
Petitioner Apple Inc. - Ex. 1035, p. Cover-1

P .
‘ a :

D A - - = atfe — el

\ ~— =

oe ae Le;aa a a es ee = + Ue «aye ye

am ean Alea)

Mashup Projects
Create practical mashups in PHP, grabbing and mixing data from
Google Maps,Flickr, Amazon, YouTube, MSN Search, Yahoo!,
Last.fm, and 411Sync.com

Shu-Wai Chow /PACKT.

PHP Web 2.0 Mashup Projects

Create practical mashups in PHP, grabbing and
mixing data from Google Maps, Flickr, Amazon,
YouTube, MSN Search, Yahoo!, Last.fm, and
411 Sync.com

Shu-Wai Chow

PACKT
PUBLISHING

BIRMINGHAM - MUMBAl

Petitioner Apple Inc. - Ex. 1035, p. Cover-2

PHP Web 2.0 Mashup Projects
Create practical mashups in PHP, grabbing and mixing data from
Google Maps, Flickr, Amazon, YouTube, MSN Search, Yahoo!,
Last.fm, and 411Sync.com

Copyright© 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
"ithout warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distribu tors will be held liable for any damages caused or alleged to
re caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September, 2007

:?rod uction Reference: 1070907

:'ublished by Packt Publishing Ltd.
~~ Lincoln Road
Olton
Brrmingham, B27 6P A, UK.

:SB>l' 978-1-847190-88-8

.-,.-,,. . packtpub. com

Cover Image by Vinayak Chittar (vinayak. chicr.ar@gmail . com)

Petitioner Apple Inc. - Ex. 1035, p. Cover-3

Preface
A mashup is a web page or application that combines data from two or more
external online sources into an integrated experience. This book is your entryway to
the world of mashups and Web 2.0. You will create PHP projects that grab data from
one place on the Web, mix it up with relevant information from another place on the
Web and present it in a single application. All the mashup applications used in the
book are built upon free tools and are thoroughly explained. You will find all the
source code used to build the mashups in the code download section on our website.

This book is a practical tutorial with five detailed and carefully explained case
studies to build new and effective mash.up applications.

What This Book Covers
You will learn how to write PHP code to remotely consume services like Google
Maps, Flickr, Amazon, YouTube, MSN Search, Yahoo!, Last.fm, and the Internet UPC
Database, not to mention the California Highway Patrol Traffic data! You will also
learn about the technologies, data formats, and protocols needed to use these web
services and APis, and some of the freely-available PHP tools for working with them.

You will understand how these technologies work with each other and see how
to use this information, in combination with your imagination, to build your own
cutting-edge websites.

Chapter 1 provides an overview of mashups: what a mash.up is, and why you would
want one.

In Chapter 2 we create a basic mashup, and go shopping. We will simply look up
products on Amazon.com based on the Universal Product Code (UPC). To do this,
we cover two basic web services to get our feet wet - XML-RPC and REST. The
Internet UPC database is an XML--RPC-based service, while Amazon uses REST.

Petitioner Apple Inc. - Ex. 1035, p. 1

Pre ace

We will create code to call XML-RPC and REST services. Using PHP s SAX function,
we create an extensible object-01iented parser for XML. The mashup covered in this
chapter integrates information taken from Amazon's E-commerce Service (ECS) with
the Internet UPC database.

In Chapter 3, we o·eate a custom search engine using the technology of MSN, and
Yahoo! The chapter starts with an introduction to SOAP, the most complex of the
web service protocols. SOAP relies heavily on other standards like WSDL and XSD,
which are aJso covered in readable detail. We take a look at a WSDL document and
learn how to figure out what web services are available from it, and what types of
data are passed. Using PHP S's SoapClient extension, we then interact with SOAP
servers to grab data. We then finally create our mashup, which gathers web search
results sourced from Microsoft Live and Yahoo!

For the mashup in Chapter 4, we use the API from the video repository site You Tube,
and the XML feeds from social music site Last.fro. We will take a look at three
different XML-based file formats from those two sites: XSPF for song play lists, RSS
for publishing frequently updated information, and YouTube's custom XML format.
We will create a mashu p tl1at takes the songs in two Last.fm RSS feeds and
queries You Tube to retrieve videos for those songs. Rather than creating our own
XML-based parsers to parse tl1e three formats, we have used parsers from PEAR,
one for each of the tlu ee formats. Using these PEAR packages, we create an
object-oriented abstraction of these formats, which can be consumed by our
mashup application.

In Chapter 5, we screen-scrape from the California Highway Patrol website. The
CHP maintains a website of traffic incidents. This site auto-refreshes every minute,
ensuring the user gets live data about accidents tluoughout the state of California.
This is very valuable if you are in front of a computer. If you are out and about
running errands, it would be fairly useless. However, our mashup will use the web
service from 41 lSync.com to accept SMS messages from mobile users to deliver these
traffic incidents to users.

\\"e ve thrown almost everything into Chapter 6! In this chapter, we use RDF
documents, SPARQL, RAP, Google Maps, Flickr, AJAX, and JSON. We create a
geographically-centric way to present pictures from Flickr on Google Maps. We see
how lo read RDF documents and how to extract data from them using SPARQL and
RAP for RDF. This gets us the latitude and longitude of London tube stations. We
display them on a Google Map, and retrieve pictures of a selected station from Flickr.
O ur application needs to commwucate with the API servers for which we use
AJAX and JSON, which is emerging as a major data format. The biggest pitfall in
this AJAX application is race conditions, and we will learn various techniques to
overcome these.

[2] - - ----- -------

Petitioner Apple Inc. - Ex. 1035, p. 2

Pre ace

What You Need for This Book
To follow along with the projects and use the example code in this book, you will
need a web server running PHP 5.0 or higher and Apache 1.3.

All of the examples assume you are running the web server on your local work
station, and all development is done Locally.

Additionally, two projects have special requirements. In Chapter 5, you will need
access to a web server that can be reached externally from the Internet. In Chapter
6, you will need a MySQL server. Again, we assume you are running the MySQL
server locally and it is properly configured.

To quickly install PHP, Apache, and MySQL, check out XAMPP
(http: //www . apache friends . org/en/xampp . html). XAMPP is a one-step
installer for PHP, Apache, and MySQL, among other things.

XAMPP is available for Windows, Linux, and Mac OS X. However, many standard
Linux distributions already have PHP, Apache, and MySQL installed. Check your
distribution's documentation on how to activate them. Mac OS X already has Apache
and PHP installed by default. You can turn them on by enabling Web Sharing in
your Sharing Preferences.

MySQL can be installed as a binary downloaded from MySQL.corn
(http : //dev.mysql . com/downloads/mysql/4.l.html).

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

<?php
$aDom = new DOMDocument();
try {

$aDom->loadHTMLFile(1 examplehtml .html 1
) ;

catch (Excepti on $ex) {
$aDom = false;

[3] -------------

Petitioner Apple Inc. - Ex. 1035, p. 3

Pre ace

When we wish to draw your attention ~o a p.u-t:k.7llar part of a code block, the
relevant lines or items will be made bold:

<param>

<value><string>Hello, world .< s~=·-g>< ·,a:ue ~
</param>

Any command-line input and output is written as follov,:s:

Buttercup:- root# pear list

Buttercup:~ root# is the shell prompt on the author's machine.

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"In the search box, enter in your keyword and the region code then press Search."

[~ Important notes appear in a box like this.]

[
'A)
~ Tips and tricks appear like this.]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for u s
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub .com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www. packtpub. com or email
suggest@packtpub .com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide onwww.packtpub . com/ authors.

[4] --------------

Petitioner Apple Inc. - Ex. 1035, p. 4

Pre ace

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http : //www . packtpub . com/ support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed .

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books- maybe a mistake in text or
code -we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report tl1em by visiting http : //www. packtpub .

com/ support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http : //www. packtpub. com/support.

Questions
You can contact us at questions@packtpub . com if you are having a problem with
some aspect of the book, and we will do our best to address it.

(5) -------------

Petitioner Apple Inc. - Ex. 1035, p. 5

Introduction to Mashups
Mashups, more specifically ca1led web application hybrids by Wikipedia, have been
an exciting trend in web applications in recent years. Web mashups are exactly what
they sound like- web applications that merge data from one or more sources and
present them in new ways. Very often, the data owners encourage and facilitate
third parties to use the data. In many cases, this facilitation is made possible by
the data owners providing application programming interfaces (API) to their data.
These APis follow standard web service protocols and can be implemented quickly
and easily in a variety of programming languages, including PHP. New, innovative
mashups, made by individuals that combine data from traditionally unlikely
pairings are popping up every day.

One example is the Wii Seeker site. When the Nintendo Wii launched in November
2006, many knew there would be shortages. The object of the Wii Seeker site is to
help people find Wiis by combining expected initial shipment information to Target
stores and Google Maps. A marker on a Google Map represented a Target retail
store. If the user clicked on the marker they would see information about the store
such as the address. They would also see the number of Wiis the store was expected
to have on launch day. By representing numerical inventory data on a map, a user
could see Target stores near their location and plan their store visits on launch day to
maximize their chances of actually finding a Wii.

After the Nintendo Wii was launched, the site reinvented itself by adding auction
information from eBay and product information from Amazon. They also added
additional chain retail stores like Circuit City and Walmart. Instead of seeing
Nintendo Wii inventory information on each store, the site now allows visitors to
post notes for each other about the store's inventory.

Petitioner Apple Inc. - Ex. 1035, p. 7

introduction to Mashups

'~jifflndnear.bymet1

fiittJaa>OWlt~SOl;E
WSSWIGMlf.SW,NY.SfJ>J

.~W4 -Glme~ -

"911.tWl\'-flllla? ...(ilf'Wllllf•l

~ ~
f h•doWi wlWiAl:cenariMcl

Another mashup example is Astrolicio.us. This site queries data feeds from sites like
Digg.com, Google News, and Google Videos and presents it to the user on one page.
By combining data feeds, the site's creator has made a portal of current astronomy
news for visitors.

0UclO.US•A~~-•truaofflyMdJ41K.t,'--'"'ChW.tlllld~ 0.CV..i.Ll'ttpholMilomtlwlillbblitSptetT~.U.WulaA~Npo,blK,t,iMWt.toulCU, .-d'Mll'QSt
SIWS Wffl IN. 1;«eOll191tY d °'9'1 w. his(lhoto 1-p MtJOOOffl'fw»HtocnC,oogk lllld Ii.., 51Cn ~ -.hnctwq hffl deuoo.H $pp P!9 Pe '9dfot~ 4151

Astronomy Video

•
Ami!Ifllf AMNMm!Y Silf: n....._,._,.,~
a.. •i _,___,,._,.
~J•N•~

DfooonSoace

·~~

..... ~

-,-.-.. -~----•----.-... -____ _.. -..,_~ """ _... __ ~-w.-
• t~ro-A ;a,n,,,...,,~-°"""'.NQ_I_,, ...,.._...,__..,._...,.~_.,...,_. .,,_....,._,._•-T­
--~-------.~ 1,_~r--• __,,.__,,.,,, __________ ...,,.__Qrl> lflll.. ___ .~---

.__..,....,_~-----..-.w-,cw...
• ~..,c-,.,c.,Qe•J-,;-,,.,-,,,.~ "-S.0.9-~--....--...., _,.. ---..-~---~------..NAS,\-1, -• !'tlmMlPDF< Dsmfr-#aleN...,,,._ •tv1,.~---.,....,. _ _...,.._.,.. _________ _

_____ ._,.,_, __ el~tl _.,..,,. __ _.,,.

.-.......-.-. ·kwflll-••--....---.,.,,,...,,.,_. -. ..,,., ____ ..,.,.,,.
a..~~cw-...ar-...•~.,....,-.oiui-......,

• ~,....,.,_,.~-:,,,-r•1e.q~
.....,9!1E,-.TlffN<IMCll'ltCITOOIW'h1AIOMNA9'9'0,..__ MoNM,_~ .. --····~Ma--.. .00 ~~~0'
...... .,....Clilr~illl~I.

• ..._. frrmeetr■tectHUbleAeecsl....,,,.._..,.. ,r, , _._.._,_,_Mt,M'\~---•----...-.-~
_ .,. ... ____ ._,,.._ ,DOO ~•-!i9!0•illl00,...., ~Jl'VI---•...,. _____ ... ___ ,_,.,..,
~s-,-...1:r.,....~

[8]

Astronomy News

• .., w.,..,..,,.....,,,,___,_,..,,__ __ -,e,_..,..,.__~_.._.
io.11 .. .___.,._.,..,__o1._....,._..... .. __ _ -. ~!~------~·~~ ,,. __ '"""""'g1 _..,.,,~~~~-·»-
_Tlo9 ____~---------ol•­__,,,..,.....,_.,..,_,_, _ _..,. _

• r,,.,.~F-1"'1.,~·lllt_Jiw,,,I~
•-~ J"'--,a-E-.PIIO•..._...,.,_Sp:,c,l~\l'"· 1'Jt.Jlll7
l"--.~-,......,.19♦-_""" _____ ~~-

~.,..,~-...-"'°"'_.....,,
• !MPl'll!9!9"'1.....,....,,>11'W!NMfit::r->"'$!Wl1>V,P,r~t t'h'!!i:svn ,._....,..._~~--..~,.._n.._,.T• ~..._.. 1'

/lo>-,. .. (),.,a.---.__,.._., ... ~,..-~--­~-......... ----~-..-.. ' "WxrrP:t•twca· Dece _,.....,,..._,._""9a,.Ll'I 1'1.3N7M--al-'6flll-•.___
._,,.., ~~ ~-....... -• NMNIWP-Mee.....,,l.,J-e•t1mr-w •fiolcnei;...,,-,.,.... S-0,,ilJ'.,._,___,.....,o..._~~u.~ ,~ --...~~_.., __ Ld,_...._.,_......"" __ __
._ __ d_.,......_,....._ , T.UCl..4--..,-

•_....._uwo-.~~~~,...._
.........,....,._~~U...,.L __ Lab_.,...,__,.,, _ ~-~==--...... --... .---..--

Petitioner Apple Inc. - Ex. 1035, p. 8

01 ter 1

011 U1e ho me page, the user can quickly scan items that may interest them. For news,
the user is given bullet points for each news item containing the headline and a
synopsis. For videos, the user is shown a thumbnail. If a user clicks on a link, they
are taken to the source of the article or video. This si te is clean, simple, and full of
information . It is also quite easy to make using the APls of the sources. It probably
did not take the s ite creator more than an afternoon to go from the s tart of coding
to launch.

Web 2.0 and Mashups
How, in just a few short years, have mashups suddenly sprung up everywhere? The
story leads back to jus t a few years ago. After the technology industry's financial
bubble collapsed in 2001, internet firms regrouped and redefined themselves. There
were business lessons to be learned, technologies to be re-evaluated, and people's
perceptions had changed. By the middle of the decade, many trends and differences
became clear. The term "Web 2.0" started to surface, to draw separation between new
s ites and sites that gained popula rity in the late Nineties. The term was vague and
seemed suspiciously gimmicky at first. However, the differences between old and
new were real. They were not just historical and chronological. Sites like Google,
YouTube, and Flickr demonstrated new approaches to building a web business.
These sites often had s imple interfaces, fully embraced web services, and re turned a
lot of control to the user. Many of these sites relied solely on their users for content.
In September 2005, technology publisher Tim O'Reilly wrote an article entitled
What ls Web 2.0 to succinctly declare the traits of Web 2.0 versus 1.0 sites. There were
two characteristics that were direct catalysts for the growth of mashups:

• Importance of Data

• User Communities

Importance of Data
The first characteristic is the importance of data. The question of who owned data
and what they choose to do with the data became a big issue. Why in the world
would companies invest millions of dollars to gather the ir data and U1eir da tabase
systems, but then freely give it away for others to use? The answer is by opening
their systems, mashup developers help increase the reach of the data owners.

O'Reilly used the example of MapQuest to illustrate tlus. MapQuest was the leader
in mapping in the mid to late nineties. H ow ever, U1eir system was closed and did not
allow outside parties to do anything with their data. In the early Aughts, mapping
sites started to leverage tlus weakness. Yahoo! Maps, Microsoft Virtual Earth, and
Google Maps entered the market, and each one had APfs. Despite the huge

[9) - - - --- --------

Petitioner Apple Inc. - Ex. 1035, p. 9

Introduction to Mashups

early market lead, MapQuest quickly !os;: d) bigger players with open data. There
are many examples like this. Amazon opened up theu data through the Amazon
Ecommerce Service (ECS). Many mashups haw used this web service to create
their own store fronts. Amazon gets the sale and gives a percentage to mashup
developers. This has created many more channels for Amazon to sell their goods
besides www . amazon . com. Contrast this \\ith a site like BarnesAndNoble.com which
does not open their data. The only channel that they can sell is through the main
website. Not only do they lose sales opportunities, but they lack the affiliate loyalty
that Amazon has.

In our earlier examples, Wii Seeker helps the Target by funneling buyers to stores.
Wii Seeker in turn, receives adverting revenue and affiliate commissions on their
site. Google Videos, Google News, and Digg.com get visitors when a user clicks on
a link from astrolicious.us. Astrolicious.us gets advertising revenue with very little
development time invested.

User Communities
The second characteristic is that user added data is more valuable than we once
thought. User product reviews on ecommerce sites are nothing new. Neither are
web forums. However, itis how sites are using this information, and who owns
the data, that is becoming important. Movie rental site Netflix has always allowed
users to rate movies they have watched. Based on these recommendations, Netflix
will suggest other movies you might like. Recently, they have added a new social
networking feature called "Friends", where you can see how your friends have rated
movies and what they are watching. One feature of Friends is compatibility ratings.
Comparing both you and your friends' recommendations, Netflix comes up with a
percentage of your shared movie tastes.

Other sites are completely dependent on user-added data. YouTube and Flickr
provide video and picture hosting, respectively, for free. Their widespread adoption,
though, is not simply from hosting. Before Flickr, there were many sites that hosted
images for free. That was nothing new. The difference, again, is what both sites do
with user-added data. Both sites provide social networking features. You can leave
your ratings and comments on a hosted item and you can subscribe to a person's
profile. Anytime tl'lat person uploads something, you will be notified of the new
content. Both sites also allow folksonom.ic tagging, which basically le ts uploaders
describe the content witl1 their own keywords. Visitors can use these keywords to
search when they are looking for content. Tagging has proven to be an incredible aid
for search algorithms.

