Combination ...............................................141 

 Analysis of the Claims .........................................................................144 

F. GROUND 5A—Claims 1-5, 8-11, 20, 25, 30-32, 36, 39-42, 45-47, 49, 61-
65, 144, and 147 are Obvious based on Ono in view of Hutchings, Amano, 
Conlan, and Kaufman ...............................................................................150 

G. GROUND 5B—Claims 48, 50, and 51 are Obvious based on Ono in view 
of Hutchings, Amano, Conlan, Kaufman, and Hickman ..........................155 

H. GROUND 6A—Claims 1-5, 8-11, 20, 25, 30, 31, 36, 39-42, 45-47, 49, and 
61-65 are Obvious based on Ono in view of Hutchings, Amano, and 
Conlan .......................................................................................................155 

I. GROUND 6B—Claims 48, 50, and 51 are Obvious based on Ono in view 
of Hutchings, Amano, Conlan, and Hickman ...........................................155 

J. GROUND 7—Claims 1, 3-5, 8-11, 20, 25, 30, 36, 39-42, 61-65, 144, and 
147 are Obvious based on Ono in view of Hutchings, Amano, and 
Kaufman ....................................................................................................155 

K. GROUND 8A—Claims 1-5, 8, 10, 20, 25, 30, 31, 39, 41, 42, 45-47, 49, 
61-65, 144, and 147 are Obvious based on Ono in view of Hutchings, 
Conlan, and Kaufman ...............................................................................155 

L. GROUND 8B—Claims 48, 50, and 51 are Obvious based on Ono in view 
of Hutchings, Conlan, Kaufman, and Hickman ........................................155 

VII. CONCLUSION ..............................................................................................155 

 

3



I. QUALIFICATIONS AND BACKGROUND INFORMATION 

1. My education and experience are described more fully in the attached 

curriculum vitae (APPENDIX A). For ease of reference, I have highlighted certain 

information below. 

2. My academic and professional background is in Physics, Mechanical 

Engineering, Sensing, and Robotics, with a research specialization focused on 

micro-fabricated physical sensors, and I have been working in those fields since 

the completion of my Ph.D. more than 30 years ago. The details of my background 

and education and a listing of all publications I have authored in the past 35 years 

are provided in my curriculum vitae. Below I provide a short summary of my 

education and experience, which I believe to be most pertinent to the opinions that 

I express here. 

3. I received a B.S. in Physics from University of Minnesota, Minneapolis in 

1983, and a Ph.D. in Physics from University of California at Berkeley in 1989. I 

was educated as a Physicist specializing in sensors and measurement.  My Physics 

Ph.D. thesis involved measurements of the heat capacity of monolayers of atoms 

on surfaces, and relied on precision measurements of temperature and power using 

time-varying electrical signals, and also on the design and construction of 

miniature sensor components and associated electrical circuits for conditioning and 

conversion to digital format. 
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4. After completion of my Ph.D. in Physics at U.C. Berkeley in 1989, I joined 

the Jet Propulsion Laboratory (JPL) in Pasadena, CA, as a staff scientist, and began 

working on miniature sensors and instruments for small spacecraft. This work 

involved the use of silicon microfabrication technologies for miniaturization of the 

sensors, and served as my introduction to the field of micro-electromechanical 

systems (MEMS), or the study of very small mechanical sensors powered by 

electricity and used for detection of physical and chemical signals. 

5. While at JPL, we developed accelerometers, gyroscopes, uncooled infrared 

sensors, magnetometers, seismometers, force and displacement sensors, soil 

chemistry sensors, miniature structures for trapping interstellar dust, and many 

other miniature devices. Some of these projects led to devices that were launched 

with spacecraft headed for Mars and for other interplanetary missions.  Much of 

this work involved the use of physical sensors for detection of small forces and 

displacements using micromechanical sensors. 

6. I am presently the Richard Weiland Professor at the Department of 

Mechanical Engineering at Stanford University, where I have taught for the past 27 

years. I am also on leave from my position as Senior Associate Dean of 

Engineering for Student Affairs at Stanford.  I am currently on partial leave from 

this position to serve as CEO of Applaud Medical, a startup company that I co-

founded which is focused on developing new treatments for Kidney Stones. 

5



7. For 27 years, I have taught courses on Sensors and Mechatronics at Stanford 

University. The “Introduction to Sensors” course is a broad overview of all sensing 

technologies, from thermometers, to inertial sensors, ultrasound devices, flow 

sensors, optical and IR sensors, chemical sensors, pressure sensors, and many 

others, and has included sensors based on changes in capacitance, resistance, 

piezoelectricity. This course specifically included different mechanisms for sensing 

heart rate, blood pressure, blood chemistry, cardiovascular blood flow and pressure 

drops, intraocular pressure and other physiological measurements, as well as 

activity monitoring (step counting, stair-counting, etc.) I first taught this course at 

Stanford in the Spring of 1994, and I offered this course at least annually until 

2016, when my duties as Senior Associate Dean made this impractical. 

8. The “Introduction to Mechatronics” course is a review of the mechanical, 

electrical and computing technologies necessary to build systems with these 

contents, which include everything from cars and robots to cellphones and other 

consumer electronics devices. In this class, we routinely use IR, LEDs, and 

photosensors as a way of detecting proximity to objects in the space around 

miniature robots. We also use inertial sensors to detect movement, and a number of 

sensors, such as encoders to measure changes in position and trajectory. 

Accelerometers and gyroscopes are used in this course for helping with navigation 

of autonomous robots in the class project.  I was one of the instructors for the first 
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offering of this course in 1995, and this course has been offered at least once each 

year ever since (except in 2021, when the pandemic made this impractical), with 

plans already underway for the Winter 2022 offering. 

9. I am co-author of a textbook titled “Introduction to Mechatronic Design,” 

which broadly covers the topic of integration of mechanical, electronic and 

computer systems design into “smart products.”  This textbook includes chapters 

on Microprocessors, Programming Languages, Software Design, Electronics, 

Sensors, Signal Conditioning, and Motors, as well as topics such as Project 

Management, Troubleshooting, and Synthesis. 

10. My research group has focused on the area of microsensors and 

microfabrication—a domain in which we design and build micromechanical 

sensors using silicon microfabrication technologies.  The various applications for 

these technologies are numerous.  Much of this work has focused on the design, 

fabrication and characterization of inertial sensors, such as accelerometers and 

gyroscopes. 

11. I have advised 74 Ph.D. students that have completed Ph.D. degrees and 

many more M.S. and B.S. students in Engineering during my time at Stanford. 

12. I have published over 250 technical papers in refereed journals and 

conferences in the field of sensors, MEMS, and measurements.  I have further 

presented numerous conference abstracts, posters, and talks in my field.  I am a 
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named inventor on more than 50 patents in my areas of work.  Through my 

research and teaching in the area of Sensors and Measurement, I was directly 

involved in or well-aware of developments in the micromechanical sensing 

community, such as the research and development efforts on miniature inertial 

sensors for automotive safety systems, such as the accelerometers developed for 

crash detection and gyroscopes developed for skid detection and control.  At the 

time of the filing date of U.S. Patent No. 6,059,576, the emergence of miniature 

inertial sensors was widely appreciated. 

13. I have previously served as an expert on a patent infringement case 

involving the design and use of miniature inertial sensors for detection of 

movement and free-fall.  That case involved the design and operations of 

micromechanical sensors, and particularly the use of inertial sensors for detection 

of states of movement and rest. I have also served as an expert in a patent 

infringement case involving the use of sensors on athletic shoes for determining 

athletic performance.  I served as an expert in a patent infringement case involving 

optical proximity sensors in smartphones.  More recently, I have served as an 

expert witness in a case involving use of physiological sensors to diagnose a user’s 

condition and possible interest in products or services.  My CV, Appendix A, 

includes a full listing of all cases in which I have testified at deposition or trial in 

the preceding four years. 
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14. I have been retained on behalf of Apple Inc. to offer technical opinions 

relating to U.S. Patent No. 6,059,576 (“the ’576 Patent”) and prior art references 

relating to its subject matter.  I have reviewed the ’576 Patent (APPLE-1001), 

relevant excerpts of the prosecution history of the ’576 Patent (APPLE-1002), ex 

parte reexamination certificate of the ’576 Patent (APPLE-1006), and relevant 

excerpts of the prosecution history of the ex parte reexamination of the ’576 Patent 

(APPLE-1007). I have also reviewed the following references: 

 Prior Art Reference 

U.S. Patent No. 5,778,882 (“Raymond” or APPLE-1009) 

U.S. Patent No. 5,573,013 (“Conlan” or APPLE-1010) 

U.S. Patent No. 5,803,740 (“Gesink” or APPLE-1014) 

U.S. Patent No. 4,962,469 (“Ono” or APPLE-1101) 

U.S. Patent No. 5,899,963 (“Hutchings” or APPLE-1102) 

U.S. Patent No. 5,941,837 (“Amano” or APPLE-1103) 

U.S. Patent No. 6,059,692 (“Hickman” or APPLE-1104) 

U.S. Patent No. 5,857,939 (“Kaufman” or APPLE-1105) 

U.S. Patent No. 5,808,903 (“Schiltz” or APPLE-1106) 

U.S. Patent No. 5,976,083 (“Richardson” or APPLE-1107) 

U.S. Patent No. 5,553,007 (“Brisson” or APPLE-1108) 
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U.S. Patent No. 5,916,181 (“Socci” or APPLE-1109) 

U.S. Patent No. 5,593,431 (“Sheldon” or APPLE-1110) 

U.S. Patent No. 5,511,045 (“Sasaki” or APPLE-1111) 

U.S. Patent No. 4,387,437 (“Lowrey” or APPLE-1112) 

Warwick, “Trends and Limits in the ‘Talk Time’ of Personal 

Communicators,” Proceedings of the IEEE, Vol. 83, No. 4 (April 

1995) (“Warwick” or APPLE-1113) 

 
15. I have also reviewed various supporting references and other documentation 

as further noted in my opinions below. 

16. Counsel (Fish & Richardson) has informed me that I should consider these 

materials through the lens of one of ordinary skill in the art related to the ’576 

Patent at the time of the earliest possible priority date of the ’576 Patent, and I have 

done so during my review of these materials.  The ’576 Patent was filed on 

November 21, 1997 (“the ’576 Patent Filing Date”). I have therefore used this 

date in my analysis below. 

17. I have no financial interest in the outcome of this proceeding. I am being 

compensated for my work as an expert on an hourly basis.  My compensation is 

not dependent on the outcome of these proceedings or the content of my opinions. 

18. In writing this declaration, I have considered the following: my own 

knowledge and experience, including my work experience in the fields of 
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mechanical engineering, computer science, biomedical engineering, and electrical 

engineering; my experience in teaching those subjects; and my experience in 

working with others involved in those fields.  In addition, I have analyzed various 

publications and materials, in addition to other materials I cite in my declaration. 

19. My opinions, as explained below, are based on my education, experience, 

and expertise in the fields relating to the ’576 Patent.  Unless otherwise stated, my 

testimony below refers to the knowledge of one of ordinary skill in the art as of the 

’576 Patent Filing Date, or before.  Any figures that appear within this document 

have been prepared with the assistance of Counsel and reflect my understanding of 

the ’576 Patent and the prior art discussed below. 

II. OVERVIEW OF CONCLUSIONS FORMED 

20. This declaration explains the conclusions that I have formed based on my 

analysis.  To summarize those conclusions, based upon my knowledge and 

experience and my review of the prior art references listed above, I believe that: 

 Claims 1, 3-5, 8, 10, 20, 25, 30, 39, 41, 42, and 61-65 are Obvious 

based on Ono in view of Hutchings. 

 Claims 1, 3-5, 8-11, 20, 25, 30, 36, 39-42, and 61-65 are Obvious 

based on Ono in view of Hutchings and Amano. 

 Claims 1-5, 8, 10, 20, 25, 30, 31, 39, 41, 42, 45-47, 49, and 61-65 are 

Obvious based on Ono in view of Hutchings and Conlan. 
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 Claims 48, 50, and 51 are Obvious based on Ono in view of 

Hutchings, Conlan, and Hickman. 

 Claims 1, 3-5, 8, 10, 20, 25, 30, 39, 41, 42, 61-65, 144, and 147 are 

Obvious based on Ono in view of Hutchings and Kaufman. 

 Claims 1-5, 8-11, 20, 25, 30-32, 36, 39-42, 45-47, 49, 61-65, 144, and 

147 are Obvious based on Ono in view of Hutchings, Amano, Conlan, 

and Kaufman. 

 Claims 48, 50, and 51 are Obvious based on Ono in view of 

Hutchings, Amano, Conlan, Kaufman, and Hickman. 

 Claims 1-5, 8-11, 20, 25, 30, 31, 36, 39-42, 45-47, 49, and 61-65 are 

Obvious based on Ono in view of Hutchings, Amano, and Conlan. 

 Claims 48, 50, and 51 are Obvious based on Ono in view of 

Hutchings, Amano, Conlan, and Hickman. 

 Claims 1, 3-5, 8-11, 20, 25, 30, 36, 39-42, 61-65, 144, and 147 are 

Obvious based on Ono in view of Hutchings, Amano, and Kaufman. 

 Claims 1-5, 8, 10, 20, 25, 30, 31, 39, 41, 42, 45-47, 49, 61-65, 144, 

and 147 are Obvious based on Ono in view of Hutchings, Conlan, and 

Kaufman. 

 Claims 48, 50, and 51 are Obvious based on Ono in view of 

Hutchings, Conlan, Kaufman, and Hickman. 
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21. In support of these conclusions, I provide an overview of the references and 

more detailed comments regarding the obviousness of claims 1-5, 8-11, 20, 25, 30-

32, 36, 39-42, 45-51, 61-65, 144, and 147 (“the Challenged Claims”) of the ’576 

Patent below. 

III. LEVEL OF ORDINARY SKILL IN THE ART 

22. In my opinion, one of ordinary skill in the art relating to, and at the time of, 

the invention of the ’576 Patent (POSITA) would have been someone with a 

working knowledge of activity monitoring technologies.  The person would have 

had a Bachelor of Science degree in an academic discipline emphasizing the design 

of electrical, computer, or software technologies, in combination with training or at 

least one to two years of related work experience with capture and processing of 

data or information, including but not limited to activity monitoring technologies. 

Alternatively, the person could have also had a Master of Science degree in a 

relevant academic discipline with less than a year of related work experience in the 

same discipline.   

23. Based on my experiences, I have a good understanding of the capabilities of 

a POSITA.  Indeed, I have taught, mentored, participated in organizations, and 

worked closely with many such persons over the course of my career.  Based on 

my knowledge, skill, and experience, I have an understanding of the capabilities of 

a POSITA.  For example, from my industry consulting or conference interactions, I 
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am familiar with what a POSITA would have known and found predictable in the 

art.  From teaching and supervising my post-graduate students, I also have an 

understanding of the knowledge that a person with this academic experience 

possesses.  Furthermore, I possess those capabilities myself. 

IV. LEGAL STANDARDS 

A. Terminology 

24. I have been informed by Counsel and understand that the best indicator of 

claim meaning is its usage in the context of the patent specification as understood 

by one of ordinary skill.  I further understand that the words of the claims should 

be given their plain meaning unless that meaning is inconsistent with the patent 

specification or the patent’s history of examination before the Patent Office.  

Counsel has also informed me, and I understand that, the words of the claims 

should be interpreted as they would have been interpreted by one of ordinary skill 

at the time of the invention was made (not today).  I have been informed by 

Counsel that I should use ’576 Patent Filing Date as the point in time for claim 

interpretation purposes with respect to this declaration. 

B. Legal Standards 

25. I have been informed by Counsel and understand that documents and 

materials that qualify as prior art can render a patent claim unpatentable as being 

anticipated or obvious. 
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26. I am informed by Counsel and understand that all prior art references are to 

be looked at from the viewpoint of a person of ordinary skill in the art at the time 

of the invention, and that this viewpoint prevents one from using his or her own 

insight or hindsight in deciding whether a claim is anticipated or rendered obvious. 

 Anticipation 

27. I understand that patents or printed publications that qualify as prior art can 

be used to invalidate a patent claim as anticipated or as obvious. 

28. I understand that, once the claims of a patent have been properly construed, 

the second step in determining anticipation of a patent claim requires a comparison 

of the properly construed claim language to the prior art on a limitation-by-

limitation basis. 

29. I understand that a prior art reference “anticipates” an asserted claim, and 

thus renders the claim invalid, if all limitations of the claim are disclosed in that 

prior art reference, either explicitly or inherently (i.e., necessarily present). 

 Obviousness 

30. I understand that even if a patent is not anticipated, it is still invalid if the 

differences between the claimed subject matter and the prior art are such that the 

subject matter as a whole would have been obvious at the time the invention was 

made to a POSITA. 
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31. I have been informed by Counsel and understand that a claim is unpatentable 

for obviousness and that obviousness may be based upon a combination of prior art 

references.  I am informed by Counsel and understand that the combination of 

familiar elements according to known methods is likely to be obvious when it does 

no more than yield predictable results.  However, I am informed by Counsel and 

understand that a patent claim composed of several elements is not proved obvious 

merely by demonstrating that each of its elements was, independently, known in 

the prior art. 

32. I am informed by Counsel and understand that when a patented invention is 

a combination of known elements, a court determines whether there was an 

apparent reason to combine the known elements in the fashion claimed by the 

patent at issue by considering the teachings of prior art references, the effects of 

demands known to people working in the field or present in the marketplace, and 

the background knowledge possessed by a person having ordinary skill in the art. 

33. I am informed by Counsel and understand that a patent claim composed of 

several limitations is not proved obvious merely by demonstrating that each of its 

limitations was independently known in the prior art.  I am informed by Counsel 

and understand that identifying a reason those elements would be combined can be 

important because inventions in many instances rely upon building blocks long 

since uncovered, and claimed discoveries almost of necessity will be combinations 
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of what, in some sense, is already known.  I am informed by Counsel and 

understand that it is improper to use hindsight in an obviousness analysis, and that 

a patent’s claims should not be used as a “roadmap.” 

34. I am informed by Counsel and understand that an obviousness inquiry 

requires consideration of the following factors: (1) the scope and content of the 

prior art, (2) the differences between the prior art and the claims, (3) the level of 

ordinary skill in the art, and  (4) any so called “secondary considerations” of non-

obviousness, which include: (i) “long felt need” for the claimed invention, (ii) 

commercial success attributable to the claimed invention, (iii) unexpected results 

of the claimed invention, and (iv) “copying” of the claimed invention by others. 

35. I have been informed by Counsel and understand that an obviousness 

evaluation can be based on a single reference or a combination of multiple prior art 

references.  I understand that the prior art references themselves may provide a 

suggestion, motivation, or reason to combine, but that the nexus linking two or 

more prior art references is sometimes simple common sense.  I have been 

informed by Counsel and understand that obviousness analysis recognizes that 

market demand, rather than scientific literature, often drives innovation, and that a 

motivation to combine references may be supplied by the direction of the 

marketplace. 
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36. I have been informed by Counsel and understand that if a technique has been 

used to improve one device, and a person of ordinary skill at the time of invention 

would have recognized that it would improve similar devices in the same way, 

using the technique is obvious unless its actual application is beyond his or her 

skill. 

37. I have been informed by Counsel and understand that practical and common 

sense considerations should guide a proper obviousness analysis, because familiar 

items may have obvious uses beyond their primary purposes.  I have been 

informed by Counsel and understand that a person of ordinary skill looking to 

overcome a problem will often be able to fit together the teachings of multiple 

prior art references.  I have been informed by Counsel and understand that 

obviousness analysis therefore takes into account the inferences and creative steps 

that a person of ordinary skill would have employed at the time of invention. 

38. I have been informed by Counsel and understand that a proper obviousness 

analysis focuses on what was known or obvious to a person of ordinary skill at the 

time of invention, not just the patentee.  Accordingly, I understand that any need or 

problem known in the field of endeavor at the time of invention and addressed by 

the patent can provide a reason for combining the elements in the manner claimed. 

39. I have been informed by Counsel and understand that a claim can be obvious 

in light of a single reference, without the need to combine references, if the 
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elements of the claim that are not found explicitly or inherently in the reference 

can be supplied by the common sense of one of skill in the art. 

40. I have been informed by Counsel and understand that there must be a 

relationship between any such secondary considerations and the invention, and that 

contemporaneous and independent invention by others is a secondary consideration 

supporting an obviousness determination. 

41. In sum, my understanding is that prior art teachings are properly combined 

where one of ordinary skill having the understanding and knowledge reflected in 

the prior art and motivated by the general problem facing the inventor, would have 

been led to make the combination of elements recited in the claims.  Under this 

analysis, the prior art references themselves, or any need or problem known in the 

field of endeavor at the time of the invention, can provide a reason for combining 

the elements of multiple prior art references in the claimed manner. 

42. I have been informed by Counsel and understand that in an inter partes 

review (IPR), “the petitioner shall have the burden of proving a proposition of 

unpatentability,” including a proposition of obviousness, “by a preponderance of 

the evidence.” 35 U.S.C. § 316(e). 
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V. THE ’576 PATENT 

A. Overview of the ’576 Patent 

43. The ’576 Patent is directed to an “electronic device, system and method to 

monitor and train an individual on proper motion during physical movement.”  

APPLE-1001, Abstract.  The ’576 Patent recognizes that “a variety of sensing, 

monitoring, and notification devices” have been previously created “[i]n order to 

study and better understand safe human movement.”  Id., 1:18-21.  Such known 

devices could “quantitatively determine a range of motion of a human joint in 

angular degrees” and “provide a warning to the wearer through an audible alarm or 

flashing light . . . when a predetermined angle of flexion or extension has been 

exceeded.”  Id., 1:30-41.  Accordingly, the ’576 Patent acknowledges that it was 

previously well-known to determine whether human motion exceeds a threshold 

and, if so, provide a notification. 

44. The ’576 Patent’s specification describes a “self-contained movement 

measuring device 12” with a “movement sensor 13.”  APPLE-1001, 3:32-50.  The 

movement sensor 13 is illustrated as being both together with the other 

components of the device (FIGS. 2A, 2B) and also as being “separate from the 

remaining components 15 of the device 12” (FIG. 2C).  Id.  FIGS. 2B and 2C are 

annotated below based on the description in the specification. 
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APPLE-1001 (’576 Patent), FIGS. 2B, 2C1 

45. According to the specification, the movement sensor “detects movement and 

measures associated data such as angle, speed, and distance” and, in particular, 

measures “angular velocity of physical movement for subsequent interpretation.” 

