DESIGN AND DEVELOPMENT OF A BREATH-BY-BREATH ANALYSIS SYSTEM FOR USE AT LOW ALTITUDES

By

CHARLES T. PATTERSON

Bachelor of Science in Electrical Engineering

Stillwater, Oklahoma

1993

Submitted to the Faculty of the Graduate College of Oklahoma State University in partial fulfullment of the requirements for the Degree of MASTER OF SCIENCE December, 1996

DESIGN AND DEVELOPMENT OF A BREATH-BY-BREATH ANALYSIS SYSTEM FOR USE AT LOW ALTITUDES

Thesis Approved:

Thesis Advisor

Thomas C. Collins

Dean of Graduate College

PREFACE

I found designing and developing a breath-by-breath analysis system to be very rewarding. The challenges and triumphs I experienced, will help me throughout my engineering career. I received a great deal of help on this project and would like to thank all of the people who helped make this project possible.

First, I would like to thank the Federal Aviation Association for funding this project and making the facilities available for its development. A big thanks is given to Bob Garner, the team leader of the project, for his support, advice, and the opportunity he gave me to work on this project. I owe a deep gratitude to Frontier Engineering, my current employer, and Scott Phillips, my manager, for permitting me to use Frontier's facilities for this project and for tolerating my hectic schedule so that I could complete this last step of my Masters.

I would also like to thank the members of my advisory committee, Dr. Louis Johnson, Dr. George Scheets, and Dr. Ramakumar. A special thank you is extended to Dr. Louis Johnson for his guidance and patience during this project and previous semesters.

My parents, Tom and Marsha Patterson, deserve the greatest thanks of all, without their love and support I never could have reached this far.

TABLE OF CONTENTS

rigui	re	Page
I.	INTRODUCTION	1
	Purpose and Motivation.	1
	Overview of Procedure	3
II.	BACKGROUND	4
	Review of Apparatus	4
	Inhale/Exhale Flow	6
	Gas Composition of Breaths.	
	Pressure	
	Temperature	8
	Relative Humidity	8
	Data Acquisition	8
	Computer System	9
	Selection of Software Development Tool.	10
	Introduction to Graphical Programming	10
	Introduction to LabVIEW	1
	Benefits of Using LabVIEW	1
III.	DESIGN AND DEVELOPMENT	14
	Operation in Simulated Mode	14
	Acquiring Data at Desired Rate	16
	Error Handling	18
	Calibration	10

Circular Buffering of Data21
Circular Buffer w/ 2D Data Write.vi21
Convert Circular Index into Linear One.vi23
Convert Linear Index into Circular One.vi24
Find Signal Index and Channel.vi24
Recognition of Flow Signal24
Find Inhale.vi
Find Exhale.vi
Adjusting for Drifting Baseline27
Recognition of Inhale/Exhale Gas Fraction Signals
Aligning Signals28
Processing Breath Data
Displaying Data
Troubleshooting Display35
Main Display36
IV. CONCLUSIONS38
Verification of Program Results39
Future Work40
BIBLIOGRAPHY41
APPENDIX A - CODE LISTING42

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