--------------- [10] ------ ----------

Petitioner Apple Inc. - Ex. 1035, p. 10

Cl ter 1

Thus, it is these two characteristics of new sites that have allowed small web
developers to appear much bigger. Backed with data from large internet presences,
mashup developers create usage channels that data owners could not have foreseen,
or been restricted by business rules.

How We Will Create Mash ups
Technologically, the mashup phenomenon could not have happened without
website owners making a clean separation between the data that is used on their
sites, and the actual presentation of the data. This has always been a goal in
computer application development, and therefore, it is no surprise that website
and web application architecture have progressed towards this stage ever since the
World Wide Web was created. This separation is quickly turning the World Wide
Web into what is known as the semantic web-a philosophy where web content is
presented not only for humans to read, but also in a way that can be easily processed
by software and machines. We have moved from static pages to database-driven
sites, from presentational FONT tags to cascading style sheets. It is perhaps inevitable
that the web has become an environment that fosters mashup development.

Data sources of mashups are vru:ied. Often, data owners provide mashup developers
access to their data through official application programming interfaces. As we are
talking about web applications, these APis utilize web services, which come in a
variety of protocols. Really Simple Syndication (RSS), a family of formats to present
data, is another common data source that has helped spur tlle mashup adoption.
When official methods are unavailable, developers become really creative in getting
data. Screen scraping is a method that has always been around. Regardless of the
method, mashups also deal with a variety of data formats. While mashups can be
sin1ple to create, a mashup developer must be flexible and well-rounded in the
knowledge of their tools.

Open-source software is particularly well-suited in this mashup environment. The
Apache and PHP combination makes for fast development. Being open source,
developers are constantly and quickly adding new features to keep up with the web
service world.

This book will take a look at how to use common data sources with PHP. Most
official APis are based on the big three web service protocols-XML-RPC, REST, and
SOAP. We will of course look at these p rotocols. APis and raw web service requests
by hand, of course, are not the only way to retrieve data. We will look at using
third-party libraries to interface with some popular sites. Feeds are also an important
data source which we will use. By giving you a broad overview of tl1e tools
used in the mashup world, you should be able to start developing your own
mashups quickly.

---------- - --- [11] --------------

Petitioner Apple Inc. - Ex. 1035, p. 11

Introduction to Mashups

More Mashups
For more examples and inspirations, check out these popular mashups:

• Popurls (popur ls . com)- Collects URLs from popular sites.

• Housingmaps.com (www. housingmaps. com)-Plots housing listings from
Craigslist on to a map.

• Keegy (us . keegy . com)-A site that aggregates news from different sources
and personalizes it for the reader.

• Alkemis (local . alkemi s. com)-Aggregates and maps all sorts of data, for
example, pictures and live web cams, in selected cities.

• Gametripping.com (www. garnet ripping. com) -A collection of satellite and
Flickr photos of baseball stadiums.

- -------------- [12) ---------------

Petitioner Apple Inc. - Ex. 1035, p. 12

London Tube Photos

Project Overview

What Plot London Tube station locations on Google Maps. When a
station's icon is clicked, search Flickr for photos of the station
and display them on the map.

Protocols Used REST

Data Formats XML, RDF, JSON

Tools Featured SPARQL, RDF API for PHP, XMLHttpRequest Object AJA\)

APls Used Google Maps, Flickr Services

We have used a lot of techniques and APls in our projects. For the most part, things
have mashed up together fairly easily with minimal issues. One of the reasons for
this is that we have re lied on PHP to create the presentation for our mashups. This
simplifies the architecture of our mashup and gives us a lot of control. Many APis,
though, are JavaScript-based, and hence, any mashup will rely heavily on JavaScript
for the presentation. This introduces a lot of other issues that we will have to deal
with. In this mashup, we will encounter some of those issues, and look at ways to
work around them. Pl IP will remain an important part of our mashup, but take a
smaller role than it has played so far.

In this mash up, we w ill present a geographically-centric way to present pictures
from the photo-sharing site, Flickr. When a user loads our application, they will
be presented with a Google map of London. A pull-down menu of all the London
Tube lines w ill be available. The user w ill select a line, and the application will load
all of the Tube stations onto the map and display them with markers. If the user
clicks on a marker, the name of the station will appear as a popup on the map. In the
background, a search query against Flickr will be initiated, and any pictures of the
station will appear in the popup as a thumbnail. Clicking on the photo will take the
user to the photo's page on Flickr.

Petitioner Apple Inc. - Ex. 1035, p. 203

London Tube Photos

JavaScript is not the only new tool that we will integrate into our toolbox. Before we
can work on the user interface, we will need to populate data into our application.
We need to find out which Tube stations belong to which line, and where those
stations are located. Many websites have one of those things or the other, but not
both. If we used them, not only are we dealing with two data sources, but we'd
have to resort to screen scraping again. Fortunately, there is one place that has both
pieces of information. This source is in Resource Description Format, an XML format
that we glanced at, earlier in Chapter 3. In this mashup, we will take a much closer
look at RDF, and how to extract data from it using a young query language called
SPARQL (SPARQL Protocol and RDF Query Language).

Preliminary Planning
Note that it would not have been wise to pre-plan mashups, but this application will
be much m ore complex, and will definitely require some forethought. Previously,
our APis have worked in the background delivering data. We use PHP to re trieve
data from an API, receive it in whatever format it gives us, format the response into
either ITT~IL output to the user, or another format to retrieve data from another APL
PHP gives us a lot of flexibility in the way our application is designed.

This time, one API, Google Maps, is a JavaScript APL Another, Flickr Services, is still
server based. The two cannot talk directly to each other, and we are going to have to
play witlun the rules set by each one. More than ever, we are going to have to take a
close look a t everything before we attempt to write a single line of code.

At th.is point, ti-us is what we know:

1. We need to find a data source for the Tube stations. We need to find the
names of the stations in each line, and some piece of information we can use
to geographically identify it on a map. The latter will be dictated more by the
capability of the tool on the receiving end. In other words, as we are going
to use Google Maps, we are going to have to see how Google Maps p laces
markers on its map, and we will have to massage the source data to Google
Map's liking.

2. We will use the Google Maps API solely for presentation. JavaScript cannot
call PHP functions or server side code directly, nor can PI IP call JavaScript
functions. However, we can use PHP to write JavaScript code on the fly,
and we do have the JavaScript XMLHttpRequest object available. The
XMLHtt pRequest object can call server resources by sending a GET or POST

request without the page reloading. We can then dynamically update the
page in front of the user. This process is popularly known as AJAX, or
Asynchronous JavaScript and XML.

- --------------(204]---------- -----

Petitioner Apple Inc. - Ex. 1035, p. 204

Cha ter 6

Looking at the Flickr Service's documentation page at
http : //www. flickr . com/services/api/, we find we have an
incredible variety of formats and protocols to choose from. All of our
major request protocols, REST, XML-RPC, and SOAP are there. In
addition to these, we can have our choice of JSON or serialized PHP for
the response format. There is also a huge list of language kits already
built. You can use these kits to call Flickr directly from PHP, Cold Fusion,
Java, etc. Unfortunately, JavaScript is not on that list.

Finding Tube Information
Our biggest problem is finding the initial Tube data. Without this first step, we
cannot create our mashup. The first logical step is to look at the official Tube site at
http://www. tfl. gov. uk/tube/. Poking around, we see a lot of colorful maps of the
lines, but nothing machine readable - no feeds and not even a pull-down menu with
stations. It looks like the official site will be a poor choice as a source of data.

We should look at the Google Maps API to see what it can even accept.
The documentation homepage is at http://www. google. com/ apis/maps/
documentation/. This site has many examples as well as class, methods, and
properties references. Looking around, we see that a Google Map marker is
represen ted by a class called GMarker. There are many examples on how to create a
marker like so:

marker= new GMarker(point};
map.addOver lay(marker };

That's wonderful, but what is a point that is passed to the GMarker class? Looking at
the docu mentation reference, we find that it is a GLatLng object, which is an object
that has two simple properties - the longitude of the marker and the latitude of the
marker. It looks like the most direct way to create a marker is through latitude and
longitude coordinates.

Ruling out the official Tube site, we still need to find longitude and latitude
information for sites. With some searching, I stumbled upon Jo Walsh 's site,
frat. org . Ms. Walsh has done a lot of work with open geographical data, and is
currently an officer in the Open Source Geospatial Foundation (http : //www. osgeo .
org/). On her site, she talks about mudlondon, an IRC bot she created. As part of this
bot, she compiled an RDF file of all London Tube stations. The file is located at
http:/ /space. frot . org/rdf /tube_model 2. rdf. The first half of this file is
information about each station, including latitude and longitude positions. The
second half of this file maps out each line and their station . These two pieces of
information are exactly what we need. After contacting her, she was gracious enough
to allow us to use this file for our mashup.
---- -----------(205]---------------

Petitioner Apple Inc. - Ex. 1035, p. 205

London Tube Plzotos

Being an XML-based file, we can create our own parser like we did before.
However, some more searching reveals an RDF parser for PHP. This should save
us some effort.

There is one problem with this approach. The RDF file itself is over 500 kilobytes in
size. It would be perfectly reasonable to treat this RDF file like an RSS 1.1 feed and
load and parse it at run time. However, this file is not a blog1s sb"eam. Tube stations
do not change very often. To save bandwidth for Ms. Walsh, and dramatically speed
up our application, we should eliminate this load and parse. One solution is to save
this file directly onto our file system. This will give us a great speed boost. Another
speed boost can be gained if we retrieved the data from a database instead of parsing
the file every time. XML parsers are a fairly new addition into the PHP feature set.
They are not as mature as the database extensions. The nature of XML parsing also
has an overhead to it compared to just retrieving data from a database. It would
appear that we should use RDF parsing to populate a database at first, and then in
our application, load the data dynamically from a database.

Integrating Google Maps and Flickr
Services
Now that we have the data and know generally how to create markers with that
data, we need to look at how to bridge a JavaScript call in Google Maps to a server
call in Flickr Services. Flickr Services has a REST-based endpoint available. This
means that all we would need to do is send a GET or POST request to the endpoint,
supplying OUT parameters, and we would get data back. Moreover, one return option
is JavaScript Object Notation, JSON. Theoretically, we can use the XMLHttpRequ e st

object in JavaScript to send a GET request, and get JavaScript directly back from the
server. We can then use this JavaScript to dynamically change ow· page. This would
really make things easy.

The main obstacle to this is that we cannot make the XMLHttpRequest GET/POST

request directly against Flickr Services. This is because cross-scripting attacks are a
security problem. To counter this, all web browsers prevent a site from sending an
x:~:..i't::tpRequest against another site. An XMLHttpRequest can only go back to the
serYer from where the page was served.

To get around this, we can set up om own REST service that sits on our server. When
the user clicks on a marker, the XMLHttpRequest goes back against OUT REST service.
Our REST service then calls Flickr Service, and we merely pass the Flickr response
back to the client.

--------------- (206)---------------

Petitioner Apple Inc. - Ex. 1035, p. 206

Cha /er 6

Application Sequence
We now have a plan of attack and a preliminary architecture for our application. We
can crea te a Unified Modeling Language sequencing diagram to ilJustrate what will
happen when a visitor uses our mashup.

¥11\f8£
- Load Page - - ~

- GetMap _

_ Map, Objects -

-
11 - Display Map

~ ~

SelectaUne
I

'
I I
I I

SELECT i,tations

- I~
I

Dataset of Stations

Display Markers - I
~ I

I

Marl<er Click_ I
I I

XM~HttpRequest with Marker Info

'

I I

i I
I l
I I
I .
I 1

: JSON
I
I

J>isplay Pictures
-.:::: I I

I I
~ I I .. "'I' :

Local REST
Smtl~

--,
I
I .
I
I
I
I

-

E1lw. sqw,
I
I
I
I .
I
I
I .
I
I

RESTQueiy
~

-

I JSON -~
Ii ~·
~

I

:

If you do not know UML, do not worry. This diagram keeps the UML notation
simplified and is easy to understand. This is basically a fancy way of summarizing
the steps that a user goes through to load a set of pictures from Flickr. WhiJe there
are just three things a user must do, this diagram shows sequentially what happens
behind the scenes.

This diagram gives us a good idea of what we are dealing with in terms of
technology. Let's take a look at some of the new formats we will encounter.

Resource Description Framework (RDF)
Recall from Chapter 3, we described RSS 1.1 as being RDF-based. What exactly is
RDF? Many call RDF "meta.data about data" and then go on to describe how it has
evolved beyond that. While RDF and its usage has certainly evolved, it is important
to not to forget the "meta.data about data aspect because it captures the essence of
whatRDF is.

---------------[207)---------------

Petitioner Apple Inc. - Ex. 1035, p. 207

London Tube Photos

The purpose of RDF is to describe a web resource, that is, to describe something on
the Internet. For example, if a shopping website lists the price of something, what
exactly is a price? Is it in American Dollars? Mexican Pesos? Russian Rubles? For a
website, what exactly is a timestamp? Should a machine parser treat a times tamp
:in 12-hour notation dillerent from a timestamp in 24-hour notation? XML, at a very
high level, was supposed to allow groups to standardize on a transaction format.
Implementation details were left to the parties of interests because XML is just a
language. RDF is the next evolution of that original goal. It gives us a framework
for that implementation. By defining what a timestamp is, any machine or human
that encounters that RDF document will know, without any ambiguity, what that
timestamp is, what it means, and what format it should be in.

The basic concepts and syntax of RDF is fairly simple and straightforward. RDF
groups things in what it calls triples. A triple basically says, "A something has a
property whose value is something". Triples use the grammar concepts of subject,
predicate, and object. In the sentence, "The page has a size of 21 kilobytes", the
page is the subject. The predicate is the property, in this case, size. The object is the
value of that property, 21 kilobytes. Typically in RDF, the subject is represented by
an about attribute of a parent element. The property and value are represented by
element and value pairs under that parent element. The page size sentence could be
represented as follows in XML notation:

<rdf:RDF

Xmlns:rdf="http://www.w3.org/l999/02/22-rdf - syntax-ns#"
Xmlns="http://www.example.org/pageProperties"

>

<rdfDescription rdf:about="http://www.shuchow.com/thecats.html">
<Creator>Shu Chow</creator>
<title>My Cats</title>
<lastMOd>Ol/24/22007</lastMOd>
<Size>21 kilobytes</size>

</rdf:Description>
</rdf:RDF>

In RDF, every element must be namespaced. The rdf namespace is required, and
must point to http://www. w3. org/1999/02/22-rdf-syntax-ns. This gives us
access to the core RDF elements that structure this document as an RDF document.
In this short document, we access the RDF elements three times-once as the root
element of the document, once more to identify a resource using the De script ion
element, and once more to identify the specific resomce wiU-, the about attribute. In
human language form, the title can be stated as, "A web resource at http : //www.
shuchow . com/thecats. html, has a title property, whose value is 'My Cats'". Even
more casually, we can say, "The page's title is 'My Cats"'.

---------------[208)---------------

Petitioner Apple Inc. - Ex. 1035, p. 208

Breaking it down into subject, predicate, and object:

• The subject is http://www. shuchow . com/thecats. html.

• The predicate is title. This may also be expressed as a URJ.

• The object is "My Cats".

In RDF, subject and predicates must be URis. However, like in the preceding
example, predicates can be namespaced. Values can be either URis, or, more
commonly, literals. Literals are s tring values within the predicate elements.

Cha ter6

There is another RDF element that we will encounter in our mashup. In the pre,ious
example, it was obvious from context that the web resource was an HTML page.
The RDF Schema specification has a type element resource attribute that classifies
subjects as programming objects (as opposed to triples objects), like PHP or
Java objects.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22- rdf-syntax-ns#"
xmlns="http://www.example .org/pageProperties"

>

<rdfDescription rdf:about="http://www.shuchow .com/thecats.html">
<creator>Shu Chow</creator>
<title>MY Cats</title>
<lastMOd>Ol/24/22007</lastMOd>
<size>21 kilobytes</size>
<rdf:type rdf:resource=

"http://www.example.org/objects#An_ HTML_ Page" />

</rdf:Description>
</rdf :RDF>

The resource attribute is always a URI. Combined with the type element,
they tell us that in order to find out what exactly tl"\.is resource is, we should visit
the value of the resource attribute. In this example, the resource is described at
http : //www. example. org /object s#An _HTML_ Page, which presumably describes
an HTML page.

Knowing just the simple nature of triples can get us s tarted with RDF. Witl"\.in the
core RDF specification, there are a few more elements that pertain to grouping of
collections. However, as the specification is designed to be scaled and expanded,
there are not many more elements beyond that. Namespacing of extensions is the
source of RDF's power. For our mashup, we will encow1ter a few more extensions,
and we will examine them closer when we encounter them. For now, we have the
basic skills to read and use our latitude/ longitude data source.

----- --- - - ------(209)----------------

Petitioner Apple Inc. - Ex. 1035, p. 209

London Tube Photos

Yi:'""'/ deep subject. To learn more about RDF, the W3C has created an excellent

[

Common extensions to RDF and their applications can tum RDF into a very

~ primer located at http://www. w3 . org/TR/rdf-primer/. Be warned
that one can get easily wrapped up in the philosophical underpinnings of
ROF- the official specification is actually six separate documents.

SPARQL

l
RDF is designed to be a data store. It follows that as soon as RDF came out, people
wanted a way to query, like a traditional database. SPARQL is a new RDF query
language that has recently become a W3C recommendation. You can think of
SPARQL as writing a query, loosely akin to SQL for databases, to parse an XML file,
specificaUy an RDF file. The results 1·eturned to you are row and column tables just
like in SQL.

Most people learned SQL with the aid of a command line client that queried a
database. This allowed us to experiment and play with query structures. Fortunately
for SPARQL, there is something similar; SPARQLer, located at http://www.
sparql . org/ sparql . html, is an interactive web tool that allows you to specify an
RDF document on the web as an input and write SPARQL queries against it. It will
display the query results to us much like the results from a database client. As we
go through our initial discussion of SPARQL, we will use this query tool and an
example document RDF document at http: //www.shuchow .com/mashups/ch6/
pets. rdf. Th.is RDF document is a list of all the animals that my pay check feeds.

Analyzing the Query Subject
In the database world, before you start writing queries, you need to understand
the schema a little, either by entity-relationship diagrams (if you had good
documentation) or by simply using SHOW TABLES and EXAMINE SQL commands.
You'll need to do the same thing with SPARQL. Sometimes the host will have
documentation, but often, you will just need to read the RDF file to get a general feel
for the document. Let's start this exercise by opening the RDF file we will be working
with at http : //www . shuchow. com/mashups/ch6/pets. rdf. Your browser will
either download this file to your hard drive, or it will open it in-window. If it opens
up in-window, it will probably apply a stylesheet to it to pretty up the presentation.
In this case, you will need to view the source of the document to see all the tags and
namespace prefixes.