APPLE-1001, 4:38-45, 2:40-41.  In various embodiments, the movement sensor 

may be an “accelerometer which is capable of detecting angles of movement in 

multiple planes” or “multiple accelerometers each capable of measuring angles of 

movement in only one plane.”  Id., 4:38-48. 

                                           
1 I have annotated the figures throughout my declaration in color. 
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46. The ’576 Patent further explains that the “movement sensor 30 is 

electronically connected to a microprocessor 32 which receives the signals 

generated by the movement sensor 30 for analysis and subsequent processing.”  

APPLE-1001, 4:52-55.  Once the microprocessor has received and analyzed the 

movement data, the microprocessor responds based on “user-programmable 

configuration information” such as “an event threshold.”  Id., 4:40-65, 5:67-6:9.  

For example, the device may respond by using indicators (visual, audible, or 

vibration-based) that are “activated to notify the wearer when a predetermined 

angle of motion has been exceeded.”  Id., 4:4-25. 

47. According to the ’576 Patent, data collected by the movement measurement 

device may be downloaded to a computer.  APPLE-1001, 8:31-34.  And, “[o]nce 

the data from the device 12 has been downloaded to the computer 16, software 

running on the computer 16 is used to interpret the data and produce a number of 

reports and histories.” Id., 8:40-43. 

48. As I show in the following sections, all of the above concepts were well-

known before the ’576 Patent. 

B. Prosecution History of the ’576 Patent 

49. The ’576 Patent issued from U.S. App. No. 08/976,228.  During prosecution, 

the three independent claims were each amended to describe the measuring device 

as a “portable, self-contained” device capable of measuring data associated with 

22



“unrestrained movement in any direction.”  APPLE-1002, 40-42. Responsive to 

these amendments, the Examiner allowed the pending 29 claims.  Id., 29. 

50. Fourteen years after issuance of the ‘576 Patent, Patent Owner filed a 

request for reexamination, seeking to add 129 new claims without disturbing the 

original 29 claims.  APPLE-1007, 438-543.  The reexamination request included 

prior art that, according to Patent Owner, raised a substantial new question of 

patentability yet did not teach every element of the independent claims.  See, e.g., 

id., 494, 499, 502.  The Examiner, however, disagreed and found that the cited 

prior art did teach every limitation of the independent claims, including the 

“portable, self-contained” and “unrestrained movement in any direction” features.  

Id., 246-300.  In response, Patent Owner amended the independent claims to 

include “detecting a first user- defined event …” and “storing first event 

information ….”  Id., 34-39.  Notably, as part of these amendments, Patent Owner 

added an additional 27 new claims beyond the 129 new claims presented in the 

reexamination request, bringing the total number of new claims to 156. Id. at 168-

206.  The reexamination resulted in a reexamination certificate with 185 claims 

(see APPLE-1006).  The claims address in my Declaration are those found in the 

reexamination certificate. 

51. As I explain below in Section VI, all of these original and newly-claimed 

features were known and rendered obvious by prior art references. 
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C. Claim Construction 

 “a movement sensor” (claim 1 and claims depending 
therefrom) 

52. The ’576 Patent describes a movement sensor in the following passage: 

 

 
APPLE-1001, 4:35-48.  As noted above, in some implementations, the movement 

sensor is an accelerometer capable of detecting velocity and angles of movement 

in multiple planes.  Id.  In some implementations, a movement sensor includes 

“multiple accelerometers, each capable of measuring angles of movement in only 

one plane.”  Id.  Consistent with both implementations, claim 170 recites “wherein 

said movement sensor comprises at least one accelerometer.”  APPLE-1001, 

11:19-21.  In view of the intrinsic description of “a movement sensor,” a POSITA 

would have understood that “a movement sensor” encompasses one or more 

sensors capable of detecting movement and measuring movement data associated 
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with the detected movement.  The movement data may include rotation rate, angle, 

velocity, and/or distance measurements. 

53. The ’576 prosecution history supports this construction.  In the Patent 

Owner-filed reexamination request, Patent Owner argued that a plurality of sensors 

(speed sensor 18 and loft sensor 20) in a prior art reference (U.S. Patent No. 

5,636,146) together disclose the “movement sensor” in the claims.  APPLE-1007, 

491-99.  In the Office Action following the reexamination request, the Examiner 

agreed.  APPLE-1007, 248, 250-51.  Accordingly, the construction in my 

declaration is supported by intrinsic evidence, the prosecution history, the Patent 

Owner’s remarks, and the Examiner. 

VI. MANNER IN WHICH THE PRIOR ART REFERENCES RENDER 
THE ’576 CLAIMS UNPATENTABLE 

A. GROUND 1—Claims 1, 3-5, 8, 10, 20, 25, 30, 39, 41, 42, and 61-65 
are Obvious based on Ono in view of Hutchings 

 Overview of Ono2 

54. Ono describes “an exercise measuring instrument in which exercise in 

walking, jogging, running, and the like is measured utilizing an acceleration 

sensor.”  APPLE-1101, 1:5-10.  Ono’s exercise measuring instrument is 

                                           
2 General descriptions that I have provided for references and combinations are 

incorporated into each subsection addressing/applying those references, as are the 

discussions of combinations. 
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implemented as “an electronic wrist watch to which a pedometer is installed.”  

APPLE-1101, 3:10-11, FIG. 1.  An exploded perspective view of an example of 

Ono’s device is shown in FIG. 1, reproduced below.  APPLE-1101, 2:30-32, 3:10-

11. 

 

Ono, FIG. 1 

A block diagram of an example of Ono’s device is shown in FIG. 14, reproduced 

below.  APPLE-1101, 2:59-60, 13:18-19. 
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Ono, FIG. 14 

55. As shown in FIG. 14, Ono’s device includes a “key-input section 51 

compris[ing] switches S1 to S6.”  APPLE-1101, 13:25-27.  The switches allow a 

user to select one of five display modes: (1) time-display mode, (2) step-counting 

mode, (3) present data display mode, (4) data-recall mode, and (5) data-setting 

mode.  APPLE-1101, 13:34-42, 13:55-57, 16:18-17:23, 19:18-67, FIGS. 20-21.  

The switches also allow the user to select one of three exercising modes: (1) 

walking mode, (2) exercising-walking mode, and (3) jogging mode.  APPLE-1101, 

13:51-57, 18:14-19, 18:67-19:6.  In the data-setting mode, the switches allow the 

user to set a stride length for each of the three exercising modes, sex, age, weight, 

and target numbers.  APPLE-1101, 13:40-42, 13:55-61, 18:28-19:17, 20:8-15, 
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FIGS. 20-21.  In the step-counting mode, switch S2 functions to start and/or stop 

the step-counting operation.  APPLE-1101, 17:24-50.  The modes and the data set 

by the user are stored in registers of random access memory RAM 101.  APPLE-

1101, 13:30-63, FIG. 15. 

56. When the device is in the step-counting mode operation, Ono’s “control 

section 49 compris[ing] a CPU” (central processing unit) calculates the number of 

steps, number of steps per minute (walking pitches), mean walking speed, and 

distance-walked based on the acceleration sensor signal and the stride-length data 

corresponding to the exercise mode previously set through the key-input section 

51.  APPLE-1101, 8:60-9:12, 12:17-35, 14:44-45, 15:10-13, 15:33-46, 15:61-66, 

17:26-34.  The processor calculates “distance-walked every time period of 10 sec... 

from the stride length and the number of steps taken.”  APPLE-1101, 15:61-66, 

14:1-15, FIG. 18 (step a16).  The processor then “discriminate[s] whether or not the 

distance-walked has reached the target distance.”  APPLE-1101, 15:66-68, FIG. 18 

(step a17).  “[I]f the distance-walked has reached the target distance,” the processor 

outputs a signal to the alarm-driving section 103 for generating an alarm sound 

from speaker 104.  APPLE-1101, 13:23-25, 15:26-28, 16:2-4, FIG. 18 (steps a18).   

57. The processor stores the calculated data into RAM 101, which includes 

“[r]egisters A and B... for storing walking speeds and walking pitches” and “[a] 

step-register G, a distance-walked register H and a calorie-consumption register I... 
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for storing accumulative number of steps taken, accumulative distance walked and 

accumulative calorie-consumption which are under measurement, respectively.”  

APPLE-1101, 14:1-15.  The processor sends the calculated data to the display, 

through which “various data obtained in the step-counting mode are displayed,” 

including “data of the step-register G and the distance register [H] which are 

sequentially renewed every 10 seconds are displayed.”  APPLE-1101, 16:21-22, 

17:42-50, 5:21-36, 9:12-14, 12:35-38, FIG. 22.  When the step-counting mode 

operation is stopped, the processor stores the date, duration, total step count, total 

distance-walked, and total calorie-consumption in registers D of RAM 101 for later 

retrieval and display in the data-recall mode.  APPLE-1101, 13:65-14:29, 16:24-

25, 17:10-50, 18:20-24, 20:37-53, FIGS. 15, 20 (steps C14-C15), 23.  An example of 

the registers of RAM 101 is shown in FIG. 15, reproduced below.  APPLE-1101, 

13:30-31, 2:61-62. 
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Ono, FIG. 15 

 Overview of Hutchings 

58. Hutchings describes “a device for measuring the performance of a runner 

[that] utilizes accelerometers and rotational sensors to measure the speed, distance 

traveled, and height jumped of a person.”  APPLE-1102, 3:5-8.  In Hutchings, “a 

measuring system 10” may be located at the wrist of the user, as shown in FIG. 7 

reproduced below.  APPLE-1102, 3:32-44, 4:7-26, 10:43-51, FIGS. 7-9. 
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Hutchings, FIG. 7 

59.  Hutchings’ measuring system includes linear accelerometers to measure 

accelerations in three dimensions, rotational sensors to provide the angle of 

rotation along each axis of the translational coordinate, and a microprocessor to 

measure distance traveled during each cycle.  APPLE-1102, 4:21-32, 4:55-65, 5:3-

16, 8:44-9:17, 9:48-10:42, FIGS. 6-7.  A block diagram of an example of 

Hutchings’ device is shown in FIG. 6, reproduced below.  APPLE-1102, 4:4-6. 
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Hutchings, FIG. 6 

60. With respect to FIG. 6, Hutchings describes that analog processor 52 

determines the components of motion in the reference frame and the angle from the 

vertical coordinate, and measures instantaneous acceleration of the device along 

the reference coordinates during each cycle.  APPLE-1102, 7:5-65, 8:61-64, 9:62-

65, 10:43-12:14.  Alternately, the analog processor 52 may employ an analog to 

digital converter and a microprocessor to determine the components of motion.  

APPLE-1102, 9:1-7. Microprocessor 56 measures the distance L traversed during 

each cycle by integrating the acceleration signals.  APPLE-1102, 9:13-17, 9:65-67, 

12:15-37.  Microprocessor 64 maintains the running elapse time, calculates the 
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distance traversed by summing the length of all steps taken, and calculates the 

instantaneous and average speed of the user.  APPLE-1102, 10:10-14.  “The 

running elapsed time, the distance traversed and the speed may be selectively 

displayed on display 68. These values may also be stored in a non-volatile memory 

(not shown) associated with microprocessor 64 for virtually an indefinite period of 

time.”  APPLE-1102, 10:14-18. 

61. Hutchings explains that “many modifications and variations” to the device 

are possible, such as “all electronic components [being] disposed” at the same 

location of a user’s body, in which case “there may be no desire for a transmitter 

and receiver circuit.”  APPLE-1102, 10:31-37.  As further examples of 

modifications, Hutchings describes that “processor 52 may process the received 

signals digitally by employing an analog to digital converter and a 

microprocessor,” “the output terminals of units 48 and 50 may be coupled directly 

to a microprocessor 56, via an analog to digital converter 54,” “analog to digital 

converter 54 may be part of microprocessor 56,” “[i]t may also be possible to 

combine the functions performed by microprocessors 56 and 64 into one 

microprocessor,” and “it is also possible to combine the functions performed by 

signal processor 52, and microprocessors 56 and 64 into one such microprocessor.”  

APPLE-1102, 9:10-12, 10:37-42. 
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 Ono-Hutchings Combination 

62. A POSITA would have been motivated and would have found it obvious to 

implement Ono’s device with a measuring system that includes accelerometers to 

measure accelerations in three dimensions, and rotational sensors to provide the 

angle of rotation along each axis of the translational coordinate, and a 

microprocessor to calculate distance traveled during each cycle, as suggested by 

Hutchings.  APPLE-1102, 4:21-32, 4:55-65, 5:3-16, 8:44-9:17, 9:48-12:37, FIGS. 

6-7.  Further, to the extent that Ono’s control section 49 were considered to not be 

a microprocessor, a POSITA would have found it obvious to implement Ono’s 

control section 49 using a microprocessor that performs the functions of Ono’s 

control section 49 and the functions of Hutchings’ microprocessor 64, as suggested 

by Hutchings.  APPLE-1102, 10:10-14, 10:31-37.  The block diagram below 

shows an example of Ono’s device that includes Hutchings’ measuring system and 

a microprocessor as control section 49.   
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Ono’s FIG. 14 device modified in view of Hutchings3 

63. In pursuing specific design options for such a device, the POSITA would 

have explored prior art references like Hutchings that describe movement 

measuring devices that are also worn on the user’s wrist and are expressly directed 

to improving pedometer devices like Ono’s that “count the number of steps taken 

                                           
3 Annotations and color are added to the figures unless otherwise noted. 

microprocessor 
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and for a particular stride length, the approximate distance traversed can be 

determined.”  APPLE-1102, 1:60-64, 3:32-44, 4:7-26, 10:43-51, FIGS. 7-9; 

APPLE-1101, 15:61-66, 14:1-15, FIG. 18 (step a16).  Hutchings explains that 

“stride length... is different for each person and will vary for different speeds of 

running,” and “[i]t is, therefore, a difficult task to determine the correct stride 

length for an individual runner at various speeds,” and thus “pedometer 

measurements are only useful as an approximation of distance traversed.”  APPLE-

1102, 2:15-31.  The POSITA would have been motivated to use Hutchings’ 

measuring system to leverage the stated benefits of providing “accurate 

measurements” of speed and distance traversed without manually setting stride 

lengths for different exercise modes.  APPLE-1102, 2:45-61; APPLE-1101, 13:40-

42, 18:28-19:6.   

64. The POSITA would have also been motivated to use Hutchings’ measuring 

system for the benefit of providing the user with different options for obtaining 

measurements of speed and distance based on the user’s desire in accuracy and 

battery conservation.  Id.  Hutchings describes a mode select switch that a user 

depresses to use Hutchings’ measuring system to calculate speed and distance.  

APPLE-1102, 9:48-10:18.  A POSITA would have found obvious to turn off 

Hutchings’ measuring system to conserve battery when Hutchings’ measuring 

system is not being used.  See, e.g., APPLE-1106, 8:12-18; APPLE-1014, 7:40-44, 
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9:46-49, 16:10-15; APPLE-1010, 4:20-25.  The user is advantageously provided 

the option to select between accurate distance/speed/velocity measurements using 

Hutchings’ measuring system at the expense of higher battery consumption or less 

accurate distance/speed/velocity measurements using Ono’s calculations for the 

benefit of lower battery consumption.  Id.   

65. Moreover, a POSITA would have viewed the implementation of Ono’s 

device in a manner that applied Hutchings’ suggested measuring system as merely 

the predictable result (e.g., a pedometer that includes accelerometers to measure 

accelerations in three dimensions, rotational sensors to provide the angle of 

rotation along each axis of the translational coordinate, and microprocessors to 

calculate the speed and distance traveled during each cycle) of combining known 

prior elements according to known methods.  The POSITA would have appreciated 

that the Ono-Hutchings combination does not change the hallmark aspects of either 

of these references, and any modifications needed to incorporate Hutchings’ 

teachings into Ono’s device to provide the above benefits would have been 

predictable with a foreseeable chance of success and within the skill of a POSITA.  

The respective teachings would work together in combination just as they did 

apart, with Hutchings’ suggestion merely improving/adding to Ono’s device.   

37



 Analysis of Claims 1, 3-5, 8, 10, 30, 39, 41, 42, and 61-65 

a) Claim 1 

[1pre] A portable, self-contained device for monitoring movement of body 
parts during physical activity, said device comprising: 

66. To the extent the preamble is limiting, Ono describes a portable, self-

contained device for monitoring movement of body parts during physical activity.  

Ono describes “an exercise measuring instrument in which exercise in walking, 

jogging, running, and the like is measured utilizing an acceleration sensor.”  

APPLE-1101, 1:5-10.  Ono’s exercise measuring instrument is implemented as “an 

electronic wrist watch to which a pedometer is installed,” includes a battery, is “to 

be worn on a body of an exerciser,” and “made compact in size.”  APPLE-1101, 

3:10-11, 2:1-4, 2:22-26, 3:24-26, FIG. 1.  An exploded perspective view of an 

example of Ono’s device is shown in FIG. 1, reproduced below.  APPLE-1101, 

2:30-32, 3:10-11. 
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Ono, FIG. 1 

[1a] a movement sensor capable of measuring data associated with 
unrestrained movement in any direction and generating signals indicative of 
said movement; 

67. Ono’s device includes “an acceleration sensor... for outputting a waveform 

signal representative of an acceleration which is received by said acceleration 

sensor in response to movements of said exerciser.”  APPLE-1101, 2:1-7, 3:10-

4:13, 5:64-6:1, 6:41-48, 7:20-27, 7:61-68, 8:16-42, 8:58-60, 13:18-29.  Ono 

describes that “when the user of the device wears the electronic wrist watch... on 

his or her wrist and walks or runs moving his or her wrist up and down,... the 

acceleration sensor 5 vibrates.”  APPLE-1101, 3:49-4:9.  “The output signal of the 
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acceleration sensor 40 is applied to a waveform-shaping section 47 and the 

waveform-shaping section 47 shapes the output signal of the acceleration sensor 40 

into a pulse signal having a square waveform.  The pulse signal outputted from the 

waveform-shaping section 47 is counted by a counter 48 and the count data is 

supplied to a control section 49.”  APPLE-1101, 8:60-67.  “The control section 49 

calculates the number of steps on the basis of the count data delivered from the 

counter 48.”  APPLE-1101, 9:5-7.  Ono’s acceleration sensor 40, waveform-

shaping section 47, and counter 48 form a movement sensor that measures data and 

generates signals indicative of movement. 

68. If Ono’s movement sensor were considered to not be capable of measuring 

data associated with unrestrained movement in any direction, Ono-Hutchings 

yields a device including accelerometers to measure accelerations in three 

dimensions and rotational sensors to provide the angle of rotation along each axis 

of the translational coordinate.  APPLE-1102, 3:22-26 (“One set of three-

component linear accelerometers and one set of three-component rotational sensors 

may be employed to resolve the absolute motion of a person...”), 4:44-6:54, 8:44-

59, 9:59-10:2, FIG. 6; supra Section VI.A.3; infra Ground 1, claim 5.  “Each 

accelerometer may convert the measured acceleration into a corresponding signal, 

which may be preferably employed by microprocessor 6 to accomplish movement 

measurements.”  APPLE-1102, 5:9-12.  “Each rotational sensor converts the 
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measured angle into a corresponding signal, which is employed by a 

microprocessor 6 to calculate information related to the user’s movements, such as 

user’s speed, distance traveled and the height jumped.”  APPLE-1102, 4:60-65.   

69. Hutchings further discloses that “unit 48 may preferably contain the linear 

accelerometers employed to measure accelerations... in three dimensions.”  

APPLE-1102, 8:49-55.  “Unit 50 may preferably contain rotational sensors 

employed to... provide the angle of rotation along each axis of the translational 

coordinate. The output terminals of units 48 and 50 are coupled to input terminals 

of a processor 52.”  APPLE-1102, 8:56-61.  Processor 52 determines the 

components of motion in the reference frame and the angle from the vertical 

coordinate, and measures instantaneous acceleration of the device along the 

reference coordinates during each cycle.  APPLE-1102, 7:5-65, 8:61-64, 9:62-65, 

10:43-12:14.  Microprocessor 56 measures the distance L traversed during each 

cycle by integrating the acceleration signals.  APPLE-1102, 9:13-17, 9:65-67, 

12:15-37. 

70. Hutchings’ measuring system forms a movement sensor capable of 

measuring data associated with unrestrained movement in any direction and 

generating signals indicative of the movement.  For the reasons previously 

discussed, a POSITA would have been motivated and would have found it obvious 

to implement Ono’s device with an improved multi-axis acceleration and rotation 
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measuring system such as in Hutchings to leverage the stated benefits of providing 

“accurate measurements” of speed and distance traversed without manually setting 

stride lengths for different exercise modes.  Supra Section VI.A.3; APPLE-1102, 

2:45-61; APPLE-1101, 13:40-42, 18:28-19:6. 

71. In accordance with the construction of “movement sensor” discussed in 

Section V.C, the block diagram below shows an example of a device with a 

movement sensor (enclosed in red) that includes Ono’s acceleration sensor 40, 

waveform-shaping section 47, and counter 48, and Hutchings’ measuring system: 
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Ono’s FIG. 14 device modified in view of Hutchings 

[1b] a power source; 

72. Ono’s device includes a “circuit board 4 [that] is formed with a battery 

receiving portion 8 where a battery 9 is accommodated.”  APPLE-1101, 3:24-26.  

As shown in FIG. 1 below, Ono’s device includes battery 9.  APPLE-1101, FIG. 9.  

A POSITA would have understood or at least found obvious that battery 9 is a 

power source for Ono’s device.     

microprocessor 

movement sensor 
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Ono, FIG. 1 

[1c] a microprocessor connected to said movement sensor and to said power 
source, 

73. Ono discloses that “[o]n the circuit board 4 are mounted an acceleration 

sensor 5 and a LSI [large-scale integration circuit/chip] 7” and “the circuit board 4 

is formed with a battery receiving portion 8 where a battery 9 is accommodated.”  

APPLE-1101, 3:18-26.  Ono further discloses that battery is consumed “while the 

instrument is not turned off and is left turned on to operate” for counting the 

number of steps while the user is exercising.  APPLE-1101, 14:30-64.  Ono further 

describes a “control section 49 compris[ing] a CPU” (central processing unit) that 

battery 
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“reads out from ROM 50 a micro-programme stored in the ROM 50 to operate the 

present system when the operator inputs a system-start signal” and “executes 

processes in accordance with the micro-programme”, including calculating the 

number of steps, number of steps per minute (walking pitches), mean walking 

speed, and distance-walked based on the acceleration sensor signal and the stride-

length data corresponding to the exercise mode previously set through the key-

input section 51.  APPLE-1101, 8:60-9:12, 12:17-35, 14:44-45, 15:10-13, 15:33-

46, 15:61-66, 17:26-34.  