---------------[210)---- -----------

Petitioner Apple Inc. - Ex. 1035, p. 210

Cha ter 6

This RDF file is very straigh tfon ..-ard and simple. We start off ·wi th the root element,
followed by the namespaces:

<rdf :RDF

>

xmlns :mypets="http://www.shuchow. com/ "
xm1ns:rdf="http://www.w3.org/l999/02/22-rdf-synt ax-ns#"
xmlns :rdfs="http: //www .w3 .org/2000/0l/rdf-schema#"

The namespaces rdf and rdfs are tied to w3.org resources, which tells us that they
are industry s tandards. mypets, however, is tied to shuchow.com, the file's domain.
This means that it's probably a proprietary vocabulary created by the shuchow.com
organization to support the information. To find ou t more, we could visit the site.
Doing so should lead us to some documentation on some of the syntax we
will encounter.

The rest of the file is basically a list of pets w rapped around Description elements
with some details as child elements. The about a ttribute in the Description element
points to the exact subject of this item.

<rdf :Descript ion rdf :about= "http: //www. shuchow. com/thecats . html#av_ >
<mypets :name>Avi</mypet s :name>
<mypets :age>6</mypets :age>
<mypets:gender>F</mypets :gender>
<rdfs : type rdf :resource="http ://www .shuchow. com/#parrot"/>

</rdf :Description>

The name, age, and gender of each pet are the value of their respective elements.
Each of these elemen ts is narnespaced to mypets . The t ype of the item is a URI
pointing to a location that describes what this "thing" is. For this file, it is an
imaginary URl used only as a way to separate the types of animals in my house. ln
the real world, this may also not point to a real file, or it may have a complex RDF
taxonomy definition behind it. These Des cription blocks are repeated for each pet

Anatomy of a SPARQL Query
If you know SQL, it should be easy to understand the first few lines of a SPARQL
q uery. Let us take a look at a simple SPARQL query to unders tand its parts. Suppose
we want to extract one specific piece of information about a specific pet. Let's say we
wish to extract Saffy's age. We know in the document that the age is the value of the
mypets: age element. We also know that the name of the pet, Saffy, is in the mypets:
name elemen t. We need a query that will extract the value of mypets: age restricted
by the value of mypet s : name.

- - --- ----------[211)- - - ----- --------

Petitioner Apple Inc. - Ex. 1035, p. 211

--
Loudon Tube Photos

This SP ARQL query will give us this information:

PREFIX mypets: <http : //www.shuchow .com/>

SELECT ?age
FROM <http://www.shuchow .com/mashups/ch6/pets.rdf>
WHERE {

?Description mypets:name "Saffy"
?Description mypets :age ?age

There are a couple of syntactical things we need to state before we look at this query.
First, in SPARQL, URis are surrounded by less than and greater than brackets.
Second, SPARQL queries rely on variables to name values. Variable names are
denoted with a question mark at the beginning.

The first line of this query is a PREFIX statement. PREFIX statements are required
for every namespace that the query will encounter in the RDF document. In
;>ets. rdf, there are actually three namespace declarations. However, to extract the
age, we touch mypets : name and mypets: age, and they share a common namespace.
Therefore, in our query, we only need to prefix the mypets namespace. The format
is the PREFIX keyword, followed by the namespace name as given in the RDF
document, a colon, and finally the namespace value also as given in the
RDF document.

The next line is the SELECT statement. In the SELECT statement, list the names of
the SPARQL query variables you wish to extract. In SQL, SELECT statements are
followed by the names of the table columns or aliases. In SPARQL, variables are
defined, and their values set, in the WHERE clause. SELECT statements specify those
variables you wish to pluck. We will look at how to define SPARQL variables very
shortly. To keep things simple, this example uses the name of the element we are
interested in, age, as the variable name, ?age. However, SELECT ?mangoes would
have also given us the same results as long as tl1e second line in the WHERE clause was
changed to ?Description mypets : age ?mangos. If you wish to extract multiple
variables, list each variable out in the SELECT statement, separated by spaces.

The next statement is the FROM statement. In SPARQL, this statement is optional. It is
used to point to the source of the RDF data. In many parsers, the location of the RDF
document is made outside of the SPARQL query. For example, some parsers take tl1e
URL of the RDF document as a constructor argument. The FROM statement, although
not necessary, is like a comment for the query. It tells us that this query is written for
this specific RDF document. Like programmer comments, although not necessary,
it is good form to include tlus statement. In SPARQLer, we have the option of either
putting the source URL in the query or in a separate field.

--------------[212)--------------

Petitioner Apple Inc. - Ex. 1035, p. 212

Cha ter 6

Writing SPARQL WHERE Clauses
Finally, we get to the WHERE clause. In SQL, a WHERE clause narrows down and
refines the data we are looking for. In SP ARQL, it does the same thing. Tt also gives a
sense of structure for the query and parser. In a SQL database, a table has a defined,
consistent schema. A RDF document is a flat file. From a parser's standpoint, there
really is no guarantee of any sort of structure. A SPARQL WHERE clause gives the
parser an idea of how objects and properties are organized and how they relate to
each other.

Basic Principles
Recall the three parts of a RDF triple, and what they represent:

• A Subject tells us the "thing" that this triple is about.

• A Predicate specifies a property of the subject.

• An Object is the value of the predicate.

A triple is simply each part, written out, in one line and separated by a string.

A SPARQL WHERE clause is just a series of triples strung together. Further, each part
of a triple can be substituted with a variable.

For example, let's say there is a cat named Gilbert. He has green eyes.

In a simple RDF, he can be represented like such:

<rdf:Description rdf :about='http://www .example .com/
cats#GilbertTheCat'>

<name>Gilbert</name>
<eyeColor>Green</eyeColor>

</rdf:Description>

In triple form, this can be presented like such:

rdf:Description name "Gilbert"

This isolates the cat who's name value is "Gilbert." The item we are focusing on is the
subject. This is represented by the rdf : Description element. Name is the property
of the subject, which makes it the predicate. The value of the name, the object in this
triple, is "Gilbert". To specify the literal value of a triple's object, we wrap the value
around with quotes.

In queries, we can replace the subject with a variable.

?catObject name "Gilbert"

------- --------(213)------- --------

Petitioner Apple Inc. - Ex. 1035, p. 213

London Tube Photos

Now, ?catob ject holds a reference to the cat who's name is Gilbert. We can use this
variable to access other properties of Gilbert the cat. To access Gilbert's eye color, we
could use two triples strung together:

?cat Object name "Gilbert"
?catObject eyeColor ?eyeColor

To string together triples in a SPARQL query, use a period. This acts as a
concatenation operator, much like a period is used in PHP.

In this grouping, the first triple will place the subject, Gilbert The Cat, in the
?cat Obj ect variable. The second triple's subject is the variable ?catObj ect. That
means the predicate and object of the second triple will use this subject. This second
triple will place Gilbert's eye color in the ?eyeColor variable. To return the ey eColor
variable in the SP ARQL resultset, we need to specify it in the SELECT statement.

.~ variables reference the same thing. The order of the WHERE statements

[

In SPARQL WHERE clauses, the key concept to remember is that aU

~ matters very little. It is what each variable's value is at the end of
execution that matters.

A Simple Query

]
This is the same principle that is applied to our earlier query that extracts Saffy's age
in our pets RDF document.

To see this in action, let's load up the online XML parser. Bring up SPARQLer
(http: //www. sparql . org/sparql . html) in a web browser. You will be presented
with a simple form. The text area is where the SPARQL query you want to run is
entered. As long as you have a FROM clause in the query, you can leave the Target
graph URI field blank. The other options on the form can also be left blank. Enter the
age query into the query text area in the form:

PREFIX mypets : <http : //www . s huchow.com/>

SELECT ?age
FROM <http : //www . shuchow.com/mashups/ch6/pets.rdf>
WHERE {

?Description mypets :name "Saffy"
?Description mypets :age ?age

---------------(214)------- - -------

Petitioner Apple Inc. - Ex. 1035, p. 214

808

0
Back Forward Reload

SPARQLer

[0 hnp:/fwww.spvql .org/sparql.html

Location

_____ I @tGoo,..::g..;.le __

Search

fgu~r,o Info ft)~ws m} Mac Hem Tabs ~ Google j Wtb Develo~m•_•< _____________ _

Cha /er 6

C)

Bookmarks

SPARQLer - General purpose processor -----~-------
Gener a I SPARQL query : Input query, set any options and press 'Get Results"

PR.£PtX 11.yp•t•: <htt.p: / ' "'"'. anuen0v. co•/>

!ELECT ?age
PAOM <.htt.p:: //wvw.11h11cbow.co•/111,a■hupe-/ch6/peta. rdt>
lfB•RJ< {

?Ce11cript.ion m.ypeta;name "'Saffy"
?De•criptioa •yp•t•: ate 'laqe

Target graph URI (or use FROM In the query)

XSLT style sheet (leave blank for none): [-,-x-m-1--,o--h-t_m_l.x-,-1----~1 or JSON output: O
(Get Results)

Click on the Get Results button. SPARQLer will go out to retrieve pets . rdf, load it,
and then proceed to parse it.

5PARQl..er Query Results

[6 http://www.sparql.org/sparql?query=PRE @.•Google

Back ,. " d Reload s, l.Oution Starch Bookmark>

SP ARQLer Query Results

---- ---- -------(215]---------------

Petitioner Apple Inc. - Ex. 1035, p. 215

London Tube Photos

The result will show that Saffy's age is 10.

The first triple finds the item that has a name (designated by the mypets: name

element) with a literal value of Saffy. The subject of this item is placed in the
?Description variable. Note that in the predicate of both b·iples in the WHERE

clause, the namespace is included with the element name. This is another important
thing to remember when writing SPARQL queries-if the element name in the RDF
document has a namespace prefix, you must also include that prefix in the SPARQL
query, along with declaring the namespace in a PREFIX statement.

NotonJy does this first clause zero-in on Saffy, but it sets the context of our search
and places it into the ?Description variable. Th.is is extremely important in
SPARQL because every clause requires a subject. Thanks to th.is clause, we can use
?Descript i on as the subject for other WHERE clauses.

The second statement says the following:

"TTze subject of this triple is referenced by ?Description (which we already set in
the first triple). The predicate of this subject that I'm interested in is mypets, age.
Place the object of this triple into a variable named ?age."

It is wordy to th.ink of the query like this, but necessary. When learning and using
SPARQL, it's very important that we keep in mind the notion of triples. It's very
easy to fall back into a SQL mindset and think, "Th.is clause gets me the station name
based on the element". However, what's really going on is more complicated than
that. The element name is useless unless the subject is defined throughout
your query.

During U1e parsing process, the parser finds that ?age is represented by "10" in
the document. The ?age variable is returned because it is specified in the
SELECT statement.

This example returned just one pet by using the pet's name. We can place no
restrictions on the value and return all U1e results. This would be like a SQL SELECT
query without a WHERE clause (SELECT ColumnName FROM TableName).

PREFIX mypets: <http://www.shuchow.com/>

SELECT ?name

FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>

WHERE {

?Description mypets:name ?name

Go back to SPARQLer and enter this query. Th.is WHERE clause will execute and place
all of the mypets: name values into a variable named ?name. Our SELECT statement
returns this variable back to us.

--------- ------(216)----------------

Petitioner Apple Inc. - Ex. 1035, p. 216

Your SPARQLer result set should look like this:

name

"Pim Pim"

"Saffy"

"Manfred"

"Lizzie Borden"

"Tera-San"

"Moose"

"Hoser"
"Mathilda"

"Opal"

"Wozniak"

"Dolly"

"Avi"

"Snowball"

Querying for Types

Cha /er 6

In the first query, we used a literal value of the name Saf fy to find what we were
looking for. Simply searching on a literal value is often not a reliable approach.
Earlier, we noted that the RDF Schema vocabulary allows us to classify subjects as
programming objects using the t ype element. This next example will show how to
restrict on this element.

Let's say we wish to grab the names of all parrots. Our WHERE clause needs to do
the following:

• Find the parrots in the RDF document.

• Extract their names.

The type element is still the predicate. However, this element does not have a
value we can use as the triple object. Instead, the resource attribute value is the
object in this triple. resource is a URI that points to a description of what a parrot
is. Remember that triple objects can be either a literal value or a URI. Again, this
particular example URI is only an example to identify, not a formal vocabulary
definition, which it sometimes can be. This combination says "This subject is a
parrot". From there, we can extract the name element as we did before.

---------------[217]--------------- -

Petitioner Apple Inc. - Ex. 1035, p. 217

London Tube Photos

The restriction requirement is similar to what we have been doing. The triple
associated with it will use a URI instead of quoted literals like the previous examples.
We can specify this simply by specifying the URI in the query using greater than/
less than signs.

This triple is simply this:

?Description rdfs : type <http://www . shuchow .com/#parrot>

Sometimes, you may find this resource attribute starts with a local anchor, the pound
sign(#) followed by the value like so:

<rdfs : type rdf:resource="#value"/>

This pound sign is a reference to the document itself, much like it is used in HTML
anchor tags to reference locations within the same document.

Simply the object of "#value" does not qualify as a full URI in SPARQL triples. As
the pound sign is a redundant reference, we must also include the absolute path to
the file we are querying in the triple. Assuming the page at http : //www . example.
com/ this. rdf, to search on these values, you would need to include the full URI
back to the document, along with the value after the pound sign:

?Subject ns :predicate <http : //www.example.com/this.rdf#value>

The complete SPARQL query looks like this:

PREFIX mypets : <http : //www.shuchow . com/>
PREFIX rdfs: <http : //www.w3.org/2000/0l/rdf-schema#>
PREFIX rdf : <http://www .w3 .org/l999/02/22-rdf-syntax-ns#>

SELECT ?name
FROM <http : //www.shuchow.com/mashups/ch6/pets .rdf>
WHERE {

?Description rdfs : type <http : //www.shuchow.com/#parrot>
?Description mypets:name ?name

ORDER BY ?name

Running the query returns these results:

Name

"Avi"

"Dolly"

"Hoser"

"Moose"

----------------(218]----------------

Petitioner Apple Inc. - Ex. 1035, p. 218

Cha ter 6

Ordering, Limiting, and Offsetting
Note that in this query, we added an ORDER BY clause. SPARQL supports a set of
clauses that follow a WHERE clause, which organizes the returned dataset. In addition
to ORDER BY, we can use LIMIT and OFFSET clauses.

An ORDER BY clause works very similarly to SQL's ORDER BY clause. This clause sorts
the returned dataset by the variable that follows the clause. The results returned are
ordered alphabetically if they are strings or ordinal if they are numeric. Ascending
and descending options can be specified by using the ASC and DESC functions,
respectively.

ORDER BY ASC(?name)
ORDER BY DESC(?name)

The ascending and descending clauses are optional. If they are left out, the default is
ascending order.

SPARQL also supports the LIMIT and OFFSET keywords much like PostgreSQL,
MySQL, and other relational database management systems. Both LIMIT and OFFSET
are followed by integers. LIMIT will limit the number of results returned to the
integer passed to it. OFFSET will shift the start of the returned results to the position
of the integer, with the first returned result being position zero.

For example, pet s . rdf has 13 animals in the list. If we want to get the 7th and 8th

pets, in by alphabetical order, we can use LIMIT and OFFSET in conjunction w ith
ORDER BY.

PREFIX mypets : <h t t p : //www. shuchow. com/>
PREFIX rdfs : <http : //www.w3.org/2000/01/rdf-schema#>
PREFIX rdf : <http : //www .w3 .org/l999/02/22-rdf-syntax-ns#>

SELECT ?name
FROM <http://www . shuchow.com/mashups/ch6/pets . rdf>
WHERE {

?Description mypets : name ?name

ORDER BY ?name
LIMIT 2
OFFSET 6

Note that order matters when you use ORDER BY, LIMIT, or OFFSET. These three
clauses must be in that order after the WHERE clause. For example, this will not work:

OFFSET 6
ORDER BY ?name
LIMIT 4

---------------(219)----------------

Petitioner Apple Inc. - Ex. 1035, p. 219

London Tube Photos

UNION and DISTINCT
The UNION keyword joins multiple WHERE groupings together, much like UNION in
SQL. The returned results will be a combination of the WHERE groupings. To use a
UNION clause, wrap the individual groupings within curly brackets. Join them with
the UNION keyword. Place all of this within the regular WHERE curly brackets.

For example, this query will retrieve the names of all parrots and male pets:

PREFIX mypets: <http://www.shuchow .com/>
PREFIX rdfs: <http : //www.w3 .org/2000/01/rdf-schema#>
PREFIX rdf: <http : //www .w3 .org/1999/02/22-rdf- syntax-ns#>

SELECT ?name
FROM <http : //www . shuchow . com/mashups/ch6/pets.rdf>
WHERE {

?Description rdfs:type <http://www.shuchow .com/#parrot>
?Description mypets:name ?name

UNION

?Description mypets:gender "M"
?Description mypets :name ?name

ORDER BY ?name

Name

"Avi"

"Dolly"

"Hoser"

"Hoser"

"Manfred"

"Moose"

"Moose"

"Snowball"

"Wozniak"

---------------[220]----------------

Petitioner Apple Inc. - Ex. 1035, p. 220

Cha ter 6

This union does not give us exactly the query we want. Hoser and Moose, male
parrots, are in both the first clause and the second. SPARQL supports another SQL
keyword, DISTINCT, that will exclude a row based on a column if it has already been
included in a previous clause.

Simply add the DISTINCT keyword you wish to insure uniqueness on, and the results
will reflect the change.

SELECT DISTINCT ?name

name

"Avi"

"Dolly"

"Hoser"

"Manfred"

"Moose"

"Snowball"

"Wozniak"

More SPARQL Features
The queries we will write later w ill require more complexity, but the features we
have discussed are more than w e will need for our mashup. SPARQL, however, has
many more advanced features including:

• Querying more than one RDF document (if the parser supports it).

• The ability to filter re turned results using special operators and a subset of
XPATH functions.

The Working Draft document that fully outlines all of SPARQL's features can be
found at http : //www. w3 . org/TR/rdf - sparql-query / . Although it is still in W3C
draft stage, many parsers give great support to the language. In future mashups,
if you encounter complex RDFs, it would not hurt to be familiar with SPARQL's
advanced features to see if it is a viable solution to extract data.

RDF API for PHP (RAP)
Now we know a bit about RDF and SPARQL, we need a way to actually execute
SPARQL queries in an application. There are not any core PHP functions for RDF,
but there is a very powerful third party library called RDF API for PHP (RAP). RAP
is an open source project, and can do just about an ything you require with RDF.
RAP is basically a collection of RDF models. Each model suits a specific purpose.

------ ---------[221)---------------

I

Petitioner Apple Inc. - Ex. 1035, p. 221

London Tube Photos

A model named MemModel is a RDF file stored in memory. Another model named
DbModel, is a used to persist RDF models in a relational database. Each model has
specific methods that fit its purpose. DbModel has methods to automatically insert
and retrieve the model into and out of a relational database.

All models inherit methods from a generic abstract class called Model These are
generic utility methods that apply to all models. For example, all models need to
load a RDF file to do anything with it. The load (l method accomplishes this. AU
models can be represented graphically using the visualize () method, which
creates a graphical representation of the RDF file. Version 0.94 includes a method
named sparqlQuery () that accepts a SPARQL query and executes it against the
model. We will be using this method to create a SPARQL client.

The project home page is located at http: //sites. wiwiss. fu-berlin .de/suhl/
bizer/rdfapi/. You can download the latest version from there. Documentation is
also available, and is very extensive. Download the code, and unzip it. It will create
a directory named rdfapi-php. Then, place rdfapi-php in a directory in your
application structure. This directory must be accessible by Apache, and terms of
location and permissions.

We will use a few of the previous example SPARQL queries as examples for RAP. In
the examples code, the file named rapExample. php executes two SPARQL queries.
Let's take a look at this file to see the steps required to use RAP for SPARQL queries.

The file has some preliminary setup PHP code a t the top.

define("RDFAPI_INCLUDE_DIR", "Absolute/Path/To/rdfapi-php/api/");
require_once(RDFAPI_INCLUDE_DIR . "RdfAPI.php");

//Create SPARQL Client
$sparq1Client = ModelFactory: :getDefaultModel();
$sparq1Client->load('http://www.shuchow.com/mashups/ch6/pets.rdf');

The very first thing we need to do is create a global variable named
RDFAPI_INCLUDE_DIR. The value of this is the absolute path to the rdfapi-php/api
directory you jus t installed. We then use this global variable to include the
RdfAPI. php file. These two lines are required for every use of the RAP library.

Next, we create a default model object. The default model is a generic model
that all other models inherit from. It is created in the statement that calls
getDefaultModel (l. The default model object includes the basic methods we
will need.

The las t line in this block loads the RDF file using the default model's load (l
method. Here, we load a remote file, but you can also keep a RDF file locally.

---------------[222] ----------------

Petitioner Apple Inc. - Ex. 1035, p. 222

Cha ter 6

Remember, the FROM clause is not used in a SPARQL query. The file you pass here is
actually the real RDF source. Being able to load remote files obviously means we can
use this library on all RDF-based mashups, and can get RDF data at run time.

After this, we can create a query and execute it.

$query= '
PREFIX mypets: <http: //www . shuchow.com/>

SELECT ?age
FROM <http://www.shuchow.com/mashups/ch6/pets . rdf>

WHERE {

} ' ;

?Description mypets:name "Saffy"
?Description mypets:age ?age

$result= $sparq1Client - >sparq1Query ($query);
if ($resul t ! = false) {

foreach ($result as $cat) {
if ($cat != "") {

echo "Age: " . $cat ['?age' l - >getLabel () ;

In this block, we put our SPARQL query into a variable named $query. We pass
that to the sparqlQuery method. This method is in the default model. It accepts a
SPARQL query and executes it against the RDF file in memory. Its return value is
an array of objects. The key in each array is a variable that we added to the SELECT
clause of the query, including the question mark. These are Resources objects in the
RAP library. The get Label () method in the Resources object returns the value of
the variable.

To grab multiple variables, we just use the other keys in our foreach loop.

$query= '
PREFIX mypets: <http://www.shuchow.com/>

SELECT ?name ?age
FROM <http://www.shuchow.com/mashups/ch6/pets.rdf>

WHERE {

LIMIT 5

?Description mypets :name ?name
?Description mype t s:age ?age

- ---- ---- ------[223)----------------

Petitioner Apple Inc. - Ex. 1035, p. 223

London Tube Photos

$result= $sparq1Client->sparq1Query($query);

if ($result ! = false) {
foreach ($result as Scat) {

if ($cat ! = "") {
echo "Name : " . Scat ['?name ' I ->getLabel ()

Scat('?age ')->getLabel() . "
 " ;

Running this code produces this output on screen:

Name: Snowball, Age: 14
Name: Lizzie Borden, Age : 14
Name : Saffy, Age: 10
Name: Pim Pim, Age: 12
Name: Tera-San, Age: 6

" Age: " .

RAP is quite a powerful tool. We only used a small portion of its features. If
RDF is a big part of your applications, it is certainly worthwhile exploring this
extensive library.

XMLHttpRequest Object
The next technologies we will look at depart from the server-oriented tools we
have used. You have probably heard of AJAX, Asynchronous JavaScript and XML
transfer. At the least, you have probably seen it on sites like Google Mail and Yahoo!
Mail. AJAX allows web browsers to interact with a server without refreshing the
page. Combined with dynamic HTML, it has created a new level of interactivity
between users and websites. With the near instantaneous data changes in front of a
user, web applications have never been more like desktop applications.

Another benefit to AJAX is that it can severely decrease the traffic between web
browser and web server. When we take a look at the amount of data being passed to
Google Maps, we will see why constant refreshes would slow down the application
too much.

---------------(224)---------------

Petitioner Apple Inc. - Ex. 1035, p. 224

Cha ter 6

As we discuss AJAX and XM:..HccpRequest, we'll build a very simple web
application. This application will take input from the user, pass it to a server, the
server will send back an XML document to the browser, and using JavaScript, we
will change the page dynamically. The client component of this application is in the
examples code as ajaxTest. html The corresponding server component is named
ajaxResponse.php.

The HTML page, without the JavaScript code, is very basic.

<html>
<head>

<script type="text/javascript" language="JavaScript">

</script>

</head>
<body>

<form name=»theForm» action=»#»>
<input type=»text» name=»inputField» size=»lO» />
<input type=»button» value=»Click Me»/>

</form>

<hl>Server Response Area</hl>
Nothing yet
</body>
</html>

This page is simply a form with a paragraph underneath it which will be updated
using JavaScript.

aj axResponse. php is just as simple. This script will take a query parameter named
field, and pass it back to the requester as a very simple XML document.

<?php
header("Content-type: text/xml; charset=UTF-8 11

);

?>
<?= '<?xml version="l.0" encoding="utf-8 11 ?>' ?>
<response>

<textField>You•ve entered : <?= htmlentities($_GET['field'])?>
</textField>

</response>

The key here is that the page will use a query parameter named field.

---------------(225]----------------

Petitioner Apple Inc. - Ex. 1035, p. 225

London Tube Photos

XMLHttpRequest Object Overview
The XMLHttpRequest object is the heart of AJAX. This is an object built into all
modern web browsers (version 5.0 and above) to control HTTP requests. This object
is similar to other objects built into web browsers, say the form object to control all
form elements, or the window object to control the web browser window. AU AJAX
really is the technique of using XMLHttpReguest to make an HTTP request to the
server, triggered by some JavaScript event, after the page has loaded. The server
returns some data, and the XMLHttpRequest object passes the server response to
some JavaScript function on the page. Again, using JavaScript, page stylesheet
information and the web browser Document Object Model (DOM) is changed
dynamically. Let's walk tlU'ough tl1e life cycle of a simple XMLHttpRequest.

Using the Object
The lifecycle is started by a JavaScript event. This can be anything the application
needs it to be- a mouseover, a page load, a button click, etc. Once triggered, the
steps tl1at take place are:

1. Create the XMLHttpRequest object.

2. Define the destination server information (URL, path, port, etc.) of the HTTP
request that we are going to make.

3. Much like the web services we used earlier, we need to define the content
that we are going to send in our HTTP request. This may be just a
blank string.

4. Specify the callback function, and build it.

5. Use the object's send () method to send the request.

6. In the callback, catch the server response and use it to change the page.

Creating the Object
There are two ways to create tl1e XMLHttpRequest object, depending on which
browser the visitor is using. If the user has a Mozilla browser (Firefox, Camino),
Safari, or Opera, we just create a new XMLHttpRequest () to create an object. If they
are using Internet Explorer 6, we need to use ActiveX to create a Microsoft.XMLHTTP
object, which is a clone of XMLHttpRequest . Use these two methods to place the
returned objects into a global JavaScript variable. We can use JavaScript to detect the
presence of the XMLHt tpRequest object or Active X to determine which method we
should use.

---------------(226)---------------

Petitioner Apple Inc. - Ex. 1035, p. 226

g_xmlHttp = null;
function createXMLHtcpRequest (J

if (window.XMLHttpRequest){
g_xmlHttp = new XMLHttpReguest()

else if (window.ActiveXObject) {
g_xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

This function should be called at the start of the request.

Making the HTTP Request

C ter 6

The start of our HTTP Request should be after the user does something. We will
trigger the request when the user triggers a key release on the text field. That is,
when the user presses on a key, the web application will call our JavaScript function
that communicates to the server.

<input type:"text" name="inputPield" size="l0"
onkeyup="sendReguest()" />

The fw1etion is named sendRequest () here. We now need to write this function.
This function will create the XMLHttpRequest object, define the server parameters,
define callback function that will be executed when a server response is captured,
and then actually send the request.

function send.Request() {
createXMLHttpReguest();
var url = "/mashups/ch6/examples/ajaxResponse.php?field=" +

document.thePorm.inputPield.value;
g_xmlHttp .onreadystatechange = parseResponse;
g_xmlHttp.open("GET", url, true);
g_xmlHttp.send(null);

The first statement in this function calls createXMLHttpRequest (), which creates
the XMLHttpRequest object and places it in the global variable g_xmlHttp. The
second line places the URL to the service in a variable. This is a virtual URL to the
service. You can also make an absolute URL to the service, but we'll discuss later
why an absolute URL is unnecessary. The last part of this statement places the value
of the input text box we had into a query parameter named field, which is what our
service is waiting for.

---------------[227)----------------

Petitioner Apple Inc. - Ex. 1035, p. 227

London Tube Photos

The next three statements use XMLHttpRequest methods and properties.
onreadystatechange is a property that holds the JavaScript callback function
for this object. Set this to the name of the function, without opening and closing
parentheses, that will be executed when the server responds. You can only select
one callback function. To execute more, you will need to create a facade wrapper
function that executes the others, and set the facade function as the callback.

open gets the object ready to send the request. The first two parameters are required.
The first parameter is the HTTP method to use. The second is the URL. The third
parameter is whether the object should be .in asynchronous mode. It is optional, but
it is a good idea to set this to true because the default value is false, and we do
want to be in asynchronous mode. Otherwise, we would be in synchronous mode,
which means that the rest of the JavaScript does not execute until XMLHttpRequest
receives a response from the server.

send actually sends the request. send takes one required parameter, the body of
the request. In this example, we are sending a null because we are just doing a GET

request. The request does not have a body. If we were doing a POST, we would
construct the parameters in a separa te srring and pass it as send's parameter. After
send is called, the HTIP request is made and the callback function executes.

Creating and Using the Callback
There are two main jobs of the callback function. The first is to capture the server
response. The second is to do something with that response.

We start off our function with a couple of checks to make sure the data from the
server has indeed arrived. If we didn't do this, the rest of our code will execute
prematurely and without all the necessary parts from the server response.

The first if statement checks the readySt ate property of the XMLHttpRequest
object. As the request executes and processes, this value gets changed. There are five
possible values of this property:

readyState value

0

1

2

3

4

Meaning

Uninitialized
Loading

Loaded

Lnteractive

Completed

---------------(228)----------------

Petitioner Apple Inc. - Ex. 1035, p. 228

Gia ter 6

Only when the value is 4 is the data completely ready to be parsed and used by the
web application.

The second if statement checks to see XMLHttpRequests' status property. This is the
same code that reports 404 for missing file, 500 for internal server error, etc. A 200 is
a successful transaction. We need to make sure the request is executed successfully
or the data might be useless.

function parseResponse() {
if (g_xmlHttp.readyState == 4) {

if (g_xmlHttp.status == 200) {
var response= g_xmlHttp.responseXML;
var outputArea = document.getElementByid ("Se rverRespc:1se •

firstChild;
var responseElements =

response.getElementsByTagName ("text.Field") ;
outputArea.nodeValue =

responseElements[0) .firstChild .nodeVa lue ;

The first line after the nested if statement captures the value in the r esponseXML
property of the XMLHttpRequest object and places it in a variable. This property is
where the browser keeps the response from the server. If you were to inspect it, you
would see the direct XML from the server.

The second statement captures the node of the HTML page of where we are going to
output the response. We use JavaScript's getElementByid () function and traverse
down the DOM.

We can use the same DOM functions in JavaScript to extract the information from
the server response. This is what we do in the third statement. We know what we are
interested in is located in the textField element of the response. We zero in on that
and get that node.

Each DOM element keeps the text it displays in a property called nodeValue. In
the fourth statement, we set the output area's node Value to the node Value of the
response. This changes the webpage every time it is executed.

-------------- - - (229)----------------

Petitioner Apple Inc. - Ex. 1035, p. 229

London Tube Photos

lf you type in the text field of aj axTest. php, you can see this code in action.

800 http:inocalhosvmashups/ch6/examples/a1axT est.php

0 http:/Aocalhosthnashups/ch6/examples/aJaxTesl.php Q;•

Loc~uon St;orch

.OC•mlno info l[JN<!ws !IIJMac News l•bs Googl4, Q Web owelopment

,bctd1I

Server Response Area
You've entae<t abcedcf

1n our code, we checked for an HTTP status of 200. While this is good
practice, it requires the HTTP network protocol to be present in order
work. Titis means you must load the page in a web browser through
HTTP. 11 you load the page through the file system (i.e. through
file : // /aj axTest. php,instead of http:/ /localhost/ ... /
aj axTest. php), status check will fail, and the code will not
execute properly.

Bo.>kmarks

This is the standard way of triggering an AJAX application, and it works very
nicely. The DOM parsing, however, can get messy. There are two DOMs you must
parse- the local web page and the server response. Fortunately, you may have some
alternatives to parsing the server response.

First off, responseXML has a sister property, responseText, that works exactly the
same way. responseText holds the server response if it is any text string instead
of Xl\lL. You can immediately use the response text instead of traversing through
a DO 1 to get what you want If you are merely a front-end developer for a much
larger web development, and the company manifesto is to transfer everything via
X..\1L, this might not be an available option for you. Or, if your web service is used
by third parties, it may be best to keep it as XML. However, if you are writing a
very simple service to support just your application, know that you do not have to
s truchlre everything in XML. You can just pass a simple text string back and use
!'."esponseText on the client end instead.

If your web service response is too complicated for a simple text s tring, you may
want to consider formating your text response in JavaScript Object Notation GSON)
to send this result back to the page. It wiU still be a text response, so you can use
responseText and skip the parsing. JSON gives you the structure of XML with the
simplicity of a text string. This next section will introduce us to JSON.

--- --------- --- (230]----------------

Petitioner Apple Inc. - Ex. 1035, p. 230

Cha /er 6

Debugging AJAX

Debugging the request and response from the server can be tricky. We
can't use a regular JOE. We need something to watch the HTTP streams.
Luckily, if you are using Firefox, there is a Greasemonkey script that will
do just that Greasemon.key is a Firefox extension that aUows users to
write their own JavaScript and code against a site when they visit it. It can
be found at https : / /addons. mozilla. org/firefox/748/. Once
you have that install, download the XMLHttpReguest debugging tip at
http : //blog .monstuf f . com/archives/000250 . html. This tool
will watch everything that comes out from the browser, and everything
going in. Other helpful extensions for Firefox include LiveHTTPHeaders,
which show the request and response HlTP headers, and Firebug, a
general JavaScript and CSS debugger. For Internet Explorer, a commercial
tool caUed HTTPWatch is available to watch HTTP requests.

JavaScript Object Notation (JSON)
JavaScript Object Notation is simply a transfer format, much like SOAP or
XML-RPC. Unlike those two formats, JSON is not XML based. It is JavaScript code
that is loosely based on a C-style definitions and formats. Although called JavaScript
Object Notation, many server side languages have built parsers to interpret JSON
format. Given this and its lightweight nature, it has become a popular alternative to
XML when communicating between a web browser and a client. JSON's home page
is at http : //www . j son. org.

JavaScript Objects Review
Let's quickly review JavaScript objects first. To define a class in JavaScript, you
simply treat it as if it was a function. To give the class properties, use the keyword
t hi s , followed by a dot, followed by the name of the property. To give the class
methods, also use this, followed by a dot, the name of the function, an equal sign,
the keyword function and then the function definition . For example, this could be a
cat object in JavaScript:

function Cat (name) {
this . name= name;
this .gender;
this .age;
this.eat= function() {

alert ("Yum") ;
}

this.sleep funcc.1on{J {

---------------(231 }----------------

Petitioner Apple Inc. - Ex. 1035, p. 231

London Tube Photos

alert("zzzz ... ");

This class definition requires a name as a consb·uctor because it is the only required
parameter in the class definition. Cats can be instantiated like so:

acat = new Cat ("Quincy" l ;
anotherCat = new Cat ("Buddy") ;

JavaScript objects are pretty basic. There are no accessor keywords. Everything is
public. You can access or set properties simply by using dot notation on the object.

aCat.gender = "F"; //Quincy is now a female
anotherCat.name = "Gilbert"; //Buddy just got a name change.

ote the dot notation we use to access the object properties. We use the same dot
notation when we access JSON properties.

JSON Structure
To delimit object definitions, the object is named followed by an equals sign. The
properties of the object are then enclosed in curly brackets. JSON properties are
name/ value pairs separated by a colon.