74. Based on Ono’s teachings regarding the operations that are executed by the 

control section 49 and the depiction of the input/output connections to control 

section 49 in FIG. 14, a POSITA would have understood that Ono used the phrase 

“control section” to describe a conventional microprocessor structure that was 

ubiquitous in such devices at the time.  Indeed, this fact is confirmed by Ono’s 

disclosure that the control section 49 must read out a micro-programme stored in 

the ROM and execute processes in accordance with the micro-programme.  

APPLE-1101, 8:60-9:12, 13:22-23.  Based upon my knowledge and experience in 

this field and my review of these above-cited characteristics taught by Ono, a 

POSITA would have understood that Ono referred to the control section in the 

device in a manner that was interchangeable with the conventional microprocessor-

controlled structure used in such devices—a typical usage at the time as 
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corroborated by other publications.  See, e.g., APPLE-1010, 6:54-63, FIG. 6; 

APPLE-1102, 4:21-32; APPLE-1107, 16:35-38, FIG. 9; APPLE-1108, FIG. 6; 

APPLE-1109, FIG. 3, 8:35-9:44; APPLE-1110, FIG. 1, 7:33-36, 8:39-40; APPLE-

1111, 12:13-21, FIGS. 11, 17.  I refer to these other publications here merely for 

purposes of corroborating this common background knowledge recognizable to a 

POSITA at the time.  For at least these reasons, Ono described a conventional 

microprocessor structure in the device.   

75. Alternatively, even if Ono’s teachings of a “control section” were considered 

to not expressly disclose the “microprocessor” recited in this element, other 

publications confirm that such microprocessors were implemented in such devices 

at that time for controlling operations—as demonstrated in Hutchings. Hutchings 

discloses that its measuring system includes “interrelated elements such as linear 

accelerometers; rotational sensors; a microprocessor to calculate distance and 

height of each step;... a battery....”  APPLE-1102, 4:21-32.  Hutchings describes a 

microprocessor 64 that operates a “run mode sequence” where it maintains the 

running elapse time, calculates the distance traversed by summing the length of all 

steps taken, and calculates the instantaneous and average speed of the user.  

APPLE-1102, 10:10-14.  “The running elapsed time, the distance traversed and the 

speed may be selectively displayed on display 68. These values may also be stored 

in a non-volatile memory (not shown) associated with microprocessor 64 for 
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virtually an indefinite period of time.”  APPLE-1102, 10:14-18.  “In the watch 

mode, microprocessor 64 selectively provides to display 68, normal watch 

functions such as time of day, date, an alarm signal when a preselected time 

occurs.”  APPLE-1102, 10:28-30. 

76. As discussed above, Ono-Hutchings yields a device including the movement 

sensor that generates signals that are used by a microprocessor to calculate 

information related to the user’s movements.  Supra Section VI.A.3; supra Ground 

1, [1a].  Based on Ono’s and Hutchings’ teachings, a POSITA would have found 

obvious that the Ono-Hutchings’ device further includes a battery that is consumed 

while the device is operating to measure and calculate movement information 

while the user is exercising.  A POSITA would have recognized that the 

microprocessor, which calculates movement information, is connected to the 

battery which supplies power for operation of the microprocessor.  See, e.g., 

APPLE-1107, 16:35-38, FIG. 9; APPLE-1010, 6:54-63, FIG. 6; APPLE-1108, 

FIG. 6; APPLE-1109, FIG. 3, 8:35-9:44; APPLE-1110, FIG. 1, 7:33-36, 8:39-40; 

APPLE-1111, 12:13-21, FIGS. 11, 17.   

77. As discussed above, a POSITA would have understood that Ono’s control 

section is a microprocessor, or would have used a microprocessor to implement the 

described functions of the control section as suggested by Hutchings.  Accordingly, 

47



the block diagram below shows an example of the Ono-Hutchings’ device 

including a microprocessor connected to the movement sensor and the battery: 

 

Ono’s FIG. 14 device modified in view of Hutchings 

[1d] said microprocessor capable of receiving, interpreting, storing and 
responding to said movement data based on user-defined operational 
parameters,  

78. Ono’s device includes a “key-input section 51 compris[ing] switches S1 to 

S6.”  APPLE-1101, 13:25-27.  The switches allow a user to select one of five 

microprocessor

movement sensor 

battery 
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display modes: (1) time-display mode, (2) step-counting mode, (3) present data 

display mode, (4) data-recall mode, and (5) data-setting mode.  APPLE-1101, 

13:34-42, 13:55-57, 16:18-17:23, 19:18-67, FIGS. 20-21.  The switches also allow 

the user to select one of three exercising modes: (1) walking mode, (2) exercising-

walking mode, and (3) jogging mode.  APPLE-1101, 13:51-57, 18:14-19, 18:67-

19:6.  In the step-counting mode, switch S2 functions to start and/or stop the step-

counting operation.  APPLE-1101, 17:24-50.  In the data-setting mode, the 

switches allow the user to set a stride length for each of the three exercising modes, 

sex, age, weight, and target numbers.  APPLE-1101, 13:40-42, 13:55-61, 18:28-

19:17, 20:8-15, FIGS. 20-21.  A POSITA would have found obvious that, in 

addition to target number of steps and target calorie consumption, the switches 

allow the user to set target distance that the device stores in register OH and uses to 

“discriminate[] whether or not the distance-walked has reached the target distance 

OH.”  Id.; APPLE-1101, 15:61-16:4. 

79. The selected display mode is stored in mode register M of RAM 101 as 

follows: “M=0 is set when a time-display mode is selected, M=1 is set when a 

step-counting mode is selected, M=2 is set when a display-mode is selected for 

displaying number of steps, a distance-walked, a mean speed, calorie consumption, 

M=3 is set when a display-mode is selected for displaying various data of each 

date and M=4 is set when a data-setting mode is selected.”  APPLE-1101, 13:30-
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42.  A “register S also is a flag which is set at ‘1’ in the step-counting mode.”  

APPLE-1101, 13:44-45.  “A register N serves as a register for storing numerals 

corresponding to the exercise mode set by the user, such as the walking mode, the 

exercise-walking mode or the jogging mode.”  APPLE-1101, 13:51-54.  “Stride-

length registers W1, W2 and W3 are registers for storing stride-lengths set in the 

walking, exercise walking or jogging mode, respectively.  Registers OG, OH and 

OI serve to store a target number of steps, a target distance and target calorie 

consumption.”  APPLE-1101, 13:55-61.  Ono’s FIG. 15 (below) illustrating the 

registers of RAM 101 is highlighted to show the registers that are set based on user 

input: 
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Ono, FIG. 15 

80. As illustrated in Ono’s FIG. 18, only when register S=1, which is set when 

the user selects and has started the step-counting mode, the processor performs the 

following operations every 10 seconds: 

Step Operation 

a10 obtains/receives the number of steps taken in the last 10 seconds 

a11 calculates a mean walking speed from the stride-length corresponding to 

the exercise mode and the number of steps taken, and  
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stores the mean walking speed at the register A 

a12 calculates pitches per minute (number of steps/minute), and  

stores it at the register B 

a13 calculates the calorie consumption and stores it at register I 

a14 discriminates whether or not the calorie consumption I has reached the 

target calorie consumption OI which has previously been set 

a15 causes an alarm sound to be generated if the calorie consumption I has 

reached the target calorie consumption OI 

a16 calculates distance-walked from the stride length and the number of steps 

taken, 

adds the calculated distance-walked to the value stored in the distance-

walked register H, and  

stores the sum at the distance-walked register H 

a17 “discriminate[s] whether or not the distance-walked has reached the target 

distance OH” 

a18 causes an alarm sound to be generated “if the distance-walked has reached 

the target distance OH” 

a19 adds the number of steps taken to the value of the step register G to obtain 

the accumulative number of steps taken 
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a20 “discriminate[s] whether or not the accumulative number of steps has 

reached the target number of steps OG” 

a21 causes an alarm sound to be generated “[i]f the above accumulative 

number of steps has reached the target number of steps OG” 

a24 causes “various data obtained in the step-counting mode” to be displayed 

 
APPLE-1101, 8:57-9:14, 13:18-29, 13:44-45, 14:65-16:27, FIG. 18.  The number 

of steps taken in the last 10 seconds, mean walking speed, steps/minute, distance-

walked, and accumulative number of steps taken collectively form movement data 

that the microprocessor receives, interprets, stores, and responds to.  Id. 

81. As highlighted in Ono’s FIG. 18 below, the processor receives (step a10), 

interprets/analyzes (steps a11, a12, a16, a17, a19, a20), stores (steps a11, a12, a16, a19), and 

responds to (steps a18, a21, a24) movement data when the user has selected and 

started the step-counting mode.  Id.  Additionally, the processor interprets/analyzes 

(steps a11, a16, a17) and responds to (step a18, a24) movement data based on the 

exercise mode and the stride length previously set by the user.  Id.; APPLE-1101, 

13:40-42, 13:51-61, 18:28-19:17, 20:8-15, FIGS. 20-21.  Further, the processor 

interprets/analyzes (steps a16, a17, a20) and responds to (steps a18, a21) movement 

data based on the target distance OH and the target number of steps OG previously 

set by the user.  Id.  When the user stops the step-counting mode operation which 

sets register S=0, the processor stores the date, duration, total step count, total 
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distance-walked, and total calorie-consumption in registers D of RAM 101 for later 

retrieval and display in the data-recall mode.  APPLE-1101, 13:65-14:29, 16:24-

25, 17:10-50, 18:20-24, 20:37-53, FIGS. 15, 20 (steps C14-C15), 23.  The modes, 

the step-counting start/stop, the stride lengths, the target distance, and the target 

number of steps set by the user are user-defined operational parameters that affect 

the operations performed by the device.  APPLE-1101, 13:44-61, 14:65-16:27; 

APPLE-1001, 7:6-16, 8:56-10:23, FIG. 5.   
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82. Similarly, Hutchings describes that “[m]ode select unit 66 is employed at the 

start of the run or jog by depressing an appropriate switch... which is coupled to 

microprocessor 64....”  APPLE-1102, 9:49-52.  When the switch is not depressed 

and the device is “[i]n the watch mode, microprocessor 64 selectively provides to 

display 68, normal watch functions such as time of day, date, an alarm signal when 

flag set based  
on user-defined  
operational  
parameter 

receive, interpret, store, and respond  
to movement data when flag is set 

interpret and respond to movement data 
based on user-defined operational parameters 
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a preselected time occurs.”  APPLE-1102, 10:28-30.  When the switch is 

depressed, the device performs “a run mode sequence” where the accelerometer 

“unit 48 generates acceleration signals along the translational coordinates” and 

“[r]otational sensors contained in unit 50 begin to track the rotation of the [sensors] 

along the translational coordinate system.”  APPLE-1102, 9:48-62.  “Each 

accelerometer may convert the measured acceleration into a corresponding signal, 

which may be preferably employed by microprocessor 6 to accomplish movement 

measurements.”  APPLE-1102, 5:9-12.  “Each rotational sensor converts the 

measured angle into a corresponding signal, which is employed by a 

microprocessor 6 to calculate information related to the user’s movements, such as 

user’s speed, distance traveled....”  APPLE-1102, 4:60-65. “The output terminals 

of units 48 and 50 are coupled to input terminals of a processor 52.”  APPLE-1102, 

8:59-61.  Processor 52 determines the components of motion in the reference frame 

and the angle from the vertical coordinate, and measures instantaneous acceleration 

of the device along the reference coordinates during each cycle.  APPLE-1102, 

7:5-65, 8:61-64, 9:62-65, 10:43-12:14.  Microprocessor 56 measures the distance L 

traversed during each cycle by integrating the acceleration signals.  APPLE-1102, 

9:13-17, 9:65-67, 12:15-37. 

83. Microprocessor 64 maintains the running elapse time, calculates the distance 

traversed by summing the length of all cycles, and calculates the instantaneous and 
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average speed of the user.  APPLE-1102, 10:10-14.  Hutchings discloses that “[t]he 

total distance traveled is the sum of distances for all cycles.  The velocity of travel 

is the distance of the cycle, or several cycles, divided by the time it takes to travel 

this distance.”  APPLE-1102, 10:47-11:3, 11:41-44, 12:15-38.  “The running 

elapsed time, the distance traversed and the speed may be selectively displayed on 

display 68. These values may also be stored in a non-volatile memory (not shown) 

associated with microprocessor 64 for virtually an indefinite period of time.”  

APPLE-1102, 10:14-18.     

84. A POSITA would have found obvious that the microprocessor receives 

signals from the measuring system and calculates the total distance traveled, speed, 

and the velocity of travel when the mode select switch has been depressed by the 

user to select the run mode.  APPLE-1102, 9:48-10:30; see, e.g., APPLE-1106, 

8:12-18; APPLE-1014, 7:40-44, 9:46-49, 16:10-15; APPLE-1010, 4:20-25.  The 

distance traversed during each cycle, total distance, speed, and velocity collectively 

form movement data that the microprocessor receives, interprets, stores, and 

responds to.  Id.  Hutchings’ run mode selected by the user is a user-defined 

operational parameter that affects the operations performed by the device.  Id.; 

APPLE-1001, 7:6-16, 8:56-10:23, FIG. 5. 

85. Based on Ono’s and Hutchings’ teachings discussed above, Ono-Hutchings 

yields a device that allows a user to define operational parameters, including 
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selection of run mode, step-counting mode, step-counting mode start/stop, and 

exercise mode, and setting of stride lengths, target distance, and target number of 

steps.  APPLE-1101, 13:25-27, 13:34-42, 13:51-61, 15:61-16:4, 16:18-17:50, 

18:14-19, 18:28-19:67, 20:8-15, FIGS. 20-21; APPLE-1102, 9:49-52, 10:28-30, 

9:48-62.  When the user selects and starts the step-counting mode, the 

microprocessor receives movement data, including the number of steps taken in the 

last 10 seconds (as suggested by Ono’s step a10), interprets/analyzes movement 

data (as suggested by Ono’s steps a11, a12, a16, a17, a19, a20), stores movement data 

(as suggested by Ono’s steps a11, a12, a16, a19), and responds to movement data (as 

suggested by Ono’s steps a18, a21, a24).  Id.; APPLE-1101, 13:44-45, 14:65-16:27, 

FIG. 18.  Additionally, in the step-counting mode, the microprocessor 

interprets/analyzes (as suggested by Ono’s steps a11, a16, a17) and responds to (as 

suggested by Ono’s step a18, a24) movement data based on the exercise mode and 

the stride length previously set by the user.  Id.; APPLE-1101, 13:40-42, 13:51-61, 

18:28-19:17, 20:8-15, FIGS. 18, 20-21.  Further, in the step-counting mode, the 

microprocessor interprets/analyzes (as suggested by Ono’s steps a17, a20) and 

responds to (as suggested by Ono’s steps a18, a21) movement data based on the 

target distance OH and the target number of steps OG previously set by the user.  

Id.; APPLE-1101, 15:47-16:13.  When the user stops the step-counting mode 

operation, the microprocessor stores the date, duration, total step count, total 
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distance-walked, and total calorie-consumption in registers D of RAM 101 for later 

retrieval and display in the data-recall mode.  APPLE-1101, 13:65-14:29, 16:24-

25, 17:10-50, 18:20-24, 20:37-53, FIGS. 15, 20 (steps C14-C15), 23. 

86. When the user has set the device to run mode, the microprocessor receives 

movement data, including distance traversed during a cycle from the measuring 

system (as suggested by Hutchings), interprets/analyzes movement data (as 

suggested by Ono’s steps a11, a16 and as suggested by Hutchings’ calculation of the 

total distance traveled, speed, and the velocity of travel), stores movement data (as 

suggested by Ono’s steps a11, a16), and responds to movement data (as suggested by 

Ono’s step a18, a24).  APPLE-1101, 13:44-45, 14:65-16:27, FIG. 18; APPLE-1102, 

9:49-10:18.  In the run mode, the microprocessor interprets/analyzes (as suggested 

by Ono’s step a17) and responds to (as suggested by Ono’s step a18) movement data 

from Hutchings’ measuring system based on the target distance OH previously set 

by the user.  Id.; APPLE-1101, 13:40-42, 13:55-61, 18:28-19:17, 20:8-15, FIGS. 

20-21.  When the user stops the run mode, the microprocessor stores the date, 

duration, total step count, total calorie-consumption, total distance traveled, speed, 

and velocity in registers D of RAM 101 for later retrieval and display in the data-

recall mode.  APPLE-1101, 13:65-14:29, 16:24-25, 17:10-50, 18:20-24, 20:37-53, 

FIGS. 15, 20 (steps C14-C15), 23; APPLE-1102, 10:14-18. 
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87. As previously discussed, a POSITA would have been motivated and would 

have found it obvious to implement Ono’s device with a measuring system such as 

Hutchings to advantageously provide the user with the option to select between 

accurate distance/speed/velocity measurements using Hutchings’ measuring 

system at the expense of higher battery consumption or less accurate 

distance/speed/velocity measurements using Ono’s calculations for the benefit of 

lower battery consumption.  Supra Section VI.A.3; APPLE-1102, 2:45-61; 

APPLE-1101, 13:40-42, 18:28-19:6; see, e.g., APPLE-1106, 8:12-18; APPLE-

1014, 7:40-44, 9:46-49, 16:10-15; APPLE-1010, 4:20-25.   

[1e] detecting a first user-defined event based on the movement data and at 
least one of the user-defined operational parameters regarding the movement 
data, and  

88. As discussed above, Ono-Hutchings yields a device in which the 

microprocessor interprets/analyzes (as suggested by Ono’s steps a17) and responds 

to (as suggested by Ono’s step a18, a24) movement data based on user selection and 

starting of the step-counting mode, user selection of the exercise mode, and the 

user set stride length and target distance OH.  Supra Ground 1, 1[d]; APPLE-1101, 

13:40-42, 13:51-61, 15:47-16:13, 18:28-19:17, 20:8-15, FIGS. 18, 20-21.  

Additionally, the microprocessor interprets/analyzes (as suggested by Ono’s step 

a20) and responds to (as suggested by Ono’s step a21, a24) movement data based on 

user selection and starting of the step-counting mode and based on the target 
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number of steps OG previously set by the user.  Id.  Further, the microprocessor 

interprets/analyzes (as suggested by Ono’s step a17) and responds to (as suggested 

by Ono’s step a18, a24) movement data from Hutchings’ measuring system based on 

user selection of the run mode and based on the target distance OH previously set 

by the user.  Id.; APPLE-1102, 9:48-10:18. 

89. In the Ono-Hutchings device, the microprocessor detects a user-defined 

event (that “the distance-walked has reached the target distance OH” as suggested 

by Ono’s step a18) based on movement data (the distance-walked) and at least one 

of the user-defined operational parameters regarding the movement data (user 

selection and starting of the step-counting mode, user selection of the exercise 

mode, and user set stride length and target distance OH).  APPLE-1101, 13:40-42, 

13:51-61, 15:47-16:13, 18:28-19:17, 20:8-15, FIGS. 18, 20-21.  Additionally, the 

microprocessor detects a user-defined event (that the “accumulative number of 

steps has reached the target number of steps OG” as suggested by Ono’s step a21) 

based on movement data (accumulative number of steps) and at least one of the 

user-defined operational parameters regarding the movement data (user selection 

and starting of the step-counting mode and user set target number of steps OG).  Id.  

Further, the microprocessor detects a user-defined event (that “the distance-walked 

has reached the target distance OH” as suggested by Ono’s step a18) based on 

movement data (total distance traveled) and at least one of the user-defined 
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operational parameters regarding the movement data (user selection of the run 

mode and user set target distance OH).  Id.; APPLE-1102, 9:49-67. 

90. As highlighted in Ono’s FIG. 18 below, the microprocessor 

interprets/analyzes movement data based on user-defined operational parameters 

(as suggested by each of Ono’s steps a17 and a20), and detects a user-defined event 

based on the movement data and at least one of the user-defined operational 

parameters regarding the movement data (as suggested by Ono’s steps a17, a18, and 

steps a20, a21): 
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[1f] storing first event information related to the detected first user-defined 
event along with first time stamp information reflecting a time at which the 
movement data causing the first user-defined event occurred; 

91. As previously discussed, the user set modes, stride lengths, target distance, 

and target number of steps are user-defined operational parameters that affect the 

interpret movement data based on  
user-defined operational parameters and 
detect a user-defined event  
based on the movement data and  
the user-defined operational parameters 
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operations and calculations performed by the Ono-Hutchings device.  Supra 

Ground 1, [1d]; APPLE-1101, 13:44-61, 14:65-16:27.  These user-defined 

operational parameters are stored in registers of RAM as suggested by Ono’s FIG. 

15.  Id. 

 

Ono, FIG. 15 

92. Also as previously discussed, the microprocessor interprets/analyzes 

movement data based on these user-defined operational parameters (as suggested 

by each of Ono’s steps a17 and a20), and detects a user-defined event based on the 

movement data and at least one of these user-defined operational parameters 
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regarding the movement data (as suggested by Ono’s steps a17, a18, and steps a20, 

a21).  Supra Ground 1, [1e]; APPLE-1101, 13:44-45, 14:65-16:27, FIG. 18; 

APPLE-1102, 9:49-67.  In addition, the microprocessor stores movement data (as 

suggested by Ono’s steps a11, a12, a16, a19) related to the detected user-defined 

event.  APPLE-1101, 13:44-45, 14:65-16:27, FIG. 18; APPLE-1102, 10:16-18.  

Ono’s steps a11, a12, a16, a19 that store movement data and the steps a17, a18, a20, a21 

that detect a user-defined event are illustrated in Ono’s FIG. 18 below: 
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93. Ono’s processor stores movement data of steps a11, a12, a16, a19 into RAM 

101, which includes “[r]egisters A and B... for storing walking speeds and walking 

pitches calculated from number of steps taken” and “[a] step-register G, a distance-

walked register H... for storing accumulative number of steps taken, accumulative 

flag set based  
on user-defined  
operational  
parameter 

receive, interpret, store, and respond  
to movement data when flag is set 

detect a user-defined event  
based on the movement data and  
the user-defined operational parameters store movement data 
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distance walked.”  APPLE-1101, 13:65-14:15, 14:65-16:27, FIG. 15.  As 

highlighted in Ono’s FIG. 15 below, Ono suggests storing in RAM the user-

defined operational parameters and the movement data used to detect the user-

defined event, both of which are related to the detected user-defined event and thus 

are each event information related to the detected user-defined event.  APPLE-

1101, 13:44-14:15, 14:65-16:27; supra Ground 1, [1e]. 

 

Ono, FIG. 15 

94. Ono further suggests storing time stamp information in RAM along with the 

event information: “RAM 101 is provided with a time-counting register T for 

event 
information 
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storing the present-time data” and “a time-counting process is executed to count 

the present time... and renews the time-counting register in RAM.”  APPLE-1101, 

13:31-33, 12:10-12.  With respect to Ono’s FIG. 18, Ono describes the time-

counting process as step a2 and the detection of a user-defined event based on the 

movement data and at least one of these user-defined operational parameters 

regarding the movement data as steps a17, a18, a20, a21 as shown below.  APPLE-

1101, 15:1-5 (“the process advances to Step a2 to effect a time-counting process in 

unit of 10 sec or less with respect to the present time.”).  Thus, Ono determines and 

stores the present time data at which the movement data causing the user-defined 

event occurred.  Infra Ground 1, claim 30. 
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95. As highlighted in Ono’s FIG. 15 below, Ono suggests storing in RAM the 

event information related to the detected user-defined event along with the present 

time data at which the movement data causing the user-defined event occurred.  

APPLE-1101, 13:44-14:15, 14:65-16:27. 

detect a user-defined event  
based on the movement data and  
the user-defined operational parameters determine and store 

present time 
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96. Ono supports instances where the user stops the step-counting mode 

operation using switch S2 after the processor detects that “the distance-walked has 

reached the target distance OH” and/or that the “accumulated number of steps has 

reached the target number of steps OG” (user-defined event) and notifies the user 

by generating the alarm sound, as highlighted by the red path in FIGS. 18 and 20 

below.  APPLE-1101, 16:28-37, 17:3-59, FIGS. 18, 20. 

time stamp 

event 
information 
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detect a user-defined event  
based on the movement data and  
the user-defined operational parameters 
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97. As previously discussed, when the user stops the step-counting mode 

operation of the Ono-Hutchings device, the microprocessor stores the date, 

duration, total step count, total distance-walked, and total calorie-consumption in 

registers D of RAM 101 for later retrieval and display in the data-recall mode.  

APPLE-1101, 13:65-14:29, 16:24-25, 17:10-50, 18:20-24, 20:37-53, FIGS. 15, 20 

(steps C14-C15), 23; supra Ground 1, [1d].  Additionally, when the user stops the 

run mode of the Ono-Hutchings device, the microprocessor stores the date, 

duration, total step count, total calorie-consumption, total distance traveled, speed, 

72



and velocity in registers D of RAM 101 for later retrieval and display in the data-

recall mode.  Id.; APPLE-1102, 10:14-18.   

98. Based on Ono’s and Hutchings’ teachings, a POSITA would have found 

obvious that, in the instance where the user stops the step-counting or run mode 

after the microprocessor detects that “the distance-walked has reached the target 

distance OH” and/or that the “accumulative number of steps has reached the target 

number of steps OG” (user-defined event) and notifies the user by generating the 

alarm sound, the microprocessor stores at least the date, duration, total step count, 

total distance-walked, and calorie-consumption in registers D of RAM 101 for later 

retrieval and display in the data-recall mode.  Id.  In such instance, the date, 

duration, total step count, total distance-walked, and calorie-consumption stored in 

registers D would be related to the detected user-defined event, with the total step 

count, total distance-walked, and calorie-consumption being the event information 

related to the detected user-defined event, and the date and duration being time 

stamp information reflecting a time at which the movement data causing the first 

user-defined event occurred.  Id. 
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[1g] at least one user input connected to said microprocessor for controlling 
the operation of said device; 

99. Ono-Hutchings renders [1g] obvious for similar reasons as discussed in 

Ground 1, [1d].  Supra Ground 1, [1d].  The block diagram below shows an 

example of the Ono-Hutchings’ device including key input section 51 (a user 

input) connected to the microprocessor for controlling the operation of the device: 

time stamp 

event 
information 

time stamp 
event 
information 
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Ono’s FIG. 14 device modified in view of Hutchings 

[1h] a real-time clock connected to said microprocessor; 

100. Ono’s device includes an oscillator circuit 53 and a dividing circuit 54 that 

provide a one hertz signal to the processor for obtaining “time-data, i.e., the 

present-time data comprising minute-data, hour-data, date-data and month-data,” 

and the processor stores the time-data at a register of RAM.  APPLE-1101, 9:14-

31.  Based upon my knowledge and experience in this field, instead of relying on 

microprocessor

movement sensor 

battery 

user input 
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the processor to determine the time data from the one Hz signal, a POSITA would 

have found it obvious to consider implementing the Ono-Hutchings device with a 

discrete, external real-time clock connected to the microprocessor for obtaining 

“time-data, i.e., the present-time data comprising minute-data, hour-data, date-data 

and month-data,” which was typical at the time as corroborated by other 

publications.   

101. For example, Lowrey describes a “runners watch... worn on the wrist of the 

wearer.”  APPLE-1112, 3:14-21.  As shown in Lowrey’s FIG. 5, Lowrey’s watch 

includes a “divider 156 which provides a 1 Hz signal to a clock 158” that provides 

“the time in hours, minutes and seconds in a conventional manner.”  APPLE-1112, 

8:21-30, 2:8-13.  A POSITA would have understood that the “clock 158” described 

by Lowrey is a Real Time Clock, based on the description provided by Lowrey as 

a device which receives a 1 Hz signal and provides the time in hours, minutes and 

seconds. 

 

Lowrey, FIG. 5 (cropped, annotated) 

“time in hours, minutes and seconds” 
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In addition to the real time clock, Lowrey’s watch also includes “[a] sensor... to 

detect the strides of the wearer” and “[c]ircuitry... to compute the rate of travel of 

the wearer in response to the sensor.”  APPLE-1112, 2:8-18.  Lowrey describes 

options for implementing the “clock circuitry” and other circuitry in the watch 

including using “[a] variety of different types of circuits” or implementing “the 

functions... in a microprocessor chip.”  APPLE-1112, 8:32-41.  A POSITA with 

such knowledge at the time would have found it obvious to implement the Ono-

Hutchings device such that the dividing circuit 54 provides the one hertz signal to 

clock circuitry, which functions as a real-time clock by determining and providing 

the time data to the microprocessor.  See, e.g., APPLE-1103, 16:43-47, 20:38-43, 

21:53-59, 26:29-58, 28:13-34, 30:19-22, FIG. 1. 

102. A POSITA would have been motivated to achieve the benefit of using a real-

time clock to provide the current clock time to the microprocessor, thereby 

advantageously reducing the calculations that are performed by the microprocessor 

and conserving power to the system when there are no processing tasks for the 

microprocessor.  See, e.g., APPLE-1009, 9:59-67 (describing using multiple 

clocks, including a real-time clock, “reaping the low power benefits of intermittent 

operation”), 10:66-11:8 (describing de-energizing circuits “when there are no 

postprocessing tasks” “in order to conserve power in the system”).  A POSITA 

would have understood that the Ono-Hutchings device was readily available to be 
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implemented using the predictable technology of a conventional real-time clock 

without significantly altering or hindering the functions performed by the Ono-

Hutchings device.  Id.   

 [1i] memory for storing said movement data; and 

103. Ono-Hutchings renders [1i] obvious for similar reasons as discussed in 

Ground 1, [1d] and [1f].  Supra Ground 1, [1d] and [1f].  An example of the Ono-

Hutchings device shown below includes a RAM 101, which is a memory, that 

stores movement data (as suggested by Ono’s FIG. 18 steps a11, a12, a16, a19 and 

FIG. 20 step C15), which includes at least “[r]egisters A and B... for storing 

walking speeds and walking pitches calculated from number of steps taken,” “[a] 

step-register G, a distance-walked register H... for storing accumulative number of 

steps taken, accumulative distance walked,” and “a data register D comprising a 

plurality of memory areas where counted data of each date such as a time duration 

of walking, number of steps taken... are stored” (as suggested by Ono’s FIG. 15).  

APPLE-1101, 13:18-20, 13:30-31, 13:65-14:20, 14:65-16:27, 20:37-53; FIGS. 15, 

18.  
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microprocessor

movement sensor 

battery 

user input 

memory 
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[1j] an output indicator connected to said microprocessor for signaling the 
occurrence of user-defined events; 

104. Ono’s device includes “an alarm-driving section 103 for generating an alarm 

and a speaker 104.”  APPLE-1101, 13:23-25.  As discussed above and suggested 

by Ono’s FIG. 18, Ono-Hutchings yields a device in which the microprocessor 

receives the movement data, including the number of steps taken in the last 10 

seconds (as suggested by Ono’s step a10) and the distance traversed during a cycle 

from the measuring system (as suggested by Hutchings), calculates and stores the 

distance walked (as suggested by Ono’s step a16, and Hutchings’ calculation and 

movement data 

memory 
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storage of the total distance traveled), “discriminate[s] whether or not the distance-

walked has reached the target distance OH” (as suggested by Ono’s step a17), 

causes an alarm sound to be generated “if the distance-walked has reached the 

target distance OH” (as suggested by Ono’s step a18), calculates and stores the 

accumulative number of steps taken (as suggested by Ono’s step a19), 

“discriminate[s] whether or not the accumulative number of steps has reached the 

target number of steps OG” (as suggested by Ono’s step a20), and causes an alarm 

sound to be generated “[i]f the above accumulative number of steps has reached 

the target number of steps OG” (as suggested by Ono’s step a21).  APPLE-1101, 

14:65-16:27, FIG. 18; APPLE-1102, 9:49-67, 10:14-18; supra Ground 1, [1d]-[1e].   
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Ono, FIG. 18 

105. As such, the microprocessor detects user-defined events (that “the distance-

walked has reached the target distance OH” as suggested by Ono’s step a18 and that 

“the above accumulative number of steps has reached the target number of steps 

OG” as suggested by Ono’s step a21) and signals the occurrence of the user-defined 

events by causing an alarm sound to be generated by driving section 103 and 

detect a user-defined event  
and signal the occurrence of  
the user-defined event 
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speaker 104 as suggested by Ono’s steps a18 and a21.  APPLE-1101, 14:65-16:27; 

APPLE-1102, 9:49-67.  An example of the Ono-Hutchings device including an 

output indicator connected to the microprocessor for signaling the occurrence of 

user-defined events is shown below: 

 

Ono’s FIG. 14 device modified in view of Hutchings 
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[1k] wherein said movement sensor measures the angle and velocity of said 
movement. 

106. As discussed above, Ono-Hutchings yields a device with a movement sensor 

that includes the acceleration sensor (as suggested by Ono), and a set of three-

component accelerometers and a set of three-component rotational sensors (as 

suggested by Hutchings).  Supra Ground 1, [1a]; supra Section VI.A.3; APPLE-

1101, 2:1-7, 3:10-4:13, 5:64-6:1, 6:41-48, 7:20-27, 7:61-68, 8:16-42, 8:58-60, 

13:18-29, FIG. 14; APPLE-1102, 3:22-26 (“One set of three-component linear 

accelerometers and one set of three-component rotational sensors may be 

employed to resolve the absolute motion of a person...”), 4:44-6:54, 8:44-59, 9:59-

10:2, FIG. 6.  Also discussed above, Hutchings discloses that “[t]he total distance 

traveled is the sum of distances for all cycles.  The velocity of travel is the distance 

of the cycle, or several cycles, divided by the time it takes to travel this distance.”  

Supra Ground 1, [1d]; APPLE-1102, 10:67-11:3, 12:15-38.  In Hutchings’ 

calculations, “value of accelerations are integrated twice to obtain Lx, Ly, and 

Lz,... where VO
x, VO

y, and VO
z are the values of velocity of the sensors at the 

initiation of a cycle.”  APPLE-1102, 12:15-38.  A POSITA would have understood 

that velocities Vx, Vy, and Vz at any time after the start of the cycle can be obtained 

from the first integration of the acceleration signal if the velocities at the start of 

the cycle are also known.   In fact, the first integration is an intermediate step in the 

double integration process described by Hutchings. 
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107. To the extent this limitation requires the movement sensor itself measure the 

velocity and if Ono’s acceleration sensor and Hutchings’ measurement system 

were considered to not measure velocity of the movement, Hutchings discloses that 

“instead of accelerometers[,] velocity sensors may be employed.”  APPLE-1102, 

12:58-60.  Hutchings explains that “[f]or a measuring system that employs a 

velocity sensor[,] the condition set forth by equation (16) becomes unnecessary.  

Thus a new cycle may advantageously begin at any time the velocity of the user is 

constant.”  APPLE-1102, 12:60-63.   

108. Based on Hutchings’ teachings, a POSITA would have found it obvious to 

substitute the accelerometers with velocity sensors.  Id.  The POSITA would have 

been motivated to use Hutchings’ velocity sensors to leverage the stated benefits of 

simplifying the calculations (“the condition set forth by equation (16) becomes 

unnecessary”) and advantageously allowing a new cycle to begin at any time the 

velocity of the user is constant.  APPLE-1102, 12:60-63.  The block diagram 

below shows an example of the Ono-Hutchings device with the movement sensor 

that includes the acceleration sensor (as suggested by Ono), and a set of three-

component velocity sensors to measure velocity and a set of three-component 

rotational sensors to provide the angle of rotation along each axis of the 

translational coordinate (as suggested by Hutchings): 
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Ono’s FIG. 14 device modified in view of Hutchings 

b) Claim 3 

3. The device of claim 1 wherein said device is compact and weighs less than 
one pound. 

109. As previously discussed, Ono’s exercise measuring instrument is 

implemented as “an electronic wrist watch to which a pedometer is installed,” is 

“to be worn on a body of an exerciser,” and “made compact in size.”  APPLE-

1101, 3:10-11, 2:1-4, 2:22-26, 3:24-26, FIG. 1; supra Ground 1, [1pre].  Hutchings 
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also discloses that its “measuring system 10” may be located at the wrist of the 

user, “is light in weight, relatively inexpensive and convenient to use.”  APPLE-

1102, 2:66-3:2, 3:32-44, 4:7-26, 10:43-51, FIGS. 7-9; supra Section VI.A.2.  Ono-

Hutchings yields a movement monitoring device implemented as a wrist watch that 

is compact in size and worn on the user’s wrist.  Id.; APPLE-1101, 3:10-11, 2:1-4, 

2:22-26, 3:24-26, FIG. 1; supra Ground 1, [1pre].  A POSITA would have found 

obvious that such a wrist worn movement monitoring device that is “compact in 

size,” “light in weight,” and “convenient to use” weighs less than one pound so 

that it does not hinder the user’s movement while exercising.  Id.; see, e.g., 

APPLE-1113, Fig. 2 (graph illustrating that wrist watches are less than 1 pound). 

c) Claim 4 

4. The device of claim 1 wherein said movement sensor comprises at least one 
accelerometer. 

110. As previously discussed, Ono-Hutchings yields a device with a movement 

sensor that includes the acceleration sensor (as suggested by Ono), and a set of 

three-component velocity sensors to measure velocity and a set of three-component 

rotational sensors to provide the angle of rotation along each axis of the 

translational coordinate (as suggested by Hutchings).  Supra Ground 1, [1k].  Ono 

discloses that the acceleration sensor outputs a voltage proportional to the 

acceleration applied to the acceleration sensor.  APPLE-1101, 3:10-4:13, FIG. 4.  

Thus, the acceleration sensor is an accelerometer.  The block diagram below shows 
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an example of the Ono-Hutchings device with the movement sensor that includes 

the accelerometer (as suggested by Ono): 

 

Ono’s FIG. 14 device modified in view of Hutchings 

d) Claim 5 

5. The device of claim 1 wherein said movement sensor can simultaneously 
detect real time movement along at least two orthogonal axes. 

111. As previously discussed, Ono-Hutchings yields a device with a movement 

sensor that includes the acceleration sensor (as suggested by Ono), and a set of 
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three-component velocity sensors to measure velocity and a set of three-component 

rotational sensors to provide the angle of rotation along each axis of the 

translational coordinate (as suggested by Hutchings).  Supra Ground 1, [1k].  Ono 

discloses that the acceleration sensor outputs a voltage proportional to the 

acceleration applied to the acceleration sensor “while the user of the wrist watch is 

running.”  APPLE-1101, 3:10-4:13, FIG. 4. Additionally, Hutchings describes 

determining the speed, distance and height traversed by a person “while in 

motion.”  APPLE-1102, 1:15-18.  Thus, Ono-Hutchings yields a device with a 

movement sensor that detects real time movement.  Id.; APPLE-1101, 3:10-4:13, 

FIG. 4. 

112. Hutchings discloses that the three rotational sensors are each configured to 

measure angle “with respect to a reference frame” and the three accelerometers are 

each configured to measure acceleration “with respect to a reference frame.”  

APPLE-1102, 4:55-59, 5:3-6.  Hutchings explains with respect to FIG. 3 that “a 

first coordinate system, such as (x, y, z) 22, is referred to as the reference frame 

coordinate system of the stationary ground.  (γx, γy, γz) are the rotational 

coordinates about the x, y and z axis of the reference frame.”  APPLE-1102, 5:17-

22.  Hutchings further discloses that the y axis is in the same plane as the x axis 

and at right angles to the x axis, and the z axis is normal to the plane of the x and y 

axes.  APPLE-1102, 5:28-35. 
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113. Hutchings FIG. 3 further illustrates “a second coordinate system, such as (x, 

y, z) 24, referred to as the translational coordinate system of the linear 

accelerometers.”  APPLE-1102, 5:41-43.  The orientation of translational 

coordinate system is the same as the reference frame, but moves with the sensors 

and is centered at the location of the sensors.  APPLE-1102, 5:43-45, 5:53-56.  

Rotational coordinates (θx, θy, θz) are used to keep track of the orientation of the 

translation coordinate system relative to the reference frame and to resolve the 

accelerations along the reference frame.  APPLE-1102, 5:45-51.  Hutchings FIG. 3 

below shows the reference frame and translational coordinate system, each having 

three orthogonal axes.   

 

Hutchings, FIG. 3 
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114. As previously discussed, Hutchings’ accelerometer “unit 48 generates 

acceleration signals along the translational coordinates” and “[r]otational sensors 

contained in unit 50 begin to track the rotation of the [sensors] along the 

translational coordinate system.”  APPLE-1102, 9:59-62; supra Ground 1, [1a], 

[1d].  “Each accelerometer may convert the measured acceleration into a 

corresponding signal, which may be preferably employed by microprocessor 6 to 

accomplish movement measurements.”  APPLE-1102, 5:9-12.  “Each rotational 

sensor converts the measured angle into a corresponding signal, which is employed 

by a microprocessor 6 to calculate information related to the user’s movements.”  

APPLE-1102, 4:60-65.  Hutchings describes using the reference frame and 

translational coordinate system with the measuring system employed at the wrist 

and with velocity sensors instead of accelerometers.  APPLE-1102, 5:58-63, 11:38-

12:63, FIG. 9; supra Ground 1, [1k].  Based on Ono’s and Hutchings’ teachings, 

Ono-Hutchings yields a device with a movement sensor that can simultaneously 

detect real time movement along three orthogonal axes.  Id. 

e) Claim 8 

8. The device of claim 1 wherein said data measured by said movement sensor 
includes the distance of said movement. 

115. Hutchings discloses that “[t]he accelerometers and the rotational sensors 

employed by the measuring system, measure the distance traveled by the user.”  

APPLE-1102, 3:38-40.  Hutchings measuring system includes processor 52 that 
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determines the components of motion in the reference frame and the angle from the 

vertical coordinate, and measures instantaneous acceleration of the device along 

the reference coordinates during each cycle.  APPLE-1102, 7:5-65, 8:61-64, 9:62-

65, 10:43-12:14.  Microprocessor 56 of the measuring system measures the 

distance L traversed during each cycle by integrating the acceleration signals.  

APPLE-1102, 4:21-32, 4:55-65, 5:3-16, 8:44-9:17, 9:65-67, 9:48-10:42, 12:15-37, 

FIGS. 6-7; supra Ground 1, [1a], [1k].  The block diagram below shows an 

example of the Ono-Hutchings device with the movement sensor that includes the 

microprocessor 56 that measures distance traveled during each cycle: 

92



 

Ono’s FIG. 14 device modified in view of Hutchings 

f) Claim 10 

10. The device of claim 1 wherein said output indicator is audible. 

116. Ono-Hutchings renders claim 10 obvious for similar reasons as discussed in 

Ground 1, [1j].  Supra Ground 1, [1j].   
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g) Claim 30 

30. The device of claim 1, wherein said microprocessor is configured to store, 
in said memory, date information associated with the first time stamp 
information. 

117. As previously discussed, Ono discloses that the processor obtains “time-

data, i.e., the present-time data comprising minute-data, hour-data, date-data and 

month-data” and stores the time-data at a register of RAM.  APPLE-1101, 9:14-31; 

supra Ground 1, [1h].  Also previously discussed, Ono further suggests the 

processor storing time stamp information in RAM along with the event 

information: “RAM 101 is provided with a time-counting register T for storing the 

present-time data” and “a time-counting process is executed to count the present 

time... and renews the time-counting register in RAM.”  APPLE-1101, 13:31-33, 

12:10-12; supra Ground 1, [1f].  With respect to Ono’s FIG. 18, Ono describes the 

time-counting process as step a2 and the detection of a user-defined event based on 

the movement data and at least one of these user-defined operational parameters 

regarding the movement data as steps a17, a18, a20, a21 as shown below.  APPLE-

1101, 15:1-5 (“the process advances to Step a2 to effect a time-counting process in 

unit of 10 sec or less with respect to the present time.”).  Thus, Ono determines and 

stores “the present-time data comprising minute-data, hour-data, date-data and 

month-data” at which the movement data causing the user-defined event occurred.  

Id.  Further, in Ono, when the user stops the step-counting mode operation, the 
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processor stores the date, duration, total step count, total distance-walked, and total 

calorie-consumption in registers D of RAM 101 for later retrieval and display in 

the data-recall mode.  APPLE-1101, 13:65-14:29, 16:24-25, 17:10-50, 18:20-24, 

20:37-53, FIGS. 15, 20 (steps C14-C15), 23; supra Ground 1, [1d].  Accordingly, 

Ono-Hutchings yields a device where the microprocessor stores in RAM date 

information associated with the time stamp information, as shown below.   
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h) Claim 39 

39. The device of claim 1, wherein said at least one of the user-defined 
operational parameters is a predetermined threshold, and said first user-
defined event occurs when the movement data reaches the predetermined 
threshold. 