JSON properties support the following data types:

Type Format Examples

Number Integer, Aoat, or real. The actuaJ number. 1, 2.8217

String Double quoted vaJue. "A Value", "Another Value"

Boolean True/ false, no quotation marks. true, false

Array Square bracket delimited list. [34, 498, 12)

Object Curly Brackets. I property one: value one }

Null Null. Null

The JavaScript cat structure above can be represented and expanded in JSON like so:

var cat= {
name: "Quincy",
gender: "F",
age: 4,
spayed: true,

------ ---------[232]---------------

Petitioner Apple Inc. - Ex. 1035, p. 232

collar :
charm: "bell",
color: "green"

Cha ter 6

If this cat was represented using XML, it would be a bit more cumbersome and
definitely eat more bytes:

<Cat>
<name>Quincy</name>
<gender>F</gender>
<age>4</age>
<spayed>true</spayed
<collar>

<charm>bell</charm>
<color>green</green>

</collar>
</Cat>

Accessing JSON Properties
In the above example, the properties of the cat can be easily accessed through dot
notation with cat as the parent object. Her name is found by using the variable ca::.
name, her age is at cat . age, etc. The example file j sonExample. html shows how
dot notation is used to access a property of a JSON object that is in the response. 'l ou
simply drill down further with the name of the object as a dot notation level. The
code displays Quincy's collar color using the variable cat .collar.color.

function getColor() {
alert("Quincy's Collar Color : " +cat.collar.color) ;

JavaScript is a typeless language (meaning you do not have to specify which data
type a variable is), so we can use properties directly through dot notation. The only
thing that may need a conversion or alteration step are JSON arrays. For example,
let's insert an array of fur colors into the above example.

age : 4,
furcolor : ["white", "orange"),
spayed : true ,

---------------[233]---------------

Petitioner Apple Inc. - Ex. 1035, p. 233

London Tube Photos

The furcolor is still accessible through dot notation, but there will be some twists.
If you access the array directly, you will get a string of the array elements separated
by commas. cat. furcolor will be "white, orange". To access individual elements,
attach the element number in brackets after the array name, like you would a normal
JavaScript array. cat . furcolor [OJ will have a value of "white". cat. furcolor (1)
will have a value of "orange." You can also check the length of the array by accessing
. length after the array name in dot notation. cat. furcolor. length will have a
value of 2.

Serializing the JSON Response
As given in the example, the cat is already a serialized JavaScript object. The curly
brackets that immediately enclose the properties give this away. This means that we
can work directly with the data through dot notation.

Very frequently, though, you will receive a string representation of a JSON object.
One such situation is if the JSON object is stored in a XMLHttpRequest object's
responseText property. Sure, structurally the object is in JSON. However, the data
is cast as a string.

To turn the JSON sbfag into a JavaScript object, pass it through tl1e JavaScript
eval () method.

var cat= '{"name" : "Quincy", "gender" : "F", "age": 4, "spayed": true,
"color": ["white", "orange"], "collar": { "charm": "bell", "color" :
11 green 11

}}';

var quincyObj = eval(' (' +cat+ ') ');

function getColor() {

alert(«Quincy ' s Collar Color : « + quincyObj.collar .color);

The eval () method executes whatever is passed to it. As we are passing in
something that is formatted as an object, it will return an object. This unserialized to
serialized example is in a file named j sonTest. html.

Note that in the call to eval () , we have to wrap the string witlun literal string
parentheses. This is because while the code looks like a JavaScript object, eval ()
treats the opening curly bracket in the string as a generic block opening, and not as
tl1e start of an object. Placing it witlun parentheses will put the parser into expression
parsing mode, which correctly will parse it as a JavaScript object.

---------------[234]----- ---------- -

Petitioner Apple Inc. - Ex. 1035, p. 234

Ch ter 6

[

r~{ Be careful with eval ()

~ Be careful when you use eval () . It blindly executes any code passed to
it, so make sure you fully trust the source of the input.]

Finally, we get to our APis. We only have two we need to look at-the Google Maps
APT and Flickr Web Services.

Google Maps API
The Google Maps API allows third party developers to use the features of Google
Maps on their own sites. Anything you can do as a user of Google Maps can be done
using the Google Maps APL The Google Maps documentation home page is located
at http : //www.google.com/apis/maps/documentation/. The documentation is
quite extensive. We will take a look at how the API basically works, and concentrate
on the features we will use in our mashup. Just knowing how the API is organized
is the key step in searching for information and using the Google Maps API in
future projects.

The Google Maps API requires an API key. You can register for it for free at
http : //www.google.com/apis/maps/signup. html. This key is used when
including the Google Maps API in your page. Before you do anything with Google
Maps, you will need to get this API key and put this source tag and in top of your
page's head tag.

<script src="http://maps .google.com/maps?file=api&v=2&key=Your
Google API Key• type="text/javascript"></script>

The API is a JavaScript API based heavily on objects. The central object is the Google
Map that you see. Everything that you see on Google Maps including map controls,
icons, lines, and the white information window box, are just JavaScript objects added
to the map. As we go through the examples in this section, we will build the same
page that is in the examples named googleMapTest. php.

Creating a Map
The Map is created by instantiating the GMap2 class. The only required parameter in
the GMap2's constructor is an HTML container to place the map. Typically, this is an
empty div tag. The Google Map vvill be displayed in the space occupied by this tag.
This places a lot of importance on this container. You can use CSS to position the
map on the page, and the size of the container determines the size of the map.

- ----- ----- ----[235)----------------

Petitioner Apple Inc. - Ex. 1035, p. 235

London Tube Photos

Let's take a look at a simple example:

<html>
<head>

<title >Google Maps Sc r a tch</t i tle>
<Script src="ht t p : //maps .google .com/maps ?f ile=api&v=2&
key=YOUR_GOOGLE_ API_KEY" type="text/javascript"></script>

<Script type=" tex t/javascript">
var g_map;

f uncti on load() {
if (GBrows e risCompatible())

g_map = new GMap2(document .getElementBy i d ("map"));

</script>
</head>
<body onload=" load() ">

<div id="map" s t yle= "width : 800px; height : 600px"></div>
</body>
</html>

This simple page would create a Google Map. We declare a global variable
named g_ map to hold the Google Map. The load function is run when the onload
event is triggered. In the load function, a Google JavaScript function is called,
GBrowserisCompat i ble, to check for browser compatibility. If it passes, we create
the map by instantiating GMap 2. We pass the container using the JavaScript DOM
function get ElementByid to the GMa p2 constructor. As the size of the div element is
800 by 600 pixels, this map will also be 800 by 600 pixels.

If you actually ran this code, you would find that it's pretty useless. You would
just get a blank, grey map. The problem is that the map doesn't know where to
initially center itself. You must specify this by using the map's setcenter () method.
setCenter () can actually be called at any time, and can be triggered by any event. It
accepts a GLatLng object as its parameter.

Geocoding
As you work with Google Maps, you will find that it relies heavily on latitude and
longitude coordinates to do anything on the map. The problem is that in every day
communication, we use addresses more often than latitude/longitude coordinates.
The process of translating from an address to a latitude/longih1de coordinate is
known as geocoding. To make using Google Maps a lot easier, the API provides an
object named GClientGeocoder to geocode for us.

- --------------(236]------ ---------

Petitioner Apple Inc. - Ex. 1035, p. 236

Oza ter 6

To create a geocoder, first instantiate the GClientGeocoder object. This object has a
method named getLatLng (J, which takes two parameters. The firs t parameter is a
string of the address you wish to look up. The second is a callback function that is
called after the server returns the results.

Google's servers pass a GLatLng object to the callback function. A GLatLng object
simply holds latitude and longitude coordinates as properties. If you need to
create a GLatLng object, there are two parameters you must pass- the latitude and
longitude. These properties can be accessed again by using this object's lat () and
long () methods.

A small inconvenience in using getLatLng (J is that this method doesn't actually
return a GLatLng object to the caller. However, because one is passed to the callback
fw1ction, you have to create a callback function in order to use the geocoding results.
Going back to our code, we can make a small modification to the JavaScript to make
it center on an address.

<script type="text/javascript">
var g_map;
function load() {

if (GBrowserisCompatible ())
var geocoder = new GClientGeocoder();
g_map = new GMap2(document.getElementByid("map")) ;
geocoder.getLatLng(

"780 Arastradero Road, Palo Alto, CA 94306 USA",
centerMapCallback);

function centerMapCallback(returnedPoint){
g_map.setCenter(returnedPoint, 14);

</script>

In this modified script, we create a GClientGeocoder in the load function. We create
the map like before. After that, we call getLatLng (), passing an address, and the
callback function, cencerMapCallback.

---------------(237)--- -------------

Petitioner Apple Inc. - Ex. 1035, p. 237

London Tube Photos

In centerMapCallback (}, we catch the GLatLng object in the parameter and pass it
to the map's setcenter (l method to do the actual centering. The second parameter,
whose value is 14, is the zoom level. When the API calls for a zoom level, you can
supply an integer from zero to seventeen. The higher the number, the closer the
zoom will be.

868 Google "1~ps Scratch C)

. (0 "' 0 hnp:l/loalhos1/mashups/ch6/txamples/9009leMap.php @.• Google

~ ·1 -.1ood ',', ~--=- Loatlotl Sun:h

We will not be doing any geocoding in this mash.up, but you should still familiarize
yourself with GClientGeocoder. We will be using GLatLng quite a bit. Both objects
are very important to the Google Maps APL You will find that a mashup often needs
both of these objects.

- ------- ----(238)------------

Petitioner Apple Inc. - Ex. 1035, p. 238

Cha /er 6

Markers
One frequent use of GLatLng is that they are parameters for markers. Markers are the
pointers Google Maps use to identify a specific place on the map. Each marker is an
instance of the GMarker class.

To create a basic marker on the map, you only need to do two things: 1) Create the
GMarker object, and 2) Add it to the map.

In our example, we can add a marker to the address simply by adding two extra lines
to do those tasks in our callback function.

function centerMapCallback(returnedPoint){
var marker= new GMarker(returnedPoint) ;
g_map.setCenter(returnedPoint, 14);
g_map.addOverlay(marker);

The first line instantiates the GMarker and places it in a local variable named marker.
The second line zooms to the map center as before. The third line adds marker to the
Google Map.

GMarker can take a second parameter, a GMarkerOptions object This is an object
whose sole purpose is to tweak the marker. Using it, you can do things like add your
own customer icons or make the marker draggable. AU you have to do is set the
properties of the GMarkerOptions object.

I http://www.google.com/apis/maps/documentation/

[

Consult the GMarkerOptions documentation at

~ reference. html#GMarkerOptions for everything you can do
to markers.

]
--- ------------(239)------ --------- -

I

Petitioner Apple Inc. - Ex. 1035, p. 239

London Tube Photos

Events
In the Google Maps API Class References documentation, notice that some objects
have events associated with them. These objects are things the user sees and can
interact with, like the map itself, lines, and markers. This allows you to fire off
JavaScript functions whenever the user does something.

Events are managed by the GEvent namespace. To register an event, you must add it
to the GEvent object using the add.Listener (l method. addListener (l takes three
parameters. First, it takes the object that you want the event to be active. Second,
it takes the kind of event (click, drag, etc.) that is available on the object. Finally, it
takes a handler function that fires when the event is triggered.

Let's add an event to our marker. Adding a few more lines to our callback function,
we can add an alert box that pops up when our marker is clicked.

function centerMapCallback(returnedPoint){
var marker= new GMarker(returnedPoi nt) ;
g_map.setCenter(returnedPoint, 14);

g_map.addOverlay(marker);

GEvent.addListener(marker , "cl ick", function() {
alert("Marker clicked!");

}) ;

GEvent is not an object that we create, so we do not need to instantiate it. It is
automatically instantiated when we load the Google Maps APL When the click event
is triggered on marker, the handler function is executed.

lnfoWindow Box
An alert box is pretty bland. What's more useful is the white popup box that
often appears when using Google Maps. These popup boxes look like comic book
speech balloons. They point to a specific location on the map, and contain helpful
information about that location. In the Google Maps API, these boxes are known as
InfoWindows.

InfoWindows are represented in the API by the GinfoWindow class. The most
important thing to know about InfoWindows is that for each Google map, there
is one and only one InfoWindow. This has two implications to us. First, when U1e
In foWindow comes and goes from the user's view, all that is happening is iliat
visibility of InfoWindow is being toggled . This is done either through built-in
events of the API like, like clicking on the InfoWindow's close window button, or
programmatically by the developer, like calling the InfoWindow's show () or
hide () functions.

------ --- ---- ---(240)----------------

Petitioner Apple Inc. - Ex. 1035, p. 240

Cha ler 6

Second, events just share and update the same InfoWindow. When you see an
Infowindow take on new content, like what happens when you switch from one
marker to another in Google to.laps, the InfoWindow's content is being changed
through JavaScript DOM methods. We will have to do the same when we use
InfoWindow boxes in our mashup.

Let's modify our example script further. Instead of getting a JavaScript alert box, let's
display an InfoWindow box when the user clicks on the marker.

Remember, every map already has an InfoWindow box associated with it when you
instantiate the map . Therefore, there is no need to create a GinfoWindow object. All
we have to do is order it to appear in the exact place that we want.

You can set an InfoWindow box over a specific point by passing a GLatLng object
over the point to the GinfoWindow's reset () method, then make it appear using
the object's show () method. However, there is a quicker way to do this. Making the
InfoWindow box appear over a marker is one of the most common things to do in
Google Maps. It's so common, the Google Maps API Team created methods on the
GMarker object that does just this. The beauty is that the method is on the marker,
so it will appear over the marker automatically. You do not have to track down the
latih.tde/longitude of the marker.

We can simply modify the event handler to show the InfoWindow instead of an alert.

GEvent. addListener (marker, "click", function() {
marker .openinfoWindowHtml("<div>My Marker!</div>");

}) ;

---------------[241)----------------

Petitioner Apple Inc. - Ex. 1035, p. 241

London Tube Photos

InfoWindow's size is the width and height of the largest HTML container inside.
Therefore, you can control the size by adding a height and/ or width CSS properties
to the enclosing container. For example, you can make a roughly 200 pixels by 300
pixels InfoWindow by putting a div tag that is 200 pixels by 300 pixels like so:

.openinfoWindowHtml("<div style=\"width:220px; height:250px;\">
Some HTML</div>");

Version 2.5 and above of the API also has added support for tabs in the InfoWindow.
To tum an InfoWindow into tabs, create a GinfoWindowTab for each tab. This class's
constructor takes two parameters. The first is the label of the tab, the second is the
content. Place all of these GinfowindowTab objects in a JavaScript array. The GMarker
class also has support for a method named openinfoWindowTabs (). This method
takes an array of GinfoWindowTab objects. Calling it will open an InfoWindow, but
the window will be in a tab interface, with the objects as the content.

Our callback function can be tweaked a bit to use tabs in the InfoWindow:

function centerMapCallback (returnedPoint){
var tabsArray = new Array();

}

tabsArray (0) new GinfoWindowTab ("One", "<p>Content for Tab 1< /p> ") ;
tabsArray [1) = new GinfoWindowTab ("Two", "<p>Content for Tab 2</P>");

var marker= new GMarker(returnedPoint) ;
g_map.setCenter(returnedPoint, 14);
g_map .addOverlay(marker);

GEvent . addListener (marker, "click", function ()
marker.openinfoWindowTabs(tabsArray);

}) ;

----- -----------(242)------------ ----

Petitioner Apple Inc. - Ex. 1035, p. 242

Om ler6

This concludes the basic features of Google Maps. There are plenty of other features
available. Some of the powerful features include:

• The ability to draw lines on the map, similar to when Google Maps
gives directions.

• A RFST interface for the service returning XML, allowing you to use the
Google Maps database on server-side applications.

• A Marker Manager to handle large amounts of markers at different
zoom levels.

• Override the map tiles from Google Maps using the GMapTiles object.

lf you use Google Maps API heavily in mashups, you should also be aware of the
many options objects available to you. They give you the flexibility to go beyond
many other mashups that use the APL For example, with the GMarkerOptions
object, you can create custom markers on your map.

Even without these advanced features, you will be able to do a lot with Google
Maps. We certainly have more than enough to create our mashup.

Flickr Services API
Rickr, focusing on photo sharing, is one of the oldest community-driven sites out
there. They were also an early adopter of web APls for third party developers.
These things have given them a large user base and a very rich APL Flickr Services
is probably the most flexible web APl we have seen. The API home page is located
at http://www. flickr . com/services/api/. You will need a free developer key
to use this APL As Flickr! is a subsidiary of Yahoo!, you will also need a free Yal100!
account. You will be prompted for both at http : //www . flickr . com/services/
api/keys/. From there, you can also sign up for both.

Like the other APis from social-sharing sites we have seen, Rickr Services' API
focuses not only on their subject matter, but also has many methods that deal with
community features. There are an abundant group of methods that allow you to
query information about Flickr's community. Assuming someone has allowed it
on their privacy settings, you can get a person's blog entries and favourite photos,
among other things. There is also an API dealing with Flickr Group's information.
They allow you to find photos and information from people with a similar interest.

Certainly, the two largest groups of methods have to do with photos and photosets.
A user can arrange their photos into photosets for organizational purposes.
Flickr, like Last.fro and YouTube, relies heavily on user tags. Their photo search is
influenced by what is tagged by people.

---------------(243)-------------- --

Petitioner Apple Inc. - Ex. 1035, p. 243

umdon Tube Photos

Probably the most impressive thing about Flickr Services is the choices you have in
request and response formats. For request, you can use any of the three most popular
formats-REST, SOAP, and XML-RPC. For responses, you can choose Flickr's own
XML schema, SOAP, XML-RPC, JSON, or even serialized PHP objects. Regardless
of the format you choose for request and responses, Flickr Services has a consistent
method of doing things. All requests take the same parameters and return the same
data. You just need to format and parse differently for each one.

Executing a Search
Because Flickr Services is so consistent, the best way to get an overview of it is to
walk through an example. In our mashup, we will need to concentrate on the group
of photo methods. In particular, we need one to search photos based on user tags.
Let's try and execute a search like we will be doing for our mashup.

For our request and response, we'll look to keep things simple. We will send the
service request using REST. Our web application is PHP driven, so a serialized PHP
response would be intriguing. However, as JavaScript will be doing a lot of the
work, we will use JSON. The straight XML response from a REST call would also be
acceptable, but it would be nice to avoid the DOM parsing that would be required
with it.

The method names are fairly self-explanatory and give us a lot of clues on what the
method does. Looking at the documentation for the method flickr . photos . search
athttp://www.flickr.com/services/api/flickr.photos.search.html,wesee
it is exactly what we need to search photos.