118. As previously discussed, Ono-Hutchings yields a device in which the 

microprocessor detects a user-defined event (that “the distance-walked has reached 

the target distance OH” as suggested by Ono’s step a18) based on movement data 

(distance-walked) and at least one of the user-defined operational parameters 

regarding the movement data (user selection and starting of the step-counting 

mode, user selection of the exercise mode, and user set stride length and target 

distance OH).  Supra Ground 1, [1d], [1e]; APPLE-1101, 13:40-42, 13:51-61, 

15:47-16:13, 18:28-19:17, 20:8-15, FIGS. 18, 20-21.  Additionally, the 

microprocessor detects a user-defined event (that “the distance-walked has reached 

the target distance OH” as suggested by Ono’s step a18) based on movement data 

(total distance traveled as suggested by Hutchings) and at least one of the user-

defined operational parameters regarding the movement data (user selection of the 

run mode and user set target distance OH).  Id.; APPLE-1102, 9:49-67.  

119. The user set target distance is at least one of the user-defined operational 

parameters, and a user-defined event (that “the distance-walked has reached the 

target distance OH”) occurs when the movement data (“distance-walked”) reaches 

the user set target distance.  Id.  The target distance was previously set by the user 
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before the user-defined event occurred and is a value that the distance-walked must 

exceed for the user-defined event to occur.  Id.  Therefore, the user set target 

distance is a predetermined threshold, and the user-defined event occurs when the 

movement data reaches the predetermined threshold.  Id. 

120. Also previously discussed, the microprocessor detects a user-defined event 

(that the “accumulative number of steps has reached the target number of steps 

OG” as suggested by Ono’s step a21) based on movement data (accumulative 

number of steps) and at least one of the user-defined operational parameters 

regarding the movement data (user selection and starting of the step-counting mode 

and user set target number of steps OG).  Id.   

121. The user set target number of steps also is at least one of the user-defined 

operational parameters, and a user-defined event (that the “accumulative number of 

steps has reached the target number of steps OG”) occurs when the movement data 

(accumulative number of steps) reaches the user set target number of steps.  Id.  

The target number of steps was previously set by the user before the user-defined 

event occurred and is a value that the number of steps taken must exceed for the 

user-defined event to occur.  Id.  Therefore, the user set target number of steps is a 

predetermined threshold, and the user-defined event occurs when the movement 

data reaches the predetermined threshold.  Id. 
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i) Claim 41 

41. The device of claim 39, wherein said memory is configured to store said 
first event information indicating that the predetermined threshold is met. 

122. Ono-Hutchings renders claim 41 obvious for similar reasons as discussed in 

Ground 1, [1f].  Supra Ground 1, [1f].  As previously discussed, when the Ono-

Hutchings device is operating in the step-counting and/or run mode or when the 

user stops the step-counting and/or run mode, the microprocessor stores the total 

step count and the total distance in registers of RAM.  Id.; APPLE-1101, 13:65-

14:29, 14:65-16:2717:10-50, 18:20-24, 20:37-53, FIGS. 15, 20 (steps C14-C15), 

23.  The total distance and/or the total step count that is stored, when the 

microprocessor detects that “the distance-walked has reached the target distance 

OH” and/or that the “accumulative number of steps has reached the target number 

of steps OG” (user-defined event) and notifies the user by generating the alarm 

sound, would be equal to or greater than the target distance and/or total step count, 

respectively.  Id.  Thus, the total distance and/or the total step count that is stored 

in RAM when the user-defined event is detected is part of the first event 

information and indicates that the target distance and/or the target number of steps, 

respectively, is met.  Id. 
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j) Claim 42 

42. The device of claim 41, wherein said memory is configured to store the 
first time stamp information in association with said first event information. 

123. Ono-Hutchings renders claim 42 obvious for similar reasons as discussed in 

Ground 1, [1f].  Supra Ground 1, [1f]. 

k) Claim 61 

61. The device of claim 39, wherein said microprocessor is configured to 
detect occurrence of the first user-defined event by comparing said movement 
data to said predetermined threshold. 

124. As previously discussed, Ono-Hutchings’ microprocessor detects that a user-

defined event (that “the distance-walked has reached the target distance OH”) 

occurs when the movement data (“distance-walked”) reaches the user set target 

distance (predetermined threshold), which is a value that the distance-walked must 

exceed for the user-defined event to occur.  Supra Ground 1, [1d], [1e], claim 39; 

APPLE-1101, 13:40-42, 13:51-61, 15:47-16:13, 18:28-19:17, 20:8-15, FIGS. 18, 

20-21; APPLE-1102, 9:49-67.  The microprocessor detects that the user-defined 

event occurred by “discriminat[ing] whether or not the distance-walked has 

reached the target distance OH.”  Id.  A POSITA would have understood that 

“discriminat[ing] whether or not the distance-walked has reached the target 

distance OH” includes determining whether the distance-walked is greater than, 

less than, or equal to the target distance, which is a comparison of the distance-

walked and the target distance.  Id.  Thus, the Ono-Hutchings’ microprocessor 
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detects the occurrence of the user-defined event by comparing the distance-walked 

(movement data) to the target distance (predetermined threshold).  Id. 

125. Ono-Hutchings’ microprocessor also detects that a user-defined event (that 

the “accumulative number of steps has reached the target number of steps OG”) 

occurs when the movement data (“accumulative number of steps”) reaches the user 

set target number of steps (predetermined threshold), which is a value that the 

accumulative number of steps must exceed for the user-defined event to occur.  

Supra Ground 1, [1d], [1e], claim 39; APPLE-1101, 13:40-42, 13:51-61, 15:47-

16:13, 18:28-19:17, 20:8-15, FIGS. 18, 20-21.  The microprocessor detects that the 

user-defined event occurred by “discriminat[ing] whether or not the accumulative 

number of steps has reached the target number of steps OG.”  Id.  A POSITA 

would have understood that “discriminat[ing] whether or not the accumulative 

number of steps has reached the target number of steps OG” includes determining 

whether the accumulative number of steps is greater than, less than, or equal to the 

target number of steps, which is a comparison of the accumulative number of steps 

and the target number of steps.  Id.  Thus, the Ono-Hutchings’ microprocessor 

detects the occurrence of the user-defined event by comparing the accumulative 

number of steps (movement data) to the target number of steps (predetermined 

threshold).  Id. 
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l) Claim 62 

62. The device of claim 1, wherein said device is configured to be placed on 
said user’s arm to monitor and record said movement data. 

126. Ono-Hutchings renders claim 62 obvious for similar reasons as discussed in 

Ground 1, [1pre] and [1d].  Supra Ground 1, [1pre], [1d].  The Ono-Hutchings 

device is “an electronic wrist watch,” which is worn on the wrist portion of the 

user’s arm.  APPLE-1101, 3:10-11, 2:1-4, 2:22-26, 3:24-26, FIG. 1; APPLE-1102, 

3:32-44, 4:7-26, 10:43-51, FIGS. 7-9.  Ono’s acceleration sensor and Hutchings’ 

measuring system in the Ono-Hutchings device measure movement of the user’s 

arm, and the device monitors and records movement data relating to movement of 

the user’s arm to determine the user’s step count, pitch, distance, speed, and 

velocity while the user is walking/running.  APPLE-1101, 8:1-9:48, 14:65-16:27; 

APPLE-1102, 10:43-12:63; supra Ground 1, [1a], [1d]. 

m) Claim 63 

63. The device of claim 62, wherein said movement sensor is configured to 
measure movement of said user’s arm. 

127. Ono-Hutchings renders claim 63 obvious for similar reasons as discussed in 

claim 62.  Supra Ground 1, claim 62.   
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n) Claim 64 

64. The device of claim 1, wherein said movement sensor is configured to 
measure a walking distance. 

128. Ono-Hutchings renders claim 64 obvious for similar reasons as discussed in 

Ground 1, claim 8.  Supra Ground 1, claim 8.  Hutchings teaches that the distance 

measured by the measuring system of the Ono-Hutchings device is a distance 

traversed while the user is walking.  APPLE-1102, 2:49-61, 4:7-10. 

o) Claim 65 

65. The device of claim 64, wherein said device is configured to be wearable by 
the user, and said movement sensor is configured to measure said walking 
distance of said user. 

129. Ono-Hutchings renders claim 65 obvious for similar reasons as discussed in 

Ground 1, [1pre] and claim 64.  Supra Ground 1, [1pre], claim 64. 

 Analysis of Claims 20 and 25 

a) Claim 20 

[20pre] A method to monitor physical movement of a body part comprising 
the steps of: 

130. To the extent the preamble is limiting, Ono-Hutchings renders [20pre] 

obvious for similar reasons as discussed in Ground 1, [1pre] and [1d]-[1f].  Supra 

Ground 1, [1pre], [1d]-[1f]. 

[20a] attaching a portable, self-contained movement measuring device to said 
body part for measuring unrestrained movement in any direction; 

131. Ono-Hutchings renders [20a] obvious for similar reasons as discussed in 

Ground 1, [1pre] and [1a].  Supra Ground 1, [1pre], [1a]. 
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[20b] measuring data associated with said physical movement; 

132. Ono-Hutchings renders [20b] obvious for similar reasons as discussed in 

Ground 1, [1a].  Supra Ground 1, [1a]. 

[20c] interpreting, using a microprocessor included in the portable, self-
contained movement measuring device, said physical movement data based on 
user-defined operational parameters and a real-time clock; 

133. As discussed above, Ono-Hutchings yields a portable, self-contained 

movement measuring device that includes a microprocessor.  Supra Ground 1, 

[1pre], [1c]; APPLE-1101, 3:18-26, 8:60-9:12, 12:17-35, 14:30-64, 15:10-13, 

15:33-46, 15:61-66, 17:26-34; Hutchings, 4:21-32, 10:10-18, 10:28-30.  The 

device allows a user to define operational parameters, including selection and 

starting of step-counting, selection of run mode, selection of exercise mode, and 

setting of stride length, target distance, and target number of steps.  Supra Ground 

1, [1d]; APPLE-1101, 13:25-27, 13:34-42, 13:51-61, 15:61-16:4, 16:18-17:23, 

18:14-19, 18:28-19:67, 20:8-15, FIGS. 20-21.  When the user selects and starts the 

step-counting mode, the microprocessor interprets/analyzes movement data (as 

suggested by Ono’s steps a11, a12, a16, a17, a19, a20).  Id.; APPLE-1101, 13:44-45, 

14:65-16:27, FIG. 18.  Additionally, in the step-counting mode, the microprocessor 

interprets/analyzes (as suggested by Ono’s steps a11, a16, a17) movement data based 

on the exercise mode and the stride length previously set by the user.  Id.; APPLE-

1101, 13:40-42, 13:51-61, 18:28-19:17, 20:8-15, FIGS. 18, 20-21.  Further, in the 
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step-counting mode, the microprocessor interprets/analyzes (as suggested by Ono’s 

steps a17, a20) movement data based on the target distance OH and the target 

number of steps OG previously set by the user.  Id.; APPLE-1101, 15:47-16:13.   

134. When the user has set the device to run mode, the microprocessor 

interprets/analyzes movement data (as suggested by Ono’s steps a11, a16 and as 

suggested by Hutchings’ calculation of the total distance traveled, speed, and the 

velocity of travel).  APPLE-1101, 13:44-45, 14:65-16:27, FIG. 18; APPLE-1102, 

9:49-10:18.  In the run mode, the microprocessor interprets/analyzes (as suggested 

by Ono’s step a17) movement data from Hutchings’ measuring system based on the 

target distance OH previously set by the user.  Id.; APPLE-1101, 13:40-42, 13:55-

61, 18:28-19:17, 20:8-15, FIGS. 20-21.  Thus, the microprocessor interprets 

physical movement data based on user-defined operational parameters.   

135. Also discussed above, a POSITA would have found it obvious to implement 

the Ono-Hutchings device to include a real-time clock connected to the 

microprocessor for providing “time-data, i.e., the present-time data comprising 

minute-data, hour-data, date-data and month-data” to the microprocessor.  APPLE-

1101, 9:14-31; supra Ground 1, [1h].  Ono further discloses that “the timing 

signal-generator circuit 55 delivers a timing signal to the control section 49 so as to 

synchronize the processing operations of the control section 49” and teaches, in 

some examples, that the processes are “executed in accordance with the time-

104



counting timing, i.e., once per second.”  APPLE-1101, 9:44-48, 12:10-47.  In 

Ono’s FIG. 18, the processor interprets/analyzes the movement data “when a time 

period of 10 sec has lapsed” and “at which data are taken in every ten seconds” as 

shown below.  APPLE-1101, 14:65-16:27.   

 

Ono, FIG. 18 

time measurement  
based on real-time  
clock 

flag set based  
on user-defined  
operational parameter 

10 second has  
lapsed based on  
real-time clock 

receive and interpret  
movement data when flag is set 

interpret movement  
data based on  
user-defined  
operational parameters 
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136. Additionally, Ono-Hutchings interprets/analyzes movement data to calculate 

speed, which is the rate of change of distance with time, and velocity, which is the 

distance divided by time.  APPLE-1101, 15:35-42; APPLE-1102, 3:18-21, 11:1-3.  

As described in Ono, distance can be determined based on user selected exercise 

mode and user set stride length, and the time is a “time period of 10 sec.”  APPLE-

1101, 15:61-62.  Thus, the microprocessor interprets physical movement data 

based on user-defined operational parameters, including selection and starting of 

step-counting, selection of run mode, selection of exercise mode, and setting of 

stride length, target distance, and target number of steps, and based on 10 seconds 

having lapse that is determined using a real-time clock.   

[20d] storing said data in memory; 

137. Ono-Hutchings renders [20d] obvious for similar reasons as discussed in 

Ground 1, [1d], [1f], and [1i].  Supra Ground 1, [1d], [1f], [1i]. 

[20e] detecting, using the microprocessor, a first user-defined event based on 
the movement data and at least one of the user-defined operational 
parameters regarding the movement data; and 

138. Ono-Hutchings renders [20e] obvious for similar reasons as discussed in 

Ground 1, [1e].  Supra Ground 1, [1e]. 
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[20f] storing, in said memory, first event information related to the detected 
first user-defined event along with first time stamp information reflecting a 
time at which the movement data causing the first user-defined event 
occurred. 

139. Ono-Hutchings renders [20f] obvious for similar reasons as discussed in 

Ground 1, [1f].  Supra Ground 1, [1f]. 

b) Claim 25 

25. The method of claim 20 wherein said movement measuring device is an 
accelerometer. 

140. Ono-Hutchings renders claim 25 obvious for similar reasons as discussed in 

Ground 1, [1a] and claim 4.  Supra Ground 1, [1a], claim 4. 

B. GROUND 2—Claims 1, 3-5, 8-11, 20, 25, 30, 36, 39-42, and 61-65 
are Obvious based on Ono in view of Hutchings and Amano 

 Overview of Amano 

141. Amano describes “an exercise support device which provides appropriate 

suggestions and guidance to the user.”  APPLE-1103, 1:11-13.  Amano’s device is 

“incorporated in a wristwatch.”  APPLE-1103, 11:3-9, FIGS. 3-5.  The device 

includes a “watch circuit 9” from which the CPU1 “reads out the current clock 

time” for “ordinary functions associated with a watch,” for determining exercise 

start and stop times and duration, and for storing in RAM together with sensor 

data.  APPLE-1103, 16:43-47, 20:38-43, 21:53-59, 26:29-58, 28:13-34, 30:19-22, 

FIG. 1.  
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142. The device includes a “[d]isplay device 7 [that] displays a variety of 

information such as messages and the like to the user.”  APPLE-1103, 16:36-38, 

FIG. 1.  As examples, Amano describes that when the CPU1 determines that data 

reaches or exceeds a prespecified or targeted value, the CPU1 displays a message 

on the display device 7.  See, e.g., APPLE-1103, 19:41-46 (“if the output value of 

acceleration sensor 5 exceeds a prespecified value (0.1 G, for example), then CPU1 

determines that the user is moving (i.e., not in a state of repose)” and “CPU1 

displays a message on display device 7 alerting the user not to move.”), 21:43-45 

(“When an interrupt from watch circuit 9 is generated after the elapse of the 

targeted exercise duration, CPU1 outputs a directive to the user to stop 

exercising.”), 26:40-44 (“CPU1 checks whether or not the exercise intensity... is 

within the range determined by the upper and lower limit values for exercise 

intensity, and outputs directive relating to the appropriate exercise intensity to the 

user.”), 26:53-58 (“CPU1 determines whether the total amount and duration of the 

exercise just performed are within the prespecified limits based on the respective 

target values. When exercise has not been carried out as directed, then CPU1 

notifies the user of this fact.”), 28:53-57, 29:60-63 (“if the measured value has 

reached the targeted value for exercise..., then CPU1 displays a message on display 

device 7”), 30:39-42 (“A check is made to see if the difference between these two 

values exceeds a prespecified value. If the difference exceeds this value, then a 
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warning message is displayed on display device 7.”).  Amano also describes 

providing notifications to the user through a sound source (e.g., a speaker) “so that 

notification may be realized using an alarm or even a voice message” or “by means 

of a vibration.”  APPLE-1103, 46:1-32. 

 Ono-Hutchings-Amano Combination 

143. In pursuing specific design options for such a device, a POSITA would have 

explored prior art references like Amano that describe “an exercise support device” 

“incorporated in a wristwatch” that “provides appropriate suggestions and 

guidance to the user” including notifying the user when the user has reached 

exercise target values.  APPLE-1103, 1:11-13, 8:11-30, 11:3-9, 21:43-45, 26:40-

44, 26:53-58, 29:60-63 FIGS. 3-5.  A POSITA would have been motivated and 

would have found it obvious to implement the Ono-Hutchings device as suggested 

by Amano to provide multiple means of signaling the occurrence of events, 

including displaying a visual message on a display screen, using an alarm sound 

through a speaker, and by vibration of the wristwatch.  APPLE-1103, 19:41-46, 

21:43-45, 26:40-44, 26:53-58, 28:53-57, 29:60-63, 30:39-42, 46:1-32; APPLE-

1101, 13:23-25, 14:65-16:27, FIG. 18.  Amano describes multiple ways to provide 

notifications to accommodate visually impaired and/or hearing impaired users.  

APPLE-1103, 46:1-32.  A POSITA would have been motivated to implement the 

Ono-Hutchings device for the benefit of providing multiple means of signaling the 
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occurrence of events, including displaying a visual message on a display screen, 

using an alarm sound through a speaker, and by vibration of the wristwatch, to 

accommodate users who are visually and/or hearing impaired.  APPLE-1103, 

19:41-46, 21:43-45, 26:40-44, 26:53-58, 28:53-57, 29:60-63, 30:39-42 46:1-32; 

APPLE-1101, 13:23-25, 14:65-16:27, FIG. 18. 

144. Further, a POSITA would have found it obvious to implement the Ono-

Hutchings device as suggested by Amano to include a watch circuit as a real-time 

clock that provides the current clock time.  APPLE-1103, 16:43-47, 20:38-43, 

21:53-59, 26:29-58, 28:13-34, 30:19-22, FIG. 1.  A POSITA would have achieved 

this predictable result with a reasonable expectation of success.  Ono describes the 

microprocessor obtaining “time-data, i.e., the present-time data comprising minute-

data, hour-data, date-data and month-data.”  APPLE-1101, 9:14-31; supra Ground 

1, [1h].  Similarly, Amano describes the processor reading out the current clock 

time from a watch circuit.  APPLE-1103, 16:43-47, 20:38-43, 21:53-59, 26:29-58, 

28:13-34, 30:19-22, FIG. 1.  Based on the structural and functional similarities of 

Ono and Amano and the predictable technologies of such wristwatch exercise 

monitors at the time, a POSITA would have recognized that Amano provides an 

explicit teaching to include a watch circuit as a real-time clock that provides the 

current clock time to the microprocessor.  Id.; see e.g., APPLE-1009, 9:59-67, 

10:66-11:8; APPLE-1112, 8:21-30 (“The output of the divider 148 is applied to a 
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divide-by-ten divider 156 which provides a 1 Hz signal to a clock 158. The output 

of clock 158 is applied through the multiplexer 140 under the control of the ‘M’ 

button 22 to display the time in hours, minutes and seconds in the conventional 

manner.”).  A POSITA therefore would have understood that the Ono-Hutchings 

device was readily available to be implemented using the predictable technology of 

a conventional “watch circuit” or real-time clock as suggested by Amano without 

significantly altering or hindering the functions performed by the Ono-Hutchings 

device.  Id.  A POSITA would have been motivated to achieve the benefit of using 

a real-time clock to provide the current clock time to the microprocessor, thereby 

advantageously reducing the calculations that are performed by the microprocessor 

and conserving power to the system when there are no processing tasks for the 

microprocessor.  Id. 

145. Moreover, a POSITA would have viewed the implementation of the Ono-

Hutchings device in a manner that applied Amano’s suggested features as merely 

the predictable result (e.g., a pedometer that includes a real-time clock and a 

multiple means for providing notifications) of combining known prior elements 

according to known methods.  The POSITA would have appreciated that the Ono-

Hutchings-Amano combination does not change the hallmark aspects of these 

references, and any modifications needed to incorporate Amano’s teachings into 

the Ono-Hutchings device to provide the above benefits would have been 
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predictable with a foreseeable chance of success and within the skill of a POSITA.  

The respective teachings would work together in combination just as they did 

apart, with Amano’s suggestion merely improving/adding to the Ono-Hutchings 

device. 

 Analysis of the Claims 

146. Ground 2 relies on the additional disclosure of Amano for the claim 

elements below.  Integration of Amano does not disturb the aspects of Ono-

Hutchings mapped to the claim elements.  The Ground 2 Ono-Hutchings analysis 

is substantively identical to and incorporates the Ground 1 Ono-Hutchings analysis 

in all respects.  To avoid repetition, and because the analysis of Ono-Hutchings to 

the claim elements is identical, only selected claim elements are addressed below. 

a) Claim 1 

[1h] a real-time clock connected to said microprocessor; 

147. As previously discussed, Ono-Hutchings yields a device that includes an 

oscillator circuit and a dividing circuit that provide a one hertz signal to the 

microprocessor for obtaining “time-data, i.e., the present-time data comprising 

minute-data, hour-data, date-data and month-data,” and the processor stores the 

time-data at a register of RAM.  APPLE-1101, 9:14-31; supra Ground 1, [1h].  If 

the Ono-Hutchings device were considered to not include a real-time clock 

connected to the microprocessor, Amano describes a “watch circuit” from which 

the processor “reads out the current clock time” for “ordinary functions associated 
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with a watch,” for determining exercise start and stop times and duration, and for 

storing in RAM together with sensor data.  APPLE-1103, 16:43-47, 20:38-43, 

21:53-59, 26:29-58, 28:13-34, 30:19-22, FIG. 1.  This “watch circuit” would be 

understood by a POSITA as providing a Real Time Clock to the system.  As 

previously discussed, a POSITA would have found it obvious to implement the 

Ono-Hutchings device as suggested by Amano with such a watch circuit as a real-

time clock connected to the microprocessor from which the microprocessor “reads 

out the current clock time.”  Id.; supra Section VI.B.2; supra Ground 1, [1h].   

b) Claim 9 

9. The device of claim 1 wherein said output indicator is visual. 

148. As previously discussed, Ono-Hutchings yields a device including an output 

indicator connected to the microprocessor for signaling the occurrence of user-

defined events.  Supra Ground 1, [1j].  Ono describes a device having a display 

connected to the processor for displaying information.  APPLE-1101, 13:18-22, 

14:30-64, 17:37-61, 18:37-66, 19:27-30, 20:24-53, FIGS. 14, 16-17, 21-23.  As 

previously discussed, Amano provides an explicit teaching of a processor signaling 

the occurrence of events by displaying a visual message on a display screen.  

APPLE-1103, 16:36-38, 19:41-46, 21:43-45, 26:40-44, 26:53-58, 28:53-57, 29:60-

63, 30:39-42, 46:1-32, FIG. 1; supra Section VI.B.1.  A POSITA would have 

understood that a display screen is a visual output indicator.  Id.   
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149. Based on Ono’s and Amano’s teachings, Ono-Hutchings-Amano yields a 

device in which the microprocessor signals the occurrence of user-defined events 

by displaying a visual message on the display screen.  Id.  As previously discussed, 

a POSITA would have been motivated to implement the Ono-Hutchings device for 

the benefit of providing multiple means of signaling the occurrence of events, 

including displaying a visual message on a display screen, using an alarm sound 

through a speaker, and by vibration of the wristwatch, to accommodate users who 

are visually and/or hearing impaired.  Id.; supra Section VI.B.2. 

c) Claim 11 

11. The device of claim 1 wherein said output indicator is tactile. 

150. As previously discussed, Ono-Hutchings yields a device including an output 

indicator connected to the microprocessor for signaling the occurrence of user-

defined events.  Supra Ground 1, [1j].  Amano provides an explicit teaching of a 

processor signaling the occurrence of events by vibration of the wristwatch.  

APPLE-1103, 16:36-38, 19:41-46, 21:43-45, 26:40-44, 26:53-58, 28:53-57, 29:60-

63, 30:39-42, 46:1-32, FIG. 1; supra Section VI.B.1.  A POSITA would have 

understood that vibration is perceptible by touch and is thus a tactile output 

indicator.  Id. 

151. Based on Ono’s and Amano’s teachings, Ono-Hutchings-Amano yields a 

device in which the microprocessor signals the occurrence of user-defined events 
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by vibration of the wristwatch.  Id.  As previously discussed, a POSITA would 

have been motivated to implement the Ono-Hutchings device for the benefit of 

providing multiple means of signaling the occurrence of events, including 

displaying a visual message on a display screen, using an alarm sound through a 

speaker, and by vibration of the wristwatch, to accommodate users who are 

visually and/or hearing impaired.  Id.; supra Section VI.B.2. 

d) Claim 20 

[20c] interpreting, using a microprocessor included in the portable, self-
contained movement measuring device, said physical movement data based on 
user-defined operational parameters and a real-time clock; 

152. As previously discussed, the Ono-Hutchings microprocessor interprets 

physical movement data based on user-defined operational parameters.  APPLE-

1101, 13:44-45, 14:65-16:27, FIG. 18; APPLE-1102, 9:49-10:18; supra Ground 1, 

[20c].  Ono further teaches, in some examples, that the processes are “executed in 

accordance with the time-counting timing, i.e., once per second.”  APPLE-1101, 

9:44-48, 12:10-47.  In Ono’s FIG. 18, the processor interprets/analyzes the 

movement data “when a time period of 10 sec has lapsed” and “at which data are 

taken in every ten seconds.”  APPLE-1101, 14:65-16:27. 

153. Also previously discussed, Ono-Hutchings-Amano yields a device with a 

watch circuit as a real-time clock connected to the microprocessor from which the 

microprocessor “reads out the current clock time.”  Supra Section VI.B.1-VI.B.2; 
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supra Ground 2, [1h]; APPLE-1103, 16:43-47, 20:38-43, 21:53-59, 26:29-58, 

28:13-34, 30:19-22, FIG. 1.  A POSITA would have found it obvious to implement 

the microprocessor to interpret/analyze the movement data “when a time period of 

10 sec has lapsed” and “at which data are taken in every ten seconds” based on the 

current clock time read out from the watch circuit.  Id. 

e) Claim 36 

36. The device of claim 1, wherein said output indicator is configured to 
display information signaling the occurrence of the first user-defined event 
based on the detection of the first user-defined event. 

154. As previously discussed, Ono-Hutchings yields a device in which the 

microprocessor detects user-defined events (that “the distance-walked has reached 

the target distance OH” and that “the above accumulative number of steps has 

reached the target number of steps OG”) and then signals the occurrence of the 

user-defined events, as suggested by Ono’s steps a18 and a21.  APPLE-1101, 14:65-

16:27; APPLE-1102, 9:49-67; supra Ground 1, [1j].  Also previously discussed, 

Ono-Hutchings-Amano yields a device in which the microprocessor signals the 

occurrence of user-defined events by displaying a visual message on the display 

screen.  APPLE-1103, 16:36-38, 19:41-46, 21:43-45, 26:40-44, 26:53-58, 28:53-

57, 29:60-63, 30:39-42, 46:1-32, FIG. 1; supra Section VI.B.1-VI.B.2; supra 

Ground 2, claim 9.  Accordingly, the Ono-Hutchings-Amano device displays 
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information signaling the occurrence of the user-defined event based on the 

detection of the user-defined event.  Id. 

f) Claim 40 

40. The device of claim 39, wherein said output indicator is configured to 
display information signaling the occurrence of the first user-defined event 
when the movement data reaches the predetermined threshold. 

155. As previously discussed, in Ono-Hutchings, the user-defined event is 

detected when the movement data reaches the predetermined threshold.  Supra 

Ground 1, [1d], [1e], claim 39; APPLE-1101, 13:40-42, 13:51-61, 15:47-16:13, 

18:28-19:17, 20:8-15, FIGS. 18, 20-21; APPLE-1102, 9:49-67.  Also previously 

discussed, the Ono-Hutchings-Amano device displays information signaling the 

occurrence of the user-defined event based on the detection of the user-defined 

event.  Id.; APPLE-1103, 16:36-38, 19:41-46, 21:43-45, 26:40-44, 26:53-58, 

28:53-57, 29:60-63, 30:39-42, 46:1-32, FIG. 1; supra Section VI.B.1-VI.B.2; 

supra Ground 2, claim 9.  Accordingly, the Ono-Hutchings-Amano device displays 

information signaling the occurrence of the user-defined event, which is detected 

when the movement data reaches the predetermined threshold.  Id. 

C. GROUND 3A—Claims 1-5, 8, 10, 20, 25, 30, 31, 39, 41, 42, 45-47, 
49, and 61-65 are Obvious based on Ono in view of Hutchings and 
Conlan 

 Overview of Conlan 

156. Conlan is directed to an “activity monitor adapted to be worn on the non-

dominant wrist of a subject.”  APPLE-1010, Abstract.  Conlan’s activity monitor 
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monitors activity “without restriction of the subject’s movement” and “includes a 

movement sensor by which the full range of a subject’s movement, even that 

which is visually imperceptible, can be detected.”  APPLE-1010, 2:52-63.  Conlan 

explains that its activity monitor can be used to study “virtually any form of human 

mobility” including “athletic exertion.”  APPLE-1010, 17:35-40. 

157. Conlan teaches that the activity monitor includes “user-input pushbutton 

switches” that “allow the subject to indicate the occurrence of a particular event.” 

APPLE-1010, 6:38-46.  When depressed, the switches “cause that occurrence to be 

recorded in the internal memory of the monitor.”  Id.  These pushbutton switches 

are illustrated below in Conlan’s FIG. 6.   
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APPLE-1010, FIG. 6 

158. Conlan discloses that “the user may also choose the type of data which is to 

be recorded,” including digitized data signals representative of the waveform from 

a sensor circuit.  APPLE-1010, 8:62-65, 10:37-40, 11:64-12:13, 17:3-5, 18:66-

19:2, 20:12-32, TABLE 2.   

159. Conlan’s activity monitor 10 can be connected to computer 13 via an 

interface unit 14 and cable 15.  APPLE-1010, 5:55-6:23.     

APPLE-1010, FIG. 2 

160. Conlan teaches that software on the activity monitor 10 and the computer 13 

executes operations for obtaining the movement data and transmitting it to 
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computer 13 for display.  APPLE-1010, 5:64-6:23.  For example, Conlan’s activity 

monitor includes a microprocessor that executes “software by which the 

configuration of the various circuits of the monitor are controlled” and a memory 

that stores “software to control the monitor components and… data obtained from 

the operation of the monitor.”  APPLE-1010, 4:5-46, 10:6-65.  The software also 

includes instructions for transmitting data from the activity monitor to the 

computer for further processing.  APPLE-1010, 4:20-57.  The receiving computer 

13 includes “necessary software for accomplishing the down-loading [sic] of data 

from the monitor and the uploading of operating instructions to the monitor.”  

APPLE-1010, 6:1-17.  The computer’s software can also generate “a wide variety 

of written reports and displays… from the data collected by the [activity] monitor.”  

APPLE-1010, 6:18-37. 

 Ono-Hutchings-Conlan Combination   

161. In pursuing specific design options for the Ono-Hutchings device, the 

POSITA would have explored prior art references like Conlan that describe a 

wrist-mounted activity monitor for monitoring activity of the human body.  

APPLE-1010, 1:14-19, 2:48-63, 5:55-63, 17:35-40.  A POSITA would have been 

motivated and would have found it obvious to implement the Ono-Hutchings 

device as suggested by Conlan to include user-input pushbuttons that are each 

assigned to an event (e.g., target step count or target distance has been reached) 
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and when depressed causes the device to record the occurrence of the event 

specified by the user input button.  APPLE-1010, 6:39-53, 11:58-62, 19:14-17, 

20:3-11.  Additionally, a POSITA would have found it obvious to implement the 

Ono-Hutchings device to allow the user to choose to record digitized data signals 

representative of a waveform from the movement sensor and the microprocessor to 

store such data in memory based on the user selection.  APPLE-1010, 8:62-65, 

10:37-40, 11:64-12:13, 17:3-5, 18:66-19:2, 20:12-32, TABLE 2.  Further, a 

POSITA would have found it obvious to implement the device to communicate 

with a personal computer for downloading data collected by the device to the 

computer and for uploading operating parameters from the computer to the device.  

APPLE-1010, 4:47-56, 5:66-6:37. 

162. The POSITA would have been motivated to include pushbuttons for 

recording occurrences of events as suggested by Conlan.  APPLE-1010, 6:39-53, 

11:58-62, 19:14-17, 20:3-11.  Conlan discloses that “the user may assign 

definitions, or ‘event variables’ to user input switches” and “upon occurrence of 

dizziness or pain, the subject may... depress one of the push button switches to 

cause that occurrence to be recorded in the internal memory of the monitor” and 

“operation of the switches may cause one or more markers to appear in the data 

recorded in RAM 48 depending on the meaning assigned to them.”  Id.  In other 

words, when an event occurs, such as dizziness or pain, the user can activate one of 
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the buttons, which triggers recording of the event, along with the time of the event, 

in the RAM.  Id.  In this regard, the input pushbuttons of Conlan would be used in 

the Ono-Hutchings device as a means for causing user-defined event information 

to be stored, including the time of the event.  Id.; see, e.g., APPLE-1009, 2:38-40, 

24:10-12, 24:20-24.  This would advantageously allow the associated data to 

subsequently be retrieved, processed, or displayed in a particular way.  Id.  For 

example, movement data for a type of event may be stored separately from 

movement data for another type of event.  Id.  Movement data for a type of event 

may be displayed or provided to the user if the user is only interested in movement 

data related to that type of event.  Id.  The identification of event-specific data 

would allow the user to better understand and monitor patterns, trends, and 

progress in exercise activity related to the event and to vary the exercise program 

and targets based on occurrence of an event (e.g., reaching a target).  Id.; see, e.g., 

APPLE-1009, 1:34-37, 2:7-16, 2:40-44; APPLE-1104, 2:25-30.   

163. The POSITA would have been also motivated to implement the Ono-

Hutchings device to allow the user to choose to record digitized data signals 

representative of a waveform from the movement sensor and the microprocessor to 

store such data in memory based on the user selection as suggested by Conlan.  

APPLE-1010, 8:62-65, 10:37-40, 11:64-12:13, 17:3-5, 18:66-19:2, 20:12-32, 

TABLE 2.  Doing so would beneficially provide the user with the option to 
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choosing whether to save digitized data signals representative of a waveform from 

the movement sensor based on the user’s desire for detail and memory 

conservation.  Id.  A POSITA would have found obvious to provide the user with 

the option of saving digitized data signals representative of a waveform from the 

movement sensor if the user desires more detail at the expense of using more 

memory.  Id.  Additionally, providing the user with the option to save digitized 

data signals representative of a waveform from the movement sensor allows the 

user to monitor and study detailed exercise activity and athletic exertion, such as 

time periods of resting, walking, jogging, and running.  APPLE-1010, 17:35-40.  

As Ono demonstrates, the accelerometer produces different waveforms for various 

levels of physical exertion and different arm positions.  APPLE-1101, 2:42-46, 

5:63-6:1, 6:41-48, 7:20-27, 8:16-42, FIGS. 6A-6C, 7A-7D.  By storing digitized 

data signals representative of a waveform, the user can later view, analyze, and 

compare the waveforms to better understand and monitor patterns, trends, and 

progress in exercise activity and to vary the exercise program.  See, e.g., APPLE-

1009, 1:34-37, 2:7-16, 2:40-44; APPLE-1104, 2:25-30. 

164. Additionally, Conlan discloses that the capacity of memory devices were 

constrained.  APPLE-1010, 1:65-2:2, 8:65-67, 18:66-19:2.  A POSITA would have 

been motivated to implement the device to communicate with a personal computer 

for downloading data collected by the device to the computer as suggested by 

123



Conlan.  APPLE-1010, 4:47-56, 5:66-6:37.  Doing so would advantageously allow 

data to be transferred to and stored on the computer, thereby allowing the device’s 

memory to be freed for storing data for subsequent exercise sessions.  Id.  Doing so 

would also beneficially allow data to be further analyzed by a computer with more 

processing capability, data to be printed via the computer, and more data to be 

viewed simultaneously on a larger display connected to the computer.  Id.  Further, 

the computer could correlate and combine the data with data from other exercise 

and health equipment connected to the computer to beneficially provide the user 

with comprehensive analysis and feedback concerning the user’s progress in 

reaching his or her exercise goals.  Id.; see, e.g., APPLE-1104, 3:43-53, 3:63-65, 

6:6-13, 11:5-34, FIGS. 8a-8c. 

165. Further, Ono describes the user setting user-defined operational parameters 

using switches on Ono’s device.  APPLE-1101, 13:25-27, 13:34-42, 13:51-61, 

16:18-17:50, 18:14-19, 18:28-19:67, 20:8-15, FIGS. 20-21.  To set the user-

defined operational parameters, the user presses specific combinations of switches 

and cycles through various display screens using the switches.  Id.  A POSITA 

would have been motivated to implement the device to communicate with a 

personal computer for uploading operating parameters from the computer to the 

device as suggested by Conlan to beneficially provide the user with an additional 

and more user-friendly user interface on the computer for setting the user-defined 
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operational parameters.  APPLE-1010, 4:47-56, 5:66-6:37.  For instance, the 

computer could provide a single graphical user interface screen with all the user-

defined operational parameters displayed, and the user could use a keyboard and 

mouse to quickly and easily set the operational parameters.  Id. 

166. Moreover, a POSITA would have viewed the implementation of the Ono-

Hutchings device in a manner that applied Conlan’s suggested features as merely 

the predictable result (e.g., a pedometer that includes pushbuttons for recording 

occurrences of events and the microprocessor storing in memory a digital 

waveform representative of raw movement data from the movement sensor, and 

that communicates with a personal computer for downloading data collected by the 

device to the computer and for uploading operating parameters from the computer 

to the device) of combining known prior elements according to known methods.  

The POSITA would have appreciated that the Ono-Hutchings-Conlan combination 

does not change the hallmark aspects of these references, and any modifications 

needed to incorporate Conlan’s teachings into the Ono-Hutchings device to 

provide the above benefits would have been predictable with a foreseeable chance 

of success and within the skill of a POSITA.  The respective teachings would work 

together in combination just as they did apart, with Conlan’s suggestion merely 

improving/adding to the Ono-Hutchings device. 
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 Analysis of the Claims 

167. Ground 3A relies on the additional disclosure of Conlan for the claim 

elements below.  Integration of Conlan does not disturb the aspects of Ono-

Hutchings mapped to the claim elements.  The Ground 3A Ono-Hutchings analysis 

is substantively identical to and incorporates the Ground 1 Ono-Hutchings analysis 

in all respects.  To avoid repetition, and because the analysis of Ono-Hutchings to 

the claim elements is identical, only selected claim elements are addressed below. 

a) Claim 1 

[1d] said microprocessor capable of receiving, interpreting, storing and 
responding to said movement data based on user-defined operational 
parameters, 

168. As previously discussed, Ono-Hutchings provides that the microprocessor 

receives, interprets, stores, and responds to movement data based on user-defined 

operational parameters.  Supra Ground 1, 1[d].  To the extent that this claim 

element requires that the movement data stored by the microprocessor is data 

measured by the movement sensor and if Ono-Hutchings were considered to not 

disclose storing such data, Conlan describes that “the user may also choose the 

type of data which is to be recorded,” including digitized data signals 

representative of the waveform from a sensor circuit.  APPLE-1010, 8:62-65, 

10:37-40, 11:64-12:13, 17:3-5, 18:66-19:2, 20:12-32, TABLE 2, FIG. 8.  Conlan’s 

processor transfers the digitized data signals to RAM for storage.  Id.  The user 

selection of recording certain data is a user-defined operational parameter that 
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affects the operation of the device by dictating the data stored by the processor.  Id.  

For the reasons previously discussed, a POSITA would have been motivated and 

would have found it obvious to implement the Ono-Hutchings device to allow the 

user to choose to record movement data measured by the movement sensor and the 

microprocessor to store such data in RAM based on the user selection as suggested 

by Conlan.  Supra Section VI.C.2; APPLE-1010, 8:62-65, 10:37-40, 11:64-12:13, 

17:3-5, 18:66-19:2, 20:12-32, TABLE 2, FIG. 8.   

[1f] storing first event information related to the detected first user-defined 
event along with first time stamp information reflecting a time at which the 
movement data causing the first user-defined event occurred; 

169. If the Ono-Hutchings storing in RAM of the user-defined operational 

parameters and the movement data used to detect the user-defined event along with 

time stamp information as previously discussed (supra Ground 1, 1[f]) were 

considered to not provide this claim element, Conlan teaches that the activity 

monitor includes “user-input pushbutton switches” that a user assigns to events and 

that “allow the subject to indicate the occurrence of a particular event.” APPLE-

1010, 6:39-53, 11:58-62, 19:14-17, 20:3-11.  When depressed, the switches “cause 

that occurrence to be recorded in the internal memory of the monitor” by causing 

“one or more markers to appear in the data recorded in RAM” depending on the 

events assigned to the switches.  Id.  Additionally, “pressing the event button 

127



places a time marker in the event channel” and “[t]he event channel... and activity 

data are presented as overlapping data.”  Id.   

170. As previously discussed, a POSITA would have found it obvious to 

implement the Ono-Hutchings device as suggested by Conlan to include a user-

input pushbutton that when depressed causes the device to store in memory the 

occurrence of the event.  Id.; supra Section VI.C.2.  When the user is notified of 

the event (e.g., that the target distance or target number of steps has been reached) 

via an alarm sound and desires to record the occurrence of the event in RAM, the 

user presses a pushbutton which causes the microprocessor to indicate the 

occurrence of the event by storing markers, including a time marker, in the data 

recorded in RAM (as suggested by Conlan) along with and in association with the 

movement data and the date and time information of Ono-Hutchings (supra 

Ground 1, [1f]).  Id.  The marker indicating the occurrence of the event is event 

information, and the time marker is a timestamp that reflects either an absolute or 

relative time at which the movement data causing the first user-defined event 

occurred.  Id.   

[1i] memory for storing said movement data; and 

171. Ono-Hutchings-Conlan renders [1d] obvious for similar reasons as discussed 

in Ground 3A, [1d].  Supra Ground 3A, [1d].   
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b) Claim 2 

2. The device of claim 1 further comprising at least one input/output port 
connected to said microprocessor for downloading said data and uploading 
said operational parameters to and from a computer. 

172. Conlan discloses that its activity monitor 10 (monitoring device) and 

computer 13 are connected through “a data port of computer 13 by means of a 

conventional RS-232 cable 15 or the like.”  APPLE-1010, 6:1-17, 10:55-56, FIG. 2 

(reproduced below).  A POSITA would have understood that a port would be 

needed on the computer and on the measuring device including the microprocessor 

to connect two ends of the cable.     

APPLE-1010, FIG. 2 
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173. Conlan further discloses that “[d]ata collected by the monitor over the 

collection period is downloaded at the end of the period to a personal computer 13 

which... contain[s] necessary software for accomplishing the down-loading [sic] of 

data from the monitor and the uploading of operating instructions to the monitor.”  

APPLE-1010, 5:66-6:37.  For the reasons previously discussed, it would have been 

obvious to a POSITA to implement the Ono-Hutchings device as suggested by 

Conlan to include at least one port connected to the microprocessor for 

downloading movement data to and uploading operational parameters from the 

computer.  Id.; supra Section VI.C.2.      

c) Claim 20 

[20d] storing said data in memory; 

174. Ono-Hutchings-Conlan renders [20d] obvious for similar reasons as 

discussed in Ground 3A, [1d].  Supra Ground 3A, [1d]. 

[20f] storing, in said memory, first event information related to the detected 
first user-defined event along with first time stamp information reflecting a 
time at which the movement data causing the first user-defined event 
occurred. 

175. Ono-Hutchings-Conlan renders [20f] obvious for similar reasons as 

discussed in Ground 3A, [1f].  Supra Ground 3A, [1f]. 
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d) Claim 30 

30. The device of claim 1, wherein said microprocessor is configured to store, 
in said memory, date information associated with the first time stamp 
information. 

176. Ono-Hutchings-Conlan renders claim 30 obvious for similar reasons as 

discussed in Ground 3A, [1f].  Supra Ground 3A, [1f]. 

e) Claim 31 

31. The device of claim 1, wherein said microprocessor is configured to 
retrieve said first time stamp information from said real-time clock and 
associate the retrieved first time stamp information with said first user-
defined event. 