The URL for all Flickr REST requests is http: //api. flickr. com/services/rest/.
Following this URL are the parameters of the method in a GET request format. There
are two required parameters for all REST requests-method and api_key. The value
of method is the name of the metl1od that you wish to call. The value of api _ key is
your Flickr API Key. To call flickr. photos. search, our complete URL would be:

http ://api.flickr.com/services/rest/?method=flickr.photos.
search&api_key=Y0UR_FLICKR_API_ KEY

A methods documentation page lists all the parameters the method can take.
flickr. photos. searchs1 available parameters are quite extensive. This gives us a
lot of ability to tweak our search. According to the documentation, the only required
parameter is api_key. However, this is sort of misleading because we also need to
supply a search term. We can search tags using the tags paran1eter, or a free text
search using the text parameter. Even though both are optional parameters, we
need to include one or the other. Otherwise, Flickr will return a message saying that
empty searches are not supported.

------ ---------(244)---------- -----

Petitioner Apple Inc. - Ex. 1035, p. 244

Gia ter 6

To use tags, supply a comma delimited list of terms you wish to search. A text search
is just a free text string. Either way, when using RFST, remember to URL encode
your terms.

http : //api.flickr.com/services/rest/?method=flickr .photos .
search&api_key=YOUR FLICKR_API_KEY&text=fender%20stratocaster

If you use XML-RPC or SOAP, use the exact same parameters as listed in the
documentation and format the parameters and values as required by the respective
format. For SOAP, the endpoint is at http: //api. flickr. com/services/soap/.
For XML-RPC, the service endpoint is at http : //api. flickr . com/services/
xmlrpc/.

Interpreting Service Results
If you hit the above URL in a web browser, after adding your API key, the search
will execute and you will receive a live response from the server.

<?xml version="l . 0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page=»l» pages=»20» perpage=»l00» total=»l904»>

<photo id="412962278" owner="43203076@N00" secret="63e7e2el!'0"
server="l83" farm="l" title="Doin' Studio Time" ispublic="l"
isfriend="0" isfamily="0" />

<photo id="412463850" owner="63895350@NO0" secret="26b97edbb5 "
server="172" farm="l" title="Norby with his Fender Stratocas=e:-•
ispublic="l" isfriend="0" isfamily="0" />

<photo id="411598583" owner= "75859527@N00" secret= "657eb806c8"
server="172" farm="l" title="Hocus Pocus" ispublic="l"
isfriend=" 0" isfamily="0" />

</photos>
</rsp>

The returned format is in a standard format returned by Flickr whenever it returns
photos. By default, a call returns 100 results per "page". The photos element groups
individual photo elements in a "page". Each photo element represents a photo
returned in the search results. You can change the page you are on by passing a
page parameter to the call. Alternatively, you can also change the number of photos
returned in a page with the per_page parameter in the call.

-------- --------[245]----------------

Petitioner Apple Inc. - Ex. 1035, p. 245

--
London Tube Photos

Each photo element is basically a collection of attributes about the photo. These
attributes are very important. We need to know them in order to load the photo.

Attribute

Id

Owner

Secret

Server

Farm

Title

isPublic

isFriend

isFamily

Description

Unique ID of the photo.

Owner JD of the person that owns this picture.

A secondary identifier used to help identify the photo.

The server on which this photo is stored.

The server farm on which this photo is stored.

The title of the picture.

Boolean indicating whether the owner is publicly sharing the photo.

Boolean indicating whether the owner is on your list of friends.

Boolean indicating whether the owner is on your lis t of family members.

The last three booleans take either a 1 or O value. They also require the service caller
to be authenticated in using the authentication methods in the API.

This is what we want, but it is in the wrong format. We want the results back in
JSON. To get results in JSON, we need to pass a format parameter to the service call.
In this case, the value of that parameter is j son.

http : //api.flickr . com/services/rest/?method=flickr .photos.search&api_
key=YOUR FLICKR_API_KEY&text=fender%20stratocaster&format=json

Adding the parameter will give us this response from the server.

j sonFlickrApi ({
"photos ": {

"page": l ,
"pages" : 20 ,
"perpage": 100 ,
" total": " 1904 ",
"photo": [
{«id» : »412962278», «owner»:»43203076@NOO» ,
«secret» : » 63e 7 e2el fO», «server» : » 183», «fann»: 1,
«title»:»Doin\u2019 Studio Time», «ispublic»:1, «isfriend» : O,
«is family» : 0 I ,
{«id» : »412463850», «owner»:»63895350@NOO»,
«secret» : »2 6b97 edbb5» , «server» : » l 7 2», «fa rm» : 1, «title» :
»Norby with his Fender Stratocaster», «ispublic» : l ,
«isfriend» : O, «isfamily» : O} ,

---------------[246) - --------------

Petitioner Apple Inc. - Ex. 1035, p. 246

Cha /er 6

{«id» : »4 l l '-i9 c:: 5 3 3», «o·,,,ner» : » 7 5859527@NOO» ,

«secret» : »6:> 7 eb806c3», «server»: » 172», «fa rm» : 1 , « title» : »Hocus
Pocus» , « ispub:!.!c» : 1 , «isfriend» : O, «isfarnily»: O} ,

})

Each method's documentation page documents the returned XML format of the call.
From there, it is easy to take an educated guess at the JSON equivalent. Generally,
element a ttributes in the XML document are object properties in the JSON document.
Nested elements are translated into nested objects. The subject of search results,
whether they are things like blog entries, users in a group, or like in this case, photos,
are returned as JSON arrays. If you have trouble estimating the exact translation of
a method, you can always manually make the request in your browser like we
did here.

Note that the JSON results are encapsulated in a call to j sonFlickrApi. By default,
the API assumes that you want to pass the JSON results to a JavaScript callback
function. if you have a function named j sonFlickrApi in your application, the
JavaScript engine will pass the JSON object to that function when it receives the
response. The engine will then automatically execute the function. This can be a
controller in your JavaScript for the service's return value. However, you do need to
create a function named j sonFlickrApi, and it must be set-up to act on the returned
JSON code. If you choose not to use this, you can tum this automatic callback off by
sending a true (1) value to the nojsoncallback parameter in your call. This will give
the exact same text string without the j sonFlickrApi () .

http ://api . flickr .com/services/rest/?method=flickr .photos.search&api_
key=Y0UR_FLICKR_API_KEY&text=fender%20stratocascer&format• json&nojson
callback=l

Retrieving a Photo or a Photo's Page
Now that we have the results, we can use the data to retrieve photos from Flickr.
Image URLs in Flickr have the following format:

http: //farm{FARM-ID}.static.flickr.com/{SERVER-ID}/{ID}_
{SECRET}{SIZE} . jpg

With the exception of the size, all the other variables can be extracted directly from
fl ickr. photos . search's web service call response.

------------ - --[247)--- - --- - ------ --

Petitioner Apple Inc. - Ex. 1035, p. 247

London Tube Photos

The FARM- ID is the farm attribute. SERVER-ID is the server attribute. ID is the id
attribute. SECRET is the secret attribute in the XML. SIZE is the size of the photo you
want. It is an w1derscore followed by one character. The character can take on any of
the following letters:

Suffix Meaning Max Pixels on Side
_o Original size *

b - Large 1024
None Medium 500
m - Small 240
t Thumbnail 100
s - Small Square 75 px x 75 px

One of the first photo's XML is returned as:

<photo id="411598583" owner="75859527@N00" secret="657eb806c8"
server="172" farm="l" title= "Hocus Pocus" ispublic="l" isfriend= "0"
isfamily="0 " />

We can use this information to construct a URL to a small version of the photo:

http : //farml.static . flickr . com/172/411598583_657eb806c8_m. jpg

Original size works a little differently. They have their own secret code in an
attribute named original secret and you must include the file type extension,
which you can get from an.other attribute named original_format. To get these
attributes, you need to request them in your original request in the extras parameter.
This parameter takes a comma-delimited list of attributes that may not be included
in the default response.

http : //api . flickr . com/services/rest/?method=flickr . photos.
search&api_key=YOUR_FLICKR_API_KEY&text=fender%20stratocaster&form
at=json&nojsoncallback=l&extras=originalsecret , original_format

Consult a method's documentation to see if any extra parameters are available.

A URL to the photo's web page works in a similar way. The URL takes the
following format:

http : //www.flickr.com/photos/{USER-ID}/{PHOTO-ID}

The documentation outlines several different things that you can link to, for example,
you can construct URLs to a photoset or a user's profile.

---------------[248]---------------

Petitioner Apple Inc. - Ex. 1035, p. 248

Cha fer 6

Mashing Up
We have toured a lot of technologies for this mash up. Some of these are pretty
cutting-edge, but necessary to incorporate a relatively new specification. Not
surprisingly, your data sources are not always going to be from web APis. Staying
flexible and searching for new technologies to use in your applications is important.
At last, we have the knowledge to start building the application.

The database is a good place to begin. Recall from our sequence d iagram that a
visitor directly and indirectly interacts with several different components of our
application at any one time. Many of the components rely on the Google Map to be
built first, but the map relies on the database as a source for marker locations.

Building and Populating the Database
Our mashup needs three things: Tube stations, lines of the Tube system, and which
stations belong to which line. We also need to keep in mind that a station can belong
to more than one line. As our source of data is from the Tube Station RDF document,
let's take a close look at the document to see what's available to us.

Examining the File
The first half of the page consists of stations. A typical station looks like this:

<rdf :Description rdf :about="http://london .openguides.org/index.
cgi?id=Acton_Town_Station;format .. rdf#obj">
<OS :y>179613</0s:y>
<dc:subject>Tube</dc :subject>
<name>Acton Town Station</name>
<dc:title>Acton Town Station</dc:title>
<rdfs :type rdf:resource2 "http://www.w3.org/2003/01/geo/wgs84_
pos#SpatialThing"/>
<geo : long>-0 .280009</geo : long>
<Space :connects rdf : resource="http://london.openguides.org/index.
cgi?id=Turnham_Green_Station;format=rdf#obj"/>
<OS :X>519478</0S:X>
<rdfs :seeAlso rdf:resource=»http: //london.openguides.org/index.
cgi?id=Acton_Town_Station;format=rdf#obj»/>
<geo : lat>Sl .502833</geo:lat>
</rdf:Description>

---------------(249)-------------- --

Petitioner Apple Inc. - Ex. 1035, p. 249

London Tube Plzotos

We need at least a name and a latitude/longitude pair for Google Maps. The name,
geo: long, and geo: lat elements appear to give this to us. We will definitely need
to extract these. Putting this "thing" in a subject/predicate/object context, the rdf :
about attribute would give us the subject. Should the need arise, we can use that as
a unique identifier. We also see there is a type/ resource element that may identify
this item as a tube station; this may also be useful.

Nowhere in this document do we find an actual list of lines. However, the last half
of this document is interesting. They are a collection of blocks, but smaller than a
station block.

crdf:Description rdf :about="http://space . frot .org/a_space/id527676l">
<rdfs :type rdf:resource= "http : //space .frot.org/rdf/space.owl#Tube_
Line"/>

crdf :predicate rdf:resource="http : //frot .org/space/O . l/connects" />
crdf :subject rdf:resource="http://london.openguides.org/index.
cgi?id=North_Ealing_Station;format=rdf#obj" />
cdc:title>Piccadilly Line</dc:title>
<rdf :object rdf:resource="http : //london.openguides.org/index.
cgi?id=Ealing_Common_Station ;format=rdf#obj" />
c/rdf :Description>

They appear to be a list of spatial relationships described in a triple format. The rcifs/
resource pair tells us it is a tube line. However, there are many of these in each line.
What gives this away are the rdf: predicate, rdf: subject, and rdf: object tags.
These items tells us that in this line, the subject, which directly correlates to the rdf :
about attributes of the stations, connects (according to rdf :predicate) to tl1e object,
which also directly correlates to the rdf: about attributes. Basically, these items tell
us that the subject station connects to the object station in a certain line. They are
drawing the line map for us using a triple.

Therefore, we can simply pick these out to get the line stations. As rdf : subject
elements are the stcut of the connection chain, we can just pick out the rdf : subject
and filter by de : title to get all of the stations in a line.

This is the only hint of the presence of Tube lines. However, all we really need to do
is exb·act tl1e name of the line and the stations to which they belong.

Creating Our Database Schema
A line has many stations and a station can belong to more than one line. This sounds
like a job for a join table. We'll keep things simple and just extract the name, latitude,
and longitude for tl1e stations, and just the line name for the line.

---------------(250)---------------

Petitioner Apple Inc. - Ex. 1035, p. 250

Cha ter 6

Our database schema will look like this:

station line

PK S!i:!t12□IC! {I@ PK I Lin~IC! {IND

StationName {VARCHAR(50)) I LineName (VARCHAR(50))
latJtude {VARCHAR(50))
Longitude (VARCHAR(50))

l
stationlDline

StatJonlD (INl)
LinelD (INT)

We have included an SQL file in the examples code named londontube . sql. This
file will create a database with foreign key constraints. You can run this file directly
in an SQL import tool, like the MySQL command line, or phpMy Ad min, to create
this database. For all other ROMS setups, create a database named londontube and
mimic the schema.

[
er;:(Don't forget to give at least S ELECT and INSERT permissions for a user]
~ on this database, and a password!

Building SPARQL Queries
To populate these tables from RDF, we will need a SPARQL query for each one.
First, we will need to populate all stations. Second, we will need a SPARQL qut!r. to
populate all the lines. After we insert lines and stations, we need to use the SQL IDs
that were generated and insert them into the stationtoline junction table.

As we create these, we can double check our work back at SPARQLer. Be sure to
change the Data URL field to the London Tube RDF at http : // space . frot . org/
r d f/tube_model2. rdf .

--- - - - - - - ------(251) - --------------

Petitioner Apple Inc. - Ex. 1035, p. 251

London Tube Photos

Stations Query
Our stations query must extract the name, latitude, and longitude from the RDF
document. We can do this with the following query:

PREFIX : <http : //xmlns .com/foaf/O . l/>
PREFIX geo: <http : //www.w3.org/2003/0l/geo/wgs84_pos#>
PREFIX rdf: <http : //www.w3.org/l999/02/22-rdf-syntax-ns#>
PREFIX rdfs : <http://www.w3 .org/2000/0l/rdf-schema#>

SELECT DISTINCT ?stationName ?lat ?long
FROM <tube_model2.rdf>
WHERE

?type rdfs : type
<http : //www . w3 .org/2003/0l/geo/wgs84_pos#Spati a1Thing>
?type :name ?stationName
?type geo:lat ?lat .
?type geo : long ?long

ORDER BY ?stati onName

In the top, we define the prefixes we will need. Note the very first prefix. The name
of the station is in the name element, which does not have a prefix. It falls into the
default namespace. You have to declare default namespace prefixes if they are used
in SPARQL. To do this, create the PREFIX statement as you normally would, but the
namespace portion is just an empty colon.

The SELECT statement tells the parser to grab three variables, ?stationName, ? lat,
and ? long. The WHERE clause refines the search and sets those variables.

The first triple narrows the search to stations. Remember when we looked at stations
in the RDF document, it had a type/ resource pair that identifies it as a station?
The type was in the rdfs namespace, but its resource attribute was in the rdf
namespace. Even though we do not explicitly use the rdf namespace in this first
WHERE clause, the value is in that namespace, so therefore we also need to give it
a PREFIX declaration. This statement sets the subject for our other clauses in the
variable named ?type.

llle three other triples set the variables we asked for in the SELECT statement. They
essentially work the same way. They use the subject in ?type to find the predicate,
which are the elements we want. The object of these triples is placed into the
?stationName, ?lat, and ?long variables.

---------------[252]----------------

Petitioner Apple Inc. - Ex. 1035, p. 252

Cha ter 6

Lines Query
This one is easier than it may fust appear. Our lines query must get all of the lines in
the system. However, the RDF file does not have a section of just lines. It does have
the section where it descri bes all of the connections in a line, though. We can simply
grab all of these connection items and use the DISTINCT keyword on the line name to
make sure we only get one of each.

PREFIX de : <http : //purl.org/de/elements/l . l/>
PREFIX rdfs: <http://www.w3.org/2000/0l/rdf-sehema#>
FROM <tube model2.rdf>
SELECT DISTINCT ?lineName
WHERE {

?type rdfs:type <http: //spaee.frot.org/rdf/spaee.owl#Tube_Line>
?type de:title ?lineName

ORDER BY ?lineName';

The WHERE clause by itself, gets all of the line names from the de: title element
based on a type/resource combination like the previous query. However, the
DISTINCT keyword filters out all the repeat instances.

Lines to Stations Query
Remember previously that RDF items do not have relationships like SQL does per se.
We can work around this by using queries to find the subject of the child object. We
will have to do this to map the relationship between lines and s ta tions.

PREFIX : <http : //xmlns.eom/foaf/O.l/>
PREFIX de: <http://purl.org/de/elements/l . l/>
PREFIX rdf: <http://www.w3.org/l999/02/22-rdf - syntax-ns#>
PREFIX rdfs: <http://www .w3.org/2000/0l/rdf-sehema#>

SELECT DISTINCT ?lineName ?stationName
FROM <tube_model2.rdf>
WHERE {

?line rdfs:type <http://spaee.frot .org/rdf/spaee .owl#Tube_Line>
?line de:title ?lineName .
?line rdf:subjeet ?infourl .
?infourl de:title ?stationName

ORDER BY ?lineName ?stationName';

---------------[253)----------------

Petitioner Apple Inc. - Ex. 1035, p. 253

London Tube Photos

Tius query is asking for a line name and a station name pairing. All stations that
belong to a line should be included with that line. 1f a line has twelve stations, there
should be twelve entries with that line in the result set, with each station having on
entry in that pair.

The first line in the WHERE clause is simple enough. It sets the subject of all Tube lines
in the ?line variable. The second line sets the ?lineName variable, which we want
to extract, by making it the object of the de: t itle predicate. It gets interesting in the
third line.

In the RDF document, these connection items have a subject element.

<rdf :subject rdf:resource="http : //london.openguides .org/ index.
cgi?id=Wapping_Station;format=rdf#obj"/>

These subject elements tell us that subject of this connection item is the resource
attribute value. The third line in the WHERE clause, then, sets the rdf : resource value
in a variable named ? inf our 1. Remember earlier when we looked at the stations we
noted the rdf : about attribu te in the Description elements of the stations could be
used as a unique identifier for those stations? This is where it comes in handy. These
identifiers are used in rdf: resource in these connection items.

In the fourth line, we use this station iden tifier URL as the subject to grab the
station name. This fourth line looks for all subjects with the unique station URL and
operates on those items. In other words, it looks back at the station items in the first
half of the page.