177. As previously discussed, Ono-Hutchings yields a device including a real-

time clock connected to the microprocessor for obtaining “time-data, i.e., the 

present-time data comprising minute-data, hour-data, date-data and month-data” 

and the microprocessor stores the present time data at which the movement data 

causing the user-defined event occurred.  APPLE-1101, 9:14-31, 13:31-33, 12:10-

12, FIG. 14; supra Ground 1, [1f], [1h], claim 30.  Also previously discussed for 

Ono-Hutchings-Conlan, the microprocessor indicates the occurrence of the event 

by storing an event marker indicating the occurrence of the event and a time 

marker, which is a time stamp that reflects either an absolute or relative time at 

which the movement data causing the first user-defined event occurred, in the data 

recorded in RAM (as suggested by Conlan) along with and in association with the 

movement data and the date and time information of Ono-Hutchings.  APPLE-
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1010, 6:39-53, 11:58-62, 19:14-17, 20:3-11; supra Ground 1, [1f], Ground 3A, 

[1f].  Accordingly, the Ono-Hutchings-Conlan microprocessor retrieves the time 

stamp from the real-time clock, and associates the retrieved time stamp and user-

defined event using a time marker stored with the event marker and movement 

data.  Id. 

f) Claim 41 

41. The device of claim 39, wherein said memory is configured to store said 
first event information indicating that the predetermined threshold is met. 

178. Ono-Hutchings-Conlan renders claim 41 obvious for similar reasons as 

discussed in Ground 3A, [1f].  Supra Ground 3A, [1f].  The event marker that is 

stored in RAM indicates that the target distance or the target number of steps 

(predetermined threshold) is met.  Id. 

g) Claim 42 

42. The device of claim 41, wherein said memory is configured to store the 
first time stamp information in association with said first event information. 

179. Ono-Hutchings-Conlan renders claim 42 obvious for similar reasons as 

discussed in Ground 3A, [1f].  Supra Ground 3A, [1f]. 

h) Claim 45 

45. The device of claim 1, wherein said movement data stored in the memory 
is configured to be downloaded to a computer. 

180. Ono-Hutchings-Conlan renders claim 45 obvious for similar reasons as 

discussed in Ground 3A, [1d] and claim 2.  Supra Ground 3A, [1d], claim 2.  
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Additionally, Conlan discloses that the microprocessor “executes the instructions 

stored in the ROM and/or RAM by retrieving data and/or indications from the 

RAM or ROM, processing data, and returning data to the RAM [or] I/O ports in a 

manner well known to the art.”  APPLE-1010, 10:46-50.  Accordingly, Ono-

Hutchings-Conlan yields a device in which the movement data stored in RAM is 

downloaded to the computer.   

i) Claim 46 

46. The device of claim 45, further comprising: software configured to 
communicate with external software, wherein the external software is 
configured to present the downloaded movement data to the user. 

181. Conlan discloses that its activity monitor includes a microprocessor that 

executes “software by which the configuration of the various circuits of the 

[activity] monitor are controlled” and “software to control the monitor components 

and in which data obtained from the operation of the [activity] monitor is stored.”  

APPLE-1010, 4:5-46, 10:6-65.  The software also includes instructions for 

transmitting data from the activity monitor to the computer for further processing.  

APPLE-1010, 4:20-57.  The receiving computer includes “necessary software for 

accomplishing the down-loading [sic] of data from the monitor and the uploading 

of operating instructions to the monitor.”  APPLE-1010, 6:1-17.  The computer’s 

software can also generate “a wide variety of written reports and displays… from 

the data collected by the [activity] monitor.”  APPLE-1010, 6:18-37.  Accordingly, 
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Ono-Hutchings-Conlan yields a device including software that communicates with 

external software on the computer that presents the downloaded movement data to 

the user.   

j) Claim 47 

47. The device of claim 46, wherein said external software is configured to run 
on the computer. 

182. Ono-Hutchings-Conlan renders claim 47 obvious for similar reasons as 

discussed in Ground 3A, claim 46.  Supra Ground 3A, claim 46. 

k) Claim 49 

49. The device of claim 46, wherein said external software is configured to 
interpret said movement data and produce at least one report. 

183. Ono-Hutchings-Conlan renders claim 47 obvious for similar reasons as 

discussed in claim Ground 3A, claim 46.  Supra Ground 3A, claim 46. 

D. GROUND 3B—Claims 48, 50, and 51 are Obvious based on Ono 
in view of Hutchings, Conlan, and Hickman 

 Overview of Hickman 

184. Hickman describes a remote computer associated with a computerized 

exercise and health equipment.  APPLE-1104, 2:9-16, 3:43-49.  The remote 

computer is used to upload information from exercise and health equipment to be 

analyzed by a user at the remote computer.  APPLE-1104, 2:30-41, 10:37-39, 

10:57-64.  Hickman’s FIGS. 8a-8b illustrate examples of types of data analysis that 

can be performed, displayed, and printed by the remote computer.  APPLE-1104, 
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3:32-33, 11:5-26, FIGS. 8a, 8b.  FIG. 8a shows a graph of exercise activity, and 

FIG. 8b shows a summary of daily exercise activity.  Id. 

 

Hickman, FIGS. 8a-8b 

 Ono-Hutchings-Conlan-Hickman Combination 

185. As previously discussed, Ono-Hutchings-Conlan yields a remote computer 

with software for downloading data from the monitoring device and generating “a 

wide variety of written reports and displays… from the data collected by the 

[device].”  APPLE-1010, 6:1-17, 6:18-37.  In pursuing specific design options for 

the Ono-Hutchings-Conlan system, the POSITA would have explored prior art 

references like Hickman that provide details regarding the types of analysis, 

printed reports, and displays that can be generated by the user of a remote 

computer from the data collected by the monitoring device.  APPLE-1104, 11:5-

26, FIGS. 8a, 8b.  A POSITA would have found it obvious to implement the Ono-

Hutchings-Conlan system as suggested by Hickman such that the remote 

computer’s software allows the user to analyze the downloaded movement data 
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and produce history reports.  Id.  A POSITA would have been motivated to 

implement the Ono-Hutchings-Conlan system to provide the printed reports and 

displays suggested by Hickman to beneficially provide the user with 

comprehensive analysis and feedback concerning the user’s progress in reaching 

his or her exercise goals.  APPLE-1104, 3:43-53, 3:63-65, 6:6-13, 11:5-34, FIGS. 

8a-8c. 

186. Moreover, a POSITA would have viewed the implementation of the Ono-

Hutchings-Conlan device in a manner that applied Hickman’s suggested features 

as merely the predictable result (e.g., a remote computer with software that allows 

the user to analyze the downloaded movement data and produce history reports) of 

combining known prior elements according to known methods.  The POSITA 

would have appreciated that the Ono-Hutchings-Conlan-Hickman combination 

does not change the hallmark aspects of these references, and any modifications 

needed to incorporate Hickman’s teachings into the Ono-Hutchings-Conlan device 

to provide the above benefits would have been predictable with a foreseeable 

chance of success and within the skill of a POSITA.  The respective teachings 

would work together in combination just as they did apart, with Hickman’s 

suggestion merely improving/adding to the Ono-Hutchings-Conlan device. 
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 Analysis of the Claims 

187. Ground 3B relies on the additional disclosure of Hickman for the claim 

elements below.  Integration of Hickman does not disturb the aspects of Ono-

Hutchings-Conlan mapped to the elements from which the elements below depend.  

The Ground 3B Ono-Hutchings-Conlan-Hickman analysis incorporates the Ground 

3A Ono-Hutchings-Conlan analysis in all respects. 

a) Claim 48 

48. The device of claim 47, wherein said downloaded movement data is 
configured to be analyzed by said user via said external software. 

188. Ono-Hutchings-Conlan-Hickman renders claim 48 obvious for similar 

reasons as discussed in Sections VI.D.1-VI.D.2.  Supra Sections VI.D.1-VI.D.2. 

b) Claim 50 

50. The device of claim 46, wherein said external software is configured to 
interpret said movement data and produce at least one history report. 

189. Ono-Hutchings-Conlan-Hickman renders claim 48 obvious for similar 

reasons as discussed in Sections VI.D.1-VI.D.2.  Supra Sections VI.D.1-VI.D.2.  

Hickman’s reports are history reports because they show the user’s history of 

weekly and daily exercise activity.  APPLE-1104, 3:32-33, 11:5-26, FIGS. 8a, 8b. 

c) Claim 51 

51. The device of claim 50, wherein said at least one history report includes 
dates and times of said movement data. 

190. Ono-Hutchings-Conlan-Hickman renders claim 48 obvious for similar 

reasons as discussed in Sections VI.D.1-VI.D.2 and Ground 3B, claim 50.  Supra 

137



Sections VI.D.1-VI.D.2; supra Ground 3B, claim 50.  As shown in Hickman’s 

FIGS. 8a and 8b, the displayed history reports include days of the week (dates) and 

duration (times) of the movement data.  APPLE-1104, 3:32-33, 11:5-26. 

 

Hickman, FIGS. 8a-8b 

191. Further, as previously discussed, Ono-Hutchings’ microprocessor stores the 

date, duration, total step count, total distance-walked, and total calorie-

consumption in registers D of RAM for later retrieval and display.  APPLE-1101, 

13:65-14:29, 16:24-25, 17:10-50, 18:20-24, 20:37-53, FIGS. 15, 20 (steps C14-C15), 

23; supra Ground 1, [1d].  A POSITA would have found it obvious that such data 

stored in RAM of the Ono-Hutchings-Conlan-Hickman device is downloaded to 

the remote computer and analyzed by the remote computer’s software to generate 

the history report, which would include the dates and times of the movement data.  

Id.; APPLE-1104, 3:32-33, 11:5-26, FIGS. 8a, 8b. 
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E. GROUND 4—Claims 1, 3-5, 8, 10, 20, 25, 30, 39, 41, 42, 61-65, 
144, and 147 are Obvious based on Ono in view of Hutchings and 
Kaufman 

 Overview of Kaufman 

192. Kaufman describes an “exercise monitor... provided in a case or package 

that may be worn on a user’s wrist,” as shown in FIG. 5.  APPLE-1105, 4:51-54, 

7:4-6, 16:54-55, FIG. 5.   

 

Kaufman, FIG. 5 

193. Kaufman discloses that “by providing the exercise monitor in a watch case, 

the device is capable of detecting exercises that involve arm movement, such as 

walking or running.”  APPLE-1105, 16:59-62.  “The exercise monitor utilizes an 

exercise motion detector, such as an accelerometer, for detecting the repetitive 

motion associated with the performance of successive exercise repetitions.”  

APPLE-1105, 4:47-51, 16:55-59.  The exercise monitor “enable[s] the user to set a 
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desired exercise rate” with “the selected rate being variable between a 

predetermined minimum value and a predetermined maximum value (i.e., a 

tempo).”  APPLE-1105, 5:35-48.  “The selection of the desired exercise rate, in 

repetitions per minute, is made by setting a repetition rate selector 12.”  APPLE-

1105, 7:21-35.  Kaufman’s exercise monitor includes a microprocessor 

“programmed using a known clock routine to monitor the time duration between 

successively performed repetitions, and, by comparing this duration with the 

repetition rate selected on the repetition rate selector 12, determine whether the 

user is proceeding too slowly.  In such cases, alarm indicia such as a beep or verbal 

warning may be issued.  For example, if the exercise is being performed too 

slowly, the device could be programmed to synthesize the words ‘pick up the 

pace’, ‘faster’, and the like.”  APPLE-1105, 10:23-32.  A schematic diagram of 

Kaufman’s exercise monitor is shown in FIG. 1 reproduced below.  APPLE-1105, 

6:59-61, 7:10-27. 
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Kaufman, FIG. 1 

 Ono-Hutchings-Kaufman Combination 

194. As previously discussed, Ono describes calculating, storing, and displaying 

the number of steps per minute (also referred to as a pace or pitch).  APPLE-1101, 

14:65-68, 15:42-45, 20:26-36, FIG. 18 (step a12); supra Ground 1, 1[d].  Ono 

discloses that by displaying the walking pace, “the user of the pedometer can 

confirm whether or not his or her own walking pace is kept in the range of the pace 
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which has been previously set for walking, exercise walking or jogging.”  APPLE-

1101, 20:26-36.  The Ono-Hutchings device allows a user to define operational 

parameters, including selection of run mode, step-counting mode, step-counting 

mode start/stop, and exercise mode, and setting of stride lengths, target distance, 

and target number of steps.  APPLE-1101, 13:25-27, 13:34-42, 13:51-61, 15:61-

16:4, 16:18-17:50, 18:14-19, 18:28-19:67, 20:8-15, FIGS. 20-21; APPLE-1102, 

9:48-62, 10:28-30; supra Ground 1 [1d]. 

195. In pursuing specific design options for the Ono-Hutchings device, a POSITA 

would have explored similar prior art references like Kaufman that describe an 

exercise monitor in a watch case that detects exercises that involve arm movement, 

such as walking or running.  APPLE-1105, 4:51-54, 7:4-6, 16:54-59, FIG. 5.  A 

POSITA would have been motivated and would have found it obvious to 

implement the Ono-Hutchings device as suggested by Kaufman to include a 

repetition rate selector for the user to select the desired exercise rate in steps per 

minute and to program the microprocessor to monitor the time duration between 

successive steps, to determine whether the user is traveling too slowly by 

comparing this duration with the step rate selected on the repetition rate selector, 

and to cause an alarm sound or synthesized words to be generated if the user is 

traveling too slowly.  APPLE-1105, 5:35-48, 7:21-35, 10:23-32.   
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196.   Kaufman explains that “the most beneficial results of any exercise are 

obtained when an individual is given a specific, easily understandable performance 

target, is informed of his or her exercise progress, and is given verbal motivation, 

coaching, encouragement and instruction.”  APPLE-1105, 1:56-60.  Kaufman thus 

provides a device “for monitoring a user’s performance and offering verbal 

motivation and encouragement” “to assist the user in maintaining a desired 

exercise rate” without “the individual [being] required to monitor his or her own 

performance.”  Id.; APPLE-1105, 3:16-21, 2:48-51, 4:26-29, 7:11-21.  A POSITA 

would have been motivated to use Kaufman’s features to leverage the stated 

benefits of assisting the user in maintaining a desired step rate without the user 

having to manually check the display and determine his or her own pace.  Id. 

197. Moreover, a POSITA would have viewed the implementation of the Ono-

Hutchings device in a manner that applied Kaufman’s suggested features as merely 

the predictable result (e.g., a pedometer that includes a repetition rate selector for 

the user to select the desired exercise rate in steps per minute and the 

microprocessor monitoring the time duration between successive steps, 

determining whether the user is traveling too slowly by comparing this duration 

with the step rate selected on the repetition rate selector, and causing an alarm 

sound or synthesized words to be generated if the user is traveling too slowly) of 

combining known prior elements according to known methods.  The POSITA 
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would have appreciated that the Ono-Hutchings-Kaufman combination does not 

change the hallmark aspects of these references, and any modifications needed to 

incorporate Kaufman’s teachings into the Ono-Hutchings device to provide the 

above benefits would have been predictable with a foreseeable chance of success 

and within the skill of a POSITA.  The respective teachings would work together 

in combination just as they did apart, with Kaufman’s suggestion merely 

improving/adding to the Ono-Hutchings device. 

 Analysis of the Claims 

198. Ground 4 relies on the additional disclosure of Kaufman for the claim 

elements below.  Integration of Kaufman does not disturb the aspects of Ono-

Hutchings mapped to the claim elements.  The Ground 4 Ono-Hutchings analysis 

is substantively identical to and incorporates the Ground 1 Ono-Hutchings analysis 

in all respects.  To avoid repetition, and because the analysis of Ono-Hutchings to 

the claim elements is identical, only selected claim elements are addressed below. 

a) Claim 1 

[1d] said microprocessor capable of receiving, interpreting, storing and 
responding to said movement data based on user-defined operational 
parameters,  

199. As previously discussed, Ono-Hutchings yields a device in which the 

microprocessor receives movement data, including the number of steps taken in the 

last 10 seconds, and calculates, stores, and displays the number of steps per minute 

(also referred to as a pace or pitch) after the user selects and starts the step-
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counting mode.  APPLE-1101, 14:65-16:27, 20:26-36, FIG. 18; supra Ground 1, 

1[d].  In addition to Ono’s and Hutching’s disclosure previously discussed, 

Kaufman describes an exercise monitor that “enable[s] the user to set a desired 

exercise rate” with “the selected rate being variable between a predetermined 

minimum value and a predetermined maximum value (i.e., a tempo).”  APPLE-

1105, 5:35-48.  “The selection of the desired exercise rate, in repetitions per 

minute, is made by setting a repetition rate selector 12.”  APPLE-1105, 7:21-35.  

“The output signal of the repetition rate selector 12 is input to the programmed 

microprocessor 14.”  APPLE-1105, 7:48-50.  The microprocessor is “programmed 

using a known clock routine to monitor the time duration between successively 

performed repetitions, and, by comparing this duration with the repetition rate 

selected on the repetition rate selector 12, determine whether the user is proceeding 

too slowly.  In such cases, alarm indicia such as a beep or verbal warning may be 

issued.  For example, if the exercise is being performed too slowly, the device 

could be programmed to synthesize the words ‘pick up the pace’, ‘faster’, and the 

like.”  APPLE-1105, 10:23-32.  Kaufman’s exercise rate selected by the user is a 

user-defined operational parameter that affects the operations performed by the 

device.   

200. Based on Ono’s, Hutchings’, and Kaufman’s teachings, Ono-Hutchings-

Kaufman yields a device that allows a user to define operational parameters, 
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including selection of exercise rate in steps per minute.  APPLE-1105, 5:35-48, 

7:21-35.  When the user selects and starts the step-counting mode, the 

microprocessor receives movement data including the number of steps taken in the 

last 10 seconds (as suggested by Ono’s step a10), interprets/analyzes movement 

data including determining the time duration between successive steps using the 

clock, comparing this duration with the step rate previously selected by the user, 

and determining whether the user is proceeding too slowly (as suggested by 

Kaufman), stores movement data including storing the steps per minute and 

cumulative number of steps (as suggested by Ono’s step a12, a19), and responds to 

movement data including causing an alarm sound or synthesized words to be 

generated if the user is traveling too slowly (as suggested by Kaufman).  APPLE-

1101, 14:65-16:27, 20:26-36, FIG. 18; APPLE-1105, 10:23-32.  As previously 

discussed, a POSITA would have been motivated and would have found it obvious 

to implement the Ono-Hutchings device as suggested by Kaufman to include the 

repetition rate features to leverage the stated benefits of assisting the user in 

maintaining a desired step rate without the user having to manually check the 

display and determine his or her own pace.  APPLE-1105, 1:56-60, 3:16-21, 2:48-

51, 4:26-29, 7:11-21; supra Section VI.E.2. 
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[1e] detecting a first user-defined event based on the movement data and at 
least one of the user-defined operational parameters regarding the movement 
data, and 

201. As discussed above, Ono-Hutchings-Kaufman yields a device in which the 

microprocessor interprets/analyzes movement data including monitoring the time 

duration between successive steps using the clock, comparing this duration with 

the step rate previously selected by the user, and determining whether the user is 

proceeding too slowly (as suggested by Kaufman), and responds to movement data 

including causing an alarm sound or synthesized words to be generated if the user 

is traveling too slowly (as suggested by Kaufman) based on user selection and 

starting of the step-counting mode and based on the step rate previously set by the 

user.  APPLE-1101, 14:65-16:27, 20:26-36, FIG. 18; APPLE-1105, 10:23-32; 

supra Ground 4, [1d].  In the Ono-Hutchings-Kaufman device, the microprocessor 

detects a user-defined event (that the user is traveling too slowly as suggested by 

Kaufman) based on movement data (number of steps in the last 10 seconds as 

suggested by Ono and time duration between successive steps as suggested by 

Kaufman) and at least one of the user-defined operational parameters regarding the 

movement data (user selection and starting of the step-counting mode as suggested 

by Ono and user selected step rate as suggested by Kaufman).  Id.   
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[1f] storing first event information related to the detected first user-defined 
event along with first time stamp information reflecting a time at which the 
movement data causing the first user-defined event occurred; 

202. As previously discussed, Ono-Hutchings yields a device in which the 

microprocessor stores in RAM user-defined operational parameters (the user set 

modes, stride lengths, target distance, and target number of steps) and movement 

data (speed, pitch, distance-walked, and accumulative number of steps) related to 

the detected user-defined event (target distance and/or target step count reached) 

along with time stamp information (date, time, duration) reflecting a time at which 

the movement data causing the user-defined event occurred.  APPLE-1101, 13:44-

14:15, 14:65-16:27, FIGS. 15, 18; APPLE-1102, 9:49-67; supra Ground 1, [1f].  

Based on Ono’s disclosure, a POSITA would have found obvious to implement the 

Ono-Hutchings-Kaufman device to store in RAM the user selected step rate in 

addition to the user set modes, stride lengths, target distance, and target number of 

steps.  Id.; APPLE-1105, 5:35-48, 7:21-35, 7:48-50, 10:23-32.  The selected step 

rate and the stored movement data are related to the detected user-defined event 

(that the user is traveling too slowly) and are each event information related to the 

detected user-defined event.  Id.; supra Ground 4, [1e]. 
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b) Claim 20 

[20c] interpreting, using a microprocessor included in the portable, self-
contained movement measuring device, said physical movement data based on 
user-defined operational parameters and a real-time clock; 

203. Ono-Hutchings-Kaufman renders [20c] obvious for similar reasons as 

discussed in Ground 4, [1d].  Supra Ground 4, [1d]. 

[20e] detecting, using the microprocessor, a first user-defined event based on 
the movement data and at least one of the user-defined operational 
parameters regarding the movement data; and 

204. Ono-Hutchings-Kaufman renders [20e] obvious for similar reasons as 

discussed in Ground 4, [1e].  Supra Ground 4, [1e]. 

[20f] storing, in said memory, first event information related to the detected 
first user-defined event along with first time stamp information reflecting a 
time at which the movement data causing the first user-defined event 
occurred. 

205. Ono-Hutchings-Kaufman renders [20f] obvious for similar reasons as 

discussed in Ground 4, [1f].  Supra Ground 4, [1f]. 

c) Claim 42 

42. The device of claim 41, wherein said memory is configured to store the 
first time stamp information in association with said first event information. 

206. Ono-Hutchings-Kaufman renders claim 42 obvious for similar reasons as 

discussed in Ground 4, [1f].  Supra Ground 4, [1f]. 
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d) Claims 144 and 147 

144. The device of claim 1, wherein said first user-defined event is a 
predetermined type of movement. 

147. The device of claim 144, wherein the predetermined type of movement is 
no movement for a predetermined amount of time. 

207. As discussed above, Ono-Hutchings-Kaufman yields a device in which the 

microprocessor detects that the user is traveling too slowly (a user-defined event) 

by monitoring the time duration between successive steps using the clock and 

comparing this duration with the step rate previously selected by the user.  APPLE-

1105, 10:23-32; supra Ground 4, [1d], [1e].  A POSITA would have understood 

that the microprocessor detects that the user is traveling too slowly when it detects 

that no step was taken within the time duration required to meet the selected step 

rate, for example, when the user has stopped walking entirely.  See, e.g., APPLE-

1104, 8:57-64. 

F. GROUND 5A—Claims 1-5, 8-11, 20, 25, 30-32, 36, 39-42, 45-47, 
49, 61-65, 144, and 147 are Obvious based on Ono in view of 
Hutchings, Amano, Conlan, and Kaufman 

208. Ground 5A incorporates the Grounds 1, 2, 3A, and 4 analysis in all respects, 

including the reasons a POSITA would have been motivated to combine the 

references.  To avoid repetition, and because the analysis of Ono-Hutchings-

Amano-Conlan-Kaufman to the claim elements incorporates the Grounds 1, 2, 3A, 

and 4 analysis, only selected claim elements are addressed below.   
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a) Claim 31 

31. The device of claim 1, wherein said microprocessor is configured to 
retrieve said first time stamp information from said real-time clock and 
associate the retrieved first time stamp information with said first user-
defined event. 

209. As previously discussed, Ono-Hutchings-Amano yields a device including a 

watch circuit as a real-time clock connected to the microprocessor from which the 

microprocessor “reads out the current clock time.”  APPLE-1103, 16:43-47, 20:38-

43, 21:53-59, 26:29-58, 28:13-34, 30:19-22, FIG. 1; supra Section VI.B.2, Ground 

2, [1h].  Also previously discussed, the Ono-Hutchings-Kaufman device stores in 

RAM the user selected step rate and the movement data related to the detected 

user-defined event (that the user is traveling too slowly), which are each event 

information related to the detected user-defined event.  Supra Ground 1, [1f], 

Ground 4, [1e], [1f]; APPLE-1101, 13:44-14:15, 14:65-16:27, FIGS. 15, 18; 

APPLE-1102, 9:49-67; APPLE-1105, 5:35-48, 7:21-35, 7:48-50, 10:23-32.  As 

previously discussed for Ono-Hutchings-Conlan, the microprocessor indicates the 

occurrence of the event by storing an event marker indicating the occurrence of the 

event and a time marker, which is a time stamp that reflects either an absolute or 

relative time at which the movement data causing the user-defined event occurred, 

in the data recorded in RAM (as suggested by Conlan) along with and in 

association with the movement data and the date and time information of Ono-

Hutchings.  APPLE-1010, 6:39-53, 11:58-62, 19:14-17, 20:3-11; supra Ground 1, 
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[1f], Ground 3A, [1f].  A POSITA would have found obvious that Ono-Hutchings-

Amano-Conlan-Kaufman yields a device in which the microprocessor retrieves the 

time stamp from the watch circuit (real-time clock) and associates the retrieved 

time stamp and user-defined event (that the user is traveling too slowly) using a 

time marker stored with an event marker and movement data.   

a) Claim 32 

32. The device of claim 31, wherein said microprocessor is configured to 
retrieve said first time stamp information from said real-time clock based on 
the detection of the user-defined event. 

210. Amano discloses that when “CPU1 recognizes that the user has begun to 

exercise” based on output from the acceleration sensor, “CPU1 then reads out the 

clock time from watch circuit 9 and stores this as the exercise-start time in 

RAM3.”  APPLE-1103, 20:36-43, 26:29-30.  Similarly, when CPU1 “recognizes 

that the user has suspended exercise” based on output from the acceleration sensor, 

CPU1 “reads out the current clock time from watch circuit 9, which it records in 

RAM3 as the exercise-stop time.”  APPLE-1103, 21:43-56, 26:47-53.  “CPU1 then 

calculates the total exercise duration based on the exercise-start time and the 

exercise-stop time, and stores this in RAM3 in the same manner.”  APPLE-1103, 

21:56-59.  “CPU1 then stores all these values in RAM3, and displays them on 

display device 7.”  APPLE-1103, 26:52-53. 
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211. As previously discussed for Ono-Hutchings-Kaufman, the microprocessor 

detects a user-defined event (that the user is traveling too slowly as suggested by 

Kaufman) based on movement data (number of steps in the last 10 seconds as 

suggested by Ono and time duration between successive steps as suggested by 

Kaufman) and at least one of the user-defined operational parameters regarding the 

movement data (user selection and starting of the step-counting mode as suggested 

by Ono and user selected step rate as suggested by Kaufman). APPLE-1101, 

14:65-16:27, 20:26-36, FIG. 18; APPLE-1105, 10:23-32; supra Ground 4, [1d], 

[1e].  Based on Ono-Hutchings-Amano-Conlan-Kaufman’s teachings, a POSITA 

would have found it obvious to implement the microprocessor to not only detect 

when the user falls below the desired pace (user-defined event), but to also detect 

when the user has reached the desired pace (user-defined event), based on 

movement data (number of steps in the last 10 seconds as suggested by Ono and 

time duration between successive steps as suggested by Kaufman) and at least one 

of the user-defined operational parameters regarding the movement data (user 

selection and starting of the step-counting mode as suggested by Ono and user 

selected step rate as suggested by Kaufman).  Id.   

212. As suggested by Amano, when the microprocessor detects that the user has 

reached the desired pace based on the movement data, the microprocessor reads 

out the clock time from watch circuit and stores this as the exercise/interval-start 
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time in RAM.  APPLE-1103, 20:36-43, 26:29-30.  Similarly, when the 

microprocessor detects that the user has fallen below the desired pace based on the 

movement data, the microprocessor reads out the current clock time from watch 

circuit, which it records in RAM as the exercise/interval-stop time.  APPLE-1103, 

21:43-56, 26:47-53.  Accordingly, a POSITA would have found obvious that Ono-

Hutchings-Amano-Conlan-Kaufman yields a device in which the microprocessor 

retrieves the time stamp from the watch circuit (real-time clock) based on the 

microprocessor detecting a user-defined event (the user has reached the desired 

pace or has fallen below the desired pace).  APPLE-1103, 20:36-43, 26:29-30, 

21:43-56, 26:47-53, 21:56-59, 26:52-53. 

213. For reasons previously discussed, a POSITA would have been motivated to 

implement the Ono-Hutchings-Amano-Conlan-Kaufman device to retrieve and 

record the start and stop times of the user traveling at the desired pace based on 

detecting that the user has reached the desired pace and detecting that the user has 

fallen below the desired pace, as suggested by Amano.  Id.; supra Section VI.B.2.  

Additionally, Amano describes using its device “when carrying out interval 

training.”  APPLE-1103, 5:39-44, 7:51-56.  A POSITA would have been motivated 

to implement Amano’s teachings for the benefit of providing the user with interval 

start and stop times to allow the user to better understand and monitor exercise 

154



activity and progress and to vary the exercise program based on the interval start 

and stop times.  Id. 

G. GROUND 5B—Claims 48, 50, and 51 are Obvious based on Ono 
in view of Hutchings, Amano, Conlan, Kaufman, and Hickman 

214. Ground 5B incorporates the Grounds 3B analysis in all respects. 

H. GROUND 6A—Claims 1-5, 8-11, 20, 25, 30, 31, 36, 39-42, 45-47, 
49, and 61-65 are Obvious based on Ono in view of Hutchings, 
Amano, and Conlan 

215. Ground 6A incorporates the Grounds 1, 2, and 3A analysis in all respects. 

I. GROUND 6B—Claims 48, 50, and 51 are Obvious based on Ono 
in view of Hutchings, Amano, Conlan, and Hickman 

216. Ground 6B incorporates the Grounds 3B analysis in all respects. 

J. GROUND 7—Claims 1, 3-5, 8-11, 20, 25, 30, 36, 39-42, 61-65, 144, 
and 147 are Obvious based on Ono in view of Hutchings, Amano, 
and Kaufman 

217. Ground 7 incorporates the Grounds 1, 2, and 4 analysis in all respects. 

K. GROUND 8A—Claims 1-5, 8, 10, 20, 25, 30, 31, 39, 41, 42, 45-47, 
49, 61-65, 144, and 147 are Obvious based on Ono in view of 
Hutchings, Conlan, and Kaufman 

218. Ground 8A incorporates the Grounds 1, 3A, and 4 analysis in all respects. 

L. GROUND 8B—Claims 48, 50, and 51 are Obvious based on Ono 
in view of Hutchings, Conlan, Kaufman, and Hickman 

219. Ground 8B incorporates the Grounds 3B analysis in all respects. 

VII. CONCLUSION 

220. For all the reasons I have noted in the foregoing paragraphs, the Challenged 

claims of the ’576 Patent are obvious in view of the references discussed above. 
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DARPA Program Manager Portfolio (10/1/06 – 9/30/10) 

DARPA MIATA Program (MicroAntenna Arrays – Technology and Applications).   
• $40M Program Launched by Henryk Temkin in 2005 
• Focused on microfabricated antennas for mm-wave radiation sensors, and on 

integration of antenna, sensor, amplifier and readout circuitry in same structure 

DARPA TGP Program (Thermal Ground Plane).   
• $50M Program Launched by Thomas Kenny in 2007 
• Focused on microfabricated vapor chamber chamber heat spreaders with reduced 

dimensions, increased performance, and circuit-compatible materials 

DARPA YFA Program (Young Faculty Award).   
• $7M/year Program Launched by Henryk Temkin in 2006, re-run in 2007 and 2008. 
• Provided small ($200K) grants to promising young faculty throughout the US with 

ideas and interests that could lead to new technologies for the DoD. 

DARPA TBN Program (Tip-Based Nanofabrication)   
• $50M Program Launched by Thomas Kenny in 2007 
• Focused on controlled nanofabrication, with emphasis on controlling the size, shape, 

location and other properties of every nanostructure formed on a surface. 

DARPA MACE Program (Microtechnologies for Air-Cooled Exchangers).   
• $35M Program Launched by Thomas Kenny in 2008 
• Focused on use of microtechnologies in air-cooled heat exchangers 

DARPA NTI Program (NanoThermal Interfaces).   
• $30M Program Launched by Thomas Kenny in 2009 
• Focused on development of new nanostructured materials for enhanced thermal 

interfaces for electronics cooling. 

DARPA CEE Program (Casimir Effect Enhancement).   
• $10M Program Launched by Thomas Kenny in 2010 
• Focused on demonstration of reduced adhesion at the nanoscale through the use of the 

Casimir effect 

DARPA ACM Program (Active Cooling Modules).   
• $30M Program Launched by Thomas Kenny in 2010) 
• Focused on development of complete, high-performance cooling modules based on 

thermoelectric refrigeration, vapor compression refrigeration, and other novel 
refrigeration concepts. 

DARPA NJTT Program (Near-Junction Thermal Transport).   
• $25M Program Formulated by Thomas Kenny in 2010, Launched by Avram Bar-

Cohen in 2011 
• Program focus is on enhanced thermal conduction in the region immediately beneath 

the hot spots in high-power electronic devices. 

DARPA “Seedlings” ($250K efforts to prove key initial pieces of technology) 
• ~20 projects solicited, launched and managed 
• Produced important early results for TGP, TBN, NTI and ACM programs. 
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Patents (>50 Issued US Patents) 

1. Targeting Microbubbles, Robert H Grubbs, Marshall L Stoller, Hoyong Chung, Alissa M 
Fitzgerald, Thomas W Kenny, Renee M Thomas, US Patent 10,357,565 (7/23/2019), US 
Patent 10,149,906B2 ((12/11/2018), EP3375435A1, EP2748299B1, CN103917637B, 
WO2013028942A1, KR102076069,  

2. Composite Mechanical Resonators and Method Therefor, R. Melamud, B. Kim, M. 
Hopcroft, S. Chandorkar, T, Kenny, US Patent 7,806,586 (9/5/10), US Patent #7,824,098 
(11/2/10). 

3. Cooling Systems Incorporating Heat Exchangers and Thermoelectric Layers, Thomas W. 
Kenny, Mark Munch, Peng Zhou, James Gill Shook, Kenneth Goodson, Dave Corbin, Mark 
McMaster, James Lovette, US Patent 8,464,781 (6/18/13). 

4. Pump and Fan Control Concepts in a Cooling System, S. Sinha, M. Munch, K. Goodson, 
T. Kenny, US Patent # 7,591,302 (9/22/09), US Patent #8,602,092 (12/10/13) 

5. Remedies to Prevent Cracking in a Liquid System, M. Munch, D. Werner, T. Kenny, K 
Goodson, US Patent # 7,077,634 (7/18/06), US Patent # 7,201,214 (4/10/07), US Patent # 
7,201,012 (4/10/07). US Patent # 7,278,549 (10/9/07), US Patent#7,344,363 (3/18/08), US 
Patent # 7,402,029 (7/22/08), Pending (US2005/0182845A1, US2005/0183445A1, 
US2005/0183444A1, US2005/0183443A1, US2005/0016715A1, WO0471139A3, 
WO04071139A2, US2004/0148959A1) 

6. Apparatus for Conditioning Power and Managing Thermal Energy in an Electronic 
Device, T.W. Kenny, K.E. Goodson, J.G. Santiago.,G. K. Everett US Patent # 7,061,104 
(6/13/06) 

7. Boiling temperature Design in Pumped Microchannel Cooling Loops, P. Zhou, S. Zheng, 
T. Kenny, M. Munch. G. Upadhya, K. Goodson, J. Santiago, US 2004/0182551A1, 
WO04083742A2). 

8. Method and Apparatus for achieving temperature uniformity and hot-spot cooling in a 
heat-producing device, K. Goodson, T. Kenny, P, Zhou, G. Upadhya, M. Munch, M. 
McMaster, J, Hom,  US Patent# 7,104,312 (9/12/06), US2004/0112585A1, WO 
04042306A3, WO 04042306A2. 

9. Hermetic Closed-Loop Fluid System, D. Werner, M.. Munch, and T. Kenny, US Patent # 
7,021,369 (4/4/06). 

10. Removeable Heat Spreader support mechanism and method of manufacturing thereof, G. 
Upadhya, M. Munch, P. Zhou, K.E. Goodson and T.W. Kenny, US 2004/0233639A1, 
WO04070304A3, WO04070304A2, 

11. Method and Apparatus for Low-Cost Electrokinetic Pump Manufacturing, J. Lovette, M. 
Munch, J.G. Shook, S. Zheng, T.W. Kenny, D. Werner, Z. Cichocki, TCE. Lin, 
2004/0234378A1, WO04076857A2). 

12. Apparatus and Method of Forming Channels in a Heat Exchanging Device, T. Kenny, M. 
McMaster, J. Lovette, US Patent # 7,017,654 (3/28/06). 

13. Boiling Temperature Design in Pumped Microchannel Cooling Loops, P. Zhou, S. 
Zheng, T. Kenny, M. Munch, G. Upadhya, K. Goodson, J. Santiago,  Pending 
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14. Method and Apparatus for Efficient Vertical Fluid Delivery for Cooling a Heat-
Producing Device, T. Kenny, M. Munch, P. Zhou, J. Shook, K. Goodson, D. Corbin, M. 
McMaster, J. Lovette,  US Patent#7,000,684 (2/21/06), US 2004/0206477A1, US 
2004/0112571A1, WO04042304A3, WO04042304A2, WO04042297A3, WO04042297A2, 

15. Apparatus for Conditioning Power and Managing Thermal Energy in an Electronic 
Device, K. Goodson, J. Santiago, T. Kenny, and G Everett, US Patent #6,882,543, 
10/882475, 10/883530, 10/882607 

16. Interwoven Manifolds for Pressure Drop Reduction in Microchannel Heat Exchangers, G. 
Upadhya, M. Munch, P. Zhou, G. Shook, T. Kenny, K. Goodson, D. Corbin, US Patent# 
6,986,382 (1/17/06) US 2004/0104010A1, WO04042303A3, WO04042303A2 

17. Method and Apparatus for Flexible Fluid Delivery for cooling desired  Hot Spots in a 
heat-producing device, T. Kenny, J.G. Shook, D. Corbin, M.Munch, K. Goodson, US 
Patent# 6,988,534 (1/24/06), US2004/0104022A1, WO04042313A1 

18. Vapor Escape Microchannel Heat Exchanger, P. Zhou, K. Goodson, T. Kenny, J 
Santiago, Pending 10/366122. 

19. Ultra-Miniature Accelerometers, T.W. Kenny and W.T. Park, US Patent# 7,104,130, 
(9/12/06), WO0492746A1 

20. Method and Apparatus for Removably Coupling a Heat Rejection Device to a Heat 
Producing Device, T.W. Kenny, K.E Goodson,   US 2004/0076408A1. 

21. Microfabricated Electrokinetic Pump with On-Frit Electrodes, T. Kenny, J.G. Shook, S. 
Zeng, D.J. Lenehan, J. Santiago, J. Lovette, US Patent # 7,086,839 (8/8/06) 

22. Microfabricated Electrokinetic Pump, D. Corbin, K. Goodson, T. Kenny, J. Santiago, and 
S. Zheng, US Patent # 6,881,039 (5/27/04), US 2005/0042110A1, US200500843385A1, US 
Patent # 7,449,122 (11/11/08) 

23. Electroosmotic MicroPump with Planar Features, D. Laser, J.G. Santiago, K.E. 
Goodson, and T.W. Kenny, US Patent 7,316,543 (1/8/08) 

24. UltraMiniature Pressure Sensor and Probes, M. Bly, T.W. Kenny, S.A. Shaughnessey, 
M.S. Bartsch, US Patent #6,959,608 

25. Method of making a Nanogap for Variable Capacitive Elements, and Device having a 
NanoGap, M. Lutz, A. Partridge, and T.W. Kenny, WO 04095540A3, WO 04095540A2, US 
Patent 7,127,917 (2/6/07) 

26. System Including Power Conditioning Module, T.W. Kenny, K.E. Goodson, J.G. 
Santiago, C. K,  Everett, R. Chaplinsky, J. Kim, US Patent # 6,678,168. 

27. Power Conditioning Module, T.W. Kenny, K.E. Goodson, J.G. Santiago, C. K,  Everett, 
Patent # 6,606,251 (8/12/03), US Patent # 7,050,308 (5/23/06). 

28.  Closed-Loop Microchannel Cooling System, K.E. Goodson, D.E. Huber, L. Jiang, T.W. 
Kenny, J-M Koo, J.C. Mikkelsen, J.G. Santiago, E. Wang, S. Zheng, L. Zhang, D. Laser, 
H. Chen, US Patent # 7,334,630 (2/26/08), US20050205241A1. 
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29. Electroosmotic Microchannel Cooling System, K.E. Goodson, D.E. Huber, L. Jiang, 
T.W. Kenny, J-M Koo, J.C. Mikkelsen, J.G. Santiago, E. Wang, S. Zheng, L. Zhang, D. 
Laser, H. Chen, US Patent # 7,185,697 (3/6/07), US Patent # 7,131,486 (12/7/06), Patent 
# 6,942,018 (9/13/05) US Patent#6,991,024 (1/24/06), US Patent #7,131,486 (11/7/06) 
EP1576320A2, US2005/0098299A1, US2004/0089442A2, US2003/0164231A1, 
WO0302973A3, WO0302973A2, US2003/0062149A1,  

30. Adhesive Microstructure and Method of Forming Same, B. Full, K. Autumn, R. Fearing, 
and T. Kenny, US Patent # 6,737,160, US Patent # 7,011723 (3/14/06), US Patent # 
7,229,865 (7/11/07), US20050072509A1, US2004/0005454A1, EP1241930A4, 
WO0149776C2, EP1241930A2, WO 0149776A3, WO0149776A2. 

31. Non-Contact Mechanical Resonance Method for Determining the Near-Surface Carrier 
Mobility in Semiconductors, T.D.Stowe,  D. Rugar, and T.W, Kenny, Patent #6,489,776 
(12/3/02) 

32. In-Plane Micromachined Accelerometer and Bridge Circuit having same, A. Partridge, 
A. M. Fitzgerald, B.W. Chui, J. K. Reynolds and T.W. Kenny, Patent # 6,389,899 
(5/21/02) 

33. Method of Making Electrical Elements on the Sidewalls of Micromechanical Structures, 
B.W. Chui and T.W. Kenny, Patent # 6,025,208 (2/15/00). 

34. Micromachined Cantilever Structure Providing for Independent Multidimensional Force 
Sensing Using High Aspect Ratio Beams, B.W. Chui and T.W. Kenny, Patent # 5,959,200 
(9/28/99). 

35. Tunnel Effect Measuring Systems and Particle Detectors, W.J. Kaiser, S.B. Waltman, and 
T.W. Kenny, Patent #5,290,102 (3/1/94/94), Patent #5,265,470 (11/30/93), 5,293,781 
(3/15/94). 

36. Methods and Apparatus for Improving Sensor Performance, W.J. Kaiser, T.W. Kenny, 
S.B. Waltman, J.K. Reynolds and T.R. VanZandt.  Patent # 5,211,051 (5/18/93). 

37. Tunnel Effect Wave Energy Detection, W.J. Kaiser, S.B Waltman, and T.W. Kenny.  
Patent # 5,449,909 (9/12/95). 

38. Uncooled Tunneling Infrared Sensor, T.W. Kenny, W.J. Kaiser, J.A. Podosek, E.C. Vote, 
H.K. Rockstad, and J.K. Reynolds.  Patent # 5,298,748 (3/29/94). 

39. Uncooled Tunneling Infrared Sensor, T.W. Kenny, W.J. Kaiser, J.A. Podosek, E.C. Vote, 
R.E. Muller, and P.D. Maker.  Patent # 5,436,452 (7/25/95) 

40. Dual Element Electron Tunneling Accelerometer, W.J. Kaiser, T.W. Kenny, H.K. 
Rockstad, J.K. Reynolds, and T.R. VanZandt.  Patent # 5,563,344 (10/8/96) 

41. High Performance Miniature Hygrometer and Method Thereof, T.R. VanZandt, W.J. 
Kaiser, and T.W. Kenny,  Patent # 5,364,185 (11/15/94). 

42. Method and Apparatus for Measuring a Magnetic Field using a Deflectable Energized 
Loop and a Tunneling Tip,  W.J. Kaiser, S.B. Waltman, and T.W. Kenny, Patent # 
5,315,247 (1994) 
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