Finally, back in the SELECT statement, we add a DISTINCT keyword to ?lineName.
This is because a connection between two stations is actually represented twice in
our document. You'll find a statement that says, "Station A is connected to Station B",
and later on in the document, you'll find "Station B connects to Station A". This is
no accident, but will cause each connection to be listed twice. DISTINCT will
eliminate that.

We have successfully worked around the issue of relationships. Though yam classic
foreign key constraints in SQL are not available, we do have identifiers in this file
that we can play with. Forhmately, we have a well designed document, but this may
not always be the case. You may have to query more than one document, or you may
have to get extra complicated with your SPARQL WHERE clauses.

Database Population Script
Now that we have our SPARQL queries, it's time to actually use them to populate
our database. We will write a procedural script that uses RDF API for PHP to do
just that.

--------------[254]--------------

Petitioner Apple Inc. - Ex. 1035, p. 254

Cha ler 6

As RAP is objected oriented, we'll use a model-centric approach for this script. In
the example chapter code, this section w ill go over the code in the script named
populateDB. php. In the classes/models directory, there are two files, clsLine.
php and clsStation. php. They represent the line table in the database and the
station table. They are just containers. Each column in the database is represented
by properties in the class, and each property has a public getter and setter method to
access it.

The clsLine. php file looks like this:

<?php
class Line

private $lineld;
private $lineName;
public function getLineid(l return $this->lineld; }
public function getLineName(l { return $this->lineName;
public function setLineid($i) { $this->lineld = $i;
public function setLineName($n) { $this- >lineName = $n;

clsStation.php looks like this:

<?php
class Station {

private $stationld;
private $stationName;
private $lat;
private $long;
public function
public function
public function
public function
public function
public function
public function
public function

getStationld() { return Sthis->stationid; }
getStationName() { return $this->stationName;
getLat() { return Sthis->lat; }
getLong() { return Sthis->long; }
setStationld($i) { $this->stationld = Si;
setStationName($n) { $this->stationName $n;
setLat($1) { $this->lat = $1; }
setLong($1) { Sthis->long = $1; }

----------------(255)- - - -------------

Petitioner Apple Inc. - Ex. 1035, p. 255

umdon Tube Plwtos

These "plain old PHP objects11 are generic enough to reuse later in our application.

Based on our database schema, our populateDB. php needs to take the
following steps:

1. Get all lines from the RDF file.

2. Insert all the lines into the table.

3. Remember the table primary key that was generated by the insert.

4. Get all stations from the RDF file.

5. Insert aU stations into the table.

6. Remember the table primary key that was generated by the insert.

7. Get aU stations in a line from the RDF file.

8. Use the primary keys there were generated from the inserts and insert them
correctly into the stations-to-line junction table based on the query from the
RDF file.

Our script starts off with the standard initialization and preparation code that RAP
requires. In addition, we include the two model object definitions.

define ("RDFAPI_INCLUDE_DIR", "Absolute/Path/To/rdfapi-php/api/");
require_once(RDFAPI_INCLUDE_DIR . "RdfAPI.php");
require_once('classes/models/clsLine.php');
require_once('classes/models/clsStation .php');

Next, the SPARQL client is created. We pass the URL to the tube document into the
load () method.

//Create SPARQL Client
$sparq1Client = ModelFactory: :getDefaultModel ();
$sparq1Client->load('http://space.frot.org/rdf/tube_model2.rdf');

We need to create a database connection. Modify this section as necessary if you are
not using MySQL, and customize it to the user.

//Create MySQL Client
$mySQLConn = @mysql_connect("127.0.0.1", "DB USER NAME", "DB USER
PASSWORD") or die("Couldn't connect to the MySQL server.");
$db= mysql_select_db("londontube", $mySQLConn) or die("Couldn't
connect to the londontube database.");

Now it's time to create some functions that wilJ query the RDF document.

---------------(256)---------------

Petitioner Apple Inc. - Ex. 1035, p. 256

The first is the getAllStations {) function. This function will query the RDF
document and return an array of station objects.

function getA11Stations(&$sparqlClient)
$returnArray = array();
$query= '
PREFIX : <http://xmlns.com/foaf/0.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/0l/rdf-schema#>
SELECT DISTINCT ?stationName ?lat ?long
FROM <tube_model2 . rdf>
WHERE

Cha ter 6

?type rdfs:type
<http : //www .w3 .org/2003/01/geo/wgs84_pos#Spatia1Thing>
?type :name ?stationName
?type geo:lat ?lat .
?type geo : long ?long

ORDER BY ?sta tionName';
$result= $sparq1Client->sparq1Query($query);
if ($result != "false") {

foreach ($result as $station) {
if ($station ! = 1111

) {

$stationObj = new Station();
$stationObj - >setStationName($station [' ?stationName')­
>getLabel());
$stationObj->setLat{$station[' ?lat ')->getLabel()) ;
$stationObj->setLon9{$station(1 ?lon9 1]->getLabel());
$returnArray[$station[1 ?stationName •]->getLabel())
$stationObj;

return $returnArray ;

This function starts off with the SPARQL query that we built earlier and uses
the SPARQL client passed to it to execute it against the loaded RDF document.
Remember that the query gets the name, latitude, and longitude. The results set
comprises a row for each station. The foreach loops through this results set. It

---------------[257) - --------------

Petitioner Apple Inc. - Ex. 1035, p. 257

London Tube Photos

places each results object into a RAP resource object named $stat ion. For each
station in the results set, a new station is instantiated. Using the setter methods, the
results in $station populate each station object's name, latitude, and longitude. It
then places this object into the array to be returned, with the name of the station as
the key. Without any integer identifiers in RDF, we are going to have to use the next
best thing. The names of the stations and lines are going to have to be the keys.

The same principle applies to getAllLines (), which grabs all of the station lines in
the RDF document.

function getA11Lines(&$sparglClient)
$returnArray =array() ;
$query= '
PREFIX de : <http://purl.org/dc/elements/l.l/>
PREFIX rdfs: <http: //www .w3 . org/2000/0l/rdf-schema#>
FROM <tube model2.rdf>
SELECT DISTINCT ?lineName
WHERE

?type rdfs:type
<http://space . frot .org/rdf/space .owl#Tube_Line>

?type dc:title ?lineName

ORDER BY ?lineName';
$result= $sparg1Client->sparg1Query($guery);
if ($result ! = "false") {

foreach ($result as $line) {
if {$line != "") {

$lineObj = new Line();
$lineObj->setLineName ($line['?lineName')->getLabel()) ;
$returnArray[$1ine['?lineName')->getLabel()) = $lineObj;

return $returnArray;

The same principle applies to getAllLines () , which grabs all of the stat.ion lines in
the RDF document. Again, the line name is the key in this array.

- --------------(258)----------- ---- -

Petitioner Apple Inc. - Ex. 1035, p. 258

Lastly, we create a function that finds the station-to-line relationships.

function getLinesAndStations(&$sparqlClient)
$returnArray = array();
$i = O;
$query= '
PREFIX : <http://xmlns.com/foaf/0.1/>
PREFIX de : <http://purl.org/dc/elements/l . l/>
PREFIX rdf : <http://www .w3.org/1999/02/22-rdf-s~~ax- ~s=>
PREFIX rdfs : <http : //www.w3 .org /2000/01/rdf-schema=>

SELECT DISTINCT ?lineName ?stationName
FROM <tube model2.rdf>
WHERE {

Ow t~-rf

?line r d fs : type <http: //space.frot.org/ rd:/ space .owl =~~b'2_~! ~e >
?line dc:title ?lineName .
?line r d f : sub ject ?infourl .
?infourl dc : title ?stationName

ORDER BY ?lineName ?stationName';
$result= $sparq1Client->sparq1Query (Squery
if ($result 1= "false") {

foreach ($result as $relationship)
if ($relationship 1= 1111

) {

$returnArray [$i) ['line'] = $relationship I' ?lineName ' J -
>getLabel();
$returnArray[$il [' station'] = $relationship [

'?stationName']->getLabel();
$i++ ;

return $returnArray;

This array starts off, like tl1e other two, by using SPARQL to query the loaded RDF
document. However, the returned array is different from the other two. We did not
create any model objects to hold relationships, so nothing like that is used. Instead,
we return a multi-dimensional array. An integer is the index, and each value is
an associative array inside it. The associative array has the line and station name
grouping together.

----------------(259]----------------

Petitioner Apple Inc. - Ex. 1035, p. 259

London Tube Pl,o/os

Now we have three functions that return tluee arrays. Let's call them and start
working on the arrays.

$linesArr = getA11Lines($sparglClient);
$stationsArr = getA11Stations($sparglClient);
$joinArr = getLinesAndStations($sparqlClient);

This block wiU store the arrays in $linesArr, $stationsArr, and $joinArr. First,
we will operate on the $linesArr array.

foreach ($linesArr as $line) {
$sql = 'INSERT INTO line (LineName) VALUES (\' I • addslashes(

$line->getLineName()) . '\')';
$e = mysql _query($sql, $mySQLConn) ;
$line->setLineid(mysql insert id($mySQLConn)); - } -

This foreach loop will insert each Line object in the $linesArr array into the
database. The last statement in the code will get the new ID number from the insert
and store it in the object property. Another foreach loop does the same thing with
the s tations.

foreach ($stationsArr as $station) {
$sql = 'INSERT INTO station (StationName, Latitude, Longitude)
VALUES (\'' . addslashes($station->getStationName()l . '\', \''
. addslashes($station->getLat ()) . '\', \' ' . addslashes ($station­
>getLong ()) . ' \ ' l ' ;
$e = mysql_query($sql, $mySQLConn);
$station->setStationid(mysql_insert_id($mySQLConn));

}

After this is done, we still have our arrays of lines and stations. Now, however, each
object's ID property is set with the primary key number assigned from the database.
We need to use this property when we populate the join table.

foreach ($joinArr as $key=> $value) {
$sql = 'INSERT INTO stationtoline (LineID, StationID) VALUES ('
$lines [$value I' line' 11 ->getLineid () ' . $stations [$value I
'station']]->getStationid() . ')';
$e = mysgl_query($sgl , $mySQLConn) ;

Remember that $join is a multivariable array, and 'line' is the key in the
associative array that has the line name, and 'station' is the key with the station
name. We use these keys to grab the object in $linesArr and $stationsArr. Once

-------- -------(260)----------------

Petitioner Apple Inc. - Ex. 1035, p. 260

Cha ter 6

we have these objects, it's jus t a matter of using the ID getter method to grab the
database primary key ID for that station or line. These are used in the SQL statement
for the insert.

Run this file once in your web browser and you will have a fully populated database
full of London Tube station information. It's time to create the web front end to
ourmashup.

The TubeSource Database Interface Class
This mashup will always have a pull-down menu of all stations. Once the user
selects a line, the page will refresh itself and the line's stations will be marked with
markers. This impHes two things:

1. We need a function to pull the names of the Tube lines from the database.

2. We need a function to pull the station names from the database based
on lines.

We'll create a database interface class for this. It will be the source of all Tube
information from the database. In the examples, this file is in the classes directory
and named clsTubeSource . php. Anything that interfaces with the database will
occur in this class.

class TubeSource {
private $dbConn;
public function getAllLines ()

$returnArray = array() ;
$sql = 'SELECT LineID, LineName FROM line';
$e = mysql_query($sql, $this- >dbConn);
while ($row = mysql_fetch_array($e)) {

$line0bj = new Line();
$lineObj->setLineld($row['LineID']l;
$lineObj->setLineName($row[' LineName'J);
array_push($returnArray, $lineObj);

return $returnArray;

public function getStationsByLine($lineid)
$returnArray =array();
$sql = 'SELECT S.Stat i onName , S.Latitude, $.Longitude FROM

stationtoline AS SL

- ------- ----- ---[261] - ---------------

Petitioner Apple Inc. - Ex. 1035, p. 261

London Tube Photos

INNER JOIN sta tion AS s
ON SL . Station ID = S . StationID

WHERE SL .Linero= ' . $lineid;
$e = mysql _query($sq l , $this->dbConn) ;

while {$r ow= mysql_fetch_array{$e)) {
$stationObj = new Stati on() ;

$stationObj->setStationName{$row('StationName ']);
$stationObj - >setLat($row(' Latitude']) ;

$stationObj->setLong($row('Longitude']);

array_push{$returnArray, $stationObj);

r eturn $returnArray;

public function _ construct(&$dbConn)

$this->dbConn = $dbConn ;

This class takes a database connection object in its constructor. Its two methods,
getAllLines () and getAllStationsByLine {), return arrays of Line objects and
Station objects, respectively. They work with and populate the model classes in a
similar fashion as the SPARQL queries did. getAllStationsByLine () takes the
primary key ID of the line as a parameter, and uses it in the WHERE clause.

The Main User Interface
At this point, we can create the main user interface page to see how our mashup
is progressing. Let's create the functionality to draw a Google Map and draw the
markers when a user selects a line. This page needs to do the following:

1. Create and display Google Map.

2. Contain the JavaScript to display the station markers.

3. Call the TubeSource database class.

4. Present the user with a pull-down menu of stations populated with data
from TubeSource.

- --------------(262)---- ------------

Petitioner Apple Inc. - Ex. 1035, p. 262

Cha ter 6

This basic form of the home page is named index-Basic . php. We'll walk through
the portions of the page that handle all of the listed functionality. Later, we will
modify the page to add the Flickr calls to get the photos.

<?php
$googleKey = 'YOUR GOOGLE API KEY';
require_once('classes/models/clsLine.php');
require_once('classes/models/clsStation .php');
require_once('classes/clsTubeSource.php');

This page starts with some preliminary initialization. The Google API key is set in a
variable. All of our model classes are included as well as the TubeSource class.

//Create MySQL Client
$mySQLConn = ®mysql_connect ("127 . o. O. l", "tubeapp", "tubular") or
die("Couldn't connect to the MySQL server.");
$db= mysql_ select_db("londontube", $mySQLConn) or die(11 Couldn 1 t
connect to the londontube database.");

//Create a DB abstrction object
$tubeSourceObj = new TubeSource($mySQLConn);

We need to create the database code. Here, the database client is created and
TubeSource is instantia ted with the clie nt.

$linesArr = $tubeSourceObj->getA11Lines();
if ($_GET [' line ']) {

$stationsArr = $tubeSourceObj->getStationsByLine($_GET[1 line'));

11'1e next few lines end the preliminary PHP code. The first makes a call to
Tubesource's getAllLines () to get all the lines. The returned array of Line objects,
in $linesArr, will be used to created the pull-down menu.

If a GET parame te r was passed to this page, w e'll make a call to TubeSource's o ther
me thod, getStationsByLine () . This w ill get us the Station objects of a line stored in
an a rray.

Next, we start our HTML and JavaScript.

<html>
<head>

<ticle>London Tube Stations</title>

----------------(263]----------------

Petitioner Apple Inc. - Ex. 1035, p. 263

London Tube Photos

<script src="http://maps.google.com/maps?file=api&v=2&
key=<?= $googleKey ?>"

type="text/javascript"></script>

<script type="text/javascript">
var g_map;

The JavaScript starts off with a declaration of a few global variables to hold
information throughout the application.

function load() {
if (GBrowserisCompatible())

var point= null;
g_map = new GMap2(document.getElementByid("map"));

The load function will be executed by the body onload event. The purpose of this
function is to create the Google Map and draw any markers if needed. This loads the
map into the g_map global variable.

g_map.addControl(new GSmallMapControl());
g_map.addControl(new GMapTypeControl());
g_map.setCenter(new GLatLng(Sl.5099983215,
-0 . 134690001607), 11);

These three lines operate on our map. The first two add some controls. There are a
whole series of controls you can add to a Google Map. The first line adds a small
version of the pan and zoom commands you see on Google Maps. The second line
adds Map Type Control buttons to the upper right corner of the map. These buttons
control whether the map is a typical street map, a satellite map, or a hybrid.

The third line centres the map to a location. Through research, trial, and error, I
found the latitude and longitude of downtown London. We pass the coordinates to
a GLatLng object, set a nice zoom level of 11 to most of London, and pass that to the
setCenter () method.

<?php if ($_GET['line•J && count($stationsArr) > O) {

foreach ($stationsArr as $station) { ?>
point= new GLatLng(<?= $station->getLat() ?>,
<?= $station->getLong() ?>);
g_map . addOverlay(createMarker(point,
'<?= addslashes($station->getStationName()) ?>'));

<?php } } ?>

---------------[264]----------------

Petitioner Apple Inc. - Ex. 1035, p. 264

This section creates the markers. We use PHP to help us. If a line GET parameter was
passed to the page and the array of stations is not empty, then we need to create
a marker for each station. Still in PHP, we loop through using a foreach loop. A
GLatLng object, represented by point, is created with the PHP object's latitude and
longitude properties. If we just use this point and pass it to the map's addOverlay
method, we would create a marker on the map. However, we want to do a little extra
with it, like create an event.

We use this point and pass it to another function, createMarker () . This function
creates a marker, adds an event listener to it, then returns the same marker.

// Creates a marker at the given point with the given number label
function createMarker(point , stationName) {
var marker= new GMarker(point);
GEvent.addListener(marker, "click", function()

marker .openinfoWindowHtml("<div style=\ "width : 220px;
height : 250px;\">" + stationName + "</div>");

}) ;

return marker;

A marker is created in the first line of the fw1etion. Remember that the GEvent
object is created when you call the Google Map. Its job is to watch for events on
all Google Map objects. We tell it to listen for a click on this marker through the
addListener () method.

In the callback function parameter, we define what's going to happen when
the marker is clicked. Here, we tell the map to open the InfoWindow using
openinfoWindowHtml () . We provide HTML as the parameter using the station
name. When opened, the InfoWindow will appear over the marker. The name of the
s tation will be the only content in the window.

</script>
</head>
<body onload="load() " onunload="GUnload()">

In our body tag, we initiate map creation by calling load () . We also add a call to
GUnload () when the page is exited. GUnload () is part of the Google Maps APL
lts job is to dose up any memory leaks. It is always a good idea to call this at an
onunload page event whenever you are using Google Maps.

<form name="selectionForm" action="index-Basic .php" method="get">
<select name="line">

<option value="">Select a Line</option>

--------------[265]- -------------

Petitioner Apple Inc. - Ex. 1035, p. 265

London Tube Photos

<?php f oreach($ l inesArr a s $lines) { ?>
copt i on value•"<?• $li nes- >getLineid () ?>" <?• $ GET ['line ') ==
$lines->getLineid() ? "selected=\ "selected\ "" : "" ?>><?• $l i nes ­
>get LineNa me() ?>c/opt i on>

c?php } ?>

c/select>
c input type="submit" value="Go ! " />
c/for m>

This code block draws the form object that we use for line selection. The PHP
foreach loop loops through the array of Tube lines to grab each line object.

cd iv id="map " s tyle="width : 800px; height : 600px">c/div>

</body>
c/html>

At this point, the map is functional. You have a mashup that can draw stations in the
London Tube system. You can navigate around, select lines, and click on markers to
see what stations you clicked on.

8 0 6 London Tube s,aoons CJ

0 hnp: / /localhost/ m:,shups /ch6/ind .. - Ba,k.phpllln•• 14

..JC.mino Info t}Ne.,. il111,qt Nowt T•b•

- --------------(266)---------------

Petitioner Apple Inc. - Ex. 1035, p. 266

Gia ler6

Using Flickr Services with AJAX
With some slight modification, we can add a call to Flickr Services. Generally, the
strategy we want is to make an 1-fITP request with the XMLHt tpRequest object when
the user clicks on a marker A good place to do this is in the callback function for the
marker's event listener. We already know the name of the station, so we can use it as
the basis of a search to Flickr.

This is a very acceptable strategy, but there's a huge problem. In general, browsers
cannot make an HTTP request with XMLHttpRequest to another server. This is
done to prevent cross-site scripting attacks, in which a malicious website runs
code to steal information about sensitive information between a user and another
website. In practice, this means that XMLHttpRequest calls can only go back to the
server the page originated from. With this limitation, how are we going to use
XMLHttpRequest to make a call from our website to Flickr Services?

Creating an XMLHttpRequest Proxy
The solution is to create a web service proxy on our server. The web server will
execute the Flickr Service call, not the browser. Our XMLHttpRequest action will
execute a GET request on the proxy and pass Flickr Services parameters to the proxy.
The proxy will then make a request to Flickr, and pass the response back, unaltered,
to the web browser. The browser doesn't know or care that the true data source
is from Flickr. In the examples code, in the services directory, the proxy is named
searchFl ickr. php. This is a small file whose sole job is to do just that.

<?php
require_once (' .. /classes/RESTParser .php') ;

$restParser = new RESTParser();

We will use the REST interface from Flickr. In this code, we will use the same REST
parser that we created from Chapter 1 to handle the RfST call.

$paramArray =array() ;

foreach ($_GET as $key=> $value) {

if ($key== 'forma t' I I $key== 'nojsoncallback' I I $key
{

$paramArray[$key) = $value;

else {

die("Unallowed Parameter Passed.");

'text')

---------------[267]----------------

Petitioner Apple Inc. - Ex. 1035, p. 267

...--

London Tube Photos

We initialize an array of Flickr Services parameters. We will pass this array to
the REST parser when we actually make the service call. This array is populated
by looping through the GET array and adding the array key and values to the
$paramArray. As this page is open to the entire world, it is a good idea to put some
security around it. Here, we are allowing only three Flickr parameters to be passed
from the calling page. Otherwise, the script will die.

//Add the API Key to the Request

$paramArray('api_key '] = 'YOUR FLICKR SERVICES KEY ';

$paramArray['method 1
] = 'flickr.photos.search';

$paramArray['per_page•] = ' 4';

$paramArray['page'] = ' l';
$paramArray['text•] .= ' London tube';

One additional benefit of this approach is that we get to hide our API key on the
server. If it was JavaScript making this call, we would have to expose our key in
&ant end code, and anyone can steal it. Th.is isn't as much of a concern with the
Google API Key because that key is restricted by domain. However, there is no such
restriction for the Flickr Services key. Here, we add it to the parameter array on the
server. The key is passed in server-to-server communication, and the user will
never see it.

As an additional security measure, we also specify the Flickr method here. Th.is
insures that only the f 1 i ckr . photos . search method is called from this script.

We are passing two additional parameters to make the results a little more
manageable. per_page will limit the results returned from Flickr to just 4 photos
per page. We then tell Flickr to return only one page using the page parameter. The
result is that a maximum of four photos will be returned by Flickr.

The final line in this block adds "London tube" to our search query terms passed to
Flickr. This is solely for the purposes of narrowing the search ..

echo $restParser- >callService ($paramArray, 'api . flickr.com', 1 /

services/ rest/', 'GET') ;
?>

Finally we pass the array of parameters to the RESTParser's callService () method
along with the Flickr Services server and endpoint information. The method returns
the response from the server, and we just echo it out to the requester.

- --------------[268)----------------

Petitioner Apple Inc. - Ex. 1035, p. 268

Cha ter 6

Modifying the Main JavaScript
Now we can modify our mashup s index page. In the examples code for this chapter,
there is a file named 1 ndex. php. This is the full, comple ted home page for the
mashup. It is basically index-Basic. php from earlier, but with the Flickr Services
calls. We will talk about what is different with this version from the basic version.

The first thing we need to do is add a handful more global variables to track.

var g_xmlHtcp;
var g_stationName;
var g_flickrString;
var g_map;

The first, g_xmlHttp, is a container for the XMLHttpRequest object. The next two,
g_stationName and g_flickrString, are used to hold information from the Flickr
Service response. We will talk about the need for them as we encounter them.
Finally, g_map is the same Google Map container as before .

Making the XMLHttpRequest
Before we can make XMLHttpRequest requests, we need a function to create the
XMLHttpRequest object w hen a request is about to be made. This is done through the
createXMLHttpRequest () function.

function createXMLHttpRequest() {
if (window .XMLHttpRequest){

g_xmlHttp = new XMLHttpRequest()
else if (window.ActiveXObject) {
g_xmlHttp = new ActiveXObject("Microsoft .XMLHTTP") ;

This code uses the standard browser check to see if the browser can create a natin~
XMLHttpRequest object or, if it is Internet Explorer, create a Microsoft. XMLH:-7?
request object through Acti veXObj ect. The object is then placed in g_ xmlHttp.

We call createXMLHt tpRequest {) in the first line of a modified Event Listener
callback function.

GEvent. addListener (marker, "click 11
, function {) {

createXMLHttpRequest();

}) ;

g_stationName = stationName ;
retrieveFlickrPhotos(stationName);
marker.openinfoWindowHtml("<div style=\"width:220px; height:250px; \
">" + stationName + "<P style=\"text-align:center;\">
</p></
div>");

------- ------- - (269)------- ---------

Petitioner Apple Inc. - Ex. 1035, p. 269

London Tube Photos

When the AJAX response is returned, the browser will have to update the
InfoWindow. At that point, the browser will not know the name of the station that
was clicked, so we store it in a global variable. This second statement is more for user
friendliness than application functionality.

Whenever someone clicks on the marker, the application should make the AJAX
request. Therefore, it needs to be included here in the click event. We will have to
define the request execution in a new function, retrieveFlickrPhotos (). This
function will actually create the Flickr search parameters, so we need to pass the
name of the station to use as the search term.

function retrieveFlickrPhotos(stationName) {
var url = "services/searchFlickr.php? format=

json&nojsoncallback=l&text=" + escape(stationName);
g_xmlHttp.onreadystatechange = parseFlickrSearch;
g_xmlHttp.open ("GET", url, true);
g_xmlHttp . send(null) ;

This function first prepares the URL back to our searchFlickr . php service on our
server. We add the Flickr Services parameters to this URL. The parameters we pass
aie summarized as follows:

Parameter

format

nojsoncailback

text

Value

json

1

The station
name and
extra search
parameters

Notes

We want the response to be inJSON.

We do not want to automatically execute a callback when
the JSON response is received. This functionality will be
handled by the XMLHttpRequest callback.

We need to pass the name through the JavaScript
escape () function to make it URL-friendly. We also pass
the te rms "London" and "tube" to narrow our search. The
latter is pure ly to refine our results.

After that, the call to the service is executed. We define a callback named
parseFlickrSearch () to handle the response.

- ------ ----- ----(270)----------------

Petitioner Apple Inc. - Ex. 1035, p. 270

Cha ler 6

Race Conditions
After this, we should create parseFlickrSearch () and define how we are going to
update the Infowindow with Flickr photos. Before we do this, though, we need to
talk a little bit about race conditions.

Race conditions are a notion that originated in the electronics design, but has been
adopted by software designers. In simple terms, it is when execution of a code
happens before a prerequisite is met. Thls is a constant pitfall in multi-threaded
languages like C, C++, and Java. PHP, being a single threaded language, does not
usually encounter a lot of race condition issues. One exception to this in PHP and an
example of a race condition is in file manipulation.

If you copy a file to a location w ith PHP's copy () function, the operating system
needs to finish copying before you can work on the copy. Other.vise, operations on
the copy will fail. Thls might not be an issue with 4 kilobyte text files, but imagine
moving a 700 megabyte CD image. Even with a fast RAID, this might take a minute
or so to copy, during which time, your script must wait.

In developing with web services, where we have to call other networks, we will need
to be cognizant of race conditions due to network latency. AJAX only adds in more
complexity. An AJAX application, where code execution takes place on the browser,
has no idea what is going on with the web server. If multiple asynchronous requests
are made before they are fulfilled by the server, AJAX applications may see strange
results. Data retrieved by a request may not match up perfectly to the request that
initiated it. In other words, what you see on screen may have been caused by an
action several clicks ago. Our code must successfully handle these cases.

We will encounter race conditions at several points when we parse code. There are
many strategies we can employ to counter race conditions, and they are usually
much customized to a problem. However, solutions often fall into broader categories.
One way to combat a race condition is to pre-cache the data during a time when the
user is not interacting with the system so things like network latency and system
timeouts are not significant. Anotl1er solution is to reserve and hold onto a resource
so that it will be available when you need it. When we look at our race conditions,
we will simply make sure every resource has arrived before we execute code.

--------------(271] - - ---------- - -

1

Petitioner Apple Inc. - Ex. 1035, p. 271

London Tube Photos

The first time we encounter a race condition is when we click on a marker. At this
point, the I nfoWindow opens. The AJAX request has been initiated, yet it must go
through our proxy, wait for Flickr's response, and then come back through our
proxy. We face some network latency. Meanwhile, our user sees a blank window.

Is anything happening on the left? Did the service find any photos? Did the server
time out? The user does not know. This condition is not disastrous, but shows that
we have to do something about the timing. A perfectly reasonable way to handle this
is to tell the user that something is definitely happening, and be patient. On the right,
we add a "loading" graphic in the user interface to tell the user to wait.

If you we clicked on a marker, would you rather see the blank space on the left, or
some feedback of status like the one on the right?

To add this, we can simply add an image tag to the HTML string that is passed when
we open the InfoWindow.

marker . o peninfoWindo wHt ml ("<d iv s tyle=\ "wi d th :220px ; he i g h t : 250px; \
">" + sta tionName + "<p style=\"text-align:center; \ "><img src=\
"images/wait.gif\• style=\"padding-top:50px;\" /></P></div >") ;

----------------[272)----------------

Petitioner Apple Inc. - Ex. 1035, p. 272

Make Your Own Load Graphics

There are many repositories out there with load images for you to
download and use for free. If none of them suit your tastes, you can
make your own. Fortunately there is a site that can help. Ajaxload.info
(http: //www. aj axload. info/) offers many basic load designs and
lets you customize with any color.

Parsing the AJAX Response

Cha ter 6

Let's continue with our response parsing code. This section will deal with how we
get data out of the call to Flickr Services and how we update the web page. The first
step is to create parseFlickrSearch (), the callback function that we specified when
we made the outgoing HITP request w ith XMLHttpRequest.

function parseFlickrSearch() {
if (g_xmlHttp.readyState == 4) {

var results= eval(' (' + g_xmlHttp.responseText + ') ');

var photo= results.photos.photo;
var totalPhotos = results .photos.total;
var l_flickrString = "";

We start off by checking the status of the request. If the request is complete, we
continue with the execution of our code. Little did we know previously that by
waiting, we were dealing with a race condition.

The first statement after the if statement places the Flickr response, stored in the
XMLHttpRequest property responseText, in the results variable. This is after the
code has been executed through eval ().

The next line goes straight to the list of photos returned. Remember the first few lines
of a Flickr Service Response:

<?xml version="l.O" encoding="utf-8" ?>
<rsp stat="ok">
<photos page=»l> pages=»20> perpage=»lOO» total=»l904>>

<photo id="412962278" owner="43203076@N00" secret="63e7e2elf0"
server=" l83" farm="l" title="Doin ' Studio Time" ispublic="l"
isfriend="O" isfamily="O" />

The service returns one photo element for each photo found. In JSON, this is treated
as an array. Therefore, think of photo as an array of photo objects.

---------------(273]----------------

Petitioner Apple Inc. - Ex. 1035, p. 273

London Tube Photos

We set a variable, total Photos, to manage the total number of photos returned. We
set one last local variable, l_flickrString, to store the local results from Flickr. This
is a local variable that will be appended to the global g_flickrstring.

g_flickrString = "<div>" + g_stationName + "
"

The HTML that will be in the InfoWindow is s tored in the variable g_flickrString.
Here, we start the string by repeating the name of the station, which was s tored in a
global variable earlier when the marker was first clicked.

if (totalPhotos > 0) {
for (x = 0; x < totalPhotos; x++) {

l_flickrString = " " +
"<a href='http : //www.flickr.com/photos/PHOTO_OWNER/
PHOTO_ID' />" +

"<img src='http://farmPHOTO_FARM.static.flickr .com" +

"/PHOTO_SERVER/PHOTO_ID_PHOTO_SECRET_t.jpg' border='0' />";
l_flickrString = l_flickrString.replace(/PHOTO_OWNER/g,
photo[x) .owner);
l_flickrString l_flickrString.replace(/PHOTO_ID/g,
photo [x] . id) ;
l_flickrString l_flickrString.replace(/PHOTO_FARM/g,
photo [x] . farm) ;
l _fl ickrString = l_flickrString . replace(/PHOTO_SERVER/g,
photo[x] .server);
l_flickrString = l_flickrString . replace(/PHOTO_SECRET/g,
photo[x] .secret) ;
g_flickrString = g_flickrString + l _flickrString;

Here is where the population of Flickr data actually takes place. The if clause makes
sure some results were returned. If there are results returned, we loop through the
photo objects using a for loop and limited to the frequency of loops to total Photos.
Each loop through creates a string containing the URL to the picture returned and
the anchor tag to the photo's page. This string is stored in the l_flickrString
variable. For readability, we use a few placeholders for the Flickr values in the string,
then we use the JavaScript replace () method to exchange these placeholders with
the actual values from the photo array. At the end,. l_flickrString is attached to
the global g_flickrString.

} else
g_flickrString = g_flickrString + "<p>No photos found
for this station.</p>";

----------------(274]----------------

Petitioner Apple Inc. - Ex. 1035, p. 274

Cha ler 6

After this, we close the if-else block. The else statement says if no results were
fow1d, update g_flickrstring with a message telling the user that the search came
up empty. This function's sole job was to create the string of HTML that will be in
InfoWindow. Let's take a look at updating InfoWindow with this string.

The main population happens in updateinfoBox () .

function updateinfoBox() {
if (g_flickrString == undefined) {

var timeout= window.setTimeout("updateinfoBox() ", 3000);
} else {
g_map.getinfoWindow() .getContentContainers() [OJ .innerHTML = "<d~v>"
+ g_flickrStr ing + "</div>";

//Cleanup
g_flickrString = null;
g_stationName = null;

This function is the last function called by the event listener.

GEvent .addListener(marker, "click", function() {
createXMLHttpRequest();

}) ;

g_stationName = stationName;
retrieveFlickrPhotos(stationName) ;
marker.openinfoWindowHtml("<div style=\"width:220px; height:250px;\
">" + stationName + "<P style=\ "text-align :center;\"><
img src=\"images/wait.gif\" style=\"padding-top:SOpx;\" /></p></
div>");
updateinfoBox ();

However, remember the service call happens elsewhere. While the information is
being retrieved, the window is already there. This is another race condition. If we call
g_flickrString before it is set, you will find it is undefined. If g_flickrString is
empty, use the set Timeout () JavaScript function to call itself after three seconds.
This delay in execution is a frequent tactic used in AJAX implementations.

If results were found, we get the DOM node of the InfoWindow box. This was done
using the DOM Inspector in Firefox. After this, we can append g_flickrString into
the node. Finally, we clean up the global variables by setting them to null.

------------- - - - (275)----------------

Petitioner Apple Inc. - Ex. 1035, p. 275

London Tube Plwtos

At long last, our mashup is complete. We can take it out for a test drive. Load the
web page in your browser and select a line with the pull-down menu. The markers
for the line will appear.

800

ll«k

a.adwwwgoogkcom

London Tube Stations

8 http://www.shuchow.com/ muhups/ch6/ lndu.phpJli114'=S

lo-w.ll()n

)

-------- -------(276)--------- -------

Petitioner Apple Inc. - Ex. 1035, p. 276

Cha ter 6

Click on one of the markers.

eoe lnndon Tube S11,Uons (3

8 http://www.shuchow.com/mashups/chli/lndo.pnp?tlnt-5

l.OUI- SHl<I>

Coogh, uJWob Oevtlop,.,...,

The InfoWindow will pop up. Through AJAX, our application is already searching
for our station a t Flickr. When it finds it, the first four photos are added to the
InfoWindow.

- - --- -----------(277]----- --- --- - ----

Petitioner Apple Inc. - Ex. 1035, p. 277

London Tube Photos

Summary
We have covered a lot of technologies in this chapter. We learned how to read RDF
documents and how to extract data from them using SPARQL and RAP for RDF.
These standards are fairly new. However, given the desire to put as much as possible
into RSS, these technologies are certainly bound to take off.

When we created the front end application, there were more new technologies
including AJAX to communicate from the server to the device. The biggest pitfall
in this AJAX application was race conditions. We examined how to overcome those
with various techniques.

----------- ----[278) - - --------------

Petitioner Apple Inc. - Ex. 1035, p. 278

Expand your website and applications
using mashups

Gain a thorough understanding of
mashup fundamentals

Clear, detailed walkthrough of key PHP
mashup building technologies

Five fully-implemented example mashups
with full code

Product lookup on Amazon.Com from their
code in the Internet UPC database

A fully customized search engine with MSN
Search and Yahoo!

A personal video jukebox with YouTube
and Last.FM

Real-time traffic incident data via SMS and
the California Highway Patrol!

Display pictures sourced from Flickr in
Google maps

Packt Publishing, Birmingham - Mumbai

www.PacktPub.com
Petitioner Apple Inc. - Ex. 1035, p. Back cover

